DANSK DATA ELEKTRONIK
 ID-7017 DIGITAL/ANALOG
 CONVERSION MODULE
 for the

ID-7000 MICROPROCESSOR SYSTEM

June 1976

ID-7ol7 DIGITAL/ANALOG CONVERTION MODULE.

1. Introduction.

This module is used for generation of analog output signals from the ID-7ooo microprocessor system. A maximum of 4 different analog outputs can be generated by the module. The monolithic D / A converters on the module- available in 8 bit and lo bit versions - have a 6 usec coversion time. The module is available in two versions for output range $0-+10 \mathrm{~V}$ or $0-\div 10 \mathrm{~V}$.

The module only works in ID-7ooo systems with $+/ \div 15 \mathrm{~V}$ power supply.
Fig. 1 shows a blocked schematic of the module.Appendix 1 is a complete diagram. Appendix 2 contains datasheets for the analog components on the board.

2. Description.

This section containa a description of the module from a programming point of viev.

2.1 Addressing.

The module uses 8 consecutive addresses of the possible 256 addresses for $I / 0$-units. The address of the module is set by a 5 bit switch register on the module.
2. 2 Data output.

Data to the module is always sent in two parts. First the two most significant bits, and then the 6 (in 9 bit version) or 8 (in lo bit version) least significant bits. Data is interpreted as a true binary number without signbit.

ADR
$\begin{array}{lllllll}7 & 6 & 5 & 4 & 3 & 2 & 1\end{array}$

$\begin{aligned} & 8 n \\ & 8 n+1 \end{aligned}$		channel 0
$8 \mathrm{n}+2$		
$8 n+3$		channel 1
$8 \mathrm{n}+4$		channel 2
$8 n+5$		channe1 2
$8 n+6$		channel 3

76543210
lo bit version 2 msb

8 lsb


```
msb = most significant bits
```

lsb $=$ least significant bits

The analog outputs are not changed if the 2 most significant bits are altered. The change in analog value occurs shortly after the 8 (6) least significant bits are sent to the module.

2.3 Vent.

The module makes use ot the $\overline{v e n t}$ signal to delay the microcomputer in order to provide the necessary setup time for data to the D/A-chips. Each time the module is addressed the microprocessor id delayed 5 usec.
3. Connections.

At the top-connector the different signals are found as follow:

pin F	channel 0
pin 5	analog ground
pin N	channel 1
pin lo	analog ground
pin Z	channel 2
pin 21	analog ground
pin \bar{m}	channel 3
pin 31	analog ground
pin \bar{f}	$+15 V$
pin	-15 V

4. Adjustment.

The datasheet for the digital-analog converter AD7522 (in appendix 2) describes the adjustment of the converter.

Fig. 1

channed 1

channel 0

Devices 10 -Bit, Buffered Multiplying D/A Converter

(1)

FEATURES

10-Bit Resolution

8, 9, \& 10-Bit Linearity
Microprocessor Compatible
Double Buffered Inputs
Serial or Parallel Loading
DTL/TTL/CMOS Direct Interface
Nonlinearity Tempco: 2 ppM of $\mathrm{FSR} /{ }^{\circ} \mathrm{C}$
Gain Tempco: 10ppM of $\mathrm{FSR} /{ }^{\circ} \mathrm{C}$
Very Low Power Dissipation
Very Low Feedthrough

GENERAL DESCRIPTION

The AD7522 is a monolithic CMOS 10 -bit multiplying D/A converter, with an input buffer and a holding register, allowing direct interface with microprocessors. Most applications require the addition of only an operational amplifier and a reference voltage.

The key to easy interface to a data bus is the AD7522's ability to load the input buffer in two bytes (an 8 -bit and a 2 -bit byte), and subsequently move this data to a holding register, where the digital word is converted into an analog current or voltage (with external operational amplifier). The input loading of either 8 or 10 bits can be done in a parallel or serial mode.
The AD7522 is packaged in a 28 -pin DIP, and operates with $a+15 \mathrm{~V}$ main supply at 2 mA max, and a logic supply of +5 V for TTL interface, or +10 to +15 V for CMOS interface.
A thin film on high density CMOS process, using silicon nitride passivation, ensures high reliability and excellent stability.

