
DANSK DATA ELEKTRONIK ApS

ID-7000 ONEPASS ASSEMBLER

for the

ID-7000 MICROPROCESSOR SYSTEM

Users Manual

first edition,august 1976

written by Ole Lading.

1.Introduction.

The ID-7000 Onepass Assembler is a program used to translate

user programs written in symbolic machine language (assembler

language) for the 8080 microprocessor into binary machine code.

The assembling is performed in one pass. This means that the sour-

ce text is read by the assembler only once. The assembler loads the

user program directly into RAM-memory. This feature, combined with

the fact that the assembler may be ROM-resident, gives a great advan-

tage compared to traditional 2 (or 3) pass assemblers, especial-

ly when only a low speed input media is available.

The ID-7000 Onepass Assembler uses the standard ID-7000 input/output

system (see ID-7000 Utility Routines manual). The assembler uses 3

logical devices:

1. READER device for source input

2. LIST device for list output

3, CONSOLE device. for initial communication

and error messages.

The logical devices are connected to the physical devices by means of

the 1/o status byte in location 0 in memory. In this way different

standard- and user defined t/o devices may be used by the assembler.

For example, interactive asembling is possible by using the TTY as

READER device.

The assembler generates no binary output, but loads the program direct-

ly into RAM-memory. If binary output is wanted, the binary dump fa-

cilities of the DEBUG /MONITOR program may be used.

The assembler uses 4kbyte of ROM memory from location COOO to CFFF (hex).

Furthermore the assembler needs some RAM-memory for data storage. Locations

40 to FF (hex) are reserved for this purpose.

The assembler is planned and programmed by Claus Tendering. It is debugged

and has been subject to minor changes by Claus E. Christoffersen and Ole
’

Lading.

page 3

2. Running the assembler.

The assmbler is started from the DEBUG /MONITOR program by executing

an XJ command. The startaddress of the assembler is COOO (hex). The

“assembler should be run with the interrupt system disabled, Prior to

starting the assembler by an COOO<OXJ command, the source text should

be placed in the wanted READER device.

When started, the assembler generates the following text on the ITY-

CONSOLE device:

ID-7000 ONEPASS ASSEMBLER

DEFAULT SYMBOL TABLE AND I/0-UNITS ? (Y/N)

If default symboltable placement (location 100-1FF hex) and default

I/O-units (TTY as READER,CONSOLE and LIST device) is wanted, the user

writes a Y on the TTY-CONSOLE device and the assembler starts reading

the source text from the TTY-READER or keyboard. In this case, the

assembler can handle a maximum of 10 symbols. If any other character is

written, the assembler responds:

WRITE HEX FIRST ADDRESS, LAST ADDRESS FOR SYMBOL TABLE CR

The user must now write two hex numbers (max. 4digits) separated by a

komma and terminated by a CR (carriage return). The symbol table must

contain at least 50 (hex) locations for the predefined symbols. Beyond

this every user specified symbol needs 8 locations in the symbol table.

After this the assembler responds:

WRITE HEX IOSB CR

The user mist now write a hex number (max. 2 digits) on the TPTY-CONSOLE

device, This number is then used as input/output status byte by the assem-

bler, and the assembler starts reading the source text from the selected

READER device.

page 4

3. The source language,

3.1 Syntax: The syntax of the source language is given below in BNF-notation.

Readers not familiar with this notation should read the sample program in

appendix 1 together with this section. The Character set used is the ASCII/

ISO character set.

(program) :=(statement) |(program) (statement)

(statement) ::=(label)(spacempt) (opcode) (param)(comment)(ecrlf)

(spacempt) ::=(spaces)| (empty)

(spaces) ::=(space) |(spaces) (space)

(space) . ::=ASCII space character

(empty) ; tis

(label) :t=(empty) |[(symbol):

(symbol) ::=(letter)(letdig)

(letter) zisalb |zJA[B|..... |Z

(letdig) :t=(empty)|(letter) 01 2..... 9

(opcode) ::=(machine-instruction) |(assembler-directive) |(empty)

(machine-instruction) ::=MVI|MOV|JMP|...|HLT

INTEL 8080 machine instruction mnemonics

(assembler-directive) ::-ORG|END|EQU|DB|DW|DS

(param) ::=(empty)|(spaces)(firstop)(secondop)

(firstop) ::=(op)

(secondop) ::=(empty)|,(op)

(op) ::=(symbo1) |(dec)|(hex) ascii)

(dec) tt= (digits)

(digits) :1<(digit)| (digits) (digit)

(digit) . s1-0]1]2].....|9

(hex) ::=(digit)(hexdig)

(hexdig) ::=(digit)[alblejale[fla|B[c|D|E|F
(ascii) ::='(string of ascii characters different from')!'

