|

KncH

~ SPRING CONFERENCE PROCEEDINGS

Florence, Italy
April 21-24 1986

Al TE N - S I ST IS e

This volume is published as a collective work. Cop&right of the material in this
document remains with the individual authors or the author’s employer.

Further copies of the proceedings may be obtained from:

EUUG Secretariat
Owles Hall
Buntingford
Herts

SG9 9PL

United Kingdom

N

1
i
1
i
i
|
i
i
i
i
|
|
:
g
g
;
g
:
:
{
'
|

EDITORIAL

This set of proceedings is organised as follows:

e The programme at a glance (thank you TBL), including who
speaks when;

e List of speakers and their papers in alphabetic order;

e The set of abstracts submitted, on which the selection of papers
were based;

e The actual papers submitted, also in alphabetic order.

It was unfortunately not possible to await the arrival of all papers
before the proceedings were sent to the publisher. Therefore this gave
us an excuse to utilise the wonderful PIC that appears against every
page for which we did not manage to obtain a paper.

Some acknowledgements are in order: firstly to the authors for
submitting most of the papers in a reasonable form and usually only
a short time after the absolute final deadline; secondly to The
Instruction Set Limited for the use of their facilities to typeset the
majority of the artwork for the proceedings; and finally to Mike
Kelly, of The Instruction Set who assisted greatly with the actual
production of this material.

Finally it is appropriate to thank the many authors who submitted
very good papers, but were not selected for this programme. It is
always very difficult to perform the selection, and it is becoming more
so as the quality of papers increases. In many cases, the reason for
rejection was not that the paper was in any way below standard;
rather that the topics addressed were not appropriate for the material
planned for this conference. Such authors should, if appropriate,

submit their papers again for the next EUUG conference in
Manchester.

Nigel Martin
The Instruction Set Limited

F

TN T N S R OGS S G A an ae e

09:20
09:30

10:00

10:30

11:00

11:10

11:40

12:10

14:00
14:10

14:40

15:30

16:00

16:10

16:40

17:10

TECHNICAL PROGRAMME TIMETABLE

Tuesday 22nd

Wednesday 23rd

Thursday 24th

i2u (Italy) News

FUUG (Finland) News

NUUG (Norway) News

Massimo Bologna
The Portable Common Tool
Environment Project

Russel Sandberg
Design and Impiementation of NFS

John Richards

Software for a Graphics Terminal in C

Winfried Dulz
System Management for a Distributed
UNIX Environment

William Fraser-Campbell
Implementing the NFS on System V.2

M. Guarducci
Fiore Project: Wide Band Metropolitan
Area Network

COFFEE COFFEE COFFEE
AFUU (France) News GUUG (Germany) News UKUUG (UK) News
Tom Killian Pete Delaney Robert Heath

Computer Music under Unix Eighth
Edition

A Guided Tour of OSI based NFS

Adding Commercial Data
Communications to UNIX

Brian Collins
The Design Of A Syntax-directed Text
Editor

Peter Weinberger
The Eighth Edition Remote Fillesystem

Dave Presotto
Matchmaker: The Eighth Edition
Connection Server

LUNCH LUNCH LUNCH
DKUUG (Denmark) News IUUG (Ireland) News UNIGS (Switzerland) News
Philip Peake Andy Rifkin Bill Joy

Implementing UNIX standards

RFS in System V.3

UNIX Workstations: The Next Four
Yoars

Charles Bigelow
qurenuno Inventors Of Modern
Alphabets

C. Brisbois
SIGMINI Information Management
System

Lauren Weinstein
Project Stargate

Mike Hawley
Developments at Lucasfiim

AFTERNOON TEA

AFTERNOON TEA

AFTERNOON TEA

EUUG-S (Sweden) News

NLUUG (Netherlands) News

UUGA (Austria) News

Malcolm Agnew
DB++ Databsse Management System

Roberto Novarese
An Office Automation Solution with
UNIX/MS-DOS

S. Mecenate
The IBM 6150 Executive AIX

David Tilbrook
Managing s Large Software Distribution

Marco Mercinelli
SNAP: Restarting a 4.2 BSD process
from a snapshot

Antonio Buongiorno
Office Data Base Services in a UNIX
Architecture

EUUG Business Meeting

TECHNICAL PROGRAMME CONTENTS

Malcolm Agnewcccun..... DB++ Database Management System

Charles Bigelowcccccuue..... Florentine Inventors Of Modern Alphabets

Massimo Bologna The Portable Common Tool Environment Project

C. Brisbois SIGMINI Information Management System

Antonio Buongiorno Office Data Base Services in a UNIX Architecture

Brian Collinscccccerrruennnnne. The Design Of A Syntax-directed Text Editor

Pete Delaneyccoeueunnnen. A Guided Tour of OSI based NFS

Winfried Dulz System Management for a Distributed UNIX
Environment

William Fraser-Campbell Implementing the NFS on System V.2

M. Guarduccicceceeuveuenenne Fiore Project: Wide Band Metropolitan Area Network

Mike Hawley evneesesessssens De velopmen‘ts at Lucasfilm

Robert Heathcceuun..... Adding Commercial Data Communications to UNIX

Bill JOY eeveevrrtecrerererreenn. UNIX Workstations: The Next Four Years

Tom Killianccrevennnnnnee. Computer Music under UNIX Eighth Edition

S. Mecenateccueeueuunee. The IBM 6150 Executive AIX

Marco Mercinelli SNAP: Restarting a 4.2 BSD process from a snapshot

Roberto Novarese An Office Automation Solution with UNIX/MS-DOS

Philip Peakecceueeueuee... Implementing UNIX standards

Dave Presottoeoeee.... Matchmaker: The Eighth Edition Connection Server

John Richardsuun..... Software for a Graphics Terminal in C

Andy Rifkin ..ccreveeereenee RFS in System V.3

Russel Sandberg Design and Implementation of NFS

David Tilbrook Managing a Large Software Distribution

Peter Weinberger The Eighth Edition Remote Filesystem

Lauren Weinstein Project Stargate

ABSTRACTS FOR THE TECHNICAL PROGRAMME

Malcolm Agnew
DB++ Database Management System

Mail: robert@hslrswi
Phone: +69 597 029798

Concept ASA GmbH
Wolfsgangstrasse 6

D-6000 Frankfurt am Mainl
WEST GERMANY

The DB++ family of programs together comprise an efficient, flexible
and reliable relational database management system for use with
UNIX.

This paper discusses how the DB++ programs have been fully
integrated into the UNIX framework. It then goes on to explain the

choice of query language in addition to some of the unusual
implementation details.

Charles Bigelow :
Florentine Inventors Of Modern Alphabets

Mail: ukclcab@ su-ai.arpa
Phone: +1 415 788 8973

Bigelow and Holmes
15 Vandewater Street
San Francisco

CA 94133

USA

Bitmap screen displays and laser printers have enriched the appearance
of computer literacy. Procrustean limitations of mono-case and mono-
space that formerly degraded computer-produced text have been
abolished. We now can enjoy the luxury of reading and printing text
in lower-case as well as in capitals, in italic and bold styles as well
as in roman, in proportionally-spaced fonts of different sizes as well
as in monospaced fonts of a single size, in justified as well as in
ragged-right columns.

Massimo Bologna
The Portable Common Tool Environment Project

Phone: +39 50 500211
Mail: 3bicoalflor@iconet.uucp

The Portable Common Tool Environment (PCTE) project is carried out

as part of the ESPRIT programme of the Commission of European
Community.

The project aims at the definition and the implementation of a
common framework, within which various software tools can be

developed and integrated in order to provide a complete environment
for software engineering.

The two main goals of the project are the portability across a wide
range of machines and the compatibility for assuring a smooth
transition from existing software development practices.

The technical approach to portability is discussed in this paper: UNIX
is the means by which PCTE will be W1dely available; the PCTE basic
mechanisms are built on top of UNIX: in fact PCTE can be seen as
an extension to UNIX in the area of distribution, friendly user
interfaces and database for software engineering.

This last aspect is described in this paper: functional as well as
implementation aspects will be dealt with.

Finally, tools developed for the PCTE database are described and

discussed.

C. Brisbois
SIGMINI Information Management System

Union Miniere SA
Division Information
Avenue Louise 54, BTE 10
B-1050 Brussels

BELGIUM

Sigmini is designed to process heterogeneous information, including
quantities, which have complex interrelationships. It is related to both
database systems and classical documentation retrieval systems. In

either case, Sigmini is designed to avoid the necessity to declare in

advance the data or relationships.

e rmEer A

-

- - - - - - - - - - - - - » e e g i st . .
e - s *

Antonio Buongiorno
Office Data Base Services in a UNIX Architecture

Phone: +39 125 52 15 92

Olivetti DSRI/DPS
IVREA
Italy

Antonio Buongiorno
Franco Calvo
Bruno Pepino

Classification, filing and retrieval are important but time-expensive
activities in an office environment. Attempts to reduce times, and
thus costs, involved in these processes and to increase the effectiveness
of an retrieval system are rapidly gaining importance for a better
information mamagement in an office. The paper outlines a solution
for filing and retrieving "objects” in an architecture based on UNIX
servers and networks of personal computers. The focus is mainly on
the data model that supports the Office Data Base and allows a very
fast retrieval of structured and non structured information.

In the first section is described a general architecture, in the second
the functionalities and the data model and in the third the prototype
package AMEDEUS.

Brian Collins
The Design Of A Syntax-directed Text Editor

Mail: ukclbco@ist
Phone: +44 1 581 8155

Imperial Software Technology
60 Albert Court

Prince Consort Road

London

SW7 2BH

The editing and user-interface system described in this paper presents

many different guises to the user. Among these are:

1) A general-purpose, multi-file, multi-windowing screen editor for
ASCII text files and simple terminals.

2) A forms system for constrained data entry and presentation.

3) An interactive windowing front-end to application programs.

4) A syntax-directed editor. '

This paper concentrates on the latter.

In the design of such an editor, the choice of facilities offered to the
user is often more difficult than the actual implementation. In this
editor, the decision taken was to make the interface appear to the
user as close as possible to a standard text editor, hence the more
descriptive title of ‘syntax-directed text editor’.

Normal text editing operations can be seen to fall into two classes:
those which only affect one line of text, and those which affect a
number of lines. The user is allowed to edit freely any text within
a line, using text-editing operations. On leaving the line, the edited
text is re-parsed and errors corrected or reported. Editing operations
which insert, delete, move or copy lines must ‘explicitly maintain
syntactic correctness across line boundaries. For example, a line
containing ‘END’ could be automatically added when a ‘BEGIN’ is
detected.

The overall effect is to provide a text editor in which it is impossible
to enter a syntactically incorrect program.

The editor is language-independent (indeed, it may handle many
different languages simultaneously). A language may be supported if
it conforms to a few obvious restrictions (similar to those of lex &
yacc). The syntax of the language is described in an extended,
annotated BNF, which also specifies the layout rules for line breaks,
spaces and indentation.

The paper provides a description of the editor, both from the user’s
view and from the language implementor’s. It describes how the
syntactic structure is maintained in what is essentially a text editor,
and the techniques used for the fast re-parsing of edited text.
Finally, the paper assesses the applicability of syntax-directed editing
to various languages, its use in a programming environment, and a

_specific analysis of the problems in the syntax of the language C.

:

-y g 44 i b

H
H
P
l’
ll

Pete D
A Guided Tour of OSI based NFS

Mail: ukclecrcvax!pete@ unido.uucp
Phone: +49 89 92699 138

Rockey Mountain UNIX Cons
ECRC

Arabellastrasse 17

D-8000

Munchen 81

WEST GERMANY

A guided tour of the ESPRIT OSI implementation on 4.2BSD will be
presented. An example of mounting a filesystem via Sun’s NFS using
OSI protocols over X25 will be demonstrated with:

e A Kernel trace showing major events

® A diagram of cronological events, with references to the kernel
trace. ’

e Topological organization of network structures.

Due to the lengthy nature of the trace, copies will be distributed to
the audience. Implementation details and divergencies from the US
NBS and General Motors MAP project will be discussed.

The merits and pitfalls of the OSI protocols will be presented along
with recomendations for further wor

Winfried Dulz

System Management for a Distributed UNIX Environment
Mail: ukc!fauern!faui70idulz@ unido.uucp

Phone: +49 9131 857929

IMMD 7
Martensstrasse 3
8520 Erlangen
WEST GERMANY

In analogy to system management for central server configurations,
distributed systems must also provide utilities for user-handling,
System- accounting and resource-accessing. We show for the UNIX
network operating system Newcastle Connection how transaction-
oriented protocols based on communicating client/server processes can
solve this class of problems. To that end all local user-files
/etc/passwd are concatenated to a system-wide database that also

William Fraser-Campbell
Implementing the NFS on System V.2

Mail: ukclinset!bill
Phone: +44 1 482 2525

The Instructionl Set Ltd
152-156 Kentish Town Road
London

NW1 9QB

System V has been enhanced to support multiple file system types
using a common interface within the kernel.

Using the Sun Network File System architecture, our implementation
supports System V files on local disks, and acts as both client and
server for network file systems using published NFS protocols.

This paper will present details of the implementation.

M Guarducct
Fiore Project: Wide Band Metropolitan Area Network

Electronics Department
Florence University

Florence
ITALY

The design and implementation study discussed in this paper outlines
first problems and solutions of the design work, followed by
implementation strategies of services supplied to final users: file
transfer, messages, electronic mail.

The realisation foresees use of host computers running the UNIX
operating system connected on the wide band based MAN of the Fiore
project in Florence based on th Localnet 20 protocol by Sytek, on

which Ethernet LAN’s and stand-alone computers may be connected.

L

Mike Hawley .
Developments at Lucasfilm

Mail: ukc!lmike@dagobah
Phone: +1 415 485 5000

PO Box CS 8180
San Rafael

CA 94912

USA

Mike will discuss UNIX & computers at Lucasfilm. The excitement
comes from combining information technology with the richest possible
kinds of communication media. Examples range from the high-end
graphics and audio work done there (with the PIXAR and ASP
systems) to earthier projects involving large databases of sound effects,
books, poetry, etc, and of course, music. .

Most of the work exemplifies UNIX applications and systems
development with an artistic bent.

Robert Heath ,
Adding Commercial Data Communications to UNIX

Phone: +1 513 445 6583

NCR Corp. ' -
Columbia, South Carolina

Tlx: 851295467CZ8123Z 295467

As the UNIX operating system becomes more widespread in small
business systems, the need to add commercial data communications
becomes important. This paper discusses how NCR in its UNIX-based
supermicrocomputer, the Tower, has supplemented the basic data
communications tools provided by AT&T with both industry-standard
and internationally standard protocols. The resulting product provides
interconnectability in three general areas: asynchronous, synchronous,
and local area networking. The paper illustrates which protocols are
important for a general-purpose small business system.

The well-known Call UNIX (CU) and UUCP are standard Tower
utilities for asynchronous networking. A high-performance,
asynchronous adapter, which moves the tty driver off the main
processor for both networking and workstation control is described.

UNIX System V is deficient in synchronous protocols. Described is an
intelligent, synchronous adapter which supports multiple, block-oriented
protocols such as SDLC, HDLC, and Bisync. Data link control drivers
were added to the kernel to complement standard networking packages
such as SNA, X.25, and 2780/3780 Bisync, and 3270 Bisync. The
paper describes how 3270 screen emulations reuse UNIX concepts such
as termcap and remote- job entry emulations reuse the printer spooler.

Tower local area networking (Towernet) is provided through a
programmable Ethernet adapter which offloads time-critical operations.
Towernet services described include electronic mail, file transfer,
virtual terminal, PC interconnection, and wide-area networking.
Another lan-based option is the distributed resource system which not
only implements a distributed file system but also provides
transparent access of remote devices.

This paper illustrates how modern, layered protocols are distributed
within - UNIX. It details particular problems in intertask
communications and multiplexing separate data streams. Solutions to
these problems are presented in application software, kernel software,
firmware, and hardware. Strategies for network management,
diagnostics, and maintenance are offered.

]

Bill Joy
UNIX Workstations: The Next Four Years

Mail: ukclinset!sunuk!sunlwnj
Phone: +1 415 960 1300

Sun Microsystems Inc.
2550 Garcia Avenue
Mountain View

CA 94043

USA

At the EUUG conference in Paris 1982 Bill predicted the future of
UNIX workstations and the technology associated with them for the
three years which were to follow. That time has elapsed and
therefore he will update that talk with further insights into the
developments in the next few years.

The talk will not only cover UNIX workstations, but developments in
the technology applicable, regardless of operating system.

-. . oy

Tom Killian
Computer Music under UNIX Eighth Edition

Mail: ukcltom@ikeya
Phone: +1 201 582 3000

AT&T Bell Laboratories
Murray Hill

New Jersey

USA

We describe an evolving computer music system which draws upon
many of the novel facilities of the 8th edition as well as the standard
repertoire of Unix tools. The Teletype 5620 bitmap display serves
both as the user’s terminal and real-time controller. The mux window
system is used to download a MIDI interface driver which services
other windows (by direct code sharing) and host processes (which
write on the driver’s control stream). We presently have two MIDI-
compatible instruments, a Yamaha DX7 and TX816.

Window programs include a piano-roll style score facility and a
virtual keyboard. Host programs include a music compiler, "m," which
converts an ASCII score notation into MIDI events; it is based on lex
and yacc, making it very easy to develop in response to user needs.
There is also a variety of filters which perform simple transformations
(e.g., time and pitch translation) on MIDI files. The latter are ASCII,
so that, for example, output from the DX7 keyboard can be translated
into "m" notation with an awk script, and other Unix text filters
(especially sed and sort) and -"c" programs are useful as well.

We will show (and play) examples of pieces written in "m,” "c," and
the Bourne shell, and discuss future plans which center around 12-
tone serial composition. - '

Tom Killian began his career as an experimental high- energy physicist
at CERN and Brookhaven National Laboratory. Frustrated in his
attempts to persuade his colleagues of the evils of JCL, he eventually
found his way to Bell Labs, where he has been a member of the

Computing Science Research Center since 1982.

o

S Mecenate
The IBM 6150 Executive AIX

Phone: +44 1 995 1441

IBM UK Ltd
Chiswick
London W4

In January 1986 IBM has announced the IBM 6150 micro computer
with the Advanced Interactive Executive (AIX) operating system.

As the base for AIX IBM chose AT&T’s UNIX System V because it
provides considerable functional power to the individual user, multi-

user capabilities, is open-ended, and has a large user and application
base.

However in choosing UNIX IBM recognised the need to make
significant extensions and enhancements to meet the needs of our
expected customers and their applications.

Tlie presentation will discuss some of these major modifications and
additions.

Marco Mercinelli
SNAP: Restarting a 4.2 BSD process from a snapshot

Mail: ukc!cselt!marco@i2unix.uucp

Sezione Metodologie Software

Divisione Informatica

Centro Studi e Laboratori Telecomunicazioni
10148 Torino

ITALY

SNAP is an extension to UNIX4.2BSD for taking a snapshot of a
running process and restarting its execution at a later time.

A snapshot is composed of a process core image and information about
its execution environment (opened files, devices, tty settings, etc.). It is
not necessary to kill the process for taking the snapshot.

A process can be restarted at any time, even after a system crash.
Its execution continue at the point the snapshot was taken in a "quasi”
transparent fashion. All the process resources should be available and
are set to a suitable state.

The snapshot facility can be used as a building block for several
higher level mechanisms such as crash recovery, debugging,
backtracking and process migration.

The current implementation of SNAP can only restart a single process
with no IPC connections.” Further work is needed in order to extend
SNAP for managing groups of related processes and connections in a

distributed environment.

Roberto Novarese
An Office Automation Solution with UNIX/MS-DOS

Phone: +39 125 52 15 92

Olivetti DSRI/DPS
Ivrea
ITALY

In this paper a set of Office Automation requirements-of the Economic
European Community are presented. A solution that has been
designed and prototyped by Olivetti is then discussed. The proposal
is based on the integration of UNIX mini and MS-DOS personal
computers on a local area network. A set of integrated Office
Productivity Tools on the workstations provide the support to
professional and secretarial activities.

Personal Computers Support Services provide the sharing of resources
(file server, print server and communication server functionalities).
An X.400 Electronic Mail and an Archiving System are the Office
Cooperation Services designed for the integration of this soluction in a
Multivendor Architecture.

Philip Peake
Implementing UNIX standards

Mail: ukclphilip@axis

Phone: +33 1 4603 3775
Axis Digital
135 Rue D’Aguesseau

92100 Boulogne
FRANCE

As UNIX becomes more firmly established in the commercial
computing world there is much pressure, and resulting action for
standardisation. For example, the SVID and X/OPEN publications.

This presentation looks at some of the problems encountered during
the development, and subsequent porting of applications which either
run on, or communicate with UNIX systems. Some attention is also
paid to the existing standards; as found in practice, and as proposed
in the above documents.

Dave Presotto
Matchmaker: The Eighth Edition Connection Server

Mail: ukclpresotto@research
Phone: +1 201 582 5213

AT&T Bell Laboratories
Murray Hill

New Jersey 07974
USA

Matchmaker is a connection service for Eighth Edition UNIX. Using
Matchmaker, processes can connect to processes on the same system or
across a variety of networks. Unlike other solutions to this problem,
such as 4.2 BSD’s sockets, ours separates network protocols and
communication properties to such an extent that application programs
using it need not be cognizant of the network or network protocol on
which the connection is built.

Matchmaker is based on Dennis Ritchie’s Streams, a mechanism for
providing two way byte streams between processes and devices or
between processes and other processes. The unique properties of
Streams make Matchmaker possible. Using Streams we can perform
functions such as circuit setup, circuit shutdown, and data stream
processing in the kernel, in processes, or even in separate processors as
the situation dictates.

John Richards
Software for a Graphics Terminal in C

Mail: ucl-cslrichards@uk.ac.bristol.qvc
Phone: +44 272 303030

University of Bristol Computer Centre
University Walk

Bristol

BS8 1TW

This paper describes the development of software for incorporation in
a new intelligent raster graphics terminal. The terminal provides
support for windows and graphics segments. The software was
written in C and developed and tested on a UNIX™ system before
being placed in ROM in the terminal. The paper shows how
considerable use was made of structures and the storage allocation
functions to provide a generalised segment storage scheme. Examples
are given of the way language constructs were used to obtain fast,
but portable, code. The finished software was ported to the terminal
with hardly any modifications.

L-_-------—--

Andy Rifkin
RFS in System V.3

Mail: ukcluellattunix!sfjeclapr
Phone: +1 201 522 6283

AT&T Information Systems
190 River Road

Summit

NJ 07901

USA

Andy is a principal developer of AT&T’s distributed UNIX file system
known as RFS. He joined AT&T after receiving his masters degree in
computer science from Cornell University.

The AT&T distributed file system known as RFS, provides users with
transparent access to remote filesystems. The goal behind RFS is to
offer the complete functionality of the UNIX filesystem (i.e., special
devices, record locking, named pipes) without compromising the UNIX
filesystem semantics. That is, programs which run in a single
machine environment will run in an RFS environment with no change.

The implementation of RFS is done at the kernel level, using the
standard UNIX mount command to access remote resources. RFS was
designed to be both protocol and media independent using the Streams
architecture available in UNIX System V Release 3. .

This talk will describe the RFS architecture from both a
communication and kernel perspective. In addition a comparison
between RFS and other available distributed file systems will be made
in order to highlight their differences. -

Russel Sandberg |
Design and Implementation of NFS

Mail: ukclinset!sunuk!sun!phoenix!rusty
Phone: +1 415 960 1300

Sun Microsystems Inc
2550 Garcia Avenue
Mountain View

CA 94043

USA

The Sun NFS provides transparent, remote access to filesystems.
Unlike other remote filesystems available for UNIX, NFS is designed
to be easily portable to other operating systems and architictures.

This paper describes the design and implementation of NFS along with
some experience of porting it to other systems.

David Tilbrook
Managing a Large Software Distribution

Mail: ukcldt@ist
Phone: +44 1 581 8155

Imperial Software Technology
60 Albert Court

Prince Consort Road

London

SW7 2BH

One of the major problems at IST is the management of more than
eight mega-byte of software and related data for IST’s own machines
and those of our clients. For obvious reasons it is desirable to
centralize the management of the source in a single location and to
extract the distributions as required. This presents a variety of
problems, principally with respect to the variations in the target
systems. This paper discusses the solutions developed to overcome the
differences between operating systems, interdependcies within the
source, the variations in the available software tools.

Peter Weinberl';gder
The Eighth Edition Remote Filesystem

Mail: ukclpjw@seki
Phone: +1 201 582 3000 ex: 7214

AT&T Bell Laboratories
Murray Hill

NJ

USA

Peter is famous for at least two pieces of work. Firstly, he is the W
in AWK (Aho, Weinberger and Kernighan), that useful pattern
matching and scanning language the we all use daily. His second well
known work is in the area of distributed filesystems, in particular he
was responsible for the initial design and implementation of the
Edition VIII remote filesystem.

In Florence, Peter will explain the motivation behind this work on the
remote filesystem and study the model of the world it assumes.

Lauren Weinstein
Project Stargate
Mail: ukc!lauren® vortex
Phone: +1 213 645 7200

Computer/Telecommunications Consultant
PO BOX 2284

Culver City

CA 90231

USA

This paper and talk will review the current status of the ongoing
"Stargate” project, which is experimenting with the transmission of
"netnews"-type materials over the satellite vertical broadcasting interval
of television "Superstation” WTBS, a very widely available basic cable
television service in the United States. The techniques used allow the
Stargate data to exist in parallel with the standard video and audio of
the television operation. Satellite-delivered WTBS is currently
available to over 33 million cable subscribers (households and
businesses) throughout the United States, and is also received directly
by privately owned satellite earthstations. This paper discusses both
the technical and non-technical (i.e. organizational, content, policy, etc.)

aspects of the project.

The DB++ Relational Database Management System

Malcolm Agnew
Concept ASA GmbH,

Wolfsgangstrasse 6,
D-6000 Frankfurt am Main 1, West Germany

and

J. Robert Ward
Hasler AG,

Belpstrasse 23, CH-3000 Berne 14, Switzerland

UUCP : ... {seismo.decvax,uke, ... Hmecvax!cernvaxthsirswilrobert
EDU: hsirswilrobert%cernvax.bitnet@UCBJADE.Berkeley.EDU
ARPA: hslrswilrobert%cernvax.bitnet@ WISCVM.ARPA

ABSTRACT

The db++ relational database management system comprises a
series of programs that provide a general yet efficient data processing
tool for the Unix [1] environment. It is currently implemented on a
wide range of machines and Unix operating systems.

This paper discusses how the db++ system has achieved flexibility
through being integrated it into the Unix working environment as well
as possible. It then describes the system's design and efficient imple-

" mentation. In particular, it describes the method of data storage on
disc and how a powerful pipe-line algorithm aids the query processor.

1. Introduction

The db++ family of programs comprise an efficient, flexible and reliable rela-
tional database management system. This series of programs is of interest for two
primary reasons. First, the db++ system supports features that are generally not to
be found on other commercially available database programs running under Unix -
these design features allow the db++ programs to be easily combined with other
Unix utilities and also permit one to formulate complicated queries to the DBMS.
Second. the db++ query processor and editor programs use unique internal algorithms
to ensure that complicated queries can be processed efficiently and safely.

This paper discusses how the db++ programs have been fully integrated into the
Unix framework. It then goes on to explain the choice of some of the unusual
implementation details.

{1] Unix is a trademark of AT&T Bell Laboratories.

2. Integration Within Unix

The db++ system was designed to be flexible in that it had to be able to meet
a wide range of applications. This goal has been achieved by integrating the system
into the framework of Unix as much as possible. The choice of a powerful query
language has also proved to be important.

Unlike most commercially available database systems such as Oracle or Ingres,
the db++ system does not impose a new working environment on the user. Db++
was developed to be a standard computing tool and can be combined with other
Unix utilities. For instance, the output from the query processor can be piped to
standard programs such as awk(1) or sed(1). This aspect immediately increases the
system’s flexibility and usefulness.

There is no "hidden place” where data is stored. Nor is there any concept of a
"system catalogue”. All information concerning a single relation is contained within
one binary file. This implies it is possible to use standard Unix commands such as
cp(1), chmod(1) or tar(1) on individual relation files without having to learn new
commands. For instance, one can delete a relation simply by using the standard
rm(1) command. There is no need to provide a special command that would have to
delete the stored data and then ensure that the relation’s entry in a global system
catalogue is also removed. This approach simplifies the implementation and the effort
involved in learning the system.

Thus each one of the db++ programs follows the "Unix philosophy” of cooperat-
ing well with the existing environment.

2.1. Library of Raccess routines.

The db++ programs are built around a single set of access method routines, the
Raccess library. These routines allow one to open a given relation file, to create a
new relation file and to insert and extract data from such files. They also support
higher-level functions on stored data. For instance, one may call these routines to
sort stored data. to create a new secondary index for a relation file, to locate an
item of stored data quickly or to undo an extensive transaction on a relation file

[2].

2.2. Piping of Relational Data.

The db++ programs allow relational data to be sent through Unix pipes. This
fact also enhances their integration within the Unix environment. One may, for
instance, write a specialised program using the Raccess library routines to read and
manipulate relational data in some way. This program can then be combined with
the db++ query processor program in order to perform additional processing on the
data.

23. Current Applications.

A description of a few of the current applications to which the db++ programs
have been dpplied may help to give some idea of the system's flexibility.

One application illustrates how the db++ system can be combined with a com-
mand pre-processor. This application is the development of a database storing
employee records. Because of the lack of a hidden environment, it was a straightfor-
ward matter to implement a csh(1) command pre-processor on top of the db++ pro-
grams. The command pre-processor hides many details of the database implementa-
tion from those who maintain the data.

[2] The Raccess library routines are also implemented on the MS-DOS operating system.

-3 -

A second example illustrates how the db++ programs can perform complex
queries on stored data. This application was the creation of a financial book-keeping
system for an organisation with some 300 employees. The db++ programs are
invoked each month to produce reports summarising the movements on a set of
accounts, to perform tax calculations and so on. Processing the input data involves
queries with over 80 relational operators.

A third application is a retail stock management system for pharmacists. The -
system is designed with three primary objectives : first, to optimise warehouse
storage by taking account of turnover frequency as well as expiring dates and
automating ordering ; second, to provide relevant online information on pharmaceuti-
cal products ; third, to provide general business facilities such as book-keeping and
text processing. Information on some 200 thousand pharmaceutical products is held
in two relations that are accessed frequently each day. The remainder of the data-
base is held in a further twenty or so relations of cardinality 10 to 10000. This
application contrasts sharply with the previous two in that most accesses to the
database are made from mask driven application programs built with the Raccess
library routines.

It is also worth noting that other, groups are making use of the openness of
db++ to make their own extensions to the system. For instance, the Universities of
York and Newcastle are implementing Codd's extended relational model RM/T
[CODD79] on top of db++ for use in an Alvey financed project. In other words, this
application uses the db++ system as a "database engine”.

The University of Manchester is similarly involved in an Alvey project on
VSLI design in which they intend to build on db++ to create a CAD database that

- supports hierarchical views of objects.

24. The Db++ Programs. -

The db++ family is broken up into logically distinct programs. The various
programs are briefly described as follows -
Dbcreate reads ASCII data from the standard input and converts it to the special file

format required by the other db++ programs. This is generally the first step in set-
ting up a database.

Dbappend is used to place additional ASCII data into a relation file.

Dbls reports information about the data stored in a database. For instance. it reports
the degree of a relation as well as the names and data-types of each domain. It is
the db++ equivalent of the standard Is(1) command.

Db is the main query processor command. Db may be instructed to list data from a
database or to combine and transform existing data to produce new output. This
program is described in greater detail below.

Dbedit allows one to change the data stored in a relation file. It is an interactive
program and has a command syntax reminiscent of ex(1). Dbedit allows one to

make extensive changes to a relation using its :global command, or changes that are
based on existing data values.

Dbmodify reformats a relation file. This may be necessary if new key domains are
to be defined for a relation file. It may also be used to specify one or more secon-
dary indices for a relation.

Dbrpg is a report generator program. It is the db++ equivalent of the standard
awk(1) program : it takes a relation file and prints its contents according to a given
command script.

A further two systems are available which, although not forming an integral
part of the DBMS, are helpful in building applications.

v

-4 -

Dbmask is a set of programs and routines that simplify data entry as well as for-
mulating queries and displaying results according to a mask.

Dbmenru is a menu shell that can replace the usual C shell or Bourne shell for par-
ticular applications.

25. Command Language.

A retrieval command to the db query processor program is phrased in a
language based on Codd's relational algebra [CODD72]. The generality of the query
language allows both simple and complicated queries. This is important since it
allows the user to formulate casual oneoff queries easily. On the other hand, it is

possible to develop a query instructing db to evaluate a complicated relational
expression.

Designers of relational DBMS’s seem to have concentrated on the relational cal-
culus rather than the algebra. (Relational programming languages based on the cal-
culus include SQL [ASTR76] and QUEL [STON75]). The predominance of such sys-
.tems may well be a historical accident, rather than a deliberate technical decision.
The fact that SQL is the standard query language for IBM's database products has
also promoted its acceptance. -

However, we agree with King [KING79] and [YORKSS5] who state that the alge-
bra is more adept in developing complicated queries. The db++ system allows for
complicated query processing on stored data. Therefore, the algebra was chosen as
the basis for the query language.

Unlike Codd’s original relational algebraic language, the db query language is
terse. Db uses punctuation characters to signify relational operators. Indeed. the
query language is modelled after the C programming language, especially with regard
to the way in which scalar operators and scalar typing rules are defined. (This
query language is described fully in [CONCSS5]). For example, the following query -

Cars = make == "Volkswagen"

means ‘list tuples from relation file Cars such that fields from domain ‘make’ have
the value "Volkswagen™. Similarly, this query -

Cars ** Manufacturers

means ‘list the join of relations Cars and Manufacturers.” (Here, the join is over
domains having the same names in both source relations). Besides Codd’'s basic rela-
tional operators, the db program includes an aggregation operator. This is a general-
ised operator by which one can find maxima, minima, totals, and so on, from a
relation. It allows one to split up a relation into groups of tuples, each group hav-
ing the same value in one or more domains, and to perform some summarising
operation on each group. (This is similar to the operation of ‘glumping’ described in
[HITC77]). Db also provides a sort operator. This is useful to order a large listing
of a relation. For instance, this query -

Cars ## make price
means “sort relation Cars over domains ‘make’ and ‘price™.

The query language allows one to evaluate relational expressions and assign
them to new output files. The output file may be created in relational binary format
or as an ASCII file. For instance, this query evaluates the same relational expression
as the one above, but places the output in a new relation file called ‘Result’ -

Result <= Cars ## make price

Db aiso allows one to call upon the standard C language procedure printf to format
listed output. For instance, the following query lists the output fields according to

the given string - .
Result "make = %s, price = %1d\n" <== Cars ## make price

3. Implementation of the Access Methods

The Access methods rely on each relation file having a certain binary structure.
This is somewhat analogous to the structure of a Unix file-system. Although most
users are unaware and unconcerned with the underlying implementation details, such
details have a significant bearing on the higher-level facilities offered by these pro-
grams.

A single relation file contains the stored data itself as well as information
describing that data. Secondary index information is also stored within the same file.

3.1. The Super-Page.

The first block of a relation file holds information describing the data. For
instance, the cardinality of the relation, its degree and other information are held in
this block. Information pertaining to each domain, for instance its name and data-
type. is also held in this first block. In the case of sorted relations, ordering infor-
mation is also held here. This first block, therefore, is crucial to accessing the data
contained in the rest of the file. It is analogous to the super-block of a Unix file-
system. In db++ terminology, it is termed a “super-page”.

3.2. Storage Modes.

The db++ programs support two types of relation file. The data contained in a
Heap relation is unordered. It is not possible to optimise access to such relations and
so a search for a specific item of data involves scanning through the entire relation
file. On the other hand, there is a low update cost associated with adding or remov-
ing data from such a relation. Furthermore, the db++ programs recognise when rela-
tional data is to be sent to a non-disc device, such as a Unix pipe or other special
device. When this happens, the data is sent as a Heap relation.

The other type of relation is termed a B+tree relation. The B+—tree data struc-
ture has become the “de facto” standard among database systems because of its low
Storage overheads and guaranteed low update costs, although updating a B+tree rela-
tion is usually somewhat more expensive than updating a heap relation.

The data held in a B+tree relation is always ordered in some specific way and
this allows the db++ programs to optimise access to specific items of data. These
programs can also take other advantages of a B+-tree relation’s ordering. For
instance, this ordering information can be used to optimise processing of the sort.
join, intersection and difference operators of the query processor. Finally, because of
the random access nature of a B+tree relation, it cannot be passed through a Unix
pipe or other non-seekable device. Because of the general usefulness of the B+-tree
storage mode, the db++ programs create new relation files with the B+tree storage
mode unless instructed otherwise. '

Regardless of the chosen storage mode, the relation file is divided into “pages”,
with each page occupying a small multiple of the underlying file-system’s block size.
For instance, the 4.2bsd Vax implementation of the db++ programs uses a page size
of 4096 bytes. Except for the super-page, a data page is the unit of L/O.

-6 -

3.3. Secondary Indices

Data within a B+-tree relation file is held in a series of B+-tree data structures
with one such B+-tree for each primary or secondary index of the relation. In other
words, there is a complete copy of the stored data for each index of the relation.
Additional disc storage is therefore traded for increased efficiency.

Each such B+-tree structure can be uniquely identified by specifying the loca-
tion of its root page, the locations of its first and last leaf pages, by the number of
associated key domains and by the associated ordering information. This information
is also held in the super-page.

3.4. Transaction Processing.
A database management system must support some transaction facility so that
stored data remains in a consistent state even if a process crashes while updating the

stored data. For instance, a process updating data may crash if the machine itself
crashes, if the process is interrupted or if some other hard error occurs.

The db++ programs support such a transaction facility for B+tree relations
only. This facility is also available to programmers using the Raccess routines, thus
permitting "rollback” points to be set in an application program.

This transaction facility is perceived by the user as follows. Whenever a query
is run, one of two outcomes may happen. Either the query runs to completion suc-
cessfully, in which case all updated data is written back to the relation file and the
relation is closed normally, or the query is aborted in which case it appears that no
changes have been made to the relation. This transaction facility is independent of
the size of the relation file as well as the nature of the changes. Furthermore, when
a transaction is aborted. there is an immediate and automatic roll-back to the pre-
vious state of the relation file.

This transaction facility is implemented as follows. Whenever an item of data
is to be updated, the first action is to locate the corresponding leaf page from the
B+-tree. If this is the first modification to the leaf page since the relation was
opened, the page is copied to a free page in the disc file and then the copy is
updated. However, because the-leaf page has effectively changed its location within
the relation file, the index page of the B+—tree that references the leaf page (the
parent of the leaf page) must also be changed so that it references the new leaf
copy.

The same logic then applies to the index page. If this is the first time that the
index page is being changed since the relation was opened, the index page is copied
1o a new location on the disc. If the B+-tree has a depth greater than 2 - that is, if
the index page itself has a parent - then that parent page too is reallocated and
updated.

This reallocation of pages propagates itself up to the root page at the top of
the B+-tree structure. It is important to note that the original pages are never
‘changed in any way. Therefore, if the process updating the relation file crashes in
any way, the original data is still available.

This operation is illustrated in figure 1. The resulting B+-tree structure is dep-
icted in figure 2.

The problem, therefore, is to devise a system for keeping track of which pages
have been reallocated - in other words, which pages hold the updated information -
and which belong to the original state of the relation file. This is accomplished using

a series of bit-maps that are scattered though the relation file. Each such bit-map
occupies an entire data page.

Ront Page

N

Index Page

N

Leaf Page

Fig. 1. This illustration depicts a B+tree of order 3 containing a leaf page, an index
page and a root page. When a tuple is to be added or deleted from the given leaf page,
and the leaf page has not been updated since the relation was opened, the leaf page is
first copied on to a fresh, unallocated page so that the original data is not disturbed.
However, because the leaf page has changed its location in the relation, its parent page,
the index page, must also be updated. Again, if this is the first time that the index page
is being changed, it too must be copied. This process repeats itself until the root page of
the B+-tree is also reallocated. The resulting B+tree structure is depicted in figure 2.

Each bit in a map describes whether a corresponding page in the relation is
currently allocated to holding data or whether it is free - that is, whether it can be
reused. In fact, there are two parallel bit-maps. The first bit-map holds the state of
the relation file when it is first opened. This bit-map is never changed during a
transaction. The second bit-map describes the current, new state of the relation when

it is being updated. This second bit-map is updated while the data pages themselves
are reallocated.

Given this information, it is a straightforward matter to locate a free, unused
page in the relation file that can be used for storing data or that can be used to
hold a reallocated data or index page. When the relation file is opened, the bit-map
showing the current page allocation is copied to its parallel bit-map describing the
updated allocation. Whenever a new page is to be allocated. the two bit-maps are
logically ORed together. A page is deemed to be reusable if it is marked as being
free on both bit-maps. That is, a page may only be reused if it is marked as being
available on both the original and current page allocations. This operation is illus-
trated in figure 3. If there are no reusable pages, the relation is extended by allo-
cating a new page at the end of the relation file.

—

: ﬁoot Page

“lindex Page

[— 1
| Leaf Page

Fig. 2. The illustration below depicts the B+-tree of figure 1 after the pages leading up
to the root page have all been reallocated. The original data is still present and can be

retrieved if the updating process crashes.

N~

ongmm(S ' T ST A N R VI

/\ v

Current]7 1 1 0 i 0 0 1
urren -

Fig. 3. Here we consider a search through the bit-map when a page is to be
reallocated. The bit-map corresponding to the original page allocation is ORed with that
corresponding to the curreat allocation. In this example, the page corresponding to the
highlighted bit positions is chosen as being free because all the pages up until that one
are claimed by either the current or original allocations.

-9 -

If the transaction is aborted, there is no logical effect on the relation file
because all the original information, including the original bit-map state, is still
present.

If the transaction runs to completion, the super-page, which also contains a sin-
gle bit describing which is to be considered the most recent state of the relation, is
written back to disc. The one remaining problem, therefore, is to consider what hap-
pens if this write to the super-page fails. The size of the super-page is chosen to be
the same as a single block of the underlying hardware. On most Unix systems this
is 1024 bytes. Therefore, only a single write operation is required to mark the
entire relation file as being updated. If the system crashes even in the middle of
that write, it is to be hoped that most disc controllers would continue with the
operation. The transaction facility, therefore, relies on the updating of the super-page
being an atomic operation.

This algorithm implies that the db++ programs do not attempt to localise infor-
mation on disc across successive page allocations. All requests for I/0 are performed
through the normal read(2), write(2) and lseek(2) system calls using offsets meas-
ured from the beginning of the file. Because Unix itself, however, guarantees no
locality of successive pages written out to disc, it is impossible for the db++ pro-
grams to attempt to optimise disc access from one page to another. The fact that
Unix is a multi-tasking system also complicates the problem .of locality. Therefore,
we have deliberately chosen to ignore this issue [3].

This algorithm, then, is well suited to a database management system. Not only
are.its effects well defined. but it also has a cheap overhead in terms of disc storage
and processor time. Finally, an extension of this algorithm has facilitated the imple-
mentation of the :undo command of the dbedit program.

3.5. Implementation of the Undo Facility

The dbedit program supports an :undo command, the effects of which are to
restore a relation file to the state it was in before a previous editing command took
effect. The dbedit program does not copy a relation file before editing commences,
thereby making it possible to edit large relation files with a low initial overhead.
Rather, it appears that a copy is being edited : no changes are made to the relation
file until committed with an explicit :write command.

This is implemented as a generalisation of the transaction algorithm described
above. Three bit-maps are used to describe the page allocations within the relation
file. As before, the first and second bit-maps describe the initial and current page
allocations. The third bit-map describes the page allocation of the relation file as it
was just before the previous command was carried out. The implementation of the
‘undo command , therefore, just involves swapping the editor's idea of which is the
current bit-map. Thus, the :undo command also has a low overhead.

Again, this facility is also available to programmers using the Raccess routines.

4. Implementation of the Query Processor

This section explains the implementation of the program db, the main query
processor. A powerful pipe-line algorithm ensures that queries are processed
efficiently. The algorithm avoids writing temporary results out to an intermediate
disc file. The pipe-line is. a recursive structure set up after parse time.

(3] Nevertheless, we cannot resist reporting that db++ performs considerably more efficiently in
benchmark test than do some other commercial products claiming advantages from using raw disc
I/O. This perhaps becomes clearer when one realises that many database operations are CPU and
not disc bound. This is further discussed in [STONSO]

- 10 -

4.1. Parsing The Query Input.

The parser was written with the aid of the YACC compiler-compiler [JOHN75].
The parser accepts the command-language and builds an in-core representation of the
query. This is a tree structure containing only the names of domains and relations,
the values of scalar constants and so on. The leaves of the parse tree correspond to
source relations. Nodes within the tree correspond to relational operators.

4.2. Construction Of The Pipe-Line.

The next stage is to transform the basic tree formed by the parser into the
pipeline structure. There is a one-to-one mapping from the nodes of the parse tree to
those in the pipe-line. Every relational operator appearing in the query corresponds
to a unique node in the pipe. Thus the pipe may be a single line or a tree. The
nodes of the pipe contain more information than those in the parse tree. Each node
holds, amongst other things, a description of the relation at that stage of the pipe.
A recursive procedure is called upon to build the pipe-line. The leaves are the first
to be transformed into pipe nodes and this involves opening the source -relations.
This transformation procedure is also responsible for initialising the pipe.

For example, it may be called upon to build a node corresponding to a rela-
tional selection. It then constructs an internal representation of the selection con-
straint. Figure 4 shows an example of a pipe-line corresponding to the selection and
subsequent listing of tuples read from a source relation.

ﬁ

Read

Select

!

Print

!

Sink

Fig. 4. The pipe-line depicted here corresponds to a selection and subsequent listing of
tuples read from a source reiation.

é
%
!
i
i
!
i

- 11 -

A further example may be seen in the case of the join operator. Here, the
transformation routine determines the commonly named domains of the source rela-
tions. (The join operation is defined as being over those domains from the source
relations that share the same names.) It initialises the node with information show-
ing how the source tuples are to be compared and of how the output tuples are to
be constructed. Finally, it forms a description of the resulting relation. One final
operation is applied to the pipe. If the operator at the base of the pipe is not an
explicit assignment to an output file, it is assumed that the relational expression is
to be evaluated and listed to the standard output. An extra node corresponding to a
print operation is then built into the root. Thus the construction of the pipe-line
involves opening the source relations, identifying the format of the relation at each
node and generally initialising internal data structures.

4.3. Processing Tuples.

Once the pipe-line is constructed, it is used to evaluate the specified relation
expression. Apart from the information described above, each node of the pipe holds
the address of a procedure to be applied to the data stored in that node. Each such
procedure behaves as a coroutine. (The notion of a coroutine is discussed in
[KNUT77]). Every implemented relational operator has a corresponding coroutine.

Most coroutines may be thought of as consumers and producers of tuples. A
coroutine is generally activated by its parent coroutine. The parent requests one
tuple from its child and then hangs, waiting for the request to be satisfied. A
coroutine always has one parent but may have zero, one or two children, depending
whether it corresponds to source relation or to a unary or binary relational operator.

The coroutines are simulated by recursive function calls. Any coroutine can call
upon a primitive operation to request a tuple from a child : it can then transfer a
tuple back to its parent through a return statement. The pipe structure preserves
static information for each coroutine while it is inactive.

The coroutine at the base of the pipe is the first to be invoked. This coroutine
requests a tuple from its child. The child in turn requests a tuple from its child.
and so on down the pipe. Eventually, a coroutine at the other end of the pipe is
called upon to deliver a tuple. This coroutine activates the paging mechanism and
retrieves a single tuple from disc. The tuple is then passed back to its parent.

Once a coroutine has obtained a tuple from its child, it applies whatever opera-
tion is necessary. For instance, the coroutine corresponding to a projection transforms
the fields within the tuple. It then returns the transformed tuple to its parent. A
selection coroutine keeps requesting tuples from its child until finding one that
matches the specified constraint. The tuple is then handed to the parent coroutine.

The tuple is thus successively transformed and manipulated until it reaches the base
of the pipe-line.

The coroutine at the base is a data sink : it discards the tuple and immediately
requests another from its child. Thus the pipe is kept in motion until there are no

more tuples to be processed. The overall effect can be viewed as a flow of tuples
down the pipe, while requests for tuples travel up the pipe.

44. Listing And Assignment Of Relational Expressions.

Just as for the other relational operations, a coroutine is used to print tuples.
This coroutine requests a tuple from its child and waits. When it receives a tuple,
it prints it and then hands the tuple to its parent. A similar coroutine is used to
assign tuples to an output relation. This method allows one to preserve an inter-
mediate result of the pipe-line if so desired.

-12 -

4.5. Implementation Of The Join, Intersection And Difference Operators.

The join, intersection and difference operator are implemented by having the
pipe-line sort all received tuples into order before they are passed to the appropriate
coroutines. It is then trivial to merge the sorted tuples. It has been shown in
[BLAS77] that such a strategy is generally efficient.

During construction of the pipe, two sort coroutines are inserted between the
operator node and its children. When activated, a sort coroutine reads all available
tuples from its child, sorts them and places the result into a temporary file. It then
hands back one tuple at a time to the operator coroutine. Figure 5 below shows the
formation of a pipe-line corresponding to a listing of a join of two source relations.

- -y
C 2 <y
GG
Read Read
! v
Sort Sort
Join ‘
‘ y
Select
v
Print
'
Sink

Fig. 5. This pipe-line structure corresponds to a join of two source relations followed
by a subsequent listing of the result of the join. The join coroutine must reccive tuples
in sorted order. Therefore, sort coroutines are inserted into the pipe.

The same sort package used to reformat a relation may also be instructed to

- 13 -

read tuples from a coroutine. Although sorting becomes a bottle-neck for processing
these operators, it is generally preferable to locate matching tuples through a random
access search or by making multiple passes over the data.

The fact that the sort package places its output into a real file aids the imple-
mentation of the join operator. The join coroutine may need to rescan one of its
operands. It is easy to back up the scan when reading from a real relation file : it
would be more difficult if the coroutine were reading directly from a child. If a res-
can is necessary, it is likely that the tuples are still available in the buffer pool.

4.6. Advantages Of The Pipe-Line Algorithm.

The pipe-line algorithm allows an uninterrupted flow of tuples between succes-
sive processing steps. Generally, it avoids intermediate results having to be written
to temporary disc files.

Another advantage is the ease with which algorithms can be coded to perform
the various relational operations. The coroutine procedures themselves are small and
eficient and each performs a well defined unit of work. The coroutines are written
so that they are independent of one another. A coroutine requests a tuple via a
primitive operation. No coroutine need know from where that tuple has come or to
which parent it will be returned.

Generally, the coroutines transfer pointers to tuple buffers between themselves.
Only rarely must an entire tuple be copied. The cost of activating a coroutine is
small and so this algorithm requires little overhead. Indeed, it has been shown in
[STOR77] that the cost of passing control between pipe-line nodes is not significant
compared with other costs of a DBMS.

The join, difference and intersection coroutines each need to receive tuples in
sorted order. Sorting, therefore, becomes a bottle-neck throughout processing. How-
ever, the bottle-neck is localised : a highly efficient sort package makes considerable
difference to the overall performance. Profiling indicates that a third of the time
taken to process an "average” query is spent in sorting. Coding part of the sort rou-
tine in assembler language would probably prove beneficial to the system's efficiency.

Because the coroutines are independent, there is no fundamental limit on the
complexity of the pipe structure. Such a limit is instead imposed by the operating
system. The number of source relations cannot exceed the permitted maximum
number of open files. A complicated relational expression may, therefore, have to be
split up into smaller processing steps. In order for this algorithm to function, there
must be sufficient main storage to hold the pipe-line and the coroutine procedures.
Space for holding page buffers and for sorting is also required.

S. Further Improvements

Sorting is a bottle-neck and, although the sort package is reasonably fast, the
db program should recognise if it can be avoided. Most coroutines can be written so
that they preserve the order of tuples flowing in the pipe. Db should optimise con-
struction of the pipe to take advantage of this fact. It should eliminate and combine
sorts wherever possible, as discussed in [HALL76] and [SMIT75].

The ability to update a relation file simultaneously by several users would also
enhance the db++ system’s usefulness. We feel that the major problem is perhaps
one of semantics rather than implementation. What should be the correct action if
an updating process crashes ? In other words., how should a multi-user update capa-
bility interact with the existing transaction and undo facilities [4] ?

(4] It is, however, already possible for simultancous updates to be made to a database by several
users working at the C programming level. For instance, the pharmacy application mentioned
above comprises a server process that performs the actual changes to the database, and several

- 14 -

A third area of improvement concerns the db++ query language. Although this
bas proven itself to be useful for formulating complicated relational queries, it could
perhaps borrow some ideas from conventional programming languages such as Pascal
or Modula-2. For instance, a widely held point of view among software engineers is
that a programming language should support as much static type-checking as possi-
ble, so that a compiler or interpreter can detect inadvertent errors before a program
begins execution. These ideas would also benefit the db++ query language. It should
support derived types such as sub-range types, enumeration types and set types.

6. History And Acknowledgements

The db++ programs belong to a family of related DBMS systems. In particu-
lar, db++ is related to the CODD system [KING83] which pioneered the use of
coroutines to transfer control between pipe-line nodes. Whereas the db program uses
recursive activations of procedures to simulate a coroutine mechanism, CODD uses a
genuine coroutine implementation with each active coroutine possessing its own stack.
CODD thus permits a generalisation of the pipe-line structure unobtainable with
db++ : the pipe-line need not be a tree structure, but can be a directed graph. How-
ever, this additional flexibility is obtained, perhaps, at the cost of portability. CODD
is only implemented on those systems where the coroutine mechanism described by
Moody and Richards [MOOD80] exists. Furthermore, CODD is written in BCPL and
is not oriented to the Unix programming environment.

