

 ————————
= ih =

| MIKADOS

J Users Guide

Dansk Data Elektronik ApS

a 15 March 1979

i Author: Rolf Molich Copyright 1978, 1979

Dansk Data Elektronik Aps

MIKADOS User’s Guide 1

Table of contents

1. Introduction

2. Monitor

2.1 Messages and message semaphores

Message format

Send a message

Receive a message

General semaphores

Signal to a semaphore

Wait for a semaphore

Process scheduling

mM

m

mj

Mw

MY

MY
T

NY

Pf

.
.

.

wo
w

M
W
A

n
W
U

F
w

nr

Programming considerations

3. I/0 drivers

3.1 Clock driver

3.1.1 Measuring time intervals

3.2 CRT console driver

3.2.1 Read a character string

3.2.2 Output a character string

3.2.3 Update a character string

3.2.4 Update screen in block mode

3.2.5 Enter block mode

3.2.6 Input screen contents in block mode

3.2.7 Define Break semaphore

3.2.8 Answer message format

3.3 Printer drivers

3.3.1 Logabax printer driver

3.3.2 Data 100 model 3400

3.3.3 Qume model 3/45

3.4 Dise drivers

3.4.1 Subroutine UDIND

MIKADOS User’s Guide

Symbolic resource handling

4.1 Reserve a resource

4.2 Release a resource

General remarks about the file system

5.1 File system structure

5.2 Calling file system subroutines

5.3 The Data Control Block (DCB)

5.4 File identification

5.5 Nullfiles

5.6 Fixed and variable length record files

File system calls

6.1 Create a file

Extend a file

Rename a file

.

2

3

4 Purge a file

5 Open a file

-6 Position a file

T

8

9

1

1

Read a fixed length record

Write a fixed length record

Read a variable length record

0 Write a variable length record

1 Close a file

Main storage administration

7.1 Memory layout

Allocate a main storage area

Deallocate a main storage area

Start a process

Swapping

7.2

7-3

74

7.5 Terminate a process

7-6

7.7 Change swap status for a process

7-8 Subroutines SENDX and FABFX

MIKADOS

User’s Guide

|

8. Operator

Appendix 1.

Appendix 2.

communication

MIKADOS error codes

MIKADOS Bootloader

i MIKADOS User's Guide

1, Introduction
 i

| MIK and MIKADOS are modular multiprogrammed real-time

operating systems for the ID-7000 microcomputer system

| manufactured by Dansk Data Elektronik ApS. The MIK system

is intended for computer configurations without a disc,

while the MIKADOS system is a dise oriented operating

| system, MIK and MIKADOS are compatible.

This manual describes the calling conventions for the

MIK and MIKADOS modules and subroutines. The reader of

this manual is expected to have a basic knowledge of INTEL

8080 programming.

The MIK system monitor described in chapter 2 is based on the

MIK system devised and programmed by Bodil Schrgder, Institute

of Datalogy, University of Copenhagen, in May 1975. The

original MIK system is described in a report entitled

'MIK - et korutineorienteret styresystem til en mikrodatamat'

available from the Institute of Datalogy.

i

i

i

i

i

i
Further information about the MIK and MIKADOS systems may

| be found in the 'MIKADOS Principles of Operation’ manual

which contains a detailed deseription of the internal

| mode of operation of the MIK and MIKADOS systems as well as a

description of all the control blocks used by the systems.

i

i

i

i

i

|

MIKADOS User's Guide

2, Monitor

The system monitor controls process scheduling and synchro-

nization. The strategy used in process scheduling is described

in section 2.8, Processes may exchange information and achieve

synchronization by communicating via messages or general

semaphores as outlined in section 2.1 and 2.5.

A number of subroutines simplifying the use of the message

system are an integrated part of most MIK systems. These sub-

routines are described in the ‘Utility Programs' manual.

Note: the MIK subroutines described in this chapter should not

be called from interrupt algorithms in MIK drivers.

2,1. Messages and message semaphores

A message may be used to transmit information from one process

to another. Examples of messages are i/o requests where the

Message contains information about buffer address, buffer

length, type of operation desired etc., or startup messages

where the message contains information about the task that

the new process should perform.

Message information is transmitted using a message buffer

obtained from the system. After a message has been transmitted

the receiving process must either return the message buffer to

the system or use it in a new communication. The message

buffer may be used to transmit an answer message from the

receiver to the original sender. The system does not

distinguish between ‘original messages' and ‘answer messages'.

MIKADOS User's Guide

 =e —— dde

Messages are sent to and received from message semaphores.

Using message semaphores as a link in process communication

has several advantages over direct process communication.

It enables several identical processes to cooperate on a given

task represented by one semaphore to which all requests for

that task are directed. It also permits one process to receive

messages of various kinds using different semaphores.

Message communication is implemented using only two opera-

tions: Send a message to a semaphore and Receive a message

from a semaphore. These operations are described in the

following sections.

Obtaining a message buffer from the system and returning a

message buffer to the system are implemented using the above-

mentioned operations. The system buffers are received from

and sent to a semaphore named 'POOL'. Initially all message

buffers are attached to POOL, which can be viewed as an

inexhaustible ressource. Programmers should be very careful

about returning message buffers to the system as experience

has shown that very strange error patterns result if POOL

is drained,.-*

MIKADOS User's Guide

 —
 =

 == = == : SS OP:

An exchange of messages between a user process that wants

to perform an i/o operation and the corresponding i/o driver

might look as follows:

user process i/o driver process

receive message buffer from POOL

insert information about i/o

operation into message

send message to semaphore associated

with i/o driver

receive message from semaphore

associated with driver

perform i/o operation

send message indicating

completion of i/o operation

to user process

receive answer message from

i/o driver and examine

resulting i/o status

send message buffer back to POOL

Although not required by the basic message handling system it

has turned out to be practical to specifically assign two

semaphores to each system process. The semaphores are named

the main semaphore (also called the process or coroutine sema-

phore) and the auxiliary semaphore. The main semaphore is used

to receive messages containing requests from other processes.

The auxiliary semaphore is used for communication with other

processes during the execution of a request. The address of

the main and auxiliary semaphores for a process are found in

the KOSEM and HJSEM fields of the process control block.

MIKADOS User's Guide

i

2,2 Message format

A specific message format is not enforced by the basic message

handling subroutines. However, the following format has turned

out to be practical and is used almost exclusively by system

programs in all internal and external communications.

Byte -2 - -1 system information - not to be modified by user

0 - 1 address of answer semaphore, i.e. the semaphore

that should receive the response to this

message

2 request code identifying the type of operation

desired

3 (not assigned)

4 - § buffer address

6 - 7 buffer length in bytes

8 - 10 (not assigned)

11 (assigned only for answer messages) completion

code

12 - 13 (assigned only for answer messages) number of

bytes processed

The byte labelled '-2' is the first byte in the message and

the byte pointed at when identifying a message.

Usually bytes 0 - 10 are left unchanged by a request pro-

cessor, These bytes may be used by the originating process to

identify a completed request from an answer message.

The standard message buffer length is 16 bytes of which 14

may be used to transmit information as shown above. Other

message buffer lengths may be defined during system gene-

ration. The system will also accept variable length message

buffers.

MIKADOS User's Guide

 =—
_—

—

2.3 Send a message

Registers on entry: (B,C) address of message semaphore

(H,L) address of message buffer

Calling sequence: CALL SEND

Registers on exit: same as on entry

If one or more processes are waiting in the queue of the

semaphore pointed out by (B,C), the message pointed at by

(H,L) is given to the first (oldest) process in the queue.

Otherwise the message is placed in the semaphore queue.

