DANSK DATA ELEXTRONIK

ID-7000 CPU module

for

the ID-7000 MICROPROCESSOR SYSTEM

December 1975

author: Ole Lading
o, 22-2-%

page 1

ID-7000 CPU-MODULE

l. Generel description.

The ID-7000 CPU-module is the processor module of the ID-7000 micropro-
cessor system, which is based on the INTEL 8080A microprocessor chip.

A description of the bus signals can be found in the ID-7000 System De-
scription. In this document, a description of the different circuits in
the CPU-module is given. In appendix 1, the DC- and AC-specifications of
the module as seen from the terminals are given for use in designing mo-
dules for the ID-7000 microprocessor system. Appendix 2 contains a com-
plete logic diagram of the module. Appendix 3 is a datasheet for the IN-
TEL 8080A microprocessor chip. Appendix 4 contains a description of the
functional behavior of the INTEL 8080A microprocessor. In appendix S,Ia
detailed description of the 8080 instruction set is given.

2.Construction,

The construction of the ID-7000 miaroprocessor module is shown in the bloc-
ked schematic in fig 1. The module contains the following circuits:

a) INTEL 8080A microprocessor chip.
b) Clock generator for the 8080A and associated logie.
¢) Address bus drivers.

d) Bi-directional data bus drivers.
e) Status latch.

f) Logic for timing of the bus control signals RR,WR,INR,OUTR and AFER.

g) Output drivers for control signals from the INTEL S8080A.

h) Buffers and synchronizing flip-flops for the control signals
to the INTEL 8080A.

In the following sections the different circuits are described with refe-
rence to the complete logic diagram of the module (appendix 2).

a) INTEL 8080A microprocessor chip., The architectural structure and the
electrical properties of the 80804 microprocessor chip will not be descri-~
bed here. Readers not familiar with the 8080 microprocessor are recommen-

ded to read appendix 4 before going on in this text.

T—-ﬁ--——-

" ID-n000 CPU - modulg
Rlocke d Lhe matic .

Lb. nr.

Dato

Emne

Fag

page 2

Afd.

Side

K*JZV
+5v
 GND ————
=Y MusDISAELE
*] T g
1 X ADR(1S-0)
- .
02, =N R
& ;
o}
1)
o
o]
[
<
D BUSDI G,
4 A
<
‘fL’E DIGEY;
s . N
g0¥o I 2 KL
/ = /
MIO- A1 =
!
PROCESGR / Toarw
‘ / / REGT seal 2
./,. - C:'IJ"—- \‘/
/| Byt
[/ S STAK
7/ — IWF
‘/f‘; \E)? ik
LL] =5 e
i S =
SO B A
= i 3 [
A 1 = :F:“
' & V8
>-REEL o REET
HOLDR . WD [——— v HOLT
\‘ 3 — T
INPUT HouD Sj_lf_t_fc- - % Sv_w |
‘_,VE”T o (A LEES . WR = E:.j Wia
2 J QUFF Rerdy THiE e el
INT R VAT ——— &
j[3 InT : tf‘{ eIl > >
f\ \ A\ I]
g '{“b s
DeIt) Weall e ST
Vet QTTE_' {-’-ﬂﬂf_ B O '
Clock (Fenecatol I

e,

page 3

b) Clock phase generator (appendix 2.1). The data sheet for the 8080A

microprocessor chip (appendix 3) specifies two clock phases {1 and 2

ag shown in fig. 2.

Eﬂa‘ _)|k_ S_m P toy = clock penec HYO - 2000 asek
2 _H ll l h tgr = B1-pulse wicllh wmia. 60l
@; Lt_m_;: 62 = B2-pulse width win 220 nsdl
A ,_E_!(——Tl ; D1 = o{dmﬁ- X (o min, O nuk
i 2 | 0 = dilay 02 B i, T0nsk
S > tD3 = diley @1f-gat aua. §O0nsli

hy

The clock phase generator is based on a self-correcting, modulo 8 John-
son~-counter running at a clock frequency of 1&¥Hz, The clock is generated
by a crystal controlled clock generator. The clock phases from the clock
phase generator (@1,#2,%3,VS and 164) used by the module are shown in fig.
3 with their nominal time relationship. As seen from the logic diagram
(appendix 2.1), the clock phases @1 and @2 are generated in different ways:

Z1H,@2H: 12 Volt clock pulses for the 8080A,

QITTL,,@ZTTL: TTL~clock pulses for internal use.

ﬁlT,?2T: TTL—-cl:lock pulsfes for thera bus system (temir‘laﬂ_s).

W [L

- é2,$_ngk5' | { | |
] |
| I
o ‘ I : |
b CaSakl 250 Ayk L PSnsle
~
| |
) J |
I k 6)\5"‘5-"5(/‘:
|
.]
loX I '
03 l {
le 128 netk ~
~ -~

e
-

(o)

Ay

page 4

¢) Address bus drivers (appendix 2.2): For the purpose of isolating the
INTEL 80804 from the terminals of the module and generating fan-out for
driving many modules comnected to the bus, the CPU module contains address
bus driver circuitry. The address bus driver is two INTEL 8212 &-bit tri-
state buffer/latch circuits. By activating the bus control signal ABUSDIS-
ABLE, the high-impedance state of the address bus drivers is obtained.

d) Bi-directional data bus drivers (appendix 2,3) These drivers (2 INTEL
8216 4-bit bi-directional bus drivers) buffer the data between the 80804
microprocessor chip and the modules connected to the bus system. The dri-
vers are in the input mode when the control signal DBIN from the 8080A is

active, otherwise the drivers are in the output mode. The drivers can be

disabled (output in high-impedance state) by activating the bus control
signal DBUSDISABLE.

e) Status latch (appendix 2.3). This latch contains information on the

current machine cycle. This information is placed on the internal data
bus: at @2t-time in the Tl state and is kept to Z2M-time of T2. The SYNC
control signal is active in the same time period. The signal g20SYNC is
used as clock for the status latch. The status information is then pre-
sent on the output of the status latch at @2l-time in T1 (plus a short
time delay). An INTEL 8212 buffer/latch is used as status latch.

The following status bits are available on the bus for indication purpo-
seg and for use in special-purpose modules:

Ml: 1lst. cycle in instruction execution.

HLTA: B080A in HALT-state.

STACK: The address on the address bus is a stack address.

f) Reguest logic (appendix 2.4). This logic is used for timing and buf-
fering the five bus request signals ﬁﬁ,ﬁﬁ,fﬁi,OUTR and AFBER. Only one re-

quest signal is active at a time, depending on the current machine cycle:

: fetch-,memory read-, stack read- cycles.
¢ memory write-, stack write- cycles.

5| 5l 8

¢ input- cycles.
OUTR :output- cycles.
AFBR : interrupt- cycles.

The ninth type of machine cycles, HALT generates no reguest signals.

page 5

The request timing is arranged to simplify the construction of I/0- and
memory modules, and no other control signals are required for communi-
cation with such modules. However, to achieve this, the request signals

must satisfy the following requirements:

The information on the address bus should be stable at least 120

nsec before the request signal activates and at least 120 nsec af-

ter the request signal deactivates, This permits I/0- and memory modules

to use a gated request signal directly as write-clock if positive

edge-triggered registers are used.

The: request signal should be activated early enough for I/0- or
memory modules to have at least 120 nsec in which to activate the
vent control-line, to extend the current machine cycle.

This timing is the same for all the request signals and is controlled
by the 7470 flip-flop. The contents of the status latch determine which

request signal is to be activated.

The request control lines on the bus are driven by 7438 open collector
power gates. This permits I/0-modules with IMA-capability to use the
lines for reading or writing in memory, when the CFU is forced into
HOLD mode (indicated by the HOLDA signal).

g) Output drivers for control signals from the 8080A (appendix 2.5). The
driving capability of the 8080A microprocessor chip itself is limited to

1 TTL gate. The output drivers generate fan-out for the internal logic
and for the bus. The following 8080A control signals are available on the
bus for indication and for use in special purpose modules: SYNC, WG (iden-

tical to the 8080A WR-signal, but renamed to distinguish from the WR-request

signal) and HOLDA (hold acknowledge). The WG signal, which is activated

when stable data from the 8080A is available on the data bus, can be used
as clock in I/0O-modules where the registers are not positive edge triggered
(see section g)).

page 6

_h_l Buffers and synchronigzing flip-flops for the control signals to 8080A
(eppendix 2,6). To isolate the INTEL 8080A from the terminals of the module,

the latter is equipped with buffers for incoming control signals to the
microprocessor chip. The control signals READY and HOLD are synchronized
to obtain proper operation of the 8080A microprocessor chip. The bus con-
trol lines INT, VENT and HOLIR are pulled to the +5V supply by 1K resistors
to assuré proper operation in installations where no modules generating

these signals are present.

The MEMDISABLE control line is not used by the CPU-module, but its pull-
up registor has been placed on the CPU-module.

Appendix 2.6 also shows the power connections for the 8080A. All the vol-
tages (+12V, +5V and +5V) are available in the bus system.

APPENDIX 1: ELECTRICAL SPECIFICATIONS

page 1

Al,l: DC-specifications:

Alelo.1 Outputss:

Address

bus ADR(15:0):

Max,
Max.

Max,

Data: bug D(7:0), output mode:

sink current

source current

leakage current

Max,.
Max.

max,.

Reguest

gink current

source current

leakage current

15mA
~ImA
20ul

25mA
+1mA
100uA

at
at

at

et

at’

at

0,45V
3,65V

0,45/5,25V (high imp. state)

0,45V
3,65V
0,45/5,25V (high imp. state)

signals (AR,WR,INR,OUTR.AFER) and WG-signal :

Max,.

Max.

The drivers are open collector (300 ohms pull-up)

M1 ,HLTA

sink current

source current

and STACK:

Max.

Max,

gink current

source current

#1,¢2,HOLDA and SYNC:

Max,

Max,

sink current

source current

sink current

gource current

sink current

source current

32mA
7, 5mA

15mA

+1mA

20mA

14y 4mA
0,36mA

0, /mA

at
at

at
at

at
at

at
at

at
at

0,4V
2,4V

0,45V
3,65V

0,5V
2,7V

0,4V
2,4V

0,5V
2,7V

page 3

4 1,2 AC-specifications:

A 1.2.1 8080-input: The timing diagram in fig. 1 shows the relationship

between the relevant bus signals when the CPU executes an input-, read

memory-/stack- or interrupt cycle. All time references are with respect
to the #fl-clock phase on the terminal. The timing diagram is shown with
no Tw-states between T1 and TZ.

T 5 T2 T3

w1 A 1 i
! I I
i ¥ !
i i
i

TY/T1

ted -
td + |_ <d: |
Ve | 1 | ! [
L ' I
t - ! -
| tad ! Lo K toh=ted
Aegso) I Addrese Skble 1
] { J
i
— I | !
RR : Py td +
NG | HH.E < >
] Wl ‘:‘{E‘.’:} I‘{Sﬁ' r
| i
Yo L L 777 7 ks S 7 7
>
e—ted > |k
M1 j
(i fekek)
SYNC set delay from #1,71 tsd+ :135 ns min 315 ns max
SYNC reset delay from #1,12 tsd+ :135 ns min 315 ns max
Address delay from ﬁl,Tl tad :125 ns min 380 ns max
Request set delay from ,dl,TQ trd+ : 30 ns min 115 ns max
Request reset delay from ;251,T3 trd+ : 405 ns min 495 ns max
Data set-up time before #1,13 tds : 55 ns min
Data hold time from #1,73 tdh :265 ns min
Cycle-status delay from #1,T1 ted : 375 ns min 405 ns nax
fig. 1

Timing relationship in input-,read memory/stack- or interrupt-cycles

page 4

A1,2,2 8080-output: The timing diagram in fig. 2 shows the relationship

between the relevant bus signals when the CPU executes an output- or write
memory-/stack- cycle. All time references are with respect to the fl-clock
phase on the terminal unless otherwise specified. The timing diagram is shown
with no Tw-states between Tl and T2,

< 0 2 >

¢r _T1_ M L 1
|
|
|
|
|
|

k teds 5 K +s -
svve | |
' | 1
1
I
tad
—=— L ! tabetad
HDR(f&o)l [Addeesg Stable |
— I | | I
WRy b P L N
1 > =
AT { ! [
[|
! \] .
Wkt 3%
Do) | | Pode Hable 4 7
I b ! I
I : l fued = :(Ew—:(.r !
Y& T Dty Lo I b
| k— - —
ted '
Itack !
(¢ S{’ﬂdt-Wr{‘E)
SYNC set delay from #1,71 tsd+ : 135ns min 315 ns max
SYNC reset delay from f1,12 tsd+ : 135ns min 315 ns max
Address delay from #1,T1 tad ¢ 125ns min 380 ns max

Request set delay from #,T2 trd+ : 30nsmin 115 ns max
Request reset delay from 41,73 trd+ : 405ns min 495 ns max

W& set delay from #1,73 twd+ : 10ns min 185 ns max
WG reset delay from P1,T4/TL twd+ : 1ons min 185 ns max
Data stable time before ﬁG——J, tds : 165 ng min

Data stable time after We-1 tdh : 105 ns min
Cycle-status delay from #1,11 ted : 375ns min 405 ns max

fig. 2
Timing relationship in output- or write memory-/stack- cycles

page 5

A 1,2.3 Wait-timing: To insert wait-cycles between T2 and T3, the vent

bus line must be operated. This signal is synchronized on the CPU-module

and the bus' signal may be operated al any time. To be recognized as a
wait-request, the vent-line must be low atl least tvs= 240 nsec after

pi,T2 and kept low at least until tvh = 270 nsec after JIL,TZ. In order to

exit the wait-cycle: (Tw), the line must be high during the same time pe-

riod in the Tw-state., When the machine c¢ycle is prolonged with Tw-state(s),

all bus information (address, data, request lines, cycle status lines)

remains stable. Fig. 3 shows an input machine cycle with one Tw-state. Note

the input data set—up time is now with respect to }Zfl following the last Tw-state.

% | 13

2
._.l
o

¥

=)
M
2
N

;

Ly
]
]

L

|
|
SYwc [I |
I
|

- - —— —

ADR(15:0) [addrete chalie

I : ﬁg; dn

! V 1
0:9 //'//'//'//'T/'// L L L L aksk | S

|

i 1 f |
| tve. tvg
w7 7 N[777N S L
L tvh e tvh
Y2
|
vent set-up time before @1,T2/Tw : tvs 1 240 ns min
vent hold time from #1,T2/Tw tvh ¢ 270 ns min
Data set-up time before @1,T3 tds @ 55 ns min
Data hold time from- 21,13 tdh : 265 ns min
fig. 3
WAIT-timing

page 6

A 1o2,4 HOLD-timing: To force the CPU in the HOLD-mode, the HOLDR line
must be operated. This signal is synchronized on the CPU-module and the

line may be operated at any time. The synchronizing flip-flop is clocked
at the trailing edge of g2 in.all states (375 nsek after @l leading edge).
The HOLD-signal %o the 8080A is tested at @R-time in T2, To be recognized
in the current machine cycle, the HOLIR line must be activated before the
sempling time in the T1 state. The acknowledge for the holdrequest, HOLDA
is given at @ rising edge (plus a short delay) in the T3-state if a read-,
interrupt or input- cycle is in progress. In write- or output- cycles, the
acknowledge is given at Zl-time in the state following T3. The CPU conclu-
des the current machine cycle and enters the HOLD-mode (if the HOLIR is
still active). '

Exit from the HOLD-mode tekes place, when the HOLDR line is deactivated.
The state following that state, where the synchronizing flip-flop deac-
tivates, is executed in HOLD-mode. At #l-time in the next state, the HOLDA
signal deactivates and normal proccessing resumes with Tl of a new machi-
ne cycle (if the HOLIR is extended) or with the machine cyele in progress
(if the HOLIR is brief).

It should be mentioned, that a WAIT-request overides a HOLD-request. The
HOLD-sequence continues, when the WAIT-state is left.

The timing diagram in fig. 4 shows the HOLD-timing in read-, interrupt-
or input machine eycles., In write- or output machine cycles, the timing
is similar, except that the HOLDA is activated at @l time in the state

following T3, as mentioned above.

When the HOLDA is generated by the CPU-module, the I/0-module generating
the HOLIR signal may control the bus. The I/0 - module is responsible:
not to disturb the execution of the current machine cycle. In practice
this means, that the I/0-module can disable the busses at_ﬁl time fol-
lowing that state, where the HOLDA is generated.

The disable/enable time for the address bus drivers on the CPU-module is

maXe 45 nsec. The disable/enable time for the data bus drivers is max.
90 nsec.

EVSDISABLE : +(P-{ na ;; J» Py HoLD A
4 E._"r“_;' o :‘pg— .t’rr :. :' " _A' 'v l, .) ' [.‘E:::

o

~

page 7

goT2 4D

Xew su Q4T UFW sU
utw su
UTW U

XBWl U QR UTW suU

andut

0

L

€

-

I0 =qdnixequy ‘-pesy UT SUTWIL~ITOH

7 813

PU3
yug

g

us
u3

-

W

*seqBqE TeuoTydp (xx
*oury oTdues=yIIoH (X

woxy AeTep YATIOH

Uy PTOY WITOH

sury dn-98s YITOH
woxy ewrg oTdwes YJITOH

Emne: —_ ok, nr.: A ki Side /
l ID 1600 (PU- wodule Dok or.: Afptectix A 1
Navn: O L ud 2
l L}l-q: C-Lonl(~ QH&S(, qeng r‘ﬂfl‘O‘f Dato:)75-*—0/7—()6 sider
u -653
02 le
I : fy 0y ¥
7 —2 Iz
1 - ,@jﬂ
AN g / 10 13 ! 2y
2 Q- 41 Qf LY S0 qoft—4 P =y
i : 9 @
”ELP O N .i> N o
b 1gns ks |, Ve s KIS | < ale
l Q'L—T Qo > >
@1 g,
1 ﬁ 11 15 ToH
l o & j”&-ﬂ‘l
& &,L-H;L-———X 249
‘el gy
I o 3
. . ? ¢7r .
L + po—X 447
I 9
L)
+5 l v Tt
l ¢ o !
. [T
-
l)[r] @t -3
“oe
1 'o°F
o 1
D)
' BENY (i
}.%ﬂ)——)
I Ve
390 Rq e) E
l WA ERPYTI LV
Yoy Yoy 24 10y
Mo R W R B e
I ©, ¢, L&
] L — oo
;‘| i(:i"'; % Q"‘j
IECMH2 Y8
l 170y T
5g 8 =
I Iq{“;‘)
l 3{/ Qﬁ"\'n ;N‘"{‘t{{'[“ Gvemel s :: LTr_ {‘jt“v"’("nr_,r i Tk {rif [
" b1 .

mne: bl " ‘__-_7- o -_-; . nr.: H -ka:l"k 2 S‘; e :
™ 1D-1000 CPU--aockule Dok et e 2
Navn: O l_ ud af
ﬂl-li ndfi e (Z)(L.S A_r“u(cr‘.s Date: 18- 07~ O6 sider
4-653 -té—
BRW L DILARLE » Hzé
Fgogo ‘ E] 17)':11 12)
e 136 e ™Mp e 1 2 IS ARIS) nig
hry ¥ 7 ARD) s iy
Ay 22 22, i MR (), At
27 it 21 ADA (i2) _
py HO 1 [0 LION
e lro
Al f ,7, @ g A g 1k
he 13€ 3 4 AR (5) i
> |34 2 q AR (3) |
As > (e A
I
®
/ & .
J;J« | J/_l-(l) {3
Vg 133 el M se 2 D s M)
Y v g 1 ADR {2) x A
HS- %) '10\ H ﬂp}{;_ﬂ X QQ
o ’ll\ 2} ;z AN)
i $711 T
a3 LI il 0 e
A9 2% N @ & QDR;Z'\‘ X AT
QT 26 § \ 4 __ ':mr X RV
2¢ 3 Y R
[)W
2
;E

Emne:

HIZ) Btottrt_o{'wnni 0(

ID 7000 CPU - mo(,(.wu

et _bug drirers

Dok. ar.:

Navn:

OL

ud af

Rppendin 2 _l Side 3

Dato: /7§ 0/7 Oé '

sider

) DRustiiAgLE
DaIn fm[" %RLG 1K QL;’E‘K Ay s lRy LI
> (ol s 15 & o
| - \
186go) A _T Jl—_j::zd ZN)y na
[
g —an 19 D{c:)J V7t
Dt:) 1y TS
e s)
\.[F q é -/\ __5(3
Df | ')/
y Y
Dy > EQ @ 2) X q3s
@
) s 1} N
1 —hEV & o D{3) o
D} 1l 2
g A —in 1 o)
D 1 e LA
‘ i ol . o)
N q I " ASLEN Vg ,,,--)
U1 9 L R 152
10 Y 2 — RS :: 49
D —iz + !
(4] ik _Ié,
g @
2 U)
el D s8I MEMR
I??: 17 Tnp 3 :AVZ Ny
Loy i ™M 8w
tl :)L{T I TR,
Lol 1L §212 - > LAV
E‘ ! (‘1 . !.-) . '_FLTPI N B l:"
R : © j]
| 1, - ; ST,
\Y J L Wo S
RN] b TR s
UR D% DA
{u P i "O
\ RCeseT
)
s
J
GLIT
)-.__._-_..w—r
){-/ ;-;h.g Ky ,.f [1 |f, {; | 5k@(
Sk‘a‘ Pf t S.

