

DR OOM cCHy

WI U IM

Programmers Reference Manual

Information system

First edition
August 1984

(C)Copyright 1984 Norsoft A.S, Norway

PN 99110445

NOTICE!

The content of this publication can be changed without warning

Norsoft makes no representation or warranties with respect to the
contents hereof and specially disclaims any implied warranties or
merchantability or fitness for any particular purpose.

This publication has been provided pursuant to an agreement
containing restriction on its use. The publication also is protected
by federal copyright law. No part of this publication may be copied
or distributed, transmitted, transcribed, stored in a retrieval
system, or translated to another language without the prior
written permission from Norsoft A.S.

(C) Norsoft A.S. 1984

First Edition - August 1984 — is based on VISTA 1.04

VISTA PROGRAMMERS REFERENCE MANUAL TABLE OF CONTENTS

‘TABLE OF CONTENTS

Chapter 1 - Overview of VISTA

Chapter 2 - Description of VPL language

Chapter 3 - VISTA VERBAL - The underlying database system

Chapter 4 - Description of VPL operators

Chapter 5 - Description of system variables

Appendix A - Glossary of terms

Appendix B - Messages in VIPS

Appendix C - Attributes

Appendix D - SKJDOK

Appendix E - Keyword Index

-o00-

OVERVIEW OF VISTA

The version of VISTA described in this manual is a single user system
for 16 bit computers with a minimum of 256 K memory (or more powerful
computers).

As supplied VISTA PL consists of 4 executable programs

- VISUP
~ SKJEMA
~ VIPS
~ SKIDOK

‘SKJEMA

VISUP

SKIDOK

Is the schematic generating and editing module.
SKJEMA is also the tool to generate and edit the VPL-code
assosiated with a given schematic,

Is the run-time module. Tt is both a programme and an applica-
tion generator.
As a programme it provides a document handling system,
Documents can be stored ,retreived ,displayed ,changed ,erased ,
sorted in many different ways and printed.
As an application generator it provides a development test-bed
which includes debugging aids. With use of VPL, taylor made
applications can be designed ,developed and tested. VPL also
allows the designer to develop a user interface so that the
document handling system is hidden from the user.

Is a module to edit userdefined procedures. VISUP can also be
used to select terminaltypes and languages (usually only one
language and one terminaltype is supported)

Is a programme to print the defined schematics and VPL code
for documentation and debugging purposes

VISTA PROGRAMMERS REFERENCE MANUAL VPL LANGUAGE

Chapter 2 Description of VPL language

2.1 Introduction

VeL is an acronym for VISTA programing Language, | VPL is a special
purpose language for use with the VISTA Applications Generator. It is
implemented as an interpreter in VIPS which is the name of the run-time
module in the VISTA product.

VPL is optimised for ease of database interaction, string
manipulations, and system control. The VPL interpreter supports
procedures written in VPL .

The fundamental terms used in this description are "operator" and
"argument", An operator is a "verb" in natural language, i.e. it
indicates action. Plus ("+") is an example of an operator. Operators
usually perform some action on arguments ("nouns" in natural language)
to produce a result. The result of an operator can be viewed as an
argument to the following operator.

Examples of operators:
+ Pl
= Assignment
PICK Named operator for fetching substrings

Examples of arguments:
#13 Screen Field
#201 Hidden field (off screen storage)
#509 System Variable
#901 Status line field
‘he! Quote String
513 Positive number

Constants can be delimited by quotes or double quotes. As a special
case positive numeric constants can be written without quotes. Thus
the two constants: '234' and 234 are equivalent.

In VPL the onder of evaluation is left-to-right. ‘There is no
hierachy between operators. Several special characters are neither
operators nor arguments, The most obvious example of these are
parenthesis.

Examples of special characters:
Parenthesis

> Indicate a right argument list
Statement separator, or right argument list separator
Comment follows

A VPL process consists of statements. Several related VPL operators
following one another within a statement form an expression. A VPL
statement. can contain several unrelated expressions. Each line of
VEL may contain several statements. Coma is used as statement deli-
miter. Tf the last operator in a statement does not return a value
the delimiter is not required.

2-1

VISTA PROGRAMMERS REFERENCE MANUAL VPL LANGUAGE

2.2 Syntax of VPL

Operators in VPL perform some action on the arguments which surround
them, To formalize this description arguments are described relative
to their position fram the operator in question, hence the terms "left
argument" and "right argument".

Example: 142
1 is the left argument

+ is the operator
2 is the right argument
3 would result from this

expression

In the above operation the left and right arguments are symmetrical
(i.e. 2 + 1 would yield the same result). If the operator was
minus ("=") then the right argument would be subtracted from the left
argument. Thus 5 - 3 would yield 2.

Arithmetic operators require two arguments and the above notation is
sufficient. In the more general case it may be necessary to have
more or less than two arguments. If no arguments are required then
the operator can be by itself. If one argument is required it is
usually given as the left argument (but in some situations it can be
given as the right argument).

TI more than two arguments are needed for an operator (often the case
in string handling) then a construct called a "right argument list”
is used. A right argument list appears to the right of the operator
it refers to and is surrounded by "<" and ">". There can be up to
10 arguments in a right argument list. Hach argument in the list
can be an expression, Arguments in a right argument list are
separated by commas.

Following is a list of valid operator/argument sequences:

i) No argunents e.g. BLANK

di) Left argument only Je 1 INPUT

iii) Right argument only e.g. BLANK 1

iv) Right argument list only e.g. BLANK < 1 >

v) Left and right argument eg 1+ 2

vi) Left argument and right argument list
eg. 1 PICK <2, 4>

1 PICK< =, 4>

Example of a right argument list:

‘abodefgh' PICK < 3, 5>

Meaning: From the left argument (string 'abedefgh') pick
5 characters starting from position 3 yielding
the string 'cdefg' as the result.

VISTA PROGRAMMERS REFERENCE MANUAL VEL LANGUAGE

Most. operators yield a result. This result can be used as the left
argument to the following operator (i.e. the operators further to the
right in the current expression).

2

Order of evaluation

3n expression is scanned left to right. The first argument seen in an
expression is taken as a left argument. Assuming an operator is
recognized next the scan will continue looking for a right argument to
this operator. When another argument is recognized it is taken as the
right argument to the current operator and then the current operator is
executed. ‘The result of the operator becomes the left argument as the
scan continues along the expression.

The left-to-right scan attempts to maximise the number of arguments to
an operator.

Exanple:

124 13+ 3+!

= B= #4

The first addition has a left argument and a right argument
and after its execution the line can be envisaged as:

25 + 3 + '-6' = 43 = 44

And so on...

#3 = #4

22 = #3 = #4

Here the operator is assignment with the right argument being
screen field three. Assignment yields its left argument as
its result. The string '22' would appear in screen field 3.

22 = #4

Now the string '22' is put in screen field 4, and the original
expression results in:

22

N.B. In the above example positive numeric constants where written
without quotes while the negative constant '-6' was surrounded
by quotes,

VISTA PROGRAMMERS REFERENCE MANUAL VEL LANGUAGE

2.3.1 Parenthesis

Parenthesis are special characters as indicated above. They can be
used to change the order of evaluation described in the above
paragraph, As soon as a left parenthesis is detected the expression
contained in the set of parenthesis (there must be a matching right
parenthesis) is evaluated before anything else is done.

Example: 34 24+(3 * 4)=04

This will go through the following steps in evaluation:

5 +(3 * 4)= 44

The left parenthesis is now detected when a right argument is
sought for the addition, therefore:

5 + 12 = #4

7 = #4

So '17' would appear in screen field 4 and the overall
expression would finish with

7

N.B. If the parenthesis had not been present in the above
example then '32' would have been placed in screen field 4.

Parenthesis can be nested to sexteen levels in a single expression.

2.3.2 Right arguments

If there is only one right argument it can be represented in two ways:

a) 1 43
b) 1 +4¢3>

Both expressions will result in 4. The above representations are
equivalent (so the first is favoured because it is simpler),

Some operators require three or more arguments. The "PICK" string
operator for taking a selected number of characters out of a given
string is such an example. The three arguments are:

i) input string = left argument

ii) position to take
characters from = Ist right argument

iii) number of characters
to take - 2nd right argument

2-4

VISTA PROGRAMMERS REFERENCE MANUAL VPL LANGUAGE

Example:
"Paul-Brennan' PICK < 6 , 3 > #2

Evaluates to:
"Bre! = #2

The multiple right arguments are represented as a list
separated by commas, and the list delimited by "<" and '
interpreter supports up to 10 arguments in a right argument list.

Tf, for example, the first right argument is to adopt its default value
(position 1 in the case of PICK) then the following expression is
possible:

‘Paul-Brennan' PICK <, 3> = #2

Evaluates to:
"Pau' = #2

It is important to realize that the right arguments in such a list
can themselves be VPL expressions. Thus the first example in this
paragraph could appear as:

"Paul-Brennan' PICK < 4 +2, 3> = #2

Evaluates to:

‘Paul-Brennan' PICK < 6 13> =#2

And then:

"Bre' = #2

2.4 Fields and variables

2.4.1 Screen fields

The screen fields are those areas in the schematic on the screen into
which the user is allowed to enter data. Each field can be viewed as
an entity. Screen fields can be no longer than the width of the screen
and must always be wholly within one line. The number of screen fields
in any one schematic is limited to 200. It is possible to have
schematics with no screen fields at all.

The screen field numbers are a sequence running from 1 up to a maximum
of 200. The "nati “ order of screen field numbering is left-to-right
and then down the screen, This order is assumed in the module which
creates schematics called "SKJEMA". This module allows re-ordering of
the screen field sequence, The screen field numbering sequence
determines the order in which the cursor will pass between the screen
fields. Screen fields can always be accessed by number. VPL accesses
the screen fields by stating their field numbers prefixed by "¥".

2-5

VISTA PROGRAMMERS REFERENCE MANUAL VPL LANGUAGE

Note that constants are contained in quotes. It is permissable to
write positive constants (i.e. numeric strings) without quotes.

Example:

‘fred’
#33

#33
#2

The first statement would put the string ‘fred’ into
screen field 33. It would appear left justified in
that field, If the field was longer than 4
characters then spaces would be added to the right.
If the field was less than 4 characters then only
the leftmost characters of ‘fred’ would appear.

The second statement would pick up the contents of
of screen field 33 and then place it in screen
field 2, thereby replacing the previous contents of
screen field 2.

When screen fields are read trailing spaces are ignored. Thus in the
above example if the screen field 33 was 80 characters long then
reading it (left argument of second statement) would yield only 4
characters. When the contents of one field is being assigned to
another this is not important but if the contents of two fields are
being joined together (an operator called JOIN) then this is
significant.

Example:

1 7Assume field 1 is 8 characters long
#1 JOIN #1 = #2 j;Assume field 2 is 8 characters long

Then screen field 2 would finally contain:
abcabe (left justified)

VPL code can be executed in various contexts but in all cases one of
the screen fields is assumed to be "current", As a shorthand
notation the "current" screen field can be addressed as #0.

Example:

‘Hello' = #0 Put 'Hello' into current screen
7 field

To summarize: The fields within the schematic on the screen are
called screen fields. These screen fields can
always be addressed by a sequence of numbers.
Optionally these fields may also be named.

2-6

VISTA PROGRAMMERS REFERENCE MANUAL VEL LANGUAGE

2.4.2 Status line fields

There can be from 1 to 10 statusline fields refered to as field
901,902, --~ 910.
See chapter 4, the description of the operators SA, SL, SP, SR, SV
and SW.

2.4.3 Hidden fields

Hidden fields are thus named because they have most of the pro-
perties of screen fields, but lie off the screen "hidden" from
the users sight. There are three main differences between hidden
fields and screen fields:

Both leading and trailing blanks are removed when a
value is assigned to a hidden field,

If a numeric type datum (the result of an arithmetic ope-
rator) is assigned to a hidden field, the numeric type is
retained, and rounding has no effect. A reference to such
a value by an operator which requires string type data will
give the same effect as if the reference was an arithmetic
expression (see the description in chapter 4 of the assign-
ment operator (=)).

All hidden fields are global, and are initialized as empty
when VIPS is started. It should be noted that nothing can
be assumed about the "volatile" hidden fields, and that the
"long" hidden fields may be reinitiated to empty if a value
is assigned to system variable 519 (See chapter 5)

There are three groups of hidden fields:

Short hidden fields 201-230. ‘hese fields each have a
length of 16 characters, and can be used by appli-
cations for global storage of values.

"Volatile" short hidden fields 291-299. These fields have
the same properties as the user short hidden fields,
but are primarily meant as temporary work locations
for VISTA. They may be freely used by user applica-
tions, but must be regarded as undefined on entry
into a schematic and after the use of a procedure.

Long hidden fields 301-310. These fields each have a default
length of 80 characters, and otherwise have the same
properties as the user short hidden fields by default.
A total of 800 characters are reserved for the long
hidden fields, thus making 10 such fields available as
the default value. These fields are numbered 301-310,

VISTA PROGRAMMERS REFERENCE MANUAL VEL LANGUAGE

The length of these fields may be changed by the appli-
cation by writing a value to system variable 519 (see
the description in chapter 5). The length may be in
the range 40-255 characters, thus the number of long
hidden fields may vary from 20 to 3. When a new value
is assigned to system variable 519 the new length is
calculated and stored in system variable 518. At the
same time all the user long hidden fields are reiniti-
ated to empty.

2.4.4 System variables

System variable are "hidden fields" numbered fron 401 to 599, These
variables are divided into 2 classes, the informative variables which
can only be read, and the variables that affects the behavior of the
system and which can be both read and written. These variables are
described in detail in chapter 5.

2.5 Procedures

VISTA allows the use of user defined procedures, VPL is processed
interpretatively. when the interpreter encounters an operator name
it does not recognize, it assumes that it is a procedure call, and
attempts to execute it as such after first compiling the arguments
in the same manner as for an ordinary operator. A procedure can as
the operators have zero or one left arguments, and zero, one or more
right arguments (a list of maximun ten right arguments).

A procedure retums a result, which is a string of zero through 255
characters long.

The procedures reside in the file VISETUP.VSF, and are defined using
the program VISUP.

A procedure may call another procedure. Procedures are recursive in
nature, A procedure may therefore directly or indirectly call itself.

Return from a procedure is done either when a RETURN operator is en-
countered, or after the last line of the procedure has been processed.

Inside the procedure an argumen is indicated by & (percent)
followed by a number ,and are referenced as:

a Left argument
a2 Right argument
311 First argument of right argument list
#12 Second argument of right argument list

920 Tenth argument of right argument list

The return value from a procedure must be assigning to 80.

2-8

VISTA PROGRAMMERS REFERENCE MANUAL VPL LANGUAGE

A procedure may be invoked with a variable number of arguments. In
this case the operator EXIST (see chapter 4) may be useful.

Inside a procedure #0 is a reference to the contents of current field,
while #448 contains the field number of current field .

The operators GOTO, EXIT and SCHEMA are illegal inside procedures.

2.6 Special action

These are facilities to aid in debugging or error correction.

System error action

If, during processing of VPL, an error condition is discovered, VIPS
displays an error message on the status line and waits for a keypress
from the user:

8 The current process is terminated.

Down arrow The line of VPL where the error condition was
detected is displayed on the status line, and
2? marks the position in the line. The system
waits for a further keypress.

Any other The current process is resumed at the beginning
of the next line of VPL.

Keyboard interrupt

Keyboard interrupt is a facility to interrupt the execution of VPL,
and is incurred by pressing F8 twice. ‘The processing is halted, the
message "Keyboard interrupt" is displayed on the status line, and the
system waits for a keypress (see the previous paragraph).

2.6.3 Debugging single step

The system has a facility to execute VPL on a line by line basis, while
each line is displayed on the status line before execution. This is
controlled by system variable 535, see chapter 5.

2.7 Help structure

The system provides a default help structure which can be evoked at any
time by the user pressing F2. This help structure can be replaced by a
user supplied help structure (wholly or partly). ‘This is described in
chapter 4, the SHELP operator.

29

VISTA PROGRAMMERS REFERENCE MANUAL ‘VISTA/VERBAL

CHAPTER 3 VISTA/VERBAL - The underlying database system

The VISTA product grew out of an attempt to add a menu-based
interface to a database called VERBAL developed by Sturla
Sandlie in 1978,

VERBAL is a freestuctured database management system with a query
language based on a grammar of sentences, subsentences and words.
The query language is extremely flexible, and had to be flattened
somewhat to fit the constraints of presenting information through
fixed formats (schematics), To avoid confusion between original
VERBAL and the database system used by VISTA the latter is called
VISTA/VERBAL.

The first thing to point out about VISTA/VERBAL (and VERBAL) is
that the database system is not told in advance about the format
of information (documents/records) to be stored in the database.
This means that the database file initiation is very simple, and
can be done at a very early stage, after which data entry may be
started as soon as the first data entry schematic has been made.
This feature also means that schematics may be changed, or added
after a lot of information has been stored without necessitating
a reorganization of the database,

VIPS, the run-time module, can only access one database file at a
time but this is no problem in practice as this database file may
contain any number of registers(groups of documents with the same
schematic name). The term "file" refers mostly to a single opera-
ting system file throughout this documentation, but may refer to
a group of such files if the operating system on the host machine
is to restrictive re. filesize. This will be transparent to the
VISTA user except in the context of file by file security backup.

DOCUMENTS

VISTA/VERBAL stores documents. Documents are made up of fields.
In Data entry mode there is a one by one relationship between the
fields in the schematic and the fields in the stored document. It
is also possible to store documents from VPL, in which case there
need be no relationship between the stored documents an any sche-
matic. Only the contents of non-empty fields are stored, and all
leading and trailing blanks are removed (to save storage).

Documents stored in Data entry mode can contain up to 200 fields,
while there is no limitation on the number of fields if a docu~
ment is stored from VPL.

Fach field can vary between empty and 255 characters. All fields
fall into one of two classes. ‘hese are "key fields" an “non-key
fields". Non-key fields are stored as part of the document, but
are not searchable, while the contents of key fields may be used
to retrieve the document through a Search. Key fields may contain
no keys, one key or multiple keys. Multiple keys are separated by
semicolon(s).

1

VISTA PROGRAMMERS REFERENCE MANUAL VISTA/VERBAL

KEYS

Keys are the "hooks" the user has to information stored in the
database. It is important to distinguish between “keyfields" and
"keys". Keyfields are defined in the schematics, and if a schem-
atic is used for Data entry or Edit then the corresponding key/
non-key is invoked. As noted above a keyfield may contain zero,
one or many keys, It is also possible, through the use of VPL, to
associate a key value with a different field fron where the value
is stored. This is especially useful in documents containing data
on a tabular form, with repeated groups of identical information.

applied to the database to find all documents containing the spe-
cified combination of keys. Any combination of keys may be given
as a search criterion.

The fastest search is for exact match on one or more keys. It is
also possible to specify one or more "wild card" select criteria
which includes such terms as "all except", "greater than" and
"less than".

The collection of documents resulting from a search are all those
that satisfy all the given criteria concurrently.

OCCURRENCE LIS'

The result of a search is an “occurrence list". This is a list
pointing to the documents which met the search criteria, VISTA/
VERBAL can maintain approx. 125000 such lists concurrently, while
VISTA limits the number available to the user to 101, These are
referenced by list numbers 1 through 101, List number 101 is spe-
sial purpose, and is commonly called the current occurrence list.
This is used as the default occurrence list where such is needed.

At any time a document can be pointed to by zero, one or several
occurrence lists. Occurrence lists are global in action but they
are all removed when exit is made from the VIPS program. When the
VIPS program is started there are no occurrence lists.

Note: Occurrence lists generated by Sort will cause spurious re-
sults if used with any of the logical list operations.

The Delete of a document will make that document unavail-
for a later search, but the document itself is not removed
immediately, it is still available for read-access in all
the lists pointing to it. Attempts to modify or delete an
already deleted document will cause an error message.

32

VISTA PROGRAMMERS REFERENCE MANUAL ‘VISTA/VERBAL

LOGICAL LIST OPERATIONS

This is best shom by example:

Let us assume that there is a register of Norwegians whose names
and other information are held in a group of documents. The nanes

Town

Per Hansen Bergen
Jens Olsen Bergen
Jan Hansen Oslo
Ole Paulsen ‘Trondheim
Kari Nilsen Alta
Olav Hansen Larvik
Anne Olsen Bergen
Jens Jensen Bergen

Hans Hansen Bergen
Dag Bjornsen Kirkenes

Now let us apply two search profiles against these docunents.

List 1 will be those with a surname of "Hansen".

List 2 will be those who live in "Bergen".

These lists are visualized on the next page.

33

VISTA PROGRAMMERS REFERENCE MANUAL

Bjornsen, Dag

Olsen,Anne
Hansen, Olav

Hansen, Per il

Lia 4

5000 BERGEN

1. List of those with a surname of “Hansen”.

Bjornsen, Dag

Olsen,Anne

s Hansen, Olav

Hansen, Per
Lia

5000 BERGEN

2. List of those who live in “Bergen”

3-4

VISTA PROGRAMMERS REFERENCE MANUAL ‘VISTA/VERBAL

With the logical list operation "AND" a new list can be formed of
ALL those who have the surname "Hansen" and live in "Bergen",
This new list is called list 3 and is shown below.

el =i
Olsen, Jens

Hansen, Per
Lia4

5000 BERGEN

3. List of all those who have the surname ‘Hansen”
AND live in “Bergen”.

With the logical list operation "oR" a new list van be fomned of
those who live in "BERGEN" OR have the surname "Hansen",
This new list is called list 4. N.B. Those who both live in
"Bergen" and are called “ansen" are not duplicated,

Bjornsen, Dag

 Olsen,Anne
Hansen, Olav

Paulsen, Ole

Olsen, Jens

Hansen, Per
Lia4

5000 BERGEN

4. List of those who live in “Bergen” OR have the
surname “Hansen”,

35

VISTA PROGRAMMERS REFERENCE MANUAL VISTA/VERBAL

With the logical list operation "KOR" a new list can be formed of
those who live in "Bergen" or are called "Hansen", but excluding
those who both live in "Bergen" and are called "Hansen". The new
list is list 5.

Olsen,Anne il

 Hansen, Olav

Paulsen, Ole 1

Olsen, Jens

 Hansen, Per
Lia4
 5000 BERGEN

With the logical list operation "NOT" it is possible to forma
new list of those in the first list excluding those in common in
the second list. Since the order of the list is important two
examples are given, List 6 are those whose surname is "Hansen"
who do not live in "Bergen".

©:
Bjornsen, Dag

 Olsen Anne
Hansen, Olav

Paulsen, Ole

Olsen, Jens

Hansen, Per
Lia 4

5000 BERGEN

6. List of those with a surname “Hansen” except those
living in “Bergen”

3-6

VISTA PROGRAMMERS REFERENCE MANUAL

VISTA/VERBAL

List 7 contains those who live in "Bergen" but whose name is not
"Hansen",

Olsen, Jens

Hansen, Per
Lia 4

5000 BERGEN

7. List of those living in Bergen except those with a surname “‘Hansen’’

Paulsen, Ole

Bjornsen, Dag

Olsen,Anne

Hansen, Olav

37

Keywords: Document, field, key, non-key, keyfield, dictionary

‘The database system underlying VISTA stores documents. The format
of a document is not defined in advance to the database systen.
Each document can contain any number of fields. Fields can vary
between empty and 255 characters long. Documents are not of fixed
length. The amount of storage set aside for each document is the
sum of its fields after removal of leading and trailing spaces.

Fields can be divided into two types, key and non-key fields. The
key/non-key make-up of documents can vary dynamically from one
document. to the next.

The database systen maintains dictionaries. These dictionaries
are not predefined, being maintained by the system dynamically
without user interaction. They are introduced here to give an in-
sight into the operation of the database. Documents in the data-
base may be considered as divided into groups. Each group has an
associated schematic name from which that group of documents were
generated,

A separate dictionary holds the schematic names associated with
the documents. Every document in the database has one, and only
one schematic name associated with it.

Keys are maintained in a set of different dictionaries. In the
simplest case a key is the contents of a keyfield in a document.
A keyfield will be considered to hold no key if it is blank. A
keyfield can hold more than one key with semicolon ";" being con-
sidered as the delimiter. A transformation takes place from the
contents of a keyfield to the value stored in the dictionary. The
key value stored in the dictionary will be no more than 31 char-
acters after all blanks are removed, and lower case letters are
folded to upper case. It is important to realize that the field
name (without extention) from which the key came form an integral
part of the key. Keys will be randomly distibuted throughout the
set of dictionaries,

Inserting, editing and deleting of documents is done at the time
of request, and the dictionaries are suitably adjusted, thus the
presence of dictionaries is transparent to the user. The only vi-
sible effect of having a set of dictionaries with random distri-
bution of keys is in the speed of retrieval.

The database need not be reorganized in order to reuse space that
is released by deleted documents, This is done dynamically.

VISTA PROGRAMMERS REFERENCE MANUAL

Chapter 4

DESCRIPTION OF VPL OPERATORS

(described under BRANCH)
(described under GOTO)
(described under INPUT)
(described under EXECUTE)

(described under IF)

(described under DO)
(described under IF)

“1

4-45

4-49

4-56

4-69
4-72

VISTA PROGRAMMERS REFERENCE MANUAL ‘VEL OPERATORS

Operator description Page

4-74
4-75

LE (described under BQ) 4-32
‘LLENG 4-76
Nor (described under LAND) 4-69
Log 4-77
‘LOOKPROC 4-78
LOR (described under LAND) 4-69
‘LPOS 4-79
ur (described under EQ) 4-32
LXOR (described under LAND) 4-69
MESSAGE 4-80
‘MODE 4-81
NE (described under FQ) 4-32
NEMPTY (described under EMPTY) 4-31
NNUMERIC (described under NUMERIC) 4-83
NUMERIC 4-83
OR 4-85
PICK 4-86
PICKW 4-87
PLACE 4-89
PRCHAR 4-91
PRINT 4-93
PRSTR 4-95
PUT 4-97
PUTDOC 4-101
REGISTER 4-103
RETURN 4-104
SA 4-106
SCHDEF 4-107
SCHEMA 4-109
SCLOSE 4-112
SDELETE 4-113
SEARCH 4-114
SELECT 4-118
SEQ 4-123
SHELP 4-126
SL 4-129
SNE (described under SEQ) 4-123
SOPEN 4-131
SORT 4-133
sP 4-137
SPOS 4-139
SOR 4-141
sR 4-142
SREAD 4-143
STEP 4-147
STRIP 4-149
sv 4-151
SW 4-152
‘THEN (@escribed under IF) 4-60
WHILE (described under DO) 4-27

42

FORMAT OF OPERATOR DESCRIPTION

Class: 3)

Arguments: 4)

Result: 5)

‘Summary: 6)

7)
Examples:

3)

8)

9)

This is the operator name or alternatively the symbolic
representation of that operator (e.g. "+").
This box is for redirections. Not all operators have a separate
page each.
For example, in the case of the arithmetic conditional operators
(BQ NE GE GP LE LT) only BQ is described at length while the others
are redirected to Bs description. Thus in the case of LE which
should appear before LLENG then the box in LLENG is used to note
that LE is described under HQ.
For ease of description elsewhere the operators are classified
functionally. ‘he current classes are:

Database

Printing and sequential file handling
Specials

In addition operators generating condition codes have "conditional"
appended to the class.

43

4)

5)

6)

7)

8)

9)

The angaments that an operator takes are encoded as follows:
Left argument

5 Right argument
Ri First argument in a right argument list
R2 Second argument in a right argument list

RIO ‘Tenth argument in a right argument list

If an argument code is followed with a "*" then it is compulsory.
In many cases a simple right argument (R) and a right argument list
(R1) are identical as seen by the operator. If this is not the
case then it will be noted in the operator description.

If an operator yields a result then this is indicated by a "Yes".
If the result can be very simply described then it is. (e.g. error
code).
Summary of the usages of this operator. This is restricted toa
few lines. The symbol "->" is used to mean "yields the result" and
should not be confused with assignment (=).
The description of the action of the operator. This description
attempts to be as definitive as possible and does not concentrate
on the usages of the operator. If the operator effects or is
effected by system variables or other operators then this is noted.
These are examples drawn from the general usage of the operator.
An attempt is made to give examples of all the normal usages of the
operator. Again the symbol "->" is used to mean “yields the
result" and should not be confused with assignment (=). What lies
to the left of "->" will usually be a VPL expression. To the right
of the "~>" will be a number (expressed in the simplest form) or a
string (which will be enclosed in quotes).
If there are some extensions to the operator that would complicate
the description then they may be described in this section. These
extensions would be for advanced use or not meant to be used at all
by the application designer but included for completeness.

This operator description format is meant only as a guide and where an
operator needs special attention then this format will be “bent. In
particular points that need to be stressed may be set off with the
heading "N.B." .

VISTA PROGRAMMERS REFERENCE MANUAL VPL OPERATORS

Result: Yes

Summary: num + num ~ num

Description:

This operator will add two numbers together.

The left and right arguments must be given, They both must be numbers
(i.e. strings that can be interpreted as numbers).

Examples:

+ > 2 } as expected 1 plus 1 gives 2
Whoa Mt o> 2 7 both strings can be decoded as

} mmbers
22 + a } negative numbers need to be

7 expressed as strings
1.2 4 3.7 -> 4.9

1 + > -> 4 } right argument can be ina list

Notes about numeric accuracy

Three major data types exist: character, integer, and floating point.
To make the situation more complicated each of these major data types
can be sub-divided into more data types. For example, one can have 16
bit and 32 integers (and lots more).

In VISTA everything is treated as a string of characters. A number is
a string which can be interpreted as a number. For example, the string
'123,4" can be interpreted as a number while '12a.4' cannot. Strings
need to surrounded by quotes when written explicitly in VPL code. An
exception to this rule is a positive number which may be written
without surrounding quotes. This is meant as a notational
"short-hand" to save keystrokes during VPL coding.

Within the database everything is stored as a character string. During
VPL interpretation deferred arguments and hidden fields are held in the
most convenient internal form. If the result of arithmetic is to be
Placed in a hidden field and if this result can be represented as an
integer then it is. If the result of arithmetic is to be placed ina
hidden field and if the result cannot be represented as an integer then
it is held internally as a double precision real.

All type translations are carried out transparently and this
information is provided to assure the application designer that maximum
numeric accuracy is being maintained.

45

VISTA PROGRAMMERS REFERENCE MANUAL VPL OPERATORS

Operator Name: - t
1

Class: Arithmetic

Arguments: L Re

Result: Yes

sumary: num = num => num
- num > num

This operator will subtract two numbers or negate a number.
I£ two arguments are given then the right is subtracted from the left.
Té only a right argument is given (i.e. no left argument) then it is
negated (i.e. subtracted away fron zero).

The right argument must be given, It must be a number (e.g. a string
that can be interpreted as a number). If a left argument is given then
it must also be a number,

Examples:

- > 2 } as expected 3 minus 1 gives 2
"3" - Mt => 2 ; both strings can be decoded as

3 numbers
220 - a1! > 23 j negative numbers need to be

} expressed as strings
1.2 - 3.7 => -2.5

- 3 > -3 negation of 3 gives -3
negation of -1 gives 1

VISTA PROGRAMMERS REFERENCE MANUAL ‘VEL OPERATORS

Operator Name: * 1
!

Class: Arithmetic

Arguments: Lk Re

Result: Yes

Summary: num * num > num

Description:

This operator will multiply two numbers together.

The left and right arguments must be given. They both must be numbers.

Examples:

* 3 as expected 1 times 2 gives 2
atk 7 both strings can be decoded as

} numbers
22 * } negative numbers need to be

} expressed as strings
1.2 *

2 } right argument can be in a list

 47

VISTA PROGRAMMERS REFERENCE MANUAL VEL OPERATORS

Operator Name: / 4
1

Class: Arithmetic

Arguments: L Re

Result: Yes

Sumary: mm / mun => nun
nun > num

If two arguments are given then the left is divided by the right. If
only a right argument is given then it is inverted (i.e 1 / mum).

The right argument must be given. It must be a number. If a left
argument is given then it must be a number.

Division is performed to a precision of 16 digits(equipment dependent).

‘The result of the division can be controlled by system variable 406.
Tf it is 1 (default) then the result is returned as calculated. If it
is 0 then the result is truncated towards zero to an integer.

If the divisor is zero then the error message: "** VPL ** Attempt to
divide by zero" will be placed on the status line.

Examples:

6 / > 2 7 4 divided by 2 gives 2
‘or f "3" => 2 3} both strings can be decoded as

} numbers
22 f '-2' > -11 3 negative numbers need to be

} expressed as strings

1 / 3 -> 0,3333333333333333

6 / <> => 2 } right argument can be in a list

7 2 => 05 } no left argument so invert 2

0 = #406 3 want result of division as
} integer

8 / 3 -> } result truncated to integer
1 = #40 } back to normal division
8 / 3 ={2) #7 } round result placed in field 7

3 to 2 decimals:

After: Screen field 7: ! 2.67!

Result: Yes

Summary: numt = num2 > numt

Description:

This operator assigns the left argument into the field indicated by the
right argument. By "field" is meant any screen field, status line
field, hidden field, or any system variable which can be written to.
Also "field" could be the indirection of an expression.

The result of this operator is its left argument.

It is important to note that this operator (=) is viewed
syntactically in exactly the same way as the operator + (for example).
That is to say they both have a left argument, a right argument, and a
result.

The format of the data assigned to a field depends both on the left
and right arguments.

The contents of screen fields, status line fields, and fields returned
from the database are always "string type". This means they are stored
internally with an exact ASCII representation, ‘The result of the
arithmetic operators yields a more concise internal form called
"mmeric type".

As a general rule when "string type" is assigned to a screen or a
status line field it will be left justified. When "numeric type’ is
assigned to a screen or a status line field it will be right justified.
This default justification can be overridden by system variable 522 or
by the letter "L" or "R" within al] structure.

When "string type" or "numeric type" is assigned to a hidden field or a
system variable then it can be viewed as being left justified.
Furthermore "numeric type" will be put in a hidden field in some
convenient internal type (integer or double precision real).

When "string type" is placed in a screen or status line field then
spaces will be added to, or characters truncated from it so that it
completely replaces the previous contents of that field.

