
FEIN)

Unirex

System Description

Preliminary
Dansk Data Elektronik ApS

27 July 1982

Author: Claus Tondering Copyright 1982

Dansk Data Elektronik ApS

Po

Unirex System Description 1.
Introduction

 Fm

e
m

v
a

P
a
a

R
Å

R
E

H
H

E
E

E
m

E
M

This manual contains a preliminary description of the Unirex operating

system running on the Unimax computer. It describes the various con-

cepts and system directives available, but does not include the utili-

ty program which will be available.

Numbers starting with a “$° character are hexadecimal, other numbers

are decimal.

Unirex and Unimax are - hopefully - registered trade marks of Dansk

Data Elektronik ApS. UNIX is a trade mark of Bell Laboratories.

i Unirex System Description 3.1
Bootstrapping

3. bootstrapping.

One disk in the computer is termed the “boot disk”. ‘his is the disk,

from which the operating system will be loaded when power is applied

to the computer.

The boot disk must have a Unifile file system structure.

On the boot disk a number of files will be present. Some of these

files contain self-test programs for the various CPUs in the computer,

other files contain the actual operating system.

When power is applied to the Unimax, a number of self test programs

are automatically run. After this the following files are loaded:

/unirex is loaded into the master CPUs.

/unifile is loaded into the master CPUs.

/sioc is loaded into the SIOCs.

/dioe is loaded into the DIOCs.

The master CPUs inspect the file /configur, which tells the operating

system, which channels on the SIOCs are terminals, and which are prin-

ters. (Additional information may at a later time be stored in

/configur.)

‘The master CPUs start /unifile program on behalf of user number 1.

Master CPU number N now executes the following subroutine call (see

section 6.6.1) on behalf of user number 0:

char *parms(.2.);

parms (.0.) = "/initN"

parms (.1.) = "N"

1d_prod("/initN",0,10,2,parms,0,0,0,éerrblock) ;

NX The N in the above lines is the CPU number.

Typical duties of /initN may be:

- set the terminal and printer characteristics (only /init1).

- load and execute Mikfile.

~ mount various disks.

- change access rights for various devices (only /init1).
i all various often-used programs (especially the logon

program).

Unirex System Description 3.2
Bootstrapping

R
E
N

M
E

RE
R.

R
E

F
Å

m
m

E
m

E
M

E
M

E
M

E
M

E
m

- initiate a spooler process.

- display start-up message on all terminals (only /init1).

- put all terminals in log-on mode (only /init1).

Alternatively, /initN may just interpret a command file “/startN*
specifying what should be done.

Unirex System Description 4.1
Gaining Access to the System

e
n

Ø
S
.

a
as

se

h
m
e

a
h
e

ee

e
e

e
e
:

em

4. Gaining Access to the System.

When the Unimax has been bootstrapped all the terminals will probably

display a log-on message such as, for example:

Unirex is ready for log on. Please press the escape key:

This is an invitation to the user to log on to the computer, that is,

to acquire access to a master CPU. But in order for this to be possi-

ble the user must be authorized to do so.

4.1. User Number, Name, and Password.

Each user authorized to use the computer is assigned a user number in

the range $0000 to $FFFF and a name of up to 8 characters. The user

may assign himself a password of up to 8 characters.

The name and the user number are synonymous; the user number is used

to identify the user within the computer, the name is the means by

which the user identifies himself to the computer. Using the name here

i ead of the user number has the advantage that a name is usually

sier to remember than a number, and also a name normaly contains

redundant characters decreasing the possibility of erroneous input.

whe password is a secret code word which the user assigns himself to

prevent misuse of his access right to the systen.

‘he user number determines which devices and files in the system the

or may access. Further, the user number is used for accounting

purposes: ‘The system stores information about how many times and for

how long the user has used the computer.

“ne first 2 hexadecimal digits of the user number specify the “group”
to which the user belongs. This is used in the I/O unit protection

scheme.

Unirex System Description 4.
Gaining Access to the System

Privileged Users.

Users in group O are “privileged”. Privileged users have certain
rights in the system, which unprivileged users do not. For example,
privileged users may access any device or file in the computer, they
may authorize new users to use the computer, and they may abort pro-
grams running in the computer, regardless of who started the program.

4.3. The Access File.

A file called the “Access File” is present on some disk in the compu-
ter. In this file information about all the users that have access to
the system is stored. The information in this file is:

~ User number.

- User name.

- User password (encrypted?).
~ Number of times the user has logged on to the computer.
- Total logged on time.

- Date and time of last use of the computer.
- Name of a program the user wishes to be executed immediately

after log on.

This file is protected so that it may only be accessed by privileged
users.

The file is a text file, and may thus be inspected and changed by an
editor program.

44a Logging On.

The following text is presented on a terminal, when nobody uses it:

Unirex is ready for log on. Please press the escape key:

This is an invitation to the user to log on to the computer, that is,
to request access to a master CPU.

When the user presses the escape key, the text ”<ESC>" will appear on
the screen, and the terminal driver program (which operates the termi-
nal controller) examines the contents of common memory to see which

Unirex System Description 4.3
Gaining Access to the System

master CPU has the fewest users logged on. The terminal driver then
tells that CPU that a log on is requested, whereupon the master CPU
goes through the log on procedure as described below.

The user may, alternatively, request to be logged on to a particular
master CPU, for example, if he wants to abort a program he knows to be
executing on that particular CPU. The user enters the CPU number and
presses the escape key, whereupon the terminal driver will request a

log on on the master CPU having the number given by the user.

The operating system in the master CPU now performs the following
call on behalf of user 0:

char *parm(.2.);

parm(.0.)="/logon";
parm(.1.)="/termNN"; /* this is the device from which a logon

is requested */
if ("logon" is installed) then

in_prod("logon", "logonNN",10,2,parm,0,0,0);

otherwise

1d_prod("/logon", "logonNN", 10,2, parm,0,0,0,éerrblock);

endif;

The logon program typically performs duties such as:

- acquire user name and password.

- check that the user has access to the system.

- spawn whatever program that has been specified in the access
file.

(At this point the user program executes.)

- wait for the completion of the offspring process.

- write accounting information into the access file.a

- dispaly logon request message on terminal.

- put terminal in logon mode.

Unirex System Description 5.1
The Supervisor

5. The Supervisor.

The Supervisor is the main part of the Unirex operating system in the

master CPUs. The supervisor controlls the execution of the user pro-

grams and supplies the user with various services.

The functions of the supervisor may be divided into three main catago-

ries:

1) Process management. (Described in chapter 6.)

2) Memory management. (Described in chapter 7.)
3) 1/0 management. (Described in chapter 8.)

b.1. System Calls.

The following chapters describe a set of system subroutines in C.

‘hese system calls issue the various supervisor requests. They all re-

turn an error code, which is zero if no error occured.

tines that facilitate the use of the system calls, plus a set of sub-

routines modelling UNIX system calls.

| These subroutines will be supplemented by a set of auxiliary subrou-

Unirex System Description 6.1
Process Management

6. Process Management.

A process is a running program. Processes have various properties, and

various operations may be performed on processes.

A process is said to “belong” to the user who started it, and, con-

versely, he is said to “own” the process.

A process han an “effective user number” and a “real user number”. The

effective user number determines the access rights and privilege

rights of the process. The real user number determines who is allowed

to perform operations on a process. Operations on a process can only

be performed by the user whose user number is identical to the real

user number of the process or by a privileged user.

The real user number is always the user number of the user starting

the process. The effective user number is normally identical to the

real user number; if, however, the file containing the program has the
“set user id” bit on, the effective user number will be the number of

the user owning the program file.

