

Author:

MIKADOS

Principles of Operation

Dansk Data Elektronik ApS

Rolf Molich

21 September 1979

Copyright 1979

Dansk Data Elektronik ApS

MIKADOS - Principles of Operation

Table of contents

Introduction

General remarks

2.1

2.2

2.3

System modules

Static system entry points

2.2.1 File system routines

2.2.2 Main storage administration routines

2.2.3 Miscellaneous routines

2.2.4 MIKADOS data area

Accessing system control blocks

Synchronization and communication between processes

3.1

3.2

3.3

Semaphore and message format

Symbolic ressources

Monitor utility routines

Process control

4.1

4.2

4.3

Ay

The ready queue

The process control block

Other important process related data

Standard priority assignments

The file system

5el

5.2

5+3

5.4

5.5

General remarks

The dise description table

Dise layout

5-3-1 The label sector

5.3.2 The catalog

5.3.3 The file area

File format

5.4.1 Record format

The file control block O
o

u
vu

o
n
u
w
w
u

w
w

O
o

O
N

n
U

F
e
w

PF

MIKADOS - Principles of Operation 0.2

= —— — : = =e dde = =

i 6. Driver structure 6.1

6.1 Wait for flag transfer 6.2

I 6.2 Interrupt controlled transfer 6.4

6.3 Interrupt handlers 6.6

| 7. Main storage administration 7.1

7.1 Dynamic data allocation 7.1

| 7.2 Main storage administration process 7.2

7.2.1 Start a process 7.3

| 7.2.2 Terminate a process (EXIT) 7.5

7.2.3 Main storage administration scheduler 7.6

i 8. Program file formats 8.1

| 8.1 Relocatable program file format 8.1

8.1.1 Name record 8.2

8.1.2 Entry point record 8.3

| 8.1.3 External symbol record 8.3

8.1.4 Define base address record 8.4

| 8.1.5 Data record 8.4

8.1.6 Define data area record 8.5

i 8.1.7 Relative address record 8.5

8.1.8 External address record 8.5

J 8.1.9 External byte record 8.6

8.1.10 End record 8.6

i 8.2 Absolute program file format 8.7

Awl

L

i

i

i

i

|

Appendix A. Summary of manual changes

MIKADOS - Principles of Operation

i

i

i

i

i

i

I

1. Introduction

MIKADOS is a modular multiprogrammed real-time disc operating

system for the ID-7000 and SPC/1 microcomputer systems

manufactured by Dansk Data Elektronik Aps.

This manual contains a description of the internal MIKADOS

system structure. The information in this manual enables the

user to write application programs utilizing internal system

information (such as new file system subroutines), and to make

minor changes in the operating system, e.g. to modify an

existing device driver or to write a new one.

The reader of this manual is expected to have a good knowledge

of the MIKADOS system specifications as contained in the

manual "MIKADOS User’s Guide" from Dansk Data Elektronik ApS.

This manual corresponds to MIKADOS version 3. september 1979.

This manual is a part of the MIKADOS System Generation Option.

The information contained in this manual is confidential. The

purchaser of a system generation option shall not reproduce,

duplicate, copy or otherwise disclose, distribute or disse-

minate parts of this manual in any media.

Dansk Data Elektronik ApS reserves the right to change the

specifications in this manual without warning. Dansk Data

Elektronik ApS is not responsible for the effects of

typographical errors and other inaccuracies that may exist

in this manual. Dansk Data Elektronik Aps cannot be held

liable for the effects of the implementation and use of the

structures described herein.

MIKADOS - Principles of Operation

2. General remarks

The MIKADOS system consists of a basic system monitor (process

scheduler, routines for message switching etc.), a number of

processes (device drivers, main storage administration and

operator communication), a number of utility routines (file

system, arithmetic routines etc.) used internally by MIKADOS

but in many cases accessible to the application program

writer, and a data area.

The MIKADOS system modules may be combined into MIKADOS

systems with various characteristics using a procedure called

system generation, described in the manual "MIKADOS System

Generation". Among the parameters that may be varied are

number of user processes, number and type of device drivers,

and hardware characteristics for target computer.

2.1 System modules

A standard MIKADOS system consists of the following modules:

MIKM MIKADOS main program;

defines the contents of the interrupt addresses

(addresses 0 through 3F); controls the loading of all

other MIKADOS modules; defines console and printer i/o

ports. ,

MONIT basic system monitor;

SENDs and RECEIves messages, handles general semaphore

operations (SIGNL and WAIT), performs process

scheduling (the process scheduling algorithm is

described in section 2.8 of the MIKADOS User’s Guide);

includes the dummy process which always executes a

“JMP $° instruction.

MIKADOS -— Principles of Operation

 ———— z Sees A,

=—pee

CLOCK

PRIND

PRINI

PRINQ

DISCD

PLATB

CONS

CONSA

CONSB

CONSM

UTIL

monitors the system clock;

measures time intervals corresponding to messages

sent to the SLEEP semaphore (see "MIKADOS User’s

Guide", section 3.1.1); updates the real time clock.

printer driver for the Data 100 model 3400 printer or

similar Centronics parallel interface compatible

printer.

printer driver for serial interface printer.

printer driver for Qume model 3/45 printer.

disc driver (all disc models).

disc description table (see section 5.2).

console driver (all console terminal models).

console interrupt routine (ID-7004 interface).

console interrupt routine (ID-7012 interface or SPC/1

console port).

macro file which defines console driver process data

area layout and terminal dependent control character

values (cursor up, enter, break etc.).

a collection of standard resident subroutines;

INVH, INVD, INVB, TESTH, MUL, DIV, ASCII, BIDEC,

FAINI, FAINH, LBSKD, VENTS, VENTH, VSEND, ASEND,

VENTT, MOVE, MOVEB, MOVED, and EOLIN described in

"MIKADOS Utility Programs and Subroutines",

OUT1, OUT2, IN1, IN2, BSELC, and BKTST described in

section 2.2.2 and 2.2.3 of this manual.

MIKADOS - Principles of Operation 2.3

m
R
H
h
H
h
m
H
m
H
H

H
m
m
m

O
O

O
O

l
e

FILS2

FILS3

FILS4

FILS5

FILS6

RESSA

DATAA

HLADM

HLAD1

OPKOM

file system OPEN routine.

file system CLOSE routine.

file system READV and WRITV routines (sequential

read/write).

file system READ and WRITE routines (direct read/

write).

file system CREXT routine (create file extent).

a collection of standard resident file system

subroutines, described in section 2.2.1

ressource administration; subroutines RESRV and RELSE.

data administration; subroutines ALLOC and DELOC.

main storage administration process;

handles all “start process” and “terminate process”

requests.

main storage administration utility subroutines;

EXIT (see section 7.2.2) and HLSND (see section 2.2.2).

operator communication process;

processes console terminal commands; performs auto-

matic start-up of program “START at system start-—

up time if this option was selected during system

generation.

MIKADOS - Principles of Operation

INIT MIKADOS initialization routine;

called directly from MIKM after system start-up;

initializes process control blocks according to a

local table, initializes POOL and all semaphores,

initializes the symbolic ressource data area and

the area administered by the data administration.