When "numeric type" is placed in a screen or status line field then
spaces will be added to it to the left so that it completely replaces
the previous contents of that field. If the "numeric type" is too long
to be placed in a screen or status line field then digits to the right
of the decimal point (and the decimal point) will be
truncated in an attempt to fit the "numeric type" into the field. If

29

VISTA PROGRAMMERS REFERENCE MANUAL ‘VEL OPERATORS

Operator name: = (continued)

the "numeric type” will still not fit in the field then the field is
filled with exclamation marks "{1II111!",
If rounding has been specified (either by system variable 451 or by a
number between [}) then it only affects the placement of "numeric
type" in screen and status line fields.

If justification has been specified (either by system variable 522 or
by *R" or "L" between []) then it affects both "string type" and
"numeric type" in screen and status line fields.

If "string type" is known to represent a number (e.g. passed a NUMERIC
operator test) then it can be turned into numeric type by adding zero
to it.

Example 1:

Before:

Expression: "abodef* = #3 -> ‘abcdef'

After: Screen field

Example 2:

Before: Screen field

Expression: 1.2 * 3.7 #30 -> 4.44

After: Screen field

Example 3:

Before: Screen field

Expression: 1.2 * 3.8=[IL} #3 -> 4.56

After: Screen field 3

4-10

Operator Name:

Operator Name:

?

41

VISTA PROGRAMMERS REFERENCE MANUAL VEL OPERATORS

Operator Namez AND 1
-- 1

Class: Arithmetic, conditional

Arguments: L* Re

Result: Yes, condition code

Sumary: cc AND cc > cc

This operator performs a logical AND operation between its arguments
and produces the appropriate result. The truth table for AND is:

LEFT RIGHT 1! RESULT

false false 1! false
true false ! false
false true 1 false
true true 1 true

where: false <->» 0 ([-0.5 <x < 0.5)
true <-> not false

Note: Using the AND operator with arguments that are
not the result of conditional expressions may
cause unexpected results, as the AND operator is
simply a multiplication of values.

IF-THEN-ELSE-ENDIF and DO-WHILE-ENDDO strtures can both be
controlled by condition codes. Sometimes a combination of
conditions is required to be true for some action to be taken.
This operator can be placed between two other conditions so that
the net result is only true when both component conditions are true.

Examples:
1 AND 1 ~> 1 ; from above table
0 aNyD 1 > 0 } from above table

NB! 0.7 AND 0.7 -> 0,49 } wnexpected result

if #3 eq 33 AND (#201 1t 0) then
; if field 3 is equal to
} 33 AND hidden field 201
; is less than 0 then...

do while (#901 empty AND (#1 numeric) AND (#2 gt 0))
ae } many ANDs can be used

enddo

412

VISTA PROGRAMMERS REFERENCE MANUAL VPL OPERATORS

Operator Names ASCII !

Result: Yes

Surmary: mm = ASCII ~ str
str ASCII ‘1! — mm

the simplest case. Numbers in the range 0 to 255 are mapped to their
ASCII equivalents. All other numbers are mapped to 32 (space).

Non-printable ASCII characters (e.g CR = 13) will not effect the
internal workings of the VPL editor. When a string containing
non-printable characters (or un-iapped characters for that screen)
is put in a screen field then a special character will be substituted
on the screen, This special character is defined in the screen
handler.

If a right argument is given and it is '-1' then the operator will
return the numerical equivalent of the first character of the string
given as the left argument. If the left argument is a null string
then zero is returned.

Examples:

32 ASCII >t
"32" ASCII > tt
65 ASCII ~ ‘at
7 ASCII ~ tal

" ASCII > ? } screen representation
} depend on handler

256 ASCII >t 7 out of range

ASCII ' -> 32
ASCII ' > 72
ASCII ' > 0
ASCII > > 49
ASCII > > 49

4-13

clear attribute in all fields
clear attribute in given field
set attribute in all fields
set attribute in given field

ATTR fd

num ATTR = fld

Description:)

VISTA supports up to 64 programmable attributes. These are numbered
0-63. Attribute 0 is usually referred to as the "clear" attribute.
This operator allows screen fields and status line fields to have their
attributes set (1-63) or cleared (0).

In a given terminal only some of these attributes may be defined.
It is difficult to squeeze more than 10 different attributes out of
most monochrome terminals, With colour screens the whole 64 can be
utilized, Attribute numbers are associated with physical screen
attributes when the terminal handler is defined in VISETUP.

If this operator is used without any arguments then all the screen
fields (not the status line fields) are cleared to the zero attribute,
If a left argument is given then it should be a number in the range 0
to 63. The left argument is taken as an attribute number. If a right
argument is given it should be in the range 1-200 or 901-910. Field
numbers which do not have corresponding fields are ignored.

Examples:
ATTR ; clear all screen fields to e@

; attribute 0
armR 2 } clear screen field 2 to

; attribute 0
7 ATR } set all screen fields to

} attribute 7
4 ATTR 15 7 set screen field 15 to

; attribute 4
4 AMIR 902 } set status line field 902 to

j attribute 4

414

VISTA PROGRAMMERS REFERENCE MANUAL VPL OPERATORS

Operator Name:

Class: special

Arguments:

Result: No

Summary: BELL 7 ring the bell

The action of this operator is to ring the bell.

This operator takes no arguments and does not return a result.

Examples:

BELL ; cing the bell
; ting the bell twice

Extension:

As a special option a number can be given as the first elenent of
a right argument list. Note that a normal right argument is ignored.

The following table gives the action associated with a number in the
first element of the right argument list.

1 clear screen and home 2 home
3. cursor up 4° cursor down
5 cursor left 6 cursor right
7 bell 8 delete character
9 insert character 10 delete line
11 insert line 12 erase line
13 cursor return 14 erase character

|«B. People use the above codes at their own risk! Normal schematic
and keyboard handling should be sufficient without the user
resorting to these explicit controls.
The software maintains an internal map in memory of what is on the
screen. This map is updated to reflect changes.

Example:
BELL <1> } clear screen and home cursor!
BELL <12> } erase the line the cursor is

} currently in.

4-15

Operator Name: . BLANK

Class: string

Arguments: L oR

Result: Yes

% BLANK -> num } blank all screen fields
fld -> num ; blank fields after fld BLANK
fld BLANK type -> num

Description:

In the simplest case (with no arguments) all fields on the screen
will be blanked. The result will be the number of fields in the
schematic.

If a left argument is given it is assumed to be a field mumber. In
this case all fields with a number greater than this number (not
equal) will be cleared. The result will be the number of fields in
the schematic.

Zé a left argument is given and a “TYPE of '1' is given then all
fields less than or equal to the number given in the left argument
are cleared. The result is the left argument.

If a left argument is given and a 'TYPE' of '-1' then the result will
be the number of the first non-blank field greater than the field
indicated by the left argument. If there are no more non-blank
fields in the schematic then '0' is returned as the result.

Examples:

BLANK Blank all fields on the
screen, Result is the
number of screen fields.
Blank all fields from
field 4 onwards. Result is
number of screen fields.
Blank fields 1, 2 and 3
Result is '3'

:

BLANK '-1' -> Result is the field number
of the first non-blank
field,
Result is the field number
of the first non-blank
field from 4 onwards.

4-16

VISTA PROGRAMMERS REFERENCE MANUAL VEL OPERATORS

Operator Name: BRANCH

Symbolic representation: =>

Class: control

Arguments: L&R (one or the other, right takes precedence)

Result: No

Summary: BRANCH :L1: 7 branch to line with label "LI"
sit: => 3 branch to line with label "Li"

N.B. A label is converted into a number by the VPL
pre-processor.

Description:

This operator will transfer control locally within the current process.
It is normally used in conjunction with labels. These labels are
evaluated by the VPL pre-processor into the numbers (offsets) referred
to below.

The IF-THEN-ELSE-ENDIF and the DO-WHILE-ENDDO structures should be
sufficient for most programming needs and the use of BRANCH can be
viewed as the last resort. It is not recommended to branch into DO
loops (but it is well defined). If this operator is to be used for the
infamous "computed gotos" then labels are not sufficient.

Either a left or right argument must exist. If both left and right
arguments exists then the right argument is taken, The argument must
be a number, If necessary it will be rounded to an integer. This
integer is referred to below as the offset.

The VPL interpreter will allow any line within the process to be
accessed by this operator. The current line is taken to have offset
zero, Negative offsets refer to lines before the current line while
positive offsets refer to lines after the current line.

Thus the new current line after this operator will be the old current
line plus the offset (which is the argument to this operator). System
variable 506 reflects the current line number within the current
process and will be changed by this operator to indicate the new line
number.
I the offset is too greatly negative then the new current line will be
line 1 of the process, If the offset is too greatly positive the
process will finish and control will be transferred to the next
process.

417

Examples: .
First an example showing the normal use of BRANCH and labels:

1> — #= 201 pinitialize loop variable
2> :Lisif #201 gt #448 then :L2: => endif j;if passed last field out
> if ##201 empty then jcheck if this field empty
> fee" = #4201 3 if so put "in it
5> endif ;
> #201 + 1 = #201 pinerement loop variable
DP BRANCH :L1: ybranch to start of loop
8> :L2:putdoc
> tetas

* assumed to be first position in line

This is a loop to replace all blank fields in a schematic with '***!
before it is stored. First the loop variable (#201) is initialized on
line 1. The loop begins on line 2 with the loop condition which is
keep looping until the loop variable exceeds the number of fields on
the screen, Line 3 uses the loop variable indirectly to find out if
the corresponding screen field is empty. If so the field has '*#*'
put in it. Line 6 increments the loop variable. Line 7 branches back
to line 2 (i.e. label :L1:). When the loop is finished the fields on
the screen are stored as a document by line 8. It is worth noting that
the above example could be done by a DO-WHILE-ENDDO loop (more easily).

Other examples:
sbranch back one line
jbranch to the start of the current line
ybranch to the start of the current line
jbranch to next process
ybranch back one Line

Extension:

The BRANCH operator does have an extended form which is meant only for
internal use (i.e. by the pre-processor). When debugging VPL code and
looking at lines of code as they are executed then the user may notice
that some DO-WHILE-ENDDO structures are replaced by an extended BRANCH.
This takes the form:

BRANCH <offset ,position,condition-code>

Again the user is warned not to use this, especially the "position"
which is the position within the new line that execution will commence
from. The reason for this is that the position of something in a line
relative to the beginning of that line is modified by pre-processing
(i.e, the line is packed). The default for position is the first and
the default for the condition code is true.

4-18

VISTA PROGRAMMERS REFERENCE MANUAL ‘VPL OPERATORS

Operator Name: CREATE

Class: database

Arguments: LR

Result: Yes, error code (0 if no error)

Summary: CREATE > er
In CREATE > er

CREATE reg -> err
In CREATE reg -> err

Description:

This operator will create a new document in the database. The document
will be empty and belong to the register given by the right argument.
TE no right argument is given then the current schematic name is used
as the register name. The current schematic name can be read in system
variable 403.

When a new document is "created" in the database then it will become
the only document in an occurrence list. This is a handle to the newly
created document which allows following operators such as PUT and
PUTDOC to put data into that document.

The occurrence list number is given as the left argument to this
operator. It should be in the range 1-101. List 101 is the current
occurrence list and is assumed if no left argument is given. ‘The
previous contents of the given occurrence list will be replaced.

When a document is "created" it has one key field placed in it. The
field name is "0" and its contents is the register name it belongs to.

If no database is open when this command is used then this is indicated
by error code 47.

Example:

CREATE 0 Create a new document in the
database with register name
the same as s.v. 403. The
current occurrence list is
used. No errors results,
Create a new document in the
database with register name
the same as s.v. 403.
Occurrence list 3 is used.
No error results.
Create a new document with
register name ‘customers’.
Occurrence list 52 is used.
No error results.
Attempt to create a document
is unsuccessful because no
database is open.

52 CREATE ‘customers’ -> 0

4-19

Summary: DATETIME = -> yyyymmddhhrmss:oc

Description:

This operator picks up a date time stamp from the host operating system
if it is available and provides its result in the form of a 17
character string.

This operator takes no arguments.

The result is a 17 character string arranged in such a way as to make
it suitable for sorting. Hence the year is first with 4 digits (A.D.)
followed by 2 digits for the month (01 -» January, 12 -> December).
The next is the day (2 digits) followed by the hour of the day. The
hour of the day will be given in the 24 hour clock system, The next
two digits are the minute followed by the second (2 digits) followed by
3 digits for milliseconds.

I£, for example, the host operating only gives time resolution down to
one hundreth of a second then the last digit in the string will always
be zero.

The string only contains the numeric digits 0123456789.

Example:

DATETIME > 19840514102941350

Prb)rbros

year!day!min! millisecond
t { !

month 1 sec
1

hour

4-20

Operator Name: !
1

Class: Database

Arguments:

Result: Yes , error code (0 -> no error)

Summary: DBCLOSE > er

Description:

This operator will close the currently open database. All buffers held
in memory associated with the database will be sent to secondary
storage and the file will be closed.

When this operator is used all occurrence lists associated with the
current database file are lost.

This operator has no arguments and returns an error code as the result.

If no database is open when this operator is used then error code 47 is
returned indicating database not open.

System variable 401 contains the name of the last opened database while
system variable 528 holds the current database status:

Value in 528 Meaning

0 No database currently open
1 A database without checkpoint is open
2 A database with checkpoint is open

Orderly exit of VIPS (e.g. mode 8 and via the keyboard interrupt) will
close the currently open database.

Ié a database with a checkpoint is open then this operator will perform
a checkpoint as part of the database close (i.e. there is no need to
have DBSAVE immediately before DBCLOSE).

Tf a disorderly exit is made (e.g. power fluctation, resetting the CPU)
and a database is open without a checkpoint then it is potentially
damaged,

Example:

#401 -> 'STOCK' ; database called 'STOCK' is
#528 > 2 3 open with the checkpoint on
DECLOSE ~> 0 } it is closed successfully
#528 > 0 } now there is no database open

> 47 } so a further close causes an
} error code to be returned

421

VISTA PROGRAMMERS REFERENCE MANUAL VEL OPERATORS

Operator Name: DBOPEN !

Class: Database

Arguments: ik R

Result: Yes , error code (0 -> no error)

Summary: str DBOPEN type -> err

where open for read/write (default)
create new db - checkp. off
create new db - checkp. on

Description:

This operator will open a database file, creating it if requested.

This operator requires a left argument and can optionally have a right
argument. The left argument should be a non-blank string obeying the
host operating system's conventions for file names. If an extension is
not given then the extension ".VDB" will be assumed.

The right argument to this operator is optional. If it is not given it
is assumed to mean that the database should exist and be opened for
read/write (equivalent to type=1). By opening a database for
"read/write" is meant that the user can both SEARCH and GET data as
well as PUT and DELETE data, If the database file does not exist or a
file of that name does exist and is not a database then error code 48
is returned ("Not a Vista/Verbal database").

If the database previously existed and was created without a checkpoint
then a disorderly exit (e.g. power fluctation, CPU reset) will leave a
flag set within the database such that later attempts to open that
database will result in error code 49 being returned ("Database left
open?"), Such a database cannot be used by VIPS.

It is possible to create a new database with or without a checkpoint.
To create a new database with checkpoint off then the right argument
should be '-1', To create a new database with checkpoint on then the
right argument should be '-2'. In both cases of creating a new
database it is then available for "read/write" interaction. Once a
database has been created with the checkpoint on then the checkpoint
will stay in force whenever that database is used. Once a database is
created with checkpoint off then the checkpoint will not be available
thereafter.

System variable 401 contains the name of the last opened database while
system variable 528 holds the current database status:

Value in 528 Meaning
No database currently open
A database without checkpoint is open
A database with checkpoint is open

4-22

VISTA PROGRAMMERS REFERENCE MANUAL ‘VEL OPERATORS

If a database was open at the time this operator is executed then
before an attempt is made to open the database given by the left
argument:

a) If the previous database was without a checkpoint (#528=1)
then it is simply closed.
b) if the previous database had a checkpoint (#528=2) then
it is closed in such a way that updates since it was
opened or since the last DBSAVE are ignored.

Examples:
"TEST' DBOPEN -0 ; a database file called

; 'TEST.VDB' exists and
} has been opened.

#528 > 2 7 'TEST.VDB' was created
} with checkpoint on

#401 ~> 'TEST' ; as expected

‘VISTA’ DBOPEN '-1' -> 0 create a new database
file called 'VISTA.VDB'
without checkpoint.
N.B. The previously
opened database file
'TEST.VDB' would be
closed.

#528 > 1
#401 -> 'vISTA'

423

Result: Yes , error code (0 -> no error)

Summary: DBSAVE > er

Description:

This operator will perform a checkpoint on the currently open database
file if that file was originally created with the checkpoint option on.
Tf the currently open database file was created with the checkpoint
option off then all buffers associated with it are "washed" to disc.

The use of this operator in no way effects occurrence lists and the
related document pointers within those occurrence lists.

A checkpoint is a mechanism for maintaining database integrity at a
given point (i.e, when this operator is executed), A checkpointed file
keeps all updates against the database in a special area until a
checkpoint is performed or the file is closed. At this point the
updates are consolidated in the database file. If the database is
"crashed" in the interim period then all updates since the last
checkpoint or database close are ignored.

Note that if a checkpointed database file is open and a new database
file is opened then the updates against the original checkpointed
database file are ignored (i.e. updates since its last checkpoint or
close).

Examples:

-> 0 ; open database file
j it is checkpointed

7 perform a series of updates

-> 0; perform a checkpoint

4-24

VISTA PROGRAMMERS REFERENCE MANUAL ‘VEL OPERATORS

Class: Database

Result: Yes

Summary: DBSIZE > num

Description:

This operator will return the size of the currently open database
file measured in kilobytes as its result.

This operator requires no arguments. This operator returns a result.
The action of this operator is to return the size of the main database
file as its result.

A temporary file is formed by the VIPS module which is used both by the
database system and the VPL interpreter. The size of this file is not
included in the result of this operator.

The figure returned by this operator is a measure in kilobytes of the amount of contiguous room being used by the database system in the main database file. Depending on the history of that file the figure returned by this operator can be less than the actual file size given by the host operating system, the same, and in some rare cases,
slightly larger.

If no database is open when this operator is used then zero is returned
as the result.

Examples:

"VISTA' DBOPEN > 0
DBSIZE > 28

open database file
28 kilobytes of the file
'VISTA.VDB' are being used
close database file
no database currently open

DBCLOSE -> 0
DBSIZE > 0

4-25

‘VISTA PROGRAMMERS REFERENCE MANUAL ‘VEL OPERATORS

Operator Name: 1
I

Class: Database

Arguments: L

Result: Yes , error code (0 -> no error)

Summary: In DELETE > err

Description:

This operator will delete a document in the database. The document
must be in an occurrence list.

This operator can have a left argument. If it is given then this left
argument will be the number (1-101) of the occurrence list from which
the document will be deleted. If no left argument is given then the
current. occurrence list is assumed (101).

Within each occurrence list is a document pointer. This document
pointer can be moved by the STEP operator. The deleted document will
be the document addressed by the document pointer in the given
occurrence list. The given occurrence list is not modified by the
delete operation (i.e.the list length is the same). The document
pointer is automatically STEPped to the next document (last steps to
the first).

A deleted document: remains in all the occurrence lists that it was in
at the time of deletion. A deleted document can be read (GET) but
attempts to modify it will return an error code. If an attempt is made
to delete an already deleted document then nothing happens and error
code 44 is returned (Trying to delete a non-existent document).
Trying to write (PUT) to a deleted document will cause the same
exror.

After a document is deleted the SEARCH operator will no longer find it.

Examples:

"smith! SEARCH ‘namreg:sname' -> 4 Search for documents
with ‘smith’ in field
‘sname' in register
'namreg'. 4 found.
Put in current list
Step to 2nd document
Delete 2nd document
Step to 3rd document

STEP
DELETE > 0

An error situation:

Step back to 2nd doc.
Attempting to delete
the second document
again gives an error

DELETE —> 44

4-26

VISTA PROGRAMMERS REFERENCE MANUAL VPL OPERATORS

Operator Name: Do 1

Other operators
described here : WHILE — ENDDO

Class: Control

Arguments: None for DO and ENDDO, L R for WHILE

Result: No

Sumary: DO
WHILE (condition-code)

The three operators DO-WHILE-ENDDO form the basic looping structure in
VPL, The DO and the ENDDO operators mark the beginning and end of the
loop respectively. The WHILE operator controls the loop and can be
found anywhere between the DO and the ENDDO. The WHILE operator need
not be used or may be used one or more times within a loop.

DO-WHILE-ENDDO structures can be nested to any level. They must be
nested wholly within one another. A DO-WHILE-ENDDO process must lie
wholly within a process. If an ENDDO is missing then the loop will
execute once if the WHILE condition is true, or the process will
terminate if the WHILE condition is false.

The DO and the ENDDO operators do not take left arguments, and right
arguments are not scanned for. These two operators do not return
results.

‘The WHILE operator can have a left argument, a right argument , or
both, The WHILE operator does not produce a result. If the WHILE
operator does not have any arguments then an "Argument expected" error
is generated.

The WHILE operator looks for the condition code in its right argument.
If it has no right argument then its left argument is used as the
condition code. For readability it is suggested that the condition
code be given as an expression surrounded by parenthesis as the right
argument to the WHILE operator.

If the WHILE condition is true then execution continues immediately
after the WHILE operator (and its right argument). If the WHILE
condition is false then execution continues following the corresponding
ENDDO in the DO-WHILE-ENDOO structure.

The VPL interpreter currently supports the following conditional
operators:

NE or cE Lr
LE EMPTY NEMPTY NUMERIC NUMERIC
SEQ SNE

and the following operators for combining the above conditional
operators:

oR

4-27

All these conditional operators yield 1 or 0. 1 implies true. 0
implies false. An arithmetic expression can be used to generate a
condition code. In this case all numbers between '-0.5' and '0.5' are
taken as false while all other numbers are taken as true.

Care should be taken with the use of BRANCH together with DO, WHILE,
ENDOO structures. BRANCHing into such loops from outside is especially
dangerous and not a recommended programming practice, (N.B. Such an
action is still well-defined from the point of view of the VPL
interpreter).

The interpreter places a limit on the number of DO-WHILE-ENDDO
structures which can be found on one line. The limit is 5 sets.
Hopefully no-one would put more than one DO-WHILE-ENDDO structure on
one line.

Examples:

5 = #201
DO
WHILE (#201 GP 0)

#3 * #201= #3
#201 - 1 = 4201

ENDDO

4-28

jinitialize loop counter
jstart loop
yexit loop if loop counter zero or
} less
jperform five times
jdecrement loop counter
yend loop
;continue here when WHILE condition
jfails

VISTA PROGRAMMERS REFERENCE MANUAL VPL OPERATORS

Operator Name: DOCDECOD !
none nna= !

Class: Database

Arguments: L* R

Result: Yes

Summary: mum = DOCDECOD. In -> str

Description:

This operator is designed for dismantling a document about which there
is very little known. It can be used for debugging purposes.

Documents are stored with a field name associated with a string of
data. If the string of data is null or only contains spaces then
nothing is stored. The data in a document is usually fetched out on a
field by field basis using the same field names under which it was
stored. A problem may arise if the user does not know what field names
were used when the document was stored. The operators which support
the normal transfers of data to and from documents are: PUT, PUTDOC,
GET, and GETDOC.

Documents are stored within the database system as a series of "lines".
ach line contains a field name, a string of data, and an indicator
whether the field is key or non-key. These lines within a document are
sorted by field name. If the field name is numeric then it has leading
zeros put on it so it is always at least three characters long (e.g.
field name '3' becomes '003'). The Oth line in a document does not
obey this rule and has field name '0' with a string which is the
register name this document belongs to. The Oth line is a key.

The DOCDECOD operator can decode documents line by line. The right
argument is the occurrence list number (1-101). Tf there is no right
argument the current occurrence list is assumed (101). The document
addressed by the document pointer of the given List is decoded. The
result is the string of data the document line contained. A left
argument must be given. It must be a number. The meanings of this
number are listed below:

Left argument to DECDECOD Meaning

get the Oth line (register name)
0 get the next line (1st to start with)
1 get Ist line
2 get 2nd line
3 get 3nd line

etc.

4-29

The result of this operator is the string of data contained in a line.
Several system variables give more information.
System variable 512 gives the field name (and field extension if there
is one) associated with the last use of DOCDECOD.
System variable 513 gives the line number of the last line fetched by
DOCDECOD. This line number is negated if the line is non-key.
System variable 523 returns '1' if the last line fetched by DOCDECOD
was the last line of that document, otherwise it returns 0.

If a left argument of 0 is used by DOCDECOD then all the lines of the
document can be viewed. After the last line is fetched then the first
line is fetched again so that any loop based on DOCDECOD mst look at
system variable 523 for its termination condition,

Examples:

> 34

;'NAMREG' register into the
yeurrent list. 34 found.

STEP jstep to the second document

"-1' DOCDECOD = ->_ 'NAMREG' ;contents of the Oth field is
7; the register name: 'NAMREG'

#512 -> to ;field name '0'
#513 > 0 70th field is key
#523 > 0 pit is not the last line

0 DocpEMOD > contents of Ist line
#512 > ield name
#513 > st field is key
4523 > t is not the last line

0 DO@EGD = -> "John" yeontents of 2nd line
4512 —> "FNAME! ;field name
#513 > -2 72nd field is non-key
#523 > 0 pit is not the last line

0 DOcEGOD = => ‘Smith’ ycontents of 3rd line
4512 ~> 'SNAME' =; field name
#513 > 3 73rd field is key
#523 > 4 jit is the last line

4-30

VISTA PROGRAMMERS REFERENCE MANUAL ‘VEL OPERATORS

Operator Name:

Other operators
described here: NEVPTY

Class: String, conditional

Arguments: L R (at least one, right takes precedence)

Result: Yes, condition code

Summary: str EMPTY > cc

‘The EMPTY and the NEMPTY (read "not empty") operators return condition
codes depending on whether their arguments are space filled or not.

Both operators need either a left argument or a right argument. If
they have both then the right argument is taken. For readability it is
recommended that only a left argument is used.

The EMPTY operator returns the true condition code (i.e. 1) if its
argument is empty. That is to say it is full of spaces or it is of
length zero, If its argument is non-empty (i.e. contains some other
character apart fron space) then the false condition code (i.e. 0) is
returned.

‘The NEMPTY operator returns the false condition code if its argument is
empty. That is to say it is full of spaces or it is of length zero.
If its argument is non-empty (i.e. contains some other character apart
from space) then the true condition code is returned.

Examples:

Te #3 EMPTY THEN

eine
ENDIF

if field 3 empty then
put 4 "*" in field 3
end of IF structure

DO loop
while field 201 is not empty
«+2.do something
end of DO structure

DO
WHILE (#201 NEMPTY)

ENDDO

4-31

VISTA PROGRAMMERS REFERENCE MANUAL VPL OPERATORS

Operator Name:)

Other operators
described here: NE cE or LE ur

Class: Arithmetic, conditional

Arguments: L* R* R2

Result: Yes, condition code

Sumary: num EQ num > cc
num NE num > cc
num GE num > co

num GI num ~> ce
num LE num ~> co
num LE num — oc

mum EQ <num,fuzz> -> cc

Description:

These six operators will compare numbers and return a condition code
based on the ordering of these numbers,

All six operators require both a left and right argument. Both
arguments must be decodable as numbers. A second right argument can be
given, If so it must be a number. The result is a condition code, 1
for true, 0 for false.

The comparison is quite straight forward if the two number involved can
be represented internally as integers because this is an exact form.
In the case of two integers being compared the 2nd right argument will
be ignored.

Tf either of the numbers being compared cannot be represented as
integers then the following information should be taken into account.

Firstly, if a 2nd right argument is given then it will be taken as the
value for fuzz. If a 2nd right argument is not given then the value in
system variable 517 will be taken, The value for fuzz should be in the
range 0 up to the maximum number of digits precision given by double
precision reals on the host machine (e.g. IEEE gives 16 digits).

In the following:
numt is the first number being compared
man is the second number being compared
nung is the larger of the two in magnitude
fuzz comparison tolerance index
rot indicates the absolute value of
* multiplication
< is less then
** exponentiation

4-32

‘VISTA PROGRAMMERS REFERENCE MANUAL VEL OPERATORS

1) af f numl - num! ¢ ! numg i * 4.9 * (10 ** (-1-fuzz))
then num! and num2 are taken to be equal.

2) af ! num$t < 10 ** (-1-fuzz)
then num? and num2 are taken to be equal.

If either condition 1 or 2 is met then then num1 and num2 are taken to
be equal. If neither condition 1 nor 2 is met then num! and num2 are
taken to be unequal.

In practical terms this means that if fuzz (s.v. 517) is set at 10
(which is the current default) then there is an uncertainity ina
comparison of 1 cent in 200,000,000 dollars. This type of accuracy
should be sufficient for most applications. Taking the fuzz too close
to the number of digits precision claimed by the manufacturer runs the
risk of comparisons such as: 2/3 EQ (1/3*2) failing.

Examples:

1 1394 } always true
1 1 > 0 } always false

} always true

Q
cr

4" Ig 4 2 1

AQ true, fuzz makes no
difference to integers

0.6 EQ <1,0>-> 1 true since 0.6 and 1 are
within 0.5 of one another

4-33

VISTA PROGRAMMERS REFERENCE MANUAL ‘VEL OPERATORS

Operator Name: . ERROR

Class: Special

Arguments: u

Result: Yes, same as left argument

Summary: num ERROR - nun

Description:

This operator will accept an error code given as its left argument and
display the appropriate system error message. The result of this
operator is its left argument (e.g. if 3 is the left argument then 3
will be the result).

The left argument must be given and it mst be a number. The result
will be the same number.

Errors in VPL can be divided into two classes:

1) The simplest group are those associated with incorrect or missing
punctuation (e.g. unmatched parenthesis, unmatched quotes) and missing
or incorrect arguments to an operator. This class of error will
usually cause a VPL error to appear on the status line when the VPL
interpreter recognizes the mistake. Most VPL errors are prefixed by the
string "* VPL **" followed by a brief explanation of the error.

2) ‘The other class of error are those returned as error codes by
various operators. These errors tend to be higher level and indicate
the action associated with the operator was not performed. The error
code gives same reason for the failure (or indicates that the operator
worked). For example, if a sequential file is to be opened to read
access then the SOPEN operator will return error code 52 if the file is
not found.

‘The VPL interpreter currently supports over 50 error messages. Each
one of these error messages has a corresponding error code.

‘The error code zero (0) is reserved to indicate no error. If the ERROR
operator is given zero as its left argument then it does nothing apart
from providing zero as its result.

Positive error code numbers indicate an error has been detected by the
VPL interpreter. If the ERROR operator is given a positive number as
its left argument it will place the corresponding error message on the
status line. For a list of positive error codes see Appendix B.

A negative error code indicates that something is wrong with the
database file, or the system file, or the user schematic file.
Negative error codes are serious and if the VPL interpreter cannot
continue then VIPS may be aborted. When negative error codes are given
to the ERROR operator the error message '"* VPL ** Verbal Filing System
error number:" followed by a negative number is placed on the status

4-34

VISTA PROGRAMMERS REFERENCE MANUAL ‘VEL OPERATORS

line, The meaning of this negative error number (so-called VFS error)
is listed in Appendix B.

In the case of a non-zero number being given to the ERROR operator then
‘the corresponding error message is placed on the status line after
which the cursor waits at the end of the status line for user input.
Three different things can happen depending on the next keypress:

1) If the down arrow key is pressed then the offending line is
displayed with the symbol "22" a little to the right of the
Position the error was recognized. Because of pre-processing
the line may not look exactly the same as the original. This is
due to redundant spaces being removed and comments being
stripped off (to speed execution). The cursor again waits at
the end of the status line for user input. The next keypress
will invoke either action 2) or 3) below:

2) If F8 is pressed then the user is asked the following question:
“Exiting current process: continue? (¥/n). If the user
responds with a "Y" or a carriage retum then the current
process is aborted as if F8 was hit (equivalent to having the
expression " EXIT 8" inserted in the code). If the answer of
"N" (or "n") is given then VIPS returns to the host operating
system after closing all open files.

3) If any other key is pressed then execution continues at the
point immediately following the ERROR operator.

Examples:

7 no error so this operator
7 does nothing

‘FRED' DBOPEN ERROR = #201 -> 49 ; attempt to open the database
; 'FRED,VDB' is unsuccessful
} as indicated by the non-zero
} error code returned

The ERROR operator would cause the following to appear on the status
line:

"Database left open? "

The cursor would then wait at the right hand end of the status line.
If down arrow is pressed then the following would appear on the status
line:

" "FRED' DBOPEN ERROR ?? = #201 "

The cursor would wait again at the end of the status line awaiting
input. If the space bar was pressed then execution of VEL would
xe-commence with the assignment of 49 into hidden field 201

P.S. This particular error message would indicate that the database
file 'FRED.VDB' was not created with a checkpoint and in its
last usage was not closed properly. Maybe the user pressed the
CPU reset button?

4-35

VISTA PROGRAMMERS REFERENCE MANUAL VPL OPERATORS

Class: Special

Arguments: uw

Result: I£ type 0 or 1 execute and the executed string yielded
a result then it yields a result, else no result

Summary: str EXEOUTE -> 2?

This operator treats its left argument as a VPL expression and executes
it.

This operator mst have a left argument.

The left argument can be anything recognizable by the VPL interpreter
as a VPL statement (optionally including a comment), The string must
not contain a label. The string should not contain an operator causing
a control transfer (EXIT, GOTO, or BRANCH although BRANCH 0 is
allowed). The string can contain IF-THEN-ELSE-ENDIF and DO-WHILE-ENDDO
structures as long as they are wholly contained in the string.

There are three types of actions allowed with the EXECUTE operator.
These types of actions are reflected by the numbers 0,1, and 2 in
system variable 418. The system is initialized to 1 in s.v. 418,
system variable 418 can be written to.

