

rh ==

—— —— CLS

] MIKADOS

Pascal Standard Assembler Package

Dansk Data Elektronik ApS

| 9 May 1980

|

Author: Claus Téndering Copyright 1980

Dansk Data Elektronik ApS

Pascal Standard Assembler Package 0.1

i Table of contents

i
1. Introduction 1.1

i
2. Overview 2.1

2.1. Direet input procedures eel

| 2.2. Message exchange procedures 2.1

2.3. Process related procedures 2.2

| 2.4 Memory allocation procedures 2.2

2.5. Resource reservation procedures 2.3

J 2.6. File handling procedures 2.3

2.7. How to use the procedures 2.4

i
| 3. Direct input procedures 3.1

I 3.1 SETUP - Initiate direct input 3.2

| 3.2. AVAIL - Test for availability of keyboard input 3.3

| 3.3. NEXT -— Get next character from terminal 3.3

| 3.4 FINIS - Terminate direct input 3.4

i 4, Message exchange procedures Wed

4.1. SENDM -— Send a message 4.2

i 4,2. RECEILV - Receive a message 4.3

4,3. WAITNG - Look for a message yay

| 4.4. Example 4.5

| 5. Process related procedures 5-1

5.1. SETPR - Alter priority 5.1

5.2. PROBLK ~ Determine address of Process Control

| Block 5.2

i 6. Memory allocation procedures 6.1

6.1. ALLOCA - Allocate memory 6.1

| 6.2. DEALLO — Deallocate memory 6.2

i

|

Pascal Standard Assembler Package 0.2

7. Resource reservation procedures 7-1

7.1. RESERV - Reserve a symbolic resource 7.2

7.2. RELEAS - Release a symbolic resource 7.3

8. File handling procedures 8.1

8.1. RENAMF — Rename a file 8.1

8.2. REDBAK — Read one record backwards 8.2

8.3. WRIBAK - Write one record backwards 8.3

8.4, PURGEF - Delete a file 8.4

Pascal Standard Assembler Package

i. Introduction.

This manual describes the Pascal Standard Assembler Package

which is a set of procedures and functions that make certain

facilities in the MIKADOS Operating System available to the

Pascal programmer.

As assembler programmers will know, the MIKADOS Operating

System offers a number of facilities that normally cannot be

accessed from programs written in Pascal. The Pascal Standard

Assembler Package contains a number of interface routines

which make many of the advanced MIKADOS assembler facilities

available to the Pascal programmer.

The Pascal Standard Assembler Procedures and Functions fall

into six gfroups:

- Direct input procedures.

- Message exchange procedures.

- Process related procedures.

- Memory allocation procedures.

- Resource reservation procedures.

- File handling procedures.

Dansk Data Elektronik ApS reserves the right to change the

specifications in this manual without warning. Dansk Data

Elektronik ApS is not responsible for the effects of typo-

graphical errors or other inaccuracies in this manual, and

cannot be helt liable for the effects of the implementation

and use of the structures described herein.

Pascal Standard Assembler Package

Overview.

2.1. Direct input procedures.

These procedures enable the programmer to override the normal

Pascal console input conventions. In the so-called direct

input mode keystrokes are transmitted directly to a user

defined cyclic input buffer. The system does not by itself

output any information to the terminal display in response to

keyboard input. Thus the user is in full control of the

meaning of the input keys and the resulting terminal output.

The direct input procedures may be used to construct full

screen editors, input forms with protected fields and input

checking, etc.

The direct input procedures are described in detail in chapter

3.

2.2. Message exchange procedures.

In many applications a programmer finds that a certain problem

may be solved in a simpler way if he has two or more programs

running simultaneously. This is particularly true in many real

time control applications where console operator communication

is required while process monitoring continues.

MIKADOS Pascal provides a standard subroutine (CHAIN) which

can be used to initiate parallel programs. However, in many

applications parallel cooperating programs have to exchange

information (new alarm limits, valve settings etc.). The need

therefore arises for a means by which simultaneous programs

may communicate. The message exchange procedures enable

parallel programs to exchange information.