A process may be identified by either of the following:

1) Its name, which is a string of 8 characters, and the number of the

user owning the process.

2) Its process number.

Thus diffent users may have processes with identical names running
simultaneously.

When a process is started, the user may either himself supply a pro-

cess name, or request the supervisor to do so.

6.1. The Different Kinds of Processes.

A process is either a “main process”, which is directly subordinate to
the operating system, or it may be a “sub-process”, which is subordi-
nate to another process. The diffence between these two kinds of
processes is mainly reflected in what happens when a process dies,

that is, terminates its execution. This is described in section 6.5.

The programs for the processes may be located in three different pla-

ces:

Unirex System Description 6.2
Process Management

1) In a file from which it is loaded when execution starts. This is

termed a “loaded” program.

2) In the memory belonging to another process. This is termed an “in-

-memory” program.

5) “Installed” in memory, that is, permanently present in the master

CPU memory. This is termed an “installed” progran.

A few words about installed programs are in order: Execution of in-

stalled programs can start very fast, because there is no need to load

the program. One or more read/write segments for data are simply

allocated and the code is executed. In this way the code for an in-

stalled program may be used in the execution of several processes.

This facility may be used, for example, for the Pascal compiler, the

Pascal interpreter, the Comal interpreter, the assembler, the various

utility programs, etc. Only privileged users may install programs.

6.2. Priorities.

Processes have priorities. The priority is a number in the range

~-20..+20 with -20 indicating the highest priority. Negative priorities

may only be used by privileged processes, whereas priorities 0..+20

are available to all users. Most user processes should have a priority

of 10.

The priority is used when several processes are competing for access

to the CPU.

6.3. Operations on Processes.

6.5.1. Starting a Process.

Program execution may be started in four different ways:

) By “Production’.

2) By “Spawning’.

) By “Metamorphosis”.
) By “Forking’.

Unirex System Description 6.5

Process Management

A process, A, may “produce” another process, B. In this case B will be

a main-process. The program code for B may either be loaded or in-

stalled, but it may not be an in-memory program.

A is termed the “producing® process. B is termed the “produced” pro-

cess.

s +2. Spawning.

A process, A, may “spawn” another process, B. In this case B will be a

sub-process, subordinate to A. The program code for B may be loaded,

installed, or an in-memory program.

A is termed the “parent” process. B is termed the “offspring” process.

6.3.1.3. Metamorphosis.

A process, A, may “metamorphose”. This means that the program code for

A is replaced by another program code, and the execution of A conti-

nues with the new program code. All open files will remain open and no

completion code is reported, because A is not considered dead, but me-

rely transformed, metamorphosed, into another shape.

The new program code may be loaded or installed, but it may not be an

in-memory program. Further, the process requesting metamorphosis may

not be an in-memory program nor may it be the parent process of any

executing in-memory programs.

3.1.4. Forking.

A process, A, may “fork”. ‘This means that an identical copy of the

program code for A is made, and execution continues both in A and in

the copy, being process B. B will be a sub-process subordinate to A.

A is termed the “forking” process. B is termed the “forked” process.

The process requesting forking may not be an in-memory program. If it

Unirex System Description 6.4
Process Management

is the parent process of an executing in-memory program, this in-memo-

ry program is not forked together with the parent process.

6.5.1.5. Open I/0 Units.

The initial execution environment of a process is largely determined

by the 1/0 units with which it communicates. When a program starts
executing it inherits a number of open I/O units from the process

that started it. The following possiblities exist:

1) A process is produced or spawned. In this case the producing/parent

process specifies which of its own open I/O units that should be

passed to the produced/offspring process.

2) A process metamorphoses. In this case the open I/O units remain

open when execution of the new program starts.

3) A process forks. In this case all the open I/O units of the parent

process are passed to the offspring process.

lt should be noted, that this means that two processes may be working

on the same file simultaneously. Seeking and inputting/outputting to

that file may not be well-defined if the two processed do it simulta-

neously.

_Exiting a Process.

A process may terminate its execution by issuing an exit request. This

involves informing its parent process, if any, that it has done so
ection 6.5), releasing all memory belonging to that process, and

sing all files which the process has not closed itself.

0.3.9. Aborting a Process.

user may abort a process, that is, force the process to exit. An

unprivileged user may only abort his own processes. A privileged user

muy abort any process.

Unirex System Description 6.5
Process Management

 Em

em

sm

an
i

|
e
e
l

e
e
e

e
e

e
e

e
e

E
M

6.5.4. Suspending a Proces.

The execution of a process may be temporarily suspended. An unprivi-
leged user may only suspend his own processes. A privileged user may
suspend any process.

The execution is resumed when the user issues a “resume” request or
when a specified time expires.

6.3.5. Installing a Program.

A privileged user may install programs. Such programs must consist
only of read-only segments and unitialized read/write segments.

When a program is installed the contents of the read-only segments are
read into memory. This memory will be shared by all processes execu-
ting this program.

When an installed program is executed, the program code is located in
the read-only segments already in memory. Read/write segments will be
assigned to the process as required and will not be shared by the
different processes executing this program.

An installed program can only be removed from memory by privileged
users and only if no process is currently executing it.

6.5.6. The Process Stack.

When a loaded or installed program starts executing, it is given an
initial stack size, determined at link time.

When an in-memory program is spawned, the parent process specifies the
stack size required by the offspring process. This is taken from the
low-address end of the stack of the parent process.

Unirex System Description 6.6
Process Management

6.5.7. Process Entry.

The main procedure of a program must have the name main, declared in

the following manner:

main(ac,av)

short int ac;

char **av;

When the program starts execution, the supervisor will place a pos-

sible parameter string on its stack. The program will in ac find the

number of parameters. av(.0.) will be the address of a null-terminated

string containing the first parameter, av(.1.) will be the address of

a null-terminated string containing the second parameter etc. av(.0.)

will typically be used to hold the name by which the program was in-

voked, making av(.1.) the first effective parameter.

6.4. Operator Communication.

No particular operator communication program exists resident in Uni-

rex. When a user logs on to a terminal, the logon process starts

whatever program it may find in the logon file. This program may be

some kind of operator communication, such as a Unix shell, or, per-

haps, something better.

A proces may die either by committing suicide using an exit request or

by being killed by another process issuing an abort request. When a

process dies, information about its death is reported to its parent

process, if any.

If a parent process dies, all of its offspring processes are automati-

cally aborted.

The death of a main process is not reported anywhere.

When a process dies, it is automatically detached from all partitions,

and all its open I/O units are closed.

Unirex System Description 6.7
Process Management

The following system calls are used in process management:

Unirex System Description 6.8
Process Management

 m

m

mm

=

6.6.1. Produce Process from Loaded Program.

1d_prod(uname, prname, prio, pc, pv,uc, uv, pid, errblock)

char *uname, *prname;

int prio, pe;

char *pv(..)3

int uc;

short int uv (. .), *pid;

char *errblock;

This subroutine produces a process from a loaded program.

Parameters:

uname

prname

prio

uv

pid

is the address of a null-terminated string being the unitname

of the file containing the program.

is the address of an 8 character string containing the name

which is to be assigned to the process. If prname==0, Unirex

assignes the name “$$$$nnnn° to the process, where nnnn is the

hexadecimal value of the process number.

is the priority of the process. It must lie in the range

-20..420 for privileged processes, and 0..+20 for uniprivi-

leged processes.

is the number of parameter strings passed to the process.

is the address of an array of null-terminated parameter

strings to be passed to the process.

is the number of open I/O units which the produced process

should inherit from the producing process.

is the address of an array of uc I/O unit descritors, that

should be inherited by the produced process. uv(.0.) is the
I/O unit descriptor in the producing process which will become

1/0 unit descriptor O in the produced process. uv(.1.) is the
1/0 unit descriptor in the producing process which will become

1/0 unit descriptor 1 in the produced process, etc.

is the address of a short integer in which the process number

of the produced process will be stored. If pid==0 the process

number will not be stored.