MDATA common data area;

all process control blocks, message semaphores,

general semaphores, message buffers, console data

areas, and data administration area; all other data

areas are defined locally as RAM data in the

corresponding modules and linked into one contiguous

data area by the MIKADOS linker.

SYMB macro file which contains all symbolic constants

(error codes and control block offsets) used by

MIKADOS.

COND macro file which defines all parameters used to

control the conditional assembly during a MIKADOS

system generation (see “MIKADOS System Generation”).

2.2 Static system entry points

The MIKADOS system contains a number of static entry points

described neither in the "MIKADOS User’s Guide" nor in the

"MIKADOS Utility Programs and Subroutines" manual. These entry

points are described in the following sections.

MIKADOS - Principles of Operation

2.5

File system routines

BASIR

BCAIM

ENSNV

FRIIF

releases the ressource “$BASIS--xx” (see section 5.3.1

and 5.3.2) corresponding to the disc described by the

file control block pointed at by (HL);

exit: (A) result code returned by RELSE.

reserves the ressource “$BASIS-xx” (see section 5.3.1

and 5.3.2) corresponding to the disc described by the

file control block pointed at by (HL). (C) must

contain the subparameter required by RESRV;

exit: (A) result code returned by RESRV.

stores the contents of the B, C, and A registers in

addresses (M) through (M+2) (track/sector address).

locates a file name in a given catalog sector;

entry: (HL) -> first character in file name

(DE) -> start of catalog sector buffer

(A) 0 stop search if deleted or empty

file pointer found

1 stop search if empty file pointer

found; ignore deleted file pointer

exit: (A) 0 search stopped by deleted or empty

file pointer

-1 file pointer not found

1 file pointer found

(HL) -> file pointer in buffer.

initializes the buffer in the file control block

pointed at by (HL) to the contents of the sector

at the start of the available area on a disc (see

section 5.3.3).

MIKADOS - Principles of Operation

FYLDB moves the contents of (M) through (M+2) to the C,

B, and D registers (track/sector address).

GEMIB stores the contents of the (DE) register in address

(HL)+(BC).

HASH computes the hash value corresponding to a file name

(see section 5.3.2);

entry: (HL) -> file name followed by file type (9

characters)

(DE) -> dise description

exit: (DE) hash value; the hash value is a number

between 0 and (number of catalog groups-1l).

KTS@G searches the catalog for a file name;

entry: (HL) -> file control block

(A) 0 stop search if deleted or empty

file pointer found

1 stop search if empty file pointer

found; ignore deleted file pointer

the subroutine uses bytes ANDET through ANDET+4

in the file control block for intermediate results

(see section 5.5)

exit: (A) 0 search stopped by deleted or empty

file pointer

1 file name located

-1 catalog full; file name not found

other values: error codes from UDIND

(HL) -> file pointer

(BCD) track/sector address of catalog sector

where file pointer is located.

MOVE3 moves 3 characters from the location pointed at by

(DE) to the location pointed at by (HL); (DE) and (HL)

are both increased by 2 (used for moving track/sector

addresses).

MIKADOS - Principles of Operation

PLADR

PLADS

searches the dise description table (see section 5.2)

for a dise identification;

entry:

exit:

(DE)

(HL)

(A)

dise identification; (E) always “P”

-> file control block

0 if disc identification legal

otherwise error code UPLAD

if the disc identification is legal, the PLBET

field in the file control block will point at

the disc description corresponding to the disc

identification.

adds the number of sectors in (HL) to the track/sector

address in (BCA); the resulting track/sector address

is returned in (BCD);

on entry (DE) must point to a file control block

whose PLBET field contains a pointer to the disc

description for the dise in question.

checks if there is room for a new file on a disc;

entry:

exit:

(HL)

(DE)

(A)

=-> file control block;

the BASIS field in the file control

block must contain the new file size;

the file control block buffer must

contain the label sector for the disc

in question

-> dise description

0 if ok, otherwise error code EJPLD

(BCD) track/sector address of new start of

(E)

available area on disc

1 if dise full after allocation

0 if disc not full after allocation.

MIKADOS -— Principles of Operation 2.8

PLLES reads the label sector into a file control block

puffer;

entry: (HL) -> file control block

the PLBET field must point to the disc

identification of the disc whose label is

to be read

exit: (A) result code from UDIND.

RLEAS releases the ressource corresponding to a file;

entry: (HL) -> file name

(HL)+PLBET must point to the disc

identification of the dise where the

file is expected

exit: (A) result code from RELSE.
RSRVR reserves the ressource corresponding to a file;

entry: (HL) -> file name

(HL)+PLBET must point to the disc

identification of the disc where the

file is located

(C) reservation type code to RESRV

exit: (A) result code from RESRV.

SKRIV writes the first sector in the file control block

buffer onto the disc;

entry: (BCD) track/sector address where sector is

written

(HL) -> file control block

exit: (A) result code from UDIND.

TAGBC moves two bytes from the address pointed at by

(HL)+(BC) to the address pointed at by (DE)

MIKADOS - Principles of Operation

S
e

e
e

ae

ae

ee

e
e

ae

hm
e

a
a

a
ae

ae

ee

es

O
e

changes the address of the next available track/sector

contain the label sector for the disc in

sector on dise before allocation = start

ENDR

in the label sector for a disc and writes the label

sector back onto the disc;

entry: (BCD) track/sector address of first available

sector on dise after allocation

(HL) -> file control block;

the file control block buffer must

question

exit: (A) result code from UDIND

(BCD) track/sector address of first available

sector on dise after allocation

(HLE) track/sector address of first available

of new file.

2.2.2 Main storage administration routines

BKTST tests if a buffer lies partly or completely within the

bank switch area;

entry: (HL) -> buffer start

exit: (CY) 1 if buffer start >= bank switch area

start - 100

0 otherwise;

the starting address for the bank switch area is

defined during system generation (BKLIM in module

COND).

BSELC determines the bank corresponding to the process

whose main or auxiliary semaphore is pointed at by

(HL) on entry; the bank is selected and connected

to the process by issuing a ~ OUT BANKR® instruction,

by storing the bank select code in BANKI (see section

Po

MIKADOS - Principles of Operation 2.10

4.3), and by placing the bank select code in the PKBNK

field of the process control block for the calling

(active) process; the bank select code is returned in

(A); (BC) is not changed by BSELC.

This subroutine is used by all device driver processes

in bank switched systems to ensure that the buffer

area of the calling user process is permanently

available during the processing of an i/o request.

HLSND sends a message to the main semaphore of the main

storage administration process;

entry: (A) request code

(BC) address of answer semaphore
2.2.3 Miscellaneous routines

IN1 inputs (A) from i/o port (E); note l.

IN2 inputs (A) from i/o port (E)+1; note 1.

OUT1 outputs (A) to i/o port (E); note 1.

ouT?2 outputs (A) to i/o port (E)+1; note l.

Note 1: before calling subroutines IN1, IN2, OUT], oUT2 the

interrupt system must be disabled using a DI instruction; upon

return from these subroutines a EI instruction must be

executed.