In turn, CODD was developed from an earlier system called PRTV [TODD76].
All three systems share a common form of query language and all three use the
technique of pipe-lining to evaluate database queries.

Work began on a primitive version of the db programs at the International
Institute for Applied Systems Analysis, A-2361 Laxenburg, Austria. Concept ASA
have built on this and the ideas of the CODD and PRTV systems to produce the
db++ system. The db++ system includes enhanced functionality, has been improved
in terms of processing speed and has now been ported to most flavours of Unix
running on a wide variety of machines.

7. Conclusion

The db++ system is being used to maintain many diverse databases, each with
its own special requirements. The choice of the relational algebra as the basis for the
query language allows one to formulate both simple and complex queries. This fact,
coupled with the db++ system's strong integration into Unix has facilitated construc-
tion and use of these databases. In particular, we feel that the lack of a specialised
"db++ environment” has greatly helped db++ users in these tasks.

We have also shown how the B+-tree data structure can be coupled with a
bit-map algorithm to yield the best of both : all the advantages of the B+-tree data
structure together with a straightforward yet powerful transaction and undo facility.
The implementation of the B+-tree and transaction algorithms is not difficult and has
yet produced a storage method with clear, well defined semantics combined with the
low storage and processing overheads associated with B+-trees.

We have also shown how the pipe-line algorithm aids the db++ system to pro-
cess complicated queries. Besides avoiding unnecessary storage of intermediate results
on temporary disc files, the pipe-line algorithm simplifies the task of coding algo-
rithms to implement the various relational operators.

Any data processing system can be ultimately judged by how well it can be
applied to solving real problems. We claim that the db++ system has been largely

client processes that make requests to the server.

-

|
|
|

- 15 -

successful in this respect.

8. References

ASTR76

BLAS77

CODD72

CODD79

CONCSS

HALL76

HITC77

JOHN7S

KING79

KING33

KNUT73

KNUT77

MOODS80

SMIT7S

STON7S .

STON80

STOR77

TODD76

YORKSS

Astrahan, M. M. ¢ al., - System R : A Relational Approach To Database Management -
ACM TODS, Vol. 1, No. 2, pp. 97-137, (June 1976).

Blasgen, M. W. and Eswaran, K. P., - Storage And Access In Reh.tionlal Databases - IBM
Systems Journal, No. 4, pp. 363-377, (December 1977).

Codd, E. F., - Relational Completeness Of Database Sublanguages - Database Systems,
Courant Computer Science Symposia Series, Vol. 6., Preatice Hall, (1972).

Codd, E. F., - Extending The Relational Database Model To Capture More Meaning - ACM
TODS 4, No. 4, (December 1979).

Concept ASA, - Users’ Guide To The DB Relational Database Management System -
Wolfsgangstrasse 6, D-6000 Frankfurt am Main 1, (1985).

Hall, P. A. V., - Optimisation Of Single Expressions In A Relational Database System - IBM
Journal Of Research And Development, Vol 20, No. 3, pp. 244-257, (1976).

Hitchcock, P., - User Extensions To The Peterlee Relational Test Vehicle - Proceedings Of
The 2nd Infernational Conference On Very Large Databases, pp. 169-180
North-Holland, (1977).

Johnson, S., - YACC - Yet Another Compiler-Compiler - Computer Science Technical Report
No. 32, Bell Telephone Laboratories, New Jersey, (July 1975).

King, T. J, - The Design Of A Relational Database Management System For Historical
Records - Doctoral Dissertation, Corpus Christi College, University Of Cambridge, Cambridge,
England, (November 1979),

King, T. J., - The Design And Implementation Of Codd - Software, Practice And Experience,
Vol. 13, pp. 67-78, (1983).

Knuth, D., - The Art Of Computer Programming, Vol 3., Pp. 473-479 -
Addison-Wesley, (1973).

Knuth, D., - The Art Of Computer Programming, Second Edition, Vol 1., pp. 190-196 -
Addison-Wesley, (1977).

Moody, K. and Richards, M., - A Coroutine Mechanism For BCPL - Software, Practice And
Experience, Vol. 10, pp. 763-771, (1980).

Smith, J. M. and Chang, P. Y. T., - Optimising The Performance Of A Relational Algebra

¥

Database Interface - CACM, Vol. 18, No. 10, pp. 568-579, (October 1975).

Stonebraker, M., - Getting Started In INGRES - A Tutorial - Electronics Research Laboratory
Memorandum ERL-MS518, University Of California, Berkeley, (April 1975).

Stonebraker, M., - Retrospection On A Database System - ACM TODS, Vol. 5, No. 2, PP
225-240, (June 1980).

Storey, R. A. and Todd, S. J. P., - Performance Analysis Of Large Systems - Software, Prac-
tice And Experience, Vol. 7, No. 3, pp. 363-369, (June 1977).

Todd, S. J. P., - The Peteriee Relational Test Vehicle - A System Overview - IBM Systems
Journal, Vol. 15, No. 4. pp. 285-308, (1976).

Untversity of York, - Private Communication - unpublished, (1985).

FLORENTINE INVENTORS OF MODERN ALPHABETS
Chuck Bigelow
Stanford University

Bitmap screen displays and laser printers have enriched the appearance of computer
literacy. Procrustean limitations of mono-case and mono-space that formerly degraded
computer-produced text have been abolished. We now can enjoy the luxury of
reading and printing text in lower-case as well as in capitals, in italic and bold
styles as well as in roman, in proportionally-spaced fonts of different sizes as well
as in monospaced fonts of a single size, in justified as well as in ragged-right
columns.

Curious users and designers of typographic displays and printers may wonder where
the shapes and styles of our alphabet come from. The digital letters of modern
computer systems inherit their shapes from traditional analog letter forms. These
shapes are arbitrary and abstract., but they were designed by scribes seeking
legibility for the reader and productivity for the writer — goals that concern us
today.

Many of the features of our modern alphabets were developed during the
Renaissance by a small but influential group of Humanist scribes and scholars who
worked in the city of Florence. It is to their memory that I would like to offer
this tribute. Although historical rather than scientific in content, this brief account
of how a writing system developed by a few inspired visionaries became an
international standard may perhaps sound familiar to user of UNIX systems.

In the middle and late 14th century, the poet Francesco Petrarca (whom we call
Petrarch in English) and Coluccio Salutati, a scholar who was the chancellor of
Florence, became concerned about legibility of letterforms. In their thirst for
knowledge, they read more than their predecessors and thereby suffered more from
the problems of deciphering poorly written texts in the "gothic® or "black-letter”
scripts. They preferred early medieval manuscripts written in an open, legible script
developed at the court of Charlemagne and used from the 8th through the 12th
centuries. The Humanists called this Carolingian script the “littera antiqua” (or
"antica”) because it had been used for the works of classical authors.

Coluccio Salutati saw that this script could be the basis for a new alphabet, better
adapted to the needs of modern literacy. Around the turn of the 15th century,
Coluccio hired a young scribe named Poggio Bracciolini who had studied to be a
notary at the Florentine Studio. Wxt.h Coluccio’s encouragement, Poggio became an
expert copyist of the "littera antica®, and began to produce new manuscripts in this
revived style around 1402-03. The original Carolingian script was essentially a
mono-case alphabet. Poggio studied inscriptional capitals from the early Roman
Empire, and integrated pen-written versions of these majuscule (capital) forms with
his minuscule (lower—case) script. He perfected his "duplex” alphabet by 1408, and it
was quickly imitated by his contemporaries.

Descendants of Poggio’s "humanist bookhand” became the models for roman printing
types developed by Nicolas Jenson and Francesco Griffo later in the century. These
early analog types are the direct ancestors of the digital types we use today. Poggio
also worked on methods of justification, experimenting with unorthodox word
divisions as well as the use of abbreviations, and may have influenced the attitude
toward justification held by Italian printers later in the 15th century. Poggio went
on to become secretary to the Pope and eventually chancellor of Florence.

Coluccio and Poggio had a fellow Humanist named Niccolo Niccoli. Unlike Poggio,
who was a professional scribe, Niccoli copied manuscripts for his own scholarly
purposes. Rather than beauty, legibility and speed were his chief aims. Niccoli's
script was, like Poggio’s. a revival of the Carolingian script, but it was a running
hand slanted with frequent joins between letters. Niccoli developed his cursive or
"corsiva" in contrast to the formal or "formata" style of Poggio. Niccoli encouraged
other scribes to abandon the gothic scnpts and use his and Poggio’s newer and more
legible writing styles.

In time, Niccoli's informal “corsiva® became a more formalized, elegant style that
was first cut in printing type in 1501 by Francesco Griffo, for the Venetian printer
Aldus Manutius. The Aldine cursive inspired the development of our modern italic
type forms.

Other Florentine scribes adopted and developed these formal and cursive scripts,
producing the canonical styles that we call in English "roman" and "italic". Among
them were Giovanni Aretino, Antonio di Mario, Gherardo del Ciriagio, and Antonio
Sinibaldi. After the invention of printing and its migration to Italy, innovation in
letterforms passed to the city of Venice, where the Florentine scripts were
reinterpreted in a new technology.

Today, traditional printing types are again being reinterpreted in the still newer
technology of digital typography, but our modern goals are the same as those of the
Florentine scribes, legibility for the reader, speed for the writer, and, in reflective
moments, an answer to the question of how ideas can be clearly expressed in these
abstract forms that, as in Plato’s metaphor, flicker before us like shadows on the
wall of a cave.

REFERENCES

[These remarks are based on {The Origin and Development of Humanistic
Script} by B. L. Ullman, Edlzxom di Storia e Letteratura, Rome, 1960.]

M. Bologna, C. Romoli - OLIVETTI GSRI/DMR Pise, Italy

AN ENTITY RELATIONSHIP DATABASE FOR SOFTWARE ENGINEERING:

THE PORTABLE COMMON TOOL ENVIRONMENT APPROACH

The Portable Common Tool Environment (PCTE) project 1is
carried out inside the ESPRIT programme of the Commission of
the European Community.

The project aims at the definition and the implementation of
a common framework, within which various software tools can
be developed and integrated in order to provide a complete
environment for software engineering.

The two main goals of the project are portability across a
wide range of machines and compatibility for assuring a
smooth transition from existing software development prac-
tices.

The technical approach to portability is discussed in this
paper: UNIX* is <the means by which PCTE will be widely
available; the PCTE basic mechanisms are built on top of
UNIX: in fact PCTE can be seen as an extension of UNIX in
the area of distribution, friendly user interfaces and data-
base for software engineering.

This last aspect is described in this paper: functional as
well as implementation aspects will be dealt with.

* UNIX is a trademark of Bell Laboratories

Object Management System

1. THE PORTABLE COMMON TOOL ENVIRONMENT PROJECT

The project "A Basis for a Portable Common Tool
Environment" (PCTE) is carried out by a consortium composed
by Bull (France), GEC and ICL (United Kingdom), Nixdorf and
Siemens (Federal Republic of Germany) and Olivetti (Italy)
in the context of the European Strategic Programme for

Research and Development in Information Technology (ESPRIT).

The project started at the end of 1983 is now in the imple-
mentation phase (part of the results are in fact already

available) and will run until September 1987.

The main goal of the project, which is included in the
Software Technology area, is to define, design and implement

a software system which

- can be the basis for the development of a complete

Software Engineering Environment;
- is as much portable as pnossible;

- is generally powerful enough to guarantee future

enhancements;

- is consistent and compatible with the perceived major

trends in the European software industry.

In addition, the project aims to achieve a wide spread avai-
lability of the system throughout the ESPRIT community both

in a short time frame and in a cost effective manner.

Object Management System

Due to its portability and widespread availability the UNIX
system has been chosen as the basis for PCTE: PCTE can in
fact be seen as an extension of UNIX in the area of distri-
bution, friendly user interfaces and database for software

engineering environments.

Two cdifferent complementary approaches have been identified

for the implementation of PCTE basic mechanisms:

- the so called-'add-on kernel' approach which 1is based
on the UNIX V kernel plus extensions and a controlled

set of modifications;

- the so ¢called !Black Box' approach which is again based

on the UNIX V kernel but:

- uses the UNIX V kernel as a 'Black Box' (i.e. no

changes, no modifications);

- it has UNIX V as primary objective but it is not

restricted to it;

- it offers Ada* interfaces in order to have a mul-

tilanguage environment.

This approach is discussed in this paper: after a descrip-
tion of the basic PCTE facilities, the software engineering;
database is described in detail together with implementation

aspects.

* Ada is a trademark of the Ada Joint Program Office

Object Management System

Part of this paper has been derived from PCTE
namely PCTE Functional Specifications rel. 1.3
and papers nresented at the 1985 ESPRIT Technical

Brussels (PCTE 85b) and (PCTE 8%5c).

Object Management System

documents

(PCTE 85a)

Week

in

TR R R

2.. OVERVIEY OF THE BASIC PCTE FUNCTIONALITIES

PCTE has been designed mainly to serve as a basis for
the construction of a Software Engineering Environment; the

three main aspects of PCTE are:
- Basic Mechanisms;

- User Intérface;

- Distribution.

These aspects will be briefly described in the remaining

part of this section.

g.l. Basic Mechanisms

The basic mechanisms are defined as a set of programs call-
able primitives; they mainly cover three aspects: program
execution, communication and manipulation of the various

'objects' existing in the environment.

They can be subdivided into five categories, namely Execu-
tion, Communications, InterProcess Communications, Activi-

ties and Object Management System.

Execution primitives deal with the notion of a program in
execution: they define how a program can be started or ter-
minated, how it can be controlled and SO on; these mechan-

isms are very similar to the UNIX ones.,

Communication primitives allow program to access the file

Object Management System

type unstructured data (a UNIX file implementing the notion
of 'contents of an OMS object' (see later): these mechanisms

are the conventional input-output facilities of UNIX.

Mechanisms like Shared Memory, Signals and Pipe are provided
for processes to communicate: these mechanisms are also

strictly related to the corresponding UNIX ones.

Activities have been introduced to cover the lack of data
access synchronisation and recovery mechanisms of UNIXL

The PCTE activities mechanisms implement the concept of
transaction in Software Engineering Environments that have

been adapted.

Object Management System is the subject of the following

section.

g.g. User Interface

An object oriented User Interface allow the user to view
multiple sources of information in a uniform way: this
implies that several processes may run in parallel on the

same workstation.

User Interface mechanisms establishe the communication
between the user and the various PCTE processes providing

window management and input/output control.

2.3. Distribution

The PCTE preferred architecture is a Local Area Network of

Object Management System

powerful single~-user workstation.
The distribution mechanisms provides:

- transparent distribution of functions of the OMS, pro-
cess execution, process structure and inter process

communications;

- network administration (control of the O0SI transport

layer);

- distribution management (control and configuration).

Object Management System

3. OBJECT MANAGEMENT SYSTEM

A software engineering environment has to managé a cer-
tain number of entities designated by the generic name
‘object', a term widely wused in the area of software
engineering environments (Dod 80).

An object can be a file in the tradifional sense, a progranm,
a product designed for a given target machine, a document, a
structured object like a library of software components or

something more abstract like a project.

The goal of the Object Management System (OMS) is +to
manage all these objects in an uniform way, i.e. to provide
storing mechanisms, convenient access means and to manage
their various properties and irterrelationships, in particu-
lar the various dependencies that must be kept in order to
support the different versions of a software product, to
control the modifications applied to a given object and to

know their consequences.

The objects base, or "database" is managed by a set of
operations which constitute the Object Management System.
The OQS can be seen as an evolution of the traditional File
Management System, replacing the predefined structure of the
file systems (e.g. the hierarchic structure of UNIX) by a
structure which <can be adapted to the needs of different
environments. It is in fac£ a specialized Data Base Manage-

ment System, characterised by its adequacy to the above men-

tioned types of objects.

Object Management System

1
i
I
:
i
|
i
i
i

It includes some facilities which are not provided in

general-purpose DBMS but implies also some limitations: for
example the lower limit of the object's granularity may be a

little higher than in traditional DBMS.

An other important characteristic is the fact that any
access to an object is the result of a navigational request
or pathname whose syntax is a superset of the UNIX one.
Furthermore, the database is distributed in a transparent

way.

A model is proposed to define the various types of
objects, properties and relationships which constitute the
structure of the database.

This model is in the "entity-relationship" family (Chen 76).
It can be also seen as an extension of the network model,

supporting several kinds of relationships and subtyping

facilities.

A schema, in traditional DBMSs, is a set of type defin-
itions describing the structural and semantiec properticzs of
the database.

A database is a collection of instances of type definitions.
The OMS database is the integrated, central repository of
the environment information for all projects, users zndg
tools of a PCTE installation. The schema is a neuns o

integrating tools around commonly accessed data structures,

However, projects, users and tools alwavs access the

Object Management Svystem

portion of the information they are concerned with according
to their specific Working Schema.

A Working Schema is a partial view over the overall schema.
As traditional ‘"external schemas" (also sub-schemas or
views), Working Schemas are filters which shield database
accesses from the actual database structure.

As a matter of fact, Working Schemas allow the <coexistence
of several, otherwise conflicting views of the database.

Viorking Schemas play a paramount role in supporting:

- portability of tools and tool sets among projects and
among PCTE installations

- integration of new tools around existing data struc-

tures
- project and user level definitions of database struc-
tures, which in turn <c¢can support, for instance,

specific methodologies and working styles,
Flexibility augments together with datal:_application

independency.

Schemas are evolving entities and this 1is especially
true in Software Eﬁgineering Environments. OMS supports
incremental schema modifications, which can take place in
parallel with database exploitation (so no "technical shut-

down" is needed because of schema changes).

The type definitions making up the overall OMS schemas

are organized into a <collection of (small) sets of

Object Management System

L ___ew

definitions called Schema Definition Sets (SDS).

Each SDS is an OMS object and holds the description of a
partial view over the overall OMS schema. Modifications to
the schema are always carried out as SDS wupdatings. The
mappings between ©SDSs and the actual schema are automati-

cally maintained by the OMS schema management facilities.

Working Schemas are made up of one or more SDS in the
same way executable programs are made up of one or more com-

pilation units.

Through SDSs, OMS supports the possibility of .decen-
tralising at project and user levels the management of

schema definitions: there is no need for a centralised

"Schema Administrator" authority.

The integrity of the database is enforced first by
ensuring that the manipulafion operations respect the seman-
tic properties declared in the Working Sphema and second by
controlling their consistency in the context of concurrent

Activities.

LY

One can distinguish two aspects of OMS functionalities:
the description of the schema and the manipulation of the

database.

3.1. Object

An "object" is an entity which can be distinctly iden-

tified. A specific source file, tool or program library 1is

Object Management System

an example of an object.

Objects are classified into different "object types"
such as "source_file", "tool", "program_library" (Smi 77).
All objects of a given object type have some common charac-

teristics:

- a set of properties, called attributes qualifying the

object.

- optionally, the contents

3.2. 0Object Attribute and Link Attribute

An object attribute defines an intrinsic property of an

object. Typically, a creation date is an object attribute.

A link attribute qualifies a link and indirectly the

object which 1is the destination of this link. Let's con-
sider for example, the links defining the set of compilation
units which constitute a program. Each link could be quali-
fied by information provided by the 1linker (e.g. code
address of the compilation wunit in the resulting load
module): the value of a link attribute depends both on the

destination and on the origin of the link.

3.3. Link

A linE is a unidirectional association between one ori-

'gin object and one destination object.

Object Management System

-

- 13 -

A link can-be used to create a simple reference from an
object to an other one, or to modelize structures like the
directory one, represented by an object from which several

links are leading to component objects.-

A link can have arity "one" or "many":
in the first case only one link of this type can start from
an object; if the arity is "many" several links of this type
can start from the given object. In this case » &8 key must
be used iﬂ order to distinguish the different links.

The link is also the basic element of a pathname.

A link type can be declared as a member of a relation-

shiﬁ type or individually.

3.4. Relationship

A relationship is a pair of two 1links such that the

origin of each is the destination of the other. According

to the arity of the two link types, fhe terms "one-one",
"one-many" and "many-many" can be used for a relationship
type.

A pathname is a sequence of link names starting from a

reference object associated to the context.

Object Management System

4. IMPLEMENTATION OF THE OBJECT MANAGEMENT SYSTEM

This section deals with the implementation aspect of
OMS in the Black Box approach: remember that by Black Box
approach we mean a PCTE implementation which does not make

any modifications to the UNIX kernel.

The main goal of the Black Box approach is to make
available PCTE functionalities on a wide range of host com-
puter and environment; giving the major emphasis on the por-

tability across different versions of UNIX.

The key issue for the success of PCTE_is its wide and
easy availability; since the proposed implementation is UNIX
based, portability should be easily achieved: in order to
make the system fully portable modifications to the kernel

should be avoided.

Ié this respect, the cost of porting PCTE can be really
zero if a subset 'standard' of UNIX primitives is used.
From the beginning of the developments we took into account
the UniForum committee standard and today the SVID defini-

tion (XOG 85) constitutes our reference manual.

We are conscious that in some areas of PCTE this choice
could contrast with efficiency; on the other hand we have to
consider that several organizations will use PCTE on their

systems, which could run different versions of UNIX.

Object Management System

The PCTE/OMS environment

The PCTE/OMS is the first result of the Black Box implemen-
tation.

It has been developed using highly system independent pro-
gramming techniques (as suggested in (X0G 85)) and a subset
of UNIX system calls.

Up to now it has been installed on a wide range of machines

and UNIX (and UNIX like) operating systems.

In the PCTE/OMS environment it is possible to define
several PCTE/OMS subsystems which are independent of each

another.

In fact, a PCTE/OMS subsystem can be defined as a complete

self-contained PCTE environment in which a number of SDS and

volumes can be created.

More than one process can run simultaneously on the
same subsystem and access to the objects and Schema Defini-

tion Sets defined in that PCTE/OMS subsystem.

- Volumes representation

Each volume is represented under the unix file system
as a directory which contains several subdirectories:
the 'TKx' directories which contain the files
representing the objects

and a counter file which allows the internal numeration
of the objects stored in that volume,

The system volume also contains an 'SDS' file with the

Object Management System

- 16 -
representation of the system schema.

Object representation

Each OMS object is represented by a file in the data-
base directory.

This file contains the attributes of the object, the
links starting from that object and the attributes of
the previous links; a contents attribute is represented
by the path name of the file holding the éontents.

In this way a contents attribute may be considered as a
normal unix file.

The unix name of the file representing the object is
the ascii representation of the internal counter plus
the suffix '_0'; for the file representing the contents

of the object the name is the same internal number plus

the suffix ‘_F'.

Object Management System

| BEN BN BN ma mus jum jum gme gmy am

5.° CONCLUSIONS

An implementation of the OMS interfaces is the first
result of the Black Box approach, which could run separately

from the entirely PCTE environment.

That OMS "library" has been successfully installed on
several host machines (Olivetti M28, 3B2/X, Digital VAX,
APOLLO, SUN) running different versions of the UNIX operat-
ing system (SYS Vv, XENIX, SYS III, Version 7, BSD4.1 &

BSD4.2, ULTRIX, XENIX).

These successfull installations are the verification of

our approach to portability.

. A mono_user version has also been installed on M24 and

IBM/PC running the MS/DOS operating system with XENIX

libraries.
Tools for managing the installation and for using OMS basic

functionalities have been produced.

To analyze and exploit the power of the OMS model some tools
have been realized on top of the OMS library: an example of
which is the PMAIL mailing systenm.

PMAIL (PCTE MAIL) is a program allowing the storage and

retrieval of UNIX mail into the OMS.

It is possible, using that tool, to retrieve the message of
the mail from Unix and to catalogue it in the private OMS

database,

Object Management System

- 18 =

While cataloguing a mail the user is able to provide ‘key-

words', for easy and fast retrieval of the mail.

The main advantages of the PMAIL tool, derived from the wuse

of the Object Management System interfaces, are:

L]
- privacy: mails are stored in a private (or in a private

part) OMS;

- fast retrieval: providing ‘keywords' related to the
contents of the mail allows easy and fast retrieval of

mail messages;

- flexibility: keywords are not predefined; each user can

define his/her own keywords.

- reliability: the OMS internal mechanisms maintain the

consistency and integrity of data.

Following the example of the mailing system it is pos-

sible to define and develop similar tools to enhance the

Unix tool set,

Object Management Systemn

6. REFERENCES

(DOD

(CHEN

(PCTE

(PCTE

(PCTE

(SMI

(X06G

80)

76)

85a)

85b)

85c)

77)

85)

Department of Defence Requirement for Ada Programming

Support Environment "STONEMAN", February 80

Chen P.P., The Entity-Relationship Model: Toward a Unified

View of Data; ACM Trans. on Database Systems, 1, 1976

Bull, GEC, ICL, Nixdorf, Olivetti, Siemens "PCTE: A basis
for a Portable Common Tool Environment. Functional

Specification", Third Edition, 1985

Bull, GEC, ICL, Nixdorf, Olivetti, Siemens "PCTE: A basis
for a Portable Common Tool Environment. Design guideline",

Paper presented at the ESPRIT Tech. Week, Brussels, 1985

Bull, GEC, ICL, Nixdorf, Olivetti, Siemens "Overview of
PCTE: A basis for a Portable Common Tool Environment.",

Paper presented at the ESPRIT Tech. Week, Brussels, 1985

Smith J.M., Smith D.C.P. "Database Abstraction:

Aggregation and Generalization", ACM TODS Vol.2 June 1977

XOPEN Portability Guide, July 1985

Cbject Management System

SIGMINI

AN INFORMATION SYSTEM WITH A DYNAMIC ARBORESCENT STRUCTURE,
INCORPORATING A SELF STRUCTURING MODEL

Charline Brisbois, Union Miniére, Belgium
Patrick Mordini, Ecole Nationale Supérieure des Mines de Paris
CAI, France

INTRODUCTION

The software Sigmini is designated to treat hetero-
geneous informations, including quantities, which have complex
interrelations. It is related to both databank systems and clas-
sical documentary retrieval systems. The basic idea is to avoid
having to declare in advance either the data or their relations.
The "self structuring model” is managed by handling (element =
value) couples hierarchically structured by parentheses ; the
element being more gemeric and the value more specific. The syst-
em allows the user to store the data and the desired relatiouns
between them, at the time the data are acquired without referring
to a predetermined scheme. The search of a bank where the data
are stored according to this kind of model has to contain an
explicit interrogation of the structure of the data beside the
usual boolean operators. First, a classical interrogation is
effected, using an inverted file i.e. without reference to a
structure, to make a preselection; an interrogation with struc-
tures on the preselected data is then made and this, in a very
simple language.

Sigmini 1is an online retrieval system designed for
minicomputers using the Unix operating system (system V). Sigmini
has been developped jointly by a Research Center of the Ecole des
Mines de Paris and Union Miniére. It has specifically been
conceived to be portable. The programs are written in Fortran.
Except for the input-output routines written in C, the software
can be easily adapted to other systems.

The existing Sigmini databanks cover the following
fields

- economical and technical informations concerning non-ferrous
metals;

- inventory and description of archaeological patrimony.

The examples used hereafter have been taken in one of

the banks constituted by Union Minidre, using the Sigmini system.

1.1

INPUT of DATA

The elementary information

Every basic elementary information is introduced by a couple
(element=value). The element gives a generic information :
country, company, period of time, grade, title. The value
gives a specific information for a given element.

There are several types of elements :

- semantic type* i.e. Country = Belgium
- standard type Company = Amax
- numerical type * Registration number = 312523
- numerical type o Grade = 3
with 2 bounds Period of time = 800101 A 861231
= commentary type Title = Process for separating

and recovering Ni and Co.

There are data of qualicative type and data of quantitative
type. They can be classified in two categories, ome with
strong information as the semantic and the standard and one
with weak or fuzzy information as the numeric and the
commentary.

1.2

All the elements are stored in a dictionary. The values of
the elements of the sewmantic and standard types are also
stored in a dictionary.

For a -“semantic type, i.e. a Country, omne can determine the

relations existing Dbetween regions, as well as their
belonging to an economical entity, i.e. the EEC, or a
continent, i.e. North America.

For a standard type, i.e. a Company, the values are stored
which moreover avoid confusion and spelling mistakes. But
these values cannot be grouped together to form semantic
entities. '

The values of the other types of elements are only stored
in the database.

For the numerical type, the value can be introduced both as
an integer or as a decimal number.

The numerical value with 2 bounds represents a couple of

values determining the range. If only one numerical value
is given, it means that the length of the range is zero.

The value of the commentary type is a chain of unspecified
characters of a length smaller than 32.000 characters.

The different types of elements, and particularly the
semantic type, are further explained 1in the chapter
concerning the dictionmary.

Relations between data

Every homogeneous group of information or record can be

hierarchically structured by introduction of parentheses.
The number of levels of the hierarchy is defined at the
system generatiomn.

Examgle

The record given below describes the evaluation of a Au/Cu
deposit and the project of construction and exploitation of
a mine in Papouasia. This record also contains the
construction costs, the production objectives as well as the
percentage of the participations taken by various
compagnies. This example shows that the data and the
structure are given simultaneously. Every element can be
pPlaced everywhere, and can be repeated if necessary.

REGISTRATION NUMBER = 310928
YEAR = EC080
MICROFILM NUMBER = 8040527
JOURNAL =
DATE = 800718
REFERENCE =
LANGUAGE = ENGLISH
TYPE OF DOCUMENT = ARTICLE
VALUE OF DOCUMENT = 3
CONTENT OF ANALYSIS = 2
(GOVERNMENT = PAPOUASIA NEW GUINEA
(COUNTRY = PAPOUASIA NEW GUINEA
LOCATION = STAR MOUNTAIN
(DEPOSIT = EVALUATION,DRILLING
(MATERIAL = ORE
(ELEMENT = Au/Cu
RESERVES = 410000000
UNIT OF MASS = T
(ELEMENT = AU
GRADE = 3 A 3.5
PERCENTAGE = G:T
(MINE = CONSTRUCTION/PROJECT
NAME OF MINE = OK TEDI
(MATERIAL = ORE
(ELEMENT = AU/CU
COST = 800000000
MONETARY UNIT = US DOLLAR
(MINE = EXPLOITATION/PROJECT
NAME OF MINE = OK TEDI
(MATERIAL = ORE

| I NN BN G0 G G G IR G BN NN O BNS BB GBS G B Bw am

1.3

1

4

(ELEMENT = AU/CU
PRODUCTION = 12000
UNIT OF MASS = T/J
(COMPANY = FLUOR AND METALS INC
STATUS = ENGINEERING,TECHNICAL ASSISTANCE : -
(COMPANY = DANCO
STATUS = ASSOCIATION
PARTICIPATION % = 37.5
(COMPANY = MOUNI FUBILAN DEVELOPMENT COMPANY
STATUS = ASSOCIATION
PARTICIPATION % = 37.5
(COMPANY = METALLGESELLSCHAFT A.G./SIEMENS A.G./
KABEL-UND METALLWERKE GUTEHAFFNUNGSHUTTE
KABELWERK BERLIN GMBH
'STATUS = ASSOCIATION

Pogsibility to adapt and fill in the gaps in the structure

of the data

If one wants to update the record on the Au/Cu deposit in
Papouasia, 1i.e. having obtained additional information
about the copper grades, the gold grade being the only known
at the beginning, onme will have to modify the structure of
the record. The gold and copper grades will have to be
placed on different nodes, not to mix up the grades of gold
and copper.

This shows that the structure is dynamic and can be adapted
in function of the information evolution, as well concerning
additional structures as changing the values of the
elements.

Efficient use of the self—structurigg model

Retrieval of the data by a simple and adequate way in a
"self structuring model”, implies to make the analysis of
the information on pre-established scheme and structuring
rules, the more that the system allows empty nodes on one or
more levels. These rules are unknown by the system.

The scheme and the structuration can be preestablished as
"check-1lists"” in function of skeletons for the different
kinds of records. These skeletons contain the possible
elements of the records and their structure. These
“"check-lists"” are external to the system and can be modified
in function of the needs. A "check-list”™ can be a simple
form, a conversationnal “question—answer” menu or an editor
dedicated to the Sigmini data acquisition. This kind of
editor is already used with the Sigmini system.

DICTIONARY

The dictionary has 2 objectives :

- to check the elements names and the standard and semantic
values;

- to create names codes to store them in the database.

a. Content of the dictionmary

The dictionary includes several fields :

- the element field;

- the values fields attributed to standard and semantic
types elements.

Numerical and commentary types are characterized by the
fact that respectively any numerical value or any
character block can be attributed to an element. These
values are not stored in the dictionary, but the elements
are.

In standard type, the elements are connected to a well
defined 1list of possible values. The standard data
acquisition is done with closed dictionary so as to
exclude terms wrongly spelt or not yet accepted in the
dictionary. The dictionary can be opened so as to
introduce new elements or new values attributed to the
elements. This can be done during data acquisitiom or by
a specific operation.

Two kinds of information are stored in the dictionary, on
one hand the elements and on the other hand the various
groups of values attributed to elements of the standard
and semantic type.

In each of these sets it is possible to link the terms by
synonymical relations. So, the same value can be intro-
duced in whole, shortened form or in foreign languages.
One can use indifferently any one of the synonymes.

For instance Company = Union Miniére
or
SOC = UM
or
Société = Union Miniére

A special device allows,to identify to which language
belongs a certain term, and as far as the different
languages have been introduced, a record can be edited
in another language than the one used for the
introduction.

In principle, all the values of a standard element belong
only to that .element. However, a mechanism allows to
make compatible all values of an element with all values
of another element, which consists to group together the
values of those elements.

For instance : Country, Country destination and Country
origine are compatible elements and they
have the same values.

Several databases can have the same dictionary ; it is
possible to distinguish elements and values belonging to
one or more databases.

3.1

b. Semantic dictionary

The semantic dictionary explains the meaning and the
reciprocal relations of elements values of this type. It
is more powerfull than most hierarchical thesaurus of
documentary systems.

For instance : Country is an element of semantic type.
If a record 1is introduced with the value Country =
Québec, this record will be selected for a question about
Québec but also for a question about Canada.

If one introduced a record with the value Country = Great

Lakes, the record will be retrieved for a question about

Canada or about the United States. This shows that the

semantic dictiomary can handle problems with relations
. between non-hierarchical values.

RETRIEVAL

The search of a bank using the Sigmini system is done in two
phases. The first called preselection, is based on an
inverted file. The second called selection, examines the
content and the structure of every preselected record. For
this second phase, the structure operators are used to
describe the required relations between the preselected
data.

Preselection

The inverted file allows a search, per element or per value,
of records that contain the required elements or values.

All elements or all values do not have to be inverted ; the
selection of the elements and the values to be inverted is
decided at their introduction in the dictionary, only if
they present a selective character.

- Element Country is inverted on each of its values. During
a search, the 1inverted file gives all the record
identification numbers for the requested value of the
element Country.

- Element Production is inverted as it 1is, without its
values. All the records containing the element Production
are given when requested.

Let's take a question as example : import of cocal in West
Germany from Australia.

This question can also be read as follows : export of coal
from Australia to West Germany. In Sigmini language, it
becomes : .

l. (Country of Destination : ou : Country) = West Germany
2. :JU:

3. (Country of Origin : ou : Country) = Australia

4. :AS:

5. Market = import

6. :AS:

7. Material = (coal:ou:coke)

The lines 1, 3, 5, 7 form what is called the selecting
criteria. The lines 2, 4, 6 contain the structure operators.
A éelecting criterion can be a combination of criteria and
structure operators.

In the preselection phase, the structure operators of lines
2, 4, 6 are automatically replaced by the Boolean operator
"ET" R

The search can be made criterion per criterion so as to
obtain at each step the number of preselected records.

For the example mentioned above, all the records containing
West Germany as "Country or Country of Destination” And
"Australia as Country or Country of Origin" And Import as
Market And Coal or Coke as Material, are selected.

This preselection is stored in a working file containing the
records that might suit if the desired structure is
respected.

Records obtained during the preselection may seem too large
or too small to the user. He can, of course, formulate
again his question in a larger or more restricted way. If
the preselection result seems acceptable, the selection
phase 1is started.

- In the example mentioned above, the record n° 4884 has been

preselected.

REGISTRATION NUMBER = 310928
YEAR = EC080
MICROFILM NUMBER = 8140848 to 8140852
JOURNAL =
DATE = 810723
LANGUAGE = FRENCH
TYPE OF DOCUMENT = ARTICLE
DOCUMENTARY VALUE = 3
CONTENT OF ANALYSIS = 3
(ORGANISM, INSTITUTION = EUROPEAN ECONOMICAL COMMUNITY
(COUNTRY OF DESTINATION = BELGIUM/DANEMARK/
FRANCE/GREECE/IRELAND/ITALY/LUXEMBURG/
NETHERLANDS/UNITED KINGDOM
(COUNTRY OF ORIGIN=UNITED STATES/CANADA/AUSTRALIA/
SOUTH AFRICA/POLAND/U.S.S.R.
(MARKET = TRADE/IMPORT
PERIOD OF TIME = 790101 A 801231/ 810101
(MATERIAL = COAL
(QUANTITY =
(COUNTRY = BELGIUM/DANEMARK/WEST GERMANY/
FRANCE/GREECE/IRELAND/ITALY
LUXEMBURG/NETHERLANDS/UNITED KINGDOM
(MARKET = PRODUCTION/PERSPECTIVES
PERIODE = 2810101
(MATERIAL = COAL/COKE
(MARKET = TRADE/SALE/DELIVERY
PERIOD OF TIME = 790101 A 801231/ > 810101

10

3.2

(MATERIAL = COAL/COKE
{MARKET = STOCK
(MATERIAL = COAL/COKE

Selection

As mentioned already, the record n° 4884 was preselected.
When examining this record, one notices that it gives no
information about the coal import in Germany.

It contains data about the coal import from Australia but
not destinated to Germany, but gives information about the
production of <coal of several countries, among which
Germany.

The structure operators will avoid that kind of "noisef in
selecting the records.

In this example, only two structure operators were used,
the most frequently used are :

JU Cl:JU:C2 means that the critera Cl and C2 are located
on the same node of the structure.

AS Cl:AS:C2 means that Cl and C2 have hierarchical 1links
in the tree and that Cl comes before C2.

DE C2:DE:Cl means that C2 and Cl have hierarchical links
in the tree and that C2 comes after Cl.

FR Cl:FR:C2 means that Cl and C2 have the same father.
PE Cl:PE:C2 means that Cl is the father of C2.

All the operators have their negative equivalent.

For instance :

NJU Cl:NJU:C2 means that Cl has to be located at a node on
which C2 is not present

11

It is possible to forbid the presence of two critera at the
same node of a record.

For instance :
:NON: (Cl:JU:C2).

All element-value couples of the records can be obtained

whithout having to mention them, in excluding the couples
one does not want.

Example : to find all information about the economical
activity of Zimbabwe, except for information on
the market

(@ :NID:Market):FI:Country=Zimbabwe (NID means non
identical).
The notation "@ " allows moreover :
~ to describe one, and only one, element-value couple of a
set, so as to impose to this element-value couple as many
relations as wanted.

= to write questions “"in loop".

= to describe relations of the "grandfather" type for which

no specific structure operator is designed.

During the selection, Sigmini reads through all preselected
records and examines if non inverted values which are
required are present and if the structures of the record
correspond to the structures asked in the quest ion.

The search of a Sigmini bank is conversational. The user
can adjust his question in function of the "noise” or the
"silence” that he obtained both as preselection and
selection phases. As soon as the first record 1is
selectioned, it is displayed on the terminal. The user may
at any moment decide to continue or to interrupt the
selection, in case the answers are not sufficiently relevant
or 1f the question has not been formulated correctly.

The system permits to store the formulation of each question

so that it can be reused, i.e. for selective diffusion of
information or SDI.

12

4. SIGMINI and UNIX

SIGMINI 1is presently available only on mainframes and not yet
on microcomputers. The languages used are Fortran and C.

The input data are read on the "standard input” so that they
can be easily obtained from a terminal, a disk file or a tape.
The output data are put on the "standard output™ so that they
can be stored on a file or directed to the "standard input” of
another program using the "pipe” mechanism. The messages for
the user are written on the "standard error”.

It is possible to pause a process, to run another program and
to resume the previous one, i.e. during the search, omne can
check the spelling of a term in the dictionary and resume the
search with this term. It is possible too to send a result of
a searh to another user by the mail.

13

ANNEZXE

BRIEF DESCRIPTION .0f the PRINCIPAL FUNCTIONS of
SIGMINI

Input and update in the dictionary

Data input can be made :
= in a conversational mode;
- in batch processing, from a tape or a disk file.

The available commands allbw to :

~ create the elements and the values;

- update the synonymical relations;

- print the dictionary;

- establish inverting types of elements and the compa-
tibility between values of some elements.

Input of the records in the database

The input cam be done in different ways, from a terminal, a
tape or a disk file. The system verifies each record ; the
records with mistakes are rejected and have to be introduced
again after corrections. An wupdating program allows to

correct the rejected records without having to retype them
entirely.

The conversational data acquisition is checked by a special
program. The check~lists composed of skeletons of the
different kinds of records are used to gulde the data

‘capture. The program checks the syntax‘and the conformity

with the elements and the values in the dictionary.

14

Retrieval

The user has to indicate in advance which bank or part of a
bank he wishes to browse.

Each user has one or more questionnaires at his disposal in
which he can enter up to 42 different questions. In a
questionnaire, every question has a reference number, which
allows to use it again for a new question or a SDI.

There are three possibilities at the introduction of a
question :

- syntaxical analysis only ;

- syntaxical analysis and preselection;

- syntaxical analysis, preselection and selection.

Display of the data

The preselected and selected records can be displaid on a
screen or on a printer. It is possible to display parts of
the records.

Example of retrieval

In the example below, the letters printed in bold are typed
by the user. The comments are 1in italic. The rest are
answers given by the computer.

15

QUESTIONNAIRE?

8EQ Display the names of questionnaires

v

QUESTI :ECO1
QUEST2:ECO2

QUESTIONNAIRE?
S8RQ/EC02/ Call the questionmaire ECO2
3:
8LQ List all the questions of the current questionnaire

1:(SOC=METALGESEL:JU:STATUS!ASSOC):JU:SOC=DEGUSSA/

2:ELE=GA:DE:UTGE:IELEC/
3-

BEC/2/ Display on screen the records selected by the question 2

287 ******************************** Je ke de k% Ak k Kk
REGISTRATION NUMBER=104133
YEAR=EC081
NUMBER MICROFILM=8110197
JOURNAL=
DATE=801100
REFERENCE=
LANGUAGE=ENGLISH

. DOCUMENT TYPE=ARTICLE
DOCUMENTARY VALUE=?
CONTENT OF ANALYSIS=3
((COUNTRY=UNITED STATES
(MARKET=DEMAND /PERSPECTIVES

FIELD OF GENE®AL UTILIZATION=ELECTRONIC INDUSTRY
FIELD OF SPECIFIC UTILIZATION=SOLAR CELLS/
PHOTOVOLTAIC EFFECT
PERIOD OF TIME=900101 A 991231
(MATERIAL=METAL
(ELEMENT=GA
QUANTITY=/

**STOP: 1 CONTINUE:0

0 continue the display of the records

16

k

[B jamm mame aaan ey
[__ma -

826 **
REGISTRATION NUMBER=104144
(covennnsnesnsnnanss)

3: .
SOC-COHINCO:AS:COUNTRY-CANADA:AS:(MINE:OR:CONCE)/

QUES392 UNKNOWN VALUE
question 3 @ wrong
3:
SOC-COMINCO:AS:COUNTRX‘CANADA:AS:(MINE:OR:CONCENTRATOR)/
question 3 : preselection only
NUMBER OF RECORDS PRESELECTED:15
4:
$EX/3/ selection of the records preselected by question 3

NUMBER OF RECORDS SELECTED:10
$EC/3/
179 **
REGISTRATION NUMBER=410442
YEAR=ECO081
MICROFILM NUMBER=8110085
JOURNAL=
DATE=801216
REFERENCE=
LANGUAGE=ENGLISH
DOCUMENT TYPE=ARTICLE
DOCUMENTARY VALUE=3
CONTENT OF ANALYSIS=2
(COMPANY=COMINCO LTD
(COUNTRY=CANADA
(ACTIVITY OF COMPANY=SITUATION/FINANCIAL/
PERIOD OF TIME=800101 A 800930
((ELEMENT=/
PROFIT=123900000
MONE _~RY UNIT=CANADIAN DOLLAR
(ELEMENT=/
TURNOVER=.10450E 10
MONETARY UNIT=CANADIAN DOLLAR
(CONCENTRATOR=EXPLOITATION
PERIOD OF TIME=800101 A 800930

17

(MATERTIAL=CONCENTRATE
(ELEMENT=2N
PRODUCTION=437300
UNIT OF MASS=T

(envennns)

18

— s e

BAUZOU C.

BRISBOIS C.

LENCI M.

MORDINI P.

REFERENCES

“"Interrogation d'une base de données auto-struc-
turante SIGMINI"
Thése de 3&me cycle Faculté d'Orsay (Avril 1983)

"Méthode de structuration des informations et compo-
sition des dictionnaires pour les banques d'infor-
mation technico-&économique et technique”

Union Miniére, rapport interne.

"Les Bases de la Codification Sémantique”
Ecole des Mines de Paris - DCI.265.03.74

"SIGMI, un modé&le auto-structurant de base de
données”

Thése 32me Cycle, I.P. Paris VI (12 Décembre 1979)

Address for Correspondence :

C. BRISBOIS

Union Miniére

avenue Louise 54,'bte 10
B-1050 Brussels, Belgium
tel : (322) 517 12 15

P. MORDINI

Ecole Nationale Supérieure des Mines de Paris
CAI, rue St. Honoré 35

F-77305 Fontainebleau Cedex

France

tel : (331) 64 22 48 21

19

Office Data Base Services in an UNIX architecture

AMEDEUS PROTOTYPE

Pietro Barda
Antonio Buongiorno
Franco Calvo
Bruno Pepino

(Olivetti IVREA Italy)

Abstract

Classification, filing and retrieval are important but time expensive
activities in an office environment.

Attempts to reduce times, and thus costs, involved in these processes
are gaining importance for a better information management in an office.
The paper outlines a solution for filing and retrieving "office objects"
in an architecture based on UNIX servers and networks of personal
éatputers. The focus is on the data model that supports the Office Data
Base and allows a very fast retrieval of structured and not structured
information.

In the first section the general requirements of an office data base is
described together with a possible realization, in the second an
overview of the of the prototype package AMEDEUS, as well as sdme detail
on the current status of the implementation is given.

UNIX is a trademark of AT&T

Index

1. Introduction

2. ODBS: requirements and basic concepts
3. What is Amedeus

4. System Overview and data model

5. Getting started with Amedeus

6. Conclusion

i Bl B -

———

1. Introduction

The main activities of today's offices, whether or not electronic office
systems are used, are:

" a) Creating and revising documents.

b) Distributing documents. Documents may be distributed to users via
internal or external mail, hand delivery, or electronic means.

¢) Filing and retrieving documents. Documents may be filed in and
retrieved from file cabinets, libraries, or electronic mass storage.

This paper uses the word document to refer to the user created
information that flows through and between office systems. The concept
of document includes many kinds of information, such as messages,
reports, memos, letters, contracts and so on, not ordinarily thought of
as documents.

The automation of offices is becoming a reality for an increasing number
of organizations. Office automation is helping these organizations to
improve the productivity and effectiveness of office workers and to
improve the timeliness of the information on which they depend.

By using camputer tecnology, office systems offer the potential for many
other functionalities, not just faster typing, for example the ability
to integrate data files with text, store and retrieve information
distribute documents electronically. The above activities are office
automation capabilities. While some of the benefits of electronic
document processiig can be realiced from a single, stand alone office
system, a network that interconnects several office systems can bring
greatér gains in productivity. Physically, a network consist of
interconnected equipment and software used for moving documents between
offices where they may be created and used. For the user, a network is a
collection of services to create, revise, distribute, file and retrieve
documents. _
Office systems offer different services accordingly to the needs of
different users; the entities that tie the systems together are the
distribution service and the information interchange (data format
conversions).

4

Unix Office Integrated Environment prototype (called UOIE in the

remainder of this paper) proposes a systematic approach to carry on
these office activities.

WOIE offers the following departmental cooperation services:

- A centralized information filing and retrieval system (Office Data
Base Service - ODBS), the main topic of this paper.

- A network distribution system (Electronic Mail - EM).It is a
distributed message system for the exchange of interpersonal mail.
Users of EM can invoke it on local computers, prepare mail, and send
messages to a user on a different camputer, however, gateways allow
interchange with mail systems such as uuCP and so on. This network
distribution system follows the internaticnal CCITT recommendations
for Message Handling Services in term of mail format and protocols.

- A document interchange system (Document interchange system - DIS) , It
involves the interchange of a document to be filed in and retrieved

from the ODBS and the interchange of a document to be distributed
among users.

DIS handles the different naming convenction and takes

care of transforming the information form (data stream) used by the
supported product.

UOIE ~ 3b2/400 SERVER

| | | |
N | © |- | |
| ODB |< >' D I . E I Office ’ Other I
l ' , B ,‘ . I M | Applic. | Applic. I
I T 0
Hard DIS | i Other |
Disk Gateways l
| program | |
to | UNIX SV l

program | 0. S. '

In the remainder of this paper we describe the main concepts and the
requirements for office data base services (ODBS).

L B BBS BER BB Mme m mam wm ey

2. ODBS: requirements and basic concepts.

Before examining the ODBS's concepts, we describe the main requirements
for office information retrieval system and workstations.

A general purpose database for an office system based on a server(a
minicomputer or a powerful last generation personal camputer) and on a
set of intelligent workstations has many requirements that are different
from those of a typical Data Base Management System (DBMS) designed for
data processing on a mainframe camputer.

Today's trend is to have more memory on a workstations in order to
implement more advanced functions such as sophisticated user system
interface. As workstations are used mainly for iteractive applications,
good response time is more valuable than high throughput.

In an office environment intelligence (cpu) are generally more
distributed than in a classic DP environment but these processing
capabilities are mainly devoted to the typical interactive applications
that require always more user friendly interfaces.

The main drawback of personal computers is typically a slow I/0;

moreover an operating system supporting single tasking does not help to

improve the global throughput.

Another important factor is the amount and the location of secondary
storage in an office system in comparison with a host.

On the other hand a lot of database activities are I/O bound and require
large concentrated storage.

All these considerations imply new criteria in design choices to obta.m
good global performance optimization.

Office information retrieval systems are developed to help analyze and
describe the information stored in a file, to organize them and to
retrieve them in response to - user query. Designing and using a
retrieval system involves the following main activities: information
analysis, information organization and search, query formulation and
results presentation.

The main differences between the ODBS and the DBMS are:

1) the data structure,

2) the query language,

G EE EE aE G BN B Wl ey aa—-

3) the operational requirements, update freqﬁency and size of database.

The data structure of a DBMS consist of objective attributes, such as a
person's name, age, salary,that could be used to identify a personnel
record in a personnel file; similarly in a library file a papers's or
book's author, publisher, and date of publication ¢&ould be used to
identify the record of paper or book.

Many access methods have been studied for structured records (cbjective
attributes): tree structure, miltiattribute hashing and so on.

On the other hand typical office data (that we call documents and that
can be letters, forms etc.) are not structured at all, thus an ODB is
not structured and utilizes subjective attributes or content terms, to .
describe each stored information.

Thus, ODB consists of words or phrases describing the content of the
Cocument. At first glance nothing corresponds to objectlve attributes;
so, the only possible access method is the full scanning of the text.
Obviously, this method is slow and expensive because ODB can be very
large.

The need for a more structured representation of documents has suggested
the following method; during document analisys one creates a list of key
words excluding a standard common word such as propositions,
conjunctions, articles and other non significant words taken from a
concordance listing.)

This step of text analisys is called "indexing".

The list of key words associated to each document is viewed as the
attribute value more closely resembles:a formatted file or relation in
terms of relational DEMS , so , despite same differences, is possible to

use the same access methods.

Generally, we could divide the query languages for text retrieval into
two categories. The first one, influenced by DBMS, is based on Boolean
algebra. This type of quexy language consists of words or parts of
words, linked with the Boolean operators such as OR, AND, NOT. .This
query language is useful when users have a clear idea about what they
want.

The second class of the query languages involves the answer relevance
(ability of the system to satisfy the user). The answer relevance
involves more complex considerations and factors such as system
evaluation. There are different components that affect the system

evaluation such as:

- User population, type of user, rate of requests, etc.

- Collection, type of documents available at input, coverage of
collection.

- Indexing, type of index, level and accuracy of indexes, etc.

- Analysis and search, type of searching, power and complexity of search
mechanism and accuracy of search.

The basic factors to be measured to estimate the answer relevance are:

- The recall of the system,that is, the relevant documents retrieved in

answer to a search request.

- The precision of the system, that is, the set of documents retrieved
that is really relevant.

To obtain these measures is necessary to divide the document collection
into four group:; retrieved, not retrieved, relevant, not relevant; hence

the corresponding definitions are the following:

Recall = (num.documents retrieved and relevant) / tot. relevant

Precision = (num.docs. retrieved and relevant) / tot. retrieved.

In this type of query environment there is no clear distinction between
documents that qualify and documents that do not; some documents are
really relevant, while others even if present in the result are less or
no relevant at a.l.

In few words when using this class of query languages documents are
ranked according to their degree of relevance, and the most relevant are
returned to users.

About the operational requirements the important thing to consider is
that the office environment is dynamic, and the access method has to be
more flexible as far as insertion is concerned. Moreover, the access
frequency of documents changes with the age of the document, it
generally decreases with time.

S I N GBS N O BN N B N an G e GaF 0 N S an aE .

- N O GE aE an BN BN IO OB OBl e am

Fram the above considerations it comes that a feasible approach to an
Office archiving and retrieval system is one we call "central
ODB/distributed desk".