‘Type 0) The EXECUTE operator will return the result from the string
it is executing as this operators result. The executed string
can itself contain EXECUTE operators. A structure similar to
subroutines can be envisaged, each EXECUTE wholly nested within
the other. If necessary this can be done to many levels but
there is a slight time and space penalty (on the temporary
file) associated with every extra level.

‘Type 1) The EXECUTE operator will return the result from the string it
is executing as this operators result. If the executed string
had a pending operator (i.e. one looking for a right argument)
when the interpreter reached the end of the string then this
operator is carried out into the context of the original
EXECUTE operator. In a sense the operator is returmed as the
result. The executed string can itself contain EXEQUTE
operators. Such imbedded EXECUTEs do NOT form a subroutine
structure but rather chain to one another. When any of these
imbedded EXECUTES (no matter where in the chain) reaches the
end of its string then the VPL interpreter continues after the
original EXECUTE statement. The first usage of the EXECUTE
causes a slight time and space penalty (in the temporary file)
but imbedded EXECUTEs add virtually no overhead.

4-36

Type 2) The EXECUTE operator will not return a result. ‘The rest of
the line the EXECUTE operator was found on will be ignored and
the VPL interpreter will continue at the beginning of the
following line. The executed string can itself contain
EXECUTE operators. Such imbedded EXECUTEs do NOT form a
subroutine structure but rather chain to one another. When any
of these imbedded EXECUTEs (no matter where in the chain)
reaches the end of its string then the VPL interpreter
continues at the beginning of the line following the
original EXEOUTE statement. This method of EXECUTE is the
fastest and entails virtually no overhead.

If system variable 418 is changed within an executed string then great
care should be taken!

Examples:

“4 4 3 " EXECUTE = #2 - 4

Assuming type 0 or 1 EXECUTE then the left argument to the EXECUTE
operator would be evaluated by the interpreter and the number 4 would
be placed in screen field 2. The result of the EXECUTE operator (and
the whole expression) would be 4.

In types 0 and 1 of the EXECUTE operator then the passed parameter
result %0 can be used as a local variable. It can be viewed as a
variable length hidden field with a length between 0 characters and 255
characters.

4-37

Operator Name: . EXIST !

Class: Special

Arguments: L

Result: Yes (1, 000-1)

Summary: str EXIST > 1, 0, of -1

Description:

This operator retums an indicator of the kind of left argument it
has. In particular whether it exists or not and if so whether it can
be written to.

This operator may have a left argument. The left argument may be a
passed parameter (e.g. #11) which has not been defined. The result is
either 1, 0, or -1.

This operator will determine the existence and “writability" of its
left argument. The results of this operator have the following
meaning:

Result

1
readable).
e.g, existing screen fields, defined status line
fields, defined hidden fields, passed parameters
which represent writeable variables, and writeable
system variables.

0 Left argument does not exist.
Either there is no left argument or the indicated
field does not exist or passed parameter was not
defined in the invocation of the procedure.

“1 Left argument exists and is readable (not
writeable) This could either be an explicit
constant, the result from an operator, a system
variable which is read only, or a passed parameter
representing one of these

Examples:

12 EXIST -> -1 ; an explicit constant is

} only readable

#201 EXIST -> 1 j a hidden field is
; readable and writeable

#845 EXIST -> 0 no such field

4-38

VISTA PROGRAMMERS REFERENCE MANUAL VPL OPERATORS

Assuming a procedure call TEST is invoked as follows:

#1 ‘TEST <'namez ',33> = #2

then in the procedure definition of TEST the following would be
observed:

20 EXIST -> to) result doesn't exist yet

a1 EXIST -> 1 if the current schematic
has 1 or more fields

82 EXIST -> O this procedure invocation
does not have a right
argument, it has a right
argument list.

211 EXIST => 1; first element of right
argument list is constant
itis: ‘name: '

#12 EXIST -> -1 second element of right
argument list is constant
itis: 33

$13 EXIST -> 0 third element of right
argument list not given

222+ 36 20 ; the result passed
} parameter is unique in
3} VIPS. Even though it
} didn't exist previously
7 it can be written to.
} and now it exists and is
writeable!

20 EXIST -> 1

439

VISTA PROGRAMMERS REFERENCE MANUAL ‘VPL OPERATORS

Class: Control

Arguments: L R (if both right is taken)

Result: No

Summary: mm «EXIT
EXIT mm =; where num is from 1 to 8

NAB. TLlegal inside a procedure

Description:

This operator unconditionally leaves the current process. If it has an
argument then it is a number between 1 and 8 which simulates the
situation in which the corresponding function key (i.e. Fi to F8) was
pressed and in which the process has finished. If no argument is given
then the previously pressed function key (reflected by system variable
453) is assumed.

Either a left argument or a right argument can be given. If both are
given then the right argument is used. The argunent mist be a number
in the range 1 to 8. This operator has no result.

The process to which control is passed will depend on the process in
which the EXIT operator is executed. The possibilities are listed
below:

1) A screen field process will exit to the first line of the END
process.

2) The END process will exit to the first line of the SUPER END
process.

3) The SUPER END process will exit to the first line of the SUPER
BEGIN process.

4) ‘The SUPER BEGIN process will exit to the first line of the
SUPER end process.

5) ‘The BEGIN process will exit to the first line of the END
process,

System variable 453 contains the function key exit code. It will
contain the values 1 to 8 or 255. ‘The values 1 to 8 indicate that F1
to F8 have been pressed during input, and 255 indicates no function key
has been pressed. If this operator has an argument which is a number
in the range 1 to 8 then this number is placed in s.v. 453. The SUPER
BEGIN process always places the value 255 in s.v. 453 before it is
executed. System variable 453 is writeable. Only the values 1 to 8
and 255 are meaningful.

leave the current process now
and place 8 in s.v 453

Assume this is a screen field process:

INPUT + get input from current field IF #509 LT 0 THEN ; if last key pressed was function
EXIT 3 key then exit to END process ENDIF 3 otherwise continue processing

Tf a function key was pressed during the INPUT operator this latter method would convey the number of the function key via system variable 453 to the END process.
Note that whenever a function key is pressed during input that it is recorded in both #509 (negated) and #453. Tt is always safer to test #509 first because some key must be pressed (not necessarily a function key) in order to return from keyboard input.

VESTA PROGRAMMERS REFERENCE MANUAL ‘VEL OPERATORS

Operator Name: EXP 1
--- !

Class: Arithmetic

Arguments? L R (one or the other, right takes precedence)

Results Yes

Summary: mum = EXP > mm
EXP mm -> num
EXP (num) -> mum

;these three are equivalent

This operator performs a natural exponentiation, The result is the
given argument after it has been used to raise "e" to that power.

This operator requires an argument. It can be either a left argument
or a right argunent. If both a left argument and a right argument are
given then the right argument is used. The argument mist be a number.
This operator returns a result.

The number "e"' is approximately 2.71828182845904 . The result is the
number obtained by raising the constant "e" to the given argument. The
given argument: can be any mumber less then 300. This upper limit is
chosen because the result would have approximately 250 significant
digits and larger numbers would overflow the 255 characters limit on
strings. In practice this should not be a significant limitation,

T£ an argument 300 or greater is given then a "* VPL ** Attempt to
divide by zero" error message will be placed on the status line,

Exampl

1 EXP -> 2.71828182845904
me (1) -> 2.71828182845904

10 EXP (1) => 2.71828182845904

10 EXP > 22026.4657948067

To get the quadratic root of a number this operator could be used
together with the LOG operator (takes natural logarithms).

16 Log / 4 EXP -> 2

VISTA PROGRAMMERS REFERENCE MANUAL VPL OPERATORS

Result: Yes

Sumary: str FIND -> pos
str FIND pos -> pos
str FIND <pos,char> -> pos
str FIND <pos,char,typer -> pos

This operator will find the position of the first occurrence of a
character after a given position within a string.

This operator must have a left argument. This operator may have three
right arguments. If the first or third right arguments are given they
must be numbers. This operator retums a result.

The left argument is the string which will be examined. If it isa
mull string then zero will be returned as the result.

The first right argument is the position in the string after which the
character will be looked for, If the position is not given it is
assumed to be zero so that the search starts at position 1 in the

string.

‘The second right argument is the character which is being looked for in
the string. If not given or a null string then it is assumed to be
space. If the second right argument contains more than one character
then the first is taken.

The third right argument is the type. It should be zero or 1. If not
given it is assumed to be zero.

When the type is zero this operator will return the position of the
first occurrence of the given character. If the character does not
occur then zero is returned as the result.

When the type is 1 this operator will return the position of the first
non-occurrence of the given character. If there are no non-occurrences
(i.e. the string only contains the given character) then zero is
returned as the result.

Examples:

‘Paul Landa’ FIND » 5 yspace in 5th position

‘Paul Landa’ FIND 5 > 0 no space after Sth pos

‘Paul Landa’ = FIND <,'a'> — -> 2

VISTA PROGRAMMERS REFERENCE MANUAL

"Paul Landa’ FIND <2,'a'> ->

‘Paul Landa' = FIND <7,'a'> ->

‘Paul Landa’ FIND <10,'a'> ->

‘Paul Landa' © FIND <,'a',1> ->

"Paul Landa‘ FIND <1,'a',1> ->

"Paul Landa’ FIND <3, 'a',1> ->

to FIND >

' ' FIND <,,1> >

10

Q jno more ‘a's left

1 ;first non-occurrence
jot ‘a’

1 ;£irst space

0 ;£irst non-space

VISTA PROGRAMMERS REFERENCE MANUAL ‘VEL OPERATORS

Operator Name: FLENG

Class: Special

Arguments: L

Result: Yes

Summary: num = FLENG -> num

Description:

This operator returns the length in character positions of the variable
corresponding to the given number.

This operator should have a left argument. If it is given, it must be
a number. Non-integers are rounded to integers if necessary. This
operator returns a result.

The left argument of this operator should be a non-negative, If the
left argument is not given then zero (i.e. current screen field) is
assumed. Numbers of screen and status line fields will return the
length in characters of the indicated field as the result. If the
screen or status line field does not exist then zero is returned as the
result. Short hidden fields return the number 16 while long hidden
fields return the number in system variable 519 (length of long hidden
fields). Numbers associated with system variables return -1. Other
numbers return -1.
Summary of left arguments to this operator:

Left argument meaning

0 xeturn length of current screen field
1-200 return length of field if it exists else zero

201-300 return 16 for short hidden fields
301-400 return value currently in s.v. 519 which contains

length of long hidden fields
401-599 return -1
else return -1

Examples:

33 FLENG -> 12 jscreen field 33 is 12
character positions long

159 FLENG > 0 current schematic does not
jhave such a field number

901 FLENG > 79 jfirst status line field
jis 79 characters long

902 © FLENG > 0 jsecond status line field
jis not defined

201 FLENG > 16 jshort hidden fields give
716

VISTA PROGRAMMERS REFERENCE MANUAL

80

80

-1

-1

plength of long hidden
jfields
jlong hidden fields would
jtherefore give 80
jsystem variables give -1

junknown

VISTA PROGRAMMERS REFERENCE MANUAL VEL OPERATORS

Class: String

Arguments: Lt R

Result: Yes

Summary: str FOLD ~ str
str FOLD type ~ str

Description:

This operator will change strings from lower case to upper case, from
upper case to lower case, or the first letter of each word fron lower
case to upper case.

The left argument must be given, If a right argument is given it
should be either 1 or '-1'. The result will have the same number of
characters in it as the left argument.

In the simplest case (with no right argument) the result will be the
left argument after all characters have been made upper case (fold to
upper case).

Tf the right argument is '-1' then the result will be the left argument
after all characters have been made lower case (fold to lower case).

Tf the right argument is '1' then the result will be the left argument
after the first character of each word has been made upper case. The
default delimiter between words is space. If the first position in the
left argument is non-blank then it is taken to be the start of a word.

When the first letter of each word is being folded to upper case
(when 'type' is '1') it is possible to define word delimiters other
than space. Two system variables are available for this purpose.
These are #524 and #525. Thus two different characters can be taken as
delimiters, Both #524 and #525 are initialized to space.

Examples:

‘abodef' FOLD -> 'ABCDEF!

“ABCDEF' FOLD '-1" -> ‘abodef'

‘this is a test! FOLD -> ‘THIS Is A TEST!

"this is a test’ FOLD '1' > 'This Is A Test’

‘this is atest’ FOLD <'1'> -> "This Is A Test!

‘VISTA PROGRAMMERS REFERENCE MANUAL

#524
#525

‘this is aztest' FOLD '1' ~> 'This is a:Test'
iN.B, the first character of the
+ result is upper case

‘ts #524
's' = #525
‘this is a:test' FOLD '1' -> ‘This Is A:Test'

VISTA PROGRAMMERS REFERENCE MANUAL ‘VEL OPERATORS

Operator Name: FSTAT

Class: Special

Arguments: L

Result: Yes

Summary: num FSTAT -> num

Description:

This operator will return a value indicating whether the screen field
corresponding to the given number is key or non-key and what its
verification is.

This operator should have a left argument. If it is given it must be a
number, Non-integers are rounded to integers if necessary. This
operator returns a result.

Ié the left argument is not given then the current screen field is
assumed. If the left argument is given it must be a number in the
range 1 through 200 or 291 through 299.

The value of the result is a numerical encoding of the verification
associated with the screen field when it was defined by the SKJEMA
program,

Absolute value As coded in
of result meaning ‘SKJEMA

0 screen field not defined
32 key field, no verification
65 key field, no verification
66 key field, alphabetic, digits, space
68 key field, digits, /, comma, +, space
69 key field, everything, push left at right
70 key field, as 69 but digits, comma,+, space
71 key field, space, digits, comma, + -
78 key field, space, digits, comma, +
80 key field, space, digits, comma, stop, +
81 key field, space, digits, coma, stop, + -
90 key field, space, alphabetic

~97 non-key ", no verification
~98 non-key ", alphabetic, digits, space
-100 non-key digits, /, comma, +, ("a")
-101 non-key . push rete at eight (e")
102 non-key ", as 69 but digits, coma,+, space
-109 non-key ", space, digits, comma, + -
110 non-] space, digits, comma, +
112 non-key ", space, digits, comma, stop, +
113 non-key ", space, digits, coma, stop, + -
-122 non-key ", space, alphabetic

VISTA PROGRAMMERS REFERENCE MANUAL VEL OPERATORS

The result is a positivé number if the indicated screen field was
defined as a key field when it was defined in the SKJEMA program, The
result is a negative number if the indicated screen field was defined
as a non-key field when it was defined in the SKJEMA program. The
result is zero if there is no such screen field in the current

tic,

Examples:

1 FSTAT ->

2 = FSTAT ->

99 FSTAr >

4-50

yscreen field 1 was defined as
7a key field with type "B" ver.
;field 2 is non-key with type
3"a" verification
ithere is no screen field 99

VISTA PROGRAMMERS REFERENCE MANUAL VEL OPERATORS

Operator Name:

Class: Database

Arguments? Lt R

Result: Yes

Summary? fds GET > str
fds GET list > str

Description:

This operator will fetch the contents of a field from the current document of the given list. The required field is addressed by its field
descriptor. ‘The result is the contents of the addressed field. If the field descriptor is not valid for that document or the given list is
empty then a null string (length 0) is retuned.

This operator requires a left argument. This left argument must fit
the format given below for a field descriptor (e.g. it cannot have 2 ":"s in it), If this operator has a right argument then it must be a
number and in the range 1 to 101. List number 101 refers to the
current list. If no right argument is given then the current list is
assumed. Tuis operator will always have a result. T£ nothing is found
then this result will be a null string.

‘Tne left argument should either be a blank (null) string or contain a
field descriptor. If it is blank (or null) then a null string is
returned as the result of this operator. Otherwise it will be
interpreted as a field decriptor.

The format of the field descriptor is as follows:

reginam,ext

where:
reg is the register name (ignored by GET)
nam is the searchable part of name
ext is the non-searchable part of name

The register name is not required by the GET operator and will be
ignored. It may be useful to have the register name present from the
point of view of checking that the register name is the same as that
which the referenced occurrence list was generated by. In the future
the interpreter may check this.

The searchable part of the name must be given and be non-blank. The
field nane "0" (zero) is reservel for a field containing the register
name of the document (put in theie by the CREATE operator). ‘Two
methods of field naming are supported. The first method is by nunber,
in which the field name can contain up to three digits. ‘The second
method is by a string which can be up to 31 characters long and mist
not start with a digit (or contain ":", ".", or blank).

4-51

VISTA PROGRAMMERS REFERENCE MANUAL ‘VPL OPERATORS

The extension is optional and can be up to 3 alphanumeric characters
long. If the field was defined with an extension (i.e, by a PUT
operator) then the same extension must be given to the GET operator
which fetches it.

System variable 513 is modified by the execution of a GET operator. It
is set to a positive mmber if the fetched field was stored as a key
and is set to a negative number if the fetched field was stored as a
non-key. #513 is set to zero if the field is not found or the register
name field (field 0) is fetched.
The magnitude of the value placed in #513 is the Line number within the
document the field descriptor and its contents are stored in. This
information about the internal line number is useful for debugging.
See opertor DOCDEOOD if more information is required about this.

If a database is not open when the GET operator is used then a null
string is returned,

Examples:

"Parramatta' SEARCH ‘owners:town' -> 3

find all documents in the
register called 'owmers'
which have ‘parramatta’ in
a field called ‘town’.
3 documents found and placed
in current. List.

N.B, after a search the document pointer points to the first
document in the resultant occurrence list.

"town' GET —> "Parramatta' ; get contents of field called
7 ‘town’. Result as expected!

‘omers:tom' GET -> ‘Parramatta’
the register name is
currently ignored.

Assuming that there are fields in the document called: '3', 'address',
1" and 'note.2'

7
;

then:

3 cer ~> ‘suburb! ; the field called '3' contains
; 'suburb'

"note.1' GET -> ‘West, Cumberland’
‘note.2' GET -> ' 922-2222 '

" if there is no such field
then a null string is
returned

VISTA PROGRAMMERS REFERENCE MANUAL PL OPERATORS

Operator Name: 1
!

Class: Database

Arguments: LR

Result: Yes, error code

Summary: List GEMDOC type ~ err

Description:

This operator will fetch the current document in the given occurrence
list and place it in the screen fields.

This operator may have a left argument. If so, it must be a number. This operator may have a right argument. If so, it mist be a number. Non-integers are rounded to integers if necessary. This operator
returns a result which is an error code.

The left argument is a list number. It should be in the range 1 to 101, Occurrence list 101 is referred to as the current occurrence list and is assumed if no left argument is given.

The right argument is the type. If given it should either be 0 or 1. Tf the right argument is not given then a type of zero is assumed. If the type is zero then all screen fields are cleared before an attempt is made to read the document. Tf the type is 1 then the screen fields are not cleared before an attempt is made to read the document.
Therefore when the type is 1 screen fields which do not have a
counterpart in the document are left unaltered by this operator.
The result of this operator is an error code. If the operation is
successful then zero is retuned. If there is no database open then
error code 47 is returned.

The action of this operator is to get the fields out of the current
document in the given occurrence list and put the contents of these
fields into the corresponding screen fields.

Currently the fields in a document are named. Each field in a document
can have up to a 31 character field name and optionally a three letter extension, The field name in a document can start with either an
alphabetic character or a numeric character (i.e. 0 to 9). Screen
fields, however, are numbered in sequence by the SKJEMA program which
is used to create schematics. In the future it will be possible to
optionally associate a field name and an extension to a screen field,
To distinguish the compulsory screen field number from the optional
screen field name, the latter must not commence with a numeric
character (i.e. 0 to 9).

453

VISTA PROGRAMMERS REFERENCE MANUAL VEL OPERATORS

This operator needs to map field names in a document to screen fields
which are currently only numbered but in the future will be optionally
named as well, This operator will decide whether a field name in a
document corresponds to a screen field number or a screen field name on
the basis of the first letter of the field name in a document. If it
is a numeric character (i.e. 0 to 9) then it maps to a screen field
number. If it is not a numeric character then it maps to a screen
field name (optional extension). As currently implemented the GETDOC
operator will ignore fields in a document whose names do not begin with
a numeric character,

Example:

GETDOC is a convenience operator for getting the contents of a document
in a list onto the screen with the minimm of fuss. ‘To demonstrate its
action the following example shows the definition of the procedure
GETOCC which is written in terms of more primitive operators and
functionally the same as GETDOC.

The procedure is listed on the next page. Note that some effort is put
into checking the validity of the parameters passed to this procedure.

VISTA PROGRAMMERS REFERENCE MANUAL VPL OPERATORS

list_number GEMDOCC type = -»_ error_code

VPL procedure to perform same action as GETDOC operator
ts
list_number should be 1 to 101, 101 assumed if not given
type not given -> blank all screen fields first

= -> blank all screen fields first
= -> don't blank screen fields

Output:
error_code = successful

=47 database not open
Fields used:

#291, #292, #293, #527

Progranmed by:
Douglas Gilbert, NORSOFT A/S, 840623

0 = 20 jassume successful result
101 = #291 jdefault list number
0 = #292 jdefault type 1 3

s1o= #291 ithen overwrite default eye
ENDIF

ENDIF
pif the right argument exists

IF %2 NUMERIC THEN if the right argument is numeric
¥ $2 = #292 ‘then overwrite default type

ENDIF
ENDIF
Ir #528 EQ 0 THEN

47 = %0 7if no DB open then return error
RETURN yoode 47

ENDIF
IF #292 NE 1 THEN

‘BLANK if type isn't 1 blank all fields
ENDIF
IF #291 LLENG EQ 0 THEN

RETURN 7if the nominated list is empty
ENDIF
1 = #293 jinitialize loop variable
DO 7start loop

#293 DOCDBOOD 291 = #527 ;decode line of document
jS.v. 512 get field name

IF #512 NUMERIC THEN ;if field name numeric
IP #512 LE #447 THEN if field name less than

} highest screen fld number
#527 = #4512 jthen place contents of line

7on screen (N.B, indirection)
ENDIF

#293 + 1 = #293 jincrement loop variable
WHILE (#523 NE 1) yet to 1 by DOCDEOOD when last

7 line of document
ENDDO Hloop back if "while" true
RETURN

‘VISTA PROGRAMMERS REFERENCE MANUAL VEL OPERATORS

Operator Name:

Symbolic representation: =>>

Class: Control

Arguments: LR (one or other, if both right is taken)

Result: No

Sumary: mum GOTO
Goro. num

N.B. Illegal inside a procedure

Description:

This control operator will unconditionally transfer control to either
a screen field process or the BEGIN, END, SUPER BEGIN, or SUPER END
process. Control is always passed to the first line of the new
process.

This operator should have a left argument or a right argument. If it
has both the right argument is taken. The argument must a number.
No result is retuned.

‘Two separate cases exist depending on the argument.

Case 1) It resolves to zero or a positive integer.

If the left argument resoves to a positive integer then it
is interpreted as a screen field process number. Control
will be passed to the first line of the nominated screen
field process. If the number is greater than the number of
available screen fields the error "No such field" appears
on the status line.

Ié the left argument is zero then control is passed to the
screen field process indicated by system variable 448
(current field number).

Case 2) It resolves to a negative integer.
 Only the negative integers "~’ '-2', '-3', and '-4' are

allowed (else "No such process" error).
Encryption of the negative numbers:

Meaning

GOTO BEGIN PROCESS
GOTO END PROCESS
GOTO SUPER BEGIN PROCESS
GOTO SUPER END PROCESS

Thus all processes can be accessed by the GOTO operator.

4-56

VISTA PROGRAMMERS REFERENCE MANUAL VEL OPERATORS

System variables 448 (current screen field) will be modified whenever
the argument is a positive number.

System variable 507 (current process type) may be changed by this
operator to reflect the new process type.

Value in 507 Meaning

-1
-2
3
4
5 a process related to a screen

field

Examples:

3 => ytransfer control to first line of
7screen field process 3.
} afterwards:
3 #448 will be 3
3 #507 will be -5

cor 3 jsame effect as first example

tat! 29> jtransfer control to first line of
;BEGIN process for this schematic
} afterwards:
7 #507 will be -1

coro '~ jtransfer control to first line of

«SUPER END process for this mode
} afterwards:
3 #507 will be -4

N.B. In the case of '-3' =>> (GOTO the SUPER BEGIN PROCESS)
The current field (448) is set to 1, and previous field
(s.v. 510) is set to 0, and type of exit (s.v. 453) is set
to 255.

4-57

VISTA PROGRAMMERS REFERENCE MANUAL VEL OPERATORS

Operator Namex

Class: Special

Arguments: ital

Result: Yes

Summary: num HELP > num

Description:

This operator can "drive" the help structure which has been set up by a
previous SHELP operator.

This operator requires a left argument which must be a number. If the
number is a non-integer then it is rounded to an integer. This
operator returns a result.

The left argument: should be a number in the range 0 to 7. If the left
argument is zero then the schematic nominated by the most recent SHELP
operator (i.e. its left argument) is brought up on the screen and the
help structure is entered. If the left argument is 1 to 7 then the
corresponding schematic in the right argument list of the most recent
SHELP operator is brought up on the screen and the help structure is
entered.

The result is the number of the last help schematic on the screen
before the help structure was terminated. This number refers to the
position of that schematic in the right argument list of the most
recent SHELP operator. If the last selected help schematic did not
exist then its number is negated and returned as the result.

The help structure is explained in more detail in the SHELP operator.

Examples:

3. SHELP <21,22,23,24, 'SORT_EXP', 'ERRORS' , "BYE", ‘HELP'>
#501 -> = ‘"DocTors'

This usage will define seven schematics for the help structure. System
schematics 21, 22, 23, 24 are nominated as help schematics 1, 2, 3, and
4 respectively. User schematics ‘SORT EXP', 'ERRORS', and 'BYE' in the
schematic group 'HELP' in the schematic file 'DOCTORS' are nominated as
help schematics 5, 6, and 7 respectively.

458

VISTA PROGRAMMERS REFERENCE MANUAL VPL OPERATORS

The help structure is entered when this operator is executed. The
schematic selected by the previous SHELP operator, system schematic 23,
will be placed on the screen in the furthest comer from the cursor.
After this, pressing the numbers 1 to 7 would bring up the
corresponding schematics nominated in the right argument of the SHELP
operator.

For example, pressing 7 would attempt to bring up a schematic called
‘BYE' in the group 'HELP' from the schematic file 'DOCTORS'.

The result of this operator indicates that system schematic 21 was the
last help schematic on the screen before the help structure was
tenminated.

Once the help structure has been entered then pressing space or F8 will
terminate it and then return to the "pre-help structure" state.

1 ‘HELP > 7

This would bring up system schematic 21 and enter the help structure.
The result would tend to indicate that 7 was pressed while in the help
structure after which the corresponding schematic ("BYE' in group
‘HELP’ in schematic file 'DOCTORS') was not found.

VISTA PROGRAMMERS REFERENCE MANUAL VPL OPERATORS

described here: THEN «ELSE ENDIF

Class: Special

Arguments: L* for THEN (none for others)

Results: None

Summary: IF cc THEN ‘ec! can be an expression
which results in a condition
code

VPL expressions
ELSE

areeee } VPL expressions
ENDIF

VPL process,

Of the four operators (IF THEN ELSE and ENDIF) only the THEN operator
requires an argument. The THEN operator requires a left argument and
it must be a number (a condition code is a number). None of these
operators will attempt to pick up a right argument (i.e. they will not
scan to the right of the operator). None of these operators return a
result.

The IF operator is "cosmetic" and is not required. In any case the use
of the IF operator is recomended for readability and it should appear
in the same expression (and therefore the same line) as the THEN
operator.

The ELSE operator is only required when the two possible conditions
(true or false) need mutually exclusive paths through the VPL code. The
ELSE operator should lie between a THEN operator and an ENDIF operator
{not necessarily on the same line}, The true condition will cease to
execute when an ELSE operator is detected. Execution will recommence
after the corresponding ENDIF operator is detected. The false condition
will start execution when the corresponding ELSE operator is detected.

The decision is made on the basis of the left argument of the THEN
operator. The argument is rounded to an integer if necessary. If the
argument resolves to zero (0) then the test is considered to have
failed (to be false); the following VPL code is not executed. The
execution of VPL will recommence:

1) when a corresponding ELSE is detected
otherwise 2) when the corresponding ENDIF is detected
otherwise 3) the rest of the current process is skipped

and execution recomences at the beginning
of the next process.

4-60

VISTA PROGRAMMERS REFERENCE MANUAL VPL OPERATORS

Tf the argument resolves to anything else but zero (after rounding to
an integer) then VPL code execution continues after the THEN operator.
In this case the condition is said to be true.

I, THEN, ELSE, ENDIF stuctures can be nested to any level. Because of
the "nested" ability of these stuctures the term "corresponding" is
used in the above description to qualify ELSE and ENDIF so only those
at the same level of nesting will be recognized.

Care should be taken with the use of the BRANCH operator together with IP, THEN ELSE, ENDIF, structures especially jumping into such
structures.

Examples:

Ir #3 GE 0 THEN ; if the contents of field 3 is greater
j than zero then...

#3 SOR= #3 } get the square root of it and put
} result back in field 3

ENDIF 7 end of structure

IF #901 EMPTY THEN if status line field 901 is empty

place "+t" in status field 901
ring bell

now if #901 is not empty then...
get #901 and join it to #1 and
put the result in #1

end of structure
whether or not #901 was empty get
input from status line field 902

tieek' = 901
BELL

#901 JOIN #1 = #1

ENDIF
902 INPUT

Example of nested "IF"'s:

IF DATETIME PICK <5,2> NE 2 THEN
"It's not February" = #1

ELSE
"It's February" = #1
IF DATETIME “PICK <7,2> BQ 29 THEN

"A #kk day to have a birthday!
ENDIF

ENDIF

VISTA PROGRAMMERS REFERENCE MANUAL VEL OPERATORS

Operator Name: . INpur

Symbolic representation: ?

Class: Special

Arguments: L RI R2_~ (R3 see extension)

Result: Yes

Summary: fld © INPUT <pos,len> = ->_ str

N.B. This operator has several extensions

Description:

‘or will accept keyboard input.

In the simplest case (with no arguments and "A" as field verification)
the cursor will be placed in the first position (i.e. left hand side)
of the current field. The system will wait for user input. Printable
characters will be entered into the field until it is full. various
control keys (e.g. CR, down arrow, tab) will cause the system to
continue VEL execution with the final contents of the current field
being returned as the result of this operator.

This operator can have a left argument and up to two right arguments
(in a right argument list). All arguments given to this operator must
be numbers. This operator returns a result.

The left argument represents the field number. If given this should
refer to a screen field or a status line field which currently exists
on the screen. If not the error "** VPL ** Field nutber (or system
variable) out of range" appears on the status line. The number zero
refers to the current screen field and is assumed if no left argument
is given.

The first right argument is the position within the field where the
cursor is to be placed. The position at the left hand end is taken to
be 1, the next is 2, etc. The position at the right hand end is taken
to be ~1, the one before that is -2, etc. The position 0 is treated as
the left hand side of the field. The default (when position is not
given) is the left hand side of the field.

The second right argument is the length of the input field. If this is
not given or given as 0 (zero) then the field length of the field in
question is assumed. If the length is given as positive then a
“sub-field" including the given position and those to the right of it
is used. If the length is given as negative then a "sub-field"
including the given position and those to the left of it is used. By
giving lengths long enough (positive and negative) it is possible to
have the so-called "sub-field" partly outside the original field.
If a "sub-field" is specified then the contents of that "sub-field"
form the result of this operator.

VISTA PROGRAMMERS REFERENCE MANUAL VPL OPERATORS

Some keys will have special actions in the INPUT operator. VISTA's
theoretical keyboard can be functionally divided up as follows:

a) Normal printable ASCII characters (ASCII codes 32-126)
b) Extended printable ASCII characters (chunky graphics)

(ASCII codes 128-254)
¢) Left arrow, right arrow
a) Up arrow, down arrow
e) Carriage return (return, CR)
£) Eight function keys F1 to F8
g) character insert, character delete, character erase(RUB)
h) Line insert, line delete, line erase
i) TAB

Classes a) and b) are similar to the INPUT operator. While the cursor
is not at the right hand extremity of the field (or "sub-field") then
these printable characters are echoed (type and verification
permitting) in the field and the cursor moves one position to the
xight. At the right hand extremity one of two things happen:

~if the verification is "E" or "F" (upper or lower case)
then the newly input character will be put in the last
position in the field after the contents of the field
is pushed one position to the left.

-if the verification is other than "E" or "F" (upper or
lower case) then after the rightmost position of a field
is filled then input tenninates,

Class c) keys will cause input to continue until an attempt is made to
move the cursor outside the field (or “sub-field").

Class d) keys will terminate input.

Class e) keys will terminate input.

Class f) keys will terminate input and place a value of 1 to 8 in
system variable 453 corresponding to the function key pressed (F1 to
F8).

Class g) keys will have their described action and input will continue.

Class h) keys will terminate input without altering the field's
contents,

Class i) keys will terminate input.

In all cases a code for the key that caused input to terminate is
recorded in system variable 509.

VISTA PROGRAMMERS REFERENCE MANUAL VEL OPERATORS

Examples:

Assune that the current field is field 3 and it has 5 positions which
are currently blank. Assume the verification is variety "A".

INPUT - ‘test '

This expression will put the cursor in the first position of the
current field (field 3) and await input. One possible interpretation
of what happened during the execution of this expression was that the
user typed "test" followed by a CR (carriage return).

4 INPUr = #5

Get input from field 4 and when that is done place the contents of
field 4 (returned by the INPUT operator) into field 5.

4 INpUr 6

Get input from field 4, Before input is accepted the cursor should be
placed in position 6 of field 4.

901 INPUT '-1'

Get input from field 901 (a status line field). Before input is
accepted the cursor is placed in the last position of the field.

35 INPUT <,4> = #801

Using screen field 35 as a base then define a "sub-field" for the
purposes of this INPUT operator. The "sub-field" starts at position 1
of screen field 35 and is 4 positions long (regardless of the defined
length of screen field 35. The contents of the “sub-field" is returned
as the result and put in hidden field 301.

21 INPUT <'-3','-8">

Using screen field 21 as a hase then define a “sub-field" for the
purposes of this INPUT operator. The "sub-field" starts at the third
last position of screen field 21 and extends to the left of that point.
The "sub-field" will be 8 characters long.

