
 |

DANSK DATA ELEKTRONIK

ID-7000 CPU module

for

the ID-~7000 MICROPROCESSOR SYSTEM

December 1975

author: Ole Lading

fv, 22-2-97

page 1

ID-7000_CPU-MODULE

i. Generel description.

The ID-7000 CPU-module is the processor module of the ID-7000 micropro-

cessor system, which is based on the INTEL 8080A microprocessor chip.

A description of the bus signals can be found in the ID-7000 System De-

scription. In this document, a description of the different cirmits in

the CPU-module is given, In appendix 1, the DC- and AC~specifications of

the module as seen from the terminals are given for use in designing mo-

dules for the ID-7000 microprocessor system. Appendix 2 contains a com-

plete logic diagram of the module. Appendix 3 is a datasheet for the IN-

TEL 8080A microprocessor chip. Appendix 4 contains a description of the

functional behavior of the INTEL 8080A microprocessor. In appendix 5, a

detailed description of the 8080 instruction set is given.

2.Construction.

The construction of the ID-7000 microprocessor module is shown in the bloc-

ked schematic in fig 1. The module contains the following circuits:

a) INTEL 8080A microprocessor chip.

b) Clock generator for the 8080A and associated logic.

c) Address bus drivers.

ad) Bi-directional data bus drivers.

e) Status latch.

f) Logie for timing of the tus control signals RR,WR,INR,OUTR and AFER.
g) Output drivers for control signals from the INTEL 8080A.

h) Buffers and synchronizing flip-flops for the control signals

t® the INTEL 80804.

In the following sections the different circuits are described with refe~

rence to the complete logic diagram of the module (appendix 2).

a) INTEL 80804 microprocessor chip. The architectural structure and the

electrical properties of the 800A microprocessor chip will not be descri-~

bed here. Readers not familiar with the 8080 microprocessor are recommen-

ded to read appendix 4 before going on in this text.

T
U
T
E

s
e
e

e
e
e

Navn LI) -}000 cu _ mod ule Lb. nr. Dato Emne Fag Afd. Side

page 2

Blocke A She matic.

elev

+SV

GND ere

SV A@us DISAELE
* 1 L *

| & ADRUS:

WE S IZZ7Z >
oan
vA
(may
w
a
fam)

xc

L
x ao Dero)

“\

GOO Wt 3 KZZ 77»
/ :

MrM@o- 4| &
ffi

PRocESWR / Tarn

; J) REET sync 2

/

/ ~

/ S
/ Land

iy a
Lf “

=

oc

e
“A

r REEL _ RESET

4 |j——T 4
rR} tweuT + Ho ep 1 &
_ S¥ite 4 a

VENT. q WR =a)
YY QueFees Ready Te =

INT WAL > E
* | SINT 62 or peril . 3

IX v 4 |

t Dery Wall ye Sync

VS Der Yar Olay hr Oy -

Clock Generator ee

he 4

page 3

b) Clock phase generator (appendix 2.1), The data sheet for the 8080A

microprocessor chip (appendix 3) specifies two clock phases #1 and #2

as shown in fig. 2.

ty
— + FE ltn

| > em | toy = clock pened YO - 2000 asek

|
.

D, =a | {1 thy = $1 - pulse wielth ma. 60 nul

I

ey la, Loz = O2- pulse width min, 220 nsel¢

0, ee es ee tpt = delay bt, Ozh ma, 0 nuk
i} l {

! | a2 a | tD2 = di lay @2I- oth Min | 10 ask

‘ x > tdDz = Atlus dih-G2h man, ¥ Onslk

hy 2

The clock phase generator is based on a self-correcting, modulo 8 John-

son—counter running at a clock frequency of 1@‘Hz. The clock is generated

by a crystal controlled clock generator, The clock phases from the clock

phase generator ((1,82,93,VS and 141) used by the module are shown in fig.

3 with their nominal time relationship. As seen from the logic diagram

(appendix 2.1), the clock phases £1 and $2 are generated in different ways:

PlH,@2H: 12 Volt clock pulses for the SO8OA.

PLTTL,@2TTL: TTL-clock pulses for internal use.

PLT, Bet: TTL-clock pulses for the bus system (terminals).

LMP

{

|

I
|

b 62,Saykl 250 awk | 12Snsek J
® oN aN aA

| |

128 nstk

|

; ——
i

;

te
n

ta
 Ww

page 4

c) Address bus drivers (appendix 2.2): For the purpose of isolating the

INTEL 8O80A from the terminals of the module and generating fan-out for

driving many modules connected to the bus, the CPU module contains address

bus driver circuitry. The address bus driver is two INTEL 8212 8-bit tri-

state buffer/latch circuits. By activating the bus control signal ABUSDIS-

ABLE, the high-impedance state of the address bus drivers is obtained.

ad) Bi-directional data bus drivers (appendix 2.3) These drivers (2 INTEL

8216 4-bit bi-directional bus drivers) buffer the data between the S080A

microprocessor chip and the modules connected to the bus system. The dri-

vers are in the input mode when the control signal DBIN from the 8080A is

active, otherwise the drivers are in the output mode. The drivers can be

disabled (output in high-impedance state) by activating the bus control

signal DBUSDISABLE.

e) Status latch (appendix 2.3). This latch contains information on the

current machine cycle. This information is placed on the internal data

bus: at g2t—time in the Tl state and is kept to @2h-tiime of T2. The SYNC

control signal is active in the same time period. The signal #2*SYNC is

used as clock for the status latch. The status information is then pre-

sent on the output of the status latch at $2|-time in Tl (plus a short

time delay). An INTEL 8212 buffer/latch is used as status latch.

The following status bits are available on the bus for indication purpo-

ses and for use in special-purpose modules:

Ml: lst. cycle in instruction execution.

HLTA: SO80A in HALT~state.

STACK: The address on the address bus is a stack address.

£) Request logic (appendix 2.4). This logic is used for timing and buf-

fering the five bus request signals RR,WR, INR, OUTR and AFBR. Only one re-

quest signal is active at a time, depending on the current machine cycle:

: fetch-,memory read-, stack read- cycles.

: memory write-, stack write- cycles.

|
Hl

: input- cycles.

OUTR :output—- cycles.

AFBR : interrupt- cycles.

The ninth type of machine cycles, HALT generates no request signals.

page 5

The request timing is arranged to simplify the construction of I/0- and

memory modules, and no other control signals are required for communi-

cation with such modules. However, to achieve this, the request signals

must satisfy the following requirements:

The information on the address bus should be stable at least 120

nsec before the request signal activates and at least 120 nsec af-

ter the request signal deactivates. This permits I/0- and memory modules

to use a gated request signal directly as write-clock if positive

edge-triggered registers are used.

The request signal should be activated early enough for I/0- or

memory modules to have at least 120 nsec in which to activate the

vent control-line, to extend: the current machine cycle.

This timing is the same for all the request signals and is controlled

by the 7470 flip-flop. The contents of the status latch determine which

request signal is to be activated.

The request control lines on the bus are driven by 7438 open collector

power gates. This permits 1/0-modules with DIMA-capability to use the

lines for reading or writing in memory, when the CPU is forced into

HOLD mode (indicated by the HOLDA signal).

g) Output drivers for control signals from the 8080A (appendix 2.5). The

driving capability of the 8080A microprocessor chip itself is limited to

1 TTL gate. The output drivers generate fan-out for the internal logic

and for the bus. The following 80804 control signals are available on the

bus for indication and for use in special purpose modules: SYNC, WG (iden-

tical to the 8O80A WR-signal, but renamed to distinguish from the WR-request

signal) and HOLDA (hold acknowledge), The WG signal, which is activated

when stable data from the 8080A is available on the data bus, can be used

as clock in I/0-modules where the registers are not positive edge triggered

(see section g)).

page 6

h) Buffers and synchronizing flip-flops for the control signals to 8080A

(appendix 2.6). To isolate the INTEL 8080A from the terminals of the module,

the latter is equipped with buffers for incoming control signals to the

microprocessor chip. The control signals READY and HOLD are synchronized

to obtain proper operation of the 8080A microprocessor chip. The bus con~

trol lines INT, VENT and: HOLDR are pulled to the +5V supply by 1K resistors

to assure proper operation in installations where no modules generating

these signals are present.

The MEMDISABLE control line is not used by the CPU-module, but its pull-

up resistor has been placed on the CPU-module.

Appendix 2.6 also shows the power connections for the 8080A. All the vol-

tages (+12V, +5V and +5V) are available in the bus system.

APPENDIX 1: ELECTRICAL SPECIFICATIONS page 1

Al,1: D0-specifications:

Al,1.1 Outputs:

Address bus ADR(15:0):

Maxe

Max.

Max.

sink current

source current

leakage current

1L5mA

-lmA

20uA

Data bus D(7:0), output mode:

Max.

Max.

MaXe

Request

sink current

source current

leakage current

25mA

+imA

100uA

at

at

0,45V

3,65V

0,45/5,25V (high imp. state)

0, 45V

3,65V

0,45/5,25V (high imp. state)

signals (RR,WR,INR,OUTR,AFER) and WG-signal:

Max.

Max.

sink current

source current

32mA

Ty SA

at

at

0,4V

2,4

The drivers are open collector (300 ohms pull-up)

ML,HLTA and STACK:

Max.

Max.

sink current

source current

G1, @2,HOLDA and SYNC:

Maxo

Maxe

sink current

source current

sink current

source current

sink current

source current

15mA

20mA

at

at

at

at

at

at

at

0, 45V

3,65

0,5V

2,7

0,4V

2,4V

0,5V
2,70

A 1.2 AC-specifications:

page 3

A 1.2.1 8080-input: The timing diagram in fig. 1 shows the relationship

between the relevant bus signals when the CPU executes an input-, read

menory-/stack- or interrupt cycle. All time references are with respect

to the. fi-clock phase on the terminal.

no Tw-states between Tl and T2.

The timing diagram is shown with

5} aKS TY/11

n

ftsdt k tsd= ;

SYNE} [1 | I [_

; | F
tad so ._tah=ted

ADaGs-0) | Addresg Stable 1

_ ;
mm] | fd [tele
INR : Wo | Nprsaereans

FFéa ! 1 |e a, [.
win Bso Es] .

tg

 DO:0) a Ay i i a ne A

1 hed , ath?
M4 |

ib \ekch)

SYNC set delay from fu,T1 tsd+ 135 ns min 315 ns max

SYNC reset delay from f1,12 tsd+ :135 ns min 315 ns max

Address delay from gl,Tl tad :125 ns min 380 ns max

Request set delay from f,t2 trd+ 30 ns min 115 ns max

Request reset delay from p1,T3 trd+ :405 ns min 495 ns max

Data set-up time before g1,T3 tds : 55 ns min

Data hold time from fi,t3 tdh =: 265 ns min
Cycle-status delay from g1,T1 ted 7375 ns min 405 ns max

fig. 1

Timing relationship in input-,read menory/stack- or interrupt—cycles

page 4

A 1.2.2 8080-output: The timing diagram in fig. 2 shows the relationship

between the relevant bus signals when the CPU executes an output— or write

memory—/stack- cycle, All time references are with respect to the ¢l—clock

phase on the terminal unless otherwise specified. The timing diagram is shown

with no Tw-states between Tl and T2,

I 4 ye T2 a! 73 a 46
t “~~ aS >is

oo i M7 TL M7
I | |

! I |

7 es ee
| H |

d - | k tsde k tsd- |

SYNC | { i 1 | i

'] | | i tad tohztad t =
ADRUS0), l Ie ees

I Addeess Stable |
— ! I . | j
we) | est k tedt
outed 1 i co

| 1 I

I . , wet 27 | I
DOo_t ae Data aba 7

i 1 t

! is ils |
WE | I hag Le. | 4th 1

| —> —3

kb td,
Svack

(if ctecke “weit

SYNC set delay from g1,T1 tsd+ : 135ns min 315 ns max

SYNC reset delay from $1,T2 tsd+ +: 135ns min 315 ns max

Address delay from $2 ,T1 tad :125ns min 380 ns max

Request set delay from 1,72 trd+ +: 30nsmin 115 ns max

Request reset delay from £1,T3 trd+ : 405ns min 495 ns max

WG set delay from gL,T3 twdt +: 1O0ns min 185 ns max

WG reset delay from f1,T4/Tl twd+ : JOns min 185 ns max

Data stable time before WG-J tds : 165 na min

Data stable time after We-t tdh =: 105 ns min

Cycle-status delay from gl, TL ted : 375ns min 405 ns max

fig. 2

Timing relationship in output- or write memory—/stack- cycles

|

page 5

A 1.2.3 Wait-timing: To insert wait-cycles between T2 and T3, the vent

bus: line must be operated. This signal is synchronized on the CPU-module

and. the bus: signal may be operated at any time. To be recognized as a

wait-request, the vent~line must be low at least tvs 240 nsec after

gil,T2 and kept low at least until tvh = 270 nsec after Pl,T2. In order to

exit the wait-cycle: (Tw), the line: must be high during the same time pe-

riod in the Tw-state, When the machine cycle is prolonged with Tw-state(s),

all bus information (address, data, request lines, cycle status lines)

remains stable. Fig. 3 shows an input machine cycle with one Tw-state. Note

the input data set-up time is now with respect to yin following the last Tw-state.

| | |
1 | |

sywe | L ; |
| fl |
|

ADRUS0) { addece stable

: =
dog Va aaa 7 [wkskta [FY

|
_ |

Ine il
|

|
ts. trys

7 A A A A A ln AAA VA a Aa ZA
! tvh H tvhooo
is I °

vent set-up time before Gl ,T2/Tw : tvs : 240 ns min

vent hold time from G1, T2/Tw tvh +: 270 ns min

Data set-up time before 1,73 tds: 55 ns min

Data hold time from. (1,73 tdh oo: 265 ns min

fig. 3

WAIT—timing

page 6

A.1.2.4 HOLD-timing: To force the CPU in the HOLD-mode, the HOLDR line

must be operated. This signal is synchronized on the CPU-module and the

line may be operated at any time. The synchronizing, flip-flop is clocked

at the trailing edge of §2 in all states (375 nsek after #1 leading edge).
The HOLD-signal to the 8080A is tested at @2~-tiime in T2. To be recognized

in the current machine cycle, the HOLDR line must be activated before the

sampling time in the Tl state. The acknowledge for the holdrequest, HOLDA

is given at #1 rising edge (plug a short delay) in the T3-state if a read-,
interrupt or input- cycle is in progress. In write- or output- cycles, the

acknowledge is: given at fl-time in the state following T3. The CPU conclu-

des the current machine cycle and enters the HOLD-mode (if the HOLDR is

still active).

Exit from the HOLD-mode takes place, when the HOLDR line is deactivated.

The state following that state, where the synchronizing flip-flop deac-

tivates, is executed in HOLD-mode. At @l-time in the next state, the HOLDA
signal deactivates and normal proccessing resumes with Tl of a new machi-

ne cycle (if the HOLDR is extended) or with the machine cycle in progress

(if the HOLDR is brief).

it should be mentioned, that a WAIT-request overides a HOLD-request. The

HOLD-sequence continues, when the WAIT-state is left.

The timing diagram in fig. 4 shows the HOLD-timing in read-, interrupt-

or input machine cycles. In write- or output machine cycles, the timing

is similar, except that the HOLDA is activated at 1 time in the state

following T3, as mentioned above.

When the HOLDA is generated by the CPU-module, the I/0-module generating

the HOLDR signal may control the bus. The I/O = module is responsible
not to disturb the execution of the current machine cycle. In practice

this means, that the I/O0-module can disable. the busses at g& time fol-

lowing that state, where the HOLDA is generated.

The disable/enable time for the address bus drivers on the CPU-module is

max. 45 nsec. The disable/enable time for the data bus drivers is mMaxXe

90 nsec.

8 | iSARLE +: AOL ne 5 Olt, 2, HOLDA

SEMABLE =: 2h. nar ode ol LDA

R
s

page 7
s
e
T
o
é
o

yndut
10

~
y
d
n
x
z
e
q
u
y

‘=-peey
ut

S
u
T
w
T
y
—
c
l
o
y

xew
su

OL
UTM

su

uqzu
su

uTU
su

xeu
su

O
g

uTW
su

7
*3Tg

Puy

ua.

sud

¥ y

s
s
e
y
e
z
s

T
e
u
o
t
y
d
g

(xx

*ouTy
eTdwes—yIIOH

(x

worg
£BTeP

VCIOH

ewEy
PLOY

YCIOH
eur,

dn-jes
U
T
I
O
H

wory
euwtq

oTdues
C
I
O

Emne:

ID 1000 CPU- module

Al4: Clodg - Phase genrrator

Dok. nr.: Appendix Q

Navn? OL

Dato: 75-09-06

Sov

lo 13

it

oy ¥

ee]

 D0 Qo
AY)

lp e
ANS

Qo Kwyas

g Arre

 Me B &

YY

19

4
+
 |

vi
l

's

mne: o= : _ a be _nret 8 Deackur 2 ide ‘

. ID-~To00 CPU- module Dok nes Mppentve | side 2
Navn: 0 L ud af

f22- NAdeecs bus davers Dato: 7£-07- O06 sider

4-653
+6

R, elk
AGUSDISACLE poy

F gogo Al 1 Al 12 ;

hic [3% bf mp ca Ist wey Ie ADRS) Ig

aly $24 3 "y ADR (7) x AN

ar (Be 20 19 Ada (13) “hy

37 1, al ADR (2) ne
Ald 9212 AX as

AW 40 43 10 apn) ny

De (10)
Alo i 2g © g Abe < AR

aq 13 5 (4 ARCA) pg

> {Bu 3 4 Ape (8).
Ag > CLR 6 AL

IY

©)

AnniAg
a7 GS 1e Mm swe 0M 95 Ls ADR) Ao

ag (3% Ig t ADR Ce) a3

as te! 10 4 Apels) ao

30 21. 2 Bp See” VE

ay S210 NA
AZ 24 q nN fe) HI ay x he

na J Oo fs Lg
oe fy é 224 say

z Y Ae!) oy note ay cue AB

Emne:

ID 1000 CPU - module

2.2. Biclircctional dada bas drivers

Dok. ar: Appendix 2 _| Site S
Navn: OL_ ud af

Dato: O-097-06

=> =u

i

Yo
. 7 nual —

DBIN (Tewe-IK Qik Po] Fee ;
6bo—

ak yy

-_ / le] js 15 fon 5
L8ogo L,

= a is y

dy
= i 10

Vy nq

ca
4 ive t

; (¢) .

