

Unirex

System Operation Guide

Dansk Data Elektronik A/S

Author: Claus Tondering

27 July 1983

Copyright 1983

Dansk Data Elektronik A/S

Unirex System Operation Guide
Contents

Contents.1

Table of Contents.

. Introduction

. Unirex Overview

. Process Management

3.1. Process Properties

3.2. Operations on Processes

3.2.1. Process Birth

3.2.2. Installed Programs

3.2.3. Iounits at Process Start

3.2.4. Process Death

3.2.5. Suspending a Process

3.2.6. Exceptions

3.2.7. Changing User Numbers

3.2.8. Setting the Priority

Memory Management

Het.

4.2,

4.3.

The Memory Management Unit

4.1.1. The Need for a Memory Management Unit

4.1.2. Logical and Physical Addresses

4.1.3. How the MMU Works

Memory Allocation

Named Partitions

. 1/0 Management

5.1. Supported Devices

5.2.

5.3.

5.4.

5.1.1. Boxes

5.1.2. Mikfile Files

Operations on Iounits

5.2.1. Open, Create, Read, Write, and Move Pointer

5.2.2. Restrictions on Open and Create

5.2.3. Selective Update

5.2.4. Inheriting Open Iounits

Terminal and Printer Peculiarities

5.3.1. Control Sequences

Mounting Disks

6. Miscellaneous

.
W
W
W

W
W
W

W
w
W

Ww

Ww

Ww

=
3
M
D
w
o
O
A
A
R
W
D
H

=
=

.

fo

F
e
r
r
e
e

S
$

WM

F
P

a
a

|

|

o
r
t

U
T

t
o
t

B
O
R
A

KD
FE
F
E
W
N

=
=

a
fon

)

_

| Unirex System Operation Guide Contents.2

Contents

. The System Time

. Hardware Configuration

. Operatins System Version

. The MCU Display

A
A

W
O

F
w
n

Appendix A. Error Codes A.

Unirex System Operation Guide
Introduction

This manual describes the features of the Unirex operating system. It

does not explain how these features are invoked in the various pro-

gramming languages; this the reader will find in the relevant language

manuals. The purpose of this manual is to provide the reader with

knowledge of what can be done in Unirex, and thus give him or her the

necessary background for reading the language manuals.

It should be noted that some programming languages may not give the

user access to all the features of Unirex described in this manual.

The reader is expected to be familiar with the Unirex Introductory

Guide.

Numbers preceded by 'Ox' are hexadecimal. All other numbers are deci-

mal.

Dansk Data Elektronik A/S reservers the right to change the specifica-

tions in this manual without warning. Dansk Data Elektronik A/S is not

responsible for the effects of typographical errors or other inaccura-

cies in this manual and cannot be held liable for the effects of the

implementation and use of the structures described herein.

Unirex System Operation Guide 2.

Unirex Overview

2. Unirex Overview.

The Unirex operating system performs several tasks that may be divided

into three groups:

1) Process Management.

2) Memory Management.

3) I/O management.

The Process Management part of Unirex takes care of the execution of

programs. An executing program is called a 'process' (other operating

systems use the term 'task'). The Process Management loads a program

and starts its execution as a process, controls the process while it

is running, and removes the process when its job is done.

The Memory Management part of Unirex takes care of the allocation and

deallocation of memory for processes.

The I/O Management part of Unirex services input and output requests

from processes.

Of course, these three parts are not independent: Starting the execu-

tion of a program, as done by the Process Management, involves both

allocation of memory for the process, done by the Memory Management,

and the loading of the program froma disk file, done by the 1/0

Management. Also, there are some features, such as reading the system

clock, that can hardly be places in any of the three categories.

Unirex System Operation Guide 3.

Process Management

3. Process Management.

A process is an executing program. Processes have various properties,

and various operations may be performed on processes.

3.1. Process Properties.

A process has an effective user number and a real user number. These

are both 16-bit numbers. The effective user number determines the

access rights and privilege rights of the process. The real user

number determines who.is allowed to perform operations on the process.

Process A can perform operations on process B only if the effective

user number of process A is the same as the real user number of pro-

cess B, or if process A is a privileged process (see below). In most

eases the effective and real user numbers are the same. The real user

number will almost always be identical to the user number of the user

who gave the command that started the process.

A process has a name, which is a string of 8 characters. Together with

the real user number the name uniquely identifies the process within

one MCU.

A process has a number. This number is in the range from 0 to 799 and

uniquely identifies the process within one MCU.

A process has a priority. This is a number in the range from -20 to 20

where -20 represents the highest priority. If there are several pro-

cesses that all want access to the CPU, the process with the highest

priority (lowest priority number) will run. If there are several

processes with the same priority that all want access to the CPU, the

CPU is time-shared between them with a time slice of 80 milliseconds.

A process may be privileged or unprivileged. Privileged processes have

privileged effective user numbers, unprivileged processes do not. A

privileged user number is a user number whose first two hexadecimal

digits (first eight bits) are zero. Privilieged processes can do

things that are forbidden to unprivileged processes. For example, a

privileged process may change the access rights of any file. We nor-

mally say that a privileged user is allowed to change the access

rights of any file, but it would be more correct to say that processes

 a

Unirex System Operation Guide 3.

Process Management

2

”

started by a command from a privileged user will themselves normally

be privileged and therefore they may change the access rights of any

file.

A process may be in different states, that are not necessarily mutual-

ly exclusive:

1) Running. This means that the CPU is currently actually executing

this process's code.

2) Active. This means that the process wants the CPU to execute its

code, but another process is currently running.

3) Internally suspended. This means that the process has issued a

system call, typically an i/o request, that caused its execution

to be suspended until the requested operation has been comple-

ted.

4) Externally suspended. This means that another process has issued

a 'suspend' system call to this process.

5) Dying. This means that the operating system has been requested to

remove the process, but because the process still has some pen-

ding i/o requests whose termination its awaits, it eannot yet be

removed.

3.2. Operations on Processes.

For the relationship between two processes, A and B, we may use the

words 'A is the parent process of B' or 'B is an offspring process (or

child process) of A'. This parent/offspring relationship has the

following implications: :

1) if B dies, A will be told why B died,

2) if A dies, B will be killed,

3) if an attention exception (see below) occurs and B does not catch

it, A will get it,

4) if an attention exception occurs and B catches it, A will not get

it.