We introduce in this way two entities: a central archive (ODB) and a

personal work area called desk. It is worth repeating that our main

concern is to share documents between users of probably non-hamogenecus
work stations and utilize in the most efficient way the global
processing capability of the system.

This approach allows: .

- the sharing between users of an archive collecting objects of
different type but easily interchangeble (by mean of services
provided by DIS)

~ the sharing between users of an archive hetherogeneus (for we archive
different types abjects) but with an homogeneous security service

- the clear division between common archive and personal work area
mantaining the integration of the two.

The desk can be identified with some environment monitor (topview like)

or with some special purpose package running on PC or on the server and

using tty. The desk is a personal work area where office objects are
created, modified and printed. Every user has his own desk.

All office productivity tools and the functions of archiving and

retrieval are activated from desk. We call "local agent" the part of

desk that manages the interface between desk and the central ODB.

The concepts of desk and ODB map the following organization of an OA

environment: '

- each user creates and modifies documents on' his desk (electronic or
traditional) using the office productivity tools (wp or paper and
pencil).

- productivity tuols must be calied from desk; documents must be in the
desk to be manipulated.

- only "current" documents (you are editing or you have just drafted)
reside on desk so they can be easily identified simply by name.
Sophisticated retrieval systems are not required in the desk.

- it is up to the user free the desk erasing cbsolete documents or
archiving them.

- the organization of the desk is up to the user and not dictated by a
central policy.

- each user has associated a login name and a password.

- documents in the desk are not shared: there are two ways to grant

other user the right to manipulate them: to do an operation of "change
desk" in wich all the rules of the authorization system are applied or
to archive the document in the central ODB.

- the retrieval of a document consists in a search .in the ODB and

eventually in a copy of the selected documents in the desk where they
can be modified.

Up now we have used the words object and document in an interchangeable
way; more precisely we define an object or document as the union of a
structured part called profile that describes it and distinquishes it
from the other of the collection, and a non structured part called body.
All the profiles have the same structure while the bodies can greatly
differ, (wp texts, ascii texts, spreadsheets ...)

Each document has associated a system type qualifier (defining documents
created by different tools dealing with different data formats) and a

user defined type that characterizes a particular usage of the document
in the office (letter,memo,balance sheet

R

The two main services ODBS provides are archiving and retrieval:
- the archiving function involves three steps:
1. the document profile preparation (on the desk)

2. the keyword indexing of the document body and insertion of the
keywords in the ODB structure (this operation involves a
processing activity in the desk and a data transfer toward the ODB)

3. the physical transfer from desk to ODB of document profile and body
(in its oriyinal format)

According to the different types od documents the process of keyword
indexing can not be applied to the body (images,spreadsheet...) and
the insertion in the ODB is limited to the structured part of it.

the retrieval service gives to the user the capability of getting from

the ODB a set of documents matching a search criteria. Three are the
steps needed:

|

1. query formulation (on the desk); the search criteria concern both
the profile and the body. The logical operators AND,OR and NOT are
supported in a transparent way to the user, that is they are
implied by the structure of the lapguage (presented by form).

2, search processing (on the ODB): a query optimization module
drives the search opersations to get the result. The result is a
set of document profiles identifiers.

3. retrieve process involves the transfer of document bodies and
profiles from ODB to desk.

All these operations are somehow bound to the security mechanism that
is not described in this paper.

L B BN BN B BN S BN B ma sem o oo

e e et

3. What is Amedeus

Amedeus is a prototype of a full content document retrieval system for
the office. It provides functions to analize, organize, store, search
and retrieve documents.

Over the last several years, document retrieval systems have received
an increasing amount of attention because a semplification of the
information handling problems becomes more urgent, but also because the
technology appears to provide the necessary means for generating
acceptable commercial solutions. ,

Amedeus is designed for professional offices using documents created and
located anywhere in the file system of an UNIX System V.

It is a part of a research effort to develop a basis for office
integration and eventually to support a distribution service (electronic
mail) and office procedure service. .

Amedeus is only a reasearch prototype system; no future Olivetti product
is implied by this paper. ‘

This system does not provide tools to create or modify documents, in
fact it is not strongly integrated with some commercial word processing,
rather, the package has been designed to allow the integration with the
best sellers, existing word processors running under UNIX System V.
Amedeus is organized .as a server of a set of office personal work
stations (OPWS) distributed in different offices.

The following figure shows the basic system configuration; a number of
semplification have been made for the sake of clarity.

UNIX SV Rel. 2.0

l
— RS232 | Olivetti

|
I
OPWS I I-—-——' AT&T |-—' IPRINTER
tty ' 3b2/400 |
|
|
LAN I
! I
: i
| |
| |
OPWS OPWS
(Olivetti) (Olivetti)
P.C. P.C.
M24 M24

T T e — e — e —

4. System Overview '
In this section, we describe the basic architecture of Amedeus, the l
following schema illustrates the principals camponents of the system,
It is important to point out that for shortness the schema and the '
related descriptions refer to a general case desk + ODB and all problems
related to server-PC interconnection ,included the program to program l
protocol necessary,’ are not covered by this paper.
| i
| WS M
l (front end) l l
l -
|| i
v
| i
l API < 7,
e
l | 7 -
| | |
v v v I l
| » B l 1|
l indexing ' ’profilel I search , _ l
(engine I Icatalog' ‘ engine l
L : 1
|]
| | i
, Hara-Disk l
| | 3
| | |
' ,dictionary | ,
> < '
Ireference I
|
Hard-Disk l

T T T A —

Through the Work Station Monitor (WSM, front end) the user can issue
camands interactivly and examine the storage subsystem, an "on line"

help facility is provided.

WSM interfaces the API (Application Program Interfaces) that provides
the program interface to the "low level" storage subsystem.

Indexing engine is composed by two layers: the text analysis layer and
the "write database" primitives layer.

Text analysis module processes the document to extract the keywords and
determine their type in order to insert them in the ODB by means of the
write primitives adopting a suitable strategy.

Altough full document inversion seems very expensive in terms of
storage, an appropriate data model and efficient compression algorithms,
can reduce the overhead to an estimated 50% of ‘the original document.

The search engine too is composed by two layers: a query optimization
layer and the "read database" primitives layer.

The query optimization module is responsible for the query analysis and
for the implementation of an efficient strategy of search depending on
the query semantic. The "read database" primitives access the database
to £fill the result structure to be returned to the WSM.

The ODB data model consists of:

- profile files ; a variable length record file containing the document
profile and an associate reference file.

- index files; they are organized as an ISAM (indexed sequential access
method) structuce with dinamic index. This organization gives all the
benefits of a sequential organization and in searching the benefits of
random access methods. It is based on a dictionary file where the keys
are stored in order and in pages consecutive (physically or logically)
and on a index B*-tree lacking the leaf nodes.

5. Getting started with Amedeus.

After you have installed Amedeus, it is easy to begin working with it.
The front end component WSM of Amedeus divide the main screen into three
parts:

1) The text area takes up most of the sreeen.

2) The camand line at the bottam of the screen shows you the various
things you can & with Amedeus.

3) The messagge line displays information and errors below the cammand
line. '

The documents you want to work with are located in the desk (in this
implementation the file system).

To tell Amedeus what to do, you choose one of the commands in the

camand line. These commands are the following:

Insert: Amedeus reads, selects keywords, and inserts the keywords list
in the ODB. We can insert any document made on programs that use
ASCII data format and control characters, including Olivetti
word processors.

Find: Amedeus searches the search terms into ODB.

List—directory: Amedeus shows you a list of documents stored in the
desk (current directory).

Help: Amedeus shows you the Help file.

Quit: Amedeus returns to Unix.

The following figure shows the commands provide by Amedeus.

il G B N — e —

R —————

]
e |
| nain |
‘ screen ‘
|
[I
| | |
| | |
| [B | o
Find l ’ List dir. . I Insert ‘
| | | |
| | | |
| | |
v I v |
print remove browse help l help ‘
|
v

print remove browse insert help

6. Conclusion

A version of Amedeus is currently running on a set of 255 documents,
about 2Mb disk space. This collection was chosen fram a real document
set; it served to analyze the growing rate of the data model in an
highly lexically specialized environment. In this environment we have
seen a fast saturation of the dictionary.

Due to a high performance design, Amedeus usually has a response time of
less than a second for a typical query.

THE DESIGN OF A SYNTAX-DIRECTED TEXT EDITOR
Brian Collins
Imperial Software Technology

ABSTRACT

The editing and user-interface system described in this paper appears in
many different guises to the user. Among these are:

1. A general-purpose, multi-file, multi-windowing screen editor for ASCII
text files and simple terminals.

2. A forms system for constrained data entry and presentation.
3. An interactive windowing front-end to application programs.
4. A syntax-directed editor.

This paper concentrates on the latter.

In the design of such an editor, the choice of facilities offered to the user
is often more difficult than the actual implementation. In this editor, the
decision taken was to make the interface appear to the user as close as
possible to a standard text editor, hence the more descriptive title of
‘syntax-directed text editor’. The overall effect is to provide a text editor
in which it is impossible to enter a syntactically incorrect program.

The editor is language-independent (indeed, it may handle many different
languages simultaneously). The syntax of the language is described in an
extended. annotated BNF. which also specifies the layout rules for line
breaks, spaces and indentation.

The paper provides a description of the editor, both from the user's view
and from that of the language implementor. It describes how the
syntactic structure is maintained in what is essentially a text editor, and
the techniques used for the fast re-parsing of edited text. Finally, the
paper assesses the applicability of syntax-directed editing to various
languages, its use in a programming environment, and a specific analysis of
the problers in the syntax of .ae language C.

1. INTRODUCTION

A syntax-directed . editor can be said to have succeeded in meeting its (supposed)
objective of usability if a significant proportion of potential users prefer to use it
instead of a conventional text editor. On this basis. many, if not most. of the
current syntax-directed editors should be classified as failures. For example, many
such editors require expressions to be entered in reverse polish, or require large
blocks of text to be frequently reparsed.

The synde editor was designed to reduce the risk of failure by providing to the
users what they appear to require, which is a text editor in which it is impossible
to enter syntactically incorrect programs. This is achieved by treating language
syntaxes in two distinct ways: larger multi-line objects are maintained by synthesis,
but smaller single-line objects may be freely edited and are maintained by analysis.

Synde was derived from an existing general-purpose screen editor, developed within
IST and used as a component of the integrated project support environment, Istar.
This editor supports multiple files, windows, terminal types supported by termcap

or terminfo, and has a rich repertoire of editing commands and operations. A
feature of the editing style is that there are no hidden modes (moving, inserting,
deleting. command, etc) and therefore all keystrokes have easily predictable results.
Printable text typed at the keyboard is always inserted into the document. Arrow
keys and function keys are used to move the cursor, to delete, move and copy text
and for more complex editing functions.

This editor had already been extended for Istar to support a forms system for .

constrained and validated data entry and to support menus for option selection.
Within a form, the user is allowed to move the cursor freely and to insert or
delete text within fields as though the form were a normal text document.
However, there are two restrictions. The cursor cannot be moved onto any
protected (‘preprinted’) text on the form. Whenever the cursor is moved off a field,
that field may be validated by some external mechanism (unknown to the main part
of the editor), which handles the ‘event’ of moving between lines.

This notion of text editing, with external event handlers to manipulate a structure
unknown to the editor is fundamental to the design of synde.

2. REQUIREMENTS
The requirements for synde were mainly self-imposed and included:

— That it support any ‘reasonable’ programming language. ‘Reasonable’ was taken
to mean that the syntax of the language could be described with an extended
Backus-Naur Form (BNF) and the lexical structure could be described by regular
expressions. These are similar to the the constraints imposed on languages
supported by lex and yacc.

— As far as possible, it should ‘feel’ to the user as though it were the normal
screen editor acting on a text file. Keys which invoke editing operations in the
text editor should act in the same way or analogously. .o

— It should support multiple files and windows and allow the user to work with
more than one language at a time. ‘

— Support for specific languages should not be built in, requiring recompilation to
add a new language. Instead., the necessary information describing the language
should be dynamically loaded on demand.

— The languages should be describeu by a notation that is easy to read and write.

— The performance, when editing any syntactic structure, should be similar to
editing with a text editor. There should be no significant delays for any
operations.

Equally important are the areas that synde does not attempt to address:

— Semantic analysis.
The semantic analysis of a program in an arbitrary language, as the program is
being edited, is an unsolved research problem. No attempt is made to handle
any semantics.

— Fast compilation. ‘
As synde is designed to be language independent, it can have no knowledge of
the parse-tree structures expected by a compiler back-end. Therefore it can only

act as an editor; a textual representation of the program must be passed to the
chosen compiler.

3. SYNTAX DEFINITION

A language supported by synde must contain some structure that. is both used and
enforced when editing. This structure is bandled as a number of layers.

3.1 Lex1ca.l Structure

A document (usually a program) in the language is composed of zero or more lines.
The lexical structure of each line must be described by a context-free grammar,
represented as a set of regular expressions. Using this grammar an isolated line can
be unambiguously split into zero or more lexemes, which are the terminal symbols
of the syntax. No lexeme may span a line boundary. A line break is always
significant.

3.2 Comment Structure

Some characters (eg spaces and tabs) may be specified as being ignored wherever
they occur, except where explicitly allowed within some larger lexeme (eg in a
string). These are not treated as lexemes in their own right, but just as whitespace.

Similarly comments are lexically distinguished lines or parts of lines that are not
formally part of the language and are to be ignored wherever they occur. Synde
Supports comments that fall into one of two classes:

— Horizontal comments appear at the end of a line that may contain other text.

— Vertical comments span one or more complete lines, which may contain no other
text.

Almost any programming language uses one or both of these classes of comment.
3.3 Syntactic Structure
The syntax for a language supported by synde is split into two classes:

— Horizontal Syntax is that part of the language that does not, inherently, span
multiple lines. This does not preclude a horizontal construct from spanning more
than one ‘continuation lines’ in individual cases. Typical horizontal constructs are
assignment or procedure calls.

— Vertical Syntax is that part of the language that necessarily spans multiple lines.
A vertical construct ‘contains’ other horizontal or vertical constructs. Typical
vertical constructs are ‘while’ st~*sments or procedure definitions.

A slice is either a complete horizontal construct or a part of a vertical construct
that is not part of any other enclosed construct. It is a horizontal ‘slice’ through a
construct, normally consisting of a single line but with possible ‘continuation’ lines.
A typical slice would be the condition line of a ‘while’ statement or a procedure
header. It can be seen that a document is a sequence of slices. each of which
contains a small number of lines (usually one line).

3.4 Syntax Definition Notation

The various structures described above are not provided explicitly by the language
implementor. Instead. they are derived from a extended, annotated Backus-Naur
Form (BNF) definition of the language.

The BNF is extended in two ways:

— By notation which more conveniently specifies conditional and repeated constructs.

— By notation to specify the comment and lexical structures that form the terminal
symbols of the language.

The annotation serves to specify the layout and indentation rules for the language.
These rules are embedded in the syntax and form part of the language definition.

Figure 1 shows an example of a trivial language definition.

Figure 1. Trivial Language Definition
/* Comments */

- YT
- WA A
/* Lexemes */
identifier - "la-zA-Z][a-zA-Z0-9_]*" :
number - *[0-9]+" ;
/* Syntax */
program = statements ;
statements - (statement / M+ ;
statement - while_ statement
| if__statement
| assignment ;
while_statement - ‘while’ # expression # {" /+4

statements /-4

-}o

if_statement - ‘if’ # expression # {* /+4
: statements /-4
() # else # '{" /+4

} statements /-4)?

assignment - identifier # ‘=’ # expression ;
expression - identifier | number ;

4. USER VIEW

Synde is derived from a text screen editor. In common with many other ‘what-
you-see-is-what-you-get’ (wysiwyg) screen editors. text typed on the keyboard is
inserted into the document being edited. Function keys or special key sequences are
used for other editing operations. These operations include cursor movement (in
units of character, word, line, page or file), text deletion (in units of character,
word or line), text cut and paste. In addition, there is a command line on which a

richer repertoire of commands may be entered for file manipulation, searching and
substitution, parameter setting, etc.

In synde, most of these operations bhave exactly the same effects as in the
‘corresponding text editor. Other operations have analogous effects that are easily
understood by the user. A small set of additional operations are only applicable to
syntactic editing and are meaningless for text editing.

4.1 Unchanged Operations

The operations of text insertion, cursor movement and text deletion within a line
appear to the user as in the text editor. The text on any line may be freely

edited. Similarly, commands entered on the command line have the same effect as
when text editing.

The only significant difference with operations of this class is the side-effect of
syntax checking: correction and completion when the cursor is moved between lines.

Whenever the user attempts to move the cursor off a slice (usually a single line)
that has been modified by the insertion or deletion of text, the slice is checked to
see if it still conforms to the appropriate syntax. This check takes an insignificant
length of time. If the check is successful the cursor moves and no effect is visible
to the user.

If, however, the check is unsuccessful, the slice is syntactically incorrect within its
context. In this case the editor attempts to correct the error, either by the addition
or deletion of text.

The text added is either strings of the language (punctuation or keywords) or
syntactic place-holders called stubs. Stubs are distinguished on the screen by
underlining, and are the names of the non-terminals used in the syntax definition.
Subsequent editing of a stub causes it to be automatically deleted. In any syntax
check of a slice containing stubs, the stub itself is treated as perfectly valid in its
context. Consequently stubs need not be filled in immediately.

The text inserted by the editor has the layout specified in the syntax definition.
This may span more than one line with the correct indentation being maintained.
For example, in Pascal at a position where a statement is expected, if the keyword
‘WHILE' is typed and the cursor moved off the line, the one line of the statement
would be replaced by the three lines:

WHILE ¢ondition DO BEGIN

Statement
END

The condition and statement stubs may be completed at any time.

If the slice cannot be completed solely by the addition qf text. trailing text will be
deleted and new text added to produce a syntactically correct slice. However, only
stubs and fixed strings of the language will be automatically deleted as these are
easily regenerated when necessary. Significant text, such as numbers or identifiers,
will not be deleted. In the case where the slice cannot be corrected without the
deletion of signiScant text, the cui.or “will be positioned at the best estimate of the
place of the syntax error and the error reported to the user. The error must be
corrected manually before the cursor is allowed to move from the slice.

4.2 Analogous Operations

Editing operations which may manipulate more than one line in the text editor are
inapplicable in editing syntactic documents. More than one line may be rendered
syntactically incorrect by such operations on a syntactic document. Consequently,
simply correcting the single affected line or requiring the user to correct the errors
before moving the cursor will not work. However, there are actions which are
syntax-preserving which have an ‘analogous’ effect to the operation in the text
editor. The intention is that such operations perform useful actions, but are
unsurprising to a user knowing the text editor.

The RETURN operation in the text editor (normally invoked by pressing the ‘Return’
key) splits the current line at the cursor position, inserting a new line. Depending
on the cursor position, this new line may be a blank line before or after the
current line or the text on the original line may be split between the two lines.

In synde, RETURN adds a new syntactic construct of the appropriate type for the
context in which the RETURN is operated. Referring to the previous Pascal
example, operating RETURN on the line containing statement at the beginning or end
of the line would add a new gstatement before or after the line respectively. A
separator will be added if needed (in the Pascal case, a semicolon) and the correct
indentation will be maintained. As well as inserting a new instance of an existing
construct, RETURN will also add an omitted optional construct if appropriate.

Operations in the text editor which DELETE, PICK (‘cut’) or PUT (‘paste’) complete
lines are redefined to handle complete syntactic constructs. For example, PICK
applied to the Pascal “WHILE' statement above would move the three lines from
‘WHILE' to ‘END’ into the buffer, instead of just a single line. Any other
statements that had been added between these lines would also be moved.

Extra constraints are imposed on the use of the buffer for moving and copying text
to ensure that a syntactically incorrect document cannot be created. The buffer
bolds its constructs without indentation. They acquire the prevailing indentation of
the context into which the buffer content is PUT (‘pasted’).

4.3 Syntactic Operations

Synde has a small number of operations that are only applicable to syntax editing.
There are operations to navigate the document using the language structure, moving
the cursor to the enclosing, enclosed, preceding or following construct. There are
also operations to move to the following or preceding stub. Finally there is an
operation to fold an arbitrarily large construct from the screen. replacing it with a
one-line stub. Such folds may be nested and can reduce the amount of unwanted
detail visible on the screen. This FOLD operation, acting on an already folded
construct, will unfold the stub, revealing the previously hidden text.

S. MAINTENANCE OF SYNTACTIC STRUCTURE
5.1 Syntactic Files

The files manipulated by synde are not stored as simple text, but as syntactic files.
These syntactic files consist of a mixture of text lines and control lines. The text
lines contain the whole text of the document. This text is stored in no other place.

The control lines are of one of three types:

— The initial Lue, which specifies that the document is syntactic and names the
syntax definition file for the language.

— Grouping lines, which bracket folded constructs in the document. These lines,
saved with the file, allow a folded document to be written out and subsequently
re-edited with the folded constructs remaining off the screen.

— Structure lines, which contain the structuring information for the preceding text
line or lines.

These lines all start with a non-printing control character but are only treated
specially if the first line of the document is a control line. All other lines that do
not start with this control character are text lines and contain normal ASCI
characters. Highlighted stubs are stored in the document as characters with the 8th

bit set. This restricts implementations of synde to machines with a 7-bit ASCII
character set.

5.2 Structure Records

Languages supported by synde are described by a syntax definition. This definition
generates a compacted representation of the syntax stored as a directed graph. In
this graph, each node can be classified into:

— A line break.

— A ‘horizontal construct’ node that contains no line breaks directly or indirectly
(eg an expression).

— A ’vertical construct’ node that directly or indirectly contains one or more line
breaks.

Vertical constructs can in turn be broken into:
— A concatenation of two or more sub-nodes.
— A choice (the 1" operator) between two or more sub-nodes.

— The. repetition or option (the “* or +’, or "7 operators) of a sub-node, possibly
with.a separator (eg a semicolon).

In the compacted syntax representation, every vertical node is identified by a unique
number. For a node which is a concatenation of sub-nodes, each component sub-
node is either itself vertical, in which case it has its own number, or it is
horizontal, in which case the component can be identified by the enclosing node's
number and an index into the concatenation. Such a node, which is a horizontal
component of a vertical node is known as a phrase. Every phrase has a unique
two-part number (parent node number + index).

Each slice in the document is followed by zero or more structure records, each
specifying information about vertical constructs on that slice. For each such
construct, the structure record contains the node number of the vertical construct,
. the index into the parent node (if appropriate), the depth of nesting of the construct
within the document, and the indentation associated with the construct.

The structure record may either refer to a phrase, or to a vertical node. The latter
case (distinguished by negative index values) can be of a variety of types:

— Complete vertical construct.

— Folded vertical construct.

— Start of alternative construct.

— Position of omitted optional construct.

— Start of optional construct.

— Start of instance of a repeatable construct.

— Start of separators between repeatable constructs.
— End of instance of a repeatable construct.

S.3 Lexical Analysis

Lines are lexically analysed in isolation, without regard to the syntax. A finite
state machine, automatically generated from the syntax definition, splits the line into
lexemes, passing from left to right. The algorithm always identifies the longest
string possible for any lexeme. The lexemes are classified into:

— Whitespace (to be ignored)

-8 -

— Comments (to be ignored, but preserved)
— Fixed strings (such as punctuation)
— Regular expression strings, matching a regular expression.

— Erroneous strings.

The special case where the same lexeme matches both a fixed string and a regular
expression is known as a keyword. It usually applies where keywords of the
language are reserved identifiers.

Erroneous strings are created as lexemes in their own right, causing the parser to
report them as syntax errors.

S.4 Parsing

When a slice is checked after an edit, it is first lexically analysed and then it is
reparsed. The parser takes each structure record for the slice in turn and parses the
line as the concatenation of its phrases. Obviously, this concatenation need not be a
well-formed construct of the syntax, but each individual phrase will be. The parser
uses a recursive descent algorithm directly on the syntax as specified by the
language implementor. The parser will look ahead an arbitrary distance to resolve
ambiguities, but the look-ahead is bounded by the end of the slice.

The main advantage of using recursive descent rather than an LALR method as used
by yacc is that the non-terminals are all named by the language implementor
(presumably mnemonically), and no unnecessary nodes need be added. This is very
important in automatically correcting errors, allowing any syntactic stubs to have
suitable names.

5.5 Error Correction and Reporting

When the parser discovers that a slice does not conform to the syntax of its
constituent phrases, it attempts to correct the line in a number of ways:

1. If the slice can be completed by the addition of text, this is added on-the-fly
by the parser. This text will consist of punctuation, keywords, whitespace and
stubs. The smallest amount of text necessary to complete the phrases is added.

2. If a previously omitted optional construct could validly match the text of the
slice, that optional construct is added.

3. If all text after the position of the syntax error consists of punctuation,
keywords, whitespace, stubs and comments, that text is deleted, and the line
re-parsed to be automatically completed as in (1) above. A deleted comment is
remembered and replaced at the end of the (now correct) slice.

If all the above fail to correct the error, the cursor is positioned at the high-water-
mark of the parse attempt, and the error is reported to the user.

S.6 Vertical Structure Manipulation

The operations which insert, delete, copy, move or fold complete constructs also use
the structure records associated with slices. In particular, the structure records
which give the positions of the start and end of instances of repeatable and optional
constructs delimit lines to be deleted, copied. etc. The phrase records, describing the
actual phrases on the lines are not used as these operations all operate on one or
more complete lines and not on the contents of the lines.

One, possibly contentious, decision concerns the treatment of multi-line block
comments. Presumably, these comments should be deleted, moved or copied with

'}---------‘-

n

the constructs to which they refer. However, a comment could either precede or
follow the appropriate construct, and it is impossible to determine the correct action
from the context. In synde, the assumption is that a block comment precedes the
construct to which it refers, and when a construct is deleted or copied, any
preceding comment is deleted or copied with it. On the other hand, blank lines are
presumed to follow the construct to which they belong.

6. APPLICATION TO PROGRAMMING LANGUAGES

To gain any benefits from a syntax-directed editor, the user must be prepared to
accept a discipline in programming that is not imposed when using a text editor.
There may often be editing transformations that seem simple when described
textually, but imply very significant structural changes. The hope is that the
benefits gained outweigh the flexibility lost. The user no longer has the freedom to
make mistakes.

6.1 Language Restrictions

Synde is language-independent’ and can support a large variety of language styles.
It does impose some restrictions on the languages that can be supported:

— That the lexical structure can be described by a set of regular expressions, and is
not dependent on the syntax.

— That comments either appear at the end of a line or on complete lines or blocks
of lines.

— That a line break may not appear within a lexeme.
— That the syntax does not depend on any semantic understanding of the program.

— That the syntax definition is not left-recursive, forbidding constructs defined as
starting with instances of themselves. This requires the use of iteration to
describe repeated constructs rather than recursion. This also has the advantage of
appearing more intuitive.

— That all constructs in the language have an acceptable standard layout, suitable
for automatic pretty-printing.

— That repeated vertical constructs end with a line break.

— That alternative vertical constrv~*s can be distinguished by the first line only; ie
they must differ before the first line break.

When implementing a language that violates some of these restrictions, two
approaches can be used:

— The language can be restricted by the imposition of ‘house style rules’ to
produces a subset language that meets the restrictions.

— The language can be extended to a more general language that omits syntactic
restrictions that cannot be checked by the editor.

62 C

In a Unix environment, the C language is of obvious interest. Unfortunately C has
two major difficulties for syntax editing. Both are because the current version of C
has evolved, rather than been designed as a whole.

Firstly, C is not one language but two. A C program is pre-processed by the cpp
program before passing to the C compiler proper. Cpp has its own language for
symbol definition and conditional compilation. These pre-processor directives are

-10 -

lines starting with a ‘#°' character and are not seen by the compiler. In synde the
only possible treatment of these two intersecting languages is to treat lines starting
with a “#’ character as comments. This means that all defined Cpp symbols must
be well-formed expressions. Conditional compilation is only possible if the
juxtaposition of all the conditional alternatives forms a valid C program.

The second problem concerns the use of ‘typedef’. The C compiler actually places

identifiers defined as types into the symbol table as keywords, modifying the syntax
of the language. In the example:

#include "foo.h"
foo(x)
{

f(x);
return x;

).
the meaning may not be obvious if ‘foo.h’ contains:
typedef int f;

The solution is to impose style rules requiring type names to be lexically
distinguished from functions and variables.

One final reason for not syntax-editing C programs is the large range of text
manipulation programs in Unix that can be used to process conventional C source.
These would all be lost to users of a syntax editor.

63 Some Other Languages

Some common programming languages for which synde may be considered include:

Pascal Pascal implementations have failed to standardise on details of the
lexical definition. Almost every compiler has a different treatment of
upper and lower case letters, extra keywords and comments.
Therefore the syntax definition needs to be tailored to the target
compiler. To avoid the problem of a ‘dangling else’, the syntax
always adds BEGIN & END keywords to all constructs. This is no
problem for the user as they need never be manually typed.

Modula2 Modula2 appears to have no problems at all, since the ‘rough edges’ of
Pzocal have been rem..ed. Synde can support the language in full.

Ada Again Ada poses no problem and is supported in full.

Chill In Chill, the layout strategy for some constructs (such as exception

handlers) is not immediately obvious. Chill has been implemented
with a layout that appears less ugly than some others considered.

BCPL BCPL has a "VALOF block’ which can allow a (potentially large)
block to appear within any expression. This construct cannot easily
be formatted automatically. The solution is to restrict the use of
VALOF blocks to assignment statements and function definitions.

Algol68 As with BCPL, any expression in Algol68 may be a full block, and a
similar restriction is required.

Fortran Fortran has a lexical structure allowing spaces to appear anywhere.

This cannot be supported. but many implementations of Fortran adopt
a more suitable format.

- 11 -

7. SUMMARY

The difficulties outlined above in relation to the C language reflect peculiarities of
that language rather than inadequacies of synde. The editor has now been in use
for some months, and has been applied both to specification languages - Meta-IV, Z
and SDL-PR - and to programming languages - Pascal, Ada and C. Experience with
these implementations suggests that synde is convenient for language implementors
and attractive to end users. The syntax definition required for synde to support a
new language can readily be prepared: Ada, for example, was implemented by one
person in less than a day. For the end user, synde's distinction between horizontal
and vertical syntax offers the major benefits of structured editing without the
irritations that can arise when the syntax directed approach is taken to extremes.
Because of its convenience and benefits IST expect to exploit synde both in the Istar
context and as a stand-alone editor.

A Guided Tour of OSI based NFS

Pete Delaney

-

“Wot, No paper?”

System Management for a Distributed UNIX Environment

Dipl.-Inf. Winfried Dulz
Dipl.-Inf. Roland Langer

Chair for Computer Architecture and Performance Evaluation
(Prof. Dr. U. Herzog)

University of Erlangen-Nuernberg

ABSTRACT

In analogy to system management for central server configurations, distributed
systems must also provide utilities for user handling, system accounting and
resource accessing.

We show for the UNIX network operating system Newcastle Connection how
transaction-orienied protocols can be used to build a distributed tool bascd on
cooperating client/server processes, that will handle the distributed user
management without loosing the main characteristic of NC sites, i. e. the local

autonomy of loosely coupled UNIX systems.

1. Introduction

The great expansion of our campus—wide.UNIX environment leads to many new
problems, especially the user management of those students who are using the
systems only for programming courses could not be neglected.

Each wuser of the distributed UNIX-United system, based on the network
operating system Newcastle Connection (NC), can be categorized into one of

three classes:
1) only local access to one or more nodes

2) local access to some node and remote access to some other node

without having local access on that node
3) local and remote access on several nodes

The NC philosophy is to let each local UNIX system have its own system
management, i.e the systems work independent of each other and remote access
is only possible via a Remote Procedure Call (RPC) protocol if the remote
system manager has granted access to his site via the NC mapping function.

It is clear that the management overhead for users of the third class is
enormeous, because each user who wants to access N nodes must visit N system
managers, each of them has to make N-1 mapping entries, this means N*N entry

operations in the worst case.

The goal of our approach was to build a distributed tool based on cooperating
client/server processes, that will handle the distributed user management
without loosing the main characteristic of NC sites, namely the local autonomy

of loosely coupled UNIX systems.

This paper will discuss our design concepts, especially the performance and
reliability issues and describe some implementation details with respect to UNIX
System V. First of all we will give an overview of our UNIX-United system and

the major principles of the NC.

2. The Erlangen REVUE Network

3. Design Issues
m cooperating client/server processes
m performance issues

m reliability issues

4. Implementation Details
®m process structure
® interprocess communication (IPC)

m system manager interface

5. Concluding Remarks

An Implementation of NFS under System V.2
Bill Fraser-Campbell

The Instruction Set Ltd
152-156 Kentish Town Road, London NW1 9QB

Mordecai B. Rosen

Lachman Associates Inc
645 Blackhawk Drive, Westmont, Illinois 60559

ABSTRACT

Sun’s Network File System (NFS) has been ported to UNIX System
V. The implementation raises some issues of general relevance to
UNIX based network file systems.

1. Introduction

Sun Microsystems’ Network File System (NFS) has been ported to UNIX! System V
Release 2.

The project originally developed out of discussions between Lachman Associates and
Sun, and was carried out as a joint effort by our two companies. The system is
available in source code for use as a reference release of NFS in System V, and is a
fully supported product.

2. Technical Approach

The code is derived from the AT&T System V Release 2 Version 2 source for VAX
11/750. Where possible, changes have been made in such a way as to allow direct
comparison of the NFS source with the original. Particular attention has been paid

‘to retaining SVID!!! compatibility.

3. Overview

In vanilla System V, the data structures which represent objects in the file system,
“inodes”, are manipulated directly by code in the upper levels of the kernel. The
code is highly dependent on the design of the System V file store. In the System V
NFS kernel, inodes and operations on them have been pushed down to a deeper
level, and the u})per layers of the kernel deal with file system independent objects
called “vnodes”?.’ The code which handles vnodes is called the VFS. Operations in
the VFS are not aware of the type of file system underlying a particular vnode.

1. UNIX is a trade mark of AT&T in the USA and other countries,

user_programs
system call processing

VFS
UFS NEFS
drivers RPC/XDR
discs network

Figure 1. Kernel layers

The VFS is embedded in the kernel as an interface layer between high level routines
and the file system specific code. Changes to the kernel are largely confined to the
code around the VFS layer, so that compatibility is maintained with System V
system calls and disc formats.

The VFS layer allows the kernel transparent access to any number -of different file
systems. The System V NFS kernel supports only two at the moment.

1. The UFS, or UNIX File System, the local filestore.
2. The NFS, or Network File System.

The NFS sits on top of Sun’'s published Remote Procedure Call (RPC) and External
Data Representation (XDR) packages. By defining network protocols for remote file
operations, the System V/VFS/NFS combination allows System V to use files on
other NFS systems as though those files were held on local discs. In addition,
System V NFS can act as a file server to other NFS systems.

The principal extensions are new system calls for mounting and unmounting remote
file systems. Otherwise, System V behaviour is largely unchanged. Most programs
do not even need to be recompiled to gain access to the full functionality of NFS.

For details of the general properties of NFS, we refer the reader to @,

4. What Was Involved
4.1 The Vnode Kernel

The System V kernel was split into two parts. One contained the System V system
call interface, and those parts of UNIX which are clients, not components, of the file
system: in other words, all those parts which can be considered as file system
independent. The other contained all the code which implements the System V file
store, destined to become the UFS.

Any functionality above the VFS can be applied transparently to any of the file
system types below the VFS. Operations carried out below the VFS only apply to
a single file system. It follows that the decision on where to spht the kernel has a
major effect on the behaviour of the finished article.

For example, in the System V NFS port, the paging code is positioned above the
VFS, making it possible not only to execute remotely stored programs, but also to
demand page them over the net.

In contrast, the specification of the ustat system call makes it impossible to ustat a
remote file system, unless the arguments are changed. Rather than do that, we
chose to put ustaz below the VFS, so that it will still work, but only on local file
systems. To allow users to gather information about remote file systems, we wrote
statfs and fstatfs system calls into the NFS kernel. These system calls are defined
to have the same arguments and effects as the Sun system calls of the same name.
Since they lie above the VFS, programs which use them will operate equally well
on local and remote file systems.

}- e

Naturally, much of the code above the VFS had to be reworked to use the VES
interface. Most of the changes were of a mechanical nature, such as replacing calls
of “namei” with calls of “lookupname”.

The major additions to the system above the VES are:

1. Each component of a path name has to be interpreted individually, since any
component might be a remote mount point. The new lookup code is less
efficient than namei, but is more suited to the NFS environment, and easier to
maintain.

2. To compensate for any loss of performance due to the replacement of namei,
Sun’s directory name lookup cache has been ported to System V. This cache
retains the vnodes which describe recently used directories, so that the number
of lookup operations is kept to a minimum.

.

been fitted. Heap storage is freed into a fast-fit treel¥), rather than released, so
that subsequent requests for heap store will be processed quickly.

4.2 The UFS

The UFS, or local file system, is media compatible with System V, and much of the
code is unaffected by the NFS port. However, NFS requires a generation number to
be kept for each file on disc, so that the NFS server can detect accesses to files
which no longer exist. System V inodes contain 13 disc addresses packed into a 40
byte space, so we are able to use the 40th byte to hold the generation number.
Since one byte can only hold 256 possible values, there is a chance that the
generation number could cycle round fast enough for mistakes to happen. In
practice this turns out not to be a problem.

3. A kernel heap, which is used for all transient storafe in the NFS code, has

Some revisions and extensions were made to the buffer cache. NFS caches data from
remote systems in the same buffer pool as local data. This introduces some
problems. In particular, in an NFS kernel it is meaningless to associate a buffer
holding remote data with either a major/minor device number or a disc block
number. Instead, the data is identified by the address of a vnode and a logical
block number within the file that vnode represents. Logical block numbers start at
zero for each vnode. Using logical block numbers in the cache destroys the
usefulness of the hashing algorithm used to locate buffered data. We found an
adequate, fast hash function to be the address of the vnode plus the logical block
number. NFS makes it necessary to flush the buffer cache more frequently than
before. The flushing acts as a slight penalty on the use of remote files.

The most significant change in the UFS code is in the handling of directories. All
directory manipulation is now concentrated in one module. The code reflects the
new strategy for path name parsing implemented in the VFS layer, and goes to
great lengths to avoid deadlocks and process interactions without violating the
stateless nature of an NFS server.

The device driver interface is source code compatible with System V. It proved to
be impossible to retain binary compatibility as kernel data structures were modified.
A representative range of drivers has been built and run without trouble.

4.3 The Network File System

The Sun Network File System (NFS) has been implemented under the System V
VFS as simply another file system type. It provides the capability of manipulating
filss on a remotely mounted file system, transparently. That is, local files and
remote files can be operated on with a single set of file system semantics. Both the

client and server side of the NFS protocols have been implemented and reside within
the System V Kkernel.

Along with being transparent, the NFS is designed to offer file sharing in a
heterogeneous environment. In order to facilitate this, it is forced to view some file
system objects like directories and directory entries in a somewhat general fashion.
This necessary network view causes some problems for System V.

For one thing, directory entries have to be converted between System V format and
NFS network standard format. This causes additional overhead to be incurred but
does not introduce any loss of functionality. Though read() and seek() are still
supported for directories, there is some semantic sacrifice when they operate over the
net. It is clear that seeking to a particular offset within a directory does not have
the same meaning that it did in the local case. In addition, the size of a remote
directory may not directly reflect the number of entries contained within. In order
to provide a more general interface to directories, a new system call called
getdirentries() has been provided in System V NFS. Isolating applications from
direct access to directories appears to be the direction, being taken for System V.

By design, NFS puts the burden of state maintenance on the client side and allows
the servers to be stateless. In the event of a server crashing, a client need only
retry an operation until successful. Since clients often want to know the status of
a file’s attributes, such as size. mode, or modification times, this information is
included in the packet transferred for most operations. To counteract any
performance penalty associated with the need to have up to date attributes available
on the client, an attribute cache is part of the NFS design, and was ported to
System V NFS. Though this cache is a definite performance improvement. it can
give a somewhat false view of a remote file. It is possible for a stat() system call
to return the attributes of a file that is still cached but was removed a few seconds
ago by another machine. These potential synchronization problems introduced by the
cache are not a problem in practice. '

4.4 RPC and XDR

RPC, or Remote Procedure Call, is the mechanism by which the NFS communicates
with other machines. This facility provides the NFS with the capability of
executing file system primitive operations remotely. RPC and the supporting functions
that implement the eXternal Data Representation(XDR) protocols have been added to
the System V kernel.

RPC insulates the NFS from any knowledge about the underlying transport
mechanisms. The only view that the upper layer has is that of a natural
programming interface. Remote calls are made over the net by simply calling a
function as if it were to be run on the local machine and within the address space
of the invoking process. The fact that the arguments to the function are being
converted into a network standard format and the specified function executed on
another machine is transparent to the caller.

The System V RPC implementation uses UDP/IP as the underlying transport
mechanism. Even though RPC includes a generalized facility for interfacing to more
than one transport, in practice UDP/IP is the only one currently used.

The UDP/IP transport layer used in this implementation was provided by integrating
Excelan’'s EXOS 204 package into System V. This package is comprised of an
intelligent ethernet controller card running UDP/TCP/IP on board along with an
associated driver to provide 4.1C BSD socket primitives. The vanilla package
provided us with 90% of our transport requirements. The fact that the only
interface to the EXOS socket functionality was through a driver turned out to be

G —

somewhat awkward. In the end, a new kernel level interface to EXOS sockets had
to be devised.

5. Details of System V NFS
5.1 SVID Compatibility

Departures from the SVID have been kept to a minimum. The following system
calls are affected:

system call | status details

flock restricted | will not flock remote directories

link restricted | cannot link to directories

mknod restricted | cannot make directories

mount restricted | local file systems only

read restricted | some restrictions on remote directories
seek restricted | some restrictions on remote directories
umount replaced different argument

unlink restricted | cannot unlink directories

ustat restricted | local file systems only

TABLE 1. System call interface changes

The restrictions on link, mknod, and unlink are necessary as remote operations have
to be atomic, to reduce the chance of failure in mid-flight. The new system calls
mkdir, rmdir, and rename provide clean, atomic transactions which replace the
sequences of system calls previously necessary.

In addition, several of the user commands are affected by the NFS changes. All but
one of these are a direct consequence of the changed system call interface or changes
to the kernel data structures. The exception is ““find”, which used stat to find the
length of a directory and deduced from that the number of System V directory
entries which could fit into that space. Such a calculation is no longer valid when
dealing with directories not in the System V format.

command status function .

crash . revised handles changed data structures
daf revised uses new statfs system call

find revised does not stat remote directories
killall recompiled | depends on kernel data structures
mkdir replaced uses mkdir system call

mount replaced uses new mount. nfs_mount system calls
mv (cp. In) | revised uses rename system call

mvdir revised uses rename command

ps recompiled | depends on kernel data structures
rmdir replaced uses rmdir system call

umount replaced uses changed umount system call

TABLE 2. User command changes

System V device drivers are compatible with the NFS kernel at the source code
level.

5.2 Extensions

Almost all the extensions described are necessary to make NFS work. Some are
performance options, and could be omitted if desired, but we found them to be so
effective as to be essential. The following system calls are new:

-6 -
system call details

async_daemon | asynchronous i/o daemon entry

fstatfs local and remote file systems

mkdir necessary to make an atomic operation
nfs__getfh mount server entry

nfs__mount remote mount-

nfs_svc NFS server entry

getdirentries returns a network wide directory format
rename necessary to make an atomic operation
rmdir necessary to make an atomic operation
statfs local and remote file systems

TABLE 3. New system calls
Some new commands are provided as part of the NFS package:

command function

biod asynchronous i/o daemon
mountd server side mount daemon

nfsd NFS server daemon

rename renames files

showmount | shows details of remote mounts

TABLE 4. New commands

Biod is a performance aid. Output operations over the network are always
synchronous, which slows down large writes by a considerable amount. Multiple
copies of diod may be run, each of which loops. doing “asynchronous”™ output over
the network on behalf of other processes. Thus if 4 biods are running, 4 write
transfers can be performed simultaneously without any user process having to wait
for their completion.

6. Future Directions

During the course of this port, we found a number of places in the NFS software
where further research might yield gains in performance or functionality. Here is a
preliminary list of things we plan to investigate:

1. Vnode locking above the VFS, to prevent local processes from interacting in
destructive ways. It will never be possible within the NFS architecture to
provide process synchronization over the network, but since inode locking is no

longer meaningful above the VFS, some potentially risky interactions have
become possible.

Adding the 4.2 BSD fast file system as a performance enhancement option.
A variety of long file name compression algorithms.
Allowing files to be truncated to a specified size.

A more generalized tra rt layer interface within RPC. AT&T's proposed
Transport Service Interfacel! is a likely candidate.

S AL

7. Acknowledgeménts

It is in the nature of a porting project that much of the work done is not original.
We should like to thank those at Sun who, by producing and maintaining a sound
original design, made it possible for us to get the job done on time. In particular,
thanks to Rusty Sandberg, Bob Lyon, Steve Isaac, and the Sun NFS consulting group.

T S —

Jon Lancaster and his staff made it possible for us to test our software against no
less than 14 other NFS ports. The logistic problems he solved in getting 20
computers and 60 people from 15 companies into one room defy description.

Sun Microsystems, Inc. provided us with hardware, office space, and a technically
fertile environment.

Excelan, ‘Ihc. generously provided Ethernet hardware, software, and support.

Finally, our thanks go to Daniel Goldman, Ezra Goldman and Sally Rutter.

REFERENCES

1. The System V Interface Definition, AT&T, 1985

2. An Architecture for Multiple File Systems in Sun UNIX, S.R. Kleiman, Sun
Microsystems Inc., 1985

3. Design and Implementation of the Sun Network Filesystem, Sandberg et al,, Sun
Microsystems Inc., 1985

4. Fast Fits, C.J. Stephenson, IBM Sys. Journal

5. Proposal for a UNIX Transport Service Interface Standard, David Olander and
Gilbert McGrath, AT&T, 5th September 1985

Fiore Project: Wide Band Area Network

M. Guarducci

~

“Wot, No paper?”

1
i .
I
!
!
:
I
'
1

Fun With UNIXt at Lucasfilm

Michael Hawley . -

The Droid Works
P.O. Box CS 8180
San Rafael, CA 94912

ABSTRACT

Why do computers and movies mix well? And what does UNIX have to do
with it? Before the Lucasfilm Computer Division becomes history we should
consider why research there has been so much fun. We claim that computers
and rich interfaces — like the arts — are an inherently fruitful mix. Audio pro-
gramming and music programming are especially exciting since the audio chan-
nel is such a powerful and little-used communicator. Furthermore, the rapid
rise of synthesizers has only recently made it possible to purchase a rackful of
truly musical instruments that are computer-controllable. We will briefly
describe a simple UNIX/music system that uses Sun workstations to control
cheap, store-bought synthesizers, is easy to set up, sounds amazingly good, and
is fun to program. The music software is in the public domain.

1. Introduction

syn.the.sis pl syn.the.ses
Etymology: Gk, fr. syntithenas to put together, fr. syn- + tithenas
to put, place —more at DO .
1) a) n, the composition or combination of parts or elements so as to form a whole
b) n, the production of a substance by the union of elements or
simpler chemical compaunds or by the degradation of a complex compound
¢) n, the combining of often diverse conceptions into a coherent whole:
also: the complex so formed
2) a) n, deductive reasoning
b) n, the dialectic combination of thesis and antithesis into a higher stage of truth

Computers are fun at Lucasfilm: they are married to movies, and that is a beautiful synthesis.

Precise notational tools — UNIX — powerful information engines — like the ASP and PIXAR com-
puters — and an incomparably rich interface — film — make a synergistic mix. Film is an
opulent medium, and simulating its complexity can require considerable horsepower and flexibil-
ity. UNIX binds powerful tools together simply. Like a good algebra, it can hold up under the
weight of heavy and complicated abstractions. Lucasfilm is infamous in certain circles for pro-
ducing 50,000-line megabyte-shoveling software monsters that take hours or days to compute a
few frames of synthetic images or a few minutes of sound; and that notion grates with the crisp
minimalism of UNIX, but the two coexist well. Besides — what other operating system would
you throw in the path of an onrushing $40,000,000 movie?

t UNiXis a trademark of AT&T Bell Laboratories.

-92.

2. The Computer Division: Whence and Whither

Since about 1980, the Computer Division at Lucasfilm has been researching basic aspects
of imagery and audio. The charter was open: to computerize any interesting parts of the film-
making process. This has included general and far-reaching work in digital audio (under James
A. Moorer) and digital imagery (under Ed Catmull and Alvy Ray Smith), as well as more appli-
cative projects, like very high resolution laser scanning and printing of color film, the construc-

‘ tion of something like a “word processor” for film and sound editors, and sensory-intensive video

| games of the future (that run on the home computers of today). The graphics group has pro-

| duced visual effects of wonder and beauty for major motion pictures (Star Trek II, Return of the
Jedi, and most recently, Young Sherlock Holmes). The audio group has provided sound effects
and special processing for sound tracks in Amadeus and Indiana Jones and the Temple of Doom,
among others. Productions are consuming, but they do much to help the technology grow.

Big Numbers'

The brief computer-generated animation Andre & Wally was computed intensively over
severa] weeks, using a dozen machines and exercising the latest in rendering algorithms. The
complexity of synthetic images astounds: Andre 8 Wally was computed at a resolution of
512X488 pixels; was 1.4 minutes long; had 809 animation controls; and contained 2.9 million
polygons per frame (on average). This requires the equivalent of about 1 year of compute time
on a VAX 11/780, and 25 man-months, and if computed at film complexity (higher resolution)
would require about 17 years of VAX time. The rendering of a “typical” (for Lucasfilm) frame
requires about 6-8 Mbytes and 1-2 hours on a VAX; bad cases are more gruesome.

Audio processing is also a labor- and computationally-intensive job. For instance, while 2
or 3 editors can edit the picture for a feature film, a staff of 15 or 20 to deal with all the sound
is not uncommon. It has been estimated that the processing power in an average 32-track mix-
ing desk (gain and equalization control, etc) requires about 60 MIPS in digital terms, and to
complicate matters, the nature of the processing changes in real time. The size and bandwidth
of currently available secondary storage are limiting factors: a 300 megabyte disk pack, format-
ted in the standard way, can hold about 42 minutes of 50Khz 16-bit monaural audio. A disk
transfer rate of about 800 Kbytes per second is required to sustain about 8 channels of audio at
the 50Khz rate, and since the mean disk transfer rate is about 980 Kbytes per second, schedul-
ing and buffering algorithms must be shrewd to permit long, continuous transfer and playback.
The Lucasfilm sound effects library is currently stored as a wall of %-inch audio tape, so audi-
tioning and transfer of effects is a tedious thing. Random access and nice browsing interfaces
with pushbutton playback are obviously desirable, but the audio library will require (we esti-
mate) 6 to 10 Gbytes of storage. In the mixing process, considering the different phases of a mix
(from spotting to premixing to final mixing), and the multitude of tracks (several tracks for dia-
log, music, special effects, Foley effects, Darth Vader’s voice, etc), as many as 130 reels of sound
may go into a complicated scene. This gives some idea of the magnitude of the problem.

New Computers: PIXAR, ASP.

The numerical problems of digital movies are awesome. We have addressed them by
designing specialized computers: the PIXAR, an image computer; and the ASP, an audio computer.
Both are 20-40 MIPS microprogrammable devices. The PIXAR is a SIMD machine with a 4-channel
instruction (hence the high speed — 4X10 MIPS). The machine was originally intended to solve
the picture compositing problem, in which digital images are matted (combined, synthesized)
together to form a single image. Algorithms based on a 4-channel (red, green, blue, and translu-
cency) compositing algebra were prototyped and proven under UNIX, and influenced the
hardware design. Often audio and graphics algorithms (such as noise reduction, fast fourier
transforms, rendering algorithms, etc) are implemented under UNIX before migrating to

tNo Lucasfilm paper would be complete without a few Big Numbers.

-3-

microcode. This kind of migration is quite natural since the fast processors are typically driven
by 68000-based UNIX systems (like Sun workstations). Other more complex applications divide
the work between the ASP or PIXAR and its host, for instance, giving the user a bitmapped
display full of controls for a painting system, or windows containing soundfiles that can be
edited or arranged in a sound track.

New Companies

As the technology has matured, it has become evident that markets are not limited to the
film industry, so Lucasfilm has spun off the Computer Division to form two new companies:
PIXAR, which will market the PIXAR image computer and other graphics technology, and The
DROID WORKS, which will market computer assistants for film, video, and audio industries.

3. Loud Programs — More about Audio Computing

We are beginning to take for granted the availability of graphics in interfaces, but the
audio channel, by and large, remains neglected. There are important reasons why most books
are printed in black and and white, without distractions like color or sound tracks; and the
clacking and beeping of computer terminals is already annoying — what would it be like if
obnoxious sound effects like nose crunches, laser blasts and wurfst were gratuitously and
* unnecessarily thrown in? But sound is a powerful and little-understood communicator. It has to
be used to be appreciated. For instance, audio and image interact in curious ways at a fairly
low level: viewed with the same sound track, movies seem to sound about 2dB louder in color
than they do in black and white. There is no scientific explanation for this phenomenon yet, as
far as we know. For another thing, sound hits us hard, especially in environments where com-
puters are usually silent. In graphics programming, an off-by-one error typically results in a few
relatively harmless smudged or skewed pixels, but this is not even remotely like the astonish-
ment of suddenly shifting the magnitude of audio samples from 60dB to — woops!/ — 120dB:
audio goofs routinely blow fuses, exceed the threshold of pain and knock users off their chairs.
Looking at “jaggies” (aliasing) is bad, but listening to them is singularly unpleasant. Sound
seems closer to emotional response than image, and in relative numerical terms, it is probably
easier to compute and evoke powerful feelings with sound than with image. This is perhaps
because the production of audio depends critically on real time processing}, on the ordered spac-
ing of events in time. From low-level signal generation to high-level features like the patterns of
rhythm and musical phrasing, temporal spacing is a critical factor in audio processing, and it
affects human perception, emotional response, memory, and learning, in dramatic ways that we
have hardly begun to appreciate.