*
I" gue ° ? 135

7
we

De ;
{7 : é De) oe a

- a 6 vy
~ a OF Lice:
()

, jis 4h

1
ye €& 16

D2)

D ta) coe

?., g
cal 1% 2)

» if toiy gus
x:

St) 7 D/

re tc - DO A33
No)

D, 10
+ | 7] 3

Mo) x) 5

ike
7

Hod

1k = Rr.

2 vi

= MD s7R. OLS. MENR

*
0 Ene kK ANS x/

= “ Mt __x 6

| | a 8212 a! OUT 4 ayy v

| | 4
fo uLTA

|
°

W_» BY

4 ©
I, . y TACK a ec

Ss x é Wo 5

Sy i EvTA
ak Da. Da ft —>

Iv P 12 4 ?

\ RESET
‘ s i

JZ

SKC
d

OLTTL
> Ti

*/ rahe wclla-t fs ick skid

she Pee st

Emne: ID 1000 CPU- module Dok. are: Appemelux QQ

Noe OL

| R24 > Request Logic
Dato: 715-09-0 6

+5

ij -
+

> 142 5

ote 7 ¥ S73 ABE
> : 42 1 Inia iv ie e Ahoy

Lip ae

SYNC
|

SY 3 | TW3e ReF 200

a Q rat . (bo { RR a Aj2

J f +

ok, nr.: A dpewncls ZL Side

Emne: sm)) 2000 CPU- moclude Dok. n Phe, dc - i

Nave: OL

Ao S: Out put dn vers vo Dato: 12-09-06

LGoy $0}

re | | rt, . Hip o of .
T3099 yuyqp 2-31 9-1, if -K B28

® - ere adverts late,
>

ay _ WAIT
Walt Wow :

L@ <
ts : Tt

14 , oe oF 23 SYNC.
Sytic, —, fo" , le?)

500 ene

fh Yo lo ee SYNC /

w)) YG) jy * AY

Lsoy

7 BoA
DeIN

———
Deis - (@) eo

u

—~ ily ni WG >
We >\{ Q L i

(Mae kee

‘thin 4 i
JTE Ie Loy -

TAT,

Hy |S_ Efe— - ‘4 Bé

2 (i ‘

Emne:

f

ID-1000 CPU~ moclule Doki Appendix 2 | see
| Navn: ol ud af

Al 6: Tap buf fees ant Syacheo MAS ingy fho- Hops Dato: '§$-O7 -O6

i +o e 47

ZT T 502 M7 T
Tiogo | yh FIN : Ik i iat

i INT —e——4}4 + — 6 4 A249
(te) & :

+ + 1 Spe GE
7 hy Elk —2—_, le = Vent

1 Remy Ke AP Ii, ok 4 — Ads

Very . vs x

ii MEMDIsag Ee i ® CB:
rai | Ik Ry

i y

o«e pie
es Rig Doon O24

Or & - ¢ i Pe
e— R Ria To

” li = ate
i 4 x B27
1 O3ITL

inp ke

| t ca 1404 ees
aay kB Ruy Flk RESeT Aye
PEGE — 2 ie ne ; « AY

| 2) —
RESET,

% 4tipv

a,” gg
x By9

C 2 a! Vv
+5 ae (HE — —— +s 1, Bf

; | LA a _ ad Bi eo
J tie Aye ps

eof SE “lh cSM ys | -S oie & — —*« AD

APPENDIX 3

intel —_ Silicon Gate MOS 8080A
SINGLE CHIP 8-BIT N-CHANNEL MICROPROCESSOR

The 8080A is functionally and electrically compatible with the Intel® 8080.

a TTL Drive Capability = Sixteen Bit Stack Pointer and Stack

. Manipulation Instructions for Rapid

= 2 us Instruction Cycle Switching of the Program Environment

= Powerful Problem Solving = Decimal,Binary and Double

Instruction Set Precision Arithmetic

= Six General Purpose Registers = Ability to Provide Priority Vectored

and an Accumulator Interrupts

= Sixteen Bit Program Counter for = 512 Directly Addressed I/O Ports

Directly Addressing up to 64K Bytes

of Memory

The Intel® 8080A is a complete 8-bit parallel central processing unit (CPU). It is fabricated on a single LSI chip using Intel’s

n-channel silicon gate MOS process. This offers the user a high performance solution to control and processing applications.

The 8080A contains six 8-bit general purpose working registers and an accumulator. The six general purpose registers may be

addressed individually or in pairs providing both single and double precision operators. Arithmetic and logical instructions set

or reset four testable flags. A fifth flag provides decimal arithmetic operation.

The 8080A has an external stack feature wherein any portion of memory may be used as a last in/first out stack to store/

retrieve the contents of the accumulator, flags, program counter and all of the six general purpose registers, The sixteen bit

stack pointer controls the addressing of this external stack. This stack gives the 8080A the ability to easily handle multiple

level priority interrupts by rapidly storing and restoring processor status. It also provides almost unlimited subroutine nesting.

This microprocessor has been designed -to simplify systems design. Separate 16-line address and 8-line bi-directional data

busses are used to facilitate easy interface to memory and 1/0. Signals to control the interface to memory and 1/O are pro-

vided directly by the 8080A, Ultimate control of the address and data busses resides with the HOLD signal. It provides the

ability to suspend processor operation and force the address and data busses into a high impedance state. This permits OR-

tying these busses with other controlling devices for (DMA) direct memory access or multi-processor operation.

8080A CPU FUNCTIONAL er DreC ONAL
BLOCK DIAGRAM DATA BUS

DATA BUS
BUFFER/LATCH

(8 BIT)
INTERNAL DATA BUS

(8 BIT)
INTERNAL DATA BUS

C
—

I i
ACCUMULATOR TEMP. REG. INSTRUCTION

| [wl REGISTER (@) MULTIPLEXER

w v8) a)
FLAG ‘) MP

FLIP-FLOPS II TEMP REG. TEMP REG.

ACCUMULATOR
- rT ca

LATCH (8)
8 REG. REG.

INSTRUCTION Z i rr)
ARITHMETIC a D a

LOGIC pecoorr e REG. REG.

UNIT MACHINE id H rc) L ro) REGISTER

{ALU} CYCLE 2 REG. REG. ARRAY

(3) ENCODING g ae
a STACK POINTER

vei
‘Zz PROGRAM COUNTER

DECIMAL INCREMENTER/DECREMENTER

ADJUST ADDRESS LATCH _116)

CONTROL

power [—— +12v
SUPPLIES | ——+ +5V DATA BUS INTERRUPT HOLD WAIT ‘aa

WRITE CONTROL CONTROL CONTROL CONTROL SYNC CLOCKS

=a OT PTT ir iyi i
WR -OBIN. INTE INT HOLDHOLOWAIT | SYNC 01 62 RESET As AD

ACK READY 5 ADDRESS BUS

61]
ADDRESS BUFFER

513

ae GATE MOS 8080A

8080A FUNCTIONAL PIN DEFINITION

le following describes the function of all of the 8080A 1/0 pins.

ie of the descriptions refer to internal timing periods.

Ag (output three-state)

DRESS BUS; the address bus provides the address to memory

(® to 64K 8-bit words) or denotes the !/O device number for up

to 256 input and 256 output devices. Ag is the least significant

ress bit.

Do (input/output three-state)

DATA BUS; the data bus provides bi-directional communication

ee the CPU, memory, and I/O devices for instructions and

la transfers. Also, during the first clock cycle of each machine

cycle, the 8080A outputs a status word on the data bus that de-

kk the current machine cycle. Dg is the least significant bit.

C (output)
SYNCHRONIZING SIGNAL; the SYNC pin provides a signal to

i the beginning-of each machine cycle.

IN (output)

DATA BUS IN; the DBIN signal indicates to external circuits that

| Lk: bus is in the input mode. This signal should be used to

effble the gating of data onto the 8080A data bus from memory

or 1/0.

LA
ory or input data is available on the 8080A data bus. This

Yl is used to synchronize the CPU with slower memory or 1/0

ices. If after sending an address out the 8080A does not re-

ceive a READY input, the 8080A will enter a WAIT state for as

f as the READY line is low. READY can also be used to single

sf the CPU.

WAIT (output)

IT; the WAIT signal acknowledges that the CPU is in a WAIT

e.

DY (input)

DY; the READY signal indicates to the 8080A that valid

“

VE (output)
ITE; the WR signal is used for memory WRITE or I/O output

control. The data on the data bus is stable while the WR signal is

ive low (WR = 0).

LD (input)

HOLD; the HOLD signal requests the CPU to enter the HOLD

e. The HOLD state allows an external device to gain control

f: 8080A address and data bus as soon as the 8080A has com-

ed its use of these buses for the current machine cycle. It is

recognized under the following conditions:

@Bhe CPU is in the HALT state.

@BBhe CPU is in the T2 or TWstate and the READY signal is active.

As a result of entering the HOLD state the CPU ADDRESS BUS

(4ls-Ag) and DATA BUS (D7-Dg) will be in their high impedance

s#™e. The CPU acknowledges its state with the HOLD AC-

KNOWLEDGE (HLDA) pin.

‘A (output)

LD ACKNOWLEDGE; the HLDA signal appears in response

to the HOLD signal and indicates that the data and address bus

]
a

Ay O*+ 71 40 Ho Ay

GND O——4 2 39 FO Ang
D, O13 38 F—>0 An3
Dz, O14 37 0 Ai2
DB; Ow—et 5 36 -—O Ais

D, Of +16 35 -—*0 Ag
D; Ow—H1 7 34 0 Ag

2,0-—-{8 INTEL 2}—-°o%
Dp, oOo] 9 32 0 Ag

p, —-410 BOBOA 31 f 04
-5¥ O—411 30 -—+0 A,

RESET O——>] 12 29 F—0 Ag
HOLD O-——e{ 13 28 }——O +12V

INT O——] 14 27 -—0 Az

°2 O-—ef 15 26 -—+o A,
INTE O<——J 16 25 b—+o Ay
DBIN O«——{ 17 24 --—~0 WAIT

WA O+—] 18 23 J*——O READY

sync O*——4 19 22 }*—O 4

+5v O-———] 20 21 HLDA

Pin Configuration

will go to the high impedance state. The HLDA signal begins at:

@ 13 for READ memory or input.

@ The Clock Period following T3 for WRITE memory or OUT-

PUT operation.

In either case, the HLDA signal appears after the rising edge of $4

and high impedance occurs after the rising edge of $2.

INTE (output)
INTERRUPT ENABLE; indicates the content of the internal inter-

rupt enat’s flip/flop. This flip/flop may be set or reset by the En-

able and Disable Interrupt instructions and inhibits interrupts

from being accepted by the CPU when it is reset. It is auto-

matically reset (disebling further interrupts) at time T1 of the in-

struction fetch cycle (M1) when an interrupt is accepted and is

also reset by the RESET signal.

‘s

INT (input)
INTERRU2T REQUEST; the CPU recognizes an interrupt re-

quest on chis line at the end of the current instruction or while

halted. If te CPU is in the HOLD state or if the Interrupt Enable

flip/flop ‘s reset it will not honor the request.

RESET (input) [1]
RESET; while the RESET signal is activated, the content of the

:nter is cleared. After RESET, the program will start

at locatio- 0 in memory. The INTE and HLDA filip/flops are also

reset, Not: s, accumulator, stack pointer, and registers

are not

(substrate bias).
ternally suoplied clock phases. (non TTL compatible)

5-14

SILICON GATE MOS 8080A

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias... ..0...-0-5-5 0°C to +70° C

Storage Temperature----- -65°C to +150°C

All Input or Output Voltages

With Respect to Vgg .-------- +++ e- -0.3V to +20V

Vcc. Vop and Vgg With Respect to Vgg -0.3V to +20V

Power Dissipation ... 2.0... ee eee ee eee 1.5W

*COMMENT: Stresses above those listed under "Absolute Maxi-

mum Ratings” may cause permanent damage to the device.

This is a stress rating only and functional operation of the de-

vice at these or any other conditions above those indicated in

the operational sections of this specification is not implied. Ex-

posure to absolute maximum rating conditions for extended

periods may affect device reliability.

D.C. CHARACTERISTICS

Ta = 0°C to 70°C, Vpp = +12V + 5%, Voc = +5V + 5%, Vag = -5V # 5%, Vg = OV, Unless Otherwise Noted.

Symbol Parameter Min. Typ. Max. Unit Test Condition

Vite Clock input Low Voltage Vss—1 Vss+0.8 Vv

Vinc Clock Input High Voltage 9.0 Vopt1 v

Vit Input Low Voltage Vss—1 Vgg+0.8 Vv

Vin Input High Voltage 3.3 Vecti Vv

Vou Output Low Voltage 0.45: V_H lot = 1.9mA on all outputs,

Vou Output High Voltage 3.7 Vv lon =-150uA.

Ipp (av) | Avg. Power Supply Current (Vpp) 40 70 mA

i Avg. Power Supply Current (Vcc) 60 | 80 A |b Operation cc [AV) vg. Power Supply Current (Vcc m Toy = 48 usec

Igp (av) | Avg. Power Supply Current (Vga) -01 1 mA

nn Input Leakage ; +10 HA Vss < Vin < Vec

ler Clock Leakage +10 LA Vsg < Vetock < Vop

Ipy [2] Data Bus Leakage in Input Model -100 BA Veg <Vin <Vsg +0.8V

-2.0 | MA | \e04+0.8V<Vin<Vec

\ Address and Data Bus Leakage +10 uA VaDDR/DATA = Vcc

FL During HOLD -100 VapDRIDATA = Vss t+ 0.45V

CAPACITANCE TYPICAL SUPPLY CURRENT VS.
° Ty = 25°C Vec = Vop = Vss = OV, Veg =-5V 1s TEMPERATURE, NORMALIZED, [3]

Symbol Parameter Typ. Max. Unit Test Condition 5

Cy Clock Capacitance 7 25 pf fc = 1 MHz E

Cin Input Capacitance 6 10 pf Unmeasured Pins > " ~

Cout Output Capacitance 10 20 pf Returned to Vss 3

NOTES:

1. The RESET signal must be active for a minimum of 3 clock cycles. O85 425 +50 +75

2. When DBIN is high and Vjy > V/H an internal active pull up will AMBIENT TEMPERATURE (°C)

be switched onto the Data Bus.
3. Al supply / AT, = -0.45%/°C.

DATA BUS CHARACTERISTIC

DURING DBIN

MAX Fe — — — — RO

Tog

°o Vee
Vin

5-15

| Baicon GATE MOS 8080A

f- CHARACTERISTICS
a = 0°C to 70°C, Vpp = +12V + 5%, Voc = +5V + 5%, Veg = -5V + 5%, Veg = OV, Unless Otherwise Noted

| ae Parameter Min. | Max. | Unit Test Condition

cy!3] | Clock Period 0.48 | 2.0 | usec

t,, te Clock Rise and Fall Time 0 50 | nsec

kL $1 Pulse Width 60 nsec

to2 2 Pulse Width 220 nsec

D1 Delay ¢, to $2 0 nsec

E: Delay $2 to ¢, 70 nsec

tp3 Delay ¢; to dp Leading Edges 80 nsec

pa [2] | Address Output Delay From $2 200 | nsec fo = 100pf

top [2] | Data Output Delay From ¢2 220 | nsec

pc [2] | Signal Output Delay From ¢, or 6 (SYNC, WR,WAIT, HLDA) 120 | nsec

E [2] | DBIN Delay From $9 25 140 | nsec fsa ~ 50pf

tpi) Delay for Input Bus to Enter Input Mode tor | nsec

i= Data Setup Time During ¢, and DBIN 30 nsec

WAVEForRms "4! (Note: Timing measurements are made at the following reference voltages: CLOCK “1” = 8.0V

“O" = 1.0V; INPUTS “1” = 3.3V, “0" = 0.8V; OUTPUTS “1 = 2.0V, “0 = 0.8V.)

 RK ARAL

—*g2—e} J

a ef Lt y
[e-to3-| — to2

-——~} ieee —— 4

=== Al fT
ft th, t

too} >| to i —+| ton|—~ | too 7

‘owe

DATA OUT Ng

 516

i SILICON GATE MOS 8080A

A.C. CHARACTERISTICS (Continued)
Ta = 0°C to 70°C, Vpp = +12V + 5%, Voc = t5V + 5%, Vag = -5V + 5%, Vsg = OV, Unless Otherwise Noted

5-17

| Symbol Parameter Min. | Max. | Unit Test Condition

tos? Data Setup Time to $2 During DBIN 150 nsec

ton] | Data Hold Time From $2 During DBIN ia nsec

| tye [2] INTE Output Delay From $2 200 | nsec C. = 50pf

tas READY Setup Time During $2 120 nsec

| tus HOLD Setup Time to $2 140 nsec

tis INT Setup Time During $2 (During $4 in Halt Mode) 120 nsec

ty Hold Time From $2 (READY, INT, HOLD) 0 nsec

| tep Delay to Float During Hold (Address and Data Bus) 120 4 nsec

tawl2] | Address Stable Prior to WR (5] nsec]

| tpwl2] | Output Data Stable Prior to WR [6] nsec

| two!2]_ | Output Data Stable From WR (7) nsec

twa!2!_ |. Address Stable From WR (7) nsec |. CL=100pf: Address, Data

- — - - C.=50pf: WR, HLDA, DBIN

typ [2] HLDA to Float Delay (8] nsec

twrl2]_ | WR to Float Delay 19] nsec

| tay [2] Address Hold Time After DBIN During HLDA -20 msec |_|

NOTES:
1. Data input should be enabled with DBIN status. No bus conflict can then occur and data hold time is assured.

tDH = 500s or tor, whichever is less.
2. Load Circuit. —

oy
+5V

2.1K
2

| 8080A
OUTPUT

re

| AysAg
=

3. tey = tog t trg2 + te2 + teg2 t+ to2 + trot > 480ns. =

F { SK rae +s. TYPICAL 4 OUTPUT DELAY VS. A CAPACITANCE

| D,Dy FPR TA
—

+20

| wo z
SYNC ‘

& +10

<
—-| | tn a

0

DBIN 5 PS spec

5
A 3B -w

a

wR a, | — = we —| -20

<—+| toc
-100 -50 0 +50 +100

READY
4 CAPACITANCE (pf)

{Cactuat ~ Csrec)
| be— typ —el

WAIT
.