VISTA PROGRAMMERS REFERENCE MANUAL, VEL OPERATORS:

Syntax: fld INPUT <pos,num,type> -> str

A third right argument is also allowed. If it is given it must be a
number,

The third right argument is the type of input to be obtained from the
field. If the type is zero or not given then field verification given
when the field in question was defined is taken. Below is a list of
the field verifications currently allowed:

Symbol ASCII code Meaning (characters that are accepted)

everthing
A 65 everything
B 66 alphabetic, digits, space
D 68 space, digits, slash, coma, plus
E 69 everthing (push left at right end of field)
F 70 as "N" (push left at right end of field)
M 11 space, digits, coma, plus, minus
N 78 space, digits, comma, plus
P 80 space, digits, comma, plus, point
Q 81 space, digits, comma, plus, point, minus
z 90 space, alphabetic

If the type is positive it should be one of the above "ASCII codes" and
will mean that the original given field verification will be overridden
for this input as indicated by the above table.

If the type is -32 or less (e.g. -32, -33, etc) then keyboard input
will be acknowledged by the character indicated by the absolute value
of this number (e.g. -63 will mean that all characters input are to be
echoed with "?").

Tf the type is given as -1, -2, -3, or -4 then a special action is
being requested:

type = -1 (no wait case)
The keyboard and its type-ahead buffer will be checked for
waiting characters. Those characters relevant to the
current field are echoed and control returns immediately to
the VPL interpreter.

type = -2 (no echo case)
INPUT will proceed as usual but printable characters will
be echoed on the screen as spaces. The result returned
will contain the actual keys pressed.

type = -3 (no echo, no wait case)
The keyboard and its type-ahead buffer will be checked for
waiting characters. Those characters relevant to the
current field are taken and those characters which are
printable are echoed as spaces. Control returns
immediately to the VPL interpreter. The result returned
will contain the actual keys pressed.

4-65

VISTA PROGRAMMERS REFERENCE MANUAL VPL OPERATORS

type = -4 (no echo, no wait, clear type-ahead buffer case)
The keyboard and its type-ahead buffer will be checked for
waiting characters. Those characters relevant to the
current field are taken, Any further characters in the
type ahead buffer are cleared. Those characters which were
taken and are printable are echoed as spaces. Control
returns immediately to the VPL interpreter. The result
returned will contain the actual keys pressed,

The "no wait" cases (types -1, -3, and -4) will accept characters if
they are waiting. The fact that something has been added in a field
can be detected by writing an impossible value in system variable 509
(e.g. zero) and seeing if it is still there after the "no wait" INPUT
operators. System variable 509 encodes a value for the last key
pressed.

Examples:

12 INPUT <,,65>

Accept input into screen field 12. Regardless of the verification
associated with this field by the SKJEMA program (or for that matter by
system variable 537), take any character pressed as valid input.
N.B. 65 -> "A" which means accept everything.

12 INPUT <2,5,65> = ~— (#301

Accept input from the "sub-field" based on screen field 12. The
“sub-field" starts at position 2 and is 5 characters long, Regardless
of the verification associated with screen field 12 by SKJEMA (or s.v.
537), take any character pressed as valid input. The contents of the
“sub-field" is returned as the result and placed in hidden field 301.

12 INPUT <2,5,'-63'> = #301

Similar to above example in terms of "sub-field" but now the original
verification (or that in s.v. 537) is taken. Any printable character
which is accepeted will be echoed by "2", The result of the INPUT
operator will be the contents of the "sub-field" with the actual keys
pressed (i.e, not full of "2"s).

12 INPUT <2,5,'-2'> = #301

Same as above example but echo is a space.

VISTA PROGRAMMERS REFERENCE MANUAL VPL OPERATORS

The following little program will loop until one character is pressed
unless characters are already waiting in the buffer.

0 = #509 jto be able to see if INPUT
igets anything

Lt: 12 INPUT <,,'-1'> no wait, no echo
ae yperhaps check the time

TF #509 BQ 0 THEN pif s.v. still zero then
BRANCH :L1: ;nothing pressed so loop

ENDIF
imow field 12 can be read

N.B. The cursor will be placed where it is directed (position 1 in this
case). If this operator is being used in a loop then system variable
508 may be very useful as the position of re-entry.

VISTA PROGRAMMERS REFERENCE MANUAL ‘VPL OPERATORS:

Operator Name: . JOIN

Class: String

Arguments: L* Re

Result: Yes

Sumary: str JOIN. str ~ str

Description:

The left argument and the right argument are concatenated to form the
result.

The left and right arguments must exist. This operator produces a
result.

When screen fields or status line fields are picked up then trailing
spaces are not included.

The result should not exceed 255 characters or an error will occur.

Examples:

‘abedef' JOIN "1234" > ‘abodef1234"

‘TEST ' JOIN 'ING' ~ ' TEST ING '

Screen field 4: |

5678

#3 JOIN #4 > "1234 5678"

VISTA PROGRAMMERS REFERENCE MANUAL VPL OPERATORS

Operator Namez

Other operators
described here: LOR NOT LXOR

Class: Database

Arguments: L RI R2

Result: Yes

Summary: nl LAND <1n2,1n3>-> num

Descripti

These operators form a resultant occurrence list fron two input
occurrence lists according to same given rule.

Each operator can have a left argument. If so, it must be a number.
Each operator can have two right arguments. Any right arguments given
must be numbers. Non-integers are rounded to integers if necessary.
Each operator returns a result.

If given, the left argument should be a number in the range 1 to 101.
These numbers refer to occurrence lists. Occurrence list 101 is called
the current occurrence list and is assumed if the left argument is not
given. The left argument is one of the input occurrence lists.

Tf given, the first right argument should be a number in the range 1 to
101. These numbers refer to occurrence lists. Occurrence list 101 is
called the current occurrence list and is assumed if the first right
argument is not given. The first right argument is the other input
occurrence list.

Tf given, the second right argument should be a number in the range 1
to 101, These numbers refer to occurrence lists. Occurrence list 101
is called the current occurrence list and is assumed if the second
right argument is not given. The second right argument indicates the
number by which the resultant occurrence list will be accessed, Any
occurrence list previously associated with this number is replaced.

The four operators described here are LAND, LOR, LXOR, and LNOT.
They all combine two occurrence lists to generate a new (resultant)
occurrence list. Except in the case of INOT, the position of the input
occurrence lists (left or first right) is irrelevant.

The result of this operator is the number of documents in the resultant
occurrence list. If no database is open when this operator is used
then zero will be returned as the result. If the result is non-zero
then the document pointer points to the first document in the resultant
occurrence list.

VISTA PROGRAMMERS REFERENCE MANUAL VEL OPERATORS

Occurrence lists which result from the SORT operator cannot be used as
input lists to any of these four operators.

The action of the four operators is listed in table form below:

Operator Resultant occurrence list contains

LAND documents which are found in both | lists; i.e both the
first list AND the second list.

LOR documents which are found in either list; i.e. in the
first list OR the second list. N.B. Documents found
in both lists will only appear once in the resultant
list.

LXOR documents which are in the first list OR the second
list BUT not in BOTH lists. This operation is
sometimes called an exclusive OR.

INOr documents which are found in the first list but NOT in
the second list. N.B. This operation is not reflexive,
i.e. the order of the input lists is significant.

Both the LAND and LOR operators can be used for making a separate copy
of an occurrence list. In this case both input Lists should be the
sate. This may be useful if the same occurrence list is to be
independently accessed. It may also be useful to keep a copy of an
occurrence list before it is sorted.

The LOR operator can be used to accumlate an occurrence list. In this
context it could be used with the LDOC operator.

‘The LXOR operator can be used to clear an occurrence list. In this
case all three argument should be the same list number. A more
efficient way is normally to search for something which is not there.

Examples:

‘ SMITH" SEARCH <'NAMREG:NAME',1> -> 43
"WORKING' SEARCH <'NAMREG:TOWN',2> -> 525

In this case occurrence list 1 would contain the 43 documents in the
'"NAMREG' register whose 'NAME' was 'SMITH'. Occurrence list 2 would
contain the 525 documents in the 'NAMREG' register whose 'TOWN' was
WORKING".

1 LAND «2,3 > 5

So occurrence list 3 would contain 5 documents from register 'NAMREG'
containing both the 'NAME’ of 'SMITH' and the 'TOWN' of 'WORKING'.
Interpreting the data a little, it would seem that in 'NAMREG' there
are 5 people of the name 'SMITH' who live in 'WORKING'.

4-70

VISTA PROGRAMMERS REFERENCE MANUAL VPL OPERATORS

1 TOR <2,4> -> 563

So occurrence list 4 would contain 563 documents from register 'NAMREG'
that contain the 'NAME' of 'SMITH' or the "TOWN of 'WORKING'.
Interpreting the data a little, it would seem that in 'NAMREG' there
are 563 people with the name 'SMITH' or who live in ‘WORKING’.

1 LKOR <2,5> -> 558

So occurrence list 5 would contain 558 documents from register 'NAMREG"
that contain the 'NAME' of 'SMITH' or the 'TOWN' of 'WORKING’ but not
both. Interpreting the data a little, it would seem that in 'NAMREG’
there are 558 people with the name 'SMITH'’ or who live in 'WORKING' not
including those who both are named 'SMITH' and live in 'WORKING'.

1 NOE <2,6> > 38

It follows from above that there are 38 people named 'SMITH' who do not
'WORKING' . live in '

2 mor 1,7 ~> 520

And there must be 520 people in 'WORKING' not called 'SMITH'.

an

Sumary: str LAST type -> pos

Description:

This operator will return the position of the last non-blank character in a string in the simplest case (type not given or =0). e
‘This operator must be given a left argument. Tt can optionally have a right argument. If it has a right argument then it must be a number, This operator returns a result.

The left argument is checked to find the position (origin one) of the last non-blank character when type is not given or is given as zero. If the left argument is a null string or full of blanks then zero will be returned as the position of the last non-blank character. Systen variables 524 and 525 can be adjusted (default is space) so the term “last non-blank character" can be generalized to “last non-delimiter character",

If type is given as 1 then the position of the last character in the left argument is retumed. If the string is null (length zero) then zero will be returned. This option (type=1) is unaffected by the setting of system variables 524 and 525.

Tf type is -1 then the position of the first non-blank character in the left argument is retumed. If the left argument is null or full of
blanks then the position of the character after the last is returned as the result. System ‘iables 524 and 525 can be adjusted (default is e Space) so the term "first non-blank character" can be generalized to
“first non-delimiter character",

Examples:

‘hello' LAST > 5 ;position of last non-blank
"hello ' LAST -> 5 jcharacter is invariant

‘hello ' LAST 1 -> 7 ;but the position of the last
jcharacter may vary

‘hello ' LAST '-1' -> 1 ;the position of the first
jnon-blank character

‘hello' LAST '-1' -> 2 ;position of first non-blank @
;character

4-72

LAST
LAST

ny
wae

4-73

wo

VEL OPERATORS

yreturns zero for a null string

jretums zero for a null string

yretuns 1 for a null string
ji.e. one after last!

jset Ist delimiter to colon
yset 2nd delimiter to colon
;first. "non-colon"
}first “non-colon""

jreset 1st and 2nd delimiters
plast non-blank character
plast character
Hist + 2nd delimiters to ";"
Hast “non-semicolon" character

ist delimiter to space
72nd delimiter to semicolon
#last character position which
jis not a space or semicolon
;first character position which
zis not a space or semicolon

Class: Database

Arguments: LR

Result: No

Sumary: In1 LCHANGE 1n2

Description:

‘his operator will change the list number associated with a given
occurrence list.

‘This operator can have a left argument. If so, it mist be a number.
This operator can have a right argument. If so, it must be a number.
Non-integers are rounded to integers if necessary. This operator does
not retum a result.

If given, the left argument should be a number in the range 1 to 101.
These numbers refer to occurrence lists. Occurrence list 101 is called
the current occurrence list and is assumed if the left argument is not
given. The left argument is the input occurrence list number.

I£ given, the right argument should be a number in the range 1 to 101.
These numbers refer to occurrence lists. Occurrence list 101 is called
the current occurrence list and is assumed if the right argument is not
given. The right argument is the resultant occurrence list number.

For identification purposes occurrence lists have numbers. Up to 101
occurrence lists can be held concurrently by the system, This operator
simply changes the identification number by which an occurrence list is
accessed. If the number given for the resultant occurrence list had an
occurrence list associated with it then it is replaced. ‘The input
occurrence list number will have no occurrence list associated with it
when this operator has finished (N.B. there is NO swapping of lists).
The document pointer of the "changed" List is not altered.

Examples:

1 CHANGE = 2

The previous contents of occurrence list 2 is replaced. The occurrence
list previously referred to as list 1 can now be referred to as list 2.
List 1 now has no occurrence list associated with it.

LCHANGE, 2

Current list (list 101) "changed" to list 2.

474

VISTA PROGRAMMERS REFERENCE MANUAL VEL OPERATORS

Operator Namez

Class: Database

Arguments: LR

Result: No

Summary: Int woc 1n2

This operator will make a new occurrence list containing one document
(1n2) out of the current document in the given occurrence list (1n1).

This operator can have a left argument. If so, it must be a number.
This operator can have a right argument. If so, it must be a number.
Non-integers are rounded to integers if necessary. This operator does
not return a result.

T£ given, the left argument should be a number in the range 1 to 101.
These numbers refer to occurrence lists. Occurrence list 101 is called
the current occurrence list and is assumed if the left argument is not
given. The left argument is the input occurrence list number.

Tf given, the right argument should be a number in the range 1 to 101.
These numbers refer to occurrence lists, Occurrence list 101 is called
the current occurrence list and is assumed if the right argument is not
given. The right argument is the resultant occurrence list number.

The action of this operator is to make a resultant occurrence list
containing one document which is the current document in the input
occurrence list. If the resultant list number previously had an
occurrence list associated with it then it is replaced. If the input
occurrence list was empty then the resultant occurrence will also be
empty. If no database is open then this operator has no effect.

Examples:

2 wo 3

The previous contents of list 3 are replaced. If list 2 contains any
documents then the one addressed by the document pointer will be made
the only document in occurrence list 3. If list 2 is empty then list 3
will be empty. List 2 is not altered.

2 = LLENG -> 525 ;list 2 contains 525 documents
2 LPOS > 432 yourrent document is 432nd
2 Looe

The previous contents of list 101 are replaced. After the LDOC
operator list 101 will contain 1 document which will be the 432nd
document of list 2. List 2 is not altered.

475

VISTA PROGRAMMERS REFERENCE MANUAL VEL OPERATORS

Operator Name:

Class: Database

Arguments: L

Result: Yes

Summary: ln LENG > num

Description:

This operator will return the number of documents in the given
occurrence list.

This operator can have a left argument, If so, it must be a number.
Non~integers are rounded to integers if necessary. This operator
returns a result,

If given, the left argument should be a number in the range 1 to 101.
These numbers refer to occurrence Lists. Occurrence list 101 is called
the current occurrence list and is assumed if the left argument is not
given.

The action of this operator is to return the number of documents in the given occurrence list. If the given list is empty or no database is
currently open then zero is returned.

Examples:

“CRAMPON' SEARCH 'FICHE:NOM' > 5

So now there are 5 documents in the current occurrence list.

LLENG > 5
101 LCHANGE 13
101 LLENG > 0
13 LLENG > 5

The LLENG operator is now used to illustrate the action of the LCHANGE
operator,

4-76

Class: Arithmetic

Arguments: L R (one or the other, right takes precedence)

Result: Yes

Summary: num L0G — num
Los num —> nun
LOG (num) -> num

N.B. These are all equivalent

Description:

This operator will yield the natural logarithm of its argument.

This operator requires an argument. It can be either a left argument
or a right argument. If both a left argument and a right argument are
given then the right argument is used. The argument mast be a number.
This operator retums a result.

The argument mist be a positive number. Negative numbers or zero cause
a '* VPL ** Attempt to divide by zero" error. The natural logarithm
is a logarithm base "e". ‘The number "e"' is approximately
2.71828182845904 . The result is that number which "e" needs to be
raised to in order to be equal to the given argument.

Examples:

1 Lo > 0
Log (1) > 0

10 Log (1) > 0

22026. 4657948067 LOG -> 10
2.71828182845904 LOG > 1

To get the quadratic root of a number this operator could be used
together with the EXP operator.

16 LOG / 4 EXP > 2

4-77

 Operator Name: ‘LOOKPROC

Class: Special

Arguments: i

Result: Yes, error code

sumary: str LOOKPROC > er

Description

This operator will indicate whether a procedure exists or not.

This operator requires a left argument. This operator returns a result
which is an error code.

The left argument should represent a procedure name. Procedure names
can be up to 20 characters long. Procedure names mist not contain
embedded spaces and must not start with a digit.

The result of this operator is zero if a procedure of the name
indicated by the left argument exists. If no procedure of that name is
found then 22 is returned. Error code 22 is associated with the
message "Procedure not found",

Examples:

IF 'WEEKDAY' LOOKPROC EQ 0 THEN
DATETIME WEEKDAY = #13

"SOMEDAY* = #13

This piece of code will check if a procedure called 'WEEKDAY' exists
and if so it will be called with a left argument which is the output of
the 'DATETIME' operator. The result of the procedure will be placed in
screen field 13. If a procedure of that name is not found then
"SOMEDAY' is placed in screen field 13.

"XYZ" LOOKPROC «= MESSAGE -» '** VPL ** Procedure not found’
"MENU' LOOKPROC MESSAGE -> ''

The latter example indicates that a procedure of the name 'MENU’
exists.

4-78

VISTA PROGRAMMERS REFERENCE MANUAL VPL OPERATORS

Operator Name:

Class: Database

Arguments: L

Result: Yes

Sumary: In LPos > num

This operator will return the position of the current document within
the given list.

This operator can have a left argument. If so, it must be a number.
Non-integers are rounded to integers if necessary. This operator
returns a result.

If given, the left argument should be a number in the range 1 to 101.
These numbers refer to occurrence lists. Occurrence list 101 is called
the current occurrence list and is assumed if the left argument is not
given.

The action of this operator is to return the position of the current
document within the given occurrence list. If the given list is empty
or no database is currently open then zero is returned.

When an occurrence list is generated the current document pointer is
set to the first document in that list. The STEP operator can be used
to move the current document pointer.

Examples:

‘CRAMPON' SEARCH "FICHE: NOM" > 5

So now there are 5 documents in the current occurrence list.

LLENG > 5
LPOS > 1
STEP
LPOs > 2

101 LCHANGE 13
101 LLENG > 0
101 LPOs > 0
13° LLENG > 5
13 LOS > 2

first. The STEP operator moves the current document pointer to the
second document. Notice that the LCHANGE operator does not effect the
current document pointer.

4-79

VISTA PROGRAMMERS REFERENCE MANUAL VPL OPERATORS

Operator Name: MESSAGE 1! for LT see EQ
1 for LXOR see LAND

Class: Special

Arguments: Lt

Result: Yes

Summary: num “MESSAGE ~> str

This operator will return a string containing the error message
{or informative message) corresponding to the number given as the left
argument.

This operator mist have a left argument and it must be a number
(non-integers are rounded to integers). A result is returned.

Té the left argument is zero or less a mull string is retumed as the
result. Positive integers which have a corresponding message defined in
the system file (defined and modified by VISETUP) will return that
message as the result. If a message has not been defined for a positive
number then a string containing the message number surrounded by "*"'s
will be retumed.

‘The advantage of using this method over explicitly defining a string
between quotes is that MESSAGE will pick up a message in the currently
defined language. The currently defined language can be changed, added
to, or modified by the VISETUP program. The VISUP program can be used
to select one of the defined languages.

For a list of messages currently available (in English) via this
operator see appendix B.

Examples:

1 MESSAGE = ->_ "*#VPL** Unrecognizable statement’

70 MESSAGE -> "Hit 'space' to continue"

301 MESSAGE ~> '*301*' — jnot yet defined

0 MESSAGE = ->''! jnull string

‘3! MESSAGE >t ynull string

VISTA PROGRAMMERS REFERENCE MANUAL VEL OPERATORS

Operator Name: 1
!

Class: Special

Arguments: L

Result: Only if operator fails, then result is error code

Summary: num MODE L~ er]
MODE c-> erj

The supplied user interface in VIPS is sub-divided into modes. Hach
mode performs an application oriented task such as document. input, document search, edit, sort, report generation, etc, VIPS has 50 modes
which are numbered 0 to 49. Each mode has two special processes
associated with it. These processes are called the SUPER BEGIN and the SUPER END process. This operator will switch between the 50 modes.
If a left argument is given it must be a number (non-integers rounded)
in the range 0 - 49. Since this operator causes an immediate control
transfer if the requested mode exists then no result is returned. If
an error occurs then the relevant error code is returned as the result.

If a left argument is riot given then the value in system variable 430
is assumed. From the point of view of the following explanation if a
left argument is given it can be thought to overwrite the previous
contents of system variable 430.

The following transfers then take place:

Current Mode Number --> Previous Mode Number

(in VEL: #404 = #505)

Next Mode Number -—> Current Mode Number
(in VPL: #430 = #404)

Constant 0 --> Next Mode Number
(in VeL: 0 = #430)

Constant 1 --> First use of SUPER BEGIN
(in VPL: 1 = #515)

When this is done then control is transferred to the first line of the
SUPER BEGIN of the new mode.

Mode 8 is reserved for an exit from VIPS to the host operating system.
All files opened during the session of VIPS which have not already been
closed will be automatically closed by this usage.

If the SUPER BEGIN of a particular mode is empty and so is its SUPER
END then according to the default flow of control between processes,
this would represent a loop, This condition is detected (both SUPER
BEGIN and SUPER END being empty) and after one loop a 0 MODE
operator will be forced. If the current mode was 0 then a 8 MODE
operator will be forced (i.e. return to operating system).

Examples:

MODE 3 transfer passed to SUPER BEGIN

} of mode number in #430
3 #404 = #505
3 #430 = #404
3 #0 = #430
pH = #515

5 MODE ; transfer passed to SUPER BEGIN

j Of mode 5
7 5 = #430
7 #404 = #505
3 #430 = #404
7 0 = #430
7 1 = #515

8 MODE jexit to host operating system
jclose all currently open files

0 MODE juseful for returning control to the
jdocument level handling system in
iVIPS. Mode 0 is the status line prompt
;showing current schematic, list
Hlength, time, and asking for next mode

VISTA PROGRAMMERS REFERENCE MANUAL VPL OPERATORS

Operator Name: NUMERIC for NE see EQ
{for NEMPTY see EMPTY
!for NNUMERIC see <~

Other operators
described here: NNUMERIC

Class: Arithmetic conditional

Arguments: L R (at least one, right takes precedence)

Result: Yes, condition code

Summary: str NUMERIC > cc
str NNUMERTC > cc

The NUMERIC and the NNUMERIC (read not numeric) operators return
condition codes depending on whether their arguments are in a suitable
form to be interpreted as numbers by the system.

Both operators need either a left argument or a right argument. If
they have both then the right argument is taken, For readability it is

that only the left argument is used.

The NUMERIC operator returns the crue condition code (i.e. 1) if its
argument can be interpreted as a number. If its argument cannot be
interpreted as a number then the false condition code is returned.

‘The NNUMERIC operator returns the false condition code if its argument
can be interpreted as a number. If its argument cannot be interpreted
as a number then the true condition code is returned.

What is a number?
VISTA does not have strict data types. All data items throughout the
system can be viewed as strings. So there is a subset of strings which
the system can interpret as numbers. The rules for valid
representations of numbers (numeric strings) are set out below:

A) ‘The only valid characters in a numeric string are:
0123456789+-., (space)

B) ‘There must be no imbedded spaces within the numeric string
C) There must only be one number per numeric string
D) If + is used it must be before the first non-blank character
E) If - is used it must be before the first non-blank character
F) Neither + nor - are necessary but both cannot be used
G) Commas can appear anywhere in the numeric string except in the

first non-blank position
H) The numeric string may contain one (no more) decimal point "."

Other things to note:
1) Aull string or a string full of spaces will be interpreted as

the valid number zero for numeric purposes.
2) The result of arithmetic operators is always numeric

3) Resulting condition codes can be considered as numeric
(ive. true => 1, false > 0) e

4) Brror codes are numeric

Other operators in VPL which expect a number as an argument will fail
with the error message '"** VPL ** Non-numeric argument to arithmetic
operator" if a string is given which cannot be interpreted as a number.
If there is any chance of this happening (e.g. via user input) then it
is recommended that these operators (NUMERIC and NNUMERIC) be utilized
to check. Even when numeric verification are being used on field input
the user can still enter embedded spaces or two decimal points.

The VPL interpreter has quite a wide interpretation of what is a number
within a string. When strings are stated explicitly in VPL code then
they should be surrounded by quotes (or double quotes). As a
convenience positive numbers can be written without quotes. This
"convenience" has a narrower interpretation of what is a valid number. e@
‘The number can only be made up of the digits 0 to 9 and decimal point en

Examples:

The following example shows various types of tests in conjunction with
IF-THEN-ELSE-ENDIF structures and a DO-WHILE-ENDDO loop, The idea is
to prompt the user in field three and then check that a valid number is
given, After it is established that a valid number is given then it is
checked to see if it is positive. If so the natural logarithm is taken
of it and the result is put back in field three. If these conditions
are not met then a message is placed on the status line and the bell is
rung and field 3 is blanked. This latter action is used as the "loop
variable". Until the user enters a positive number the loop will
continue.

"Please enter a positive number, then press CR' SW
Do

3. INPUT iget user input
IP #3 NUMERIC THEN jcheck field 3 e

Ir #3 GPO THEN 7if number then check if
jpositive

{2 WG= #3

‘can only take logs of positive numbers!’ sw
BELL

jclear field three

Si! ;here if non-numeric
jin field three
jwake up user

‘VISTA PROGRAMMERS REFERENCE MANUAL ‘VeL OPERATORS

Operator Name: oR 1
-- !

Class: Arithmetic conditional

Arguments: * Re

Result: Yes, condition code

Sumary: ce oR co} ce

Deseripti

This operator perfoms a logical OR operation between its arguments and
produces the appropriate result. ‘The truth table for OR is:

LEFT RIGHT

false false ! false
false true 1 true

!
!

RESULT

true false true
true true true

wherer false <-> 0[-0.5<x< 0.5]
true <-> not false

NB ! Care should be taken if using the OR operator with
arguments not resulting from conditional expressions,
as unexpected results may occur. The OR is done by
addition of its arguments.

IF-THEN-ELSE-ENDIF and DO-WHILE-ENDDO structures can both be
controlled by condition codes. Sometimes only one of several
conditions is required to be true for same action to be taken.
This operator can be placed between two other conditions so that
the net result is true when either component conditions is true.

Examples:

1 1 > 14 from above table
0 oR 1 24 } from above table

NBI5S '-5' > 0 } unexpected result !

if #3 eq 33 OR (#201 1t 0) then
; if field 3 is equal to
} 33 OR hidden field 201
; is less than 0 then...

do while (#901 empty OR (#1 numeric) OR (#2 gt 0))
ae } many ORs can be used

enddo

‘VISTA PROGRAMMERS REFERENCE MANUAL VEL OPERATORS

Operator Name: PICK 1
a !

Class: string

Arguments: I* RI RZ

Result: Yes

Sumary: str PICK «= <pos,num— ->— str

Description:

This operator will pick the indicated number of characters fron the
indicated position of the given string.

The left argument must be given. If either (or both) of the right
arguments are given then they must be numbers (non-integers are rounded
to integers). This operator returns a result.

The first right argument is the position, The position is origin one
(i.e. 1 indicates the first position). If the position is a negative
number it indexes the string from the right hand end. Thus a position

of '-1' indicates the last position. If the position is given as zero
it is treated as the first position. If the position is not given then
the first position is assumed.

The number of characters required is the second right argument. If
the number is not given then '1' is assumed, If the number is
positive then the indicated number starting with the indicated
position is taken. If the number is negative then the indicated
number (absolute value) ending with the indicated position is taken.
If the number is zero a null string is returned. The maximum string
length is 255 characters.

Strings larger than the original string can be selected. The
resulting string will always contain the requested number of
characters. The left argument can be envisaged as having spaces joined
to each end of it in order to meet criteria.

Examples:

‘testx' PICK ~ it!
"testx' PICK 2 => te!
"testx' PICK '-1' -> txt

‘testx' PICK ~ ‘te!
‘testx' PICK ~ ‘st!
"testx'! PICK —> ‘es!
‘testx' PICK — ' test"

Arguments: IX RI R2 R3

Result: Yes

Sumary: str PICKW <pos,num,type> -> str

This operator will pick words out of a string.

The left argument mist be given, If any (or all) of the right
arguments are given then they must be numbers (non-integers are rounded
to integers), This operator returns a result.

The first right argument is the word position. The word position is
origin one (i.e. 1 indicates the first word). If the word position is
a negative number it indexes the string from the right hand end. ‘Thus
a word position of '-1' indicates the last word. If the word position
is given as zero it is treated as the first position. If the word
position is not given then the first word is assumed.

The number of words required is the second right argument. If the
number of words is not given then '1' is assumed. If the number is
positive then the indicated number of words starting with the indicated
word position is taken. If the number is negative then the indicated
number of words (absolute value) ending with the indicated word
position is taken. If the number of words is zero a null string is returned.

Two types of word identification are available. These are:

a) when type is not given or type=0
“not all spaces (delimiters) are considered significant.
Leading, trailing and repeated imbedded spaces (delimiters)
are ignored for the purpose of calculating word position. If
more than one word is requested and available then the result
will contain the words separated by a single space
(delimiter). If multiple delimiters separate words then the
first one is returned as a word separator in the result.

b) when type=1
-all spaces (delimiters) are considered significant for the purpose
of calculating word position. Only one word will be retuned
(regardless of the number of words indicated by the second
right argument). If the position indicates a word lying
between to spaces (delimiters) then a null string is returned.

The resulting string will only contain the requested number of words if
the left argument contains that many words from the indicated position.

Words are normally delimited by spaces. Other characters can be used
as delimiters by writing to system variables 524 and 525.

487

 PICKW ‘this!
PICKW > ‘test’
PICKW -> ‘a test!
PICKW ~ ‘a test!
PICKW ~> ‘this is a test’

set 1st string delimiter to ";"
yset 2nd string delimiter to space

PICKW ~> 'this-is'
PICKW <2,2> > ‘a;test!

jreset 1st string delimiter to space

yset both string delimiters to
PICKW <,,1> > yall string
PICKW <2,,1> -> ‘this!
PICKW <4,,1> —> tat
PICKW <5,,1> >
PICKW <6,,1> => 'test'
PICKW <'-3',,1> => ‘a!

‘VISTA PROGRAMMERS REFERENCE MANUAL VEL OPERATORS

Operator Name:

Class: String

Arguments: L* RI R2 RB

Result: Yes

Sumary: istr PLACE <ostr,pos,num> -> str

N.B. This operator has several extensions

Description:

This operator can be viewed as a sophisticated version of assignment
(i.e. "="), Where assignment obliterates the previous contents of a
field this operator can be used to overwrite the contents of a field.

This operator must be given a left argument. It can have up to three
right arguments, The first right argument must be given. Tf given the
second and third right arguments must be numbers (non-integers will be
rounded to integers), This operator returns a result.

The left argument will overwrite the first right argument to produce
the result. The first right argument itself is not modified by this
operator. The left argument is referred to as istr below. The first
right argument is referred to as ostr below.

The second right argument is the position. If a positive position is
given then overwriting commences from the nominated position (origin
one) in ostr. If a negative position is given it is assumed to be
from the right hand end of ostr (e.g. -1 => last). Positions larger
than the number of characters in ostr will cause it to be extended with
Spaces. Large negative positions will assume the start of the ostr.
I£ the second right argument is not given then the first position of
ostr is assumed.

The third right argument is the number of characters to be taken from
istr. Positive numbers will take from the start of istr while negative
numbers will take from the rear of istr. If the number is zero or istr
is a mull string then the result is ostr. when the number exceeds the
number of characters in istr then the appropriate number of spaces are
added to its end (or its start if the number is negative). If the third
right argument is not given then all characters in istr are taken.

Examples:

"testx! PLACE '1234567890'
"1234567890! ,3> ~ '12testx890'

"testx' PLACE <'1234567890',9,6> -> '12345678testx '
‘testx' PLACE <'1234567890','-3','-2'> -» '1234567tx0!
"end! PLACE <'the',8> => 'the end'

N.B. The third example has a trailing space because 6 characters where
requested from 'testx' which only has 5.

4-89

VISTA PROGRAMMERS REFERENCE MANUAL ‘VEL OPERATORS

This operator (PLACE) can have up to five right arguments. The summary
then looks like:

istr PLACE <ostr,pos,num,type,decimalsy -> str

Tf the fourth and fifth right arguments are given they must be
numbers. Non-integers will be rounded to integers.

The fourth right argument is the type. The default type is overwrite
(explained above). ‘The type can be given explicitly as 0 to get
overwrite. If type is 1 then the indicated position and all those to
its right in ostr are moved right to accomodate istr. The result is as
large as necessary.
If type is -1 then the indicated position and all those to its left in
ostr are moved left to accomodate istr. The result will be the same
length as ostr so characters "falling off" the left are ignored.

The fifth right argument is the number of decimals to be added to istr.
Té istr cannot be decoded as a number then this argument has no effect.
Ié istr can be decoded as number then this number of decimals will be
added to it before it is used to overwrite or insert. "Decimals" are
digits to the right of the decimal point.

If the fifth right argument is NOT given then this operator will make
it own decision how to treat istr. If istr is a string then it is used
as is. If istr was the result of an arithmetic operation which
resulted in an integer then it is used as is (without decimals). If
istr was the result of an arithmetic operation which resulted in a
non-integer then the number of decimals indicated by system variable
540 is used.