(comment) :+=(empty) |; (string of ascii characters)

(crlf) ::= CR LF |LF CR

Only the first five characters in a symbol are regarded, the rest

is skipped. In opcodes only four characters are regarded. It should

be noticed that the following symbols are predefined and reserved:

A, B, C, D, E, H, L, M, SP, and PSW

These symbols are names of the registers of the 8080.

page 5

3.2 Assembler directives: Beyond the 79 INTEL 8080 machine instruc-

tions, six assembler instructions (assembler directives) may be used
as opcodes in a statement. The function of these instructions is

discussed in this section.

222.1 ORG-directive. This directive is used to assign a value to the

instruction counter (IC) of the assembler:

(label) ORG (dec) or:

(label) ORG (hex)

The instruction counter points the current load address, and is

counted up during assembling. The ORG-directive initiates the instruc-

tion counter to the value following the command, A possible label

obtains the same value.

312.2 EQU-directive. This directive is used to give a symbol a specific

value:

(symbol): EQU (dec) or:

(symbol): EQU (hex) or:

(symbol): EQU (ascii)

The symbol obtains the value specified by (dec),(hex) or (ascii). The
value should be contained in a 16 bit word, otherwise an error mées-

sage is given.

3.2.3 END-dirctive. The END-directive terminates the assembling:

(label) END (dec) or:

(label) END (hex) or:

(label) END (symbol) or:

(label) END

In all cases the assembling is stopped, and a list of possible un-

defined symbols is given on the selected CONSOLE device (see section

4). If a parameter ((dec),(hex) or (symbol)) is present in the END
statement, program execution is started in the specified address if

the assembling has terminated without errors. Otherwise control is trans-

ferred to the DEBUG /MONITOR program. A label in the END statement has no

effect. The (symbol) in the END-directive must contain 5 characters.

page 6

3.2.4 DB-directive. This directive defines byte(s) of data:

(label) DB (dec) or:

(label) DB (hex) or:

(label) DB (ascii)

In the first two cases a single byte containing the value given by (dec)
or (hex) is allocated. Only the 8 least significant bits in the value
are used. In the third case a set of consecutive memory locations con-

taining the specified ASCII string is allocated. A possible (label) in

the DB-statement obtains the value of the current instruction coun-

ter, i.e. the address of the (first) stored byte.

3.2.5 DW-directive. This dimctive defines two bytes of data:

(label) DW (dec) or:

(label) DW (hex) or:

(label) DW (ascii) or:

(label) DW (symbol)

Two consecutive memory locations containing the specified 16 bit value

are allocated. As shown in the last examble, the parameter may be a

(possible still undefined) symbol. A label in the DB-statement obtains the

value of the current instruction counter, i.e. the address of the first

of the two bytes.

3.2.6 DS-directive. This directive reserves a set of consecutive me-

mory locations as specified by (dec) or (hex) with unde-~

fined contents. A possible (label) in the DS-statement obtains the

value corresponding to the startaddress of the reserved memory area,

(label) DS (dec) or:

(label) DS (hex)

a

e
e

e
e

e
e

e
e

e
e

e
e

e
e

e
e

e
e

e
e

e
e

ee
e

3.3 Restrictions in use of symbols. When a symbol is used as operand

((op)) in the parameter-field in a statement, the following rule must be

observed:

A forward reference is only allowed if the machine instruction

expects a 16 bit operand in the respective parameter-field.

If an 8 bit parameter is undefined when used, an error message is given.

(See section 4).

The following program segment is valid:

JMP alfa

LXI H,beta

beta: DW OOFF

The JMP and the LXI instruction expect a 16 bit

operand.

The following program segment is not valid:

MVI A,beta

beta:EQU 7F

Here the MVI instruction expects an 8 bit ope-

rand. The program segment should be replaced

by:

beta: EQU 7F

MVI A,beta

page 8

4, Error messages.

Whenever the assembler detects an error in the source language,an error-

message is written on the selected CONSOLE device. When an error is detec-~

ted the rest of the current statement is skipped and the assembler starts

translation of the next statement. An appropiate amount of NOP's are

placed in memory to make possible a later correction by. use of the DEBUG /

MONITOR program if a new assembling is not performed. Some errors cause

an immediate jump to the DEBUG /MONITOR-program. Section 4.1 to 4.15

describes the different error messages.

4.1 NO INPUT: This message is given, when the high speed reader is

specified as READER device, and this unit is not loaded before the

assembler i started. The message is also given when an END-statement is

not present on the paper tape. If TTY-reader is specified as READER

device, this message is not given.A manual start of the papertape

reader, or input of the source text from the keyboard,is then possible.

4.2 SYNTAX ERROR: This message is given, when the syntax of the sour-

ce language is illegal.

4.3 SYMBOL TABLE OVERFLOW: This error message is given when the spe-

cified area for symbol table is used. After generating this error

message, the assembler transfers control to the DEBUG /MONI TOR progran,.

4.4 NO LABEL AT BQU-DIRECTIVE: This error message is given when a

statement containing an EQU directive has no label.

4.5 TOO MANY PARAMETERS: This error message is given when a statement

contents too many parameters to the specified opcode.

4.6 MISSING PARAMETERS: This error message is given when a statement

contains too few parameters to the specified opcode.