Pascal Standard Assembler Package

The message exchange procedures are described in detail in

chapter 4.

2.3. Process related procedures.

These procedures enable the programmer to change the priority

of the calling program (process) and to get the address of the

process control block of his program.

The process related procedures are described in detail in

chapter 5.

2.4. Memory allocation procedures.

In a Pascal program the user may allocate memory areas dynami-

eally using the NEW procedure. However, this procedure allo-

cates memory in an area which is not accessible from other

programs. The memory allocation procedures enable the user to

allocate and deallocate memory areas which are accessible from

all user programs. The memory thus allocated may be used for

communication between parallel processes, particularly if

large amounts of information are to be exchanged.

The memory allocation procedures are described in detail in

chapter 6.

Pascal Standard Assembler Package 2.3

il

e.5. Resource reservation procedures.

In systems where many users share resources the need arises

for a means to reserve and later release such resources so

that the different users will not interfere with each other.

The resource reservation procedures are designed to meet this

need. They are particularly useful in controlling access to

printers, data areas, file elements etc.

The resource reservation procedures are described in detail in

chapter 7.

 2.6. File handling procedures.

A number of MIKADOS file operations are not available using

the standard Pascal procedures. The file handling procedures

in the assembler package enable the user to rename files, read

or write sequential (TEXT) files backwards, and purge existing

files.

The file handling procedures are described in detail in

chapter 8.

Pascal Standard Assembler Package

°.7. How to use the procedures.

Whenever one of the Pascal Standard Assembler Package proce-—

dures is used in a Pascal program, the user must declare this

procedure with the attribute EXTERNAL in his Pascal program as

shown in the appropriate procedure description in this manual.

He must then compile the Pascal program using the E (external)

option and link the resulting relocatable code together with

the relocatable code for the Pascal Standard Assembler Package

procedures to get a special interpreter which is used to

execute the Pascal program.

Linking to external procedures is described in the Pascal

User’s Guide section 8.3.

Pascal Standard Assembler Package

3. Direct input procedures.

These procedures can be used to perform character-by-character Pp

input from a terminal.

In certain applications the programmer may wish to override

the standard input conventions of Pascal. He may wish to

change the meaning of certain keys, or he may wish to perform

a whole series of operations upon depression of a single key

on the terminal keyboard. Such operations cannot be carried

out using the normal Pascal input routines (READ, READLN, and

EDIT), as they always require that a "RETURN" be entered

before any input 1s made available to a Pascal program.

The "direct input" facility is designed to meet this need. The

system normally operates in what is called "normal input

mode". By issuing a call to the SETUP routine, as described

below, the system is put in "direct input mode", where the

program may read the keys depressed on the keyboard one by one

as they are entered. In direct input mode echoing of input

characters does not occur automatically.

When operating in direct input mode the READ, READLN, and EDIT

routines should not be used. The WRITE and WRITELN routines

may be used without restrictions.

In direct input mode the system uses a cyclic buffer to store

the value of each key as it is entered from the keyboard. The

keys are not echoed on the screen; this must be done by the

program. The direct input routines can get the key values one

by one from the cyclic buffer. The length of the eyclic buffer

determines the number of keystrokes the keyboard operator may

be ahead of the program. Buffer wraparound is handled automa—

tically by the system.

Pascal Standard Assembler Package 3.2

Tf the keyboard operator is ahead of the program by more

keystrokes than the cyclic buffer can contain, erroneous

characters may be returned to the program. No error condition

is reported by the direct input routines.

3.1. SETUP - Initiate direct input.

This procedure is used to put the system in direct input mode.