Unirex thus maintains a hierarchy of processes, such as: A is the

parent of B and C, B is the parent of D, D is the parent of E, F, and

G, and soon. Here A is called a 'main process', that is, a process

with no parent process, the head of the hierarchy. Processes that are

not 'main processes' are called 'sub-processes'. Several main process-

es may be present in the system, each with their own hierarchy of

sub-processes.

Unirex System Operation Guide 3.

Process Management

3

If process A is the parent process of B or the 'grandparent' process

of B or the 'great-grandparent' process of B, etc., A is said to be an

'tancestor' process of B and B is a 'descendant' process of A.

Two processes with the same parent process are called 'sibling' pro-

cesses.

3.2.1. Process Birth.

A process is always started by another process. A process may be

started in five different ways:

1) By 'Spawning'.

2) By 'Production'.

3) By 'Gemmation'.

4) By 'Metamorphosis'.

5) By 'Forking'.

Spawning.

If process A 'spawns' process B, A will become the parent process of

B.

Production.

If process A 'produces' process B, B will become a main process, that

is, the head of a new process hierarchy.

Gemmation.

If process A 'gemmates' process B, the parent process of A will become

the parent process of B. A and B will thus become sibling processes.

If A is a main process, so will B be.

Metamorphosis.

If process A ‘'metamorphoses', its program code will be replaced by

another program code and the execution of A continues with the new

program code. Metamorphosis thus really does not involve the starting

of a new process, but rather that the process A continues its execu-

tion in a new program, the old program having been removed. Metamor-

phosis is not equivalent to a gemmation followed by the death of

process A, for with metamorphosis no death will be reported to the

parent process of A.

Unirex System Operation Guide
Process Management

3. 4

Forking.

If process A 'forks', an identical copy of the program code for A is

made and execution continues from the fork request both in A and in

the copy, being process B. The fork request will return two different

values in process A and B, and by examining this value the processes

will know the answer to the almost theological question: "Who am I? Am

I A or am I B?" A will be the parent process of B.

The program code for the execution of processes may come from several

different sources:

1) From a file.

2) From an installed program.

3) From a subroutine. |

4) From a copy of another program.

The origin of the program code is the factor that controls the value

of the effective and real user numbers of the process.

Program Code Taken from a File.

If process A spawns, produces, or gemmates another process, or if

process A metamorphoses, the program code to be executed may be taken

from a disk file. The file must contain a load module produced by a

linker, and the effective user number of A must give the process

execute access right to the file.

The real user number of the new process will be A's real user number.

If the file containing the program has the 'set user number' or ‘set

group number' bit on (see section 5.2.2), the effective user number of

the new process will be the owner number of the file; otherwise, the

effective user number will be identical to the real user number.

For metamorphosing processes the effective user number will be set

according to the same rules, even though no new process is actually

created.

Unirex System Operation Guide 3.

Process Management

5

 == sso

Program Code Taken from an Installed Program.

If process A spawns, produces, or gemmates another process, or if

process A metamorphoses, the program code to be executed may be taken

from an installed program (see below).

The effective and real user number of the new process will be A's real

user number.

For metamorphosing processes the effective user number will be set

according to the same rule, even though no new process is actually

created.

Program Code Taken from _a Subroutine.

Process A may spawn a piece of its own program code, typically a

subroutine, as a process. This means that process A has the option of

calling this subroutine, in which case the execution of the main

program of A stops until the subroutine has completed its job and

returns, or starting it as a process, in which case the execution of

the main program of A continues concurrently with the execution of the

subroutine. A subroutine executing as a process, is called an in-memo-

ry process.

In-memory processes may be used, for example, for asynchronous i/o.

The execution of a process stops while i/o is being handled. By having

an in-memory process do the i/o, process A may continue computing

while i/o is being performed.

The effective and real user numbers of the new process will be identi-

eal to those of the starting process.

Program Code Taken from a Copy of Another Program.

This is what happens when a process forks.

The effective and real user numbers of the new process will be identi-

cal to those of the starting process.

There are a few restrictions on when the various ways of starting

processes may be used:

- In-memory processes can only be spawned. They cannot be produced

Unirex System Operation Guide 3.

Process Management

e
e

e
e

e
e

e
e

e
e

e
e

e
e

e
e
e

=

—_
—

=

or gemmated.

- In-memory processes cannot metamorphose.

- A process that has in-memory descendant processes cannot metamor-

phose.

- A process can only start processes on the same MCU as the one on

which it is executing. It may, however, communicate with a process

on another MCU and possibly request this other process to start a

new process.

When a process forks, its offspring in-memory processes, if any, are

not forked with it.

3.2.2. Installed Programs.

A program may be ‘installed’ in the memory of an MCU. This means that

the program code and the initial values of data areas are permanently

present in the MCU memory, regardless of whether a process is current-

ly executing the program or not. Installed programs have both advanta-

ges and disadvantages when compared with programs loaded from files.

‘The advantages are:

- Execution of installed programs can be started very fast because

no time is needed for the loading of program code from a file.

- If several processes execute the same installed program, they

share the program code. This gives a more economical use of memo-

ry.

The disadvantage is:

- The program is always present in memory, even when no process is

executing it. This gives a less economical use of memory.

Only privileged processes may install and remove programs. When a

program is being installed, its code is taken from a disk file to

which the installing process must have execute access.

Installing a program is done only at one MCU at a time. A program need

not be installed in all MCUs on a computer.

Unirex System Operation Guide 3.

Process Management

3.2.3. Tounits at Process Start.

The initial execution environment of a process is largely determined

by the iounits with which it communicates. When a process is started

it inherits a number of open iounits from the process that started it.

The following possiblities exist:

1) When a process is spawned, produced, or gemmated, the starting

process specifies which of its own open iounits the new process

should inherit.

2) When a process metamorphoses, no change is made to the open

iounits.

3) When a process forks, the new process inherits all the open

iounits of the parent process.
io

3.2.4, Process Death.

A process may die for three reasons:

1) By exitting, that is, committing suicide. This is the normal way

in which a process terminates its execution.

2) By abortion. In this case another process issued an abort request

for the process.

3) If an exception is raised for which the process has no exception

handler. This is described in detail is section 3.2.6. An excep-

tion may, for example, be a division by zero, or an attempt to

access memory that the process is not allowed to access.