— 4. The following are relevant when interfacing the 80BOA to devices having Vip = 3.3V:
a) Maximum output rise time from BV to 3.3V = 100ns @ C, = SPEC.

Hoto / \ b) Output delay when measured to 3.0V = SPEC +60ns @ C, = SPEC,

i c) If CL # SPEC, add .6ns/pF if CL> Cgpec, subtract .3ns/pF [from modified delay) if CL < CspEC.

—e| toe be 5. taw= 2 tcy -tp3 -tre2 -140nsec. :

HLDA
6. tow=tcy ~tD3 -trg2 -170nsec.

a 7. If not HLDA, twp = twa = tp3 * tre2 +10ns, If HLDA, twp = WA = ‘WF-

| 8. tye = tog + tre2 -5Ons.
9. twe = tg + trg2 -10ns

WT 10. Data in must be stable for this period during DBIN -T3. Both tpgq and tpg must be satisfied.
11. Ready signal must be stable for this period during Tz or Tw. (Must be externally synchronized.)

te 12. Hold signal must be stable for this period during T2 or Tw when entering hold mode, and during T3, T4, T5 il

e _ and Ty when in hold mode. (External synchronization is not réquired.)

INTE 43. Interrupt signal must be stable during this period of the last clock cycle of any instruction in order to be

recognized on the following instruction. (External synchronization is not required.)

: 14. This timing diagram shows timing relationships only; it does not represent any specific machine cycle.

Biicon GATE MOS 8080A

STRUCTION SET

The accumulator group instructions include arithmetic and

logical operators with direct, indirect, and immediate ad-

dressing modes.

Move, load, and-store instruction groups provide the ability

to move either 8 or 16 bits of data between memory, the

six working registers and the accumulator using direct, in-

direct, and immediate addressing modes.

The ability to branch to different portions of the program

is provided with jump, jump conditional, and computed

jumps. Also the ability to call to and return from sub-

routines is provided both conditionally and unconditionally.

The RESTART (or single byte call instruction) is useful for

interrupt vector operation.

Double precision operators such as stack manipulation and

double add instructions extend both the arithmetic and

interrupt handling capability of the 8080A. The ability to

Data and Instruction Formats

increment and decrement memory, the six general registers

and the accumulator is provided as well as extended incre-

ment and decrement instructions to operate on the register

pairs and stack pointer. Further capability is provided by

the ability to rotate the accumulator left or right through

or around the carry bit.

Input and output may be accomplished using memory ad-

dresses as I/O ports or the directly addressed !/O provided
for in the 8080A instruction set.

The following special instruction group completes the 8080A

instruction set: the NOP instruction, HALT to stop pro-

cessor execution and the DAA instructions provide decimal

arithmetic capability. STC allows the carry flag to be di-

rectly set, and the CMC instruction allows it to be comple-

mented. CMA complements the contents of the accumulator

and XCHG exchanges the contents of two 16-bit register

pairs directly.

Data in the 8080A is stored in the form of 8-bit binary integers. All data transfers to the system data bus will be in the

same format.

Dz Dg Ds D4 D3 Dz Dy Dol

DATA WORD

The program instructions may be one, two, or three bytes in length. Multiple byte instructions must be stored

in successive wards in program memory. The instruction formats then depend on the particular operation

executed.

One Byte Instructions

D7 Dg Ds Dg D3 Dz D; Dg] OP CODE

Two Byte Instructions

[D7 Dg Ds D4 Dz Dz Dy Dy] OP CODE

, [7 Dg Ds Dg D3 Dz Dy Do] OPERAND
{

Three Byte Instructions

[D7 Dg Ds D4 Dg Dz Dy Do| OP CODE

[D, Dg Ds D4 D3 D2

[D7 Dg Ds D4 Dz Dz

Dy

Dy

Do | LOW ADDRESS OR OPERAND 1

Do | HIGH ADDRESS OR OPERAND 2

TYPICAL INSTRUCTIONS

Register to register, memory refer-

ence, arithmetic or logical, rotate,

return, push, pop, enable or disable

Interrupt instructions

Immediate mode or 1/O instructions

Jump, call or direct load and store

instructions

For the 8080A a logic “1” is defined as a high level and a logic ‘’0"' is defined as a low level.

518

SILICON GATE MOS 8080A

INSTRUCTION SET

Summary of Processor Instructions

Instruction Codel1] Clock 2} Instruction Code!) Clock [2]

Mnemonic Description Dy Dg Ds Dg Dz Dz By Do — Cycles Mnemonic Description Dy Dg Ds Dg Dz Dz Dy Dy Cycles

MOV,1,.2 Move register to register 010 008 $ § 5 RZ Return on zero 11 0 07 0 00 s/t

MOV M,r Move register to memory oi 1 108 8 § 7 RNZ Return on no zero 11 0 00060 ¢ 0 5/1

MOVr,M Move memory to register o1 0.00110 7 RP Return on positive 141 1 41 600 0 0 sm

HLT Halt | or to7r1 6 7 RM Return on minus 11 1 1°71 0 00 s/11

MVIr Move immediate register oo bDdDOoO1 10 7 RPE Return on parity even 11 1 071 000 5/11

MVIM Move immediate memory 00117011 0 10 RPO Return on parity odd 11 1 06 00 09 0 5/11

INRr increment register oo 0 0 D1 0 0 5 RST Restart 11 AAAI OSB 1

DCRr Decrement register oo 0 DDI 01 5 IN Input 11 0131470141 10

INR M Increment memory oo 11 01 00 10 ouT Output 11 0 4 0011 10

OCRM Decrement memory oo 1107 01 10 LXIB Load immediate register 00 00 0001 10

ADDr Add register to A 10 0008 § § 4 Pair B&C

Aocr Add register to A with carry 10 0 6 18 § § 4 LXID Load immediate register 000100 01 10

SUBr Subtract register from A 10 0 1 08 8 § 4 Pair D&E
SBBr Subtract register from A 10 @ 171 85 § § 4 LXIH Load irimediate register oo 700 06001 10

with borrow Pair H&L

ANAr And register with A 16 1 00 8 $ § 4 LXI SP Load immediate stack pointer 90 0 1 1 0 0 0 1 10

XRAr Exclusive OrregisterwithA 1 0 1 9 18 S$ § 4 PUSHB Push register Pair B& C on 11 0 001 01 n

ORAr Or register with A 10 1108 $ § 4 stack

CMP r Compare register with A 10 1 118 8 8 4 PUSH D Push register Pair D & Eon 11 0 1 01 01 iW

ADDM — Add memory to A 109 0 0 011 0 7 stack

AOCM Add memory toAwithcarry 71 0 0 O 7 1 1 0 7 PUSH H Push register Pair H& Lon 11 7 6 0 4 01 a

SUB M Subtract memory from A 10 0 1 01 1 0 7 stack

SBBM Subtract memory from A 10 0 111 4 ~0 7 PUSH PSW > Push A and Flags 11 1 7079 01 nu

with borrow on stack

ANAM And memory with A 10 1 0 074 1 0 7 POPB Pop register pair B & C off 11 0 00060 01 10

XRAM — ExclusiveOrmemorywithA 1 0 1 0 7 1 1 «0 7 stack
ORAM — Or memory with A 10 110 4 1 °0 7 POP D Pop register pair D & E off 11 0 1 00 01 10

CMP M Compare memory with A 10 147 41°10 7 stack

ADI Add immediate to A 110 001 1 0 7 POP H Pop register pair H & L off 141 7 0 06 0 01 10

ACI Add immediate to A with 11 0 0 11 14 0 7 stack
carry POP PSW Pop A and Flags 11 1 7 0001 10

sul Subtract immediate from A 11 0 1 0 10 7 off stack
SBI Subtract immediate from A 14 0 114 14 1 °0 7 STA Store A direct oo 1 1 001 0 13

with borrow LDA Load A direct oo 1 1710 1 °0 13

ANI And immediate with A 14 1 00110 7 XCHG Exchange D&E, H&L 14 1 =°0 oo. 4

xRI Exclusive Or immediatewith 1 2 1 0 17 1 71 0 7 Registers

A XTHL ExchangetopofstackH&L 1 1 1 8 0 0 1 1 18

ORI Or immediate with A 141 4 1 07 «9 °0 7 SPHL H&L to stack painter 1.1 8 t 1:0 03 5

cP Compare immediate with A Ss 7 PCHL H & L to program counter 11 1 071 001 5

RLC Rotate A left oo 000411 4 DADB Add B&CtOH BL oo 0 01001 10

ARC Rotate A right oo 0 OF 1 11 4 DADD Add D&EtOHAL oo 0110 01 10

RAL Rotate A left through carry 00 04 0% 1 1 4 DADH AddH&LtOH BL oo 1010 01 10

RAR Rotate A right through oo o 7 FY ft 4 DADSP — Add stack pointer to H & L oo 7 1 17 0 01 10

cerry STAXB Store A indirect oo 00001 0 7

JMP Jump unconditional 11 0 000 1 1 10 STAXD Store A indirect oo 0 1 00 1 90 7

Jc Jump on carry 11 0 11 0 4 °0 10 LDAXB Load A indirect oo 0017010 7

INC Jump on no carry 11 0 10 0 1 0 10 LDAXD Load A indirect oo o 41 1 0 1 °0 7

MZ Jump on zero 141 0 017 0 1 0 10 INXB Increment B & C registers oo 000011 5

ANZ Jump on no zero 11 0 0 0 0 1 0 10 INXD Increment D & E registers 00 0 10014 5

JP Jump on positive 11 1 1 00 1 0 10 INX H increment H & L registers oo 10060 011 5

JM Jump on minus 11 1 FT 10 1 0 10 INX SP Increment stack pointer oo 1 1 001 1 5

SPE Jump on parity even 11 1 0710 1 0 10 DCX B Decrement B &C oo 0030601 1 5

JPO Jump on parity odd 11 1 0 00 1 0 10 DCX D Decrement D & oo 0% %4 0711 5

CALL Call unconditional 11 0 0 11°01 7 DCX H Decrement H&L 0.0 1 01 07 71 5

cc Call on carry yor ort 1 4 0 0 TIT DCXSP Decrement stack pointer oor 117 07 1 5

Nc Call on no carry 11 0 7 0 7 0 0 11/17 CMA Complement A 0040717 1 4 4

cz Call on zero 11 0 0 17 0 0 IIT STC Set carry oo 17107 11 4

CNZ Call on no zero 17 0 001 0 0 19/17 cmc Complement carry oof Ft tdi 4

cp Call on positive trot t 04 0 0 INIT DAA Decimal adjust A oo 100111 4

cM Call on minus 1aorop dt 0 0 Wh SHLD Store H & L direct oo 10001 0 16

CPE Call on parity even 1orot oO tt 0 BO 17 LHLO Load H & L direct 00101010 16

cPo Call on parity odd Yrs 0 017 0 0 1117 EI Enable Interrupts 11 1 4170 91 4

RET Return 11 0 017 001 10 DI Disable interrupt 14 11060141 4

RC Return on carry 11 0 4 10 00 5/11 NnoP No-operation 00 0 0090 00 4

ANC Return on no carry 11 0 1 00 0090 s/t

NOTES: 1. DDD or SSS — 000 B — 001 C— 010 D — 011 E — 100 H— 101 L— 110 Memory — 111 A.

2. Two possible cycle times, (5/11) indicate instruction cycles dependent on condition flags.

5-19

APPENDIX 4

The 8080 is a complete 8-bit parallel, central processor

unit (CPU) for use in general purpose digital computer sys-

tems. It is fabricated on a single LSI chip (see Figure 2-1).

using Intel’s n-channel silicon gate MOS process. The 8080

transfers data and internal state information via an 8-bit,

bidirectional 3-state Data Bus (Dg-D7). Memory and peri-

pheral device addresses are transmitted over a separate 16-

bit 3-state Address Bus (Ag-A15). Six timing and control

outputs (SYNC, DBIN, WAIT, WR, HLDA and INTE) eman-

ate from the 8080, while four control inputs (READY,

HOLD, INT and RESET}, four power inputs (+12v, +5v,

-5v, and GND) and two clock inputs (¢@1 and $9) are ac-

cepted by the 8080.

Aig OF 1 - 40 -—0 Ay,
GND O——_{2 39 F—0 Aya

D, O13 38 F—0 Ay;
Dy O44 37 FO Anz
De C=] 5 36 F—*0 Ais
D, O= +16 35 0 Ag
Dy O+—+4 7 34 }-—+0 Ag
vb, 048 INTEL® 33}--0%
D, o=—+49 32-0 Ag

3, o-—e+} 10 8080 31 F—*0 As
-5vV oO—411 30 F—0 Ay

RESET O——e} 12 29 P—0 Ag
HOLD O—+] 13 28 bo +12v

INT O—+] 14 27 -—0 A
©2 Oe] 15 26 -—eo A,

INTE O«——+4 16 25 F—o Ay

BIN O-——4 17 24 --—+0 WAIT

WA O-— 18 23 f*— READY
sync O+—J 19 22 70 4)
+5V O-—— 20 21 0 HLDA

Figure 2-1. 8080 Photomicrograph With Pin Designations

Pa

ARCHITECTURE OF THE 8080 CPU

The 8080 CPU consists of the following functional

units:

e Register array and address logic

Arithmetic and logic unit (ALU)

« Instruction register and control section

e Bi-directional, 3-state data bus buffer

Figure 2-2 illustrates the functional blocks within

the 8080 CPU.

Registers:

The register section consists of a static RAM array

organized into six 16-bit registers:

* Program counter (PC)

@ Stack pointer (SP)

* Six 8-bit general purpose registers arranged in pairs,

referred to as B,C; D,E; and H,L

* A temporary register pair called W,Z

The program counter maintains the memory address

of the current program instruction and is incremented auto-

matically during every instruction fetch. The stack pointer

maintains the address of the next available stack location in

memory. The stack pointer can be initialized to use any

portion of read-write memory as a stack. The stack pointer

is decremented when data is “pushed” onto the stack and

incremented when data is “‘popped’’ off the stack (i.e., the

stack grows “downward"’).

The six general purpose registers can be used either as

single registers (8-bit) or as register pairs (16-bit). The

temporary register pair, W,Z, is not program addressable

and is only used for the internal execution of instructions.

Eight-bit data bytes can be transferred between the

internal bus and the register array via the register-select

multiplexer. Sixteen-bit transfers can proceed between the

register array and the address latch or the incrementer/

decrementer circuit. The address latch receives data from

any of the three register pairs and drives the 16 address

output buffers (Ag-A75), as well as the incrementer/

decrementer circuit. The incrementer/decrementer circuit

receives data from the address latch and sends it to

the register array. The 16-bit data can be incremented or

decremented or simply transferred between registers.

DATA BUS
BUFFER/LATCH

BI-DIRECTIONAL DB, -D
ee DATA BUS.

(8 BIT) (8 BIT)
INTERNAL DATA BUS INTERNAL DATA BUS

— a)

ay

| SZ.
ACCUMULATOR TEMP, REG. INSTRUCTION

| | | ‘al REGISTER (2) MULTIPLEXER

w (8) Zz rr)
FLAG &)

FLIP-ELOPS iil TEMP REG TEMP REG.
b B el cc. &
8 REG. REG.

INSTRUCTION a (8) (8) ARITHMETIC a D E
LOGIC DecopeR 2 REG. REG.
UNIT MACHINE rod Hl er) |__REGISTER

(ALU) CYCLE 2 REG. REG. ARRAY
8) ENCODING a rr

ia STACK POINTER

08)
PROGRAM COUNTER

DECIMAL INCREMENTER/DECREMENTER
ADJUST ADDRESS LATCH 118)

TIMING
AND

CONTROL =

POWER | ——* +#12V appress Burren
SUPPLIES | ——» s5V DATA BUS INTERRUPT HOLO WAIT

sv WRITE CONTROL CONTROL CONTROL CONTROL SYNC CLOCKS

=m TTT Titty ii
WR DBIN INTE INT HOLD HOLDWAIT

READY
SYNC 61 42 RESET

Aus “Ap
ADDRESS BUS

Figure 2-2. 8080 CPU Functional Block Diagram

2-2

Arithmetic and Logic Unit (ALU):

The ALU contains the following registers:

e An &bit accumulator

« An 8-bit temporary accumulator (ACT)

e A 5-bit flag register: zero, carry, sign, parity and

auxiliary carry

e An 8-bit temporary register (TMP)

Arithmetic, logical and rotate operations are per-

formed in the ALU. The ALU is fed by the temporary

register (TMP) and the temporary accumulator (ACT) and

carry flip-flop. The result of the operation can be trans-

ferred to the internal bus or to the accumulator; the ALU

also feeds the flag register.

The temporary register (TMP) receives information

from the internal bus and can send all or portions of it to

the ALU, the flag register and the internal bus.

The accumulator (ACC) can be loaded from the ALU

and the internal bus and can transfer data to the temporary

accumulator (ACT) and the internal bus. The contents of

the accumulator (ACC) and the auxiliary carry flip-flop can

be tested for decimal correction during the execution of the

DAA instruction (see Chapter 4).

Instruction Register and Control:

During an instruction fetch, the first byte of an in-

struction (containing the OP code) is transferred from the

internal bus to the 8-bit instruction register.

