Dansk Data Elektronik ApS
 ID-7016 A/D-Conversion Module for the
 ID-7000 Microprocessor System December 1976.

che

1. Introduction. This module is used for connection of analog input signals to the ID-7000 microprocessor system. A maximum of 8 differential analog inputs can be connected to the module. A 3 bit channel selector register determines which input to be selected. The gain of the individual channels can be set in the range from l-20 times by means of 8 trimpots on the module. A sample/hold circuit keeps the analog signal to the A / D-converter stable during conversion. The monolithic A / D-converter on the module available in 8 -bit and 10 -bit versions-has a $40 \mu \mathrm{sec}$ conversion time (for 10 bit operation). Basic input levels (with unity gain in instrumentation amplifier) is 0 to 10 V differntial (unipolar operation) or $\div 10 \mathrm{~V}$ to +10 V differential (bipolar operation).

The module must be supplied by $+15 \mathrm{~V} / \div 15 \mathrm{v}$ analog supply voltages. An ID-7022 analog power-supply module plugged into the bus can be used.

Fig. l shows a blocked schematic of the module. Appendix 1 is a complete diagram of the module. Appendix 2 contains datasheets for the analog components on the board.
2. Description. This section contains a description of the module from a programming point of wiev.
2. 1 Addressing. The module uses to consecutive addresses of the possible 256 addresses for I/0-units. The address of the module is set by a 7 bit switchregister on the module. The two addresses are used as described in the following sections.
2. 2 Data input. When reading from the even address of the module, the CPU transfers the 8 most significant bits of the converted data to the accumulator:

IN 2 n

$\operatorname{CD9}$	CD 8	CD 7	CD 6	$\operatorname{CD5}$	CD 4	CD 3	$\mathrm{CD2}$
7	6	5	4	3	2	I	0

If an 8 bit converter is used, this data word contains all the converted data. When bipolar operation is used, the result is in modified 2 's complement notation with CD9 as a complemented sign bit.

2. 2 Status input. When reading from the odd address of the module, the CPU transfers the 2 least significant bits of the converted data and some status information to the accumulator.

IN $2 n+1$

INT	0	0	READY	0	0	CDI	CDO
7	6	5	4	3	2	1	0

If an 8 bit converter is used, bit 0 and bit 1 in the status word are irrelevant.
bit 4: READY
bit 7: INT

0 : the module is converting data, while the sample/ hold circuit is in the HOLD state.
1: the module keeps converted data in the buffer, and the sample/hold circuit is in the SAMPLE state.
this bit in the status word is the interrupt flipflop of the module. This bit can be used, when more than one interrupt source is connected to the same interrupt request line.
2.3 Data output. When writing to the even address of the module, the CPU loads the channel address register. One bit in the data word is used to clear the interrupt flip-flop of the module.

OUT 2 n

bit $2-0: \mathrm{CH}(2: 0) \quad$ The channel address for the analog input multiplexor and the gain-selector multiplexor.

0 : The content of the interrupt flip-flop is not affected.
1: The interrupt flip-flop is cleared. This can be used to passivate the module after a serie of conversions, to allow other interrupt sources to use the same interrupt request line.
2. 4 Control output. When writng to the odd address of the module, the sample/hold circuit enters the HOLD state and an A / D conversion is started. This output instruction clears the interrupt flip-flop of the module. The output information is irrelevant:

OUT $2 n+1$

2.5 Interrupt. The module contains one interrupt flip-flop. As described above, the interrupt flip-flop is cleared whwn a new conversion is started or a data word containing a logic 1 in bit 7 is send to the module. The interrupt flip-flop is set by the module, when an A / D-conversion is concluded and converted data are ready in the buffer.

By means of a strap on the module, the interrup request line (i.e. interrupt level) to be used by the module, is determined.
3. Connections. This section describes the pin connections in the top edge connector of the module.

pin A	:	+ 5 Volt supply.
pin 1	:	digital gnd.
pin B	:	channel 0 positive input.
$\mathrm{pin} C$:	channel 0 negative input.
$\operatorname{pin} \mathrm{D}$:	channel 1 positive input.
pin E	:	channel I negative input.
pin F	:	channel 2 positive input.
pin H	:	channel 2 negative input.
pin J	:	channel 3 positive input.
pin K	:	channel 3 negative input.
pin L	:	channel 4 positive input.
pin M	:	channel 4 negative input.
$\mathrm{pin} N$:	channel 5 positive input.
pin P	:	channel 5 negative input.
pin R	:	channel 6 positive input.
pin S	:	channel 6 negative input.

pin T	$:$	channel 7 positive input.
pin U	$:$	channel 7 negative input.
pin $2-17$ incl $:$	analog gnd.	

Pin $a, b, c, d, \ell a n d \rho$ are primary used for test and adjustment purposes.

Emne: ID 7016 A/D-conversion module Anulog MPX + amplifier.

04-653

FEATURES

8 and 10-Bit Resolution $20 \mu \mathrm{sec}$ Conversion Time Microprocessor Compatibility
Very Low Power Dissipation
Parallel and Serial Outputs
Ratiometric Operation
TJL/DTL/CMOS Logic Compatibility
CMOS Monolithic Construction

GENERAL DESCRIPTION

The AD7570 is a monolithic CMOS 10-bit successive approximation A/D converter on a 120 by 135 mil chip, requiring only an external comparator, reference and passive clocking components. Ratiometric operation is inherent, since an extremely accurate multiplying DAC is used in the feedback loop.
The AD7570 parallel output data lines and Busy line utilize three-state logic to permit bussing with other A/D output and control lines or with other I/O interface circuitry. Two enables are available, one controls the two MSB's, the second controls the remaining 8 LSB's. This feature provides the control interface for most microprocessors which can accept only an 8 -bit byte.
The AD7570 also provides a serial data output line to be used in conjunction with the serial synchronization line. The clock can be driven externally or, with the addition of a resistor and a capacitor, can run internally as high as 0.6 MHz allowing a total conversion time (8 -bits) of typically $20 \mu \mathrm{sec}$. An 8 -bit short cycle control pin stops the clock after exercising 8 bits, normally used for the " J " version (8-bit resolution).
The AD7570 requires two power supplies, a +15 V main supply and a +5 V (for TTL/DTL logic) to +15 V (for CMOS logic) supply for digital circuitry. Both analog and digital grounds are available.
The AD7570 is a monolithic device using a proprietary CMOS process featuring a double layer metal interconnect, on-chip thin-film resistor network and silicon nitride passivation ensuring high reliability and excellent long term stability.

ORDERING INFORMATION

Resolution	Temperature Range
	0 to $+75^{\circ} \mathrm{C}$
8-Bit	AD7570J
10 -Bit	AD7570L

Suffix D: Ceramic Package

[^0]

FUNCTIONAL DIAGRAM

PIN CONFIGURATION

TOP VIEW			
vo \square		28	$\square^{\text {晈Y }}$
vata	2	27	$\square \mathrm{bsen}$
AIN 5	3	26	¢ scs
outr	4	25	stat
OUT2 [-1	5	24	clk
agnd $\square^{\text {a }}$	5	23	Dond
comp	7	27	$\square \mathrm{vcc}$
sro	${ }^{8}$	21	ص cben
sync	-	20	hben
masbl Dbs	${ }^{10}$	19	
D88	11	18	D81
D87	12	17	D82
${ }^{2} 86$	13	16	De
des	14	15	

Route 1 Industrial Park; P.O. Box 280; Norwood, Mass. 02062 Tel: (617) 329-4700

Telex: 924491
Cable:
ANALOG NORWOODMASS

SPECIFICATIONS (vDD $=+15 \mathrm{v}, \mathrm{vcc}=+5 \mathrm{v}, \mathrm{vREF}= \pm 10 \mathrm{v}$ unless otherwise noted)