When a process dies, its death is reported to its parent process, if

any. The death information includes the reason for the death (normal

termination, abortion, division by zero) and a completion code, which

is a number specified in the exit or abort request. How the parent

process will interpret the completion code, depends on the program. No

completion code is given in the case 3 above.

When a process dies, all its iounits are closed, all its offspring

Unirex System Operation Guide 3.

Process Management

 E
a

processes are aborted, and it is detached from all memory partitons

(see chapter 4).

Abortion requests may be issued only by privileged processes and

processes with an effective user number identical to the real user

number of the process to abort. However, a process may always abort

itself.

3.2.5. Suspending a Process.

A process may suspend itself or be suspended by another process. When

a suspend request is issued, a time is specified. Execution of the

process stops until this time is expired. It is, however, possible to

resume the execution of a process before the time is expired.

A process that suspends itself will know whether execution was resumed

because of time expiration or because of a resume request from another

process.

The system clock has a resolution of 40 milliseconds. Therefore this

is the finest resolution of the supend time.

The suspend time may be specified as 'indefinately'.

A process, A, may suspend and resume another process, B, only if A is

a privileged process or A has an effective user number identical to

the real user number of B. A process may always suspend itself.

3.2.6. Exceptions.

An exception is abnormal event ina process. Unirex supports the

following exceptions:

- Bus error. That is, access to an inaccessible address or an at-

tempt to write to a read-only address.

- Address error. That is, access to an odd address with an instruc-

tion that requires an even address.

- Illegal instruction. That is, an attempt to execute a non-imple-

mented machine code instruction.

r
e

e
e

e
e

e
e

e
e

ee

ee

ae

ae

ee

ee
:

l
e
 Unirex System Operation Guide 3

Process Management

“9

- Integer division by zero.

~ CHK trap. That is, execution of the 68000 machine code CHK in-

struction caused a trap.

- TRAPV trap. That is, execution of the 68000 machine code TRAPV

instruction caused a trap.

- Trace trap. That is, a machine code instruction was executed with

the 68000 status register trace bit on.

- Line 1010 trap. That is, an attempt to execute an instruction

whose first four bits are 1010. Such instructions are illegal.

- Line 1111 trap. That is, an attempt to execute an instruction

whose first four bits are 1111. Such instructions are illegal.

- Illegal trap. That is, exectution of a 68000 machine code TRAP

instruction not used by Unirex.

- BCD exception. That is, the occurrence of.an error, such as over-

flow, in the BCD floating point subroutine package.

- Attention. That is, the attention key was pressed on the terminal,

if any, from which the process takes input. .

When an exception oceurs, the exception is said to be 'raised' in the

process.

The raising of an exception in a process generally causes the process

to die, as explained in section 3.2.4. The only exception that does

not cause a process to die is the Attention exception, which is de-

seribed later in this section.

It is, however, possible for a process to 'catch' exceptions by de-

claring an ‘exception handler':. The process informs the operating

system that, if a particular exception is raised, the operating system

should call a specified subroutine, rather than kill the process. If

and when the exception is raised, the operating system will cause this

subroutine to be called; we say that the exception has been 'caught'.

Once the exception has been raised, exception handling reverts to

default handling until an exception handler is declared again.

A special case of exception handling is to inform the operating system

that a particular exception is to be ignored.

To summarize:

When an exception, except the attention exception, is raised, a pro-

cess may

1) die (default),

Unirex System Operation Guide 3.

Process Management

2) ignore the exception,

3) catch the exception by execution of an exception handler.

Attention exception handling differs from the handling of other excep-

tions. There may be several processes running simultaneously, taking

input from the same terminal. In which of these processes should the

attention exception be raised when the attention key is pressed? Let

us assume that the attention key is pressed on the terminal from which

processes A and B take their input. What happens is the following:

1) If B is a descendant process of A and the attention exception is

caught in B, the exception will not be raised in A.

2) If Bis a descendant process of A and the attention exception is

not caught in B, the exception will be raised in A.

3) If B is not a descendant process of A and vice versa, the atten-

tion exception will be raised in both A and B.

The default handling of the attention exception is to ignore it and

let an ancestor process catch it. It is, however, possible to specify

that the exception should be ignored but not passed on to an ancestor

process, or that the process should die when the attention exception

is raised.

It is seen that the manner in which a process handles an attention

exception is characterized by two things: First, what does the process

do when the exception is raised? Second, is the exception considered

‘oaught', or will it be raised in an ancestor process?

To summarize:

When an attention exception is raised, a process may

1) die, in which case the exception is considered caught;

2) ignore the exception and consider it un-caught (default);

3) ignore the exception and consider it caught;

4) catch the exception by execution of an exception handler.

Generally, exceptions are raised because of an abnormal event in the

process or the pressing of the attention key. It is, however, possible

for a process to raise an exception in another process. Process A may

raise an exception in process B if A is privileged or the effective

user number of A is identical to the real user number of B; a process

Process Management

Unirex System Operation Guide 3.

may, however, always raise an exception in itself. If the exception

raised is the attention exception, it will never be passed on to B's

ancestor processes, and in this case action 2 and 3 above are identi-

eal.

Raising an exception in another process may be quite absurd. Imagine

the surprise felt in process B, when the ‘division by zero' exception

is raised while B was computing 2+2.

If an exception is raised while a process is suspended, the process is

placed in the active state. Therefore, when process execution conti-

nues, a possible suspend time may or may not have expired, anda

pending i/o request may or may not have been serviced.

3.2.7. Changing User Numbers.

It is possible to change the effective and real user numbers of a

process. A number of different cases exist:

1) Process A wants to set its own effective user number to the value

of its real user number. This is always allowed.

2) Process A wants to set its own effective user number to a value

different from its real user number. This is allowed if A is a

privileged process.

3) Process A wants to change its own real user number. This is

allowed if A is a privileged process.

4) Process A wants to set the effective user number of process B_ to

the value of B's real user number. This is allowed if A is privi-

leged or if the effective user number of A is identical to the

real user number of B.

5) Process A wants to set the effective user number of process B to

a value different from B's real user number. This is allowed if A

is privileged.

6) Process A wants to change the real user number of process B. This

is allowed if A is privileged.