Emne:

L) 7000

CPU ~ moglule

_Dok. or.: H}Efcﬁrij{";: | sige

Navn: {_") L

oro: 1520906

L7

INTA

+§
!7!12 X’ a“'—“(jao ()}Fp
—51 - g’ - > 3 -JQ ><_ Gfﬂz‘,
~>!{'1\ u -11_,
Tyr g 0z
A4 Jp_) S
24 4
N ']_"n
Ial S U
2 N —X {172
- +5
I’“ 2
| _50 -
"ﬁ\}‘ OUTR o By
+g
T
';;j'gl() —
i \I‘,-.R‘
7 X B2

Evne: T Q000 CPU- o dudl Dok, nr.: Appenclin 2| si¢e
Navn: OL
325: Outpud drvers 3 Dato: 12-07-06
Liay 302 '
o . Ll -
13080 g 2L 1 e >,t 1}, DL R2 8
D) - o7 pdess lalid
»
leoYy
Viart | il 7 WATT
L@ _
S
: T
Leey Tyok no
Icl H:)i ng STNC_ .
e a?‘@v St 5
7™ SYNC
1) —xX B¢
LSoy J
l DAL
g1 ;f’i 12}~ ; N
Del o)
Lioy
— 119 L, . WG
Wi > @ o T N
[_'HL‘? Q??_:gof) —
g | E] 2.
T2 Iy (D',) N < 827
INTE Loy
INTE
—_ fm Cl— ' 8 6

r

Emne: ID‘ 7000 (,PLA _ "“"‘0(‘,‘.1.!./((Dok. nr.: lefwdl X Q_ Side J
I Navn: OL ud af
Ql o~ an.\/{‘ '-7“’5'5“‘3 W" S:]“‘C!"""C) V\ASM? }LP J*l'-’PS Dato: {IS““O? -06
i +$ [) <y
MY T
Tfo go N_{ Rq K S50 “A; f E_M_l
e e T LT
([N [A :
+< 1c
l T ip | > Q2 (P“?{ Al 3) e]i'___
22 R,:?_ “(q —— { = Vemt
l READY o DKE 3 —x 195
Tiery <’” Vs ¢
I O MEM DISAQ) O
L £
. | 83
l 3 ! ; H/\ foy
v
17 /Z] o
I 7 T ~
I (3,2 = 3000 $o)
pr L - ¢
I —?looa +1
4 =— R 7 T
Rl S 0T
I Dk & x 327
I b Yty <,°> G317,
i £,z
HULE ‘\3 s ji é_a @
| (I
l THo¢ ——
2 R n< l—— , E<en
QC_S’:T- o
|2 41V
I + 12 5 ? ¢ - K BY9
C
— | 2 af v
' +S “((F — +S ‘/I‘})}i{u
S - o IO NP
l L ‘ Aye Az
C I 51 Liz‘h -Lv ,
l =2 - - — X H?\

APPENDIX 3

intgl’ silicon Gate MOS 8080A
SINGLE CHIP 8-BIT N-CHANNEL MICROPROCESSOR

The 8080A is functionally and electrically compatible with the Intel® 8080.

= TTL Drive Capability = Sixteen Bit Stack Pointer and Stack
. Manipulation Instructions for Rapid
= 2 ps Instruction Cycle Switching of the Program Environment
s Powerful Problem Solving = Decimal,Binary and Double
Instruction Set Precision Arithmetic
» Six General Purpose Registers = Ability to Provide Priority Vectored
and an Accumulator Interrupts
= Sixteen Bit Program Counter for | = 512 Directly Addressed 1/0 Ports
Directly Addressing up to 64K Bytes
of Memory

The Intel® 8080A is a complete 8-bit parallel central processing unit {CPU). It is fabricated on a single LSI chip using Intel’s
n-channel silicon gate MOS process. This offers the user a high performance solution to control and processing applications.

The 8080A contains six 8-bit general purpose working registers and an accumulator. The six general purpose registers may be

addressed individually or in pairs providing both single and double precision operators. Arithmetic and logical instructions set

or reset four testable flags. A fifth flag provides decimal arithmetic operation.

The 8080A has an external stack feature wherein any portion of memory may be used as a last in/first out stack to store/
retrieve the contents of the accumulator, flags, program counter and all of the six general purpose registers, The sixteen bit
stack pointer controls the addressing of this external stack. This stack gives the 80BOA the ability to easily handle multiple
level priority interrupts by rapidly storing and restoring processor status. It also provides almost unlimited subroutine nesting.
This microprocessor has been designed to simplify systems design. Separate 16-line address and 8-line bi-directional data
busses are used to facilitate easy interface to memory and /0. Signals to control the interface to memory and /O are pro-
vided directly by the 8080A. Ultimate control of the address and data busses resides with the HOLD signal. It provides the
ability to suspend processor operation and force the address and data busses into a high impedance state. This permits OR-

tying these busses with other controlling devices for {DMA) direct memory access or multi-processor operation.

D,-D
7 (1]
B0O30A CPU FUNCTIONAL BI-DIRECTIONAL
BLOCK DIAGRAM DATA BUS
DATA BUS
BUFFER/LATCH
(B BIT) (8 BIT)
INTERNAL DATA BUS INTERNAL DATA BUS
- B
]I H TL
ACCUMULATOR TEMP. REG. INSTRUCTION
l :sn] r rs] REGISTER (@) MULTIPLEXER
i I w 18) 3 81
FLAG &) - MP
FLIP.FLOPS lL TEMP REG. TEMP REG.
ACCUMULATOR - B {8 c 8
LATCH (8} 2 REG. REG.
[INSTRUCTION o D 181 E (8)
Agiggg:gnc DECODER & REG REG
AND o« . -
S MACHINE =t H 8 L 8} | REGISTER
(ALY} CYCLE @ REG. REG. ARRAY
18 ENCODING a8 (181
- « STACK POINTER
1181
l PROGRAM COUNTER
DECIMAL INCREMENTER/DECREMENTER
ADJUST —- ADDRESS LATCH 118}
TIMING
AND)
CONTROL |]
POWER = 12V [ADDRESS BUFFER “E']
SUPPLIES | —w +5V DATA BUS INTERRUPT HOLD WAIT =
WRITE CONTROL CONTROL CONTROL CONTROL SYNC CLOCKS
— -5V .
=% T T IT LT
WR DBIN INTE INT HOLD HOLDWAIT SYNC o1 2 RESET A, Ay
ACK READY s
ADDRESS BUS
513

ilLlCON GATE MOS 8080A

8080A FUNCTIONAL PIN DEFINITION

following describes the function of all of the 8080A 1/0 pins.

e
l/eral of the descriptions refer to internal timing periods.

Ag loutput three-state)
iDRESS BUS; the address bus provides the address to memory
(W to 64K 8-bit words) or denotes the |/O device number for up
to 256 input and 256 output devices. Ag is the least significant

ress bit.
Dg {input/output three-state)

DATA BUS; the data bus provides bi-directional communication
jween the CPU, memory, and 1/O devices for instructions and

a transfers. Also, during the first clock cycle of each machine
cycle, the BOBOA outputs a status word on the data bus that de-

_]:es the current machine cycle. Dg is the least significant bit.

C (output)
SYNCHRONIZING SIGNAL; the SYNC pin provides a signal to
:]icate the beginning of each machine cycle.

IN {output)
DATA BUS iN; the DBIN signal indicates to external circuits that
t' data bus is in the input mode. This signal should be used to
efiible the gating of data onto the 80B0A data bus from memory
or 1/O.

DY (input)

:!:DY; the READY signal indicates to the 8080A that valid
ory or input data is available on the B080A data bus. This
s@ibal is used to synchronize the CPU with slower memory of /O
ices. |f after sending an address out the 8080A does not re-
ceive a READY input, the 8080A will enter a WAIT state for as
as the READY line is low. READY can also be used to single
the CPU,

§

WAIT (output)

IT; the WAIT signal acknowledges that the CPU is in a WAIT
B

v

R (output)
ITE; the WR signal is used for memory WRITE or 1/O output
control. The data on the data bus is stable while the WR signal is
ive low (WR = 0).

LD (input)

HOLD; the HOLD signal requests the CPU to enter the HOLD
state, The HOLD state allows an external device to gain control
olhe 8080A address and data bus as soon as the 8080A has com-
pitted its use of these buses for the current machine cycle. It is
recognized under the following conditions:

ol he CPU is in the HALT state.

slthe CPU is in the T2 or TW state and the READY signal is active.

As a result of entering the HOLD state the CPU ADDRESS BUS .

(4ll5-Ag) and DATA BUS (D3-Dg) will be in their high impedance
s@ille. The CPU acknowledges its state with the HOLD AC-
KNOWLEDGE (HLDA) pin.

A {output)
LD ACKNOWLEDGE; the HLDA signal appears in response
to the HOLD signal and indicates that the data and address bus

|
-

Ay O+11 40 —=0 Aqy
GND O—1 2 39 —=0 Aqy
D, =3 38 F—=0 A3
Ds O+ 4 37 |—=0 A2
Dy O+—]5 36 F—0 A5
D, o=—{6 35 b—=0 Ag
D_-‘ O+—=1 7 34 b—0 Ag
o, 0+—[s INTEL 3[—o~
D, O} 9 32 b—0 Ag
p, =10 8080A 31}—onx
_5v o—— 11 30 b—=0 Ay

RESET 00— 12 20 —=0 A;
HOLD O——{ 13 28 }———0 +12v

INT O—1 14 27 Fb—=0 A;

2 ol 15 26 |—=0 A,
INTE O=— 16 25 —=0 A
DBIN Oe—q 17 24 —0 WAIT
WE O+—1 18 23 j+—0 READY
SYNC O+ 19 22 f=—0 ¢,
+5y O—F 20 21 HLDA

Pin Configuration

will go to the high impedance state. The HLDA signal begins at:

® T3 for READ memory or input.

e The Clock Period following T3 for WRITE memory or QUT-
PUT operation.

In either case, the HLDA signal appears after the rising edge of ¢4
and high impedance occurs after the rising edge of ¢5.

INTE (output)

INTERRUPT ENABLE; indicates the content of the internal inter-
rupt enat'z flip/flop. This flip/flop may be set or reset by the En-
able and Disable {nterrupt instructions and inhibits interrupts
from being accepted by the CPU when it is reset. [t is auto-

matically reset (disebling further interrupts) at time T1 of the in-
struction fztch cyciz (M1) when an interrupt is accepted and is
also reset by the RESET signal.

INT (input)

INTERRL>T REQUEST:; the CPU recognizes an interrupt re-
quest on tis line a1 the end of the current instruction or while
halted. 1¥ the CPU is in the HOLD state or if the Interrupt Enable
flip/flop 'z reset it will not honor the request.

RESET (input) 1]

RESET; whils the RESET signal is activated, the content of the
program czunter is cleared. After RESET, the program will start
at locatio= 0 in memory. The INTE and HLDA flip/flops are also
reset, No:z

that the

fizgs, accumulator, stack pointer, and registers

e erence
% Volts
s Vcits

=5% Vo s {substrate bias).
xzernzlly supplied clock phases. (non TTL compatible)

W

514

SILICON GATE MOS 8080A

ABSOLUTE MAXIMUM RATINGS™

Temperature UnderBias
Storage Temperature--. -65°C to +150°C
All Input or Qutput Voltages

With RespecttoVggo o -0.3V 1o +20V
Vee. Vpp and Vgg With Respect to Vgg -0.3V to +20V
“Power Dissipationot ia 1.5W

*COMMENT: Stresses above those listed under "Absolute Maxi-

mum Fl'atings” may cause permanent damage to the device.
This is a stress rating only and functional operation of the de-
vice at these or any other conditions above those indicated in
the operational sections of this specification is not implied. E x-
posure to absolute maximum rating conditions for extended
periods may affect device reliability.

D.C. CHARACTERISTICS

Ta =0°C to 70°C, Vpp = +12V £ 5%, Ve = +5V ¢ 5%, Vgg = -5V £ 5%, Vgg = OV, Unless Otherwise Noted.

Symbol Parameter Min. Typ. Max. Unit Test Condition
ViLe Clock Input Low Voltage Vgs—1 Vgst+0.8 Vv
Vine Clock Input High Voltage 9.0 Vppt1 A
ViL Input Low Voltage Vgs—1 Vggt0.8 A
ViH Input High Voltage 33 Veet+1 \
Vou Qutput Low Voltage 0.45 \Y 1 loL = 1.9mA on all 6utputs,
Vor Output High Voltage 3.7 v lon =-150pA.
Ipp (av) | Avg. Power Supply Current (Vpp) 40 70 mA
e Avg. Power Supply Current (V) 60 | 80 A || Operation
ce (AV) vg. Power Supply Cur cc m Tey = .48 usec
igg (av) | Ava.Power Supply Current (Vgg) .01 1 mA]
he Input Leakage) +10 pA | Vss <Viy < Vee
leL Clock Leakage) +10 HA Vgg < VerLock < _VDD
Ip (2] Data Bus Leakage in Input Mode(-100 uA Vgg <V SVgg+0.8V
' 20 | mA | v +0.8V<Vin<Vee
e Address and Data Bus Leakage +10 LA Vapbr/ioaTa = Vee
L During HOLD -100 VADDR/DATA = Ves 0.45V
CAPACITANCE TYPICAL SUPPLY CURRENT VS.
T, =25°C Vcc =Vop = Vss = 0V, Vg = -5V ., TEMPERATURE, NORMALIZED, 3]
Symbol Parameter Typ. Max. Unit Test Condition 5
C I i - 2
& Clock Capacitance 17 25 pf f.=1MHz § . K -
Cin tnput Capacitance 6 10 pf Unmeasured Pins » KK
Cout QOutput Capacitance 10 20 pf Returned to Vgg 3
NOTES:
1. The RESET signal must be active for a minimum of 3 clock cycles. 0'50 +25 +50 475
2. When DBIN is high and Vjp > V|4 an internal active pull up will AMBIENT TEMPERATURE {°€)
be switched onto the Data Bus.
3. Alsupply / ATp =-0.45%/C.
DATA BUS CHARACTERISTIC
DURING DBIN
MAX - — — — —
TDL
uﬂ VEC
Vin

515

§ !ILICON GATE MOS 8080A

lc.. CHARACTERISTICS
A =0°Cto 70°C, Vpp = #12V % 5%, Ve = +6V £ 5%, Vg = -5V £ 5%, Vsg = 0V, Unless Otherwise Noted

'vmbol : Parameter Min. | Max. | Unit Test Condition
ey13] | Clock Period ‘ 0.48 | 2.0 | usec

t., ts Clock Rise and Fall Time 0 50 | nsec
lﬂ ¢q Pulse Width 60 nsec

ta2 ¢» Pulse Width 220 nsec
Im Delay ¢4 to ¢o 0 nsec

D2 Delay ¢+ to ¢4 70 nsec

tp3 Delay ¢4 to ¢ Leading Edges 80 nsec

pa (2] | Address Output Delay From ¢ 200 | nsec

C_ = 100pf

tpp (2] | Data Output Delay From ¢5 220 | nsec

IDC [2] | Signal Output Delay From ¢y, or ¢, (SYNC, WR,WAIT, HLDA) 120 | nsec .
Cp =50

or [2] | DBIN Delay From ¢, 25 | 140 | nsec L=t

tpy[1! Delay for Input Bus to Enter Input Mode tpg | nsec
:|351 Data Setup Time During ¢4 and DBIN 30 nsec

ING WAVEFORMS ' imi
(Note: Timing measurements are made at the following reference voltages: CLOCK “1' = 8.0V
0" = 1.0V; INPUTS “1” = 3.3V, 0" = 0.8V; OUTPUTS "1” = 2.0V, “0" = 0.8V.)
toy | —l g [)
I ™ | -
“_ N AN ; I\ N
4—‘92—-— J
- q — —
I P
"103"'! —’] o2 |

il

taw
‘—‘tDD__T ~ iy i-— e 1DHE‘— et p—

A —‘K___._ _]:. JRSRNS SRR I ¥ SR S P
" . . 4 1 L— -+ —
l -n—~tDA~b-j
. o —— T - ’
DATA IN 10 DATA OUT
'-Dn 1 ————— . —_L—‘xAT ..(lg '.____-.--—--—--J—t

ow ™

—| gy le—

4

SYNC- ! f—Ttpgz—
— the —=! the I-—
BIN

.

b toF - = ToF =

i
W T
- tog fe—e]| —

4

al

AL
READY __} T

RS .T Tpc e
T ty —| |- 1

-

_LMJ

1@,
T
fed
11

L]
z
|
l®‘-
T2]

| 516

SILICON GATE MOS 8080A

A.C. CHARACTERISTICS (Continued)
Ta =0°C 10 70°C, Vpp = +12V £ 5%, Vg = +6V £ 5%, Vgg = -5Vt 5%, Vgg = OV, Unless Otherwise Noted

Symbol Parameter Min. | Max. | Unit Test Condition

tps2 Data Setup Time to ¢ During DBIN 150 nsec

tpu (1] | Data Hold Time From ¢ During DBIN " ' nsec

tye (2] INTE Qutput Delay From ¢2 200 | nsec C_ = b0pf

tRs READY Setup Time During ¢3 120 nsec

tHs HOLD Setup Time to ¢5 140 nsec

tig INT Setup Time During ¢ (During ¢ in Halt Made) 120 nsec

tH Hold Time From ¢5 (READY, INT, HOLD) 0 nsec

teD Delay to Float During Hold {Address and Data Bus) 120 | nsec

taw!2) | Address Stable Prior to WR (5] nsec T

tpw!2! | Output Data Stable Prior to WR (6] nsec

twpl2 | Output Data Stable From WR (71 nsec

_ twal?] | Address Stable From WR 7 nsec | |- CL=100pf: Address, Data
: I C,=50pf: WR, HLDA, DBIN

tHF[2] HLDA to Float Delay (8] nsec

twg (2] | WR to Float Delay (9] nsec

tan[2] | Address Hold Time After DBIN During HLDA -20 nsec | |

SYNC

DBIN

WR

READY

WAIT

HOLD

HLDA

INT

INTE

— ———— o — T

™

e e e et -

| 'wo

L™

,_.,| - tan

toc

,

D y—

© Moy

NOTES:
1. Data input should be enabled with ‘DBIN status. No bus conflict can then occur and data hold time is assured.
tpH = 50 ns or tpF, whichever is less.