Unirex System Description 6.9
Process Management

 i
m
s

m
m

o
m

o
m

e
m

errblock is the address of a 6-byte array in which additional error

information may be stored by the disk driver if a hard disk

error occurs during program load.

| Unirex System Description 6.10
Process Management

6.0.2. Spawn Process from Loaded Program.

ld_spawn(uname, prname, prio, pc, pv,uc,uv, pid, errblock)

char *uname, *prname;

int prio, pc;

char *pv(..)5

int uc;

short int uv(..), *pid;

char *errblock;

This subroutine spawns a process from a loaded program.

The parameters are identical to those of the ld_prod routine.

Unirex System Description 6.11
Process Management

6.0.5. Spawn Process from In-memory Program.

im spawn(start,prname,prio,pc,pv,uc,uv,pid,stack);

int (*start) ();

char *prname;

int prio, pe;

char *pv(..);
int uc;

short int uv(..), *pid;

int stack;

This subroutine spawns a process from an in-memory program. The code

for the offspring process must be part of the parent process” memory,

and execution starts at the indicated address.

The offspring process will share the global but not the local vari-
ables of the parent process.

Parameters:

Most parameters are identical to those of the 1d_prod subroutine.

start is the address of the subroutine to be started as a process.

stuck is the number of bytes to be reserved for the offspring pro-

cess stack.

Unirex System Description 6.12

Process Management

6.6.4. Produce Process from Installed Program.

in_prod(iname, prname, prio, pc, pv, uc, uv, pid)

char ¥*iname, *prname;

int prio, pc;

char %pv(..);

int uc;

short int uv(..), *pid;

This subroutine produces a new process from an installed program.

il

m
a

m
m

m
m

o
m

o
m

Parameters:

Most parameters are identical to those of the ld_prod routine.

iname is the address of an 8 character array containing the name of

the installed program.

prio is the process priority.

Unirex System Description
Process Management

6.13

6.6.5. Spawn Process from Installed Program.

in_spawn(iname, prname, prio, pe, pv,uc,uv, pid)
char *iname, *prname;

int prio, pe;

char *pv(..);

int uc;

short int uv(..), *pid;

This subroutine spawns a new process from an installed program.

The parameters are identical to those of the in_prod routine.

Unirex System Description 6.14

Process Management

6.6.6. Process Metamorphosis from Loaded Program.

ld_meta(uname, pc, pv, errblock)

char *uname;

int pe;

char *pv(..), *errblock;

This subroutine causes the calling process to metamorfose. The code

for the new program is loaded.
Parameters:

uname is the address of a null-terminated string being the unitname

of the file containing the program.

pe is the number of parameter strings passed to the metamorphosed

process.

py is the address of an array of null-terminated parameter

strings to be passed to the metamorphosed process.

errblock is the address of a 6-byte array in which additional error

information may be stored by the disk driver if a hard disk

error occurs during program load.

N
T

e
e

ee

ee

sm

m
m

Unirex System Description 6.15
Process Management

6.6.7. Process Metamorphosis from Installed Program.

in_meta(iname, pe, pv)
char. *iname;

int pc;

char *pv(..);

This subroutine causes the calling process to metamorfose. The code

for the new program is installed.

Parameters:

iname is the address of an 8 character array containing the name of

the installed program.

pe is the number of parameter strings passed to the metamorphosed
process.

pv is the address of an array of null-terminated parameter
strings to be passed to the metamorphosed process.

Unirex System Description 6.16
Process Management

6.6.8. Fork.

pre_fork(prname, pid)

char *prname;

short int *pid;

This subroutine causes the calling process to fork.

Parameter:

prname is the address of an 8 character string containing the name

which is to be assigned to the offspring process. If

prname==0, Unirex assigns the name “$$$$nnnn~ to the process,

where nnnn is the hexadecimal value of the process number.

pid is the address of the location where the fork information will

be stored. In the parent process, the process number of the

offspring process will be stored. In the offspring process, 0

will be stored.

—
_

e
e
s

Unirex System Description 6.17
Process Management

i

o.0.9. Install Program.

ins_prog(uname, iname,errblock)
char *uname, *iname;

char *errblock;

This subroutine installs a program. This subroutine may be called by

privileged processes only.

Parameters:

uname the address of the null-terminated unitname of the file con-

taining the program.

iname the address of an 8 character string containing the name to be

assigned to the installed program.

errblock the address of a 6~byte array in which error information from

the disk drive may be stored.

Unirex System Description 6.18
Process Management

6.6.10. Remove Installed Program.

rem_prog(iname)

char *iname;

This subroutine removes an installed program. This subroutine may

only be called by privileged processes.

Parameter:

iname the address of an 8 character string containing the name of

the installed program.

Unirex System Description 6.19
Process Management

6.0.11. Exit.

exit(cc)

short int cc;

This routine causes the calling process to die. The completion code,

cc, is reported to parent process, if any.

n
m
e

e
e
l

e
e
s

e
e

e
e

E
m

Unirex System Description 6.20
Process Management

abo_pre(pid, ce)

short in pid, cc;

This routine aborts a process. Unprivileged users may only abort pro-
cesses belonging to themselves.

Parameters:

pid is the number of the process to be aborted.

ce is the condition code to be reported to the parent process, if
any, of the killed process.

| ee

Unirex System Description 6.21
Process Management

&.6.15. Suspend Process.

susp pre(pid, time)

short int pid;

int time;

directive suspends the execution of a process. The process is-

g the call is itself suspended if pid==0. Unprivileged users may

only suspend processes belonging to themselves.

n

execution of the process is resumed upon the calling (by another

process) of rsum_pre or the expiration of the specified time, which-

ever comes first.

If a process has suspended itself, susp_pre will return zero if execu-

Lion was resumed because of an expired time. The value ERESUME will be

returned if execution was resumed becaus of a rsum_pre call issued by

another process.

Parameters:

pid is the number of the process to be suspended. The calling pro-

cess is itself suspended if pid==0.

time is the duration of the suspension in centiseconds. Execution

is suspended indefinately if time==0.

| Unirex System Description 6.22
Process Management

6.6.14. Resume Process.

rsum_pre(pid)

short int pid;

This routine resumes the execution of a suspended process. Unprivi-

leged users may only resume processes belonging to themselves.

Parameter:

pid is the number of the process to be resumed.

—_

o
e

oe

HE

SK

E
D

K
D
E

E
D

Unirex System Description 6.23
Process Management

6.6.15. Get Process Status.

pre_stat(pid, block)
short int pid;

struct

begin

char name (.8.);
short int ruser, euser;

int susptime;

short int prio, asn;

struct

begin

int physadd, length;

short int rw;

end memory (.16.);
Short int subproc, kind;

int privil, act:1, runn:1, susp:1, wait:1, abo:13
end *block;

This routine fetches information about a process.

