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Introduction

The EUUG autumn 1985 conference was a fair success. in most of its aspects. The technical
programme was received very well, as were the tutorials and the industrial programme con-
tents.

The conference proceedings contain extensive papers on topics covered by various authors,
both of the technical and of onec of the industrial sessions.

Thanks go to David Tilbrook (Imperial Software Technology) for his invaluable help in sug-

gesting speakers and in pointing us into the right direction. Thanks go also to Kim Biel-
Nieclsen, who held the Industrial Programme Chair. Last but not least, we wish to thank UNIX
Europe Ltd. for their support with respect to the several AT&T Bell Laboratories speakers. A
conference program chairman can impossibly compose a good EUUG conference programme
without being able to invite some speakers to tell us about the action near the very roots of
the UNIX system.

For Nigel Martin (The Instruction Set, Ltd) and myself - we both shared the program chair of
this conference - it was a success that all complaints went to the food.

Hendrik-Jan Thomassen
AT Computing b.v.
Nijmegen. the Netherlands
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AWK as a General-Purpose Programming Language

Brian W. Kernighan

AT&T Bell Laboratories
Murray Hill, NJ 07974

ABSTRACT

Awk is a pattern-action language with convenient facilities for processing
strings and numbers. It was originally intended for simple data validation, report
generation and data transformation tasks; awk programs for such tasks can often
be expressed in only a few lines of code.

Awk has often been pressed into service in ways far beyond what was origi-
nally intended. Recent changes to awk make it more suitable as a general-purpose
programming language. This paper will discuss new features — new built-in func-
tions, multi-file input, dynamic regular expressions and text substitution, and user-
definable functions — and illustrate some interesting applications that they allow.

1. Introduction

The awk language was originally designed for specifying simple tasks in data validation,
transformation and report generation. For example, this awk program prints each line of its input
in which either the first or second field is negative:

$1 < 0 Il $2 < 0 { print "Line", NR, "has a negative value", $0 2
This program replaces each second field by its logarithm:

{ $2 = log(%$2); print >
This program prints the sum and average of the values in the first field:

{ sum += $1 )
END { if (NR > 0) print sum, NR, sum/NR }

An awk program consists of one or more pattern-action statements. The basic cycle is to scan
cach line of input, comparing it in turn to each pattern. If the pattern matches, the action is per-
formed. If there is no pattern, the action is performed on all lines, as in the second and third exam-
ples above; if there is no action, the selected lines are printed.

Awk automatically scans each input file and breaks each input line into fields (referred to as
$1, $2, etc.). $0 is the whole record, and the variable NR is the input record number.

Awk programs may use variables, which take on numeric or string values according to con-
text; there are also associative arrays in which subscripts may be arbitrary values. Variables may be
combined in expressions using most of the same operators as in C, plus string concatenation. Pat-
terns may include relational expressions on strings and numbers, and regular expressions.

Actions may include control flow statements like those in C (if-else, while, for), and
calls of built-in functions for standard arithmetic operations (e.g., Log), string length, substring, etc.

Awk programs are often substantially shorter than equivalent programs in a language like C,
because most of the trappings of conventional languages — declarations, initialization, input scan-
ning and parsing, type conversions, etc. — are handled implicitly. For example, this program uses
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an associative array in which subscripts are entire input lines to count the distinct lines of input and
print them, preceded by their count, in decreasing order of frequency.

{ x[$0]1++ 2}
END { for (i in x) print x[il, i | "sort -nr" 2}

(The lines are sorted by piping the output to the standard sort program.) Furthermore, awk is
implemented as an interpreter; since there is no compiled form of an awk program, there are no
object files and no loader, so housekeeping is simpler than it would be for a compiled language.

Although awk was intended for very short programs like those above, it has been used for
much larger ones, often running well over one thousand lines. Examples known to the author
include assemblers for several microprocessors and a variety of simple database management sys-
tems. Most of these programs are not described in the literature; one exception is Comer’s Flat File
Generator [1], which is a collection of awk and shell programs.