The calling process remains active unless a process with a

higher priority was waiting as the first one in the semaphore

queue,

2,4 Receiv messa

Registers on entry: (B,C) address of message semaphore

Calling sequence: CALL FABUF

Registers on exit: (D,E) pointer to byte 0 in received

message buffer

(H,L) pointer to byte -2 in received

message buffer

If one or more messages are waiting in the queue of the

semaphore pointed at by (B,C), the first (oldest) message is

MIKADOS User's Guide 10

i

i

—— ULE:

given to the calling process, which then remains active. The

address of the message is placed in the BSKED field of the

process control block and returned in the (D,E) and (H,L)

registers as specified above.

Otherwise the process enters the not ready state and is placed

in the semaphore queue,

2.5 General semaphores

A general semaphore consists of an integer S which may assume

the values 0, 1, 2, 3, ... and a queue of processes which may

be empty. Two operations may be used to manipulate a general

semaphore, 'signal' and 'wait'. These operations have the

following effect:

signal: if the process queue is empty: S:=+ S +1

otherwise the first process in the queve is activated

wait: if S is 0: the process that executed the wait is

entered into the process queue. The

process is reactivated by a signal opera-

tion executed by another process

otherwise: S := S - 1

S is always 0 when the process queue is not empty.

General semaphores may be used to achieve process synchroniza-

tion and to limit the access to non-shareable ressources. The

last case is illustrated by the following example which illus-

trates the use of a general semaphore to limit the access to

a printer which may be used by one process at a time only:

MIKADOS User's Guide

process A: process B:

wait(PRINT) wait (PRINT)

output report A to printer output report B to printer

signal (PRINT) signal(PRINT)

The semaphore PRINT is initialized to 1 so that the first

process executing wait(PRINT) gets the printer first while

the other process must wait.

2.6 Signal to a semaphore

Registers on entry: (B,C) address of general semaphore

Calling sequence: CALL SIGNL

Registers on exit: same as on entry

If one or more processes are waiting in the queue of the sema-

phore pointed at by (B,C), the first (oldest) process is

activated,

Otherwise the semaphore value is increased by one.

The calling process remains active unless a process with a

higher priority was waiting as the first one in the semaphore

queue,

MIKADOS User's Guide 12

2.7. Wait for a semaphore

Registers on entry: (B,C) address of general semaphore

Calling sequence: CALL WAIT

Registers on exit: same as on entry

If the general semaphore pointed at by (B,C) has a value

greater than zero the value is decremented by one and the

ealling process remains active.

Otherwise the process enters the not ready state and is placed

in the semaphore queue,

2,8 Process scheduling

Any process in the system may be in either of two states:

'ready' to execute program instructions or 'not ready', i.e.

inhibited e.g. because it is waiting for a message or a sig-

nal to a general semaphore.

The ready processes are given access to the CPU, i.e. made

active, according to their priority. The ready process with

the highest priority (lowest numerical value of the PRIO field

in the process control block) is always active. If several

ready processes are found at the highest priority level, the

CPU is multiplexed between these processes. First one process

is made active. If this process is still active after a

certain amount of time called the time slice has expired it

is deactivated and the next process is made active ete. The

first process is reactivated after all processes at that prio-

rity level have been activated. The time slice is defined

MIKADOS User's Guide

during system generation. A typical time slice value is 250

ms.

The active process may lose control of the CPU, i.e. revert to

the ready or not ready state in the following cases:

1) the process enters the not ready state following either a

request to receive a message from a semaphore where no

messages are waiting or a wait request to a general sema-

phore whose value is zero

2) the process has used its time slice

3) a process with a higher priority becomes ready because of

an interrupt or because of action taken by this process

In case 2) the process will remain active if no other ready

process exists with the same priority.

In case 3) the previously active process is placed first in

the ready queue for its priority level and the unused part of

the time slice is recorded in the process control block. Next

time the particular priority level becomes the highest level

with a ready process the interrupted process will be allowed

to use the rest of its time slice.

2,9 Programming considerations

The MIK system provides each user with a stack of 60 bytes.

A process may redefine its stack to another location which is

then used until redefined or until the program terminates

itself.

The user should be aware that a multiprogramming system makes

certain demands on the size and use of the stack:

MIKADOS User's Guide 14

Ch S=S

1) MIK driver interrupts require 12 stack words (24 bytes) on

the stack in addition to the maximum program stack size

2) the contents of the 24 bytes above the current top of

stack are always unpredictable. If the user wants to load

(H,L) with the contents of the word just below the top of

stack without affecting any registers he should not write:

INX SP

INX SP

POP H

DCX SP

DCX SP

DCX SP

DCX SP

as this makes the contents of the top of stack unpredictable.

Instead he might write:

PUSH PSW

LXI H,4
DAD + SP
MOV A,M
INX H
MOV H,M
MOV L,A
POP PSW

The first example would be correct if executed with the

interrupt system disabled. The powerful synchronization

operations of MIK permit the handling of most problems

without disabling the interrupt system. It is generally

not recommended to disable the interrupt system except

in the following cases

MIKADOS User's Guide 15

e
e

- timing real time intervals of i ms or less

- executing a sequence of i/o instructions that

interrupted

may not be

MIKADOS User's Guide 16

= = == = —== = —— _>_ EEE

3, I/0 drivers

This chapter describes the calling conventions for the most

common i/o drivers in the MIK system, The purpose of an i/o

driver is to provide the user with a simple high-level inter-

face to the input/output units attached to the computer

system. The i/o drivers take care of all interrupt handling,

i/o instructions and any device peculiarity in the communi-

cation with the external device controlled by the driver.

The i/o drivers use a standardized message format in their

communications with user processes as described in section 2.2

with certain changes as described in detail in the following

sections. Note that only the message bytes used by the drivers

are mentioned.

All i/o request messages should be sent to the main semaphore

associated with the i/o driver process for the device in

question, The names of these semaphores are defined during

system generation.

| MIKADOS User's Guide

 == = = ae=

3,1 Clock driver

The clock driver updates the system clock. The system clock

shows the current system time and date. The system clock is

set and read by accessing the clock driver data area. The

relevant part of this area has the following layout:

DATO:: DS 2 ;DAY OF MONTH IN ASCII ('01'-'31')

DB ws

DS 2 ;NUMBER OF MONTH IN ASCII ('01'-'12')

DB ‘i!

AR:: DS 4 ;NUMBER OF YEAR IN ASCII ('1978' ETC.)

3

TIDSP::DS 2 ;TIME OF DAY, HOUR IN ASCII ('00'-'23')

DB rt

DS 2 ;MINUTE IN ASCII ('00'-'59')

DB t

DS 2 ;SECOND IN ASCII ('00'~'59')

The clock and calendar are in ASCII format. The system auto-

matically increments the calendar by one day when advancing

the clock from 23.59.59 to 00.00.00. Leap year support is not

implemented, i.e. after February 28 the system will always

advance the calendar to March 1. However, the system will

accept that the clock is set manually to February 29 and will

also advance the clock correctly after that day.

The clock and calendar must be set manually by the operator

every time the system is restarted.

MIKADOS User's Guide 18

3.1.1 Measuring time intervals

The clock driver will also measure time intervals for user

processes,

To have a time interval measured a user process must send a

message to the clock semaphore (labelled SLEEP). This message

must have the following format:

Byte 0 - 1 address of the semaphore to which the answer

message should be sent

2- 3 number of system time units that should pass

before the answer message is sent (16 bits

unsigned)

After the specified time period has elapsed an answer message

is sent to the specified semaphore, The answer message is

identical to the original message except that bytes 2 and 3

are zero,

The length of a system time unit is defined during system

generation.:User programs may determine the length of a system

time unit by using the symbolic constant ENH2 defined by the

SYMB macro. This constant has a value that is equal to the

number of system time units in one second.