2. Load Circuit.

+5V
21K
80804 ‘
QUTPUT 1 c
T 1500A
3. toy =1p3 tip2 192 * tip2 TID2 + gt * 480ns. =

TYPICAL A OUTPUT DELAY VS. A CAPACITANCE

420
]
> 410
a
-
w
8 o
ot
Fd S spec
&
2 -1
a
-20
-100 -50 1] +50 +100

4 CAPACITANCE (pf)

{Cacruar — Cseec

4. The following are relevant when interfacing the BOBOA to devices having V4 = 3.3V:

a) Maximum output rise time from .8V to 3.3V = 100ns @ C| = SPEC.

b) Output delay when measured 10 3.0V = SPEC +60ns ® C_ = SPEC.

¢ 1f C| # SPEC, add .6ns/pF if C_> CgpEc, subtract \3ns/pF [from modified delayl if Cp < CSPEC
taw = 2 toy -1p3 ~trp2 —140nsec.

tow = tCY ~tD3 ~1rg2 ~170nsec.

. If not HLDA, twp = twa = tD3 * trg2 +10ns. If HLDA, twp = WA = 'WF-

. tHF = tD3 *+ trg2 -50ns.

. twF =tp3 + g2 ~10ns

10. Data in must be stable for this period during DBIN “T3. Both tpgy and tpg2 must be satisfied.
11. Ready signal must be stable for this period during T or Ty, {Must be externaily synchronized.)
12. Hold signal must be stable for this period during T or Tyy when entering hold mode, and during T3, Ty, Tg ”

and Tyyy when in hold mode. {External synchronization is not réquired.)

recognized on the following instruction. (External synchronization is nat required.}

-t —a *
- 13. Interrupt signal must be stable during this period of the last clock cycle of any instruction in order to be
-

14, This timing diagram shows timing relationships only; it does not represent any specific machine cycle.

5-17

!ILICON GATE MOS 8080A

STRUCTION SET

The accumulator group instructions include arithmetic and
logical operators with direct, indirect, and immediate ad-
dressing modes.

Move, load, and store instruction groups provide the ability
to move either 8 or 16 bits of data between memory, the
six working registers and the accumulator using direct, in-
direct, and immediate addressing modes.

The ability to branch to different portions of the program
is provided with jump, jump conditional, and computed
jumps. Also the ability to call to and return from sub-
routines is provided both conditionally and unconditiona!ly.
The RESTART {or single byte call instruction) is useful for
interrupt vector operation.

Double precision operators such as stack manipulation and
double add instructions extend both the arithmetic and
interrupt handling capability of the 8080A. The ability to

Data and Instruction Formats

increment and decrement memory, the six general registers
and the accumulator is provided as well as extended incre-
ment and decrement instructions to operate on the register
pairs and stack pointer. Further capability is provided by
the ability to rotate the accumulator left or right through
or around the carry bit.

Input and output may be accomplished using memory ad-
dresses as 1/O ports or the directly addressed /0 provided
for in the 8080A instruction set.

The following special instruction group completes the 8080A
instruction set: the NOP instruction, HALT to stop pro-
cessor execution and the DAA instructions provide decimal
arithmetic capability. STC allows the carry flag to be di-
rectly set, and the CMC instruction allows it to be comple-
mented. CMA complements the contents of the accumulator
and XCHG exchanges the contents of two 16-bit register
pairs directly.

Data in the BOBOA is stored in the form of 8bit binary integers. All data transfers to the system data bus will be in the

same format.

D; Dg Ds D4 Dy Dp Dy Do

DATA WORD

The program instructions may be one, two, or three bytes in length. Multiple byte instructions must be stored
in successive words in program memory. The instruction formats then depend on the particular operation

executed.

One Byte Instructions

D; Dg Dg D4 D3 Dy Dy Do | OP CODE

Two Byte Instructions

| D; Dg Ds Dy D3 D, Dy Dy | OP CODE

| D; Dg Ds Dy D3 D, Dy Dy | OPERAND

Three Byte Instructions

| D7 Ds Ds D4 D3 D, Dy Dy | OP CODE

[D; Dg Ds D4 D3 D, Dy Do | LOW ADDRESS OR OPERAND 1

TYPICAL INSTRUCTIONS

Register to register, memory refer-
ence, arithmetic or logical, rotate,
return, push, pop, enable or disable
Interrupt instructions

Immediate mode or 1/0 instructions

Jump, call or direct load and store
instructions

| D7 Dg Ds D4 D3 Dy Dy D | HIGH ADDRESSOR OPERAND 2

For the BOBOA a logic “1" is defined as a high level and a logic 0" is defined as a low level.

SILICON GATE MOS 8080A

INSTRUCTION SET

Summary of Processor Instructions

Instruction Code(1] Clock[2) Instruction Codal1) Clock(2]

Mnemonic Description 0; Dg Ds Dy D3 Dy Oy D Cycles Mnemonic Description D; Dg Ds Dy D3 D2 Dy Dp Cyecles
MOV, 2 Move register to register ¢ 1 0D DS $ § 5 RZ Return on zero 1 1+ 0 0 10 0O 5
MOV M, 1 Move register to memory 01 1 1 0 8§ § 8 7 RNZ Return on no zero t 1 0 0 00 €0 s/
MOV r,M Move memory 1o register 01 D.D D1 10 7 RP Return on positive 11 1 1 0 0 0 O s
HLY Halt o1 1 1 0 v 10 7 RM Return on minus i1 1 1 1 0 0 O M
MV ¢ Move immediate register o0 oD DO 1T 10 1 RPE Return on parity even 11 1 0 1 0 0 O 5/
MVI M Move immediate memory g0 1t 1t 0 1 1 0 10 RPO Return on parity odd 11 1 6 0 0 0 D 5/
INR T Increment register ¢ 0 o DD 1 0O 0 5 RST Restart 11 A A A1 11 11
DERT Decrement register ¢ 0 0 D D1 01 5 IN Input 1t 1 0 1t 0 11 10
INR M Increment memory oo 1 1 0 1 00 10 ouT Output 11 0 1t 00 11 10
DCRM Decrement memary g0 1t 1 0 1t 0 1 10 LXI B Load immediate register p ¢ 0o 0 0D O 0 1 10
ADDr Add register to A 1 00 0 0 0 § S8 § 4 PairB&C
ADCr Add register to A with carry 1 0 0 0 1 8 5 8§ 4 LXI D Load immediate register 00 0 1 0 Q0 0 1 10
SUBr Subtract register from A 1 0 0 1+ O 8 § S8 4 PairD & E
SBR T Subtract register from A t 0 0 1 1 8 5 S 4 LXIH Load immedisate register 00 1 0 0 0 01 10

with borrow Pair H& L
ANA T And register with A 1 0 1 0 0 8 S 8 4 LXI SP Load immediate stackpointer @ 0 1 1 0 0 0 1 10
XRA ¥ Exclusive Or register with A 1 o v 0 1 § 8 8§ 4 PUSHB Push register Pair B & C on 1t 1 0 00 1 01 n
ORAT Or register with A 1 ¢ 1+ 1 0 S8 § S 4 stack
CMPr Campare register with A 1 ¢ v+ 1 1 8 5 § 4 PUSH D Push register Pair D & E on 11 0.1 0 1 0 1 n
ADD M Add memory to A 1T 06 o 0 0 v 1 0O 7 stack
ADCM Add memory to Awithearry 1 0 0 0 1 1 1 0 7 PUSHH Push register Pair H& L on 11 1 0 0 1t 0 1 1
SUB M Subtract memory from A T 0o 0 1 0 1 10 1 stack
SBEM Subtract memory from A Tt o0 1 1 1 1 0 7 PUSH PSW Push A and Flags 1 1 1 1 60 1 0 1 1"

with borrow on stack
ANA M And memory with A 10 1t 0 0 1 10 7 POPB Pop register pair B & C off 1 1 0 0 0O 0O 0 1 10
XRA M Exclusive Or memory with A 1 0 1 0 1t 1 1 0 1 stack
ORA M Or memory with A 10 1 1 0 % 1 0 7 FOPD Pop register pair D & E off 11 0 1 0 0 01 10
CMPM Compare memory with A 10 1 1+ 1 1t 0 1 stack
ADI Add immediate to A 1t 1 ¢ o0 1 1 0 1 POPH Pop register pair H & L off 1t 1 1 0 0 0 0 1 0
ACI Add immadiate to A with 11 0 o1 1 1t D 7 stack

carry POPPSW Pop A and Flags 1 1 1 1 0 0 0 1 10
sul Subtract immediate from A 11 0 1 0 1 0 7 off stack
SBI Subtract immediate from A 1 1 6 1t 1 1 1 10 7 STA Store A direct 0o 1 v 0 0 1 0 13

with borrow LDA Load A direct ¢c 0o 1 1 10 10 13
ANI And immediate with A 1 1 1 60 1 1 1 XCHG Exchange D& E H&L 11 1 0 0 1 1 4
XRi Exclusive Or immediate with 1t 1t 1 0 1t 1 1 0 7 Registers

A XTHL Exchange top of stack, H& L 1 1 1t 0 0 0 11 18
ORI 0r immediate with A 11 1 10 1 10 7 SPHL H & L to stack pointer 1.1 1 1t 1.0 01 5
CPl Compare immediate with A Tt 1 1 1 1 1 1 0 7 PCHL H & L to program counter 1 1 1 0 v 0 01 5
RLC Rotate A left oo o 0 0 1t 1 1 4 DADB AddB&CtoH&L g 0 0 0 1 0 01 10
RRC Raotate A right o0 0 0 1t v 1 1 4 DADD AddDBEwHEL ¢ 0 0 1 1 0 01 10
RAL Rotate A left through carry o0 0o 1 0 1 1 1 4 DADH AddH& Lo H&L [1 01 0 0 1 10
RAR Rotate A right through o0 0 1 1 1 11 4 DADSP Addstack pointerto H& L oo 1Y 1 10 0 1 10

carry STAX B Store A indirect p 0O O 0 © 0 1 D 1
JMP Jump unconditional 11 0 0 0 0 11 10 STAXD Store A indirect o0 0 1 0 D0 10 7
JC Jump on carry Tt 1 01 1 0 v 0 10 LDAXB Load A indirect 00 0 0 1 0 10O 7
JINC Jump on no carry 11 0 1 0 ¢ 1 0D 10 LDAX D Load A indirect o0 o 1 1 60 10D 7
JZ Jump on zero 1 1+ 0 ¢ 1+ 0 1 0 10 INXB Increment B & C registers ¢t 0 0 0o 00 v 1 5
INZ Jump on no zero 1 1 0o 0 0D 0D 1 O 10 INXD increment D & E registers o0 0 1 0 0 1 1 5
JP Jump on positive 1 1 1 1 0 0 1 0 10 INX H tncrement H & L registers p o 1+ 0 0 0 11 §
M Jump on minus LA S T T I 10 INX SP increment stack pointer o0 t t 0 0 11 5
JPE Jump on parity even t 1t 1 0 10 1 0 10 DCX B Decrement B & C p o0 0 o 1 0 11 5
JFD Jump on parity odd 11 1 0 0 0 v O 10 pDCX D Decrement D & E o0 0 1 v 0 11 5
CALL Call unconditional 1T 1 0 . B 1 1 0 1 17 DCXH Decrement H& L 0 0 1 D1 a0 11 5
cc Call on carry 11 071 1 1 D O JATS Y DCX SP Decrement stack pointer o0 1 1 1 0 1 1 5
CNC Call on no carry 1 t+ 0 1 0 1t 0 O 1117 CMA Complement A oo 1 0 1 1t 1t 1 4
cz Call on zero 1 1 0 0 1 1t 0 @ nmnr STC Set carry oo 1 1 0 1 11 4
CNZ Call on no zero 11 0 0 0 1 0 0 1117 CMC Complement carry oo t 1 t 1t 11 4
cP Call on positive Tt 1t 1 1 0 1 © 0 1117 DAA Decimal adjust A p o 1 0 0 1 11 4
] Call on minus 11 1 1 1 1 00 1/17 SHLD Store H & L direct o0 1 0 0 0 1 0 18
CPE Call on parity even 11 1 0 11 0 O 1/ LHLD Load H & L direct a0 1 0 1 0 1 0 16
[¥ 2] Call on parity odd 11 T 0 0 1 0 0 11/17 El Enable Interrupts 11 1 1 v 0 11 4
RET Return 11 0D 0 1 0 D 1 10 ul} Disable interrupt o1 1 1 0 0 11 4
RC Return on carry t 1+ 0 %t 1 0 O O 5/11 NOP No-operation o 0 o0 0 0 0 0 0 4
ANC Return on no carry 1 1 0 1 0 0 0 0 5/11
NOTES: 1. DDDor SS5—000B -001 C— 010D —011 E~100H - 101 L — 110 Memory — 111 A,

2. Two possible cycle times, {5/11) indicate instruction cycles dependent on condition flags.

519

APPENDIX 4

The 8080 is a complete 8-bit parallel, central processor
unit (CPU) for use in general purpose digital computer sys-
tems. It is fabricated on a single LS| chip (see Figure 2-1).
using Intel’s n-channel silicon gate MOS process. The 8080
transfers data and internal state information via an 8-bit,
bidirectional 3-state Data Bus (Dg-D7). Memory and peri-
pheral device addresses are transmitted over a separate 16-

S

bit 3-state Address Bus (Ag-A15). Six timing and control
outputs (SYNC, DBIN, WAIT,WR, HLDA and INTE) eman-
ate from the 8080, while four control inputs (READY,
HOLD, INT and RESET), four power inputs {+12v, +5v,
By, and GND} and two clock inputs {¢q and ¢2) are ac-
cepted by the 8080,

g Bl

NS
Ay O=—]1 4p |—=0 Ayy
GND O——] 2 39 |0 Aqq
D, O=—=l3 38 |—0 Az
Dy O=—+f4 37 F—0 Ay
Dy =] 5 36 F—0 Ayg
D, O=—1{6 35 b—=0 Ag
D, =7 34 p—=0 Ay
o, 0~—~le INTEL =f—o4
D, 0~—{3 32 |—=0 4
D, O=—=1 10 8080 31 p—=0 Ag
-5y 0—— 1N 30 b—=0 Ay
RESET O—{ 12 29 b0 A,
HOLD 0—={ 13 28 p——0 +12V
INT O—{ 14 27 p—=0 A;
[Py mmm— T 26 F—=0 Ay
INTE O=—rf 16 25 b—0 Ay
DBIN Q= 17 24 F—0 WAIT
WR O=—1 138 23 f=——=0 READY
SYNC O=—- 19 22 =0 o
+5v 0— 20 21 f—+0 HLDA

Figure 2-1. 8080 Photomicrograph With Pin Designations

241

?.'..

ARCHITECTURE OF THE 8080 CPU

The BOB0O CPU consists of the following functional
units:

» Register array and address logic
Arithmetic and logic unit (ALU)
Instruction register and control section
+ Bi-directional, 3 -state data bus buffer

Figure 2-2 illustrates the functional blocks within
the 8080 CPU.

Registers:

The register section consists of a static RAM array
organized into six 16-bit registers:

* Program counter (PC)

* Stack pointer (SP)

* Six 8-bit general purpose registers arranged in pairs,
referred to as B,C; D,E; and H,L

* A temporary register pair called W,Z

The program counter maintains the memory address
of the current program instruction and is incremented auto-

matically during every instruction fetch, The stack pointer
maintains the address of the next available stack location in
memory. The stack pointer can be initialized to use any
portion of read-write memory as a stack. The stack pointer
is decremented when data is “pushed” onto the stack and
incremented when data is “popped’” off the stack (i.e., the
stack grows “downward’’).

The six general purpose registers can be used either as
single registers {B-bit) or as register pairs (16-bit). The
temporary register pair, W,Z, is not program addressable
and is only used for the internal execution of instructions.

Eight-bit data bytes can be transferred between the
internal bus and the register array via the register-select
multiplexer. Sixteen-bit transfers can proceed between the
register array and the address latch or the incrementer/
decrementer circuit. The address latch receives data from
any of the three register pairs and drives the 16 address
output buffers (Ap-Aq1g), as well as the incrementer/
decrementer circuit. The incrementer/decrementer circuit
receives data from the address latch and sends it to
the register array. The 16-bit data can be incremented or
decremented or simply transferred between registers.

(8 BIT}
INTERNAL DATA BUS

DATA BUS
BUFFER/LATCH

BI-DIRECTIONAL
DATA BUS

18BIT)
INTERNAL DATA BUS

| ACCUMULATORI |
i8]

TEMP, REG.
181

3

FLAG &
FLIP-FLOPS

INSTRUCTION
REGISTER (8)

MULTIPLEXER

ACCUMULATOR
LATCH (8}

ARITHMETIC|
LOGIC
UNIT
{ALU)
8}

DECIMAL
ADJUST

|
w {£:1] z {t:4)
TEMP REG. TEMP REG.
- B 18) c T
g REG. REG.
INSTRUCTION z o 8 £ @
DECODER] REG. REG,
AND - & 8] EGISTER
MACHINE = H & L f | REGI
@ REG. REG. ARRAY
CYCLE e
ENCODING e 1161
= STACK POINTER
{16}
PROGHAM COUNTER
_ | INCREMENTER/DECREMENTER
> ADDRESS LATCH 18
TIMING
AND \
CONTROL]

{'IGII

r ADDRESS BUFFER
F3

POWER | —= +12V
SUPPLIES | s 45V DATA BUS INTERRUPT HOLD WAIT
WRITE CONTROL CONTROL CONTROL CONTROL SYNC CLOCKS
—s -5V
o T T T TTT 11T
SYNC ¢1 ¢2

WR DBIN INTE INT HOLD HOLDWAIT

ACK READY

RESET Ay Ay

ADDRESS BUS

Figure 2-2. 8080 CPU Functional Block Diagram

22

Arithmetic and Logic Unit (ALU):

The ALU contains the following registers:

e An 8-bit accumulator
« An 8-bit temporary accumulator {ACT)

e A 5-bit flag register: zero, carry, sign, parity and
auxiliary carry

e An 8-bit temporary register (TMP)

Arithmetic, logical and rotate operations are per-
formed in the ALU. The ALU is fed by the temporary
register (TMP) and the temporary accumulator (ACT) and
carry flip-flop. The result of the operation can be trans-
ferred to the internal bus or to the accumulator; the ALU
also feeds the flag register,

The temporary register {TMP) receives information
from the internal bus and can send all or portions of it to
the ALU, the flag register and the internal bus.