ORDERING INFORMATION

Nonlinearity	Temperature Range	
	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
0.2% FSR (8-Bit)	AD7522JD AD7522JN	AD 7522 SD
$0.1 \% \mathrm{FSR}$ (9-Bit)	AD7522KD AD7522KN	AD7522TD
$0.05 \% \mathrm{FSR}$ $(10-\mathrm{Bit})$	AD7522LD AD7522LN	AD7522UD

PACKAGE IDENTIFICATION

Suffix "D": Ceramic DIP Package
Suffix "N": Plastic DIP Package

FUNCTIONAL DIAGRAM

PIN CONFIGURATION

Route 1 Industrial Park; P.O. Box 280; Norwood, Mass. 02062 Tel: (617) 329-4700

Telex: 924491
Cable:

PARAMETER ${ }^{1}$	VERSION	TA $=25^{\circ} \mathrm{C}$			OVER SPECIFIED TEMP. RANGE		UNITS	TEST CONDITIONS
		MIN	TYP	MAX	MIN	MAX		
STATIC ACCURACY - Resolution	All	10			10	-	Bits	$\mathrm{SC} 8=" 1$ "
Differential Nonlinearity	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~S} \\ & \mathrm{~K} \\ & \mathrm{~T} \\ & \mathrm{~L} \\ & \mathrm{U} \end{aligned}$			$\begin{aligned} & \pm 0.2 \\ & \pm 0.2 \\ & \pm 0.1 \\ & \pm 0.1 \\ & \pm 0.05 \\ & \pm 0.05 \end{aligned}$		$\begin{aligned} & \pm 0.2 \\ & \pm 0.1 \\ & \pm 0.155 \end{aligned}$	\% FSR \% FSR \% FSR \% FSR \% FSR \% FSR	
Nonlinearity	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~S} \\ & \mathrm{~K} \\ & \mathrm{~T} \\ & \mathrm{~L} \\ & \mathrm{U} \\ & \hline \end{aligned}$			$\begin{aligned} & \pm 0.2 \\ & \pm 0.2 \\ & \pm 0.1 \\ & \pm 0.1 \\ & \pm 0.05 \\ & \pm 0.05 \end{aligned}$		± 0.2 ± 0.1 ± 0.05	\% FSR \% FSR	$-10 \mathrm{~V} \leq \mathrm{VREF} \leq+10 \mathrm{~V}$
Nonlinearity Tempco ${ }^{2}$	$\begin{aligned} & \mathrm{J}, \mathrm{~K}, \mathrm{~L} \\ & \mathrm{~S}, \mathrm{~T}, \mathrm{U} \end{aligned}$		± 1			$\begin{aligned} & \pm 2 \\ & \pm 2 \end{aligned}$	$\begin{aligned} & \mathrm{ppm} \mathrm{FSR} /{ }^{\circ} \mathrm{C} \\ & \mathrm{ppm} \mathrm{FSR} /{ }^{\circ} \mathrm{C} \end{aligned}$	
Gain Error	J, K, L		± 0.3				\% Reading	
Gain Error Tempco ${ }^{2}$	$\begin{aligned} & \mathrm{J}, \mathrm{~K}, \mathrm{~L} \\ & \mathrm{~S}, \mathrm{~T}, \mathrm{U} \end{aligned}$		± 5			$\begin{aligned} & \pm 10 \\ & \pm 10 \end{aligned}$	ppm of Reading $/{ }^{\circ} \mathrm{C}$ ppm of Reading $/{ }^{\circ} \mathrm{C}$	
Output Leakage Current at :OUT1 or IOUT2	All					200	nA	IOUT1: DB0 through DB9 $=0$ IOUT2: DB0 through DB9 $=1$
Power Supply Rejection	J, K, L		50				ppm of Reading/\%	
AC ACCURACY Feedthrough Error ${ }^{2}$	All		1	10			mV p-p	VREF $=20 \mathrm{~V}$ p-p; 10 kHz
Output Current Settling Time	J, K, L		500				ns	To 0.05% of FSR for a FSR Step. HBS and LBS Low to High $\mathrm{LDAC}=1$
REFERENCE INPUT Input Resistance	All	5		20			$k \Omega$	
ANALOG OUTPUT Output Capacitance Cour1 COUT2 COUT1 COUT2	$\begin{aligned} & \mathrm{J}, \mathrm{~K}, \mathrm{~L} \\ & \mathrm{~J}, \mathrm{~K}, \mathrm{~L} \\ & \mathrm{~J}, \mathrm{~K}, \mathrm{~L} \\ & \mathrm{~J}, \mathrm{~K}, \mathrm{~L} \end{aligned}$		$\begin{aligned} & 120 \\ & 40 \\ & 40 \\ & 120 \end{aligned}$				$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \\ & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$	All Data Inputs High All Data Inputs Low
DIGITAL INPUTS Low State Threshold	$\begin{aligned} & \mathrm{J}, \mathrm{~K}, \mathrm{~L} \\ & \mathrm{~S}, \mathrm{~T}, \mathrm{U} \end{aligned}$			$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$		0.8	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	
High State Threshold	$\begin{aligned} & \mathrm{J}, \mathrm{~K}, \mathrm{~L} \\ & \mathrm{~S}, \mathrm{~T}, \mathrm{U} \end{aligned}$	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$			2.4		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	
Input Current	J, K, L		1				$\mu \mathrm{A}$	
LDAC Pulse Width Requirement ${ }^{3}$	All	5					μ_{s}	LDAC: 0 to +3 V
HBS, LBS Pulse Width Requirement ${ }^{3}$ Serial Clock Frequency ${ }^{3}$	All All	5		200			μ_{s} kHz	HBS, LBS: 0 to +3 V

Notes

- ${ }^{2}$ Specifications subject to change without notice.
${ }^{2}$ Guaranteed by design. Not tested.
${ }^{3}$ Sample tested.