Unirex System Operation Guide

Process Management

A process is privilieged if the first eight bits of its effective user

number are zero. Therefore, changing the effective user number of a

process may alter its privilege status.

3.2.8. Setting the Priority.

When a new process is created through spawning, production, or gemma-

tion the starting process specifies the priority of the started pro-

cess. Negative priorities can be specified only ‘by privileged process-

es.

When a process forks, the new process inherits the priority of the

parent process. ;

The most commonly used priority is 10.
7

A process may change its own priority or that of another process. Only

privileged processes can specify negative priorities. Process A may

change the priority of process B only if A is privileged or the effec-

tive user number of A is identical to the real user number of B.

Unirex System Operation Guide

Memory Management

4. Memory Management.

The memory management part of Unirex takes care of the allocation and

releasing of memory used by processes.

4,1, The Memory Management Unit.

4.1.1. The Need for a Memory Management Unit.

Suppose two processes are running on an MCU, suppose that they both

execute the same program but with different data, and suppose that the

program at some time during its execution stores a value in the memory

cell located at the address 0x300000. Obviously, the two processes

should not store their data in the same memory location, one process

destroying the other's data. It is clearly required that the computer

should ensure that when the two processes cause the CPU to access

address 0x300000, two different memory locations should be accessed.

Thus the need arises for a means by which to keep the addressing space

of one process seperated from the addressing space of another process.

Each Unimax MCU is equipped with a hardware Memory Management Unit

(MMU), designed to meet this need. ;

4.1.2. Logical and Physical Addresses.

The addresses accessed by a process are called ‘logical addresses’.

The addresses of the memory locations actually accessed are called

‘physical addresses’.

The job of the MMU can now be formulated in the following manner: The

MMU should translate logical addresses generated by the CPU into

physical addresses before memory is accessed, and the MMU should

ensure that logical addresses originating from two different processes

should be translated into different physical addresses.

Unirex System Operation Guide 4.2

Memory Management

4.1.3. How the MMU Works.

The 68000 micro processor, which is the CPU used in the Unimax compu-

ter, uses 24 addressing bits, thus creating a (logical) address space

of 16 megabyte. These 24 address bits are input into the MMU, which

then outputs another set of 24 address bits, that are the physical

address of the memory location to access. The MMU thus creates a

physical address space of 16 megabyte.

The logical address space is divided into 16 so-called 'segments' of

one megabyte each. This means that the first 4 bits of the 24 address

bits are the segment number, or in other words, of the 6 hexadecimal

digits that form the logical address, the first digit is the segment

number.

User programs may use segments 2 through 15, the first two megabyte

(segments 0 and 1) being reserved for the operating system. The logi-

eal address space of a process therefore has a size of 14 megabyte.

The following example will illustrate how the MMU translates a logical

address, such as 0x456789, into a physical address:

When a process is created, the operating system assigns a unique

‘Address Space Number' to the process. (In-memory processes, however,

use the address space number of their parent process, as they share

the program code and data areas with their parent.) The MMU uses the

Address Space Number together with the segment number of the logical

address to find an entry in a table.

If the logical address is 0x456789, the segment number is 4,

In its internal table the MMU finds the following information:

1) Is this logical address segment allocated to this process?

2) Does the process have read/write access to the segment, or does

it only have read-only access?

3) How large a part of the one megabyte in the segment may the

process actually use?

4) What offset should be added to the logical address to obtain the

physical address?

These four items are detailed below:

Unirex System Operation Guide 4,

Memory Management

a

e
e

e
e

1) Of course, not all processes use all 14 accessible segments.

Segments are assigned to the process when it is started or during

its execution. If, due to some error, the process accesses an

address in a segment that has not been assigned to the process,

the MMU detects this and the bus error exception is raised in the

process.

2) The MMU allows certain segments to be read-only segments, giving

the programmer greater protection against errors. If, due to some

error, the process tries to write to an address in a read-only

segment, the MMU detects this and the bus error exception is

raised in the process.

3) Generally, a process does not_use the whole megabyte of memory

within a segment. When a segment is assigned to a process, a size

is specified. If, due to some error, the process accesses an

address beyond the specified size, the MMU detects this and the

bus error exception is raised in the process. The segment size

has a resolution of 256 bytes. If the logical address is

0x456789, the size of segment 4 must be at least 0x568 blocks of

256 bytes each.

4) When a segment is assigned to a process, the required number of

256 byte blocks are allocated contiguously in physical memory.

The MMU knows the location of these blocks. The physical address

accessed will be the offset within the logical address segment

plus the physical starting address of the allocated memory.

Suppose that the blocks allocated for segment 4 of a process

start at physical address 0x178a00 and the process accesses

logical address 0x456789. The physical address accessed will be

0x56789+0x178a00=0x1¢ef189.

Typically, a process will use a read-only segment for its program

eode, a read/write segment for its global data, anda read/write

segment for its stack. Suppose that the requirements of a certain

program are:

0x6780 bytes of read-only memory in segment 2 for its program code.

0x3020 bytes of read/write memory in segment 3 for its global data.

0x1000 bytes of read/write memory in segment 4 for its stack.

A typical memory assignment for a process executing this program could

be:

Unirex System Operation Guide 4,

Memory Management

Segment 2: Size: 0x6800 bytes. First physical address: 0x075300.

Segment 3: Size: 0x3100 bytes. First physical address: 0x080400.

Segment 4: Size: 0x1000 bytes. First physical address: 0x023a00.

It is seen that the physical addresses allocated for the three seg-

ments are not necessarily contiguous. Further, its is seen that even

though the process accesses addresses ranging from 0x200000 (first

address in segment 2) to Ox400fff (last address in segment 4), only

0x6800+0x3100+0x1000=0xa900 bytes are actually allocated.

4,2, Memory Allocation.

Memory for a process is allocated when it is started. The process may,

however, during its execution request more memory to be allocated.

The initial memory requirements for a process are found in the file

containing the load module for the program to be executed.

A lump of memory allocated for a logical address segment for a process

is termed a 'partition'. In the final example in section 4.1.3 three

partitions are allocated for the process. Each partition corresponds

to one logical address segment.

Partitions initially allocated for a process are called ‘execute

partitions’.

