

Supermax

System Operation Guide

Dansk Data Elektronik A/S

1 May 1984

Copyright (c) 1984 by Dansk Data Elektronik A/S

Supermax System Operation Guide 1.1
Introduction

1. Introduction

This manual describes the features of the Supermax Operating System.

It does not explain how these features are invoked in the various

programming languages; this the reader will find in the relevant

language manuals. The purpose of this manual is to provide the reader

with knowledge of what can be done in the Supermax Operating System,

and thus give him or her the necessary background for reading the

language manuals.

It should be noted that some programming languages may not give the

user access to all the features of the Supermax Operating System

described in this manual.

The reader is expected to be familiar with the Supermax Operating

System Introductory Guide.

Numbers preceded by 'Ox' are hexadecimal. All other numbers are deci-

mal.

4A few paragraphs are marked with astisks (*) in the margin. These

paragraphs describe features that have not yet been implemented, but

will be in the near future.

Dansk Data Elektronik A/S reserves the right to change the specifica-

tions in this manual without warning. Dansk Data Elektronik A/S is not

responsible for the effects of typographical errors or other inaccura-

cies in this manual and cannot be held liable for the effects of the

implementation and use of the structures described herein.

Supermax is a registered trademark of Dansk Data Elektronik A/S.

Unix is a trademark of Bell Laboratories Inc.

Supermex System Operation Guide 2.1
Overview

H

2. Overview.

The Supermax Operating System performs several tasks. They may be

divided into three groups:

1) Process Management.

2) Memory Management.

3) I/O management.

The Process Management part of the Supermax Operating System takes

care of the execution of programs. An executing program is called a

'process' (other operating systems use the term 'task'). The Process

Management loads a program and starts its execution as a process,

controls the process while it is running, and removes the process when

its job is done.

The Memory Management part of the Supermax Operating System takes care

of the allocation and deallocation of memory for processes.

The I/O Management part of the Supermax Operating System services

input and output requests from processes.

Of course, these three parts are not independent: Starting the execu-

tion of a program, as done by the Process Management, involves both

allocation of memory for the process, done by the Memory Management,

and the loading of the program from a disk file, done by the I/0

Management. Also, there are some features, such as reading the system

clock, that can hardly be placed in any of the three categories.

Supermax System Operation Guide 3.1
Process Management

e
e

e
e

e
e

e
e

e
e

e
e

e
e

e
e

a
e

l
e
]
 3. Process Management.

A process is an executing program. Processes have various properties,

and various operations may be performed on processes.

3.1. Process Properties.

A process has a real user ID and a real group ID. These two 16-bit

numbers are almost always identical to the user ID and group ID of the

user who gave the command that started the process.

A process has an effective user ID and an effective group ID. These

two 16-bit numbers are in most cases identical to the real user and

group IDs. When the operating system checks if a process has access

right to a given iounit, the effective user and group IDs of the pro-

eess are used, rather than the real user and group IDs. Further, a

process, A, can perform operations on a process, B, only if the effec-

tive user ID of process A is the same as the real user ID of process

B, or if process A is a privileged process (see below).

A process has a name, which is a string of 8 characters. Together with

the real user ID the name uniquely identifies the process within one

MCU.

A process has a process ID. This number is in the range from 0 to

30000 and uniquely identifies the process within one MCU.

A process has a priority. This is a number in the range from -20 to 20

where -20 represents the highest priority. If there are several pro-

eesses that all want access to the CPU, the process with the highest

priority (lowest priority number) will run. If there are several

processes with the same priority that all want access to the CPU, the

CPU is time-shared between them with a time slice of 80 milliseconds.

A process has a process group ID. A process belongs to a so-called

‘process group' (more about this later). One process within each group

is the 'process group leader'. The process group ID of all processes

within a process group is identical to the process ID of the leader of

the group.

A process has a tty ID. This is the number of the terminal from which

3.2 Supermax System Operation Guide

Process Management

the process was started. Some processes, various system processes for

example, do not belong to any particular terminal; they have a tty ID

of +1.

A process may be privileged or unprivileged. Privileged processes have

effective user ID 0, unprivileged processes have effect user IDs

greater than zero. Privileged processes can do things that are forbid-

den to unprivileged processes. For example, a privileged process may

access any file. We normally say that the superuser is allowed to

access any file, but it would be more correct to say that processes

Started by a command from the superuser will normally be privileged

and therefore they may access any file.

A process has a current directory. This is the directory used when

searching for iounits whose pathname does not begin with a slash.

A process has a current root directory. This is the directory used

when searching for iounits whose pathname begins with a slash. Normal-

ly all processes use the same root directory. Only when a different

operating system environment is being tested, is the root directory

changed.

A process has an iounit creation mask. This is a set of 9 bits that

specify the access rights not granted to iounits created by the pro-

cess. If, for example, bit 4 (corresponding to write access for group)

of the iounit creation mask is one, all iounits created by the process

will refuse write access for group, even if bit 4 of the access rights

specified by the process is one.

A process may be in different states, that are not necessarily mutual-

ly exclusive:

1) Running. This means that the CPU is currently actually executing

this process's code.

2) Active. This means that the process wants the CPU to execute its

code, but another process is currently running.

3) Internally suspended. This means that the process has issued a

system call, typically an i/o request, that caused its execution

to be suspended until the requested operation has been comple-

ted.

4) Externally suspended. This means that another process has issued

a 'suspend' system call for this process.

5) Dying. This means that the operating system has been requested to

remove the process, but because the process still has some pen-

Supermax System Operation Guide 3.3
Process Management

ding i/o requests whose termination its awaits, it cannot yet be

removed.

6) Stopped. This means that the execution of the process is being

monitored by another process, and currently the process is not

running, but is open to inspection by the monitoring process.

3.2. Operations on Processes,

One of the relationships that exist between two processes is the

parent/child relationship. We may use the words 'process A is the

parent of process B' or ‘process Bis a child of process A'. This

parent/child relationship has the following implications:

1) if B dies, A will be told why B died,

2) if an attention exception (see below) occurs and B does not catch

it, A will get it,

3) if an attention exception occurs and B catches it, A will not get

it.

4) A may monitor the execution of B.

The Supermax Operating System thus maintains a hierarchy of processes,

such as: A is the parent of B and C, Bis the parent of D, Dis the

parent of E, F, and G, and so on. Here A is called a 'main process',

that is, a process with no parent process, the head of the hierarchy.

Processes that are not 'main processes' are called 'sub-processes'.

Several main processes may be present in the system, each with their

own hierarchy of sub-processes.

If process A is the parent process of B or the 'grandparent' process

of B or the 'great-grandparent' process of B, etc., A is said to be an

‘ancestor’ process of B and B is a ‘descendant' process of A.

Two processes with the same parent process are called 'sibling' pro-

cesses.

3.4 Supermax System Operation Guide
Process Management

3.2.1. Process Birth.

A process is always started by another process. A process may be

started in five different ways:

1) By 'Spawning'.

2) By ‘Production’.

3) By 'Gemmation’.

4) By 'Metamorphosis'’.

5) By 'Forking’.

When a process is started it inherits most of the properties of the

parent process. The most important exceptions are the effective user

and group ID, the rules for which are given below, and the process

group ID in the case of production and gemmation.

Spawning.

If process A 'spawns'’ process B, A will become the parent process of

B.

Production.

If process A 'produces' process B, B will become a main process, that

is, the head of a new process hierarchy. B will be the leader of a new

process group.

Gemmation.

If process A 'gemmates' process B, the parent process of A will become

the parent process of B. A and B will thus become sibling processes.

If A is a main process, so will B be. B will belong to the same pro-

cess group as A's parent.

Metamorphosis.

If process A ‘'metamorphoses', its program code will be replaced by

another program code and the execution of A continues with the new

program code. Metamorphosis thus really does not involve the starting

of a new process, but rather that the process A continues its execu-

tion in a new program, the old program having been removed. Metamor-

phosis is not equivalent to a gemmation followed by the death of

process A, for with metamorphosis no death will be reported to the

parent process of A.