 MIKADOS - Principles of Operation

 2.2.4 MIKADOS data area

ACTIV

ASEMA

BANKI
CxMES

DIMES

DISEM

HLAKT

HLMES

HVENT

MIKSL

OPMES

P1MES

RUNN

start of ready queue (see section 4.1)

general semaphore used to reserve arithmetic

processing unit (APU) in COMAL systems

current bank mask (see section 4.3)

main semaphore for console driver x (x = 1,2,+++)

main semaphore for disc driver

general semaphore used for communication between

disc interrupt handler and dise driver process

see section 7.2

main semaphore for main storage administration process

see section 7.2

end of MIKADOS data area

main semaphore for operator communication process

main semaphore for printer driver

pointer to process control block for active process

(see section 4.3); also start of MIKADOS data area

MIKADOS - Principles of Operation

2.3 Accessing system control blocks

When addressing data fields in a system control block (process

control block, file control block etc.) the user should always

use symbolic offsets to ensure that his programs will run

under future versions of MIKADOS. The symbolic name for each

field offset is given in the control block descriptions in

the following chapters. The symbolic names are defined in an

assembler macro file called “SYMB”, which is delivered as a

part of each MIKADOS system.

Example: increasing the priority of the current process should

be done with the following sequence

LHLD RUNN 3see section 4.3

LXI D,PRIO ;do not write LXI D,4

DAD D

DCR M ;increase priority by

; decreasing value

 MIKADOS - Principles of Operation 3.1

n
e
e

e
l

r
l
U
c
r
a
e
e
l
C

r
O
l
U
r
U
l
C
e
e
l
l
C
e
e
e

e
e
e

e
l
l
i
s

3. Synchronization and communication between processes

MIKADOS processes may exchange information and achieve

synchronization by communicating via messages or general

semaphores as outlined in chapter 2 of the "MIKADOS User’s

Guide".

The MIKADOS system monitor and in particular the MIKADOS

synchronization and communication routines are based on the

MIK system devised and programmed by Bodil Schr¢der, Institute

of Datalogy, University of Copenhagen, in May. 1975. A thorough

discussion of the theoretical background and ideas behind this

system is given in the report "MIK - et korutineorienteret

styresystem til en mikrodatamat" ("MIK - a coroutine oriented

control system for a microcomputer"), which is available from

the Institute of Datalogy.

3.1 Semaphore and message format

The format of a general or message semaphore is:

byte 0 semaphore value (see below)

byte 1 number of elements waiting for semaphore

byte 2 - 3 pointer to first element waiting for semaphore

(undefined if no elements are waiting)

byte 4-5 pointer to last element waiting for semaphore

(undefined if no elements are waiting)

The value of a general semaphore may be 0, 1, 2, «+., and the

number of elements is always the number of processes waiting

for the general semaphore. If processes are waiting for the

semaphore the value of the semaphore will be 0. If no

processes are waiting, the value will be the total number of

SIGNLs minus the total number of WAITs issued to the general

semaphore.

MIKADOS -— Principles of Operation

n
e
e

e
e
e

The value of a message semaphore may be -1, 0 or 1. The

elements waiting for the semaphore may be messages (value

or processes (value = -1). If no one is waiting for the

a w

~~

semaphore the value will be 0.

Process control blocks waiting for a semaphore are chained

using the pointer in byte 0 - 1 of the process control block.

Messages waiting for a semaphore are chained using byte

-2 — -l in the message. Internal MIKADOS message pointers

always point to byte -2 of a message.

The message format is described in detail in section 2.2 of

the "MIKADOS Users Guide".

3.2 Symbolic ressources

The data area describing the reserved symbolic ressources

is not accessible from user programs.

The layout of the data area is as follows:

STADD:: DS 2 s;pointer to byte 10 in first

3 ressource element

LAST:: DS 2 s;pointer to byte 10 in last

3 ressource element

DS 1 , 3;for internal use

RRTA:: DS 1 snumber of active elements,

3; i-e. elements corresponding

3 to a reserved ressource

RRT:: DS RANTL*#RRLEN j;ressource elements

MIKADOS -— Principles of Operation

3.3

The layout of a ressource element is

pyte O- 9 ressource name

byte 10 - 11 pointer to byte 10 of next ressource element

byte 12 flags

bit 0: 1 if reservation exclusive

pit 1 -— 7: number of reservations

The active elements always appear first in the chain of

ressource elements.

The general semaphore RESEM must be reserved before any

access to the ressource elements is made.

3.3 Monitor utility routines

This section describes the MIKADOS Monitor entry points. Note

that some of these entry points are not static.

The queue descriptor used by some of the utility routines must

have the following format:

byte 0 : number of elements in queue

byte 1 - 2: pointer to first element in queue

byte 3 - 4; pointer to last element in queue

Note the similarity between a queue descriptor and a sema—

phore.

MIKADOS - Principles of Operation 3.4

COMM MIKADOS scheduler - see section 4.0;

before jumping to the scheduler the registers

belonging to the active process must be saved on the

stack in the order push psw, push b, push d, push h.

Further, the active process must be entered into a

system queue.

FIRST removes the first element from a queue; the address

of the removed element is returned in (DE);

entry: (BC) -> queue descriptor

exit: (DE) -> removed element

(A) 1 if queue empty (no element removed)

0 if queve not empty.
INTAC enters a process into the ready queue;

entry: (DE) -> process control block

(A) 1 enter process last in queue for

process priority level and set new

time slice in KVANT field

0 enter process first in queue for

process priority level; leave

priority field (KVANT) unchanged

exit: (DE) unchanged.

INTO enters a process control block into a queue;

entry: (BC) -> queue descriptor

(DE) -> process control block

exit: (DE) unchanged.

RECEL see "MIKADOS User’s Guide".

SEND see "MIKADOS Users Guide".

SND2 see section 6.3.

i MIKADOS - Principles of Operation 3-5

see "MIKADOS User’s Guide".

see section 6.3.

see "MIKADOS User’s Guide".

MIKADOS - Principles of Operation

4, Process control

A MIKADOS process is described by a process control block. Any

process in the system will always be in either of two states:

“ready” to execute program instructions or “not ready”, i.e.

inhibited for one of the following reasons:

1) waiting for program to be read into memory (during process

start-up)

2) waiting for a message

3) waiting for a general semaphore

4) inactive (see section 7.2; implemented as waiting for the

general semaphore DEAD, which is never signalled)

The ready processes are given access to the CPU, i.e. made

active, according to their priority. At any time the ready

process with the highest priority (lowest numerical value of

the PRIO field in the process control plock) will be active.

If several ready processes exist at the highest priority

level, the CPU is multiplexed between these processes.

The scheduler operates as follows: Initially, the highest

priority level at which ready processes exist is determined.

The first process at this level in the ready queue (see

section 4.1) is removed from the ready queue and made active.

If this process is still active after the time slice has

expired it is deactivated, and entered at the end of the

priority level queue. The next process in the priority level

queve is then made active etc.

MIKADOS -— Principles of Operation

4.1 The ready queue

The ready queue contains one entry for each legal priority

level in the MIKADOS system. Each entry occupies 5 bytes,

which are used as follows:

byte 0: number of ready processes at this priority level

byte 1-2: address of first ready process control block at

this priority level

byte 3-4: address of last ready process control block at

this priority level (used to enter new processes

at the end of the queue)

The contents of byte 1-4 are undefined if byte 0 is zero.