PARAMETER ${ }^{\prime}$	VERSION	TA $=+25^{\circ} \mathrm{C}$			OVER SPECIFIED TEMP. RANGE		UNITS	TEST CONDITIONS
		MIN	TYP	MAX	MIN	MAX		
ACCURACY Resolution Quantization Uncertainty Relative Accuracy Differential Nonlinearity Gain Error Gain Temperature Coefficient	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~L} \\ & \mathrm{~J}, \mathrm{~L} \end{aligned}$	$\begin{aligned} & 8 \\ & 10 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 5 \end{aligned}$	$\begin{aligned} & \pm 1 / 2 \\ & \pm 1 / 2 \\ & \pm 1 / 2 \end{aligned}$	$\begin{aligned} & 8 \\ & 10 \end{aligned}$	$\begin{aligned} & \pm 1 / 2 \\ & \pm 1 / 2 \\ & \pm 1 / 2 \\ & \\ & 10 \end{aligned}$	Bits Bits LSB LSB LSB \% Reading ppm Reading per ${ }^{\circ} \mathrm{C}$	$\begin{aligned} & \overline{\mathrm{SC} 8}=\operatorname{Logic} 0 \\ & \overline{\mathrm{SC} 8}=\operatorname{Logic} 1 \end{aligned}$ $\text { FCLK }=100 \mathrm{kHz}$ See Figure 5 on Page 4
ANALOG INPUTS Analog Input Resistance Analog Input Resistance Tempco Reference Input Resistance Reference Input Resistance Tempco	$\begin{aligned} & \mathrm{J}, \mathrm{~L} \\ & \mathrm{~J}, \mathrm{~L} \\ & \mathrm{~J}, \mathrm{~L} \\ & \mathrm{~J}, \mathrm{~L} \end{aligned}$	-	$\begin{aligned} & 10 \\ & -150 \\ & 10 \\ & -150 \end{aligned}$		5	20 20	$k \Omega$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ $\mathrm{k} \Omega$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$	
ANALOG OUTPUTS Output Leakage Current (IOUT1, IOUT2) Output Capacitance COUT1 COUT2 COUT1 COUT2	$\begin{aligned} & \text { J, L } \\ & \text { J, L } \end{aligned}$	-	$\begin{aligned} & 10 \\ & 120 \\ & 40 \\ & 40 \\ & 120 \end{aligned}$			200	nA pF pF pF pF	VOUT1, $2=0 \mathrm{~V}$ DB0 through DB9 $=$ Logic 1 DB0 through DB9 = Logic " 0 "
DIGITAL INPUTS VINL ${ }^{2}$ VINH ${ }^{2}$ VINL ${ }^{2}$ VINH ${ }^{2}$ IINL, IINH^{3} CLK Input Current CLK Input Current CLK Input Current ClN	J, L	$\begin{aligned} & +2.4 \\ & +13.5 \end{aligned}$	$\begin{aligned} & +1.4 \\ & +1.4 \\ & \pm 0.1 \\ & +0.4 \\ & +1.7 \\ & \pm 1 \\ & 2 \end{aligned}$	$\begin{aligned} & +0.8 \\ & +1.5 \\ & \pm 10 \\ & +1 \\ & +3 \end{aligned}$	$\begin{aligned} & +2.4 \\ & +13.5 \end{aligned}$	$\begin{aligned} & +0.8 \\ & +1.5 \end{aligned}$	v v v v $\mu \mathrm{A}$ mA mA $\mu \mathrm{A}$ pF	$\begin{aligned} & \mathrm{VCC}=+5 \mathrm{~V} \\ & \mathrm{VCC}=+15 \mathrm{~V} \\ & \mathrm{VIN}=0 \text { to } \mathrm{VCC} \\ & \text { During Conversion } \mathrm{VCC}=+5 \mathrm{~V} \text {; } \\ & 2.4 \mathrm{~V} \leq \mathrm{VIN} \leq \mathrm{VCC} \\ & \text { During Conversion } \mathrm{VCC}=+15 \mathrm{~V} \text {; } \\ & 10 \mathrm{~V} \leq \mathrm{VIN} \leq \mathrm{VCC} \\ & \mathrm{VCC}=+5 \mathrm{~V} \text { to }+15 \mathrm{~V} \\ & \text { Conversion Complete or } \mathrm{CLK} \text { IN } \\ & \leq \mathrm{VINL} \end{aligned}$
DIGITAL OUTPUTS voutl VOUTH voutl vouth COUT (Floating) (SYNC, SRO, BUSY, and DB0 through DB9) ILKG (Floaring) - SSYNC, SRO, BUSY and DB0 through DB9)	$\begin{aligned} & \mathrm{J}, \mathrm{~L} \\ & \mathrm{~J}, \mathrm{~L} \\ & \mathrm{~J}, \mathrm{~L} \\ & \mathrm{~J}, \mathrm{~L} \\ & \mathrm{~J}, \mathrm{~L} \end{aligned}$	$\begin{aligned} & +2.4 \\ & +13.5 \end{aligned}$	5 ± 5	$\begin{aligned} & +0.5 \\ & +1.5 \end{aligned}$	$+2.4$ $+13.5$	$\begin{aligned} & +0.8 \\ & +1.5 \end{aligned}$	v v V v pF	

Specifications subject to change without notice.
" "J" version parameters specified for $\overline{\mathrm{SC8}}=0$.
${ }^{2}$ VINL and VINH specifications applicable to all digital inputs except COMP. COMP terminal must be driven with CMOS levels (i.e., comparator output pullup must be tied to VCC).
${ }^{3}$ IINL, IINH specifications not applicable to CLK terminal. See "CLK input current" in specification table.
${ }^{4}$ STRT falling edge should not coincide with CLK in falling edge.
ABSOLUTE MAXIMUM RATINGS
VDD to GND . +17 V
VCC to GND . +17 V
VCC to VDD . +0.4 V
VREF to GND . $\pm 25 \mathrm{~V}$
Analog Input to GND . $\pm 25 \mathrm{~V}$

Digital Input Voltage Range
VDD to GND
$\mathrm{I}_{\text {OUT1 }}, \mathrm{I}_{\text {OUT2 }}$ $\pm 5 \mathrm{~mA}$
Power Dissipation (package)up to $+50^{\circ} \mathrm{C}$1000 mW
Derate above $+50^{\circ} \mathrm{C}$ by $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Temperature $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

CAUTION:

1. Do not apply voltages higher than VCC or less than GND to any input/output terminal except VREF or AIN.
2. The digital control inputs are zener protected, however permanent damage may occur on unconnected units under high energy electrostatic fields. Keep unused units in conductive foam at all times.
3. VCC should never exceed VDD by more than 0.4 V , especially during power ON or OFF sequencing.

Figure 1. IDD, ICC vs. fCLK at Different Temperatures

Figure 3. Differential Nonlinearity vs. VDD

Figure 2. $f C L K$ vs. R and C at $V C C=+5 V,+15 \mathrm{~V}$

Figure 4. Gain Error vs. $V D D$ (Normalized for $V D D=15 \mathrm{~V}$)

Test Circults

Figure 5. Dynamic Crossplot Accuracy Test

INPUT CONTROLS

1. Convert Start (pin 25 - STR)

When the start input goes to logical 1 , the MSB data latch is set to logic 1 and all other data latches are set to logic 0 . When the start input returns low, the conversion sequence begins. The start command must remain high for at least 500 nanoseconds. If a start command is reinitiated during conversion, the conversion sequence starts over.
2. High Byte Enable (pin 20 - HEN)

This is a three-state enable for the bit-9 (MSB) and bit 8 . When the control is low, the output data lines for bits 9 and 8 are floating. When the control is high, digital data from the latches appears on the data lines.
3. Low Byte Enable (pin 21 - LEN)

Same as High Byte Enable pin, but controls bits 0 (SB) through 7.
4. Busy Enable (pin 27 - BSEN)

This is an interrogation input which requests the status of the converter, i.e., conversion in process or convert complete. The converter status is addressed by applying a logic 1 to the Busy Enable. (See Busy under Output Functions.)
5. Short Cycle 8-Bits (pin $26-\overline{\mathrm{SC8}}$)

With a logic 0 input, the conversion stops after 8 bits reducing the conversion time by 2 clock periods. This control should be exercised for proper operation of the " J " version. When a logic 1 is applied, a complete 10 -bit conversion takes place ("L" version).
6. Clock(pin 24 - CLK)

With an external RC connected, as shown in the Figure below, clock activity begins upon receipt of a Convert-Start command to the A/D, and ceases upon completion of conversion. An external clock (CMOS or TTL/DTL levels) can directly drive the clock terminals, if required.

Generating Internal Clock Frequency

The clock frequency vs. R and C is given in Figure 2.
7. VDD ($\operatorname{pin} 1$)

VDD is the positive supply for all analog circuitry plus some digital logic circuits that are not part of the TTL compatible input/output lines (back-gates to the P -channel devices). Nominal supply voltage is +15 V .

8. VCC (pin 22)

VCC is the logic power supply. If +5 V is used, all control inputs/outputs (with the exception of comparator terminal) are DTL/TTL compatible. If +15 V is applied, control inputs/outputs are CMOS compatible.

OUTPUT FUNCTIONS

1. Busy (pin $28-\overline{\text { BUSY}}$)

The Busy line indicates whether conversion is complete or in process. Busy is a three-state output and floats until the Busy-Enable line is addressed with a logic 1. When addressed, Busy will indicate either a 1 (conversion complete) or a 0 (conversion in process).
2. Serial Output (pin $8-\mathrm{SRO}$)

Provides output data in serial format. Data is available only during conversion. When the A / D is not converting, the Serial Output line "floats." The Serial Sync (see next funcion) must be used, along with the Serial Output terminal to avoid misinterpreting data.
3. Serial Synchronization (pin 9-SYNC)

Provides 10 positive edges, which are synchronized to the Serial Output pin. Serial Sync is floating if conversion is not taking place.
Note that all digital inputs/outputs are TTL/DTL compatible when VCC is +5 V , and CMOS compatible when VCC is +15 V .

Table 1. Function Table

BASIC DESCRIPTION

The AD7570 is a monolithic CMOS A/D converter which uses the successive approximations technique to provide up to 10 bits of digital data in a serial and parallel format. Most A/D applications require the addition of only a comparator and a voltage or current reference.
In the successive approximations technique, successive bits, starting with the most significant bit (DB9) are applied to the input of the D/A converter. The DAC output is then compared to the unknown analog input voltage (AIN) using a zero crossing detector (comparator). If the DAC output is greater than AIN, the data latch for the trial bit is reset to zero, and the next smaller data bit is tried. If the DAC output is less than AIN, the trial data bit stays in the " 1 " state, and the next smaller data bit is tried.
Each successive bit is tried, compared to AIN, and set or reset in this manner until the least significant bit (DB0) decision is made. At this time, the AD7570 output is a valid digital representation of the analog input, and will remain in the data latches until another convert start (STRT) is applied.

TIMING DESCRIPTION

Figure 6 is the AD7570 timing diagram, showing the successive trials and decisions for each data bit. When convert start (STRT) goes HIGH, the MSB(DB9) is set to the logic " 1 " state, while DB0 through DB8 are reset to the " 0 " state.