The accumulator {ACC) can be loaded from the ALU
and the internal bus and can transfer data to the temporary
accumulator (ACT) and the internal bus. The contents of
the accumulator (ACC) and the auxiliary carry flip-flop can
be tested for decimal correction during the execution of the
DAA instruction (see Chapter 4).

Instruction Register and Control:

During an instruction fetch, the first byte of an in-
struction (containing the OP code)} is transferred from the
internal bus to the 8-bit instruction register.

The contents of the instruction register are, in turn,
available to the instruction decoder. The output of the
decoder, combined with various timing signals, provides
the control signals for the register array, ALU and data
buffer blocks. In addition, the outputs from the instruction
decoder and external control signals feed the timing and
state control section which generates the state and cycle
timing signals.

Data Bus Buffer:
This 8-bit bidirectional 3-state buffer is used to

isolate the CPU's internal bus from the external data bus.

{(Dp through D7). In the output mode, the internal bus
content is loaded into an 8-bit latch that, in turn, drives the
data bus output buffers, The output buffers are switched
off during input or non-transfer operations,

During the input mode, data from the external data bus
is transferred to the internal bus. The internal bus is pre-
charged at the beginning of each internal state, except for
the transfer state (T3—described later in this chapter).

THE PROCESSOR CYCLE

An instruction cycle is defined as the time required
to fetch and execute an instruction. During the fetch, a
selected instruction {one, two or three bytes) is extracted
from memory and deposited in the CPU's instruction regis-
ter. During the execution phase, the instruction is decoded
and translated into specific processing activities.

Every instruction cycle consists of one, two, three,
four or five machine cycles. A machine cycle is required
each time the CPU accesses memary or an 1/0 port. The
fetch portion of an instruction cycle requires one machine
cycle for each byte to be fetched. The duration of the execu-
tion portion of the instruction cycle depends on the kind
of instruction that has been fetched, Some instructions do
not require any machine cycles other than those necessary
to fetch the instruction; other instructions, however, re-
quire additional machine cycles to write or read data to/
from memory or |/0O devices. The DAD instruction is an
exception in that it requires two additional machine cycles
to complete an internal register-pair add (see Chapter 4).

Each machine cycle consists of three, four or five
states. A state is the smallest unit of processing activity and
is defined as the interval between two successive positive-
going transitions of the ¢1 driven clock pulse. The 8080
isdriven by a two-phase clock oscillator. All processing activ-
ities are referred to the period of this clock. The two non-
overlapping clock pulses, labeled ¢q and ¢9, are furnished
by external circuitry. It is the ¢1 clock puise which divides
each machine cycle into states. Timing logic within the
8080 uses the clock inputs to produce a SYNC pulse,
which identifies the beginning of every machine cycle. The
SYNC pulse is triggered by the low-to-high transition of ¢2,
as shown in Figure 2-3.

FIRST STATE OF
*EVERY MACHINE
CYCLE

1 _LM
w |/ N___/ ___
A/ __

*SYNC DOES NOT OCCUR IN THE SECOND AND THIRD MACHINE
CYCLES OF A DAD INSTRUCTION SINCE THESE MACHINE CYCLES
ARE USED FOR AN INTERNAL REGISTER-PAIR ADD.

SYNC

" Figure 2-3.¢1, ¢2 And SYNC Timing

2-3

There are three exceptions to the defined duration of
a state, They are the WAIT state, the hold (HLDA) state
and the halt (HLTA) state, described later in this chapter.
Because the WAIT, the HLDA, and the HLTA states depend
upon external events, they are by their nature of indeter-
minate length. Even these exceptional states, however, must

be synchronized with the pulses of the driving clock. Thus,
the duration of all states are integral multiples of the clock
period.

To summarize then, each clock period marks a state;
three to five states constitute a machine cycle; and one to
five machine cycles comprise an instruction cycle. A full
instruction cycle requires anywhere from four to eight-
teen states for its completion, depending on the kind of in-

struction involved.

Machine Cycle Identification:

With the exception of the DAD instruction, there is
just one consideration that determines how many machine
cycles are required in any given instruction cycle: the num-
ber of times that the processor must reference a memory
address or an addressable peripheral device, in order to
fetch and execute the instruction. Like many processors,
the BOBO is so constructed that it can transmit only one
address per machine cycle. Thus, if the fetch and execution
of an instruction requires two memory references, then the
instruction cycle associated with that instruction consists of
two machine cycles. If five such references are called for,
then the instruction cycle contains five machine cycles.

Every instruction cycle has at least one reference to
memory, during which the instruction is fetched. An in-
struction cycle must always have a fetch, even if the execu-
tion of the instruction requires no further references to
memory. The first machine cycle in every instruction cycle
is therefore a FETCH. Beyond that, there are no fast rules.
It depends on the kind of instruction that is fetched.

Consider some examples, The add-register {ADD r)
instruction is an instruction that requires only a single
machine cycle (FETCH) for its completion. In this one-byte
instruction, the contents of one of the CPU’s six general
purpose registers is added to the existing contents of the
accumulator. Since all the information necessary to execute
the command is contained in the eight bits of the instruction
code, only one memory reference is necessary. Three states
are used to extract the instruction from memory, and one
additional state is used to accomplish the desired addition.
The entire instruction cycle thus requires only one machine
cycle that consists of four states, or four periods of the ex-
ternal clock.

Suppose now, however, that we wish to add the con-
tents of a specific memory location to the existing contents
of the accumulator (ADD M). Although this is quite similar
in principle to the example just cited, several additional
steps will be used. An extra machine cycle will be used, in
order to address the desired memory location,

The actual sequence is as follows. First the processor
extracts from memory the one-byte instruction word ad-
dressed by its program counter. This takes three states.
The eight-bit instruction word obtained during the FETCH
machine cycle is deposited in the CPU’s instruction register
and used to direct activities during the remainder of the
instruction cycle. Next, the processor sends out, as an address,

2-4

the contents of its H and L registers. The eight-bit data
word returned during this MEMORY READ machine cycle
is placed in a temporary register inside the 8080 CPU. By
now three more clock periods (states) have elapsed. In the
seventh and final state, the contents of the temporary regis-
ter are added to those of the accumulator. Two machine
cycles, consisting of seven states in all, complete the
“ADD M" instruction cycle,

At the opposite extreme is the save H and L registers
(SHLD} instruction, which requires five machine cycles,
During an **SHLD’" instruction cycle, the contents of the
processor's H and L registers are deposited in two sequen-
tially adjacent memory locations; the destination is indi-
cated by two address bytes which are stored in the two
memory locations immediately following the operation code
byte. The following sequence of events occurs:

(1) A FETCH machine cycle, consisting of four
states. During the first three states of this
machine cycle, the processor fetches the instruc-
tion indicated by its program counter. The pro-
gram counter is then incremented. The fourth
state is used for internal instruction decoding,

{2} A MEMORY READ machine cycle, consisting
of three states. During this machine cycle, the
byte indicated by the program counter is read
from memory and placed in the processor’s
Z register. The program counter is incremented
again.

(3) Another MEMORY READ machine cycle, con-
sisting of three states, in which the byte indica-
ted by the processor’s program counter is read
from memory and placed in the W register. The
program counter is incremented, in anticipation
of the next instruction fetch.

(4} A MEMORY WRITE machine cycle, of three
states, in which the contents of the L register
are transferred to the memory location pointed
to by the present contents of the W and Z regis-
ters. The state following the transfer is used to
increment the W,Z register pair so that it indi-
cates the next memory location to receive data.

(5} A MEMORY WRITE machine cycle, of three
states, in which the contents of the H register
are transferred to the new memory location
pointed to by the W, Z register pair.

In summary, the “SHLD" instruction cycle contains
five machine cycles and takes 16 states to execute,

Most instructions fall somewhere between the ex-
tremes typified by the “ADD r” and the “SHLD"" instruc-
tions. The input {INP} and the output (OUT) instructions,
for example, regquire three machine cycles: a FETCH, to
obtain the instruction; 2 MEMORY READ, to obtain the
address of the object peripheral; and an INPUT or an OUT-
PUT machine cycle, to complete the transfer.

While no one instruction cycle will consist of more
then five machine cycles, the following ten different types
of machine cycles may occur within an instruction cycle:

(1) FETCH (M1)

(20 MEMORY READ
(3} MEMORY WRITE
{4) STACK READ
{(5) STACKWRITE

(6} INPUT

(7) OUTPUT

(8) INTERRUPT

{(9) HALT

(10) HALTINTERRUPT

The machine cycles that actually do occur in a par-
ticular instruction cycle depend upon the kind of instruc-
tion, with the overriding stipulation that the first machine
cycle in any instruction cycle is always a FETCH.

The processor identifies the machine cycle in prog-
ress by transmitting an eight-bit status word during the first
state of every machine cycle. Updated status information is
presented on the B0B0's data lines (Dp-D7), during the
SYNC interval. This data should be saved in latches, and
used to develop control signals for external circuitry. Table
2.1 shows how the positive-true status information is dis-
tributed on the processor’s data bus, ‘

Status signals are provided principally for the control
of external circuitry, Simplicity of interface, rather than
machine cycle identification, dictates the logical definition
of individual. status bits. You will therefore observe that
certain processor machine cycles are uniquely identified by
a single status bit, but that others are not. The M1 status
hit (Dg), for example, unambiguously identifies a FETCH
machine cycle. A STACK READ, on the other hand, is
indicated by the coincidence of STACK and MEMR sig-
nals. Machine cycle identification data is also valuable in
the test and de-bugging phases of system development.
Table 2-1 lists the status bit outputs for each type of
machine cycle.

State Transition Sequence:

Every machine cycle within an instruction cycle con-
sists of three to five active states {referred toas T1, T2, T3,
T4, Tg or Tyy). The actual number of states depends upon
the instruction being executed, and on the particular ma-
chine cycle within the greater instruction cycle. The state
transition diagram in Figure 2-4 shows how the 8080 pro-
ceeds from state to state in the course of a machine cycle.
The diagram also shows how the READY, HOLD, and
INTERRUPT lines are sampled during the machine cycle,
and how the conditions on these lines may modify the

2-5

basic transition sequence. In the present discussion, we are
concerned only with the basic sequence and with the
READY function. The HOLD and INTERRUPT functions
will be discussed later,

The 8080 CPU does not directly indicate its internal
state by transmitting a ‘'state control’’ output during
each state; instead, the 8080 supplies direct control output
(INTE, HLDA, DBIN, WR and WAIT) for use by external
circuitry.

Recall that the 8080 passes through at least three
states in every machine cycle, with gach state defined by
successive low-to-high transitions of the ¢ clock, Figure
2.5 shows the timing relationships in a typical FETCH
machine cycle. Events that occur in each state are referenced
to transitions of the ¢4 and ¢7 clock pulses.

The SYNC signal identifies the first state {T1) in
every machine cycle. As shown in Figure 25, the SYNC
signal is related to the leading edge of the ¢2 clock. There is
a delay (tpc) between the low-to-high transition of ¢2 and
the positive-going edge of the SYNC pulse. There also is a
corresponding delay (also tpg) between the next ¢2 pulse
and the falling edge of the SYNC signal. Status information
is displayed on Dgp-D7 during the same ¢9 to ¢7 interval.
Switching of the status signals is likewise controlled by ¢2.

The rising edge of ¢2 during T1 also loads the pro-
cessor’s address lines (Ag-A15). These lines become stable
within a brief delay (tpa) of the ¢7 clocking pulse, and
they remain stable until the first ¢ pulse after state T3.
This gives the processor ample time to read the data re-
turned from memory.

Once the processor has sent an address to memory,
there is an opportunity for the memory to request a WAIT,
This it does by pulling the processor's READY line fow,
prior to the “Ready set-up’’ interval (tgg) which occurs
during the @7 pulse within state T2 or Ty As long as the
READY line remains low, the processor will idle, giving the
memory time to respond to the addressed data reguest.
Refer to Figure 2-5.

The processor responds to a wait request by entering
an alternative state (Ty) at the end of T, rather than pro-
ceeding directly to the T3 state. Entry into the Ty state is
indicated by a WAIT signal from the processor, acknowledg-
ing the memory's request. A low-to-high transition on the
WAIT line is triggered by the rising edge of the ¢1 clock and
occurs within a brief delay {tDC] of the actual entry into
the Tyy state,

A wait period may be of indefinite duration, The pro-
cessor remains in the waiting condition until its READY line
again goes high. A READY indication must precede the fall-
ing edge of the ¢2 clock by a specified interval {trs), in
order to guarantee an exit from the Tyy state. The cycle
may then proceed, beginning with the rising edge of the
next ¢1 clock. A WAIT interval will therefore consist of an
integral number of Ty states and will always be a multiple
of the clock period.

Instructions for the 8080 require from one to five machine
cycles for complete execution. The 8080 sends out 8 bit of
status information on the data bus at the beginning of each
machine cycle {during SYNC time). The following table defines
the status information.

STATUS INFORMATION DEFINITION

Data Bus
Symbols Bit
INTA* Dg
wo D,
STACK Do
HLTA Da
ouT Dy
M,y Dg
INP* Dg

MEMR* D5

Definition

Acknowledge signal for INTERRUPT re-
quest. Signal should be used to gate are-
start instruction onto the data bus when
DBIN is active.

Indicates that the operation in the current
machine cycle will be a WRITE memory
or OUTPUT function (WO = 0). Otherwise,
a READ memory or INPUT operation will
be executed.

Indicates that the address bus holds the
pushdown stack address from the Stack
Pointer.

Acknowledge signal for HALT instruction.

Indicates that the address bus contains the
address of an output device and the data
bus will contain the output data when
WR is active.

Provides a signal to indicate that the CPU
is in the fetch cycle for the first byte of
an instruction. '

Indicates that the address bus contains the
address of an input device and the input
data should be placed on the data bus
when DBIN is active.

Designates that the data bus will be used
for memory read data.

*These three status bits can be used to control
the flow of data onto the B0BO data bus.

STATUS WORD CHART

80BO STATUS LATCH
10
Bo 3]
o, o,
[
0 (5)
Dy 3 Dy
o5 o,
8080 o, Dy
c] D
O s
o, 0,
SYNC 19
pain T
o1 o2 STATUS
22 15 LATCH
: D, Dq _:._ INTA
7 s o
5 15— STACK
i e HLTA
2 our
8212
2 i
—_ 32 ETI
cLOCK GEN. [23TTU) - L2 MEmR
& DRIVER —q .
14| DS, Mo D,
iz T2 T
1 DBIN
A
VCC
T T2
R AN ™
al N\ VAR
swwe |l / | TN
- | [P
DATA R
STATUS B
L

TYPE OF MACHINE CYCLE
|

&
A & % /e /S
> < Q A & S &
/) &8 /§/&/&/8/&//E/E/ /8L
& T S/E/ /&S /8 $/&F
s/ &8 /S/S/E/E5/S/8/S/E/E Sy
3 & /& v /& /K &/ 35 A 3
Q & A I /A N S
S /&/&/§/)5/5)S//&/E/ES
3 &/ F/E
83 N ®
STATUS WORD
("
ORI ICIICHIGHC @ | @
Do INTA 0 0 ol oo 0| o0 1 0 1
D1 WO 1 1 0 1 0 1 0 1 1 1
D3 STACK 0 0 0 1 1 0 o | ol o 0
D3 HLTA 0 0] 0 0|0 0 oo 1 1
Da ouT 0 0 0 0 0| o 1 0| 0 0
Ds M 1 0 0 0 0 0 0 1 0 1
Dg INP 0 0 0 0 0 1 0 0 4] 4]
D9 MEMR 1 1 0 1 0] o0 0|0 1 0
Table 2-1. 8080 Status Bit Definitions
26

m RESET

READY + HLTA

-

YES
HLTA
READY « HLTA
NO
READY
Tw -
READY
YES SET INTERNAL
HOLD HOLD F/F
NO
I
1
I
(13
"o
“ ! MODE
() i
I
i
I
ﬁ) S J
INTERNAL
HOLD F/F
SET?
NO
INST.
EXECUTION HOLD
COMPLETED MODE HOLD
AOLD

RESET INTERNAL

INT « INTE /’~ HOLD » INT

Qm

HOLD

SET INTERNAL
HOLD F/F

131

HOLD
MODE HOLD

RESET INTERNAL
HOLD F/F

RESET HLTA

NO
HOLD F/F
YES
SET INTERNAL

INT F/F
"HNTE F/F 1S RESET IF INTERNAL INT F/F IS SET.
{2V NTERNAL INT F/F IS RESET IF INTE F/F IS RESET.
IBSEE PAGE 213

Figure 2-4. CPU State Transition Diagram
2-7

The events that take place during the T3 state are
determined by the kind of machine cycle in progress. In a
FETCH machine cycle, the processor interprets the data on
its data bus as an instruction. During a MEMORY READ or
a STACK READ, data on this bus is interpreted as a data
word. The processor outputs data on this bus during a
MEMORY WRITE machine cycle. During 1/Q operations,
the processor may either transmit or receive data, de-
pending on whether an OUTPUT or an INPUT operation
is involved. :

Figure 2-6 illustrates the timing that is characteristic
of a data input operation. As shown, the low-to-high transi-
tion of g2 during T2 clears status information from the pro-
cessor’s data lines, preparing these lines for the receipt of
incoming data. The data presented to the processor must
have stabilized prior to both the “¢1—data set-up” interval
(tpg1), that precedes the falling edge of the ¢1 pulse defin-
ing state T3, and the “¢p—data set-up” interval (tDSz),
that precedes the rising edge of ¢2 in state T4. This same

data must remain stable during the “data hold” interval
(tpH) that occurs following the rising edge of the 2 pulse,
Data placed an these lines by memory or by other external
devices will be sampled during T3,

During the input of data to the processor, the 8080
generates a DBIN signal which should be used externally to
enable the transfer. Machine cycles in which DBIN is avail-
able include: FETCH, MEMORY READ, STACK READ,
and INTERRUPT. DBIN is initiated by the rising edge of 2
during state T2 and terminated by the corresponding edge of
¢2 during T3. Any Tyy phases intervening between T2 and
T3 will therefore extend DBIN by one or more clock
periods.