When a program is installed in memory, partitions are allocated for

the program address segments that contain program code and initialized

data. Such partitions are called ‘installed partitions’. When a pro-

cess starts executing an installed program, memory is allocated and

the MMU set up in the following manner:

1) For all read-only segments of the program, the MMU maps the

logical addresses directly onto the installed partition. This

means that several processes may share the read-only segments of

installed programs.

2) For all read/write segments that contain initialized data, an

execute partition of the same size as the corresponding installed

partition is created, and the eontents of the installed partition

Unirex System Operation Guide 4,

Memory Management

is copied into the newly created execute partition. The MMU maps

the logical addresses onto the execute partition.

3) For all read/write segments that do not contain initialized data,

an execute partition of the required size is created, and the MMU

maps the logical addresses onto that partition.

A process may request more partitions to be allocated while it is

executing. The process informs the operating system how much memory it

wants and which logical address segment it wants to use when accessing

this partition. The maximum of 14 address segments puts an upper limit

to the number of partitions that can be allocated.

A partition created during the execution of a process is called a

‘ereated partition’.

4.3. Named Partitions.

Created partitions may be either 'unnamed' or 'named'. Unnamed parti-

tions are the most common, they are deleted when the process dies, and

they serve only to fill a temporary need that exists only as long as

the process lives.

Oceationally, however, a process wants to leave some data in memory

for later use or to be shared by other processes. For this purpose a

process may create a 'named' partition. When the process creates the

partition it gives the partition a name of up to 8 characters. Other

processes may now ‘attach! to that partition. This means that they

request the MMU to map one of their logical address segments onto the

specified partition.

The data stored in shared named partition may, for example, bea set

of often used subroutines. If these subroutines are reentrant, several

processes may use them. There will be no need to have several copies

of the routines present in memory.

The static protection scheme used with iounits (see section 5.2.2) is

also used with named partitions. When a named partition is created,

the operating system stores the real user number of the creating

process as the 'owner' of the partition. The creating process speci-

fies a set of protection bits for the partition. If other processes

Unirex System Operation Guide

Memory Management

4, 6

 =

 =
=

want read-only access to the partition, their effective user number

must give them read access rights to the partition. A process that

wants read/write access to the partition, must have both read and

write access rights to the partition.

There is no such thing as write-only access to a partition.

 Unirex System Operation Guide

I/O Management

5. 1/0 Management.

Unirex handles input and output in a manner that is, as far as pos-

sible, device independent. For example, a line of text is read from a

file in the same manner as from a terminal.

5.1. Supported Devices.

Unirex currently supports the following devices:

Terminals.

Printers.

Boxes (three kinds).

Disks.

Mikfile files.
The null device.

Some of these devices are described in the Unirex Introductory Guide.

A few words about boxes and files follow:

5.1.1. Boxes.

Boxes are used for message exchange and synchonization between pro-

cesses. A box is logically an iounit, but is resident in MCU memory.

Data written to a box is stored in a buffer in the box, and from this

buffer data is taken when a process reads from the box. Data read from

a box is removed and cannot be read again. If a process tries to read

from a box whose buffer currently contains no data, the process is

supended until something is written to the box. If a process tries to

write more data to a box than the box can hold, the process is suspen-

ded until so much data has been read that there is room for the data

to be written.

There are three kinds of boxes, ordinary boxes, system boxes, and

common boxes.

Ordinary boxes have iounit names that start with the characters

t:box'. An ordinary box is automatically deleted when it is empty and

Unirex System Operation Guide 5.

I/O Management

r
r

a
a

a
ee

e
e

ee

e
e

ee

ee

e
e

ee

o
e

e
l

eurrently not open (see section 5.2.1) by any process.

can be deleted by an explicit delete request. Ordinary boxes are local

to an MCU, and their names need only be unique within that MCU.

System boxes have jounit names that start with the characters

‘:sysbox'. System boxes are never automatically deleted; a delete

request is required to delete a system box. System boxes are local to

an MCU, and their names need only be unique within that MCU. Only

privileged processes may create system boxes.

Common boxes have iounit names that start with the characters

':combox'. Common boxes are never automatically deleted; .a delete

request is required to delete a common box. Common boxes are common to

all MCUs, and their names must be unique within the whole computer.

Only privileged processes may ereate common boxes.

5.1.2. Mikfile Files.

Unirex currently supports the Mikfile file system, which is compatible

with the file system used on the SPC/1 micro computer from Dansk Data

Elektronik A/S. The following remarks apply only to Mikfile files.

A file consists of a primary file, which is the original file con-

structed by the create operation, plus 0 to 60 extents. All extents

are of the same size as the original file. An attempt to extend a file

past the 60th extent is rejected.

The iounit name of a file consists of an optional disk identification

(when absent, :diskO is assumed), a slash, a file name of up to 8

characters, a hyphen, and a file type of 1 character. Upper and lower

case letters are considered identical. The file type may be thought of

as a 9th character of the file name; it is used to indicate what kind

of information is stored in the file. Some programs use a default file

type if none is specified. All characters except n is allowed as file

type, but the following convention is used by most programs:

Unirex System Operation Guide 5.

I/O Management

File type File contents

e Pascal environment file

k Text

1 Load module (the type is a lower case L)

n Nullfiles (must not be used under Unirex)

q Comal binary program

u Pascal p-code

In a text file, information is stored in so-called ‘variable length

records', each record corresponding to one line of text. A variable

length record contains the contents of the line, preceded and followed

by a byte that indicates the length of the line in bytes. This puts an

upper limit of 255 bytes in a variable length record.

For example, in a text file the line 'hello' will be represented by 7

bytes: A byte containing the number 5, the five characters ‘hello’,

and another byte containing the number 5. The contents of the first

and last byte must be identical.

After the last line in the file an end-of-file mark must be found.

This is two bytes, both containing zero.

An empty line cannot be stored in a text file. Instead a line contai-

ning a single blank is stored.

5.2. Operations on Iounits.

Different programming laguages treat i/o in very different ways. It is

therefore next to impossible to give a general description that will

not in some way confuse the users of a particular programming lan-

guage. The description given in the following sections deals with the

Unirex i/o facilities accessible from the C programming language. The

operations described are the low level operations where no formatting

of input and output takes place. All i/o requests from programs are in

some way converted to these low level requests.