Supermax System Operation Guide 3.5
Process Management

Forking.

If process A 'forks', an identical copy of the program code for A is

made, and execution continues from the fork request both in A and in

the copy, being process B. The fork request will return two different

values in process A and B, and by examining this value the processes

will know the answer to the (almost theological) question: "Who am I?

4m I A or am I B?" A will be the parent process of B,

The program code for the execution of processes may come from several

different sources:

1) From a file.

2) From an installed program.

3) From a subroutine.

4) From a copy of another program.

The origin of the program code is the factor that controls the value

of the effective and real user IDs of the process.

Program Code Taken from a File.

If process A spawns, produces, or gemmates another process, or if

process A metamorphoses, the program code to be executed may be taken

from a disk file. The file must contain a load module produced by a

linker, and the effective user or group ID of A must give the process

execute access right to the file.

The real user and group IDs of the new process will be A's real user

and group IDs, respectively.

If the file containing the program has the 'set user ID on execution’

bit on (see section 5.2.2), the effective user ID of the new process

will be the owner ID of the file; otherwise, the effective user ID

will be identical to the real user ID. If the file containing the

program has the 'set group ID on execution' bit on, the effective

group ID of the new process will be the group ID of the file; other-

wise, the effective group ID will be identical to the real group ID.

For metamorphosing processes the effective user and group IDs will be

set according to the same rules, even though no new process is actual-

ly created.

3.6 Supermax System Operation Guide

Process Management

If several processes on one MCU execute the same program, they share

the program code in memory.

Program Code Taken from an Installed Program.

If process A spawns, produces, or gemmates another process, or if

process A metamorphoses, the program code to be executed may be taken

from an installed program (see below).

The effective user or group ID of A must give the process execute

access right to the installed program.

The real user and group IDs of the new process will be A's real user

and group IDs.

If the installed program has the 'set user ID on execution’ bit on

(see below), the effective user ID of the new process will be the

owner ID of the program; otherwise, the effective user ID will be

identical to the real user ID. If the installed program has the 'set

group ID on execution' bit on, the effective group ID of the new pro-

cess will be the group ID of the program; otherwise, the effective

group ID will be identical to the real group ID.

For metamorphosing processes the effective user and group IDs will be

set according to the same rule, even though no new process is actually

created.

Program Code Taken from a Subroutine.

=
—
s

e
e
e

e
e
e

e
e
e

e
e
e

e
e
e

e
e

Process A may spawn a piece of its own program code, typically a

subroutine, as a process. This means that process A has the option of

calling this subroutine, in which case the execution of the main

program of A stops until the subroutine has completed its job and

returns, or starting it as a process, in which case the execution of

the main program of A continues concurrently with the execution of the

subroutine. A subroutine executing as a process, is called an in-memo-

ry process.

In-memory processes may be used, for example, for asynchronous i/o.

The execution of a process stops while i/o is being handled. By having

an in-memory process do the i/o, process A may continue computing

while i/o is being performed.

¥

*

*
*

*
*

*®

K

Supermax System Operation Guide 3.7
Process Management

-
_
—
_
—

=

The effective and real user and group IDs of the new process will be

identical to those of the starting process.

Program Code Taken from a Copy of Another Program.

This is what happens when a process forks.

The effective and real user and group IDs of the new process will be

identical to those of the starting process.

There are a few restrictions on when the various ways of starting

processes may be used:

- In-memory processes can only be spawned. They cannot be produced

or gemmated.

- In-memory processes cannot fork.

- In-memory processes cannot metamorphose.

- A process that has in-memory child processes cannot metamorphose.

- A process can only start processes on the same MCU as the one on

which it is executing. It may, however, communicate with a process

on another MCU and possibly request this other process to start a

new process.

When a process forks, its child in-memory processes, if any, are not

forked with it.

3.2.2. Installed Programs.

A program may be 'installed' in the memory of an MCU. This means that

the program code and the initial values of data areas are permanently

present in the MCU memory, regardless of whether a process is current-

ly executing the program or not. Installed programs have both advanta-

ges and disadvantages when compared with programs loaded from files.

The advantage is that execution of installed programs can be started

very fast because no time is needed for the loading of program code

from a file.

The disadvantage is that the program is always present in memory, even

when no process is executing it. This gives a less economical use of

memory.

3.8 Supermax System Operation Guide
Process Management

 |

Only privileged processes may install and remove programs. When a

program is being installed, its code is taken from a disk file to

which the installing process must have execute access.

Each installed program has an owner and group ID as well as a set of

protection bits with the same value and meaning as the corresponding

bits in the file from which the program code originated (see section

5.2.2).

Installing a program is done only at one MCU at a time.

3.2.3. Iounits at Process Start.

The initial execution environment of a process is largely determined

by the iounits with which it communicates. When a process is started

it inherits a number of open iounits from the process that started it.

The following possiblities exist:

1) When a process is spawned, produced, or gemmated, the starting

process specifies which of its own open iounits the new process

should inherit.

2) When a process metamorphoses, its open iounits will normally

remain open across the metamorphosis. It is, however, possible to

specify that a given iounit should be closed on metamorphosis.

3) When a process forks, the new process inherits all the open

iounits of the parent process.

3.2.4. Process Death.

A process may die for two reasons:

1) By exitting, that is, committing suicide. This is the normal way

in which a process terminates its execution.

2) If an exception is raised for which the process has no exception

handler. This is described in detail is section 3.2.6. An excep-

tion may, for example, be a division by zero, or an attempt to

access memory that the process is not allowed to access.

*
OK

Ok

O
k

Supermax System Operation Guide 3.9

Process Management

When a process dies, its death is reported to its parent process, if

any. The death information includes the reason for the death (normal

termination, division by zero, or whatever) and possibly a completion

code, which is a number specified in the exit request. How the parent

process will interpret the completion code, depends on the program. A

completion code is given only when a process terminates due to an exit

request (a suicide).

When a process dies, all its iounits are closed, and it is detached

from all memory partitons (see chapter 4).

What happens to the child processes of a dying process? Well, it

depends. If the dying process is not the leader of a process group,

its child processes are turned into main processes (processes directly

subordinate to the operating system). The child processes remain

members of the process group. If, on the other hand, the dying process

is the leader of a process group, which is normally the case with

processes started from log-on, the ‘hang-up’ exception is raised in

all the processes in the process group. This will kill the processes,

unless they have taken measures to ensure that this does not happen.

In-memory processes are killed when the process containing them dies.

3.2.5. Suspending a Process.

A process may suspend itself or be suspended by another process. When

a suspend request is issued, a time is specified. Execution of the

process stops until this time is expired. It is, however, possible to

resume the execution of a process before the time is expired.

A process that suspends itself will know whether execution was resumed

because of time expiration or because of a resume request from another

process.

The system clock has a resolution of 40 milliseconds. Therefore this

is the finest resolution of the supend time.

The suspend time may be specified as ‘indefinately’.

A process, A, may suspend and resume another process, B, only if A is

a privileged process or A has an effective user ID identical to the

real user ID of B. A process may always suspend itself.

3.10 Supermax System Operation Guide

Process Management

3.2.6. Exceptions.

An exception is an abnormal event in a process. The most important

exceptions in the Supermax Operating System are the following:

- Bus error. That is, access to an inaccessible address or an at-

,tempt to write to a read-only address.

- Address error. That is, access to an odd address with an instruc-

tion that requires an even address.

- Illegal instruction. That is, an attempt to execute a non-imple-

mented machine code instruction.

~- Division by zero.

- Line 1010 trap. That is, an attempt to execute an instruction

whose first four bits are 1010. Such instructions are illegal.

- Line 1111 trap. That is, an attempt to execute an instruction

whose first four bits are 1111. Such instructions are illegal.