The calling program should contain the following declarations:

CONST LNGTH=103

TYPE DIRECTBUF = PACKED ARRAY (1..LNGTH) OF CHAR;

PROCEDURE SETUP(VAR BUFFER: DIRECTBUP;

LENGTH: INTEGER) ;

EXTERNAL:

i

i

L

i
| A call of SETUP places the system in direct input mode. The

user must supply the system with a character array, which will

be used as the cyclic input buffer described above. This

| buffer is specified as a parameter to the procedure. The user

must decide upon a sultable buffer length which must be used

i in the buffer declaration (the constant LNGTH in the declara-

i

i

i

i

i

|

tion above) and in the procedure call.

During execution of this procedure a dynamic data area of 6

bytes is allocated for internal system use. If this space

allocation fails, the procedure returns with IORESULT set to

-10.

Note 1: READ, READLN, and EDIT should not be used while the

system operates in direct input mode.

Note 2: The system uses three bytes of the buffer for

Pascal Standard Assembler Package

overhead. Thus in the declaration above the actual

length of the cyclic input buffer will be only 7

bytes.

3.2. AVAIL - Test for availability of_keyboard input.

This function tests if the cyclic input buffer contains one or

more unprocessed characters.

The calling program should contain the following declaration:

FUNCTION AVAIL: BOOLEAN;

EXTERNAL;

This funetion returns the value TRUE if the cyclic input buf-

fer contains one or more unprocessed characters. More specifi-

cally TRUE is returned if the cyclic input buffer is not

empty. Otherwise FALSE is returned.

AVAIL may be used to test if a call of NEXT would cause the

calling process to be suspended.

3.3. NEXT —- Get next character from terminal.

This function returns the next character from the cyclic input

buffer.

The calling program should contain the following declaration:

FUNCTION NEXT: CHAR;

EXTERNAL;

Pascal Standard Assembler Package

A call of NEXT will return the next key value in the input

buffer to the program. If the input buffer is empty the

program waits until a key is depressed.

3.4. FINIS - Terminate direct input.

This procedure causes the system to revert to normal input

mode.

The calling program should contain the following declaration:

PROCEDURE FINIS;

EXTERNAL;

Calling FINIS terminates the direct input mode, and restores

the normal input mode.

Upon return from FINIS the program may use the cyclic input

buffer for other purposes.

Pascal Standard Assembler Package We

4, Message exchange procedures.

Before using any of the message exchange routines the user

must declare two types, one which is used to identify the

other participant in the communication and one which describes

the kind of information to be exchanged.

TYPE PCB = “INTEGER;

MESSAGE = STRING(4O);

The type PCB deseribes a pointer to the process control block

of a process with which messages are exchanged.

The type MESSAGE defines the structure of the information to

be exchanged. In this example strings of length 40 bytes are

to be exchanged, but in other applications the user may want

to exchange, for instance, integers, arrays of Booleans, or

records (structured data). In such cases the definition of the

type MESSAGE should be changed accordingly.

Note: The length of the message must not exceed 255 bytes. If

the length is less than or equal to 10 bytes the message

exchange procedures work faster.

The programmer must ensure that a program has received all

messages sent to it before its execution is terminated. Stray

(undelivered) messages may reappear at odd places and will

cause system malfunction. In such situations it will be

necessary to restart the system.

Assembler programmers should note that inter-process com-—

munication in Pascal always occurs using the main process

semaphore.

Pascal Standard Assembler Package 4.2

4.1. SENDM - Send a message.

This procedure is used to send a message to another process.

The calling program should contain the following declaration:

PROCEDURE SENDM(RECELVER: PCB;

VAR CONTENTS: MESSAGE;

LENGTH: INTEGER;

VAR STATUS: INTEGER);

EXTERNAL 3

This procedure sends a message to another process. If the

receiving process is waiting for a message, its execution is

resumed. Otherwise the message is put into a queue waiting for

the receiving process to fetch it.

- RECEIVER: a pointer to the PCB of the receiving process.

- CONTENTS: the message to be sent. Note that this para-—

meter is declared as.a VAR parameter even

though no result is returned in it. This is

necessary to ensure a uniform transfer of

parameters to the assembler procedure inde-

pendent of the actual type of the message.

— LENGTH: the length of the message in bytes.