Parameters:

pid is the number of the process. The calling process is itself
assumed if pid==0.

block is the address of a memory location where the process informa-
tion will be stored in the following format:

block—>ruser will contain the real user number of the
process.

block—>euser will contain the effective user number of
the process.

block—>susptime will contain the number of centiseconds that
the process will yet be suspended.

block->prio will contain the process priority.
block->asn will contain the process asn.
block—>memory(.i.).physadd will contain the pysical address of

process memory segment i.
block->memory(.i.).length will contain the length of process

memory segment i.
block->memory(.i.).rw will be O if the process has no ac-

cess to segment i, 1 if the process

| block—>name will contain the name of the process.

Unirex System Description 6.24
Process Management

has read-only access, 3 if the pro-

cess has read/write access.

block—>subproc will contain the number of sub-processes

subordinate to this process.
block->kind will contain

KINDLMP for a loaded main process,

KINDLSP for a loaded sub-process,

KINDIMP for an installed main process,

KINDISP for an installed sub-process,

KINDMEM for an in-memory subprocess.
block—>priv will be one if the process i privileged.
block—>act will be one if the process i currently ac-

tive.

block—>runn will be one if the process is currently run-

ning.

block—>susp will be one if the process is currently sus-

pended.

block—>wait will be one if the process is waiting for
I/0.

block->abo will be one if the process i being aborted.

Unirex System Description 6.25
Process Management

6.6.16. Get Process Number.

proc_num(pname, user, pid)

char *pname;

short int user, *pid;

This routines fetches the process number of a process.
Parameters:

pname is the address of an 8 character string containing the name of
the process. If pname==0, the calling process is assumed.

user is the number of the user owning the process. If user==0, the
real user number of the calling process is assumed.

pld is the address where the process number should be stored.

Unirex System Description 6.26
Process Management

 _
 =

=

6.6.17. Change Process Priority.

ch_prio(pid,prio)

short int pid, prio;

This routine changes the priority of a process. Unprivileged processes

may only change the priority of processes with the same real user num-

ber as the calling process.

Parameters:

H pid is the process number. If pid==0, the calling process is as-

sumed.

prio is the new priority.

Unirex System Description 6.27
Process Management

Documentation for subroutines to handle exeptions and terminal atten-

tions (UNIX “signals”) will be added at a later state.

Unirex System Description 7.
Memory Management

A user process has access to up to 14 megabyte of memory. Normally,
one or more readonly segments and one or more read/write segments are
allocated to the user process. The user may desire to allocate addi-
tional memory during program execution, or the user may wish to access
memory allocated by another process. ‘This section describes how this
iss done.

Partitions.

areas allocated during program execution are termed “partitions”.
ocess may create a partition, and, optionally, allow other proces-

ses to access this partition.

Une special use of partitions is for resident subroutine libraries.
Partitions available to all users may be created, and these partitions may, for example, contain often-used subroutines. The user programs
may access these subroutines simply by “attaching” (see below) to the
appropriate partition.

Before a process may use a partition the process must be “attached” to
that partition. A partition may or may not be deleted when no process
is attached to it.

Processes attaching to a partition will map certain logical addresses
onto the physical addresses of the partition, using one segment per
partition. Thus the maximum of 14 segments accessible to each process sets a limit to the number of partitions to which a process can be attached at any given time.

7.2. Operations on Partitions.

Creating a Partition.

A user process may create a partition. The partition is given a name and the process is automatically attached to it. A certain memory seg~ ment (certain logical addresses) are mapped to the physical addresses
of the partition. ‘The partition is said to belong to the user issuing the request. When a process creates a partition, it specifies the ac-
cess rights of other processes to the partition.

1

i Unirex System Description 7.2
Memory Management

Attaching to a Partition.

Before a process can access a partition, the process must be attached
to that partition. When a process is attached to a partition, a cer-
tain memory segment (certain logical addresses) are mapped to the phy-

sical addresses of the partition.

7.5. System Calls.

rl

The following system calls exist:

Unirex System Description 7.3
Memory Management

i

Y.5.1. Create Partition.

crea_par(pname, length, laddr,access, delete)

char *pname;

int length, laddr;

short int access;

char delete;

This subroutine creates a partition and assigns it a name. This parti-

tion will belong to the user, with the real user number of the calling

process. The calling process is automatically attached to the parti-

tion. The calling process is allowed read/write access to the parti-

tion. Other processes may request read/write or read-only access de-

pending on the value of the access parameter.

Parameters:

pname is the address of an 8-character string specifying the name of

the partition. This name must be unique for the user, but not

necessarily unique within the system.

length is the length in bytes of the partition. This number must be

at most 0x1000000, and will be rounded to the next hight num-

ber divisible by Ox100.

laddr is the logical address to which the partition should be

mapped. Only bits 20-23, specifying the segment number, are

used.

access is the specification of what access rights of other processes

to the partition. ‘This number is in the same format as the

protection specification for I/O units (see section 8.x).

delete specifies if the partition should be automatically deleted

when no process is attached to it. If delete==1 automatic de-

letion takes place.

Unirex System Description 7.4
Memory Management

1.5.2. Delete Partition.

del par(pname,user)

char *pname;

short int user;

This subroutine deletes a partition provided that the process has ac-
cess to the partition. If a process is attached to the partition, de-
letion is postponed until all processes have detached from the parti-
tion.

Parameters:

pname is the address of an 8 character string specifying the name of
the partition.

user is the number of the user owning the partition. If user==0 the
real user number of the calling proces is used.

Unirex System Description 7.5
Memory Management

=

=

E
m

13-3.

Attach Partition.

att_par(pname,user, laddr,access)

char *pname;

short int user;

int laddr;

char access;

This subroutine attaches the process issuing the call to a partition.

Parameters:

pname

user

laddr

access

is the address of an 8 character string specifying the name of
the partition.

is the number of the user owning the partition. If user==0 the
real user number of the calling proces is used.

is the logical address to which the partition should be
mapped. Only bits 20-25, specifying the segment number, are
used.

specifies the requested access. access==1 means read-only ac-
cess, access==3 means read/write access.

| Unirex System Description 7.6
Memory Management

7.5.4. : Detach Partition.

det par(pname,user)

| char *pname;

short int user;

| This subroutine detaches the calling process from a partition. The

process must be attached to the partition when the call is made.

i Parameters:

pname is the address of an 8 character string specifying the name of

the partition.

user is the number of the user owning the partition. If user==0 the

real user number of the calling proces is used.

Unirex System Description 7.7
Memory Management

7.5.5. Get Partition Status.

par stat(pname,user,block)

char *pname;

short int user;

struct begin

int length;

short int access;

int paddr;

short int att;

end *block;

This subroutine gets status information about a partition.

Parameters:

pname is the address of an 8 character string specifying the name of

the partition.

user is the number of the user owning the partition. If user==0 the

real user number of the calling proces is used.

block is the address of a memory location where the status informa~

tion should be stored. Upon return from the call

block->length will contain the length of the partition.

block->access will contain the access specification for the

partition.

block->paddr will contain the physical address of the parti-
tion.

block—>att will contain the number of processes attached to
the partition.

Unirex System Description 7.8
Memory Management

1.35:6. Get Memory Information.

memn_info(paddr, block)

int paddr;

struct begin

short int type;

char name(.8.);
short int user;

int length;

short int access;

int padd;

end *block;

This directive gets information about the memory usage in the compu-

ter.

Parameters:

paddr specifies a physical address. The information returned will be

about the usage of the next memory partition at a physical ad-

dress greater than paddr.

block is the address of the memory location where information about

the next memory partition (including normal program memory)

should be stored. Upon return from the call

block->type will contain the partition type.

block—>name will contain the partition name.

block—>user will contain the partition owner number.

block->length will contain the length of the partition.

block->access will contain the access right information of the

partition.

block->padd will contain the physical address of the parati-

tion (this number may be used in a subsequent

mem_info call). ee ee ee ee

ee

ee

ee

e
e

mm

m
m

mm

mm

Em

må

s
m

| Unirex System Description 8.1
1/0 Management

8. 1/0 Management.