PARAMETER ${ }^{1}$	VERSION	$\mathrm{TA}=+25^{\circ} \mathrm{C}$			OVER SPECIFIED TEMP. RANGE		UNITS	TEST CONDITIONS
		MIN	TYP	MAX	MIN	MAX		
POWER REQUIREMENTS $\begin{aligned} & \text { IDD } \\ & \text { ICC } \end{aligned}$	$\begin{aligned} & \text { All } \\ & \text { All } \end{aligned}$			2			$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$.

ABSOLUTE MAXIMUM RATINGS
VREF to GND $\pm 25 \mathrm{~V}$
VDD to GND $+17 \mathrm{~V}$
VCC to GND $+17 \mathrm{~V}$
VCC to VDD $+0.4 \mathrm{~V}$
IOUT1, IOUT2 $\pm 5 \mathrm{~mA}$
Operating Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

```
Power Dissipation (Package)
    Up to +50 %
        Plastic (Suffix N) . . . . . . . . . . . . . . . . . . . }1200\textrm{mW
        Ceramic (Suffix D) . . . . . . . . . . . . . . . . . . }1000\textrm{mW
    Derate Above +50 }\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ by
        Plastic (Suffix N) . . . . . . . . . . . . . . . . . 12 mW/ }\mp@subsup{}{}{\circ}\textrm{C
        Ceramic (Suffix D) . . . . . . . . . . . . . . . . . . }10\textrm{mW}/\mp@subsup{}{}{\circ}\textrm{C
    Digital Input Voltage Range . . . . . . . . . . . . . VDD to GND
```


CAUTION:

1. Do not apply voltages higher than VCC to SRO.
2. Do not apply voltages higher than VDD or less than GND to any other input/output terminal except VREF, RFB1 or RFB2.
3. The digital control inputs are zener protected, however permanent damage may occur on unconnected units under high energy electrostatic fields. Keep unused units in conductive foam at all times.
4. VCC should never exceed VDD by more than 0.4 V , especially during power ON or OFF sequencing.

RESOLUTION

Value of the LSB. For example, a unipolar n-bit converter has a resolution of (2^{-n}) (VREF). A bipolar n-bit converter has a resolution of $\left[2^{-(n-1)}\right]$ [VREF]. Resolution in no way implies linearity.

NONLINEARITY

Error contributed by deviation of the DAC transfer function from a best straight line function. For a multiplying DAC, the nonlinearity should be independent of the sign or magnitude of VREF. Nonlinearity is normally expressed as a percentage of full scale range ($\%$ FSR).

DIFFERENTIAL NONLINEARITY

In a DAC, differential linearity error describes the variation in the analog output transitions between adjacent pairs of digital input numbers, over the full range of digital inputs. If
each transition is equal to its neighbors' (i.e., 1 LSB), the "differential nonlinearity" is zero. If a transition differs from the ideal by more than 1 LSB , a D/A converter can be "nonmonotonic." A specific maximum differential nonlinearity of $\pm 1 / 2 \mathrm{LSB}$ at $+25^{\circ} \mathrm{C}$ ensures that monotonic behavior will exist over a tangible range of temperatures.

GAIN

The "gain" of a converter is that analog scale factor setting that establishes the nominal conversion relationship, e.g., 10 V full scale. It is a linear error which can be externally adjusted. (See gain adjustment on page 6.)

OUTPUT LEAKAGE CURRENT

Current which appears on the OUT1 terminal when the DAC register is loaded with all " 0 's" or on the OUT2 terminal when the DAC register is loaded with all " 1 's."

Pin EmP

PIN	MNEMONIC	DESCRIPTION
27	VCC	Logic Supply. If +5 V is applied, all digital inputs/outputs are TTL com- patible. If +10 V to +15 V is applied, digital inputs/outputs are CMOS compatible.

PIN	MNEMONIC	DESCRIPTION
28	DGND	Digital. Ground.

Note 1: Logic " 1 " applied to a data bit steers that bit's current to the IOUT1 terminal.

DAC CIrgit Deseliftoin

GENERAL CIRCUIT INFORMATION

The AD7522's DAC functional block consists of a highly stable Silicon Chromium thin film R-2R ladder, and ten SPDT N-channel current steering switches. Most applications require the addition of only an output operational amplifier and a voltage or current reference.