MIKADOS User's Guide

2 CRT co le drive

The CRT console driver controls one or more CRT console

terminals connected to an ID-7004 Asynchronous communication

module or to an ID-7012 4-port Asynchronous communication

module,

The driver was developed for the Mini Tec and TEC Model 70

line of terminals manufactured by TEC Inc., Tucson, Az., USA.

With these terminals all operations described in the following

sections are available. However, with minor changes the driver

will support most asynchronous CRT terminals equipped with a

cursor control facility.

2.1 Read a character strin

Requests the driver to read one input line from the terminal

to the buffer. The operator may edit the input string during

the input operation.

Message format: as described in section 2.2. The request code

is 1. Byte 3 of the message is used for control information.

In the control information only bit 1 (weight 2) is used. If

this bit is set then the operation is a binary read and no

editing is supported. The operation is terminated as soon as

the buffer is full or BREAK is pressed. If this bit is not set

then the operation is a normal ASCII read and special charac-

ter processing (editing) takes place as described below.

In an ASCII read the following input character codes receive

special attention:

MIKADOS User's Guide

20

RETURN ' line feed - carriage return is echoed back to the

terminal. The input operation is terminated and

the user process receives its answer message

same as RETURN

same as RETURN except that completion code bit 4

is set (see section 3.2.8)

(cursor left). The cursor and the internal

buffer pointer are both moved one position left

unless they are at the start of the line in which

case no action is taken. The buffer contents are

not altered.

(cursor right). The cursor and the internal

buffer pointer are both moved one position right

unless they are past the end of the buffer in

which case no action is taken. The buffer con-

tents are not altered.

(cursor up, insert character) all characters from

and including the character at the cursor

position and to and including the last but one

character in the line are moved one position

right. The last character in the line is

deleted and a blank is inserted at the cursor

position. The cursor is not moved. The operation

is duplicated in the input buffer.

(cursor down, delete character) all characters

from and including the character to the right of

the cursor position are moved one position left.

The character at the cursor position is deleted

and a blank is inserted as the last character in

MIKADOS User's Guide 21

the line. The cursor is not moved. The operation

is duplicated in the input buffer.

ERASE - all characters in the line from and including

the character at the cursor position are deleted

(replaced by blanks). The cursor is not moved.

The operation is duplicated in the input buffer.

RUBOUT - all characters in the line are deleted (replaced

by blanks). The cursor is moved to the start of

the line. The operation is duplicated in the

input buffer.

TAB - the cursor and the internal buffer pointer are

advanced to the nearest relative buffer address

divisible by 8. The buffer contents are not

changed.

If the user enters a control character (binary value < 48)

other than the ones described above a BELL character is echoed

(the terminal issues an audible sound), The buffer and screen

contents aré not modified.

Any attempt to move the cursor past the buffer limits will

cause a BELL character to be echoed. The buffer and screen

contents are not modified.

Note that before the input operation starts, the buffer is

filled with blanks by the driver.

MIKADOS User's Guide 22

3.2,2 Output a character string

Requests the driver to output a character string from the

buffer to the terminal.

Message format: as described in section 2.2. The request code

is 2.

The driver automatically issues a line feed - carriage return

sequence following the last character in the buffer unless the

control sequence <S> is included at the start of the buffer

(see below).

If the output buffer starts with a '<', the following charac-

ters to and including a terminating '>' are interpreted as

control characters. Control character sequences are not

printed. The control characters and their significance are:

X - erase screen

C - move the cursor to the (x,y) address specified immedia-

tely after the C as XXYY where 01 <= XX <= 80 and

O01 <= YY <= 24 (YY = 25 is permitted on some terminals)

S - omit the final line feed - carriage return, i.e. leave

the cursor in the position immediately after the last

character output

B - output blinking text (only on terminals having blinking

text support)

P - output protected text (only on terminals having

protected text support)

MIKADOS User's Guide 23

= aaa = ogro0WTT zzz 0 =

E - ignored (included to provide compatibility with other

drivers)

Example: the output string '<XBCOHO02>Ready' will erase the

screen and output the text 'Ready' in the 2nd line starting

at character position 4, The text will blink. After the output

operation the cursor will be located in the first position of

line 3.

3.2.3 Update a character string

Requests the driver to output a character string from the

buffer to the terminal (same operation as described in section

3.2.2). Subsequently the user may update part of or all the

characters in the string just as in an input operation.

Message format: as described in section 2.2, The request code

is 3. Byte 8 of the message is used to specify the number of

characters counting from the start of the buffer that are not

to be modified in the update operation.

3.2.4 Update screen in block mode

Requests the driver to output a character string from the

buffer to the terminal (same operation as described in section

3.2.2). After the output operation is finished the cursor is

moved back to the position it had before the output operation

and the ‘enter block mode' state is established (see section

3.2.5). This operation should be used when operating a

terminal in block mode only.

MIKADOS User's Guide ey

 == Ll: =

Message format: as described in section 2.2. The request code

is 4,

3.2,5 Enter block mode

Requests the driver to place the terminal in block mode. In

block mode all input characters are echoed directly to the

screen without being recorded in any buffer. When the user

enters XMIT (ASCII code 02), RUBOUT (ASCII code 7F), ESC

(ASCII code 1B), or ERASE (ASCII code OC), a message is sent

to a specified semaphore and the block mode is left.

Message format:

Byte 2 request code (5)

4 - 5 address of the semaphore to which a message

should be sent when the user enters XMIT,

RUBOUT, ESC, or ERASE

When the user enters XMIT, RUBOUT, ESC, or ERASE, a message is

sent to the specified semaphore. The message contents are:

Byte 0 - 1 address of POOL

request code (7)

10 02 if the user entered XMIT

1B if the user entered ESC

7F if the user entered RUBOUT

oc if the user entered ERASE

No direct answer is given to the 'Enter block mode' request.

The user request message buffer is returned directly to POOL.

———— == : OS SaavvAq

MIKADOS User's Guide

The driver may be reactivated while in block mode, i.e. while

the user is entering data, e.g. by issuing an ‘Update screen

in block mode! request.

Note that when an 'Enter block mode' request is received by

the driver any information about a previously defined Break

semaphore is deleted (see section 3.2.7).

3.2.6 Input screen contents in block mode

Requests the driver to force an input operation of the current

screen contents in block mode.

Message format: as described in section 2.2. The request code

is 6.

The input buffer is not altered by the driver before the

transmission starts. If the terminal transmits more characters

than will fit into the buffer the driver ignores the surplus

characters,

3.2.7 Define Break semaphore

Defines the address of a semaphore to which the driver should

send a message if the Break key on the terminal is depressed.

The Break key is any key or combination of keys which causes

the terminal to issue a 02 code (control/B, ENTER or XMIT).

The key labelled BREAK is not recognized by the driver as a

Break key.

MIKADOS User's Guide

Message format:

Byte 2 request code (7)

4 - 5 address of Break semaphore

9 - 10 terminal identification

No direct answer is given to the 'Define Break semaphore’

request. The user request message buffer is returned directly

to POOL.

When the Break key is depressed the following message is sent

to the Break semaphore if one has been defined:

- 1 address of POOL Byte 0

2 request code (7)

9 10 terminal identification

When this message has been sent the information in the driver

about the address of the Break semaphore is deleted. The Break

semaphore must be redefined before the driver will issue a new

break message.

The terminal identification word in. the above messages may be

used by a program that controls several terminals to determine

from the Break message which terminal encountered a Break

condition, The terminal identification word is not inspected

or modified by the driver.