Examples:

"testx' PLACE <'1234567890',,,1> -> 'testx!234567890'
"testx' PLACE <'1234567890',3,2,1> -» '12te34567890'

"testx' PLACE “ 1234567890" 1034 2 "3te4567890"
"ht PLACE o4ac','-1' ' 04ach*

'33' PLACE <'',,,,3> -> '33.000°
2944 PLACE <'',,,,3> -> '33.000°

66/2 PLACE <Sikiik! 1271, ,'-1',2> -> 1##*33,00"

Operator Name: PRCHAR I

oeeene 1

Class: Printing and sequential file handling

Arguments: It R

Result: Yes, error code

Sumary: num PRCHAR > er
num PRCHAR un -> err
str PRCHAR un - er

Description:

This operator is designed to send control codes to the printer.

This operator must be given a left argument. If it is given a right
argument then it must be a number (non-integers rounded to integers if
necessary). This operator returns a result.

In the simplest case the left argument is a number in the range 0 to
255. This code will be output to the printer. Assuming the printer
handles normal ASCII codes then 10 would be a linefeed while 13 would
be a carriage return.

To save repeated usage of this operator it is possible to give a left
argument which is a string. This string is a list of codes to be
output to the printer. Bach element in the list is separated by a
coma. Each element in this list should be a number or a number
followed by "R" (or "x") followed by a repeat count (e.g. 10R4 output
four linefeeds).

The right argument is the unit number. If the right argument is not
given then the value in system variable 536 is taken. ‘The initialized
value in #536 is -1 which indicates the printer. To redirect output
from the printer to a file it is necessary to open the file with the
SOPEN operator and then either put that unit number in #536 or give it
as the right argument to this operator.

The result is an error code. If this operator is successful then zero
is xeturned. If output is going to a printer it is not envisaged that
an error report will be returned by the host operating system. Tf
however the output is being redirected to a file then some error may be
returned.

Meaning

Open for read only
Unit number not in use (is the file open?)
Drive or device full

Tf the host operating system allows it then it may be possible to
redirect the printer output to another byte orientated device (e.g.
communication channel, console, etc.).

4-91

Examples:

Assuming the printer in question uses normal ASCII control sequences. e

‘65! PRCHAR -> 0 j;print "A"
'97' PRCHAR —> 0 ;print "a"
'84,69,83,84' PRCHAR -> 0 jprint "TEST"
"13,10! PRCHAR -> 0 send CR-LF to printer
"13,10R4" PRCHAR -> 0 send CR followed by

jfour LFs to printer
"12" PRCHAR => 0 jquite often formfeed

'VIPS.PRN' SOPEN 10 -> 0 jopena file called
7"VIPS.PRN", create it
jif necessary

10 = #536 jdefault unit for
PRCHAR, PRSTR and @

‘65! PRCHAR - 0 jsend to file
'97" PRCHAR -> 0 jsend "a" to file
'84,69,83,84' PRCHAR -> 0 jsend "TEST" to file
"13,10! PRCHAR -> 9 send CR-LF to file
"13, 10R4" PRCHAR -> 0 jsend CR followed by

jfour LFs to file
‘a1" = #536 jdirect default output

yback to printer
"84,69,83,84' PRCHAR -> 0 send "TEST" to printer
"84,69,83,84' PRCHAR 10 -> 0 send "TEST" to file

4-92

VISTA PROGRAMMERS REFERENCE MANUAL VEL OPERATORS

Operator Namez PRINT !
~- 1

Class: Printing and sequential file handling

Arguments: RI R2 R3 R4

Result: Yes, error code

Summary: PRINT <un,from,to,type>-> err

Description

This operator will send the current contents of the screen (or part of
it) to the printer.

This operator does not have a left argument. If one is accidently
given then it is ignored. This operator can have up to 4 right
arguments. Any that are given must be numbers (non-integers rounded to
integers if necessary). This operator returns an error code as a
result.

In the simplest case (no arguments) this operator will send the screen
image (less the status line) to the printer. If the printer is capable
of echoing every character on the screen then a true replica of the
screen (less status line-usually the bottom line) will appear on the
printer.

The second and third right arguments are "from" line number "to" Line
number respectively. If the "fram" line is not given then the first
(top) line is assumed. If the "to" line is not given then the last
line of the schematic (not the status line which is usually underneath
it) is assumed. If the status line is also required in the output then
its line number must be stated explicitly in the "to" argument.

Té the "to! line number (third right argument) is given as zero then
trailing blank text lines are not output. In this case a blank data
field will cause output to at least the line it is on, If the "to"
line number is -1 then trailing blank lines are not output. In this
latter case the number of lines output by this operator could vary
depending on whether lower data fields were blank or not.

The fourth right argument is the type. If the type is not given or is
zero then there is no expansion of special characters. The meaning of
the other values of type are listed below:

meaning

Expand special characters lying in text
special characters lying in text and don't

output a trailing new line (usually CR-LF)
“1 Expand special characters lying in text and data fields
-2 Expand special characters lying in text and data fields

and don't output a trailing new line (usually CR-IF)

 4-93

The first right argument is the unit nunber. If the first right
argument is not given then the value in system variable 536 is taken,
The initialized value in #536 is -1 which indicates the printer. To
redirect output from the printer to a file it is necessary to open the
file with the SOPEN operator and then either put that unit number in
#536 or give it as the right first argument to this operator.

The result is an error code. If this operator is successful then zero
is returned. If output is going to a printer it is not envisaged that
an error report will be returned by the host operating system. If
however the output is being redirected to a file then sone error may be
returned.

Error code Meaning

55 Open for read only
58 Unit number not in use (is the file open?)
a Drive or device full

I the host operating system allows it then it may be possible to
redirect the printer output to another byte orientated device (e.g.
communication channel, console, etc.).

Examples:

PRINT -> 0 print the screen less status
7.

PRINT <,4,14> -> 0 $print from the 4th to the 14th
jline inclusive

If the status line is on line 24 then:

PRINT <,24,24> -> 0 j;print the status line

PRINT <,,0> -> 0 print the screen less status
jline and trailing blank text
plines

PRINT <,3,'-1'> -> 0 print the screen from line 3
jand less status line and
jtrailing blank lines

"VIPS.PRN' SOPEN 10 -> 0 jopena file called
;"VIPS.PRN", create it
yif necessary

10 = #536 idefault unit for
;PRCHAR, PRSTR and PRINT

PRINT -> 0 send a screen image less
#status line to file

PRINT <,1,24> -> 0 jsend a screen image to file
PRINT <'=1',1,24> ~> 0 jsend a screen image to printer
PRINT <'33",1,24> ~> 58 jnot such unit

‘1's #536 jrestoreprinteras default unit
PRINT <,1,24> -> 0 jsend a screen image to printer

4-94

VPL OPERATORS

Operator Name: PRSTR !
— 1

Class: Printing and sequential file handling

Arguments: L* RI R2

Result: Yes, exror code

Summary: str PRSTR) <un,type> -> exr,

‘This operator requires a left argument. It may have up to 2 right
arguments which, if given, must be numbers (non-integers rounded to
integers if necessary). This operator returns a result which is an
error code.

The left argument will be sent to the printer. If the left argument is
a null string then no characters will be sent to the printer (perhaps
the type may cause some CR-LFs to be sent).

‘The second right argument is the type. If the type is not given or
zero then nothing is appended to the string sent to the printer. If
the type is a positive number then that number of CR-LFs are appended
to the string sent to the printer. If the type is -1 then the left
argument is treated as a field and encoded into CBASIC format.

The first right argument is the unit number. If the first right
argument is not given then the value in system variable 536 is taken.
The initialized value in #536 is -1 which indicates the printer. To
redirect output fron the printer to a file it is necessary to open the
file with the SOPEN operator and then either put that unit number in
#536 or give it as the right first argument to this operator.

The result is an error code. If this operator is successful then zero
is returned. Tf output is going to a printer it is not envisaged that
an error report will be returned by the host operating system. Tf
however the output is being redirected to a file then sone error may be
returned.

Meaning

Open for read only
Unit number not in use (is the file open?)
Drive or device full

If the host operating system allows it then it may be possible to
redirect the printer output to another byte oriented device (e.g.
communication channel, ‘console, etc.).

4-95

VISTA PROGRAMMERS REFERENCE MANUAL VEL OPERATORS

Examples:

"this is a test' PRSTR -> 0 ;send that string to
jthe printer

"this is a test' PRSTR <,1> -> 0 jsend that string
jfollowed by a CR-LF
jto the printer

‘this is a test' PRSTR <,3> -> 0 jsend that string
jfollowed by 3 CR-LFs
jto the printer

'VIPS.PRN' SOPEN 10 -> 0 jopen a file called
;"VIPS.PRN", create it
jif necessary

10 = #536 jdefault unit for
;PRCHAR, PRSTR and PRINT

‘this is a test’ PRSTR ~» 0 ;send string to file
‘this is a test' PRSTR '-1' -> 0 send string to printer
‘this is a test’ PRSTR <,1> -> 0 jsend string to file

jfollowed by CR-LF

Examples of Datastar (CBASIC) format usage:

‘this is a test' PRSTR <,'-1'> -> 0 ;send string to file as is
‘this is,a test’ PRSIR <,'-1'> -> 0 jsend string to file

jsurrounded by double
jquotes (because of comma)

4-96

VISTA PROGRAMMERS REFERENCE MANUAL ‘VEL OPERATORS

Class: Database

Arguments: I* RI* R2 R3

Result: Yes, exror code

Summary: str PUT <fids,In,type>-> err

N.B. This operator has an extension

This operator will place the given string into the field of current
document of the given list. The required field is addressed by its
field descriptor.

This operator requires a left argument. It can have three right
arguments. The first right argument is compulsory. If the second and
third arguments are given they must be numbers (non-integers are rounded
to integers if necessary). This operator retums a result which is an
error code. Zero indicates no error.

The left argument is the string to be stored in the database.

If the current document in the given occurrence list does not contain a
field with the given descriptor then a new field is created containing
the string with the indicated attributes.

If the current document in the given occurrence list does contain a
field with the given descriptor then that field is suitably modified to
contain the new string with the indicated attributes.

The database stores data as characters, while non-integers resulting
from arithmetic may be held in an internal form (double precision real
format). If the left argument is in such a form then it is converted
into a string with the number of decimals specified by system variable
540 before it is stored in the database.

To save space the database does not store trailing spaces given in the
left argument. Tt is possible to have leading spaces stored by placing
1 in system variable 539. The default is that leading spaces are not
stored.

The first right argument is the field descriptor.

The format of the field descriptor is as follows:

reg:nam.ext

where:
reg is register name (ignored by PUT)
nam is searchable part of name
ext is non-searchable part of name

4-97

VISTA PROGRAMMERS REFERENCE MANUAL VEL OPERATORS

‘The register name is not required by the PUT operator and will be
ignored. It may be useful to have the register name present from the
point of view of checking that the register name is the same as that
which the referenced occurrence list was generated by (i.e, a CREATE
or SEARCH operator). In the future the interpreter may check this.

The searchable part of the name must be given and be non-blank. The
field name "0" (zero) is reserved for a field containing the register
name of the document (put in there by the CREATE operator). Two
methods of field naming are supported. The first method is by number
in which the field name can contain up to three digits. The second
method is by a string which can be up to 31 characters long and mist
not start with a digit (or contain ":", ".", or space).

The extension is optional and can be up to 3 alphanumeric characters
long. If the field is defined with an extension (i.e. by this
operator) then the same extension must be given to the GET operator
which fetches it.

The second right argument is the list number. It should be in the
range 1 to 101 where 101 represents the current list. When the list
number is not given then the current occurrence list is assumed. This
operator will modify the current document in the given occurrence list.
If the given occurrence list is empty then this operator has no effect.

The third right argument is the type. This is for defining whether or
not the field is key or non-key.

type attribute

positive store field as a key field
0 store field as it was previously stored. If the field

did not previously exist then store it as a non-key
negative store field as a non-key field

If type is not given then type=0 is assumed.

‘The result is an error code. If no error occurs then zero is returned,
Some possible error codes are:

exror code

-997 drive full
negative low level error in database system

0 no error
43 trying to put data in a deleted document
47 database not open

Examples:

CREATE —'NAMREG! yoreate a new document in a
jregister called 'NAMREG'
;The new document will be
}referenced via the current
joccurrence list

4-98

‘VISTA PROGRAMMERS REFERENCE MANUAL ‘VEL OPERATORS

"Peter' PUT <'namreg:fname'> > 0

This will put the string 'Peter' into the field called "fname! (no

extension) of the newly created document in the current occurrence list

associated with the register 'NAMREG'. ‘Peter’ will be stored as a

non-key. The result indicates the operator has been successful.

‘smith' PUT <'namreg:surname',,1> -> 0

This will put the string 'Smith' into the field called 'sumame' (no
extension) of the newly created document in the current occurrence list
associated with the register 'NAMREG'. ‘Smith’ will be stored as a
key. The result indicates the operator has been successful.

'1,86m' PUT <'namreg:class.a',,1> -> 0

‘This will put the string '1.86m' into the field called 'class.a' ("a"
is extension) of the newly created document in the current occurrence
list associated with the register 'NAMREG'. '1.86m' will be stored as
a key. The result indicates the operator has been successful.

"64 Kg' PUT <'namreg:class.b',,1> -> 0

‘This will put the string '64 Kg' into the field called 'class.b' ("b"
is extension) of the newly created document in the current occurrence
list associated with the register 'NAMREG'. '64 Kg' will be stored as
a key. The result indicates the operator has been successful.

Now it may be realized that the surname wasn't 'Smith' but 'Smithe’.
This can be altered as follows:

‘smithe' PUT <'namregisurname'> -> 0

Note that 'Smithe' will also be stored as a key because the previous

contents of the field 'surname' was a key (type defaults to 0 when not

given).

Advanced example:

When storing fields on the screen the PUTDOC operator can be used to
store a whole document at once. It may be instructive to look at the

tion performed by PUTDOC in terms of the more primitive (but
flexible) PUT operator.

a new document is CREATEd or an old one is obtained (by SEARCH)
7(the current occurrence list is assumed)

1=#201
DO WHILE (#201 LE #447) 78.v.447 - fields in schema

##201 PUT <#201,,#201 FSTAT>
ENDDO

499

This loops for each field on the screen. The field number is used as
the field name (no extension). The key/non-key attribute for the field
in question is obtained by the FSTAT operator which retums a positive
number if the screen field was defined as a key and a negative number
if the screen field was defined as a non-key.

Extension: Storing multiple keys

When a string is being stored in a key field then a transformed version
of that string is stored in the database dictionary. This
transformation involves removing all spaces and folding to upper case.
This transformed version of the original string is sometimes referred
to as a "key".

In the normal case one key is entered into the database dictionary for
each string stored in a key field. It is possible to have the string
stored as several keys by separating the component parts by semicolons.
Semicolon is the default key delimiter and can be changed by writing to
system variable 526,

N.B. Regardless of what happens in the database dictionary the
untransformed string (less trailing spaces- and perhaps leading spaces
also) is stored in the document.

N.B. If a string (or component string) is blank or null then no entry
is made in the database dictionary associated with it.

Example:

‘tall;blue eyes! PUT <'namregiclass.c',,1> -> 0

This would store 'tall;blue eyes' in the current document in the
current occurrence list. The register name associated with the current
occurrence list should be 'namreg' and the field it will be stored in
is called 'class.c' (where "c" is the extension),
Since this string is to be stored in a key field and since it contains
one semicolon separating two non-blank component. strings then two keys
are stored in the database dictionary. In their transformed state they
would be 'TALL' and 'BLUEEYES'. ‘The point of doing this is that the
following 4 searches would find this document.

‘tall' SEARCH "namreg:class' => 14
"blue eyes" SEARCH “namregiclass' -> +
'talljblue eyes' SEARCH ‘namreg:class' > 1+
‘blue eyes;tall' SEARCH "namreg:class" => 14

4-100

VISTA PROGRAMMERS REFERENCE MANUAL VPL OPERATORS

Operator Name: . PUTDOC

Class: Database

Arguments: L oR

Result: Yes, error code

Summary: dn PUIDOC type -> exr

Description:

This operator will place the contents of the screen fields into the current document in the given list.

This operator may have a left argument. If so, it must be a number. This operator may have a right argument. If so, it mst be a number. Non-integers are rounded to integers if necessary. This operator returns a result which is an error code.
The left argument is a list number. It should be in the range 1 to 101. Occurrence list 101 is referred to as the current occurrence list and is assumed if no left argument is given.
The right argument is the type. If given, it should either be 0 or 1. If the right argument is not given then a type of zero is assumed, If the type is zero then all screen fields are stored in the indicated document. If the type is 1 then only non-blank screen fields are stored in the indicated document.
The result of this operator is an error code. If the operation is
successful then zero is returned. If there is no database open then
error code 47 is returned. If the current document in the indicated
list has been deleted then error code 43 is returned. If the given
list contains no documents then error code 45 is returned.

The action of this operator is to get the screen fields from the current schematic and store them in the current document of the given cccurrence list. The system notes whether each screen field was defined as a key or non-key and stores the contents of that screen field accordingly.

This operator can be used both for storing new documents and editing old ones. If it is used to store new documents it should follow a CREATE operator. In this case the setting of type would make no difference, If it is used to edit an old document this operator would normally follow a SEARCH operator. The significance of the type in this case is that setting it to 1 will leave fields in the old document corresponding to blank screen fields unaltered.

4-101

VISTA PROGRAMMERS REFERENCE MANUAL ‘VEL OPERATORS

Currently the fields in a document are named. Hach field in a document
can have up to a 31 character field name and optionally a three letter
extension, The field name in a document can start with either an
alphabetic character or a numeric character (i.e. 0 to 9). Screen
fields, however, are numbered in sequence by the SKJEMA program which
is used to create schematics. In the future it will be possible to
optionally associate a field name and an extension to a screen field.
To distinguish the compulsory screen field number fron the optional
screen field name, the latter must not commence with a numeric
character (i.e. 0 to 9).

In the future this operator will check if a screen field has a name
(and optionally an extension) associated with it and if so this screen
field name will become the name of the field in the document. If a
screen field does not have a name associated with it then its field
number will become the name of the field in the document.

Examples:

CREATE
PUTDOC

This sequence will create a new document in the current occurrence list
with the register name the same as the name of the schematic on the
screen (which is indicated by the contents of system variable 403). The
PUTDOC operator will store the contents of the screen fields currently
in the schematic in the newly created document.

#1 SEARCH 1 = #201
IF #201 EQ 1 THEN

PUTDOC 1
ENDIF

This would search for documents with the same register name as the name
of the current schematic which in field 1 had the same contents as
screen field 1. If one such document is found then the non-blank
screen fields are edited into that document.

The "advanced example" in the description of the PUT operator shows
PUTDOC (type 0) defined in terms of more primitive operators. It my
also be instructive to read the GETDOC operator description.

4-102

VISTA PROGRAMMERS REFERENCE MANUAL ‘VEL OPERATORS

Operator Names REGISTER 1
wesen eee 1

Class: Database

Arguments: i

Result: Yes

Sumary: mum REGISTER ~> reg

Description

This operator returns the register names defined in the currently open
database file,

This operator requires a left argument. It must be a number,
non-integers will be rounded to integers if necessary. This operator
returns a result.

Inside the database a table is kept of all the register names currently
in use in the system. There must be one or more documents stored
associated with a register name for that name to be considered "in
use", This table is ordered alphabetically. The left argument of this
operator should be a positive integer. The number 1 will return the
first (in sorted sequence) register name in use. The number 2 will
return the second, etc. When there are no more register names in use a
null string is retumed as the result, A null string has a length of
zero.

If no database file is currently open then all left arguments will
cause a null string to be retumed by this operator.

Examples:

1 REGISTER = -> = ‘'ADDREG'
2 REGISTER -> 'NAMES'
3 REGISTER -> ‘REPORT’
4 REGISTER -> 'ZOW'
5 REGISTER -> '! mo more register names in

juse
1 ‘REGISTER -> ‘ADDREG' jas expected

DBCLOSE 7close current database
1 REGISTER > gnow null string

4-103

VISTA PROGRAMMERS REFERENCE MANUAL VEL OPERATORS

Operator Name: RETURN

Class: Special

Arguments:

Result: No

Summary: RETURN

NAB. This operator can only be used within a procedure

Description:

This operator terminates VPL execution within a procedure and returns
to whatever invoked the procedure.

This operator requires no arguments. This operator does not retum a
result.

This operator can appear anywhere in a procedure. If the VPL
interpreter executes this operator then no further interpretation will
be done inside the current procedure. Control will be passed back to
whatever invoked the procedure. Procedure calls can be nested and if
necessary can be recursive, i.e, a procedure may directly or indirectly
call itself. A procedure does not have to have a RETURN operator on its
last line but it is recommended. If a procedure does not have RETURN
operator at its end then any attempt to fetch the line after the last
will have the same effect as a RETURN operator.

The RETURN operator must only be used within a procedure. If it is
used elsewhere a "** VPL ** (Internal error) Stack unexpectably empty"
error message will appear on the status line.

Example:

7Assume this is a procedure to get the fourth root of a number
;
; %1 QUADROOT = -> 20

;I£ the left argument is negative or not numeric then zero will
jbe returned as the result and a message put on the status line

-B. Also need to check if left argument is given.

:
Oo = 90
IF @1 EXIST THEN #80 far so good
ELSE

RETURN yelse return with result 0
ENDIF

IF $1 NNUMERIC THEN
"QUADROOT needs a numeric left argument’ Si
RETURN

ENDIF

4-104

VISTA PROGRAMMERS REFERENCE MANUAL VPL OPERATORS

Ir $1 LT 0 THEN
"Can't get QUADROOT of negative number" SW
RETURN

ENDIF

IF #1 EQ 0 THEY
RETURN jalready have answer

ENDIF

%1 SOR SOR = 80
RETURN yend of procedure

The second last line takes advantage of the left-to-right nature of
PL. Notice there is no hierachy between operators.
That expression could be written as follows:

SOR(#1) 201 juse short hidden field for temporary
SOR(#201) = 20 } storage

There would be little difference execution speed.
Which approach is easiest to comprehend?

4-105

‘VISTA PROGRAMMERS REFERENCE MANUAL ‘VEL OPERATORS

Operator Name: SA 1
~ 1

Class: Status line

Arguments: L RI R2 R3 R4 RS R6 RF RB RI

Result: No

Sumary: afl SA <af2,af3,af4,a£5,a£6,a£7 ,af8,af9,af10>

Description:

This operator defines the attributes of each status line field. This
operator is passive. The status line fields are set to these
attributes after the next SL operator.

This operator can have a left argument. If so, it must be a mmber.
This operator can have up to 9 right arguments. Any right arguments
that are defined must be numbers. This operator does not return a
result.

All numbers given to this operator are rounded to integers, Only
numbers between 0 and 63 inclusive are meaningful.

The left argument represents the attribute of the first status line
field (addressed as 901). The first right argument represents the
attribute of the second status line field (addressed as 902). The
second right argument represents the attribute of the third status line
field (addressed as 903), and so on. Tf an argument is not given then
an attribute of zero is assumed. Up to 10 status line fields are
allowed.

A suggested mapping of available attribute numbers to actual screen
attributes (half/full intensity, reverse video, flashing, underline,
colours, etc) is given in Appendix C.

Examples:

#521 -> 80 ythus 79 usable characters on status
jline

10 SP 30 jeither field 901 will have 10 chars
jand field 902 will have 30 chars or
jthey will have the proportion 1:3

'N’ sv 7#901 will only accepts digits and
jspace while #902 will accept anything

0 SA 7 7#901 will have attribute 0 while #902
7will have attribute 7

2 SL ynow redefine the status line to have
jtwo fields of length 10 and 30 chars.
jrespectively

4-106

VISTA PROGRAMMERS REFERENCE MANUAL VPL OPERATORS

Operator Names

Class: Special

Arguments: L Ri R2 R3 R4 R5 R6 R7 RB RI

Result: No

Summary: Icl SCHDEF <1ce2,1¢3,nt1,nbl,aact ,abcl ,ac2,ac3,atbl>

Description:

This operator will dynamically make a new schematic on the screen.
This operator may have a left argument. If given it must be a number. This operator may have up to 9 right arguments. Any given arguments must be numbers, Non-integers are rounded to integers if necessary. Negative numbers should not be given as arguments to this operator.
This operator returns a result.

‘The current schematic on the screen will be replaced by a schematic which is made up almost completely of fields (i.e. very few text positions). The only text positions will be after the "c3" colum and will vary depending on how many "ci" columns can fit across one line. The number of data fields defined and their attributes in the "dynamic" schematic will depend on the arguments to this operator. The verification of the fields in the "dynamic" schematic is space (i.e. key and accept everything).

The status line is unaffected by this operator. The "dynamic!
schematic will take all lines available to a schematic which will be the number in system variable 520 less one (for the status line). The
“dynamic" schematic is made up of a given number of "top lines" and a
given number of "bottom" lines, Each top and bottom line is one field.
The remaining lines in the middle of the screen are divided into
colums, Each colum on each line is a field. Each line in the middle of the screen is made up of a left hand field ("c2") and a right hand
field ("c3") and repeated "main" fields ("cl"), See the accompanying
diagram,

The meaning of the arguments and their default values follows:

Argument Meaning Default:

left arg. length of cl (main colums) 11
1st right length of c2 (left hand side) 3
2nd right length of c3 (right hand side) 0
3rd right number of top lines 1
4th right number of bottom lines 0
Sth right attibute a for cl (odd numbers on each line) 4
6th right attibute b for cl (even numbers on each line) 5
7th right attibute for c2 7
8th right attibute for c3 7
9th right attibute for top and bottom lines 0

4-107

VISTA PROGRAMMERS REFERENCE MANUAL VEL OPERATORS

The following is an example of how a screen would be divided up by this
operator. Note that the "ct" fields could also appear more or less
than three time across a line.

The result of this operator is the number of "ci" colums.

System variable 447 which reflects the number of fields on the
schematic will be modified by this operator to return the number of
fields in the "dynamic" schematic. ‘The current screen field (s.v. 448)
will not be modified by this operator. The "dynamic" schematic has no
processes related to it so those processes related to the previous
schematic on the screen are still in force. Those system variables
related to the next, current, and previous schematic name (s.v. 431,
403, and 511 respectively) are not modified by this operator.

This operator can be used for "spread-sheet" like displays. ‘The ATTR
operator can be used to override attributes while the INPUT operator
can be used to override field verification (and accept keyboard input
into fields).

4-108

‘VISTA PROGRAMMERS REFERENCE MANUAL ‘VEL OPERATORS

Operator Name: 1
!

Class: Control

Arguments: L RI R2

Result: Yes, error code

Sumary: sch SCHEMA <grp,fil> -> err

Description

This operator will place the selected user or system schematic on the
screen immediately.

This operator may have a left argument. This operator may have two
right arguments, This operator returns a result which is an error
code.

The left argument is a schematic name. User schematics must commence
with an alphabetical character while system schematics must be
decodable as numbers (i.e. the name must be made up of digits). If the
given name is a null string, or a string full of spaces, or an invalid
system schematic number then system schematic 1 will be placed on the
screen.

If the left argument is not given then the schematic name in system
variable 431 is assumed. If the left argument is given then it
replaces the previous contents of system variable 431. If this
operation is successful then the previous schematic name is placed in system variable 511, If this operation is successful then the new
schematic name is placed in system variable 403.

The first right argument is the schematic group name. It is only
significant for getting user schematics. If not given then the group name in system variable 502 is used. If a new group name is given then
this new name is placed in system variable 502.

The second right argument is the schematic file name. It is only
significant for getting user schematics. If not given then the file name in system variable 501 is used. Tf a new file name is given then
this new name is placed in system variable 501.

The result of this operator is an error code. If the operation is
successful then zero is returned. The most common error codes for this
operator are listed below:

Meaning

Operation successful
No such user schematic file name
No such user schematic group name
No such user schematic name
Schematic file in wrong format
The schematic file is corrupted

4-109

User schematics are created and edited by the module called SKJEMA.
System schematics are created and edited by the module called VISETUP.
System schematics are referenced by number. A system file can hold up
to 49 system schematics which are numbered 1 to 49,

The action of this operator is to place a new schematic on the screen.

If this action is successful, zero is returned as the result and the
following occur (as well as those things already noted above):
The current screen field system variable (448) is set to 1. The
previous screen field system variable (510) is set to zero. Note that
there is no control transfer thus execution continues on the line where
the SCHEMA operator was found. Care should be taken when this operator
is executed from within a schematic related process (i.e. BEGIN, END, or
a screen field related process). In this case VPL's fetch of the next
line to be interpreted will be in the context of the new schematic.

If this action is unsuccessful the appropriate non-zero error code is
returned. ‘The context is not changed. If the SCHEMA operator was
executed from within a schematic related process then execution can
continue as if nothing happened. Note that s.v. 431 will reflect the
schematic name which was unable to be placed on the screen, System
variable 403 (current schematic) and 511 (previous schematic) will
remain unaltered.

Schematics which were defined by the SKJEMA module to be smaller than
the current screen will be centered by this operator.

In the current implementations of VISTA16 the file name extension
",vUS' is assumed in the host operating systems.

Summary of system variables related to the SCHEMA operator:

System variable Comments

Always reflects the name of the schematic
currently on the screen,

511 Always reflects the name of the schematic
previous on the screen.

431 Tf this operator had a left argument then it
is recorded here.

502 If this operator had a first right argument
(group name) and if the schematic name is one of a
user schematic then the group name is recorded here.

501 Ié this operator had a second right argument
(file name) and if the schematic name is one of a
user schematic then the file name is recorded here.

448 If the operation is successful then current screen
field is set to 1.

510 If the operation is successful then previous screen
field is set to zero.

4-110

VISTA PROGRAMMERS REFERENCE MANUAL VEL OPERATORS

Examples:

IF SCHEMA EQ 0 THEN GoTo '-1' ENDIF

This is a safe way of using the SCHEMA operator, The whole conditional
clause is on 1 VPL line so that it will not be affected by the
successful execution of the SCHEMA operator regardless of where this
line is executed from (this could not be done from inside a procedure
since the GOTO operator is illegal there). In this case the schematic
name currently in #431 will be used. If it indicates a user schematic
then the group name and file name in #502 and #501 respectively are
used. If successful the following will happen:

#40300 => #511
#4310 => #403
1 -> #448
0 -> #510

13 SCHEMA -> 0 ibring up system schematic 13

"13" SCHEMA -> 0 yocing up system schematic 13

0 SCHEMA -> 0 jillegal system schematic number so
ysystem schematic 1 is brought up

‘test’ SCHEMA -> 27 #Mo such user schematic name in the
jourrent user schematic group and
jfile

4111

VISTA PROGRAMMERS REVERENCE MANUAL VPL OPERATORS

Operator Name: SCLOSE 1
aon 1

Class: Printing and sequential file handling

Arguments: R

Result: Yes, error code

Summary: SCOSE wm > oerr

This operator will close a sequential file.

This operator may have a right argument. If so, it must be a number.
This operator returns a result which is an error code.

The right argument is the unit number. If not given it is assumed to
be 10.

The result is an error code. If the file is successfully closed then
zero is returned, The most common error codes are listed below:

Exror code meaning

0 No errors
53 TLlegal unit number
58 Sequential file not open

When the VIPS is terminated (e.g. by using 8 MODE) all open files will
be closed. It is recomended that the application designer close
sequential files after use rather than waiting until the termination of
VIPS. Most operating systems limit the number of files that can be
concurrently open.

Examples:

"TEXT.TMP’ SOPEN 18 -> 0 jfile successfully opened
ywith unit number 18

250 SREAD <18, ,#201> jread 250 bytes

SCLOSE 18 -> 0 ;file successfully closed

SCLOSE 18 -> 58 jfile no longer open

4-112

VISTA PROGRAMMERS REFERENCE MANUAL VPL OPERATORS

Class: Printing and sequential file handling

Arguments: si

Result: Yes, error code

Sumary: str SDELETE > err

This operator requires a left argument. This operator returns a result
which is an error code..

The left argument should be the file name to be deleted. ‘The format of
the file name depends on the host operating system. The left argument
cannot exceed 255 characters in length.

The result is an error code. If the file is successfully deleted then
zero is returned. The most commonly returned error codes are:

Meaning

No error
File not found

Examples:

“TEXT.TMP' SDELETE -> 0 ysuccessfully deleted

"TEXT.TMP' SDELETE -> 52 file not found

4-113

‘VISTA PROGRAMMERS REFERENCE MANUAL VEL OPERATORS

Operator Name: 4
1

Class: Database

Arguments: L RI* R2_ (R3 see extensions)

Result: Yes

Summary: sp SEARCH <fds,1n> - mum

N.B. This operator has extensions

Description:

This operator will apply the given search profile to a database
register and produce a list of all docunents satisfying that profile.
The produced list is called an "occurrence list".

This operator may have a left argument. ‘The first right argument must
be given. If a second right argument is given it mist be a number;
non-integers axe rounded to integers if necessary. This operator
returns a result.

The left argument is the search profile. A search profile is
essentially a string which some documents in the database are thought
to contain within a given field.

A search profile can only be used to match a given field that was
stored as a key field.

A search profile can only be used for "exact" matches. The term
"exact" is written thus because the search profile is transformed
before it is applied to the database's dictionary. This transformation
comprises of folding the search profile to upper case and removing all
spaces. This transformation makes an “exact” match a little more
likely! A key stored as 'Peter' will match with ' Peter’, 'PETER',
"pETER', 'p ET eR ', and of course ‘Peter’.

‘The SEARCH operator is the fundamental (and only) operator for
retrieving information from the database. It is a fast operation.
Even though search time increases with the nutber of documents in a
register (and the database as a whole) the increase is much better than
linear. For matches on non-key fields and for inexact matches the
SELECT operator can be used. ‘The SELECT operator's speed is directly
proportional to the number of documents in its input list.

The first right argument is a field descriptor.

The format of the field descriptor is as follows:

reginam.ext
reg the is register name
nam the is searchable part of name
ext the is non-searchable part of name

(not required by SEARCH operator)

4-114

VISTA PROGRAMMERS REFERENCE MANUAL VEL OPERATORS

The register name should be given to the SEARCH operator. It must be
followed by a semicolon. When no field name is given then the search
profile is ignored and an occurrence list of all documents in this
register is generated. If no register name is given but a field name
is given then the current schematic name in system variable 403 is
assumed as the register name. This latter technique is not
recommended.