The contents of the instruction register are, in turn,

available to the instruction decoder. The output of the

decoder, combined with various timing signals, provides

the control signals for the register array, ALU and data

buffer blocks. In addition, the outputs from the instruction

decoder and external control signals feed the timing and

state control section which generates the state and cycle

timing signals.

Data Bus Buffer:

This 8-bit bidirectional 3-state buffer is used to

isolate the CPU's internal bus from the external data bus.

(Dg through D7). In the output mode, the internal bus

content is loaded into an 8-bit latch that, in turn, drives the

data bus output buffers, The output buffers are switched

off during input or non-transfer operations.

During the input mode, data from the external data bus

is transferred to the internal bus. The internal bus is pre-

charged at the beginning of each internal state, except for

the transfer state (T3—described later in this chapter).

THE PROCESSOR CYCLE

An instruction cycle is defined as the time required

to fetch and execute an instruction. During the fetch, a

selected instruction (one, two or three bytes) is extracted

from memory and deposited in the CPU's instruction regis-

ter. During the execution phase, the instruction is decoded

and translated into specific processing activities.

Every instruction cycle consists of one, two, three,

four or five machine cycles. A machine cycle is required

each time the CPU accesses memory or an I/O port. The

fetch portion of an instruction cycle requires one machine

cycle for each byte to be fetched. The duration of the execu-

tion portion of the instruction cycle depends on the kind

of instruction that has been fetched. Some instructions do

not require any machine cycles other than those necessary

to fetch the instruction; other instructions, however, re-

quire additional machine cycles to write or read data to/

from memory or I/O devices. The DAD instruction is an

exception in that it requires two additional machine cycles

to complete an internal register-pair add (see Chapter 4).

Each machine cycle consists of three, four or five

states. A state is the smallest unit of processing activity and

is defined as the interval between two successive positive-

going transitions of the ¢1 driven clock pulse. The 8080

is driven by a two-phase clock oscillator. All processing activ-

ities are referred to the period of this clock. The two non-

overlapping clock pulses, labeled ¢1 and $2, are furnished

by external circuitry. It is the 61 clock pulse which divides

each machine cycle into states. Timing logic within the

8080 uses the clock inputs to produce a SYNC pulse,

which identifies the beginning of every machine cycle. The

SYNC pulse is triggered by the low-to-high transition of ¢2,

as shown in Figure 2-3.

FIRST STATE OF
*EVERY MACHINE

CYCLE

on ~\

@ tf

SYNC
*SYNC DOES NOT OCCUR IN THE SECOND AND THIRD MACHINE

CYCLES OF A DAD INSTRUCTION SINCE THESE MACHINE CYCLES

ARE USED FOR AN INTERNAL REGISTER-PAIR ADD.

’ Figure 2-3.¢4,¢2 And SYNC Timing

2-3

There are three exceptions to the defined duration of

a state, They are the WAIT state, the hold (HLDA) state

and the halt (HLTA) state, described later in this chapter.

Because the WAIT, the HLDA, and the HLTA states depend

upon external events, they are by their nature of indeter-

minate length. Even these exceptional states, however, must

be synchronized with the pulses of the driving clock. Thus,

the duration of all states are integral multiples of the clock

period.

To summarize then, each clock period marks a state;

three to five states constitute a machine cycle; and one to

five machine cycles comprise an instruction cycle. A full

instruction cycle requires anywhere from four to eight-

teen states for its completion, depending on the kind of in-

struction involved.

Machine Cycle Identification:

With the exception of the DAD instruction, there is

just one consideration that determines how many machine

cycles are required in any given instruction cycle: the num-

ber of times that the processor must reference a memory

address or an addressable peripheral device, in order to

fetch and execute the instruction. Like many processors,

the 8080 is so constructed that it can transmit only one

address per machine cycle. Thus,.if the fetch and execution

of an instruction requires two memory references, then the

instruction cycle associated with that instruction consists of

two machine cycles. If five such references are called for,

then the instruction cycle contains five machine cycles.

Every instruction cycle has at least one reference to

memory, during which the instruction is fetched. An in-

struction cycle must always have a fetch, even if the execu-

tion of the instruction requires no further references to

memory. The first machine cycle in every instruction cycle

is therefore a FETCH, Beyond that, there are no fast rules.

It depends on the kind of instruction that is fetched.

Consider some examples, The add-register (ADD r)

instruction is an instruction that requires only a single

machine cycle (FETCH) for its completion. In this one-byte

instruction, the contents of one of the CPU’s six general

purpose registers is added to the existing contents of the

accumulator, Since all the information necessary to execute

the command is contained in the eight bits of the instruction

code, only one memory reference is necessary. Three states

are used to extract the instruction from memory, and one

additional state is used to accomplish the desired addition.

The entire instruction cycle thus requires only one machine

cycle that consists of four states, or four periods of the ex-

ternal clock.

Suppose now, however, that we wish to add the con-

tents of a specific memory location to the existing contents

of the accumulator (ADD M). Although this is quite similar

in principle to the example just cited, several additional

steps will be used. An extra machine cycle will be used, in

order to address the desired memory location,

The actual sequence is as follows. First the processor

extracts from memory the one-byte instruction word ad-

dressed by its program counter. This takes three states.

The eight-bit instruction word obtained during the FETCH

machine cycle is deposited in the CPU’s instruction register

and used to direct activities during the remainder of the

instruction cycle. Next, the processor sends out,as an address,

2-4

the contents of its H and L registers. The eight-bit data

word returned during this MEMORY READ machine cycle

is placed in a temporary register inside the 8080 CPU. By

now three more clock periods (states) have elapsed. In the

seventh and final state, the contents of the temporary regis-

ter are added to those of the accumulator. Two machine

cycles, consisting of seven states in all, complete the

“ADD M” instruction cycle.

At the opposite extreme is the save H and L registers

(SHLD) instruction, which requires five machine cycles.

During an “SHLD”’ instruction cycle, the contents of the

processor’s H and L registers are deposited in two sequen-

tially adjacent memory locations; the destination is indi-

cated by two address bytes which are stored in the two

memory locations immediately following the operation code

byte. The following sequence of events occurs:

(1) A FETCH machine cycle, consisting of four

states. During the first three states of this

machine cycle, the processor fetches the instruc-

tion indicated by its program counter. The pro-

gram counter is then incremented. The fourth

state is used for internal instruction decoding.

(2) A MEMORY READ machine cycle, consisting

of three states. During this machine cycle, the

byte indicated by the program counter is read

from memory and placed in the processor’s

Z register. The program counter is incremented

again.

(3) Another MEMORY READ machine cycle, con-

sisting of three states, in which the byte indica-

ted by the processor’s program counter is read

from memory and placed in the W register. The

program counter is incremented, in anticipation

of the next instruction fetch.

(4) A MEMORY WRITE machine cycle, of three

states, in which the contents of the L register

are transferred to the memory location pointed

to by the present contents of the W and Z regis-

ters. The state following the transfer is used to

increment the W,Z register pair so that it indi-

cates the next memory location to receive data.

(5) A MEMORY WRITE machine cycle, of three

states, in which the contents of the H register

are transferred to the new memory location

pointed to by the W,Z register pair.

In summary, the “SHLD” instruction cycle contains

five machine cycles and takes 16 states to execute.

Most instructions fall somewhere between the ex-

tremes typified by the “ADD r” and the “SHLD” instruc-

tions. The input (INP) and the output (OUT) instructions,

for example, require three machine cycles: a FETCH, to

obtain the instruction; a MEMORY READ, to obtain the

address of the object peripheral; and an INPUT or an OUT-

PUT machine cycle, to complete the transfer.

While no one instruction cycle will consist of more

then five machine cycles, the following ten different types

of machine cycles may occur within an instruction cycle:

(1) FETCH (M1)

(2) MEMORY READ

(3) MEMORY WRITE

(4) STACK READ

(5) STACK WRITE

(6) INPUT

(7) OUTPUT

(8) INTERRUPT

(9) HALT

(10) HALTeINTERRUPT

The machine cycles that actually do occur in a par-

ticular instruction cycle depend upon the kind of instruc-

tion, with the overriding stipulation that the first machine

cycle in any instruction cycle is always a FETCH.

The processor identifies the machine cycle in prog-

ress by transmitting an eight-bit status word during the first

state of every machine cycle. Updated status information is

presented on the 8080's data lines (Dg-D7), during the

SYNC interval. This data should be saved in latches, and

used to develop control signals for external circuitry. Table

2-1 shows how the positive-true status information is dis-

tributed on the processor’s data bus.

Status signals are provided principally for the control

of external circuitry. Simplicity of interface, rather than

machine cycle identification, dictates the logical definition

of individual. status bits. You will therefore observe that

certain processor machine cycles are uniquely identified by

a single status bit, but that others are not. The Mj status

bit (Dg), for example, unambiguously identifies a FETCH

machine cycle. A STACK READ, on the other hand, is

indicated by the coincidence of STACK and MEMR sig-

nals, Machine cycle identification data is also valuable in

the test and de-bugging phases of system development.

Table 2-1 lists the status bit outputs for each type of

machine cycle.

State Transition Sequence:

Every machine cycle within an instruction cycle con-

sists of three to five active states (referred to as T1, 72, 73,

T4, Ts or Ty). The actual number of states depends upon

the instruction being executed, and on the particular ma-

chine cycle within the greater instruction cycle. The state

transition diagram in Figure 2-4 shows how the 8080 pro-

ceeds from state to state in the course of a machine cycle.

The diagram also shows how the READY, HOLD, and

INTERRUPT lines are sampled during the machine cycle,

and how the conditions on these lines may modify the

25

basic transition sequence. In the present discussion, we are

concerned only with the basic sequence and with the

READY function. The HOLD and INTERRUPT functions

will be discussed later.

The 8080 CPU does not directly indicate its internal

state by transmitting a “‘state control” output during

each state; instead, the 8080 supplies direct control output

(INTE, HLDA, DBIN, WR and WAIT) for use by external

circuitry,

Recall that the 8080 passes through at least three

states in every machine cycle, with each state defined by

successive low-to-high transitions of the $4 clock. Figure

2-5 shows the timing relationships in a typical FETCH

machine cycle. Events that occur in each state are referenced

to transitions of the ¢4 and $2 clock pulses.

The SYNC signal identifies the first state {T4) in

every machine cycle. As shown in Figure 2-5, the SYNC

signal is related to the leading edge of the $2 clock. There is

a delay (tpc) between the low-to-high transition of 62 and

the positive-going edge of the SYNC pulse. There also is a

corresponding delay (also toc) between the next $2 pulse

and the falling edge of the SYNC signal. Status information

is displayed on Dg-D7 during the same $2 to $2 interval.

Switching of the status signals is likewise controlled by $2.

The rising edge of @2 during T4 also loads the pro-

cessor’s address lines (Ag-A15). These lines become stable

within a brief delay (tpa) of the ¢9 clocking pulse, and

they remain stable until the first ¢2 pulse after state T3.

This gives the processor ample time to read the data re

turned from memory.

Once the processor has sent an address to memory,

there is an opportunity for the memory to request a WAIT.

This it does by pulling the processor’s READY line low,

prior to the “Ready set-up’ interval (ts) which occurs

during the ¢2 pulse within state Tz or Ty. As long as the

READY line remains low, the processor will idle, giving the

memory time to respond to the addressed data request.

Refer to Figure 2-5.

The processor responds to a wait request by entering

an alternative state (Ty) at the end of T9, rather than pro-

ceeding directly to the Tg state. Entry into the Ty state is

indicated by a WAIT signal from the processor, acknowledg-

ing the memory’s request. A low-to-high transition on the

WAIT line is triggered by the rising edge of the 1 clock and

occurs within a brief delay {tpc) of the actual entry into

the Ty state.

A wait period may be of indefinite duration. The pro-

cessor remains in the waiting condition until its READY line

again goes high. A READY indication must precede the fall-

ing edge of the 42 clock by a specified interval (tgs), in

order to guarantee an exit from the Ty state. The cycle

may then proceed, beginning with the rising edge of the

next #1 clock. A WAIT interval will therefore consist of an

integral number of Ty states and will always be a multiple

of the clock period.

Instructions for the 8080 require from one to five machine
cycles for complete execution. The 8080 sends out 8 bit of
status information on the data bus at the beginning of each
machine cycle (during SYNC time). The following table defines
the status information.

STATUS INFORMATION DEFINITION

Data Bus
Symbols Bit

INTA* Do

wo D,

STACK Do

HLTA D3
OUT D4

M, Ds

INP* Deg

MEMR* =D

Definition

Acknowledge signal for INTERRUPT re-
quest. Signal should be used to gate a re-
start instruction onto the data bus when
DBIN is active.

Indicates that the operation in the current
machine cycle will be a WRITE memory

or OUTPUT function (WO = 0). Otherwise,
a READ memory or INPUT operation will
be executed.

Indicates that the address bus holds the
pushdown stack address from the Stack
Pointer.

Acknowledge signal for HALT instruction.

Indicates that the address bus contains the
address of an output device and the data
bus will contain the output data when
WR is active.

Provides a signal to indicate that the CPU
is in the fetch cycle for the first byte of
an instruction.

Indicates that the address bus contains the
address of an input device and the input
data should be placed on the data bus
when DBIN is active.

Designates that the data bus will be used

for memory read data.

“These three status bits can be used to control

the flow of data onto the 8080 data bus.

STATUS WORD CHART

8080 STATUS LATCH

STATUS
LATCH

B
l
a
l
B
l
o
]
w
f
u
j
w

 clock Gen. fio}TTL}
& DRIVER

anz fF

IN + DB!

af

DATA

STATUS

n

“7 iN

SYNC ao

TYPE OF MACHINE CYCLE
Hi

z
& « /E/o/x « /€/E/s

we & x = cv

8/8/88) P/E) 8/8/85 A T/EK
= =

L-® STATUS WORD
O1@|@!1 OO |©1@/@/1@|@

Do| INTA | O} Of Of Of of o|oj]1a]o/]1
Di | Wo 1 1/o0{/1}]0f1]/0/] 1 1 1

D2} STACK | o | o/] of] 1{[1{o0fo0f/o0]o0]{o0
Ds | HLTA | Oo | of] of of ofjo}]ojfojf{1]{4
Ds | OUT oj;jo};o}]oj;oj}{o}]i1j}o]|o 0
Ds | M4 1/o0]/o;o0]o0}]o0]o0j]1]0 1
De INP ofo{/ojofo{ifofol]fo 0
D7 | MEMR 1 1/o0]/1/]0]/0}]o0]0]1 0

Table 2-1. 8080 Status Bit Definitions

2-6

 qT RESET

An

READY + HLTA

READY * HLTA

READY

YES
HLTA

aa

READY

SET INTERNAL,

HOLD F/F

INTERNAL
HOLD F/F

SET?

INST.
EXECUTION
COMPLETED

HOLD

INT + INTE HOLD + INT
TwH

HOLD

SET INTERNAL
HOLD F/F

(31

HOLD

MODE HOLD

HOLD

RESET INTERNAL
HOLD F/F

RESET HLTA

NO RESET INTERNAL
HOLD F/F

YES

SET INTERNAL
INT F/E

"INTE F/F IS RESET IF INTERNAL INT F/F IS SET.

(2\NTERNAL INT F/F IS RESET IF INTE F/F IS RESET.
(SEE PAGE 2-13.

Figure 2-4, CPU State Transition Diagram

2-7

}

The events that take place during the T3 state are
determined by the kind of machine cycle in progress. Ina
FETCH machine cycle, the processor interprets the data on
its data bus as an instruction. Duringa MEMORY READ or
a STACK READ, data on this bus is interpreted as a data
word, The processor outputs data on this bus during a
MEMORY WRITE machine cycle. During 1/O operations,
the processor may either transmit or receive data, de-
pending on whether an OUTPUT or an INPUT operation
is involved.

data must remain stable during the “data hold’ interval

(tp) that occurs following the rising edge of the 2 pulse.
Data placed on these lines by memory or by other external

devices will be sampled during T3.

During the input of data to the processor, the 8080

generates a DBIN signal which should be used externally to

enable the transfer, Machine cycles in which DBIN is avail-
able include: FETCH, MEMORY READ, STACK READ,
and INTERRUPT. DBIN is initiated by the rising edge of ¢2
during state T2 and terminated by the corresponding edge of

¢2 during T3. Any Ty phases intervening between T2 and
T3 will therefore extend DBIN by one or more clock

periods,

Figure 2-6 illustrates the timing that is characteristic
of a data input operation. As shown, the low-to-high transi-
tion of $9 during T9 clears status information from the pro-
cessor’s data lines, preparing these lines for the receipt of
incoming data. The data presented to the processor must
have stabilized prior to both the ““¢4—data set-up” interval
(tpg7), that precedes the falling edge of the $4 pulse defin-
ing state T3, and the “o2—data set-up” interval (tpsa),
that precedes the rising edge of $2 in state T3. This same

Figure 2-7 shows the timing of a machine cycle in
which the processor outputs data. Output data may be des-

tined either for memory or for peripherals. The rising edge

of $9 within state T2 clears status information from the

CPU’s data lines, and loads in the data which is to be output

to external devices, This substitution takes place within the

h ke Tw 13 v Ts

e f\

oz

ie en |

X UNKNOWN

® (L_ write move ~~ FLOATING

FLOATING

DATA
| STABLE

 '
t+ READ MODE

 READY / |

walt

OBIN / | \ '
r DATA

 ok

STATUS }
| INFORMATION |
| | DATA

| |
T Aso SAMPLE READY | OPTIONAL FETCH DATA OPTIONAL MEMORY ADDRESS | HOLD AND HALT a FR

OR | HALT INSTRUCTION INSTRUCTION 4/0 DEVICE NUMBER | i OR | OR EXECUTION
O79 | i MEMORY | WRITE DATA IF REQUIRED STATUS INFORMATION { ACCESS TIME |

INTA gur ADJUST i HLTA WO i
MEMR My |
INP STACK

NOTE: (Q) Refer to Status Word Chart on Page 2-6,

Figure 2-5. Basic 8080 Instruction Cycle

 M3

th Tz T3 Te T3 qn T2 T3

rr"

| __f

Sf

|

BYTE
ONE

v T
Vig -

~
\ UNKNOWN /

FLOATING

IVF Uy \

r
LIT

W/O DEVICE NUMBER

x |
T

INPUT DATA TO
ACCUMULATOR

 “~T
ss

T
-/

3

STATUS.
INFORMATION

0)

NOTE: ()) Refer to Status Word Chart on Page 2-6.