Figure 2-7 shows the timing of a machine cycle in
which the processor outputs data. Output data may be des-
tined either for memory or for peripherals. The rising edge
of ¢2 within state To clears status information from the
CPU’s data lines, and loads in the data which is to be output
to external devices. This substitution takes place within the

T T Tw T Ta T
(4] ‘ \ r \
!—% i r—j
" —/—_\ %—/___\ ——/._\—
Also / X UNKNOWN
e .
Dzp | / ® K L wriTE MODE FLOATING
i
I oata T READ MODE
| STABLE i
SYNG / \
- . ; ;
READY / l
T i
| |
walT / i
|
‘
DBIN / ; \ :
i
| T
WR \ / |
i i
| STATUS !
| INFORMATION i |
| | DATA
i i
i |
Ao | SAMPLE READY ! OPTIONAL FETCH DATA OPTIONAL
MEMORY ADDRESS ! HOLD AND HALT R R :
OR | HALT INSTRUCTION INSTRUCTION
1/0 DEVICE NUMBER | ! OR OR EXECUTION
Org ? } MEMORY WRITE DATA IF REQUIRED
STATUS INFORMATION i ACCESS TIME
INTA out ADJUST
HLTA WO
MEMR "y
NP STACK :
i i | i

NOTE: @ Refer to Status Word Chart on Page 2-6.

Figure 2-5. Basic 8080 Instruction Cycle

My Mo M3 _l
Ty T2 T3 Ta Ty T2 T3 T | T2 T3

|

o N N 1 M

|

SSSUY n VA n VA V Y VAS VY Y p VY

| | L — | i/DDEVICE NUMBER

Aiso | / BYTE \ UNKNOWN / BYTE Xﬁ} INPUT DATA TO |

ONE a ™Wo L ACCUMULATOR

ore | f o_J .F.CG;I'IN-GT - f YR B / MK

L |

syne | f \ l ,r‘""',——\ f—_‘: .

DBIN [\ | | / \ f \
o 1 T
READY "1” T
WAIT ‘IU” I
WR —— _: |
] |
AT ® | D(® ®
' ‘ a |

; \ 1 1

NOTE: @ Refer to Status Word Chart on Page 2-6.

Figure 2-6. Input Instruction Cycle

Ts T

T

SYNC

DBIN

]

| BYTE
| ONE

Ml
\.1. —_——

—

[
4

\unknown/

FLOATING | [

T\

T

! X N\ 1/ODEVICE \
| BYTE NUMBER
{ TWO _ ‘ |

LR ! ACCUMULATOR

READY

WAIT

STATUS
INFORMATION

@

i

E

NOTE: (N) Refer to Status Word Chart on Page 2-6.

Figure 2-7. Output Instruction Cycle

2-9

“data output delay” interval (tpp) following the ¢ clock’s
leading edge. Data on the bus remains stable throughout
the remainder of the machine cycle, until replaced by up-
dated status information in the subsequent T1 state, Observe
that a READY signal is necessary for completion of an
QUTPUT machine cycle. Unless such an indication is pres-
ent, the processor enters the Tyy state, following the T2
state. Data on the output lines remains stable in the
interim, and the processing cycle will not proceed until
the READY line again goes high.

The 8080 CPU generates a WR output for the syn-
chronization of external transfers, during those machine
cycles in which the processor outputs data. These include
MEMORY WRITE, STACK WRITE, and OUTPUT. The
negative-going leading edge of WR is referenced to the rising
edge of the first ¢q clock pulse following T2, and occurs
within a brief delay (tDC} of that event. WR remains low
until re-triggered by the leading edge of ¢4 during the
state following Tg. Note that any Ty states intervening
between T2 and Tq of the output machine cycle will neces-

sarily extend WR, in much the same way that DBIN is af-
fected during data input operations.

All processor machine cycles consist of at least three
states: Tq, T, and T3 as just described. If the processor has
to wait for a response from the peripheral or memory with
which it is communicating, then the machine cycle may
also contain one or more Ty states, During the three basic
states, data is transferred to or from the processor.

After the T3 state, however, it becomes difficult to
generalize. T4 and Tg states are available, if the execution
of a particular instruction requires them. But not all machine
cycles make use of these states, it depends upon the kind of
instruction being executed, and on the particular machine
cycle within the instruction cycle. The processor will termi-
nate any machine cycle as soon as its processing activities
are completed, rather than proceeding through the T4 and
Ts states every time, Thus the 8080 may exit a machine
cycle following the T3, the T4, or the Tg state and pro-
ceed directly to the T1 state of the next machine cycle.

STATE ASSOCIATED ACTIVITIES

Tq A memory address or 1/0 device number is
placed on the Address Bus (A15.0); status
information is placed on Data Bus (D7.g).

T2 The CPU samples the READY and HOLD in-
puts and checks for halt instruction.

TW Processor enters wait state if READY is low

{optional) or if HALT instruction has been executed.

T3 An instruction byte (FETCH machine cycle},
data byte (MEMORY READ, STACK READ)
or interrupt instruction (INTERRUPT machine
cycle) is input to the CPU from the Data Bus:;
or a data byte (MEMORY WRITE, STACK
WRITE or OUTPUT machine cycle) is output
onto the data bus,

T4 States T4 and Tg are available if the execu-

T5 tion of a particular instruction requires them:;

{optional) if not, the CPU may skip one or both of

them. T4 and Tg are only used for internal
processor operations,

Table 2-2. State Definitions

2-10

INTERRUPT SEQUENCES

The 8080 has the built-in capacity to handle external
interrupt requests. A peripheral device can initiate an inter-
rupt simply by driving the processor’s interrupt (INT} line
high. .

The interrupt (INT) input is asynchronous, and a
request may therefore originate at any time during any
instruction cycle, Internal logic re-clocks the external re-
quest, so that a proper correspondence with the driving
clock is established. As Figure 2-8 shows, an interrupt
request (INT) arriving during the time that the interrupt
enable line {INTE) is high, acts in coincidence with the ¢2
clock to set the internal interrupt latch. This event takes
place during the last state of the instruction cycle in which
the request occurs, thus ensuring that any instruction in
progress is completed before the interrupt can be processed.

The INTERRUPT machine cycle which follows the
arrival of an enabled interrupt request resembles an ordinary
FETCH machine cycle in most respects. The M1 status bit
is transmitted as usual during the SYNC interval. It is
accompanied, however, by an INTA status bit (Dg) which
acknowledges the external request. The contents of the
program counter are latched onto the CPU’s address lines
during T1, but the counter itself is not incremented during
the INTERRUPT machine cycle, as it otherwise would be.

In this way, the pre-interrupt status of the program counter
is preserved, so that data in the counter may be restored by
the interrupted program after the interrupt request has been
processed.

The interrupt cycle is otherwise indistinguishable from
an ordinary FETCH machine cycle. The processor itself
takes no further special action. It is the responsibility of the
peripheral logic to see that an eight-bit interrupt instruction
is “jammed’’ onto the processor’s data bus during state T3.
In a typical system, this means that the data-in bus from
memory must be temporarily disconnected from the pro-
cessor’'s main data bus, so that the interrupting device can
command the main bus without interference.

The 8080's instruction set provides a special one-byte
call which facilitates the processing of interrupts (the ordi-
nary program Call takes three bytes). This is the RESTART
instruction {RST). A variable three-bit field embedded in
the eight-bit field of the RST enables the interrupting device
to direct a Call 1o one of eight fixed memory locations. The
decimal addresses of these dedicated locations are: 0, 8, 16,
24, 32, 40, 48, and b6. Any of these addresses may be used
to store the first instruction(s} of a routine designed to
service the requirements of an interrupting device. Since
the (RST) is a call, completion of the instruction also
stores the old program counter contents on the STACK.

My My Mz
T3 T T2 T3 Ta Ts T T2 Ty T1 T2 T3
a L
L0 I N VY OV VW VA O VO Y O VIO VA0 B VA A
A PC-1 [PC RV RS X | s°2
T i B B G R R S
syne / \ T\ [T\
DBIN /
WR { \
RETURN M,
(INTERNAL)
NTE | \ |
wr | f : \
INT F/F
(INTERNAL)
INHIBIT STORE OF \
PC+1 (INTERNAL)
INFORMATION : ®° X@ m@

NOTE: @ Refer to Status Word Chart on Page 2-6.

Figure 2-8. Interrupt Timing

Mn+1

T Tz

{T5)*

—

ol n

D70 /

HOLD
REQUEST _, {1}
] i

|
HOLD | f ;
T :

READY |

HOLD F/F
INTERNAL

HLDA

b
|

(11 SEE ATTACHED ELECTRICAL CHARACTERISTICS. ? i
.
i

*Ts AND Ts OPERATION CAN BE
DONE INTERNALLY,

I l

Figure 2-9. HOLD Operatian (Read Mode)

M n+1

M n+2

T 3 T4

T

T2

T3

T

| R L —
.:,: FiOATiNG -

________ -~

HOLD |
REQUEST

HOLD | ’

READY

HOLD F/F
INTERNAL

HLDA

WRITE DATA

Figure 2-10. HOLD Operation (Write Mode)

2-12

HOLD SEQUENCES

The B080A CPU contains provisions for Direct Mem-
ory Access (DMA) operations. By applying a HOLD to the
appropriate control pin on the processor, an external device
can cause the CPU to suspend its normal operations and re-
linquish control of the address and data busses. The proces-
sor responds to a request of this kind by floating its address
to other devices sharing the busses. At the same time, the
processor acknowledges the HOLD by placing a high on its
HLDA outpin pin. During an acknowledged HOLD, the
address and data busses are under control of the peripheral
which originated the request, enabling it to conduct mem-
ory transfers without processor intervention,.

Like the interrupt, the HOLD input is synchronized
internally. A HOLD signal must be stable prior to the “"Hold
set-up” interval {tpg), that precedes the rising edge of ¢».

Figures 2-9 and 2-10 illustrate the timing involved in
HOLD operations. Note the delay between the asynchronous
HOLD REQUEST and the re-clocked HOLD. As shown in
the diagram, a coincidence of the READY, the HOLD, and
the ¢ clocks sets the internal hold latch. Setting the latch
enables the subsequent rising edge of the §1 clock pulse to
trigger the HLDA output.

Acknowledgement of the HOLD REQUEST precedes
slightly the actual floating of the processor's address and
data lines. The processor acknowledges a HOLD at the begin-
ning of T3, if a read or an input machine cycle is in progress
(see Figure 2-9). Otherwise, acknowledgement is deferred
until the beginning of the state following T3 (see Figure
2-10). In both cases, however, the HLDA goes high within
a specified delay {tpc) of the rising edge of the selected ¢1
clock pulse. Address and data lines are floated within a
brief delay after the rising edge of the next ¢2 clock pulse.
This relationship is also shown in the diagrams.

To all outward appearances, the processor has suspend-
ed its operations once the address and data busses are floated.
Internally, however, certain functions may continue. If a
HOLD REQUEST is acknowledged at T3, and if the pro-
cessor is in the middle of a machine cycle which requires
four or more states to complete, the CPU proceeds through
T4 and Tg before coming to a rest. Not until the end of the
machine cycle is reached will processing activities cease.
internal processing is thus permitted to overlap the external
DMA transfer, improving both the efficiency and the speed
of the entire system,

The processor exits the holding state through a
sequence similar to that by which it entered. A HOLD
REQUEST is terminated asynchronously when the external
device has completed its data transfer. The HLDA output

returns to a low level following the leading edge of the next
¢1 clock pulse, Normal processing resumes with the ma-
chine cycle following the last cycle that was executed.

HALT SEQUENCES

When a halt instruction (HLT) is executed, the CPU
enters the halt state {Tyyy) after state T2 of the next ma-
chine cycle, as shown in Figure 2-11. There are only three
ways in which the 8080 can exit the halt state:

e A high on the RESET line will always reset the
8080 to state T4; RESET also clears the program
counter,

e A HOLD input will cause the 8080 to enter the
hold state, as previously described. When the
HOLD line goes low, the BOBO re-enters the halt
state on the rising edge of the next ¢ clock
pulse,

e An interrupt (i.e., INT goes high while INTE is
enabled) will cause the 8080 to exit the Halt state
and enter state Tq on the rising edge of the next
¢1 clock pulse. NOTE: The interrupt enable (INTE)
flag must be set when the halt state is entered;
otherwise, the 8080 will only be able to exit via a
RESET signal.

Figure 2.12 illustrates halt sequencing in flow chart
form.

START-UP OF THE 8080 CPU

When power is applied initially to the 8080, the pro-
cessor begins operating immediately. The contents of its
program counter, stack pointer, and the other working regis-
ters are naturally subject to random factors and cannot be
specified. For this reason, it will be necessary to begin the
power-up sequence with RESET.

An external RESET signal of three clock period dura-
tion {(minimum} restores the processor’s internal program
counter to zero. Program execution thus begins with mem-
ory location zero, following 2 RESET. Systems which re-
quire the processor to wait for an explicit start-up signal
will store a halt instruction {El, HLT) in the first two loca-
tions. A manual or an automatic INTERRUPT will be used
for starting. In other systems, the processor may begin ex-
ecuting its stored program immediately. Note, however, that
the RESET has no effect on status flags, or on any of the
processor’s working registers (accumulator, registers, or
stack pointer). The contents of these registers remain inde-
terminate, until initialized explicitly by the program.

o

0z

Alsp

SYNC

DBIN

WAIT

STATUS
INFORMATION

N

M,

Mz

.

T2 T3

Ta

T

T2

Twh

TwH

S L
7

WA A W B ¢

T\

— - g — —

o e e =

NOTE: @ Refer to Status Word Chart on Page 2-8

Figure 2-11. HALT Timing

TO STATE
TworTa

TO STATE

T

HALT

HALT STATE

TO STATE Ty

l

HOLD STATE

Figure 2-12. HALT Sequence Flow Chart.

My

Tn+1

Ttz

Tn+3

Tn+ izl To+l

@1

N

92

B

I
Arsg i f

Do . /
RESET | nf

--—..’.—_"_—;—_-:_é_}:'——__...-

|
‘ - |
| w uumnww_x |
i

PN B U Y B

"dti':“'“-‘""—--

{ _ FLDATING

Y B W I W

Y. i

|

INTERNAL e I |
RESET ‘ . }
) | |
SYNC ! J__—\.__.._._

it 7 !

i | i
DBIN ! N i / |

L n

i | 1
! | i :
*[| |
- i
STATUS i ® !
INFORMATION i ! i

L

1WHEN RESET SIGNAL IS ACTIVE, ALL OF CONTROL O

UTPUT SIGNALS WILL BE RESET IMMEDIATELY OR SOME
CLOCK PERIODS LATER. THE RESET SIGNAL MUST BE ACTIVE FOR A MINIMUM OF THREE CLOCK CYCLES. IN
THE ABOVE DIAGRAM N AND | MAY BE ANY INTEGER.

i ' | |

i I

NOTE: (N) Feter 1o Scasus Word Chart on Poge 26.

v

Figure 2-13. Reset.

Twn

Twn Twr

| |
1 a ;
ol A upmd e e 1
|)
5 AU S N AU A O IS SN UG - : 4-
Piso ::FLQATING i i | FLOATING
— e - —] — o - e e e (e e e s s e mem e e e = w i -
Crg T U
| i
SYNC [. |
- -
| | ! |
DBIN ! i E | {—_—-_-‘3
| ! | | | |
HOLD _| if | T [
| [| |] |
HOLD F/F | | | /-"".—'_"
{INTERNAL) — : ! !
HLDA l } | /
i |]
INTE ! | \ |
1IN ;
INT | _,’_ INHIBIT INHIBIT ! |
INT HOLD : "
INT FIF 1) + |
(INTERNAL) | .
STATUS 1 :

INFORMATION

NOTE: ® Refer to Status Word Chant on Page 2.6

Figure 2-14. Relation between HOLD and INT in the HALT State.

2-15

l MNEMONIC OP CODE mil1] M2
D7DgDs5Dg | D3D2D4 Dg T1 T212 T3 T4 T T T212 T3
MOV r1,r2 010D |DS S S PC OUT PC=PC+1 |INST-TMP/IR (SSSI=TMP [TMP)=DDD
STATUS .
MOV r, M 01 DD D110 1 1 x(3 HL OUT DATA—»DDD
STATUSIE!
MOV M, r o1 1t 0D 5SS S (SS5)~TMP HL OUT i
sTATUS!T) [TMP}—{=DATA BUS
I SPHL 1111 1001 MLy . JSP :
MV r, data 0 0 DD D110 X PC OUT B2 —»DDDD
sTATUSIS!
I MVI M, data 0011 0110 | X 4 B2 —»-TMP
LX1 rp, data 00 RP o001 X : PC=PC+1 B2 —f=r1
LDA addr 00 11 1010 X PC=PC+1 B2 —-2Z
I STA addr 0011 DO1O X PC=PC+1 B2 —=2
LHLD addr 0010 1010 X PC=PC+1 B2—»2Z
SHLD addr 0o01t1o 00190 X PC OUT PC=PC+1 B2—Z
sTAaTUSIE!
LDAX rpl4l 00RP 1010 b p OUT DATA—f=A
STATUSIE]
STAX rpld) 0o RP 0010 X pOUT (A) —{»DATA BUS
staTusld]
XCHG 1110 1011 {HL}+—=(DE)
ADD ¢ 1t 000 DSS5 S (SSS)~TMP 1l {ACT)+[TMP}-+A
N [A}=ACT ;
ADD M 1000 0110 (Al=ACT HL OUT DATA-—f=TMP
- STATUSIE
ADI data 1100 D110 (Al->ACT PC OUT PC=PC+1 B2 —=TMP
STATUSIE!
ADCr Tt 000 1§88 (SSSI=+TMP 1} |ACT)+H{TMP)4+CY=A
(A)=ACT
ADC M 1000 1110 ‘ (A)=ACT HL OUT DATA—t»-TMP
STATUSIE!
AC! data 1100 1110 {al-ACT PC OUT PC=PC+1 B2 —j=TMP
. STATUSS!
SUB Tt 1001 08 58S |SSS)—=TMP [a] (ACT)-{TMP}—=A
lA)+ACT .
SUB M 1001 0110 ! |Al=ACT HL OUT DATA—1»-TMP
i sTATUSIS!
SUI data 11 01 0110 (A}+ACT PC OUT PC=PC+1 B2 —»-TMP
STATUSIE!
SBBr 1001 1§68 s (SSSI=TMP 19 ACT)-{TMPI-CY—A
(A}=ACT
SHEM 100 1 1110 {A)+ACT HL OUT DATA—»=TMP
. sTATUSIE!
SBI data 1101 1110 {A)=ACT PC OUT PC=PC+1 B2—-TMP
sTATUSIE!
INR Do DD D100 (DDD}+TMP ALU-DDOD
{TMP) + 1=ALU
INA M 001t 0100 X HL OUT DATA —»TMP
STATUSIE! (TMPI+1 —= ALU
DCRr popoDn|D1oO (DDD)=TMP ALU-DDD ’
(TMPH+1—=ALU
OCR M a0 11 0101 X HL OUT DATA —#TMP
STATUSIS! (TMP)-1 —= ALU
INX rp 0 0RP 0011 (RRI+1_______ L RP
I DCX rp 00 RP 1011 {(RP} -1 | RP
DAD rpl8l 0 0RFP 100 1 x Iril+ACT {L)=TMP, ALU—L, CY
(ACT}+{TMP}—ALU
I DAA o010 011 1 ! DAA—A, FLAGSI1D)
ANA ¢ 1010 0S§8SS | (SSSI-TMP t9l [ACTI+H{TMPHA
i (A+ACT
1 L T
ANA M 1010 0110 PC OUT PC=PC+ 1] INST=-TMP/IR (A)+ACT HL ouT DATA—= TMP
STATUS sTATUS!E!
I 2-16

i
i
|
|
1
|
|
1
1
i
1
i
1
1
|
1
1
1
|
i
/

M3 M4 M5
T T212 T3 T T2l2 T3 T 7202 T3 Ta TS
HL QUT (TMP) —{» DATA BUS
sTATUS!T
PCOUT PC=PC +1 B3 —fm-rh
sTATUSS!
[
PC=PC+1 B3 —»=W WZ OUT DATA - A
STATUSIE .
PC=PC+1 B3—lm-W WZ QUT {A) - L DATA BUS
sTATUS?
PC=PC+1 BI—eW WZ OUT DATA +L WZ OUT DATA—=H
STATUSIBl | wz=wz+1 STATUSIB!
PC OUT PC=PC+1 BI—m W Wz OUT (L) ————+ DATA BUS | WZ OUT {H)——=-DATA BUS
STATUSIE! sTATUSI) | wz=wz+1 sTATUSI?
19 {ACT)+H{TMP}—=A
fol {ACT)+{TMP}—A
9l (ACTH+(TMPI+CY—A
sl (ACT)+(TMP)4+CY—A
19] {ACT)-{TMP)=A
191 {ACTI-ITMP)=A
19} (ACTH-[TMPI-CY—A
i9) {ACTI=(TMP)-CY-~+A
HL OUT ALU—}=DATA BUS
sTATUSI?]
HL QUT ALU—= DATA BUS
sTATUS[
{rh)—~ACT [HI-TMP ALU-H, CY
(ACT}+{TMP)+CY-ALU
18] [ACTI+HTMPI-A
2-17