The searchable part of the name may be given. If so it will be the
field name in the given register in which the search profile is to be
applied. Two methods of field naming are supported. The first method
is by number in which the field name can contain up to three digits.
The second method is by a string which can be up to 31 characters long
and must not start with a digit (or contain ":", ".", or space).

The extension will be ignored if given.

The second right argument is the list number. If it is given then it
should be a number in the range 1 to 101. The current occurrence list
is list 101, If the second right argument is not given then the
current occurrence list is assumed. In all cases the contents of the
given occurrence list before the execution of the SEARCH operator will
be replaced by the occurrence list generated by the search. Tf the
SEARCH operator does not find any documents then the given occurrence
list will be empty.

The result of this operator is the number of documents found.

It should be noted that blank or null strings are never stored in the
database's dictionary, therefore a blank search profile (e.g. ' ") will
always find zero documents.

If no documents exist in the register being searched then 1 is put in
system variable 523. If documents exist in the register being
then 0 is put in #523.

If a database is not open when this operator is executed then zero will
be returmed and system variable 523 set to 1.

Examples:

SEARCH 'client:" -> 47
#523 > 0

This will find all documents associated with the register name ‘client’
and generate a list which replaces the previous contents of the current.
occurrence list. The result of this operator indicates 47 documents
have been found in that register. The contents of system variable 523
indicates that documents where found in the register being searched.

4115,

"smith' SEARCH 'client:name" > 2

This will find the all documents in the 'client' register that have
‘smith' (or 'SMITH' or 'SMI th', etc) in a key field called ‘name’.
The newly generated list will replace the previous contents of the
current occurrence list. The result of this operator indicates 2
documents have been found.

‘smith’ SEARCH <'client:name',37> -> 2

This example is similar to that above. This time the generated
occurrence list replaces the previous contents of occurrence list 37.

Extension 1: Third right argument

As a convenience this operator can have a third right argument. This
third right argument is a register name. The register name must not be
followed by ":".

sp SEARCH <fds,In,reg > mum

During the programmatic use of the SEARCH operator it may be easier to
put the register name as the third right argument rather than
concatenate it with a semicolon and the field name (using the JOIN
operator). Tf a third right argument is given and the field descriptor
also contains a register name then the third right argument takes
precedence,

Extension 2: Multiple keys

‘The left argument may be a search profile containing several keys
separated by semicolons. In a similar fashion the field descriptor can
have several field names separated by semicolons. Successful documents
must have all the component keys and corresponding field names matching
(implied LAND operation between component lists). If the number of
component keys exceeds the number of field names then the last field
name is considered to be repeated as often as required.

The case of blank or null component keys is treated differently in this
extension, A blank or null component key (and its corresponding field
name) is ignored,

The key delimiter can be altered by placing a character in system
variable 526. This system variable is initialized to semicolon.
Regardless of the character in #526 multiple field names are always
separated by semicolons.

Example:

‘smith;33' SEARCH 'client:name;age" > 1

This will search in the register 'client' for 'Smith' in a key field
called 'name' AND '33' in a field called ‘age’. The result indicates
that 1 such document has been found.

4-116

Extension 3: No occurrence list generated =-1

I no output occurrence list is required then a list number (second
‘ight argument) of -1 can be given. None of the existing occurrence
lists will be effected. The number of documents satisfying the search
profile will still be returned as the result of this operator.

Extension 4: Number of occurrences In=-2

When a document is stored it is possible to store multiple keys in one
field. This is usually done by placing semicolon between the required
keys in the string to be stored in a key field. In the most
complicated case it would be possible to store the same key twice in
the same field of one document. In this case a SEARCH for that key
will produce an occurrence list with that document entered only once,
and the result reflects the number of documents in the generated
occurrence list.

Ié the list number (second right argument) is given as -2 then no
occurrence list is generated and the result is the number of times the
given key “occurs" in the given field name in the given register.

4-117

Class: Database

Arguments: L RI R2* R3 R4 RS RE R7 RB RI RIO

Result: Yes

Summary: Ini SELECT <1no,fds1,str1,typel,fds2,...,type3> -> num

Description:

This operator will allow documents from one list to be selected on up to
three criteria and the successful documents placed in a list.

This operator may have a left argument. If it does it must be a
number; non-integers are rounded to integers if necessary. ‘This
operator can have up to 10 right arguments. The second right argument
must be given. If given the first, fourth, seventh, and tenth right
arguments must be numbers; non-integers are rounded to integers if
necessary. This operator returns a result.

The left argument is the input list number. If given it should be a
number in the range 1 to 101, The current occurrence list is referred
to as list 101. T£ no left argument is given the current occurrence
list is assumed. The input occurrence list will be scanned in a linear
fashion by the SELECT operator. Therefore the speed of this operator
is proportional to the length of the input occurrence list.

The first right argument is the output occurrence list number. If
given it should be in the range 1 to 101. The current occurrence list
is referred to as list 101. If the first right argument is not given
the current occurrence list is assumed. The output occurrence list
will contain the "successfull" documents found in the input list which
meet the criterion. The input and output occurrence lists can have the
same number (or both default to the current list) if necessary. The
previous contents of the output occurrence list are replaced.

The second, third, and fourth right arguments are associated with the
first select criterion, while the fifth, sixth, and seventh right
arguments are associated with the second select criterion, leaving the
eighth, ninth, and tenth right arguments to be associated with the
third select criterion. Only the first select criterion is required. Of
the right arguments associated with it only the second right argument
(field descriptor) must be given. Tf more than one select criterion is
given then a document must meet all the given criteria to be
"successful".

The three arguments associated with each select criterion are called the
“field descriptor", "match string", and "type". Their right argument
position is shown in the following table:

4-118

Right argument pos. 1! field decriptor ! match string 1 type
= eanssensssan| sennee:
1st select criterion ! 2

2nd select criterion ! 5
3rd select criterion | 8

The format of the field descriptor is as follows:

reginam.ext

where:
reg is register name (ignored by SELECT)
nam is searchable part of name
ext is non-searchable part of name The register name is not required by the SELECT operator and will be

ignored. It may be useful to have the register name present from the
point of view of checking that the register name is the same as that
which the input occurrence list was generated by. In the future the
interpreter may check this.

The searchable part of the name must be given and be non-blank. The
field name "0" (zero) is reserved for a field containing the register
name of the document (put in there by the CREATE operator). ‘Two
methods of field naming are supported. ‘The first method is by number
in which the field name can contain up to three digits. The second
method is by a string which can be up to 31 characters long and mst
not start with a digit (or contain ":", ".", or space).

The extension is optional and can be up to 3 alphanumeric characters
long. If the field was defined with an extension, then the same
extension must be given to the SELECT operator which references that
field.

The “match string" is used to check the given field of the documents
in the input list. ‘The "match string" will have leading, trailing and
repeated imbedded spaces (delimiters) removed before the comparison is
performed.

The "type" controls the comparison between the "match string" and the
given field of the documents in the input list. Currently 12 types of
comparison are allowed and they are listed below:

4119

VISTA PROGRAMMERS REFERENCE MANUAL VPL OPERATORS

type meaning

Less than (document field < match string)
5 Greater than or equal (document field > match string)
4 Excluded wild select (use of ? and *)
3 Wild select (use of ? and *)
2 Not equal
1 Equal
0 Equal (default)
-1 Equal after fold to upper case
-2 Not equal after fold to upper case
3 Wild select after fold to upper case
~4 Excluded wild select after fold to upper case
5 Greater than or equal after fold to upper case
6 Less than after fold to upper case

The fields obtained from the documents have leading, trailing, and
repeated imbedded spaces (delimiters) removed before comparison with
the "match string". If the type is negative then both the field and
the "match string" are folded to upper case before the comparison is
made. Tf the given field does not exist in a document then it is
treated as a null string.

‘The “equal” and the "not equal" types should be obvious.

The "wild select" takes all characters literally except for "2" and a
A "2" in the "match string" will match any character in the corresponding
position in the field. ‘The corresponding field position mst have a
character in that position. Thus a “match string" of "2" will not match
with a field which is a null string (no characters).
A "*" in the "match string" will match with a variable number (0 to
255) of characters from the corresponding position in the field. If
the "match string" has a character after the "*" then character for
character matching will recommence when that character is detected in
the field.
If the "match string" does not contain either "*" or "?" then "wild
select" has the same effect as "equal".

The "excluded wild select" is the logical complement of "wild select",
‘Thus a document which is "unsuccessful" in a “wild select" will be
"successful" in an "excluded wild select".
If the "match string" does not contain either "*" or "?" then "excluded
wild select" has the same effect as "not equal”.

The "greater than or equal select" will compare the field in the
document with the "match string" and judge a document as "successful"
if it is the same or greater. The comparison is performed left to
right and spaces are added so both strings are equal length. The
character ordering is assumed to be ASCII. For example, if the
"match string" is "B" and the field is "CHARLES" then this criterion
would be successful.

4-120

VISTA PROGRAMMERS REFERENCE MANUAL VPL OPERATORS

The "less than select" will compare the field in the document with the
“match string" and judge a document as “successful” if it is the
smaller. The comparison is performed left to right and spaces are
added so both strings are equal length. The character ordering is
assumed to be ASCII. For example, if the "match string" is "D' and the
field is "Charles" then this criterion would be successful.

Delimiters other than space (the default) can be used. This can be
done by writing the new delimiters to system variables 524 and 525,
After the removal of redundant delimiters for the purposes of the
comparison all delimiters are transfomed to spaces (the lowest numbered
printable character in the ASCII sequence). Note that the database
system never stores trailing spaces and the storage of leading spaces
is conditional on system variable 539 (default is storage without
leading spaces).

After the above-mentioned transformation to remove redundant delimiters
no more than 80 characters are significant in the comparison for each
criterion,

Examples:

SEARCH "namreg:" > 47

Make a list (current list) of all documents in register 'namreg'. The
result indicates 47 documents have been found.

SELECT <13,'surname'> > 2

This would scan the 47 documents in the current list and form a new
list (list 13) of documents which have nothing in the field ‘surname’.
Since "match string" is not given it defaults to '' (a null string) and
since type is not given it defaults to "equal".
N.B. This SELECT could not be performed by the SEARCH operator even if
‘surname’ was a key field because it is not possible to search for a
null string.

SELECT <13,'surname','?2?2?',3> > 7

This would scan the 47 documents in the current list and form a new
list (list 13) of documents which have 4 letters (no more, no less) in
the field 'surname'.

SELECT <13,'surname','Smith','-5'> > 9

This would scan the 47 documents in the current list and form a new
list (list 13) of documents which, after folding to upper case, are
greater than or equal to 'SMITH'. Thus surnames such as ‘Thomas’,
‘Smithe' and 'Smith' would be "successful",

4-121

VISTA PROGRAMMERS REFERENCE MANUAL VEL OPERATORS

SELECT <,'surname','Smith','-6','surname','Jones','-5'> -> 15

This would scan the 47 documents in the current list and form a new
list (current list) of documents which, after folding to upper case,
are less than 'SMITH' AND greater than or equal to 'JONES'. Both parts
of the two criteria have to be true for the document to be considered
successful".

N.B. The the current list would contain 15 documents after this SELECT
operator.

SELECT <7,'surname','*er','-4'> => 14

This would scan the 15 documents in the current list and form a new
list (list 7) of documents which, after folding to upper case,
do not end with 'ER'.

4-122

‘VISTA PROGRAMMERS REFERENCE MANUAL VEL OPERATORS

described here: SNE

Class: string

Arguments: L* RI* R2

Result: Yes, condition code

‘Summary: str1 SEQ <str2,type> > ec
stri SNE <str2,type> = -> cc

Description:

‘These operators will compare two strings and retum a condition code to
indicate whether they are equal or unequal.

These operators must have a left argument. These operators mst have a
first right argument. If these operators have a second right argument
then it mst be a number. ‘These operators return a result.

The left argument and the first right argument of these operators are
the strings to be compared. The second right argument is the type of
comparison to be performed.

The SEQ operator will return the true condition code (1) if the two
strings are equal and the false condition code otherwise (0).

The SNE operator will return the false condition code (0) if the two
strings are equal and the true condition code otherwise (1).

The valid types and their meaning is listed below:

type meaning

(not given) Fold both strings to upper case and remove leading,
trailing, and repeated imbedded spaces (delimiters).

1 Remove all spaces (delimiters) fron both strings.
2 Remove leading, trailing, and repeated imbedded spaces

(delimiters)
3 Compare strings as is

" Fold both strings to upper case and remove all spaces
(delimiters)

12 Fold both strings to upper case and remove leading,
trailing, and repeated imbedded spaces (delimiters).
This is the same as the default (type not given).

13 Fold both strings to upper case.

4123

The type 3 compare is literally exact. Both strings must be the same
length and be character for character identical. The type 13 compare
is similar but is performed after both strings are folded to upper
case,

The type 1 compare will remove all spaces (delimiters) from both
strings before the comparison, The type 11 compare is similar but is
performed after both strings are folded to upper case.

The type 2 compare will remove leading, trailing, and repeated imbedded
spaces (delimiters) fron both strings before the comparison. ‘he type
12 compare is similar but is performed after both strings are folded to
upper case. Experience has shown that this last type of comparison is
the most commonly used so it has been made the default.

Delimiters other than space (the default) can be used. This can be
done by writing the new delimiters to system variables 524 and 525.

Examples:

‘John Smith ' SEQ "JOHN SMITH" -> 1 ;true
‘John Smith ' SNE ‘JOHN SMITH' = -> «0s false

"John Smith ' SEQ ‘JOHNSMITH' -> 0 ;false

The space between the "John" and the "Smith" is significant when type
is not given (same as type=12)

‘John Smith ' SEQ <‘JohnSmith',2> -> 1 ;true

Now spaces are not significant at all.

‘John Smith ' SEQ <'John Smith ',3> -> 1 ;true

An exact match has been called for and the strings are identical.

#524
#525

john; ;smith ' SEQ ‘John Smith! > 1 ;true

Both strings are folded to upper case while leading, trailing, and
repeated imbedded delimiters are removed before the comparison, Note
that the two delimiters are taken to be equal to one another.

4-124

VISTA PROGRAMMERS REFERENCE MANUAL VEL OPERATORS

‘Return to “open" system? (y/N)' = #1
IF 2 INPU? <,1> SEQ THEN

0 MODE
ENDIF

This would place the question in the first screen field then wait for
input in the second field. Only one character will be accepted and if
it is "Y" or "y" then control will return to the super begin process of
mode 0, This is a way for a "closed" application to re-enter the
'open"" system,

4-125

VISTA PROGRAMMERS REFERENCE MANUAL VPL OPERATORS

Class: Special

Arguments: L* RI R2 R3 R4 R5 R6 R7 RB

Result: No

Summary: num SHELP <sch1 ,Sch2, sch3,sch4, sch5 ,sch6, sch7 ,hgrp>

Description:

This operator will define the schematics which are to be used for the
help structure, It will either disable the help structure or enable it
by nominating which schematic will be displayed when the F2 key is
pressed. ‘he help structure can be driven by the HELP operator.

This operator requires a left argument which must be a number. This
operator can have up to 8 right arguments. This operator does not
return a result.

The left argument should be a number (rounded to an integer if
necessary) in the range 0 to 7. Zero indicates the help structure is
to be disabled. When the help structure is disabled pressing the F2
key will pass codes to the system in the same way that the other
function keys do.

If the left argument is 1 to 7 then the help structure is enabled. ‘The
right argument corresponding to the number (e.g. 1 -> first right
argument, 2-> second right argument, etc.) will be the schematic which
will be placed on the screen when the F2 key is pressed.

The first seven right arguments are schematic names, Schematic names
can be up to 20 characters long. User schematic names must not start
with digits. System schematics can be nominated as help schematics by
writing their numbers. Any of the first seven right arguments which
are not defined will cause the bell to ring if they are selected in a
help structure.

The eighth right argument is the schematic group from which user
schematics are to be fetched while in the help structure, If this

it is not given then the schematic group name in system variable
502 at the time of execution of this operator is assumed. Thus all
user schematics in a help structure must belong to the same schematic
group.

The user schematic file name at the time when this operator is executed
(current contents of system variable 501) will be assumed within the
help structure. Thus all user schematics in a help structure must
belong to the same schematic file.

4-126

‘VISTA PROGRAMMERS REFERENCE MANUAL VEL OPERATORS

Help Structure

This refers to the mechanism that allows the current state to be
"interrupted" and a schematic to be brought up on the screen with the
option of more schematics being selected. Pressing the space bar (or
¥8) will restore the screen to the state just prior to the "interrupt".
Once the help structure is enabled (positive left argument to the
SHELP operator) then pressing the F2 key will cause the nominated
schematic to be placed on the screen. If the nominated schematic
cannot be found then the bell is rung and the help structure is
terminated.

Once the help structure has been successfully invoked then the
following keys are active:

Active keys in
help structure action

1 get Ist help schematic (1st right arg. of SHELP)
2 get 2nd help schematic (2nd right arg. of SHELP)
3 get 3rd help schematic (3rd right arg. of SHELP)
4 get 4th help schematic (4th right arg,
5
6
7

. Of SHELP)
get 5th help schematic (5th right arg. of SHELP)
get 6th help schematic (6th right arg. of SHELP)
get 7th help schematic (7th right arg. of SHELP)

Space return to the pre-help structure state
F8 return to the pre-help structure state
F2 get help schematic nominated by SHELP (left arg.)

If the schematic corresponding to one of the numbers 1-7 cannot be
found then the bell is rung and the help structure is terminated.

The help schematics may have less rows and colums than the screen they
are overwriting. In this case the first schematic of the help
structure (when F2 is pressed) is placed in the furthest corner fran
the cursor position. Thus if the help schematic is relatively small
(e.g. less than one quarter of the area of the schematic it is
covering) then the section of the original schematic around the cursor
will not be overwritten,

Tf more help schematics are selected in the help structure then they
use the same comer as the original help schematic as a reference.
It should be noted that when "small" help schematics are being made by
the SKJEMA program then they should be written in the top left hand
section. SKJEMA decides the number of lines and colums in a schematic
in order to include all significant positions (including data fields).
This "decision" by SKJEMA effects the amount of the original schematic
overwritten by a help schematic,

4127

VISTA PROGRAMMERS REFERENCE MANUAL, ‘VEL OPERATORS:

Examples:

3. SHELP = <21,22,23,24, 'SORT_EXP', ‘ERRORS', "BYE", "HELP" >
#501 ->- "DocToRS'

‘This usage will define seven schematics for the help structure. System
schematics 21, 22, 23, 24 are nominated as help schematics 1, 2, 3, and
4 respectively. User schematics 'SORT_EXP’, 'ERRORS', and ‘BYE’ in the
schematic group 'HELP' in the schematic file "poctors* are nominated as
help schematics 5, 6, and 7 respectively.

The help structure is enabled and when F2 function key is pressed
system schematic 23 (3rd right argument) will be placed on the screen
in the furthest comer from the cursor. After this pressing the
numbers 1 to 7 would bring up the corresponding schematics nominated in
the right argument of the SHELP operator.

For example, pressing 7 would attempt to bring up a schematic called
"BYE' in the group 'HELP' from the schematic file 'DOCTORS'.

Once the help structure has been entered (by pressing F2) then pressing
space or F8 will return to the "pre-help structure" state,

0 SHELP

Disable the help structure. Pressing F2 will place -2 in system
variable 509 and 2 in system variable 453 (i.e. same action as other
function keys).

6 SHELP ¢21,22,23,24,'SORT_EXP','ERRORS', 'BYE', 'HELP'>

Re-enable the help structure, This is similar to the first example but
the schematic called 'ERRORS' in group 'HELP' in schematic file
"DOCTORS' will be brought up when the F2 key is pressed to enter the
help structure.

4-128

Class: Status line

Arguments: it R

Result: No

Summary: mum SL type

This operator enforces the new status line fields with proportions,
attributes, and field verification as defined by previous SP, SA, and
SV operators.

This operator must have a left argument which must be a number. This
operator can have a right argunent. If a right argument is defined it
must be a number. ‘This operator does not return a result.

Numbers given to this operator are rounded to integers.

The left argument is the number of status line fields to be defined.
It should be a non-negative number. It should not exceed 10 which is
the maximum number of fields allowed on the status line,

The right argument is the type. If given, it should be 0 or 1. If it
is not given then a type of 0 is assumed. If the type is zero then the
numbers given to the most recent SP operator are taken as field lengths
for the given number of status line fields. If the type is 1 then the
numbers given to the most recent SP operator are taken as the relative
proportions that the given number of status line fields will assume.

When this operator is executed the previous contents of the status line
are replaced by a blank line which may or may not have attributes set
in some positions (depending on the most recent SA operator).

Due to problems with screens scrolling, the last position on the status
line is not available. Thus if there is 80 columns on the screen the
maximum length of the status line is 79 characters.

Examples:

#521 ~> 80 jthus 79 usable characters on status
jline

10 SP 30 jeither field 901 will have 10 chars
jand field 902 will have 30 chars or
jthey will have the proportion 1:3

'N' sv ;#901 will only accepts digits and
jspace while #902 will accept anything

0 SA 7 #901 will have attribute 0 while #902
jwill have attribute 7

4-129

901 FLENG
902 FLENG
903 FLENG
#903 EXIST

10
30

jnow redefine the status line to have
ytwo fields of length 10 and 30 chars.
jrespectively

#status line field 903 (and 904 to 910)
jdoesn't exist

jmow redefine the status line to have
;two fields of length 19 and 59 chars.
jrespectively (relative proportioning)

7status line field 903 (and 904 to 910)
7doesn't exist

4-130

VISTA PROGRAMMERS REFERENCE MANUAL VPL OPERATORS

Operator Name: SOPEN :

Class: Printing and sequential file handling

Arguments: I* RI R2

Result: Yes, error code .
Summary: str SOPEN <un,type> -> err

Description:

This operator will open a sequential file. If the operating system treats all files in a similar fashion then all types of files may be accessed by this operator. Some operating systems will allow byte-oriented devices to be accessed as files in which case they may
also be accessed by this operator.

This operator assumes that the host operating system will allow a file
to be viewed as a stream of characters.

This operator requires a left argument. This operator may have a first
and second right argument and if so it (they) must be a number(s).
This operator returns a result which is an error code.

The left argument is a filename. No extension is assumed so that the
file name must be given in its entirety. The VPL interpreter will
allow a string to be up to 255 characters long so that is the maximum
length of a file name that can be passed through to the operating
system,

The first right argument is the unit number. If an non-integer is given then it is rounded.to an integer. If the unit number is given it | must be 10 or greater. If the first right argument is not given then | the unit number 10 is assumed. If the SOPEN operator is successful then the given unit number can be used with the other operators in this class (i.e. SCLOSE, SREAD, SPOS, PRINT, PRCHAR, and PRSTR). The mumber of units that can be opened simultaneously is operating system dependent

‘The second right argument is the type. If the second right argument is not given then a type of zero is assumed. The following table lists
the valid types:

type meaning

0 Open for read/write. Create new file if one of this
name does not already exist. Position at first
character in file.

1 Open for read only. File must exist. Position at
first character in file.

2 Open for write only. Create new file if one of this name does not already exist. Position after the last
byte in file.

4131

VISTA PROGRAMMERS REFERENCE MANUAL VPL OPERATORS

The positioning of the byte (character) pointer is meant to be useful
and can easily be modified by the SPOS operator.

This operator returns a result which is an error code. A result of
zero indicates no error. A list of the more commonly encountered
errors follows:

error number meaning

52 file not found (only when type is 1)
53 illegal unit number (must be 10 or greater)
56 unit number already in use
57 too many files open (OS dependent)

Examples:

'VIPS.LST' SOPEN 0 ;this will open the file
;'VIPS.LST' and associate it
swith unit 10

'VIPS1,.LST' SOPEN ->56 junit 10 already in use
NB. 'VIPS.LST' still open

jassume some intervening code

10 ->0 send an image of the current
;schematic to 'VIPS.LST'

1 SPOS yposition to first byte of
;'VIPS.LsT!

SREAD <,10> -> #301 read the first line of
VIPS.LST' into #301

jassume line terminated by LF

SCLOSE > 0 7'VIPS.LST' is now closed

The above example has succeeded in reading the first line of the
schematic (regardless or whether it is text or data fields) into long
hidden field 301.

"VIPS.LST' SOPEN <11,2> ->0 ;Re-open 'VIPS.LST" for
jwrite only and position to end
jof file.

SREAD <,11,#201> >
#201 —> 54 ;the file is open for write

jonly

PRINT 11 yappend the current schematic
yimage to the previous contents
of "VIPS.LST"

SCLOSE 11 recommendation: close a

4-132

‘VISTA PROGRAMMERS REFERENCE MANUAL VPL OPERATORS

Operator Name: 1
!

Class: Database

Arguments: L RI*R2 R3 R4 RS RE R7 RB RI RIO

Result: Yes, error code

Summary: In SORT <fds1,typel,fids2,...fds5,type5> -> err

Description:

This operator will sort an occurrence list. Up to five fields may be
sorted at one time. If more are needed the SORT may be invoked several
times, each time using the result of the previous SORT as input. Sorting
can be done on a character or numeric interpretation of the data in an
ascending or descending order.

The documents themselves are not physically re-ordered but the
occurrence list which is a list of pointers to documents is re-ordered.

This operator may have a left argument. If it does it must be a
number; non-integers are rounded to integers if necessary. This
operator can have up to 10 right arguments. ‘The first right argument
must be given. If given the 2nd, 4th, 6th, 8th, and 10th right
arguments must be numbers; non-integers are rounded to integers if
necessary. This operator retums a result.

The left argument is the list number. If given it should be a number
in the range 1 to 101, ‘The current occurrence list is referred to as
list 101, If no left argument is given the current occurrence list is
assumed. At the completion of the SORT operator the newly re-ordered
occurrence list will replace the original occurrence list in the given
List number.

The meaning of the the ten right arguments is shown in the following
table:

Right argument pos. ! field decriptor ! type

 ist sort field ! 1 2 1

2nd sort field ! 3 ! 4 !
3rd sort field 1 5 t 6 t
4th sort field 1 7 t 8 t
Sth sort field 1 9 1 10 1

The 2nd sort field will only be taken into account if two or more
documents are judged to be equal on the Ist sort field. The 3rd sort
field will only be taken into account if two or more documents are
judged to be equal on the 1st and 2nd sort field. The 4th and Sth sort
fields are treated in a similar way. It can be seen that each of the
five field descriptors has its om type so that each field can be
compared independently of the type of other fields.

4-133

VISTA PROGRAMMERS REFERENCE MANUAL VPL OPERATORS

The field descriptors have the following form:

reginam,ext

where:
reg is register name (ignored by SORT)
nam is searchable part of name
ext is non-searchable part of name

The register name is not required by the SORT operator and will be
ignored, Tt may be useful to have the register name present from the
point of view of checking that the register name is the same as that
which the given occurrence list was generated by (i.e. a SEARCH
operator). In the future the interpreter may check this.

The searchable part of the name must be given and be non-blank. ‘The
field name "0" (zero) is reserved for a field containing the register
name of the document (put in there by the CREATE operator). ‘Two
methods of field naming are supported. The first method is by number
in which the field name can contain up to three digits. The second
method is by a string which can be up to 31 characters long and must
not start with a digit (or contain ":", ".", or space).

The extension is optional and can be up to 3 alphanumeric characters
long. If the field was defined with an extension (i.e. by a PUT
operator) then the same extension must be given to the SORT operator
which references that field.

The "type" controls the comparison between the documents in the given
list. Currently 6 different types of comparison are allowed and they
are listed below:

type meaning

3 Numeric sort in ascending order
2 Unfolded character sort in ascending order
1 Characters folded to upper case then ascending sort
0 Characters folded to upper case then ascending sort
-1 Characters folded to upper case then descending dort
-2 Unfolded character sort in descending order
3 Numeric sort in descending order

All fields obtained from the documents have leading, trailing, and
repeated imbedded spaces (delimiters) removed before comparison.
From the point of view of sorting, all delimiters are treated as
spaces. Delimiters other than space can be used by writing them to
system variables 524 and 525.

If the type is 1 or -1 then all fields are folded to upper case before
they are compared,

4-134

VISTA PROGRAMMERS REFERENCE MANUAL VPL OPERATORS

Zé the type is 3 or -3 then all fields will be interpreted as numbers.
If a field is non-numeric then an attempt is made to remove all
non-numeric characters from the field. Numeric characters are taken as
0123456789. - . If what is left cannot be interpreted as a
number (e.g. two "."s) then both "-"s and "."s will be ignored leaving
just the ten digits (or a null string) which mst be a valid nunber.
I£ the given field does not exist in a document then it is treated as a
null string and numerically as zero.
Once a number is obtained from a field it is converted into a double
real internally so that it should be nearly impossible to have a nunber
which is too big. The accuracy of comparison will depend on the
underlying hardware but could be in the order of 15 digits and thus
more than sufficient for most. applications.

For character sorts (types 1, -1, 2, and -2) the ASCII sequence is
assumed. In this sequence the space is the lowest while "2" is close
to the highest. If a field is a null string then it can be considered
to contain one space and thus would be appear at the beginning of an
ascending sort. In character sorts after leading, trailing, and
repeated imbedded delimiters are removed only the first 32 characters
of each field is significant in the comparison for the sort.

The result is an error code. Zero indicates no error.

It is not possible to interrupt a sort (or any other operator whose
execution is in progress).

If the given occurrence list is empty or only contains one document
then no sort is performed.

The limits on the sort are implementation dependent. On the smallest
configuration in use at time of development this would mean a five
field sort overflowing at around 390000 documents. Such an error would
by indicated by '** VPL ** Error during sort' on the status line.

The occurrence list which is generated by a sort must not be used as
input to the LAND, LOR, LXOR, or LNOT operators.

A point of interest about sorted occurrence list is that if the LDOC
operator is used to extract each document from the list and these
extracted documents are accumulated in another list with the LOR
operator, then the pre-sorted list will be obtained.

The occurrence list which is generated by a sort may be used by another
SORT operator or a SELECT operator.

Examples:

SEARCH ‘namreg:' > 470

Make a list (current list) of all document in register 'namreg'. The
result indicates 470 documents have been found.

4-135

VISTA PROGRAMMERS REFERENCE MANUAL VPL OPERATORS

SORT ‘namreg:name" > 0

This would sort the current occurrence list (containing 470 documents)
using the field 'name'. This would be a character sort in ascending
order after fields were folded to upper case. The resulting occurrence
list would be the current occurrence list (still containing 470
documents). The result of this operator indicates that no error was
detected.

SORT <'namreginame',1,'namreg:zip',3> -> 0

This sort would be similar to the previous example except that those
documents with 'name' fields that contained the same names would then
be sorted numerically on a field called 'zip' in ascending order. The
result of this operator indicates that no error was detected.

SORT <"namreg:name',,'namregizip',3> -> 0

This sort is identical to the previous example.

To show the system is still alive in long sort (1000+ documents) it is
possible to get some progress digits printed out on the status line,

To get this effect the list number (left argument) should be negated
(e.g. -101 for the current list).

Numbers will be output on the status line during the sort. Their
meaning is related to the internal sorting algorithm:

Digit output during sort Meaning

1 Sort filled internal buffer, store
information awaiting merge.
Commence short merge
Commence medium merge
Commence long merge B

O
N

These numbers being written out on the status line may cause the screen
to scroll (after 80 digits- 10000+ documents) but the screen will be
re-written at the end of the sort.

4-136

VISTA PROGRAMMERS REFERENCE MANUAL ‘VEL OPERATORS

Operator Name: sp !
- !

Class: Status line

Arguments: L Ri R2 R3 R4 R5 R6 RV RB RI

Result: No

Summary: p£l SP <p£2,p£3,p£4,pf5,pf6,pf6,p£7,p£8,p£9,p£10>

Description:

This operator defines the relative proportions or length in characters of each status line field. This operator is passive. The status line fields are set to these proportions/lengths after the next SL operator.
This operator can have a left argument. If so, it must be a number. This operator can have up to 9 right arguments. Any right arguments that are defined mist be numbers. This operator does not return a
result.

All numbers given to this operator are rounded to integers. Thus
relative proportions between status line fields should be expressed in whole numbers (integers). Negative numbers should not be given.
The left argument represents the first status line field (addressed as
901). The first right argument represents the second status line field
(addressed as 902). ‘he second right argument represents the third
status line field (addressed as 903), and soon, If an argument is not
given then the number zero is assumed. Up to 10 status line fields are
allowed.

Whether the numbers given by this operator are relative proportions or
field lengths depends on the right argument of the SL operator which enforces the new status line fields. If the SL operator does not have a right argument or it is given as 0 then the numbers given by this operator are taken to be field lengths in characters. If the SL
operator has a right argument which is 1 then the numbers given by this operator are taken to be relative proportions.

Tf field lengths have been chosen and if the sum of the character
positions to be defined exceeds the usable number of positions on the status line then relative proportioning is used.
If this operator is given no arguments (or all given are zero) then the
left argument (corresponding to #901) is taken to be 1.

Due to problems with screens scrolling, the last position on the status
line is not available. Thus if there is 80 colums on the screen the
maximum length of the status line is 79 characters.

4137

;thus 79 usable characters on status
pline
yeither field 901 will have 10 chars
jand field 902 will have 30 chars or
they will have the proportion 1:3

7#901 will only accepts digits and
espace while #902 will accept anything

7#901 will have attribute 0 while #902
7will have attribute 7

jnow redefine the status line to have
jtwo fields of length 10 and 30 chars.
jrespectively

jmow redefine the status line to have
jtwo fields of length 20 and 59 chars.
jrespectively (relative proportioning)

;status line field 903 (and 904 to 910)
jdoesn't exist

4133

VISTA PROGRAMMERS REVERENCE MANUAL VPL OPERATORS

Operator Name: - sos !
— 1

Class: Printing and sequential file handling

Arguments: L RI RZ

Result: Yes

Sumary: pos SPOS <un, type» -> pos

This operator will re-position the byte pointer in a sequential file.

A sequential file can be viewed as a stream of bytes. when a file is
open for read/write (SOPEN type=0) the byte pointer is set to the first
byte in the file. Reading the whole file with a series of SREAD
operators will automatically move the byte pointer away fran the
beginning and towards the end of file.