LENGTH should not exceed 255.

Note 1: The function SIZEOF may be used here

to compute the length of the message.

Note 2: If the message is of type STRING the

value supplied in this parameter must

be one greater than the actual (dyna-

mic) length of the string, as system

overhead occupies one extra byte.

| The parameters are:

Pascal Standard Assembler Package 4.3

i

i

a

- STATUS: This variable will receive information about

the outcome of the call of SENDM. During the

operation of the procedure, memory space is

allocated for the message (unless its length

does not exceed 10 bytes). If this allocation

fails an error is reported in the STATUS para-

meter:
oO

 i operation completed successfully.

-— memory allocation failure; no mes-

sage sent.

- LENGTH is greater than 255.

3 - No message buffer available in the

>
r

system.

4.2. RECEIV - Receive a message.

The procedure RECEIV is used to receive a message.

The calling program should contain the following declaration:

PROCEDURE RECEIV(VAR SENDER: PCB;

VAR CONTENTS: MESSAGE;

VAR LENGTH: INTEGER);

EXTERNAL;

This procedure causes the calling process to wait for a

message that has been sent to it by another process. If one or

more messages are waiting in the message queue, the first

message is made available to the calling process and execution

continues immediately. If no messages are waiting, the execu-

tion of the process is suspended until a message is sent to it

from another process.

Pascal Standard Assembler Package 4.4

The contents of the parameters on entry to RECEIV are not sig-

nifileant.

Upon return from RECEIV the parameters will contain:

- SENDER: a pointer to the PCB of the process from which

the message was sent (and to which a possible

answer message should be sent).

~ MESSAGE: the message.

- LENGTH: the length in bytes of the message received.

Note: The value returned in this parameter for

a STRING variable is one greater than the

actual number of characters received due to

system overhead.

WARNING: Normally the type of the message in the sending and

the receiving processes should be the same.

If the (static) length of the variable that receives

the message is less than the length of the message

unpredictable errors may occur, as the system does

not check the length of the receiving variable.

4.3. WAITNG - Look for _a_ message.

The function WAITNG is used to check the possible presence

of a waiting message.

The program should include the following declaration:

FUNCTION WAITNG: BOOLEAN ;

EXTERNAL;

This funetion returns FALSE if no messages are waiting for the

calling process. If one or more messages are waiting, the

value TRUE will be returned.

| Pascal Standard Assembler Package

This function may be used if a process has useful work to do

while waiting for a message and therefore cannot afford to be

suspended as would be the case with RECEIV if no message was

waiting.

4.4. Example.

The following is an example of the utilization of the message

exchange procedures:

A key operator enters lines of text which are output to a disk

as each line is entered. The program works thus:

Step 1: Read one line from terminal.

Step 2: Write line to disk.

Step 3: Go to step 1.

However, with this approach the operator may have to pause

between input lines waiting for the file system to complete

output of a line before the next line may be entered. This

disadvantage can be avoided by using two parallel Pascal

programs instead of one to perform the job:

Step 2: Send line to routine 2.

Step 3: Go to step l.

Routine 2: Step 1: Receive one line from routine 1.

Step 2: Write line to disk.

Step 3: Go to step l.

The parallelism ensures that the key operator will always be

able to enter lines. If the file system routine (routine 2) is

| Routine 1: Step 1: Read one line from terminal.

Pascal Standard Assembler Package 4.6

not ready to receive a line, the line is simply queued until

routine 2 1s ready to process it, and routine 1 is free to

continue execution. The only requirement is that the average

write time of the file system routine (routine 2) is less than

the read time of routine 1, so that the queue of lines will

not grow indefinitely.