MNEMONIC 0P CODE m1i1l M2
Dy DgDsDg | D3D2D10g sl 1212 T3 T4 T5 T T2l2 T3
ANI data t 110 o110 PCOUT PC = PC + 1| INST=TMP/IR [A}=ACT PC OUT PC=PC+1 B2_I,.TmP
STATUS STATUSIE!
XRA 1010 1§58 i (A)=ACT 1) [ACTI+(TPM}—A
1} {SSS}-TMP
XRA M 1010 1110 | {Al=ACT HL OUT DATA —=TMP
STATUSIE!
XA data t 110 1110 (Al+ACT PC OUT PC=PC+1 B2 —|= TMP
sTATUSIEl
ORAr 1011 0S5 S {Al=ACT 19) (ACTI+[TMP)—=A
{SSS)I=TMP :
ORA M 1011 0t1a0 [Al=ACT HL OUT DATA —j=-TMP
sTATUSIE)
ORI data 11011 o110 (A}=ACT PCOUT PC=PC+1 B2 —{=TMP
sTATUsIEl
CMP ¢ 1 011 1 85S (A)~ACT 191 (ACT}-(TMP}, FLAGS
{SS8)=TMP
CMP M Tt o011 11 10 {A)=ACT HL OUT DATA —{=TMP
STATUSIE!
CPI data 111 1110 1 | (A)=ACT PC OUT PC=PC+1 B2 —=TMP
sTATUSIEl
ALC 0000 0111 {Al+ALU 19) ALU-A, CY
ROTATE
RAC o000 11 11 [A}-+ALU 19 ALU—A, CY
ROTATE
RAL 0001 0111 (A}, CY—ALU i9) ALU-A, CY
ROTATE
RAR 0001 111 {A), CY=ALU 19 ALU—A, CY
ROTATE
CMA 0010 11 11 (A)=A
cMC 0o 1111 CY-CY
sTC 0011 0111 1-CY
JMP addr 1100 o011 X PCOUT PC=PC+1 B2 =2
! sTATUslEl
J cond addr(17] 11 ¢c¢cC co1a0 JUDGE CONDITION PC OUT PC=PC+1 B2 —+2
sTATUSIE!
CALL addr 1100 11 0 1 SP=SP-1 PC OUT PC=PC+1 B2 —{»2
STATUSIE!
C cond addr(17] 11¢Ccc¢C c100 JUDGE CONDITION PC OUT PC=PC+1 B2—{m2
iF TRUE,SP=5P-1 sTATUSI6!
RET 1100 1001 X SP QUT SP=5P+1 DATA—{w=Z
i sTATUS!S!
Reondaddr1?l | 1 1 Cc ¢ coo0o INST-TMP/IR JUDGE CONDITIONI14) SP OUT SP=§P+1 DATA—=Z
sTATUSIS
RST n 11 NN N1 o1 oW SP=5P-1 SP OUT sP=5SP-1 (PCH) —»=DATA BUS
INST—TMP/IR sTATUSHE]
PCHL 1110 i 001 INST-TMP/IR (HL) ——— —4 PC
PUSH rp 11TRP| 0101 f SP=5SP-1 5P QUT SP=SP-1 {rh)—ta-DATA BUS
i sTATUSE]
PUSH PSW 1111 0101 ! SP=SP-1 sP OUT SP=SP-1 (A} —{=DATA BUS
sTaTUs8!
POP rp 11 RFP 0001 X SP OUT SP=SP+1 DATA—fmri
sTATUS!1S]
POP PSW 1T 1 1 1 o 0 01 x SPOUT SP=5P+1 DATA—=FLAGS
sTAaTUSHS)
XTHL 1110 o011 X SP OUT SP=SP+1 DATA—=Z
| sTATUS[S)
IN part 1101 1011 | X PC OUT PC=PC+1 B2 —teZ, W
i STATUSIE!
OUT port 1101|0011 | [x PC OUT PC = PC + 1 B2 —=2Z, W
| sTATUSIE)
El 1111 1011 | SET INTE F/F
ol 1111 |00t RESET INTE F/F
HLT 01 11 0110 | X PC OUT HALT MODEIZ!
1 STATUS
NOP 0000 DOOO PC OUT PC= PC+ 1| INST=TMP/IR X
STATUS

2-18

Mz M4 M5
™ T212 T3 T 7212 Ta T T212 T3 T4 TS

9 [ACTI+HTMPI=A { » = v !
{9l {ACT}+(TMP]—=A
19 (ACT)I+(TMPI+A
19 {ACT)+{TMP}-=A
5] (ACTH(TMP)—A

19 {ACT)-(TMP}; FLAGS

9 [ACT)-(TMP); FLAGS -

s

PCOUT PC=PC+1 B3 —»W " Wz ouT Wz) +1—PC
STATUSIE! sTATUS(]

PCOUT PC=PC+1 B3 —p~W WZ OUT (WZ) +1 - PC
STATUSIE] s : o sTAaTUS1112)

PC OUT PC=PC+1 B3 =W SP QUT {PCH}———»DATABUS | SPOUT [PCLI—4~ DATA BUS uT, (WZ) +1—PC
sTaTUslEl sTATUSIBl [sp=5sP-1 sTATUS!6] sTaTusl]

PC OUT PC=PC+1 83 —fmw(13} SP OUT {PCH) ———=DATA BUS SP QUT (PCL)—4- DATA BUS Wz OUT (WZ) + 1+ PC
STATUSIE] sTATUS[IB) | sp=SP-1 sTAaTUs!E! : sTaTush2

SPOUT SP=5P+1 DATA—f=W WZ OUT (WZ) + 1+ PC
sTATUS!TS] sTatuslil]

SP OUT SP=SF+1 DATA—j=W WZ OUT Wzl +1—-PC
sTATUSS sTATUSINI2)

SPOUT (TMP = DONNNOOOQ) —»Z WZ OUT, (W2) + 1 -+ PC
sTATUS!6] (PCLI—=LATA BUS sTaTUsIM]

5P OUT (s} —=DATA BUS

STATUS!B)

sP OUT FLAGS —»DATA BUS

sTaTus!E

SP OUT SP=5P+1 DATA—fwrh

sTaTusE]

SP OUT SP=5P+1 DATA—lwA

sTATUSIS] - :

SPOUT DATA —=-W SP OUT {H) ~DATABUS | SPOUT {L)—+4 DATA BUS (W2Z)—==HL

staTtusist sTATUSI1E STATUSIE)

WZ OUT DATA —{»A) s

sTATUSHE]

Wz OUT (A) —{»[ATA BUS

staTushEl

2-18

NOTES:

1. The first memory cycle {(M1) is always an instruction
fetch; the first {or only) byte, containing the op code, is
fetched during this cycle.

2, If the READY input from memory is not high during
T2 of each memory cycle, the processor will enter a wait
state {TW} until READY is sampled as high.

3. States T4 and T5 are present, as required, for opera-
tions which are completely internal to the CPU. The con-
tents of the internal bus during T4 and T5 are available at
the data bus; this is designed for testing purposes only. An
“X'" denotes that the state is present, but is only used for
such internal operations as instruction decoding.

4. Only register pairs rp = B (registers Band C) or rp=D
(registers D and E) may be specified.

5. These states are skipped.

6. Memory read sub-cycles; an instruction or data word
will be read.

7. Memory write sub-cycle.

8. The READY signal is not required during the second
and third sub-cycles (M2 and M3}. The HOLD signal is
accepted during M2 and M3. The SYNC signal is not gene-
rated during M2 and M3. During the execution of DAD,
M2 and M3 are required for an internal register-pair add;
memory is not referenced.

9. The results of these arithmetic, logical or rotate in-
structions are not moved into the accumulator {A) until
state T2 of the next instruction cycle. That is, A is' loaded
while the next instruction is being fetched; this overlapping
of operations allows for faster processing.

10. If the value of the least significant 4-bits of the accumu-
lator is greater than 9 or if the auxiliary carry bit is set, 6

is added to the accumulator, If the value of the most signifi-
cant 4-bits of the accumulator is now greater than 9, or if
the carry hit is set, 6 is added to the most significant B
4-bits of the accumulator.

11. This represents the first sub-cycle {the instruction
fetch) of the next instruction cycle.

2-20

12, If the condition was met, the contents of the register
pair WZ are output on the address lines {Ag.15) instead of
the contents of the program counter (PC).

13. If the condition was not met, sub-cycles M4 and M5
are skipped; the processor instead proceeds immediately to
the instruction fetch (M1} of the next instruction cycle.

14. [If the condition was not met, sub-cycles M2 and M3
are skipped; the processor instead proceeds immediately to
the instruction fetch (M1} of the next instruction cycle.

15. Stack read sub-cycle.

16. Stack write sub-cycle.
17. CONDITION CCC
NZ — not zero (Z = 0) 000
Z — zero (Z=1) 001
NC — no carry (CY = 0) 010
C — carry (CY =1) 011
PO — parity odd (P =0) 100
PE — parity even (P=1) 101
P — plus (S=0) 110
M — minus (S=1) 11

18. 1/0 sub-cycle: the I/O port's 8-bit select code is dupli-
cated on address lines 0-7 (Ag.7) and 815 (Ag.15).

19. Output sub-cycle.

20. The processor will remain idle in the halt state until

an interrupt, a reset or a hold is accepted. When a hold re-
quest is accepted, the CPU enters the hold mode; after the
hold mode is terminated, the processor returns to the halt
state. After a reset is accepted, the processor begins execu-
tion at memory location zero. After an interrupt is accepted,
the processor executes the instruction forced onto the data
bus (usually a restart instruction).

S35 or DDD Value rp Value
A 111 B 00
B 000 D 01
C 001 H 10
D 010 SP 11
E 011
H 100
L 101

APPENDIX 5

A computer, no matter how sophisticated, can only
do what it is “told” to do. One “tells” the computer what
to do via a series of coded instructions referred to as a Pro-
gram. The realm of the programmer is referred to as Soft-
ware, in contrast to the Hardware that comprises the actual
computer equipment. A computer’s software refers to all of
the programs that have been written for that computer.

When a computer is designed, the engineers provide
the Central Processing Unit (CPU) with the ability to per-
form a particular set of operations. The CPU is designed
such that a specific operation is performed when the CPU
control logic decodes a particular instruction, Consequently,
the operations that can be performed by a CPU define the
computer’s Instruction Set,

Each computer instruction allows the programmer to
initiate the performance of a specific operation. All com-
puters implement certain arithmetic operations in their in-
struction set, such as an instruction to add the contents of
two registers, Often logical operations (e.g., OR the con-
tents of two registers) and register operate instructions (e.g.,
increment a register) are included in the instruction set. A
computer’s instruction set will also have instructions that
move data between registers, between aregister and memory,
and between a register and an |/O device. Most instruction
sets also provide Conditional Instructions. A conditional
instruction specifies an operation to be performed only if
certain conditions have been met; for example, jump to a
particular instruction if the result of the last operation was
zero, Conditional .instructions provide a program with a
decision-making capability.

By logically organizing a sequence of instructions into

a coherent program, the programmer can “‘tell” the com-
puter to perform a very specific and useful function.

The computer, however, can only execute programs
whose instructions are in a binary coded form (i.e., a series
of 1's and 0's), that is called Machine Code. Because it
wauld be extremely cumbersome to program in machine
code, programming languages have been developed. There

A1

are programs available which convert the programming lan-
guage instructions into machine code that can be inter-
preted by the processor.

One type of programming language is Assembly Lan-
guage. A unique assembly language mnemonic is assigned to
each of the computer’s instructions, The programmer can
write a program ({called the Source Program) using these
mnemonics and certain operands; the source program is
then converted into machine instructions {called the Object
Code)}. Each assembly language instruction is converted into
one machine code instruction (1 or more bytes}) by an
Assembler program, Assembly languages are usually ma-
chine dependent (i.e., they are usually able to run on only
one type of computer).

THE 8080 INSTRUCTION SET

The 8080 instruction set includes five different types
of instructions:
e Data Transfer Group—move data between registers
or between memory and registers

e Arithmetic Group — add, subtract, increment or
decrement data in registers or in memory

s Logical Group — AND, OR, EXCLUSIVE-OR,
compare, rotate or complement data in registers
or in memory

e Branch Group — conditional and unconditional
jump instructions, subroutine call instructions and
return instructions

e Stack, /O and Machine Control Group — includes

1/0 instructions, as well as instructions for main-
taining the stack and internal control flags.

Instruction and Data Formats:

Memory for the 8080 is organized into 8-bit quanti-
ties, called Bytes. Each byte has a unique 16-bit binary
address corresponding to its sequential position in memory,

The 8080 can directly address up to 65,536 bytes of mem-
ory, which may consist of both read-only memory (ROM)
elements and random-access memory (RAM) elements (read/
write memory).

Data in the 8080 is stored in the form of 8-bit binary
integers:
DATA WORD

1 I
Dy D5]D5]D4103—ID2 D1 ng
MSB LSB

When a register or data word contains a binary num-
ber, it is necessary to establish the order in which the bits
of the number are written. In the Intel 8080, BIT O is re-
ferred to as the Least Significant Bit (LSB), and BIT 7 (of
an 8 bit number) is referred to as the Most Significant Bit
(MSB).

The B0O80 program instructions may be one, two or
three bytes in length. Multiple byte instructions must be
stored in successive memory locations; the address of the
first byte is always used as the address of the instructions.
The exact instruction format will depend on the particular
operation to be executed.

Single Byte Instructions N
D, I [I 1 1 Do | Op Code
Two-Byte Instructions
Byte One Dyl ! ! I I ! ! Dg | Op Code
Byte Two 07] Vol ! ! ! ! Dg | Data or
Address
Three-Byte Instructions
Byte One Dyl ! ! I ! I I Dg | Op Code
Byte Two D;v_[T Do |} Pata
or
ByteThree|D,1 |+ | 1 11 Tg 1) Address

Addressing Modes:

Often the data that is to be operated on is stored in
memory. When multi-byte numeric data is used, the data,
like instructions, is stored in successive memory locations,
with the least significant byte first, followed by increasingly
significant bytes. The 8080 has four different modes for
addressing data stored in memory or in registers: .

® Direct —Bytes 2 and 3 of the instruction contain
the exact memory address of the data
item (the low-order bits of the address are
in byte 2, the high-order bits in byte 3).

® Register — The instruction specifies the register or
register-pair in which the data is located.

® Register Indirect — The instruction specifies a reg-
ister-pair which contains the memory

address where the data is located (the
high-order bits of the address are in the
first register of the pair, the low-order
bits in the second).

® Immediate — The instruction contains the data it-
self, This is either an 8-bit quantity or a
16-bit quantity (least significant byte first,
most significant byte second).

Uniless directed by an interrupt or branch instruction,
the execution of instructions proceeds through consecu-
tively increasing memory locations, A branch instruction
can specify the address of the next instruction to be exe-
cuted in one of two ways:

e Direct — The branch instruction contains the ad-
dress of the next instruction to be exe-
cuted. (Except for the ‘RST’ instruction,
byte 2 contains the low-order address and
byte 3 the high-order address.) -

® Register indirect — The branch instruction indi-
cates a register-pair which contains the
address of the next instruction to be exe-
cuted. {The high-order bits of the address
are in the first register of the pair, the
low-order bits in the second.)

The RST instruction is a special one-byte call instruc-
tion (usually used during interrupt sequences), RST in-
cludes a three-bit field; program control is transferred to
the instruction whose address is eight times the contents
of this three-bit field.

Condition Flags:

There are five condition flags associated with the exe-
cution of instructions on the 8080. They are Zero, Sign,
Parity, Carry, and Auxiliary Carry, and are each represented
by a 1-bit register in the CPU. A flag is “’set’” by forcing the
bit to 1; “'reset’’ by forcing the bit to 0.

Unless indicated otherwise, when an instruction af-

fects a flag, it affects it in the following manner:

If the result of an instruction has the
value 0, this flag is set; otherwise it is
reset.

Zero:

If the most significant bit of the result of
the operation has the value 1, this flag is
set; otherwise it is reset.

Sign:

If the modulo 2 sum of the bits of the re-
sult of the operation is 0, (i.e., if the
result has even parity), this flag is set;
otherwise it is reset {i.e., if the result has
odd parity).

If the instruction resulted in a carry
{from addition}, or a borrow {from sub-
traction or a comparison) out of the high-
order bit, this flag is set; otherwise it is
reset.

Parity:

Carry:

Auxiliary Carry: If the instruction caused a carry out
of bit 3 and into bit 4 of the resulting
value, the auxiliary carry is set; otherwise
it is reset. This flag is affected by single
precision additions, subtractions, incre-
ments, decrements, comparisons, and log-
ical operations, but is principally used
with additions and increments preceding
a DAA (Decimal Adjust Accumulator)
instruction.