On all levels, audio invites time-critical programming, and demands new notations for
expressing such things. To this end, Curtis Abbott has recently developed an interactive
language, called CLEO, which has a syntax resembling C and special constructs (triggers,
schedules, wait statements, etc.) for dealing with time. At the lowest level, the updating of
microcode — plugging and unplugging of software equalizers, etc — is accomplished by maintain-
ing a hardware update queue, which CLEO also deals with.

Too, although the audio channel is one-dimensional, parallelism is inherent. Attempting
to schedule and synchronize the performance of several musical instruments invites parallel solu-
tions. The parallelism in musical streams is one of several reasons why computerized typeset-
ting of complicated musical scores is still a dream, for example. So, it makes sense for us to
divide the film sound problems among a number of processors. One system based on the ASP is
called SoundDroid (a sound designer’s workstation) and it currently uses three processors that
cooperate closely:

t wurf — Hollywood term for a stomach-punch sound effect.
} as opposed to *‘real fast” processing

video
or film
speakers
(@]
O Asp ™
O
O
Q I
68000, UNIX
%T x :g: ﬂ l] ll l] RN (ASP control)
68000
sun cdnsole (console) '
with mouse,
touchscreen,

sliders, knobs.

A Sun workstation with bitmapped display and touchscreen provides the user interface, and
communicates with two other processors: one reads the physical knobs and sliders on the con-
sole, storing and time-stamping users’ gestures and forwarding them to the ASP; the other
drives the ASP, managing the loading, plugging and unplugging of microcoded patches, and
the scheduling of playback. Also, since the function of the machine is determined by software,
it makes sense to build a “soft” graphical console. Mixers mount only the sound tracks they
need, and display in their desk only what processing elements are required. The displays the
user sees are full of critical information: one window presents sound tracks in parallel (with
time running from top to bottom), one shows a screenfull of processing components, another a
library of sound effects, ete:

(=== lE=] o R
e T T | P® = ||~ = ==
SRS e g - = - 5 e = — |52
- SIS =~ I
= || = =0 SN L ST ==
g - u._.:f--'%-': == 2 o T — | e,
- I N e I = e
= - =]- 2 o —i| ., -
= == o (2° — =1
e T il === SHE S Sl ===

For instance, cutting and pasting of sounds is done by “pressing the glass” once or twice, and
the result is displayed and auditioned instantaneously — a far cry from laboriously copying
physical magnetic tape and splicing it into a reel at the proper place. Keeping such a system
as interactive as possible is a constant challenge.

4. Cheap Music: UNIX and MIDI

The AsP is a vast audio research tool, and unparalleled, especially for signal processing.
Still it will be a long time before there is an ASP in every living room — even George Lucas’s.
Fortunately, the recent advent of MIDI (a communications protocol something like RS232 for
controlling synthesizers) brings inexpensive and interesting synthesizers under computer con-
trol. For a few thousand dollars — a fraction of the cost of an ASP and competitive with the
price of a reasonable piano — it is possible to purchase synthesizers that produce sounds of
remarkable complexity and can be easily manipulated by computer.

We use a Sun workstation and a Roland MPU-401 MIDI processor to play, record, and
compute music with MIDI synthesizers. Our Sun/MIDI setup is derived from work done by
Gareth Loy et al. at the University of San Diego. A typical configuration:

ribbon cable

sun

U\ multibus %/‘1

card @

MPU-401

to speakers

Yamaha DX-7

IRt MR NIRRT

L]

| —

sun cdénsole

with mouse,

touchscreen,
and keyboard.

The Roland device is a small, cheap (about $200) MIDI processor. It was designed for use with
personal computers and is capable of controlling 16 MIDI channels (i.e., instruments). It typi-
cally manages real-time problems like playing and recording. For instance, scores consist of
time-tagged lists of events — key on, key off, parameter changes, etc. — and to play a score, an
application simply writes data to the device. The MPU-401 buffers and plays score data, inter-
rupting the host when more data is needed. A reasonable driver and higher-level libraries per-
mit programming at a more humane level. Following are a few programs, which, while trivial
for computer scientists, inkle at the possibilities.

Instant Muszak

The muzak program filters ascii text to music by simply playing ascii values as notes.
The basic filter is simple:

int wwor; /* file descriptor of Roland device */

note(n) { /* play pitich n */
int velocity = 100;
NoteOn (midi,n,velocity):
nap (Tempo) ; /* slecp for Tampo 60ths of a second */
NoteOff (midi,n);

}

main() {
char c;
uipr = open ("/dev/midi",2); -
if (midi < O) perror("no wipr — bleagh!"), exit(1l);
MpuSend (midi, MPU_RESET, O):
wvhile ((c=getchar()) != EOF)
note(c):
exit (O) ;
}

The actual program is a bit more complex, but not much. It has options to do things like play
punctuation characters longer than letters, play louder and faster inside parenthesized groups
(so nested loops in C code sound frantic), etc. It also spells out characters while hammering
out their pitches on the synthesizer, which adds a lot to the fun. This makes a new kind of
musical “word painting” possible. The following makes a cute, even beautiful, tune:

hip... hip... hippety hip hap... hap...

happy birthday to you

happy birthday to you

bhappy birthday dearrrr aannnndddddddyyyyy vYY Y YVY . .
happy birthday to... [you] {11t}

HAPPY BIR TH?:V TO0 vou

Playing kernels and other binaries tends to be tedious and spastic, but alphabetized listings,
heavily punctuated dictionary definitions, and numeric files (like octal dumps) are driving and
exciting. With English text, letter frequencies give tonal colors to the sound — happy birthday
is in c# minor with a bitonal hint of D major, and the similarity between the melody happy
(G#CHE-E-CH and ...hday (G#E-C#C#) is musically interesting (and serendipitous).

Playing in Parallel
The command

play -s a b ¢

plays MIDI files a, b, and c simultaneously (in parallel). In addition, the play command
(and other commands) can accept piped streams as well as filenames, e.g.:

play -s "|emdl..." "|cmd2..."

where the notation "|cmdl..." means “read from the command cmdl...” This allows
both files and live processes to provide streams of input. The notation is implemented by a
simple pair of routines, sopen{) and sclose(), which combine fopen/fclose and
popen/pclose. sopen(name,mode) opens name as a pipe, using popen (), if name

begins with a bar "|"; otherwise fopen () is used. Infix commands can (and often do) exe-

cute on remote systems, so processing can be done in parallel. This facility has proven useful
in a number of other contexts.

Upside-Down Bach
The first prelude from Book I of Bach’s Well Tempered Clavier

MU O i

played into a computer looks like this:

O i LUV Y f el Ml TU 257 2 oty e (Ll Ll 5 80 0t -2 2 540 O 4 28 L, L} Lo L Bl 5 kAT I ey, ""—_I

This editor displays score data in piano roll format; the scrollbar gives a bird’s-eye view of the
score, showing the whole piece and the part in view. We can zoom in or zoom out, or by
reshaping the frames, look at the music in a variety of new ways:

(1] 1]
NNy, e = I'I ! N
we " e 1IN mmeim "“"'d-‘"" e n as * | ::“ —
111} 'l-l.'.-|l e "'.l...- L N1 [ININI{N]] 0 n I I ﬂf .l e 1 L} EE——
-m ---" " wnumw e wn ten " LE_I] (TR waltt MRS v ' T —
--::::m‘::-“-l'::-- areen " n I. 'l ' ;I‘;::::'. "nun |"|' LININ N NI} Il“..l L] ' -
—.---::::.‘ 'l.l.l.lh qg u:::- " u--::u nonwn o
- l'.'] —manm L --_n —
l\l'll o) — —
CEYR
1 a ' .f.|
B — R L v D L T T LI DRI N st semses 2 icicarmrmmrornr o, 2]
1"—
ST T o 22 cme T e memomes on !
jﬁ;;;;ﬂ&.—'ﬁ-...... " ..5..2;;;:
-

-8-

We can invert the piece by mapping pitches, p, in the range a.

. .b linearly to an output
range A...B:

((B-A)* (p-a))/(b-a) + A

#include <stdio.h>
#define Alloc(x) (x *)calloc(l,sizeof (x))

#define md(a,b,c) ((long) (a)* (1ong) (b)) /(1long) (c)

|
\
i
This simple filter does that:
#define transform(v, a,b,}A,B) md (B-A, v-a, b-a) + A

between (a,x,b){ return a <= x && x <= b; }

main() {
MpuCmd *m = Alloc (MpuCmd) ;
char p,
a=dx7_MIN, b=dx7_MAX, /* input range */
A=dx7_MAX, B=dx7_MIN; /+ outpul range */

while (GetMpuCmd(stdin,m)) {
if (IsNote(m) && between (a.p=MpuPitch(m) ,b))
MpuPitch(m) = transform(p, a,b, A,.B);
PutMpuCmd (stdout,m) ;

}

Inverting over the entire keyboard ran

bottom and low notes at the top. The
this:

ge is like playing on a keyboard with high notes at the
rightside-up and upside-down versions together look like

M ’—--=__]

—

which is not visually surprising, but this particular piece has a strange beauty when played
upside down. On the other hand, Art Tatum arrangements sound horrible this way,

because
keyboard and melodic idioms don’t invert as well as harmonies — there is more to this

class of

composition than simply running random material through an informational meat grinder.

-

-9-

Contrapuntal inversion has long been a popular, if academic, compositional device, but full har-
monic tnverston hasn’t happened before: without a computer, it’s just too tedious to rewrite the
notes. Inverting harmonies maps major into minor, and vice-versa, and classically grammatical
harmonic progressions are transformed into modal ones. For example, a conclusive-sounding I-
V-Vl dominant—tonic major cadence (e.9., C-F-G-C) turned upside down becomes modal and
minor (and retrograde) i-v-iv-i (fcb"f). The result is a music that sounds at once both old
(because of the modalisms) and very new at the same time.

2. Conclusions

New technology invites new discovery, and new discovery demands new technology.
Beyond this kind of motherhood and apple pie, we are beginning to see the long-awaited renais-
sance computers were supposed to bring. Research at Lucasfilm points this out: multimedia
applications are fun and rewarding, and every computer research group should have easy access
to a room full of synthesizers and frame buffers. Concerning music in particular, interesting
synthesizers are finally cheap and computer-controllable. Professional quality computer music
systems can now be assembled for the cost of a good piano: the technology for it is affordable
and need not be restricted to large institutions. There is still no replacement for a Hamburg
Steinway, and in some ways it is silly to emulate the sounds and techniques of conventional
instruments when so many new things are possible. But there is no replacement for the new
technology, either: at last, we have a set of tools we can use to make a synthesis of computers
and arts worthwhile. . .

3. Acknowledgements

Alvy Ray Smith, Rob Cook, Andy Moorer, and Tom Holman provided interesting Big
Numbers and other inspirations. Mike Russell made useful suggestions regarding this paper.
Gareth Loy et al. wrote many of the original MIDI utilities, including the serpentine device driver
for the MPU-401. Tim Peierls wrote the piano roll editor shown in the paper; Peter Nye is
responsible for the SoundDroid application. George Lucas had the foresight to found the Com-
puter Division, and his continued vision has made this kind of work possible.

Adding Commercial Data Communications to UNIX*

Robert A. Heath
NCR Corg.
Columbia, South Carolina

As the UNIX operating system becomes more
widespread in small business systems, the need to
add commercial data communications becomes important.
NCR in its UNIX-based supermicrocomputer, the TOWER,
has supplemented the basic data communications
tools provided by AT&T with both industry-
standard and internationally standard protocols.
The resulting product provides interconnectability .
in three general areas: asynchronous, synchro-
nous, and local area networking. The paper
illustrates which protocols are important for a
general-purpose small business system and how UNIX
fits into hierarchies such as UNIX-to-mainframe and
. UNIX-to-UNIX networks.

Asynchronous Networking

Asynchronous networking refers to a number of tele-
type communication schemes using low-cost
asynchronous modems through the switched tele-
phone network. The well-known Call UNIX and UUCP are
standard UNIX utilities for asynchronous networking as
shown in Figure 1. Call UNIX allows a user who is
logged in to a local TTY port to dial out through an
outgoing port to log into a remote system. This capa-
bility 4is known generically as virtual terminal.
Call UNIX is relevant in a business environment
because the destination system need not be a UNIX sys-
tem; it could be a mainframe, a public data net-
work, or an information service.

For reliable batch file. transfer, the UNIX-to-UNIX Copy

program, UUCP |, provides end-user services such as
electronic maiil, software distribution, remote

printer sharing, and store-and-forward capability.
These services are actually by-products of its
ability to execute a program on a remote machine, giv-

ing UUCP open-ended capabilities. It is
this open-ended programmability that has given UNIX
users a rich set of peer-level services that are

only recently being introduced to industry-
standard Systems - Network Architecture (SNA) in its
Logical Unit 6.2. Because UUCP's 1link protocol is not
standard outside of UNIX, 1t not applicable to UNIX-
to-mainframe or PC-to-mainframe interconnections.’

*UNIX is a trademark of AT&T Bell Laboratories.

files files
¢
LOCAL E;géj Eggia REMOTE
UNIX SYSTEM UNIX SYSTEM
Applications ' Applications
(C) UNIX- (C)UNIX-
Shell Shell to-UNIX to-UNIX Call
UNIX
Copy Copy (cv)
(uuce) (uuce)
| ! l ! r=1
X l l | I
| kernel : : : kernel : :
| | 0
y TITY y Driver : 1 TTY Driver : :
| ¢ ! ! ! '
| ! | ! ! 1
{ hardware 1) t hardware .
! High PerfPrmance ! High Performance |
| Serial I/O, Adapter Sgrial I/0 Adapt?r)
[1 '
: Login Login Login Dial- Dial- Login
| Port Port Port out out Port
‘ Phone Line port ’ ‘port
|
| Phone Line

(A) Local Interactive User (B) Remote Interactive User

Figure 1. UNIX Asynchronous Networking handles both Interactive and
Batch Processing.

(A) A local user interacts with a shell.
(B) A remote user logs into a local system via "Call UNIX."
(C) UUCP transfers files between UNIX Systems.)

-2 -

However, in distributed businesses peer-level communi-
cations are commonplace, and where multiple UNIX sys-
tems exist, UUCP can fulfill this requirement.

A Front-End Processor for TTY Communications

NCR chose to provide both Call UNIX and UUCP unmo-
dified as part of the standard TOWER software set.
However, to complement TTY communications, NCR
architected the High-Performance Serial I/0 (HPSIO)
board, an intelligent, asynchronous adapter which com-
Pletely transfers the UNIX TTY driver functions away
from the main processor. The benefits were immediate:
1) canonical 1line editing is performed on the adapter
and data is presented to the host processor a line at
a time, 2) echoes are generated at the adapter 1level,
and 3) data is buffered outside the main memory, avoid-
ing "high water" conditions in which critical buffer
availability 1leads to data loss. This adapter allows
large UUCP networks to be set up in-house, using low-
cost direct TTY connections running at 9600 bits per
second.

Synchronous Networking Functions in Standard UNIX

Synchronous networking encompasses character-oriented
and bit-oriented protocols for modern high-speed
communications over 1leased or dial-up phone 1lines.
Though synchronous communications are not new to
UNIX, UNIX is still deficient in this area. UNIX Sys-
tem III introduced the Virtual Protocol Machine, a
software innovation for offloading synchronous pro-
tocols: to an intelligent communications ‘adapter.
The VPM offered an interpretive language similar to ‘C'
for implementing data link control protocols. Its most
well-known application is the RJE package which pro-
vides industry-standard multileaving remote Jjob
entry. RJE offers a commercial grade of terminal-to-
mainframe communications, but it is outdated by SNA
techniques. UNIX System V introduced Bell X.25, also
based ori the VPM, which featured a programmatic inter-
face and served as an alternate vehicle for
UUCP. The implementation was not adequate for gen-
eral X.25 networking because it featured only per-
manent virtual Circuits, omitting the popular
switched virtual circuits.

Despite these standard offerings, further packages
must be added to upgrade a UNIX-based product in the
area of UNIX-to-host and peer-to-peer synchronous
networking for a business environment. -

What Synchronous Protocols Does Business Require ?

NCR decided to include industry-standard protocols
early in the TOWER's product history to intercon-
nect with customer mainframes. The initial bisyn-
chronous offerings were IBM 2780/3780 and IBM
3270. The prevalent SNA terminal node, PU Type
2, was also targeted, along with its associated LU
type 1 for remote job entry and LU types 2 and 3 for
3270 display and printer emulation. Later X.25 net-
working, based on the CCITT international standard, was
added for peer-to-peer and UNIX-to-host connection
through a packet-switched data network.

Hardware for Synchronous Communications

TOWER synchronous communication is rooted in its Mul-
tiprotocol Communications Controller, the MPCC, shown
in Figure 2. Like the VPM, this intelligent
adapter's firmware offloads the time-critical fram-
ing of block-oriented protocols such as bisync,
SDLC, and HDLC from the M68010/20 main processor.

Unlike the VPM, protocol handshaking decisions
are relegated to software drivers within the kernel.
Two exceptions are repetitive functions like

automatic polling and responding to polls, which
would otherwise degrade performance due to their
continuous demands on the processor. The main processor
generates control programs which reference data buffers
in the shared memory area. These low-level programs
direct the adapter to send frames, receive frames, or
control modem signals, leaving most of the actual pro-
tocol logic to the driver. o

The adapter is unbuffered, depending on shared memory
within the TOWER's main memory. Since the
TOWER's main memory is battery-backed, buffer data
is preserved across power failures. Like other
TOWER peripherals the MPCC adheres to the Multibus*
standard. NCR chose to design the adapter itself,
rather than seeking an outside vendor, to meet its
internal standards for reliability and serviceability.

2780/3780 Bisync Emulation

The first TOWER. networking package added was
2780/3780 bisync, which opened doors to peer-to-peer
and UNIX-to-mainframe interconnection. (See Figure
3.) Because it can be used either for remote job entry
to a host or for peer-level file transfer, 2780/3780 is
the most generally interconnectable synchronous

*Multibus Is a trademark of Intel Corporation.

Networking Networking

Applications Application
User Space 4 A
v v
Kernel Space Bisync HDLC
Driver Driver
f A

I

Control Daéa Control Data
Program Program
T
[Y A
32K Shared
Memory
Kernel Space
Multibus
o o o '
8085
P:erozr Frame- DA DMA
ocess Oriented
Firmware T
| J
- USART
+ Scratch z
RS-232
Ra : Intert
rface
ﬁo ule
Multiprotocol Communication
Controller
4 Ports i
Figure 2.

for Block-Oriented protocols.

The Multiprotocol Communication Controller offloads time-critical framing

Mainframe Tower
Job ‘;gggi
Entry II...'
Bisync
Emulation
— -
' A User
or
| + Kermnel
TOWER | 2780/3780
) . Bisync
, Driver
ot | I cemes
Emﬁlation , * ' Hardware
| Multiprotocol
Communication
l Controller
l
! 2780/3780 Bisync
Figure 3.

2780/3780 Bisync provides both UNIX-to-Mainframe or UNIX-to~UNIX Interconnection.

protocol among medium~sized processors.

Within UNIX this simple package consists of user-
invoked application, a kernel-based bisync driver,
and the Multiprotocol Communications Controller. The
application is structured as an interactive UNIX
command which works on a one-for-one basis with a
driver port. The application accepts high-level com-
mands which send from or receive into a given file.
The application level performs less time-critical func-
tions such as packing records of UNIX data into
bisync blocks, file handling, and data compres-
sion. The driver interface employs the standard UNIX
character device primitives open, close, read, write,
and ioctl. Though the bisync driver is considered a
character device, it transfers data across the inter-
face as entire blocks rather than one character at a
time.

Driver performance is time-critical at the message

level. It copies data between the application and
kernel buffers, translates - between user data and
bisync blocks, and performs acknowledgements and
retries. . '

SNA Networking

NCR forecast that many customers would prefer to
interconnect their TOWERs with their IBM hosts in SNA
networks. Adding SNA to UNIX presented some special
problems due to the network
architecture's characteristic multiple layers and
multiplexed data streams. Other problems in struc-
turing the networking system were that some SNA enti-
ties, namely the Physical Unit, were required to be
active whenever the system came on 1line. Meanwhile
the wuser end-points, or Logical Units (LU's), became
active or inactive as users entered and exited their
different emulations.

The solution was to design a pseudo-device in the ker-
nel to bridge the path from the independent LU's to
the 1lower-level network 1layers. This is shown in
Figure 4. Implemented as a background process, the
network 1layers continuously cycle, keeping the 1ink
active and responding to SNA requests from the host.
The pseudo-device buffers the multiple SNA applications
from the SNA demon, presenting each application with
its own device, named appropriately, an LU. This

approach saves kernel memory, which by nature is -

always resident, because the majority of the SNA 1logic
is relocated to the task level.

At its 1lower-order. interface, the network daemon

SNA SNA
Emulation Network
Applications ‘ ‘ Daemon
User Processes 4
Kernel Processes _ ' ’*

SDLC

Kernel Pseudo Device Devige Driver

Multibus*

Multiprotocol
Communications
Controller

* Multibus is a trademark of Intel Corp.

Figure 4. Pseudo-device bridges SNA layers in horizontal arrangement within
Unix. Data flow actually weaves in and out of kernel when crossing SNA layers.

'

-5 -

interacts with a Synchronous Data Link Control (SDLC)
driver within the kernel. This driver issues and com-
pares sequence numbers, acknowledges frames from the
host, and queues data to and from the network applica-
tion.

3270 Display Emulation in SNA

IBM 3270 interactive communications have become a de
facto industry standard. The original product
consists of a cluster controller, intelligent
displays, and printers. On UNIX common video display
terminals play the role of 3270 displays. (See Fig-
ure 5.) An SNA 3270 display emulation program draws
on UNIX's termcap library of terminal capabilities
to intermix various terminals types. This approach
allows users to create their own termcap entries when a
new terminal type 1s introduced. Because video
display terminals seldom duplicate the 3270 key set,
the application occasionally maps multiple terminal
keystrokes to match the 3270 keyboard set. Since
the emulation is structured as a user-loadable
application, operators freely enter and exit from
this role without permanently dedicating the worksta-
tion as a 3270 display.

3270 Printer Emulation in SNA

A 3270 Printer Application cooperates with the
screen-oriented 3270 Display Application. This pro-
gram cycles as a background task, awaiting printouts
from the host. Using the UNIX line printer spooler, 1lpr
, 1t consolidates printouts arriving . from the
host with 1istings originating 1locally. Because
printing through 1lpr is spooled to disk, the Printer
Emulation always appears ready to accept another prin-
tout from the host.

SNA Remote Job Entry

For bulk data transfer between a mainframe and
smaller systems, IBM 3770 remote job entry is
an industry standard. Since a form of remote job
entry, RJE, already existed on UNIX, NCR chose to con-
vert RJE from a package based on multileaving into
one based on SNA. The new subsystem, known as SNA
RJE, preserves the familiar send and gather commands
for their ability to merge ~job decks from component

files. SNA RJE spools user jobs bound for the
host - and alerts wusers on returning printouts via
mail or write commands. The UNIX file system

allows the user to create job decks as files rather
than as punched cards, for which 3770 was designed.
(See Figure 5.) Similarly, returning printouts and

Video Printer Disk
Display Files
Terminal
SNA SNA RJE Job Entry e1es

3270 Display
Application

boom b] b o A

Application Subsystem | Applications

SDLC
Link J

_— RIE Traffic
- 3270 Disply Traffic D

Figure 5: SNA RJE Applications reuse UNIX line printer facilities while
3270 Display Applications reuse UNIX Video Display software.

punch decks become files, allowing the wuser more
flexibility in their disposition.

Under SNA RJE any UNIX workstation can emulate the con-
sole of a 3770 terminal. Thus a user can query the
host on the status of his job within the host
itself. More privileged administrators can issue com-
mands the host's job entry subsystem to alter handling
of the job.

X.25 Networking

Adding X.25 to UNIX shared many of the same problems
that SNA did because of X.25's characteristic mul-
tiple 1layers and multiplexed data streams. Simi-
larly the user end-points, or network addresses, could
became active or inactive as users entered and exited
their different applications.

The solution was to reuse the kernel pseudo-device
approach to connect independent user applications with
the X.25 packet layer just as was done with SNA.
(See Figure 4.) The X.25 layer is structured as a
background process which keeps the 1ink active and
responds to connection requests from remote end-users
when the end-points themselves are inactive. The
pseudo-device presents each application with its own
device, which is the equivalent of a network address.
The network process interacts with the HDLC driver,
which converts the packets into the frames of X.25 Link
Access Protocol--Balanced (LAP-B). The same HDLC
driver, configured for different roles, i1s used for
both SDLC and X.25 LAP-B. The term HDLC implies a
superset of both protocols. _

Combined SNA and X.25

As the popularity of X.25 increased within the early
1980's, 1IBM announced its Plans for X.25'within the
framework of SNA. Instead of announcing new end-
products tailored to X.25 use, the strategy defined how
existing SNA products could be adapted to X.25 packet-
switching networks. IBM added a new protocol, Quali-
fied Logical Link Control (QLLC), above the packet
layer for mapping of SNA data streams onto X.25.

To reuse its 3270 SNA and SNA RJE emulations over
X.25, NCR consolidated its SNA networking software
with its X.25 networking software. The resulting
SNA/X.25 background process merges the SNA data stream
from its emulations, using the QLLC protocol to create
X.25 packets. As with the original X.25 product, the
background process interfaces to the HDLC driver, which
transforms the packets into X.25 LAP-B frames. Since

the 3270 SNA and SNA RJE emulations could not tell
whether they were being transported over an SDLC 1link
or an X.25 network, it was a good example of how entire
levels can be substituted within multilayered architec-
tures.

3270 Bisync Emulation

Figure 6 shows the software architecture of 3270 Bisync
within UNIX. The package is structured as a display
emulation and a printer emulation which interact with a
bisync driver within the kernel. Since the networking
software required for 3270 bisync 1s less sophisticated
than its SNA counterpart, the logic can reside totally
within the kernel. The driver software replies to
specific polls and selections, transforms user data and
3270 protocol blocks, and undertakes recovery and ack-
nowledgments. Most important, it multiplexes the vari-
ous 3270 devices onto a single 1line, allowing simul-
taneous conversations from different workstations.
More time-critical duties such as character buffering,
checksum generation, and block framing are left to the
adapter firmware.

From the user's point of view, the 3270 display emula-
tions for SNA and bisync are nearly identical. Like
SNA 3270, the 3270 Bisync emulation uses termcap for
terminal-independent screen control. In a similar
fashion, it maps an ordinary video display terminal
keyboard into the richer, 3270 keyboard set. A special
"hot key" sequence is defined, allowing the wuser to
exit to a shell temporarily for UNIX processing then to
return to the original 3270 screen image. - Operators
freely enter and exit the display emulation since it is
Just another application.

Local Area Networking

NCR added two levels of local area networking to UNIX.
TOWERNET provides the basic file transfer and virtual
terminal services for interworking multipile, closely-
connected systems. Distributed Resource Sharing (DRS)
extends TOWERNET, not only creating a distributed file
system but also allowing remote devices to be
directly accessed.

As with other communications, TOWERNET is structured
within server tasks, kernel drivers, and a front-end
processor. It is an implementation of the Xerox Net-
work Systems (XNS) 1Internet Transport Protocols that
communicate on an Ethernet CSMA/CD local area network.
The XNS protocols themselves are offloaded onto an
intelligent, programmable adapter which provides the
buffering and rapid response required to support the

Printer
Mainframe Displays Tower
. 3270 3270
CICS Bisyne O Bisync *
Display ‘ Display *
Emulation Emulatio
User
Kernel
VTAM
3270 Bisync
Driver
f . Kernel
NCP ' l Hardware
Multiprotocol
Communication
Controller
3270 Bisync

Figure 6. 3270 Bisync Multiplexes both display and printer data on a single line.

- — S — S S

|

-8 -

distributed file system of DRS. Most of TOWERNET 1is
structured within the kernel to keep response time low.
Server processes running as daemons do the following:
coordinate the time of day within the network, manage a «
directory of machine names, and handle remote file
access. With any other system in the network, users

can send a file, receive a file, log in, or execute a
program. These 'services are subject to security res-
trictions protected by password.

Distributed Resource Sharing, shown in Figure 7, allows
the file systems of remote machines to be mounted
within local directories as if they were ordinary disk
files. Files on remote machines can be "linked" to .
directories on the local machine. To keep file access
transparent to the user, the DRS interface is composed
of ordinary UNIX system calls such as read, write,
stat, mount, unmount, etc. Since remote devices are
transparently accessed from 1local machines, network
gateways can be created without explicitly adding code
for gateway management. An example would be a 1local
user's executing Call UNIX with a TTY device connected
to a modem port on a remote machine. Sharing the dev-

ice across DRS is no different from using a device on
the system itself.

Configuration and Management

A great improvement that NCR has made over standard
UNIX wutilities is 41in the area of package management.
Most TOWER networking packages are installable options.
A special System Administrator login, an alter-ego of
root, allows all optional packages to be- uniformly
installed or removed through a menu interface. Once
installed, packages are accessed with their own
management login for configuring and updating the pack-
age. Rather than forcing on the user to edit the
package's administrative files by hand, as UUCP does, a

menu-driven interface is provided with on-line help
screens,

In-Service Diagnostics

A separate login for runtime diagnostics is provided.
This separate login is provided for the customer or
field analyst to exercise built-in diagnostics. When a
communication device is out of service, the analyst
can run loopback and -‘pattern tests to exercise the
adapter's basic functions. While the device is stilil
on-line, the analyst can run non-intrusive tests such
as gathering statistics and tracing line activity to
check network quality or protocol compatibility. These
additional diagnostic features are an index of quality
in commercial data communications.

TTY
Link

TOWER B

I

2) A user on Tower "C" edits a file on Tower B’

SR —

Ethernet
fo-=mmmcemeemcc = o= = e e et e e e = 1
|
| !
]
| TOWER A | | TOWER C
| 1
Call ;
UNIX Vi
|
Terminal Terminal
Figure 7. Distributed Resource Sharing

L)
1) A user on Tower "A'" accesses a device on Tower' B,

Conclusion

Some of the standard UNIX networking utilities are

reusable in a commercial setting; others can be adapted
to a commercial setting. Generally, more synchronous
protocols and 1local area networking schemes must be
added to offer a well-rounded product. Though adding
more protocols and end-user services is the foremost

concern, these must supported by maintenance and ser-
vice tools as well.

Workstations:t The Next 4 Years
Bill Joy
Sun Microsystems, Inc.

In 1982 at‘the Paris EUUG Meeting I gave a talk about UNIX Enhancements in
4.2BSD and the emerging workstation environment. That talk foresaw environments
of diskless nodes on local networks with file and compute servers. We prototyped
that environment at Berkeley using VAX 11/750's.

Our goals were the same as the CMU Spice project: we wanted low-cost and high-
performance workstation nodes on our network with high-resolution displays. We
wished to emphasize the use of standards and open systems. I described the Sun
Workstation, which met the goals, and compared it to the BLIT and the VAX
11/750. -

Four years later, UNIX and workstations are major forces in the technical
marketplace, - and the architecture described in the 1982 talk is widely supported.
Early vendors of proprietary operating systems on workstations (Apollo, Perq, etc.)
have either switched to UNIX or become significantly less competitive.

1. The first four years

The years 1982-1985 may be considered to be the first four years of workstation
computing. In these years, the 680x0 family has dominated the workstation
marketplace as well as the price/performance sensitive microcomputer UNIX market.
Ethernet and TCP/IP have also come to dominate. Graphics on workstations today
is done by host software on entry-level systems, or by special purpose pipelined or
bitmapped hardware on high-end workstations.

UNIX applications software is relatively little changed from 1982. In the
networking area, Remote Procedure Call (RPC) has emerged as a technique for
building distributed applications, and most vendors have provided bitmapped window
interfaces based on rasterop-vector-polygon type graphics standards. No single
window-system standard has emerged, nor has any radical improvement in the
applications set taken place. ’

2. The next four years

In the next four years we foresee radical performance advances in workstations.
Individual workstations will have performance in the 10-30 mips range, with multi-
megaflop floating point performance. This will bring many hefty applications and
use of new technologies such as Al to the desktop. RISC technology will be the
driving force behind the advance of workstation processor performance.

In the graphics area, we expect to see higher-level software emerge. Presentation
graphics oriented primitives. such as PostScript, should replace bitbit as the preferred
way of interfacing to the screen and output devices. Curves and shaded surfaces
should replace lines and polygons as the way of describing 3d objects. High-speed
fiber-optic networks and the new ISO protocols should replace TCP/IP.

A new applications environment for UNIX, which is more “macintosh-like” should
emerge. A tool writing environment similar to Sun’s SunView provides support for
writing new display-oriented applications, but it will be several years before any
such environment comes into widespread use.

UNIX software developers should see an evolution from a set of modular tools
based on C to an integrated environment based on C++. Support for incremental

compilation, shared libraries and concurrency will aid programming in the small;
higher level tools for configuration control, release management and project
administration will replace antique tools such as SCCS.

3. The Next Os: UNIX/1990?

I expect that by 1990 a new operating system base which will supplant UNIX will
emerge. This operating system would run all UNIX applications, but would have
concepts more suitable for the computing environment of the 1990s. I will

speculate on the shape of the 1990 computing environment and the form such a new
‘System might take.

l

B o= BN B e

Computer Music under Unix Eighth Edition
T. J. Killian

AT&T Bell Laboratories
Murray Hill, New Jersey

ABSTRACT

We describe an evolving computer music system which draws upon many of the
novel facilities of the 8th edition as well as the standard repertoire of Unix tools.
The Teletype 5620 bitmap display serves both as the user's terminal and real-time
controller. The rmux window system is used to download a MIDI interface driver
which services other windows (by direct code sharing) and host processes (which
write on the driver's control stream). We presently have two MIDI-compatible
instruments, a Yamaha DX7 and TX816.

Window programs include a piano-roll style score facility and a virtual keyboard.
Host programs include a music compiler, m, which converts an ASCII score notation
into MIDI events; it is based on lex and yacc, making it very easy to develop in
response to user needs. There is also a variety of filters which perform simple
transformations (e.g., time and pitch translation) on MIDI files. The latter are
ASCII, so that, for example, output from the DX7 keyboard can be translated into
M notation with an awk script, and other Unix text filters (especially sed and sort)
and C programs are useful as well.

1. Introduction - the MIDI standard

Computer music applications have taken off in recent years, largely due to the
introduction of the MIDI (Musical Instrument Digital Interface) standard [1]. MIDI
has made it possible, with very modest hardware, to interface a computer to
synthesizers and other equipment, with broad compatibility among manufacturers. A
full discussion of the MIDI standard is out of place here; we will simply give some
of its essential characteristics.

MIDI uses an asynchronous serial protocol at 31.25 Kbaud to transmit 8-bit data
bytes over a 5 mA current loop: thus, to the programmer, a MIDI device looks like
an ordinary RS232 line. Status and data bytes are distinguished by the high-order
bit being set or clear, respectively. A status byte encodes a function, and (usually)
a MIDI channel number in the range 1 to 16. Bytes are grouped logically into
messages which consist of a status byte and (except as noted below) 1 or 2 data
bytes. For example, the 3-byte message (0x90. Ox3c, 0x40) says. “On channel 1,
turn on note number 60 (middle C) with a volume of 64 (mf).” In most cases the
size of a message is determined by its status byte, so the latter may be omitted if
it is the same as the status byte most recently transmitted.

The messages most commonly used in performance, such as those which select a
synthesizer'’s pre-programmed voices, or turn notes on and off, are fixed by the MIDI
standard. An escape mechanism is provided to allow control sequences peculiar to
the equipment of a given manufacturer. This system exclusive message has the form
(0xfO0, ident, data, ..., 0xf7); ident is a manufacturer's code assigned by the standards
committee; the data is arbitrary (and can be of any length).

Messages are intended to be acted upon in real time by the receiver whose MIDI
channel number matches that of the message. A MIDI performance thus consists of
(mostly) note-on and note-off messages emitted by the “performer” with proper
timing.

There are several problems with MIDI, the most serious of which is probably its
limited bandwidth. Chords consisting of, say, ten or twelve notes become noticeably
arpeggiated, and changes in timbre which might require a long system exclusive
message cannot be fitted into fast passages. MIDI is also rather tightly bound to the
twelve-tone Western scale; it is possible to work around this, again at the expense
of bandwidth. Nevertheless, it still allows a rich variety of possibilities, some of
which we shall explore.

2. The MIDI device driver

Mark Kahrs built a MIDI interface board which plugs into the parallel I/O port of
the Teletype 5620 bitmap terminal. The 5620 has a 32-bit microprocessor with 1
Mb of memory, and runs the mux window system which has been described
elsewhere [2]. Using the 5620 as the real-time controller, we are able to place a
synthesizer under the control of a host computer (in this case, a VAX 750), without
a large amount of systems programming.

The MIDI device driver (midiblt) is down-loaded into a mux window, where it takes
over interrupt handling on the parallel I/O port. Three types of interrupts are
bandled: UART transmitter and receiver ready. and a 5 msec clock. MIDI data are
organized into three queues. Incoming messages are time-stamped and placed on the
receiver queue, where they are available to other software. At clock interrupt, the
scheduler queue is examined for messages with time less than or equal tq the
current time; such messages are moved from the scheduler queue to the transmitter
queue, from which they are sent to the hardware as quickly as possible.

There is a sharp division between routines which control the UART directly (and
handle single characters) and those which manipulate MIDI messages. For example,
the MIDI transmitter is a finite-state machine which understands things like elided

status bytes; it is called by a lower-level routine and produces the next byte to be
sent by the UART.

Routines which empty the receiver queue and fill the scheduler queue are available
from outside the driver. Midiblt places their entry points in a name table
maintained by mux: since there is no memory mapping in the 5620, they are
immediately available to other programs down-loaded in the terminal. This code
sharing mechanism is used to implement a virtual-keyboard program, jx7, which
provides the functionality of a one-fingered mouse-pianist, with slide controls for
volume, vibrato, pitch bend, etc.

3. Communication with the host

Host communication takes place via the 8th Edition stream mechanism, described in
detail in [3]. Briefly, each window is associated with a control stream /dev/pt/ptnn,
managed by mux on the host; when a program down-loaded in the terminal does a
read or write, mux performs the appropriate operation on the pt associated with the
window. The program at the other end of the stream can be the shell (this is how
multiple virtual terminals are implemented), or a special-purpose program (as in the
case of a text editor). Midiblt falls into the second category. It makes a symbolic
link (another 8th Edition feature) to its pt under the name .MIDI in the user’s
home directory, in effect creating a character-special file for the MIDI driver. The
terminal side of midiblt reads characters as they appear from the host, assembles
them into MIDI messages. and places the messages on the scheduler queue. (The
host side of midiblt does not look at this data: error correction and flow control are
performed by mux).

T T - SN

We bave followed a time-honored Unix tradition by formatting the MIDI file in
ASCIL. Such a file consists of a series of lines, one per MIDI message. Each line is
a sequence of blank-separated decimal numbers, viz.: event time (msec), status byte,
and data. (Backslash-newline can be used to break long system-exclusive messages.)
In this form, the entire panoply of Unix text-processing tools can be brought to bear
in rough-and-ready fashion. On the other hand, this format is not well suited for
direct transmission to the 5620, since bandwidth is at a premium. The program
midi, which compresses the data, is used; it replaces (and has similar semantics to)
“cat >.MIDI".

In addition, midi attaches itself to the process group associated with the .MIDI pt.
which allows the midiblt window to send signals to the midi process; this is
necessary so that, e.g.. if the user does a reset from the midiblt menu. there is
proper coordination between the host and the driver. The midi / midiblt pattern is
repeated in the programs score and scoreblt, which produce a pitch vs. time graph.
Scogreblt manages a terminal window and draws the display. Through the code-
sharing mechanism mentioned earlier, it has access to thinkblt which drives a
Hewlitt-Packard ThinkJet dot-matrix printer.

4. Synthesizer control

The system described was first used to run a Yamaha DX7 and, later, a Yamaha
TX816. Both produce sound via FM synthesis [4], a voice being described by
around 100 (digital) parameters, all settable by system-exclusive MIDI messages.
The DX7 has internal memory for 32 pre-loaded voices which can be selected by
number (via the MIDI program change message). It is a keyboard instrument with
additional controls for editing voice parameters (the current voice, whether internal
or downloaded, is always copied into an editing buffer). Although the DX7 is
limited to playing in one voice at a time, up to 16 simultaneous notes can be
produced. The TX816 is a rack-mounted unit consisting of eight TF1’s (essentially a
DX7 without keyboard). Each TF1 can be set to a different MIDI channel., so that
orchestral and multi-track effects are possible.

A number of C programs are used for synthesizer configuration. Txchan assigns
channel numbers to the TF1's. Mecho is used to send “constant” data (such as to
select an internal voice, or alter single parameters of a voice). Dxvoice downloads
voice data from a library file on the host. Here is an example of a shell script
which sets up the TX816 with five instruments, one of which (the harpsichord) uses
two TF1l's in parallel. The violin voice needs to be downloaded: the rest are
already stored in the proper TF1's (they came from the factory this way). Percent
signs delimit comments to mecho: '

VLIB=/usr/tom/midi/dx/voices
txchan 1 1 3 456 78
mecho init \

prog -c1 28 X harpsichord chan 1 % \
-c4 3 %X reeds chan 4 % N\
-c6 24 % flute chan 6 % \
-c8 3 X bass pipes chan 8 % \

dx -c8 p144 24 X move up an octave %\

parm -c4 p4d 127 %X foot control reeds X\
-c6 p2 127 % breath control flute % \
-c8 pd 127 X foot control pipes %

dxvoice =-c3 -v2 $VLIB/tx816.8 # solo violin chan 3

This scheme is complete in that it allows access to any MIDI or DX parameter, but
it is not altogether satisfactory. The user must know, for example, that voice 3 is
“reeds” in the fourth unit, but “bass pipes” in the eighth. Simply assigning names
to numbered parameters does not reduce the complexity, however. Ideally, one
would like an interactive “orchestration editor” supported by a large database.

5. Musical examples in C and the shell

The first piece to be played on our system was written by Cynthia P. Killian using
a combination of C and the Bourne shell. The composer took raw -material
produced by the “munching squares” algorithm and manipulated it by splicing and
dubbing techniques. The heart of the algorithm is listed here:

main()
{
int ¢, x, y, 2, magic = 13, size = 64;
int mask = 2asize-1;
for (c = £ = Q; ¢ <= mask; c++, £ += magic)
for (newfile(), y=0; y < size; y++)
if ((x = (y * z) & mask) < size)
Play((x+y), (x-y));
}

X and y trace out short diagonal segments, which are rotated by 45 degrees and
passed to play. The resulting vertical coordinate is mapped onto a tone row, and
the length of the segment (as determined by a sequence of points at the same
height) determines the length of time the tone is held. Newfile breaks the output
into separate small filess (smunch.??) for convenience. The latter are then processed
by shell scripts, for example, this one:

(divider <smunch.06 3 4; divider <smunch.07 1 2
divider <smunch.07 1 2 !
invert 0 11200 | retxo) | ttrans 0 280 >tmp$s
(cat tmps$s
divider <smunch.08 7 8) | ttrans ‘endtime <tmp$$* -1260
rm tmps

The unfamiliar commands in the script are either shell scripts or trivial C programs.
Sed and sort —n form the basis for cutting and pasting. Operators which do a lot
of arithmetic (e.g, retro, which time-reverses its input) are written in C. The shell
syntax for operator precedence and the semantics of the Unix filter are extremely
well matched to this application.

6. The M language

The need for a closer tie with standard musical notation led to the development of
the M language. We will try to give a feel for the language with a short example,
the beginning of a Bach invention:

5
:
:
E
i
I
!

-5 -
/» Inventio 4 (BWV 775) a/
8 = 120 /+ tempo: 120 eighth notes/min &/
b@ /% key signature: P »/
3/ 8 /% time signature L V4
{
soprano : 1 | 2100 16: A3 e f gab ! c#F bagfel
bass : 1 { 2100 4.: r l r :
soprano | 8: f a da4 | g3 caf e { 16: d e fgabi
bass | 16: d2 ef gab i c#Fbagfel! 8: £ a 43 |
}

An M file consists of “front matter” followed by text enclosed in matching curly
braces. The comment convention is the same as in C. The music is divided into
lines formed by a voice name, an optional colon and MIDI channel number, and one
or more measwres. Voice names are arbitrary alphanumeric strings. Measures are
delimited by barlines and contain notes, rests, and modifiers. Notes specify pitch
class and, optionally, octave number and time value. Pitch class is indicated in
standard letter notation, with accidentals #, @ (flat), and = (natural). The octave
is given by a number appearing after the letter name, e.g., c3 is middle c, and c3#,
c#3 are a half-tone above. The octave number changes between b and c, so a
half-tone below middle c is b2. A missing octave number defaults to that of the
previous note in the same voice. Time value is given by a number preceding the
letter name (1 = whole note, 2 = half note, 4 = quarter note, 4. = dotted quarter
note, etc.). A default value may be set, as in the example above, using a time
value followed by a colon. Rests have time value only and are indicated by the
letter “r.”

A default time value is an instance of a modifier; another modifier used in the
example is “F100” which specifies a “key force” (volume) of 100 units.

Not shown in the example are notations for ties and more complicated rhythms.
Ties map particularly easily onto MIDI events. Observe that a note usually
generates two MIDI events, note-on and note-off. A note with a tie going out (e.g.,
c—). simply loses its note-off event, and one with a tie coming in (e.g., _c) loses its
note-on event. Time values that are inconvenient to generate otherwise can be
specified with numerator and denominator, e.g.. 9/17.

Also not shown in the example are notations used for grouping. Parentheses group
a sequence which may take a modifier, e.g.. “8(c e g)” is a sequence of eighth notes.
Square brackets group a chord similarly, e.g., all of the notes in “[c e g]” are
sounded simultaneously. Groupings may be nested, eg.. “[(c d c) (e g &) (g b &I
has three sequences running in parallel to make a I-V-I progression.

M is based on lex and yacc, and its continuing development depends heavily on
them. M is intended to be used by musicians who are not computer scientists, and
who can’t always pass on the merits of a feature without testing it. Hence the
ability to experiment is most important. Lex in particular has been justly criticized
on performance grounds, given that lexical analyzers are fairly easy to write by
hand. But this is the case only for a static language, and M is still changing
rapidly, particularly in the area of dynamics control.

M produces a MIDI file on its standard output, so that “m bach | midi” is an
example of a common invocation. It also has options to restrict the output to
certain voices or a range of measures, as a debugging aid.

7. The M keyboard interface

It is possible to generate the notes of an M program by playing at the DX7
keyboard. First the note-on and note-off events are collected by midiblt and written
into a file on the host. This file is then converted into a list of note names by
unmidi, with the convention that the highest note on the keyboard (c6) generates a
newline. This gives the user some control over the format. Unmidi also has
options to direct it towards desired enharmonic spellings. Next the output from
unmidi is fed to an awk script which adds voice names. Now only the rhythm and
internal barlines are missing. The latter can be omitted if desired (sum-rule
diagnostics will not be available). The rhythm can be added in the format already
described, but an alternative method (suggested by an irate user) has proven much
faster. A list of rhythmic values (including rests) is enclosed in angle-brackets and
placed between the voice name and the notes, as in this fragment from a
Monteverdi madrigal:

canto < 15(1r) 4. 8 2 4 8 8 2-8 >
| c4d e3 & £ £# £# £# g | _ .
quinto < 1 4(1x) 2. 4 2. 8 8 2-8 8 8 8 >
!l g3 bbcdcfctddad |
alto < 1 3(1r) 2r 8r 3(8) 4-16 3(16) 4. 8 4 4 2r 1r >
le3aaggf=fffeee]l
tenore1 < 1 2(1xr) 2. 4 2 4 8 8 2 4(8) 2 2 1r >
|l c3 e2 e £ £# £# £f# g g# g# g# gf a a |
tenore2 < 2 2. 4 2. 8 8 2-8 3(8) 3(2) 4(8B) 4-16 3(16) 4 4 1.xr >
il ge2 e e fs f# f gggf gaarxreledddddcc !
basso < 12. 4248828888221 1r 2. 4 >
!l c2alab@babbc2cfcfcifctddDdl bl
violint < 1 7(1x) >
. | e4 |
violin2 < 1 7(1x) >
{ c4 |
figbas1 < 1 7(1x) >
| cd |
fighas2 < 1 2 2. 4 2. 4 2-2. 42 2 2. 4 1>
lglefsff ggfabbbcdctdl
figbas3 < 1 1 1 1 7(2) 2-4 >
!l e3 cdef= £f# d f= e £ £# g= |
figbas4 < 1 2. 4 8(2) 2. 4 2 2 »
!

c2alab@b=c2cfddggfaablbli

In this form, the rhythms can be typed in quickly from an existing score.
Parentheses indicate multiples, so. e.g. 7(1r) means seven whole rests. In addition,
— can be used as a tie to add time values together. The list of time values is put

in one-to-one lexical correspondence with the notes and the result is compiled as
before.

8. Future development

The most glaring deficiency in the system we have described is the absence of a true
score editor. This is expected to be the next major development effort. The editor
will read and write M files, so that an ordinary text editor can still be used if
suited to the task at hand.

Bl B T - — A — N —) — -

Twelve-tone pieces such as the one in section 5, and serialized pieces particularly,
would be easier and faster to develop with the aid of specialized tools. These could
range anywhere from a library of C routines to a complete language implemeéntation.
We expect to begin on a modest scale with the former and enlist the efforts of
interested composers.

Voice creation is another important area. A voice editor should provide graphical
control over envelopes and other parameters, and work with the virtual-keyboard
program to give immediate audio feedback.

It is clear that we have barely scratched the surface of an immensely challenging
class of problems. The Unix system, originally crafted as a home for programmers,
has proven remarkably robust, flexible, and downright hospitable as a base for an
exotic application.

9. References

(1] MIDI Specification, document no. MIDI-1.0, August 1983. International MIDI
User's Group, P.O. Box 593, Los Altos, CA 94022, USA.

[2] R. Pike, “The Blit: A Multiplexed Graphics Terminal,” AT&T Bell Laboratori
Technical Journal, vol. 63, no. 8, part 2 (Oct. 1984), pp. 1607-1632. »

(3] D. M. Ritchie, “A Stream Input-Output System,” AT&T Bell Laboratories
Technical Journal, vol. 63, no. 8, part 2 (Oct. 1984), pp. 1897-1910.

[4] J. M. Chowning, “The Synthesis of Complex Audio Spectra by Means of
Frequency Modulation,” Journal of the Audio Engineering Society. vol. 21, no. 7
(1973).

- — i — O SN SN

IBM Advanced Interactive Executive (AIX) Operating System
S Mecenate

1. IBM AIX STRUCTURE

The IBM 6150 micro computer is a new synthesis of computer concepts. It
combines:

e a very fast reduced instruction set 32-bit processor for efficient execution of
programs compiled from a higher-level language.

¢ a resource manager to provide virtual machine, storage. and I/0 functions and to
ensure data integrity and processing continuity,

e 2 multitasking, multiuser operating system that can be tailored to make the
6150 suitable for a variety of user requirements,

® a coprocessor feature that allows users to run programs written for the IBM PC
without interfering with the normal operation of the 6150,

e a wide variety of displays, printers, communications adapters, and processing
features,

e in a box that fits on or under a desk.

As the base for the 6150 Advanced Interactive Executive (AIX!) operating system,
IBM chose AT&T's UNIX? System V, because it provides considerable functional
power to the individual user, provides multi-user capabilities where needed, is open-
ended, and has a large user and application base.

In choosing UNIX, however, we accepted the need to make significant extensions and
enhancements to meet the needs of our expected customers and target applications.

Some of the major enhancements made were:

e a usability package to provide easier access to the capabilities of the UNIX
command language and to simplify the implementation of full-screen dialogs.

e multiple, full-screen virtual terminal support to permit a single user to run
several interactive applications concurrently, time-sharing the console display.

e enhanced console support including extended ANSI 3.64 controls, colour support,
sound support, and mouse support.

¢ an indexed data management access method that is integrated into the base UNIX
file system structure (this allows UNIX system utility functions such as “cp” to
transparently -operate on composite data management objects consisting of an
index file and a data file)

e extensions to exploit use of the powerful virtual storage support in particular,
mapped file support which allows an application to “map” a file into a 256
.megabyte virtual address space, and access it with loads and stores, versus reads
and writes, (a derivative is used by the system to provide mapped text segment

1. “AIX” is a trademark of International Business Machines Corporation
2. Trademark of AT&T Bell Laboratories.

support, allowing paging “in place™).

e enhanced signals to allow flexible exception-condition handling
e a variety of floating point support functions
e simplified installation and configuration processes.

In light of our requirements for application diversity, operating system stability, and
exploitation of the 6150°’s advanced bardware features, we felt that the best
approach was to provide enhancements below, within, and above the kernel. This
led to the software structure shown in Figure 1. The Virtual Resource Manager
(VRM) controls the real hardware and provides a stable, high-level machine interface
to the advanced hardware features and devices. The kernel received corresponding
enhancements to use the services of the VRM and to provide essential additional
facilities. The application development extensions above the kernel were integrated
into the existing operating system structure.

S
Applications Program(s) E
R
Communications Usabililty Vv
Data Management SQL/6150 Data Base (I:
Enhanced Terminal Support Command Processing E
S
(Kernel Interface) K
" Enhanced: [~ Local Terminal Support | Generic Device Drivers | E
Virtual Storage 1131
File System E
L
Configuration
(Virtual Machine Interface)
Virtual Vo o Virtual v
Memory Device Ml [mxdxsel: Terminal |Communications COSI:::;M R
Manager Manager 8 Manager
6150 Hardware

Figure 1. Overall Structure of AIX Operating System

Although the VRM and the AIX kernel have been “tuned” for each other, we have
not precluded the ability to run other operating systems in the VRM virtual
machines. Similarly, the techniques we used to virtualize the existing types of
devices would work for new device types as well. Both the VRM and the kernel
are deliberately open-ended to allow the straight forward addition of new functions
and device support.