The first byte in the ready queue has the static entry point

label ACTIV. The entry for priority level N occupies bytes

N*5 through N*5+4 in the queue.

4.2 The process control block

The data structure which contains all internal information

about the execution of a program by a process is called a

process control block (PCB). The layout of a PCB is:

byte O- 1 : pointer to next PCB in the same queue

(ready queue or semaphore queue)

byte 2- 3 (STPIL): pointer to top of stack if process is

not active; meaningless if process is

active

byte 4 (PRIO) : process priority in 4 least significant

MIKADOS - Principles of Operation
4,

bits; 4 most significant bits reserved

for future extensions

byte 5 - 6 (BSKED): pointer to last message RECEIved by this

process; used only by FABUF

byte 7 (KVANT): length of remaining time slice in system

time units

byte 8 - 9 (SBUND): pointer to start of stack area (absolute

bottom of stack)

byte 10 - 11 (STTOP): pointer to end of stack area (STCK1;

absolute top of stack)

byte 12 - 13 (ARBJD): pointer to local data area for process;

used mainly if several processes execute

the same reentrant piece of code

(device driver); 0 if no data area

defined

byte 14 - 15 (KOSEM): pointer to the main semaphore for this

process; 0 if no such semaphore defined

byte 16 - 17 (HJSEM): pointer to the auxiliary semaphore for

this process; 0 if no such semaphore

defined

byte 18 - 19 (PKDIV): local process information; used mainly

, if several processes execute the same

reentrant piece of code (used e.g. by

certain device drivers to store i/o

port addresses)

byte 20 (PKBID): process control block identification

(letter A - Z, a - z); upper case letter

indicates system process (short stack),

lower case letter indicates user process

(long stack)

byte 21 - 22 (PKBNK): bank code used to select this process;

pyte 21 is output to address OFC, byte

22 meant for output to address OFD

(currently not implemented) ;

this field is set by certain device

MIKADOS - Principles of Operation

4, mn

drivers to ensure that the bank

containing the user process i/o buffer

is always selected when the driver is

active (see section 2.2.2, BSELC)

byte 23 - 24 (PKKED): pointer to next PCB in the same main

storage administration chain (see

section 7.2)

byte 25 - 26 (PKBEG): pointer to start of program area

byte 27 - 28 (PKEND): pointer to end of program area

(points at first byte which does not

belong to the program region)

pyte 29 - 31 (PKPRG): track/sector address of program file + 1

(points at first sector containing code)

byte 32 - 33 (PKPLA): pointer to disc descriptor for disc

containing program file

byte 34 (STCK1): absolute top of stack (contents of this

byte always FF, used to detect stack

overflow)

The process stack is located immediately after the process

control block area. The length of the stack is SSTKL bytes

for system processes, and BSTKL bytes for user processes.

The bottom of the stack (first element pushed on stack) is

located at address (SBUND-2, SBUND-1). The bytes at address

(SBUND) and (STTOP) both contain FF. If a process is not

active the current top of stack, (STPIL), contains the (HL)

register for the suspended process while

(STPIL) + 2 contains (DE)

(STPIL) + 4 contains (BC)

(STPIL) + 6 contains (A) and flags

(STPIL) + 8 contains address of next instruction to

be executed by process

MIKADOS - Principles of Operation 4.5

4.3. Other important process related data

RUNN always contains a pointer to the active PCB. The standard

sequence to access a field in the process control block of the

active process is

LHLD RUNN

LXI D,symbolic field name

DAD D 3;HL now points to the first

; byte in the field
2

BANKI always contains the bank select pattern used to select

the bank in which the active process is running.

4.4 Standard priority assignments

The standard system is configured with 10 priority levels in

the ready queue. The number of priority levels may be changed

(maximum 16) without problems (change AKTIV in MONIT, and

MAXPR in SYMB) but the resulting MIKADOS systems will not be

standard systems.

Priority

level

0

1

2

used by

clock process

all console driver processes

printer driver process; also used by user

processes during EXIT (see section 7.2.2)

main storage administration process

operator communication and certain user

processes (XREF during initiation to ensure

that XREF always runs before any other

MIKADOS

- Principles of Operation
4.6

scheduled process)

user processes (EDIT after initiation)

user processes (standard level after initiation

by OPKOM or MONITOR)

cpu bound processes (XREF after initiation) and

dise driver (disc driver only required to be at

this low level if the SYKES subdriver is

included because this driver uses a wait-for-

flag transmission method (active wait))

dummy process

suspension level - any process, may be suspended

by setting its priority to 9 (currently not

used)

MIKADOS - Principles of Operation

i
i
=
I
I
i
I
I
i
I
I
i
I
I
I
I
I
I
I
I
|

5. The file system

This chapter contains a detailed description of the MIKADOS

file system.

Section 5.2 describes the disc description table, which

contains a description of the dise units accessible from

a MIKADOS system by means of the disc driver.

Section 5.3 describes the disc layout, i.e. the label sector,

the file catalog structure and the general file structure.

Section 5.4 describes the detailed file format.

Section 5.5 describes the file control block, which is a data

area used by all file system routines to store information

about absolute file addresses and file characteristics. The

file control block also contains a buffer used to block and

unblock records from disc sectors.

5.1 General remarks

An absolute track/sector address on a disc always occupies

3 bytes. The first two bytes indicate the track number (least

significant byte first) while the last byte contains the

sector number.

All MIKADOS read/write operations from/to a dise are performed

using the UDIND routine described in the "MIKADOS User’s

Guide".

The dise driver consists of 4 parts:

MIKADOS - Principles of Operation
5.2

1) the main driver which receives disc i/o requests from

other processes, checks their validity using the disc

description table, and converts them into one or more sub-

driver calls

2) one or more subdrivers which are capable of performing one

contiguous read/write operation on 4 specific dise type

(including head positioning and error retry)

3) an interrupt routine which distributes disc interrupts
to the appropriate subdrivers

4) the disc description table which contains physical and

logical information about the type and structure of a

dise

5.2 The disc description table

The disc description table contains a logical and physical

description of the disc units accessible from a MIKADOS system

by means of the dise driver.

The disc description table starts at address PLTAB (accessible

as a nullfile). The table format is:

PLTAB: >DB number of elements in table

DB 0 sreserved for future use

3

DS PLSTR ;description of dise 1

DS PLSTR ;description of disc 2

DS PLSTR sdescription of last disc

MIKADOS

- Principles of Operation 5-3

The number of bytes from PLTAB to the start of the first disc

description has been equated to the symbol PLTB1; the current

value of PLTB1 is 2.

The description of a disc, an area of length PLSTR bytes,

contains the following information:

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

o- 1

- 3

4- 5

6
1

8- 9

10

ll

12

13

(PSPOR)

(KGRUP)

(SPRGP)

(ASPSP)

(SUBDR)

(FPLID)

(DSCID)

(OPTIO)

dise identification: “Px” where “x”

is an ASCII digit (1-9)

number of logical tracks on disc

number of catalog groups - 1; number

of catalog groups must be a power of 2

number of sectors in a catalog group

number of sectors per logical track

address of subdriver entry point

physical disc identification (subdriver

dependent)

dise type identification

“p* — Pertec cartridge disc

“RF — Sykes floppy disc

“M” ~ BASF mini disc

“BY — BASF dise

currently not used

transfer characteristics for subdriver

bit 7: 1 if read-after-write test must

be possible (number of sectors

‘transferred should not exceed

length of auxiliary buffer)

bit 6: 1 if a subdriver request may

extend beyond the end of a track

bit 5: 1 if a subdriver request may not

involve crossing the middle of

a track

bit 4-0: currently not used

MIKADOS - Principles of Operation

5.4

5.3 Dise layout

A disc contains a label sector (always track 0, sector 0), a

catalog, and a file area.