- Illegal trap. That is, exectution of a 68000 machine code TRAP

instruction not used by the Supermax Operating System.

- Floating point exception. That is, the occurrence of an error,

such as overflow, in the floating point subroutine package.

Attention. That is, the attention key was pressed on the terminal,

if any, from which the process takes input.

- Interrupt. That is, the interrupt key was pressed on the terminal,

if any, designated by the process's tty ID.

- Quit. That is, the quit key was pressed on the terminal, if any,

designated by the process's tty ID.

- Hang-up. That is, the leader of the process group, to which the

process belongs, has died, or the carrier has disappeared from a

modem connected to the terminal designated by the process's tty

ID.

- Alarm. A process may request the operating system to raise this

exception in the process after a specified amount of time.

When an exception occurs, the exception is said to be 'raised' in the

process.

The raising of an exception in a process generally causes the process

to die, as explained in section 3.2.4. The only exception that does

not cause a process to die is the Attention exception, which is de-

scribed later in this section.

It is, however, possible for a process to 'catch' exceptions by de-

claring an ‘exception handler'. The process informs the operating

m
m
m

m
H

H
E
H

H

m
H

E
e

H
E

H
E

H
e

S
S

e
e

=

=

Z
Z

Supermax System Operation Guide 3.11
Process Management

system that, if a particular exception is raised, the operating system

should call a specified subroutine, rather than kill the process. If

and when the exception is raised, the operating system will cause this

subroutine to be called; we say that the exception has been 'caught'.

Once the exception has been raised, exception handling reverts to

default handling until an exception handler is declared again.

A special case of exception handling is to inform the operating system

that a particular exception is to be ignored.

To summarize:

When an exception, except the attention exception, is raised, a pro-

cess may

1) die (default),

2) ignore the exception,

3) catch the exception by execution of an exception handler.

Attention exception handling differs from the handling of other excep-

tions. There may be several processes running simultaneously, taking

input from the same terminal. In which of these processes should the

attention exception be raised when the attention key is pressed? Let

us assume that the attention key is pressed on the terminal from which

processes A and B take their input. What happens is the following:

1) If B is a child process of A and the attention exception is

caught in B, the exception will not be raised in A.

2) If B is a child process of A and the attention exception is not

caught in B, the exception will be raised in A.

3) If Bis not a descendant process of A or vice versa, the atten-

tion exception will be raised in both A and B.

The default handling of the attention exception is to ignore it and

let an ancestor process catch it. It is, however, possible to specify

that the exception should be ignored but not passed on to an ancestor

process, or that the process should die when the attention exception

is raised.

It is seen that the manner in which a process handles an attention

exception is characterized by two things: First, what does the process

do when the exception is raised? Second, is the exception considered

‘eaught’, or will it be raised in an ancestor process?

3.12 Supermax System Operation Guide

Process Management

i

i

HL

To summarize:

When an attention exception is raised, a process may

1) die, in which case the exception is considered caught;

2) ignore the exception and consider it un-caught (default);

3) ignore the exception and consider it caught;

4) catch the exception by execution of an exception handler.

Generally, exceptions are raised because of an abnormal event in the

process or the pressing of a key on a terminal. It is, however, pos-

sible for a process to raise an exception in another process. Process

A may raise an exception in process B if A is privileged or the effec-

tive user ID of A is identical to the real user ID of B; a process

may, however, always raise an exception in itself. If the exception

raised is the attention exception, it will never be passed on to B's

ancestor processes, and in this case action 2 and 3 above are identi-

eal.

Raising an exception in another process may be quite absurd. Imagine

the surprise felt in process B, when the ‘division by zero’ exception

is raised while B was computing 2+2.

If an exception is raised while a process is suspended, the process is

placed in the active state. Therefore, when process execution conti-

nues, a possible suspend time may or may not have expired, anda

pending i/o request may or may not have been serviced.

3.2.7. Setting the Priority.

When a new process is created through spawning, production, or gemma-

tion the starting process specifies the priority of the started pro-

cess. Only privileged processes can start processes at a higher prio-

rity than themselves.

When a process forks, the new process inherits the priority of the

parent process.

The most commonly used priority is 10.

A process may change its own priority or that of another process. Only

privileged processes can specify increased priorities. Process A may

Supermax System Operation Guide
Process Management

 = &_
change the priority of process B only if A is privileged or the effec-

tive user ID of A is identical to the real user ID of B.

3.2.8. Changing Various Process Properties.

A process may, under certain circumstances, change its effective and

real user and group IDs. A number of different cases exist:

1) Process A wants to set its effective user ID to the value of its

real user ID. This is always allowed.

2) Process A wants to set its effective user ID to a value different

from its real user ID. This is allowed if A is a privileged

process.

3) Process A wants to change its real user ID. This is allowed if A

is a privileged process.

What is said here about changing the effective and real user IDs

applies equally to changing the effective and real group IDs.

A process may declare itself the leader of a new process group, that

is, change its process group ID to the value of its process ID.

A privileged process may change its tty ID to any value.

A process may change its iounit creation mask.

A process may change

A privileged process

its current directory.

may change its current root directory.

Supermax System Operation Guide 4.1
Memory Management

==
4. Memory Management.

The memory management part of the Supermax Operating System takes care

of the allocation and releasing of memory used by processes.

4.1. The Memory Management Unit.

4.1.1. The Need for a Memory Management Unit.

Suppose two processes are running on an MCU, suppose that they both

execute the same program but with different data, and suppose that the

program at some time during its execution stores a value in the memory

cell located at the address 0x300000. Obviously, the two processes

should not store their data in the same memory location, one process

destroying the other's data. It is clearly required that the computer

should ensure that when the two processes cause the CPU to access

address 0x300000, two different memory locations should be accessed.

Thus the need arises for a means by which to keep the addressing space

of one process seperated from the addressing space of another process.

Each Supermax MCU is equipped with a hardware Memory Management Unit

(MMU), designed to meet this need.

4.1.2. Logical and Physical Addresses.

The addresses accessed by a process are called ‘logical addresses’.

The addresses of the memory locations actually accessed are called

‘physical addresses'.

The job of the MMU can now be formulated in the following manner: The

MMU should translate logical addresses generated by the CPU into

physical addresses before memory is accessed, and the MMU should

ensure that logical addresses originating from two different processes

should be translated into different physical addresses.

4.2 Supermax System Operation Guide
Memory Management

 —

 SS IIIA IGE AL

4.1.3. How the MMU Works.

The MC68000 micro processor, which is the CPU used in the Supermax

computer, uses 24 addressing bits, thus creating a (logical) address

space of 16 megabyte. These 24 address bits are input into the MMU,

which then outputs another set of 24 address bits, that are the physi-

cal.address of the memory location to access. The MMU thus creates a

physical address space of 16 megabyte.

The logical address space is divided into 16 so-called '‘segments' of

one megabyte each. This means that the first 4 bits of the 24 address

bits are the segment number, or in other words, of the 6 hexadecimal

digits that form the logical address, the first digit is the segment

number.

User programs may use segments 2 through 14, the first two and the

last one megabyte (segments 0, 1, and 15) being reserved for the

operating system. The logical address space of a process therefore has

a size of 13 megabyte.

The following example will illustrate how the MMU translates a logical

address, such as 0x456789, into a physical address:

When a process is created, the operating system assigns a unique

‘address Space Number’ to the process. The MMU uses the Address Space

Number together with the segment number of the logical address to find

an entry in a table.

If the logical address is 0x456789, the segment number is 4.

In its internal table the MMU finds the following information:

1) Is this logical address segment allocated to this process?

2) Does the process have read/write access to the segment, or does

it only have read-only access?

3) How large a part of the one megabyte in the segment may the

process actually use?

4) What offset should be added to the logical address to obtain the

physical address?

These four items are detailed below:

1) Of course, not all processes use all 13 accessible segments.