Figure 1. DAC Functional Diagram

EQUIVALENT CRRCUTT

The DAC equivalent circuit is shown in Figure 2. The current source $I_{\text {LEAKAGE }}$ is composed of surface and junction leakages to the substrate, while the $\mathrm{I}_{\mathrm{REF}} / 1024$ current source represents the 1 LSB of current lost through the ladder termination resistor to ground. The COUT1 and COUT2 output capacitances are as shown when the DAC latches feed the

The simplified D/A circuit is shown in Figure 1. An inverted R-2R ladder structure is used - that is, the binarily weighted currents are switched between the IOUT1. and IOUT2 bus lines, thus maintaining a constant current in each ladder leg independent of the switch state.

Figure 2. Equivalent Circuit (Shown for all Digital Inputs High)

DAC with all " 1 's." If the DAC latches are loaded with all " 0 's," COUT1 is 37 pF , while COUT2 is 120 pF . In addition, $\mathrm{C}_{S D}$ is shunted by 10 ohms, and the 10 ohm R_{ON} in IOUT1 is replaced by a C_{SD} of 10 pF . When fast amplifiers are used, it will be necessary to provide phase compensation (in the form of feedback capacitance) to cancel the pole formed by RFEEDBACK and COUT if stability is to be maintained.

JNIPOLAR OPERATION
Figure 3 shows the analog circuit connections required for unipolar operation. The input code/output voltage relation-
hip is shown in Table 1.
Kero Offset Adjustment

1. Adjust the op amp's offset potentiometer for $<1 \mathrm{mV}$ on the amplifier junction. (Each millivolt of amplifier V_{OS} causes $\pm 0.66 \mathrm{mV}$ of differential nonlinearity which adds to the ladder nonlinearity.)

Figure 3. Unipolar Binary Operation (2-Quadrant Multiplication)

Gain Adjustment

1. Set R1 and R2 to 0Ω. Load the DAC register with all " 1 's."
2. If analog out is greater than-VREF, increase R1 for required full scale output. If analog out is less than-VREF, increase R2 for required full scale output.

TABLE 1
UNIPOLAR CODE TABLE

DIGITALINPUT	ANALOG OUTPUT
1111111111	$-\operatorname{VREF}\left(1-2^{-10}\right)$
1000000001	$-\operatorname{VREF}\left(1 / 2+2^{-10}\right)$
1000000000	$-\operatorname{VREF} / 2$
0111111111	$-\operatorname{VREF}\left(1 / 2-2^{-10}\right)$
0000000001	$-\operatorname{VREF}\left(2^{-10}\right)$
0000000000	0

TABLE 2
BIPOLAR CODE TABLE

DIGITAL INPUT	ANALOG OUTPUT
1111111111	-VREF $\left(1-2^{-9}\right) \cdots / 06$
1000000001	-VREF $\left(2^{-9}\right)$
1000000000	0
0111111111	$\operatorname{VREF}\left(2^{-9}\right)$
0000000001	$\operatorname{VREF}\left(1-2^{-9}\right)$
0000000000	VREF

BIPOLAR OPERATION

Figure 4 shows the analog circuit connections required for bipolar operation. The input code/output voltage relationship is shown in Table 2.

Zero Offset Adjustment

1. Adjust the offset potentiometer of amplifier A1 and A2 for $<1 \mathrm{mV}$ on the respective summing junctions. If the analog out for code 1000000000 is not zero, sum current into or out of the summing junction of A 1 for 0 V at analog out.

Gain Adjustment

1. Load the DAC register with all " 0 's." Set R1 and R2 to 0Ω.
2. If analog out is greater than +VREF , increase R 2 until it reads precisely +VREF. If analog out is less than +VREF, increase R1 until it reads precisely VREF.

Figure 4. Bipolar Operation

SINGLE BYTE PARALLEL LOADING

Figure 5 illustrates the logic connections for loading single byte parallel data into the input buffer. DB0 should be grounded on " K " and " T " versions, and DB0 and DB1 should be grounded on " J " and " S " versions for monotonic operation of the DAC. DB9 is always the MSB, whether 8 -bit, 9 -bit, or 10 -bit linear AD7522's are used.
When data is stable on the parallel inputs (DB0-DB9), it can be transferred into the input buffer on the positive edge of the strobe pulse.

Data is transferred from the input buffer to the DAC register when LDAC is a logic " 1 ." LDAC is a level-actuated (versus edge-triggered) function, and must be held "high" at least 3μ s for data transfer to occur.