The existing structure of the AIX kernel was not well suited to exploit the
advanced features of the 6150 hardware. Rather than making major changes to the

b >

s o S B B I N W e Em

architecture of the kernel, VRM is built to provide a more comprehensive real-time
execution environment. This environment includes multiple preemptable processes,
process creation and priority control, dynamic run-time binding of code, direct
control of virtual memory, millisecond-level timer control, multiple preemptable
interrupt levels, and an efficient interprocess communication mechanism for main and
interrupt-level processes. The VRM software uses these features to control the
ROMP processor, Memory Management Unit (MMU) and /O hardware, and provide
the kernel with interfaces to these functions.

The key to the ability of AIX to support multiple simultaneous interactive
applications is the virtual terminal. A virtual terminal is a virtual counterpart of
the real 6150 display(s). keyboard, and mouse. Each application initially gets a
single virtual terminal to work with. The application can request creation of
additional virtual terminals at will. The virtual terminals time share the use of the
real displays and input devices. A virtual terminal can function as either a
simulated ASCII terminal or a high-function terminal equivalent in power to the real
hardware.

The ROMP/MMU virtual memory architecture, in combination with the VRM, gives
the 6150 a demand-paged virtual memory of one terabyte, consisting of 4096 256-
megabyte segments. The VRM performs page fault handling and manages the
allocation of real memory, paging space, and virtual storage segments. It provides
the AIX kernel with interfaces to control thege functions and to respond to a page
fault by dispatching another process. The VRM can also map memory pages Wwithin
a given segment onto disk file blocks, creating a “single-level store” that makes
DASD and memory equivalent.

The VRM provides the operating system with an extensive, queued or synchronous
interface to the I/O devices. insulating the kernel from the details of specific devices
and the management of share devices. The correct device handler is selected on the
basis of the currently-installed hardware or the configuration files and is dynamically
bound into the VRM. The devices that the application sees are generic devices such
as generalized fixed-disk drives (“mini-disks™) or RS232C ports. In those cases
where the generic devices are not appropriate, or where the real time capabilities of
the VRM environment are needed by the application, the user or a third-party
programmer can write C or assembler language code to implement the necessary
function, and can dynamically add that code to the VRM while the VRM is running
(i.e without re-IPL).

Problem determination in system or user-added code is supported by VRM
serviceability facilities that include trace capabilities, dumps, and a debugger.

The VRM supports the PC AT coprocessor option as though it were another, rather
specialized, virtual machine. The coprocessor runs concurrently with the execution
of programs in the ROMP, but it only has access to the keyboard, locator, and
display when the coprocessor virtual terminal in the “active” virtual terminal, that
is, when it has control of the display. The input from the keyboard and locator
are presented to the coprocessor as though they had been produced by the
corresponding PC at devices. If no display has been dedicated to the coprocessor,
the display interface emulates a PC display on the system display. The VRM
manages the shared system resources to ensure that the ROMP and coprocessor
operate cooperatively. ' '

The VRM resides on a minidisk of its own in a standard AIX file system.
Installation and space management on that minidisk are performed with standard
AIX utilities.

To be able to support the full range of modern applications, AIX needed several
functional extensions. One of the most critical was the need for an indexed access
method. We added a B-tree based data management program that permits either
record-level of field-level access. Although it is packaged separately from the
operating system, data management becomes an integral part of the file system when
it is installed. Similarly, we added a data base program supporting the Structured
Query Language (SQL) to provide both users and application programmers with
relational data base facilities.

2. AIX MODIFICATIONS AND EXTENSIONS

The structure of AIX reflects our response to several key objectives for the 6150.
e a primary use of the 6150 was expected to be as a personal workstation.
e we had to ensure that the performance potential of the 6150 was achieved.

e the system has to be tuned to operate effectively in a virtual memory
environment.

o the kernel had to be made robust enough to be the centre of a production
operating system.

The following sections describe the various changes and additions that were made to
meet our objectives.

2.1 Appropriate Interfaces For A Personal Workstation Environment
2.1.1 Auto Logon

The auto logon facility permits a user to be automatically logged on at the systems
console. This facility is intended for a single-user system or for those users who
are the only ones to logon at the systems console. .

Auto logon is performed when the file /etc/autolog contains the name of a valid
login name as its first or only entry.

2:12 Multiple Concurrent Groups

The multiple concurrent groups facility allows a user to access files that are owned
by any of the groups in which the user has membership. The “primary” group is
specified in the /etc/passwd file. Any additional groups are specified in the
/etc/group file. The setgroup system call is used to specify to the kernel all of the
groups of which the user is a member. If the user would not normally be granted
access to a file on the basis of the standard permission checks, the user’'s group
access permissions are checked. If the user is a member of the group that owns the
file, access to the file is granted.

The system makes extensive use of this facility in controlling and permitting access
to certain privileged system files.

2.1.3 Reduce Superuser Dependency

The AIX system is configured to allow a user to perform many of the superuser
functions without having to log on to the system as superuser or to issue the su
command.

This scheme is based on the use of the AIX file permissions, making extensive use
of group permissions, multiple concurrent groups, and set user ID.

Each of the files (commands, data, etc) is assigned to a particular group, and users
are assigned to corresponding groups (staff group or system group) depending on the

-~ — -

authority to be given to the particular user.
2.14 Removable Media

The removable mount facility of AIX is intended primarily to be used with
diskettes which contain mountable file systems. With this facility mountable
diskettes may be inserted in and removed from the diskette drive without doing an
explicit mount or umount command.

2.2 Interactive Workstation

The Interactive Workstation (IWS) program allows the user to easily connect, via
the asynchronous ports, to another computer system, from either the AIX system
console ports or an attached terminal. The connection can be initiated via a
command interface or a menu-driven interface. The following functions are
provided: '

e The system console keyboard appear as either a 6150 or an asynchronous
terminal to the remote system

e two protocols to transfer files to or from the remote system

e capture received data in a system file as well as display the data on the user’s
screen

e a phone directory function which is maintainable by the user

o a menu by which the user can alter the local terminal characteristics
e 2 menu from which the user can alter the data transmission characteristics
e utilize any of the supported asynchronous communication adapters

e connect to another 6150 and invoke IWS on that system to connect to a third
system

e allow two users on a given system to concurrently use IWS

e invoke IWS or XMODEM from another 6150 or terminal by dialing into an AIX
logger.

The menu-driven interface to IWS consists of several menus. The main menu is
first displayed when IWS is invoked. This menu allows the user to request:

e a connection to another system
e a phone directory menu
e help information
e the “modify local terminal variables” menu
e an operating system command
e quit the IWS program
The connection menu allows the user to:
e send a file
e receive a file

e send a break sequence

e terminate the connection

3. Efficient Operation In A Virtual Memory Environment
3.1 The Virtual Machine Environment of AIX

The AIX operating system kernel executes in a virtual machine maintained by the
Virtual Resource Manager (VRM). The VRM provides virtual machines with paged
virtual memory. up to 2% or one terabyte. The effective addresses generated by
instructions are 32 bits long, with the high-order 4 bits selecting a segment register
and the low-order 28 bits providing a displacement within the segment. The
segment registers contain a 12-bit segment ID. The 12-bit ID plus the low order 28
bits of the effective address yield the 40-bit virtual address. A virtual machine
may have many segments defined. To access one of these segments, the virtual
machine loads a segment identifier into one of the 16 segment registers. Segments
are private to a virtual machine unless the virtual machine that creates the segment
explicitly gives other virtual machines access to that segment. .

Pages consist of 2043 bytes. A segment can contain from 1 to 131,072 pages.
Protection is available at the page level. Pages are brought into active storage on a
demand basis via page faults. '

3.2 Virtual Memory Program Management Extensions

The AIX kernel has been enhanced to use the VRM virtual memory services. Three
AIX program management extensions take advantage of the advanced virtual memory

support.

3.2.1 Segment Register Model

At any given time, the IDs of up to 16 segments may be loaded into the segment
registers. Each of the 16 segments may be up to 256 megabytes. Each page in a
segment is individually protected for kernel access and user access. The AIX kernel
occupies segment register 1. Each user process is allocated three segments. Segment
register 1 is used for the user text segment. The user data segment occupies
segment register 2, and has read-write access. Segment register 3 is used for the
user stack. Segment registers 4 thru 13 are used for shared-memory segments and
for mapped data files. Segment register 14 is used by the VRM to perform DMA
operations. Segment register 15 is used to address the I/0 bus directly.

322 Demand Paging of Both Users and AIX Kernel

Both the users and the kernel execute in demand-paged virtual memory. When a
user-process results in a page fault, the VRM notifies the kernel, so that another
process can be dispatched. This page fault notifications results in improved overall
systems performance. Page faults which occur for a kernel process are handed
synchronously, with no preemption of the kernel process.

3.2.3 Process Fork Enhancements

The AIX “fork” system call creates a new process. The new process (child process)
is an exact copy of the calling (parent) process’s address space. The address space
consists of text, data, and stack segments. Typically, when executing a new
comand, the “fork™ system call is followed by an “exec” system call to load and
execute the new command in the new copy of the address space. This results in
replacing the forked address space with the address space of the new command, thus
undoing much of the work of the fork.

The VRM “copy segment” SVC creates a new segment, but delays the actual copying
of the data until one of the sharing processes actually references the data.
Therefore, most of the data will not have to be copied when an “exec” system call
follows, thus saving the time and memory required for the copy. the AIX “fork”

system call uses this VRM copy-segment facility to create the segments of a new
process. This enhancement of “fork™ reduces wasted effort.

3.3 AIX and Mapped Data
3.3.1 Mapped Page Ranges

Simple paging systems usually suffer from conflicts between file /O and paging L/O.
For example, a file device driver may read disk data into a memory buffer, then the
paging system might write that buffered data out to disk.

Potential duplication of effort also exists with program loading. Having the VRM
page the program directly from the program library saves having to explicitly load
programs and also eliminates space wasted by copying the program out to a page
area of the disk.

Carried to the extreme, only the paging system would need to be able to do
physical I/0. The AIX file manager could tell the VRM the mapping between data
on the disk and virtual memory pages, and the paging system could then perform
all the physical disk. /0.

The close interaction between the AIX kernel and the VRM offers several distinct
advantages

e reduction in secondary paging space
e improvement of performance
e simplifications of the data addressing model.

The VRM supports a means by which AIX can map the disk block of a file to a
virtual memory segment and have physical I/O performed by the memory
management component of the VRM. This mechanism is known as “mapped page
ranges’.

3.3.2 Mapped Executables

The AIX kernel implements mapped page range support in the form of mapped
executables. When a program is loaded. the AIX kernel maps the program's disk
blocks to distinct memory text and data segments. Only the program file header is
“read” by the kernel. All remaining disk /O is demand-paged as the program is
executed. This results in a significant performance increase for large programs.

3.3.3 Mapped Data Files

AIX mapped file support consists of a system call interface to the data file map
page range facilities. The “shmat” system call, with the SHM MAP flag specified, is
used to map the data file associated with the specific open file descriptor to the
address space of the calling process. The data file to be mapped must be a regular
file residing on a fixed-disk device.

When a file is mapped onto a segment, the file may be referenced directly by
accessing the segment via Load and Store instructions. The virtual memory paging
system automatically takes care of the physical 1/0.

A significant amount of system overhead is eliminated by mapping a data file and
accessing it directly via load and store operations, rather than conventional access via
“read” and “write” system calls.

4, Building A “Production” Operating System

A number of enhancements were needed to make AIX suitable for the wide variety
of customer environments and applications.

4.1 1/0 Management

We restructured the /O management area of the kernel to make effective use of the
VRM's /O facilities. Instead of a specialized device driver for each distinct device,
we created a family of generic device drivers that are capable of supporting a
number of unique devices of a given class. For example, a single “async” device
driver handles async, RS232C, and RD422 interfaces. Truly device-specific
considerations are left to the VRM device drivers, which can be added or replaced
dynamically without bringing down the system.

42 Multiplexing

We added a facility to allow dynamic extensions to a file system. If the multiplex
bit in the special file inode is on, the last qualifier of the file name is passed to the
character device driver. The driver looks for the file outside of the nominal file
system. This facility is used to deal with virtual terminals and communications
sessions as files. .

4.3 File Systems

The AIX file system takes advantage of the virtual device interface provided by the
VRM. To improve performance, we increased the block size of the file systems and
the buffer cache to 2048 bytes. To permit AIX to accommodate an indexed data
management feature and a data base manager, we added the ability to synchronize
the buffer cache with the fixed disk on a file rather than a file system basis, added
locking facilities, and incorporated facilities to recover space in sparse files.

4.3.1 Use of Minidisks

The VRM provides the ability to divide a given fixed disk into a number of
minidisks. This permits the seperation of file systems for different purposes onto
different virtual devices.

AIX uses 512-byte blocks for diskette file systems and 2048-byte blocks for disk
file systems.

The space on each minidisk that contains a file system is divided into a number of
2K-byte blocks. A corresponding cache of 2K-byte buffers is used to reduce re-
reading of blocks.

4.3.2 Buffer Cache Synchronisation

Cache buffers are normally only written to permanent storage before the buffer is
used again or with the “sync” system call. AIX has, in addition, the “fsync”
system call that works on an open-file basis to force the modified data in the cache
buffer to permanent storage and does not return until all of the buffers have been
successfully written. This gives the user more control over the data on the disk
and permits an application such as data management services to force writing on
only those buffers that really need to be flushed.

433 Dynamic Space Management

AIX has two system calls to recover space within once-sparce files. The calls are
“fclear”™ and “ftruncate”.

o fclear - zeros a number of bytes starting at the current file position. The seek
pointer is advanced by the number of bytes. This function is different from the

write operation in that it returns full blocks of binary zones to the file by
constructing holes and returning the recovered blocks to the free list of the file
system.

e ftruncate - removes the data beyond the byte count in a file. The blocks that
are freed are returned to the free list of the file system.

4.3.4 File/Record-Level Locking

AIX file and record level locking extensions allow an individual file to be locked in
either an advisory or enforced form.

Records may be of any length ranging from one to the maximum of the file size.
Locks may be applied beyond the current end-of-file or over an area that has not
been written (sparse file regions).

4.4 Process/Program Management
4.4.1 Signals Enhancements

In addition to the standard set of System V signals, AIX provides an enhanced
signal facility. The following are brief descriptions of the system calls that make
up the enhanced signal facility:

SIGBLOCK adds specific signals to the list of signals currently being blocked
from delivery.

SIGSETMASK sets the signal mask (the set of signals to be blocked from delivery)
to a specified value.

SIGPAUSE sets the signal mask to a new value. pauses until a signal not
blocked by the mask is received, and restores the signal mask to its
original value.

SIGSTACK allows users to define an alternate stack to be used for signal
handling or get the state of the current signal stack.

SIGVEC allows users to specify how a specific signal is to be handled.

EXECVE starts a new program in the current process, resets all signals that
are being caught by the original program to terminate the new
program, resets the signal stack state, and leaves the signal mask
untouched.

4.4.2 Buffer Bypass Variations

“Buffer bypass” is a form of disk /O which, like raw /O and mapped files,
bypasses the kernel’s buffer cache, transferring data directly between the VRM disk
device driver and AIX user processes. this offers direct and indirect performance
gains when it is unlikely that the data will soon be reaccessed. The direct gain is
the lack of a memory-to-memory copy of the data. The (more substantial) indirect
gain is the generally improved cache hit ratio which results from not replacing
useful cache blacks with data that is unlikely to be reused.

443 IPC Queue Extensions

System V Interprocess (IPC) message services have been extended to give more
information when receiving ipc messages. The new function call is “msgxrcv”.

The msgxrcv function returns an extended message structure that contains the time
the message was sent, the effective user ID and group ID of the sender, the node ID
of the sender or zero if the sender was on the local mode, and the process ID of
the sender.

- 10 -

Applications and servers can use the additional information found in the extended
ipc message structure to check permissions and send time.

4.5 Terminal support

AIX terminal support is tailored to work in the VRM environment, where terminals
are virtual constructs rather than real devices. It permits applications to use

multiple virtual terminals and to access their virtual terminals in either extended
ASCI mode or in “monitored” mode.

435.1 Console Support

In order to take advantage of the unique functions provided by the virtual terminal

manager subsystem of the VRM, a console device driver was created and modeled on

the RS232 terminal device driver (tty). This new device driver is referred to as the

HFT device driver. It provides support for a console consisting of a keyboard,
' mouse or tablet, speaker, and up to four displays.

4.52 Multiple Virtual Terminals

Some device semantics were established to allow programs to create new virtual
terminals and access existing ones. If a program wishes to creat a new virtual
terminal, the open system call is issued on the device /dev/hft. If an existing

virtual terminal is desired, the program opens the device /dev/hft/n, where n is the
character representation of a decimal number.

If a program needs to know about and control activity on all the virtual terminals
associated with the console, it opens the device /dev/hft/mgr. This gives the
program access to the screen manager component of the VTM subsystem. The
program may now query the state of all the virtual terminals, activate any
terminal, or hide any terminal by issuing an ioctl.

4.5.3 Extended ASCII Mode

The default mode for a virtual terminal simulates an enhanced version of the
standard ASCII terminal. It permits programs built for that infterface to run with

minimal change. It also permits new versions of such programs to access the sound
and mouse functions.

4.54 Monitored Mode

In order for a program to operate a bit-mapped display in bit mode, the program
deals directly with the hardware display adapter by storing to the memory-mapped
I/0 bus.

Even though operating a terminal in monitored mode is complex, the speed of direct

hardware access is attained, and the protected environment of a multiuser system is
preserved.

4.6 Printer Support
4.6.1 Device Driver

The printer device driver provides the interface to the VRM from the Kkernel
environment. Up to eight concurrent printers are supported. Enhancements have
been made to provide better error recovery procedures. Errors, as they are
discovered, are returned to the application environment only if the application

requests that they be returned. A new set of ioctls has been defined to allow
printer control from the application.

Printer performance has often been a problem when high speed printers were used.
The device driver noe supports both synchronous and synchronous write system

—e e

- 11 -

calls. Each of these functions is performed for both serial and parallel printers.

By adding serial printer support to the printer driver, the full performance and
error recovery enhancements can be utilized.

4.6.2 Replaceable/Addable Backends

The print command allows user access to the queuing environment. Multiple queues
per printer allow the same printer to be used for different job types. Mutiple
printers per queue can keep the output flowing in case one printer i§ unusable. The
user should not have to know the details of how each printer works. By providing
a more general printer-support structure, we made it easier for the user to install
and use one of the new IBM printers without knowing the details of how it works.
Configuration options allow printers to be set up for different types of jobs. Thus,
existing applications will work on the new printers without changing the application.

4.6.3 Extended Character Set

The use of the 7-bit ASCI code definition in 8-bit-byte machines has created some
problems. AIX displays and printer support for 8-bit codes was implemented to
help meld PC applications into the world of AIX. The 8-bit support is compatable
with 7-bit ASCII applications and provides an additional degree of commonality with
a large number of PC applications and files.

The AIX support provides a canonical mapping of the most widely used IBM code
pages required by scientific and international applications. The display and printer
subsystems provide controls for accessing these code points. Data stream controls
provide switching to one of three code pages. These code pages are designated: PO,
P1 and P2.

The base code page, PO, is based on the IBM PC display font with the exception
that the first 32 code postions contain controls instead of graphic characters. In
order to access graphics on code pages P1 or P2, application programs need to imbed
switching controls for the printer or dispay in the output data stream.

The extended graphic characters defined in PO, P1 and P2 fulfill the major support
requirements for the US, Europe, Teletext, and scientific symbols.

4.7 Floating Point Support

The 6150 system provides enhanced services for floating point arithmetic. These
services are designed to support the Institute of Electrical and Electronic Engineers’
(IEEE) new standard for Binary Floating Point Arithmetic (754). The floating point
package is utilized by the C, FORTRAN, and Pascal compilers for all floating point
operations. Floating point operations can be further enhanced with the addition of
the hardware floating point accelerator feature.

The floating point routines provide an environment of six floating point registers,
with a status register that controls exception and rounding modes. The floating
point registers may contain either a single-precision or a double-precision floating
point number.

The Floating Point Accelerator has 32 sets of floating point registers available for
user processes. When there is no Accelerator, floating point subroutines emulate the
floating point registers in a reserved area on the user's stack.

S. Reliability/Availability/Serviceability (RAS)

The IBM 6150 system RAS support is designed to provide a coherent and consistent
set of error detection and correction schemes. Wherever possible, functions and

—__— :

-12 -

components are self-diagnosing and correcting; that is:
¢ error messages with clear unambiguous meaning are generated
e formatted error logs are automatically generated
e dump facilities are provided)
e error analysis routines support software and hardware problems determination

A primary objective of the 6150 system RAS support is to provide problem
determination and correction. As such, the system must be reliable in all respects,
but in the event that there is a failure, the system must be easily and quickly
diagnosed and recovered.

The following are problem determination facilities in the 6150 system.
S.1 Trace

The trace function is intended to provide a tool for general system/application debug
and system performance analysis. Trace monitors the occurrence of selected events
in the system. Important data specific to each of these events is recorded on disk.
When the user needs to view this data, a trace report program formats the trace
data in an intelligible form. The trace function may be started either by the user
or by an application.

Trace can operate at all levels of the system: below the VMI, in the kernel, and at
the application level.

‘52 Dump

The IBM 6150 system provides a system level dump capability to enhance the user's
ability to do problem determination and resolution. In the IBM 6150 a “DUMP"
environment may be characterized in several ways:

e the VRM or virtual machine ceases execution
e the VRM or virtual machine abends
These failures may occur in an application, the base operating system, or the VRM.

When a failure occurs, the user may choose to initiate a dump. The user presses a
dump key space sequence: CTL-ALT-NUMPADS for a VRM dump. The target for a
virtual machine dump is the dump minidisk and the data placed on that dump
minidisk is defined by UNIX System V. The target for a VRM dump is a high-
capacity diskette.

The VRM dump program is permanently resident in memory. It has its own
diskette device driver. It is self-contained and does not depend on any VRM
resources.

S$.3 Error Log

The error log function provides a tool for problem determination of hardware and
some software errors. Data specific to a problem or potential problem and certain
informational data is recorded on disk. When the user needs to view this data, an
error report program formats the error log data in an intelligible form.

For each hardware entry in the error report. an analysis of the error is appended.
This specifies the probable cause, the error, what hardware pieces to suspect as bad,
a list of activities the user could perform for further isolation, and a service request
number. This analysis is based solely on that error entry. The error log function
can be started by superuser, but is generally started by /etc/rc.

-13 -

Error logging can operate at all levels of the system: below the VMI, in AIX, and
at the application level.

5.4 Update

Updates for software products on the 6150 are packaged together on the same
diskette. A new “update” command provides a menu interface to applying these
updates. When an update diskette is received, the user can “apply”, on a trial
basis. the updates for one or more of the software products that are already
installed on the system. The user can then test the updated programs to ensure
that they still function correctly in that environment. If the updates have caused a
regression, the user can run the update command to “reject” (back out) the update.
Otherwise, the user issues the update command to “commit™ the update as the new
base level of the program.

6. Conclusion

We believe that we have successfully made AIX into an operating system that can
be used without detailed knowledge of its internal structure. It takes advantage of
the functions of the virtual resource manager to exploit the capabilities of the 6150
hardware. It provides us with a general base on which to provide support for
additional devices, applications, and communications features without massive re-
coding or user inconvenience.

Restartin Processes. from Core Images
8 in UNIX' 42BSD

Marco Mercinelli

Sezione Metodologie Software
Divisione Informatica
Centro Studi e Laboratori Telecomunicazioni (CSELT)
10148 Torino, Italy

Riccardo Gusella

Computer Systems Research Group
Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, CA 94720

Extended Abstract

The main objective of this project was to develop a mechanism for saving the
image of a UNIX process, i.e. its state and its execution environment, so to be able,
at a later time, even after system crashes or across system reboots, to restart its
execution. We have called this information, collectively, a snapshot. Taking
snapshots does not modify in any way the behavior of a process which continues its
execution as though nothing has occurred. A process can be restarted from a
snapshot at any time, and its execution continues transparently from the point
where the snapshot was taken. All process’s resources are available and, if necessary,
are set to an appropriate state. The snapshot facility can be used as a building
block for several higher level mechanisms such as crash recovery, debugging., execu-
tion backtracking, and process migration.

A snapshot is a copy of the process execution environment generated by the
system when one of two new signals is received by the process. It includes a
memory image, the register values, the status of the open files, current directory,
and, in general, all the kernel data related to the process. The amount of informa-
tion needed to form a complete snapshot is not always small or easy to collect.
Moreover, there are relationships between processes and their environment that gen-
erally cannot be inferred from system information alone. For instance, programs such
as uucp or tip synchronize their access to some resources by creating lock files. There
is no explicit or easily.deductible relationship between these files and those processes
even if they are an essential part of the execution environment.

We anticipate that it is not possible to build a general snapshot/restart mechan-
ism for all the possible computations that UNIX processes can carry out. We have

This work. was sponsored by the CSELT Corporation and by the Defense Advanced Research
Projects Agency (DoD), Arpa Order No. 4871 monitored by the Naval Electronics Systems
Command under contract No. N00039-84-C-0089. The views and conclusions contained in this
document are those of the authors and should not be interpreted as representing official policies,
cither expressed or implied, of CSELT, of the Defense Research Projects Agency, or of the US
Government.

UNIX is a Trademark of AT&T Bell Laboratories.

-2 -

therefore to make some assumptions to characterize the class of processes that our
mechanism can manage. The first assumption states that the kernel data structures
must uniquely determine the execution environment of a process. The second
assumption is that the computation carried out by the processes must not be time
dependent (i.e. it can be restarted at any later time without logical timing prob-
lems). As a further limitation, in the current implementation, we can only save the
image of a single process rather than those of a multiprocess computation.

We have implemented all the functions of the snapshot and restart mechanisms
in the kernel. We decided to divide the saved information in two files: a core file
and a file we called snap. The core file comprises a copy of the User area, the ker-
nel stack, user stack, and data area of the process. This file has a standard format
and can be examined using available debugging tools such as adb, sdb, or dbx. The
snap file contains the data not recorded in the core file: process table entry, kernel
data describing open files and devices, information to reset the tty state, snapshot
date, etc.

The snapshot is produced when a process receives a particular signal. We have
introduced two new signals to give the user a minimal control over the snapshot
mechanism: P_SNAP, and F_SNAP. While P_SNAP saves only the process image
(in the core and snap files), F_SNAP makes also copies of the open files used by
the process in case they need to be modified by the original process when its execu-
tion, after the snapshot. resumes. The use of the signal mechanism has several
drawbacks. For instance, if a process is sleeping on a high priority event (or if it
is stopped), it is not immediately awakened by incoming signals and the snapshot
request is served only when the process restarts its execution. Anotber unsolved
problem with signals is that there is no means of returning a code to the signaling
process with information on the correct completion of the requested action. However,
the use of signals in our implementation allows us to restrict the set of locations
inside the kernel where a snapshot can be taken and has greatly simplified the pro-

gramming effort.

A new system call has been introduced to restore the execution of a process
from a saved snapshot. The system call takes as arguments the names of the object,
core and snap files. a few control flags, and the address of a buffer where detailed
information about error conditions can be returned. The restart system call begins
by making a skeleton of the restarted process: it initializes a process table entry,
generates a User area, allocates virtual memory resources and space in the swapping
area. The skeleton process is initialized to reflect the execution environment of the
original process as it was at snapshot time. When trying to restore the process
identifier (pid), restart can find that it is being used by some other process. In this

case, the default action is to look for another available identifier. If a process uses
its pid value —for example to generate temporary file names— the user can force

the system call to allocate the requested pid and return an error in case it is not
available.

Restart then restores the current directory, opens the used files and sets the file
pointers to the proper position.- It then sets the control tty of the new process to
the control tty of the calling process. Subsequently, it restores the user data seg-
ment and stack from the core file, inserts the process in the running queue for
scheduling, and in the end is able to give life again to the original process.

Restart performs many checks during all its phases to avoid meaningless situa-
tions. If a check fails, the system call undoes all its work and returns with an
error condition. A first group of checks is intended to ensure the consistency of the
information of all the snapshot files. Checks are performed on the inodes of the
current directory and open files that are to be restored. Each inodes must refer to
an existing object of the same type of the original one (directory, file or device) and

|

-3 -

must be accessible using the current access rights of the restarting process. Dimen-
sion and date checks should ensure that files have not been modified. All these
checks are not intended for security reasons because they are based on the contents
of files that experienced people can always change still keeping a consistent situation.
Security is, based on standard UNIX mechanisms: restarted processes gain user and
group identity from their parent processes, set user and group id’s are not allowed
and files are accessed according to their new access rights. '

We have been able, in an experiment involving two workstations running UNIX
42BSD and a common file system, to take a snapshot of a shell process in one
workstation and restart it in the other.

A multilingual office automation solution

on UNIX/MS-DOS environment.

Roberto Novarese
Giuseppe Pampararo
Giuliano Perego

Stefano Tagliaferri

(Olivetti Software Products Division - Ivrea Italy)

Abstract

In this paper a set of Office Automation requirements of the
Economic European Community is presented. A solution that has been
designed and prototyped by Olivetti is éhen discussed. The proposal
is based on the integration of UNIX mini and MS-DOS personal

computers on a local area network,

Personal Computers Network Support Services provide the sharing of
resources over the LAN (file server, print server and communication

server functionalities).

A set of integrated Office Productivity Tools on the workstations

provide the support to professional and secretarial activities.

An MHS/X.400 Electronic Mail and an Archiving System are the Office
Cooperation Services designed to provide user interaction and

cooperation and to integrate this solution in a Multivendor System

architecture.

UNIX is a trademark of AT&T Corporation.

MS/DOS is a trademark of Microsoft Corporation.
Ethernet is a trademark of XEROX Corporation.
PC Interface is a trademark of AT&T and Locus Corporations.

MS/NET is a trademark of Microsoft Corporation.

-

il I I O .

1. Introduction

Office automation 1is perhaps the area in which information
technology will most impact the organization of the work in the
‘next future. All computer 'vendors see office automation how a good
business chance, so they are doing high investiments.to develop new

technologies and products in this field.

In Europe the Economic European Community (EEC) is urging and
helping European manufactures on the development of new solution in
this area, Abased on international standards. Besides it needs, as
every large organization, an office automation environment allowing
creation, handling and integration of documents written in
different languages and the distribution to different seats.
Therefore EEC has given out a set of office automation requirements

to reach the above-mentioned objectives.

Olivetti is interested in both aspects of EEC policy. Infact, as a
manifacturer, it is trying to be competitive on the computer
market. Moreover it 1is interested to EEC as the probably most

important and innovative office automation European customer.

This paper is divided in five cﬁapters. In the second we give a
description of the EEC requirements. In the third we describe the
architecture proposed to fulfill them. 1In the fourth we describe a
prototype designed and implemented to meet these requirements. In

the fifth the foreseen evolutions of the proposal are discussed.

2. EEC Requirements Description

EEC is organized on different organisms, ranging from political
(Parliament, Minister Council) to administrative, technical and
economical. These organisms are spread on different geografical

sites (mainly Bruxelles and Luxembourg) and have different goals.

As every large organization, EEC has to manage a large amount of
structured information (data) and amount of unstructured

information (documents).

According to these features its approach to the definition of an
office automation project emphatizes the need of integration of

document and data, and the problem of information distribuition.

Besides these general requirements, that are common to all large

organization, there are two specific of the Community:

i. EEC i§ a multinational (and therefore multilingual)
organization. All the languages of the member
countries are official languages of the Community. Every
computing equipment used for the production of documents
in the community should be able to deal with the
different languages and character set. In particular ;ord

processing equipment is requested to be able to produce

"multilingual documents".

]
)
)
)
]
)
A
1
)
|
1
I
i
If
!
)

1

ii, EEC organisms are defining and promoting international

"de iure" standards. EEC . requires that computing
equipment to be soid to its organisms conforms to these
standard, and it practices a multivendor policy on
equipment acquisition, relying on the ISO-0SI model and

protocols for the integration of different systems.

Proprietary solution can he adopted only on a 'per product" basis

and have to be justified.

When 'de iure'" standards are not available the EEC policy is to
conform to "de facto" standards, on which multivendor support is

however guaranteed.

CCITT has given out standard raccomandations about communication
and distribuited application packages; in particular EEC requires
to adopt X.25 raccomandation for geographic network, the IEEE 802
family of standards for LAN's and X.400 raccomandation for message

handling systems.

UNIX can be considered a standard de facto operating system for
mini computers, so EEC requires UNIX System V on mini computers as
program development environment, while MS/DOS has been choosen as

reference 0S for intelligent workstation.

The office automation proposal we will describe in the next chapter

conforms to these standards, adopting an extension to MS/DOS

functionalities to support the multilingual requirement.

3. Architecture Description

The architetture proposed to EEC to cope with its requirement,
providing an efficient solution, is based on the distributed

client-server model.

With a client-server model the client is a service user and the

server is a service provider.

A distributed client-server system is composed by a set of clients
and servers distributed across a number of nodes connected through

a network.

This architecture is more efficient for office automation
applications than a traditional one based on a centralized,
powerful system connecting dumb terminals, as it exploits the high
interactivity of IWS. Infact while in the classic architecture dumb
terminals use the mini's CPU for every operation, IWSs can manage
locallyla great number of operations related with the interaction
with the user, providing support for an higher quality user
interface (grafic screen, pointing devices etc.), and managing

interaction and cooperation among users on the server shared

resources.

Moreover the modularity of the distribuited client-server model
allows to fit the structure of the office where the system has to
be installed, and guarantees an easy modular extendibility of the

system.

y

From the software point of view, the proposed solution is based on

three families of services:

i. Personal Computer Network Support (PCNS's) services. They
provide the system-level services to IWS: shared MS/DOS

file server disks, spooled access to server printers, UNIX

session via terminal emulation, file 1locking, user

autentication etc.

ii. Personal Office Productivity Tools (OPT's). They provide
support to individual office activities, wusing the PCNS
services. They include word processing, sﬁreadsheet,
agenda, perﬁonal database etc. The multilingual
requirement have to be satisfied mainly from these

packets.

~iii.Office Cooperation Services (0CS's). They support

structured interaction among system users and allows the

'l B il BN I O O .

exchange of document, messages and data internally to a
cluster (a logical group of clients-servers) and with
other clusters reacheble via the ISO/0SI communication

services , both on LAN links or geographic connections.

They include MHS/X.400 Mail Services, Archive Services and

access to organizational level computing resorces.

4. Proposed solution and prototype description

In our proposal the client IWSs chosen are machines of Olivetti PC
family (M19, M22, M24, M24SP, M28), providing a set of different
configurations in terms of computing power and cost with complete
compatibility at operating system interface level (MS/DOS) .
Specific hardware devices has been implemented to fulfill
multilingual requirements. In particular special keyboards and
printers, able to support the various character sets required from

EEC have been designed.

The servers, conforming to EEC requirement of standard 0S interface
and satisfying the need of multitasking support, have been

implemented on 3B ccuputers running UNIX System V.

The LAN on which the sys®ems are connected is Ethernet. In fact,
also if this solution is not optimized in terms of per-connection

costs, it is the only one guaranteing multivendor support today.

To provide PCNS services on the prototjpe the PC Interface package
has been selected. This package gives to PC's connected to 3B/UNIX
computers the possibility of use them as file szrvers (mapping the
UNIX file system of one of the server as an additional MS/DOS
drive) and'print servers. The user on the PC logon to the server to

which he want gain access to shared data, among the network

connected ones. An implicit locking algorithm is implemented to

control concurrent access to files, and UNIX protection are
enforced on the PC operations. A terminal emulator service allows
the PC to become a terminal of the UNIX server to use all sofware

packages available on it.

The Olivetti integrated family of OPT's support Office activities
running on IWS and accessing data on the server. In particular, in
the prototype implementation, some of these packages have been
modified to support multilingual documents, providipg the
capability to dynamically change character set for screen display

and keyboard layout. Special printer drivers have been developed.

An extention to MS/DOS scrgen/keyboard services has been designed
and implemented. Sets of languages having the same character set

have been identified. A colour has been associated to each of them:

white Italian, French;

yellow German, English, Dutch;
green Spanish;

red Danish;

violet Portuguese;

blue Greek;

to each country colour corresponds a keyboard layout and a
character set. A special keyboard with the different layout written

.

on keytops in different colours has been adopted.

In the Olivetti OPT packages there are built-in commands allowing

to change colour during a session of work.

A new MS/DOS command selecting a colour allows to select a country

char set/keyboard layout before invoking a standard MS/DOS package,
so providing general multilingual support.

To implement this '"Colour service" a new character generator
allowing the management on Olivetti PC's of two character sets has
been developed: the standard IBM PC character set and the

European one, defined with EEC.

A mail package, conforming to MHS/X.400 CCITT raccomandation
supports inter User Personal Messaging and a Document Distribution
Service . This package also provide a Directory Service providing
mail addresses-name mapping for the users of all the mail connected
systems. In the prototype the package is runnig on the 3B/UNIX
machine and must be accessed via terminal emulation, and linking of
clusters of users (subdomains in MHS terminology). over IS0/0SI
communication links is not yet supported. Porting of the User Agent

on the MS/DOS IWS environment is foreseen.

No support to archiving activities is provided by the current
prototype. Work on this is outgoing and is object of a specific
paper ("Office Data Based Services in a UNIX architecture")

presented in this session.

5. Evolutions

Respect to the prototype three evolutions are foreseen on the

system:

1)

2)

The PC Interface will be substituted by MS/NET. Current
implementation of PCNS services using the ,PC Interface
present some limitation: it is working on the release 2.11
of MS/DOS, that does not have any "hook'" at 0S level for
networking; it gives to a client access to only one server
for session; the access control is implicit and may
generate deadlock situation on the net. MS/NET is Qecoming
a standard de facto for PC networking; and the NETBIOS
interface is a good base to implement OCS distributed

applications using program to program communication,

The actual MS/DOS "Colour -service" implementation only
allows the selection of a country colour before invoking an
MS/DOS package. To change language during a session of
work, it is necessary to exit from the package, change
colour and start the package again. A new mecchanism to
change colour will be introduced. With this new tools it
will be possible dynamically change language pressing a key
combination (eg. CTRL-SHIFT-F1), without exit from the
package. The new implementation will use popup menus to
interface the user. VWith this new tool the built-in colour
command of Europe versions of OPT's will become unuseful:
if it is possible language without stopping the job all
standard MS/DOS packages can be considered multilingual. So

the OPT offered to EEC will become the standard ones.

3) Last evolution will be in the OCS design. They will allow

to access to distributed service without using the host
terminal emulator, running the user interface on the IWS's.
Each of the package will consist of an user agent working
on the MS/DOS IWS and a shared server running on the UNIX
machine. The two parts will use the NETBIOS interface to
communicate. Beside to the mailing functionalities
archiving support will be implemented to manage sharing of

data in a contrclled way.

All these evolutions will be available for the end of '86. At this
date the installation of several system, interconnected on an X.25

network is planned.

Bl G N Gl BN G G G EE N N N G e e

i Ga oa B I W W

An Examination of UNIX standards.

P. J. Peake
UUCP: mcvax!axis!philip

Axis Digital, Paris

ABSTRACT

As UNIX becomes more firmly established in the commercial
computing world there is much pressure, and resulting action for
standardisation. For example, the SVID and X/OPEN
publications.

This presentation looks at some of the problems encountered
during the development, and subsequent porting of applications
which either run on, or communicate with UNIX systems. Some
attention is also paid to the existing standards; as found in
practice, and as proposed in the above documents.

UNIX and standards

What is "standard UNIX" ? is a non-trivial question. Since UNIX is such an "open"
system many people have produced their own flavours, which are maybe the best
thing since sliced bread for them, but give applications programs writers nightmares.
There has been a long standing tradition amongst computer manufacturers that
proprietry operating systems should be as incompatible as possible, so as to keep a
captive clientel. So, cooperation between them to attempt to standardise an operating
system interface is relatively new. There have, of course, been co-operative ventures
before in the area of programming languages, and one hopes that the results of the
current exercise will be better!.

Unfortunately, some of the basic standardisation questions seem to have been
overlooked, and others carefully ignored. This paper will attempt to expose some of
the problems we at Axis Digital have found in attempting to work with a wide
range of UNIX systems.

The first basic problem with any attempt to standardise UNIX, is that of the
existence of two de-facto standards, System 5 and BSD 4.2. This problem is slowly
resolving, with the adoption of System 5 by most manufacturers (at least in
Europe), and with the decision by DEC to move its ULTRIX system towards full
System 5 compatibility.

The human interface

The first point of contact with a computing system is its human interface. This is
true for normal users, and for a certain category of programs, for example one of
our own products which is a PC/UNIX networking system. Perhaps the most
obvious problem in this area is that the existing standards are religously avoided!
For example, there are standard line editing commands (# and @, remember them
7). I know of no-one in the whole world who actually uses these editing characters?.

1. How many implementations of a given language do you know of that are pure implementations,
without extentions and restrictions - both of which make any resulting programs written using them
non-portable.

2. I once posed the question "who uses # and @ to a group of people, the only response I received was
"maybe Brian Kernighan, on his teletype 7". This I can say is false, he uses neither these line editing
characters, nor a teletype (I asked himgf

Another indication that these standards have been virtually forgotten, is the
introduction (from System 3 onwards) of a comment facility in the shell -.if he
thought about it, who would use a line editing character to introduce a comment ?

Since this standard is totally ignored® one finds virtual anarchy; it is totally
unpredictable how to edit a command line. This brings us to the next non-standard
standard, that of signal generating characters. The "standard” character to generate an
interupt is DEL, however, this is frequently used to DELete a character®. This
becomes even more confusing when various programs (labelit for example) print
messages such as "DEL if wrong’, since the interupt character is changable, this is an
unreasonable message, it is not difficult to find out what the current interupt
character actually is and use this in the message (get the hint ?).

So we have the situation where we have some well defined standards for user
control characters, which are universally ignored, and anyone sitting before a UNIX
terminal is reduced to experimentation to find out what key does what (or,
experimentation with the options to stty, to find one which prints what they
actually are). For a remote system which must use this interface. trying to write
sensible programs to deal with this is non-trivial.

Another small problem for any remote system is that of attempting to clean up
after a careless user, or after a communications break, to put an I/O channel into a
known state. UNIX lacks what could be described as a "definate kill key". How
do you ensure that a program is terminated ? Vi is a good example of a non co-
operative program. It refuses to go away upon recepit of an interrupt. It refuses
to go away when it reads end-of-file. It even refuses to go away if you send it a
quit signall The only method which (almost) always works, is to generate a
bangup signal. However, there is no standard way to do this. The use of the
BREAK key is ok if you have a connection which can support the transmission of
this non-ascii indication. Even if such a possibility exists, there are (so called)
standard System 5 implementations which, due to hardware peculiarities, or to
strange bugs in the tty driver don’t correctly handle BREAKS,

Thus as far as the "human interface” of UNIX is concerned, we do have some well
defined standards, -which are so totally ignored that we may as well not have them.
The choice of replacement keys seems to be culture dependent, the table below gives
observed usage (some people may argue about the characters used in France, because
many sites do actually use the american conventions):

3. With one exception - in getty, so you have one set of line editing commands at login, and another
after! (wierd!).

4. To my mind, this is more reasonable than backspace, since backspace is (in 2 way) a printable
character. For those people having to deal with strange languages (such as french), a simple and
effective method of putting accents onto characters is to use backspace, eg. *<bs>e. Try doing this if
<bs> generates an interupt! (no, I don’t want to backslash jtt)

5. There is a machine which comes to mind which can’t differentiate between a BREAK and a NULL
charactert I will spare the blushes by not saying which - I just hope that the manufacturer
concerned changes his mind about his stated intention of not fixing this bug.

- OGN GE an as aF U IO EE el —aan— -

-3 -
country erase kill eof intr quit
England DEL cntri-u entrl-z cntrlc cntrl-

France DEL entrl-u entrl-d cntrl— cntrl-|
U.S.A. cntrl-h cntrl-u cntrl-d DEL cntrl-

Another cultural difference is that of shells. There are several so-called System 5's
around which insist on using the C-shell. In one case (at least), all of the
administration shell scripts have been written for C-shell. Although I have no
objections whatsoever to individual users using a shell of their preference, for the
sake of uniformity, the default should be the 'Bourne shell’, as this is available on
virtually any UNIX system. The adoption of such a standard would certainly ease

writing of scripts associated with installation and administration of application
systems.

The next problem for the poor user who has actually penetrated far enough into a
strange UNIX system to be able to accurately type a command line, which is in
legal syntax for whatever shell he finds lurking behind the prompt is that of
command names, and particularly command options.

I suppose that at this stage I must admit to subscribing to the ‘cat -v is bad for
you' philosophy. So, I was not terribly amused to find the -v option on the
System 5 cat. Nor by the explosion of options on many of the common utilities®.

Another example of strange ideas which contravene the unstated standard that a
command should do only one job, and concentrate on doing that well, is System 5.2
‘Who'. Who in their right mind would think of using ‘who' to find out when the
system was last booted ? There is a little logic in this option, but it is obscure
enough to not allow "who' to be the program which would immediately spring to
mind as a means of finding this sort of information. :

There are many other peculiarities in various systems, which, normally would not
be enough to place an insuperable barrier before a user unfamiliar with any given
system, but would certainly make his life difficult.

The program environment

For anyone wanting to write applications which must run on any UNIX system,
there are even more problems than for the user. The first of these is obviously the
C compiler. The problems one finds here vary from C compilers which just
generate wrong code, to those who's implementors seem to have found delight in

_ taking the 'Kernighan and Richie’ definition and applying the most bizzare (but legal)

interpretations possible, wherever possible. The only thing one can say on this score
is that to hope to write portable C avoid at all costs anything remotely ‘clever’,
such as structure assignments, variable length argument lists, register variables,

enumerated types, identifiers nnon-unique within the first 6 characters, nested include
files, pointer coercions etc.

6. Take 'ls’ for example, on System 5.2 an illegal option (if you can find one) gives the following:
usage: Is -RadCxmanlogrtucpFbqist [files]

There is a current theory that you can tell a real UNIX guru by the fact that his name is a legal
option to Is, unfortunately mine isn't, but, ‘Is -alastair’, for example, is quite legal.

A particularly annoying trick is that of changing ‘lint’ to agree with your C
compiler. I have found to my cost that spending a long-time making an application
‘lint free’ does not guarantee that you will not have several pages of complaints
from lint on another system. One can only hope that the eventual acceptance of
the ANSI C standard will solve most of these problems’.

Having written something which is acceptable to most reasonable C compilers, we
are faced with linking the bits together. One of the most common problems is that
of C library routines, and the change from terminal ioct! calls to the ‘termio’
interface. rather that write new ones more in keeping with the last quater of the
There are some System 3/5 machines on which the only changes which seem to have

been actually made to the V7 source is changing the name of index() to strchr(). -

Then there are the System 5's which dont have strchr() but do have index()! It is
difficult to write programs with ‘ifdefs’ for different systems when one finds
something like a V7 tty control interface, combined with a modified C library.

Assuming that the problem of actual object names and semantics has been sorted
out, the next problem is that of loaders. There are some systems around which are
half-way attempts to change from a V7 type environment to a System 5. The
implementors have not wanted the effort of putting up a completely new
compilation system (COFF), so, instead have managed to compile some bits of
System 5 with their existing compiler. Ok, but, System 3/5 doesn't give you
‘ranlib’, and for some reason (maybe its too much of a givaway 7), this is not
added. One usually finds no problems loading the standard libraries, because
someone has spent lots of time ordering them within the archive. Applications
libraries are another matter. One must sometimes give the library to the loader
three or four times to resolve all the links. It would probably be possible to
perform an ordering exercise on the application libraries, but this is not acceptable,
such problems should have dissapeared from the face of the earth by now. The
only possible explanation for users of a system to be faced with such problems is
either laziness or incompetence on the part of whoever produced the system?®.

Once the program is linked, there'is always the possibility that some runtime error
will give us a core dump (or maybe just crash the machine!). It can be
particularly annoying to be faced with this situation, and to find that neither ‘adb’
nor ‘sdb’ exist. (Or that they do exist, but refuse to work; this may be for many
reasons, but the most annoying is when ‘adb’ itself core dumps!) There are some
machines on which the debugger is proprietary. This may be nice for existing
clients, who, are used to this particular debugging system, but it is next to useless
for the rest of the world who have no inclination or intention to learn to use
another debugger. Particularly when the only reason you have to use it is because
a program which has worked on dozens of other UNIX machines, and which
compiles without complaint, core dumps on this one! One of the reasons for the
popuiarity of UNIX is that experience gained is never redundant. The
user/programmer is isolated from the idiosyncracies of any given manufacturer.
This principle is violated in the case where no standard debugger is supplied. It is
quite possible that the proprietary debugging system is better than adb (not

7. And introduce a whole host of new ones, simply for the sake of allowing a few manufacturers to
continue to use their disgusting link-editors rather that write new ones more in keeping with the last
quarter of the 20th century.

8. I would advise anyone finding such a system not to buy it. It may be cheap, but this sort of
problem should be taken as an indication of just how well put together the rest of the system is.

1
i
i
1
1
I
1
I
|
1
1
1
|
1
1
1
1
i
1
i

7

" pasn s s Ban BEm Bum BEN EEN BES Sme B BN BN BN)

difficult), or sdb, but the point is that one or the other of these should be available
for users who have a transitory need for a debugger, without the time to learn a
new one. By all means throw your super system into the UNIX tools basket, but
don’t do it at the expense of existing items.

The next problem to be encountered is usually that of maximum fixed sizes imposed
by the system on some part of the executable image. This is (almost) always
caused by hardware deficiencies in the machine architecture. In this case there is
little that can be done, except to search hopefully through the manual pages for the
‘cc’ entry® hoping to find that there is some ‘overlay’ feature available. Sometimes
this will exist, work and solve the problem. Such occasions are rare, as the most
common problem is that of limited space allocated to the stack.

What to do about such problems is difficult to say. Different size address spaces for
various UNIX systems have always existed. Education of the user comunity is
perhaps the best bet.

Exchange media

The means of transfering data onto a machine can be incredibly complicated. The
profusion of peripheral devices available makes it most unlikely that when you
want to put your sources onto someone elses machine, that you will have a common
peripheral. We are quite often reduced to using a UUCP link. This technique is
surprisingly effective, slow, yes, but it usually works. The various UUCP versions
could themselves do with some standardisation, but it is usually possible to get a
link working.

It would be possible to continue to list the potential problems one can encounter
with different systems, even when advertised as 'System 5°, or ‘Derived from AT&T
System 5.2 source code’. But rather than continue this depressing story, lets look at
what is being done to solve these problems.

The official standards

The term ‘official standards” is perhaps not quite correct, since neither the SVID°
nor the X/OPEN portability guide have any real "official® standing. Perhaps the
SVID is somewhat more credible since it originates from the "home" of UNIX.

These definitions were awaited with some impatience, perhaps they will resolve our
portability problems. we thought. When the SVID first arrived, the first impression
was of dissapointment. The colour scheme of the cover seems to have been
deliberately chosen to promote feelings of confusion in the observer. Upon opening
the book one is immediately struck by the awful quality- of the typesetting. The
bold print having been produced by double printing with a slight offset. This may

just have worked if they had chosen a font with thicker verticals. The actual’

effect is to enhance the feeling of nausea caused by the cover, as your eyes struggle
to accept the "double vision" effect of the typeface.

9. If you have this sort of problem, it is virtually certain that the system will not have an on-line
manual, and that the paper manual is either ’still at the printers’, or is an unmodified copy of the
AT&T PDP11 compiler page.

10, System 5 Interface Definition

SVID contents

The contents of the SVID are mostly the System 5 manual pages, with a little bit
of re-working. The most apparent change is that the familiar sections of the
manual have dissapeared, giving way to sections called OS (Operating System
Services), LIB (Libraries) and KEXT (Kernel Extentions). This is.somewhat of a
mistake. Firstly, it makes life difficult when one tries to find some specific entry.
More importantly, some items which are actually library routines are marked as
"Operating System Services”. It is impossible to distinguish a system call interface
from a library routine. The only thing it is possible to say, is that anything
marked (OS) will eventually make some system call. However, not all system calls
are actually mentioned. There is no mention of sbrk(), but, there is of malloc(),
which is marked as (0S). This gives the interesting possibility of some innocent
programmer writing something which uses malloc(), and has some routine called
sbrk(). When he runs this program there will be some decidedly interesting results,
probably terminating in a crash inside a "System Service".

There are errors in this, ‘definition’, some are due to typographical errors, others due
to who knows what ? One I find particularly annoying is the (pseudo) BNF
definition of a pathname. This is copied directly from the System 5 manual, with
the exception that some bright spark noticed that this did not take account of the
directory entries "' and °."; unfortunately, the modified definition doesn't work
either! Just try parsing any pathname containing a .’ or "." eg. ./fred.

As well as errors there are some inconsistencies. One is informed several times that
one should not use ‘raw’ system calls such as open(), close(), read() and write().
but rather use the stdio functions fopen(), fclose() etc. However, in the section on
flock(), hidden away near the end is the admission that you do actually have to use
the low level calls if you want the file locking to work correctly. What is not
explained is that all programs which are to be used to manipulate a potentialy
locked file must avoid using stdio. This lets out all of the standard utilities. If
we are going to only be able to use the file locking mechanism in specifically
written, dedicated sets of programs, do we actually need file locking anyway ? It
only seems to be needed because there exists a breed of _programer who think that
data-base systems are impossible to write unless the system does most of the hard
work for you, and imposes file locking.