The byte pointer is origin one so that 1 is the first position of the
file. Reading and writing to the file commences with the byte position
pointed to by the byte pointer. At the end of the operation the byte
pointer will point to the position after the last byte read or written.

This operator may have a left argument. Tf so, it must be a mumber.
This operator may have two right arguments. If the first right
argument is given it mst be a number. If the second right argument is
given it must be a number. All number input to this operator will be
rounded to integers if necessary. This operator returns a result.

The left argument is the position to move the byte pointer to. If the
left argument is not given the byte pointer will not be moved by this
operator but the byte pointer position will be returned as the result.
If the left argument is given it can either be an absolute position or
a position relative to the current byte pointer position. This depends
on the second right argument which is the type. If it is not given or
zero then absolute positioning is assumed. If the type is given as 1
then relative positioning is assumed.

In the case of absolute positioning positive numbers will move the byte
pointer as directed. Positive numbers which exceed the number of bytes
in the file will move the byte pointer to the position after the last
byte in the file. If the position is given as zero then the
pointer will be moved to the position after the last byte of the file.
Negative numbers will position the byte pointer from the back of the
file. Thus -1 will be the position of the last byte in the file, -2
the second last, etc..

In the case of relative positioning positive numbers will move the byte
pointer towards the end of file, Negative numbers will move the byte
pointer towards the beginning of file. Zero will not move the byte
pointer. Positive numbers which are too large will move the byte
Pointer to the position after the last. Negative numbers which are too
large will position to the first byte of the file.

4-139

VISTA PROGRAMMERS REFERENCE MANUAL VPL OPERATORS

Summary of byte pointer positioning: (N.G.) —> Not Given)

Value of "pos" type meaning

(N.G.) (N.G.) return current byte pointer position
(N.G.) 0 return current byte pointer position
+ 0 or (N.G.) byte pointer to absolute position
- 0 or (N.G.) byte pointer to absolute position

addressed from the last byte position
0 or (N.G.) byte pointer to position after last
1 move byte pointer towards EOF
1 move byte pointer towards SOP
1 return current byte pointer position

The first right argument is the unit mumber. If not given it is
assumed to be 10, ‘This is the unit number used to open the file (see SOPEN), or perhaps may be pre-defined by the host operating system and
indicate a device.

The second right argument is the type. If not given it is assumed to be zero. Its action is to modify the interpretation of the left argument ("pos") and is explained above,
The result of this operator is the byte pointer position after ve-positioning (if any) has taken place. If this operator cannot be
performed because of some file problem (e.g. file not open) then zero
is returned as the result.

Examples:

“TEXT.IMP' SOPEN 15 -> 0 jfile opened successfully
SPOS 15 -> 1 jpointing at first byte

0 SPOS 15 -> 345 jfile is 344 bytes long
1 SPOS 15 -> 1 jre-position to first byte

22 SREAD <15,,#201> jread first 22 bytes
-> “This should be the fir’

SPOS 15 ~> 23

SREAD <15,10,#201> yread rest of first line
-> ‘st line '

SPOS 15 -> 32

‘-8' SPOS <15,1> -> 24 move pointer back 8 bytes

SREAD <15,10,#201> 7re-read rest of first line
— 'tline '

"4" spos. 15 ~> 344 ;position to last byte

SCLOSE 15 -> 0 jfile closed successfully

4-140

Class: Arithmetic

Arguments: LR (one or the other, right takes precedence)

Result: Yes

Summary? num sR > num
SOR num > num
sR (num) > num

N.B. These are all equivalent

Description:

This operator will take the square root of its argument.

This operator requires an argument. It can be either a left argument
or a right argument. If both a left argument and a right argument are
given then the right argument is used, The argument must be a number.
This operator returns a result.

The argument must be a non-negative number. Negative numbers cause a
"4k VBL ** Attempt to divide by zero" error. ‘The square root of the
given argument will be returned as the result.

Examples:

9 SR > 3

SOR (9) > 3

2 SR > 1,4142135623731

2 sor 49 => 7

4-141

Description:

This operator will return the contents of the status line as its
result.

This operator requires no arguments. This operator returns a result.

The contents of the status line will be concatenated into one string
and returned as the result. Thus it makes no difference if the status
line is made up of several fields (by SI: operator), Trailing spaces
are not returned in the result.

This operator will in no way effect what is on the status line or the
relative dispositions of its component fields.

Examples:
2 1 ;proportion status line fields

72 to
0 sa 0 jdefault attribute on both
ttsyort jdefault verification on both
2 1 jdefine 2 fields, relative

3 proportioning
"Is this a test?’ = #901;
902 INPUT ; assume "Yes" CR entered

Status line: 11s this a test?
SR -> ‘Is this a test? Yes!

4-142

VISTA PROGRAMMERS REFERENCE MANUAL VPL OPERATORS

Operator Name: ‘SREAD 1
— 1

Class: Printing and sequential file handling

Arguments: L RI R2 R3

Result: Yes

Summary: mum SREAD <un,match,err> -> str

Description:

This operator will read from a sequential file. If the host operating
system is flexible enough then byte oriented devices may also be read
fron.

The file is viewed as a stream of bytes from which a given number can be fetched, or all those up to and including a given character. In the
below explanation the terms "byte" and "character" are interchangeable.

This operator may have a left argument. If so, it must be a number. This operator may have up to three right arguments. If the first right argument is given it must be a number. If the second right argument is given it must be a number. If the third right argument is given it must be writable (i.e. a screen field, a status line field, a hidden field, a writable system variable etc.). If the third right argument is given then an error code is written to it. This operator returns a result.

The left argument is the number of bytes to be read from the file (device). If not given it is assumed to be 1. If the second right argument ("match") is not given or zero then an attempt is made to read the given number of bytes. If that number of bytes is successfully read then an error code of zero is placed in the third right argument and the bytes read are retumed as the result of this operator. The number of bytes to be read cannot be less than zero or greater than 255.
Tt should be noted that the resultant string from this operator may contain any character represented by a number fron 0 to 255. For screen handling purposes, VISTA interprets numbers according to an 8
bit ASCII convention. . If control characters or unmapped characters in this sequence are displayed on the screen they will appear as spaces (or some special character as defined for that terminal).
The first right argument is the unit number. If not given it is assumed to be 10. This is the unit number used to open the file (see SOPEN), or perhaps may be pre-defined by the host operating system and
indicate a device.

The second right argument is the match character ("match"). The match character is expressed as a number 1 to 255 (N.B. the ASCIT null character (value 0) cannot be matched), or alternatively as a number -1 to -255.

4-143

VISTA PROGRAMMERS REFERENCE MANUAL ‘VEL OPERATORS

When the "match" value is positive then characters will be read until
and including the character whose value corresponds to the "match"
value is found.

When the "match" value is negative then characters will be read until
and including the character whose value corresponds to the magnitude of
the "match" value is found, Control characters within the returned
string (values of 31 or less) are converted to spaces (value 32).

If a match is not found using the given "match" value and no error is
detected (such as end of file) then 255 characters will be returned.
Below is a summary of values in the second right argument:

“match” value meaning

read number of bytes given by left argument
read nutber of bytes given by left argument
read bytes until this "match" detected

-1 to -255 read bytes until "match" of this magnitude,
control characters converted to spaces

256 (see extension)

The third right argument is for a variable in which the error code will
be placed. If the third right argument is not given then no error code
is given. If given, the variable must be writable (similar to the right
argument of an assignment). If the variable is not writable then a "**
VeL ** Invalid right argument to current operator" error is placed on
the status line. If no error is detected in the sequential file
operation then zero is placed "in" the third right argument. The most
comon errors are listed below:

Error code Meaning

No error
Illegal unit number for sequential file
Sequential file open for write only
Sequential file indicated is not open
End of file detected
(see extension)

In the case of error code 59 (EOF) then as many characters as possible
will be returned in the resultant string.

The result of this operator is a string which can vary in length
between 0 (null string) and 255 characters. This string may contain
ASCII control characters,

4-144

‘VISTA PROGRAMMERS REFERENCE MANUAL

Examples:

‘TEXT.IMP' SOPEN 19 -> 0 jopena file called "TExr.TP'
jand associate unit number 10
jposition to 1st byte in file

22 SREAD <19,,#201> jread first 22 bytes in file -> "This should be the fir! resultant string is 22 bytes
ilong #201 => 0 yindicates no errors

SREAD | <19/10,#201> = #301 read up to next LF ~> 'st line jlast character will be LF
jbut displayed as space

#301 PICK '-1' ASCII '-1' -> 10 ;last character is LF #301 PICK '-2' ASCII '-1' -» 13 ;second last could well be CR
SREAD <19,'-10',#201> = #301 ;xread up to next LF ~> "This should be the second line!
4301 PICK '-1' ASCII '-1' -> 32 ;last character is now space
#301 PICK '-2' ASCII '-1' -> 13 ;second last is now space

SREAD 19 > ‘pt jread one byte
SREAD 19 - ‘hi jxead one byte
SREAD 19 > tit jread one byte
SREAD 19 > jread one byte
SREAD 19 >t jread one byte

200 SREAD <19,,#201> jread 200 bytes
~> ‘is the last line '

#201 => 59 yend of file detected

23 SPOS 19 jposition to 23rd byte in file
SREAD |<19,10,#201> = #301 same effect as 2nd SREAD > ‘st Line 38ee above
#301 PICK '-1' ASCII '-1' -> 10
#301 PICK '-2' ASCII '-1' -> 13

SCLOSE 19 ~ i)

Extension:

This operator can support CBASIC fommat.
SREAD <un,256,err> = -> str

4-145

jlast character is LF
#second last could well be CR

#successful close of 'TEXT.TMP'

It the has the form:

VISTA PROGRAMMERS REFERENCE MANUAL VPL OPERATORS

This operator will read the next field in CBASIC format. The extra
double quotes added by CBASIC format will be stripped so that the
original contents of that field will be returned. If the field being
read is the last in a document (indicated by following CR LF) then the
special error code 62 is given. This error code indicates end of line
detected and is only given when "match"=256. If the field being read
is followed by the end of file then error code 59 is given.

This extension to the SREAD operator will decode fields (strings) which
have been encoded by the PRSTR operator (when its type=-1).

Example:

"TEST.CBA' SOPEN 19 -> 0 yopen a file
jassume it didn't exist

"Field 1' PRSTR <19,'-1'> my ' PRSTR 19 jN.B. output. commas
"Field,2' PRSTR <19,'-1'>
'f PRSTR 19
‘"Field"3' PRSTR = <19,'-1'>
" PRSTR <19,1> #N.B. add trailing CR

LP

This would be the code to write a single three field document in CBASIC
format to a file, For this example the contents of these fields are
stated explicitly. The contents of the file would be:

Field 1,"Field,2","Fiela'3" <CR> <LF> <BOF>

Now re-positioning to the beginning of the file:

1 SPOS 19

And now read back the document:

SREAD <19,256,#201> -> ‘Field 1°
0 #201. =>

SREAD <19,256,4201> -> ‘Field,2"
#201 -> 0
SREAD <19,256,#201> -> 'Field"3"
#201 -> 62 jindicates end of document

SREAD <19,256,#201> -> '' jnull string returned
#201 -> 59 yindicates end of file

SCLOSE 19 -> 0 ysuccessful close of file

4-146

VISTA PROGRAMMERS REFERENCE MANUAL VEL OPERATORS

Operator Name: :

Class: Database

Arguments: L RI RZ

Result: Yes, error code

Summary: In STEP relative ~ er
in STEP <absolute,1> ~> err

This operator will move the document pointer within the given
occurrence list.

This operator may have a left argument. It may also have two right
arguments (in a right argument list). All given arguments must be
numbers. The result of this operator is an error code. Zero indicates
no error.

In its simplest usage this operator is used without any arguments. In
this case the document pointer in the current occurrence list is moved
one position forward (i.e. towards the end of the list). If the
document pointer was previously at the last position in the list then
it is moved to the first position in the list. If the current
ocourrence list was empty then this operator would have no effect.

I£ another occurrence list (apart from the current list) is to have
its document pointer moved then it can be identified by number (1-100)
by giving a left argument.

If the first element of the right argument list is given then its is
taken as the number of places to move the document pointer in the given
occurrence list. This movement can be done two ways: the default is
relative to the current document position and the other way is
absolute. Tf absolute positioning is required then this would be
indicated by giving 1 as the second element of the right argunent list.

Relative positioning of the document pointer will mean that positive or
negative numbers (rounded to integers if necessary) can be given.
Positive numbers will move the document pointer towards the end of the
given list. Negative numbers will move the document pointer towards
the start of the given list. Offsets which are too large (or too
negative) will result in the document pointer being set to the first

te

Absolute positioning of the document pointer will mean that the
document pointer will be moved to the document whose number in the list
corresponds to the given number. The counting is origin one. The term
"rewind" a list is sometimes used for positioning the document pointer
to the first document in a list. If an absolute position of zero, a
negative number, or a number exceeding the number of documents in the
given list is given then the document pointer will be set to the first
Gocument.

4-147

VISTA PROGRAMMERS REFERENCE MANUAL VPL OPERATORS

If the STEP operator is successful then the number zero is returned
indicating no error. If no database was open when this operator was
used then 47 is retumed.

Examples:

STEP -> 0 step to next document in
;current occurrence list

101 «STEP «1 > (0 step to next document in
;current occurrence list

;(same action as first)

33 STEP <1,1> -> 0 jrewind list 33

33 STEP <45,1>-> 0 ;move document pointer to the
345th document in list 33

33 STEP '-4' ->» 0 jmove document pointer
backwards 4 positions

e. from 45th to 41st
jdocument

4-148

Operator Name: STRIP 1

Class: String

Arguments: Lk R

Result: Yes

Summary: str STRIP type > str

Description:

This operator will remove spaces (delimiters) fran a string.
This operator must be given a left argument. If a right argument is given it must be a number. This operator returns a result.
The left argument is taken to be the string from which the spaces
(delimiters) are to be stripped fron.

The right argument is the type. If it is not given or zero then
leading and trailing spaces (delimiters) are removed. If it is 1 then
leading spaces (delimiters) are removed. If it is 2 then trailing
spaces (delimiters) are removed. If it is 3 then all spaces
(delimiters) are removed. To summarize:

type meaning

Not given Remove leading and trailing spaces
0 Remove leading and trailing spaces
1 Remove leading spaces
2 Remove trailing spaces
3 Remove all spaces

The result of this operator is a string from which spaces (delimiters)
have been removed. .

The system is initialized so that spaces are the only characters considered to be delimiters. Other characters can be used as delimiters by writing to system variables 524 and 525. Only those characters lying in these two system variables are considered as delimiters.

It may be useful to strip all "redundant" spaces (delimiters). By
redundant is meant leading, trailing, and repeated embedded spaces
(delimiters). This cannot be done by this operator but can be done by
the PICKW operator. The PICKW operator should then have the form:

code action

str PICKY <,255> Remove leading, trailing, and repeated
embedded spaces

4149

VISTA PROGRAMMERS REFERENCE MANUAL

e
e
e

ep

»

STRIP
STRIP
STRIP
STRIP
STRIP

0
1
2
3

PICKW <,255>->

4-150

‘This is a test!
‘This is a test’
‘This is a test '
' This is a test’
'Thisisatest'

"This is a test"

VISTA PROGRAMMERS REFERENCE MANUAL ‘VEL OPERATORS

Operator Name: sv !

~ !

Class: Status line

Arguments: L Rl R2 R3 R4 RS R6 R7 RB RO

Result: No

Summary: vil SV <vE2,v£3,vE4,vE5,v£6,vE7,vE8,v£9,v£10>

Description:

This operator defines the verification of each status line field. This
operator is passive. The status line fields only receive this
verification after the next SL operator.

This operator can have a left argument. This operator can have up to 9
right arguments. This operator does not return a result.

The left argument represents the verification of first status line
field (addressed as 901), The first right argument represents the
verification of the second status line field (addressed as 902). The
second right argument represents the verification of the third status
line field (addressed as 903), and so on. If an argument is not given
or a null string then a space is assumed. If more than one character
is in the string the the first is taken, Up to 10 status line fields
are allowed.

The verification associated with a field are the characters which will
or will not be accepted into it from the keyboard. The verification is
encoded as a single character. Field and character verification codes
are outlined in the description of the operator FSTAT.

Bamples:

521 -> 80 jthus 79 usable characters on status
jline

10 SP 30 jeither field 901 will have 10 chars
jand field 902 will have 30 chars or
jthey will have the proportion 1:3

'n' sv 7 901 will only accepts digits and
yspace while 902 will accept anything

0 SA 7 7 901 will have attribute 0 while 902
7will have attribute 7

2 SL ynow redefine the status line to have
jtwo fields of length 10 and 30 chars.
jrespectively

4151

Class: Status line

Arguments: uw

Result: No

Summary: str sw

This operator will place the given left argument on the status line.
The previous contents of the status line will be replaced.

This operator mst be given a left argument. It returns no result.

The previous contents of the status line will be replaced. This
includes information set-up by previous status line operators such as
SA, SP, SV, and SL, After this operator is executed there is only one
status line field. That status line field (addressed as 901) takes up
all the available space on the status line. It has the zero attribute

associated with it and its verification is ' ' (all keys accepted).

Examples:

Status line !Is this a test? Yes
before:

"Then nothing is stored, enter data then press F1' SW

Status line
after:

#514 > 1 indicates only one field on status
;line now

901 FSTAT -> 32 indicates the above field has ' '
yas verification

' sw ;this will blank the status line

Status line
after:

In order to set attributes on the status line then the following
Sequence could be used:

‘This should be flashing on the status line’ SW
8 ATTR 901

4-152

VISTA PROGRAMMERS REFERENCE MANUAL

Operator Name:

Class: Control

Arguments: ua

Result: No

Sumary: IF cc THEN

See the IF operator description.

4-153

Class: Control

Arguments: LR (one or the other,

Result: No

Summary: Do WHE (cc

See the DO operator description.

4-154

right takes precedence)

VISTA PROGRAMMERS REFERENCE MANUAL

4-155

VISTA PROGRAMMERS REFERENCE MANUAL SYSTEM VARTABLES

System variable number: 401 Database file name

Access: Read only

Initialized value: "

Description:

This system variable contains the the current database file name or the
last opened database file name. Tt should be used in conjunction with
system variable 528 (database open flag) to find out if the given
database file name is currently opened.

This variable contains the database name as given to the DBOPEN
operator. If the system adds a default extension to this name then
this extension is not shown in this variable.

Related operators: DBOPEN
DBCLOSE

System variable number: 402 Terminal name

Access: Read only

Initialized value: current terminal type name

Description:

This system variable contains the current terminal type name.
This is selected by the VISUP or VISETUP module and cannot be
altered in the VIPS module.

VISTA PROGRAMMERS REFERENCE MANUAL

System variable number:

Access:

Initialized value:

Description:

SYSTEM VARIABLES

403 Current schematic name

This system variable contains the name of the schematic currently on
the screen. If a user schematic is on the screen then this name
starts with an alphabetic character. Tf a system schematic is on the
screen then this name will be decodable as a number.

A schematic name can be up to 20 characters long.

Related operators:

Related system variables:

CREATE
SEARCH
SCHEMA,

431 Next schematic name
511 Previous schematic name
501 User schematic file name
502 User schematic group name

System variable number:

Access:

Initialized value:

Description:

This system variable contains the current mode number.

Related operators:

Related system variables:

MODE

430 Next mode
505 Previous mode

‘VISTA PROGRAMMERS REFERENCE MANUAL SYSTEM VARTABLES

System variable number: 405 Calculation precision

Access: Read only

Initialized value: Host. system dependent

Description:

This system variable is purely informative, and contains the number of
digits accuracy which can be expected from calculations. On most host
systems this will be 15.

System variable number: 406 Division precision

Access: Read Write

Initialized value: 1

Description:

This system variable effects the way in which division is performed.
When it is 1 (its initiaized value) then normal division is performed.
When it is 0 then the result of the division is truncated towards zero
to an integer.

Related operators: /

VISTA PROGRAMMERS REFERENCE MANUAL SYSTEM VARIABLES

System variable number: 418 Type of execute

Access: Read Write

Initialized value: 1

Description:

This system variable effects the operation of the EXECUTE operator.
It can have three values: 0, 1, and 2. Their meanings are listed
below:

Meaning

EXECUTE operators can be nested (subroutine
action). Results are passed back.

1 the original EXECUTE operator is nested but other
EXECUTE operators called from the original chain to
one another. Result and/or pending operator are
passed back.

2 all EXECUTE operators chain to one another. When
the final EXECUTE operator is exhausted then the
interpreter continues on the line following the
original EXECUIE operator.

Related operators: EXECUTE

Related system variables: 504 Executing flag

System variable number: 430 Next mode

Access: Read Write

Initialized value: 0

Description:

This system variable contains the number of the next mde. It is used
when the MODE operator is not given any arguments. ‘The valid mode
numbers are 0 to 49.

Related operators: MODE

Related system variables: 404 Current mode
505 Previous mode

VISTA PROGRAMMERS REFERENCE MANUAL ‘SYSTEM VARIABLES

System variable number: Next schematic name

Access:

Initialized value: "

Desoripti

This system variable contains the name of the next schematic name. Tt is only used when the SCHEMA operator is not given a left argument.

A schematic name can be up to 20 characters long.

Related operators: SCHEMA

Related system variables: 403 Current schematic name
511 Previous schematic name
501 Current schematic file name
502 Current schematic group name

System variable number: 447 Fields in current schematic

Access: Read only

Initialized value: 0

Description:

This system variable is set by the SCHEMA and SCHDEF operators to show the number of screen fields in the current schematic.

Related operators: ‘SCHEMA
‘SCHDEF

Related system variables: 448 Current field number

ee

VISTA PROGRAMMERS REFERENCE MANUAL ‘SYSTEM VARIABLES

System variable number: 448 Current field number

Access: Read only

Initialized value: 1

This system . variable is set to the current field number. When the VPL
being executed is not directly related to the schematic it remains at
its last value. It is set to 1 by the SCHEMA operator. It is set to
1 when the SUPER BEGIN process is commenced.

Related operators: SCHEMA

Related system variables: 447 Fields in current schematic

System variable number: 450 Processing rules on/off

Access: Read Write

Initialized value: 1 (on)

Description:

This system variable controls the execution of VPL in screen related
field processes. When it has the value 1 then processes associated
with screen related fields are executed.

When it has the value 0 then processes associated with screen related
fields are not executed. In this case when control is passed to a
screen field then input will be requested after which control will pass
to the process indicated by the key that terminated the input (e.g. up
arrow =) previous field, down arrow -> next field, F8 -> END process,
etc.).

System variable number: Rounding precision for

Access:

Initialized value: 70

This system variable contains the value that will be used for rounding
of numbers given as the left argument of the assignment operator "=".
Strings (even if they represent numbers) will not be affected by this
variable. As well as rounding numbers, if necessary, trailing zeros
will be added to numbers.

This system variable can take the values 0 to 20 and 70. 70 is the
initialized value and means that rounding and the addition of extra
zeros to the right of the decimal point will not be performed. The
values 0 to 20 will perform rounding to the given number of decimals
and, if necessary, add trailing zeros.

Related operators: =

Related system variables: 522 Field justification
540 Rounding for non-integer

numbers converted to strings

System variable number: 453 Type of exit

Access: Read Write

Initialized value: 255

Description:

This system variable contains a code for the function key that caused
an exit. The function keys Fl to F8 are represented by the numbers 1
to 8 respectively. The value 255 is used to indicate no function key
has been pressed "recently". When the SUPER BEGIN process is commenced
this variable is reset to 255. ‘The user should only place the values 1
to 8, or 255 in this variable. If the EXIT operator is used without
any arguments then the value in this variable is assumed.

N.B. The codes for function keys in system variable 509 (last key
pressed) for Fl to F8 are -1 to -8 respectively (c.f. 1 to 8 for this
variable).

Related operators: EXIT

Related system variables: 509 Last key pressed

5-7

System variable number: 501 Current user schematic file

Access: Read Write

Initialized value: "

This system variable contains the name of the current user schematic
file. This variable is used when a second right argument is not
given to the SCHEMA operator.

If the system adds a default extension to this name then this extension
is not shown in this variable.

Related operators: SCHEMA

Related system variables: 403 Current schematic name
502 Current user schematic group

name

System variable number: 502 Current user schematic group
name

Access: Read Write

Initialized value: "

Description:

This system variable contains the name of the current user schematic
group. This variable is used when a first right argument is not given
‘to the SCHEMA operator.

User schematic group names can be up to 20 characters long.

Related operators: ‘SCHEMA

Related system variables: 403 Current schematic name
501 Current user schematic file

name

VISTA PROGRAMMERS REFERENCE MANUAL ‘SYSTEM VARIABLES

System variable number: 503 Current procedure name

Access: Read only

Initialized value: "

Description:

This system variable contains the name of the currently executing
procedure. If a procedure is not currently being executed then it
contains a null string.

Procedure names can be up to 20 characters long.

Related operators: LOOKPROC
RETURN

System variable number: 504 Executing flag

Access: Read only

Initialized value: 0

Description:

This system variable will indicate whether an EXECUTE operator is
currently interpreting its left argument.

Value in 504 Meaning

0 not within an EXECUTE operator
1 currently interpreting the left argument of an

EXECUTE operator.

Related operators: EXECUTE

Related system variables: 418 Type of execute

ho

System variable number: 505 Previous mode

Access: Read only

Initialized value: 0

Description:

This system variable contains the number of the previous mode. This
will be from 0 to 49.

Related operators: MODE

Related system variables: 404 Carrent mode
430 Next mode

System variable number: 506 Current line number in process

Access: Read only

Initialized value: not initialized

Description:

This system variable contains the line number of the process (procedure)
currently being interpreted. Lines are mumbers fron 1 to a maximum of

Related operators: BRANCH

Related system variables: 507 Code for type of process

System variable number: 507 Code for type of process

Access: Read only

Initialized value: not initialized

Description:

This system variable contains a value which indicates what type of
process is currently being interpreted.

Value in 507 Meaning

“1 BEGIN process being interpreted
-2 END process being interpreted
3 SUPER BEGIN process being interpreted
4 SUPER END process being interpreted
5 screen field related process

Related operators: coro
EXIT
MODE

Related system variables: 506 Current line number in process
448 Current screen field number
453 Type of exit
502 Current user schematic group

name

System variable number: 508 Carsor position in last
= departed field

Access: Read only

Initialized value: 1

Description:

This system variable contains the position of the cursor when it left
the last INPUT operator (or the implied INPUT operator when a screen
field has no associated active VPL code in its process).

The position is origin one and measured relative to the left hand end
of the screen or status line field in question.

Related operators: INPUT

5-11

‘VISTA PROGRAMMERS REFERENCE MANUAL ‘SYSTEM VARIABLES

System variable number: 509 Code for last key pressed

Access: Read Write

Initialized value: 32

Description:

This system variable contains a code (value) for the last key pressed. This will refer to the last keypress accepted by the previous INPUT
operator (or implied INPUT operator when a screen field has no active
VPL code associated with its process).

VIPS maintains a 256 character type-ahead buffer (on top of anything
provided by the host operating system). Characters waiting in this
buffer will not be reflected in this variable.

When a function key is pressed then system variable 453 is also e modified. Note that s.v, 453 gets a value from 1 to 8 corresponding to |
Fl to F8 (c.f, -1 to -8 with this system variable).

Value in 509 Corresponding key

8
“7
6
5
-4
-3
2
“1
1
3
4
5
6
7
8
9
10 Line delete
u Line insert
12 Line erase
13 R (Carriage Return)

32-126 Printable ASCII characters (internal coding)
127 Erase character

128-255 Printable ASCII characters (internal coding)

Related operators: INPUP

Related system variables: 453 Type of exit
508 Carsor position in last

departed field e

5.49

Previous field number System variable number:

Access: Read only

Initialized value: 0

Description:

This system variable contains the number of the previous screen field.
‘The SCHEMA operator resets this variable to zero.

Related operators: SCHEMA
fe esse}

Related system variables: 448 Current screen field
447 Number of screen fields

System variable number: 511 Previous schematic name

Access: Read only

Initialized value: "

Description:

This system variable contains the nane of the previous schematic.

A schematic name can be up to 20 characters long.

Related operators: SCHEMA

Related system variable: 403 Current schematic name
431 Next. schematic name
501 Current user schematic file

name
502 Current user schematic group

name

‘VISTA PROGRAMMERS REFERENCE MANUAL SYSTEM VARIABLES

System variable number: 512 Name of field associated with
= operator

Access: Read only

Initialized value: "

Description:

This system variable contains the field name associated with the line
in a document last accessed by the DOCDEOOD operator.

This variable can be up to 35 characters long (31 in field name, one
".", and 3 in extension).

This system variable is meant mainly for debugging. See the DOCDECOD
operator description for more details.

Related operators: DocDECOD

Related system variables: 513 Line number from GET,
DOCDEGOD operators

523 Last line in document from
DocbECOD

System variable number: 513 Line number and key information
from GET and DOCDEGOD operators

Access: Read only

Initialized value: 0

This system variable will return a positive number if the last field
accessed by either a GET or a DOCDEOOD operator was a key field. This
system variable will return a negative number if the last field
accessed by either a GET or a DOCDEOOD operator was a non-key field.

The absolute value of this variable contains the line number of the
field fetched by the most recent GET or DOCDECOD operator.

‘This system variable is meant mainly for debugging and is more fully
explained in the DOCDECOD operator description.

Related operators: DOCDECOD
GET

Related system variables: 512 Field name fran last
DOCDECOD operator

523 Last line in document from
DOCDECOD

VISTA PROGRAMMERS REFERENCE MANUAL SYSTEM VARTABLES

System variable number: 514 Number of fields on status
-- line

Access: Read only

Initialized value: 0

Description:

This system variable contains the number of fields currently defined
on the status line.

This can be modified by the SL operator from 0 up to 10 fields. The SW
operator causes 1 status line field to be defined so this variable
is then set to 1.

If this variable has the value 5 then this implies that #901, #902,
#903, #904, #905 exist while #906, #907, #908, #909, #910 do not exist.

Related operators: SL (SV SA SP)
SW

System variable number: 515 First use of SUPER BEGIN in
-—- this mode

Access: Read only

Initialized value: 1

This system variable contains a value to indicate whether this usage of
the SUPER BEGIN process is the first or otherwise in the current mode.
At the beginning of each mode (i.e. after a MODE operator) this
variable is set to 1. At the end of each SUPER BEGIN process it is
reset to 0, Thus if this variable is tested in the second usage of the
SUPER BEGIN process in a given mode it will be zero.

Related operators: MODE
Goro

Related system variables: 516 First mode after initialization

System variable number: 516 First mode after initialization

Access: Read only

Initialized value: 1

Description:

This system variable contains a number which indicates whether this is
the first process of the first mode after the commencement.
(initialization) of the VIPS module.

If the current process is the first process of the first mode then this
variable will be 1. If the current process is any other process than
the first process of the first mode then this variable will be 0.

In practice the SUPER BEGIN process in mode 0 is the only process that e
can be first in the first mode.

Related system variables: 516 First use of SUPER BEGIN in
this mode

Access? Read Write

Initialized value: "

Description:

This system variable contains a value which represents the "fuzz" for
arithmetic comparisons. ‘The "fuzz" is a scaled comparison tolerance
for deciding whether inexact representations of mimbers are "equal" or e@
otherwise.

The operators affected by this variable are BQ, NE, GE, GT, LE, and LT.
These operators are only affected when one or both of the numbers being
compared are non-integers. Integers have an exact representation
within the system.

This variable can take values from 0 up to the number of digits
precision claimed by the host system for double precision floating
point calculations (DOUBLE PRECISION in FORTRAN). The forma used to
calculate "equality" and examples are given in the description of the
BQ operator.

The user is warned that setting the "fuzz" too close to the claimed
number of digits precision runs the risk of having equalities fail
which should not fail. @

Related operators: BQ NE GE GT LE LT

‘VISTA PROGRAMMERS REFERENCE MANUAL SYSTEM VARIABLES

System variable number: 518 Length of long hidden fields

Access: Read only

Initialized value: 80

This system variable contains the number of character positions
available in a long hidden field.

This variable is read only but can be modified indirectly by changing
the number of long hidden fields (s.v. 519). 800 character positions
are available for the long hidden fields. ‘The default division is 10
fields of 80 characters each (numbered #301 to #310). No more then 20
long hidden field can be defined. Thus the length of long hidden
fields can vary between 40 characters long and 255 characters long.

Related system variables: 519 Number of long hidden fields

System variable number: 519 Number of long hidden fields

Access: Read Write

Initialized value: 10

Description:

This system variable contains the number of long hidden fields.

800 character positions are available for the long hidden fields. The default division is 10 fields of 80 characters each (numbered 4301 to
#310). No more then 20 long hidden fields can be defined. Thus the
length of long hidden fields can vary between 40 characters and 255
characters long.

The minimum number of long fields is 3 (of length 255 characters each)
and the maximum number is 20 (of length 40 characters each). Thus the
value written to this variable should be in that range.

When a value is written to this variable then the previous contents of
all long hidden fields is lost. They are all re-initialized to a null
string.

Related system variables: 518 Length of long hidden fields

5-17

‘VISTA PROGRAMMERS REFERENCE MANUAL SYSTEM VARIABLES

System variable number: 520 Number of Lines on screen

Access: Read only

Initialized value: As set in current terminal handler

Description

This system variable contains the number of lines on the screen being
used by VISTA. This is defined when a terminal handler is defined in
the VISETUP module. In some cases this will be all the available lines
on the screen but it may be less. The status line will take up one of
these lines (the lowest), leaving the rest for the schematic.

‘The SCHEMA operator "centres" schematics which have less lines than
indicated by this variable. The HELP operator places the help
schematic in the furthest corner (as defined by this variable and 521)
from the cursor position.