Two clock pulses plus 200 ns after STRT returns LOW, the MSB decision is made, and DB8 is tried. Each succeeding trial and decision is made at tCLK +200 ns .
Serial NRZ data is available during conversion at the SRO terminal. SYNC provides 10 positive edges which occur in the middle of each serial output bit. SYNC out must be used in conjunction with SRO to avoid misinterpretation of data.
Both SYNC and SRO "float" when conversion is not taking place.

8-BIT SHORT CYCLE NOTES

If the AD7570 is short cycled to 8 bits ($\overline{\mathrm{SC} 8}=0 \mathrm{~V}$), the following will occur:

1. The SYNC terminal will provide 8 , instead of 10 , positive output pulses.
2. DB1 goes "high" coincident with the LSB (DB2 is the LSB when short cycled to 8 bits) decision, and remains high until another STRT is initiated. DB0 remains in the " 0 " state.
3. $\overline{B U S Y}$ goes "high" one clock period after the DB2 (DB2 is the LSB when short cycled) decision is made.

NOTES:

1. Internal Clock Runs Only During Conversion Cycle (External Clock Shown).
2. Externally Initiated.
3. Serial Sync Lags Clock by $\approx 200 \mathrm{~ns}$.
4. Dotted Lines Indicate "Floating" State.
5. For Illustrative Purposes, Serial Out Shown as 1101001110.
6. Cross Hatching Indicates "Don't Care" State.
7. Set and Reset of Output Data Bits Lags Clock Positive Edge by $\approx 200 \mathrm{~ns}$.
8. Trailing edge of STRT Should be Externally Synchronized to Leading Edge of CLK.
9. Shown for $\mathrm{SC8}=1$.

Figure 6. AD7570 Conversion. Timing Sequence

DYNAMIC PERFORMANCE

The upper clock frequency limitation (hence the conversion speed limitation) of the AD7570 is due to the output settling characteristics of the current weighting DAC in conjunction with the propagation delay of the comparator, not to speed limitations in the digital logic.

DAC EQUIVALENT CIRCUIT

The D/A converter section of the AD7570 is a precision 10-bit multiplying DAC. The simplified DAC circuit, shown in Figure 7, consists of ten single-pole-double-throw current steering switches and an "inverted" R-2R current weighting network. (For a complete description of the DAC, refer to the AD7520 data sheet.)
The output resistance and capacitance at OUT1 (and OUT2) are code dependent, exhibiting resistive variations from 0.5 " R " to 0.75 " R ," and capacitive variations from 40 pF to 120 pF .

SETTLING TIME ANALYSIS

Due to the changing COUT1 and ROUT1, the time constant on OUT1 falls anywhere between 250 and 900 nanoseconds, depending on the instantaneous state of the AD7570 digital output code.

Figure 7. DAC Circuit

Worst case settling requirements occur when a trial bit causes the OUT1 terminal to charge towards a final value which is precisely $1 / 2$ LSB beyond zero crossing. When this occurs, the trial bit must settle and remain within $1 / 2 \mathrm{LSB}$ of final value, or an incorrect decision will be made by the comparator
For 10-bit accuracy, the first MSB must settle to within 0.1% of final value; the second MSB to within 0.2%. The LSB settling requirement is only 50% of the LSB value. Figure 8 illustrates the settling time available during a given clock period. The pulse shown on the OUT1 terminal falling midway between to and t 3 is a feedthrough from internal clock mechanisms, and is due primarily to bonding wire and header capacitance. Two methods may be used to reduce the OUT1 settling time:

1. Load OUT1 with a 1 k resistor. This reduces the time constant by a factor of 10 . Further reduction of the 1 kohn load reduces the amount of comparator overdrive, thus increasing the comparator propagation delay, resulting in a reduction of available settling time ($\mathrm{t} 1-\mathrm{t} 0$ on Figure 8).
2. Use a zero input impedance comparator. Figure 9 illustrate a comparator circuit which has an input impedance of approximately 26 ohms. Proper circuit layout will provide 10-bit accuracy for clock frequencies greater than 500 kHz

NOTES:

1. "tsettling" $(\mathbf{t 1}-\mathrm{t} 0)$ is the time required for the OUT 1 terminal to sette within $\pm 1 / 2$ LSB of the final value.
2. "tcomp" (t2-t1) is the comparator switching time.
3. "tdelay" (t3-t2) is an internally generated time delay equal to approximately 400 nanoseconds.

Figure 8. Expanded Timing Diagram

Figure 9. Current Comparator With Low Input Impedance

UNIPOLAR BINARY OPERATION

Figure 10 shows the circuit connections required for unipolar analog inputs. If positive analog inputs are to be quantized, VREF must be negative, and the OUT1 (pin 4) terminal of the AD7570 must be connected to the " + " comparator input. For negative analog inputs, VREF must be positive, and the OUT1 terminal connected to the "-" input of the comparator.
For clarity, the digital control functions have been omitted from the diagram. For proper use of the digital input/output control functions, refer to the pin function descriptions on page 5 .
The input voltage/output code relationship for unipolar operation is shown in Table 2. Due to the inherent multiplying capability of the internal D/A converter, the AD7570 can accurately quantize full scale ranges of 10 V to 1 V . It should be noted, however, that for smaller full scale ranges, the resolution and speed limitations of the comparator impose a limitation on the maximum conversion rate.

BIPOLAR (OFFSET BINARY) OPERATION

Figure 11 shows the AD7570 configured for offset binary (modified 2's complement) operation. Input voltage/output codes are shown in Table 3.
Amplifier A1, in conjunction with resistors R1, R2, and R3, offsets the bipolar analog input by full scale, and reduces its gain by a factor of 2. The analog signal applied to the AIN terminal is, therefore, a unipolar signal of 0 to $+V$ or 0 to -V , depending on the polarity of VREF. Note that the offset (as well as the scale factor) changes if VREF drifts.

ADJUSTMENT PROCEDURES UNIPOLAR OPERATION

Zero Offset Adjustment

1. Apply continuous STRT command to the AD7570 STRT input. Note: STRT must be at intervals long enough to allow a complete conversion.
2. Apply $0+1 / 2$ LSB $\left(0-1 / 2\right.$ LSB if positive V^{\prime} REF is used) to the AIN terminal.
3. Observe the SRO output line (synchronize oscilloscope to SYNC terminal of AD7570). Adjust the offset potentiometer (R6) until the LSB flickers between 0 and 1 , and all other data bits are logic " 0 ." (See Figure 6, timing diagram, for correlation of SRO and SYNC.)

NOTE:
IF POSITIVE VREF IS USED. THE ANALOG INPUT RANGE IS O TO -VREF. AND THE COMPARATOR'S (-) INPUT SHOULD BE CONNECTED TO OUT 1 (PIN 4) OF THE COMPAR
AD 7570.

Figure 10. Unipolar Operation

Figure 11. Bipolar Operation

Table 2. Unipolar Operation

$\begin{aligned} & \text { ANALOG INPUT } \\ & \text { (AIN) } \\ & \text { NOTES } 1,2,3 \end{aligned}$	DIGITAL OUTPUT CODE MSB LSB
$\begin{aligned} & \mathrm{FS}-1 \mathrm{LSB} \\ & \mathrm{FS}-2 \mathrm{LSB} \\ & 3 / 4 \mathrm{FS} \\ & 1 / 2 \mathrm{FS}+1 \mathrm{LSB} \\ & 1 / 2 \mathrm{FS} \\ & 1 / 2 \mathrm{FS}-1 \mathrm{LSB} \\ & 1 / 4 \mathrm{FS} \\ & 1 \mathrm{LSB} \\ & 0 \end{aligned}$	$\begin{array}{llllllllll} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{array}$
NOTES: 1. Analog inputs of code. 2. "FS" is full sca 3. For R-bit ope $\left(2^{-7}\right)$ for 1 (-VREF) $(2-9)$ 4. Code relation Figure 21. the output cod piemented.	hown are nominal center values e, i.e., (-VREF). ration. 1 LSB equals (-VREF) -bit operation, 1LSB equals hip is shown for circuit of circuit of Figure 22 is used, des shown above will be com-

Gain Adjustment

1. Apply continuous start commands to the STRT input of the AD7570.
2. Apply full scale minus $1-1 / 2 \mathrm{LSB}$ to AIN.
3. Observe the SRO terminal as described under zero offset procedure above, and adjust the gain potentiometer (R4) until the LSB flickers between 0 and 1 , and all other data bits equal " 1 ." An alternate method is to adjust VREF instead of using R4.

ADJUSTMENT PROCEDURES BIPOLAR OPERATION

Zero Offset Adjustment

1. Apply continuous start commands to the STRT input of the AD7570. Note: STRT must be at intervals long enough to allow a complete conversion.
2. Apply $1 / 2$ LSB less than negative full scale ($-\mathrm{FS}=-\mathrm{VREF}$) to the bipolar analog input shown in Figure 11.
3. Observe the SRO terminal (synchronize oscilloscope to the AD7570 SYNC terminal). Adjust the offset potentiometer (R8) until the LSB flickers between 1 and 0 , and all other data bits are logic " 0. ." (See timing diagram of Figure 6.)

Gain Adjustment

1. Apply continuous start commands to the STRT input of the AD7570.
2. Apply $1-1 / 2$ LSB less than positive full scale ($F S=\mathrm{VREF}$) to the bipolar analog input of Figure 11.
3. Trim the gain potentiometer (R9) for a flickering LSB, and all other data bits equal to logic "1." Observe the SRO terminal, as described in zero offset procedure above.