Figure 5. Single Byte Parallel Loading

TWO BYTE PARALLEL LOADING
Figures 6 and 7 show the logic connections and timing requirements for interfacing the AD7522 to an 8-bit data bus for two byte loading of a 10 -bit word.
First, the least significant data byte (DB0 through DB7) is loaded into the input buffer on the positive edge of LBS. Subsequently, the data bus is used for status indication and instruction fetching by the CPU. When the most significant data byte (DB8 and DB9) is available on the bus, the input buffer is loaded on the positive edge of HBS. The DAC register updates to the new 10 -bit word when LDAC is "high." LDAC may be exercised coincident with, or at any time after HBS loads the second byte of data into the input buffer.

SERIAL LOADING
Figure 8 and Figure 9 show the connections and timing diagram for serial loading.
To load a 10-bit word $\overline{\mathrm{SC} 8}=1$), HBS and LBS must be strobed simultaneously with exactly 10 positive edges to clock the serial data into the input buffer. For 8 -bit words ($\mathrm{SC8}=0$), only 8 positive edges are required.

The DAC register can now be loaded by holding LDAC "high."

Figure 6. Two Byte Parallel Loading

Figure 7. Timing Diagram

Figure 8. Serial 8-and 10-Bit Loading (Analog Outputs Not Shown for Clarity)

Apilleations cont

Figure 9. Timing Diagram for Serial 8- and 10-Bit Loading

APPLICATION HINTS

1. CR1 and CR2 on Figures 3 and 4 protect the AD7522 against latch-up if VCC exceeds VDD, and may be omitted if VDD and VCC are driven from the same voltage.
2. Diodes CR3 on Figure 3 and CR3 and CR4 on Figure 4 clamp the amplifier junction to -300 mV if they attempt to swing negative during power up or power down. The input structures of some high-speed op amps can supply substantial current under the transient conditions en-
countered during power sequencing. It is recommended that the PC layout be able to accommodate the diodes.
3. Fast op amps will require phase compensation for stability due to the pole formed by COUT1 or COUT2 and RFEEDBACK.
4. During serial loading, all data inputs (DB0 through BD9), should be grounded.

Madiancuallifomation

BONDING DIAGRAM

28 PIN CERAMIC DIP

1. Lead no. 1 identified by dot or notch.
2. Dimensions in millimeters (inches).

$\pm 10.000 \pm .001$ Volt Precision Reference

PRELIMINARY TECHNICAL DATA FEATURES

3-Terminal Device:
Voltage $\ln /$ Voltage Out
Total Output Error at
$T_{\text {MAX }}$ to: 2 mV
Excellent Long Term Stability:
To 50ppm/yr.
OP. Range: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
20 mA Current Output Capability
Available Screened to MIL-STD-883A
Use with AD7520, AD7570, AD562
Short Circuit Protected

*(External Adjustment Optional)

MODEL

OUTPUT

AD 2700	+10.000 V
AD2701	$-10,000 \mathrm{~V}$
AD2702	$\pm 10.000 \mathrm{~V}$

[^0]P.O. Box 280; Norwood, Massachuserts 02062 U.S.A. Telex: 924491 Cables: ANALOG NORWOODNIASS

SPECIFICATIONS (typical at $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\text {in }}=+15 \mathrm{~V}$ unless otherwise specified)

ABSOLUTE MAX RATINGS

Input Voltage	20 VDC
Power Dissipation @ $+25^{\circ} \mathrm{C}$	400 mW
Derate Above $25^{\circ} \mathrm{C}$	$1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	-65 to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec)	$250^{\circ} \mathrm{C}$
Operating Temperature Range $-\mathrm{L} \& \mathrm{U}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Short Circuit Protection	Continuous

ELECTRICAL CHARACTERISTICS		MIN	TYP	MAX	UNITS
Output Voltage@ $25^{\circ} \mathrm{C}$, No Load	$\begin{aligned} & -2700 \\ & -2701 \\ & -2702 \end{aligned}$	$\begin{aligned} & +9.999 \\ & -10.001 \\ & \pm 9.999 \end{aligned}$	$\begin{aligned} & +10.000 \\ & -10.000 \\ & \pm 10.000 \end{aligned}$	$\begin{aligned} & +10.001 \\ & -9.999 \\ & \pm 10.001 \end{aligned}$	
Output Current			± 18	± 20	mA
Total Maximum Output Error (Including Initial Offset) "L" Guarnateed $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ "U" Guaranteed $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{array}{r} @-55^{\circ} \mathrm{C} \\ -25^{\circ} \mathrm{C} \\ \mathrm{O}^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +70^{\circ} \mathrm{C} \\ +85^{\circ} \mathrm{C} \\ +125^{\circ} \mathrm{C} \end{array}$		$\begin{aligned} & \pm 0.02 \\ & \pm 0.02 \\ & \pm 0.02 \\ & \pm 0.005 \\ & \pm 0.02 \\ & \pm 0.02 \\ & \pm 0.03 \end{aligned}$	$\begin{aligned} & \pm 0.03 \\ & \pm 0.03 \\ & \pm 0.02 \\ & \pm 0.01 \\ & \pm 0.03 \\ & \pm 0.03 \\ & \pm 0.03-0.05 \end{aligned}$	$\begin{aligned} & \% \\ & \% \\ & \% \\ & \% \\ & \% \\ & \% \\ & \% \\ & \% \end{aligned}$