- = = prey
== == SS == CP =

MIKADOS User's Guide 27

3.2.8 Answer message format

Unless otherwise specified above the driver at the completion

of a user request will return the original message buffer to

the semaphore whose address is specified in byte 0 and 1 of

the original message. The answer message has the following

format:

Byte OQ - 10 same as in original message

t 11 resulting driver status (completion code)

12 - 13 (valid only for request codes 1, 3, and 6)

number of characters read or updated.

For ASCII input operations (request codes 1 and

3) the buffer length minus the number of

trailing blanks is returned. If the input

buffer contains only blanks the driver returns

the cursor offset relative to the start of the

line when RETURN was depressed (0 means cursor

located at the leftmost position in the line).

For binary input operations the actual number

of characters read is returned.

The bits in the completion code have the following signi-

ficance:

bit O - 1 if Break pressed during i/o operation (Break

message has been sent if Break semaphore defined)

2 - error in message format (e.g. illegal request code)

or illegal control sequence in output string

4 = ‘Read a character string' operation terminated by

ESC (as opposed to RETURN or ENTER)

MIKADOS User's Guide

 .-
*

Hi

3.3. Printer drivers

The system currently supports the following printer devices:

- Logabax LX 180 AL printer, manufactured by Logabax,

Arcueil Cedex, France (medium speed matrix printer)

- Data 100 Model 3400 with Centronics interface, manufac-

tured by Data 100 Corp., Minneapolis, USA

(medium to high speed chain printer)

- Qume Sprint Micro 3/45, manufactured by Qume Corp.,

Hayward (CA), USA (daisy wheel printer, used in

text editing systems)

All printer drivers will accept requests for output operations

the message format being the same as described in section 2.2.

The request code is 2.

The driver automatically issues a line feed - carriage return

sequence following the last character in the buffer unless the

control sequence <S> is included at the start of the buffer

(see below).

If the output buffer starts with a '<', the following charac-

ters to and including a terminating '>' are interpreted as

control characters. Control character sequences are not

printed. The control characters and their significance are

described below. Note that some drivers do not support all

the control characters mentioned here. Unsupported and illegal

control characters result in status bit 2 being set.

S - omit the final line feed - carriage return, i.e. print

the first character of the next output line immediately

after the last character output in this operation

MIKADOS User's Guide 29

N - omit the final line feed, i.e. print the first character

of the next output line in the leftmost position of the

line where the current buffer is output

B - output all characters in the buffer in italics

G - output all characters in the buffer as extended charac-

ters

eject page before outputting buffer contents |

re] Ly

X - same as E

V - perform vertical tab as defined by VFU tape before

outputting buffer contents

An answer message is returned to the semaphore specified in

the request message as soon as the request has been processed.

Byte 13 of the return message contains the resulting device

status. The bits of the status word have the following

significance:

0 - printer not ready (power off or out of paper)

1 - illegal request code

2 - illegal control sequence

The following sections describe the differences between the

above standards and the actual device drivers.

MIKADOS User's Guide 30

2.3.1. Logabax printer driver

This driver works exactly as described above.

3.3.2 Data 100 model 3400

This driver supports the control characters E and X.

The driver will not report a ‘power off' or ‘out of paper'

condition on the printer, i.e. status bit 0 cannot be set.

3.3.3 QOume model 3/45

This driver supports the control characters E, X, N, and S.

If bit 7 (the most significant bit) is set in a character in

the output buffer, the character will be printed underlined

by the driver.

The driver accepts a message that redefines the character

distance, the line distance and the margin width. The message

format is as described in section 2.2 with the following

changes:

MIKADOS User's Guide 31

Byte 2 request code (8)

4 —~ 5 new character distance in 1/120" (standard

value is 10/120")

6 - 7 new line distance in 1/96" (standard value

is 16/96"); odd values are reduced by one

8 new margin width in number of characters;

measured using the character distance

defined above

(standard value is 30 characters)

MIKADOS User's Guide

3,4 Dise drivers

The system currently supports the following dise devices:

- Sykes model 7000 floppy dise (250 Kbytes capacity)

- Pertec model 3400 dise (20 Mbytes capacity)

The disc drivers transfer information to and from the disc

devices in multiples of 256 bytes called a sector. Note that

this sector size does not have to be identical to the physical

sector size for the dise drive.

The dise drivers accept two requests, read and write. The

message format is:

Byte 2 request code (1 for read, 2 for write)

4 - 5 buffer address

6 - 7 buffer length; must be a multiple of 256 bytes

8 - dise identification (see section 5.4)

10 - 11 starting track number

12 starting sector number

Bytes 10 - 12 of the message contain the track/sector address

of the first sector to be read/written in the operation. A

dise i/o operation may extend over more than one track. Track

switching is handled automatically by the driver.

The first track on a dise has number 0. The first sector on a

track has number 0.

When a data transfer has been completed the requesting message

is returned to the answer semaphore specified in the message.

The answer message is identical to the original message except

for byte 13 which contains the resulting disc status. The

status bits have the following significance:

MIKADOS User's Guide

33

i

l

i

i

i

i

{

i

i

i

i

i

i

i

i

i

i

i

i
|

bit O - illegal dise identification

bit 1 - transfer extends past last sector of dise drive

bit 2 - illegal track or sector no. in starting address for

transfer

buffer length not multiple of 256 bytes

buffer length is zero

buffer length is >= 32 Kbytes (128 sectors)

bit 3 - illegal request code

bit 4 - attempt to write on a write protected disc

bit 5 - hard dise error

bit 6 - selected dise not ready

More than one bit may be set.

The Pertec dise driver also supports an initialization opera-

tion (request code 3) used to format brand new discs. This

operation is similar to a write operation except that the

dise hardware does not compare the track/sector address in the

sector header to the actual address before a write operation

is performed. A disc cartridge must be formatted before it is

used on the Pertec dise. An attempt to read or write a disc

that has not been initialized will result in a hard dise error

code. Floppy dises used on the Sykes disc are initialized by

the manufacturer,

The disc characteristics as seen from the MIKADOS system are:

Sykes floppy dise Pertee disc

No. of sectors/track 26 48

No. of tracks/platter 37 400

No. of platters/drive 1 4

Approx. no. of bytes/drive 250K 20M

MIKADOS User's Guide 34

——————— — = ————
 =— ————————— : = = = (re =

Dise characteristics, i/o port addresses and dise identifica-

tions are related to one another through the dise definition

table, PLTAB, which is constructed during system generation.

3,4,1 Subroutine UDIND

The disc driver is accessed by the system and the system

programs almost exclusively through subroutine UDIND. The

calling conventions for this subroutine are given below.

Calling sequence:

(H,L) -> DCB area

(A) bit 5-0 contain the request code (1, 2, or 3)

bit 7=1 the read/write occurs to/from the address

contained in field NEPST of the DCB

bit 7=0 the read/write occurs to/from the buffer

area of the DCB: (DCB+BUFF)

Before calling UDIND the user must place the track/sector

address of the first sector to be read/written in the SEKT1

field, the number of sectors to be transferred in the SANT

field, and a pointer to the dise identification in the PLBET

field of the DCB,

CALL UDIND

After the call the a-register contains 0 if no error was

detected; else (A) contains the error code (41, 42 or 44,

see appendix 1).

Boo

MIKADOS User's Guide 35

4, Symbolic resource handling

The resource administration system makes it possible for

cooperating sequential processes to establish a scheme for

controlled access to serially reusable resources (e.g. line

printers, main storage areas or information in a data base)

by providing subroutines for the reservation and release of

symbolic resources.

A resource may be reserved exclusively or non-exclusively.

If a resource has been reserved exclusively no other process

is allowed to reserve that resource before it has been

released. If a resource has been reserved non-exclusively

other processes are allowed non-exclusive reservations of the

resource,

The resources are identified by resource names consisting of

10 ASCII characters. The first 8 characters are taken from

main storage while the last 2 characters are taken from the

process stack thus making it simple to perform resource reser-

vations from reentrant subroutines.