APPLICATION HINTS

1. Unused CMOS digital inputs should be tied to their appropriate logic level, and not left floating. Open digital inputs may cause undesired digital activity in the presence of noise.
2. Analog and digital grounds should have separate returns.

Table 3. Bipolar Operation

ANALOG INPUT (AIN) NOTES 1, 2, 3	DIGITAL OUTPUT CODE $\text { MSB } \quad \text { LSB }$
$\begin{aligned} & +(\mathrm{FS}-1 \mathrm{LSB}) \\ & +(\mathrm{FS}-2 \mathrm{LSB}) \\ & +(1 / 2 \mathrm{FS}) \\ & +(1 \mathrm{LSB}) \\ & 0 \\ & -(1 \mathrm{LSB}) \\ & -(1 / 2 \mathrm{FS}) \\ & -(\mathrm{FS}-1 \mathrm{LSB}) \\ & -\mathrm{FS} \end{aligned}$	$\begin{array}{llllllllll} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{array}$

NOTES:

1. Analog inputs shown are nominal center values
2. Analog
of code.
3. "FS" is full srale; i.e., (VREF).
4. For 8 -bit operation, 1LSB equals (-VREF)
5. Fof 2^{-8}; for 10 -bit operation, 1 LSB equals (2) for 10 -bit operation,
(-VREF) $\left(22^{-10}\right)$.
6. Load the OUT1 terminal with a 1 k resistor to reduce the time constant when operating at clock frequencies greater than 50 kHz .
7. For 10 -bit operation, the comparator offset should be adjusted to less than 1 mV . Each millivolt of comparator offset will cause approximately 0.015% of differential nonlinearity when a 10 V reference is used.
8. The comparator input and output should be isolated to prevent oscillations due to stray capacitance. (See layout on page 10.)
9. If an external clock is used, the negative transition of STRT should not coincide with the trailing edge of the clock input.

OPERATING PRECAUTIONS

1. Do not allow VCC to exceed VDD. In cases where VCC could exceed VDD, the diode protection scheme in Figure 12 is recommended.
2. Do not apply voltages greater than VCC or lower than ground to any digital output from sources which can supply more than 20 mA .
3. Do not apply voltages (from a source which can supply more than 5 mA) lower than ground to the OUT1 or OUT2 terminal. (See Figure 12 Diode Protection Scheme.)

Figure 12. Diode Protection Scheme

142.10

$10.000 \pm .001$ Volt Precision Reference

42 4

PRELIMINARY TECHNICAL DATA FEATURES

3-Terminal Device: Voltage $\ln /$ Voltage Out
Total Output Error at
$T_{\text {MAX }}$ to: $\mathbf{2 m V}$
Excellent Long Term Stability: To 50ppm/yr.
Small IC Package: 14 Pin Dip
20mA Current Output Capability
Available Screened to MIL-STD-883A
Use with AD7520, AD7570, AD562
Short Circuit Protected

PRODUCT DESCRIPTION

The AD2700 is a medium cost, high stability, temperature compensated voltage reference source. The reference output is accurately fixed at 10 V . With excellent termperature stability and long term stability of $50 \mathrm{ppm} / \mathrm{year}$, the AD2700 offers a convenient solution to regulated voltage requirements which may previously have been met with bulky power supplies or elaborate diodes and ovens. This product is made possible by the combination of the best available semiconductor technology with high precision thin film resistors which are functionally trimmed.
The AD2700 is recommended for use in $10-$ or, 12 -bit A / D, and D/A converter circuits and other precise analog circuits. Its small size and hermetic seal make it adaptable to essentially any application or environment.
The operation of the AD2700 is 3 terminal, voltage in/voltage out. No external components are required. Offset adjustment terminals are provided for optional use if accuracy of better than 1 mV is desired.

[^1]
P.O. Box 280; Norwood, Massachusetts 02062 U.S.A. Telex: 924491 Cables: ANALOG NORWOODMASS

SPECIFICATIONS

ABSOLUTE MAX RATINGS

Input Voltage
Power Dissipation $@+25^{\circ} \mathrm{C}$
Derate Above $25^{\circ} \mathrm{C}$
Storage Temperature Range
Lead Temperature (soldering, 10 sec)
Operating Temperature Range - AD2700/L
- AD2700/U

20 VDC
400 mW
$1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
-65 to $+150^{\circ} \mathrm{C}$
$250^{\circ} \mathrm{C}$
0 to $70^{\circ} \mathrm{C}$
-55 to $+125^{\circ} \mathrm{C}$
Continuous

ELECTRICAL CHARACTERISTICS	-	MIN	TYP	MAX
Output Voltage @ $25^{\circ} \mathrm{C}$, No Load	9.999	10.000	10.001	UNITS
Output Current		± 18	± 20	V

Total Output Error Over Operating
Temperature Range (see graph, page 4)

$\begin{aligned} & -\mathrm{AD} 2700 \mathrm{~L} \\ & -\mathrm{AD} 2700 \mathrm{U} \end{aligned}$		$\begin{aligned} & \pm .02 \\ & \pm .03 \end{aligned}$	$\begin{aligned} & \pm .03 \\ & \pm .05 \end{aligned}$	$\begin{aligned} & \% \\ & \% \end{aligned}$
Input Regulation/Power Supply Rejection ($\mathrm{V}_{\text {in }}=12$ to 18 V)		. 0003	. 0005	\%/\%
Load Regulation 0 to $\pm 10 \mathrm{~mA}$ (see graph, page 4)			$\pm .005$	\%
Input Voltage, Operating	12	15	18	V
Input Current, No Load			12	mA
*Noise (0.1 to 10 Hz)			50	$\mu \mathrm{V}$ p.p
*Long Term Stability			50	ppm/yr
*Output Resistance			. 1	Ω
*Ripple Rejection			. 01	\%/v
*Offset Adjust Range (see schematic, page 1)			± 30	mV
* Offset Adjust Temperature Effect			± 4	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ per mV of adjust

OPTION 883 (designated as AD2700/U/883) per MIL-STD-883A, Method 5004.2, Class B

PRICES	AD2700/L	AD2700/U	AD2700/U/883
$1-9$			
$10-24$			
$25-99$			

*Guaranteed by design, not tested.

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm)
14-PIN DUAL-IN-LINE

FEATURES

Precision Input Characteristics
Low $V_{\text {os }}: 0.5 \mathrm{mV}$ max
Low $V_{\text {os }}$ Drift: $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max
Low $I_{\text {os }}$: 5 nA max
Low $\mathrm{I}_{\mathrm{b}}: 30 \mathrm{nA}$ max
High $A_{o l}: 80,000 \mathrm{~min}$
External Compensation Flexibility
Small Signal Bandwidth 1 MHz to 10 MHz
Full Power Response
6 kHz to 100 kHz
Slew Rate
$0.25 \mathrm{~V} / \mu \mathrm{sec}$ to $9 \mathrm{~V} / \mu \mathrm{sec}$

GENERAL DESCRIPTION

The Analog Devices AD301AL is the highest accuracy version of the popular AD101A, AD201A, AD301A series of operational amplifiers. Improved processing and additional electrical testing allow the user to achieve precision performance at low cost. The AD301AL provides substantially increased accuracy by reducing the errors due to offset voltage $(0.5 \mathrm{mV}$ \max), offset voltage drift ($5.0 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \max$), bias current (30 nA \max), offset current ($5 \mathrm{nA} \max$), voltage gain ($80,000 \mathrm{~min}$), PSRR (90 dB min), and CMRR (90 dB min).
In simple ac applications, the AD301AL is unity gain stable with a 30 pF capacitor. In more complex situations, the user may tailor the frequency compensation to his particular application. For example, in low frequency applications, the devices may be over-compensated for increased stability margin. Likewise, the compensation can be optimized to give move than a factor of 10 improvement in high frequency performance.
All devices feature full short circuit protection, and are free of latch up when the common mode range is exceeded. The AD 301 AL is specified for operation from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, and is available in both the TO-99 and mini-DIP packages.

GUARANTEED ACCURACY

The vastly improved performance of the AD301AL provides the user with an ideal choice when precision and flexibility are

[^2] tion or otherwise under any patent or patent rights of Analog Devices.

needed and economy is a necessity. The error budget calculated for the AD301A, AD201A and the AD301AL (see page 3) makes it apparent that this selected version offers substantial improvement over the other two industry-standard amplifiers at $+25^{\circ} \mathrm{C}$ and for $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ applications. A typical circuit configuration (see Figure 1) is assumed, and the various errors are computed using maximum values at both $+25^{\circ} \mathrm{C}$ and $+70^{\circ} \mathrm{C}$. The results indicate a factor of greater than 4 improvement of the AD301AL over the AD301A and a 30% improvement over the AD201A. Note that the error has been determined as a sum of component errors, but that in actuality the total error will be less, and resemble a root mean square sum.

