

a

kK S.2—
Contribution to Fesvskrift ti’ "rofessor Borje Langefors,

‘systemering 75"

x

WHAT HAPPENS DURING PROGRAM DEVELOPMENT

AN EXPERIMENT

Peter Naur

Copenhagen University

August 1974

Apstract e

L. Introduction <

2. Underlysng attitude 5

. varticipating students 5

4. lLne phases of the experiment 6

yy. Solving the first problem i1

6. Solving the second problem 14

7. Soiving the third problem 16

, Tae students' concluding summaries 18

S. Goal priorities and structured programming 25

» conclusions 27

seferences 27

Lcures 29

Abstract

The paper describes an experiment in which 12 students solved 3

program development problems. During the process of development

they recorded every step of their work in writing, as far as prac-

tically possible. In addition they described the goals they had

pursued. The reports of the students are summarized and compared,

and related to a set of 53 development activities. The main con-

clusion is that the experimental approach used is capable of yielding

usable information. The influence on program development of the goals

actually pursued and of programmers' personality differences appear

as important issues that need further study. The dependence of the

program development activity on the nature of the problem being

solved emerges clearly. The relation to structured programming is

obscured by uncertainties of concepts and terminology.

1. INTRODUCTION

As a contribution to the methodology of computer programming,

this paper describes an attempt to find out what actually happens

when programs are developed by people. It reports on an experiment

involving 12 students at Copenhagen University. Briefly, the stu-

dents were asked to solve three different programming problems,

noting continuously what they were doing in the course of the program

development. In addition they were asked to comment in various

ways on their work. In the present paper these student reports

are analyzed.

The emphasis in the experiment and in the present analysis

of it is on the experimental method. Using this method an attempt

is made to find out what activities were undertaken by the students.

and how these differed among the students and from one problem to

another. In addition the question of what goals were actually pur-

sued by the students will be touched. The analysis of the charac-

teristics and quality of the programs written by the students is

beyond the present enquiry.

The study relates directly to a series of recent works centered

around what is called structured programming. This has been described

by Dahl, Dijkstra, and Hoare (1972), and a similar approach, program-

ming by stepwise refinement, has been advocated by Wirth (1971).

Subsequent works by Henderson and Snowdon (1972) and by Ledgard

(1974) report on practical experience of applying structured program-

ming. A common characteristic of these works is that they reflect

the long personal experience of some of the leading thinkers in the

field. What is lacking is evidence on the value of structured program-

ming if applied by programmers of average background and ability. A

partial explanation of this lack is the difficulty of obtaining

Such evidence. Generally what would seem to be needed is carefully

designed and controlled experiments, involving selected groups of

programmers working under suitably supervised conditions. Experiments

along such lines, although not aiming at clarifying the issues consi-

dered here, have been described by Schatzoff, Tsao, and Wiig (1967),

by Sackman, Erikson, and Grant (1968), and by Gold (1969). These

Studies demonstrate very clearly the difficulty of the approach.

In fact, the effect that was the primary subject of the studies,

viz. the influence on the programming efficiency from the difference

between off-line and on-line access to the computer, could hardly

be detected from the experiments. The dominating factor was found

to be the individual differences of programmers.

In order to clarify the problems of programming methodology

raised by the adherents of structured programming, experiments ai-

ming at detecting quantitative differences of performance depending |

on the methods used would certainly be highly desirable. However,

the difficulty of obtaining convincing conclusions from this approach

may be expected to be even greater than in the performance studies

quoted above. Indeed, while either off-line or on-line access to

the computer may be imposed on a programmer through purely admini-

_ Strative measures, the use of either structured programming or

otherwise by a programmer lies beyond what can be controlled, or even

detected, by an external agency. It would appear even to lie beyond

what can be controlled by the programmer himself.

In view of these difficulties it appears desirable to attack

the problem from a different angle. One such angle is the one taken

here. In finding out what actually happens during program development

we may hope to gain insight into how much of the programming activity

might likely be influenced by, and gain from, a structured program-

ming approach.

The experiment is based on written recordings of the programming

activity, done by each student in the course of the work. An alter-

native technique would have been to make sound recordings of verbal

accounts given by the students. The two recording techniques, by

writing and by sound recording, each have obvious advantages and

limitations. Sound recordings tend to produce very large quantities

of material that are difficult to handle in the analysis. Recording

by writing will be felt as a heavy burden by many programmers, and

may be expected to exert a strong influence on the. programming

process itself.