Supermax System Operation Guide 4.3

Memory Management

Segments are assigned to the process when it is started or during

its execution. If, due to some error, the process accesses an

address in a segment that has not been assigned to the process,

the MMU detects this and the bus error exception is raised in the

process.

2) The MMU allows certain segments to be read-only segments, giving

the programmer greater protection against errors. If, due to some

error, the process tries to write to an address in a read-only

segment, the MMU detects this and the bus error exception is

raised in the process.

3) Generally, a process does not use the whole megabyte of memory

within a segment. When a segment is assigned to a process, a size

is specified. If, due to some error, the process accesses an

address beyond the specified size, the MMU detects this and the

bus error exception is raised in the process. The segment size

has a resolution of 256 bytes. If the logical address is

0x456789, the size of segment 4 must be at least 0x568 blocks of

256 bytes each.

4) When a segment is assigned to a process, the required number of

256 byte blocks are allocated contiguously in physical memory.

The MMU knows the location of these blocks. The physical address

accessed will be the offset within the logical address segment

plus the physical starting address of the allocated memory.

Suppose that the blocks allocated for segment 4 of a process

start at physical address 0x178a00 and the process accesses

logical address 0x456789. The physical address accessed will be

0x56789+0x 178a00=0x 1cf 189.

Typically, a process will use a read-only segment for its program

code, a read/write segment for its global data, and a read/write

segment for its stack. Suppose that the requirements of a certain

program are:

0x6780 bytes of read-only memory in segment 2 for its program code.

0x3020 bytes of read/write memory in segment 3 for its global data.

0x1000 bytes of read/write memory in segment 14 for its stack.

A typical memory assignment for a process executing this program could

be:

yy Supermax System Operation Guide
Memory Management

Segment 2: Size: 0x6800 bytes. First physical address: 0x075300.

Segment 3: Size: 0x3100 bytes. First physical address: O0x080400.

Segment 14: Size: 0x1000 bytes. First physical address: 0x023a00.

It is seen that the physical addresses allocated for the three seg-

ments are not necessarily contiguous. Further, its is seen that even

though the process accesses addresses ranging from 0x200000 (first

address in segment 2) to OxeOOfff (last address in segment 14), only

0x6800+0x3100+0x1000=0xa900 bytes are actually allocated.

4.2. Basic Memory Requirements of a Program.

In a load module, information is stored about the amount of memory

required to start the execution of the program. These memory require-

ments consist of four parts:

- The so-called text part. This is the part of the program that

contains the actual program code. When the program runs it will

have read-only access to its text part. Normally, the text part

will lie in logical address segment 2 of the program.

- The so-called data part. This is the part of the program that

contains the initialized global data. When the program runs it

will have read/write access to its data part. Normally, the data

part will lie in logical address segment 3 of the program.

- The so-called bss part. (Nowhere in the Unix literature has the

author been able to find an explanation of what 'bss' stands

for. Can somebody enlighten me?) This is the part of the program

that contains the uninitialized global data. When the program

runs it will have read/write access to its bss part. Normally,

the bss part will lie in logical address segment 3 of the pro-

gram, following the data part.

- The so-called stack part. This is the part of the program that

contains local data and subroutine parameters and return addres-

ses. When the program runs it will have read/write access to its

stack part. Normally, the stack part will lie in logical address

segment 14 of the program.

In the Unix literature the text part, data part, ete. are often re-

Supermax System Operation Guide 4.5

Memory Management

ferred to as the ‘text segment', ‘data segment’, etc. This has

been done here, because the word 'segment' is used to designate some-

thing else.

4.3. Memory Allocation.

Memory for a process is allocated when it is started. The process may,

however, during its execution request more memory to be allocated.

The initial memory requirements for a process are found in the file

containing the load module for the program to be executed.

A lump of memory allocated for a logical address segment for a process

is termed a 'partition'. In the final example in section 4.1.3 three

partitions are allocated for the process. Each partition corresponds

to one logical address segment.

A process may request more partitions to be allocated while it is

executing. The process informs the operating system of how much memory

it wants and which logical address segment it wants to use when acces-—

sing this partition. The maximum of 13 address segments puts an upper

limit to the number of partitions that can be allocated.

A process may request its data and bss part to grow or diminish during

execution. Normally, this involves increasing or decreasing the size

of logical address segment 3.

4.4. Named and Unnamed Partitions.

Partitions created at the request of a running program may be either

‘unnamed' or 'named'. Unnamed partitions are the most common, they are

deleted when the process dies, and they serve only to fill a temporary

need that exists only as long as the process lives.

Occasionally, however, a process wants to leave some data in memory

for later use or to be shared by other processes. For this purpose a

process may create a 'named' partition. When the process creates the

partition it gives the partition a name of up to 16 characters. Other

processes may now ‘'‘attach' to that partition. This means that they

4.6 Supermax System Operation Guide

Memory Management

request the MMU to map one of their logical address segments onto the

specified partition.

The data stored in a shared named partition may, for example, be a set

of often used subroutines. If these subroutines are reentrant, several

processes may use them. There will be no need to have several copies

of the routines present in memory.

The static protection scheme used with iounits (see section 5.2.2) is

also used with named partitions. When a named partition is created,

the operating system stores the effective user and group ID of the

creating process as the ‘owner ID' and ‘group ID' of the partition.

The creating process specifies a set of protection bits for the parti-

tion. If other processes want read-only access to the partition, their

effective user ID must give them read access rights to the partition.

A process that wants read/write access to the partition, must have

both read and write access rights to the partition.

There is no such thing as write-only access to a partition.

i Supermax System Operation Guide 5.1

I/O Management

5. 1/0 Management.

The Supermax Operating System handles input and output in a manner

that is, as far as possible, device independent. For example, a line

of text is read from a file in the same manner as from a terminal.

5.1. The Unix File System.

The Unix file system is the most important of the two file systems

supported in the Supermax Operating System. It is the file system on

which access to all other i/o devices depends. Hi

The Unix file system consists logically of three levels:

- the directory level,

- the inode level, and

- the data block level.

Each file on a disk is described by a so-called inode. When a disk is

initialized, space is reserved for a number of inodes. The number of

inodes sets the upper limit to the number of files that can reside on

a disk. Each inode on a disk has a unique positive number. There

exists therefore a one-to-one-to-one relationship between a file and

an inode and an inode number.

When a file is created and data is written into the file three things

happen: On the inode level an unused inode is allocated. On the direc-

tory level an entry is created in a directory file containing the name

by which the file is to be known and the inode number of the file. On

the data block level disk blocks are allocated for storing the con-

tents of the file; the addresses of these data blocks are stored in

the inode.

5.1.1. Directorires.

A directory is a file that contains references to other files. Each

entry in a directory is 16 bytes long. The first two bytes contain the

inode number of the file, the remaining 14 bytes contain a null-termi-

nated pathname component. A deleted entry is indicated by an inode

number of zero.

5.2 Supermax System Operation Guide
I/O Management

By convention every directory contains at least two entries:

and

. always refers to the directory itself.

.. ,always refers to the parent directory, that is, the directory in

which this directory is found.

For the following example, please refer to the figure on the following

page. Suppose, for example, that the current directory of a process is

/usr/bilbo. A reference in the program to the file called . will be a

reference to the /usr/bilbo directory itself. A reference in the

program to the file called .. will be a reference to the /usr directo-

ry. A reference in the program to the file called ../.. will be a

reference to the / directory, the root directory. A reference in the

program to the file called ../frodo will be a reference to the

/usr/frodo file.

In the root directory the .. entry refers to the root directory it-

self.

Supermax System Operation Guide 5-3
i I/O Management

i D
1

usr bin etc

i D D D

2 3

bilbo frodo L. \ iqollum aragorn

| D D D

| 5! 6 7 8 9 10

bokomir

merry gandalf frodo \ angorn \ cotium
1 f \ :

° | 11 12} 13 14) | 15

bree tirith morgul

16 14 18

5.4 Supermax System Operation Guide
I/O Management

5.1.2. Inodes.

Inodes contain the complete description of a file. An inode is 64

bytes long and contains the following information:

Bytes O- 1: The file type and protection bits. The file type indi--

, eates if this file is a directory, a special file, or an

ordinary file.