The following two Pascal programs perform this task:

Routine 1:

PROGRAM READLIN;

TYPE PCB = “INTEGER;

MESSAGE = STRING(80);

VAR MES : MESSAGE;

Re > PCB;

STATUS: INTEGER ;

PROCEDURE SENDM(RECEIVER: PCB;

VAR CONTENTS: MESSAGE;

LENGTH: INTEGER;

VAR STATUS: INTEGER) ;

HX'TERNAL ;

BEGIN

CHAIN(“WRITDISK#*2°,°°,R2); (* START FILE SYSTEM ROUTINE *)

REPEAT

READLN;

READ(MES); (# GET ONE LINE OF INPUT *)

REPEAT

SENDM(R2,MES, LENGTH (MES)+1, STATUS)

(* SEND THE LINE TO THE WRITDISK ROUTINE #*)

UNTIL STATUS=0

UNTIL MES(1)=7>7 (* A > IN COLUMN 1 OF INPUT

IS USED TO TERMINATE EXECUTION *)

END.

Pascal Standard Assembler Package

Routine 2:

PROGRAM WRITDISK;

TYPE PCB = *INTEGER;

MESSAGE = STRING(80);

VAR MES: MESSAGE;

FINISH: BOOLEAN;

LNG :; INTEGER;

R1 : PCB;

PROCEDURE RECEIV(VAR SENDER: PCB;

VAR CONTENTS: MESSAGE;

VAR LENGTH: INTEGER);

EXTERNAL;

BEGIN

FINISH: =FALSE;

REPEAT

RECELV(R1,MES, LNG) ;

(* RECEIVE MESSAGE FROM THE READLIN ROUTINE *)

IF MES(1) <> “>” THEN

(* write MES on disk *)

ELSE

FINISH: =TRUE;

UNTIL FINISH;

END.

Pascal Standard Assembler Package 5.1

i

i

5. Process related procedures.

5.1. SETPR - Alter priority.

Every running program (process) has a priority assigned to it.

This priority normally lies in the range from 4 to 7 (with 4

designating the highest priority and 7 designating the lowest

priority). When a Pascal program is started a priority of 6 is

automatically assigned to it. If the user requires the program

to respond immediately to terminal input or other I/0 activi-

ties he may wish to change this priority to 5 or even 4. On

the other hand he may wish to have certain very CPU consuming

programs running at priority 7, where they won”t hamper the

operation of the other system activities too much. The proce-

dure SETPR is used to change the priority of the calling

process dynamically.

The calling program should contain the following declarations:

TYPE PRIORANGE = 4..7;3

PROCEDURE SETPR(PRIORITY: PRIORANGE);

EXTERNAL;

This procedure will change the priority of the calling process

to the value specified by the parameter PRIORITY.

If the value of the parameter does not lie in the interval

from 4 to 7, calling SETPR has no effect.

Pascal Standard Assembler Package

5.2. PROBLK - Determine address of Process Control Block.

In certain applications the user may wish to know the address

of the Process Control Block (PCB) of a running program. It

may be that he wants to pass this information on to other

programs so that these may communicate with the original pro-

gram.

The function PROBLK returns a pointer to the Process Control

Block of the calling program.

The calling program should contain the following declarations:

TYPE PCB = “INTEGER;

FUNCTION PROBLK: PCB;

EXTERNAL;

Pascal Standard Assembler Package

6. Memory allocation procedures.

The procedures ALLOCA and DEALLO are used to allocate and de-

allocate a data memory area for a program.

The memory area is always allocated outside the bank switch

area, i.e. in a part of memory that is accessible from all

running processes. This distinguishes the ALLOCA procedure

from the NEW procedure as the latter allocates memory in the

bank in which the process is running. This means that memory

allocated by one process (using the ALLOCA procedure) may be

referenced by another process, and thus we have an efficient

method for passing large amounts of information from one

process to another.

The total size of the allocatable area is, however, rather

limited (currently approximately 270 bytes), so these proce-

dures should not be used too extravagantly.

6.1. ALLOCA - Allocate memory.

The procedure ALLOCA allocates a data memory area.