The present study continues an earlier experiment by the author

(Naur 1972) by involving a group of students rather than just one

individual, and three separate programming tasks, rather than just

one. It remains severely limited in several directions. The most

serious limitation would appear to be the lack of observations

concerning large, and even just medium size, programs. As another

serious limitation the question of the goals actually pursued by

the students is treated inadequately.

2. UNDERLYING ATTITUDE

The choice of form of an experiment such as the one described

here is the result of an attitude. This underlying attitude has at

least the following components. First, the experiment is based on

a respect for, anda belief in the value of, the effort of the

participants, even if it is recognized that their talent, education,

and other such background factors differ a great deal. Second, the

experiment assumes that persons differ to such an extent that it

is inappropriate to speak of one correct, or proper, or best, method

of program development, that can be recommended to any programmer.

Rather, it is admitted that a method that is effective for one

programmer may not be so for another, even when they face the same

problem. Third, it is assumed that the teaching of highly complex

and personal matters such as programming is best done by exposing

the students to methods and to examples of their use, while any

compulsion to use specific methods should be avoided.

3. THE PARTICIPATING STUDENTS

The students participating in the experiment were those who

chose to take the course. Since the course was only one out of a

number of elective courses, it is clear that the one common charac-

teristic of the participants is their interest in the subject as

described in the course announcement (see section 4 below). Other-

wise the participants form a somewhat mixed assembly. The number -

of students actively starting the course was 12, a comparatively

high number as our elective courses go. Of these only 8 worked

through the course to the end. The ages of the students range from

21 to 26 years. The educational background ranged from 2 to 6 years

of participation in our regular course program. Several of the stu-

dents have part-time jobs as practising programmers.

4, THE PHASES OF THE EXPERIMENT

The course ran over one semester, with three hours a week.

Our cout eee admits a considerable degree of freedom for each
Wp) iG

course, gnat was utilized as described below. The course was given

a somewhat pretentious title, that caused puzzled amusement when

first announced: "Data system development at a high level of con-

sciousness". This was amplified as follows:

“The purpose of the work is to throw light on what happens in

the designer's mind during the development of data systems.

The primary activity is work with specific projects, using

a form of work that, as far as possible, retains the details

of the development process. Among the aspects that are expected

to be illuminated are the considerations of alternative solu-

tion possibilities, the exploitation of the designer's expe-

rience, and the influence of personal, temperamental differen-

ces among people. The primary form of work will be "system

development at the typewriter", i.e. a form that requires the

complete development process to be recorded in writing. This

form will be supplemented by discussions and mutual comments.

In addition some of the literature on system work will be

referred to, see Naur (1972) and Dahl, Dijkstra, and Hoare

(1972).

The work on the course was begun by .12 students on 1974 Febru-

ary ist. The final concluding report on the work during the course

was submitted at the end of May 1974 by 8 students.

The development of the course was not planned in detail before-

hand, but was the result of discussions in which the students were

invited to contribute freely. The activity may be described as 8
i

/, ; C? — Lider’ ?)
Fett j phases, admitting some overlap. (Mf Dé¢

Phase 1. Development of course goals

Starting from the announced course title and description, the

students were invited to take part in a process of course goal for-

mulation. This process was carried out during the first few hours

of the course work, in four steps. In step 1 suggestions for part

goals were solicited and collected on the blackboard. In step 2

the interest of each proposed goal was agreed upon, expressed along

a five-level scale, with 1 representing "very high interest" and 5

representing "slight interest". In step 3 the difficulty and cost

of contributing to each goal was estimated, the result being again

expressed along a five-level scale, 1 representing "very easy" and

5 representing "very difficult". In step 4 the goals were ordered

according to the product of the measures of interest and difficulty.

This product varies from 1, corresponding to "very high interest"

and "very easy", to 25, corresponding to "slight interest" and

"very difficult". The resulting list of course goals and measures

of interest and difficulty is given below.

Phase 2. First program development

Immediately upon completing the goal formulation during phase

1 the students were given the formulation of the problem to be

solved during the first program development. The problem was to

partition the nodes of a directed graph into maximal strong com-

ponents. Details of this problem and of the students' solutions

are given in section 5 below.