Figure 1. Error Budget Analysis Circuit

Route 1 Industrial Park; P.O. Box 280; Norwood, Mass. 02062
Tel: 617/329-4700
TWX: 710/394-6577

SPECIFICRTIONS

MODEL
AD301AL
OPEN LOOP GAIN

$\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega$	$80,000 \mathrm{~min}(300,000$ typ $)$
@ $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$40,000 \mathrm{~min}(100,000$ typ $)$
OUTPUT CHARACTERISTICS	
Voltage, $\mathrm{R}_{\mathrm{L}} \geqslant 10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\pm 12 \mathrm{~V} \min (\pm 14 \mathrm{~V}$ typ)
$\mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\pm 10 \mathrm{~V} \min (\pm 13 \mathrm{~V}$ typ)
Short Circuit Current	25 mA
FREQUENCY RESPONSE	
Unity Gain, Small Signal, $\mathrm{C}_{\mathrm{C}}=30 \mathrm{pF}$	1 MHz
Feedforward	10 MHz
Full Power Response, $\mathrm{C}_{\mathrm{C}}=30 \mathrm{pF}$	6 kHz
Feedforward	150 kHz
Slew Rate, Unity Gain, $\mathrm{C}_{\mathrm{c}}=30 \mathrm{pF}$	$0.25 \mathrm{~V} / \mu \mathrm{sec}$
Feedforward	$9 \mathrm{~V} / \mu \mathrm{sec}$

INPUT OFFSET VOLTAGE
Initial, $\mathrm{R}_{\mathrm{S}}<50 \mathrm{k} \Omega$
vs. Temperature, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
vs. Supply
(2) $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

INPUT OFFSET CURRENT

Initial $\mathrm{T}_{\mathrm{A}}=$ 0 ${ }^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

vs. Temperature, $25^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<25^{\circ} \mathrm{C}$
INPUT BIAS CURRENT
Initial
(@) $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
INPUT VOLTAGE NOISE

$\mathrm{f}=10 \mathrm{~Hz}$	$22 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
$\mathrm{f}=100 \mathrm{~Hz}$	$18 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
$\mathrm{f}=1 \mathrm{kHz}$	$13 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
INPUT IMPEDANCE	$1.5 \mathrm{M} \Omega \min (4 \mathrm{M} \Omega$ typ $)$

INPUT VOLTAGE RANGE
Differential, Max Safe

$$
\pm 30 \mathrm{~V}
$$

Common Mode, Max Safe
Common Mode Rejection Ratio
(a) $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

POWER SUPPLY	$80 \mathrm{~dB} \min (90 \mathrm{~dB}$ typ)
Rated Performance	$\pm 15 \mathrm{~V}$
Operating	$\pm 18 \mathrm{~V}$
Quiescent Current	$3 \mathrm{~mA} \max (1.8 \mathrm{~mA}$ typ $)$
TEMPERATURE RANGE	
Operating, Rated Performance	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Specifications subject to change without notice.

CONNECTION DIAGRAMS
(Top View)
'H' Package
TO-99

'N' Package
Mini-DIP

PHYSICAL DIMENSIONS
(In Inches)

'N' Package
Mini-DIP

ERROR BUDGET ANALYSIS
Op amp accuracy is a confusing term, often subject to misinterpretation. The total output error of an op amp accrues from a number of error sources, whose relative contributions may vary appreciably with different applications, as well as variations in operating temperatures.
The Error Budget Analysis, which reveals all significant error contributions, is a useful figure of merit of an op amp when
used in a particular application. The error contributions are established from the min or max values, both at room temperature and at $+70^{\circ} \mathrm{C}$. A unity gain non-inverting configuration is assumed for simplicity. While this configuration is only one of a multitude of possible applications, it effectively demonstrates the great improvement in overall accuracy achievable at relatively low cost using the AD301AL.

ERROR BUDGET ANALYSIS

INPUT CHARACTERISTICS

MAX EQUIVALENT INPUT
OFFSET DRIFT VS. SOURCE RESISTANCE

INPUT NOISE VOLTAGE
VS. FREQUENCY

BIAS CURRENT VS.

 TEMPERATURE

INPUT NOISE CURRENT VS. FREQUENCY

INPUT VOLTAGE RANGE VS. SUPPLY

COMMON MODE REJECTION VS. FREQUENCY

$$
C_{1}>\frac{R_{1} C_{5}}{R_{1}+R_{2}}
$$

$$
c_{5} \cdot 300 \mathrm{pF}
$$

Open Loop Frequency Response

Large Signal Frequency Response

TWO-POLE COMPENSATION

Open Loop Frequency Response

Large Signal Frequency Response

FEEDFORWARD COMPENSATION

Open Loop Frequency Response

Large Signal Frequency Response

ORDERING GUIDE

MODEL
TEMP RANGE
$\begin{array}{lr}\text { AD 301AL } & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \text { AD 201A } & -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \text { AD 301A } & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \text { AD101A } & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \text { AD101A } & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \text { §AD101A/883 } & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}\end{array}$
ORDER NUMBER

AD301AL*
AD201A*
AD301A*
AD101AH
AD101AF
AD101AF/883

* Add package type letter: $\mathrm{H}=\mathrm{TO}-99, \mathrm{~N}=$ Mini-DIP, $\mathrm{F}=$ Flat Pack.
§ Standard AD101A in a 10 -lead, hermetically-sealed flat pack (TO-91) processed to MIL-STD-883, Method 5004, Level B.
\dagger Minimum order... 10 pieces.
For information on AD101A, AD 201A, AD301A, see separate data sheet previously published for these products.

Precision Comparators

FEATURES

Differential Input Voltage Range: $\pm 30 \mathrm{~V}$
Common Mode Input Voltage Range: $\pm \mathbf{1 4 V}$
Supply Voltage: From +5 V to $\pm 18 \mathrm{~V}$
Input Offset Voltage: 3 mV max
Input Bias Current: 100nA max
Output: $35 \mathrm{~V}, 50 \mathrm{~mA}$ TTL Compatible
Strobed Output
Input Offset Adjustable

PRODUCT DESCRIPTION

The AD111, AD211, and AD311 are precision voltage comparators designed for low level signal detection and high level output drive capability. Offering significant improvement over the earlier 710-type comparator in terms of bias currents and gain, the AD111 series operates on supply voltages from +5 V (single ended) up to $\pm 18 \mathrm{~V}$. TTL strobe capability is available with the addition of two external components. The AD311 is specified from 0 to $+70^{\circ} \mathrm{C}$, the AD211 from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and the AD111 over the full military temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. All versions are available in the TO-99 can; the AD311 is also available in the 8 pin mini dip.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

PRODUCT HIGHLIGHTS

1. Differential voltages up to the supply voltage (30 V where $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$) are permitted so long as either positive or negative input voltages remain below the supply voltages.
2. The AD211 series operates on supply voltages from $\pm 18 \mathrm{~V}$ down to a single supply of only +5 V .
3. The AD111 series can deliver a 50 mA output current or 35 V of output voltage. They can drive TTL, RTL, DTL, and MOS loads as well as lamps and relays. The outputs can be wire OR ed for window or threshold detectors.
4. Where excessive noise is present or an additional logic input is desired, the AD111 series provide TTL strobing with the addition of two external components.
5. The AD111 series offer bias currents below 100 nA and gains of 200,000 , thus providing the user with greater accuracy and versatility over the earlier 710-type comparators.
P.O. Box 280; Norwood, Massachusetts 02062 U.S.A. Telex: 924491 Cables: ANALOG NORWOODMASS

Model	AD311	AD211	AD111
OPERATING THMPFRATURE. RANGE	$010+70^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C} 10+125^{\circ} \mathrm{C}$
VOLTAGE GAIN	$200 \mathrm{~V} / \mathrm{mV}$	*	-
INPUT CHARACTERISTICS			
Maximum Input Voltage (Note ${ }^{\text {1) }}$	$\pm 15 \mathrm{~V}$	*	*
Over Operating Temperarure Range	$\pm 14 \mathrm{~V}$	*	*
Offset Volate (Note 2)	$2.0 \mathrm{mV} \mathrm{typ}(7.5 \mathrm{mV}$ max)	0.7 mV typ (3.0 mV max)	
Over Operating Temperature Range	10.0 mV max	4.0 mV max	*
Bias Current (Note 3)	$100 n A \operatorname{typ}$ (250 nA max)	$60 n A$ typ (100 nA max)	*
Over Operating Temperature Range	$300 n A \max$	$150 n A \max$	\cdots
Offset Current (Note 2)	6 nA typ (50 nA max)	4 nA typ (10 nA max)	*
Over Operating Temperature Range	$70 n A$ max	$20 n A$ max	*
OUTPUT CHARACTERISTICS			
Maximum Output to Negative Supply Voltage ($\mathrm{V}_{7,4}$)		*	-
Maximum Ground to Negative Supply Voltage ($\mathrm{V}_{1,4}$)	30 V	*	-
Leakage Current (Note 4)	0.2 nA typ (50 nA max)	0.2 nA typ (10 nA max)	\cdots
Over Operating Temperature Range	$0.1 \mu \mathrm{~A}$ typ	$0.1 \mu \mathrm{~A}$ typ $(0.5 \mu \mathrm{~A}$ max)	**
Saturation Voltage (Note 5)	0.75 V zyp (1.5 V max)	* ${ }^{\text {- }}$	*
Over Operating Temperature Range (Note 6)	0.23 V typ (0.4 V max)	*	-
Short Circuit Duration	10 sec	*	-
POWER SUPPLIES			
Total Supply Voltage ($\mathrm{V}_{\mathbf{8 , 4}}$)	5 V min $(36 \mathrm{~V}$ max)	-	*
Positive Supply Current	5.1 mA typ (7.5 mA max)	$5.1 \mathrm{~mA} \mathrm{typ}(6 \mathrm{~mA} \mathrm{max})$	**
Negative Supply Current	4.1 mA typ (5 mA max)	*	*
RESPONSE TIME (Note 7)	200ns	*	*
STROBE ON CURRENT (Note 8)	3 mA	*	-
THERMAL CHARACTERISTICS			
Power Dissipztion	500 mW max	-	*
Maximum Junction Temperature	$+85^{\circ} \mathrm{C}$	$+110^{\circ} \mathrm{C}$	$+150^{\circ} \mathrm{C}$
Thermal Resistance			
Junction-to-Ambient			
TO-99 Package	$150^{\circ} \mathrm{C} / \mathrm{W}$	*	*
Mini-DIP Package	$210^{\circ} \mathrm{C} / \mathrm{W}$	-	-
Junction-to-Case			
TO-99 Package	$45^{\circ} \mathrm{C} / \mathrm{W}$	*	*
Mini-DIP Package	$80^{\circ} \mathrm{C} / \mathrm{W}$	-	-
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	*	-
Lead Temperature (Soldering, 10 sec)	$+300^{\circ} \mathrm{C}$	*	*

*Specifications same as AD311.
**Specifications same as AD211
Prices and specifications subject to change without notice.