Bytes 2- 3: The number of links to the file, that is, the number of

directory entries referring to this inode.

Bytes 4- 5: The owner ID.

Bytes 6- 7: The group ID.

Bytes 8-11: The number of bytes in the file.

Bytes 12-50: Thirteen 3-byte entries. Each entry is the number of a

disk data block reserved for the file (see section

5.1.3).

Byte 51: Not used.

Bytes 52-55: The time of the last access to the file.

Bytes 56-59: The time of the last modification of the data in the

file.

Bytes 60-63: The time of the last status change, that is, a change in

file size, ownership, protection, or link count.

All times are measured in seconds since January 1, 1970 at 00:00:00

GMT.

As stated in the Supermax Operating System Introductory Guide, refe-

rences to a given file may be found in several directories under

different names. Creating a reference in a directory to a file is

termed ‘linking the file to a directory’. Removing a reference in a

directory to a file is termed 'unlinking the file'. When all directory

references to a file have been removed, that is, when a file has been

unlinked from all directories, it is deleted. To put it another way:

When the link count in bytes 2-3 of the inode becomes zero, the file

is deleted, that is, the data blocks and the inode are deallocated.

Supermax System Operation Guide 5.5
1/0 Management

5.1.3. Data Blocks.

The contents of the file are stored in disk data blocks. Each block

can hold up to 512 bytes of data.

As data is written into the file, data blocks are allocated, and the

addresses of the data blocks are stored in the inode. In the inode

there is room for 13 data block addresses. These addresses are used as

follows:

The first 10 entries are addresses of data blocks containing file

data.

The 11th entry is the address of a data block containing the addresses

of up to 128 data blocks containing file data.

The 12th entry is the address of a data block containing the addresses

of up to 128 data blocks each containing the addresses of up to 128

data blocks containing file data.

The 13th entry is the address of a data block containing the addresses

of up to 128 data blocks each containing the addresses of up to 128

data blocks each containing the addresses of up to 128 data blocks

containing file data.

The total number of blocks allocated for a file is therefore

10 + 128 + 128128 + 128%128*128 = 2,113,674

which gives a maximum file size of

2,113,674*512 bytes = 1,082,201,088 bytes.

It is quite possible that there are holes’ in the allocated data

blocks: Let us number the data blocks that can be allocated for a

given file 0, 1, 2, «.-, 2113673. If only a byte here and there are

written into the file, it is possible to have files for which, for

example, only data blocks 0, 5, 1056, and 5223 are allocated. An

attempt to read bytes from the unallocated data blocks, will yield

zeroes.

5.6 Supermax System Operation Guide
I/O Management

H

5.1.4. Special Files.

Special files are files that refer to i/o devices. No data blocks are

reserved for special files. The inode for a special file contains two

numbers called the major and minor device number. The major device

number is stored in bytes 12-13 of the inode, the minor device number

is stored in bytes 14-15.

The major device number indicates the type of the i/o device: Termi-

nal, printer, null device, etc.

The minor device number indicates the terminal number, the printer

number, etc. For certain devices, such as the null device, the minor

device number has no significance.

In most cases giving the pathname of a special file leads you to an

i/o device. This is, in fact, always the case in standard Unix sys-

tems. In the Supermax Operating System there are, however, two impor-

tant exceptions: Boxes and files on disks with a Mikfile structure.

With these two types of i/o devices an extra pathname component is

required following the pathname of the corresponding special file.

This will be described in greater detail in sections 5.5 and 5.6.

5.2. Operations on Iounits.

Different programming languages treat i/o in very different ways. It

is therefore next to impossible to give a general description that

will not in some way confuse the users of a particular programming

language. The description given in the following sections deals with

the Supermax Operating System i/o facilities accessible from the C

programming language. The operations described are the low level

operations where no formatting of input and output takes place. All

i/o requests from programs are in some way converted to these low

level requests.

Supermax System Operation Guide 5.7

I/O Management

5.2.1. Open, Create, Read, Write, and Move Pointer.

Before it can use an iounit, a process must 'opent or ‘create' the

iounit. The 'open' operation applies to existing iounits, the 'create'

operation to non-existant iounits. The open or create operation esta-

blishes a link between the iounit and the process, and from this time

the. iounit is said to be topen', and in the rest of this section no

‘distinction is made between an opened and a created iounit.

When an iounit has been opened the operating system returns an ‘iounit

descriptor' to the process. This is an integer by which the process

henceforth should identify the iounit when doing i/o on it.

A process can have no more than 32 iounits open at a given time.

Once a process has opened an iounit it may read from or write to the

iounit. This read or write operation may involve either a fixed number

of unformatted bytes, or a line of text.

Most iounits seperate lines of text by new-line character (ASCII

line-feed Ox0a). The only exception is Mikfile files (see section

5.6).

For some iounits (files and disks accessed without a file system) a

pointer to the current byte position on the iounit is maintained. This

pointer may be moved by the process, allowing random access to _ the

information in the iounit.

When a process has performed the required i/o to the iounit, the

iounit must be 'closed'. This may be done explicitly by the process or

automatically when the process dies.

5.2.2. Restrictions on Open and Create.

When a process opens an iounit, it specifies what kind of access it

wants to the iounit. The desired access may be

read-only with no reservation

read-only with non-exclusive reservation

write-only with no reservation

write-only with exclusive reservation

5.8 Supermax System Operation Guide
1/0 Management

read-write with no reservation

read-write with exclusive reservation

selective update with non-exclusive reservation

Not all of these access modes may be applied to all iounits.

The operating system enforces two kinds of protection of iounits:

Dynamic and static. A request to open or create an iounit may fail if

either of these protection mechanisms forbids it.

Dynamic Protection.

Dynamic protection is the reservation of open iounits. Dynamic protec-

tion is enforced on printers and files.

For printers the dynamic protection mechanism forbids a process to

open a printer if the printer has been opened (and not yet closed) by

some other process.

For files the dynamic protection mechanism allows the following simul-

taneous open operations:

- If the file is open for an access mode with no reservation, other

processes may open the same file for an access mode with no

reservation.

- If the file is open for an access mode with non-exclusive reser-

vation, other processes may open the same file for the same

access mode.

- If the file is open for an access mode with exclusive reserva-

tion, other processes may not open the same file.

The access modes with no reservation are not allowed on Mikfile files.

These are the only access modes available in standard Unix systems.

Supermax System Operation Guide 5.9

I/0 Management

Static Protection.

Static protection is the protection of iounits against access from

other users.

All iounits are assigned an owner ID, a group ID a set of protection

bits that control who may access the iounit.

The protection bits have the following significance:

Bit 11: Set user ID on execution.

Bit 10: Set group ID on execution.

Bit 9: Save text image after execution.

Bit 8: Grant read access to iounit owner.

Bit 7: Grant write access to iounit owner.

Bit 6: Grant execute or search access to iounit owner.

Bit 5: Grant read access to iounit group.

Bit 4: Grant write access to iounit group.

Bit 3: Grant execute or search access to iounit group.

Bit 2: Grant read access to others.

Bit 1: Grant write access to others.

Bit 0: Grant execute access to others.

Chapter 6 in the Supermax Operating System Introductory Guide de-

scribes bits 8-0 of this protection mechanism. Here only bits 11-9

will be described.

Bits 11 and 10 are relevant only for files containing programs. If bit

11 is set, the program, when executed, will have its effective user ID

set to the owner ID of the program file. If bit 10 is set, the pro-

gram, when executed, will have its effective group ID set to the group

ID of the program file. If these bits are off, the program, when

executed, will have its effective user ID and/or group ID set to the

Same value as the real user ID and/or group ID. As the effective user

and group IDs are used when checking access rights, this facility may

be used to grant users controlled access to iounits and system opera-

tions that they may not otherwise access.

