ID-7024 2K static
Non-volatile ram Module
Dansk Data Elektronik ApS

ID-7o24 $2 k$ STATIC NON-VOLATILE RAM MODULE
 for the
 ID-7ooo MICROPROCESSOR SYSTEM

August 1977

1. Introduction

ID-7o24 is a $2 k-8$ bit static vriteable memory module. The memory chips used are INTERSIL IM6518. The contents of the memory can be writeprotected by means of a switch on the module or by a software instruction. The module contains power down protect logic which write protects the memory module 2 ms after an active signal on the power-loss line. When power returns the system generates a RESET signal, which makes it posible to open or close the memory module for writing by a software instruction. The module contains Ni-Cd batteries which can supply the memory for about 80 hours, and the module contains a charger which can recharge the batteries in about 2 hours.

2. Description

2. 1 Addressing the module

This module uses 2 k consecutive addresses of the possible 64 k memory. The address of the module is set by a 5bit switch register on the board.

The bits on the address bus are used in the follewing manner.

$\operatorname{ADR}(15: 11)$	determine if the actual memory board is selected. This happens if $\operatorname{ADR}(15: 11)$ and the manual switch register are identical.
ADR (10)	selects one of two lk memory banks
ADR (9:0)	select one 8bit word from the addressed memory board

2.2 Writeability of memory

The memory can be urite protected by means of a switch on the module. This way of protection overrides a software instruction which vould open the memory for writing. If writing is enabled by the switch, the writeability is controlled by a flip-flop set by an OUT-instruction. The controlling bit is DATA(o). A DATA(o) = lopens the memory for writing. The setting of the flip-flop is lost during pover off. Therefore, the flip-flop must be set to the desired value after pover- up.

When AC power is lost the pover supply can deliver power for some ms in order to allow time for the system to shut down. The AC pover loss is signalized by the bus line POVER LOSS and this line must be connected to the interrupt system in order to activate the softvare routines that can store registers and data in the non-volatile portion of memory. The POWER LOSS signal is used on the module to close the memory for writing 2 ms after the signal. This is done to prevent destruction of the content of the memory by false signals on the bus when pover drops below 4.75 V . This security protection disapears 2 us after the pover-up RESET signal is deactivated.

2.3 Addressing the memory protect flip-flop

As described in 2.2 the memory can be write protected by means
of an OUT-instruction. The $I / 0$-address of the module is set
by two sets of switch registers. A complete $I / 0$-address requires a specification of 8 bits, but to reduce the number of switches a special way of setting the $I / 0$-address is used:

The 5 LSB of the $I / 0$-address are taken from the switch register specifying the 5 MSB of the memory address, and the 3 MSB of the I/O-address are set by the second suitch register.

2.4 Switch registers

The suitch registers are situated in the upper middle of the module. The l. suitch register determines which $2 k$ addresses of memory the module incorporates and the 5 LSB of the I/O-address. The 2. suitch register determines the 3 MSB of the $\mathrm{I} / 0$-address. The memory protect switch is situated to the right of the l. switch register. To the right of the. 2. switch register a switch for the battery is placed. The switch should be in the off position when the module is not in use.

2.5 Batteries and charger

The module contains 4 Ni -Cd cells which can supply the memory for about 80 hours. The charger can recharge the batteries in about 2 hours and the batteries are kept fully charged as long as pover is supplied to the module. The chargers characteristics, e.g. recharge current and maximum battery voltage are set by two potentiometers in the upper left corner of the module. The one to the left is controlling the maximum battery voltage which is 6.0 V , and the other controls the charge current which is loo mA. The charging is stopped when the voltage is 6.0 V and it starts when the voltage has dropped to 5.6 V .
appendix 1.1