\ -8-

Course goals

I = measure of interest, 1 is high, 5 is low

D = measure of difficulty, 1 is easy, 5 is difficult

I D IXD} Goal, to contribute to the knowledge about:

1 - - What happens during program development

1 1 1 The importance of communication with others

2 1 2 The influence from other, unrelated activities

2/2 4 - - - previous education

2/2 4 - - - computer access

2.5/2.5 6 - - - personality, temper

2 4 8 The importance of the goal pursued by the programmer

4 2 8 What the literature says about program development

2 5 10 The importance of the programming language

2 5 10 In case of ‘team work: the importance of the sub-

division of the programming task

3 4 12 The influence of the level of documentation on the

quality of the resulting program

4 | 4 | 16 | The need for description tools during the initial

program development phases

4 5 20 The importance of the technical level of the envi-

ronment of the programmer

5 5 25 The influence from the planning

5 5 25 The importance of easy access to the literature

The students were asked to produce a detailed, written ac-

count of their thoughts as they developed during the solution of

the problem, roughly along the lines of the description given

in Naur (1972). A period of 2 weeks was assigned to the work,

the expected effective work load being of the order of 20 hours.

The students were asked to solve the problem by individual efforts,

although they were free to communicate among themselves and with

outsiders and to use the literature, as long as this was properly

described in their work accounts. They were left a free choice

of computer and programming language, to suit their individual

background and situation.

Phase 5. Discussion of’ the first program development

Upon completion of the first program development the reports

produced by the students were circulated among all participants,

as a preparation of the discussion of the experience obtained.

During a subsequent / free discussion among all participants an

attempt was made to identify the various kinds o. activity that

had gone into, or might have gone into, the program development.

The result of this discussion was a list of activities, ordered

according to the major stage of the program development. This

list was later revised in various ways and in its final version

identifies 33 activities. It is given in section 8 below. The

list may be regarded partly as an output of the experiment as a

whole, partly as a guide for the participants in their further

work during the experiment.

Phase 4, First program development: goal analysis

As a result of the discussion of phase 3 it became clear

that the development had been strongly influenced by the priori-

ties of goals that had been adopted, more or less tacitly, by

each student. In order to clarify this influence, each student

\ -10-

was asked to add to his or her program development report a summary

report containing any such observations on the program development

process that were deemed relevant. Specifically the summary report

should indicate the stress put on particular goals. The priorities

thus stated by the students to have been actually pursued are dis-

cussed in section 9 below.

Phase 5. Second program development

The choice of the problem to be solved during the second program

development was made during a discussion among all participants. It

was considered important that’ this problem would differ from that

of the first program development, in such a way that as far as

possible new aspects of the program development process would be

brought to light. The problem selected was to develop a program that

converts a representation of the hole patterns of a punched card into

an equivalent representation of a string of characters of the ISO

7-bit character set. The problem is described in more detail in

section 6 below.

For solving this problem the students were given a work period

of 2 weeks, corresponding to an effective work load of the order of

20 hours. As in the first program development, the students were

asked to record their progress in detail in writing and to end their

development reports with summaries, including priorities of goals

actually pursued. The terms of work differed from thosecof: the first

problem in that the students were given the freedom to work indivi-

dually or in teams, according to their own preference.

Phase 6. Discussion of second program development

As in phase 3, the discussion of the second program development

started with a circulation of all development reports among all parti-

cipants. The discussion itself was directed toward completing the list-

of activities established during phase 3, to cover the new experience.

-11-

Phase 7. Third program development

The choice of the third problem again was the result of a free

discussion among the participants. It was decided to focus on the

problems of interactive computer use, but otherwise to leave the

problem to be solved open. More details of the problem are given

in section 7 below. The choice of the actual problem to be solved

was left open because it was felt that the specification of any

particular problem would limit the scope of possibilities to such

an extent that the primary aim of the problem, viz. to invite the

students to consider the varieties of interactive computer use,

might not be realized. The formulation did create irrelevant pro-

blems for some of the students, who found it almost impossible to

find a suitable subject for the program.

The students were given 4 weeks, corresponding to about 50

hours, for the third program development.

Phase 8. Students' concluding summaries

As the final phase the students were asked to produce indivi-

dual, concluding summaries of their experience of the course work.

In addition to comments in free format, the summary should include

a more systematic account of the stress put on each of the program

activities ‘identified during phases 3 and 6. The outcome of this

final enquiry is described in section 8 below.

5. SOLVING THE FIRST PROBLEM

The experiment produced a substantial material of reports from

the students. As a whole the students have done the required, detai-

led recording of their work as they went along and the reports give

a lively picture of their trials and errors, .of their failures, dis-

appointments, and successes. In this section and the four that

follow their reports will be summarized.

The first problem, solved during phase 2 of the experiment,

was taken from an unpublished paper by E. W. Dijkstra, EWD376,

communicated privately to the present author in January 1974. Dijk- «

stra's paper contains a detailed description of his solution of a

problem formulated as follows:

First problem: Maximal strong components of directed graph.