An unfortunate problem with this definition is that if someone were to use it as a
basis for designing an application, and then hoping that the result would run on any
of the systems carrying the label 'System 5.2°, he would be in for a nasty shock.
A much better bet (for the moment) would be to simply buy a set of Sytem 5
manuals and work from them.

On the credit side, there is the stated intention to adhere to a set of ’levels’ for any
item appearing within this definition. This basically means that you can guarantee
that the next generation of UNIX will (coming from AT&T) still have all the basics
there, and there will be no more nasty surprises like termio.

The X/OPEN Portability Guide

This is produced by a group of (mainly) european manufacturers. It is intended as
a specification of what will be supported on a UNIX system coming from any of
them. Thus allowing applications to be written with the expectation that the same
source code will work on a machine coming from any of the group members.

As a book, it is much better in every respect, decent paper, decent type setting, and
above all, retains the familiar UNIX manual sections. As far as contents goes, this
is better too. The X/OPEN guide is based upon the SVID, and should continue to

/I G BN BN N IS OGN O B Em B8 .

i GBS B BN I B B I O O .

follow it. This is a welcome relief. Having two competing standards (and BSD!)
would just about finish any hopes of ever having a standardised UNIX system.
Another comforting sign is that DEC have now joined the X/OPEN group. and so
will bring ULTRIX more into line with System 5.

There are extra sections in the X/OPEN guide, concerning the C language, COBOL.
and a C-ISAM interface. The C promises to follow the ANSI standard, and the
COBOL and C-ISAM are based upon currently existing products.

The last section of the manual is interesting since it specifies a standard for source
interchange; magnetic tape and diskette, with specific formats.

On the negative side there is the relegation of the termio interface to the status of
an option. The stated reason is that the machines of some of the members cannot
implement this interface. Another disturbing sign is that they copied the AT&T
definition of a pathname! -

Hopes for the future

The simple fact that people are thinking about standardising UNIX implementations
is very encouraging. Just what they are thinking may well be another matter. As
pointed out above, there are certain areas in which standardisation could be achieved
easily. It just needs to be done. There seems to be too much effort being put into
difficult areas, such as international character sets, and IPC mechanisms integrated
with networking. These are deserving areas for research, but more progress could be
achieved, more quickly on simple things, like re-defining the standard line editing
and interrupt key conventions, a standard and coherent set of command line options
to the standard set of utilities etc.

Perhaps the most encouraging thing is that even in the face of all the difficulties
mentioned above, it is actually possible to work on, and to transfer applications to
machines of very diverse architecture and manufacture, thanks to UNIX.

The Eighth Edition Unix* Connection Service
David L Presotto

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Using the connection service, processes can connect to processes on the same
system or across a variety of networks. Unlike other solutions to this
problem, such as 4.2 BSD’s sockets, ours abstracts network protocols and
communication properties to such an extent that application programs using it
need not be cognizant of the network or network protocol on which the
connection is built.

The connection service is based on Dennis Ritchie’s Streams, a mechanism for
providing two way byte streams between processes and devices or between
processes, and other processes. The unique properties of Streams make the
connection service possible. Using Streams we can perform functions such as
circuit setup, circuit shutdown, and data stream processing in the kernel, in
processes, or even in separate processors as the situation dictates.

PROLOGUE

Like other versions of Unix, our Eighth Edition Unixt has accreted a number of
inter-process communications channels; pipes, pseudo terminals, hard wired lines, auto
dialers, multiplexed network devices, etc. In implementing these channels, we have
been careful to give them all the same program interface. All channels are
represented by capabilities called descriptors. A program accesses the channel by
performing reads and writes of byte sequences to the descriptors. This is the
standard Unix interface used for sequential files. Therefore, in most cases. programs
need not be aware of what type of object -an I/O descriptor refers to. In fact. a
channel used only for reads or only for writes looks to a program exactly like a
sequential file. This ‘transparency’ has been very useful in composing processes as
filters in a data pipeline and making programs generally plug compatible.

In 1982 Dennis Ritchie added streams to Unix.! A stream is a full-duplex
connection between a process and a device or another process. It consists of several
linearly connected processing modules, and is analogous to a traditional Shell pipeline,
except the data flows in both directions. The processing modules are resident in the
kernel and can be pushed onto or popped off the stream by a process which holds a
descriptor for the stream. Dennis rewrote all character devices, including
communications channels, using the stream abstraction.

The stream abstraction extends the ‘transparency’ of communication channels.
Although all our channels have the same interface for reads and writes, some
properties, such as error correction and protocol-processing, differ from channel to
channel. Before streams, if a channel lacked a needed property, the property was
coded into the process using the channel. As a result, programs written for one
channel would often not work when applied to a different type of channel. The

* Unix is a trademark of AT&T Bell Laboratories

t+ The Eighth Edition version of Unix is the system that runs on machines in the Information Sciences
Research Division of AT&T Bell Laboratories.

streams abstraction solves this problem by encoding channel properties into processing
modules. Applications programs may apply properties to channels by pushing
processing modules which implement these properties onto the ends of the stream
representing the channel.

Once a process has obtained a descriptor to a connected channel, with appropriate
processing modules attached, it can use the channel without regard to the network
or medium supporting it. Unfortunately, no equivalent abstraction existed for
establishment of the connection. Each network has a different syntax for the
naming of processes and a unique multi-phase procedure for negotiating the
connection.

To solve this problem, Dennis Ritchie and I added three new kernel mechanisms to
8th Edition Unix?. They consisted of:

e association of a stream end with any named file
e passing file descriptors through streams

e a processing module that supplies unique connections between processes at each
end of the stream

These extensions were provided as building blocks for a network independent
connection service for streams. This paper describes the resulting service and the
name space it provides.

NAMING STREAMS

For two processes to establish communications over a stream. each must obtain a
descriptor to one end of the stream. Related processes may inherit these descriptors
from a common ancestor just as the shell passes the two ends of a pipe as output
and input to processes in a pipeline. However, unrelated processes need some way
to specify or ‘name’ the stream ends in order to open them. In our model, a
process wishing to receive connections, the callee, obtains a stream and associates one
of its ends with a name. It then listens on the other end Yor call requests. A
process wishing to communicate with the callee, the caller, requests a descriptor to
the stream end with the agreed upon name and uses it to pass connection requests
to the caller. This implies the need for a name space for streams.

In providing the name space we were guided by the following considerations:

e Introduce as little ‘new’ as possible. If a mechanism already exists for something
we wish to do, use it.

e Both local and network names should have the same syntax. That syntax should
be as simple as possiblel3),

e Naming on many networks is hierarchical. If we are to represent network
names, or paths through a number of networks, our name space must support
hierarchical names.

Our users were already familiar with a name space consistent with all of the above
considerations, that used by the Unix file system. Therefore, we merged our name
space with that of the file system. This required that stream ends be.allowed as
nodes of the file system. The implementation section at the end of the paper
describes how this was done.

A name consists of a sequence of character strings (elements), each sequence
delimited by a ‘/'. The elements represent a path through the name space. If the
name starts with a °/°, the path begins at the local root (the root of the local
machine). Otherwise, the path begins at the position in the hierarchy that the

R

[

translating process is connected to. In any path, the element .. means to move one
level of the hierarchy toward the root. unless already at the root. °/../" at the start
of 4 path is equivalent to °/'.

The global name space is constructed by splicing together the file system names
spaces of different Unix systems and the name spaces of the networks. We do this
by attaching the roots of the network name spaces to leaves of each local file
system and by attaching the roots of the local file systems onto leaves of the
network name spaces. This creates a directed cyclic graph such as the one
represented in Figure 1.

network
le le .
Sstem
sy pro! system
1 : 1 2
protess px&as
2 3

Figure 1 - splicing of file system and network name spaces

This figure depicts two file system name spaces attached to a single network name
space. Processes may attach streams to any point in the resultant aggregate name
space. In this example processes are attached to each of the three components.

Figure 2 illustrates a concrete example of our name space. Here, the local name
spaces of two systems, research and snb, are depicted. The systems are joined by a
Datakit! network. The root of the datakit is attached to the node /dk of both file
systems and both file systems are attached to leaves of the datakit. In addition.
‘research’ is attached to a TCP/IP network at its leaf node, /in. Finally, each
system has two local processes attached via streams to the local name spaces at
/login and /exec connected to its name space.

System research System snb

Figure 2 - the name spaces for two Unix systems

We now consider a number of names in this example to see how a process on snb
might name other processes. The simplest is a local service. For example, to
connect to the local execution server, an snd process would use the name /exec.
Similarly, it could use the name /dk/snb/exec aithough this might imply connecting
the processes via the network rather than via some faster local communications
mechanism. To access the remote login server on research the snb process would
use the name /dk/research/login.

One advantage of our naming scheme is the ability to explicitly name a route
through a gateway machine. For example, snb has no local attachment to the
TCP/IP network. However, a process on snd may connect to a process on that
network by specifying a path through research such as /dk/research/in/allegra.
Such paths greatly extend the name space visible to a process.

PROGRAM INTERFACE

In this section we present the program interface for connection setup. We divide
our presentation into two parts, the caller interface and the callee interface. The
classification of processes as callers or callees is relative to the establishment of a
single connection and doesn’t necessarily imply a client/server process model.

On errors, all the library routines described here set two global variables, errno and
errstr. Errno is an integer providing a generic reason for the failure. Errstr is a
character string giving an expanded reason that can presented to the user.

Caller Interface

A caller establishes a unique connection to a callee by using the iopen library
routine. It then associates with the connection those properties needed for the
application with the iprop library routine.

The form of an iopen call is:
int conn;
char *name;
char *props;
conn = iopen(name, props);

where

i

name is the name of the stream to connect via.
props is a list of connection properties.
conn is the returned descriptor.

lopen returns a descri
indicate an error. Th

The caller may subsequently request a,
connection using the iprop library routine.

conn = iprop(conn, props);
where

conn is the valye returned from iopen.
Props is a list of channel Properties.

The return valye is either —1 indicating inability to support the r
Or a descriptor to the connection. Th

original one since a process may i
to support a requested property. If
closed and the original value of conn

Four library routines, in addition to th

e iprop routine mentioned above, make up the
callee’s interface, The first is icreat. The callee uses this to attach itself to the
name space. The form of the call is:

int named:
char *name;
char *param;

named = icreat(name, props);
where

name is the name to attach a stream to)
Props is a list of properties,

named is a descriptor to the Stream attached to name.

If icrear Succeeds in attachin

g the stream to the name space
to the other end of the strea

. it returns a descriptor
m. If it couldn't, it returns —

The callee then waits for calls using the ilisten library routine. This routine returns
only when a call request has been received. -

struct ipcinfo {
int conn; /* fd for connection(callee side) */
char *name; /* the name of the stream end being called */
char *machine;/* machinre id of caller */
char *user; /* user name of caller */

} %p;
ip = ilisten(named);
Ipcinfo is a structure defining the call request. Using the information in ipcinfo, the
callee chooses whether to accept the call or reject the request. To reject the request:
int code;
char *reason;
ireject(ip, code, reason);
where
code is the value to be assigned to the caller's errno.
reason is the value to be assigned to the caller’s errstr.

Ireject passes the error information to the caller and closes all descriptors associated
with the call. The callee may then continue listening for more requests.

If the callee wishes to accept the call, it first associates the appropriate properties
with the communications stream, ip—>conn, using the iprop routine and accepts the
call with iaccept.

int newconn;

ipcinfo *ip;

ip—>conn = iprop(ip—>conn, param);
iaccept(ip, newconn);

Here, newconn is a descriptor for a different stream than the one originally supplied
in ip—>conn. This allows the callee to supply its own stream for the connection.

Normally this is —1 indicating no stream supplied. Jaccept returns O on success
and —1 on failure.

To allow the caller to poll a number of named streams without blocking. the select
system call may be used on the descriptor to the named stream.
IMPLEMENTATION

We present three additions to Unix and then show how they are used to implement
the name space and program interface described above.

Additions

We made three additions to the system.

Mounted streams

First is a new, but very simple, file system type. Its mount request attaches a
stream named by a file descriptor to a file. Most often the stream is one end of a
pipe created by the server process, but it can equally well be a connection to a
device, or a network connection to a process on another machine. Subsequently,

}_“___ S

e

al I - e

when other processes open and do I/O on that file, their requests refer to the stream
attached to the file. The effect is similar to a System V FIFO that has already been
opened by a server, but more general: communication is full-duplex, the server can
be on another machine, and (because the connection is a stream), intermediate
processing modules may be installed.

By itself, a mounted stream shares the most important difficulty of the FIFO;
several processes attempting to use it simultaneously must somehow cooperate.

Passing files

The second addition is a way of passing an open file from one process to another
across a pipe connection. Although they are actually done with ioct! operations, the
primitives may be written

sendfile(wpipefd, fd);
in the sender process, and
(fd1, info) = recvfile(rpipefd);

in the receiver. The sender transmits a copy of its file descriptor fd over the pipe
to the receiver; when the receiver accepts it. it gains a new open file denoted by
fdl. (Other information, such as the user- and group-id of the sender, is also
passed.)

Unique connections

Finally, we found a way for each client of a server to gain a unique, non-
multiplexed connection to that server. It takes the form of a processing module
that can be pushed on a stream, which will usually be mounted in the file system
as described above. When the file is opened by another program, this module
Creates a new pipe, and sends one end to the server process at the other end of the
mounted stream, using the same mechanism as the sendfile primitive described above.
After the server has called recvfile to pick up its end of the pipe, it may accept or
reject the new connection; if it accepts, the other program’s open call succeeds, and
its open file refers to the local end of the new pipe to the server. If the server
rejects the request, the open fails.

Library Routines
icreat

This routine walks the path specified by the argument name. If the path terminates
in the local file system, it creates a pipe, pushes a ‘unique connection’ processing
module on one end, and attempts to mount that end into the file system. If the
attempt succeeds, the descriptor to the other end is returned.

If. however, icreat encounters a mounted stream before it reaches the end of the
path, this signals the interface between the local file system and a network. The
process mounted there is a network dialer and will perform whatever functions are
necessary to mount into the networks name space. JIcrear passes the rest of the
name and the property list to the dialer. If the dialer succeeds in establishing the
name in the network name space, it passes back a descriptor to a stream associated
with the name. Icreat returns that stream to its invoker.

iopen
Just like icreat, iopen walks the path specified by name. When it reaches a

mounted stream, it opens the stream obtaining a unique connection, the reply stream,
to the process at the other end. It then passes the remaining path elements and the

property list over the reply stream and waits for a reply. If the call is accepted, a
new stream descriptor for the actual connection will be sent over the reply stream.
If the call is rejected, the reason is read from the reply stream. Iopen then closes
the reply stream and returns the descriptor for the new connection or —1 for an
error.

ilisten and iaccept
Ilisten reads from the named stream waiting for connection requests in the form of
a descriptor for a reply stream. When one is received, it reads from that descriptor

the text of the request, creates a pipe to use for the connection, and returns all this
information in an ipcinfo structure to its invoker.

A subsequent iaccept will cause an acceptance message 1o be sent over the reply
stream to the caller. If no connection descriptor is supplied in the iaccept
invocation. one end of the pipe created by the previous ilisten is sent over the reply
stream. Otherwise, the supplied descriptor is returned over the reply stream and
the pipe created by ilisten is closed. The reply stream is then closed.

iprop

After parsing the property list, iprop consults a compiled in table for the actions to
perform for each property. The table includes the ioctl system call to use to
determine if the stream possesses the desired property, the ‘processing module’ to
push on the stream to implement the property, and the name of the binary to
execute to provide the property. If the property already exists, iprop goes on to the
next in the list.

If the stream doesn't contain the property, iprop first tries pushing the appropriate
‘processing module’ onto the stream. If this doesn’t work, it forks a process to
implement the property and returns a descriptor to a pipe to that process.

Network Dialers

Network dialers are processes that connect the network and local name spaces. A
network dialer starts by performing an icreat to mount itself into the local file
system. It also announces itself to the network at the appropriate place in the
network name space. It then converts between the network’s idea of a call setup
and that of the local processes.

When a caller on system A attempts to open a callee on system B, system A's
dialer functions as a callee and system B’s as a caller. Together, the dialers set up
a connection through the network and pass the two ends of the connection to caller
and callee.

‘Dialers are by far the most complicated part of the connection service. They
embody all of the network specific code.

STATUS AND CONCLUSIONS

We have built a prototype system and are in the process of converting all our
network software to use the interfaces specified here. We have already seen a
number of advantages to the unified name space.

e Services that used to be limited to a single network are now generic.

e Since systems can now act as gateways between different protocol families, we no
longer need to support every network in every system’s kernel.

e Many existing programs are being coalesced.

-

}

However, generalization often is bought at the expense of performance. After
conversion is completed, we will be comparing performance between the old and new
systems. Initial experiences, however, indicate that the performance difference is not
significant. Hopefully, we will soon be backing this up with numbers.

- 10 -

REFERENCES
1. D. M. Ritchie, "A Stream Input-Output System", AT&T Bell Laboratories Technical
Journal 63(8) October 1984

2. D. L. Presotto and D. M. Ritchie, "Interprocess Communication in the 8th Edition
Unix System", Proceedings of the 10th Usenix Conference, June, 1985

3. R. Pike & P. J. Weinberger, "The Hideous Name", Proceedings of the 10th Usenix
Conference, June, 1985

4. A. G. Fraser, "Datakit - A Modular Network for Synchronous and Asynchronous
Traffic", Proc. Int. Conf. on Commun., Boston, MA (June 1980)

l
!
1
i
‘
i
l
'
|

Developing Software for a Graphics Terminal in C
J.E. Richards

University of Bristol Computer Centre
University Walk, Bristol, BS8 1TW, UK.

ABSTRACT

This paper describes the development of software for incorporation in a new
intelligent raster graphics terminal. The terminal provides support for windows and
graphics segments. The software was written in C and developed and tested on a

System before being placed in ROM in the terminal. The paper shows how
considerable use was made of structures and the storage allocation functions to
provide a generalised segment storage scheme. Examples are given of the way
language constructs were used to obtain fast, but portable, code. The finished
software was ported to the terminal with hardly any modifications.

1. Introduction

Since the beginning of the eighties, the raster graphics terminal has become the most

commonly used graphics device, Superceding the storage tube devices (e.g. the
Tektronix 4010 and 4014 [1]) of the late 1970's.

ge tube terminals are only capable of simple graphics functions, such as

Stora
. drawing lines and displaying cross-hair cursors. Raster graphics makes many extra

functions possible, such as polygon filling, selective erasure, and the use of colour.
However, there are some obstacles to the effective use of raster graphics.

Firstly, the designers of the terminals do not necessarily know what functions the
user most want. Features are added in a haphazard fashion: for example, one

Secondly, the software packages of the user might not support raster graphics or the
command set of a particular terminal in a sensible way, or at all. In the case of
GINO [2]. a graphics subroutine library that is used by a number of British
academic institutions as well as commercial companies, a version supporting polygon
filling and colour look-up tables did not appear until 1984!

provided. It is hoped that recent international and ANS] standards activity will
lead to an improvement.

by defining rigorously the functions that are available and their effect. However,
the GKS standard does not define the interface between GKS and a graphics device.
This problem is being considered by ANSI who are developing the Computer
Graphics Interface, CGI, standard [4]. CGI will define a set of required and non-
required functions for graphics devices and a way of encoding commands and
coordinates for transmission between a host computer and a device.

This paper describes part of a project to develop a new graphics terminal providing
high-level functions, in the light of the progress on graphics standards. The

g4

terminal contains a conventional 16-bit microprocessor with a large amount of
memory. The software to control the terminal is contained in EPROM. '

The software, called Centaur, is written in the C programming language [5]. All of
the development, a&art from the final stages of porting the code to the terminal,
was done on UNIX"™ systems. '

The software was constructed in three stages, described in Section 3. The first two
stages involved constructing a simulation of the new terminal. In the last stage, the
software was ported to the development terminal.

2. Functionality of the Terminal

The selection and design of functions for the terminal were influenced by the GKS
. standard and the CGI standard proposals. Additionally, attention was given to the

set of functions provided on existing terminals, such as the Tektronix 4107 [6]. In.

particular, the definition of coordinate systems, windows and viewports is based on
those of the 4107.

Placing more functions in the device has the advantage of decreasing the amount of
processing that has to be performed by the host computer. There is the additional
advantage of reducing the number of bytes that have to be sent between the host
computer and the terminal over a slow link, such as an RS-232C serial line running
at 9600 or 19200 Baud.) .

The drawing speed of the terminal was an important consideration, so it was decided
to use integer variables and integer arithmetic operations wherever possible.

The terminal has the following functions:

2.1 Output Functions

There are four output primitives (see Fig. 1):

Polyline A sequence of connected lines. Can be drawn in different types.
Polymarker A set of small symbols, available in several types.

Polygon Can be drawn hollow, solid, or filled with a pattern.

Text Several fonts, can be drawn any size, orientation, slant or direction.
22 Output Attributes

Each output primitive has a set of artributes. The attributes affect the appearance of
the primitive on the screen. For example, the polyline primitive has colour index
and line type attributes. The text primitive has a total of ten attributes, including
character height, width, spacing and slant, text rotation and colour index.

The values of the attributes can be set by the user. However, once a primitive has
been created. the attributes of that primitive cannot be changed. This is consistent
with the GKS concept of binding attributes to primitives.

All output primitives have colour index attributes. The number of colours depends
on the number of bit-planes in the terminal, but the software can handle up to
32768 different colours. The minimum number would be a choice of 16 colours
from a palette of 4096.

23 Windows and Viewports

Coordinates are expressed in a 4096x4096 integer coordinate space. Transformations
can be constructed between a window in this space to a viewport on the screen of
the terminal (see Fig. 2). Changing the size of the window affects the scaling of

o = om o= o as

the image. Changing the location of the window causes a pan across the image.
Several windows and viewports can exist simultaneously. They can be made
invisible and can overlap.

24 Segments

Graphics output primitives can be stored in segments. A segment is physically
stored in the memory of the terminal, and can be scaled, rotated or moved to a
new position. Segments can also be made invisible, highlighted, copied and deleted.

The provision of segments in the graphics terminal has several benefits. Once output
primitives have been stored in a segment, there is no need for them to be
retransmitted by the host computer. Subsequent calculations on the segments can be
performed by the terminal. For example, segments could contain pictures of
electrical components for a printed circuit board layout program. The task of
positioning the components can be performed by the terminal with minimal
intervention by the host computer.

2.5 Input Functions
There are three input functions:

Locator The coordinates of a point are returned to the host computer when the
user presses a key or a button on a mouse.

Stroke A series of points are obtained (such as on a curve drawn free-hand)
and returned to the host computer.

Pick The user moves the cursor so that it points to a segment. When a
key or button is pressed, the name of the segment is returned to the
host computer.

3. Simulating the Terminal

The Centaur software was written and tested before constructing any of the
terminal’s hardware. This was done by simulating the terminal in three stages.
Fig. 3 shows the eventual configuration, with a host computer running a graphics
applications package, communicating with a terminal running Centaur.

First, the graphics terminal was simulated by running all the software on the host
computer as shown in Fig. 4. The Centaur software ran as a process on the host
computer communicating via pipes with a test graphics applications package running
as another process. The output from Centaur was sent to a simple graphics
terminal, capable of line and polygon drawing and erasure. This scheme enabled
evaluation and initial debugging of the software.

However, the simulation ran very slowly and response times were difficult to
predict; the host computer was a DEC VAX™ 11/750 running Berkeley UNIX 4.1bsd
with up to 32 users. In order to gauge the response and processing times more
effectively, a different configuration was adopted (see Fig. 5).

A microcomputer, running UNIX System III, was placed between the host computer
and the simple graphics terminal, communicating with each by serial lines. The
Centaur process was moved to the microcomputer. As the first simulation had been
designed with two separate processes, very little rewriting of code was necessary to
move one process to another machine. Communication over a serial line replaced the
communication by pipes and the calls to the read and write functions could be left
unchanged.

This configuration gave a much better indication of the likely eventual running speed
of the software. The microcomputer had the same processor, a Motorola 68000, as
was to be used in the terminal. So, in addition to further debugging of the code,
optimization could be carried out at an early stage.

The test graphics applications package was now exchanging bytes with what appeared
to be, from the host computer end, an “intelligent” graphics terminal. This meant
that it was possible to verify that the workload on the host computer was reduced
substantially for certain tasks.

The final step was to port the code to a microprocessor development system, compile
it and place it in EPROM. This transfer was made with only minor changes
required to the Centaur code, reinforcing the choice of the C language for its
portability.

A large amount of code was added at this stage to interface the Centaur functions
to the hardware, replace UNIX system calls with appropriate functions, and provide
all the other requirements of the terminal, such as the text editing functions. Most
of this latter code could have been included in the earlier simulations. Future

development projects may attempt to increase the percentage of code covered in the
simulations.

4. Segment Storage

One of the requirements of the project was that the terminal should be able to store
segments containing graphics primitives [7). One possible way of doing this is to
store the bytes sent from the host computer in a linear array called a display list.
Extra bytes are added to the list to indicate the beginning and end of each segment.
Redrawing all the segments is performed by passing through the list and decoding
all the bytes as though they had just been sent by the host computer. This
approach has the advantage of simplicity when constructing the list and redrawing
segments. However, deletion of segments can be a problem as the list has to be
regularly compacted to avoid "holes”. Additionally, each segment is given a priority,
which determines which segments appear in front of or behind it. Changing a
segment’s priority usually means altering its position in the list, resulting in
considerable problems in reordering the list.

After some consideration, it was decided to use the alternative approach of a linked
list for segment storage. One factor in the decision was that C provides a natural
way of referring to segments and primitives, by defining structures to contain the
data and pointers to link the structures together. Another factor was that UNIX
provides storage allocation functions (malloc and free), which were perfectly
adequate for the task of allocating and freeing space for segments and output
primitives.

The segment storage is set up as shown in Fig. 6. Segments are stored in the list
in order of increasing priority. Redrawing of segments is performed by starting at
the First Segment pointer and following the pointers to the output primitives. Then
the pointer to the next segment is taken, and so on until the last segment is
reached. Thus, segments of low priority are drawn on the screen first and may be
covered by segments of higher priority.

A segment is dzleted by freeing all the relevant parts of the segment storage and
rearranging the pointers of the two neighbouring segments.

Changing the priority of a segment is equivalent to changing its position in the list

of segments. With this scheme of segment storage, the segment does not have to be
copied; the priority can be changed by rearranging pointers.

et

disanisnuassnn

It can be seen from Fig. 6 that the list of segments is doubly-linked; for each
segment there is a pointer to the next segment and to the previous segment. This is
to facilitate the one case, the pick input function, when the list has to be traversed
in order of decreasing priority. For the pick function the cursor is used to point to
a segment. If two segments are indicated, the name of the one with the highest
priority must be returned. In order to avoid checking segments unnecessarily and
thus increasing the response time, the segments are inspected in order of decreasing
priority. As soon as a segment is found that satisfies the pick operation no further
segments need to be examined.

5. Portability

The lnt utility [8] was used to pinpoint any doubtful constructs. In addition, the
type of data items had to be considered carefully. Coordinates are stored as 16-bit

. integers, but it transpires that it is not sufficient to declare them as of type short,

as it cannot be guaranteed that short items will be the correct length. One C
compiler on a non-UNIX system uses short to represent a one byte variable!
Instead, derived types were used throughout, and the standard types confined to one
include file. For example:

typedef Int16 short; /* 16 bit signed integer */
typedef Coord Int16;
Coord x, y;

If the code is moved to a new system, the typedef Int16 may need to be changed.
If, at a later date, it is decided to use 32-bit integers or floating point variables for
coordinates, then the typedef of Coord would need to be changed. The important
point is that using typedefs improves the portability of the software by restricting
necessary changes to one small area of code, and makes it possible to consider more
fundamental changes in the future, such as the switch from integer to real
coordinates.

6. Efficiency

In a device like a graphics terminal, speed is a paramount consideration, but using a
high-level language instead of an assembly language is bound to introduce
inefficiencies. The generation of just one output primitive is a complex operation.
For example, producing a filled polygon involves the following steps:

a. Clip the polygon to the current window.

b. Transform the polygon's vertices from the user's coordinates to the terminal's
coordinates.

c. Fill the polygon.

Additionally, if the polygon is stored in a segment, the segment may have been
scaled, rotated and repositioned, requiring another transformation to be applied to all
the vertices before they can be clipped. The generation of polylines and
polymarkers is simpler, but producing high-quality text can take considerably more
processing time.

This process has to be performed for possibly thousands of primitives that can be
on the screen simultaneously. Consequently, optimization of the code was considered
to be extremely important.

One operation that was found to be taking a considerable amount of time was the
transformation from the user’s coordinates to the terminal’s coordinates. As
explained above, the transformation is defined by a window in the user's coordinates

and a viewport in the terminal's coordinates. The contents of the window are
transformed to appear in the viewport. Fig. 2 shows an example, a window with
the lower-left corner at (xwl, ywl) and the upper-right corner at (xw2, yw2). The
corresponding corners of the viewport are at (xvI, yvI) and (xv2, yv2). Just
considering the x-coordinate for simplicity, a transformation can be constructed by
the following code:

float scale;
int wwidth, xwl, xw2, vwidth, xvl, xv2, disp;
/* Set up transformation */

wwidth = xw2 - xWl; /* window width */
vwidth = xv2 - xvl; /* viewport width */
scale = vwidth / (float)wwidth; /* scaling factor */
disp = xv1 - scale * xwl; /* displacement */

/* Then, to transform one x—coordinate */
X = x ¥ scale + disp;

The first thing to notice is that the floating point multiplication, x * scale, is
performed many times, and is very slow as there is no floating point assistance in
the hardware. A substantial improvement, over 300%, is obtained by rewriting it as
an integer multiplication and division.

X = x * vwidth / wwidth + disp;

Further optimization is possible. Another 10% can be gained, at the expense of
defining x as a long, by rewriting the expression as:

X *= vwidth;

x /= wwidth;

x += disp; _
This sort of optimization is only worthwhile for sections of code that are performed
many times. '

Another such case was found in an idle loop that checks for characters arriving
from the host computer. The nochar function returns true if there is no character
waiting in the input queue. It is important that the terminal responds as soon as a
character arrives, so the function must be called as often as possible. The loop was
originally written as:

while (nochar());

Surprisingly, it is more efficient to write this as:
do:
while (nochar());

The former loop compiles to a test and two branches, and the latter to a test and
one branch. The optimizing pass of a C compiler will usually detect this case, but
it fails to do so in the case of at least one compiler.

7. Conclusions

The development of software for a new graphics terminal has been described. The
UNIX operating system and the C programming language were both used successfully
throughout the project.

The use of the UNIX system enabled the software to be simulated on first one and
then two computers. This meant that the project could be evaluated in stages
before any hardware was constructed. The storage allocation functions provided in

b
1l
i
}.

e = om mE Em eom

the UNIX libraries led to a quick implementation of a graphics segment storage
scheme.

The C language was found to be excellent for this type of application. Its low-
level features permitted the writing of reasonably efficient code. It was possible to
write portable code; Centaur has been ported to a number of systems, including
MS-DOS as well as UNIX.)

Development of the graphics terminal is proceeding well. It is hoped that a product
will be launched later in 1986.

8. Acknowledgements

I would like to gratefully acknowledge the financial support of Data Type Ltd, and
to thank Derek Buckle., Richard Evans and Richard Morgan-Bedwell. In particular, I
must thank Will Parker who wrote nearly all the code after the simulation stages
and found most of my bugs: debugging in assembly language is a dying art. He
contributed a number of ideas to this paper.

I would also like to thank Chris Morris, Bob ‘Walkex:. Steve Fisher and Sheila
Roberts of the Computer Centre for providing such a good UNIX service.

References
[1] Tektronix, 4010 and 4010-1 Users’ Manual, Tektronix Inc., Beaverton, Oregon,

USA (1976).
. [2] CADCentre, GINO-F 2.7A User Guide. CADCentre Ltd, Cambridge (October
1983).
[3] ISO, "Graphical Kernel System (GKS) - Functional Description,” ISO DIS 7942
(June 1983).

[4] T.N. Reed, "Standardization of the Virtual Device Metafile and the Virtual
Device ‘Interface,” Computers & Graphics Vol. 9(1) pp. 33-38 (1985).

[5] B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-
Hall, Englewood Cliffs, New Jersey (1978).

[6] Tektronix, 4107/4109 Computer Display Terminal Programmers’ Reference
Manual, Tektronix Inc., Beaverton, Oregon, USA (November 1983).

(7] J. D. Foley and A. van Dam, Fundamentals of Interactive Computer Graphics,
pp. 155-167, Addison-Wesley, Reading, Mass, USA (1983).

(8] S. C. Johnson, "Lint, a C Program Checker." Comp. Sci. Tech. Rep. No. 65
(1978). updated version TM 78-1273-3

OUTPUT PRIMITIVES

Vault

10

Window |

Window 2

(zuf, yut)

POLYLINE POLYMARKER POLYGON TEXT
* ¥ 5°
* N
¥k T g :
<
* %
Fig. 1. The output primitives
(zv2,yv2)

-\
O

Viewport 2

(zvi,yvt)

10O)

Viewporet |

USER COORDINATE SPACE

TERMINAL COORDINATE SPACE

Fig. 2. Transformations from User Coordinates to Terminal Coordinates

|
i
!
|
|
|

Graphics
Applications
Package

Serial
Line

HOST COMPUTER

r=— = "
Centaur

L J

GRAPHICS
TERMINAL

Pig. 3. The final configuration

r— 7 r
Graphics c—e
Applications'pipesl
Package

—

L

- T

Centaur'

—_

HOST COMPUTER

Fig. 4. Simulation 1 - Host running both processes

f
'
'
'
E
i
F
)
i
!
!
:
|
|
|
|
!

-1 r— = 7
Graphics
Applications Serial Centaur
Package Line
L — — L e —
HOST COMPUTER MICROCOMPUTER

Serial
Line
SiNFLE
GRAPHICS
TERMINAL

Serial
Line
SIMPLE
GRAPHICS
TERMINAL

rig. S. Simulation 2 - Host running graphics package; micro running Centaur

. EE S TS S T E N E - S-S S S lI;IKIIA

sbuioys juswbes eyyz Jo noiel °*9 *Brd

Jo03ujod TINN = I—l

£1x eoInqIINIY —
£
® syujod | .
£ . .
= t1ujod jo semmn| o= I° jusufes yxe yusutes evr]
lﬂ\ Jexiwnuljod dnoz.._.l./ e INq 1INV
£1x -
£1x /6 1%L
M E £ lﬂ\,/ d sjexswukjod |
£ | O seujfyod
senatany © suolLjo]
Lo sjujod [0 yusuleg snojaesd|
LAALLE R) & sjujod jo sequmy L] eusy jueuleg
sjujod jo fequmy yusuleg —c.:au_
q uolijoq yxeN
— $83NQT31VV
E‘/ jujod Y149y [jusuteg yxeN|
o Tutiyg
toynqta 1
. = TReL 15N mnqLINyY
T - e 1xe L
hﬁ\l.o siojiuuljo
. -0 soujjkiod
, senqiiINny
!) o suoffjod yaeuteg 0::_
£1lx o sjujoqd — | A® yusuleg snojaeiy
- £ tjugod jo Jequmy 8t suwN jueuteg
£1x sajyhfod XN -

RFS in System V.3

Andy Rifkin

“Wot, No paper?”

}----ﬂii-f

The Sun Network Filesystem: Design, Implementation and Experience

Russel Sandberg

Sun Microsystems, Inc.
2550 Garcia Ave.
Mountain View, CA. 94110
(415) 960-7293

Introduction

The Sun Network Filesystem (NFS) provides transparent, remote access to filesystems. Unlike
many other remote filesystem implementations under UNIXt, NFS is designed to be easily
portable to other operating systems and machine architectures. It uses an External Data
Representation (XDR) specification to describe protocols in a machine and system
independent way. NFS is implemented on top of a Remote Procedure Call package (RPC) to
help simplify protocol definition, implementation, and maintenance.

In order to build NFS into the UNIX kernel in a way that is transparent to applications, we
decided to add a new interface to the kernel which separates generic filesystem operations
from specific filesystem implementations. The “filesystem interface” consists of two parts: the
Virtual File System (VFS) interface defines the operations that can be done on a filesystem,
while the virtual node (vnode) interface defines the operations that can be done on a file
within that filesystem. This new interface allows us to implement and install new filesystems in
much the same way as new device drivers are added to the kernel.

In this paper we discuss the design and implementation of the filesystem interface in the UNIX
kernel and the NFS virtual filesystem. We compare NFS to other remote filesystem
implementations, and describe some interesting NFS ports that have been done, including the
IBM PC implementation under MS/DOS and the VMS server implementation. We also
describe the user-level NFS server implementation which allows simple server ports without
modification to the underlying operating system. We conclude with some ideas for future
enhancements.

In this paper we use the term server to refer to a machine that provides resources to the
network; a client is a machine that accesses resources over the network; a user is a person
“logged in” at a client; an application is a program that executes on a client; and a workstation
is a client machine that typically supports one user at a time.

Design Goals

NFS was designed to simplify the sharing of filesystem resources in a network of
non-homogeneous machines. Our goal was to provide a way of making remote files available to
local programs without having to modify, or even relink, those programs. In addition, we
wanted remote file access to be comparable in speed to local file access.

The overall design goals of NFS were:

Machine and Operating System Independence
The protocols used should be independent of UNIX so that an NFS server can
supply files to many different types of clients. The protocols should also be
simple enough that they can be implemented on low-end machines like the PC.

Crash Recovery
When clients can mount remote filesystems from many different servers it is
very important that clients and servers be able to recover easily from machine
crashes and network problems.

Transparent Access
We want to provide a system which allows programs to access remote files in

T UNIX is a trademark of AT&T.

exactly the same way as local files, without special pathname parsing, libraries,

or recompiling. Programs should not need or be able to tell whether a file is
remote or local.

UNIX Semantics Maintained on UNIX Client

In order for transparent access to work on UNIX machines, UNIX filesystem
semantics have to be maintained for remote files.

Reasonable Performance :
People will not use a remote filesystem if it is no faster than the existing
‘networking utilities, such as rcp, even if it is easier to use. Our design goal was
to make NFS as fast as a small local disk on a SCSI interface.

Basic Design

The NFS design consists of three major pieces: the protocol, the server side and the client
side.

NFS Protocol

The NFS protocol uses the Sun Remote Procedure Call (RPC) mechanism '. For the same
reasons that procedure calls simplify programs, RPC helps simplify the definition, organization,
and implementation of remote services. The NFS protocol is defined in terms of a set of
procedures, their arguments and results, and their effects. Remote procedure calls are
synchronous, that is, the client application blocks until the server has completed the call and

returned the results. This makes RPC very easy to use and understand because it behaves like
a local procedure call. . .

NFS uses a stateless protocol. The parameters to each procedure call contain all of the
information necessary to complete the call, and the server does not keep track of any past
requests. This makes crash recovery very easy; when a server crashes, the client resends NFS
requests until a response is received, and the server does no crash recovery at all. When a
client crashes, no recovery is necessary for either the client or the server.

If state is maintained on the server, on the other hand, recovery is much harder. Both client
and server need to reliably detect crashes. The server needs to detect client crashes so that it

can discard any state it is holding for the client, and the client must detect server crashes so
that it can rebuild the server’s state.

A stateless protocol avoids complex crash recovery. If a client just resends requests until a
response is received, data will never be lost due to a server crash. In fact, the client cannot tell
the difference between a server that has crashed and recovered, and a server that is slow.

Sun’s RPC package is designed to be transport independent. New transpert protocols, such as
ISO and XNS, can be “plugged in” to the RPC implementation without affecting the higher
level protocol code (see appendix 3). NFS currently uses the DARPA User Datagram Protocol
(UDP) and Internet Protocol (IP) for its transport level. Since UDP is an unreliable datagram
protocol, packets can get lost, but because the NFS protocol is stateless and NFS requests are
idempotent, the client can recover by retrying the call until the packet gets through.

The most common NFS procedure parameter is a structure called a file handle (fhandle or fh)
which is provided by the server and used by the client to reference a file. The fhandle is
opaque, that is, the client never looks at the contents of the fhandle, but uses it when
operations are done on that file.

An outline of the NFS protocol procedures is given below. For the complete specification see
the Sun Network Filesystem Protocol Specification 2.
null() returns ()
Do nothing procedure to ping the server and measure round trip time.
lookup(dirfh, name) returns (fh, attr)
Returns a new fhandle and attributes for the named file in a directory.
create(dirfh, name, attr) returns (newth, attr)
Creates a new file and returns its fhandle and attributes.

Sl T N B W - N S .

remove(dirfh, name) returns (status)
Removes a file from a directory.
getattr(fh) returns (attr)
Returns file attributes. This procedure is like a stat call.
setattr(fh, attr) returns (attr)
Sets the mode, uid, gid, size, access time, and modify time of a file. Setting the size to
zero truncates the file.
read (fh, offset, count) returns (attr, data)
Returns up to count bytes of data from a file starting offset bytes into the file. read also
returns the attributes of the file.
write(fh, offset, count, data) returns (attr)
Writes count bytes of data to a file beginning offset bytes from the beginning of the file.
Returns the attributes of the file after the write takes place.
rename(dirfh, name, tofh, toname) returns (status)
Renames the file name in the directory dirfh, to toname in the directory tofh.
link (dirfh, name, tofh, toname) returns (status)
Creates the file toname in the directory tofh, which is a link to the file name in the
directory dirfh.
symlink (dirfh, name, string) returns (status)
Creates a symbolic link name in the directory dirfh with value string. The server does
not interpret the string argument in any way, just saves it and makes an association to the
new symbolic link file.
readlink(fh) returns (string) .
Returns the string which is associated with the symbolic link file.
mkdir(dirfh, name, attr) returns (fh, newattr)
Creates a new directory name in the directory dirfh and returns the new fhandle and
attributes.
rmdir(dirfh, name) returns(status)
Removes the empty directory name from the parent directory dirfh.
readdir(dirfh, cookie, count) returns(entries)
Returns up to count bytes of directory entries from the directory dirfh. Each entry
contains a file name, file id, and an opaque pointer to the next directory entry called a
cookie. The cookie is used in subsequent readdir calls to start reading at a specific entry
in the directory. A readdir call with the cookie of zero returns entries starting with the
first entry in the directory.
statfs(fh) returns (fsstats)
Returns filesystem information such as block size, number of free blocks, etc.
New fhandles are returned by the lookup, create, and mkdir procedures which also take an
fhandle as an argument. The first remote fhandle, for the root of a filesystem, is obtained by
the client using the RPC based MOUNT protocol. The MOUNT protocol takes a directory
pathname and returns an fhandle if the client has access permission to the filesystem which
contains that directory. The reason for making this a separate protocol is that this makes it
easier to plug in new filesystem access checking methods, and it separates out the operating
system dependent aspects of the protocol. Note that the MOUNT protocol is the only place
that UNIX pathnames are passed to the server. In other operating system implementations the
MOUNT protocol can be replaced without having to change the NFS protocol.

The NFS protocol and RPC are built on top of the Sun External Data Representation {XDR)
specification 3. XDR defines the size, byte order and alignment of basic data types such as
string, integer,.union, boolean and array. Complex structures can be built from the basic XDR
data types. Using XDR not only makes protocols machine and language independent, it also
makes them easy to define. The arguments and results of RPC procedures are defined using an
XDR data definition language that looks a lot like C declarations. This data definition
language can be used as input to an XDR protocol compiler which produces the structures and
. XDR translation procedures used to interpret RPC protocols 1.

Server Side

Because the NFS server is stateless, when servicing an NFS request it must commit any
modified data to stable storage before returning results. The implication for UNIX based
servers is that requests which modify the filesystem must flush all modified data to disk before
returning from the call. For example, on a write request, not only the data block, but also any
modified indirect blocks and the block containing the inode must be flushed if they have been
modified.

Another modification to UNIX necessary for our server implimentation is the addition of a
generation number in the inode, and a filesystem id in the superblock. These extra numbers
make it possible for the server to use the inode number, inode generation number, and
filesystem id together as the fhandle for a file. The inode generation number is necessary
because the server may hand out an fhandle with an inode number of a file that is later
removed and the inode reused. When the original fhandle comes back, the server must be
able to tell that this inode number now refers to a different file. The generation number has to
be incremented every time the inode is freed.

Client Side

The Sun implementation of the client side provides an interface to NFS which is transparent to
applications. To make transparent access to remote files work we had to use a method of
locating remote files that does not change the structure of path names. Some UNIX based
remote file access methods use pathnames like host:path or /../host/path to name remote files.
This does not allow real transparent access since existing programs that parse pathnames have
to be modified.

Rather than doing a “late binding” of file address, we decided to do the hostname lookup
and file address binding once per filesystem by allowing the client to attach a remote filesystem
to a directory with the mount command. This method has the advantage that the client only
has to deal with hostnames once, at mount time. It also allows the server to limit access to
filesystems by checking client credentials. The disadvantage is that remote files are not
available to the client until a mount is done.

Transparent access to different types of filesystems mounted on a single machine is provided
by a new filesystem interface in the kernel 3. Each “filesystem type” supports two sets of
operations: the Virtual Filesystem (VFS) interface defines the procedures that operate on the
filesystem as a whole; and the Virtual Node (vnode) interface defines the procedures that
operate on an individual file within that filesystem type. Figure 1 is a schematic diagram of the
filesystem interface and how NFS uses it.

CLIENT

System Calls

SERVER

System Calls

VNODE/VFS

Sl L
PC Filesystem 4.2 Filesystem | |NFS Filesystem

VNODE/VFS

)

Server Routines

RPC / XDR RPC / XDR

Neork
=

Figure 1

|
f
|
|

I I I BE O EE G OB BN I BT aE e me

The Filesystem Interface

The VFS interface is implemented using a structure that contains the operations that can be
done on a filesystem. Likewise, the vnode interface is a structure that contains the operations
that can be done on a node (file or directory) within a filesystem. There is one VFS structure
per mounted filesystem in the kernel and one vnode structure for each active node. Using this
abstract data type implementation allows the kernel to treat all filesystems and nodes in the
same way without knowing which underlying filesystem implementation it is using.

Each vnode contains a pointer to its parent VFS and a pointer to a mounted-on VFS. This
means that any node in a filesystem tree can be a mount point for another filesystem. A root
operation is provided in the VFS to return the root vnode of a mounted filesystem. This is
used by the pathname traversal routines in the kernel to bridge mount points. The root
operation is used instead of keeping a pointer so that the root vnode for each mounted
filesystem can be released. The VFS of a mounted filesystem also contains a pointer back to
the vnode on which it is mounted so that pathnames that include “..” can also be traversed
across mount points.

In addition to the VFS and vnode operations, each filesystem type must provide mount and
mount_root operations to mount normal and root filesystems. The operations defined for the
filesystem interface are given below. In the arguments and results, vp is a pointer to a vnode,
dvp is a pointer to a directory vnode and devvp is a pointer to a device vnode.

Filesystem Operations

mount(varies)
mount_root()

. System call to mount filesystem
Mount filesystem as root

VFS Operations
unmount(vfs) Unmount filesystem

root{vfs) returns(vnode) Return the vnode of the filesystem root

statfs(vfs) returns(statfsbuf) Return filesystem statistics

sync(vfs) Flush delayed write blocks
Vnode Operations

open(vp, flags)
close(vp, flags)

Mark file open

Mark file closed

rdwr(vp, uio, rwflag, flags) Read or write a file

ioctl(vp, cmd, data, rwflag) Do 1/0 control operation
select(vp, rwilag) Do select

getattr(vp) returns(attr) Return file attributes

setattr(vp, attr) Set file attributes

access(vp, mode) Check access permission
lookup(dvp, name) returns(vp) Look up file name in a directory
create(dvp, name, attr, excl, mode) returns(vp) Create a file

remove{dvp, name) Remove a file name from a directory
link(vp, todvp, toname) Link to a file

rename(dvp, name, todvp, toname)
mkdir(dvp, name, attr) returns(dvp)
rmdir(dvp, name)

readdir(dvp) returns(entries)
symlink(dvp, name, attr, toname)
readlink(vp) returns(data)

fsync(vp)

inactive(vp)

bmap (vp, blk) returns(devp, mappedblk)
strategy(bp)

Rename a file

Create a directory

Remove a directory

Read directory entries

Create a symbolic link

Read the value of a symbolic link
Flush dirty blocks of a file

Mark vnode inactive and do clean up
Map block number

Read and write filesystem blocks

bread(vp, blockno) returns(buf) Read a block
brelse(vp, bp) : Release a block buffer

Notice that many of the vnode procedures map one-to-one with NFS protocol procedures,
while other, UNIX dependent procedures such as open, close, and ioctl do not. The bmap,

strategy, bread, and brelse procedures are used to do reading and writing using the buffer
cache.

Pathname traversal is done in the kernel by breaking the path into directory components and
doing a lookup call through the vnode for each component. At first glance it seems like a
waste of time to pass only one component with each call instead of passing the whole path and
receiving back a target vnode. The main reason for this is that any component of the path
could be a mount point for another filesystem, and the mount information is kept above the
vnode implementation level. In the NFS filesystem, passing whole pathnames would force the
server to keep track of all of the mount points of its clients in order to determine where to
break the pathname and this would violate server statelessness. The inefficiency of looking up
one component at a time can be alleviated with a cache of directory vnodes.

Implementation

Implementation of NFS started in March 1984. The first step in the implementation was
modification of the 4.2 kernel to include the filesystem interface. By June we had the first
“vnode kernel” running. We did some benchmarks to test the amount of overhead added by
the extra interface. It turned out that in most cases the difference was not measurable, and in
the worst case the kernel had only slowed down by about 2%. Most of the work in adding the
new interface was in finding and fixing all of the places in the kernel that used inodes directly,
and code that contained implicit knowledge of inodes or disk layout.

Only a few of the filesystem routines in the kernel had to be completely rewritten to use
vnodes. Namei, the routine that does pathname lookup, was changed to use the vnode lookup
operation, and cleaned up so that it doesn’t use global state. The direnter routine, which adds
new directory entries (used by create, rename, etc.), was fixed because it depended on the
global state from namei. Direnter was also modified to do directory locking during directory
rename operations because inode locking is no longer available at this level, and vnodes are
never locked.

To avoid having a fixed upper limit on the number of active vnode and VFS structures we
added a memory allocator to the kernel so that these and other structures can be allocated and
freed dynamically. The memory allocator is also used by the kernel RPC implementation.

A new system call, getdirentries, was added to read directory entries from different types of
filesystems. The 4.2 readdir library routine was modified to use getdirentries so programs
would not have to be rewritten. This change does, however, mean that programs that use
readdir have to be relinked.

Beginning in March 1984, the user level RPC and XDR libraries were ported from the
user-level library to the kernel, and we were able to make kernel to user and kernel to kernel
RPC calls in June. We worked on RPC performance for about a month until the round trip
time for a kernel to kernel null RPC call was 8.8 milliseconds on a Sun-2 (68010). The
performance tuning included several speed ups to the UDP and IP code in the kernel.

Once RPC and the vnode kernel were in place the implementation of NFS was simply a matter
of writing the XDR routines to do the NFS protocol, implementing an RPC server for the NFS
procedures in the kernel, and implementing a filesystem interface which translates vnode
operations into NFS remote procedure calls. The first NFS kernel was up and running in mid
August. At this point we had to make some modifications to the vnode interface to allow the
NFS server to do synchronous write operations. This was necessary since unwritten blocks in
the server’s buffer cache are part of the “client’s state”.

Our first implementation of the MOUNT protocol was built into the NFS protocol. It wasn’t
until later that we broke the MOUNT protocol into a separate, user level RPC service. The
MOUNT server is a user level daemon that is started automatically by a mount request. It
checks the file /etc/exports which contains a list of exported filesystems and the clients
that can import them (see appendix 1). If the client has import permission, the mount

- - B

}

r

daemon does a getfh system call to convert the pathname being imported into an fhandle
which is returned to the client.

On the client side, the mount command was modified to take additional arguments including a
filesystem type and options string. The filesystem type allows one mount command to mount
any type of filesystem. The options string is used to pass optional flags to the different
filesystem types at mount time. For example, NFS allows two flavors of mount, soft and hard.

. A hard mounted filesystem will retry NFS requests forever if the server goes down, while a soft
mount gives up after a while and returns an error. The problem with soft mounts is that most
UNIX programs are not very good about checking return status from system calls so you can
get some strange behavior when servers go down. A hard mounted filesystem, on the other
hand, will never fail due to a server crash; it may cause processes to hang for a while, but data
will not be lost.

To allow automatic mounting at boot time and to keep track of currently mounted filesystems,
the /etc/fstab and /etc/mtab file formats were changed to use a common ASCII format
that is similar to the /etc/fstab format in Berkeley 4.2 with the addition of a type and an
options field. The type field is used to specify filesystem type (nfs, 4.2, pc, etc.) and the
options field is a comma separated list of option strings, such as rw, hard and nosuid (see
appendix 1).

In addition to the MOUNT server, we have added NFS server daemons. These are user level
processes that make an nfsd system call into the kernel, and never return. They provide a
user context to the kernel NFS server which allows the server to sleep. Similarly, the block
I/0O daemon, on the client side, is a user level process that lives in the kernel and services
asynchronous block 1/O requests. Because RPC requests block, a user context is necessary to
wait for read-ahead and write-behind requests to complete. These daemons provide a
temporary solution to the problem of handling parallel, synchronous requests in the kernel. In
the future we hope to use a light-weight process mechanism in the kernel to handle these
requests 4.

We started using NFS at Sun in September 1984, and spent the next six months working on
performance enhancements and administrative tools to make NFS easier to install and use.
One of the advantages of NFS was immediately obvious; the df output below is from a diskless
machine with access to more than a gigabyte of disk!