Unirex handles input and output in a manner that is, as far as pos-

sible, device independent. All I/O is performed on an “I/O unit” which

may be

1) The “null device’.
2) A terminal.

3) A printer.
4) A disk.

5) A Mikfile file on a disk.

| 6) A Unifile file on a disk.

7) A box.

8) A system box.
9) A common box. (Not implemented in the first release of Uni-

rex.)

An I/O unit may reside on another computer linked to “our” computer

through the Uninet. A full I/O unit specification takes the form: !computer:device/name/name/name

computer is the name of the computer on which the I/O resides. If

!computer is omitted, “this” computer is assumed.

device is the name of the device on which the I/O unit resides.

This specification may be:

1) :null for the null device.

2) :term01, :term02, etc. for terminal number 1, 2, etc.

5) sprintO1, :print02, etc. for printer number 1, 2, etc.

4) :diskO1, :diskO02, etc. for disk number 1,2, etc. and

for files residing on those disks.

5) :box for boxes.
6) :sysbox for system boxes.

7) :combox for common boxes.

if :device is omitted, ”:disk01” is assumed.

/naume/name/name is the specification of a file on a disk or the name

of a box, system box, or common box.

in the system calls, unit specifications (the so-called “unit names”)

ure ulways specified as a O-terminated character string.

All characters in the unit names are ideally lower case letters. Upper

se letters are converted to the lower case counterparts.

Unirex System Description 8.2
I/O Management

If the first character of a unit name is neither ! nor: nor /, the

unit name is prefixed by the so-called “current unit prefix” which is
a property of a process. If, for example, the current unit prefix of a
process is “:disk02/alpha/beta/“, and the process specifies unit name
“gamma/delta”, the effective unit name will be
“:disk02/alpha/beta/gamma/delta’.

When a unit is opened or created it is assigned an I/O unit descriptor
which is a short integer that should be used in subsequent operations
on the file. The value of the I/O unit descriptor is always the smal-
lest value currently not assigned to an open I/O unit.

8.1.1. The Null Device.

The Null Device is used for disposing of unwanted output. On output
the null device is a bottomless pit, on input it always yields an
end-of-file. The specification of this device is

mull

8.1.2. Terminals and Printers.

I/O is identical on terminals and printers. The only difference is
that the opening of an I/O unit being a printer involves the reserva-
tion of that printer, whereas this is not the case with terminals.

Terminals and printers are numbered 1, 2, etc.

The specification of terminal number 5 is

:term05

The specification of printer number 5 is

?printo5

Unirex System Description 8.3
1/0 Management

N
N

e
e

e
e

m
e

mm

ER

ER

8.1.5. Disks.

I/O to a disk may be either direct or via a file system. For direct

1/0 the reading and writing of byte strings is supported. The disks

are numbered 1, 2, etc. whith disk number 1 being the default disk

used when no device specification is present. For direct disk I/O the

specification of disk number 3 is

:disk05

8.1.4. Mikfile.

Mikfile is the MIKADOS-compatible file system. Files under Mikfile

have names comprised of up to 8 characters, followed by a period, fol-

lowed by one character. The specification of the Mikfile file hanoi of

type k on disk 4 is

:disk04/hanoi.k

8.1.5. Unifile.

Unifile is the UNIX V/7 compatible file system. Files under Unifile

have names comprised of up to 14 characters, possibly followed by

another file name specification. The specification of the Unifile file

hanoi residing in the directory alpha, which resides in the directory

beta on disk 2 is

:disk02/beta/alpha/hanoi

A special case of Unifile files are the so-called redirection files. A

redirection file contains a unit name, which replaces the part of the

unit name used to reach the redirection file. If, for example, the

file :diskO1/pip/pop is a redirection file, containing the unit name

“:disk03/first/second”, the unit name “/pip/pop/alpha/beta” (using
:diskO1 by default) is effectively the unit name

“:disk05/first/second/alpha/beta’.

Or, if :diskO1/dev/tty! is a redirection file, containing “:term01”,
the unit name “/dev/tty1° is effectively the unit name “:term01”.

Unirex System Description 8.4
I/O Management

3.1.6. Boxes and System Boxes.

Boxes are used for message exchange and synchonization between proces—

ses. A box is logically an I/O unit, but is resident within a master

CPU. It contains a buffer into which data may be written and read. Be-

fore a process may use a box the process must open it, or, perhaps,

create it if it did not already exist. A box is automatically deleted

when it is no longer open for any process and contains no data, except

tor the so-called system boxes which must be deleted by an explicit

call to the delete routine. Only privileged processes may create and

delete system boxes.

Access protection applies to boxes in a manner analogous to files,

however opening a box is always in read/write mode with no reservation

ot the box.

boxes have names of up to 8 characters.

The specification of the box “frodo” is

:box/frodo

Bh ?he specification of the system box ”gandalf” is

:sysbox/gandalf

8.1.7. Common Boxes.

Common boxes are system boxes located in the memory common to all CPUs

in the Unimat.

The specification of the common box “bilbo” is

:combox/bilbo

31
… 1/0 Unit Protection.

All I/O units are protected by a protection mode specifier of 4 bytes.

Two bytes contain the number of the user owning the I/O unit, and the

low order 12 bits of the other two bytes specify the access rights in

the form ugtrwxrwxrwx. This is identical to the UNIX protection, ex-

Unirex System Description 8.5
1/0 Management

cept that the t-bit is always ignored in Unirex, and the u-bit is con-

sidered on if the g-bit is on.

When Unirex is loaded the following protection right apply to the va-

rious devices:

Device Owner Protection

null 0 ---TW-rw-rw—

:termNN 1) ---Pw-rw-rw-

:printNN 0 ---rw-rw-rw-

:disk01 1 (Unifile) ---rw-rw----

:diskNN 0 ---rw-rw-rw- (all disks exept :disk01)

The computer startup command file may specify a change in these access

rights.

8.3. File Systems.

The two file systems Mikfile and Unifile are supplied with the Unirex

system. The user may himself create other file systems.

A file system is a process satisfying certain requirements as speci-

fied in section 8.x. When a disk is mounted it is specified which file

system process should operate on the disk.

It is the duty of the file system to convert the various file 1/0 re-

quests into relevant input and output operations directly on the disk

on which the file system works.

3.4. System Calls.

The following sections list the various I/O system calls. For each

call a short description is given, followed by a parameter list, fol-

lowed by a description of how the call works on particular units.

Unirex System Description 8.6
1/0 Management

8.4.1. Create Unit.

creat_un(ioud,uname, prot ,mode,size, errblock)

short int *ioud;

char *uname;

short int prot, mode;

int size;

char *errblock;

This subroutine creates an I/O unit.

Parameters:

ioud is the address of the location where the I/O unit descriptor

should be stored.

uname is the address of the null-terminated unit name.

prot is the protection bits of the created unit.

mode specifies the access mode of the unit. mode==2 for write,

mode==3 for read/write, mode==4 for selective update.

size is the size of the unit.

errblock is the address of a 6 byte memory location where the disk

driver may store error information when a hard disk error is

| encountered.
iprintNN

prot, mode, size, and errblock are ignored. mode is always assumed to

be 3. The printer is reserved so that no other process may open/create

it.