4.7 UNKNOWN OPCODE: This error message is given when a statement con-

tains an opcode which is not a known INTEL 8080 mnemonic or an as-

sembler directive.

page 9

4.8 NUMBER OVERFLOW: This error message is given when a (dec) or (hex)

constant is too big, i.e. can not be contained in a 16 bit integer.

4.9 ASCII STRING OVERFLOW: This error message is given when an ascii con-

stant does not contain exactly two bytes. An exception to this rule is

ascii constants in DB-statements. In this case the ascii string may have

any length.

4.10 DOUBLE DEFINED SYMBOL: This error message is given when a symbol

is defined twice.

4.11 FORWARD REFERENCE NOT 16 BIT, This error message is given when

.a not defined symbol is used as parameter where an 8 bit parameter is

expected by the opcode (see section 3.3).

4.12 ILLEGAL RECORD LENGTH: This error message is given when a statement

in the source text is too long. Only 50 characters in a statement

are processed. The rest is skipped. After this error message, the assemb-

ler starts processing the first 50 characters in the normal way.

4.13 ILLEGAL ARGUMENT IN ASSEMBLER DIRECTIVE: This error message is

given when an illegal argument is found in an assembler directive.

(See section 3.2).

4.14 START ADDRESS NOT FOUND: This message is given when an END state-

ment contains a symbol in the parameter field, and this symbol is undefi-

ned. After this error message, control is transferred to the DEBUG /MONITOR

program.

4.15 15 AN UNDEFINED SYMBOL: When the assembling is terminated

by an END-statement, the assembler writes a list of undefined symbols

in this format.If an undefined symbol is present, the assembler transfers

control to the DEBUG /MONITOR program, althoughotherwise specified by the

END-statement.

page 10

5. Physical Record Format.

When the TTY-reader is specified as READER device, this reader is

started at the beginning of each record by an ASCII XON character

transmitted to the device. By the end of the record, it is stopped

by an XOFF character. In this way it is not possible to stop the TTY-

-reader immediately. The records must be separeted by at least 4 blind cha-
racters following the CR-LF (LF-CR) sequence to secure correct opera-

tion. As record separation characters may be used NUL, DELETE and

space. When the source text is generated by the ID~7000 TEXT-EDITOR,

the records are automatically separated by NUL characters.

When high speed reader is specified as READER device, records must be
separated by at leat one blind character.

The record may contend both small and capital letters. In symbols and

opcodes no destinction is made between small and capital letters. The

notations AlFa and alfa describes the same symbol. In ASCII strings

the correct values of the letters (small or capital) are stored.

The characters NUL and DELETE are blind characters to the assembler, and

may be present anywhere in the source text.

q

i

i
%.

i

€

[

;

CO00<0xJ

APPENDIx {i

ID-7000 ONEPASS ASSEMBLER
DEFAULT SYMBCL TABLE AND I/0-UNITS ? CY/N)D Y
0001

0002
0003
0004
000s
0006
0007
oo008
0009
0010
0011
oole
0013
0014
001s
‘0016

0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041

1700

1700
1700

1700
1700
1700
1700

1700
1700
1700
1700
1700
1700
1700

1700
0700
0700
0700

0700
0700
0700
o700
0700

0703
O705

O708
070B
o70C
O70E
O711
o712
O715
O716
o719
0719
0733
o742

O744

0746
0758
075C

ISETs
Oe
Us

STACK:
IOSBs

START:

WRITES

BUFF:

CONGRATULATIONS!
FIRST ID-7000 PROGRAM

>

DB

DB

DW

DW

DB

DB

END

3SAMPLE 1D-7000 PROGRAM.
3THE PROGRAM WRITES A

3 TEXT ON THE TTY-CONSOLE
3DEVICE FROM A TEXTBUFFER

$THE WRITING TERMINATES
3WHEN AN X«FF IS READ FROM
3THE TEXTBUFFER.

3THE PROGRAM USES THE
31D-7000 UTILITY-ROUTINES
SPOR 170

700 3PROGRAM START ADDR.

OEEFB SADDRESS FOR SET ISB RT
OEEAA SCONSOLE CUTPUT ROUTINE
g00 3STARTADDRe+1 FOR STACK

ae) 310SB FOR TTY

SPs STACK
Cs10SB
ISET $LCAD IOSB
Hs BUFF $HL=BUFFER START ADDR.
AsM 3GET CHARACTER
OFF 3XeFF?
OFOOS8 3YES»RETURN TO DEBUG
CsA

co 3WRITE CHAR ON CONSOLE
H 3HL:=HL+1
WRITE 3 :

“CONGRATULATIONS! YOU HAVE °
‘ASSEMBLED YOUR *
ODOA 3CR LF

10] 32 NUL CHAR'S

‘FIRST 1D-7000- PROGRAM‘

OFF

START SEND VECTCR TO START
YOU HAVE ASSEMBLED YCUR

-@

@
8@
®
@
@
8
@
e

8@
®

@®

&

a
®

@®

6
©

@
6

@©
@

@
@

@
0

©