Unirex System Operation Guide 5.
I/O Management

5.2.1. Open, Create, Read, Write, and Move Pointer.

Before it can use an iounit, a process must 'open' or ‘create’ the

iounit. The 'open' operation applies to existing iounits, the 'create!'

operation to non-existant iounits. The open or create operation esta-

blishes a link between the iounit and the process, and from this time

the iounit is said to be 'open', and in the rest of this section no

distinction is made between an opened and a created iounit.

When an iounit has been opened the operating system returns an ‘'iounit

descriptor' to. the process. This is an integer by which the process

henceforth should identify the iounit when doing i/o on it.

Once a _ process has opened an iounit it may read from or write to the

iounit. This read or write operation may involve either a fixed number

of unformatted bytes, or a line of text.

For some iounits (files and disks accessed without a file system) a

pointer to the current byte position on the iounit is maintained. This

pointer may be moved by the process, allowing random access to the

information in the iounit.

When a process has performed the required i/o to the iounit, the

iounit must be 'closed'. This may be done explicitly by the process or

automatically when the process dies.

5.2.2. Restrictions on Open and Create.

When a process opens an iounit, it specifies what kind of access it

wants to the iounit. The disired access may be 'read-only', ‘'write-

-only', 'update', or (files only) 'slective update' (see below).

The operating system enforces two kinds of protection of iounits:

Dynamic and static. A request to open or create an iounit may fail if

either of these protection mechanisms forbids it.

Unirex System Operation Guide 5.
I/O Management

e
e

e
e
e

e
e

e
e
e

|

Dynamic Protection.

Dynamic protection is the reservation of open iounits. Dynamic protec-

tion is enforced on printers and files.

For printers the dynamic protection mechanism forbids a process to

open a printer if the printer has been opened (and not yet closed) by

some other process.

For files the dynamic protection mechanism allows only the following

simultaneous open operations:

- It is allowed that several processes open the same file if they

all request read-only access.

- It is allowed that several processes open the same file if they

all request selective update access.
y

In all other cases the dynamic protection mechanism forbids a process

to open a file if the file has been opened (and not yet closed) by

some other process.

Static Protection.

Statice protection is the protection of iounits against access from

other users.

All iounits, except the null device, are assigned an owner number and

a set of protection bits that control who may access the iounit.

The protection bits have the following significance:

Bit 11: Set user number on execution.

Bit 10: Set group number on execution.

Bit 9: Produce a post-mortem dump.

Bit 8: Grant read access to iounit owner.

Bit 7: Grant write access to iounit owner.

.Bit 6: Grant execute aecess to iounit owner.

Bit 5: Grant read access to iounit owner group.

Bit 4: Grant write access to iounit owner group.

Bit 3: Grant execute access to iounit owner group.

Unirex System Operation Guide 5.

I/O Management

Bit 2: Grant read access to others.

Bit 1: Grant write access to others.

Bit 0: Grant execute access to others.

Chapter 5 in the Unirex Introductory Guide describes bits 8-0 of this

protection mechanism. Here only bits 11-9 will be described.

In Unirex bit 11 and 10 have the same meaning. They are relevant only

for files containing programs. If either of these bits are set, the

program, when executed, will have its effective user number set to the

owner of the program file. If both these bits are off, the program,

when executed, will have its effective user number set to the same

value as the real user number. As the effective user number is used

when checking access rights, this facility may be used to grant users

controlled access to iounits and sytem operations that they may not

otherwise access.

Bit 9 is‘not implemented in Unirex.

5.2.3. Selective Update.

Normally the dynamic protection mechanism forbids more than one pro-

cess to write to a file.. There is, however, a way to give several

processes controlled update access to a file:

Several processes may open a file simultaneously if they request ‘'se-

lective update' access. For selective update files the dynamic protec-

tion mechanism is enforced on the byte level rather than on the file

level. This means that before a process may read or write a given

number of bytes at a given location, these bytes on the file must have

been reserved. This reservation is called ‘byte locking’.

Once a process has locked, say, 100 bytes starting at byte number 500,

it may read or write these 100 bytes freely. No other process is

allowed to lock and access these bytes. When the desired operation is

finished, the bytes must be 'unlocked', whereupon other processes may

lock them.

When a file is closed, all locked bytes are automatically unlocked.

Unirex System Operation Guide 5.

I/O Management

HH
A

5.2.4, Inheriting Open Iounits.

When a process is started, it may inherit open iounits from the star-

ting process. There are three important differences between opening

and inheriting an iounit:

1) The process that inherits the iounit does so regardless of the

dynamic or static protection mechanisms. Thus, for example, two

processes may both have write access to the same file if one of

the processes has inherited the open file from the other one.

2) If the iounit is a file or a disk used without a file system, the

processes share the same iounit pointer, as opposed to when two

processes both open the same file, in which ease they will have

seperate iounit pointers.

3) If the iounit is a terminal or a printer, the processes share the

‘soft sioc modes'. See section 5.3.

It is customary that all processes are born with four open iounits.

These iounits are called the standard input device, the standard

output device, the standard error device, and the standard list de-

vice. How these devices are used depends on the particular program.

5.3. Terminal and Printer Peculiarities.

Because hardware devices are physically different, the device indepen-

dence of the i/o operations can only be enforced to a certain degree.

There will always be some operations that are peculiar to specific

devices. It is, for example, nonsense to change the baud rate ofa

file.

This section describes some of the peculiarities that apply to termi-

nals and printers.

Terminals and printers are generically called 'sioe devices'. Sioc is

an abbreviation of Serial Input/Output Controller.

A variable length record output to a sioe device will be written

folowed by a carriage return and a line feed.

i i

|
| |

Unirex System Operation Guide 5.

I/O Management

8

A fixed number of bytes output to a sioe device will be written with-

out a trailing carriage return and line feed.

If the output buffer contains characters whose most significant bit is

on, those characters will be output underlined.

When an input request is issued to a terminal, the operator is allowed

to enter and edit a line, whose size is the requested number of input

bytes. The operating system returns the number of actually enterred

characters to the process, discarding trailing blanks.

A special case of the input operation is the edit operation described

in section 3.3 of the Unirex Introductory Guide. When performed on

other devices than terminals and printers, edit operations are conver-

ted to the reading of a variable length record. When issuing an edit

command a process may specify that the cursor is to be left at a

certain position before control is given to the operator. .

Sioc devices may be equipped with function keys, some of which are

used for line editing. The value of the most recently pressed function

key is available to the process.