The system does not establish any connection between a

symbolic resource and an actual physical resource in the

system. The resource administration does not provide any

protection in case of a process that uses a resource which it

has not reserved previously..

Bo

MIKADOS User's Guide

4.1. Reserve a resource

Calling sequence:

PUSH subparameters

PUSH 2 last characters of resource name

PUSH address of first 8 characters of resource name

CALL RESRV

The subroutine reserves the specified resource. The reser-

vation may be exclusive or non-exclusive.

The subparameter is a 16-bit word. The subparameter bits have

the following significance:

bit 0 - O non-exclusive reservation wanted

exclusive reservation wanted

bit 1 - O return with error code if resource cannot be

reserved

1’ wait until resource available

The first character of the resource name must be alphanumeric

(ASCII character value between 21 and 7E).

On exit from the routine the a-register contains a result

code which may assume the following values:

~- reservation ok

- resource reserved by some one else

the first character of the resource name is illegal

=
e

W
w
W

1

~- no resource element available (the number of resource

elements is defined during system generation)

MIKADOS User's Guide 37

= == Te adh
= -

4.2 Release a resource

Calling sequence:

PUSH 2 last characters of resource name

PUSH address of first 8 characters of resource name

CALL RELSE

The subroutine releases the specified resource.

On exit from the routine the a-register contains a result

code which may assume the following values:

Q - resource released

2 - the resource has not been reserved

S
S

e
e

ee

ee

ee

e
e

ee

ee

O
e

e
e

MIKADOS User's Guide

 = == — == =[00 =

5,..General remarks about the file system

The MIKADOS file system allows the user to easily access disc

storage on his ID-7000 computer system.

This chapter contains an introduction to the MIKADOS file

system, describing the general disc layout and calling conven-

tions for the file system subroutines. The following chapter

contains an exact description of the formats of the various

file system calls.

5.1 File system structure

The information that can be handled by the MIKADOS system is

stored on dise drives. There may be one or more disc drives

in a system and dise drives of different types may be inter-

mixed.

A dise drive contains one or more physical dises. The discs

some of which may be removable are used for storing infor-

mation. The physical discs are mapped onto logical discs

during system generation. A logical dise is a dise seen from

the programmer's point of view. Most often there is a direct

relationship between physical and logical discs, but an

installation may choose to subdivide a physical disc into

several logical dises. Currently it is not possible to combine

physical dises into one logical disc.

A logical disc (hereafter referred to as ‘a dise') consists of

a file catalog and a file area, The maximum number of files

that can be accomodated in the file catalog is specified

during system generation. A special scheme (hashing) ensures

fast file lookup even if the catalog is nearly full.

MIKADOS User's Guide 39

A file consists of a primary file which is the original file

constructed by the create operation plus 0 to 25 extents.

All extents are of the same size as the original file. Any

attempt to extend a file past the 25th extent is rejected.

When specifying a file size the user must be aware that a

sector always consists of 256 bytes as seen from the MIKADOS

system even though the hardware manuals may say otherwise.

Further the user should note that the first 32 bytes of the

first sector of the primary file and of any extent are used

for system information and not accessible to the user. Except

for its effect on the useable file size this restriction is

transparent to the user.

5.2 Calling file system subroutines

The file system functions are implemented as subroutines. Most

of the subroutines are reentrant. The reentrant routines are

normally located in the resident system area, while the non-

reentrant routines are linked into the programs that use them.

In the current MIKADOS version, the following routines are

not reentrant: CREAT, RENAM and PURGE.

Each file system subroutine returns an error code in the

a-register. The error code is zero if the operation was

completed succesfully. A complete list of the error codes

and their significance appears in appendix 1.

| MIKADOS User's Guide

5,3 The Data Control Block (DCB)

In all calls of the file system a DCB (Data Control Block)

must be specified. The DCB is a data area containing

48 +n *® 256 1 <= n <= 20, The DCB consists of

a pointer area of 48 bytes followed by a buffer area of

bytes, where

n * 256 bytes used for packing and unpacking records from

dise sectors. If the DCB contains more than 48 + 256 bytes,

the surplus is used for enlarging the buffer area. A large

buffer area generally means fewer dise accesses and conse-

quently faster file processing. Note however that using a

DCB larger than the primary

processed does not give any

The user of the file system

about the detailed contents

file size for the file being

advantage.

does not have to know anything

of the DCB. The DCB layout is

described in the 'MIKADOS, Principles of Operation' manual.

5.4 File identification

A file is identified by a file name, a file type code and a

dise identification. The file name is a string of 8 characters

the first of which must be a printable ASCII character (hex

code 21 through 7E). The file name is supplemented by a file

type code which must be an alphanumeric character. The file

type code is used together with the file name to uniquely

identify a file on a disc, i.e. several files may have the

same file name but different type codes (e.g. source file,

relocatable file and program file). The user may select his

type codes freely. Certain systems programs (e.g. editor and

assembler) assume that certain file types are assigned

specific type codes:

K - source text

8

e
e

ee

ee

oe

e
e

MIKADOS User's Guide

R - relocatable program

digit - linked program for region 'digit'

The dise identification is used to point out the logical disc

where the file is located. The dise identification always has

the form 'Px' where x is an alphanumeric character. The legal

dise identifications vary among installations and are defined

at system generation time.

Note that two files with the same name and type may exist on

different discs in the same system.

5.5 Nulifiles

The user may use the file catalog for storing limited amounts

of information (16 bits at a time) about a string which con-

forms to the above specifications for file names. These

catalog elements are called nullfiles. A nullfile does not

occupy space in the file area of the dise. Only the following

operations are permitted on nullfiles: Create, Purge and Open

file (returns the nullfile information).

Example: Nullfiles are used by the linker program to convert

operating system entry point names to actual main storage

addresses.

MIKADOS User's Guide 42

5.6 Fixed and variable length record files

The file system supports two different record structures

within files: fixed length records and variable length

records. A file should not contain records of both types.

In a fixed length record file the record length is defined

when the file is opened. All records in the file have the

same length. Record boundaries are not recorded in the file

but are determined using only the specified record length.

The main advantage of this record structure is that it

permits direct and fast access to any record in the file

using the position file subroutine. In special applications

the user may take advantage of the fact that the record length

may vary from one open operation to the next, and that the

record length may be altered in the DCB while the file is

open. These features should be used with great care.

In a variable length record file each record carries infor-

mation about its own length. The length indicators require

a 2-byte overhead per record in the file. Variable length

record files must be read or written sequentially, i.e.

access to record no. n is possible only after reading the

preceding n-1 records. The main advantage of this file type

is a better utilization of dise space because no record

occupies unneccessary space. The ‘record length' parameter

needed by certain file system subroutines should be set to

any nonzero value when operating on variable length record

files,

MIKADOS User's Guide 43

6, File system calls

This section describes the exact format of the file system

calls. The reader is expected to be familiar with the general

information about the file system contained in chapter 5,

Note that a file must always be opened before it can be read

from or written upon, A file can be opened implicitly using

CREAT or explicitly using OPEN. A file must be closed after

use. If these rules are not obeyed, information from the file

may be lost.

6.1. Create file

Calling sequence:

PUSH n - DCB size is 48 +n * 256 bytes

PUSH dise identification

PUSH number of sectors in primary file

PUSH + record length (must be greater than zero)

PUSH file type in 8 most significant bits

PUSH address of file name

PUSH DCB address

CALL CREAT

The subroutine creates a new primary file of the given size,

name and type on the specified disc. If the operation

completes succesfully the new file will be opened exclusively

(reading and writing permitted). Positioning, reading and

writing of the file may take place immediately after the call.