The calling program should contain the following declarations:

TYPE STRING2O = STRING(20);

STRINGPTR = “STRING20;

LENGTHRANGE = 1..2044;

PROCEDURE ALLOCA(VAR ADDRESS: STRINGPTR;
LENGTH: LENGTHRANGE;

VAR STATUS: INTEGER);

EXTERNAL;

Pascal Standard Assembler Package

The parameters are:

- ADDRESS: a pointer variable that receives the address

of the allocated memory area. In the decla-

ration above this parameter is specified

as “STRING20, but this is only one way of

doing it. The user must decide for what pur-

pose he intends to use the allocated memory

and then declare the parameter accordingly.

~ LENGTH: the length (in bytes) of the requested

memory area.

- STATUS: a variable that receives information about

the outcome of the call of ALLOCA. Upon

return from the procedure STATUS will have

the value

0, if the allocation was successful.

1, if a data area of the desired size

is currently not available.

2, if the size of the data area is

illegal (less than 1 or. greater

than 2044).

6.2. DEALLO - Deallocate memory.

The procedure DEALLO deallocates a memory area that has been

previously allocated by the procedure ALLOCA.

The calling program should contain the following declarations:

TYPE STRING20 = STRING(20);

STRINGPTR = “STRING20;

PROCEDURE DEALLO(ADDRESS: STRINGPTR;

VAR STATUS: INTEGER);

EXTERNAL;

Pascal Standard Assembler Package 6.3

The parameters are:

- ADDRESS: a pointer variable containing the address

of a memory area to be deallocated. In

the declaration above this parameter is

specified as “STRING20, but this is only

one possibility. The user must ensure that

the type of the parameter corresponds to

the type used when the area was allocated.

- STATUS: a variable that receives information about

the outcome of the call of DEALLO. Upon

return from the procedure STATUS will have

the value

0, if the deallocation was successful.

1, if the data area was not allocated

using the ALLOCA procedure.

Pascal Standard Assembler Package

7. Resource reservation procedures.

The resource administration system makes it possible for co-

operating programs to establish a scheme for controlled access

to serially reusable resources (e.g. line printers, main

storage areas, or information in a data base) by providing

procedures for the reservation and release of symbolic re-

sources.

A resource may be reserved exclusively or non-exclusively. If

a resource has been reserved exclusively, no other program is

allowed to reserve that resource before it has been released.

If a resource has been reserved non-exclusively other programs

are allowed non-exclusive reservations of the resource.

The resources are identified by resource names consisting of

10 ASCIT characters.

The system does not establish any connection between a symbo-

lic resource and an actual physical resource in the system.

The resource administration does not provide any protection in

the case where a program uses a resource which it has not

reserved previously.

Before using any of the symbolic resource reservation pro-

cedures the user must make the following type declaration:

TYPE NAME = STRING(10);

The type NAME specifies the name of a symbolic resource.

Pascal Standard Assembler Package

7.1. RESERV - Reserve a symbolic resource.

The procedure RESERV is used to reserve a symbolic resource.

The calling program should contain the following declaration:

PROCEDURE RESERV(RESOURCE: NAME;

EXCLUSIVE, WAIT: BOOLEAN;

VAR STATUS: INTEGER);

EXTERNAL ;

The parameters are:

- RESOURCE: the name of the symbolic resource to be

reserved.

- EXCLUSIVE: TRUE if exclusive reservation is desired,

FALSE otherwise.

- WAIT: TRUE if the calling program should wait

until the resource is available,

FALSE if the procedure should return imme-

diately to the calling program with

an appropriate status code if the

resource is not available.

- STATUS: a variable that receives information about

the outcome of the call of RESERV.

Upon return from the procedure STATUS will

contain

0, if reservation was successful.

1, if the resource was reserved by >

someone else.

4, if no resource element is avail-

able. (A resource element is the

internal system representation of

a symbolic resource. Only a limited

number of such elements are avail-

able.)

Pascal Standard Assembler Package 7.3

7.2. RELEAS - Release a symbolic resource.

The procedure RELEAS releases a symbolic resource that has

been reserved previously by a RESERV call.