The position of the cursor at the end of the last input operation is

available to the process.

The process may request that its i/o operations to sioc devices be

interpreted in a special way. This is known as the 'soft sioc mode’.

The soft sioc mode is local to the specific opening of the sioc device

by that process or a process from which the open iounit was inherited.

The options are:

- Should initial control sequences in an output buffer be interpre-

ted? (See section 5.3.1.) Default is yes.

- Should line feed characters in an output buffer be translated into

a carriage return anda line feed, as is customary in the Unix

operating system? Default is yes.

~ Should the sioc device echo carriage return and line feed or only

earriage return when an input operation is terminated? Default is

carriage return and line feed. Changing the echo to carriage

return only, will prevent scrolling of the terminal screen when

the input line is the last on the screen.

Unirex System Operation Guide 5.

I/O Management

A process may desire to get keystrokes from a sioc device immediately

when they are entered, rather than allowing the operator to perform

line editing. This is done by putting the sioc device in ‘direct

input' mode. When a sioc device is in direct input mode, keystrokes

are not echoed on the device. Only one process at a time may have a

sioc device in direct input mode. The direct input mode may be expli-

citly cleared by the process or automatically cleared when the iounit

is closed.

A process may change the baud rate, the number of stop bits, the

number of data bits, and the parity of a sioc device. This is a global

change.

A process may change the values of the xon, xoff, and attention keys.

This is a global change.

A process may change the characteristics of a sioc device, that is,

the specification on how to move the cursor, clear the sceen etc. on

the device. This is a global change.

5.3.1. Control Sequences.

Unless interpretation of control sequences is disabled (see section

5.3), they provide a means for controlling the cursor movement and

other features of a specific sioc device.

In order to make the differences between various terminals and prin-

ters transparent to the user, these media are controlled by certain

character sequences in the output strings. These sequences must begin

with < and end with >.

For example, to give an ‘erase to end of line’ command to a_ terminal

screen, simply output a character string where the first three charac-

ters are <Z>.

Note that the < of the control sequence must be the first character in

the output buffer. Thus the Pascal statement WRITE('<Z>ALPHA') will

erase to the end of line and output the string 'ALPHA', whereas the

Pascal statement WRITE('ALPHA<Z>') will output the string 'ALPHA<Z>'.

Unirex System Operation Guide 5.

I/O Management

If several controls are needed in the same buffer they must be en-

closed within the same < and >. Thus in order to erase the screen and

position the cursor to column 10 line 20 and write the text 'BEER!

there, the following Pascal stement should be used:

WRITE('<XC1020>BEER'). If the statement WRITE('<X><C1020>BEER') were

used, the screen would be erase and the text '<C1020>BEER' would be

output in the upper left corner.

If a control sequence contains characters that do not apply to a

specific terminal or printer, these characters are ignored.

To output the charcter '<' be sure to include an empty control se-

quence in the buffer. WRITE('<') will output nothing, whereas

“WRITE('<><') will output '<'.

Note that many programming languages provide other means for control-

ling the sioc devices. For example, Pascal provides the PAGE procedure

for ejecting the page on a printer.

If the buffer presented by a program to an edit operation contains a

eontrol sequence, the sequence will be interpreted and only the cha-

racters following the final > may be changed by the operator. If the

edit operation is applied. to a non-sioc device, such as a file, a

possible initial control ‘sequence will not be modified by the input

operation. ;

The valid control characters are listed below. The control characters

marked with a 't’ are supported on terminals only, whereas the control

characters marked with a 'p' are supported on printers only.

<X> : Clears sereen on terminal and moves cursor to upper left

corner.

Ejects page on printer.

t <O> : Clear to end of screen.

t <Z> : Clear to end of line.

<S> : Omit the final carriage return and line feed after

/ writing a variable length record.

<N> : Omit the carriage return after writing a variable length

record.

t <u> : Cursor up (same func. as <U>).

| Unirex System Operation Guide 5.11

I/O Management

i t <d> : Cursor down.

t <l> : Cursor left.

t <r> : Cursor right.

| t <h> : Cursor Home.

t <a> : Cursor Return

| t <D> : Cursor to last line column 1.

t <Cxxyy> : Cursor to culomn xx on line yy. (Numbering starts at 1.)

t <Cxxxyy>: Cursor to column xxx on line yy.

i t <a> : Delete line.

t : Insert line.

J t <e> : Delete character.

t <f> : Insert character.

| t <@> : Cursor off. The @ is a \ on English terminals.

t <A> : Cursor on. The Aisa j] on English terminals.

| <i> : Set inverse video on terminal. Start shadow print.

<p : Normal video on terminal. Stop shadow print. ~

t <k> : Set low intensity.

i t <m> : Set normal intensity.

t <n> : Set blinking / bold.

t <a> : Reset blinking / reset bold.

i t <p> : Set invisible.

t <q> : Reset invisble.

i <+> : Set underline.

<-> : Reset underline.

| <G> : Start expand.

<I> : Stop expand.

i p <E> : Eject page.

Pp <Fnn> : Set page size to nn lines, where nn is an integer.

| p <Hnn> : Set character width to nn/120".

Pp <Lnn> : Set left margin to column number nn.

Pp <Rnn> : Set right margin to column number nn.

i p <Vnn> : Set line height to nn/48",

p <Pnn> : Set pica size to nn (nn is 10, 12 or 15).

p <K> : Start compressed output. ‘

| p <J> : Stop compressed output.

p <T> : Horizontal tab.

| io] <¥> : Vertical tab.

1 p <s> : Half line up.

Unirex System Operation Guide 5.12

I/O Management

i

i
I

Pp <t> : Half line down.

Pp <A> : Start proportional spacing.

p : Stop proportional spacing. |

P <Q> : Start automatic justification of right margin (Diablo

option).

-p <W> : Terminate all Word Processing (Diablo option).

p <*> : Reset printer.

<'text'>: The text between the apostrophes is output.

The last control sequence serves a double purpose:

First, it may be used when it is desired to perform a special opera-

tion both before and, after a text is output. If, for example, it is

desired to move the cursor to culomn 12 on line 10, write the text

thello', and move the cursor to column 1 on line 3, outputting the

puffer <C1210'hello'C0103> will do the job. If the quoted text is to

contain apostrophes, two apostrophes ‘should be written.