RE
|

Unirex System Description 8.7 1/0 Management

If the file does not exist, it is created. If it does exist, the call fails. mode is always assumed to be 5. The file is reserved so that no other process may open it. size specifies the size of the file in 256 byte sectors.

J Unifile

If the file does not exist, it is created. If it does exist, it is truncated to zero length. The file is reserved as required by mode.
byte sectors that

d for the file. size may be O. Specifyin;; a size does not alter the functioning of the file, but it may improve the access time.

size specifies the number of contiguous 256 (512?)
are to be reserve

;box/nnnnnnnn

If the box does not exist, it is created. If it does exist, the call fails. mode and errblock ure ignored. mode is always assumed to be 4. size specifies the number of bytes in the box buffer.

:sysbox/nnnnnnnn

| If the box does not exist, it is created. If it does exist, the call fails. mode and errblock are ignored. mode is always assumed to be 3. | size specifies the number of bytes in the box buffer. Only privileged processes may perform this call.

Unirex System Description 8.8
1/0 Management

8.4.2. Create kxtent to Mikfile.

crext_un(ioud,errblock)
short int ioud;

char *errblock;

This subroutine creates an extent to a Mikfile file.

Parameters:

ioud is the I/O unit descriptor of the file.

errblock is the address of a 6 byte memory location where the disk
driver may store error information when a hard disk error is
encountered.

This call will extent the specified file, provided it has less than 60
extents.

Not allowed.

Unirex System Description 8.9
I/O Management

54.5. Open Unit.

open_un(ioud, uname, mode, errblock)
short int *ioud;

char *uname;

short int mode;

char *errblock;

This subroutine opens an I/O unit.

Parameters:

ioud is the address of the location where the I/O unit descriptor
should be stored.

inane is the address of the null-terminated unit name.

Arde specifies the access mode of the unit. mode==1 for read,
mode==2 for write, mode==3 for read/write, mode==4 for selec-
tive update.

errblock is the address of a 6 byte memory location where the disk
driver may store error information when a hard disk error is
encountered.

null ar

_itermNN

mode and errblock are ignored. mode is always assumed to be 3.

sprint
mode and errblock are ignored. mode is always assumed to be 3. The
printer is reserved so that no other Process may open/create it.

:diskNN

errblock is ignored.

Mikfile

The specified file is Opened, if it exists. Only mode==1 and mode==3
are allowed. The file is reserved as required by mode.

Unirex System Description 8.10
1/0 Management

The specified file is opened, if it exists. The
required by mode.

file is reserved as

:box/nnnnnnnn and isysbox/nnnnnnnn
 The specified box is opened, if it exists. mode and errblock are

ignored. mode is always assumed to be 3.

=

m
a

m
m

m
m

E
m

m
m

a

5 3 re md = oO

Unirex System Description 8.11
I/O Management

I
I
[
[
[
I
[
1
1
1
1
1
1
1
1
I
i
1
|

8.4.4. Close Unit.

close_un(ioud, errblock)
short int ioud;

char *errblock;

This subroutine closes an I/O unit.

Parameters:

ioud is the I/O unit descriptor.

errblock is the address of a 6 byte memory location where the disk
driver may store error information when a hard disk error is
encountered.

inull and _:termNN

errblock is, ignored.

errblock is ignored. The printer reservation is released if this was
the last close for this printer.

zdiskNN

errblock is ignored.

Mikfile and Unifile

The file reservation is released if this was the last close for this
file.

:box/nnnnnnnn

errblock is ignored. The box is deleted if this was the last close for
this box, and the box buffer is empty.

:sysbox/nnnnnnnn

errblock is ignored.

Unirex System Description 8.12
I/O Management

get_un(ioud, buf, count, actual, errblock)

short int ioud;

char *buf;

int count, *actual;

char *errblock;

this subroutine reads from an I/O unit. Parameters:

| ioud is the I/O unit descriptor.

buf is the address of the location where the data input should be

stored.

count is the size of the input buffer. No more than this number is

input.

actual is the address of the location where the actual number of
characters input should be stored.

errblock is the address of a 6 byte memory location where the disk
driver may store error information when a hard disk error is

encountered.

null
buf, count, and errblock are ignored. *actual is always set to zero.

itermNN and :printNn

errblock is ignored.

If the device operates in line mode, a line of up to count-1 charac-

ters is input from the terminal. This line is stored in buf with a

trailing lf character (ASCII code Ox0a). *actual is set to the number

of characters input, including the lf. If the eof key is pressed,

*actual is set to 0.

If the device operates in direct input mode, the number of characters

input since the last get_un operation are transferred. However, no

more than count characters are transferred.

Unirex System Description 8.13
1/0 Management

i:diskNN and Mikfile and Unifile.

Up to count bytes are input from the unit. If the end of the unit is

reached, only the available number of bytes are input.

:box/nnnnnnnn and :sysbox/nnnnnnnn

Up to count bytes are input from the box. If the box contains fewer

than count bytes, only the available number of bytes are returned. If

the box is expty, the calling process waits until something is written

into the box. *actual is thus never set to zero.

Unirex System Description 8.14
I/O Management

8.4.6. Put Data to Unit.

put_un(ioud, buf, count, errblock)

| short int ioud;

char *buf;

int count;

| char *errblock;

This subroutine writes count bytes to an I/O unit.
Parameters:

ioud is the I/O unit descriptor.

buf is the address of the location where the data to be output is

stored.

count is the size of the output buffer.

errblock is the address of a 6 byte memory location where the disk

driver may store error information when a hard disk error is

encountered.

null

buf, count, and errblock are ignored.
errblock is ignored. If the device is in control-: »quence mode, any

initial <...>-sequence will be interpreted, rather 1 1an output. If the

device is in Mikados mode, the output will be ter: inated by a lf/er,

unless a <S> is in effect. If the device in UNIX moe, any lf in the

buffer will be output as lf/ecr.

idiskNN and Mikfile

If the end of the unit will be reaced before output ‘erminates, no-

thing is output.

| itermNN and :printNN

Unirex System Description 8.15
1/0 Management

The file is extended as required.

:box/nnnnnnnn and :sysbox/nnnnnnnn

If the box is too full to contain count bytes, the outputting process
waits until the box is sufficiently empty. An error occurs if the size
of the output buffer exceed the total box buffer size.

Unirex System Description 8.16
1/0 Management

8.4.7. Get Data Backwards from Unit.

getb_un(ioud, buf, count, actual, errblock)

short int ioud;

char *buf;

int count, *actual;

char *errblock;

This subroutine reads backwards from an I/O unit

Parameters:

ioud is the I/O unit descriptor.

bur is the address of the location where the data input should be

stored.

zount is the size of the input buffer. No more than this number is

input.

10tual is the address of the location where the actual number of

characters input should be stored.

errblock is the address of a 6 byte memory location where the disk

driver may store error information when a uard disk error is

encountered.

buf, count, and errblock are ignored. *actual is always set to zero.

mNN and :printNN

Not allowed.

:diskNN and Mikfile and Unifile.