Symbols and Abbreviations:
The following symbaols and abbreviations are used in
the subsequent description of the 8080 instructions:

SYMBOLS MEANING

accumulator Register A

addr 16-bit address quantity

data 8-bit data quantity

data 16 16-bit data quantity

byte 2 The second byte of the instruction
byte 3 The third byte of the instruction
port 8-bit address of an 1/O device
rrlr2 One of the registers A,B,C.D,EH L

DDD,SSS The bit pattern designating one of the regis-
ters A,B,C,D,E H,L {(DDD=destination, S85=
source):

DDD or SSS REGISTER NAME

111
000
001
010
011
100
101

rp One of the register pairs:

rTmooOwr

B represents the B,C pair with B as the high-
order register and C as the low-order register;

D represents the D,E pair with D as the high-
order register and E as the low-order register;

H represents the H,L pair with H as the high-
order register and L as the low-order register;

SP represents the 16-bit stack pointer

register,
RP The bit pattern designating one of the regis-
ter pairs B,D,H,SP:
RP REGISTER PAIR
00 B-C
01 D-E
10 H-L
11 SP

43

rh

ri

PC

SP

The first (high-order) register of a designated
register pair.

The second {low-order) register of a desig-
nated register pair.

16-bit program counter register (FCH and
PCL are used to refer to the high-order and
low-order 8 bits respectively).

16-bit stack pointer register (SPH and SPL
are used to refer to the high-order and low-
order 8 bits respectively).

Bit m of the register r (bits are number 7
through O from left to right).

Z.5P,CY,AC The condition flags:

—

s |t*|+<<t>1

NNN

Zero,

Sign,

Parity,

Carry,

and Auxiliary Carry, respectively.

The contents of the memory location or reg-
isters enclosed in the parentheses.

“1s transferred to’’

Logical AND

Exclusive OR

Inclusive OR

Addition

Two's complement subtraction
Multiplication

“Is exchanged with"’

The one's complement (e.g., (A))
The restart number 0 through 7

The binary representation 000 through 111
for restart number O through 7 respectively.

Description Format:

The following pages provide a detailed description of
the instruction set of the 8080. Each instruction is de-
scribed in the following manner:

1.

The MAC 80 assembler format, consisting of
the instruction mnemonic and operand fields, is
printed in BOLDFACE on the left side of the first
line.

. The name of the instruction is enclosed in paren-

thesis on the right side of the first line.

. The next line(s) contain a symbolic description

of the operation of the instruction.

. This is followed by a narative description of the

operation of the instruction.

. The following line(s) contain the binary fields and

patterns that comprise the machine instruction.

6. The last four lines contain incidental information
about the execution of the instruction. The num-
ber of machine cycles and states required to exe-
cute the instruction are listed first. If the instruc-
tion has two possible execution times, as in a
Conditional Jump, both times will be listed, sep-
arated by a slash. Next, any significant data ad-
dressing modes {see Page 4-2) are listed. The last
line lists any of the five Flags that are affected by

the execution of the instruction,

Data Transfer Group:

This group of instructions transfers data to and from
registers and memory. Condition flags are not affected by

any instruction in this group.

MOV r1, r2
(r1} =— (r2)

{Move Register)

The content of register r2 is moved to register r1,

Cli1DlDl

DS[S|S

Cycles: 1
States: 5 .
Addressing: register
Flags: none

MOV r, M
(r) =— ((H) (L)

(Move from memory)

The content of the memory location, whose address
is in registers H and L, is moved to register 1.

0 ! 1 D I D ! D 1 ! 1 ! 0
i
Cycles: 2
States: 7
Addressing: reg. indirect
Flags: none
MOV M, r {(Move to memory)

((H) (L)) =— (r)

The content of register r is moved to the memory lo-
cation whose address is in registers H and L.

ol 1 11 1 To[sTs!s
Cycles: 2
States: 7
Addressing: reg. indirect
Flags: none

4.4

MV r, data (Move Immediate)
{(r}) =— (byte 2}
The content of byte 2 of the instruction is moved to

register r,
[| I [I
0 0 D D D 1 1 0
data
Cycles: 2
States: 7
Addressing: immediate
Flags: none
MVI M, data {Move to memory immediate)

{{(H) (L)) =— (byte 2}
The content of byte 2 of the instruction is moved to
the memory location whose address is in registers H

and L.
0'0‘1]1]0|1i110
data
Cycles: 3
States: 10

Addressing: immed./reg. indirect

Flags: none

LXI{ rp, data 16 {Load register pair immediate)
(rh) =— (byte 3},
(rl) =— (byte 2)
Byte 3 of the instruction is moved into the high-order
register {rh) of the register pair rp. Byte 2 of the in-
struction is moved into the low-order register {rl) of
the register pair rp.

ol o] R! p] 0l 0ol o'
low-order data
high-order data
Cycles: 3
States: 10
Addressing: immediate
Flags: none

LDA addr

{Load Accumulator direct)

(A} =— ((byte 3){byte 2))

The content of the memory location, whose address
is specified in byte 2 and byte 3 of the instruction, is
moved to register A.

T oT1 71 "1 Tal1'o

low-order addr
high-order addr
Cycles: 4
States: 13

Addressing: direct
Flags: none

STA addr (Store Accumulator direct)

({byte 3){byte 2)) —-— (A)

The content of the accumulator is moved to the
memory location whose address is specified in byte
2 and byte 3 of the instruction, "

o ToTa1 11 1olol1 o

low-order addr

high-order addr

LHLD addr

Cycles: 4
States: 13
Addressing: direct
Flags: none

{Load H and L direct)

(L) =—— {({byte 3}(byte 2))

{H} =— (({byte 3)({byte 2) + 1)

The content of the memory location, whose address
is specified in byte 2 and byte 3 of the instruction, is
moved to register L. The content of the memory loca-
tion at the succeeding address is moved to register H.

T o T ToT1 To 1 o

low-order addr

high-order addr

Cycles: 5
States: 16
Addressing: direct
Flags: none

SHLD addr

(Store H and L direct)

{{byte 3} {byte 2)) =— (L}

((byte 3){byte 2) + 1) =— (H)

The content of register L is moved to the memory lo-
cation whose address is specified in byte 2 and byte
3. The content of register H is moved to the succeed-
ing memory location.

0|0I1|0|0I0|1l0

low-order addr
high-order addr
Cycles: &
States: 16

Addressing: direct
Flags: none

LDAX rp (Load accumulator indirect}

45

(A} =— ((rp))

The content of the memory location, whose address
is in the register pair rp, is moved to register A. Note:
only register pairs rp=B {registers B and C) or rp=D
{registers D and E) may be specified.

0 ! 0 R l P 1 ! 0 ‘ 1 ! 0
Cycles: 2
States: 7
Addressing: reg. indirect
Flags: none
STAX rp (Store accumulator indirect)

{(rp})) =— (A)

The content of register A is moved to the memory lo-
cation whose address is in the register pair rp. Note:
only register pairs rp=B (registers B and C) or rp=D
(registers D and E} may be specified.

0'0 RIP 010I1'07
Cycles: 2
States: 7

Addressing: reg. indirect
Flags: none
XCHG {Exchange H and L with D and E)
{H) =—= (D}
(L) =—(E)

The contents of registers H and L are exchanged with
the contents of registers D and E.

Cycles: 1
States: 4
Addressing: register
Flags: none

ADD r

Arithmetic Group:

This group of instructions performs arithmetic oper-

ations on data in registers and memory.

Unless indicated otherwise, all instructions in this

group affect the Zero, Sign, Parity, Carry, and Auxiliary
Carry flags according to the standard rules.

All subtraction operations are performed via two's

complement arithmetic and set the carry flag to one to in-
dicate a borrow and clear it to indicate no borrow.

(Add Register)

(A} =— (A} +(r)

The content of register r is added to the content of the
accumulator. The result is placed in the accumulator.

1'0‘0]0l0 S[SIS

ADD M

Cycles: 1
States: 4
Addressing: register

Flags: Z,5,P.CY,AC._

(Add memory)

(A) =— (A} + ((H) (L)

The content of the memaory location whose address
is contained in the H and L registers is added to the
content of the accumulator. The result is placed in
the accumulator.

1ol o T o T o T T 1T,
Cycles: 2
States: 7
Addressing: reg. indirect
Flags: Z,5,P,CY,AC
ADI data (Add immediate)

(A) =— (A) + (byte 2)

The content of the second byte of the instruction is
added to the content of the accumulator. The result
is placed in the accumulator,

data
Cycles: 2
States: 7
Addressing: immediate

Flags: ZS,P,CY,AC

4-6

ADCr

(Add Register with carry)

(A) =— (A} +(r) + (CY)

The content of register r and the content of the carry
bit are added to the content of the accumulator. The
result is placed in the accumulator.

1 ! o ! 0] 1] 1 1 S ! S ! S
Cycles: 1
States: 4
Addressing: register
Flags: Z,5P,CYAC
ADC M (Add memory with carry)

(A} =— (A) + ({H) (L)) + (CY)

The content of the memory location whose address is
contained in the H and L registers and the content of
the CY flag are added to the accumulator. The result
is placed in the accumulator.

1IOIOIOI1T1[1]0
Cycles: 2
States: 7
Addressing: reg. indirect
Flags: 2Z,5,PCY AC
ACI data (Add immediate with carry)

(A) =— {A) + (byte 2) + (CY)

The content of the second byte of the instruction and
the content of the CY flag are added to the contents
of the accumulator. The result is placed in the
accumulator.

1I1IOIOI1I1T1|O
data
Cycles: 2
States: 7
Addressing: immediate
Flags: 2ZSP,CY.AC
SUBTr (Subtract Register)

(A) =— (A) —(r)

The content of register r is subtracted from the con-
tent of the accumulator. The result is placed in the
accumulator,

1ol ot To s s s
Cycles: 1
States: 4
Addressing: register

Flags: Z2,SP,CY,AC

SUBM

(Subtract memory)

(A) =— (A) — ((H) (L))

The content of the memory location whose address is
contained in the H and L registers is subtracted from
the content of the accumulator. The result is placed
in the accumulator,

SUI data

T Tolo 1 Tols Tl
Cycles: 2
States: 7
Addressing: reg. indirect
Flags: Z.S,P,CYAC

{Subtract immediate)

(A) =— (A) — (byte 2)

The content of the second byte of the instruction is
subtracted from the content of the accumulator. The
result is placed in the accumulator.

SBI data

{Subtract immediate with borrow)

(A) = (A) — (byte 2) — (CY)

The contents of the second byte of the instruction
and the contents of the CY flag are both subtracted
from the accumulator. The result is placed in the
accumulator,

1'1[0i1l1|1l1|0
data
Cycles: 2
States: 7
Addressing: immediate
Flags: ZSP.CY.AC
INRr {Increment Register}

(r) =— (r) +1
The content of register r is incremented by one.
Note: All condition flags except CY are affected.

1 | 1 ! 0] 1 | 0 I 1 | 1 I 0
data 0 ! 0 D ! D ! D 1 ! 0 ! 0
Cycles: 2 N Cycles: 1
States: 7 Sta_tes: b -
Addressing: immediate Addressing: register
Flags: Z,5P,CY AC Flags: Z,5.PAC
SBBr {Subtract Register with borrow) INR M (Increment memary}

I B BEN AN IR B IS N I o N N S o N S AN aw aw e .

f

(A) =— (A) —(r) — (CY)

The content of register r and the content of the CY
flag are both subtracted from the accumulator, The
result is placed in the accumulator,

((H) (L)) =— {(H) (L)) +1

The content of the memary location whose address
is contained in the H and L registers is incremented
by one. Note: All condition flags except CY are

affected.
1 ‘ 0 ! 0 ! 1 ! 1 S l S] S
0 ! 0 [1 ! 1 ! 0 E 1 !)] 0
Cycles: 1
States: 4 Cycles: 3
Addressing: register States: 10
Flags: 2,5P,CY,AC Addressing: reg. indirect
Flags: Z.SP,AC
SBEM {Subtract memory with borrow)

(A) =— (A) —({H) (L)} — (CY)

DCRr

The content of the memory location whose address is
contained in the H and L registers and the content of
the CY flag are both subtracted from the accumula-

tor. The result is placed in the accumulator.

{Decrement Register)

(r) =— (r) =1

The content of register r is decremented by one.
Note: All condition flags except CY are affected.

1]0|0i1 1|1]1[0 D|D DIDID[1]0I1
Cycles: 2 Cycles: 1 A
States: 7 States: b
Addressing: reg. indirect Addressing: register
Flags: Z,5P,CY,AC Flags: - Z,5,P,AC

A
|

DCR M {Decrement memory)
((H) (L)) =— ({(H} (L)} =1
The content of the memory location whose address is
contained in the H and L registers is decremented by
one. Note: All condition flags except CY are affected.

olol 1T Tolyloly
Cycles: 3
States: 10
Addressing: reg. indirect
Flags: Z.S,PAC
INX rp {Increment register pair)

{rh) (rl) -—

(rh} (rl} +1

The content of the register pair rp is incremented by
one. Note: No condition flags are affected.

oo |rTpP|lolo!"1 1y
Cycles: 1
States: 5
Addressing: register
Flags: none

DCX rp

(Decrement register pair)
{rh) {rl) <=— {rh) (rl) — 1

The content of the register pair rp is decremented by
one. Note: No condition flags are affected.

OIO RIP

1r0E1l1

Cycles: 1
States: &
Addressing: register
Flags: none

DAA {Decimal Adjust Accumulator)
The eight-bit number in the accumulator is adjusted
to form two four-bit Binary-Coded-Decimal digits by

the following process:

1. If the value of the least significant 4 bits of the
accumulator is greater than 9 or if the AC flag
is set, 6 is added to the accumulator.

2, If the value of the most significant 4 bits of the
accumulator is now greater than 9, or if the CY
flag is set, 6 is added to the most significant 4
bits of the accumulator.

NOTE: All flags are affected.

ol ol 1 ToTol T 11

Cycles: 1
States: 4
Flags: Z.S,P,CY,AC

Logical Group:

This group of instructions performs logical {(Boolean)
operations on data in registers and memory and on condi-
tion flags.

Unless indicated otherwise, all instructions in this
group affect the Zero, Sign, Parity, Auxiliary Carry, and
Carry flags according to the standard rules.

ANA ¥ (AND Register)
(A) =— (AYALr)
The content of register r is logically anded with the
content of the accumulator. The result is placed in
the accumulator. The CY flag is cleared.

DAD rp {Add register pair to H and L)
(H} (LY =— (H) (L) + {rh)} {r])
The content of the register pair rp is added to the
content of the register pair H and L. The result is
placed in the register pair H and L!'Note: Only the
CY flag is affected. It is set if there is a carry out of

1 E 0 I 1 | 0] ! 0 S ! S ! S
Cycles: 1
States: 4
Addressing: register
Flags: Z,5,PCY.,AC
"ANA M (AND memory)

(A) -— (A AH) (L))

The contents of the memory location whose address
is contained in the H and L registers is logically anded
with the content of the accumulator. The result is
placed in the accumulator. The CY flag is cleared.

the double precision add; otherwise it is reset.

DIU R|P1I.0I0l1
Cycles: 3
States: 10
Addressing: register
Flags: CY

4-8

1'0'1'010I1|110
Cycles: 2
States: 7
Addressing: reg. indirect
Flags: Z,55PCYAC

ORATr {OR Register)
(A) =— (A) V(1)
The content of register r is inclusive-OR'd with the
content of the accumulator. The result is placed in
the accumulator. The CY and AC flags are cleared.

{AND immediate)

(A) =— (A) A (byte 2}

The content of the second byte of the instruction is
logically anded with the contents of the accumulator.
The result is placed in the accumulator. The CY and
AC flags are cleared. i

ANI data

s Ts

1 0 I 1 [1] 0 S
1l1l1|0|0|1l1|0
Cycles: 1
data States: 4
Addressing: register
Cycles: 2 Flags: Z.S.P.CY,AC
States: 7
Addressing: immediate ORA M (OR memory)
Flags: ZS5,P.CY AC (A) =— (A)V ((H) (L))
XRA r (Exclusive OR Register) The content of the memory location whose address is

contained in the H and L registers is inclusive-OR'd
with the content of the accumulator. The result is
placed in the accumulator. The CY and AC flags are

(A) =— (A} ¥ ()
The content of register r is exclusive-or'd with the
content of the accumulator. The result is placed in

I d.
the accumulator. The CY and AC flags are cleared. cleare
I]] I I | |
1 0 1
1 ! o ! 1 I 0 ! 1 S E S ! S ! 0 ! 1 0
les:
Cycles: 1 Cyeles: 2
States: 7
States: 4 . o
. . Addressing: reg. indirect
Addressing: register Flags: ZSP.CYAC
Flags: Z,S,P,.CY,AC gs: 200,
ORI data (OR Immediate)

XRA M (Exclusive OR Memory)
(A) =— (A) ¥ ({H} (LD
The content of the memory location whose address
is contained in the H and L registers is exclusive-OR’d
with the content of the accumulator. The result is
placed in the accumulator. The CY and AC flags are

{A) =— (A) V (byte 2)
The content of the second byte of the instruction is
inclusive-OR'd with the content of the accumulator,
The result is placed in the accumulator. The CY and

AC flags are cleared.

cleared. 1 | 1 | 1 | 1 | 0] 1 | 1 | 0
1 | 0 l 1 L 0 1 l 1 | 1 I 0 data
Cycles: 2 Cycles: 2
States: 7 States: 7
Addressing: reg. indirect Addressing: immediate
Flags: Z2,5P,CYAC Flags: Z,S5PCY,AC

XRI data (Exclusive OR immediate)
{A) =— (A} ¥ (byte 2}
The content of the second byte of the instruction is
exclusive-OR’d with the content of the accumulator.
The result is placed in the accumulator, The CY and
AC flags are cleared.

{Compare Register)
(A) — {r)
The content of register r is subtracted from the ac-
cumulator. The accumulator remains unchanged. The
condition flags are set as a result of the subtraction.
The Z flag is set to 1if (A} = (r). The CY flag is set to

CMPr

1if (A)<(r).
| 0 (r)
data 1 ! 0 ! 1 ! 1 ! 1 S I S ! S

Cycles: 2 Cycles: 1

States: 7 States: 4
Addressing: immediate Addressing: register

Flags: 2, SP.CY,AC Flags: Z,SPCY,AC

4.9

Yy

CMP M

(Compare memory}

(A} — ((H) (L))

The content of the memory location whose address
is contained in the H and L registers is subtracted
from the accumulator. The accumulator remains un-
changed. The condition flags are set as a result of the
subtraction. The Z flag is set to T if {A) = ({H) (L)).
The CY flag is set to 1 if (A) < ((H) (L)).

1T o T T Ty Ty Ty
Cycles: 2
States: 7
Addressing: reg. indirect
Flags: Z,5,P,CYAC
CPI data (Compare immediate)

{A) — (byte 2)
The content of the second byte of the instruction is
subtracted from the accumulator. The condition flags
are set by the result of the subtraction. The Z flag is
set to 1 if (A} = (byte 2). The CY flag is set to 1 if
(A) < (byte 2).