Given a set of nodes and a set of directed arcs leading from

a node to a node, it is requested to partition the set of nodes

into maximal strong components. A strong component is a set

of nodes such that the arcs between them provide a path from

any node of the set to any node of the set; a single node is

a special case of a strong component: then the path can be

empty. A maximal strong component is a strong component to

which no nodes can be added.

This problem was solved by 12 students working individually

in between 5 and 15 hours. During their work they produced of the

order of 15 pages of written documentation of the progress of their

work. Th: sed by most students was to form the incidence

matrix of the given graph and to use this for forming the transitive

closure of the relations defined by the arcs. The maximal strong

components may then be found fairly simply in a third step. In the

descriptions below a solution thus based on forming the transitive

closure will be denoted TC. Where, in addition, the algorithm is

based on Warshall's theorem on Boolean matrices (Warshall 1962)

the method will be denoted TCW. The individual solutions are de-

scribed briefly below.

Student 1. Method: Traversal of graph using recursive procedure.

Main effort: Inventing a solution; hand experiments with methods;

debugging. Program: 149 lines of Algol 60, including brief comments.

2436

Student 2. Method: TC. No special difficulty. Program: 137

lines of Algol 60, including brief comments.

Student 3. Method: TCW. No special difficulty. Program: 36

lines of Fortran, without comments.

Student 4. Method: Traversal of | raph using recursive procedure.

Main effort: Invention of a method. Program: 70 lines of PLC, a sub-

set of PL/I, including brief comments.

Student 5. Method: TCW. Some effort spent on a comparison of

alternative approaches. Program: 41 lines of Algol 60, without comments.

The program only forms a matrix representation of the transitive

closure of the arc relations, not the strong components directly.

Student 6. Method: TCW. Main effort: Proving that the method

works; extracting the strong components. Program: 52 lines of Fortran, «

including brief comments.

Student 7. Method: TCW. Main effort: Justification of the use

of the transitive closure; selecting an efficient representation.

Program: 48 lines of Algol 60, including brief comments.

Student 8. Method: TCW. Main effort: Trying to get through with

traversal of graph using a recursive procedure, before switching to

TCW. Program: 66 lines of Algol 60, including brief comments.

Student 9. Method: TCW. Main effort: Proving that the method

works correctly. Program: 62 lines of Algol 60, including brief

comments.

Student 10. Method: TCW. Main effort: Design of input and

output; analysis of the execution time of the solution. Program:

37 lines of Algol 60, including brief comments.

Student 11. Method: TC. Main effort: Finding a suitable crite-

rion of convergence of the process. Program: 142 lines of Algol 60,

including brief comments.

Student i2. Method: Traversal of graph. Main effort: Trying to

understand the problem (without -cess). Program: 140 lines of

Fortran, including Lengthyconments, The solution does not solve

the given problem.

As a whole, the effort in solving problem 1 was spent on play

with methods of solution, often alternating between algorithmic

descriptions, expressed more or less formally, and hand experiments

to see whether the method would work. In this work descriptions

at a high level are certainly used, as in structured programming.

This does not always prove to be a help. For example, student 8

arrives on page 4 of his description at a beautiful strategy, ex-

pressed as 7 high-level actions, tied in with a clear data repre-

sentation. He admits that he has not gone into complete detail,

but has a strong feeling that the scheme can be realized fairly

simply by means of recursive procedures. The report of the next day

concludes that the scheme cannot be realized without too much admi-

nistration and trouble. He then switches to Warshall's algorithm.

A comparison of the students' solutions and Dijkstra's unpu-

blished solution, mentioned above, shows Dijkstra's approach to

differ radically from that of any of the students'. Most strikingly,

Dijkstra makes no use whatever of examples, and even ends by insi-

sting that examples should not be used, as a matter of principle.

Such a recommendation contrasts strongly, not only with the approach

used successfully by the students, but also with the recommendations

of those who have studied creative mathematical reasoning, see

Polya (1954).

6. SOLVING THE SECOND PROBLEM

The second problem, solved during phase 5 of the experiment,

requires the development of a program that converts a representation

of the holes of a punched card that takes the card row-wise, into

a representation of the characters of the card columns in the form

of a string of ISO 7-bit characters packed into words. As the basis

for the conversion the standard ISO representation of characters

on cards is given.

This problem was solved by 8 students or pairs of students.

They used between 10 and 35 hours of work on it, producing between

6 and 40 pages of documentation. The solutions were briefly as

follows.

Students 1 and 2. Main effort: Finding a space-economic repre-

sentation of the conversion table; generation of test cases. Program:

Approx. 230 lines of Algol 60, including tables and comments.