Bit 9 is relevant only for files containing programs. If this bit ‘is

on, the system will not abandon the swap-space image of the text part

of the file when its last user terminates. Thus, when the next user of

the file executes it, the text need not be read from the file system

but can simply be swapped in, saving time. Ability to set this bit is *x
*

*
*
K
O

5.10 Supermax System Operation Guide

I/O Management

restricted to the superuser since swap space is consumed by

images.

5.2.3. Selective Update.

Several processes may open a file simultaneously for 'selective up-

date’ access. For selective update files the dynamic protection mecha-

nism enforces exclusive reservation on the byte level rather than on

the file level. This means that before a process may read or write a

given number of bytes at a given location, these bytes on the file

must have been reserved. This reservation is called ‘byte locking'.

Once a process has locked, say, 100 bytes starting at byte number 500,

it may read or write these 100 bytes freely. No other process is

allowed to lock and access these bytes. When the desired operation is

finished, the bytes must be 'unlocked', whereupon other processes may

lock them.

When a process closes a file, all bytes locked by that process are

automatically unlocked.

5.2.4. Inheriting Open Iounits.

When a process is started, it may inherit open iounits from the star-

ting process. There are three important differences between opening

and inheriting an iounit:

1) The process that inherits the iounit does so regardless of the

dynamic or static protection mechanisms. Thus, for example, two

processes may both have write access with exclusive reservation

to the same file if one of the processes has inherited the open

file from the other one.

2) If the iounit is a file or a disk used without a file system, the

processes share the same iounit pointer, as opposed to when two

processes both open the same file, in which case they will have

seperate iounit pointers.

When a process inherts an open iounit from another process, the two

Supermax System Operation Guide 5.11
I/O Management

 =
—

=
=

processes are said to share not only the open iounit but the same

‘opening' of the iounit.

It is customary that all processes are born with four open iounits.

These iounits are called the standard input device, the standard

output device, the standard error device, and the standard list de-

vice. How these devices are used depends on the particular program.

5.3. Terminals and Printers.

Because hardware devices are physically different, the device indepen-

dence of the i/o operations can only be enforced to a certain degree.

There will always be some operations that are peculiar to specific

devices. It is, for example, nonsense to change the baud rate of a

file.

Terminals and printers are generically called 'sioc devices'. Sioc is

an abbreviation of Serial Input/Output Controller. This section de-

scribes some of the peculiarities that apply to sioc devices.

If the output buffer contains characters whose most significant bit is

on, those characters will be output underlined. Conversely, if the

terminal operator enters an underlined character, that character will

be stored in the input buffer with the most significant bit on.

When an input request is issued to a terminal, the operator is allowed

to enter and edit a line. The operating system returns the number of

actually entered characters to the process, discarding trailing

blanks. If more characters are entered than requested by the process,

the superfluous characters will be used in the next read operation,

unless the process requests otherwise.

A special case of the input operation is the edit operation described

in section 3.3 of the Supermax Operating System Introductory Guide.

When performed on other devices than terminals and printers, edit

operations are converted to the reading of a line of text. When issu-

ing an edit command a process may specify that the cursor is to be

left at a certain position before control is given to the operator.

Terminals may be equipped with function keys, some of which are used

for line editing. The value of the most recently pressed function key

is available to the process.

5.12 Supermax System Operation Guide
I/0 Management

The position of the eursor at the end of the last input operation is

available to the process.

The process may request that its i/o operations to sioc devices be

interpreted in a special way. This is known as the ‘soft sioc mode’.

The options are:

- Should initial control sequences in an output buffer be interpre-

ted? (See section 5.3.1.) Default is yes.

- Should line feed characters in an output buffer be translated into

a carriage return anda line feed, as is customary in the Unix

operating system? Default is yes.

- Should the terminal echo carriage return and line feed or only

earriage return when an input operation is terminated? Default is

carriage return and line feed. Changing the echo to carriage

return only, will prevent scrolling of the terminal screen when

the input line is the last on the screen.

A process may desire to get keystrokes from a terminal immediately

when they are entered, rather than allowing the operator to perform

line editing. This is done by putting the terminal in 'direct input’

mode. When a terminal is in direct input mode, keystrokes are not

echoed on the device. Only one process at a time may have a given

terminal in direct input mode. The direct input mode may be explicitly

cleared by the process or automatically cleared when the iounit is

closed.

A process may change the baud rate, the number of stop bits, the

number of data bits, and the parity of a sioc device.

Three keys are reserved for creating an exception in a process. They

are called ‘attention', 'interrupt', and ‘quit’.

A process may change the values of the xon, xoff, attention, inter-

rupt, and quit keys.

A process may change the characteristics of a sioc device, that is,

the specification on how to move the cursor, clear the sceen etc. on

the device.

Supermax System Operation Guide 5.13
I/O Management

5.3.1. Control Sequences.

Unless interpretation of control sequences is disabled (see section

5.3), they provide a means for controlling the cursor movement and

other features of a specific sioe device.

In .order to make the differences between various terminals and prin-

ters transparent to the user, these media are controlled by certain

character sequences in the output strings. These sequences must begin

with < and end with >.

For example, to give an ‘erase to end of line’ command to a terminal

screen, simply output a character string where the first three charac-

ters are <Z>.

Note that the < of the control sequence must be the first character in

the output buffer. Thus the Pascal statement WRITE('<Z>ALPHA') will

erase to the end of line and output the string ‘ALPHA’, whereas the

Pascal statement WRITE('ALPHA<Z>') will output the string 'ALPHA<Z>'.

If several controls are needed in the same buffer they must be en-

closed within the same < and >. Thus in order to erase the screen and

position the cursor to column 10 line 20 and write the text 'BEER!

there, the following Pascal stement should be used:

WRITE('<XC1020>BEER'). If the statement WRITE('<X><C1020>BEER') were

used, the screen would be erased and the text '<C1020>BEER' would be

output in the upper left corner.

If a control sequence contains characters that do not apply to a

specific terminal or printer, these characters are ignored.

To output the charcter '<' be sure to include an empty control se-

quence in the buffer. If you want to write '<34' WRITE('<34') will

output nothing, whereas WRITE('<><34') will output '<34'.

Note that many programming languages provide other means for control-

ling the sioc devices. For example, Pascal provides the PAGE procedure

for ejecting the page on a printer.

If the buffer presented by a program to an edit operation contains a

control sequence, the sequence will be interpreted and only the cha-

racters following the final > may be changed by the operator. If the

edit operation is applied to a non-sioc device, such as a file, a

5.14 Supermax System Operation Guide
I/O Management

possible initial control sequence will not be modified by the input

operation.

The valid control characters are listed below. The control characters

marked with a 't' are supported on terminals only, whereas the control

characters marked with a 'p' are supported on printers only.

<X> : Clears screen on terminal and moves cursor to upper left

corner.

Ejects page on printer.

<Cxxyy> : Cursor to culomn xx on line yy. (Numbering starts at 1.)

<Cxxxyy>: Cursor to column xxx on line yy.

t <O> : Clear to end of screen.

t <Z> : Clear to end of line.

<S> : Omit the final carriage return and line feed after

writing a variable length record.

<N> : Omit the carriage return after writing a variable length

record.

t <u> : Cursor up (same func. as <U>).

t <d> : Cursor down.

t <1> : Cursor left.

t <r> : Cursor right.

t <h> Cursor Home.

t <e> : Cursor Return

t <D> : Cursor to last line column 1.

t

t

t <a> : Delete line.

t : Insert line.

t <e> : Delete character.

t <f> : Insert character.

t <\> : Cursor off. The \ is a ® on Danish terminals.

t <p> : Cursor on. The] is a A on Danish terminals.

<i> : Set inverse video on terminal. Start shadow print.