Related operators: SCHEMA
HELP

Related system variables: 521 Number of colums on screen

System variable number: 521 Number of columns on screen

Access: Read only

Initialized value: as set in current terminal handler

Description:

‘This system variable contains the number of columns on the screen being
used by VISTA, This is defined when a terminal handler is defined in
the VISETUP module. In some cases this will be all the available
columns on the screen but it may be less. The number of columns could
also be stated as the number of characters positions allowed on a line.
The number of character positions allowed for each line is the same
with the exception of the status line which has one less character
position,

‘The SCHEMA operator "centres" schematics which have less columns than
indicated by this variable. The HELP operator places the help
schematic in the furthest corner (as defined by this variable and 520)
from the cursor position,

Related operators: SCHEMA
HELP

Related system variables: 520 Number of lines on screen

VISTA PROGRAMMERS REFERENCE MANUAL SYSTEM VARIABLES

System variable nutbér: 522 Field justification

Access: Read Write

Initialized value: 0

Description:

This system variable contains a code for field justification. This
only affects the assignment operator ("=") when something is being
placed in a screen or status line field.

This variable can have three values as noted below:

Value in 522 Meaning

0 Strings are left justified while numbers resulting
from operators are right justified.

1 Everything is left justified
4 Everything is right justified.

These are the default values which are read by the interpreter at the beginning of each VPL expression, They can be overridden for the rest
of an expression by placing "R" or "L" between square brackets (e.g. £3R] would mean all assignments in the rest of the expression would be right justified with numbers rounded to 3 decimals).

Related operators: =

Related system variables: Rounding precision for "="

System variable nunber: 523 Last line for DOCDEOOD, or
— register not found for SEARCH

Access: Read only

Initialized value: 0

Description:

This system variable has two unrelated usages.

In conjunction with the SEARCH operator, 1 will be placed in this
variable if there are no documents in the register just searched (or if
no database was open), otherwise 0 is placed in this variable. See the
SEARCH operator description for more details.

In conjunction with the DOCDEOOD operator, 1 will be placed in this
variable when the last line of a document is fecthed otherwise 0 will be placed there. See the DOCDECOD operator description.

Related operators: SEARCH
DOCDECOD

Related system variables: 512 Field name from DOCDECOD
513 Key/non key from DOCDECOD, GET

System variable number: First string delimiter

Access?

Initialized value: ot

Description:

This system variable contains a single character. It is used as a
word delimiter and in certain operations as an ignored character. Two
separate string delimiters are allowed, the other being system variable
525. They are both initialized to the space character.

When a string is written to this variable the first character of that
string is taken as the new string delimiter. If a null string is
written to this variable then space is assumed. For more details see
the descriptions of the related operators.

Related operators: FOLD

Related system variables: 525 Second string delimiter

System variable number: 525 Second string delimiter

Access: Read Write

Initialized value: st

Description:

This system variable contains a single character. It is used as a
word delimiter and in certain operations as an ignored character. ‘Two
separate string delimiters are allowed, the other being systen variable
524, They are both initialized to the space character.

When a string is written to this variable the first character of that
string is taken as the new string delimiter. If a null string is
written to this variable then space is assumed. For more details see
the descriptions of the related operators.

Related operators: FOLD
LAST
PICKW
SELECT

SEQ (SNE)
SORT
STRIP

Related system variables: 524 First string delimiter

VISTA PROGRAMMERS REFERENCE MANUAL SYSTEM VARTABLES

 System variable number: 526 Database profile delimiter

Access: Read Write

Initialized value: yf

Description:

This system variable contains a single character. This character is
used to delimit multiple keys in a field or a string. This character
is significant in the left arguments of the PUT and SEARCH operators,
and in the screen fields with a PUTDOC operator.

In the PUT and PUTDOC operators only strings (fields) identified as
keys will be affected. Sub-strings separated by this delimiter will be
stored in the database dictionary as separate keys.

In the SEARCH operator a search profile made up of several keys
separated by this delimiter can be given. See the second extension to
the SEARCH operator description for more details.

When a string is written to this variable the first character of that
string is taken as the new string delimiter. If a null string is
written to this variable then space is assumed. For more details see
the descriptions of the related operators.

Related operators: SEARCH

System variable number: 527 255 character hidden field

Access: Read Write

Initialized value: characters following "VIPS" in command
line invocation

Description:

This system variable is similar to the hidden fields. Unlike the short
hidden fields which are 16 characters long, the long hidden fields
which can vary between 40 characters and 255 characters long, this
variable is always 255 characters long. It may be useful for building
up long lines to be sent to the printer or a sequential file.

Like the hidden fields the length of a string read from this variable
is the same as the last stored string in that variable. Unlike the
hidden fields numbers in some internal form are always converted to a
string before they are stored in this variable.

This variable is initialized to those characters following "VIPS"
during the host system's invocation of the VIPS module.

If one field fixed at 255 characters is not enough then the result
parameter (%0) can be used in any context in the same fashion as this
variable,

5-21

VISTA PROGRAMMERS REFERENCE MANUAL SYSTEM VARIABLES

System variable number: 528 Database open flag

Access: Read only

Initialized value: 0

Description:

This system variable contains a value which indicates whether a
database is currently open and if so whether or not it has a

checkpoint on.

Value in 528 Meaning

0 No database currently open
1 Database open that does not have a checkpoint
2 Database open that does have a checkpoint

System variable 401 contains the name of the last opened database.
If this variable indicates a database is open then the name in system
variable 401 will be that of the currently open database.

Related operators: DBOPEN
DBSAVE

DBCLOSE

Related system variables: 401 Database name

System variable number: 529 First mode number

Access: Read Write

Initialized value: 0

Description:

This system variable contains a number, Nominally this number should
be the mode number that the VIPS module first commences in, Currently
the VIPS module commences in mode zero. This variable is initialized
to zero.

This variable could be used for other purposes.

VISTA PROGRAMMERS REFERENCE MANUAL SYSTEM VARIABLES

System variable number: First database file name

Access:

Initialized value: "

Nominally it is to be used for the name of the database first opened by
the system, The VIPS module is commenced with no database open and
this is reflected by the fact that this variable is initialized to a
null string (and s.v. 528 is initialized to 0).

This variable could be used for other purposes,

System variable number: First schematic file name

Access?

Initialized value: "

Description:

This system variable contains a string of up to 20 characters.
Nominally it is to be used for the name of the schematic file first
opened by the system. The VIPS module is commenced with no schematic
file open and this is reflected by the fact that this variable is
initialized to a null string (and s.v. 501 is initialized to a null
string).

This variable could be used for other purposes.

System variable number: 532 First schematic group name

Access: Read Write

Initialized value: "

Description:

This system variable contains a string of up to 20 characters.
Nominally it is to be used for the name of the schematic group first
used by the system. The VIPS module is commenced with no schematic
file open so there is no schematic group active and this is reflected
by the fact that this variable is initialized to a null string (and
s.v. 502 is initialized to a null string).

This variable could be used for other purposes.

System variable number: 533 First schematic name

Access: Read Write

Initialized value: "

Description:

This system variable contains a string of up to 20 characters.
Nominally it is to be used for the name of the schematic first used by
the system, ‘The VIPS module is commenced with no schematic active and
this is reflected by the fact that this variable is initialized to a
null string (and s.v. 403 is initialized to a mull string).

This variable could be used for other purposes.

VISTA PROGRAMMERS REFERENCE MANUAL SYSTEM VARIABLES

System variable number: 534 Template control

Access: Read Write

Initialized value: 0

This system variable contains a value which indicates the fashion in
which the cursor will pass between the screen fields in the absence of
VPL code to the contrary. The execution of code in screen related
processes can be inhibited by system variable 450.

In the absence of VPL code the cursor will move to the first position
of the first field when control is passed to a schematic. The cursor
will pass between the fields in the sequence of the field numbers which
has been defined in the SKJEMA module, This variable slightly modifies
this action:

Value in 534 Meaning (in the absence of VPL code to the contrary)

0 "visit" all screen fields in a schematic
1 "visit" fields defined as key fields, don't stop

at non-key fields

Related system variables: 450 Processing rules on/off

System variable number: 535 Single step control

Access: Read Write

Initialized value: 0

Description:

This system variable contains a value which indicates whether the line
of VPL code currently being interpreted should be displayed on the
status line before it is executed. This system variable is meant for
debugging VPL code.

Value in 535 Meaning

0 Don't display lines of VPL code before execution
1 Display lines of VPL associated with schematics
2 Display lines of VPL associated with schematics and

procedures
3 Display all lines of VPL (i.e. associated with

schematics, procedures, and mode control)

If a single-stepping action is selected (1 to 3) then each line of VFL
code is displayed before it is executed by the interpreter and the
system waits for a response, The possibilities are described in the
ERROR operator. Single-stepping will not display the error mark "22".

Related operators: ERROR:

‘VISTA PROGRAMMERS REFERENCE MANUAL SYSTEM VARTARLES

System variable number: 536 Print file unit

Access: Read Write

Initialized value: -1

Description:

This system variable contains the unit number that the output from the
PRINT, PRSTR, and PRCHAR operators will be sent to.

‘The initialized value is ~1 and indicates the printer. The printer does not need to be "opened" by the SOPEN comand.
All unit numbers used by the SOPEN command must be 10 or greater. This leaves the numbers 0 to 9 unassigned for the host operating system to use for devices. In some cases devices can be opened as files. Both devices accessible to these operators (PRINT etc.) and files are expected to be "byte oriented",

Related operators: PRINT

System variable nutber: 537 Override verification

Access: Read Write

Initialized value: 0

This system variable contains a value that controls field verification.

If this variable is zero (its initialized value) then field verification will be as defined in the SKJEMA module for screen fields and as defined by the SV operator for status line fields. This field verification can be overridden by the third right argument of the INPUT operator.

In the same fashion that the INPUT operator can override field
verification for one field, then this variable can override all field
verification until reset to zero. The values for field verification (N.B. positive numbers greater than or equal to 32) are outlined in the extension of the INPUT operator description.

Related operators: INPur

5-26

System variable number: 538 Characters for YN (Yes/No)
-- in current language

Access: Read only

Initialized value: As set in current language

Description:

This system variable contains a two character string. The first
is the character that will be accepted as an abbreviation for "Yes" in
the current language. The second is the character that will be
accepted as an abbreviation for "No" in the current language.

If the current language is English then this variable will contain
'yn'; in French 'ON'; in German, Swedish, Danish, Norwegian 'JN' etc.

Languages can be defined for VISTA in the VISETUP module.

System variable number: 539 Store leading spaces in DB

Access: Read Write

Tnitialized value: 0

Description:

This system variable contains a value which indicates whether leading
spaces should be stripped fron strings before they are stored or not.
Unless there is a good reason to the contrary, it is suggested that
this variable be left at its initialized value of zero which means
leading spaces will be stripped from strings before they are stored in
the database. This will save space,

Value in 539 Meaning

Strip spaces from the front of strings (fields)
to be stored in the database

1 Don't strip spaces from the front of strings
(£ields) to be stored in the database

In all cases trailing spaces are always removed from strings (fields)
being stored in the database. Hnbedded spaces are not altered.

Related operators: PUT
PUTDOC

aw

VISTA PROGRAMMERS REFERENCE MANUAL ‘SYSTEM VARIABLES

Systen variable mmber: 540 Rounding for non-integer
=-- numbers converted to strings e@

Access: Read Write

Initialized value: 70

Description: This system variable contains the value which is used for rounding
numbers held in an internal non-integer form (commonly called floating
point) to a character representation of that number. This is an
internal operation carried out when an operator that requires string
type (e.g. PICK) is given the result of an arithmetic operation that
yields a non-integer (e.g. 1 / 3).

The valid values for this variable are 0 to the number of digits precision claimed for floating point operations (DOUBLE PRECISION in FORTRAN), and 70, ‘The value of 70 will convert the number in the most natural form (e.g. 3 / 2 will yield 1.5 while 1 / 3 will yield
0.333333...). The value of 0 will round all internal non-integer numbers to integers. The value of 1 will yield 1 decimal, the value of
2 will yield 2 decimals, etc.

The initialized value of this variable (70) will be sufficient in the
vast majority of cases.

Related operators: ALL operators requiring string type
in their arguments

Related system variables: 451 Rounding precision for "="

ARGUMENT Each operator can have up to 11 arguments, An operator can
have no arguments, a left argument, a right argument, and
a list of right arguments. An argument is either not
given, or a constant, or a variable, or an expression
(result of another operator).

ATIRIBUTE An attribute is something applied to a character or field
on the screen to higlight it in some way. This may be
reverse video, half intensity, flashing, colours, etc.
‘The overall system supports 64 attributes. SKJEMA allows
these to be selected on a character by character basis,
VIPS allows them to be selected dynamically field by field.

BEGIN Schematics have one process for each field and two extra
PROCESS: processes. The extra processes are the BEGIN and the END.

The BEGIN process is executed when control is passed to the
schematic.

CHARACTER DELETE KEY A key which moves the contents of the current

field (or line in screen and VPL editor) from the cursor
position to its end once left. A space is added at the
right hand end. This action occurs when there are non-blank
characters to the right of the cursor. When the rest of
the field (or line) is blank then the action is like the
CHARACTER ERASE KEY.

CHARACTER ERASE KEY A key which blanks the character to the left of
the cursor in the current field (or line in screen and
VPL editor) and moves the cursor left one position.

CHARACTER INSERT KEY A key which moves the contents of the current

field (or line in screen and VPL editor) from the cursor
position to its end once right. A space is placed under the
Cursor position.

CLOSED APPLICATION This term refers to applications which "hide"
the standard user interface of VIPS (mode 0 -control, mode
1 input, mode 2 -search) from the end user.

COMMENT — The ability to append a comment to any VPL line. A
VPL line need not have anything else on it. A comment

is indicated by a leading ";". Everything else on that
line is ignored by the interpreter.

DATABASE This refers to a single physical file in VISTA. It can
contain many registers. VISTA automatically maintains
its dictionaries within this file. The file extension is
"VDB"

DICTIONARY Within the database file the system maintains dictionaries

containing keys. The maintenance of these keys is
automatic and therefore does not involve the user or the
application designer.

B-1

VISTA PROGRAMMERS REFERENCE MANUAL (GLOSSARY

A collection of related fields of infonnation treated as a unit. When a document is created it is given a name. Documents with the same name forma register. Often the schematic name is used as a name for the document. The
tenn "document" is equivalent to "record",

When an attempt is made by the user to exit from the screen fields by pressing a function key (F1-F8) then the END process associated with that schematic is executed.
a) To interpret VPL code in a process
b) To treat an argument (string) like a VPL expression and

interpret it (see EXECUTE operator).

The keys Fl, F2, F3, F4, F5, F6, F7, and F8 are termed as exit keys or function keys.

EXPRESSION A collection of arguments and operators contained within

FIELD

one VPL line,
(prefixed by

expression mast contain neither a comment
nor an expression separator.

a) screen, Refers to the parts of the schematic into which
the user (and VPL) can place information.

b) document. Data item which fonns part of a document,
FIELD ATTRIBUTE In VIPS screen fields and status line fields can

have their attributes changed dynamically (see
ATTRIBUTE).

FIELD DESCRIPTOR Refers to a notation for identifying a field. This notation is made up of three parts: register name, searchable part of field name, and field name extension.
FIELD, KEY Refers to a field which is defined by SKJEMA as such. The

contents of this field are stored in the database as a
key(s). (A key field can contain more than one key.)
Keys are searchable in the database (quickly).

FIELD NAME Similar to FIELD DESCRIPTOR. Possibly does not have leading register name which in many contexts is not required.
FIELD, NON-KEY Any field which is defined by SKJEMA which is not

a key field. Non-keys can be selected from the database
(slowly).

FIELD PROCESS Each schematic can have 0-200 fields. Associated with each screen field is a program called a field process. A field process may contain no VPL code, A field which has no active VPL code in its process will automatically be prompted for input.

A-2

VISTA PROGRAMMERS REFERENCE MANUAL GLOSSARY

FIELD VERIFICATION ‘The ability to define in the SKJEMA program which
keystrokes-will be accepted into a field. The treatment of
field overflow can be modified also,

Probably refers to one of the datafiles accessed by the
system: database (.VDB), user file (.VUS), or the system
file (.VSF).

FUNCTION KEY The keys Fl, F2, F3, F4, F5, F6, F7, and F8 are termed

GROUP

INTERRUPT

as function keys or exit keys.

Sub-division in the organization of the user file (.VUS).
AA group name can be up to 20 characters long.

To stop the execution of VPL code, This can be done by
pressing F8 twice while VPL is executing. The context can
be examined and the current process aborted if necessary.

This refers to part of a field, or a full field that is
stored in a document and also in the database dictionary.
Keys are used to search for documents. Virtually an
unlimited number of keys can be held by the database.

LEFT ARGUMENT An operator can have a left argument which lies

LINE a)

b)

r e)

a)

LINE DELETE

imediately to the left of the operator to which it
refers, The result of an operator (if it has one) can
be viewed as the left argument to the following
operator in the current expression.

document. For debugging purposes a document can be
into its component lines where each line

corresponds to a field. Fields are usually fetched
by field descriptor but if this is not known...

on the screen, Sometimes it is convenient to talk about
lines on the screen, In this case the top line is
referred to as line 1, The status line is always the
bottom line.

Screen editor, In SKJEMA when a schematic is being defined
or edited then it is represented on the screen as a series
of lines (e.g. 23 lines by 80 characters).

VPL. When VPL is being edited it is represented as lines
in its own screen-based editor. More generally it is
used in same the sense as STATEMENT.

KEY The lines fram the following line to the bottom line
on the schematic (not the status line) are moved once up.
The bottom line on the schematic is replaced by a blank
line.

A-3

VISTA PROGRAMMERS REVERENCE MANUAL GLOSSARY

LINE ERASE KEY The current line is removed and replaced by a blank line.

LINE INSERT KEY The lines fron the current line to the bottom Line on e the schematic are moved once down, The current line is then blank.
List A shortened form of occurrence list which is a list of

pointers to documents.

MENU A type of schematic which implies the user has the chance
to choose between various options for further action.

MODE The standard user interface of VIPS is sub-divided into modes. These modes allow the user to store and retrieve documents, view and edit them, and sort them and generate
reports. The mode control is written in VPL thus
everything that is offered is also available to the designer who wishes to make a closed application. e

NUMBER In the context of VPL this is the result of an arithmetic
operator or a numeric string.

NUMERIC ‘The database and VPL do not distinguish between characters STRING and numbers. The database always stores strings. Any
string that can be interpreted by VPL as a number is a
numeric string.

OCCURRENCE The presence of a key in a field of a document is referred
to as an occurrence.

OCCURRENCE LIST This is a list of document pointers. The system can
hold up to 101 such lists and combine them logically,
sort them, or select documents from them by given criteria,

OPERATOR This is the element which "does" something in VPL.
Together with any arguments given, the execution of an
operator will perform some action and perhaps return a
result.

PRE-PROCESSOR This is a module in the SKJEMA program that is invoked r } after the user is finished with the VPL editor. It
generates a new copy of the code which is compacted and
slightly encoded. This speeds VPL execution. The
pre-processor is not a compiler.

PROCEDURE A procedure is invoked from VPL code in exactly the same
way as an operator. Procedures are written in VPL code,
The definition of a procedure has the same structure as a
VPL process,

PROCESS A process is a set of VPL lines associated with either
a field within a schematic, or a schematic (BEGIN or END),
or a mode (SUPER BEGIN or SUPER END).

VISTA PROGRAMMERS REFERENCE MANUAL GLOSSARY

REGISTER This is a sub-set of the documents in the database. A
register contains all the documents created with the same
name, It is possible to form an occurrence list of
all documents in a register as well as sub-sets of it.

RESULT An operator in VPL may yield a result which can then
be used as the left argument to following operators
in the same expression.

RIGHT ARGUMENT An operator can have a right argument which lies
immediately to the right of the operator to which it
refers. An operator CANNOT have both a RIGHT ARGUMENT
and a RIGHT ARGUMENT LIST.

RIGHT ARGUMENT LIST This term is used to describe one or more
arguments enclosed between "<" and ">" which lie to
the right of the operator to which they refer.
An operator can have up to ten arguments in such a list.
Each argument is separated from the next by a comma, Each
argument can be itself a VPL expression.

SCHEMATIC ‘This is the screen "template' into which the user enters
data from the keyboard. Schematics are defined and
modified by the program SKJEMA.

STATEMENT This refers to zero, one, or more VPL expressions on the
same line followed optionally by a comment. In some
contexts a "line" of VPL has the same meaning.

STATUS LINE Usually the bottom line on the screen or at least directly
under the bottom line of a schematic. This is an
independently controllable line. VPL can define, place
messages, and accept input on the status line.

STRING An argument which contains explicit data. This is a
sequence of characters. Strings are surrounded by
quotes or double quotes. An exception exists whereby
non-negative numeric strings can be written in VPL code
without surrounding quotes or double quotes.

SUPER BEGIN This is a VPL process associated with mode control. Each
mode has two processes: SUPER BEGIN and SUPER END. The
SUPER BEGIN process is executed when a mode is first
commenced,

SUPER END ‘This is a VPL process associated with mode control. When
a schematic has finished executing all its processes then
control is passed to the SUPER END process.

SYSTEM FILE Special file referenced by both VIPS and SKJEMA containing
information about messages (in various languages), terminal
types, "system" schematics, VPL operator names, procedures,
and the VPL mode control processes. The file extension is
"VVSE".

AS

VISTA PROGRAMMERS REFERENCE MANUAL GLOSSARY

USER FILE The file in which "user" schematics are found. Such
a file is sub-divided into schematic groups which are
further sub-divided into schematics. “Thus it is possible e@ for two schematics to have the same name in a schematic
file as long as they are found in separate groups.
Schematics in this file are defined and modified by the
Program SKJEMA, and they are referenced by the program VIPS. The user file has the extension ".VUS" .

Name of the run-time module in VISTA which can interact. with databases and sequential files, display schematics generated by the SKJEMA module, and execute VPL code.
The name of special purpose programming language associated with the VISTA, The name is an acronym for VISTA
Programming Language. VPL is interpreted by the run-time
module called VIPS,

Unrecognizable statement
Right argument already
Work area full, simplify expression
Stack full, simplify statement
Illegal use of parenthesis
Multiple results can only be followed by assignment
End Of Process position illegal
Verbal Filing System number:
Left argument required for this operator

it Argument. expected
Field number (or system variable) out of range
Argument not found in work area
Named fields not supported yet
Arithmetic result exceeds 255 digits
Execution but no operator?
Too many DO loops in one line
Invalid right argument to current operator
Non-numeric argument to arithmetic operator
Attempt to divide by zero
(Internal error) Stack unexpectably empty
Unknown operator
Unknown procedure
Tllegal inside procedure
String overflow (more than 256 characters)
System variable not defined
System variable is read-only
User schematic file not found
Group within user schematic file not found
Schematic not found
No such process
No such mode
Parameter not currently defined

ok VBL ee
ek VBL ee
ok VBL
ak YET,

Schematic file in incorrect format
Trying to put data in a deleted document
Trying to delete a non-existant document
Attempt to operate on non-existant document

Press "F8" to ABORT current process, anything else to continue
** DATABASE NOT OPEN **
Not a Vista-Verbal database
Database left open ?
ok VBL, Error during sort

B41

VISTA PROGRAMMERS REFERENCE MANUAL

513
52:
53:
54:
55:

Exiting current process: continue processing?
** SEQ ** File not found
** SEQ ** Tllegal unit number (must be >9)
** SEQ ** File open for write only
** SEQ ** File open for read only
** SEQ ** Unit number already in use
%** SEQ ** Too many files open (max. 4)
** SEQ ** Unit number does not refer to open file/device
** SEQ ** End of file detected
** VPL ** Illegal file descriptor
** SEQ ** File/device full

62 **

Hit 'space' to continue
Change schemaname to :
Fill in database name
Give password
Wrong password 1
Checkpoint off/on
Fill in and hit F1 to execute, F8 = exit
Delete old database
Please wait
#79 ee
ke BQ Ke
BI we
ke 2%
e B3 ee
ee Bg Fe
Pre-prosessing

~ Rolling out
Rolling in
Fi=select, F7=select and show, F8=exit

Data entry mode. Press F1 to store, or F8 to exit
Press F1 to search, F7 to search and display, F8 to exit
Searching all documents

1g
Flsstore F2shelp F3-delete F4=prev. F5=next F8=exit

B-2

VISTA PROGRAMMERS REFERENCE MANUAL MESSAGES

First list no, (1 - 101):
Second list no. (1 - 101):
Resultant list (1 - 101):
Length before operation

after operation
Old list no. (1-101):
New list no. (1-101):
No current list
List numbers: First list:

list:
Resultant list:

Delete (y/N) ?
Database already open:
Database:
No database open !
Closing database:
Securing database:
Only working with checkpoint on !
Forgetting
List number:

Current list empty
Indicate field(s) for sorting. F1 to sort, F8 to exit
Sorting
documents. +++.
Give new schematic group name:
Give new schematic filename:

VERBAL FILING SYSTEM LOW LEVEL ERROR MESSAGES

‘The following are the error messages "recognized" by VFS. Low level
error messages peculiar to a particular machine may be returned
(negated) if one of the following is not appropriate.

-900 : Not a VFS file
-901 : Attempt to read outside file
-902 : Attempt to write to illegal block number
~903 : Attempt to read unwritten data
-905 : Logical-to-physical map error

~910 : Open flag on (non-checkpointed system closed in an
irregular fashion)

~911 : File not found or in incorrect format

-996 : Referencing file with invalid unit number
-997 : Device full
-998 : Read/Write error on file unit

-999 : Unexpected end of file

B3

VISTA PROGRAMMERS REFERENCE MANUAL

APPENDIX C: ATTRIBUTES

This appendix discusses the suggested assignments of screen attributes
to the 64 attributes available in VISTA.

The 64 attributes available in VISTA are numbered 0 to 63.

Attribute 0 is taken to be the default attribute. This would be
expected to be the normal configuration the terminal powers up in (e.g.
green on black, or white on black).

If an attribute is selected that has not been assigned for that
particular terminal then the default attribute is assumed.

The suggested attributes are:

High intensity
Reverse video

High intensity and underline
High intensity and reverse video
Blink

0
1
2
3
4
5 High intensity, reverse video and underline
6
7
8
9 High intensity and blink

If a colour screen is available and it has 6 colours:
red yellow blue magenta

Black background,
Black background,
Black background,
Black background
Black background,
Black background,
Black background,
Black background
Black background,
Black background,
Black background,
Black background,
Black background,
Black background,
White background,
White background,
White background,
White background,
White background,
White background,

C1

cyan green (white) (black)

blinking green
blinking yellow
blinking blue
blinking magenta
blinking cyan
blinking white
red
green
yellow
blue
magenta
cyan

VISTA PROGRAMMERS REFERENCE MANUAL

Red background, green

Green background, red
Green background, yellow
Green background, blue
Green background, magenta
Green background, cyan
Green background, white
Yellow background, red
Yellow ba¢ 1 green
Yellow background, blue
Yellow background, magenta
Yellow background, cyan
Yellow background, white
Blue background, red
Blue background, green
Blue background, yellow
Blue background, magenta
Blue background, cyan
Blue background, white
No suggestion

C2

VISTA PROGRAMMERS REFERENCE MANUAL ‘SKIDOK

To print user-defined schematics in VISTA environment,
also provides facility for listing procedures, modes
and system schematics.

GENERAL:

Whenever the program prompt for input from the user,
<CIRL/C> will either abort the program or go back to the
previous level. A <CTRL/Z> will go back to the previous
prompt (or the previous level if first prompt inside
the current level). A <RETURN> will generally cause
the prompt to be repeated.

If the possible answers are given on the prompt-line,
the default value is given in upper case.

INVOCATION:

There are two ways of invoking SKJDOK, which will
start up assuming output to be to the printer.

1) SKIDOK
2) SKIDOK <filename>

In the first case, the program will prompt with

Schematic file:

indicating that it requires the name of a schematic file.
A <CR> or <CIRL/C> at this stage will abort the program and
xeturn to the operating system.

I£ <CIRL/Z> is pressed there will be a new prompt:

List device (OON:/PRT:)?

where console (CON:) is the default value.
After this, the prompt for ‘Schematic file: ' will reappear.

The program will now attempt to open the file with
the given name (default extension '.vUS'). If unsuccessfull,
a message to this effect will appear, and the program will
yet again ask for another filename.

SKJDOK supports two kind of files. A file containing
user schematics '.VUS' and a VISTA system file (generally
VISETUP.VSF - but any '.VSF'-file will be regarded as
a system file).

Di

VISTA PROGRAMMERS REFERENCE MANUAL ‘SRIDOK

USER~SCHEMATICS:

For a '.VUS'-file, the program will read, then list e@ all the defined groups on the console, then ask which
group the user wants.

Then all. schematics within the given group will be sorted and displayed. The program then prompts with:
<P>-print screen, <C>-continue, <S>-select, <A>-abort ?

A 'P' will print the display of schematics on the printer,
and the prompt will reappear.
An 'A' or <CTRL/Z> or <CTRL/C> will take the program back to the previous level, ie. the display of groups.
A ‘Cc! will cause the program to accept all the schematics
displayed, then print them one at a time,
A 'S' will cause the program to enter 'S'elect-mode, e@ where it prompts the user for a schematic mask.
The mask uses the question mark '?' as a match for any
character, and an asterisk '*' will cause the remaining characters of the mask (up to max length) to be filled with '?'s.
A <CR> will match all names.

In select mode, the program will display each schematic
satisfying the select mask and ask the user if he wants it printed, A <CIRL/Z> will cause the previous schematic to be redisplayed.
Whenever all schematics have been displayed, the program will save the names of those wanted, and the process of printing the schematic is started. Afterwards, the program will display
all the groups and ask for a new one.

SYSTEM-FILE:

For a system-file ('.VSF'-file), the program will prompt with:

<S>-system menues, <P>-procedures, <M>-modes: e

For system schematics & modes, there is a predefined no.
of entries, causing the next prompt:

Give mode control no. (0..49) - empty line to terminate
or

Give system menu no. (1,.49) - empty line to terminate

A sequence of numbers may now be entered in completely free
format, on one or more lines. The termination of input
is through an empty line,
Note that a -ve value has the effect of including all entries
up to and including the given absolute value.
(so that -4,8,11 will mean 1,2,3,4,8 and 11)

D2

VISTA PROGRAMMERS REFERENCE MANUAL ‘SKIDOK

For procedures, the following prompt is given:

e Procedures - all/selected (A/s)?

If the answer is anything but 'S', all procedures will
will be buffered for printing. If selection is chosen,
the procedures will be sorted and displayed one at a time
time together with a Yes/No-prompt.

When entries have been selected in this manner, the printing
process will start and on exit the <S>/<P>/<M>-prompt
will reappear.

D3

VISTA PROGRAMMERS REFERENCE MANUAL

Keyword

AND
ARGUMENT
CALCULATION PRECISION
CHARACTER TRANSLATION
COLOUMNS ON SCREEN
COMPARISON PRECISION
CURRENT FIELD
CURSOR POSITION
DATABASE - FIRST
DATABASE CHECKPOINT
DATABASE CLOSE
DATABASE DEBUGGING
DATABASE DESCRIPTION
DATABASE NAME
DATABASE OPEN
DATABASE SUMMARY
DEBUG - SINGLE STEP
DEBUGGING AIDS
DECIMALS
DIVISION PRECISION
DIVISION, INTEGER RESULT
DOCUMENTS
ERROR ACTION
ERROR MESSAGES
ERROR REPORTING
EXIT - TYPE OF
FIELD DEFINITION
FIELD LENGTH
FIELD NAME
FIELD NUMBER - PREVIOUS
FUZZ
GLOSSARY
HELP SCHEMATICS
HIDDEN FIELDS
HIDDEN FIELDS
JUSTIFICATION
JUSTIFICATION
KEY DELIMITER
KEY-FIELDS
KEYBOARD INTERRUPT
LAST KEY PRESSED
LINES ON SCREEN
LIST MANIPULATION
LOGICAL LIST OPERATIONS
MESSAGES
MODE - CURRENT
MODE - INITIAL
MODE - INITIAL
MODE - NEXT
MODE - PREVIOUS
NOT
NoT

Keyword index

KEYWORDS

Page

a
o
t

e
8
s
o
s

INDIX B

APPENDIX A
2-9

W
H
H
U
N
A
A
U
E
P
W
H
O
U
N
W
H
O
R
U
N

i
VO

P
E
R
E
N
N
O
U

BS

O
N
N

S
O
S
H

Keyword

NUMERIC ACCURACY
NUMERIC OVERFLOW
OCCURRENCE LIST
OPERATOR
OR
PARANTHESIS
PRINT (PART OF) SCREEN
PRINT CHARACTER
PRINT SCHEMATIC
PRINT STRING
PRINT UNIT
PROCEDURE - EXAMPLE
PROCEDURE NAME
PROCEDURES
PROCESS TYPE
PROCESSING ON/OFF
REGISTER NAMES
RIGHT ARGUMENTS
ROUNDING
ROUNDING PRECISION
SCHEMATIC - FIRST

VISTA PROGRAMMERS REFERENCE MANUAL

Keyword index

SCHEMATIC - NUMBER OF FIELDS
SCHEMATIC FILE - FIRST
SCHEMATIC FILE NAME
SCHEMATIC GROUP - FIRST
SCHEMATIC GROUP NAME
SCHEMATIC NAME - CURRENT
SCHEMATIC NAME - NEXT
SCHEMATIC NAME - PREVIOUS
SCREEN ATTRIBUTES
SCREEN ATTRIBUTES
SCREEN FIELDS
SEARCH PROFILE
SKJDOK
SKJEMA
SPECIAL ACTION
SPREAD SHEET DEFINITION
STATUS LINE FIELDS
STATUS LINE FIELDS
STRING DELIMITER
SYSTEM VARIABLES
TERMINAL NAME
VERBAL
VIPS
VISUP
VPL
VPL - ORDER OF EVALUATION
VPL SYNTAX
XOR
YES /NO-CHARACTERS

KEYWORDS

4-95

t
e
r
n

o
S
 o

S
T
e
h

ee
e

te
et
er

°
H
e
o

a
a
a

Ss

ia
R
A
N

W
B
A

B
O
N
E

OS

E
N
A
D

A
U
N

O
N
V
O
N
G
N
U
V
E
E
D
 LO

t
e
r
t

t
t
n
a
a

oa

C
O
N

NN

=
S
W
U
N
D
U
N

E
N
S

PU
N
D
R
D
O

U
E
E
O
E
O
E
N

B
U
N

T
3