5.3.1 The label sector

Track 0, sector 0 of a logical disc always contains the label

sector, which among other information contains the disc label

and the address of the first available track/sector on the

disc.

The symbolic ressource “$BASIS--xx~, where “xx” is the logical

disc identification (e.g. “P2°), must be reserved before any

access to the label sector is made. This ressource must be

reserved exclusively if the label sector is to be written or

updated. The MIKADOS system routines always wait for this

ressource if it is not immediately available.

The label sector contains the following information:

byte 0 - 9 (PLIDN) MIKADOS initialization program iden-

tification (“PLADELAGER”)

byte 10 - 12 (LEDIG) track/sector address of first unused

sector on disc

byte 13 - 17 (PLART) disc type; 5 ASCII characters, last

character indicates master disc (“*")

or back-up dise (70%)

byte 18 - 27 (PLDTO) date when last back-up of disc was

taken

byte 28 - 37 (PLBTG) disc name; 10 ASCII characters

byte 38 - 47. (PNUDA) date of last system startup (only if

disc mounted in Pl)

MIKADOS -— Principles of Operation

 |

5.3.2 The catalog

The disc catalog starts immediately after the label sector,

i.e. in track 0, sector 1. The size of the dise catalog is

given in the disc description table (number of catalog groups

® number of sectors in a catalog group).

The symbolic ressource “$BASIS--xx”, where “xx” is the logical

dise identification (e.g. “P3°), must be reserved before any

access to the catalog is made. This ressource must be reserved

exclusively if the catalog is to be updated. The MIKADOS

system routines always wait for this ressource if it is not

immediately available.

The catalog is indexed using a hashing scheme. The hash value

is computed by applying a hashing algorithm to the file name

(including file type). For details about the hashing algorithm

consult a listing of the HASH subroutine in the FILS6 module.

The computed value is used to index a catalog group where the

search for the file name starts.

A catalog group consists of one or more sectors as defined in

the dise description table. A catalog sector contains 19 file

pointers of 13 bytes each. The last 256-19*13 = 9 bytes are

unused. The format of a file pointer is:

byte O- 7 file name; if byte 0 is 0 or 1 then the file

pointer is available (0 - empty, 1 - deleted)

and bytes 1 - 12 have no significance

byte 8 file type

byte 9 the ASCII character A (extent code for first

extent)

byte 10 - 12 track/sector address of first sector in file

(nullfiles: value in byte 10 - 11, byte 12 not

used)

MIKADOS - Principles of Operation

5.6

The search for a specific file continues until the file is

found or until the first empty (byte 0 = 0) file pointer is

encountered (see section 2.2.1, ENSNV and KTS@G).

The search for an available file pointer continues until the

first empty (byte 0 = 0) or deleted (byte 0 = 1) file pointer

is encountered (see section 2.2.1, ENSNV and KTS@G).

Catalog sector boundaries are ignored during a catalog search.

After the last catalog sector has been examined, the search

continues with the first catalog sector until. all catalog

sectors have been searched.

When a dise is initialized all bytes in the catalog are set to

zero. When a file is deleted, byte 0 of the corresponding file

pointer is set to l.

5.3.3 The file area

The file area contains the files described in the catalog.

‘The file format is described in section 5.4. The first

byte and the bytes with offset N&FIL, N&FIL+1 and N&FIL+2

(see section 5.4) in the first sector after the last file

sector on the disc, contain 0.

MIKADOS —- Principles of Operation

 z=

5.4 File format

A file consists of a base file followed by zero, one or more

extents.

The base file and the extents all consist of the same number

of sectors, the extent size. The base file and the extents

all start with a 32-byte MIKADOS file information area

followed by 224 + (extent size - 1)#256 bytes of user

information structured as the user chooses (the record format

is described in section 5.4.1). Extent switching is handled

automatically by the system.

The layout of the MIKADOS file information area is:

byte O- 7

byte

byte

byte 10 (FILUD)

byte 11 - 12 (BASIS)

byte 13 - 15 (FILNE)

byte 16 - 18 (FILFO)

byte 19 - 21 (NEFIL)

byte 25 - 26 (POSTL)

byte 27 - 31

file name; byte 0 = 1 indicates that

the file has been purged; byte 0 = 0

marks the start of the available part

of the file area

file type

extent code (“A” in base file, “B’,

“C’, ... for extent 1, 2, ...)

(only in base file) total number of

extents

number of sectors in base file

= number of sectors per extent)

absolute disc address of next extent

absolute dise address of previous

extent

absolute dise address of next file on

disc

record length defined when file was

created, in bytes

currently not used

MIKADOS - Principles of Operation 5.8

The symbol FBUFF has been equated to the length of the file

information in bytes (currently FBUFF = 32).

During the OPENing or CREATion of a file, MIKADOS reserves a

symbolic ressource corresponding to the file. The first 8

characters of the symbolic ressource name are equal to the

file name, the 9th character is the file type, and the 10th

character is the last character in the disc identification for

the disc on which the file resides. The symbolic ressource is

released by CLOSE.

5.4.1 Record format

The user file area in a direct access file does not contain

any system information, i.e. the first byte in a record

follows immediately after the last byte of the preceding

record.

In a sequential file a user record is preceded and followed

by a byte containing the length of the user record in bytes.

End-of-file is indicated by two subsequent bytes containing

a zero.

The algorithm used to read a sequential record is:

1) examine next byte in file; if zero return with an end-of-

file indication

2) set file control block record length field (PSLGD) to 1;

read next byte (length of sequential record)

3) set file control block record length field (PSLGD) to

sequential record length + 1; read record.

 MIKADOS - Principles of Operation

5.5 The file control block

The file control block is a data area created by an applica-

tion program used by file system routines to store and retieve

information about absolute addresses and characteristics for a

particular file. The file control block is also used to block

and unblock records from disc sectors.

The layout of the file control block is as follows:

byte O- 7 file name

byte 8 file type

byte 9 extent code corresponding to the extent

currently accessed

byte 10 (FILUD) total number of extents

byte 11 - 12 (BASIS) number of sectors in base file

(= number of sectors per extent)

byte 13 - 15 (FILN£) absolute disc address of next extent

byte 16 - 18 (FILFO) absolute dise address of previous

extent

byte 19 - 21 (SEKT1) absolute address of first sector

: currently in the file control block

buffer area

byte 22 (SANT) number of file sectors currently in

buffer

byte 23 (BFLGD) buffer length in sectors

byte 24 (DFLAG) flags

bit 0: 1 - file opened exclusively

0 - file opened for reading only

a WRITE operation has

modified the file contents

(the buffer must be written

back onto the disc)

0 - the buffer has not been

modified

bit 1: = !