<p> : Normal video on terminal. Stop shadow print.

t <k> : Set low intensity.

t <m> : Set normal intensity.

t <n> : Set blinking / bold.

t <o> : Reset blinking / reset bold.

t <p> : Set invisible.

t <q> : Reset invisble.

Supermax System Operation Guide 5.15
I/O Management

e
e

e
e

e
e

e
e
e

e
e

e
e

-
_

_
—

o
D

<4> : Set underline.

<-> : Reset underline.

<G> : Start expand.

<I> : Stop expand.

p <E> : Eject page.

p |<Fnn> : Set page size to nn lines, where nn is an integer.

p <Hnn> : Set character width to nn/120".

p <Lnn> : Set left margin to column number nn.

p <Rnn> : Set right margin to column number nn.

p <Vnn> : Set line height to nn/48".

p <Pnn> : Set pica size to nn (nn is 10, 12 or 15).

p <K> : Start compressed output.

p <J> : Stop compressed output.

p <T> : Horizontal tab.

p <Y> : Vertical tab.

p <s> : Half line up.

p <t> : Half line down.

p <A> : Start proportional spacing.

p : Stop proportional spacing.

p <Q> : Start automatic justification of right margin (Diablo

option).

p <W> : Terminate all Word Processing (Diablo option).

p <*> : Reset printer.

<'text'>: The text between the apostrophes is output.

The last control sequence serves a double purpose:

First, it may be used when it is desired to perform a special opera-

tion both before and after a text is output. If, for example, it is

desired to move the cursor to culomn 12 on line 10, write the text

'thello', and move the cursor to column 1 on line 3, outputting the

buffer <C1210'hello'C0103> will do the job. If the quoted text is to

contain apostrophes, two apostrophes should be written.

Second, it may be used to give a prompt to an edit operation. Because

text in control sequences cannot be modified by the operator, a text

in a control sequence will appear as a non-modifiable prompt on a

terminal. An edit operation on the buffer <'Name:'>Jones is different

from writing the text Name: and performing an edit operation on the

buffer Jones, because in the latter case another process may output a

few lines between the 'Name:' prompt and the edit operation.

5.16 Supermax System Operation Guide
I/O Management

r
=

|

5.4. Raw Disks.

Raw disks are disks considered without regard to any file system

structure on them. When seen in this manner, disks are merely a string

of bytes.

Note that the main disk on a Supermax computer may contain a special

file /dev/diskO which refers to the disk itself, seen without a file

system. So in a sense, the disk contains itself. (Douglas Hofstadter

would leap for joy.)

5.5. Boxes.

Boxes are used for message exchange and synchonization between pro-

cesses. A box is logically an iounit, but is resident in MCU memory.

Data written to a box is stored in a buffer in the box, and from this

buffer data is taken when a process reads from the box. Data read from

a box is removed and cannot be read again. If a process tries to read

from a box whose buffer currently contains no data, the process is

supended until something is written to the box. If a process tries to

write more data to a box than the box can hold, the process is suspen-

ded until so much data has been read that there is room for the data

to be written.

There are three kinds of boxes, ordinary boxes, system boxes, and

common boxes, associated with special files called /dev/box,

/dev/sysbox, and /dev/combox, respectively.

A box has a name of up to 8 characters. The box name is appended to

the pathname of the box special file: Reference to an ordinary box

called 'saruman' is made by the pathname /dev/box/saruman.

Note here an important difference between box names and file names.

For ordinary files the validity of a pathname such as /usr/bilbo/merry

implies the existence of an inode called /usr/bilbo/merry on the disk

and the existence of a directory file called /usr/bilbo. The pathname

/dev/box/saruman, however, does not refer to an inode on the disk and

/dev/box is not a directory file - it is a special file.

Ordinary boxes are automatically deleted when they are empty and

currently not open by any process. A non-empty box can be deleted by

Supermax System Operation Guide 5.17
I/O Management

an explicit delete request. Ordinary boxes are local to an MCU, and

their names need only be unique within that MCU.

System boxes are never automatically deleted; a delete request is

required to delete a system box. System boxes are local to an MCU, and

their names need only be unique within that MCU. Only privileged

processes may create system boxes.

Common boxes are never automatically deleted; a delete request is

required to delete a common box. Common boxes are common to all MCUs,

and their names must be unique within the whole computer. Only privi-

leged processes may create common boxes.

A special kind of ordinary box is the 'pipe'. A pipe is an anonymous

ordinary box which a process, A, may create for the purpose of commu-

nication with another process, started by A. Pipes are automatically

deleted when they are not open by any process.

5.6. Mikfile Files.

The Supermax Operating system supports disks with a Mikfile structure.

The Mikfile file system is compatible with the file system used on the

SPC/1 micro computer from Dansk Data Elektronik A/S.

A disk with a Mikfile file structure is associated with a special file

called /dev/mikfile1, /dev/mikfile2, /dev/mikfloppy, or the like. The

minor device number of the special file identifies which of the disks

on the computer is used.

Mikfile file names consist of up to 8 characters. Often a so-called

file type character is added after the file name, seperated from the

file name by a hyphen or a period. Upper and lower case letters are

considered identical. The file type may be thought of as a 9th charac-

ter of the file name; it is used to indicate what kind of information

is stored in the file. All characters except n is allowed as file

type. If no file type is specified, the file type is assumed to be a

Space character. The file name is appended to the pathname of the

Mikfile special file. Typical Mikfile pathnames may be:

5.18 Supermax System Operation Guide
I/O Management

/dev/mikfile2/alpha-u

/dev/mikfloppy/beta

/dev/mikfile3/gamma.k

/dev/mikfile3/GAmmA-K

The last two pathnames designate the same file.

Note that the validity of the pathname /dev/mikfile2/alpha-u does not

imply that /dev/mikfile2 is a directory - it is a special file. And a

process cannot make /dev/mikfile2 its current directory.

A Mikfile file consists of a primary file, which is the original file

constructed by the create operation, plus 0 to 60 extents. All extents

are of the same size as the original file. An attempt to extend a file

past the 60th extent is rejected.

In a text file, information is stored in so-called ‘variable length

records', each record corresponding to one line of text. A variable

length record contains the contents of the line, preceded and followed

by a byte that indicates the length of the line in bytes. This puts an

upper limit of 255 bytes in a variable length record.

For example, in a text file the line 'hello' will be represented by 7

bytes: A byte containing the number 5, the five characters '‘hello',

and another byte containing the number 5. The contents of the first

and last byte must be identical.

After the last line in a text file an end-of-file mark must be found.

This is two bytes, both containing zero.

An empty line cannot be stored in a text file. Instead a line contai-

ning a single blank is stored.

There is no end-of-file indication in non-text files. The end-of-file

condition is returned when an attempt is made to read past the last

data block allocated.

Supermax System Operation Guide 5.19

I/O Management

5.7. Mounting Disks.

The Supermax computer contains several disks. When the system is

bootstrapped the root directory is assumed to be located on disk

number 0, the main disk. In order to access files on another disk the

disk must be 'mounted'. Mounting a disk implies associating the root

directory of the new disk with a directory on an already mounted disk.

Assume, for example, that disk number 0 on a computer contains the

file hierarchy shown on the top half of the following page, whereas

disk number 1 contains the file hierarchy shown on the bottom half of

the following page.

When the system has been bootstrapped it is only possible to access

the files on disk 0. In order to access the files on disk 1 we must

mount disk 1 on some directory residing on disk 0. Let us now, for

example, mount disk 1 on directory /beta. The mount operation involves

the association of the directory file with the special file for disk

1.

After the mount operation, references to /beta will no longer be

directed to that directory on disk 0. Instead /beta will be treated as

if it were the root directory of disk 1. So the files labelled 10 and

11 on the figure will have the pathnames /beta/theta and

/beta/eta/iota, respectively. The files labelled 6 and 7 are no longer

accessible. The .. entry in the root directory of disk 1 will be

interpreted as a reference to the parent directory of /beta, that is

in this case the root directory of disk 0.