Students 3 and 6. Main effort: Finding a space-economic repre-

sentation of the conversion table. Program: 105 lines of Fortran,

including tables and comments.

Student 4. Main effort: Simulation of the card reader; production

of the internal conversion table. Program: 26 lines of PL/I, 87

lines of assembly language for the IBM S/370, both including comments.

Student 5. Main effort: Comparison of 7 alternative methods of

conversion; programming of a highly SéSentive conversion process.

Program: 90 lines of Algol 60, including brief comments.

Student 7. Main effort: Finding a space-economic representation

of the conversion table; simulation of the card reader. Program:

120 lines of Algol 60, including tables and brief comments.

Students 8 and 9. Main effort: Achieving fast conversion,

paying attention to the high frequency of code positions with no

holes. Program: 204 lines of Algol 60, including brief comments.

Students 10 and 11. Main effort: Getting familiar with a new

computer at the level of machine : ‘age. Program: Approx. 440

lines of assembly language for the PDP 11/45.

Student 12. Main effort: Finding out about the operation of

* 216-

a card reader at the machine language level. Program: Approx. 210

lines of Fortran, including tables and comments.

In brief summary, finding a solution to the second problem did

not cause any difficulty. Rather the effort was spent on selecting

a reasonably cheseetue solution. Much of the effort went into finding

usable, systematic patterns in the card column representations of the

ISO 7-bit characters. In addition there were problems of finding out

how the equipment operates at the appropriate level of detail.

7. SOLVING THE THIRD PROBLEM

The third problem, solved during phase 7 of the experiment,

was to develop a self-documenting program. By self-documentation

is meant that the user for the most part gets to know the features

of the program and to work out input data through a dialog with the

program. The subject of the program was left to the free choice of

each student. The final results of the development were to be made

available for the other participants in the course. The reactions

thus provoked were to enter dnto the discussion of the testing of

the programs.

Problem 3 was attacked or solved by 7 students or pairs of

students. It caused considerable interest, the time spent by each

student being typically of the order of 40 hours, but ranging all

way up to 130 hours. The documentation produced ran between 10 and

75 pages. The solutions were briefly as follows.

Student 1. Problem selected: Postage determined from destination,

weight, etc. Main effort: Finding a structure in the postal rules;

organization and contents of dialog. The solution was not carried

through to a program.

Student 2. Problem selected: Development of programs-that

\ 217-

control a graphical plotter, i.e. interactive teaching of a special-

-purpose programming language. Main effort: Development of the

dialog and the associated communication procedures. Program: Approx.

1150 lines of Algol 60, including extensive comments.

Students 5 and 7. Problem selected: Editing of Algol 60 programs,

with extensive checking. Main effort: Organization of the dialog;

comparison of ways to store the program text being handled. The

solution was not carried through to a program.

Student 6. Problem selected: Filling in football coupons on the

basis of winning chances of teams. Main effort: Development of the

dialog. Program: Approx. 370 lines of Fortran, including brief

comments.

Students 8 and 9. Problem selected: Multipurpose conversational

system, with stress on games and jokes. Main effort: Development of

conversational basis to achieve variations in the dialog; formulation

of adequate machine answers; design of particular games. Program:

Approx. 1120 lines of Algol 60, including texts and comments.

Student 10. Problem selected: Game equivalent to noughts and

crosses on a 3 by 3 board. Main effort: Analysis of the game, to

arrive at an adequate strategy. Program: 480 lines of Algol 60,

including brief comments.

Student 11. Froblem selected: Postage determined from desti-

nation, weight, etc. Main effort: Design of communication procedures;

representing the postal rules. Program: Approx. 450 lines of Algol

60, including brief comments.

It may be added that the somewhat artificial formulation of

the third problem, a formulation that could hardly be encountered

in a real-life problem, turned out to affect only a short, introduc-

tory phase of each program development. As soon as the students had

decided on what problem to solve the development proceeded quite

normally, except that the interest in the problem was rather higher

than normal.

8. THE STUDENTS' CONCLUDING SUMMARIES

In the last phase of the experiment, phase 8, the students

wrote summaries of their experience. In order to obtain information

that would lend itself to a more systematic comparison of the students

among one another and of the three problems, the students were asked

to relate their experience to the activities identified on the list

produced during phases 3 and 6. This list has 33 items and is repro-

LIST OF PROGRAM DEVELOPMENT ACTIVITIES HERE

duced below. Each student was asked to fill in a form having 33 lines

corresponding to the activities and a total of 6 columns, two for

each of the three program developments. Kach column should contain

a set of weights adding up to 100, describing the relative effort

spent on the various activities. For each of the three program

developments the first column should give the effort actually spent

during the course work, while the second should give the effort that

should have been spent, according to the student's retrospective

view of the most appropriate way to do program development. The

material thus consists of 33 X 6 = 198 weights for each of 8 students,

or in total 1584 weights. Before describing the contents of this

material it should be noted that 3 of the 8 students remark on the

difficulty of completing the table, saying that they found it "excee-

dingly difficult" or "awfully difficult".