Figure 2-6. Input Instruction Cycle

[Mi M2 Mg . o™

tt th Ta 1% nh Te | 3 nh tm | Ts qh

| |

ot) NNN n

a) LOLA LOL ALT
Ans.o if | pyre UNKNOWN Cayre X* Vo DEVIGE \

[ONE TL TWO a | |

mo | LLL a [Feoarine| ‘ul__s [YX [accumucator \

| | i |
i |

SYNC tT rT | | fT PTT | |

|

| |
READY =a

!

age
|

WAIT

|

" | \ |
| i |

| | INFORMATION © ® | @ |

NOTE: ® Refer to Status Word Chart on Page 2-6.

Figure 2-7. Output Instruction Cycle

2-9

“data output delay” interval (tpp) following the $9 clock’s

leading edge. Data on the bus remains stable throughout
the remainder of the machine cycle, until replaced by up-
dated status information in the subsequent Tj state. Observe
that a READY signal is necessary for completion of an
OUTPUT machine cycle. Unless such an indication is pres-
ent, the processor enters the Ty state, following the T2
state. Data on the output lines remains stable in the
interim, and the processing cycle will not proceed until

the READY line again goes high,

The 8080 CPU generates a WR output for the syn-
chronization of external transfers, during those machine
cycles in which the processor outputs data. These include
MEMORY WRITE, STACK WRITE, and OUTPUT. The
negative-going leading edge of WR is referenced to the rising
edge of the first $4 clock pulse following Tz, and occurs
within a brief delay (toc) of that event. WR remains low

until re-triggered by the leading edge of $4 during the
state following T3. Note that any Ty states intervening

between Tg and T3 of the output machine cycle will neces-

sarily extend WR, in much the same way that DBIN is af-

fected during data input operations.

All processor machine cycles consist of at least three

states: T1, T2, and T3 as just described. If the processor has
to wait for a response from the peripheral or memory with

which it is communicating, then the machine cycle may

also contain one or more Ty states. During the three basic

states, data is transferred to or from the processor.

After the T3 state, however, it becomes difficult to

generalize. T4 and T5 states are available, if the execution
of a particular instruction requires them. But not all machine

cycles make use of these states, It depends upon the kind of

instruction being executed, and on the particular machine

cycle within the instruction cycle. The processor will termi-

nate any machine cycle as soon as its processing activities

are completed, rather than proceeding through the T4 and

Ts states every time. Thus the 8080 may exit a machine

cycle following the T3, the Tq, or the Ts state and pro-

ceed directly to the Tj state of the next machine cycle.

STATE ASSOCIATED ACTIVITIES

7] A memory address or 1/O device number is

placed on the Address Bus (A75.0); status
information is placed on Data Bus (D7.9).

T2 The CPU samples the READY and HOLD in-

puts and checks for halt instruction.

TW

{optional)

Processor enters wait state if READY is low

or if HALT instruction has been executed.

T3 An instruction byte (FETCH machine cycle),

data byte (MEMORY READ, STACK READ)

or interrupt instruction (INTERRUPT machine

cycle) is input to the CPU from the Data Bus;

or a data byte (MEMORY WRITE, STACK

WRITE or OUTPUT machine cycle) is output

onto the data bus.

T4

TS

(optional) States Tq and T5 are available if the execu-

tion of a particular instruction requires them;

if not, the CPU may skip one or both of

them, T4 and Tg are only used for internal

processor operations.

Table 2-2. State Definitions

2-10

INTERRUPT SEQUENCES

The 8080 has the built-in capacity to handle external

interrupt requests. A peripheral device can initiate an inter-

rupt simply by driving the processor’s interrupt (INT) line

high.

The interrupt (INT) input is asynchronous, and a

request may therefore originate at any time during any

instruction cycle, Internal logic re-clocks the external re-

quest, so that a proper correspondence with the driving

clock is established. As Figure 2-8 shows, an interrupt

request (INT) arriving during the time that the interrupt

enable line (INTE) is high, acts in coincidence with the 2

clock to set the internal interrupt latch. This event takes

place during the last state of the instruction cycle in which

the request occurs, thus ensuring that any instruction in

progress is completed before the interrupt can be processed.

The INTERRUPT machine cycle which follows the

arrival of an enabled interrupt request resembles an ordinary

FETCH machine cycle in most respects. The M1 status bit

is transmitted as usual during the SYNC interval. It is

accompanied, however, by an INTA status bit (DQ) which

acknowledges the external request. The contents of the

program counter are latched onto the CPU's address lines

during T4, but the counter itself is not incremented during

the INTERRUPT machine cycle, as it otherwise would be.

In this way, the pre-interrupt status of the program counter

is preserved, so that data in the counter may be restored by

the interrupted program after the interrupt request has been

processed.

The interrupt cycle is otherwise indistinguishable from

an ordinary FETCH machine cycle. The processor itself

takes no further special action. It is the responsibility of the

peripheral logic to see that an eight-bit interrupt instruction

is “jammed” onto the processor’s data bus during state T3.

In a typical system, this means that the data-in bus from

memory must be temporarily disconnected from the pro-

cessor’s main data bus, so that the interrupting device can

command the main bus without interference.

The 8080's instruction set provides a special one-byte

call which facilitates the processing of interrupts (the ordi-

nary program Calli takes three bytes). This is the RESTART

instruction (RST). A variable three-bit field embedded in

the eight-bit field of the RST enables the interrupting device

to direct a Call to one of eight fixed memory locations. The

decimal addresses of these dedicated locations are: 0, 8, 16,

24, 32, 40, 48, and 56, Any of these addresses may be used

to store the first instruction(s) of a routine designed to

service the requirements of an interrupting device. Since

the (RST) is a call, completion of the instruction also

stores the old program counter contents on the STACK.

oD n
el FOOT UW LLL LALLA AW Ly

Aiso | pct J Pc ae ee YT #2

or ae eA ee Oe ee
sve / \ STN IT X
DBIN /

wR
| f 4

iareanats | |
wre | \ | |

wri} Uf \

trea
INHIBIT STORE OF
PC+1 (INTERNAL) STATUS
 INFORMATION

j

NOTE: ® Refer to Status Word Chart on Page 2-6.

Figure 2-8. Interrupt Timing

z 3 +

a

{5)*

I

Ais.o /

D70 /

 HOLD

REQUEST _,

|

= T
(i)

 HOLD | f

READY |

HOLD F/F

INTERNAL

 |
i

(1) SEE ATTACHED ELECTRICAL CHARACTERISTICS. 2 |

i “Ts AND Ts OPERATION CAN BE

DONE INTERNALLY,

| |

Figure 2-9. HOLD Operation (Read Mode)

Mont? M nt2
 T3

Ta th Te

{

 HOLD |
REQUEST

HOLD /

READY

HOLD F/F
INTERNAL

HLDA

| WRITE DATA

Figure 2-10. HOLD Operation (Write Mode)

HOLD SEQUENCES

The 8080A CPU contains provisions for Direct Mem-

ory Access (DMA) operations. By applying a HOLD to the

appropriate control pin on the processor, an external device

can cause the CPU to suspend its normal operations and re-

linquish control. of the address and data busses. The proces-

sor responds to a request of this kind by floating its address

to other devices sharing the busses. At the same time, the

processor acknowledges the HOLD by placing a high on its

HLDA outpin pin. During an acknowledged HOLD, the.

address and data busses are under control of the peripherai

which originated the request, enabling it to conduct mem-

ory transfers without processor intervention.

Like the interrupt, the HOLD input is synchronized

internally. A HOLD signal must be stable prior to the ‘Hold

set-up” interval (tys), that precedes the rising edge of $2.

Figures 2-9 and 2-10 illustrate the timing involved in

HOLD operations. Note the delay between the asynchronous

HOLD REQUEST and the re-clocked HOLD. As shown in

the diagram, a coincidence of the READY, the HOLD, and

the ¢9 clocks sets the internal hold latch. Setting the latch

enables the subsequent rising edge of the ¢1 clock pulse to

trigger the HLDA output.

Acknowledgement of the HOLD REQU EST precedes

slightly the actual floating of the processor’s address and

data lines, The processor acknowledges a HOLD at the begin-

ning of T3, if a read or an input machine cycle is in progress

(see Figure 2-9). Otherwise, acknowledgement is deferred

until the beginning of the state following T3 (see Figure

2-10). In both cases, however, the HLDA goes high within

a specified delay ({tpc) of the rising edge of the selected $4

clock pulse. Address and data lines are floated within a

brief delay after the rising edge of the next $2 clock pulse.

This relationship is also shown in the diagrams.

To all outward appearances, the processor has suspend-

ed its operations once the address and data busses are floated.

Internally, however, certain functions may continue. If a

HOLD REQUEST is acknowledged at T3, and if the pro-

cessor is in the middle of a machine cycle which requires

four or more states to complete, the CPU proceeds through

Tq and T5 before coming to a rest. Not until the end of the

machine cycle is reached will processing activities cease.

Internal processing is thus permitted to overlap the external

DMA transfer, improving both the efficiency and the speed

of the entire system.

The processor exits the holding state through a

sequence similar to that by which it entered, A HOLD

REQUEST is terminated asynchronously when the external

device has completed its data transfer. The HLDA output

returns to a low level following the leading edge of the next

$1 clock pulse. Normal processing resumes with the ma-

chine cycle following the last cycle that was executed.

HALT SEQUENCES

When a halt instruction (HLT) is executed, the CPU

enters the halt state (Typ) after state T2 of the next ma-

chine cycle, as shown in Figure 2-11. There are only three

ways in which the 8080 can exit the halt state:

e A high on the RESET line will always reset the

8080 to state T1; RESET also clears the program

counter.

e AHOLD input will cause the 8080 to enter the

hold state, as previously described. When the

HOLD line goes low, the 8080 re-enters the halt

state on the rising edge of the next $4 clock

pulse.

e An interrupt (ie., INT goes high while INTE is

enabled) will cause the 8080 to exit the Halt state

and enter state T1 on the rising edge of the next

$1 clock pulse. NOTE: The interrupt enable (INTE)

flag must be set when the halt state is entered;

otherwise, the 8080 will only be able to exit via a

RESET signal.

Figure 2-12 illustrates halt sequencing in flow chart

form.

START-UP OF THE 8080 CPU

When power is applied initially to the 8080, the pro-

cessor begins operating immediately. The contents of its

program counter, stack pointer, and the other working regis-

ters are naturally subject to random factors and cannot be

specified. For this reason, it will be necessary to begin the

power-up sequence with RESET.

An external RESET signal of three clock period dura-

tion (minimum) restores the processor's internal program

counter to zero. Program execution thus begins with mem-

ory location zero, following a RESET. Systems which re-

quire the processor to wait for an explicit start-up signal

will store a halt instruction (El, HLT) in the first two loca-

tions. A manual or an automatic INTERRUPT will be used

for starting. In other systems, the processor may begin ex-

ecuting its stored program immediately. Note, however, that

the RESET has no effect on status flags, or on any of the

processor’s working registers (accumulator, registers, or

stack pointer). The contents of these registers remain inde-

terminate, until initialized explicitly by the program.

M2
 aT

Ta a) Te Twu Twx

al f WAS Wy 1

Aiso _| [rc |

D790 4 / nn re 2

syvwc | ff | \ e
e
 oe Ce ee ee

|

WAIT

STATUS
INFORMATION @

NOTE: ®) Refer to Status Word Chart on Page 2-6

Figure 2-11. HALT Timing

T
Le

NO TO STATE HALT
TworT3

YES

HALT STATE

TO STATE

1

TO STATE Ty

 }

HOLD STATE

Figure 2-12. HALT Sequence Flow Chart.

~ ball

Th Tati Tnt2 | Tats | Tn+tint) Tati Th %

oN n nm
| el ULM Lm Lm LL

1 ;
| fr ae a

arco J a FLOATING | re
| ee”

Dro { ee ee Le a

7 | | | TT i

RESET a % \ ! { |

INTERNAL tty j i |

RESET | t 7

SYNC | ol | fT N\
j |

DBIN | { i f—

i | i !
H | | | | | |
| |

ey i 1
STATUS:
INFORMATION

! | x® }

I \
L

“WHEN RESET SIGNAL IS ACTIVE, ALL OF CONTROL OUTPUT SIGNALS WILL BE RESET IMMEDIATELY OR SOME

CLOCK PERIODS LATER. THE RESET SIGNAL MUST BE ACTIVE FOR A MINIMUM OF THREE CLOCK CYCLES. IN
THE ABOVE DIAGRAM N AND | MAY BE ANY INTEGER.

r t L 1

NOTE: (B)_ Reterto Sats Wor Chart on Pe 26

Figure 2-13. Reset.

Two Twr

Atso

ho

SYNC

—
FLOATING

”

DBIN

HOLD

HOLD F/F
(INTERNAL)

HLDA

INTE

INT

INT F/E
(INTERNAL)

IN a) INT INHIBIT
HOLD

ve

HIBIT

STATUS
INFORMATION i

i

NOTE: (GW) Retort sates Word Crit on Poe 26

Figure 2-14. Relation between HOLD and INT in the HALT State.

2-15

MNEMONIC OP CODE mil) Mz

D7Dg05Dq | 03020409 1 tala 13 4 TS tt r2lal 3

MOV 11,12 010d |o8 8 8s | PCOUT | PC=PC +1 |INST-TMP/IR | (SSS}-+TMP (TMP}+-DDD
STATUS

MOVr,M o1do |o110 x{3) HL OUT DATA—»DDD
STATUSIE!

Mov M+ ortri|osss (sss}-TMP oratust7i (TMP) DATA BUS

SPHL ti 14 fro004 Te) sp

MVI r, data ooo0D dp110 x PC OUT B2—»DDDD
sTaTuslél

MVIM, data ooi11 fo110 x B2—l> TMP

LX1 ep, data ooRrPe |o001 x PC=PC+1 B2—fer1

LDA addr oo11]10140 x PC=PC+1 B2—>Z

STA addr oo11 /oo010 x PC=PCH1 B2—>z

LHLD addr oo1ro {/i1010 x PC=PCH1 B2—>Z

SHLD addr 0010]o0010 x PC OUT PC=PC+1 B2—feZ
staTuslél

LDAX rpl4} ooRP}]1010 x rp OUT DATA—A
STATusl6]

STAX rpl4) ooRrP |o010 x rp OUT (A) DATA BUS
sTaTusi7

XCHG r1ao};i1os ({HLI—(DE)

ADDr 1ooo0losss (SSs)-TMP @ (ACT)+(TMPI+A
. (AACT

ADD M 1000/0110 (Asact HL OUT DATA—l>TMP
sTaTusl6]

ADI data 1100/0110 (AbacT PC OUT PC=PCHI B2—j>TMP
STATUSIO]

ADcr tooojisss (sss]+TMP (9) (ACT) +ITMP)HCY+A
(A)AcT

ADC M 7000]/1110 (A}sAcT HL OUT DATA—> TMP
sTaTusl6)

ACI data 1100 f1110 {AJ-ACT PC OUT PC=PC +4 B2—l>TMP
STATUSI@l

SUBr 1001 osss (sss)>TMP {9 {ACT)-(TMP}+A,
(A)+ACT

SUB M 1001/0110 (Al+ACT HL OUT DATA» TMP
sTaTusié

SUI data 110147 /0110 (AMACT PC OUT PC= PCH B2—]>TMP
{ sTATusI6)

SBBr 1oo1};i1sss (SSS}+TMP eI (ACT)-(TMP)-CY+A
(A}-ACT

SBBM 1oor}1i10 {A)+ACT HL OUT OATA—>TMP
statuslél

SBI dara +1047 /;1110 {A)-ACT PC OUT PC=PC+1 B2—j> TMP
STATUSE!