Note 1. This rating applies for $\pm 15 \mathrm{~V}$ supplies. The positive voltage limit is 30 V above the negative supply. The negative input voltage limit is equal to the negative supply voltage or 30 V below the positive supply, whichever is less.
Note 2. The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1 mA load. Thus, these parameters define an error band and take into account the worst case effects of voltage gain and input impedance. Offset voltage is specified with an input source resistance of 50 k or less.
Note 3. Input bias current for this product is defined as the average of the two input currents.
Note 4. The conditions for this specification are $V_{S}= \pm 15 \mathrm{~V}$, Pin 1 at ground, 5 mV input voltage to the $111 / 211$ or 10 mV input voltage to the 311 and the output Pin 7 pulled up to +35 V .
Note 5. The conditions for this specification are $V_{S}= \pm 15 \mathrm{~V}, \operatorname{Pin} 1$ at ground, 5 mV inpur voltage to the $111 / 211$ or 10 mV input voltage to the 311 and the output Pin 7 sinking 50 mA .
Note 6. The conditions for this specification are $\mathrm{V}_{\mathrm{s}}= \pm 15 \mathrm{~V}, \mathrm{Pin} 1$ at ground, 6 mV input to the $111 / 211$ or 10 mV input voltage to the 311 and the output Pin 7 sinking 8 mA .
Note 7. The response time specified is for a 100 mV input step with 5 mV of overdrive "Response Time" is the interval between the application of an input step function and the time when the output crossed the TTL logic threshold. Note 8. Strobe on current is the current that must be drawn out of the strobe terminal to disable the comparator, not the current that will flow out of the strobe terminal if it is grounded. We recommend using at least a $1 \mathrm{k} \Omega$ resistor in series with strobe terminal.

TTL Compatibie Output Swing

High Level TTL Compatible Output Swing

MOS Logic Compatible Output Swing

Using Clamp Diodes To Improve Response

Obtaining ± 15 Volt Output Swing

Driving Ground-Referred Load

Offset Balancing

Strobing

*INCREASES TYPICAL COMMON MODE SLEW FROM $7.0 \mathrm{~V} / \mu \mathrm{s} \mathrm{TO} 18 \mathrm{~V} / \mu \mathrm{s}$

Increasing Input Stage Slew Rate*

Window Detector

Free-Running Multivibrator

TYPICAL PERFORMANCE

Input Bias Current

Response Time For Various Input Overdrives

Common Mode Limits

Response Time For Various Input Overdrives

Transfer Function

Response Time For Various
Input Overdrives

Response Time For Various Input Overdrives

FEATURES

High Sample-to-Hold Current Ratio: 10^{6}
High Slew Rate: $5 \mathrm{~V} / \mu \mathrm{sec}$
High Bandwidth: 2 MHz
Low Aperture Time: 50ns
Low Charge Transfer: 10pC
DTL/TTL Compatible
May Be Used as Gated Op Arnp

PRODUCT DESCRIPTION

The AD583 is a monolithic sample and hold circuit consisting of a high performance operational amplifier in series with an ultra-low leakage analog switch and a MOSFET input unity gain amplifier. An external holding capacitor, connected to the switch output, completes the sample-and-hold or track-andhold function.
With the analog switch closed, the AD583 functions like a standard op amp; any feedback network may be connected around the device to control gain and frequency response. With the switch open the capacitor holds the output at its previous level.
The AD5 83 may also be used as a versatile operational amplifier with a gated output for applications such as analog switches, peak holding circuits, etc.

PRODUCT HIGHLIGHTS

1. Sample-and-hold operation is obtained with the addition of one external capacitor.
2. Low charge transfer (10 pC) and high sample-to-hold current ratio insure accurate tracking.
3. Any gain or frequency response is available using standard op amp feedback networks.
4. High slew rate and low aperature time permit sampling of rapidly changing signals.
5. Output, gated through a low leakage analog switch, also makes the AD583 useful for applications such as analog switches, peak holding circuits, etc.

Schematic Diagram
$\begin{array}{lr}\text { P.O. Box 280; Norviood, Massachusetts } 02062 \text { U.S.A. } \\ \text { Telex: } 924491 & \text { Cables: ANALOG NORWOODMASS }\end{array}$

SPECIFICATIONS

RISE TIME 100 nsec

$\frac{\mathrm{V}_{\text {out }}=400 \mathrm{mV} \text { p-p }}{\text { OVERSHOOT }}$

$$
\mathrm{Av}=+1, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}
$$

$V_{\text {out }}=400 \mathrm{mV}$ p-p

DIGITAL INPUT CURRENT	
$\mathrm{V}_{\text {in }}=0, \mathrm{~T}_{\min }$ to $\mathrm{T}_{\max }$	$0.8 \mathrm{~mA} \max$
$\mathrm{~V}_{\text {in }}=+5.0 \mathrm{~V}, \mathrm{~T}_{\min }$ to $\mathrm{T}_{\max }$	$20 \mu \mathrm{~A} \max$
DIGITAL INPUT VOLTAGE	
Low $\mathrm{T}_{\min }$ to $\mathrm{T}_{\max }$	$0.8 \mathrm{~V} \max$
High $\mathrm{T}_{\min }$ to $\mathrm{T}_{\max }$	$2.0 \mathrm{~V} \min$
ACQUISITION TIME	$4 \mu \mathrm{sec}$

$\mathrm{Av}=+1, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
to 0.1% of final value

APERTURE TIME	50 nsec
DRIFT CURRENT	$50 \mathrm{pA} \max (5 \mathrm{pA}$ typ $)$
$\mathrm{T}_{\min }$ to $\mathrm{T}_{\max }$	$1.0 \mathrm{nA} \max (0.05 \mathrm{nA}$ typ $)$
CHARGE TRANSFER	$20 \mathrm{pC} \max (10 \mathrm{pC}$ typ $)$
SUPPLY CURRENT	$5.0 \mathrm{~mA} \max (2.5 \mathrm{~mA}$ typ $)$
POWER SUPPLY REJECTION	$74 \mathrm{~dB} \min (90 \mathrm{~dB}$ typ $)$
OPERATING TEMP	0 to $+70^{\circ} \mathrm{C}$
STORAGE TEMP	-65 to $+150^{\circ} \mathrm{C}$

Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS

Voltage between $V+$ and V-Terminals 40 V
Differential Input Voltage
Digital Voltage (Pin 14)
$\pm 30 \mathrm{~V}$
$+8 \mathrm{~V},-15 \mathrm{~V}$
Short Circuit Protected
30 mW (Derate power dissipation by $4.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+150^{\circ} \mathrm{C}$ ambient temperature)

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm)

ALL DIMENSIONS ± 0.010 UNLESS OTHERWISE SHOWN

PIN CONFIGURATION

Performance Curves

$V_{\text {SUPPLY }}= \pm 15 \mathrm{VDC}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{H}}=1,000 \mathrm{pF}$ unless otherwise specified

Typical Sample-and-Hold Performance as a Function of Holding Capacitance

Drift Current vs. Temperature

(LOWER 3dB FREQUENCY $=10 \mathrm{~Hz}$)
Broadband Noise Characteristics

Open Loop Frequency Response

Open Loop Phase Response

Precision Instrumentation Amplifier

PRELIMINARY TECHNICAL DATA

features
Programmable Gains from 0.1 to 1000
Floating Differential Inputs
High CMRR: 110 dB min
Complete Input Protection, Power ON and Power OFF
Functionally Complete with the Addition of Two Resistors
Internally Compensated
Gain Bandwidth Product: 40 MHz
Low Noise: $0.5 \mu \mathrm{~V}$ p-p (0.1 to 10 Hz)
Extremely Low Cost:

PRODUCT DESCRIPTION

The AD521 is the second generation, low cost, monolithic I.C. instrumentation amplifier developed by Analog Devices. A true instrumentation amplifier, the AD5 21 is a controlled gain block with differential inputs and an accurately programmable input/ output gain relationship.
The AD521, like its predecessor the AD520, should not be confused with an operational amplifier, even though several manufacturers (including Analog Devices) offer op amps that can be used as building blocks in variable gain instrumentation amplifier circuits. An op amp is merely a high gain component requiring the addition of external feedback to complete the amplification function. Because of the limitations of resistor matching in the external feedback circuit and the relatively low input impedance resulting from the input resistors, an instrumentation amplifier circuit designed around op amps frequently provides less than satisfactory performance. Since the AD521 is a complete amplification circuit which does not depend upon external resistor matching for input/output isolation it maintains its high CMRR (110 dB min) in any application. In addition, the high impedance inputs are fully protected against over voltages up to 15 V greater than the supply voltage.
The AD5 21 can be operated at gains from 0.1 to greater than 1000 with the addition of only two programming resistors. Excellent d.c. characteristics are realized through the device's inherently low offset and gain drift and optional one-pot nulling. Dynamic performance is also outstanding with a gain bandwidth product of 40 MHz , full peak response of 100 kHz and a $10 \mathrm{~V} / \mu \mathrm{sec}$ slew rate.