MIKADOS User's Guide

4y

i

i

©

0

e
e

ee

ee

ee

e
e

ee

The DCB must be closed when the call is made.

If the number of sectors in the primary file is set to 0,

the file system will create a nullfile, i.e. a catalog element

only. In this case the record length parameter is inserted as

the nullfile information. The nullfile value may be inspected

by opening the nulifile.

6.2 Extend a file

Calling sequence:

PUSH DCB address

CALL CREXT

The subroutine creates a new extent to the file specified

by the DCB. The extent will be of the same size as the primary

file.

The DCB must be opened exclusively before the call is made.

Any attempt to extend a file past the 25th extent is rejected.

Extent switching is performed automatically by the file

system. The distinction between records in the primary file

and records in extent files is completely transparent to the

user except for an increase in access time.

The extend operation has no influence on the record position

parameters in the DCB.

MIKADOS User's Guide

6,3 Rename a file

Calling sequence:

PUSH

PUSH ©
PUSH

PUSH

PUSH

PUSH

CALL

n - DCB size is 48 +n * 256 bytes

disc identification

file type in 8 most significant bits

address of new file name

address of current file name

DCB address

RENAM

The subroutine changes the the name of the file specified by

‘current name' to 'new name’. The file type is not changed.

The DCB and the file must be closed when the operation is

initiated. The DCB and the file will be closed when the

operation is completed.

Renaming a file does not change the file contents.

6.4 Purge a file

Calling sequence:

PUSH

PUSH

PUSH

PUSH

PUSH

CALL

n - DCB size is 48 +n * 256 bytes

dise identification

file type in 8 most significant bits

address of file name

DCB address

PURGE

MIKADOS User's Guide 46

The subroutine purges the specified file including all extents.

The space occupied by the file is not released until the disc

is squished.

The DCB and the file must be closed when the operation is

initiated. The DCB will be closed when the operation is

complete.

6,5 Open a file

Calling sequence:

PUSH n - DCB size is 48 +n * 256 bytes

PUSH dise identification

PUSH subparameters (described below)

PUSH record length

PUSH file type in 8 most significant bits

PUSH address of file name

PUSH DCB address

CALL - OPEN

The subroutine initializes the specified DCB with control

information about the specified file. Positioning, reading

and writing of the file may take place immediately after the

eall.

The DCB and the file must be closed when the operation is

initiated,

If the record length is set to zero the system will use the

record length specified when the file was created,

MIKADOS User's Guide 47

 8.
e
e

ee

ee

ee

ee

ee

The subparameter is a 16-bit word, The subparameter bits

have the following significance:

bit 0: 1 - the file is to be opened exclusively, i.e.

reading and writing must be permitted. No

other users can access a the file that is

opened exclusively

0 - the file is to be opened non-exclusively,

i.e. reading only is permitted. Other users

may read the file simultaneously

Bits 1 to 15 of the subparameter word are currently not used.

They should be set to zero.

A file that has just been opened is positioned to record

no. 1.

If the specified file name corresponds to a nullfile no OPEN

operation takes place, i.e. the nullfile and the DCB are

still closed after successful completion of the operation.

The 16 information bits associated with the nullfile are

saved in the DCB, field SEKT1. If a nullfile is opened, OPEN

returns a result code of -1 in the a-register.

6.6 Position file

Calling sequence:

PUSH record number

PUSH DCB address

CALL POSN

The subroutine changes the information in the DCB so that the

next read or write operation will cause the fixed length

record with the specified record number to be input or output.

MIKADOS User's Guide 48

The DCB must be opened before the call is made.

Before the operation takes place the subroutine checks that

the first character in the record specified lies within the

file boundaries, If this turns out not to be the case the

operation is rejected and an error code is returned. The

subroutine does not check whether the whole record lies

within the file boundaries. This is checked by the read/write

routines,

The first record in a file is record number 1.

6.7 Read a fixed length record

Calling sequence:

PUSH buffer address

PUSH DCB address

CALL READ

The subroutine reads the next fixed length record from the file

specified by the DCB. The record length used is the one

specified in the OPEN operation or if no record length was

specified in the OPEN operation the record length specified

when the file was created. The buffer length must be greater

than or equal to the record length. After the record is read

the DCB is positioned to the next record.

The DCB must be open when the operation is initiated.

If the record to be read lies partly or completely outside the

file boundaries an error code is returned and the DCB is not

changed.

Y
S
 S
e

Le

Le

ee

oe

e
e

oe

|
)

MIKADOS User's Guide 49

—
_

e
e

en

ee

he

e
h

ce

oe

6,8 Write a fixed length record

Calling sequence:

PUSH buffer address

PUSH DCB address

CALL WRITE

The subroutine writes the next fixed length record onto the

file specified by the DCB. The record length used is the one

specified in the OPEN operation or if no record length was

specified in the OPEN operation the record length specified

when the file was created. The buffer length must be greater

than or equal to the record length. After the record is

written the DCB is positioned to the next record.

The DCB must be open when the operation is initiated.

If the record to be written lies partly or completely outside

the file boundaries an error code is returned and the DCB is

not changed. Note that this permits the user program to issue

an extend file command followed by a renewed write operation.

The write operation is effectively an update operation i.e.

existing records before and after the one written are not

modified by the write operation,

MIKADOS User's Guide

i

i

———

i

l

i

i

L

i

i

i

i

i

i

i

i

i

i

i

i

|

6,9 Read a variable length record

Calling sequence:

PUSH buffer address

PUSH DCB address

CALL READV

The subroutine reads the next variable length record from the

file specified by the DCB into the buffer. The length of the

record that has been read is returned in the b-register. If

b = 0 then the end-of-file mark has been reached. Note that

the buffer must have a length of at least 78 characters, i.e.

the largest variable record length permitted + 1.

The DCB must be open when this operation is initiated.

6,10 Write a variable length record

Calling sequence:

PUSH buffer address

PUSH DCB address

CALL WRITV

The subroutine writes a variable length record from the buffer

onto the file specified by the DCB. The record length must

be specified in the first byte of the buffer. The record

contents start in the second byte of the buffer. If a buffer

length of zero is specified an end-of-file mark is written

in the file.

MIKADOS Userts Guide

 ~

a

en

e
e

e
e

e
e

e
e

e
e

e
e

ee

o
e

e
e

ee

ee

e
e

o
e

h
e

-

m
l

The length of a variable length record must not exceed

TT bytes.

6,11 Close a file

Calling sequence:

PUSH DCB address

CALL CLOSE

The subroutine closes the file specified

is released.

by the DCB. The DCB

MIKADOS User's Guide

i

i

d=
i

i

i

i

tl

i

i

i

i

i

i

i

i

i

i

i

i

|

7. Main storage administration

The main storage administration controls the ID-7000 RAM

memory used for data areas and for execution of nonresident

programs,

The main storage administration consists of two parts:

- the data area administration (DAA), which consists of two

subroutines, ALLOC and DELOC, which are used to dynamically

allocate and deallocate data areas of specified sizes in the

dynamic data area, System as well as user processes may use

this facility

- the program area administration (PAA), which is a process

that starts and stops other processes, reads programs into

main storage and controls swapping. Messages to the PAA

should be sent to the semaphore labelled HLSEM

MIKADOS User's Guide 53

 :

7.1 Memory layout

8

e
e

_

_
_

_
_

e
_

The ID-7000 memory layout under MIK is shown below:

address contents

FFFF

debugger

FOOO

program regions

(execution of non-resident programs)

approx. 4000

dynamic data area (administered by DAA)

approx. 3D00

MIK system data area

3000

MIK system

The program:execution area, which is administered by PAA, is

divided into a number of regions, called R1, R2, R3 etc. Each

region may contain one program. Several programs may share one

region by using swapping (see section 7.7). A program cannot

occupy more than one region. Regions currently may not

overlap. The starting addresses and sizes of the regions are

defined during system generation.