Filesystem kbytes used avail capacity Mounted on
/dev/ndo T445 5788 912 86% /
/dev/ndpO 5691 2798 2323 55% /pub
panic: /usr 27487 21398 3340 86% /usr
fiat:/usr/src 345915 220122 91201 71% /usr/src

' panic:/usr/panic 148371 116505 17028 87% /usr/panic
galaxy:/usr/galaxy 7429 5150 1536 T7% /usr/galaxy
mercury: /usr/mercury 301719 215179 56368 79% /usr/mercury
opium: /usr/opium 327599 36392 258447 12% /usr/opium

The Hard Issues

Several hard design issues were resolved during the development of NFS. One of the toughest
was deciding how we wanted to use NFS. Lots of flexibility can lead to lots of confusion.

Filesystem Naming

Servers export whole filesystems, but clients can mount any sub-directory of a remote
filesystem on top of a local filesystem, or on top of another remote filesystem. In fact, a
remote filesystem can be mounted more than once, and can even be mounted on another copy
of itselfl This means that clients can have different “names” for filesystems by mounting them
in different places. :

I B BB B EEE BB BEm mmm mme man SR BEETTTR

To alleviate some of the confusion we use a set of basic mounted filesystems on each machine
and then let users add other filesystems on top of that. Remember that this is policy, there is
no mechanism in NFS to enforce this. User home directories are mounted on
/usr/servername. This may seem like a violation of our goals because hostnames are now
part of pathnames but in fact the directories could have been called /usr/1, /usr/2, etc.

—————

J ; | - _

+

Using server names is just a convenience. This scheme makes NFS clients look more like
timesharing terminals because a user can log in to any machine and her home directory will be
there. It also makes tilde expansion (where -username is expanded to the user’s home
directory) in the C shell work in a network with many machines.

To avoid the problems of loop detection and dynamic filesystem access checking, servers do
not cross mount points on remote lookup requests. This means that in order to see the same

filesystem layout as a server, a client has to remote mount each of the server’s exported
filesystems.

Credentials, Authentication and Security

NFS uses UNIX style permission checking on the server and client so that UNIX users see very
lile difference between remote and local files. RPC allows different authentication
parameters to be “plugged-in” to the message header so we are able to make NFS use a UNIX
flavor authenticator to pass uid, gid, and groups on each call. The server uses the
authentication parameters to do permission checking as if the user making the call were doing
the operation locally.

The problem with this authentication method is that the mapping from uid and gid to user must
be the same on the server and client. This implies a flat uid, gid space over a whole local
network. This is not acceptable in the long run and we are working on a network
authentication method which allows users to "login” to the network '2. This will provide a
network-wide identity per user regardless of the user’s identity on a particular machine. In the
mean time, we have developed another RPC based service called the Yellow Pages (YP) to
provide a simple, replicated database lookup service 5. By letting YP handle /etc/hosts,
/etc/passwd and /etc/group we make the flat uid space much easier to administer.

Another issue related to client authentication is super-user access to remote files. It is not
clear that the super-user on a machine should have root access to files on a server machine
through NFS. To solve this problem the server can map user root (uid 0) to user nobody (uid
-2) before checking access permission. This solves the problem but, unfortunatel , causes

some strange behavior for users logged in as root, since root may have fewer access rights to a
remote file than a normal user.

Concurrent Access and File Locking

NFS does not support remote file locking. We purposely did not include this as part of the
protocol because we could not find a set of file locking facilities that everyone agrees is correct.
Instead we have a separate, RPC based file locking facility. Because file locking is an
inherently stateful service, the lock service depends on yet another RPC based service called
the status monitor 8. The status monitor keeps track of the state of the machines on a network
so that the lock server can free the locked resources of a crashed machine. The status monitor
is important to stateful services because it provides a common view of the state of the network.

Related to the problem of file locking is concurrent access to remote files by multiple clients.
In the local filesystem, file modifications are locked at the inode level. This prevents two
processes writing to the same file from intermixing data on a single write. Since the NFS server
maintains no locks between requests, and a write may span several RPC requests, two clients
writing to the same remote file may get intermixed data on long writes.

UNIX Open File Semantics

We tried very hard to make the NFS client obey UNIX filesystem semantics without modifying
the server or the protocol. In some cases this was hard to do. For example, UNIX allows
removal of open files. A process can open a file, then remove the directory entry for the file
so that it has no name anywhere in the filesystem, and still read and write the file. This isa
disgusting bit of UNIX trivia and at first we were just not going to support it, but it turns out

that all of the programs that we didn’t want to have to fix (csh, sendmail, etc.) use this for
temporary files.

What we did to make open file removal work on remote files was check in the client VFS
remove operation if the file is open, and if so rename it instead of removing it. This makes it
(sort of) invisible to the client and still allows reading and writing. The client kernel then

N T -GN - RSN

removes the new name when the vnode becomes inactive. We call this the 3/4 solution
because if the client crashes between the rename and remove a garbage file is left on the
server. An entry to cron can be added to clean up on the server, but, in practice, this has
never been necessary.

Another problem associated with remote, open files is that access permission on the file can
change while the file is open. In the local case the access permission is only checked when the
file is opened, but in the remote case permission is checked on every NFS call. This means
that if a client program opens a file, then changes the permission bits so that it no longer has
read permission, a subsequent read request will fail. To get around this problem we save the
client credentials in the file table at open time, and use them in later file access requests.

Not all of the UNIX open file semantics have been preserved because interactions between two
clients using the same remote file cannot be controlled on a single client. For example, if one
client opens a file and another client removes that file, the first client’s read request will fail
even though the file is still open.

Time Skew

Time skew between two clients or a client and a server can cause the times associated with a
file to be inconsistent. For example, ranlib saves the current time in a library entry, and /d
checks the modify time of the library against the time saved in the library. When ranlib is run
on a remote file the modify time comes from the server while the current time that gets saved
in the library comes from the client. If the server’s time is far ahead of the client’s it looks to
ld like the library is out of date. There were only three programs that we found that were
affected by this, ranlib, Is and emacs, so we fixed them.

Time skew is a potential problem for any program that compares system time to file

modification time. We plan to fix this by limiting the time skew between machines with a time

synchronization protocol.

Performance
The final hard issue is the one everyone is most interested in, performance.

Much of the development time of NFS has been spent in improving performance. Our goal
was to make NFS comparable in speed to a small local disk The speed we were interested in is
not raw throughput, but how long it takes to do normal work. To track our improvements we
used a set of benchmarks that include a small C compile, tbl, nroff, large compile, {77
compile, bubble sort, matrix inversion, make, and pipeline.

To improve the performance of NFS, we implemented the usual read-ahead and write-behind
buffer caches on both the client and server sides. We also added caches on the client side for
file attributes and directory names. To increase the speed of read and write requests, we
increased the maximum size of UDP packets from 2048 bytes to 9000 bytes. We cut down the
number of times data is copied by implementing a new XDR type that does XDR translation
directly into and out of mbufs in the kernel.

With these improvements, a diskless Sun-3 (68020 at 16.67 Mhz.) using a Sun-3 server with a
Fujitsu Eagle disk, runs the benchmarks faster than the same Sun-3 with a local Fujitsu
2243AS 84 Mega-byte disk on a SCSI interface.

The two remaining problem areas are getattr and write. The reason is that stat-ing files
causes one RPC call to the server for each file. In the local case the inodes for a whole
directory end up in the buffer cache and then stat is just a memory reference. The write
operation is slow because it is synchronous on the server. Fortunately, the number of write
calls in normal use is very small (about 5% of all calls to the server, see appendix 2) so it is not
noticeable unless the client writes a large remote file.

Release 3.0 Performance

25
NFS
20
ScSsI
15| EaGLE
10
5
0 &

smcmp tbl nroff lgcmp f77cmp bubble matrix make pipe

Figure 3

In Figure 3, above, we show some benchmark results comparing NFS and local SCSI disk
performance for the current Sun software release. The scale on the left is unitless numbers. It
is provided to make comparison easier.

" Since many people base performance estimates on raw transfer speed we also measured those.
The current numbers on raw transfer speed are: 250 kilobytes/second for read (cp bigfile
/dev/null) and 60 kilobytes/second for write on a Sun-3 with a Sun-3 server.

Other Remote Filesystems

Why, you may ask, do we need NFS when we already have Locus', Newcastle Connection's,
RFS8, IBIS'® and EFS'. In most cases the answer is simple: NFS is designed to handle
non-homogeneous machines and operating systems, it is fast, and you can get it today. Other

than the Locus system, which provides file replication and crash recovery, the other remote
filesystems are very similar to each other.

RFS vs NFS

The AT&T Remote Filesystem (RFS), which has been demonstrated at USENIX and
UniForum conferences but not yet released, will provide much of the same functionality as
NFS. It allows clients to mount filesystems from a remote server and access those files in a
transparent way. The differences between them mostly stem from the basic design
philosophies. NFS provides a general network service, while RFS provides a distributed UNIX
filesystem®. This difference in philosophy shows up in many different areas of the designs.

Networking

RFS does not use standard network transport protocols, like UDP/IP. Instead it uses a special
purpose transport protocol which has not been published, and implementations of it are not
generally available. This protocol cannot easily be replaced because RFS depends on
properties of the transport virtual circuit to determine when a machine has crashed. NFS uses
the RPC layer to hide the underlying protocols, which makes it easy to support different
transport protocols without having to change the NFS protocols.

RFS does not use a remote procedure call mechanism, instead it extends-the semantics of
UNIX system calls so that a system call which accesses a remote file goes over the network and
continues execution on the server. When the system call is finished, the resulits are returned to
the client. This protdcol is complicated by the fact that both client and server can interrupt a
remote system call. In addition, the system calls which deal with filenames had to be modified
to handle a partial lookup on the server when a client mount point is encountered in the

pathname. In this case the server looks up part of the name then returns control to the client
to look up the rest.

5
!
!
|
i
¢
1

i
1 l
: '

+

TS B N S SN GE- S R GE aE s am

-

Non-Homogeneous Machines and Operating Systems

While NFS currently runs on 16 different vendors hardware, and under Berkeley 4.2, Sun OS,
DEC Ultrix, System V.2, VMS and MS/DOS, RFS will run only System V.3 based UNIX
systems. The NFS design is based on the assumption that most installations have many
different types of machines on their network, and that these machines run widely varying
systems. The RFS protocol includes a canonical format for data to help support different
machine architectures, but no attempt is made to support operating systems other than System
V.3. The NFS design does not try to predict the future. Instead, it includes enough flexibility
to support evolving software, hardware, and protocols.

Flexibility

Because RFS is built on proprietary protocols with UNIX semantics built in, it is hard to
imagine using those protocols from different operating systems. NFS, on the other hand,
provides flexibility through the RPC layer. RPC allows different transport protocols,
authentication methods, and server versions to be supported in a single implementation. This
allows us, for example, to use an encrypted authentication method for maximum security
among workstations, while still allowing access by PC’s using a simpler authentication method.
It also makes protocol evolution easier since clients and servers can support different versions
of the RPC based protocols simultaneously.

RFS uses streams 7 to hide the details of underlying protocols. This should make it easy to plug
in new transport protocols. Unfortunately, RFS uses the virtual circuit connection of the
transport protocol to detect server and client crashes*. This means that even the reliable byte
stream protocol TCP/IP cannot be plugged in because TCP connections do not go away when
one end crashes unless there is data flowing at the time of the crash.

Crash Recovery

The RFS uses a stateful protocol. The server must maintain information about the current
mount points of all of its clients, the open files, directories, and devices held by its clients, as
well as the state of all client requests that are in progress. Because it would be very difficult
and costly for the client to rebuild the server’s state after a server crash, RFS does not do
server crash recovery. A server or client crash is detected when the protocol connection fails,
at which point all operations in progress to that machine are aborted. When an RFS server
crashes it is roughly equivalent, from the client’s point of view, to losing a local disk.

If server crashes are rare events doing no recovery is acceptable, however, keep in mind that
network delays, breaks, or overloading usually cannot be distinguished from a machine crash.
As networks grow the possibility of network failures increases, and as the connectivity of the
network increases so does the chance of a client or server crash. We decided early in the
design process that NFS must recover gracefully from machine and network problems. NFS
does not need to do crash recovery on the server because the server maintains no state about
its clients. Similarly, the client recovers from a server crash simply by resending a request.

Administration

There are two major differences between administration of NFS and RFS. The use of a uid
mapping table on RFS servers removes the need for uniform uid to user mapping through out
the network. NFS assumes a uniform uid space and we provide the Yellow Pages service to
make distribution and central administration of system databases (like /etc/passwd and
/etc/group) easier. NFS also has a MOUNT RPC service for each machine acting as a
server. The exported filesystem information is maintained on each machine and made
available by this service. RFS uses a centralized name service running on one machine on the
network to keep track of advertised filesystems for all servers. A centralized name service was
not acceptable in NFS because it allows a single point of failure for the whole network, and it
forces all clients and servers to use the same protocol for exchanging mount information. By
having a separate protocol for the MOUNT service we can support different filesystem access
checking and different operating system dependent features of the mount operation.

* The exclusive use of transport properties to drive session semantics is a common design flaw in many net-
work applications.

UNIX Semantics

NFS does not support all of the semantics of UNIX filesystems on the client. Removing an
open file, append mode writes, and file locking are not fully implemented by NFS. RFS does
implement 100% of the UNIX filesystem semantics. However, if a server crashes or a
filesystem is taken out of service, client applications can see error conditions which normally
could only happen due to a disk failure. Since this is an error condition that is so severe that it
usually means that the whole system has failed, most applications will not even try to recover.

Availability
NFS has been a product for more than a year. Source and support for NFS on Berkeley 4.2

BSD is available through Sun and Mt. Xinu, and for System V.2 through Lachman Associates,
The Instruction Set, and Unisoft. RFS has not yet been released.

Conclusion

For a small network of machines all running System V.3, RFS is the obvious choice for remote
access to files since it will come with V.3 and it implements all of the UNIX semantics. For a
large network or a network of mixed protocols, machine types, and operating systems, NFS is
the better choice. It should be understood that N FS and RFS are not mutually exclusive. It will
be possible to run both on a single machine.

Porting Experience

In the many ports of NFS to foreign hardware and systems we have found only a few places
where additions to the protocol would be helpful. The IBM PC client side port was done
almost exclusively from the protocol specification, and a simple, user-level server was also
implemented from the specification.

NFS has been ported to five different operating systems, two of which are not UNIX based,
and to many different types of machines. Each port had its own interesting problems.

The first port of NFS was to a VAX 750 running Berkeley 4.2 BSD. This was also the easiest
port since our code is based on 4.2 UNIX. Modifying the kernel to use the vnode/VFS
interface was the most time consuming part of the porting effort. Once the vnode/VFS
interface was in, the NFS and RPC code pretty much just dropped in. Some libraries had to be
updated, and programs that read directories had to be recompiled. The whole port took about
two man-weeks to complete. This port was then used as the distribution source for later ports.

The System V.2 port was done in a joint effort by Lachman Associates and The Instruction Set
on a VAX 750. In order to avoid having to port the Berkeley networking code to the System V
kernel an Exelan board was used. The Exelan board handles the ethernet, IP, and UDP
layers. A new RPC transport layer had to be implemented to interface to the Exelan board.
Adding the vnode/VFS interface to the System V kernel was the hardest part of the port.

The port to the IBM PC, done by Geoff Arnold and Kim Kinnear at Sun, was complicated by
the need to add a "redirector” layer to MS/DOS to catch system calls and redirect them. An
implementation of UDP/IP also had to be added before RPC could be ported. The NFS client
side implementation is written in assembler and occupies about 40K bytes of space. Currently,
remote read operations are faster than a local hard disk access but remote write operations are
slower. Over all, performance is about the same for remote and local access.

DEC has ported NFS to Ultrix on a Microvax II. This port was harder than the 4.2 port
because the Ultrix release that was used is based on Berkeley 4.3beta. The most time
consuming part of the port was, again, installing the vnode/VFS interface. This was
complicated by the fact that Berkeley has made many changes to much of the kernel code that
deals with inodes.

Another interesting port, while not a different operating system, was the Data General MV
4000 port. The DG machine runs System V.2 with Berkeley 4.2 networking and filesystem
added. This made the RPC and vnode/VFS part of the port easy. The hard part was XDR.
The MV 4000 has a word addressed architecture, and character pointers are handled very

. N W N .

differently than word pointers. There were many places in the code, and especially in the XDR
routines that assumed that (char *) == (int *).

As an aid to porting we have implemented a user-level version of the NFS server (UNFS). It
uses the standard RPC and XDR libraries and makes system calls to handle remote procedure
call requests. The UNFS can be ported to non-UNIX operating systems by changing the system
calls and library routines that are used. Our benchmarks show it to be about 80% of the
performance of a kernel based NFS server for a single client and server. .

The VMS implementation is for the server side only. The basic port was done by Dave
Kashten at SRI. He started with the user-level NFS server and used the EUNICE
UNIX-emulation libraries to handle the UNIX system calls. The RPC layer was ported to use a
version of the Berkeley networking code that runs under VMS. Some caching was added to
the libraries to speed up the system call emulation and to perform the mapping from UNIX
permission checking to VMS permission checking. '

At the UniForum conference in February 1986, all of the completed NFS ports were
demonstrated. There were 16 different vendors and five different operating systems all sharing
files over an ethernet.

Also at UniForum; IBM officially announced their RISC based workstation product, the RT.
Before the announcement, NFS had already been ported to the RT under Berkeley 4.2 BSD
by Mike Braca at Brown University.

Conclusions

We think that the NFS protocols, along with RPC and XDR, provide the most flexible method
of remote file access available today. To encourage others to use NFS, Sun has made public
all of the protocols associated with NFS. In addition, we have published the source code for
the user level implementation of the RPC and XDR libraries.

Acknowledgements

There were many people throughout Sun who were involved in the NFS development effort.
Bob Lyon led the NFS group and helped with protocol issues, Steve Kleiman implemented the
filesystem interface in the kernel from Bill Joy’s original design, Russel Sandberg ported RPC
to the kernel and implemented the NFS virtual filesystem, Tom Lyon designed the protocol
and provided far sighted inputs into the overall design, David Goldberg worked on many user
level programs, Paul Weiss implemented the Yellow Pages, and Dan Walsh is the one to thank
for the performance of NFS. The NFS consulting group, headed by Steve Isaac, has done an
amazing job of getting NFS out to the world.

(1]
(2]
3]
(4]
(5]

(6]
(7]

(8]

(9]

(10]
(11]
(12]
[13]
(14]
[15]

[16]

References

B. Lyon, “Sun Remote Procedure Call Specification,” Sun Microsystems, Inc.
Technical Report, (1984).

R. Sandberg, “Sun Network Filesystem Protocol Specification,” Sun Microsystems,
Inc. Technical Report, (1985).

B. Lyon, “Sun External Data Representation Specification,” Sun Microsystems, Inc.
Technical Report, (1984). :

J. Kepecs, “Lightweight Processes for UNIX Implementation and Applications,”
USENIX (1985).

P. Weiss, “Yellow Pages Protocol Specification,” Sun Microsystems, Inc. Technical
Report, (1985).

J. M. Chang, “SunNet,” USENIX (1985).

D.L. Presotto and D. M. Ritchie, “Interprocess Communication in the Eighth Edition
UNIX System,” USENIX Conference Proceedings, (June 1985).

P. J. Weinberger, “The Version 8 Network File System,” USENIX Conference
Proceedings, (June 1985).

M. J. Hatch, et al., “AT&T’s RFS and Sun’s NFS, A Comparison of Heterogeneous
Distributed File Systems,” UNIX World, (December 1985).

C. T. Cole, et al., “An Implementation of an Extended File System for UNIX,”
USENIX Conference Proceedings, (June 1985).

B. Taylor, “A protocol compiler for RPC,” Sun Microsystems, Inc. Technical Report,
(December 1985).

B. Taylor, “A Secure Network Authentication Method for RPC,” Sun Microsystems,
Inc. Technical Report, (November 1985).

S. R. Kleiman, “An Architecture for Muitiple File Systems in Sun UNIX,” Sun
Microsystems, Inc. Technical Report, (October 1985).

Popek, et al., “The LOCUS Distributed Operating System,” Operating Systems Review
ACM, (October 1983).

D. R. Brownbridge, et al., “The Newcastle Connection or UNIXes of the World
Unite!,” Software -- Practice and Experience, (1982).

W. F. Tichy, et al.,, “Towards a Distributed File System,” USENIX Conference
Proceedings, (June 1985).

TN -G N aE am e

Appendix 1

/etc/fstab and /etc/mtab format

The format of the filesystem database files /etc/fstab and /etc/mtab were changed to
include type and options fields. The type field specifies which filesystem type this line refers to,
and the options field specifies mount and run time options. The options field is a list of
comma separated strings. This allows new options to be added, for example when a new
filesystem type is created, without having to change the library routines that parse these files.
The example below is the /etc/fstab file from a diskless machine.

(Filesystem mount point type options)

/dev/ndo / 4.2 rw 11
/dev/ndp0 /pub 4.2 rO 0 0
speed: /usr.MC68010 /usr nfs ro,hard 0 0
#opium: /usr/opium /usr/opium nfs rw,hard 00
speed: /usr.MC68020/speed /usr/speed nfs rw,hard 00
panic: /usr/src /usr/src nfs rw,soft,bg O O
titan: /usr/doctools /usr/doctools nfs ro,soft,bg O O
panic:/usr/panic /usr/panic nfs rw,soft,bg 0 O
panic:/usr/games /usr/games nfs ro,soft,bg O O
wizard: /arch/4.3alpha /arch/4.3 nfs ro,soft,bg 0 O
sun: /usr/spool/news /usr/spool/news nfs ro,soft,bg O O
krypton: /usr/release /usr/release nfs ro,soft,bg 0 O
crayon: /usr/man /usr/man nfs soft,bg 00
crayon: /usr/local /usr/local nfs ro,soft,bg 0 O
topaz:/MC68010/db/release /usr/db nfs ro,soft,bg 0 O
eureka: /usr/ileaf /usr/ops nfs soft,bg 0 0
wells: /pe /pe nfs rsize=1024 0 O

Mount Access Permission: the /etc/exports File

The file /etc/exports is used by the server’s MOUNT protocol daemon to check client
access to filesystems. The format of the file is <filesystem> <access-list>. If the access list is
empty the filesystem is exported to everyone. The access-list consists of machine names and
netgroups. Netgroups are like mail aliases, a single name refers to a group of machines. The
netgroups database is accessed through the Yellow Pages. Below is and example
/etc/exports file from a server. :

(filesystem access-list)

/usr argon krypton

/usr/release

/usr/misc

/usr/local

/usr/krypton argon krypton phoenix sundae

/usr/3.0/usr/src systems
/usr/src/pe pe-users

Below are the server NFS and RPC statistics collected from a typical server at Sun. Statistics

using the nfsstat command, and sent to a list of system
ful for load balancing and detecting network problems.

are collected automatically each night,
administrators. The statistics are use

Note that 1499689 calls/da
hours for one server!

Server rpc:

calls
1499688

Server nfs:

calls
1499688

null
0 0%

read
452090 30%

link
683 0%

badcalls
0]

badcalls
0

getattr
79897 5%

wrcache-
o 0%

symlink
83 0%

Appendix 2

nullrecv
0

setattr
708 0%

write
50151 3%

mkdir
1 0%

badlen
0

root
0 0%

create
25394 1%

rmdir
1 0%

y = 62487 talls/hour = 17 calls/second, average over twenty four

xdrcall
0

lookup
760709 50%

remove
5605 0%

readdir
6960 0%

readlink
116712 7%

rename
687 0%

fsstat
7 0%

)

Appendix 3

Sun Protocols in the ISO Open Systems Interconnect Model

7 Application

6 Presentation

5 Session

4 Transport

3 Network
2 Data Link
1 Physical

Sun’s Native Architecture

Future Additions

Tools for the Maintenance and Installation of a Large Software
Distribution

D.M. Tilbrook
P.RH. Place

Imperial Software Technology

ABSTRACT

This paper describes the problems inherent in developing and maintaining a
large software distribution. A strategy for software development and its
relevance to these problems is discussed. Brief outlines of policies that
implement the strategy are then presented. The IST implementation is
described with examples of the support tools developed. Finally, more
detailed descriptions of some tools are ‘presented, with particular reference
to pmak(1), a front end to make(1).

.

1. INTRODUCTION

In general, programming techniques applicable to small scale software projects do not
scale up to large, or even medium scale, projects. At Imperial Software Technology
(IST), we are developing software (approximately 3.000 files, 300K lines, 7.2M bytes
of source code) in two projects: ISTAR, a project developing an integrated project
support environment, and 7001, a project researching into software development,
described in this paper. The ISTAR project uses much of the software produced by
7001, both for development and delivery. The continuing development, application
and distribution of the 7001 software has highlighted some of the problems inherent
in software development. In an attempt to resolve these problems, an overall
software strategy has been evolved and adopted. Further, particular policies for
carrying out this strategy have been developed, both in the form of standard
practices for the development of software, and as tools to assist that development.

This paper discusses the software problems and describes how our software strategy
resolves these problems. The manner in which this strategy is implemented at IST
is described and some of the tools will be discussed in detail. Particular attention

is paid to tools that are part of the software construction process. The paper
contains the following sections:

e Problems

e Software Strategy
o Policies

e Pmak

e Use at IST

e Conclusions

The work described in this paper developed on and for UNIX? systems. As such it
refers to UNIX tools and facilities. It is expected that the reader has some

1. The term “make” will be used extensively throughout this paper as a verb, a proper noun and an
adjective. In each case, its use should be clear from the context. Therefore most occurrences will
not be distinguished in any way.

-2 -

knowledge of the concepts and use of make(1) and some of the other standard UNIX
tools.

2. PROBLEMS

The development and maintenance of 7001 software has enabled us to identify a
number of problems that occur in large software projects. In this section, we
describe these problems and also give an indication as to why make(1), as used in
the past is inadequate for large scale projects.

The problems that we describe are:
e Education.

e Interdependency of Construction.
e Application of the Software.

o Identification.

e System Variations.

o Problems with Make

— Differences Between Versions

— Lack of Standards

— Overloading

— Duplication of Information

— Weakness of the Time-Dependency Relation
— The Remake Problem

— Difficulty of Make Script Maintenance
— Dynamic Dependency

— Include Facility

— No Conditionals

— No Local Assignments

2.1 Education

Staff joining a company will have a wide range of programming practices (depending
on programming languages used and previous experience). It is important for a
company to educate these staff in the “company style” (this should include preferred
coding standards and available tools). Unfortunately, when projects have to deliver
products in short time scales, this education is often thought to be a luxury that
may be omitted. This leads to a number of people developing code for a client
without attempting to standardise their coding practices. The resulting diversity of

style means that it is hard to adequately assure the quality of the deliverable
products. '

2.2 Interdependency of Construction

Software often contains complex dependencies, where the construction of a program
is dependent upon the prior construction (and installation) of other programs or

libraries. It is not an easy task to specify in a clear and precise way the order in
which libraries and programs should be constructed.

A ‘particular example of this is the mail system, ma(1), used at IST (a system
which rivals the Rand mail handler in complexity - but mot in code size). The
construction of ma(1) depends upon the prior installation of arlo(1) which in its

2. Unix is a trademark of AT&T Bell Laboratories.

L

-3 -

turn depends upon TIPs, TIPs requires xdb(1) which is dependent upon the IST
library. .
2.3 Application of the Software

We use the 7001 software in three different ways: As a research tool, as a
production system and as part of a product. This entails the maintenance of three
versions of the software: the research version which is updated on a continuous
basis; the production version, used within IST and updated every two or three
months; and the distribution version, delivered to customers and updated at longer
intervals. This creates the problem of maintaining consistent information over the
different versions of the software (a problem that is only partially solved by
considering the research version as the master copy).

We also create special test versions of the software for particular purposes. For
example, we recently created another copy of the software to enable the porting of
ISTAR to a new machine (and operating system).

24 Iderdification

With a number of people changing the source code, there is little stability in a
system and a piece of software can suddenly stop working because a change to some
other piece of software has been made. We have to be able to keep track of these
changes in order to determine responsibility for the code and hence to maintain
control over the development of the project.

2.5 System Variations

At IST, we use a number of different machines running different versions of UNIX.
In particular, we have VAX/750's® and a 3B2 running System VR2, as well as a
number of 68000’s running Uniplus System V, a Pyramid 90 running OSx and a
VAX/750 running 4.3bsd.*

With this variation in machines and operating systems, we have had to face the
problem of “standard” tools varying between machines, (e.g.. install(1) and linz(1)),
programs being installed in different directories (e.g., lint(1)), header files being in
different locations (e.g., wait.h), files having different names (e.g.. stringh vs.
strings.h vs. nothing at all), routines having different names (e.g.. strchr(3) vs.
index(3)), and routines returning values of different types (e.g.. sprinzf(3)). One
previous solution to this problem has been to overload make, however, this often
results in very complicated make scripts.

2.6 Problems with Make

Whilst the problems described above are significant, the most difficult problems faced
are those caused by make. Make is probably the most important tool in an
installer’s tool-kit and there can be little doubt that without it, or some tool with a
similar function and power, the installation of a large software system would be
almost impossible.

However, make does have a number of short-comings.

26.1 Differences Between Versions There are at least three versions of make in use.
For the most part the fundamental syntax and function are the same. However,
there are substantial differences with respect to the handling of the construction
rules and archive files.

3. VAX is a trademark of Digital Equipment Corporation
4. We have also run the 7001 software on 4.1bsd, 4.2bsd, Ultrix, System III and V8.

-4 -

Since some versions of make are superior to others, sites often use a “‘non-native”
version. This makes it difficult to prepare complicated make scripts for a particular
system since the version of make in use at the target site may not be the standard
version for the system.

26.2 Lack of Standards Despite the use of make for about ten years, no dominant
style of use has evolved. There are a number of target names that are used
frequently in make scripts (e.g.. all, clobber and clean) but the associated functions
vary from script to script. Comprehensive make scripts tend to be exceedingly large
and complicated. Yet it is almost essential to read a make script before use.

26.3 Overloading A major cause of complexity in make scripts is the tendency for
programmers to overload the script with rules and operations not concerned with
construction. It is quite common to find commands to lint, print, vgrind, delta or
get sccs s-files, build ctags files and even invoke editors on source files in a script,
though none of these operations are part of the fundamental purpose of a make
script which is to construct and install programs and their related data files. Make
does provide convenient mechanisms to perform and select these other operations, but
their inclusion complicates the scripts and hides essential information.

264 Duplicagion of Information Make scripts often have information duplicated (in
slightly different forms) in different parts of the script. For example, a single file
name may appear, in various forms (e.g.. echo.c, echo.o, echo, /bin/echo) throughout
the script. File names often appear in lists (where each file is to be treated in the
same way) and the ordering of these lists may be significant, however, it is not
possible to determine the significance of the lists without examining the entire make
script. :

A further cause of duplication of information is that the current form of make
forces a conscientious software designer to give the name of an object library file at
least twice. Consider a make script to compile a program that depends on a library,
then the library name should be given in the dependency list for the program and
also in the compilation command.

This requirement for the multiple entry of information leads to either incomplete,
inconsistent or redundant specifications. For "example, some programmers create a
variable that names all the libraries used by the programs constructed in the make
script and use the variable whenever libraries names are required (e.g., the
dependency lists and compilation commands). This can lead to confusion and errors.

26.5 Weakness of the Time-Dependency Relation One cause of information
duplication is that the time-dependency relation is difficult to limit, non-transitive
and inadequate.

For example, assume that /bin/echo depends on a local version of echo which in
turn depends on the source file echoc. Even though /bin/echo is more recent than
the source file echo.c, if make is directed to construct /bin/echo and the local
version of echo does not exist, then both echo and /bin/echo will be unnecessarily
re-constructed.

To illustrate the lack of transitivity, assume that echo.c “#include”s a file stdio.h.
The construction of the file echo.c does not depend on stdio.h, but echo and echo.o’s
constructions do depend on stdioh. The inability of make to express such a
dependency means that all such transitive dependencies must be unfolded and stated
explicitly, thus greatly increasing the size, complexity and construction time of make
scripts.

A further problem with time-dependency is the propagation of redundant operations
due to changes in a file's modification time but not its contents. For example,
assume that lex. is a lex(1) script that includes a beader file generated by yacc(1)'s
processing of the file yacc.y. Every time yacc.y is changed., yacc(1) is rerun which

{
ﬁ

-5-

will re-produce the header file yzab.h. This should in turn force the re-compilation
of lexc (a process that is very expensive). To avoid this unnecessary step, a copy
of ytabh, say ytabth, is kept with lex.o depending on ytabth (ytabth only being
updated when it differs from yzabh). Let ytabh be re-produced, but without
changing its contents. Then. on each subsequent invocation of the make script,
ytabh will be compared with yzab.th. :

266 The Remake Problem Another problem with the time dependency relation is
that the only way to force the reconstruction of a target is to remove it or to
touch(1) a file on which it depends.

This is a particular problem when dealing with programs that generate object or
fixed format files. For example, one of the TIPs programs, tmkprof(1), converts a
textual description of a data base into an encoded representation (the profile). Any
change in this encoding, naturally requires that all existing profiles be recreated. It
is not desirable to have the profiles depend on tmkprof(1) as the slightest change
(e.g.. fixing a spelling mistake in an error message) would force the regeneration of
all profiles, which might, in turn, cause many other unnecessary and expensive
regenerations. But there is no convenient or commonly used mechanism within make
to handle such a problem.

26.7 Dificulty of Make Script Maintenance Because, as a consequence of the above
problems, make scripts are often very complicated, changing them is a difficult and
error-prone task. Due to time constraints or lack of concern, make scripts tend to
be “hacked” and not designed. Additions are made by duplicating lines that are
“close” to what is required and then making necessary changes to have the script
work correctly. This leads to unstructured, over-complicated and incorrect scripts.

2.6.8 Dynamic Dependency A product may depend upon some dynamic list of data
files. An obvious dependency to use is:

target: *.d

However, although make will correctly rebuild target if a new data file is added, it
will fail to rebuild zarget if one of the data files is removed.

269 Include Facility There is no universal or useful include facility. The
standard make on bsd distributions does not support an include facility. The AT&T
versions have a form of include that is rendered inadequate by requiring the include
parameter to be an absolute pathname (i.e., there is no search path and variables
may not be used to resolve the location of the desired file).

For portability, it is essential that make scripts be able to include files to establish
environmental settings and have a search path that can be externally specified.

26.10 No Conditionals The lack of conditional tests within make means that it is

not easy to dynamically select (or suppress) a given construction. Due to syntactic
problems, using the shell to perform tests is both a frustrating and difficult exercise.
It is also a non-trivial task to ensure that errors are handled correctly. For
example, one has to ignore the result of any test that might legitimately return a
non-zero status, but this means that real errors aren’t handled properly.

26.11 No Local Assignments It would be desirable to use make's limited variable
facility to be able to design and use prototype constructions. Unfortunately, because
make assigns values to its variables in the first pass and uses the values in the
second pass, only the last assigned value will be used.

2.7 Disclaimer

Before leaving this section, we must reiterate that, despite the problems we have
identified, make is the single most important tool in our approach to installing and
porting software.’ Most of our efforts bave been directed at the development of

-6 -

techniques and tools to use make more effectively, not to replace it. In fact, it is
now our opinion that not only should make not be enhanced, but should be reduced
in power in order to achieve improved performance and to eliminate some features
that we don’t need and interfere with its more effective use, which is to say, make
make make things well.

3. SOFTWARE STRATEGY

In order to solve the problems described in the previous section in an effective
manner, a software strategy bhas been evolved. The main aim of the strategy was
to reduce the difficulty of developing and maintaining code. A second important aim
was to make it easier to follow, than to ignore the strategy. The following aspects
of the software strategy are described.

e Isolation.

e Provision of Tools.

e Single Sourcing.

e Disciplined Organisation of Source Code.

o Locatability. ')
e Self Documenting Programs.

o Reducing the Complexity of Makefiles.

e Auditing.

3.1 Isolation

A primary assumption is that the software is to be installed on a “vanilla” UNIX
system, which is to say that none of the bugs have been fixed and no enhancements
are available. Thus, the software installation process must make minimal
assumptions about its environment. Another consideration is that the software
should be totally isolated from the rest of the system. It should be possible to
install the "software, test it and remove it without having affected the original
system. It should also be possible to ensure that such a test does not use
previously installed or enhanced parts of the environment.

3.2 Provision of Tools

As has been stated, many of the tools available under UNIX vary from system to
system or have bugs which make them less than helpful. Where necessary,
distributions must include tools to rectify known bugs or to provide missing
facilities.

For example, we provide versions of basename(1) and ctime(3) which are used by
the 7001 software instead of the standard versions. In keeping with the isolation

strategy, the 7001 replacements are not installed in the standard libraries or
directories.

3.3 Single Sourcing

Another important part of the strategy is single sourcing of information. If
information is expressed in only one location, then there is a much greater chance of
that information being in step with the system. Therefore, all the site dependent
information should be contained in a single location and processed to create the

5. It might bear mentioning that Stu Feldman, the original creator of make, will soon be dt’s manager
(as much as is possible).

- O . - .-

—

-7 -

relevant files. Where possible, information about constructions or installations should
be stored in a single well known location.

For example, we use a file called systemJ to contain the version of UNIX being
used. All other files that refer to the version (or name) of the system use this file.
A further example are the TIPs databases of library functions. They are used to
generate lint(1) libraries, to create xdb(1) databases (used to provide online glossaries
and references), the software inventory database entries, as well as UPM sections.
As a logical extension of this strategy and these databases, we have experimented
both with extracting C source from the database entry and embedding the database
entry in the C source. The former makes writing C code harder and the latter
requires a small change to the C pre-processor. Other examples of single sourcing
are presented later in the paper.

3.4 Disciplined Organisation of Source Code

A further feature of the strategy is to separate files by their use (or function) into
different directories. This leads to a software organisation where only one library is
constructed from each directory and where shared header files are placed in separate
directories.

For example, we avoid files with the name main.c, the reason being that main.c
does not help identify the function of the program, whereas passwd.c suggests that .
the file is the main source file for passwd(1).%

3.5 Locatability

Another aim is to be able to easily locate the source for any program. Therefore,
we must construct a source inventory database as well as tools to support its
construction and interpretation.

We could use find(1), but on V7 and System V it is unacceptably slow. Even the
improved version, on bsd systems, provides a great deal of extraneous information
(e.g.. “find printf” will find all occurrences of printf.c, but also printf.o and any
other files with printf in their name such as wwprintf.c).

3.6 Self Documenting Programs

In response to the problem of training new personnel, programs should be
substantially self-documenting. Since manual entries often provide too much
information, at the wrong level, in the wrong order and, perhaps, out of date, help
information should be generated from, and incorporated into, each program.

3.7 Reducing the Complexity of Makefiles

In order to resolve some of the problems with make, we should reduce the
complexity of make files, or even render them unnecessary. Tools must be provided
to support the creation and maintenance of make files and to provide alternatives to
make for non-construction operations.

As an example, the existence of a source file in a directory should be sufficient
indication that the file is to be used. Information about a program’s construction
should be stored in the program source, not in the make script.

3.8 Auditing

In order to solve the problem of traceability, source code control techniques should
be used as a default action, rather than as an afterthought. Each time a file is

6. There are 53 files called main.c in our 4.3bsd source trees. Yet there is no adb.c, make.c, lex.c, yacc.c
and the only sh.c is source for the program installed as csh.

-8 -

changed (or installed), a record should be kept of the reasons for the change, the
person responsible for the change and the change itself.

Sccs or a similar system, is necessary to perform this record keeping. However, we
also require that a record of any changes be kept in a form that may be used by
other tools. In order that this record accurately reflects changes, the record keeping
should be automatic, requiring no effort from the user. Further, each time a
program is installed, a record should be kept of the installation, so that all the
changes to a system are recorded. Again, this record should be automatic. Tools
are then needed in order to create and manipulate these records. '

4. POLICIES

Over the last decade, subsets of the current 7001 software have been installed on a
variety of machines including V6, V7, V8, PWB, 4.1bsd and System II. In general,
these installations were prompted by changes of hardware or operating system. The
early installations were manual. requiring a large number of changes to the source
and took weeks to complete (due to other higher priority problems). In fact, it was
the complexity of installing the software that eventually led to the work described
in this paper. More recently, (circa 1982) attempts were made to develop personal
techniques and coding styles that would reduce the number of problems faced in
future installations. In 1984, it became necessary to simultaneously maintain the

software on two different environments (4.1bsd and System V). Furthermore, the

software was not to be installed on the System V machine by its creator. Thus the
evolution of a comprehensive software strategy became of utmost importance.

There are a number of ways in which this strategy might have been implemented.
The particular policies that were developed as part of this work and tested by
installing the 7001 software on 25 machines at 14 different sites are discussed in the
following sections.

e The D-Tree

e The Magic Directory
e Source Organisation
e Tools

4.1 The D-Tree

One of the foremost problems with the early distributions was the creation of the
magnetic tape containing the source, the whole source, and nothing but the source.
Practically every installation prior to 1984, was delayed by the absence of necessary
files (usually a file in /usr/lib or /usr/include) or a required modification to the
UNIX system.

To resolve these problems and to achieve the isolation discussed in the previous
section, it was decided that all source files (including header files) would reside in a
single tree, henceforth referred to as the “D-tree”. Initially, “foo” was used both as
the pathname and as a proper noun to stress the importance of being able to anchor
the tree at any arbitrary location. The name is still used by some, unfortunately,
to differentiate between the production and research versions. All installed files
(including any data or header files) would also reside in a single tree, henceforth
referred to as the “dollar user IST” (or “$USRIST”) tree. A single setting (in the
magic Makefile) specifies the default location of the SUSRIST tree. The default may
be overridden by setting the environment variable to the desired tree (e.g., /usr/dt).

Furthermore, changes to the “base” system (e.g.. the standard UNIX tools) have been
avoided when possible or, when the changes were unavoidable, installed in a non-
standard location (e.g., /usr/local). This means that the “D-tree” installation can be
tested on a “‘vanilla” machine by excluding the updated utilities from the search

Bl B T I O O Gk BN EE e

sttt

path.
4.2 The Magic Directory

Another major problem faced in any installation is the establishment of the site,
machine, system and configuration dependent information. In addition there are
number of files (or library functions) required on certain systems but not on others
(e.g.. dup2(2)). Or a choice has to be made amongst a set of files that implement a
particular facility that varies between systems (e.g., mail locking).

The main mechanism for handling this variation is to isolate the control information
to a single D-tree directory, magic. Appendix A describes all the files of the magic
directory and the normal installation procedure.

For a new installation, the magic Makefile needs to be modified as described below,
and “‘site” and “machine” files created. The “site” file specifies information about
the company and location (e.g.. address, phone number) and will be normally be the
same for all installations of the software within the same company. The “machine”
file sets controls for the specific installation (e.g.. the make pathname and the
mechanisms to be used for archives, default owner and group of installed files and
attributes of some of the standard installation tools).

The four lines to be changed in the “Makefile” are

v = 4.3bsd
Site = ist
Mach = dt
USRIST = /usr/dt

The “V” setting is one of the operating system names defined in the magic
sysnames.D file which lists the names of all supported UNIX systems and associates
with each a set of macros used in C and Make source to select or suppress code.
The “Site” and “Mach™ lines specify the site and machine information files
respectively and the “USRIST” line specifies the default $USRIST setting.

In addition to the magic directory, the D-tree, and similar distribution trees at IST
usually contain a further seven directories:

doc reference documents and tutorials.

hdrs the source header files, installed in $USRIST as part of the magic
make.

install shell scripts to do phased and environmentally pure installations.

man the manual section tree.

sTC the source for the distribution.

tools contains a raw (“vanilla” to the extreme) make script to create the

minimal set of tools needed to install the D-tree (based on the
assumption that there has been no previous 7001 installation).

FL An entire sub-system dedicated to the creation, validation and
maintenance of the list of files in the D-tree.

The FL directory merits particular attention at this time as it won’t be discussed
anywhere else in the paper. The combination of the S$USRIST and source tree
normally consists of 33 Mega-bytes, 500 directories and 6000 files. In addition to
the 3600 source and SCCS admin files, there are binaries, object files, object archives,
generated header files, generated pmak scripts, diagnostic outputs, test data files and
programs, ctags files, SCCS p-files, and the occasional file called core. To ensure the
integrity of the distribution file list (not to mention meeting the restrictions imposed
by the file system size) it is essential that all necessary files are properly

- 10 -

administered and registered. The FL subsystem should be (and is) run frequently
(some days almost continuously) to help ensure that the system is “clean” and
complete.

4.3 Program Source Organisation

There are a number of conventions that dictate the format of standard header
information in each file, as well as the manner in which files are organised in the
tree.

1. All files within a single directory are “of the same type”. For example, the
files that make up the library routines for some program will be stored in a
directory separate from the directory containing the data files. Similarly,
header files will usually be in another directory.

2. All files containing code have an SCCS identification string. Thus it is possible
to examine a program’'s binary and determine which versions of the source code
were used to construct the program.

3. Each main program has a special comment line which indicates the libraries to
be compiled with the program. This line, the LIBS() line, has a number of
important uses (described later) and is fundamental to the operation of a
number of tools. Further, it is possible to grep(1) the source of the program
to determine the libraries it requires rather than the alternative, which is the
visual examination of a (probably complicated) makefile.

4. So that programs are self-documenting, a program can always be executed to
retrieve its usage. To achieve this aim, every program written at IST can be
executed with a -x (explanation) flag. Executing a program with the “-x” ﬁag
will print its usage line and brief explanations of the program and it's flags.
In some cases, where the input to the program is in a fixed form, the -X flag
is used to describe the input format.

5. Standard Name Conventions

We have two purposes for using a file name convention. The first is to
distinguish between true source and temporary files. The second is for the

recognition of the type of a source file so that the pmak(1) script generators
will work.

The file name conventions are not new. However, their application is consistent
throughout the entire distribution. We have a standard suffix for each type of file
(currently we support over 60 different file types). In addition, if for example, we
have a parser that is constructed using both Yacc(1) and Lex(1), the input files are
given the same prefix (e.g., parser). Further, if an installed C program is to be
named bill, then the file containing the main function will be named bill.c. This
file will also contain a LIBS line, which indicates any libraries to be compiled into
the program.

44 Tools

In this section, we will describe a few of the tools (there are many others) in the
D-tree. Note that a number of these programs have been developed specifically for
use by other programs and some are rarely executed directly by users.

7. We have a program, xfinferp(1) that, given the -x output of every program prepares it for subsequent
troffing (an example is given as an appendix).

Gl EE A N S SN & S =N SN S S S B S AN S R e

-11 -

44.1 instal The reason behind the construction of our own version of install(1) is
that the versions of install(1) vary over different systems. However, we depend
upon the correct installation of programs and libraries, thus we require a version of
install(1) that we can trust. Our program is named with only one “1” to avoid
conflicts. ' .

Our own version provides a number of important functions.

1. Flags to a particular invocation are extracted from three sources: the
environment variable “SINSTFLAGS™ (normally used to specify global settings
such as default owner and group); the file /InstflagsL (used to specify special
cases for specific files such as setuid modes and/or ownership selectable by
system name); and on the command line (rarely used).

2. instal(1) provides the entry for the audit trail automatically. The importance
of the audit trail has already been stressed and we believe in the importance of
its construction with “no cost” to the users.

3. instal(1) enables a software developer to install a program whilst the program
is still in use. If the binary is in use, then a copy will exist for as long as
the binary is being used. All other users invoking the program will be
executing the newly installed binary.

Instal(1) has 21 flags, even more than bsd's Is(1), but one of them is -x which
displays a brief description of each flag. However, it is very rare to explicitly use
any flags when invoking the program since they are automatically included from the
INSTFLAGS environment variable or from the Instflags.L file. Appendix B includes
the instal(1) -x output, and examples of SINSTFLAGS and a Instflags.L file.

44.2 sccs We use the sccs(1) interface created by Eric Allman which provides a
front end to the Sccs operations. This interface has been supplemented with
operations to remove and rename files. The latter two operations move the old
admin files to a backup parallel directory tree, thus allowing retrieval of versions of
obsolete files without cluttering the active source directories. However, the major
change has been to execute the dmail(1) program whenever the user performs a
significant operation (e.g., delta’s, renames, removes or rmdel's a file).

44.3 dmail The dmail(1) tool is used to maintain the audit trail that we require.
The program goes up through the directory hierarchy until a Dmail file is found, at
which point dmail(1) appends a record of the change to the Dmail file. Whenever a
distribution is created, a comment is added to the Dmail file. Thus all changes to
the system after a distribution are easily identified.

444 mkdist This program takes as input a list of files, optionally with Sccs SID's
and outputs the file contents in a number of ways. For example, it may be used
to construct magnetic tape distributions or to copy files to another file system. It
will search the directory tree in which the sccs rename and remove operations
preserve obsolete admin files if a named file cannot be found in the active tree.
Whenever a distribution is prepared a listing of all the files and their current sid's
is created. This list can be used as input to mkdist to create a distribution tape or
a copy of the file system.

44.5 flelist This is a tool that maintains a dynamic list of files. That is to say,
given a file flist containing a list of files, filelist(1) may be used to set the
modification time of flist depending upon the file list contained. A typical example
is updating the contax(1) database, where flist contains a list of all the data files.
filelist(1) is used to set flist’s modification time of to that of the most recently
modified data file (if they all exist on the system) or to “NOW" if any of the files
is missing (i.e., have been removed since the last execution of filelist(1)). The new,
amended file list is then written back into flist. This program helps solve the
problem of a product depending upon a changing list of files.

-12 -

446 cpifdif This tool compares two files, and if they differ it copies the first file
onto the second. c¢pifdif(1) is used extensively in the software construction process
in order to minimise the amount of unnecessary work (it belps to circumvent one
of the make time-dependency problems). Another reason for creating this as a
separate tool is that cpifdif(1) is approximately 25 times faster than the equivalent
cmp(1) followed by cp(1), does not require invoking a shell to interpret the
compound command, and exits with a meaningful exit status (only non-zero if a
real error occurred).

447 incls incls(1) is a tool that scans a file for “#include” lines and other such
directives and outputs the appropriate pathnames. The manner in which the output
is produced is determined by flag settings. One form of output is suitable for direct
inclusion in make scripts.

44.8 com com(1) was initially developed by Tom Duff in 1976 at the University
of Toronto and the “LIBS” line facility is largely an extension of his initial idea.
The program extracts the first line of the argument file that contains the string
“/*%" and executes the rest of that line as a shell command after replacing any
embedded “%” characters by the argument file name.

We have since extended the program to process the specified (defaults to first) “/*%"
or “/*@" lines. The difference between the “%” and "@' is that the embedded “@'s
may be followed by special characters to indicate special strings. For example “@I"
is replaced by the same string as would be generated by “InciFlags()” in pmak (i.e.,
the “-L..."” args) and “@L" is replaced by the converted “*LIBS:" line.

5. PMAK

Whilst some problems were solved by the policies and tools thus far discussed, most
had to be solved by the development of better techniques and tools for the
generation and interpretation of make scripts. The major result of this effort was
the pmak(1)® package as described in the following sections.

e The History and Evolution of Pmak.
e The Pmak processing.
e Pmak Preprocessor Controls and Directives.

e PMC files (pmak script generation control files).

e Pmak Script Generators.

e pmcmd(1) — the pmak script generator for normal program directories.
e pmdirlist(1) — the multi-directory pmak script generator.

5.1 The History and Evolution of Pmak

The initial research at IST on the development of better techniques to control
software construction and maintenance was done by David Tilbrook and Paul Parker
in 1983. In the beginning, this effort concentrated on separating the specifications of:
1) the relationship of components (analogous to a make dependency list); 2) meta-
operations (make constructions not bound to specific types); and 3) type
transformations resulting from bound meta-operations (the cross product of the first .‘

N N I . S S S S S G R S-S S .

two parts).

8. In footnote #1 “1,$s/\(mak\e/p\1/g”.

N §

B .

-13 -

This approach was taken because it was felt that some of make's problems were due
to its inherent dichotomy: it tries to be both a database and a command processor,
without employing a proper supporting technology. In our planned prototype, we
were going to avoid this problem by using Prolog®. ‘

A prototype was constructed in the later stages of the project and the results did
seem to suggest that a weakened form of the approach was semantically valid,
however, the syntactic and preformance problems were prohibitive!® and the work
was abandoned. A full discussion of the project is not part of this paper. beyond
stating that its ‘most important contribution to our current work was to eliminate
any objective other than software construction and installation.

Initially, pmak was a shell script that interpreted the argument list, used the C
language preprocessor (cpp) to preprocess the input script (primarily to provide a
proper “#include” facility), and then invoked make to interpret the output.

The cpp style of conditionals and macro assignments was used to deal with the
differences in the versions of make and operating systems (e.g., mapping a common
name to the appropriate library).

The next development was the construction of a simple script generator to handle
the multi-directory make problem. This allowed us to develop a single, top ‘level
controlling make script which had a simple update and extension mechanism.

Other script generators followed to handle archive library and command directories.
These replaced the previous ged(1) programs which were difficult to port to systems
without ged and did not solve the problem of installing ged itself. These
developments were facilitated by the previous development of instal(1) and incls(1).

It soon became obvious that cpp was inadequate, non-standard. and contained
numerous bugs. In particular it treated the string “/*" as being special. Cpp is
designed for use as a preprocessor for C, and as such, assumes it is safe to throw
away or not process anything between the strings “/*° and the next “*/" (i.e., C
comments).!! When “/*° was required in the early version of pmak, “/7*" was used
which had the same semantic interpretation as ““/*" but is unacceptable. Another
problem is that there is no method of commenting the input that is acceptable both
to cpp and make. Furthermore, while the initial use of cpp solved some problems,
it was apparent that some additional built-in facilities were desirable, to improve or
facilitate the handling of the -I'> arguments to cc(1) and library pathnames.

Thus mpp(1) was created to handle comments properly, to be software that we
could distribute and to provide some additional facilities such as “#elif”’, expressions
to test for the existence of files and built-in macros “LIBS(file)” and “InclFlags()".