If we had mounted disk 1 on /alpha instead of /beta, the files la-

belled 10 and 11 would have had the pathnames /alpha/theta and

/alpha/eta/iota, respectively.

5.20 Supermax System Operation Guide

I/O Management

i disk 0:
D

i 1

| alpha beta

i D D
2 3

| gamma delta Jersiton zeta

i 4 5 | 6 7

i disk 1: D

i eta theta

D

| 9 10

| iota

| 11

Supermax System Operation Guide 5.21
I/O Management

In this way the file hierarchy is expanded to cover other disks. There

is, however, an important difference between a large file hierarchy

located on a single disk and several small file hierarchies located on

different disks: It is impossible to link a file to a directory loca-

ted on a disk different from the one that contains the file.

A disk may be mounted read-only. In this case the files located on the

disk may only be read, and the operating system will not itself write

anything to the disk. This means that the 'time for last access'-field

in the inode will not be modified for files on such a disk. Disks that

are physically write-protected should be mounted read-only in order to

prevent the operating system from modifiying access times in inodes.

A protection mechanism prevents a process from accessing the Mikfile

special file associated with a given disk while this disk is mounted

on a directory. Conversely,’ it is impossible to mount a disk if any

process currently has open Mikfile files on the disk.

Supermax System Operation Guide 6.1
Miscellaneous

6. Miscellaneous.

This chapter describes a few facilities of the Supermax Operating

System that do not fit into the three main operational categories.

6.1. The System Time.

The Supermax Operating System keeps track of the time. It contains a

32-bit counter that is incremented every second. This counter counts

the seconds since 00:00:00 GMT on January 1, 1970. The number of bits

in the counter makes it valid until the year 2106.

Of course, this system time is highly unpractical for human use, and

therefore most programming languages have facilities to convert this

number to normal date and time format, taking into consideration the

difference between local time and GMT and the possibility of Daylight

Saving Time.

Only privileged processes may change the system time.

There is only one clock in the computer. This means that setting the

time in one MCU changes the time in all other MCUs as well.

6.2. Hardware Configuration.

A process may request the operating system to inform it of the hard-

ware configuration of the computer.

6.3. Operating System Version.

Each release of the Supermax Operating System has a version time. This

time has the same format as the system time. A process may request the

operating system to inform it of the version time of the software that

runs in any of the CPUs that make up the Supermax computer.

6.2 Supermax System Operation Guide

Miscellaneous

es ——— a : Ob =e

6.4. The MCU Display.

On the chassis of the computer a number of 2-digit displays are found.

Each display corresponds to one MCU. The displays are turned off when

the computer is running normally, but during bootstrapping and in case

of system crash, a value will be displayed. These values are described

in the Supermax System Administrator's Guide.

User processes may output any of 16 values to the display, namely the

letter 'u' followed by a hexadecimal digit.

Next to the display a red and a green indicator is found. The green

indicator is on when the micro processor is executing in 'user mode’,

that is, executing the user's program code. The red indicator is on

when the micro processor is executing in ‘supervisor mode', that is,

servicing the user program's system requests, handling interrupts, or

idling. Both indicators are turned off if the CPU is halted.

i Supermex System Operation Guide A.1

Error Codes

Appendix A. Error Codes.

When a system request fails, the operating system returns an _ error

code to the process issuing the request. The following table lists the

error codes. The first column gives the symbolic name of the error

code as it is known in the C programming language. The second column

gives the value of the error code. The third column gives a descrip-

tion of the error.

A more detailed description of the errors is given in the introduction

to part 2 of the Supermax Operating System User's Manual:

General errors:

EOK 0 No error detected

EDATFUL 1 Unirex data area is full

EPRIVIO 2 Privilege violation

EBADADDR 3 Bad address in system call

EBADDIR 4 Bad directive number

ENOTIMP 5 Facility not yet implemented

ECOMFUL 6 Common area is full

EBADPARM 7 Bad value of parameter to system call

Memory management errors:

EPARNX 50 Partition does not exist

EPARAX 51 Partition already exists

ESEGUSE 52 Segment in use

EILSEGNO 53 Illegal segment number

EPARNATT 54 Partition not attached

EPARLONG 55 Partition too long

ENOMEM 56 No memory

EASEGUSE 57 All segments in use

EMAXPAR 58 All partition descriptors in use

Process management errors:

EILPRIO 101 Illegal priority

ENOASN 102 No Address Space Number available

EBADLM 103 Bad load module structure

EBADSER 104 Bad serial number

EPROCAX 105 Process already exists

EPROCNX 106 Process does not exist

A.2 Supermex System Operation Guide

Error Codes

= —————— = == bp =

EPROGAX 107 Program already exists

EPROGNX 108 Program does not exist

EILMETAM 109 Illegal metamorphosis

EPROCABO 110 Process is being aborted

ERESUME 111 Process was resumed by another process

ENOTSUSP 112 Process is not suspended

EMAXPNO 113 The maximum number of processes exist

EDEADPNX 114 There is no dead process

EBADEXNO 116 Bad exception number

ESIGNAL 118 An exception caused the system call to abort

ESTSHORT 119 The stack is too short to hold parameters

ESYSPR 120 The process is a system process

EMAXINS 121 The maximum number of installed programs exist

EILTIME 122 Illegal alarm request time

EILFORK 123 The process may not fork

EIMPROC tau In-memory processes prevent a memory change

EILPTRAC 125 The process may not be monitored

I/O management errors:

EBADACC

EBUFLONG

EUNAMLNG

EILDEVIC

EUNITAX

EUNITNX

EILMODE

EACCVIO

ETIMEOUT

EOPEN

ENOTOPEN

EILOP

EILPOSM

EILBUFL

EEXCDDSK

ENMOUNT

EAMOUNT

EOPENFIL

EEOF

EBOF

EISDI

EISNTDI

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

Iounit not open for this access mode

Buffer is too long

Iounit name is too long

Illegal device

Iounit already exists

Iounit does not exist

Illegal access mode

Access right violation

Time out on i/o operation

Tounit is already open

Iounit is not open

Illegal operation on specified iounit

Illegal position mode

Tllegal buffer length

Transfer exceeds disk

Disk not mounted

Disk already mounted

Files are open on the disk

End-of-file reached

Beginning-of-file reached

The iounit is already in direct input mode

The iounit has not been put in direct input mode by

the calling process

Supermex System Operation Guide A.3
Error Codes

ENREADY 222
EHARD 223
EWRPROT 224
EILSECT 225
ECBOXFUL 226
ELOCK 227
EFULLLOC 228
EBADPOS 229
ELUSED 230
EILFSYS 231
EILSIZE 232
EMAXIO 233
ENOTSIOC 234
EDISK 235
ECATFULL 240
EILEXT 241
ELASTEXT 242
EFULLDSK. 243
EILVARI 244
EILTYPE 250
ENULLFIL 251
EFULLRES 254
EILFORM 255
EILFNAM 259
ENOINO 262
EOLFIL 264
EMXNLINK 266
EMNTMISM 267

Utility program

EILLKEY 300

EMISPARM 301

EILLPARM 302

EUPARLNG 303

Disk not ready

Hard error on disk

Disk write protected

Illegal sector number

More than 16 waiting processes on a (common) box

The byte range must be locked before access

The lock table is full

Bad position on iounit

The byte range is already locked

Illegal file system letter

Illegal file size or file buffer size

The maximum number of iounits (32) are open

The specified hardware unit is not a SIOC

Internal DIOC error

Calalog full

Illegal extent

No more extents posible

The disk is full

Illegal variable length record

Illegal file type

Illegal operation on nullfile

Full reservation table

Illegal disk format

Illegal file name

No inode available

Outside legal file size

More than 1000 links to a file

Internal copy of superblock (block 1) for disk differs

from physical superblock

errors:

Illegal keyword

Missing parameter

Illegal parameter

Illegal parameter length