The dynamic data area, which is administered by DAA, is

dynamically subdivided into a number of data areas as request-

ed by system or user processes as needs arise. The DAA keeps

track of the unused parts of the dynamic data area. The size

of the dynamic data area is defined during system generation.

The usual size is approximately 750 bytes.

MIKADOS User's Guide 54

 il

7.2 Allocate a main storage area

Calling sequence:

LXI H,number of bytes in requested main storage

area (4 <= (H,L) <= 2047)

CALL ALLOC

On exit the (D,E) register contains the address of the first

byte in the allocated data area (lowest address) while (H,L)

contains the length of the allocated data area. Note that to

avoid fragmentation of the dynamic data area, the DAA may

allocate up to 3 more bytes than were requested.

If (D,E) = 0 then a data area of the desired size is not

currently available.

If (D,E) = -1 then the value of (H,L) on entry was illegal

(less than 4 or greater than 2047)

The (A) and-(B,C) registers are not changed by the routine.

7.3. Deallocate a main storage area

Calling sequence:

LXI D,start of main storage area

LXI H,length of main storage area in bytes

CALL DELOC ee ee ne ne ne
e
e

ee

ee

ee

ne

ee

ee

e
e

e
e

MIKADOS User's Guide 55
|

On exit the (H,L) register contains 0 if the operation was

completed without error, and 1 if the (H,L) register on entry

to DELOC contained an illegal value (< 4 or > 2047) or if the

user has attempted to release a main storage area that was not

acquired using ALLOC.

The (A), (B,C) and (D,E) registers are not changed by the

routine,

7.4 Start a process

When a process wants to initiate a new process to execute a

program it should send a message to the PAA with the following

contents:

Byte 0 - 1 address of answer semaphore

2 request code (40)

3 - 10 name of the file which contains the program

module in executable form; this file usually

has been produced by the linker

11 second character of region identification for

the region to which the program has been linked

and where it should be executed (specify 'M'

for region 'RM')

12 second character of dise identification for

dise containing program module file (specify

'N' for dise 'PN')

13 priority of new process (see section 2.8 for

information about process scheduling)

When the PAA has found an available process and allocated it

for the execution of the program, an answer message is

sent to the answer semaphore specified in the request. The

answer message format is

MIKADOS User's Guide 56

= ce =

Byte 0 - 2 same as in request message

3 ~ 4 address of the process control block of the

new process allocated to execute the program

5 - 6 address of the main semaphore of the new

process allocated to execute the program.

The parent process may use this semaphore to

transmit a message to the new process

13 error code

The requested program is read into the memory area to which it

has been relocated by the linker, Execution starts in the

address specified during relocation.

The error codes are listed in appendix 1. Note that the PAA

may return file system error codes resulting from erroneous

file, region, or dise specifications.

7.5 Terminate a process

When a process wants to terminate itself it should send a

message to the PAA with the following contents:

Byte 0 - 1 address of answer semaphore; normally a process

is not able to wait for the answer so the

address of POOL should be specified

request code (41)

3 - 4 address of process control block for this

process

MIKADOS User's Guide 57

== SS =: ace

After a process has terminated itself, it should issue a

receive message call to the semaphore DEAD, i.e.

LXI B, DEAD
CALL FABUF

This call enters the process in the queue of available

processes in the system.

When a 'Terminate process' message is received by the PAA,

the main storage region used by the process is released

immediately for use by other processes. The message therefore

should not be sent using instructions in the program region

as the instructions after the SEND may have been overlaid

before execution of the FABUF calling sequence can be

completed.

. Termination of a process, i.e. transmission of a message

as described above followed by a queue up to the semaphore

DEAD may be accomplished simply by calling the reentrant

system subroutine EXIT. The calling sequence is

CALL EXIT

The call has no parameters. No return occurs,

A program should not terminate itself before it has received

an answer message to all its messages, closed all of its

files, released all of its symbolic ressources and deallocated

any dynamic memory for which it is responsible.

Note that no process is allowed to terminate another process

using this operation.

MIKADOS User's Guide

58

Swapping means that a program in a main storage region is

temporarily stopped and copied into a dise file to make space

for another program that uses the same region. The old program

is said to be swapped in favor of the new program,

Program B is swapped in favor of program A under the following

conditions:

1) Program A has a higher priority than program B, and program

B has indicated that swapping of it is permitted.

Swapping is permitted/prohibited by sending an appropriate

message to the PAA (see section 7.7).

2) Program B has informed the PAA that it is waiting for a

message and that its presence in main storage is not

required while it is waiting.

Swapping is permitted by waiting for a message using a

call of ‘FABFX instead of FABUF (see section 7.8).

Note that if a program is waiting for the completion of

an i/o operation, swapping should be permitted only if the

i/o buffer is located in the dynamic data area, i.e. out-

side the program region. This is taken care of by the

system if the i/o message is sent using a call of SENDX

instead of SEND (see section 7.8). Swapping is prohibited

by FABFX as soon as a message is received.

When a new process is started swapping of the corresponding

program is prohibited.

MIKADOS User's Guide 59

i

i

i

i

4

i

i

i

i

i

i

i

i

i

i

i

i
|

1.7 Change swap status for a process

If a

mess

Byte

The

program wants to change its swap status it should send a

age with the following contents to the PAA:

O - 1 address of answer semaphore

2 request code (42, 43, or 44)

3 - 4 address of the process control block for the

process affected by the operation

operations are:

Permit swapping (request code 42). After this message the

Rele

program associated with the process may be swapped in

favor of another process with a higher priority that uses

the same region. While the program is swapped the

process is stopped. The answer message is sent imme-

diately

ase region temporarily (request code 43). After this

message the program associated with the process may be

swapped in favor of any other process using the same

region. The process is not stopped during a swap, i.e.

the program must send this request and continue execution

in a code area outside its own region (e.g. routine FABFX,

see section 7.8). The answer message is sent immediately.

Prohibit swapping (request code 44), After this message the

program associated with the process can not be swapped.

If the program is swapped at the time this message is

issued it is read back into memory as soon as its priority

and region availability permit. The answer message is sent

when the program is in memory.

 MIKADOS User's Guide oC

 a ————— = {eo = —

71,8 Subroutines SENDX and FABFX

These subroutines are used instead of SEND and FABUF when the

user wants to perform an i/o operation during which the

program may be swapped.

The SENDX subroutine works exactly as the SEND subroutine

except that before sending the message it copies the i/o

buffer (address in message byte 4-5, length in message byte

6-7) into a buffer. located in the dynamic data area. Then the

buffer pointer in the message is changed to point at the

buffer copy in the dynamic data area and the message is

forwarded to its destination. During the i/o operation the

program may now release its region (see below).

The FABFX subroutine works exactly es the FABUF subroutine

except that before calling FABUF it releases the program

region associated with the process (see section 1.1). After

a message has arrived for the process at the specified sema-

phore, a’ "Prohibit swapping' request is issued. When the

program has been. brought back into memory by the PAA, the

subroutine checks to see if the message is an i/o message,

If this is the case the i/o buffer is copied from the dynamic

data area back into program memory and the dynamic data area

is deallocated.

MIKADOS User's Guide 61

8, Operator communication

The operator communication module of the MIKADOS operating

system enables the console operator to define output units for

list and error messages and to initiate the execution of named

programs. The operator may pass parameters to the programs

initiated from the console.

Before entering a command, the operator must press the key

labelled 'XMIT' or 'ENTER' (on terminals where neither of

these keys exist, the operator may use a control/B keystroke

instead). The MIKADOS system responds by showing a '>' as

shown below:

The operator may now enter the desired command.