There are problems with using the original version [2] of awk for such large programs. One
difficulty is efficiency; both compilation and execution can be quite slow. The other problem, and
the subject of this paper. is the lack of certain crucial functionality: access to command-line argu-
ments, control of input and output files, and user-definable functions. The current version [3] of
awk addresses these issues, and the combination of new features and better understanding has led to
some interesting applications. The next section describes new language components: the following
section sketches applications.

2. New Facilities

Built-in functions

Trivial enhancements include the addition of built-in functions for sin, cos, atan2, rand,
srand (to set the seed for rand), and system(string), which executes the command given by
string.

One significant complaint about the original awk was that it ran out of open file descriptors
because there was no way to close a file once opened. That defect is remedied by the obvious
close function.

Multiple simultaneous input files

The original awk processed each input file from beginning to end in order, one at a time. The
new version provides a function getline that permits arbitrary input from arbitrary files. It
comes in several flavors:

getline sets $0 from next input line
getline x sets x from next input line
getline <"file" sets $0 from next line of file
getline x <"file" sets x from next line of file
"command" | getline is like getline <"file"
"command" | getline x islikegetline x <"file"

getline makes it possible to read several input files at once, and to write loops like this one
for counting users:

BEGIN {
while ("who'" | getline)
n++
print n
exit
X

getline returns 1 if there was data, O for end of file, and —1 for errors.
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Command-line arguments

In the original version of awk, there was no access to the values of the command-line argu-
ments, which were deemed to be filenames for input and nothing else. Naturally, this restricted the
ways in which arguments could be used with awk programs, often forcing some remarkable evasive
maneuvers with the shell and quoting, as in this example from Reference [4]:

awk ’
BEGIN { splLit("'"™date'""'', date) }
$1 == datel2] && $2 == datel3]

" $HOME/calendar

In the current version, the variable ARGC contains the argument count and ARGV is a vector of argu-
ments, just as in a C program. If the values of ARGC and ARGV are left untouched, the behavior is
exactly as before. But if any argument is set to null, or if ARGC is changed, the corresponding argu-
ments will not be treated as filenames. Thus, the program above could be re-written as

awk °
BEGIN { mon = ARGVL3]1; day = ARGV[4]
for (i=2; i < ARGC; i++) ARGVLil = "" }
$1 == mon && $2 == day
" $HOME/calendar date

Of course, an even better solution would be something like

awk ’
BEGIN { "date" | getline d; split(d, date) }
$1 == datel2] && $2 == datel3]

" $HOME/calendar

Dynamic regular expressions
Regular expressions in the original version of awk were compile-time constants enclosed in
slashes, as in
/regexp/

In the current version, any string, whether constant or variables, may be used as a regular expres-
sion in any context where static one can be used. Two functions, sub and gsub, perform text sub-
stitutions for patterns specified by regular expressions:

sub(regexp, replacement, target)

replaces the first occurrence of regexp in target by replacement; gsub replaces all occurrences. For
example, the following program generates form letters, using a template stored in a file called
form.letter:

This is a form letter.
The first field is #1, the second #2, the third #3.
The third is #3, second is #2, and first is #1.

and replacement text of this form:

field 11field 2ifield 3
oneltwolthree
alblc

The BEGIN action stores the template in the array template; the remaining action cycles through
the input data, using gsub to replace template fields of the form #n with the corresponding data
fields.
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BEGIN { FS = "|"
while (getline <"form.letter'")
linel++n] = $0

for (i = 1; i <= n; i++) {
s = Llinelil]
for (j = 1; j <= NF; j++)
gsub("#"j, $j, s)
print s

>

The heart of the procedure is the first argument to gsub, which is a dynamic regular expression
formed by concatenating a # and the field number.

One by-product of extending the regular expression mechanism is that the field separator, pre-
viously limited to a single character, can now be set to any regular expression. For example, the
following assignment sets the field separator to match an optional comma followed by blanks or
tabs:

Fs = "(,0 \tI®)ICL \t1+)"

Although useful, these facilities are not enough to make awk a serious competitor for sed
when efficient text editing is necessary.