Attention was then turned to the pmak shell script. At this time, the complete
construction and installation of the D-tree was performed by a single pmak script
that invoked pmak scripts in sub-directories. However, this used an excessive
number of processes (it could wrap the process ids easily) and an excessive amount
of time. Pmak was being executed 300 to 400 times per D-tree installation.

1 3 B o = e mn mm e B R EE

9. There are people who claim that Prolog can do this!
10. Is the cray free? I need to reinstall /bin/true!

11. The cpp “-C” flag (preserves comments for lint(1)) was not sufficient since the only effect was to
output the comments literally.

12. Cc “-I" flags are used to specify the directories to be secarched for “#include” Rles. Unfortunately
cach directory must be specified with its own *“-I” flag (i.e., separating ‘s cannot be used as in
SPATH). This means that the environment variabie might require embedded spaces which then raises
the problem of quoting and levels of interpretation.

—

- 14 -

A version of pmak written in C was created that improved performance
considerably. Also, enhancements were being made to mpp(1) to deal with the
needs of the evolving script generators such as the addition of facilities to handle
cc(1) “-I" flags and shell environment variables.

During the development, it became obvious that mpp(1) could (and had to) be
incorporated into pmak, primarily so that environment variables could be set in the
mpp phase and exported to the make process and to support the specification (within
the input) of other application controls (e.g.. the actual pathname of the application).

By this time, most of the directories contained pmak scripts that invoked a script
generator to create a subscript (if it didn’t already exist) and then execute pmak on
the subscript. This was expensive and inconvenient.

Therefore a new mechanism, the pmak control file (known as the PMC file), was
created to specify the arguments to the required script generator and pmak was
modified to recreate the temporary script, Pmak._!3, whenever it did not exist, was
older than the PMC file or the pmak “-s” flag was specified. At this time nearly
all the pmak source scripts were replaced by much shorter and simpler PMC files.

The current distribution contains five make scripts (all part of the magic installation
and initial bootstrap which are therefore used before pmak is built), some special
case Pmakfiles, and 124 PMC files averaging 4 significant lines each.

The following sections will describe some of the more important Pmak features.
5.2 The Pmak Processing

Pmak is a process that controls and prepares input for other processes. Its major

role has been as a front end to make, but it can be and has been used for other
applications.

Its processing can be split into three distinct phases:

I) script selection and generation (PMC processing)
II) script processing and expansion (mpp phase)
) invocation of the application (e.g.. make)

The first phase is perhaps the most interesting and novel aspect of the pmak system
and enables us to achieve, with very few lines of information, a high degree of

control over the construction process. Two of the five standard script generators
will be discussed in later sections.

The second phase is functionally similar to cpp. but it does exhibit a number of
important facilities that will be described in the next section.

5.3 Pmak Preprocessor Controls and Directives

The primary role of the mpp .phase is still to provide the “#include” construct so
that environmental controls and prototype make scripts could be used easily.

Most of the other facilities should be familiar to a C programmer and a listing of
pmak’s directives, controls, and built-in or special macros is given in Appendix C.

The following features are either novel or extremely important:

13. The unconventional use of “_" at the end of the name Pmak._ is due to the naming convention.
The string “._" is used in file names to indicate that the file is temporary or generated by some
process. It is normally followed by a type indicating sufix (e.g., “._h"” for a generated C header
file). In the case of Prnak._ the prefix indicates the type thus there was no need for a suffix (and
we are lazy typists).

o

- 15 -

5.3.1 InclFlags() InclFlagsQ is a built-in macro that creates “-I" flags for C
compilations from the current value of the shell environment variable $INCLPATH.
SINCLPATH should be a colon separated list of the directories to be searched for
“#include” header files. If SINCLPATH is not set, its value is assumed to be
“$USRIST/hdrs”. (Recall that the default for S$USRIST was set in the ragic
Makefile.)

Since one of our fundamental policies is never to change the base system, we cannot
install distribution header files in a location that is normally included in the default
“#include” search path. Setting '

CFLAGS = ... InclFlagsQ)

(via the inherited header file Lc!_varsmh) eliminates this problem while providing a
trivial relocation facility by simply changing SINCLPATH or $USRIST.

5.3.2 #inherit In addition to the “#include™ facility, which is used to establish and
set system wide controls, it is often desirable to override some of those settings for
a particular sub-tree. For example, the destination directory for the games sub-tree
is SUSRIST/games, whereas the usual destination directory is $DESTBIN. Similarly a
user altering a part of the distribution copied into their $HOME tree may wish the
programs to be installed in $HOME/bin without changing any of the construction
control files. It was for such cases that the “#inherit” facility was invented. The
directive:

#inherit Lcl__vars.mh

is similar to the “#include” facility in that the parameter file is incorporated into
the text. However, there is an important difference. In the above example, all files
called Lcl_varsmh from the root (°/”) down to the current directory will be
included, and in that order.

For example, the files /dt/dist/Lcl_vars.mh and /dt/dist/src/games/Lcl_vars.mh both
exist. The above “#inherit” directive will cause both files to be incorporated into
pmak scripts in the games directory, with common macro settings in the latter
overriding the values in the former.)

In general, this facility is used to establish necessary values (e.g.. $DESTBIN and
SINCLPATH) at the top of the tree but to provide overrides, when necessary, at a
local level.

533 LIBS() In order to implement the strategy of single sourcing and to provide a
better mapping between libraries and path names, the LIBS() macro was introduced.
In fact, this was one of the primary motivations for writing the preprocessor in C.
The concept is simple, yet has proven to be one of the most important and
powerful features of the pmak work.

The occurrence of the string “LIBS(src.c)” in pmak input is replaced by a string
based on the first line, found in the file src.c, that contains the string "“*LIBS:".
When such a line is found, everything up to and including the “*LIBS:"” is removed.
Then, any words of the form “-IX" are converted into a string provided by pmak
(i.e.. /usr/lib/libcurses.a). a string provided by the user mapping file, or to the full
pathname of a file, libX.a, found in the normal library search path (may be
extended using “SLIBPATH').

Sufficient emphasis cannot be placed upon the importance of this mechanism. The
single sourcing policy is achieved since there only one legitimate place for the list of
libraries, used by a program, to occur and that is at the start of the source file that
contains “main()”. Hence, any other programs that use the list of libraries will be
using the correct values.

9

- 16 -

Using this facility, the make script dependency list for a binary contains full path
names for the libraries used and the compilation statement uses the same list. The
string “LIBSO” (i.e., no argument file) uses the last string generated, since the
compilation statement frequently follows the dependency lines as in:

echo: echo.o LIBS(echo.c)
$(cc) $(CFLAGS) $@.0 LIBS()
mv a.out $@

Other programs have been modified or created to use the “LIBS” line. com(1)
replaces “@L"” in the command line by the transformation of the argument file's
“LIBS” line, and a front end to lint(1) has been created that extracts the “LIBS” line
and does a similar conversion to the appropriate lint libraries and appends the result
to the end of the argument list. The latter facility means it is no longer necessary
to put lint commands into make scripts thereby reducing their size and complexity.

5.34 Touch() In the section on make we discussed the problem of regenerating a
target when the cause is not a modification to any of the files in target’s dependency
list. This problem cannot be solved without changing make: we have created a
mechanism that provides a limited implementation of the desired facility.

The macro “Touch(prog)” is replaced by the pathname for a file touch/prog.h in the
“#include” search path. If no file with this name is found, then the macro is
replaced by the null string. For many types of target file, “Touch(prog)” (where
prog is the tool that creates target) appears in the dependency list. For example:

target: target.src Touch(prog)
prog o $@ target.src

If touch/prog.h does not exist or is older than target then the “Touch(prog)” has no
effect. But, if we wish to force the reconstruction of all targets produced by utility
prog, we simply touch(1) the touch/progh file in the search path. touch(1) creates
its argument file if does not exist. “Touch()” is important to the management and
maintenance of the distribution for two reasons:

1. the mechanism is easy to understand and use.

2. since nearly all the pmak files on our System are created by script generators,
it is simple to add new “Touch()" dependencies when they are required.

Consider the awful possibility of having to force the reprocessing of all the yacc(1)
source files on a system. On most systems this would be a major and difficult task.
To date, this situation has not arisen, and we do not generate any “Touch(yacc)”

dependencies. However, if it ever became necessary, the following steps would be
performed:

1. alter one printf(3) statement in incls(1) to output “Touch(xxx)" where “xxx”
is the appropriate processor for the suffix being processed, e.g.:
parsel.c: parsel.l Touch(lex) .

2. execute the sh(1) commands:

pmak ‘fnd incls' # instal new version of incls(1)
touch SUSRIST/hdrs/touch/yacc.h # touch the yacc Touch file
cd SFOO/src; go'* pmak —s Instal # perform the new installation

The pmak “-s” flag forces all generated scripts to be recreated. Note that this

14. go(1) is a program that is used to detach commands with the appropriate I/O redirections (by default

into a file called ,g after preserving old ,.g files), creates an audit trail of invocations and informs
the user when the command is completed. .

| TR G N N U N BN G S IR SN @8 D &N A G e N e

-17 -

alteration (which will probably be in place by the time of publication) is generalised
to deal with all suffices other than “.c” (felt to be just too dramatic) thus if a
similar situation should arise for lex(1) programs, all that would be required would
be the touch and pmak (without the “-s"") commands.

5.3.5 IfOlder() The “IfOlder()” macro is used extensively to express dependencies in
a way that can avoid the propagation of unnecessary constructions and processing.
The argument is a white space separated list of files. The second and subsequent
files in the list may be prefixed with by ‘. To explain the semantics consider the
following example:

IfOlder (fO f1 1f2)

This string will be replaced by fO (i.e.. the first file in the list) if file fO does not
exist, or if file fO is older than file fI, or if file f2 does not exist. Otherwise, the
macro is replaced by the null string.

As an example of its application, consider the yacc and lex source files Fy.y and
Fll. It is assumed that FIIl is the lex routine for the Fy.y parser and that it
requires the header file yzabh'® which contains the yacc token values.

The following pmak input is representative of every combination of lex and yacc
files in the distribution and is not substantially different from the normal make
constructions for such combinations.

Fy.c y.tab.h: Fy.y
$(yacc) -d Fy.y
mv y.tab.c Fy.c
cpifdif y.tab.h Fy._h

Fy._h: IfOlder (y.tab.h ! Fy._h Fy.y)
Flo: Flc Fy._h
Fl.c: FlL1

When these lines are processed by pmak, if either yrabh or Fy._h do not exist or
if Fyy is newer than ytab.h the “IfOlder()” line will be transformed into

Fy._h: y.tab.h

In any of these situations, we need the dependency illustrated above to force the
recreation of the file Fy._h. But even then, the use of cpifdif(1) ensures that
although ytab.h is recreated, Fy._h's last modification time is only changed if the
contents have changed, thus we avoid an expensive recompilation of the source code
output by lex(1). If Fy._h and ytabh exist and ytabh is newer than Fy.y then
the line is replaced by

Fy._h:
and no further processing occurs.

Readers might be quick to find fault with this approach since it seems to be far too
complicated to understand and use. Indeed, we would agree with them if we had
been forced to write such a construction. However, the pmak script generator
pmcmd(1) created the above construction simply because the files Fy.y and FII exist,
which brings us to the final aspect of pmak that will be described, script generation.

15. We will use ysab.h in the example, but in practice we rename it Fy._H.

- 18 -

54 PMC files

When pmak is invoked without an input script being explicitly specified, it searches
the current directory for files called Pmakfile and Pmak.__. If Pmakfile exists, it is
used as the input script. Otherwise, if Pmak._ exists and is newer than the PMC
file, it is used as the input. Otherwise a new script is generated and written into
the file Pmak.__ which is then used as the input script. The pmak "-s” flag forces

the Pmak._ file to be recreated thus may be used to override the comparison of the
PMC and Pmak.__ last modification times.

Script generation is controlled by the pmak control file PMC. This file contains a
command to invoke a script generator and frequently contains the input to the
generator. The command is expressed as a com(1) line in the PMC file (if the PMC
file does not exist or does not contain a com(1) line then pmemd(1) is used). For
example, a PMC file in a directory of shell scripts and C programs might contain:

#/*% pmcmd -f %16
input to pmcmd

Normally the command will be one of the standard script generators, however, any
arbitraty shell command may be - used. Currently all 124 PMC files in the
distribution use one of the standard pmak script generators. However, before the

creation of pmproto(1) there were quite a few PMC files that used shell scripts
contained in the PMC file itself.

5.5 Pmak Script Generators

Currently there are five standard pmak script generators, whose functions are as

follows:

pmcmd to process and install xdb databases and arlo scripts, to install shell
scripts. to compile and install C, Yacc, and Lex programs.

pmdirlist to control and invoke multi-directory makes (pmaks actually).

pmlib to build and install either a library or a program built from the
library.

pmlfiles to process and install data files and to create directories.

pmproto to create constructions for pmak scripts according to the given
prototypes. The constructs created may be dependent upon file
suffices.

The following sections will describe pmemd and pmdirlist in more detail. Examples
of pmifiles(1) and pmproto(1) PMC files are given in Appendix D.

5.6 Pmcmd

The primary purpose of pmcmd(1) is to process all C, Yace, Lex, As, Arlo(1),
Xdb(1), Mkhip(1) and Shell source files in the current directory by outputting a
pmak script that will build and install the products in the appropriate location.!?
The resulting scripts will contain all the dependencies for the products by using
LIBSO) for libraries, incls(1) to generate the “#include" dependencies for C and Xdb

16. The second “%®” is replaced by the file name (i.., PMC).

17. Arlo(1) is a interactive application programming system. Xdb(1l) is a system that constructs indexed
databases, and is normally used to describe applications that have many component parts (e.g., xdb
databases are used to describe Arlo tools, keywords, variables and error messages). Mkhip(1) is a
system that processes Xdb input to produce C code or a help program instead of a database.

—

:

-19 -

files, and arlouses(1) to generate a list of Arlo sub-scripts. The Arlo and Xdb
dependency lists include the appropriate “Touch()” string as described previously.

The first phase of pmcmd(1) processing is to create a list of source files. For a file
prog.X, prog is assumed to 'be thé name of the installed product. For example,
srcsh is the source of the installed shell script src. Ambiguities are resolved by
through built-in knowledge of the production steps. For example, if both filey and
file.c exist, it is assumed that filey is the source and filec is the ytabc file (ie., the
yacc output).

The second phase is to read the pmcmd input (if any) which may contain directives
to specify a variety of controls and overrides.

Rather than explain each directive in turn we will give a contrived (though drawn,
in part, from reality) and annotated example of a pmcmd input file. Comments are
given after “—".

#/*@ pmcmd -0 -f @F @r >Pmak._

— command to create the script (“-o” specifies “*.0” files are to be preserved).A
— part of string after “@r” ignored by pmak and com(1) -r flag

%if unix5.? — If the system is unix5.?

D dress!® — don't build or install dress

%endif

d localtool — build localtool but don’t install it.
%if *(REPL) — If the option REPL is set

L repl rpl — link the installed program rpl to repl.
Yoendif

— “-s" flag may be specified if link to be symbolic
C parse parsey parsel — Combine modules parse.o, parsey.o and
— parselo to produce parse
— Where yacc and lex sources are combined the output will use “IfOlder()”
— to avoid unnecessary recompilations of parsel.c.
B init /etc — Install init in directory /etc.

— Unless overridden (as above) programs are installed in ${DESTBIN}
— and Arlo object files are installed in ${DESTLIB}/arlofiles.

18. dress(1) is the inverse of strip(l), naturally.

- 20 -

S bizarre ~ — Suppress default construction for bizarre.
! — After “1I” line the balance of the file output literally

bizarre: bizarre.o LIBS(bizarre.c)
version!® Bizarre >relnum._h
$(cc) $(CFLAGS) $@.0 relnum.c LIBS()
mv a.out $@

— the construction for bizarre which was suppressed by the “S™ line above.

It is recognised that the directives are overly terse and could be improved
substantially. There are also minor inconsistencies with the other pmak script
generators that will be resolved eventually. It must be remembered that this is
largely a research project and the pmak system is fundamentally a prototype.
Despite these problems, most users learn to both use and understand PMC files
relatively quickly, aided by the fact that all the script generators have “-X" flags
that output a description of the input syntax and semantics. Most pmemd PMC files

(if they exist at all) are very small and the poor syntax is not a significant
problem. .

5.7 Pmdirlist

One of the major problems to be solved was creating a convenient and easy to use
mechanism that could invoke constructions in multiple directories.

For the most part the problem seems trivial, and the need for such a tool is not
obvious. However, when one is dealing with hundreds of directories, it becomes
very important to be able to select subsets for construction, express the dependencies
and reduce the overheads involved in changing to a new directory and invoking
another pmak.

The pmak script generator pmdirlist(1) was developed to process a list of directories
and to produce a pmak script that could be used to invoke the required operations
in selected subsets of those directories. As in the previous section an annotated

example of a typical “PMC” file will be used to explain and illustrate pmdirlist’s
input and features.

Comments are prefixed with “—".
#/*@ pmdirlist < IL -f @F @r >Pmak._

— The omnipresent com(1) line also used by pmak.
— "= IL” sets the default constructions to “Instal” and “Local”

hdrs 1 — hdrs directory to be installed but has Instal construction onl
+ libraries. — “+” lines split the input into levels

lib L hdrs — lib depends on hdrs

emd ~ libndir lib -libist — see next paragraph

19. version(1) is a program that creates an sces id type release and version number line that may be
embedded in an object file. The above construction will force the version number to be incremented
on every compilation.

-21 -

The “™ indicates the default constructions are used. The “-" prefix specifies
dependency on either Instal or Local construction of libist directory (which ever is
appropriate at invocation). If a prerequisite directory is suppressed (due to system
selections) or the non-existence of directory, it is ignored.

Explaining pmdirlist’s output is a formidable and profitless task since there are
approximately 10 lines of output per directory and 40 lines per level. We will
illustrate a tiny segment below, but for the most part it is not intended that
pmdirlist output be read by humans or programmers.

The requirement that subsets of the constructions may be selected creates a large
quantity of output. For example, nearly every directory in the distribution requires
that the “hdrs” has been previously installed. But there are rarely any “hdrs”
constructions to be performed and confirming that this is the case is an expensive
and generally unnecessary process.

To support the above requirement., pmdirlist creates pseudo Instal and Local
constructions for each level and directory, as well as additional macros, used in
dependency lists. To illustrate, if pmdirlist processed the following:

ecmd I dist/tools lib

where dist/tools. lib and cmd are in the first, second and third levels respectively
the following would be produced:

#if LVL >= 3 && Ito < 3
Local: Local3

Instal: Instal3

#endif

Instal3: cmd.I

cmd.I: L1(dist/tools) I2(lib)

CdMake(cmd)*® PmakFlags MakeFlags Instal

Clean:: ; CdMake(cmd) PmakFlags MakeFlags Clean

In pmdirlist output, "LVL™ is used to specify the level up to which constructions
are performed, and “Ito” is used to specify the level to which installations have
been completed. The default values for “LVL" and “Ito” are 100 and O
respectively?l.

“L1()" and “120)" are macros whose setting depends on the value of “Ito”. If “Ito”
is less than n (where n is some number) “Ln(dir)” is replaced by dir.L (ie., the
“Local” construction for dir). Otherwise (i.e., Ito >= n) “Ln(dir)" is replaced by
the null string. The same form of replacements occur for “In(dir)” except that the
sufix is “.I". By specifying the values for “LVL" and “Ito” (using cc(1) style “-D"
flags) and the arguments, it is possible to select individual directories and/or levels
and to suppress levels as illustrated in the following examples:

20. “CdMake(X)” expands to “$(MAKE) -d X" where “$(MAKE)” is set to “pmak”. The “-d X” flag
specifies that pmak is to “chdir” to directory “X”. This facility exists so as to avoid invoking a
shell process to interpret a compound command such as “cd X; exec pmak”. This feature has the
added bencfit that a process list (that displays the argument list) will indicate which directory is
being pmak’ed. The macro “PmakFlags” is the set of flags to the current pmak which will also be
passed on to children pmak invocations. The macro “MakeFlags” is sed to pmak as a set of flags.
However, pmak just passes these flags on to the application program (e.g., mnkeg

21. 32767 would have been a more logical choice for the “LVL” default, but 100 is more than sufficient.
The maximum number of levels used thus far is 8 and that was to handle 50 directories. The SDI
project will just have to use some other system, manuaily specify the setting or change pmdirlist.c.

-22 -
pmak Instal install everything
pmak -DLVL=6 Insta] install up to level 6
pmak -Dito=4 -DLVL=6 Instal install levels 5 and 6 where up to 4 installed

pmak -DIto=4 -DLVL=6 Local3 Instal - as above and build level 3.

pmak -DIto=100 lib.L cmd.I do Local in lb, Instal in emd, but nothing else

It should be pointed out that most people rarely specify more than “pmak Instal”.

However, users who have to deal with large distributions employ these controls
extensively.

6. USE AT IST

The techniques described above are in use at IST. They have been applied to the
tools themselves and also to the ISTAR project.

Programs imported into IST are reorganised into the 7001 organisational style or
modified as necessary to take advantage of the pmak package. This is usually a
straightforward task which makes any subsequent development of the software
easier. if only at the level of re-compiling programs after bugs have been fixed.

displayed by the D-tree (wherein the tools ‘described above are contained). There
are 1400 lines of PMC, Pmakfile and Makefile?? in 139 directories that install about
900 program and data files. Further, even though we are maintaining the source on
four different machines, the PMC files are identical. Compare this with
/usr/sre/usrbin where there are some 1800 lines of make scripts with many of the
prerequisites either- missing or inaccurate,” in 29 directories, installing less than 80
programs on only one system with no overall controlling mechanism.

7. CONCLUSIONS

It would be nice to say that we are confident that the installation of the D-tree on
any “sane” UNIX system will be trivial, but we cannot. Practically every
installation on a new System has raised some problem. However, experience leads us
to believe that the modification of the D-tree and other IST distributions to cope
with the problems presented by a new i
portability problems can be dealt with within the existing policies and conventions.
Furthermore, by virtue of the number of systems on which the software has been
installed, the frequency of new problems occurring has been substantially reduced, so
much so, that within one week the D-tree was installed on four different and
relatively new environments with only one problem. That problem arose on the
very first command of the installation and was reported with the diagnostic:

make: not found??

22. All of the Makefiles (300 plus lines) are used in the initial bootstrap of the software only. -

23. The site in question uses a non-native make to avoid confusion and had removed the standard
“/bin/make’’.

-23 -

The following is a list of known problems and limitations that are partially a result
of these factors.

e The 7001 version of the system is constantly changing and evolving, and some of
these changes require modification to the existing pmak scripts which can cause
users irritation at the quarterly upgrades (though frequently not as much
irritation as having the features implemented to solve their problems, though not
yet available in their version).

e The approach seems overly complicated in some respects, since it reflects the
complexity of the primary objective (to install over 1000 programs and data files
on any UNIX system). If applied to smaller projects this complexity may raise
more problems than it solves.

e The “-x" flag concept is effective only if applied to a large number of
programs™.

e The syntactic inconsistencies and obtuseness of the pmak script generators’ inputs
will have to be rectified if they are to be used by a larger community.

e The reorganisation of imported source done to permit the effective use of pmak,
sometimes complicates the incorporation of subsequent updates .from the original
distributor.

e There is a loss of flexibility caused by the source reorganisation, the naming
conventions and the narrow range of pmemd(1) provided constructions.

e The approach can give users a false sense of security thus they fail to do
adequate checking of the results of a large pmak invocation.

e There are problems ensuring that the script generators and the scripts that they
produce are using the same environment, where significant.

e The addition of a new suffix to pmemd(1) is non-trivial but fortunately occurs
infrequently. pmcmd(1) should probably be converted into a pmproto(1) script
(see appendix D). The only impediment is the differentiation between source and
generated files when not distinguishable by suffix alone (e.g.. bill.y vs. bill.c) and
the resolution of conflicts (e.g.. fredsh vs. fred.c).

e The instal(1) supplementary flags file Instflagsl appears to have become an
unnecessary luxury?S. It would be more consistent and desirable to store special
case flags in the appropriate PMC.

Despite these problems, the policies and tools described in this paper seem to work
and we appear to have resolved most of the problems identified in section 2.
Furthermore. since these policies are easier to use than to ignore., and obviously
beneficial, there has been little resistance from progamming staff.

Finally, we must consider the future directions of this work. The frequency of
changes to the overall strategy. policies and major tools seems to be decreasing.2¢

24, Many of the standard tools UNIX tools, when invoked with a “-x” flag respond:
-x: not found
or perform some unknown processing, silently ignoring the specification of an unsupported flag.
Unfortunately the increasing use of getopts(3) seems to ensure that the number of programs that
mismanage arguments will rise. IST’s users have had to learn that the “-x” flag may be safely
applied to IST programs only.]

25. Instfiags.L sole raison d’etre has been to reduced to permitting the direct use of instal(1) as a shell
command (i.., not via pmak). There are only two Instflags.L files left in the distribution. Both are
used to specify setuid programs, and therefore the safest (and sanest) way to do the installation is
via direct invocation of instal(1) by a super user. The D-tree has been set up to isolate all
installations that require special privileges in a single pmdirlist(1) level.

26. Please excuse our hysterical co-workers. :

- 24 -

Most of the recent changes have been cosmetic or minor optimisations. It is now
our opinion, that whilst the current approach is a huge improvement over those

previously employed, further development would be unprofitable without advances in
the following areas: ‘

e the semantics, generation, expression, validation, control and algebras of
dependencies and their extension to deal with version and environmental settings.

e an evaluation of make(1)’s suitability as a back-end and its simplification,
enhancement and/or replacement to resolve the problems.

Currently there are a number of organisations working in the first area, using a
variety of approaches. Unfortunately their objectives are widely diverging and
dependent on many factors (e.g.. managerial style) and there seems to be little
progress or agreement. It is our belief that this is largely due to the fact that the
problem is not going to be solved without experimentation and evolution, and that
this cannot be done without the appropriate tools.

It is left as an exercise for the reader to guess where we will be concentrating our
initial efforts.

e -

- 25 -

A. The Magic Directory
The magic directory contains six directories and four source files. The source files
are:

Makefile performs the magic installation.

Files.L a table of magic and destination pathnames. The entries of this table
may be suppressed or selected depending on the system name.

Hdrs.mk a list of source header files and their “installed” pathnames (similar
to Files.L).

sysnames.D a table of supported system names (e.g., “4.1bsd”, “SUN_4.2bsd”,
etc.) that is used to build the header file system.h which contains
appropriate settings and “#defines” for the selection (and suppression)
of system dependent text.

The directories are:

bin contains the source and binaries of programs used in magic to create

make scripts (e.g.. to convert Files.L into make input) and to convert
. magic files into source agnd header files for the specific environment.

ext a directory of alternative implémentations of facilities that vary
between sites (e.g.. the mail locking routines).

paths header and data files that provide pathnames or totally installation
dependent settings for standard utilities (e.g.. where is chown(l) on
this system).

config header and data files that need to be set depending on the site and
machine.

site_ files site information files.

mach_files machine information files.

The first step in any installation is to create the site and machine files, described
below.

The second step is to set four values in the magic Makefile. These are the name of
the system (e.g.. 4.3bsd), the default SUSRIST value (e.g.. /usr/dt), and the suffices
of the site and machine files. The installer should then check Files.L and the files
in the paths directory to ensure that appropriate selections have been made. Most
problems with recent installations have resulted from the failure to check these files.

Once these steps have been completed they are confirmed (““make confirm”)?? and the
command “make” will use the magic files to install required source files in
appropriate locations, to create and install the installation dependent header files, and
copy the header files from their D-tree source directory to SUSRIST/hdrs.

At this point the rest of the installation is system independent and requires no
subsequent human intervention other than the use of super-user privileges to set
special modes on files (a task best not done by the installation process).?8

27. This separate operation was instituted after an installer tried installing the D-trec on a System v
machine with the magic settings claiming that the system was 4.3bsd.

28. In reality the first instaliation on a new operating system or machine usually has one or two minor
hic-cups (e.g., a “standard” header file has been renamed or is a “standard” with which we were not
previously familiar). The worst case we had recently was an installation where the C compiler did
not support the initialisation of auto variables. This required finding and fixing the eighty or so
instances of such code. However, it is case that once the peculiarities of a machine are known
subsequent upgrades or total re-installations have run flawlessly. .

-1 -

Any further system or site dependent code is written using the values set at this
stage. For example, the following is an extract from the source for inszal(1).

#include <ist/system.h>

#if UNIXS /* ANON_SYS chmod(1) is buggy */
#defineBUGGY__CHMOD
#endif

#ifdef BUGGY_CHMOD
/* use and check chmod(2) to circumvent chmod(1) bug */

#else
/* use chmod(1) since it works on this system */

#endif

The above illustrates the “standard” manner in which such selections are made. The
system setting (i.e., UNIX5) is used to suppress (or select) the definition of a another
macro which, is used to suppress (or select) individual code segments. All such
system dependencies have' a comment containing the string “ANON_SYS” to enable
their easy location when porting to a “new” operating system.

Within shell scripts the D-tree provided program system(1) is used as shown:
case system' in
4.7bsd’*_4.70sd) ... ;;
) ..

esac

or

if system "_4.7bsd" V8
then ...

else ...

fi

In the first use, system(1) outputs the name of the current system, which is used to
select the appropriate “case”. In the second use (ie.. with arguments), system(1)

exits with zero status if the syqstem name matches any of the arguments, otherwise
it exits with a non-zero status.

The following is the site file for the IST magic/site__files/ist, London office that

specifies the strings used by the magic files to create the installation dependent
bheader and data files.

Organization profile

ORGANIZATION Imperial Software Technology
ORGABBREV IST

ADDRESS 60 Albert Court, Prince Consort Rd.,\
London, England\nSW7 2BH

TELEPHONE +44 1 581 8155

TELEX 928476 istech g

29. The pattern arguments to system(1) are the same as those used in the shell for file name expansion
but with one extension: A leading “_’* matches the null string or “¢_"” so that “_unix5.2” will
match either “OSx_unix5.2” or “unix5.2” but not “punix5.2”.

- -

network address and machines in same organization

SITEADDR ist.co.uk

LCLMCHS "ist", "istbt", "isis", "isirta"
local time controls

GMTOFFSET 0*60

DSTTYPE WET

TZONE GMT

TZONEDST BST

When processing an installation dependent file, names delimited by the at (@)
character are replaced by the value defined in the above file. '

The following is the machine file magic/mach_files/dt for the research version of the
D-tree, on a 4.3bsd VAX.

special installation and software options list

OPTIONS DT IST_E

GROUP ist # default group for installed files

OWNER . dt’' # default owner for installed files

make controls

ADDITIONAL # extra make settings

DORANLIB 1 # if '= 0 ranlib(1) must be run on libraries
DOTSORT 0 # if 1= O tsort(1) used to order libraries
MAKEBIN /usr/btl/bin/makeS

SMARTAR 1 # if = O ar -xo preserves extracted file mtimes
SMARTMAKE 1 # if = 0 make supports lib.a(module.o) use
special directory pathnames

CONTAXDIR “admin/contax # “X home directory for user X
PATH /bin:/usr/bin:/usr/ucb

PLAYDIR

SCCSBIN : /usr/btl/bin

TSDIR %/lib/ts # % replaced by SUSRIST or default

In the above., the “OPTIONS™ setting is a list of white space separated words which
is transformed into a header file that may be used in C programs to select (or
suppress) features within PMC files. For example, on BLIT blessed systems, the BLIT
option is added to the OPTIONS list. Then within Arlo source:

#if OPT_BLIT

#endif
is used to select the bit map pop-up menu code. If the directory containing the

program windsize(1) (outputs the size of the current BLIT layer) has a PMC file
containing the following lines:

%if | V8(BLIT) 4.[23]bsd(BLIT)
D windsize®°
Y%endif

then the installation of windsize(1) on machines other than V8 or 4.[23]bsd machines
that have “BLIT” in the OPTIONS list will be suppressed. It is hoped that the other

30. The double negative is unfortunate but necessary. Suppressing a program’s installation is rare and it
is assumed, that unless explicitly stated otherwise, & program is installed.

-IV -

lines in the above machine file are self-explanatory, since a full explanation is
beyond the scope of this paper. For a new installation, only the magic Makefile
needs to be altered. (The site and machine files must be created for each
installation and are not really part of the source except as prototypes).

The four lines to, be changed are

A" = 4.3bsd
Site = ist
Mach = dt

USRIST = /usr/dt

The “V* setting is one of the operating system names defined in the magic
sysnames.D file3! The “Site” and “Mach” lines specify the site and machine’

information files respectively and the “USRIST" line specifies the default SUSRIST
setting.

B. Instal(1)
Flags to Instal(1).

instal [-adfilklmnqrsStxz] [-o uid] [-g gid] [-M mode] [-L link] new [old]

install file in production directory

Flags Explanation

-a list new and old file attributes
-d mkdir necessary directories

-f override write mode

-g gid chgrp ‘gid’ new

-1 ignore chown and chgrp errors
-i ignore flags specified in Instflags.L
-k keep old version (implies -t)

-1 Is -1 new old

-L link In new file to link

-m use mv instead of cp

-M mode chmod ‘mode’ new

-n list commands but don't execute
-0 uid chown ‘user’ new

-q do it quietly (see -v)

-T ranlib new

-S shell new in its directory

-s strip new

-t Cp new newTMP before installing
-v report commands (by default)
-X . display this explanation

-z size new old

31. When porting to a new operating system sysnames.D might have to be amended but this usually

-V -

Following is a typical éetting for SINSTFLAGS

-qlta -0 dt -g ist
Following is Instflags.L file for the D-tree directory containing all the special mode
programs.

mvmail ~4.3bsd!V8
mvmail
chgpw

-M 2755 -g mail
-M 4755 -0 root

The above specifies that on 4.3bsd and V8 the mvmail program requires no special
settings, whereas on all other systems the flags “-M 2755 -g mail” are required.
The chgpw installation requires “-M 4755 -0 root” on all systems.

C. List of Pmak commands and directives
The following is a list of the pmak(1) commands and directives as generated by

xpmak(1) (the xdb(1) database describing pmak).

#append append a string to a macro

#define define a macro

#elif else if construct

#else else part of an #if statement

#endif end of a ‘#if' construct

#error output an error message and die

#export export a shell environment variable

#if select or suppress lines by expression test

#ifdef select lines if macro defined

#ifndef select lines if macro not defined

#import import a shell variable

#include include named file in processing

#inherit inherit named files

#shell run a shell command

#undef undefine a macro

Cwd replaced by the current working directory

Defined expression used to test if macro defined

Exists expression used to test if file exists

HdrFound expression used to test if header file found

IfOlder replaced by first file, if older than rest of argument list or ...
InclFlags replaced by appropriate -1 flags

LIBS replaced by libraries for argument file

Literal replaced by literal string

MAKEBIN name of make binary

MakeArg expression used to test for a application argument
MakeFlags set of special application flags passed to children
NotNil test if string is null

PmakFlags set of special Pmak flags passed to children

Quote replaced by argument with suitable substitution for shell argument
Script replaced by name of make script

ShVar replaced by value of argument environment variable
Status expression used to test status of last shell command
Touch replaced by argument application touch file

Usrlst default usrist value

D. Pmlifiles and Pmproto examples

Input to pmlfiles(1) (usually contained in the “PMC" file) consists of four white
space separated fields ("@" to used to represent default value). The following is an
annotated example. : I

#/*@ pmlfiles -f @F -d "${DEST}’ @r >Pmak._ .

"~ — Yet another com line, this one specifying the default directory is
— *${DEST}", quoted to delay expansion until make executes

Read__me — installs ${DEST}/Read_me
Makefile ${SRCDB} — install ${SRCDB}/Makefile, 2nd field overrides default director

magicnums.D @ magicnums — install magicnums.D as ${DEST}/magicnums

%if *(DT)
Audit @ @ -M 666
Y%endif

— on systems with DT option set install ${DEST}/Audit with mode 666

! — balance of file after " line output directly

A version of pmlifiles(1) is used in the initial magic installation phase and is still
used when file naming conventions are ignored or difficult to employ. However,
most uses have been replaced by application of pmproto(1).

pmproto processes an argument list and a prototype file, which is either the “PMC”
file or one of the standard library of prototypes.

The prototype file consists of three sections (separated by “@@" lines): the prologue,
argument processing, and epilogue. The prologue section is output directly. The
argument section is interpreted once for each argument string. The epilogue is then
output after the argument list is exhausted. An individual invocation may specify a

file that is to be appended to the output script (usually when a library prototype is
being used).

The following is a reduced and annotated version of the library prototype that
installs TIPs trg(1) object files. The list of &rg(1) source files would be specified as
arguments to pmproto.

#include <makes/Vars.mh> — above appears in all pmak scripts to set up environment
.SUFFIXES: .to .t
t.to: : $(T_TRGMK) -0 $@@ -p @prof@ $<

— addition of rules to create trg object files
— @prof@ is replaced by value as specified by “-Dprof=..." flag.

- VI -

e@ - start of per argument part.

— Any “@R"s replaced by the root name of the argument (i.e., directory name and suffix
— Other such strings are supported to get the directory name (“@D"), full pathname

— ("@F”), suffix (“@S") or arbitrary basename(1) (“@B.t@") type string.

Local: @R.to

@R.to: @F @prof@ Touch(trgmk)

Instal: , @dir@/@R.to

@dir@/@R.to: @R.to; $(T_INSTAL) -f -M 0444 $@@
@@ — epilogue section

Clean: ; -rm -f %to * *_*

The above is a rather simple example in that it is used to process only one type of
suffix (pmproto provides mechanisms to select or suppress lines on the basis of the
suffix), uses the same form for all systems (the “%if” construct may be used in all
the standard script generators), and does not have to process long lists of arguments.

The best indication of pmproto’s power and usefulness is to consider the problems of
creating a make script to format, compress and install the 250 or more manual
sections in “*/man/manl”.

If this installation is done as a single “Instal” construct it would be far beyond the
bounds of make's internal tables. The script must split the lists of files and
dependencies into manageable chunks.

There are four different compression utilities: pack(1) on unix5 and both OSx
universes; compact(1) on 4.1bsd; compress(1) on 4.[23]bsd;: and caz(1) on all the
other systems (its the only tool that can be guaranteed). Each uses a different
suffix and might suppress the compression if there is no size reduction. This raises
the problem of establishing which version of the installed file is required in the
prerequisite list.

Despite these problems, the the man directory prototype is only 45 lines long, with
25 lines of that in the per-argument section®’. Unfortunately, the prototype is
unreadable by other than pmproto(1) and the author. Its use of the conditional and
arithmetic expression pmproto facilities to split the installation into manageable parts
is complicated. But using the generated scripts has prevented the execution of
hundreds of unnecessary executions of nroff(1). Therefore the effort to create the
prototype has been well rewarded.

E. Starting a C Program

Throughout this paper we have made references to a variety of components that we
expect programmers to include in their source files (e.g.. com(1) and LIBSQ lines,
sccsids, “-x" flag interpretation and information).

Part of our software management philosophy is that if one expects or requires
certain standards to be followed then it must be simple and beneficial to do so.

32. The generated scripts are not quite so petite. For the D-tree manl directory the output script is
approximately 3,500 lines and 70,000 characters.

In

- VII -

keeping with this philosophy there is a single 8 character ged(1) command that

may be used to generate the a C program outline that contains all the required
components.

In

addition to the C prototype there are commands to create the shell, arlo script

and xdb database outlines.

The following is an annotated and edited-to-fit example of the result of executing

“\zr?3 main".
/*@ ¢c @ @F @L -0 @R — the com line

%

*LIBS: -list — uses some libist.a in the LIBPATH

*/

char Usage[] ={(*? [-x T'}; — output in case of command syntax or semantic errors

which for file fred.c and SINCLPATH xxx will become
cc -Ixxx fred.c /usr/lib/ist/libist.a -0 fred

char * flagsexpl[] ={
771 line description for -x output”,

Display these explanations”,
"y yet another line of -x output”,
0
):
#ifndef lint

static charsccsid[] ={"%W% - %E%"};
#endif /* not lint ¥/

/*
%

LreEnt

created by:
LM. Strange, Feb 26, 1986
No Such Agency (NSA)
Across the street from the 7/11

Phone: +1 703 555 1066 (and all that)
Telex: 555555 nsa)
Site: nsa.is.uck

above generated by extracting name from the password file using wsr(1),
running fdate(1) to format the date, and
company(1) to select and format information is supplied by the magic “site” file.

33.

The qed ‘“\zr” command was initially invented by Rob Pike and David Tilbrook in 1978 when they
were supposed to be building a mail system. The fundamental idea is to load a file of qed
commands into a buffer, interpolate that buffer into the input stream and cleanup the mess
afterwards. There are over a hundred installed ‘\zr” programs ranging from sccs interfaces to
mechanisms for qed windows (but please remember qed is just ed(1) with a few minor extensions).
Tom Duff was responsible for the initial development of the UNIX version of qed, but not is not to
be blamed for what followed. By the way, two mail systems were eventually built: a prototype
done in ged(1) (of course) and an mh clone in C and sh(1). The ged(1) version was more useful
but not quite as easy to explain (just what does ‘\bm’ mean??) nor to get the users to accept.

| l

#include

main(arge, argv)

<stdio.h>

char *argv:

{

arginterp(argc, argv);
/* you fill in this bit you poor excuse for a handball ‘/
— generated using insult(1)

exit(0);

}

arginterp(argc, argv)
char ** argv,

{

— 30 lines of prototype argument cracker left out

}

F. Glossary

The following list was extracted from the “-x” flag output of D-tree programs
mentioned in the paper.

apply:
arlo:
arlouses:
coms:
companys:
contaxs:
cpifdifs
dmail:
dress:
fdates
filelist:
fnd:

go:
incls:
instal:
insult:
mas
mkhlp:
pmak:
pmcmd:

pmprotos
qed:

rplt
system:
tmkprof?
trg:

usrse
version:

apply a command to a set of arguments

the arlo interpreter

list files used in an arlo script

compile or process file using embedded command

output company information

output selected entries from contax database

compares new and old and if different copies new to old
add argument files to Audit trail

inverse strip — puts symbol table into binary

output formatted date string

maintain a filelist file and its’ modification times

find a command

detach a command

list include files

install file in production directory

generates an insult and disappears

The Ario Mail System

make a help facility

preprocessed make

make make script

produce master pmak script from directory dependency lines
output pmak script to build object archive

repetitively output input replacing macros by file names
somewhere between a line editor and a command interpreter
use rep -r like output to replace lines

output system name or check if argument system

create new TIPs data base profile

template driven TIPs output generator

output selected /etc/passwd uid information

create version string

- r

-X -
xdb: xdb database front end

xfinterp: Play with the -x flag formatting

Xpmak: xdb database describing the facilities and tools of the pmak system

34. The above was gencrated automagically by this program and a local version of apply(l) using:
sort commands_ list ! apply -f "%1 -x" - ! xfinterp -d

4

The Eighth Edition Remote Filesystem

Peter Weinberger

~

“Wot, No paper?”

N

PROJECT STARGATE
Lauren Weinstein

Computer/Telecommunications Consultant
P.O. BOX 2284, Culver City, California 90231 US.A.

1. Project Stargate

This paper briefly outlines the aspects of an ongoing experiment into the use of
satellite and cable television (CATV) technologies as a backbone for the wide
dissemination of information similar to that carried by Usenet "netnews,” allowing
for discussions on a wide range of topics to be communicated among large numbers
of individuals in distributed geographic locations. Recently, the project’s scope has
expanded to investigate various ways to provide greater organization for some classes
of "person-to-person” electronic mail messages as well.

Due to the rapid evolution of this project and the related ongoing planning,
organizational structuring, and various levels of developmental work taking place at
this time, it is unfortunately not practical to do more than skim the surface of the
project in this paper. In the almost two years since I first began considering the
use of satellite technologies for these sorts of applications. the project has changed in
both scope and form, and is now moving from being an experiment toward becoming
an actual service.

In the talk that accompanies this paper, I will provide as much recent information
as possible regarding project developments. Events are occurring so fast that in the
two months which must elapse between the submission deadline for this paper and
the actual talk, even more changes will almost certainly have occurred.

This paper assumes that the reader is already familiar with the concepts of Usenet
netnews and UUCP-based electronic mail.

2. Project Stargate Background

Over the last several years, the volume of Usenet netnews traffic being carried by
conventional dialup telephone and other point-to-point communication circuits has
increased far beyond that originally envisioned. Not only has the number of
participating Usenet sites grown enormously, but the number of articles being
submitted daily into the network has also increased dramatically. Many persons
feel that the overall "quality” of submitted material has also declined steadily over
this period of rapid growth. Many indications point toward this traffic growth
continuing at an increasing rate.

The vast majority of existing Usenet sites transfer netnews via dialup telephone
connections (usually UUCP), typically at 1200 bps and sometimes at even lower
speeds. The nature of the network is such that many relatively lengthy telephone
calls are required. on the part of many sites, to successfully "flood" a given article
throughout the network to all sites which might wish to receive it. The overall
cost of these calls is not trivial and could well act as a deterrent to the successful

continued operations of both Usenet and the UUCP network which underlies most of
Usenet.

Even with the advent of higher speed modems, the fundamental fact remains that
the transmission of netnews is inherently a "broadcast” function—that is, it is desired
to get the same material to a large number of readers as quickly as possible. The
point-to-point system currently being used for Usenet is simply not efficient, from
either a time nor monetary standpoint, for such distributions. and threatens to
become even less efficient as users and traffic continue to grow.

However, there is an alternative to multitudinous telephone calls or other point-to-
point techniques for distributing netnews articles or other materials (such as mail
between certain UUCP network backbone hub sites). Rather than sending such items
in "conventional” manners, satellite technologies can be employed to literally
broadcast information items simultaneously to most sites in the continental United
States and parts of Canada via domestic communication satellites.

In the summer of 1984, with the assistance of the Usenix organization, I began a
project to investigate the technical, economic, and “political’ aspects of such an
satellite-based distribution system. While a number of people originally predicted
that nothing would come to pass from my efforts, the project and the resulting
experiments have been highly successful, and are now leading toward the
establishment of a generally available service in the fairly near future.

3. Vertical Interval Data

Project Stargate is based on the concept of television vertical interval data
transmission. An area of the conventional television signal called the "vertical
blanking interval® is mostly or completely unused by the vast majority of television
broadcasters. This space can be used for the transmission of relatively high speed
data given the proper equipment, without interfering with the primary video being
transmitted by that signal.

Vertical interval transmission of limited capacity "magazine’-type data, with limited
graphics, was pioneered by the BBC under the generic term “teletext.” Teletext
"magazines," providing relatively short collections of world and/or local news and
other information for display directly on consumers’ television screens are in use
(with varying degrees of success) in a number of countries.

Unlike teletext magazines, however, Stargate is designed to send large quantities of
data directly to participating sites’ computers, and to allow for a high degree of
user interaction with the service in much the same spirit as the existing Usenet.
Stargate, by eliminating many of the delays and costs inherent in existing point-to-
point distribution technologies, can be of immense benefit if it evolves properly.

A fully operational Stargate system would operate approximately as follows. Items
for general distribution via Stargate (or even other messages such as certain forms of
direct mail) would be sent via dialup lines as ordinary single-destination UUCP
messages to a pair of dedicated microcomputers located at the satellite uplink facility
of the satellite carrier. These micros would multiplex the incoming articles into a
continuous data stream (complete with robust error correcting codes), possibly
combine them with other data, and insert the stream into the carrier’s vertical
interval. The pair of microcomputers, with one acting as a "hot” standby, would
help to avoid the possibility of an equipment failure causing a major disruption of
the network. -

4. The Stargate Experiment

The actual transmission of experimental Stargate material via satellite began a little
over one year ago. I successfully installed UUCP site "stargate” on Monday,
December 3rd, 1984. The Stargate computer is a Fortune 32:16 UNIX system, with
a 30 megabyte disk, which Fortune Systems has graciously made available for the
purposes of Stargate experimentation. Primary expenses for the experiment are
currently being covered by Usenix, with special thanks due for Usenix’s Lou Katz,
who has strongly supported my efforts in this area through thick and thin. Thanks
are also in line for Bell Communications Research (Bellcore), which has provided
both moral and tangible support for the experiment. Bellcore’s Brian Redman, Mike

|

Lesk, and Stu Feldman also deserve special thanks for their support of my efforts to
make the project a reality. : T

Stargate is located at the primary satellite uplink facilities of Southern Satellite
Systems (SSS) in a rural area about 20 miles outside of Atlanta, Georgia. The
Stargate data transmissions are appearing as a portion of the vertical interval on
Turner Broadcasting’s “"Superstation” WTBS, which is transmitted (uplinked) to
satellites via SSS facilities. SSS has very generously made a continuous 1200 bps
data channel available to us without charge for the experiment. This rate may
increase to 2400 bps for further experiments in the near future, and may take on
even higher rates at various times for an operating service. This satellite bandwidth
is available to us 24 hours/day, 7 days/week and represents an enormous data
transmission resource.

The WTBS signal is currently transmitted via a transponder (satellite channel) on
the domestic Galaxy I satellite. WTBS is sent in this manner to almost 34 million
cable TV subscriber households and businesses across the United States via nearly
10,000 cable companies. With the appropriate decoders, the Stargate transmissions
are theoretically available at almost all points where satellite-delivered WTBS is
received, either by cable TV or direct satellite pickup (through inexpensive earth
stations) where cable delivery of WTBS is not present.

S. Receiving Stargate

We are currently in a demonstration/test mode—the exact shape of a production
system is still being organized and is subject to change: a number of organizations
have expressed interest in helping to create and/or support the proposed service.

Since all terrestrial points in range of the satellite transmissions receive WTBS
essentially simultaneously, this is a true broadcast medium which is a considerable
improvement over innumerable point-to-point phone calls or data links! The rapid
dissemination of data to so many points at one time avoids one of the most serious
problems. with the existing Usenet, the problem of long delivery time lags, and the
resulting disjoint discussions, that occur with many sites.

Full details regarding data decoder availability, costs. and various other factors are .

in the process of being determined. As a rule of thumb, the basic decoder "package"
(commercially manufactured by a large U.S. electronics firm) will probably cost
approximately $500, with another $150 to $200 or so for a special
processing/buffering/interface board to handle message selection, error correction,
mainframe buffering/flow control, and similar operations. The Stargate data stream
continuously repeats certain portions of the overall data to ensure that all sites have
a reasonable opportunity to receive the materials; the buffering board acts to handle
this data stream in a manner which offloads as much processing as possible from
sites’ local computers. The decoder equipment includes built-in remote addressing
and data decryption facilities. ’

It is hoped that the Stargate service will be able to allow for the rental of decoders
and for the subscription of users to the information flow at a reasonable cost even
if the purchase of the decoder and buffering hardware is not practical for a given
end user.

A small monthly fee will presumably be assessed for Stargate data delivery in a
production environment, but note that any such fee should be quite reasonable
compared with the phone bills that most sites now pay, or are likely to soon pay,
for large portions of conventional Usenet netnews. A fee structure for those sites
unable to receive the direct satellite/cable TV transmissions but who elect to receive

data from “direct” sites (via telephone connections, etc.) may also need to be
established. Sites electing this non-satellite/cable TV route will generally be at a
relative disadvantage since they will be unable to receive and respond to incoming
materials on as timely a basis as the “direct’ sites, and may find it impractical to
receive all of the Stargate materials in this manner. However, for those sites which
are unable to receive satellite/cable TV transmissions, other options will need to be
available. The exact form of such options will depend on a variety of factors
involving the structure of the Stargate organization itself and the sorts of
information sent by the actual Stargate service. These issues are under study at
this time.

6. Stargate Content

The issue of exactly what sort of material will be carried on a Stargate production
system is a complex one, and this issue is in the process of evolving at this time.
It is my personal opinion that various forms of "moderation,” that is, human
screening of inbound messages before they are actually sent out to the satellite, is
critical to the usefulness and success of the project. ’

One of the serious problems with the existing Usenet is the large volume of traffic,
much of which is repetitious and thus of little "useful” value. For example. even a
valid technical question, asked in the proper newsgroup. may elicit many almost
identical replies, all of which are costing money to transmit and, equally important,
take time to read! This latter issue has become increasingly critical as the network
has grown. Even if infinite amounts of data could be instantly transmitted to all
points at zero cost, nobody would have the time to wade through all that materiall

Already, many persons have massively cut back on the number of Usenet
newsgroups they read. The main cause for this is indeed a lack of time to search
through all the messages, most of which have very little real "value" (either due to
repetition of previous messages’ information or "poorly thought out” material) to try
find the relatively few useful messages which might be buried in the mass of data!

My own view is that Stargate should function much as a highly interactive
publishing/broadcasting operation. Discussion topics would be chosen from a variety
of fields, and the level of moderation applied to given discussions could vary from
topic to topic. For example, some discussions might need only a minimum amount
of moderation to meet legal broadcast requirements and avoid repetition. Other topic
discussions might be organized more along the lines of professional journals, with a

much higher level of “editorial” selection exercised. The possibilities are many and
varied.

7. International Issues

The Stargate satellite transmissions, being based on a U.S. domestic satellite, cannot
be received outside the general area of the United States and portions of Canada. It
is beyond the scope of this paper to cover the various issues relating to the
possibility of international transmission of Stargate materials or the various factors
which would be involved in the establishment of a similar service outside of North

America. However, I'd be glad to discuss these issues with interested parties who
contact me.

8. The Future

Stargate is not meant to replace the existing Usenet. The Stargate Project’s plan is
to provide a useful alternative to Usenet for those organizations and persons who
have found the existing Usenet structure, both for technical and content reasons, to

l

no longer fulfill all of their requirements for participatory information services. My
hope is that the Stargate Project experiments will continue to evolve toward
providing practical, high quality information services that can serve the needs of
many persons at relatively low cost.

Getting the project to this point has certainly been fascinating. I have high hopes
for the future.