INR © oooo}]n100 (DDD)+TMP ALU-DDD
(TMP) + 1>ALU

INR M ooit}or0)d x RL OUT DATA > TMP
STATUSI6) (TMP}+1 > ALU

OCRr oooo] pio (DDD}+TMP ALU+DDD
(TMP}+1-ALU

OcRM oo11}]o1r01 x HL OUT DATA—t» TMP
STATUS (TMP}-1 4 ALU

INX rp ooRrP | 0011 (RP) +1 LAP

DCX rp ooRP |] 1011 (RP) -1 | RP

DAD rpl8) oorRP|1001 x (ri}-ACT {LI>TMP, ALUGL, CY
{ACT)+{(TMP)-ALU

DAA oo1ro}]orid DAA+A, FLAGSITO]

ANA 7oi180 osss ' (SSSI4+TMP (9) LACTIHITMP}+A

t (ARACT

ANAM 4010 | 014 0 | PCOUT | PC=PC+1) INST>TMP/IR | (A)-ACT HL OUT DATA» TMP
STATUS STATUSIE

2-16

i
m
e
i

H
H
H

H
e

H
H

H
E

E
E
E

E
e

E
e
e

l
U
l
C
U
l
C
U
e

MS

tala 13 v4 TS

HL QUT (TMP) > DATA BUS
STATUSI7

PC OUT PC=PC+1 B3—=rh
sTaTuslél

PC=PC+1 53> W WZ OUT, DATA al
statusl6l

PC= PCH 83> W wz OUT (a) + DATA BUS.
STATUS]

PC=PC+1 B3I—j> W Wz OUT, DATA oe wz OUT. DATA-H
sTaTusié) Wz = WZ +1 STATusI6)

PCOUT PC=PC+1 B31» Ww WZ OUT (w) + DATA BUS | WZOUT {H) DATA BUS.
STATUS) sTaTusi) | wz=wz+1 STATUSI7

{3} {ACTIHTMP)+A,

(91 (ACT) HTMP)+A

(9) (ACT) +(TMP)4+C YA,

{9} (ACT)+(TMP)+CY+A

{9] {ACT)-(TMP)+A

rr) {ACT)-(TMP)+A,

19] (ACT}-(TMP}-CY—A,

{9) (ACT)-(TMP)-CY-A

HL OUT ALU—}= DATA BUS
status]

HL OUT ALU—}» DATA BUS
sTaTusi]

(eh)=-acT | (H)-TMP ALUH, CY
(ACT)+(TMP)#C YALU

 {9] (ACTIHITMP)-A,

MNEMONIC OP CODE mii] m2

D7 DgD504 | D3D2D;09 1 tala 13 T4 TS aa] raid 73

ANI data +110 | 01.1 0°} PCOUT | PC=PC+I}INST>TMP/IR | (A-ACT °C OUT PC = PCH 82_1,TMP

STATUS sTaTuslél

XRAr 4010 1sss a (A}ACcT {9} (ACTIHITPM) =A

i (SSs}-TMP

xRAM to1roliirig | {A}-+ACT HL OUT DATA—>TMP
sTATUSI6l

XRI date ritof1r1110 (al-acT PC OUT PC=PC+1 B2—t_TMP
sTATusl6l

ORAr 1rorr}osss {A]-ACT 19) (ACTIHITMP) +A
{sss)—-TMP

ORAM 17o1rtT | O110 (Al-ACT HL OUT DATA —>TMP
sTaTusiél

ORI data ridti1f{orirde (a)act eC OUT Po=PC+1 B2—4>TMP
sTatusiél

CMP r rorrjrsss (A}-ACT 9 (ACT}-(TMP}, FLAGS
(sssj-TMP

cMP M roid] iri1.8 (Aloact HL OUT DATA +> TMP
STATUSI6)

CPI data aa r1]r110 | | (A}-ACT PC OUT PC= PC +1 B2 —»TMP
sTaTuslél

ALC oooo0]o1t1 (AALU 19) ALU-+A, CY
ROTATE

RAC oooo 1141 (A ALU 19] ALU+A, CY
ROTATE

RAL ogo ordi (A), CYSALU {9) ALU-A, CY
ROTATE

RAR oootf;rriad (a), CY+ALU (9) ALU+A, CY
ROTATE

CMA oo10 .441 (AKA

cmc oat rad Cy-cy

sTc oo1rt}]o1i1i icy

JMP addr +7100]0011 x PC OUT PC=PC +1 B2—eZ

| sTATuslél

Jeondaddl17] |} 11 cc | Cco10 JUDGE CONDITION PC OUT PC=PC+1 B2—+#Z
staTusié)

CALL addr 110900] 11401 SP=SP-1 PC OUT PC=PC +I B2-}>Z
sTaTuslél

Coondadd (17) | 4 1 cc | C100 JUDGE CONDITION PC OUT PC=PC+1 B2-eZ
IF TRUE, SP =SP- 1 sTatuslél

RET 1100/1001 x sP OUT SP=SP+1 DATA—>Z

t STATUSIIS]

Acondaddl17] |} 4 1 6 ¢ coo0 INST=TMP/IR, JUDGE CONDITIONIN4 SP OUT SP=SP+1 DATA—»Z
sTATUSI'S}

RSTn TI NN | NYT ow SP=SP-1 SP OUT SP=SP-1 (PCH) —47*DATA BUS

INST=TMP/IR STATUSI6)

PCHL 1110/1001 iNST=TMP/IR | (HL) PC

PUSH rp 11RP1or01 i SP=SP-1 SP OUT SP SP-1 (rh) 4 DATA BUS

i STATUSIE]

PUSH PSW 4141] 0101 | SP = SP-1 SP OUT SP = SP - (A) += DATA BUS
sTaTuslt6)

POP rp 11RP]oO001 x SP OUT sP=SP+1 OATA—fert
sTaTusl'5]

PoP PSW 1111]0001 x SP OUT SP=SP+1 DATA—}>FLAGS
STATusI15)

XTHL 1140] 0011 x SP OUT SP=SP+1 DATA—j»Z

i STATUSI'S)

tN port 1101] 10491 i x PC OUT PC=PC+1 B2—4~Z,W

| sTaTusié)

OUT port 1101] 0011 | | x PC OUT Pc=PC+1 B2—4>Z,W
sTATusl6)

Et +1aaf{2071 SET INTE F/F

DI r114{ ood RESET INTE F/F

HLT ord o110 | x PC OUT HALT MODEI@!

’ STATUS

NOP 0000 | 0000 | PCOUT | PC*PC+1) INST-TMPIIR x
STATUS

2-18

m3 ma M5

1 r2ia 13 11 t2ia 13 1 r2l2l 73 v4 ™

{9} (ACTI+ITMP)A = :

{9] {ACT)+(TMP) +A,

1g) (ACT)+(TMPI4A

Is (ACT) +(ITMP) +A

{3} (ACT)+(TMP)+A,

ig {ACT)-(TMP); FLAGS

{9} (ACT)-(TMP); FLAGS
=

T

PCOUT PC=PC+1 B3—lew * wz OUT, (wz) +1 PC

sTaTuslél
sTATUSIN]

PcouT PC= PCH 83 ew wz OUT, wz) +1 PC

STATUSI6]
STATUSIT112)

PcOUT PC=PC+1 83> W SP OUT (PCH}———}» DATA BUS | SPOUT (PCLI-b DATA BUS wz OUT, (WZ) +1 PC

STATUS) STATUSIT6) | sp = SP STATUSI"6! staTusi!1)

PC OUT PC=PC+1 83 je wit3) SP OUT (PCH) J» DATA BUS | SP OUT (PCL) DATA BUS Wz OUT (wz) +1 > PC

sTaTusié) STATusI'6) | sp=SP-1 STATUSIT6] STATUSI11,12]

SP OUT SP=SP+1 DATA—>wW wz OUT, (WZ) + 1.» PC

sTaTusIt5]
sTatusitt]

SP OUT SP=SP+1 DATA—j»W Wz OUT NZ) + 1+ PC

STATUSITSI
STATUSIN,2]

SP OUT (TMP = OONNNOOO) —j>Z WZ QUT, (wz) +1 PC

STaTusit6) (PCL) DATA BUS sTaTusi1]

SPOUT (rt) DATA BUS
staTusi'6}

sP OUT FLAGS +=DATA BUS
STATUSIT6)

sP OUT SP=SP+1 DATA—lerh
sTatusl's)

SP OUT SP=SP+1 DATA—lrA
StaTusit5] 2

sP OUT DATA—eW SPOUT {H) > DATABUS | SPOUT {LI——+ DATA BUS | (WZ)—->HL

STATUSIIS! STATUSIT6 STATUSITE]

wz OUT DATA—eA 7
statusit8]

wz OUT (A) 4 OATA BUS
STATUSITS

2-19

NOTES:

1. The first memory cycle (M1) is always an instruction

fetch; the first (or only) byte, containing the op code, is

fetched during this cycle.

2. If the READY input from memory is not high during

T2 of each memory cycle, the processor will enter a wait

state (TW) until! READY is sampled as high.

3. States T4 and T5 are present, as required, for opera-

tions which are completely internal to the CPU. The con-

tents of the internal bus during T4 and T5 are available at

the data bus; this is designed for testing purposes only. An

“X"' denotes that the state is present, but is only used for

such internal operations as instruction decoding.

4, Only register pairs rp = B (registers B and C) or rp=D

(registers D and E) may be specified.

5. These states are skipped.

6. Memory read sub-cycles; an instruction or data word

will be read.

7. Memory write sub-cycle.

8. The READY signal is not required during the second

and third sub-cycles (M2 and M3}. The HOLD signal is

accepted during M2 and M3. The SYNC signal is not gene-

rated during M2 and M3, During the execution of DAD,

M2 and M3 are required for an internal register-pair add;

memory is not referenced.

9. The results of these arithmetic, logical or rotate in-

structions are not moved into the accumulator (A) until

state T2 of the next instruction cycle. That is, A is loaded

while the next instruction is being fetched; this overlapping

of operations allows for faster processing.

10. If the value of the least significant 4-bits of the accumu-

lator is greater than 9 or if the auxiliary carry bit is set, 6

is added to the accumulator. If the value of the most signifi-

cant 4bits of the accumulator is now greater than 9, or if

the carry bit is set, 6 is added to the most significant ~

4-bits of the accumulator.

11. This represents the first sub-cycle (the instruction

fetch) of the next instruction cycle.

2-20

12, If the condition was met, the contents of the register

pair WZ are output on the address lines (Agi5) instead of

the contents of the program counter (PC).

13. If the condition was not met, sub-cycles M4 and M5

are skipped; the processor instead proceeds immediately to

the instruction fetch (M1} of the next instruction cycle.

14. If the condition was not met, sub-cycles M2 and M3

are skipped; the processor instead proceeds immediately to

the instruction fetch (M1) of the next instruction cycle.

15, Stack read sub-cycle.

16. Stack write sub-cycle.

17. CONDITION ccc

NZ — not zero (Z = 0) 000

Z — zero (Z= 1) 001

NC — no carry (CY = 0) 010

C — carry (CY = 1) 011

PO — parity odd (P = 0) 100

PE — parity even (P = 1) 101

P — plus (S=0) 110

M — minus (S= 1) 111

18. 1/0 sub-cycle: the I/O port's &bit select code is dupli-

cated on address lines 0-7 (Ag7) and 8-15 (Ag.15).

19. Output sub-cycle.

20. The processor will remain idle in the halt state until

an interrupt, a reset or a hold is accepted. When a hold re-

quest is accepted, the CPU enters the hold mode; after the

hold mode is terminated, the processor returns to the halt

state. After a reset is accepted, the processor begins execu-

tion at memory location zero. After an interrupt is accepted,

the processor executes the instruction forced onto the data

bus (usually a restart instruction).

SSS or DDD Value rp Value

A 111 B 00

B 000 D 01

Cc 001 H 10

D 010 SP 11

E 011

H 100

L 101

APPENDIX 5

A computer, no matter how sophisticated, can only

do what it is “told” to do. One “tells” the computer what

to do via a series of coded instructions referred to as a Pro-

gram. The realm of the programmer is referred to as Soft-

ware, in contrast to the Hardware that comprises the actual

computer equipment. A computer's software refers to all of

the programs that have been written for that computer.

When a computer is designed, the engineers provide

the Central Processing Unit (CPU) with the ability to per-

form a particular set of operations. The CPU is designed

such that a specific operation is performed when the CPU

control logic decodes a particular instruction. Consequently,

the operations that can be performed by a CPU define the

computer's Instruction Set.

Each computer instruction allows the programmer to

initiate the performance of a specific operation. All com-

puters implement certain arithmetic operations in their in-

struction set, such as an instruction to add the contents of

two registers. Often logical operations (e.g., OR the con-

tents of two registers) and register operate instructions (e.g.,

increment a register) are included in the instruction set. A

computer's instruction set will also have instructions that

move data between registers, between aregister and memory,

and between a register and an I/O device. Most instruction

sets also provide Conditional Instructions. A conditional

instruction specifies an operation to be performed only if

certain conditions have been met; for example, jump to a

particular instruction if the result of the last operation was

zero. Conditional .instructions provide a program with a

decision-making capability.

By logically organizing a sequence of instructions into

a coherent program, the programmer can “tell” the com-

puter to perform a very specific and useful function.

The computer, however, can only execute programs

whose instructions are in a binary coded form {i.e., a series

of 1's and 0's), that is called Machine Code. Because it

would be extremely cumbersome to program in machine

code, programming languages have been developed. There

41

are programs available which convert the programming lan-

guage instructions into machine code that can be inter-

preted by the processor.

One type of programming language is Assembly Lan-

guage. A unique assembly language mnemonic is assigned to

each of the computer’s instructions. The programmer can

write a program (called the Source Program) using these

mnemonics and certain operands; the source program is

then converted into machine instructions (called the Object

Code}. Each assembly language instruction is converted into

one machine code instruction (1 or more bytes) by an

Assembler program, Assembly languages are usually ma-

chine dependent (i.e., they are usually able to run on only

one type of computer).

THE 8080 INSTRUCTION SET

The 8080 instruction set includes five different types

of instructions:

« Data Transfer Group—move data between registers

or between memory and registers

e Arithmetic Group — add, subtract, increment or

decrement data in registers or in memory

e Logical Group — AND, OR, EXCLUSIVE-OR,

compare, rotate or complement data in registers

or in memory

e Branch Group — conditional and unconditional

jump instructions, subroutine call instructions and

return instructions

e Stack, 1/O and Machine Control Group — includes

1/O instructions, as well as instructions for main-

taining the stack and internal control flags.

Instruction and Data Formats:

Memory for the 8080 is organized into 8-bit quanti-

ties, called Bytes. Each byte has a unique 16-bit binary

address corresponding to its sequential position in memory.

i

i

The 8080 can directly address up to 65,536 bytes of mem-

ory, which may consist of both read-only memory (ROM)

elements and random-access memory (RAM) elements (read/

write memory).

Data in the 8080 is stored in the form of 8-bit binary

integers:
DATA WORD

D;! De Tog! D4 !D3!D2'D; "Do

MSB LSB

When a register or data word contains a binary num-

ber, it is necessary to establish the order in which the bits

of the number are written. In the Intel 8080, BIT 0 is re-

ferred to as the Least Significant Bit (LSB), and BIT 7 (of

an 8 bit number) is referred to as the Most Significant Bit

(MSB).

The 8080 program instructions may be one, two or

three bytes in length. Multiple byte instructions must be

stored in successive memory locations; the address of the

first byte is always used as the address of the instructions.

The exact instruction format will depend on the particular

operation to be executed.

Single Byte Instructions .

D7 Porer rT Dg | Op Code

Two-Byte Instructions

Byte One D,! PTT ! Dg | Op Code

Byte Two Dy! pero TTT Dg | Data or
Address

Three-Byte Instructions

TOT TT TTT
Byte One | Dz Do | Op Code

Byte Two pb, T T T T TY Do |) Data

or

Byte Three Dy! rq I I loo Address

Addressing Modes:

Often the data that is to be operated on is stored in

memory. When multi-byte numeric data is used, the data,

like instructions, is stored in successive memory locations,

with the least significant byte first, followed by increasingly

significant bytes. The 8080 has four different modes for

addressing data stored in memory or in registers:

@ Direct —Bytes 2 and 3 of the instruction contain

the exact memory address of the data

item (the low-order bits of the address are

in byte 2, the high-order bits in byte 3).

@ Register — The instruction specifies the register or

register-pair in which the data is located.

@ Register Indirect — The instruction specifies a reg-

ister-pair which contains the memory

address where the data is located (the

high-order bits of the address are in the

first register of the pair, the low-order

bits in the second).

@ Immediate — The instruction contains the data it-

self. This is either an 8-bit quantity or a

16-bit quantity (least significant byte first,

most significant byte second).

Unless directed by an interrupt or branch instruction,

the execution of instructions proceeds through consecu-

tively increasing memory locations. A branch instruction

can specify the address of the next instruction to be exe-

cuted in one of two ways:

@ Direct —The branch instruction contains the ad-

dress of the next instruction to be exe-

cuted. (Except for the ‘RST’ instruction,

byte 2 contains the low-order address and

byte 3 the high-order address.)

© Register indirect — The branch instruction indi-

cates a register-pair which contains the

address of the next instruction to be exe-

cuted, (The high-order bits of the address

are in the first register of the pair, the

low-order bits in the second.)

The RST instruction is a special one-byte call instruc-

tion (usually used during interrupt sequences), RST in-

cludes a three-bit field; program control is transferred to

the instruction whose address is eight times the contents

of this three-bit field.

Condition Flags:

There are five condition flags associated with the exe-

cution of instructions on the 8080. They are Zero, Sign,

Parity, Carry, and Auxiliary Carry, and are each represented

by a 1-bit register in the CPU. A flag is “set” by forcing the

bit to 1; “reset’’ by forcing the bit to 0.

Unless indicated otherwise, when an instruction af-

fects a flag, it affects it in the following manner:

If the result of an instruction has the

value 0, this flag is set; otherwise it is

reset.

Zero:

If the most significant bit of the result of

the operation has the value 1, this flag is

set; otherwise it is reset.

Sign:

If the modulo 2 sum of the bits of the re-

sult of the operation is 0, ({i.e., if the

result has even parity), this flag is set;

otherwise it is reset (i.e., if the result has

odd parity).

lf the instruction resulted in a carry

(from addition), or a borrow (from sub-

traction or a comparison) out of the high-

order bit, this flag is set; otherwise it is

reset.

Parity:

Carry:

Auxiliary Carry: If the instruction caused a carry out

of bit 3 and into bit 4 of the resulting

value, the auxiliary carry is set; otherwise

it is reset. This flag is affected by single

precision additions, subtractions, incre-

ments, decrements, comparisons, and log-

ical operations, but is principally used

with additions and increments preceding

a DAA (Decimal Adjust Accumulator)

instruction.

Symbols and Abbreviations:
The following symbols and abbreviations are used in

the subsequent description of the 8080 instructions:

SYMBOLS

accumulator

addr

data

data 16

byte 2

byte 3

port

rrir2

DDD,SSS

rp

RP

MEANING

Register A

16-bit address quantity

8-bit data quantity

16-bit data quantity

The second byte of the instruction

The third byte of the instruction

8-bit address of an I/O device

One of the registers A,B,C,D,E,H,L

The bit pattern designating one of the regis-

ters A,B,C,D,E,H,L (DDD=destination, SSS=

source):

DDD or SSS_ REGISTER NAME

111

000

001

010

011

100

101 r
r
o
m
o
a
w
p

One of the register pairs:

B represents the B,C pair with B as the high-

order register and C as the low-order register;

D represents the D,E.pair with D as the high-

order register and E as the low-order register;

H represents the H,L pair with H as the high-

order register and L as the low-order register;

the 16-bit SP represents stack pointer

register.

The bit pattern designating one of the regis-

ter pairs B,D,H,SP:

RP REGISTER PAIR

00 B-C

01 D-E

10 H-L

11 SP

43

rh

rl

PC

SP

'm

Z,S,P,CY,AC

NNN

The first (high-order) register of a designated

register pair.