MIKADOS - Principles of Operation 5.10

 L

bits 2-7: currently not used

byte 25 - 27 (FILDE) absolute disc address of first sector

in current extent

byte 28 - 29 (NRPST) number of next record to be read/

written (meaningful only for direct

access files); first record in file is

number 1

byte 30 - 31 (NEPST) relative buffer address of first byte

in next record to be read/written

byte 32 - 33. (PLBET) pointer to disc descriptor for dise on

which file resides

byte 34 - 35 (PSLGD) actual record length in bytes

byte 36 - 40 (ANDET) used internally by certain file system

i

i

i

i

i

i

A

i
subroutines

i byte 41 (DKABN) open flag; file control block is open

if this byte contains the 1°s comple-

i ment of byte 0

byte 42 - 44 (FILBA) absolute address of first sector in

| base file

byte 45 - 47 currently not used

| byte 48 - (BFLGD)#256+47 file control block buffer

i

i

i

i

i

i

i

|

The symbol BUFF has been equated to the length of the file

control block information area in bytes (currently 48).

 MIKADOS -— Principles of Operation

 =
 =

6. Driver structure

A MIKADOS device driver processes i/o requests to an external

device (e.g. display terminal, printer, disc). The driver acts

in response to messages received from other MIKADOS processes.

The general message format is described in detail in section

2.2 of the "MIKADOS User’s Guide".

A MIKADOS device driver consists of a driver process and

usually an interrupt handler.

After system start-up the driver process initializes the

device and device interface.

The driver process receives i/o requests from other processes

through its main semaphore and checks the requests for

validity (operation code, buffer length and device dependent

subparameters). If the message is found to be valid the i/o

operation is initiated. Upon completion of the i/o request,

the driver process constructs the resulting status information

and inserts it into the original request, which is then

returned to the answer semaphore.

The interrupt handler, if present, handles all device

interrupts. Upon encountering an interrupt, the MIKM module

immediately transfers control to the start of the interrupt

handler, which is responsible for saving the registers on the

stack, continuing or completing the operation, and

reestablishing the register contents before control is

transferred back to the interrupted process. If an interrupt

signals the completion of an i/o operation, or if other

circumstances so dictate the interrupt handler may invoke the

device driver process to continue or complete the i/o

operation.

MIKADOS - Principles of Operation

The reader of this manual is encouraged to consult the MIKADOS

driver program source listings delivered as a part of the

system generation option for concrete examples of the general

methods discussed in this chapter.

6.1 Wait for flag transfer

This method is used if the device accepts data so fast that

the overhead used in processing interrupts would slow the

device considerably, if the device interrupt scheme is too

complicated to be handled by a reasonably simple interrupt

handler, or if the device is not capable of interrupting the

central processor.

Device drivers using this i/o transfer method do not have an

interrupt handler and do not use the INTEL 8080/8085 interrupt

system.

The transfer takes place with the interrupt system enabled.

The driver process activates the device and waits actively

(without releasing the cpu for use by other processes of lower

priority) until the device has completed the operation, e.g.:

(1) OUT: OUT ADDR ;OUTPUT BYTE

TEST: IN ADDR ;GET DEVICE STATUS

ANT MASK ;TEST IF DEVICE IS READY TO

; ACCEPT MORE DATA

JZ TEST ;JUMP IF THIS IS NOT THE CASE

eee ;GET OR COMPUTE NEXT BYTE TO

eee 3; BE OUTPUT

JMP out ;OUTPUT NEXT BYTE

 MIKADOS - Principles of Operation

t

If it is known that the device takes some time to complete

an operation (e.g. process a particular control byte), the

above construct may be refined in order to avoid excessive

waste of cpu time in the active wait loop:

(2) OUT: our ADDR sOUTPUT BYTE

TEST; LXI H,£10 ;WAIT FOR 100 MS

CALL VENTT ;WAIT UNTIL DEVICE READY

IN ADDR sGET DEVICE STATUS

ANI MASK ;TEST IF DEVICE IS READY TO

; ACCEPT MORE DATA

JZ TEST ;JUMP IF THIS IS NOT THE CASE

wee ;GET OR COMPUTE NEXT BYTE TO

wee ; BE OUTPUT

JMP OUT ;OUTPUT NEXT BYTE

In order to ensure fast servicing of the device the wait time

should be approximately one third of the expected total device

processing time if the device processing time is unknown to

the driver process. If the exact device processing time is

known, the wait time should be set to the closest value

greater than the device processing time.

Of course, methods (1) and (2) may be combined, using

method (1) to transfer data bytes and method (2) to transfer

control bytes as demonstrated by the following example.

The Data 100 printer driver (PRIND) uses this method. All

bytes except CR are transferred using method (1). The CR byte,

which starts the printer, is transferred using method (2) with

a wait time of 80 ms. This driver also takes advantage of the

fact that after the CR byte has been transferred the whole

output line is stored in the internal printer buffer, i.e. the

answer message may be transmitted to the user, who may use the

wait time used to print the current line to prepare the next

line (double buffering).

MIKADOS -— Principles of Operation 6.4

i
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
|

The Qume printer driver (PRINQ) also uses this method but in a

different way. The Qume printer possesses an internal buffer

which is used to store the next 16 commands to be executed by

the printer. The time to store a command in the internal

buffer is 1000 microseconds or less, while the time required

to execute a command is of magnitude 10 ms, i.e. the time to

empty the buffer is 150 ms or more. The driver uses method (1)

to transfer data until the waiting time to transfer one byte

exceeds 1 ms. When this situation occurs the driver waits for

150 ms before attempting to transfer another byte.

6.2 Interrupt controlled transfer

In this method the INTEL 8080/8085 interrupt system is used to

signal the completion of an operation by an external device.

The device driver process must initiate the i/o operation and

enable the interrupt level corresponding to the device inter-

face before waiting for an interrupt message. This must be

done using the sequence (for standard INTEL 8080 levels):

DI ;INTERRUPT MASK SHOULD BE

MODIFIED ONLY WHILE INTERRUPT

SYSTEM DISABLED

2

2

IN INTRP ;READ OLD INTERRUPT MASK

, ; INTRP = OFE - DEFINED IN SYMB

ORT LEVEL ;TURN ON APPROPRIATE BIT

; (BIT “N°” ENABLES LEVEL “N”)

OUT INTRP ;OUTPUT NEW MASK

EI

MIKADOS - Principles of Operation 6.5

“
S
T

S
e

ee

ee

ee

ee

a
.

ee

he

me

me

me

=

—

or the sequence (for the special INTEL 8085 levels):

DI
RIM ;READ 8085 INTERRUPT MASK

ANI MASK ;PRESERVE OTHER LEVELS

ORI LVL ;LEVEL 5.5, LVL = 08, MASK = 06

[LEVEL 6.5, LVL = 08, MASK = 05

:LEVEL 7.5, LVL = 08, MASK = 03

SIM ;SET 8085 INTERRUPT MASK

EI

The driver is notified by the interrupt handler about the

occurrence of an event which requires driver process action

by a message (slow, but with possibility for transferring

information; example: console driver, printer driver), or by a

signal to a general semaphore (fast; example: dise driver).