Up to count bytes are input from the iit. If the beginning of the

unit is reached, only the available nur er of bytes are input.

| zn

| |

Unirex System Description 8.17
1/0 Management

:box/nnnnnnnn_and_:sysbox/nnnnnnnn

Not allowed.

| Unirex System Description 8.18
1/0 Management

3.4.8. Update Buffer on Unit.

edit_un(ioud, buf, count, actual, notmod, curoff,errblock)
Short int ioud;

char *buf;

int count, *actual;

short int notmod, curoff;

char *errblock;

This subroutine outputs the buffer, allows the user to change it, and
inputs it again, provided the I/O unit is a terminal. On other devi-
ces, this is identical to get_un. Parameters:

ioud is the I/O unit descriptor.

buf is the address of the buffer, whose contents ure to be al-
tered.

count is the size of the buffer. No more than ths number is input.

actual is the address of the location where the «actual number of
characters input should be stored.

notmot is the number of characters at the beginr ing of the buffer
that should not be output.

curoff is the initial cursor offset when input starts.

errblock is the address of a 6 byte memory loc tion where the disk
driver may store error information wen a hard disk error is
encountered.

null

buf, count, curoff, and errblock are igne ved. *actual is always set to
notmod.

itermNN

errblock is ignored. The terminal must operate in line mode. If the
device is in control-sequence mod, any initial <...>-sequence will be
interpreted, rather than outpur The buffer should not contain any
control characters except, naps a final lf. Anyway, the final

|| Unirex System Description
I/O Management

 character of the buffer is always ignored. A trailing lf will be

stored in the buffer. *actual is set to the number of characters

input, including the lf. If the eof key is pressed, *actual is set to

notiwod.

All other devices.

edit_un works as get_un to a buffer with the length count-notmod, and

the first notmod characters of buf are not changed.

Unirex System Description 8.20
I/O Management

8.4.9. Position Unit.

pos_un(ioud,count,mode,errblock)

short int ioud;

int count;

short int mode;

char *errblock;

This subroutine positions an I/O unit to a particular byte.

Parameters:

i ioud is the I/O unit descriptor.

count is the desired unit position.

mode controls the interpretation of count. If mode==0, count is
absolute counting from the beginning of the unit. If mode==1,
count is added to the current unit posistion. If mode==2,
count is absolute counting backwards from the end of the
unit.

errblock is the address of a 6 byte memory location where the disk
driver may store error information when a hard disk error is
encountered.

The call is ignored.

stermNN and :printNN

vot allowed.

errblock is ignored.

Wik ei be

mode must not be 2.

Unirex System Description 8.21
1/0 Management

Unifile

Works ok.

:box/nnnnnnnn_and_:sysbox/nnnnnnnn

Not allowed.

n
e

e
e

ee

ne

ee

ee

ee

ee

a
ne

ae

a
ne

ee

ee

EM

om

f
å

Unirex System Description 8.22
I/O Management

3.4.10. Link a File to a Directory.

link_dir(old,new, errblock)

char *old, *new, *errblock;

This subroutine creates a link in a directory to a file.

Parameters:

old is the address of the null-terminated unit name of the file.

new is the address of the null-terminated new name by which the
file should be known.

errblock is the address of a 6 byte memory location where the disk
driver may store error information when a hard disk error is
encountered.

Unifile.

Works ok.

Not allowed.

Unirex System Description 8.23
I/O Management

| 8.4.11. Unlink a File from a Directory.

unl_dir(uname, errblock)
| char *uname, *errblock;

| This subroutine removes a link in a directory to a file.

Parune ters:

| uname is the address of the null-terminated unit name of the file.

| urrbiock is the address of a 6 byte memory location where the disk
driver may store error information when a hard disk error is
encountered.

Unitiles

If the last link to a file is removed, the file is itself removed. If,
however, the file is in use by some other process, the deletion of the
file is postponed until it is closed.

ALL other units.

Not allowed.

| Unirex System Description 8.24

1/0 Management

8.4.12. Rename a File.

ren_file(old,new,errblock)

char "old, *new, *errblock;

This subroutine renames a file.

Parameters:

old is the address of the null-terminated unit name of the file.

new is the address of the null-terminated new name by which the

file should be known.

errblock is the address of a 6 byte memory location where the disk

driver may store error information when a hard disk error is

encountered.

Unifile.

The call is implemented as

unl_dir(old,errblock) ;

Mikfile.

Works ok.

Not allowed.

| link dir(old,new,errblock);

Unirex System Description 8.25 I/O Management

 8.4.15. Delete a Unit. et Slette a Unit.

del_un(uname, errblock)
char *uname, *errblock;

This routine deletes an I/O unit.

Parameters:

uname is the address of the null-terminated unit name.

errblock is the address of a 6 byte memory location where the disk driver may store error information when a hard disk error ig encountered.

inull and :termNN and iprintNN and :diskNN
th and 2 te Pp and diskNN

Not allowed.

Nikfile
The file must not be open when the call is made.

Unifile

The call is implemented as unl_dir(uname, errblock).

:box/nnnnnnnn

errblock is ignored. The box is deleted Soll process has the box Open, deletion wil is closed. Note that empty boxes
closed.

even if it is not empty. If
1 be postponed until the box

are automatically deleted when

isysbox/nnnnnnnn

errblock is ignored. The system box is deleted even if it empty. If som Process has the box open, until the box is closed.
call.

is not
deletion will be postponed Only privileged Processes may perform this

| Unirex System Description 8.26
I/O Management

3.4.14. Change Unit Access Mode.

chace_un(uname, mode, errblock)
char *uname;

short int mode;

char *errblock;

This call changes the access right bits of an I/O unit.

Parameters: uname is the null-terminated name of the unit.

ME
E

RE
E
e
e

m
m

e
e

m
m

m
m

e
e

e
e

m
m

o
m

>

|e
 far o $ Fa

(vw
 5 cf
 5 5 ct [9]

mode is the new access mode. The low order 12 bits specify
ugtrwxrwxrwx (as in UNIX).

errblock is the adåress of a 6 byte memory location where the disk
driver may store error information when a hard disk error is
encountered.

uu

The call is ignored.

Works ok.

Unirex System Description 8.27
I/O Management

8.4.15. Get Load Module Information.

info_1m(uname, block, errblock)

char *uname;

struct begin

struct begin

char rw;

int length;

end segment(.16.);

int start, stackb, stacke;

char setunum;

short int user;

int serial;

end *block;

char *errblock;

This subroutine gets load module information. This subroutine may only

be called by privileged processes.

Parameters:

uname is the nuli-terminated name of the file containing the load
module.

block is the address of the memory location where the load module

information should be stored.

block->segment(.i.).rw will be 1 if segment i is a

read/write segment, O if segment i
is a read-only segment.

block->segment(.i.).length will be the length of segment i.
block->start will be the execution start ad-

dress of the program.
block->stackb will be the lowest address of the

stack area.

block->stacke will be the address of the byte

following the stack area.

block->setnum will be the value of the u-bit lo-

gically or’ed with the g-bit of
the load module.

block->user will be the owner of the load

module.

block->serial will be the encrypted serial number of the computer on which

the program may run.

Unirex System Description 8.28
1/0 Management

errblock is the address of a 6 byte memory location where the disk

driver may store error information when a hard disk error is

encountered.

Mikfile and Unifile

Works ok.
All other units

Not allowed.

Unirex System Description 8.29
1/0 Management

8.4.16. Load Load Module.

load_1m(uname, addr, errblock)
char *uname;

int addr(.16.);

char *errblock;

‘this routine loads a load module into memory. The routine is not
available to the user, but must be Supported by the file systems.

Parameters:

uname is the address of the null-terminated load module file name.

addr is the address of 16 physical (!) memory addresses into which
the program segments should be loaded.

errblock is the address of a 6 byte memory location where the disk
driver may store error information when a hard disk error is
encountered.

Mikfile and Unifile

Works ok.

All other units

Not allowed.

Unirex System Description 8.30
1/0 Management

3.4.17. Get Unit Status.

stat_un(uname, block, errblock)

char *uname;

struct stat *block;

char *errblock;

uis subroutine gets I/0 unit status information.