The calling program should contain the following declaration:

PROCEDURE RELEAS (RESOURCE: NAME;

VAR STATUS: INTEGER);

i

EXTERNAL 3

The parameters are:

- RESOURCE: the name of the symbolic resource to be

released.

- STATUS: a variable that receives the information

about the outcome of the RELEAS call.

Upon return from the procedure STATUS

contains

0, if the release was successful.

2, if the resource had not been

reserved.

Pascal Standard Assembler Package ol

=

=

lh
l

8. File handling procedures.

This chapter describes a number of MIKADOS file system proce-

dures.

The procedures communicate I/O error conditions through the

TORESULT function (see section 5.2.4 in the Pascal User’s

Guide).

8.1. RENAMF — Rename a file.

The procedure RENAMF is used to give a MIKADOS file a new

name.

The calling program should contain the following declaration:

PROCEDURE RENAMF(OLDNAME,NEWNAME: STRING);

EXTERNAL;

OLDNAME must contain

MIKADOS filename : disk identification : file type

and NEWNAME must contain

MIKADOS filename

(see section 5.2 in the Pascal User’s Guide).

The effect of calling RENAMF is that the file with the name

and type specified in OLDNAME residing on the specified disk,

will have its file name changed to the name specified in

NEWNAME.

Pascal Standard Assembler Package 8.2

It is not possible to change the type of a file.

Renaming a file does not change the file contents.

Example:

VAR OLD,NEW: STRING;

BEGIN

OLD:="ALFA:P2:K‘;

NEW: =“BETA‘

RENAMF(OLD, NEW) ;

.

RENAMF(“GAMMA: P5:P” , “DELTA”);

8.2. REDBAK - Read one record backwards.

This procedure is used to backspace a sequential file one

record while reading the record.

The calling program should contain the following declaration:

PROCEDURE REDBAK(VAR FILEID: PHYLE;

VAR CONTENTS: STRING);

EXTERNAL;

FILEID identifies an open sequential file. Calling REDBAK will

cause the file to be backspaced one record, that is, the

record preceding the current record becomes the new current

i END.

Pascal Standard Assembler Package

8.3

== —— =e CO

record. The contents of

backspaces is placed in

the string that is used

according to the length

the record accross which the system

the parameter CONTENTS. The length of

as the CONTENTS parameter is set

of the record read. If this length

| exceeds 80 bytes the call of REDBAK has no effect and IORESULT

is set to 19.

8.3. WRIBAK - Write one record backwards.

This procedure is used to write a record backwards ina

sequential file.

The calling program should contain the following declaration:

PROCEDURE WRIBAK(VAR FILEID: PHYLE;

CONTENTS: STRING);

EXTERNAL;

i

i

i

i

i

i FILEID identifies an open sequential file. Calling WRIBAK will

cause the contents of the parameter CONTENTS to be written

| backwards into the specified file, that is, a subsequent

READLN(FILEID,...) call will read the record just written.

| The current length of the string CONTENTS determines the

length of the record written. If this length exceeds 80 bytes,

| the call of WRIBAK has no effect and IORESULT is set to 19.

i

i

i

i
|

Note: If an attempt is made to write backwards a record that

is longer than the available space in the file, the

structure of the file is destroyed and IORESULT is set

to le.

Pascal Standard Assembler Package 8.4

8.4. PURGEF - Delete a file.

The procedure PURGEF is used to purge (delete) an existing
MIKADOS file.

The calling program should contain the following declaration: PROCEDURE PURGEF(FILENAME: STRING)
EXTERNAL;

>

FILENAME must contain

MIKADOS filename : disk identification : file type

(see section 5.2 in the Pascal User’s Guide).

The effect of calling PURGEF is that the file with the name
and type specified in FILENAME is purged from the specified
disk.

An open file cannot be purged. The space occupied by the file
is not released until the disk is compressed.

Example:

VAR PURGEFILE: STRING;

BEGIN

.

PURGEFILE: =“GOAWAY: PA: K~;

PURGEF (PURGEFILE);

.

PURGEF(“BADFILE: P1:P7);

END.