The second (low-order) register of a desig-

nated register pair.

16-bit program counter register (PCH and

PCL are used to refer to the high-order and

low-order 8 bits respectively).

16-bit stack pointer register (SPH and SPL

are used to refer to the high-order and low-

order 8 bits respectively).

Bit m of the register r (bits are number 7

through 0 from left to right).

The condition flags:

Zero,

Sign,

Parity,

Carry,

and Auxiliary Carry, respectively.

The contents of the memory location or reg-

isters enclosed in the parentheses.

‘5 transferred to”’

Logical AND

Exclusive OR

Inclusive OR

Addition

Two’s complement subtraction

Multiplication

“Is exchanged with”

The one’s complement (e.g., (A))

The restart number O through 7

The binary representation 000 through 111

for restart number O through 7 respectively.

Description Format:

The following pages provide a detailed description of

the instruction set of the 8080. Each instruction is de-

scribed in the following manner:

1. The MAC 80 assembler format, consisting of

the instruction mnemonic and operand fields, is

printed in BOLDFACE on the left side of the first

line.

. The name of the instruction is enclosed in paren-

thesis on the right side of the first line.

. The next line(s) contain a symbolic description

of the operation of the instruction.

. This is followed by a narative description of the

operation of the instruction.

. The following line(s) contain the binary fields and

patterns that comprise the machine instruction.

6. The last four lines contain incidental information

about the execution of the instruction. The num-

ber of machine cycles and states required to exe-

cute the instruction are listed first. If the instruc-

tion has two possible execution times, as in a

Conditional Jump, both times will be listed, sep-

arated by a slash. Next, any significant data ad-

dressing modes (see Page 4-2) are listed. The last

line lists any of the five Flags that are affected by

the execution of the instruction.

Data Transfer Group:

This group of instructions transfers data to and from

registers and memory. Condition flags are not affected by

any instruction in this group.

MOV 11, '2

(r1) <— (r2)

(Move Register)

The content of register r2 is moved to register r1.

o'ilo!o!

oilsis!ls

Cycles:

States:

Addressing:

Flags:

MOV r,M

(r) ~— ({H) (L))

1

5

register

none

(Move from memory)

The content of the memory location, whose address

is in registers H and L, is moved to register r.

MVI r, data (Move Immediate)

{r} +— (byte 2)
The content of byte 2 of the instruction is moved to

register r.

I] I I T
0 0 D D D 1 1 0

data

Cycles: 2

States: 7

Addressing: immediate

Flags: none

MVI M, data (Move to memory immediate)

((H) (L}) <— (byte 2)
The content of byte 2 of the instruction is moved to

the memory location whose address is in registers H

and L.

ofotalalolilialo
data

Cycles: 3

States: 10

Addressing: immed./reg. indirect

Flags: none

0 i 1 D D ! D 1 1 0
1

Cycles: 2

States: 7 LXI rp, data 16 (Load register pair immediate)

Addressing: reg. indirect (rh) «— (byte 3)

Flags: none (rl) <— (byte 2)

Byte 3 of the instruction is moved into the high-order

register (rh) of the register pair rp. Byte 2 of the in-

struction is moved into the low-order register (rl) of

MOV M,r (Move to memory) the register pair rp.

({H) (L)} <— (Fr) | | 1 | 1

The content of register r is moved to the memory lo- 0 0 R P ie) 0 0 1

cation whose address is in registers H and L. low-order data

ie} ! 1 I 1 I 1 I 0 Ss Ss s high-order data

Cycles: 2 Cycles: 3

States: 7 States: 10

Addressing: _ reg. indirect Addressing: immediate

Flags: none Flags: none

44

LDA addr (Load Accumulator direct)

(A) ~«— ((byte 3){byte 2))

The content of the memory location, whose address

is specified in byte 2 and byte 3 of the instruction, is

moved to register A.

oto tad ta tai loli to

low-order addr

 high-order addr

STA addr

Cycles: 4

States: 13

Addressing: direct

Flags: none

(Store Accumulator direct)

((byte 3)(byte 2)) ~— (A)

The content of the accumulator is moved to the

memory location whose address is specified in byte

2 and byte 3 of the instruction, ~

low-order addr

 high-order addr

LHLD addr

Cycles: 4

States: 13

Addressing: direct

Flags: none

(Load H and L direct)

(L}) ~«— ((byte 3)(byte 2))

{H} «— ((byte 3)(byte 2) + 1)

The content of the memory location, whose address

is specified in byte 2 and byte 3 of the instruction, is

moved to register L. The content of the memory loca-

tion at the succeeding address is moved to register H.

otoli to li lo lilo

low-order addr

 high-order addr

Cycles: 5

States: 16

Addressing: direct

Flags: none

SHLD addr (Store H and L direct)

((byte 3}(byte 2)) <— (L)

{(byte 3)(byte 2) + 1) ~— {H)

The content of register L is moved to the memory lo-

cation whose address is specified in byte 2 and byte

3. The content of register H is moved to the succeed-

ing memory location.

oto t1tolo loli lo

low-order addr

high-order addr

Cycles: 5

States: 16

Addressing: direct

Flags: none

LDAX rp (Load accumulator indirect)

45

(A) <— ((rp))

The content of the memory location, whose address

is in the register pair rp, is moved to register A. Note:

only register pairs rp=B (registers B and C) or rp=D

(registers D and E) may be specified.

I
 ola eli lol: lo

0

Cycles: 2

States: 7

Addressing: reg. indirect

Flags: none

STAX rp (Store accumulator indirect)

((rp)} «— (A)
The content of register A is moved to the memory lo-

cation whose address is in the register pair rp. Note:

only register pairs rp=B (registers B and C) or rp=D

(registers D and E) may be specified.

0! o r | p ololialo

XCHG

Cycles: 2

States; 7

Addressing: reg. indirect

Flags: none

(Exchange H and L with D and E)

(H) ~—> (D)

(L) ~— (E)

The contents of registers H and L are exchanged with

the contents of registers D and E.

1

Cycles: 1

States: 4

Addressing: register

Flags: none

Arithmetic Group:

This group of instructions performs arithmetic oper-
ations on data in registers and memory.

Unless indicated otherwise, all instructions in this

group affect the Zero, Sign, Parity, Carry, and Auxiliary

Carry flags according to the standard rules.

All subtraction operations are performed via two's

complement arithmetic and set the carry flag to one to in-

dicate a borrow and clear it to indicate no borrow.

ADDr {Add Register)

(A) ~— (A) + (r)
The content of register r is added to the content of the

accumulator. The result is placed in the accumulator.

rbolololo siglg

Cycles: 1

States: 4

Addressing: register

Flags: Z,S,P,CY,AC_

ADDM (Add memory)

(A) ~— (A) + ((H) (L))
The content of the memory location whose address

is contained in the H and L registers is added to the

content of the accumulator. The result is placed in

the accumulator.

olotlo ly Tyo

Cycles: 2

States: 7

Addressing: reg. indirect

Flags: 2Z,S,P,CY,AC

ADI data (Add immediate)

(A) ~— (A) + (byte 2)
The content of the second byte of the instruction is
added to the content of the accumulator. The result

is placed in the accumulator.

ADCr (Add Register with carry)

(A) ~— (A) + (r) + (CY)
The content of register r and the content of the carry

bit are added to the content of the accumulator. The

result is placed in the accumulator.

tPololo li [st gts

Cycles: 1

States: 4

Addressing: register

Flags: 2Z,S,P,CY,AC

ADC M (Add memory with carry)

(A) ~— (A) + ((H) (L)) + (CY)
The content of the memory location whose address is

contained in the H and L registers and the content of

the CY flag are added to the accumulator. The result

is placed in the accumulator.

1 0 0 0 1 T 1 1 ! 0

Cycles: 2

States: 7

Addressing: reg. indirect

Flags: 2,S,P,CY,AC

ACI data (Add immediate with carry)

(A) ~— (A) + (byte 2) + (CY)

The content of the second byte of the instruction and

the content of the CY flag are added to the contents

of the accumulator, The result is placed in the

accumulator.

tha Fo Fo Ty, 7,7, TQ

data

Cycles: 2

States: 7

Addressing: immediate

Flags: 2Z,S,P.CY,AC

SUBr (Subtract Register)

(A) ~— (A) — (r}
The content of register r is subtracted from the con-

tent of the accumulator. The result is placed in the

accumulator,

data rPoto lito [sists

Cycles: 2 Cycles: 1

States: 7 States: 4

Addressing: immediate

Flags: Z,S,P,CY,AC

Addressing: register

Flags: 2Z,S,P,CY,AC

46

SUBM (Subtract memory)

(A) <— (A) — ((H) (L))
The content of the memory location whose address is

contained in the H and L registers is subtracted from

the content of the accumulator. The result is placed

in the accumulator.

(Subtract immediate with borrow}

(A) <— (A) — (byte 2) — (CY)

The contents of the second byte of the instruction

and the contents of the CY flag are both subtracted

from the accumulator, The result is placed in the

accumulator.

SBI data

7 To loli boti1ti1lo TT a Tota ta la lilo

d
Cycles: 2 ate

States: 7

Addressing: reg. indirect overs

Flags: 2,S,P,CY,AC Addressing: immediate

Flags: Z,S,P,CY,AC

SUI data (Subtract immediate)

(A) ~— (A) — (byte 2)

The content of the second byte of the instruction is INRr (Increment Register)

subtracted from the content of the accumulator. The

result is placed in the accumulator.

pra to Ty To Ti Ti To

data

Cycles: 2 .

States: 7

Addressing: immediate

Flags: Z,S,P,CY,AC

SBBr (Subtract Register with borrow)

(A) «— {A) — (r) — (CY)
The content of register r and the content of the CY

flag are both subtracted from the accumulator. The

result is placed in the accumulator,

1 I 0 ! 0 1 ! 1 s s ! Ss

Cycles: 1

States: 4

Addressing: register

Flags: Z,S,P,CY,AC

SBBM (Subtract memory with borrow)

(A) ~— (A) — ((H) (L)) — (CY)
The content of the memory location whose address is

contained in the H and L registers and the content of

the CY flag are both subtracted from the accumula-

tor. The result is placed in the accumulator.

{r) <— (r) +1

The content of register r is incremented by one.

Note: All condition flags except CY are affected.

0 ! 0 D D ! D 1 0 I 0

Cycles: 1

States: 5

Addressing: register

Flags: 2Z,S,P,AC

INR M (Increment memory}

((H) (L)) —— ((H) (L)) +1

The content of the memory location whose address

is contained in the H and L registers is incremented

by one. Note: All condition flags except CY are

affected.

oto la Fa fo T1 To To

Cycles: 3

States: 10

Addressing: reg. indirect

Flags: Z,S,P,AC

DCRr (Decrement Register)

(r) <— (Fr) -1

The content of register r is decremented by one.

Note: All condition flags except CY are affected.

T Tp tito!

1 I 0 ! 0 1 1 ! 1 1 0 0 ! 0 D D D 0 i

Cycles: 2 Cycles: 1 a

States: 7 States: 5

Addressing: reg. indirect Addressing: register

Flags: Z,S,P,CY,AC Flags: Z,S,P,AC

47

N
N

e
e

e
e

DCR M (Decrement memory}

((H) (L)) —<— ((H) (L)) - 1
The content of the memory location whose address is

contained in the H and L registers is decremented by

DAA (Decimal Adjust Accumulator)

The eight-bit number in the accumulator is adjusted

to form two four-bit Binary-Coded-Decimal digits by

the following process:

one. Note: All condition flags except CY are affected. 1. If the value of the least significant 4 bits of the

T T | T T T T accumulator is greater than 9 or if the AC flag

0 o 1 1 0 1 0 1 is set, 6 is added to the accumulator.

Cycles: 3 2, If the value of the most significant 4 bits of the

States: 10 accumulator is now greater than 9, or if the CY

Addressing: reg. indirect flag is set, 6 is added to the most significant 4

bits of the accumulator.
Flags: Z,S,P,AC

NOTE: All flags are affected.

ofoli ToToli lia ly

INX rp (Increment register pair)

(rh) (rl) «— (rh) (rl) +1 ;

The content of the register pair rp is incremented by Cycles: 1

one, Note: No condition flags are affected. stores: a cy AC
ags: eT,

ofoflrip]lololils;:

Cycles: 1 Logical Group:

States: 5 . This group of instructions performs logical (Boolean)

Addressing: register operations on data in registers and memory and on condi-

Flags: none tion flags.

Unless indicated otherwise, all instructions in this

group affect the Zero, Sign, Parity, Auxiliary Carry, and

Carry flags according to the standard rules.

DCX rp (Decrement register pair)

(rh) (rl) ~— (rh) (rl) — 1

The content of the register pair rp is decremented by

one. Note: No condition flags are affected.

ANAr (AND Register)

(A) <— (A) Afr)
The content of register r is logically anded with the

| | T T T content of the accumulator. The result is placed in

0 0 R P 1 0 1 1 the accumulator. The CY flag is cleared.

Cycles: 1 r!bo!l1!o To sis Is

States: 5

Addressing: register Cycles: 1

Flags: none States: 4

Addressing: register

Flags: 2,S,P,CY,AC

DAD rp (Add register pair to H and L) ANAM (AND memory)

(H) (L) ~— (H) (L) + (rh) (rl)
The content of the register pair rp is added to the

content of the register pair H and L. The result is

placed in the register pair H and L, Note: Only the

CY flag is affected. It is set if there is a carry out of

the double precision add; otherwise it is reset.

(A) ~<— (A) A ((H) (L))
The contents of the memory location whose address

is contained in the H and L registers is logically anded

with the content of the accumulator. The result is

placed in the accumulator. The CY flag is cleared.

a! o rip tailolol, plo tlad Fo lo FT, Ta To

Cycles: 3 Cycles: 2

States: 10 States: 7

Addressing: register Addressing: reg. indirect

Flags: CY Flags: Z,S,P,CY,AC

48

ANI data (AND immediate) ORAr (OR Register)

(A) <— (A) A (byte 2) (A) ~— (A) V (r)

The content of the second byte of the instruction is The content of register r is inclusive-OR’d with the

logically anded with the contents of the accumulator. content of the accumulator. The result is placed in

The result is placed in the accumulator. The CY and the accumulator. The CY and AC flags are cleared.

AC flags are cleared.
rtola la To [sls ls

1 I 1 I 1 I 0 V9 ! 1 1 Vo
Cycles: 1

data States: 4

Addressing: register

Cycles: 2 Flags: Z,S,P,CY,AC
States: 7

Addressing: immediate ORAM (OR memory)

Flags: 2Z,S,P,CY,AC (A) «— (A) V ((H) (L))

XRAr (Exclusive OR Register) The content of the memory location whose address is

contained in the H and L registers is inclusive-OR'd

with the content of the accumulator. The result is

placed in the accumulator. The CY and AC flags are

(A) «— (A) ¥ (r)

The content of register r is exclusive-or’d with the

content of the accumulator. The result is placed in

leared.
the accumulator. The CY and AC flags are cleared. cleare

I | T] I] I
0 0

1 0 1 0 1 s ! s Ss 1 1 1 1 1 0

les:
Cycles: 1 Cycles: 2

States: 7
States: 4 . a.

Addressing: register Addressing: reg. indirect

. Flags: 2,S,P,CY,A\
Flags: Z,S,P,CY,AC ags: 2,S,P,CY.AC

. ORI data (OR Immediate)

XRAM (Exclusive OR Memory) (A) (A) V (byte 2)

(A} —— (A) ¥ ((H) (L))
The content of the memory location whose address

is contained in the H and L registers is exclusive-OR’d

with the content of the accumulator. The result is

placed in the accumulator. The CY and AC flags are

The content of the second byte of the instruction is

inclusive-OR‘d with the content of the accumulator.

The result is placed in the accumulator. The CY and

AC flags are cleared.

cleared. riba lala To bata lo

rbola lolita lato data

Cycles: 2 Cycles: 2

States: 7 States: 7

Addressing: reg. indirect

Flags: Z,S,P,CY,AC

XRI data (Exclusive OR immediate)

(A) ~— (A) ¥ (byte 2)
The content of the second byte of the instruction is

exclusive-OR’d with the content of the accumulator.

The result is placed in the accumulator. The CY and

AC flags are cleared.

Addressing: immediate

Flags: Z,S,P,CY,AC

CMP r {Compare Register)

(A) — (r)
The content of register r is subtracted from the ac-

cumulator. The accumulator remains unchanged. The

condition flags are set as a result of the subtraction.

The Z flag is set to 1 if (A) = (r). The CY flag is set to

1 if (A) < (r).

data

Cycles: 2

States: 7

Addressing: immediate

Flags: 2Z,S,P,CY,AC

Ss

Cycles: 1

States: 4

Addressing: register

Flags: 2,S,P,CY,AC

CMP M (Compare memory)

(A) — ({H) (L))
The content of the memory location whose address

is contained in the H and L registers is subtracted

from the accumulator. The accumulator remains un-

changed. The condition flags are set as a result of the

subtraction. The Z flag is set to 1 if (A) = ((H) (L)).

The CY flag is set to 1 if (A) < ((H) (L)).

ribo by Ty ty byt yl 9

Cycles: 2

States: 7

Addressing: — reg. indirect

Flags: Z,S,P,CY,AC

CPI data (Compare immediate)

(A) — (byte 2) .

The content of the second byte of the instruction is

subtracted from the accumulator. The condition flags

are set by the result of the subtraction. The Z flag is

set to 1 if (A) = (byte 2). The CY flag is set to 1 if

(A) < (byte 2).

RLC

re ee ee ee

data

Cycles: 2

States: 7

Addressing: immediate

Flags: Z,S,P,CY,AC

(Rotate left)

(Anti) ~— (Ap) :(Ag) <= (Aq)
(CY) <— (A)
The content of the accumulator is rotated left one

position. The low order bit and the CY fiag are both

set to the value shifted out of the high order bit posi-

tion, Only the CY flag is affected.