Input Regulation/Power Supply Rejection $\left(\mathrm{V}_{\text {in }}=12\right.$ to 18 V$)$.0003	.0004	$\% / \%$

Load Regulatic:

$\mathrm{AD} 2700 / 01$	0 to $\pm 10 \mathrm{~mA}$.0015	.002
AD 2702	0 to $\pm 5 \mathrm{~mA}$.015	.02

(See Graphs Page 4)

Input Voltage, Operating	12	15	18	V
Input Current, No Load	12	mA		
${ }^{*}$ Noise (0.1 to 10 Hz)	50	$\mu \mathrm{Vp} \cdot \mathrm{p}$		
${ }^{*}$ Long Term Stability	50	$\mathrm{ppm} / \mathrm{yr}$		
Output Resistance AD2700/01	0.02	Ω		
${ }^{*}$ Ripple Rejection	.01	$\% / \mathrm{V}$		
${ }^{*}$ Offset Adjust Range (see schematic, page 1)	± 30	mV		
${ }^{*}$ Offset Adjust Temperature Effect	± 4	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ per mV of adjust		

OPTION 883 (designated as U/883) per MIL-STD-883A, Method 5004.2, Class B

[^1]
ADDME the ADP 00

USING THE AD2700 VOLTAGE REFERENCE WITH D/A CONVERTER USING R-2R LADDER NETWORK IN CURRENT MODE

DIGITAL INPUT CODE

a. Basic Circuit

b. Example: Contribution of Bit 2; All Other Bits " 0 "

An AD2700 Voltage Reference used with an inverting operational amplifier and an AD855 R-2R ladder. If all bits but the MSB are off (i.e., grounded), the output voltage is $(-R / 2 R) E_{R E F}$. If all bits but Bit 2 are off, it can be shown that the output voltage is $1 / 2(-\mathrm{R} / 2 \mathrm{R}) \mathrm{E}_{\mathrm{REF}}=1 / 4 \mathrm{E}_{\mathrm{REF}}$: The lumped resistance of all the less-significant-bit circuitry (to the left of Bit 2) is 2 R ; the Thévenin equivalent looking back from the MSB towards Bit 2 is the generator, $\mathrm{E}_{\mathrm{REF}} / 2$, and the series resistance $2 R$; since the grounded MSB series resistance, 2R, has virtually no influence - because the amplifier summing point is at virtual ground - the output voltage is therefore $-\mathrm{E}_{\mathrm{REF}} / 4$. The same line of thinking can be employed to show that the nth bit produces an increment of output equal to $2^{-\mathrm{n}} \mathrm{E}_{\mathrm{REF}}$.
c. Simplified Equivalent of Circuit (b)

USING AD2700 REFERENCE WITH THE AD7520 AND AN IC AMPLIFIER TO BUILD A DAC.
CODE TABLE - UNIPOLAR BINARY OPERATION

DIGITAL.INPUT	ANALOG OUTPUT
1111111111	$-V_{\text {REF }}\left(1-2^{-10}\right)$
1000000001	$-V_{\text {REF }}\left(1 / 2+2^{-10}\right)$
1000000000	$\frac{-V_{\text {REF }}}{2}$
0111111111	$-V_{\text {REF }}{ }^{\left(1 / 2-2^{-10}\right)}$
0000000001	$-V_{\text {REF }}{ }^{\left(2^{-10}\right)}$
0000000000	0

NOTE: $1 \mathrm{LSB}=2 \cdot 10 \mathrm{~V}$ REF
USING AD2700 REFERENCE WITH THE AD5 62

OUTPUT VOLTAGE VS. TEMPERATURE

OUTLINE DIMENSIONS
Dimensions shown in inches and (mm)
14-PIN DUAL-IN-LINE

PIN DESIGNATION

\square

FEATURES

High Slew Rate: $70 \mathrm{~V} / \mu \mathrm{sec}$
Wide Bandwidth: 12 MHz
60° Phase Margin (At Unity Gain Crossover)
Drives 300pF Load
Guaranteed Low Offset Drift:
$15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \operatorname{Max}$ (AD518K)
Pin Compatible With 118-Type
Op Amp Series
MIL-STD-883 Availability