[^3]

The AD521 I.C. instrumentation amplifier is available in three different versions, depending on accuracy and operating temperature range: the economical " J " specified from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, the low drift " K ", also specified from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ and the " S " guaranteed over the full MIL-temperature range, $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. All versions are packaged in a hermetically-sealed 14 pin DIP.

PRODUCT HIGHLIGHTS

1. The AD521 is a true instrumentation amplifier in integrated circuit form, offering the user performance comparable to many modular instrumentation amplifiers at a fraction of the cost.
2. The AD521 is functionally complete with the addition of two resistors. Gain can be preset from 0.1 to more than 1000.
3. The AD5 21 is fully protected for input levels up to 15 V beyond the supply voltage and 30 V differential at the inputs.
4. Internally compensated for all gains, the AD521 also offers the user the provision for limiting bandwidth.
5. Offset nulling can be achieved with an optional trim pot.
6. The AD521 offers superior dynamic performance with a gain bandwidth product of 40 MHz , full peak response of 100 kHz (independent of gain) and a settling time of $5 \mu \mathrm{sec}$ to 0.1% of a 10 V step.
7. Every AD521 is baked for 40 hours at $+150^{\circ} \mathrm{C}$ and temperature cycled ten times from $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$.

[^4]

NOTES:

1. Gains below 1 and above 1000 are realized by simply adjusting the gain setting resistors. For best results, input voltage should be restricted to $\pm 10 \mathrm{~V}$ for gains equal to or less than 1 .
2. Nonlinearity is defined as the ratio of the deviation from the "best straight line" through a full scale output of ± 9 volts to 18 volts. With a combination of high gain and ± 10 volt output swing, distortion may increase to as much as 0.2%.
3. Full Peak Response is the typical frequency below which the amplifier will produce full output swing.
4. Differential Overload Recovery is the time it takes the amplifier to recover from a pulsed 30 V differential input with 15 V of common mode voltage, to within 10 mV of final value. The test input is a $30 \mathrm{~V}, 10 \mu \mathrm{sec}$ pulse at a 1 kHz rate. (When a differential signal of greater than 11 V is applied between the inputs, transistor clamps are activated which drop the excess input voltage across internal input resistors. If a continuous overload is maintained, power dissipated in these resistors causes temperature gradients and a corresponding change in offset voltage, and an added thermal time constant, but will not damage the device.)
5. Common Mode Step Recovery is the time it takes the amplifier to recover from a 30 V common mode input with zero volts of differential signal to within 10 mV of final value. The test input is a $30 \mathrm{~V}, 10 \mu \mathrm{sec}$ pulse at a 1 kHz rate. (When a common mode signal greater than $\mathrm{V}_{\mathrm{S}}-0.5 \mathrm{~V}$) is applied to the inputs, transistor clamps are activated which drop the excessive input voltage across internal input resistors. Power dissipated in these resistors causes temperature gradients and a corresponding change in offset voltage, and an added thermal time constant, but will not damage the device.)
6. Output Offset Voltage versus Power Supply Change is a constant 0.005 times the unnulled output offset per percent change in either power supply. If the output offset is nulled, the output offset change versus supply change is substantially reduced.
7. Differential Input Impedance is the impedance between the two inputs.
8. Common Mode Input Impedance is the impedance from either input to the power supplies.
9. Maximum Input Voltage (differential or at either input) is 30 V when using $\pm 15 \mathrm{~V}$ supplies. A more general specification is that neither input may exceed either supply (even when $\mathrm{V}_{\mathrm{S}}=0$) by more than 15 V and that the difference between the two inputs must not exceed 30 V . (See also Notes 4 and 5.)
10. 0.1 Hz to 10 Hz Peak-to-Peak Voltage Noise is defined as the maximum peak-to-peak voltage noise observed during 2 of 3 separate 10 second periods with the test circuit of Figure 6.

Figure 1. AD521 Pin Configuration

TO-116

Figure 2. Physical Dimensions

Figure 3. Operating Connections for AD521

INPUT OFFSET AND OUTPUT OFFSET

When specifying offsets and other errors in an operational amplifier, it is often convenient to refer these errors to the inputs. This enables the user to calculate the maximum error he would see at the output under any gain or circuit configura tion. An op amp with 1 mV of input offset voltage, for exampl would produce 1 V of offset at the output in a gain of 1000 configuration.
In the case of an instrumentation amplifier, where the gain is controlled in the amplifier, it is more convenient to separate errors into two categories. Those errors which simply add to the output signal and are unaffected by the gain, can be classi-
fied as output errors. Those which act as if they are associated with the input signal, such that their effect at the output is proportional to the gain, can be classified as input errors.
As an illustration, a typical AD521 might have a +30 mV output offset and a -0.7 mV input offset. In a unity gain configuration, the total output offset would be +29.3 mV or the sum of the two. At a gain of 100 , the output offset would be -40 mV or: $30 \mathrm{mV}+100(-0.7 \mathrm{mV})=-40 \mathrm{mV}$.

By separating these errors, one can evaluate the total error independent of the gain settings used, similar to the situation with the input offset specifications on an op amp. In a given gain configuration, both errors can be combined to give a total error with respect to either the input or output by the following formulae:

Total Error R.T.I. = input error + (output error/gain)
Total Error R.T.O. $=($ Gain x input error $)+$ output error As shown in Figure 4, the gain range on the AD5 21 can be extended considerably by adding an attenuator in the sense terminal feedback path (as well as adjusting the ratio, $\mathrm{R}_{\mathbf{5}} / \mathrm{R}_{\mathrm{g}}$). Since the sense terminal is the inverting input to the output amplifier, the additional gain to the output is controlled by R_{1} and R_{2}. This gain factor is $1+\mathrm{R}_{2} / \mathrm{R}_{1}$.
Where offset errors are critical, a resistor equal to the parallel combination of R_{1} and R_{2} should be placed between pin 11 and $\mathrm{V}_{\mathrm{REF}}$. This minimized the offset errors resulting from the input currents at the sense terminal flowing in R_{1} and R_{2}. Note that gain changes introduced by changing the R_{1} / R_{2} attenuator will have a minimum effect on output offset if the offset is carefully nulled at the highest gain setting.
When a predetermined output offset is desired, $V_{\text {REF }}$ can be placed in series with pin 11. This offset is then multiplied by the gain factor $1+R_{2} / R_{1}$ as shown in the equation of Figure 4.

Figure 4. Circuit for utilizing some of the unique features of the AD521. Note that gain changes introduced by changing R_{1} and R_{2} will have a minimum effect on output offset if the offset is carefully nulled at the highest gain setting.

Figure 5. Optional bandwidth control. C_{X} is determined by the following relationship: $C_{X}=1 / 2 \pi 50 k \Omega f_{t}$ when f_{t} is the desired bandwidth.

Figure 6. Test circuit for measuring peak to peak noise in the bandwidth 0.1 Hz to 10 Hz . Typical measurements are found by reading the maximum peak to peak voltage noise of the device under test (D.U.T.) for 3 observation periods of 10 seconds each.

8 and 16 Channel Analog Multiplexers

FEATURES	
$R_{\text {ON }}$	300Ω
Power Dissipation	1.5 mW

TTL/DTL/CMOS Compatible
Break Before Make Switching
Silicon Nitride Passivation
Replaces DG506/DG507

GENERAL DESCRIPTION

The AD7506 is a monolithic CMOS 16 -channel analog multiplexer packaged in a $28-\mathrm{pin}$ DIP. It switches a common output to one of 16 inputs, depending on the state of four address lines and an "enable". The AD7507 is identical to the AD7506 except it has two outputs switched to two of 16 inputs depending on three binary address states and an "enable".

The AD7506 and AD7507 are excellent examples of a high breakdown CMOS process combined with a double layer interconnect for high density. Both units are silicon/nitride passivated featuring increased stability and reliability.

ORDERING INFORMATION

AD 7506 J	$:$	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
AD 7506 K	$:$	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
AD 7506 S	$:$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
AD 7506 T	$:$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
AD 7507 J	$:$	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
AD 7507 K	$:$	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
AD7507S	$:$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
AD7507T	$:$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

PACKAGE VERSIONS

Suffix "D":
28-pin Ceramic DIP

PIN CONFIGURATION (TOP VIEW)

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

AD7506

AD7507

TRUTHTABLE

AD7506

${ }^{13}$	A_{2}	A_{1}	As	${ }^{\text {m }}$	(wis
-	-	${ }^{\prime}$	\cdots	1	1
\cdots	-	"	1	1	?
"	${ }_{0}$!	\because	1	${ }^{3}$
0	;	0	"	,	s
$\stackrel{\square}{\circ}$!	\because	'	,	;
0	;	,	\because	\therefore	,
,	-	${ }^{\prime}$	"	,	*
'	\because	"	$\stackrel{1}{1}$	1	$\stackrel{11}{11}$
i	$\stackrel{\square}{\square}$	1	$\ddot{\square}$		11 12
1	,	\cdots	0	1	13
\vdots	;	"	"	1	$1{ }^{14}$
1	,	1	-	,	16
\times	x	x	x	-	none

AD7507

ABSOLUTE MAXIMUM RATINGS

$V_{D D}$ (to GND) +17 V
$V_{S S}$ (to GND) -17 V
Switch Voltage (to V_{SS}) +27 V
Digital Input Voltage Range VDD to GND
Switch Current 10 mA
Power Dissipation (Package)
To $+70^{\circ} \mathrm{C}$
1200 mW
Derate Above $+70^{\circ} \mathrm{C}$ by
$10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Temperature
Storage Temperature
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
....... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Route 1 Industrial Park; P.O. Box 280; Norwood, Mass. 02062

NOTES:

1. Specifications subject to change without notice.
2. A pull-up resistor, typically $1-2 \mathrm{k} \Omega$ is required to make the J and S versions compatible with TTL/DTL. The maximum value is determined by the output leakage curre of the driver gate when in the high state.