RRC (Rotate right)

(An) ~— (An-1) 5
(CY) ~— (Ap)

The content of the accumulator is rotated right one

position. The high order bit and the CY flag are both

set to the value shifted out of the low order bit posi-

tion. Only the CY flag is affected.

(A7) ~— (Ao)

ofolto lola Fai lala

Cycles: 1

States: 4

Flags: CY

RAL (Rotate left through carry)

(Anti) ~— (Ap) (CY) ~— (Ay)
(Ag) <— (CY)
The content of the accumulator is rotated left one

position through the CY flag. The low order bit is set

equal to the CY flag and the CY flag is set to the

value shifted out of the high order bit. Only the CY

flag is affected.

T T i} T T T T

0 0 0 1 0 1 1 1

Cycles: 1

States: 4

Flags: CY

RAR (Rotate right through carry)

(An) <— (Anti); (CY) +— (Ap)
{Az) ~— (CY)

The content of the accumulator is rotated right one

position through the CY flag. The high order bit is set

to the CY flag and the CY flag is set to the value

shifted out of the low order bit. Only the CY flag is

affected.

0 0 I 0 I 1 1 ! 1 1 I 1

Cycles: 1

States: 4

Flags: CY

CMA (Complement accumulator) .

(A) ~— (A)
The contents of the accumulator are complemented

(zero bits become 1, one bits become 0). No flags are

affected.

obfotlo To To Ta Fa Ty of ola Fo Fa 14a ta

Cycles: 1 Cycles: 1

States: 4 States: 4

Flags: CY Flags: none

cmc (Complement carry)

(cY) =— (CY)

The CY flag is complemented. No other flags are

affected.

obola lila li lal,

Cycles: 1

States: 4

Flags: CY

stc (Set carry)

(CY) <—— 1

ololalailoliai lila

Cycles: 1

States: 4

Flags: CY

Branch Group:

program flow.

in this group.

as follows:

CONDITION ccc

NZ — not zero (Z=0) 000

Z — zero (Z=1) 001

NG — nocarry (CY = 0) 010

C — carry {CY = 1) 011

PO — parity odd (P = 0) 100

PE — parity even (P= 1) 101

P = plus ($= 0) 110

M = — minus (S = 1) 111

JMP addr (Jump)

(PC) ~— (byte 3) (byte 2)

The CY flag is set to 1. No other flags are affected.

This group of instructions alter normal sequential

Condition flags are not affected by any instruction

The two types of branch instructions are uncondi-

tional and conditional. Unconditional transfers simply per-

form the specified operation on register PC (the program

counter). Conditional transfers examine the status of one of

the four processor flags to determine if the specified branch

is to be executed. The conditions that may be specified are

Control is transferred to the instruction whose ad-

dress is specified in byte 3 and byte 2 of the current

instruction.

ria tololo lola la

low-order addr

high-order addr

Cycles: 3

States: 10

Addressing: immediate

Flags: none

Jcondition addr (Conditional jump)

If (CCC),

(PC) ~— (byte 3) (byte 2)

If the specified condition is true, control is trans-

ferred to the instruction whose address is specified in

byte 3 and byte 2 of the current instruction; other-

wise, control continues sequentially.

ri atclelc lo

low-order addr

 high-order addr

Cycles: 3

States: 10

Addressing: immediate

Flags: none

CALL addr (Call)

((SP) — 1) ~— (PCH)

{(SP) — 2) ~— (PCL)

(SP) ~— (SP) —2

(PC) ~— (byte 3) (byte 2)

The high-order eight bits of the next instruction ad-

dress are moved to the memory location whose

address is one less than the content of register SP.

The low-order eight bits of the next instruction ad-

dress are moved to the memory location whose

address is two less than the content of register SP.

The content of register SP is decremented by 2. Con-

trol is transferred to the instruction whose address is

specified in byte 3 and byte 2 of the current

instruction.

aPatololi lalo!l.

low-order addr

 high-order addr
Cycles: 5

States: 17

Addressing: | immediate/reg. indirect

Flags: none

Ccondition addr

If (CCC),

((SP) — 1) ~— (PCH)

(SP) — 2) ~— (PCL)

(SP) ~«— (SP) —2

(PC) ~— (byte 3) (byte 2)

lf the specified condition is true, the actions specified

in the CALL instruction (see above) are performed;

otherwise, control continues sequentially.

(Condition call)

1 I 1 c I c I Cc 1 0 0

low-order addr

high-order addr

Cycles: 3/5

States: 11/17

Addressing: immediate/reg. indirect

Flags: none

RET (Return)

(PCL) ~— ((SP));

(PCH) «— ({SP) + 1); .
(SP) ~— (SP) +2;

The content of the memory location whose address

is specified in register SP is moved to the low-order

eight bits of register PC. The content of the memory

location whose address is one more than the content

of register SP is moved to the high-order eight bits of

register PC. The content of register SP is incremented

by 2.

rb abo To Ty To lol,

Cycles: 3

States: 10

Addressing: reg. indirect

Flags: none

Recondition

If (CCC),

(PCL) ~— ((SP))

(PCH) ~— ({SP) + 1)
(SP) ~— (SP) +2

If the specified condition is true, the actions specified

in the RET instruction (see above) are performed;

otherwise, control continues sequentially.

T I I I

(Conditional return)

1 1 c Cc Cc 0 ie) 0

Cycles: 1/3

States: 5/11

Addressing: reg. indirect

Flags: none

RSTn (Restart)

((SP} — 1) ~— (PCH)

((SP) — 2) ~— (PCL)

(SP) ~— (SP) —2

(PC) ~— 8* (NNN)

The high-order eight bits of the next instruction ad-

dress are moved to the memory location whose

address is one less than the content of register SP.

The low-order eight bits of the next instruction ad-

dress are moved to the memory location whose

address is two less than the content of register SP.

The content of register SP is decremented by two.

Control is transferred to the instruction whose ad-

dress is eight times the content of NNN.

1 I 1 N I N ! N 1 1 I 1

Cycles: 3

States: 11

Addressing: reg. indirect

Flags: none

[ele ofe[olelol ole ols[n[x[o[olo}
Program Counter After Restart

PCHL (Jump H and L indirect — move H and L to PC)

(PCH) ~— (H)

(PCL) ~— (L)

The content of register H is moved to the high-order

eight bits of register PC. The content of register L is

moved to the low-order eight bits of register PC.

tral atoll ato lol,

Cycles: 1

States: 5

Addressing: register

Flags: none

)
PUSH rp

Stack, 1/O, and Machine Control Group:

This group of instructions performs 1/0, manipulates

the Stack, and alters internal control flags.

Unless otherwise specified, condition flags are not

affected by any instructions in this group.

(Push)

((SP) — 1) +— (rh)
(SP) — 2) +— (rl)
(SP) «— (SP) —2

The content of the high-order register of register pair

rp is moved to the memory location whose address is

one less than the content of register SP. The content

of the low-order register of register pair rp is moved

to the memory location whose address is two less

than the content of register SP. The content of reg-

ister SP is decremented by 2. Note: Register pair

rp = SP may not be specified.

FLAG WORD

POP rp (Pop)

(rl) ~— ((SP))

(rh) ~— ((SP) + 1)
(SP) ~— (SP) +2

The content of the memory location, whose address

is specified by the content of register SP, is moved to

the low-order register of register pair rp. The content

of the memory location, whose address is one more

than the content of register SP, is moved to the high-

order register of register pair rp. The content of reg-

ister SP is incremented by 2. Note: Register pair

rp = SP may not be specified.

PUSH PSW

ity rR! p of yl aol, 1/4 al p oto To Ty

Cycles: 3 Cycles: 3

States: 11 States: 10

Addressing: reg. indirect Addressing: — reg. indirect

Flags: none Flags: none

POP PSW (Pop processor status word)

(Push processor status word)

((SP) — 1) ~—. (A)
(SP) — 2)g <— (CY), ((SP} 2), =—1
((SP) — 2) ~— (P), ({SP)—2)3 ~— 0

((SP) — 2)4 ~— (AC), (SP) — 2)5 ~- 0

(SP) — 2)g ~— (Z), ((SP) — 2)7 ~— (S)
(SP) ~— (SP) -—2

The content of register A is moved to the memory

location whose address is one less than register SP.

The contents of the condition flags are assembled

into a processor status word and the word is moved

to the memory location whose address is two less

than the content of register SP, The content of reg-

(CY) <— ((SP))g
(P) <— ((SP))2
(AC) ~<— ((SP))4
(Z) — ((SPl)g
(S) +— ((SP))7
(A) ~— ({SP) + 1)
(SP) ~— (SP) +2

The content of the memory location whose address

is specified by the content of register SP is used to

restore the condition flags. The content of the mem-

ory location whose address is one more than the

content of register SP is moved to register A. The

content of register SP is incremented by 2.

ister SP is decremented by two. , | ; | , T ; T D To | 3 1 ;

that ala1loT1To ly
Cycles: 3

Cycles: 3
States: 10 _

States: 11 Addressing: reg. indirect

Addressing: reg. indirect Flags: 2Z,S,P,CY,AC

Flags:. none

XTHL (Exchange stack top with H and L)

(L) «+» ((SP))
(H) ~«» ((SP) + 1)
The content of the L register is exchanged with the

content of the memory location whose address is

specified by the content of register SP. The content

of the H register is exchanged with the content of the

memory location whose address is one more than the

content of register SP.

El (Enable interrupts)

The interrupt system is enabled following the execu-

tion of the next instruction.

rPy by, Ty To Tat,

Cycles: 1

States: 4

Flags: none

DI (Disable interrupts)

The interrupt system is disabled immediately fol-

lowing the execution of the DI instruction.

ria by To To To Ty Ty

Cycles: 5

States: 18

Addressing: reg. indirect

Flags: none

SPHL (Move HL to SP)

(SP) ~— (H) (L)

The contents of registers H and L (16 bits) are moved

to register SP.

a a a a

Cycles: 1

States; 5 S

Addressing: register

Flags: none

IN port (Input)

(A) ~— (data)

The data placed on the eight bit bi-directional data

bus by the specified port is moved to register A.

tba Po Ty Ty Tg TT,

port

Cycles: 3

States: 10

Addressing: direct

Flags: none

QUT port (Output)

(data) ~«— (A)

The content of register A is placed on the eight bit

bi-directional data bus for transmission to the spec-

ified port.

roa ta Ty To To Ty Ty

Cycles: 1

States: 4

Flags: none

HLT (Halt)

The processor is stopped. The registers and flags are

unaffected.

of aba Ty ToT, 1, To

Cycles: 1

States: 7

Flags: none

NOP (No op)
No operation is performed. The registers and flags

are unaffected.

oF ol oloTolotlotlo

Cycles: 1

States: 4

Flags: none

port

Cycles: 3

States: 10

Addressing: direct

Flags: none

INSTRUCTION SET

Summary of Processor Instructions

Instruction Code!) Clock (21 instruction Code!) Clock (21
Mnemonic Description Dy Dg Ds Dg Dz Dz Dy Dp Cycles Mnemonic Description Dy Dg Ds Dg Dz Dz Dy Do Cycles

MOV.1.,2 Move register to register 01 00 ODS S$ S§ 5 RZ Return on zero 14 0 070 0 0 5/11
MOV M,+ — Move register to memory 011108 8 8 7 RNZ Return on no zero + 1 0 000 ¢ O 5/1
MOVr,M — Move memory to register 01 0D DoD 1 0 7 RP Return on positive 1. 1 1 0 0 0 0 sit
HLT Halt ao. 1 10771 °0 7 RM Return on minus 1a 1 1 1 0 00 si
MVIr Move immediate register oo 0 DODt iO Te RPE Return on parity even 1 1 1 0 1 0 °0 0 8/11
MVM Move immediate memory 00 1 10114 0 10 RPO Return on parity odd 1) 1 0 0 0 0 0 Si
INR Increment register 00 DoD Dt oO 5 RST Restart 11 & AAT 11 n
OCR Decrement register 00 0D DD OF §¢ IN Input 1104 1017 10
INRM Increment memory oo 1 1 0 14 0 0 10 ouT Output 11 0 t OOF) 10
DCRM —_ Decrement memory oo 11701041 10 LXIB Load immediate register oo 0 0 0 oO oO 1 10
ADDF Add register 10 A 10 0 DOS S$ § 4 Pair B&C
ADC AddregistertoAwitheary 1 0 0 0 1 S$ S § 4 LXID Load immediate register oo 0 + 0 0 01 10
SUBr Subtract register from A 10 0 10585 8 § 4 Pair D & E
SBBr Subtract register from A 10 0 1 4 § &§ § 4 LXIH Load immediate register oa 61 00 0 071 10

with borrow Pair H&L
ANAT And register with A 10 1 6 05 $ § 4 LXI SP Load immediate stack pointer 0 0 1 1 0 0 0 1 10
XRAr Exclusive OrsegisterwithA 1 0 1 0 1 8 8 § 4 PUSH B Push register Pair B & Can 11 000101 "
ORAr Or register with A 1017 108 88 4 stack
CMP r Compare register with A 10 1 118 8 8 4 PUSH D Push register Pair D & E on 117 0 1071041 "1
ADDM — Add memory to A 109 000119 ? stack
ADCM Add memory toAwithcary 1 0 0 O 1 1 1 «0 7 PUSH H Push register Pair H & Lon 11 147 0031 01 ca
sua M Subtract memory from A 10 010110 7 stack
SBBM Subtract memory from A 10 0 4 1 74 1 «0 7 PUSH PSW Push A and Flags 11 1 101 0 4 Ww

with borrow on stack
ANAM — And memory with A 10 100171 0 7 POPB Pop register pair 8 & C off 1 1 0 000 01 10
XRAM — ExclusiveOrmemorywithA 1 0 1 0 1 1 71 «0 7 stack
ORAM — Or memory with A 10 1 101710 7 POP D Pop register pair 0 & E off 11 0 100 01 10
CMP M Compare memary with A 1o 17177 0 7 stack
ADI Add immediate to A 11 0 00 1.1 0 7 POP H Pop register pair H & L off +1 1 000 01 10
ACI Add immediate to A with 11 0 0 4 17100 7 stack

carry POP PSW Pop Aand Flags 11 4 400 01 10
su Subtract immediate from A 110 1079 10 7 off stack
SBI Subtract immediate from A 11 0 1 19°10 7 STA Store A direct oo 1 100 1 0 13

with borrow LDA Load A direct oo 1 11 0 1 0 13
ANI And immediate with A 1101 0 07 7 0 7 XCHG Exchange D&E,H&L rror oto dt 4
XRI Exclusive Orimmediatewith 1 1 1 O 7 1 19 0 7 Registers

A XTHL ExchangetopofstackH&L 1 1 1 0 0 G6 1 1 18
OR! Or immediate with A rdototoddo 7 SPHL H & L to stack pointer 14 1 1°17 001 5
cP Compare immediate with A 1.orororrdz 4 0 7 PCHL H & L 10 program counter 1 1 1 0 1 0 01 §
ALC Rotate A left oo 0 0 O14 1 4 DADB Add B&CIOH&L oo 0 0 + 0 O41 10
RAC Rotate A right oo 0 O 4 1 11 4 DADO Add OBE WHEL oo 0 41 7001 10
RAL Rotate A left through carry 00 0 1 0 1 1°21 4 DADH Add H& LIOH RL oo 4 0 1060 01 10

RAR Rotate A right through 00 80 41 Fo vod 4 DADSP — Add stack pointer 10 H & L oo 1 47 1001 10
carry STAXB — Store A indirect 00 0 000 1 0 7

JP Jump unconditional 11 000011 10 STAXD Store A indirect oo 0700601 0 7
Jc Jump on carry troo trata 10 LDAXB — Load A indirect oo 09 010 1 0 7
INC Jump on no carry 1 1 O 1 6 0 1 0 10 LOAXO — Load A indirect oo 0 1 1 0 1 0 7
sz Jump on zero 1 1 6 0 1 06 1 0 10 INXB increment B & C registers oo 0 0 0 0 4 8 5
JNZ Jump on no zero 11 0 000 10 Wy INXD Increment D & E registers oo 0 17001 1 5
JP Jump on positive 1 ot 1 4 @ 0 7 0 10 INX H increment H & L registers oo 100011 5
JM Jump on minus tro1t101 0 0 INX SP Increment stack pointer oo 1 100 84 5
JPE Jump on parity even 11 1 0 1 0 1 0 10 OCxB Decrement B & C oo 00101 1 5
JPO Jump on parity odd 14 7 0 00 1 0 10 ocxo Decrement 0 & E oo 0 11011 5
CALL Call unconditional 11 0 0 1 4 01 7 OCXH Decrement H & L oo 101014 5
cc Call on carry roreog 111 0 0 Wy OCXSP —_ Decrement stack pointer oo 4 1 1°01 7 5
CNC Call on no carry horoo0 t 0 1 0 0 WNT CMA Complement A oo 101% 179 4
rd Call on zero 110 0 1 7 0 0 1N7 STC Set carry oo 1 1 09 9 4 4
cNz Call on no zero 11 0 007 00 47 cmc Complement carry oo 174 4 11 4
cp Call on positive Prot ot 0 4 0 0 17 DAA Decimal adjust A oo 1001171 1 4
cM Call on minus yroboto dt 0 0 WIT SHLD Store H & L direct oo 1600010 16
CPE Call on parity even 11 4-0 1 1 0 0 WIT LHLD Load H & & direct oo 107 010 16
cro Call on parity odd yr + 0 9 1 060 WAP El Enable Interrupts 14 1 t 4 0971 4
RET Return 11 0 0671001 10 DI Disable interrupt .4ao1s 00 17 4
RC Return on carry 1 4 0 1-1 0 0 0 5/11 NoP No-operation oo 0 6 0 O 6 0 4
RNC Return on no carry 11 0 10000 5/11

NOTES: 1. DDD or SSS — 000 B — 001 C — 010 D— 011 E — 100 H ~ 101 L — 110 Memory ~ 111 A.

2. Two possible cycle times, (5/11) indicate instruction cycles dependent on condition flags.

4-15