RLC

1[1]1|1]1i1|1|0
data
Cycles: 2
States: 7
Addressing: immediate
Flags: Z,SP,CY,AC

(Rotate left)
(Ans1) =— (Ap) i (Ag) =— (A7)
(CY) ~— (A7) ,
The content of the accumulator is rotated left one
position. The low order bit and the CY flag are both
set to the value shifted out of the high order bit posi-
tion. Only the CY flag is affected.

OIOIOIOIOI1I1I1
Cycles: 1
States: 4
Flags: CY

RRC

{Rotate right)
(An) =— (An.1)
(CY) =— (Ap)
The content of the accumulator is rotated right one
position. The high order bit and the CY flag are both
set to the value shifted out of the low order bit posi-
tion. Only the CY flag is affected.

(A7) =-— (Ag)

| | i I | I I

RAL

0 0 0 0 1 1 1 1
Cycles: 1
States: 4
Flags: CY
(Rotate left through carry)
(Ans1) ~— (Ap) (CY) =— (Ag)

(Ag) = (CY)
The content of the accumulator is rotated left one
position through the CY flag. The low order bit is set
equal to the CY flag and the CY flag is set to the
value shifted out of the high order bit. Only the CY
flag is affected.

| I I T | I T

RAR

0 0 0 1 0 1 1 1
Cycles: 1
States: 4
Flags: CY

(Rotate right through carry)
(Ap) =— (An+1) ; (CY) =— (Ag)
(Ag) =— {CY)
The content of the accumulator is rotated right one
position through the CY flag. The high order bit is set
to the CY flag and the CY fiag is set to the value
shifted out of the low order bit. Only the CY flag is
affected.

CMA

0 0 0 1 1 1 1 1
Cycles: 1
States: 4
Flags: CY

{Complement accumulator)
(A) =— (A)
The contents of the accumulator are complemented
{zero bits become 1, one bits become 0). No flags are
affected.

OIDI1I0E1]1!1I1
Cycles: 1
States: 4
Flags: none

cmC (Complement carry)
{CY) =— (CY)
The CY flag is complemented. No other flags are
affected.
0|0]1I1!1]1i1l1
Cycles: 1
States: 4
Flags: CY
STC (Set carry)

(CY) =— 1
The CY flag is set to 1. No other flags are affected.

o T 7 111

ol ol 114

Cycles: 1
States: 4
Flags: CY

Branch Group:

This group of instructions alter normal sequential
program flow.

Condition flags are not affected by any instruction
in this group.

The two types of branch instructions are uncondi-
tional and conditional. Unconditional transfers simply per-
form the specified operation on register PC (the program
counter). Conditional transfers examine the status of one of
the four processor flags to determine if the specified branch
is to be executed. The conditions that may be specified are

as follows:

CONDITION cCC
NZ ~— notzero(Z=0) 000
Z — zero(Z=1) : 001
‘NC — no carry {CY =0) 010
C — carry {CY=1) 011
PO — parity odd (P =0} 100
PE ~— parity even {P = 1) 101
P — plus(S=0) 110
M — minus(S=1) 111

JMP addr {Jump)

(PC) =— (byte 3) (byte 2)

Control is transferred to the instruction whose ad-

dress is specified in byte 3 and byte 2 of the current

instruction.
1I1IOI0I.0|0[1I‘I
low-order addr
high-order addr
Cycles: 3
States: 10
Addressing: immediate

Flags: none

Jeondition addr {Conditional jump)
If (CCC), 7

(PC) =— (byte 3) (byte 2)
If the specified condition is true, control is trans-
ferred to the instruction whose address is specified in
byte 3 and byte 2 of the current instruction; other-

wise, control continues sequentially.

1|1 CIC|CO

low-order addr

high-order addr

Cycles: 3

States: 10
Addressing: immediate

Flags: none

CALL addr (Call)
({SP) — 1) =— (PCH)
{1SP) — 2) =— (PCL)
(SP) —— (SP) —2
(PC) =— (byte 3) {byte 2)
The high-order eight bits of the next instruction ad-
dress are moved to the memory location whose
address is one less than the content of register SP.
The low-order eight bits of the next instruction ad-
dress are moved to the memory location whose
address is two less than the content of register SP.
The content of register SP is decremented by 2. Con-
trol is transferred to the instruction whose address is
specified in byte 3 and byte 2 of the current
instruction,

low-order addr

high-order addr

Cycles: b
States: 17
Addressing: immediate/reg. indirect
Flags: none

Ccondition addr
if (CCC]),
({(SP) — 1) -— (PCH)
((SP) — 2} =— (PCL)
{SP) ~— (SP) —2
(PC) -<— (byte 3) (byte 2)
If the specified condition is true, the actions specified
in the CALL instruction (see above) are performed;
otherwise, control continues sequentially.

(Condition call)

1’1 CICIC‘IOIO

low-order addr

high-order addr

Cycles: 3/5
States: 11/17
Addressing: immediate/reg. indirect
Flags: none
RET (Return)
(PCL) =— ({SP)};
(PCH) -— ({SP) + 1); ~

{SP) =— (SP) + 2;

The content of the memory location whose address
is specified in register SP is moved to the low-order
eight bits of register PC. The content of the memory
location whose address is one more than the content
of register SP is moved to the high-order eight bits of
register PC. The content of register SP is incremented
by 2.

Cycles: 3
States: 10
Addressing: reg. indirect

Flags: none

Rcondition (Conditional return)
If {CCC),

(PCL) —=— {{SP))

(PCH) =— ({SP) + 1)

(SP} —-— (SP) +2
If the specified condition is true, the actions specified
in the RET instruction (see above) are performed;
otherwise, control continues sequentially.

I

1 C]CIC 0[0

1 0
Cycles: 1/3
States: B/11
Addressing: req. indirect
Flags: none

RSTn (Restart)
{(SP} — 1) =— (PCH]}
((SP} — 2) =— (PCL)
(SP) =— (SP) — 2
(PC) =— 8= (NNN)
The high-order eight bits of the next instruction ad-
dress are moved to the memory location whose
address is one less than the content of register SP.
The low-order eight bits of the next instruction ad-
dress are moved to the memory location whose
address is two less than the content of register SP.
The content of register SP is decremented by two.
Control is transferred to the instruction whose ad-
dress is eight times the content of NNN,

| [l

1 1 N N N 1 1 1
Cycles: 3
States: 11
Addressing: reg. indirect
Flags: none

[oJo[o[o o]s [s[o[e o [W[N]w]e[e]o]

Program Counter After Restart

PCHL (Jump H and L indirect — move H and L to PC)
(PCH) =— (H)

(PCL} =— (L)

The content of register H is moved to the high-order
eight bits of register PC. The content of register L is

moved to the low-order gight bits of register PC.

1'1'1'0'1‘0'0'1
Cycles: 1
States: 5
Addressing: register
Flags: none

T

Stack, 1/0, and Machine Control Group:

This group of instructions performs /O, manipulates
the Stack, and alters internal control flags.

Unless otherwise specified, condition flags are not
affected by any instructions in this group.

PUSH rp {Push)

({SP}) — 1) —=— (rh)

{((SP} — 2) =— ()

(SP) =— (SP) -2 _

The content of the high-order register of register pair
rp is moved to the memory location whose address is
one less than the content of register SP, The content
of the low-order register of register pair rp is moved
to the memory location whose address is two less
than the content of register SP, The content of reg-
ister SP is decremented by 2. Note: Register pair
rp = SP may not be specified.

1 [1 RI P 0T 1 ! 0 [1
Cycles: 3
States: 11
Addressing: reg. indirect
Flags: none
PUSH PSW (Push processor status word)

({SP) — 1) =— (A)

{{SP) — 2)g =— (CY)} , {{SP} — 2} =— 1

((SP) — 2)9 =— (P}, ({SP) —2)3 =— O

((SP) — 2)4 =~— {AC) , ({SP) — 2)5 =~— O

({SP) — 21 =— (2}, ((SP) —2)7 =— (8)

(SP) =— (5P} -2

The content of register A is moved to the memory
location whose address is one less than register SP.
The contents of the condition flags are assembled
into a processor status word and the word is moved
to the memory location whose address is two less
than the content of register SP. The content of reg-
ister SP is decremented by two.

Cycles: 3
States: 11
Addressing: reg. indirect
Flags:. none

FLAG WORD

POPrp (Pop)

(rh) =— {(SP))

(rh) =— ((SP) + 1)

(SP) =— (SP} + 2

The content of the memory location, whose address
is specified by the content of register SP, is moved to
the low-order register of register pair rp. The content
of the memory location, whose address is one more
than the content of register SP, is moved to the high-
order register of register pair rp. The content of reg-
ister SP is incremented by 2. Note: Register pair
rp = SP may not be specified.

1] 1 R I P 0 I 0 IO T1
Cycles: 3
States: 10

Addressing: reg. indirect
Flags: none

POP PSW (Pop processor status word)

(CY) - ({SPHg

{P) =— ((SP))7

(AC) =— {(SP)l4

(Z) =— ({SP))g

(S) =— ((SP))7

(A} =— ((SP) + 1)

(SP) —=— (SP) +2

The content of the memory location whose address
is specified by the content of register SP is used to
restore the condition flags. The content of the mem-
ory location whose address is one more than the
content of register SP is moved to register A, The
content of register SP is incremented by 2.

1
Cycles: 3
States: 10

Addressing: reg. indirect
Flags: Z,5,P.CY.,AC

XTHL

(L) - ((SP))
(H) —e—= ((SP) + 1)

{Exchange stack top with H and L)

The content of the L register is exchanged with the
content of the memory location whose address is
specified by the content of register SP, The content
of the H register is exchanged with the content of the
memory location whose address is one mare than the

content of register SP,

1'1]1]0 OIOI‘II1
Cycles: 5
States: 18
Addressing: req. indirect
Flags: none

SPHL {Move HL to SP)

(SP) —— (H) (L}

The contents of registers H and L (16 bits) are moved

to register SP.

b b by g g Ty
Cycles: 1
States: 5 .
Addressing: register
Flags: none
IN port {Input)

(A) =— (data)

The data placed on the eight bit bi-directional data
bus by the specified port is moved to register A.

1[1|0I1I1TO—{1]1
port
Cycles: 3
States: 10
Addressing: direct
Flags: none

OUT port (Output)
(data) =— (A}

The content of register A is placed on the eight bit
bi-directional data bus for transmission to the spec-
ified port.

1I1I70I1I0|O[1[1

port
Cycles: 3
States: 10
Addressing: direct
Flags: none

El {Enable interrupts)

The interrupt system is enabled following the execu-
tion of the next instruction.

1]1T1T1T1I011l1

Cycles: 1
States: 4
Flags: none
Di {Disable interrupts)

The interrupt system is disabled immediately fol-
lowing the execution of the DI instruction.

I | |

1|1ITIU[0

1 1 1
Cycles: 1
States: 4
Flags: none
HLT (Halt)
The processor is stopped. The registers and flags are
unaffected.
DI‘II1[1]0[1I1]0
Cycles: 1
States: 7
Flags: none

NOP (No op)
No operation is performed. The registers and flags

are unaffected.

ol ol oT oTolololo
Cycles: 1
States: 4
Flags: none

INSTRUCTION SET

Summary of Processor Instructions

Instruction Code[1] Clockl2] Instruction Codel1] Clock[2]

Mnemonic Description D; Dg O Dy D3 O Dy D Cycles Mnemonic Description D; Dg Ds Dy D3 D Dy Dy Cycles
MOV, 2 Move register 10 register 01 D D DS § S 5 RZ Return on zero 11 0 0 1 0 0 0 M
MOV M, r Move register to memory 01 1 1 0 S 8§ § 7 RNZ Return on no zero 1+ b 0 0 0 C D 5/
MOV, M Move memory to register 0t o DD 10 1 AP Return on positive 11 1 1 00 00 511
HLT Halt o1 1 1 0 1 10 7 AM Return on minus 1T 1 1 1 1 0 0 O 5/
MVir Move immediate register 0 0 D DD 1T 1 0 7. RPE Return on parity even 11 1 0 1 0 0 O 511
MVI M Move immediate memory 00 1 1 0 1 1 0 10 RPO Return on parity odd 11 1 0 0 0 0 0 M1
INR Increment register 0D 0 D D D11 0 O 5 RST Restart Tt A A A 1T T 1 n
DCR« Decrement register 0 0 b DDV 0 1 57 IN Input 11 o 1 1 0 11 10
INR M Increment memory o0 1 t 0 1 00 10 ouT Output Tt 1 0 1 0 0 1 1 10
DCR M Decrement memary oo 1 1 0 1 0 1 10 LXI B Load tmmediate register o0 0 0 0 0 0 1 10
ADD ¢ Add register 10 A 1 06 0 0 0 85 § S8 4 PairB& C
ADCr Add register 1o A with carry 1t 0 0 0 1 5 8§ § 4 LXI D Load immediate register g 0 0 + @0 0 0 1 10
SUBr Subtract register from A 1 0 0 t 0 5 S8 § 4 PairD & E
SBB r Subtract register from A 1 0 0 1+ v 8 5 8§ 4 LXIH Load immediate register 0o 1 o0 00 0 10

with borrow PairH& L
ANA r And register with A 1 0 i 0 0 8§ § 8§ 4 LXI SP Load immediate stack pointer 0 0 1 1 0 0 0 1 10
XRAr Exclusive Or register with A 1 0 1t 0 1+ § § § 4 PUSH B Push register Pair B & C an 1 1 g 0 0 1 0 1 n
ORAT Or register with A 109 1 1 0 s § 8 4 stack
CMP ¢ Compare register with A 1 ¢ t+ 1 1 5 8 § 4 PUSH D Push register Pair O & E on 11 0 t 0 1 0 1 1"
ADDM Add memory to A 10 0 o0 o 1 1 0 7 stack
ADCM Add memory 10 A with carry 1T ¢ 0 0 1 1 1 0 ? PUSH H Push register Pair H & L on 1 1 10 0 1 0 1 A
Sug M Subtract memory from A 1 0 0 1 0 1 1 4 7 stack
SBEM Subtract memory from A T o 0o 1 1 1 140 7 PUSH PSW Push A and Flags 11 1 1 0 1 0 1 "

with borrow on stack -
ANA M And memory with A 1 0 1 0 0 1 1 0 7 POPB Pop register pair B & C off 11 0 0o 6 0 0 1 10
XRA M Exclusive Or memory with A 10 1 0 1 1 1 0 7 stack
ORA M Or memory with A T 6 1 1 0 1 1 40 7 POPD Pop register pair D & E off 11 0 1 0 0 01 10
CMP M Compare memory with A 1 0 1 T 11 11 7 stack
ADI Add immediate 10 A 1 1 0 0 o0 1\ 10 7 POP H Pop register pair H & L off 11 1 0 0 0 0 1 10
ACI Add immediate to A with 11 g 0 1 1 1 0D 7 stack

carry POPPSW Pop A and Flags 11 v 1. 0 0 0 1 10
sul Subtract immediate from A 11 a 1 0 v v 0 7 off stack
5Bl Subtract immediate from A i1 0 1 1 v 10 7 §TA Store A direct 0o t 1 0 0 1 0 13

with borrow LDA Load A direct oo 1 o1 1 0 t 0 13
AN And immediate with A 1 1 0 0 v v 0 li XCHG Exchange D& E, H& L (I P01 0o 4
XRI Exclusive Or immediate with 1 1t 01 o1 o1 7 Registers

A XTHL Exchange top of stack, H & L 11 1 o0 oo 1o 18
OR1 Or immediate with A 1 1 1 LT | R 7 SPHL H & L 1o stack pointer 11 1 1 1 0 0 1 5
ch Compare immediate with A 1 1 1 T ¥ 1 1 0 7 PCHL H & L 10 program counter 11 1 0 v+ 0 0 1 5
RALC Rotate A left 00 o0 o0 0 1 ¥ 1 4 DAD B AddB&CluoHE&L oo o 0 v 0 0 1 10
RRC Rotate A right o0 ¢ 0 1 1 1 4 DAD D AddD&EwWHEL oo 0 1 t 0 0 1 10
RAL Rotate A left through carry 0 0 0 t 01 1 1 4 DADH Add H& Lo H& L 0 0 1 0t 0 0 1 10
RAR Rotate A right through 0 0 0 T 1 1 1 4 DAD SP Add stack pointer to H & L 0 0 1 1 1 0 0 1 10

carry STAXB Store A indirect 00 0 0 0 0 1 0 7
JMP Jump unconditional 1 1 0 0 0 0 1 1 10 STAXD Store A indirect o0 0 v 0 0 1 D 7
i Jump on carry tr o0 1 1 0 10 10 LDAXB Load A indirect 00 0 0 1 0 10 7
JNC Jump on ne carry 1 1 B 1 0 0 1 0 10 LOAX D Load A indirect a 0 0 11 0 1 0 7
iz Jump on 2ero T 1 0 0 1 0 1 0 10 INX B Increment B & C registers 00 0 0 0 0 v 1 5
INZ Jump on no zere 11 0 0 0 0 1 0 0. INX D Increment D & E registers oo 0 1 0 0 11 5
JP Jump on positive 1 1 1 1 00 1 0 10 INX H increment H & L registers 0 0 1t 0 0 0 1 1 5
M Jump on minus 11 11 1 0 10 10 INX SP increment stack pointer o0 1 o1 0 0 11 5
JPE Jump on parity even 1 1 1 0 1 0 1 0 1 OCX B Decrement B & € 0 ¢ 0 0 1 0 1 1 5
JFO Jump on parity odd T Yy 1 0 0 0 10 10 oCcx o Decrement D & E o6 0 1t 10 11 5
CALL Call unconditional T 1 0 0 1 ¥y 01 17 DCXH Decrement H & L co 1 0 1t o 1 5
cc Cali on carry P a 1 1 1 0 0 1n? DCX 5P Decrement stack pointer 0 0 i 1 1 0 1 1 5
CNC Call on no carry [N | 0 101 00 1n17 CMA Complement A 0 0 1 o 1 1 11 4
c2 Call on zero Tt 1 0 0 1 1 0 0 nn7 STC Set carry o0 1 1 0 1 11 4
CNZ Call on no zero 11 0 0 0 1 0 0 117 cmc Complement carry oo 1 1 1 1 11 q
cP Cali en positive (N | 1 10 1t 0 0 1117 DAA Decimal adjust A oo 1 0 0 1t v 1 4
M Call on minus 11 t 1 1 1t 0 0 117 SHLD Store H & L dwect 00 1 o 0 0 1 0 16
CPE Call on parity even 11 1.0 v 1 0 O 117 LHLD Load H & L direct 0 o 1 01 0 1 0 16
CPO Call on parity odd 1 1 0 0 Y 0 O 17 El Enable Interrupis 11 1t 1 0 1 4
RET Retorn 11 0 ¢ 1 0 01 10 DI Disable interrupt 11 1 1 0 0 1 1 4
RC Return on carry 1 1 0 1-1 0 0 0 5/11 NOP No-operation ¢ 0 0 0 0 O O 0 4
RNC Return on no carry 1 1 01 00 0 0 5
NOTES: 1. DDDorSSS—-000B—-001C~010D - 011 E~100H ~ 101 L — 110 Memory — 111 A,

2. Two possible cycle times, (5/11) indicate instruction cycles dependent on condition flags.

4-15