8 and 4 Channel Analog Multiplexers

C-2ex Man AD701/AD1502

FEATURES

TTL/DTL/CMOS Compatible
Max. Quiescent Power Dissipation: $30 \mu \mathrm{~W}$
"ON" Resistance: 170Ω
Leakage Current: 200pA
Analog Signal Range: +12, -15V
Output Enahle Control
Silicon Nitride Passivation

GENERAL DESCRIPTION

The AD7501 is an 8 channel analog multiplexer which switches one output to one of 8 inputs depending on the state of 3 binary inputs. An "enable" control allows for disconnecting the output regardless of the digital input states. The AD7502 is identical to the AD7501 except it has 2 outputs switched to two of 8 inputs depending on 2 binary inputs.
Both units are specified over a $\pm 10 \mathrm{~V}$ range with a +12 to -15 V operating range and without latch-up problems over the $\pm 15 \mathrm{~V}$ range ($\pm 15 \mathrm{~V}$ supplies). The digital inputs are TTL/DTL and CMOS logic compatible.
An extremely low quiescent power dissipation ($30 \mu \mathrm{~W}$) is achieved by combining unique CMOS (Complementary MOS) technology using the state-of-the-art double layer of interconnect and silicon nitride passivation techniques resulting in a highly reliable product.

TRUTH TABLES

AD7501				
A_{2}	$\mathrm{~A}_{1}$	$\mathrm{~A}_{0}$	E_{N}	ON
L	L	L	H	1
L	L	H	H	2
L	H	L	H	3
L	H	H	H	4
H	L	L	H	5
H	L	H	H	6
H	H	L	H	7
H	H	H	H	8
X	X	X	L	NONE

AD7502			
A_{1}	$\mathrm{~A}_{0}$	E_{N}	ON
L	L	H	$1 \& 5$
L	H	H	$2 \& 6$
H	L	H	$3 \& 7$
H	H	H	$4 \& 8$
X	X	L	NONE

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

The AD7501 and AD7502 are ideal for multiplexing single and differential analog data channels in data acquisition systems used in the process control and minicomputer industries. Their ultra low power dissipation also makes them an excellent choice in avionic and portable systems.

FUNCTIONAL DIAGRAMS

AD7501

AD7502

P.O. Box 280; Norwood, Massachusetts 02062 U.S.A. Telex: 924491

Cables: ANALOG NORWOODMASS

SPECIFICATIONS
$\left(V_{D D}=+15 \mathrm{~V}, V_{S S}=-15 \mathrm{~V}\right.$ unless otherwise noted)

DYNAMIC
CHARACTERISTICS

TON Toff		+25	0.8		$\mu \mathrm{s}$	SEE TEST CIRCUIT 2
		+25	0.8		$\mu \mathrm{s}$	
C_{S}	OFF	+25	5		pF	
Cout	OFF	+25	30		pF	
$\mathrm{C}_{\text {Srout }}$	OFF	+25	0.5		pF	
$\mathrm{C}_{\text {SS }}$ between any						
two switches	OFF	+25	0.5		pF	
POWER SUPPLY						
IDD (Quiescent)	OFF	+25	0.01	100	$\mu \mathrm{A}$	ALL DIGITAL
ISS (Quiescent)	OFF	$+25$	0.01	100	$\mu \mathrm{A}$	INPUTS LOW
$I_{\text {DD }}$	ON	+25	0.2	0.5	mA	ALL DIGITAL
${ }^{\text {I SS }}$	ON	+25	0.01	100	$\mu \mathrm{A}$	INPUTS HIGH

NOTE 1: See "Terminology" on page 6.

[^5]
TYPICAL PERFORMANCE CURVES

1. $R_{O N}$ AS A FUNCTION OF SWITCH VOLTAGE (V_{S})

2. DIGITAL THRESHOLD VOLTAGE ($\mathrm{V}_{\text {ING }}, \mathrm{V}_{\text {ENL }}$)

Vs. Power Supply
3. $\mathrm{T}_{\mathrm{ON}}, \mathrm{T}_{\mathrm{OFF}}$

Vs. Digital Input Voltage

Vs. Temperature
4. POWER DISSIPATION

Vs. Logic Frequency (50\% Duty Cycle)

TEST CIRCUIT 2

$1 \mu \mathrm{~s} / \mathrm{DIV}$

$1 \mu \mathrm{~S} / \mathrm{DIV}$

$1 \mu \mathrm{~s} / \mathrm{DIV}$

APPLICATIONS

The basic applications for the AD7501 and AD7502 are in single and differential signal multiplexing and demultiplexing circuits.
Most data acquisition systems have multiple data inputs coming from various transducers, signal conditioners, etc. This analog data is normally converted into digital format using A/D converters for further processing. Multiplexing the various data channels into one channel reduces the number of digital conversion products needed and saves space, power and money.
Figure 1 shows how eight data channels are reduced to a single channel which subsequently is converted into digital language using a sample/hold amplifier and an A/D converter. Additional channels can be multiplexed by using two or more AD7501's

Figure 1. 8-Channel Data Acquisition System
using the "enable" line to disconnect the output of those mul tiplexers which are not addressed.
Figure 2 shows the AD7502 multiplexing balanced data channels. Using an instrumentation amplifier such as the AD520 converts the differential signal into a single ended output. A sample/hold amplifier and A/D converter can subsequently be used for digitizing the analog information.
The AD7501/AD7502 are designed for the "analog world" where the standard power supplies are $\pm 15 \mathrm{~V}$ and the signal range is $\pm 10 \mathrm{~V}$ coming from op amps or other signal sources. The digital interface does not need any additional parts (K an S versions) and is directly compatible with standard TTL/DTL and CMOS gates, simplifying the circuit design.

PIN CONFIGURATION

BONDING DIAGRAM

NOTE: Please consult the factory for additional chip information.
$V_{\text {DD }}$ - (to Gid) +17 V
VSS - (to Gid) -17V
Switch Voltage (to V SS) +27 V
Switch Current 10 mA
Digital Input Voltage Range V_{DD} to V_{SS}
Power Dissipation (package)
up to $+75^{\circ} \mathrm{C}$. 450 mW
derates above $+75^{\circ} \mathrm{C}$ at $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

CAUTION:

1. Do not apply voltages higher than V_{DD} and V_{SS} on any other terminal, especially when $\mathrm{V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}$ all other pins should be at 0 V .
2. The digital control inputs are zener protected. However, permanent damage can occur on unconnected units under high energy electrostatic fields. Keep unused units in conductive foam at all times.

TERMINOLOGY

R_{ON} :
R_{ON} vs. Temperature:
$\triangle R_{\text {ON }}$ between Switches:
R_{ON} vs. Temperature between Switches: $I_{S}:$
$I_{\text {OUT }}$:
lOUT $^{-1}$ IS
$\mathrm{V}_{\text {IND }}$:
$\mathrm{V}_{\text {IN }}$:
C_{S} :
Court:
$\mathrm{C}_{\text {SHUT }}$:
C_{SS} :

Ohmic resistance between the output and an addressed input. R_{ON} drift over the temperature range.
Difference between the R_{ON} of any two switches.
Difference between the R_{ON} drift of any two switches. Current at any switch input S1 through S8. This is a leakage current when the switch is open.
Current at the output. This is a leakage current when all switches are open (enable low).
Difference between the current going into terminal " S " and the current going out of terminal "out" when terminal " S " is addressed.
Digital threshold voltage for the low state.
Digital threshold voltage for the high state.
Capacitance between any open terminal " S " and ground.
Capacitance between the output terminal and ground with all switches open (enable low).
Capacitance between any open terminal " S " and the output terminal.
Capacitance between any two " S " terminals.

ORDERING INFORMATION

AD7501J:	$0-+75^{\circ} \mathrm{C}$
AD7501K:	$0-+75^{\circ} \mathrm{C}$
AD7501S:	$-55^{\circ} \mathrm{C}-+125^{\circ} \mathrm{C}$
AD7502J:	$0-+75^{\circ} \mathrm{C}$
AD7502K:	$0-+75^{\circ} \mathrm{C}$
AD7502S:	$-55^{\circ} \mathrm{C}-+125^{\circ} \mathrm{C}$

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

[^1]: Note: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use; nor for any infringements of patents or other rights granted by implication or otherwise under any patent or patent rights of Analog Devices.

[^2]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implica-

[^3]: Note: this data sheet includes "Preliminary Technical Data" describing a new product. Though highly unlikely, it may be necessary to alter the specifications to reilect life data collected during the initial months of the product's use.
 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

[^4]: P.O. Box 280; Norwood, Massachusetts 02062 U.S.A. Telex: 924491

 Cables: ANALOG NORWOODMASS

[^5]: NOTE 2: A pull-up resistor, typically $1-2 \mathrm{k} \Omega$, is required to make the AD7501J and AD7502J compatible with TTL/DTL levels. The maximum value is determined by the output leakage current of the driver gate when in the high state.
 Specifications subject to change without notice.