For the purpose of analysis these weights were plotted in

3 X 33 = 99 small activity maps, one for each activity and problem.

In each activity map the weights given by each student to the activity

of that particular problem were represented by a point, the weight

-19-

10

11

12

13

14

15

16

17

18

19

20

Program development activities

A. Early stage of program development

Look at examples

Get ideas by talking to others

Use the theory you know, theorems, methods

Use the literature, particularly that which you have read

before

Describe the problem in mathematical terms

Internal data representation, think of alternatives

Method, strategy, think of alternatives

Delimitation of the problems that will be covered

Selection of computer and language, think of alternatives

Make explicit the dependence of the solution on computer and

programming language

Input data, think of alternative forms

Check of input data

Output data, alternatives

Describe the main sections of the program, perhaps as a flow

chart

Central algorithms

Invariant data defining the flow of control, in particular

control tables, require the utmost reliability; consider using

check digits

Estimate the storage and execution time requirements of the

program

Put priorities on the goals of the program development

Test input data, consider automatic generation

Test output, where in the program should it be produced, and

which

B. Intermediate stage of program development

2i Plan for the work, what should be done

22 Check of the solution chosen, proofs

23 Invariant descriptions of the data representations:

24 Action clusters

25 General snapshots

26 Alternative realizations, better solutions

27 Testing, collection of test cases

28 Documentation, collection of notes intended for various con=-

sumers

29 Means for measuring the execution time

30 Automatic generation of test input data

C. The program is written, before debugging on computer

31 List of variables with columns recording declaration, initia-

lization, use, and change of value

32 Step-by-step desk testing with trivially simple input data

D. Retrospective analysis

33 The resource efficiency, comparison with earlier estimates

actually given being the x-coordinate and the weight that should have

been spent being the y-coordinate.

A point in an activity map shows at a glance a good deal of the

student's view of the particular activity as applied to the particular

problem, as shown in figure 1. When the points corresponding to all

FIGURE 1 HERE

students are plotted in the same activity map the scatter of the

points shows at a glance whether there is agreement among the students

on the weight that has been given, or should have been given, to the

corresponding activity. Finally, in a comparison of the activity maps

corresponding to the three problems the influence of the nature of

the problem on the students' view of the activity shows itself.

Sample activity maps are given in figures 2 and 3.

A scrutiny and comparison of the activity maps yields the

following:

1. There are large variations among the students in the sense

that in no activity is there a uniformly high weight for all students.

Even in the case of activities that receive the highest average

weight there occur very low weights for some students. As a typical

illustration, figure 2 shows the maps for activity 15, central algo-

rithms. This activity is among the three or four that receive the

FIGURE 2 HERE

highest average weights. Even so, some students have given no weight

whatever to this activity. This general feature of the activity maps

should be kept in mind during the following descriptions.

2. A group of activities receives high average weights of the

order of 10 in all three problems, with no clear tendency that this

weight should have been different. Figure 2 shows the activity maps

of a member of this group. Ordered with decreasing average weight

the activities of this group are:

? Method, strategy, think of alternatives

6 Internal data representations, think of alternatives

15 Central algorithms

27 Testing, collection of test cases

11 Input data, think of alternative forms

3. A group of activities receives moderate average weights of

the order of 5 in all three problems, with no clear tendency that

this weight should have been different. The group includes:

26 Alternative realizations, better solutions

12 Check of input data

18 Put priorities on the goals of the program development

19 Test input data, consider automatic generation

20 Test output, where in the program should it be produced, and

which

32 Step-by-step desk testing with trivially simple input data

8 Delimitation of the problems that will be covered

21 Plan for the work, what should be done

10 Make explicit the dependence of the solution on computer and

programming language

4, A group of activities receives moderate average weights

of the order of 5 in all three problems, with a fairly clear tendency

that the weight should have been greater than the one actually

applied. A sample of this group is shown in figure 3. The group

FIGURE 3 HERE

includes:

28 Documentation, collection of notes intended for various consumers

2 Get ideas by talking to others

13 Output data, alternatives

33 The resource effectiveness, comparisons with earlier estimates

29 Means for measuring the.execution time

17 Estimates of the storage and execution time requirements of the

program

5. One activity receives moderate average weight of the order

of 5 in all three problems, with a fairly clear tendency that the

weight actually applied should have been smaller:

14 Describe the main sections of the program, perhaps as a flow chart

6. A group of activities receives weights that differ markedly

from one problem to the other. With one exception (activity 1, pro-

blem 1) there is no clear tendency that the weights should have been

different. The activities of this group and the average weights

given to them in the three problems are as follows:

\ 223-

Average weight

Problem 1 2 3

Maximal Punched Inter-
strong card code | active
component | conver- program

Activity in graph | sion

41 Look at examples Too high Low Moderate

3 Use the theory you Moderate Low Low

know, theorems, methods

4k Use the literature High Low Moderate

5 Describe the problem Moderate Low Low

in mathematical terms

16 Invariant data defining | Low High Moderate

the flow of control

22 Check of the solution High Low Low

chosen, proofs

30 Automatic generation Low High Low

of test input data

7. The remaining activities receive low average weights of the

order of 2 in all three problems, with no clear indication that the

weights should have been different. These activities are:

9 Selection of computer and language, think of alternatives

23 Invariant descriptions of the data representation

24 Action clusters

25 General snapshots

31 List of variables with columns ...

The points made in the remaining, unstructured part of the

students' concluding summaries may be summarized as follows. Of the

8 students 7 remarked on the form of work, the recording of the

program development process through typing while the work is in

s -2he

progress. One student notes that this form is "a bit tiring", an-

other that "it is a strain to have to make specific one's more or

less crazy ideas and to keep an eye on the time used". However, these

sides seem to be compensated amply by several positive aspects: "it

forces you to work more consciously", "the form of work was essential

to the result; it made me consider many ideas more thoroughly and

increased the joy of the work by the clarification of the ideas",

"specially in case of team work the form is a great advantage; you

don't have to discuss many ideas several times when somebody has

forgotten them again". One participant notes that "perhaps it is not

too surprising that such techniques are fruitful; they are similar

to the care with which experimentors work with their note books".

Another student concludes that "the basis for analysis of program

development must be reports of the form used during the course".

Some of the students comment on the course as such. One found

it "an interesting and instructive course to participate in", another

has found it "a bit varying and generally with a feeling that nobody

knew what should come out of it; even so I found many of our discus-

sions fruitful", and yet another has "gained experience with more

effective modes of work that undoubtedly will prove useful later".

A criticism voiced by several students is that too little effort

was put into the analysis of the material collected.

The list of program development activities was commented on by

two students. One of them writes: "The check list, perhaps suitably

extended, is an excellent cookbook. It should be used regularly

during one's work ... Since the check list takes a broad view there

will always be a number of points that apply well to the task at hand.

The only thing that I cannot follow is the division into the four

stages. It cuts across my own habits." Another student writes that

"a list of concepts and methods tends to become unwieldy and uninter-

\ -25-

esting, since may items on the list often are meaningless in relation

to the specific task at hand. On the other hand a set of hints and

guidance may be very useful, in particular in connection with the

teaching at a more elementary level, but to be of value such a guide

must be strongly supported by arguments and examples. It can hardly

be less than perhaps 100 pages long".

One student comments on the analysis of goals (see section 4,

phase 4, above). He writes: "The idea to define the goal explicitly

seems to me very successful, because it forces one to keep a rather

tight rein on oneself and not to neglect certain parts of the problem

being solved. Further one is forced to justify changes of the goals

as they come along, which is a good thing."

9. GOAL PRIORITIES AND STRUCTURED PROGRAMMING

As a result of phase 4 of the course, it was decided that each

participant should try to characterize the goals actually pursued

during the program development. In order to obtain comparable data

it was decided that the students. should state the stress that they

had put on each of 7 goals, in terms of a scale ranging from 1, "very

slight stress", to 5, "the utmost stress". Unfortunately the question

was not pursued sufficiently vigorously at the time and the data

actually obtained are quite “incomplete. For this reason the results

shall only be summarized briefly, taking the goal priorities for all

three problems and all students together.

Goal 1, to produce full documentation, had a fairly low priority,

in the range from 1 to 3. Goal 2, to get through to a workable program,

was put very high, with a few exceptions. Goal 3, to produce a neat

program, was put either very low or very high, with few in between.

Goal 4, to follow one's inclination, is put roughly equally along the

range of priorities. Goal 5, to produce a fast program, also is put

nearly equally along the range, with only a slight tendency toward

high priorities. Goal 6, to achieve good economy of storage, was

placed about equally as goal 5. Goal 7, to achieve freedom of pro-

gramming errors, was put very high, above any other goal.