PRODUCT DESCRIPTION

The AD518J, AD518K, and AD5 18 S are high speed precision monolithic operational amplifiers designed for applications where slew rate and wide bandwidth are required, but low cost and ease of use are essential. The devices are internally compensated for unity gain applications with a 60° phase margin to insure stability, a minimum unity gain slew rate of $50 \mathrm{~V} / \mu \mathrm{sec}$, and a typical bandwidth of 12 MHz . In addition, in inverting applications external feedforward compensation may be added to increase the slew rate to over $100 \mathrm{~V} / \mu \mathrm{sec}$, and nearly double the bandwidth. If desired, settling time to 0.1% can be reduced to under $1 \mu \mathrm{sec}$ with a single external capacitor.
The AD518's dc performance is consistent with its precision dynamic characteristics. The devices feature offset voltages below 2 mV , maximum offset drifts of $15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, and offset currents below 50 nA max.
The high slew rate, fast settling time, ease of use, and low cost of the AD518 make it ideal for use with D/A and A/D converters, as well as active filters, sample-and-hold circuits, and as a general purpose, fast, wideband amplifier. The AD518 is supplied in the TO-99 package. The AD518J and AD 518 K are specified for operation over the 0 to $+70^{\circ} \mathrm{C}$ temperature range; the AD 518 S for operation from -55 to $+125^{\circ} \mathrm{C}$.

PRODUCT ḦGMLIGHTS

1. The AD5 18 offers the user high speed performance and flexibility previously unavailable at low cost

- Internal compensation for unity gain applications
- Capability to increase slew rate to over $100 \mathrm{~V} / \mu \mathrm{sec}$ and double the bandwidth by an external feedforward technique
- Capability to reduce settling time to under $1 \mu \mathrm{sec}$ to 0.1% with a single external capacitor
- Differential input capability

2. The phase margin of the $\operatorname{AD} 518$, uncompensated at the unity gain crossover frequency, is 60°, providing unconditional stability for all conditions. This conservative phase margin represents a clear improvement over that of the 118 series IC op amps currently available.
3. The static performance of the AD518 is consistent with its excellent dynamic performance, providing offset voltage drift under $15 \mu \mathrm{~V} /^{\circ} \mathrm{C}, \mathrm{CMRR}$ of 80 dB , and offset current below 50nA.
4. Every AD5 18 is stored for 40 hours at $+200^{\circ} \mathrm{C}$, temperature cycled 10 times from -65 to $+150^{\circ} \mathrm{C}$, and subjected to a high g shock test to insure reliability and long-term stability.

Information furnished by Analog Devices is believed to be accurata and rellable. However, no responsibility is assumed by Analog Devices for its use; nor for any infringements of patents or ather rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
P.O. Box 280; Norwood, Massachusetts 02062 U.S.A. Telex: 924491

Cables: ANALOG NORWOODMASS

SPECIFICATIONS

(typical @ $+25^{\circ} \mathrm{C}$ and $V \mathrm{~S}= \pm 15 \mathrm{VDC}$ unless otherwise specified)

PARAMETER	AD518)	AD518K	AD518S
OPEN LOOP GAIN			
$\mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	25,000 min (100,000 typ)	50,000 min (100,000 typ)	50,000 min (100,000 typ)
(6) $\mathrm{T}_{\mathrm{A}}=\min$ to \max	$20,000 \mathrm{~min}$	$25,000 \mathrm{~min}$ (25,000 min
OUTPUT CHARACTERISTICS			
Voltage (0) $\mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=\min$ to max	$\pm 12 \mathrm{~V}$ min ($\pm 13 \mathrm{~V}$ typ).	*	*
Current (e) $\mathrm{V}_{\mathrm{O}}= \pm \pm 10 \mathrm{~V}$	$\pm 10 \mathrm{~mA}$	*	*
Short Circuit Current	25 mA	*	*
FREQUENCY RESPONSE			
Unity Gain, Small Signal	12 MHz	*	*
Slew Rate, Unity Gain	$50 \mathrm{~V} / \mu \mathrm{sec} \min (70 \mathrm{~V} / \mu \mathrm{sec}$ typ)	*	*
Settling Time to 0.1%			
(Single Capacitor Compensation)	800 nsec	*	*
Phase Margin, Uncompensated at Unity			
INPUT OFFSET VOLTAGE			
Initial, $\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$			
(a) $\mathrm{T}_{\mathrm{A}}=\min$ to \max	$15 \operatorname{mV} \max$	$6 \mathrm{mV} \max$	$6 \mathrm{mV} \max$
Avg vs. Temp, $\mathrm{T}_{\mathrm{A}}=\min$ to \max Avg vs. Supply, $T_{A}=\min$ to max	$10 \mu V /^{\circ} \mathrm{C}$	$15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \max \left(5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \text { typ }\right)$	$20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \max \left(10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \text { typ }\right)$
		$80 \mathrm{~dB} \min (90 \mathrm{~dB} \text { typ })$	$80 \mathrm{~dB} \min (90 \mathrm{~dB} \text { typ) }$
INPUT BIAS CURRENT			
Initial	$500 \mathrm{nA} \max (120 \mathrm{nA} . \mathrm{yp})$	$250 n A \max$ (120nA typ)	
(e $\mathrm{T}_{\mathrm{A}}=\min$ to \max	$750 n A \max$	$400 \mathrm{nA} \max$	$400 n A \max$
INPUT OFFSET CURRENT			
Initial	$200 n A \max$ (30nA typ)	$50 n \mathrm{~A}$ max (6 nA typ)	50 nA max (6 nA typ)
(e) $\mathrm{T}_{\mathrm{A}}=\min$ to m 2 x	300nA max	100 nA max	100 nA max
INPUT IMPEDANCE			
Differential	$0.5 \mathrm{M} \Omega \mathrm{min}(3.0 \mathrm{M} \Omega \mathrm{typ})$	*	*
INPUT VOLTAGE RANGE \dagger			
Common Mode, max safe		*	*
Operating, $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	$\pm 11.5 \mathrm{~V}$	*	*
Common Mode Rejection Ratio	$70 \mathrm{~dB} \min (100 \mathrm{~dB}$ typ)	80 dB min (100 dB typ)	$80 \mathrm{~dB} \min (100 \mathrm{~dB}$ typ)
POWER SUPPLY			
Rated Performance	$\pm 15 \mathrm{~V}$	*	*
Operating	\pm (5 to 20) V	*	*
Current, Quiescent	10 mA max (5 mA typ)	7 mA max (5 mA typ)	7 mA max (5 mA typ)
TEMPERATURE RANGE			
Rated Performan.	0 to $+70^{\circ} \mathrm{C}$	*	-55 to $+125^{\circ} \mathrm{C}$
Storage	-65 to $+150^{\circ} \mathrm{C}$	*	