The driver process must always receive its messages from the

interrupt handler using the auxiliary semaphore. The auxiliary

semaphore may also be used to receive timer messages thus

implementing a time out facility (not implemented in any

current MIKADOS driver). The communication between interrupt

handler and device driver process is discussed in section 6.3.

After the transfer is completed, the disc driver process or

the interrupt handler must reset the interrupt level to

prevent spurious interrupts.

MIKADOS - Principles of Operation 6.6

6.3 Interrupt handlers

When an interrupt occurs, the microprocessor disables the

interrupt system (corresponding to a “DI” instruction), stacks

the address of the next instruction to be executed and conti-

nues execution at an address determined by the interrupt

level.

The contents of the addresses corresponding to the interrupt

levels is determined by the MIKM module. Usually, control is

immediately transferred to the appropriate interrupt handler,

which is responsible for all further processing of the

interrupt.

the stack. If the interrupt routine calls the MIKADOS process

scheduler (COMM) the registers must be saved in the standard

order

PUSH PSW

PUSH B

PUSH D

PUSH H

Otherwise only the registers used by the interrupt handler

need to be saved (in any order).

The interrupt handler may signal to a semaphore using the

sequence

LXI B,SEMA ;POINTER TO GENERAL SEMAPHORE

CALL SIG2 ;SIGNAL - NOTE: NOT CALL SIGNL

| The interrupt routine must start by saving the registers on

MIKADOS - Principles of Operation 6.7

=== (KP =

The interrupt handler may send a message to the driver process

using the sequence

LXI B,POOL ;GET A MESSAGE BUFFER

INX B

CALL FIRST

i

|

i

|

|

i INZ ERROR ;ERROR EXIT IF “POOL” EMPTY

_ ;(DE) POINTS TO BYTE -2 IN

i | _ ; MESSAGE BUFFER
_ ;LOAD MESSAGE CONTENTS

| XCHG ;POINTER TO MESSAGE NOW IN (HL)

LXI B,SEMA ;POINTER TO AUX SEMAPHORE IN
; DRIVER PROCESS

| CALL SND2 «SEND - NOTE: NOT CALL SEND

i

i

i

i

i

i

i

i

i

i

|

After a call to SIG2 or SND2, (A) will be non-zero if the

MIKADOS scheduler should be invoked.

After performing the necessary operations the interrupt

handler returns control to the system. If the driver has

not made any system calls and if the registers were saved in

standard order, execution of the active process is resumed

with the sequence:

POP H ;RESTORE REGISTER CONTENTS

POP D ;

POP B

POP PSW

EL

RET

MIKADOS - Principles of Operation 6.8

i
i

i

i

i

i

{

i

i

i

i

i

i

i

i

i

i

i

i

|

If the driver has made

notified by the system

((A) <> 0 after call of SIG2 or SND2) the following sequence

should be used instead:

LHLD

XCHG

SUB

CALL

JMP

one or more system calls, and has been

that rescheduling is necessary
RUNN ;INSERT ACTIVE PROCESS IN

3 READY QUEUE

A

INTACG

COMM ; INVOKE SCHEDULER

MIKADOS - Principles of Operation 7.1

7. Main storage administration

7.1 Dynamic data allocation

The data area administered by the dynamic data allocation

routines ALLOC and DELOC is located in the MIKADOS data

module (MDATA).

The structure of the data area is:

DLAL1::DS 2 ;pointer to first available data area

; (zero if no such area exists)

DS 2 s;length of this data area (always zero

3; to prevent the allocation of this

3 area)

>

DS 1 ;filler byte - prevents the above area

3; from being combined with the

3 following

5

DLA1:: DS 2 ;data area - size may be choosen during

DLA1A::DS SIZE 3 system generation

MIKSL:> 3end of MIKADOS data area

The purpose of the first 5 bytes is to eliminate the need for

a special case in the allocation/deallocation algorithms if

the whole data area has been allocated.

The structure of an available dynamic data area is

byte 0 - 1: pointer to next available data area with a higher

address than this one (zero if no such area

exists)

MIKADOS —- Principles of Operation

byte 2 - 3: total length of this data area in bytes (including

the pointer and length bytes)

byte 4 and following: undefined

When a data area is released the system always checks if the

data area lies immediately before or immediately after another

available data area. If this is the case the adjoining

available data areas are combined to form one available data

area.

No check is performed concerning the legality of a data area

release, i.e. any memory area may be released.

7.2 Main storage administration process

This section contains a step-by-step description of some of

the most complex activities performed inside the MIKADOS

system, the program scheduling and termination requests

tandled by the main storage administration process.

The main storage administration process maintains two

important queues:

- a queue of waiting processes, i.e. a queue of processes

for which a “start process” request has been received, but

whose corresponding program has not yet been read into

memory. A pointer to the first process control block in

this queue may be found in HVENT.

- a queue of running processes, i.e. a queue of processes that

have executed one or more instructions but who have not yet

issued a “terminate process” request. A pointer to the first

process control block in this queue may be found in HLAKT.

MIKADOS - Principles of Operation 7.3

The processes in these queues are chained using the PKKED

field in the process control block. The PKK&D field for the

last process in a queue contains 0.

7.2.1 Start a process

This operation, which is initiated by a message to the main

storage administration process, comprises the following steps:

1) check if value of requested priority is legal, i.e. less

than or equal to MAXPR, and greater than or equal to MINPR

(MAXPR and MINPR defined in SYMB)

2) check legality of disc identification

3) open program file; exit if OPEN unsuccessful

4) check that MIKADOS ending address (MIKSL) <=

program starting address <=

program entry point address <

program ending address

5) check that file has sufficient sectors to contain program;

number of sectors = (ending address - starting address +

256) / 256 +1

6) check that requested program bank defined during system

generation (BKMSK); if the bank code is zero check that

system was generated without provision for bank switching

(BKMSK=0); a bit in the BKMSK byte is set if the bank

selected by the bit is installed in the computer

MIKADOS - Principles of Operation 7.4

7) (bank switch systems only) connect appropriate bank to

main storage administration process

8) check that program starting address and (program ending

address -— 1) correspond to installed RAM memory

9) check that a passive process control block is available

(internal variable HLT&L > 0); if yes decrease HLT&L by 1,

get process control block from semaphore DEAD, and
increase semaphore value of DEAD by 1

10) initialize new process stack; set registers to zero and

insert program entry point address

11) insert priority and bank code into process control block

12) insert process control block into queue of processes

waiting for start-up (pointer to first process in HVENT,

block); the processes appear in the queue according to

their priority (lowest value of PRIO field first)
13) insert absolute disc address of second sector in program

file into process control block

14) insert main storage limits into process control block

15) execute main storage administration scheduler for the

bank in which the new process should run (see section

7.2.3)

| processes chained using PKKED field in process control

MIKADOS -— Principles of Operation

7-5

i

i

LL

i

i

i

i

a |

i

i

i

i

i

i

|

i

i

i

|

i
:

7.2.2 Terminate a process (EXIT)

A process terminates by calling EXIT. The following describes

the steps taken by MIKADOS to terminate a process. Steps 1 - 3

take place in EXIT, the remaining steps take place in the

main storage administration process.