The legal commands are LI, FE, and RU.

The LI command defines the list output unit. Only two forms of

this command are permitted, namely

>LI,D use console terminal as list output unit

>LI,P use system printer as list output unit

The FE command defines the error output unit. Only two forms

of this command are permitted, namely

>FE,D output error messages on console terminal

>FE,P output error messages on system printer

MIKADOS User's Guide

62

format of the RU comm

>RU, programname(:Pn(:

where programname is

Pn (op

region (op

parameterstring

At system startup time the list output unit is the printer

while error messages are output on the console terminal.

The RU command instructs the system to load into memory and

start execution of a named program. Optionally the command may

contain a parameter string to be passed to the program, The

and is

region))(,parameterstring)

the name of the program to be executed

tional) is the dise identification (see

section 5.4) of the dise where the linked

program module can be found. If this pa-

rameter is not specified the system

assumes that the program module should be

loaded from the system disc (P1)

tional) is the number of the memory

region where the program is to be loaded.

If this parameter is not specified the

system assumes that the program is to

be loaded into the memory region that

was assigned to this terminal during

system generation.

(optional) is a string that is passed

unchanged to the new program using

a dynamic memory area.

MIKADOS User's Guide

Example: the operator command

>RU,ASM,PROGR,L,X

initiates execution of the assembler and asks it to assemble

the program PROGR and to produce a listing (L) and a cross-

reference listing (X).

MIKADOS User’s Guide

64

Appendix 1. MIK system error codes

The following is a complete list of the error codes produced

by the MIK system.

The origin of the error codes is as follows:

code

error

O
m
n
w
m

F
w

n
N
e

Oo

0) : (many routines; indicates no error)

1 through 24 : file system

30 : resource management

40 through 52 : UDIND (error in gisc access)

61 through 69 : program area administration (PAA)

code explanation

no error

a file with the specified name does not exist

a file with the specified name already exists

no more room on disc

illegal record length

the file is being used by another user

the specified DCB is not open

attempt to extend a file more than 60 times

the file name is illegal (the first character is

not printable, see section 5.4)

illegal dise identification

attempt to position file to non-existent record

attempt to read or write a record that lies

partly or completely outside the file boundaries

the file has not been opened for writing

the catalog on the disc is full

illegal DCB length

illegal number of sectors in file

illegal file type

MIKADOS User’s Guide

65

 == = > = = == dha

i

18

19

30

40

42

yy

48

50

52

61

62

63

64

65

the file name has not been reserved (returned by

CLOSE if file not open or DCB bombed)

error in variable record length indicator (record

length > 77 or error in file format)

no resource element available

disc drive not ready

hard error on disc

dise drive is write protected

illegal track/sector no. or illegal buffer length

transfer extends past last sector of disc drive

illegal disc identification

no process control block available

illegal priority

illegal main storage limits for program

illegal entry point for program

illegal load module file structure (number of

extensions not zero, number of sectors does not

correspond to main storage limits specified)

i MIKADOS User’s Guide

l
e
 Ld

Appendix 2. MIKADOS Bootloader

The MIKADOS bootloader is a small stand alone program, which

resides in a 1 k PROM.

The bootloader may be used to:

- load an absolute program from a disc file to memory

— load and execute an absolute program from a dise file

compare the contents of an absolute program file with

memory and report any mismatch

store an absolute program from memory to a disc file

The bootloader uses less than 130 (hex) bytes of RAM memory

for working storage. This memory area should not be the same

as the memory area used by the processed program.

If the bootloader is entered at the standard entry point,

the work area will be placed ending in the RAM byte with the

highest memory address.

If the bootloader is entered at the standard entry point + 10

(hex), the work area will be placed ending in the RAM byte

pointed to by the stack pointer when the bootloader is

entered.

In ID-7000 systems the standard entry point address usually is

E000. The bootloader is entered using the debugger, e.g. by

typing the debugger command E000<OXJ

MIKADOS User’s Guide

67

—— 4° 6 S =

In SPC/1 systems the bootloader is entered automatically at

the standard entry point when power is turned on. In these

systems the bootloader cannot be entered at other addresses

than the standard entry point. The size of the work area

in this case is less than 530 (hex) bytes.

The bootloader identifies itself after initiation and asks

for the name of the file to be processed. The user may respond

with up to 9 characters. Input is terminated by entering

RETURN. The first 8 characters input (including trailing

blanks) are the name of the file to be loaded. The 9th charac-

ter, which must be a digit, is the file type. If no file type

is input, 0 (zero) is assumed. The user may correct input

errors before pressing RETURN by backspacing the cursor by

entering Control-H (backspace). If an illegal control

character is entered the bootloader is restarted.

The bootloader asks for the function to be performed after the

user has entered the file name. The user answers

L - load absolute program from specified file to memory area

specified during program linking. After the whole program

has been loaded, control is transferred to the debugger.

G - same as L except that after the whole program has been

loaded control is transferred to the start of execution

address of the loaded program.

C = compare absolute program in specified file with memory

area specified during program linking. If no mismatch is

found the message "FILE AND MEMORY IDENTICAL" is output

and control is transferred to the debugger. If a mismatch

is found control is transferred to the debugger with the

(HL) register pointing to the byte where a mismatch was

detected and (A) showing the expected contents of the

byte. It is not possible to continue the comparison.

MIKADOS User’s Guide 68

S - store absolute program from memory to specified file.

The program limits specified during linking of the

original program are used as the limits of the memory

area whose contents is transferred to the file. The limits

as well as the start of execution address are not changed.

After the memory contents have been stored control is

transferred to the debugger.

The Load command may be used in conjunction with the Store

command to make minor changes ("patches") in an absolute

program.

The bootloader expects the disc inserted in drive no. 1 to

contain the program file. If drive no. 1 is not ready, drive

no. 2 is used instead.

In SPC/1 systems the bootloader normally does not identify

itself after initiation but proceeds immediately to perform a

load-and-go (G) command on a program file named MIKM of type 0

(zero). The normal interactive sequence, as specified above,

is followed by the bootloader if the user presses the BREAK

key on the terminal during power up. In this case the boot-

loader will identify itself and request program name, etc., as

soon as the user releases the BREAK key.

MIKADOS User’s Guide

Five easy steps to start up your ID-7000 computer:

1)

2)

3)

4)

5)

Power up the system beginning with the computer

Insert the system disc delivered with the system in disc

drive no. 1 (usually the lowest physically placed drive)

On the computer front panel, switch to STOP, press RESET

(RES), press Debug Call (DC), press RESET (RES), switch to

RUN. The debugger should output a “>” on the terminal.

Press ESC. The debugger should output “R”. Now enter

E000<OXT (Note: 0 is a zero)

The bootloader should respond by outputting its identi-

fication. The user may then enter the system program file

name (written on the system disc) followed by RETURN and

a G command.

In the following example user responses are shown under-

lined:

MIKADOS BOOTLOADER (7080 DISC)

File name MIK

Load/Go/Compare/Store G@

In the above example the absolute program file MIK of

type 0 will be loaded from the system disc and executed.

Software problem report

Type: program error Date

Suggested program change

documentation error

suggested change in documentation

Company:

Address:

Attention: Phone:

Program or manual title:

Version/edition:

Description:

All error reports and suggestions should be put forward in writing.

All suggestions become the property of Dansk Data Elektronik ApS (DDE).
DDE may accept, modify or reject suggestions without giving any reason.

Before filing an error report the user should attempt to isolate the
error, i.e. to write a small program (30 lines or less), which demon-
strates the error. A listing of this program should be enclosed.

DDE will register the report, add its comments on the bottom of this

page, and return a photocopy to the user.

For internal DDE use: Received . Error number

DDE comments