Second, it may be used to give a prompt to an edit operation. Because

text in control sequences cannot be modified by the operator, a text

in a control sequence will appear as a non-modifiable prompt on a

terminal. An edit operation on the buffer <'Name:'>Jones is different

from writing the text Name: and performing an edit operation on the

buffer Jones, because in the latter case another process may output a

few lines between the 'Name:' prompt and the edit operation.

5.4. Mounting Disks.

Before a disk can be used it must be mounted. The mounting informs the

operating system that this disk is to be accessed through a specific

file system. Only when all files on a disk are closed may it be un-

mounted.

Unirex System Operation Guide

Miscellaneous

6. Miscellaneous.

This chapter describes a few Unirex facilities that do not fit into

the three main operational categories.

6.1. The System Time.

Unirex keeps track of the time. It contains a 64-bit counter that is

incremented every second. This counter counts the seconds since

00:00:00 GMT on January 1, 1970. The number of bits in the counter

makes it valid until the year 2106.

Of course, this system time is highly unpractical for human use, and

therefore most programming languages have facilities to convert this

number to normal date and time format.

Only privileged processes may change the system time.

Note that currently the time is incremented in each MCU seperately.

This means that setting the time in one MCU does not change the time

in another.

6.2. Hardware Configuration.

A process may request the operating system to inform it of the hard-

ware configuration of the computer.

6.3. Operating System Version.

Fach release of Unirex has a version time. This time has the same

format as the system time. A process may request the operating system

to inform it of the Unirex version time.

Unirex System Operation Guide

Miscellaneous

6.4, The MCU Display.

On the chassis of the computer a number of 2-digit displays are found.

Each display corresponds to one MCU. The displays are turned off when

the computer is running normally, but during bootstrapping and in case

of system crash, a value will be displayed. These values are described

in the Unirex System Administrator's Guide.

Next to the display a red and a green indicator is found. The green

indicator is on when the micro processor is executing in 'user mode’,

that is, executing the user's program eode. The red indicator is on

when the micro processor is executing in 'supervisor mode', that is,

servicing the user program's system requests, handling interrupts, or

idling. Both indicators are turned off if the CPU is halted.

Unirex System Operation Guide A.

Error Codes

a
e

e
e

ee

e
e

e
e

e
S

=

=

a

Appendix A. Error Codes.

When a system request fails, Unirex returns an error code to the

process issuing the request. The following table lists the error

codes. The first column gives the symbolic name of the error code as

it is known in the C programming language. The second column gives the

value of the error code. The third column gives a description of the

error.

General errors:

EOK 0 No error detected

EDATFUL 1 Unirex data area is full

EPRIVIO 2 Privilege violation

EBADADDR 3 Bad address in system call

EBADDIR 4 ~=Bad directive number v

ENOTIMP 5 Facility not yet implemented

ECOMFUL 6 Common area is full

Memory management errors:

EPARNX 50 Partition does not exist

EPARAX 51 Partition already exists

ESEGUSE 52 Segment in use

EILSEGNO 53 Illegal segment number

EPARNATT 54 Partition not attached

EPARLONG 55 Partition too long

ENOMEM 56 No memory

EASEGUSE 57 All segments in use

Process management errors:

EILPRIO 101 Illegal priority

ENOASN 102 No Address Space Number available

EBADLM 103 Bad load module structure

EBADSER 104 Bad serial number

EPROCAX 105 Process already exists

EPROCNX 106 Process does not exist

EPROGAX 107 Program already exists

EPROGNX 108 Program does not exist

EILMETAM 109 Illegal metamorphosis

Unirex System Operation Guide A.2

Error Codes

EPROCABO 110 Process is being aborted

ERESUME 111 Process was resumed by another process

ENOTSUSP 112 Process is not suspended

EMAXPNO 113 The maximum number of processes exist

EDEADPNX 114 ‘There is no dead process

ENOSTACK 115 Insufficient room for stack

EBADEXNO 116 Bad exception number

ESIGNAL 118 An exception caused the system call to abort

ESTSHORT 119 The stack is too short to hold parameters

ESYSPR 120 The process is a system process

eneral I/0 management errors:

EBADACC 200 TIounit not open for this access mode

EBUFLONG 201 Buffer is too long ©

EUNAMLNG 202 Iounit name is too long

EILDEVIC 203 Illegal device

EUNITAX 204 Jounit already exists

EUNITNX 205 Iounit does not exist

EILMODE 206 #£Illegal access mode

EACCVIO 207 Access right violation

ETIMEOUT 208 Time out on i/o operation

EOPEN 209 Iounit is already open

ENOTOPEN 210 Tounit is not open

EILOP 211 Illegal operation on specified iounit

EILPOSM 212 Illegal position mode

EILBUFL 213 Illegal buffer length

EEXCDDSK 214 Transfer exceeds disk

ENMOUNT 215 Disk not mounted

EAMOUNT 216 Disk already mounted

EOPENFIL 217 Files are open on the disk

EEOF 218 End-of-file reached

EBOF 219 Beginning-of-file reached

EISDI 220 The iounit is already in direct input mode

EISNTDI 221 The iounit has not been put in direct input mode by

the calling process

ENREADY 222 Disk not ready

EHARD 223 Hard error on disk

EWRPROT 224 Disk write protected

EILSECT 225 Illegal sector number

ECBOXFUL 226 More than 16 waiting processes on a (common) box

ELOCK 227 The byte range must be locked before access

EFULLLOC 228 The lock table is full

e
e

ee

e
e

e
e

e
e

e
e

e
e

e
e

e
e

Unirex System Operation Guide

Error Codes

 a
a

ee

ee

e
e

e
e
e

e
e

e
e

e
e

EBADPOS

ELUSED

EILFSYS

EILSIZE

229

230

231

232

Bad position on iounit

The byte range is already locked

Illegal file system letter

Illegal file size or file buffer size

Mikfile I/O errors:

ECATFULL

EILEXT

ELASTEXT

EFULLDSK

EILVARI

EILTYPE

ENULLFIL

EFULLRES

EILFORM

EILFNAM

240

241

242

243
244

250

251

254

255

259

Calalog full

Illegal extent

No more extents posible

The disk is full

Illegal variable length record

Illegal file type

Illegal operation on nullfile

Full reservation table

Illegal disk format

Illegal file name