1) change the priority of the calling process to be higher

than that of the main storage administration process in

order to ensure that the main storage administration

process does not become active during steps 2 - 3

2) send a “terminate process” message to the main storage

administration process

3) issue a WAIT call to the DEAD semaphore; this causes the

calling process to be suspended

4) (this and the following steps are performed by the main

storage administration process)

check the contents of the PKBID field of the process

control block for the process to be terminated; the

field must contain a lower case letter (user process)

5) increase number of available process control blocks by 1

(increase HLTAL)

6) remove process control block from the queue of running

processes

7) execute main storage administration scheduler for bank

in which process was running (see section 7.2.3)

MIKADOS - Principles of Operation 7-6

=¢ 6 =

7.2.3 Main storage administration scheduler

The main storage administration scheduler (subroutine HLLVA,

not externally accessible) is called by the main storage

administration process after each “start process” and

“terminate process” request to check if a waiting process

ean be activated in the bank which was affected by the

operation.

The algorithm is outlined below:

repeat for each process in the queue of waiting processes

if (bank for waiting process = bank where change occurred) then

begin
get main storage limits for waiting process;

ok := true;

repeat for each process in the queue of running processes

if (bank for running process = bank where change occurred) then

begin
compare main storage limits for running and waiting process;

if overlapping then ok := false;

if ok then
begin

read program into memory using disc address in PKPRG and

memory address in PKBEG;

remove process control block fran queue of waiting processes;

insert process control block at beginning of queue of running

processes ;
insert process control block into ready queue;

end;
end;

until all waiting processes examined;

end;

| until (not ok) or (all running processes examined) ;

MIKADOS -—-— Principles of Operation

8. Program file formats

This section describes the data format of various important

types of system files.

Section 8.1 explains in detail the format of a relocatable

file. Relocatable program files are produced e.g. by the

assembler during the assembly of a source program. Relocatable

program files contain sufficient information about a program

to create an executable version of the corresponding program

anywhere in memory. All local program addresses are relative

and all information about external symbols has been preserved.

Section 8.2 contains a description of the format of an

absolute (executable) program file produced by the linker.

8.1 Relocatable program file format

A relocatable file is a sequentially organized type R file.

The file may have extents.

The first byte in a record (after the length indicator)

contains the record type. This byte is followed immediately by

zero, one or more bytes of information.

The record types are described in the following sections.

The first record in a relocatable file will be a Name record.

All Entry point and External symbol records will appear

immediately after the Name record without any records of other

types in between.

A’relative program address in a relocatable program file

consists of 3 bytes:

MIKADOS - Principles of Operation 8.

i

i

§

i

i

i

i

LJ

i

i

i

i

i

i

i

i

i

i

i

i
|

byte 0:

byte 1-2:

8.1.1

address type

01 address is relative to the value contained in

the RAM base register when linking of this

module was started

02 address is relative to the value contained in

the ROM base register when linking of this

module was started

03 address is absolute

address value (relative or absolute as indicated by

byte 0)

Name record

This record defines module name, module length, and execution

start address.

byte

byte

byte

byte

byte

byte 1

type code (2)

1- 8 name of source file used to assemble this program

16- 18

relative address of first byte after ROM section

of program

relative address of first byte after RAM section

of program

execution start address indicator

00 no start address given

FF start address given

(meaningful only if byte 15 = FF)

relative address where program execution should

begin

MIKADOS - Principles of Operation 8.3

= = = = — = =—

t
i

i

i

i

i

q

i

i

i

i

i

i

i

i

i

i

i

i
|

8.1.2 Entry point record

This record describes an externally accessible symbol (entry

point) defined in this module.

byte 0 type code (4)

byte 1- 8 symbol name in ASCII

byte 9-11 address of symbol (relative or absolute)

byte 12 type indicator

08 normal entry point symbol

10 static entry point symbol

8.1.3 External symbol record

Describes a symbol to which references are made in the current

module, but which is not defined within the current module.

byte 0 type code (5) ’

byte 1- 8 symbol name in ASCII

“pyte 9-10 number used to reference symbol throughout this

module. Note: the linker currently does not use

this number but assigns numbers to the external

symbols in their order of appearance starting with 1

byte 11 (not used)

MIKADOS - Principles of Operation

8. 4

 Se —— = = —= = = oh =

 = == = = —— =

8.1.4 Define base address record

Indicates where in the absolute program module the following

code should be placed.

byte 0 type code (7)

byte 1 bit 0-1 new base type

01 RAM

02 ROM

bit 2 absolute base address supplied

1 yes

0 no

byte 2- 3 (meaningful only if bit 2 in byte 1 = 1)

absolute base address

The code is placed either starting at the given absolute

address or, if no absolute address is given, at the position

indicated by the actual value of the RAM/ROM pointer. After

start-up of the linker all code is placed in the ROM section

until the first "Define base address" record is encountered.

8.1.5 Data record

byte 0 type code (8)

remaining bytes are transferred directly to the executable

program file

MIKADOS - Principles of Operation

8.1.6 Define data area record

Defines a data area of the size specified within the program.

The contents of the data area at start-up time are undefined.

byte 0 type code (9)

byte 1- 2 number of bytes in data area

8.1.7 Relative address record

Defines a 2-byte field in the executable program module into

which the absolute address corresponding to the relative

address should be placed.

byte 0 type code (10)

byte 1- 3 relative address

8.1.8 External address record

Defines a 2-byte field in the executable program module into

which the sum of the value of the external symbol and the

binary value is placed.

byte 0 type code (11)

byte 1- 2 reference number of external symbol (see

description in "External symbol record" section)

byte 3- 4 binary value which should be added to the value of

the external symbol

i

i MIKADOS - Principles of Operation

l

i

i

i

I

i

i

i

i

i

i

i

i

i

i

i
|

= : - = = == ce=

8.1.9 External byte record

Defines a l-byte field in the executable program module into

which the sum of the value of the external symbol and the

binary value is placed.

byte 0 type code (12)

byte 1- 2 reference number of external symbol (see

description in "External symbol record" section)

byte 3- 4 binary value which should be added to the value of

the external symbol .

If the binary value falls outside the intervals 0 <= value <=

255, and FF80 <= value <= FFFF the linker will output an error

message and terminate.

8.1.10 End record

Defines the end of the relocatable file. Records following the

end record will not be processed by the linker. If the linker

encounters an end-of-file condition while reading the relocat-

able file it will output an error message and terminate.

byte 0 type code (15)

MIKADOS —- Principles of Operation

8.7

n
a
a
m

E
E

ee

a

8.2 Absolute program file format

An absolute program file is of type 0 - 9. The MIKADOS system

will not load executable programs from files having extents.

The file structure is:

first sector, byte 0 — 31: normal file information, as

described in section 5.

byte 64 - 65: absolute address of program entry

point (symbolic offset HLIND)

byte 66 - 67: program starting address (HLADR)

byte 68 — 69: address of first byte after

program area (HLADR+2)

Sector 2 and the following sectors contain the absolute

program starting in byte 0 of sector 2. The absolute program

is not interrrupted by MIKADOS system information.

i MIKADOS -— Principles of Operation A.l

Appendix A. Summary of manual changes

The following is a summary of the changes that have occurred
in this manual:

21 Sept 1979 original version

|

|