The inputs are shunted with back-to-back diodes; if the differential input may excced ± 1 volt, a resistor should be used to limit the input current to 10 mA .
*Specifications same as AD518J.
Specifications and prices subject to change without notice.

PIN CONFIGURATION

Top View

OUTLINE DIMENSIONS
Dimensions shown in inches

HGHER BANDWIDTH OR
IIGHER SLEW RATE APPLICATIONS
or applications where higher bandwidth is desired, the bandwidth of the AD518 may be increased to nearly 5 MHz by using the feedforward technique shown in igure 4.

Figure 4. High Bandwidth Configuration

For applications where higher slew rate is desired, the slew rate of the AD518 may be nearly doubled using the technique hown in Figure 5.

Figure 5. High Slew Rate Configuration

Note that the techniques of Figures 4 and 5 may be used in conjunction with each other to both double the bandwidth to 25 MHz and increase the slew rate to $100-140 \mathrm{~V} / \mu \mathrm{sec}$.

USING THE AD518
The connection scheme employed when using the AD518 is considcrably more important than for low frequency, general purpose amplifiers. The primary purpose of the $0.1 \mu \mathrm{~F}$ bypass capacitors shown in Figure 6 is to convert the distributed high frequency ground to a lumped single point (the $\mathrm{V}+$ point). The $\mathrm{V}+$ to $\mathrm{V}-0.1 \mu \mathrm{~F}$ capacitor equalizes the supply grounds,
while the $0.1 \mu \mathrm{~F}$ capacitor from $\mathrm{V}+$ to signal ground should be returned to signal common. This signal common, which is bypassed to pin 7, is defined as that point at which the input signal source, the feedback network, and the return side of the load are joined to the power common.
Note that the diagram shows each individual capacitor directly connected to the appropriate terminal. In addition, it is suggested that all connections be made short and direct, and as physically close to the can as possible, so that the length of any conducting path shared by external components will be minimized.

Figure 6. General Purpose Connection Diagram

NULLING THE AD5 18

OTHER IC HIGH SPEED AMPLIFIERS AVAILABLE
AD505 Slew Rate of $120 \mathrm{~V} / \mu \mathrm{sec}$ min Bias Current of 25 nA max Offset Voltage Drift of $15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max
AD507 35 MHz Gain Bandwidth
Slew Rate of $25 \mathrm{~V} / \mu \mathrm{sec}$ min
Bias Current of 15 nA max
Offset Voltage Drift of $15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \max$
AD509 Settles to 0.01% in $1 \mu \mathrm{sec}$
Settles to 0.1% in 200 nsec
Slew Rate of $100 \mathrm{~V} / \mu \mathrm{sec}$ min

[^0]: Note: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Anolog Devices for its use; nor for any infringements of patents or other rights granted by implication or otherwise under any patent or patent rights of Analog Devices.

[^1]: *Guaranteed by design, not tested.