Even on this limited evidence it may be concluded that the

actual goals pursued differ considerably from one student to the

other. In view of the results reported by Weinberg (1972) a diffe-

rence in explicit goal may have considerable influence on program-

ming performance. It thus seems likely that the difference in goals

adopted by the students will have caused a significant difference

in their solutions. This effect may explain some of the large diffe-

rences in the stress put on various programming activities reported

in section 8 above. Thus it might seem that the present experiment

suffers from inadequate formulation of goals, and that further ex-

periments should pay more attention to this point.

The issue of goal selection raises some difficult questions

in relation to the ideas of structured programming. For one thing,

it is not clear whether to regard structured programming as a goal

in itself, or whether to regard it as a means to some other end,

and if so, which. Further questions arise that possibly could be

settled merely by using clearer concepts and terms. Thus we find

in section 8 point 2 as the two activities that receive the highest

average weight in the present experiment: "7 Method, strategy, think«

of alternatives" and "6 Internal data representation, think of

alternatives". If these activities are not structured programming,

at least they are closely related to it. Perhaps, unwittingly, the

students in the experiment have been doing structured programming?

10. CONCLUSIONS

On the basis of the limited material and the incomplete analysis

of the present study only a few firm conclusions are warranted. The

most useful conclusion seems to be that the experimental method used,

viz. individual, continuous recording in writing of the program

development, is capable of yielding usable material, at least with

some, not too exclusive, groups of people.

Second, it seems clear, what common sense would have, but what

often seems to be forgotten in discussions of programming methods, —

that there are important techniques that should or should not be

used, depending on the particular problem being solved.

Third, as the experiment was actually conducted the stress put

on various program :development activities varied greatly from one

student to another. It appears likely that some of these differences

might have been smaller if the goals to be pursued by the students

had been more clearly defined. However, whether clear goal defini-

tions would remove all personal differences can only be determined

by further experiments.

Fourth, the relevance and importance of the ideas of structured

programming to the kind of program development considered in the

experiment remains unclear. In particular the relation of structured

programming to the goals of programming needs clarification.

REFERENCES

Dahl, O.-J.; Dijkstra, E. W.; and Hoare, C. A. R. "Structured Pro-

gramming". Academic Press, London, 1972.

Gold, M. M. "Time-sharing and batch-processing: an experimental com-

parison of their values in a problem-solving situation". Comm. ACM

12, 5 (May 1969), 249-259.

Ss = 28-

Henderson, P.; and Snowdon, R. "An experiment in structured program-

ming". BIT 12 (1972), 38-53.

Ledgard, H. F. "The case for structured programming". BIT 13 (1973),

45-57.

Naur, P. "An experiment on program development". BIT 12 (1972), 347

-365.

Polya, G. "Induction and analogy in mathematics. Volume i of Mathe-

matics and plausible reasoning". Princeton University Press, 1954.

Sackman, H.; Erikson, W.J.; and Grant, HK. E. "Exploratory experimen-=

tal studies comparing online and offline programming performance",

Comm. ACM 11, 1 (Jan. 1968), 3-11.

Schatzoff, M.; Tsao, R.; and Wiig, R. "An experimental comparison of

time sharing and batch processing". Comm. ACM 10, 5 (May 1967), 261

-265.

Warshall, S. "A theorem on Boolean matrices". J. ACM 9 (1962), 11-12.

Weinberg, G. M. "The psychology of improved programming performance".

Datamation 18, 11 (Nov. 1972), 82-85.

Wirth, N. "Program development by stepwise refinement". Comm. ACM

14 (April 1971), 221-227.

The weight given
is appropriate

. N
Weight that pas
should have

. iven to
been given 8

Less

weight

should be

given to

this activity

Weight actually given

to this activity

Fig. i. Interpretation of activity map

20 + Problem 1 | Problem 2 e | Problem 3

_@ 15 4 ° °

to -
@ 0

e
. ®
sie ° %e e © $

°%
o+ @ °

T T T T T T T T T T T T 1 T T
fe) 5 10 15 20) 5 10 15 20 0) 5 10 15 = =20

Fig. 2. Activity maps for activity 15: Central algorithms

20s Problem 1 Problem 2 Problem 3

15- e

107 ad
eo

© Ce) te] 5 ae r) © oe @

> ge o}
if) C)

.

. I] q q T | t] I I I q T T

°) 5 10 15 20 e) 5 10 15 20 O 5 10 15 20

_Fig. 3. Activity maps for activity 13: Output data, alternatives