Purume ters:

uname is the null-terminated name of the unit.

block is the address of the memory location where the status infor-

mation should be stored. See below for the layout of the

structure stat.

errblock is the address of a 6 byte memory location where the disk

driver may store error information when a hard disk error is

encountered.

block will be set to 0.

ztermNN and :printNN

struct stat begin

short int user, /* the access right user number */

mode; /* the access right mode bits */

end;

See also the get_sioc subroutine.

:diskNN

struct stat begin

short int user, /* the access right user number */

mode; /* the access right mode bits */

int sect; /* the number of sectors on the disk */

char type; /* the disk type */
end;

Unirex System Description
1/0 Management

Mikfile and Unifile

The actual layout of struct stat has not been determined.

:box/nnnnnnnn and :sysbox/nnnnnnnn

struct stat begin

short int user,

mode;

int ibytes,

obytes;

end;

/*

/*

/*

/*

the access right user number

the access right mode bits

the number of bytes that may

read from the box */
the number of btyes that may

written to the box */

x/
*/
be

be

Unirex System Description 8.32
1/0 Management

8.4.18. Generate Box Name.

gen_boxn(sys, *uname)

short int sys;

char *uname;

This routine generates a new unique name of a box. The name will start
with two $-signs, and this should thus not be used in user-generated
box names.

sys is 1 if the name of a system box is requested, O for non-sy-
stem boxes.

uname is the address of the location where the generated name should
be stored. It will be a null-terminated string in the form
“:box/$$nnnnnn” or “:sysbox/$$nnnnnn*, where nnnnnn is some
number.

Unirex System Description
1/0 Management

83.55

8.4.19. Get Terminal or Printer Operation.

get_sioc(uname, block)

char *uname;

struct siocsta *block;

This subroutine gets information about a terminal or printer.

uname is the null-terminated name of the I/O unit.

block is the address of the memory location where the unit informa-
tion should be stored. The layout of the structure
has not yet been determined.

siocsta

| Unirex System Description 8.34
1/0 Management

8.4.20. Set Terminal or Printer Operation.

set sioc(uname, block)
char *uname;

struct siocsta *block;

This subroutine sets terminal or printer operation.

uname is the null-terminated name of the I/O unit.

block is the address of the memory location where the operation

specification is stored. The layout of the structure siocsta

has not yet been determined.

Unirex System Description 8.35

1/0 Management

 8.4.21. Get Function Key Value.

get_fkey(ioud, key)

short int ioud;

char *key;

This subroutine fetches the value of the most resently depressed

function key on an I/O unit.

Parameters:

ioud is the I/O unit descriptor.

key is the address of the memory location where the information

should be stored.

itermNN and :printNN

Works ok.

All other units

Not allowed.

N
N

eT

m
e
s

R
é
e

R
R

m
å

Unirex System Description 8.36
I/O Management

i

i

i

8.4.22. Duplicate I/O Unit Descriptor.

dup ioud(old,new)
short int old, "new;

This subroutine associates a new I/O unit descriptor with an already

open unit.

Parameters:

old is the old I/O unit descriptor.

new is the address of the memory location where the new I/O unit

descriptor should be stored. The I/O unit referenced by *new

will in all respects be identical to the I/O unit referenced

by old.

Unirex System Description 8.37
1/0 Management

Gal.2o. Copy I/O Unit Descriptor.

cop_ioud(old,new)

| short int old, new;

| nis subroutine copies an old I/O unit descriptor into a new one.

Purameters:

old is the old I/O unit descriptor.
new is the new I/O unit descriptor. The I/O unit referenced by new

will in all respects be identical to the I/O unit referenced

by old. new must not be associated with an open I/O unit when

the call is made.

Unirex System Description 8.38
I/O Management

8.4.24. Get Current Unit Prefix.

get_cup(*pname)

char *pname;

This subroutine fetches the current unit prefix for the calling pro-

Parameter:

pname is the address of the memory location where the null-termina-
ted current unit prefix will be stored.

i
i
i

RT

| Unirex System Description 8.39

1/0 Management

8.4.25. Set Current Unit Prefix.

set_cup(*pname)

char *pname;
This subroutine sets the current unit prefix for the calling process.

Parameter:

pname is the address of the null-terminated new current unit prefix.

Unirex System Description 8.40

1/0 Management

chown_un(uname, owner, errblock)

char *uname;

short int owner;

char *errblock;

This call changes the user number determining access rights to an 1/0

unit. This call may only be performed by privileged processes.

| 8.4.26. Change the Owner of a Unit,

| Parameters:

uname is the null-terminated name of the unit.

owner is the new unit owner user number.

errblock is the address of a 6 byte memory location where the disk

driver may store error information when a hard disk error is

encountered.

null

The call is ignored.

All other units.

Works ok.

Unirex System Description 8.41

1/0 Management

8.4.26. Mount a Disk.

n_disk(disk, filesys)

char *disk, *filesys;

This subroutine mounts a disk, that is, associates it with a file sys-

tem process.

Parameters:

disk is the address of the null terminated unit name of the disk.

tilesys is the address of the 8 character name of the file system pro-

cess, normally "mikfile" or “unifile".

Unirex System Description 8.42

I/O Management

8.4.27. Unmount a Disk.

um_disk(disk)
char *disk;

This subroutine unmounts a disk, that is, disassociates it with a file

system process. Parameters:

disk is the address of the null terminated unit name of the disk.

Unirex System Description 9.1

Miscellaneous System Services

9. Miscellaneous System Services.

9.1. Get System Time.

get time(sec,msec)

int *sec;

short int *msec;

This subroutine fetches the system time. The system time is measured

in seconds since 00:00:00 GMT, January 1, 1970. Using a 4 byte integer

to hold the seconds makes this convention useable until the year 2106.

Parameters: sec is the address of the memory location where the system time in

seconds should be stored.

msec is the address of the memory location where the milliseconds

counter should be stored.

Unirex System Description 9.2
Miscellaneous System Services

 FM

em

em

9.2. Set System Time.

set time(sec)
int sec;

This subroutine sets the system time. The routine may only be called

by privileged processes.

Parameter:

u føj G is the number of seconds since 00:00:00 GMT, January 1, 1970.

i

Unirex System Description 9.3

Miscellaneous System Services

9.3. Inter-Process Move.

ip move(spid,saddr,4pid, daddr, count)

short int spid;

int saddr;

short int dpid;

int daddr, count;

This subroutine moves a block of data from one process to another.

This subroutine may only be called by privileged processes.
Parameters:

spid is the process number of the source process. The calling

process is assumed if spid==0.

suddr is the logical address of the source block within the source

process.

dpid is the process number of the destination process. The calling

process is assumed if dpid==0.

daddr is the logical address of the destination block within the

destination process.

count is the number of bytes to move.

Unirex System Description 9.4
Miscellaneous System Services

N
N

e
e

ms

R
$
o
$
Å
Å
E
R

E

Em

ER

9.4. Get Hardware Configuration.

get hw(block)

struct begin

short int term,

print,

disk,
cpu,

sioc,

dioc;

end *block;

This subroutine fetches information about the hardware configuration

of the computer.

Parameter:

block is the address of the memory location where the hardware in-

formation should be stored:

block->term will

block—>print will

block->disk will

block->cpu will

block->sioc will

block->dioe will

be

be

be

be

be

be

the

the

the

the

the

the

number

number

number

number

number

number

of

of

of

of

of

of

terminals.

printers.

disks.

master CPUå.

SIOCs.

DIOCs.