User-definable functions
The major limitation in the original awk was the lack of any way for a user to define his or

her own functions. The new version provides them with the following syntax:

function nameCargument list) { body }

A function definition can occur anywhere a pattern-action statement can.

Scalar arguments are passed by value; array arguments are passed by reference. Arguments
are local to the function, but a/l other variables have global scope. Any argument not explicitly
provided by the caller is null, so in a rather ad hoc way, excess formal parameters can be used as
local variables.

As in C, a return statement exits from a function, optionally returning a value.

The function mechanism is not terribly efficient, but it is at least acceptable, as shown in this
table of run times for computing Ackermann’s function Ack(3,3), which requires 2432 nested func-
tion calls:

func ack(m, n) {
if (m == 0) return n+1
if (n == 0) return ack(m-1, 1)
return ack(m-1, ack(m, n-1))

C <0.1 sec.
bas 1.3
hoc 5.5
awk 10.9
bc 39.7

All times are from a DEC VAX-11/750.
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3. Applications

Algorithm and data structure presentation

Bentley has used awk extensively in his Programming Pearls columns for presenting algo-
rithms and data structures. Awk programs are compact and typeless, so the presentation can focus
on the essential ideas without getting buried in irrelevant details. For example, a column on testing
programs [5] presents a variety of searching and sorting algorithms, plus a framework of testing rou-
tines, all written in awk.

Another column [6] uses awk to demonstrate how certain algorithms can be expressed with
remarkable brevity and clarity when associative arrays are used. (The line-frequency count program
shown earlier in this paper is a simple example.) This code maintains a graph specified as
predecessor-successor pairs, and upon request prints all nodes reachable from a specified one, using
recursive depth-first search:

function visit(node, i) { # i is a local variable
if (visitedlnodel == 0) {
visited[nodel = 1
print " " node
for (i = 1; i <= succctlnodel; i++)
visit(succlistlnode "," i1)
X

>
$1 == "reach" {
for (i in succct)
visited[il =
visit(3$2)
>
$1 '= "reach" {
succlist[$1 "," ++succct[$11] = $2
if (1($2 in succct))
succct($2] = 0
)

This example uses associative arrays to simulate several data structures. The subscripts of the
array succct are the nodes of the graph; the values are the number of successors. The array
succlist contains the successors of each node, encoded as subscripts of the form p,n, where
succlistlp,nl is the n-th successor of node p. In other words, a 1-dimensional associative array
represents a sparse 2-dimensional array. Functions are also needed; by the nature of the depth-first
search algorithm, they must be recursive, with local variables.

Compiling little languages

A dotchart is a form of statistical display for data that consists of a name and a value, as in
this plot of animals and their maximum speed in kilometers per hour.

EUUG Copenhagen, sept. 1985. Page 9




Cheetah |-
Antelope
Wildebeest
Lion
Gazelle | -
Horse |-
Elk | -
Coyote
Hyena |.-----
Zebra
Greyhound
Rabbit
Deer
Jackal
Giraffe
Warthog
Grizzly
Cat
Human
Elephant
Squirrel
Pig
Chicken

50

Maximum speed, km/hr
(Source: World Almanac)

The dotchart is described with a very simple language; this picture comes from

file "animal.data"
label "Maximum speed, km/hr'" "(Source: World Almanac)”
coord x 0 to 120

where the file animal .data contains lines of the form

112 Cheetah
97 Antelope

The dotchart “compiler” converts the specification into commands for the grap language [7], which
in turn is converted into pic and then into troff.

The implementation of dotchart is about 25 lines of awk, 20 of which are print statements
generating grap commands. Other statistical displays have been built with much the same flavor as
the dotchart language; the most widely used is one for generating scatter-plot matrices [8].

A larger awk program (about 350 lines) is used to implement a specialized language for
describing chemistry structures; the language was designed in collaboration with Jon Bentley and
Lynn Jelinksi. The input language provides for describing a list of objects, each followed by attri-
butes of size, direction, position, and substructure. For example, the LSD molecule is specified like
this:
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# Lysergic acid diethylamide

B: benzene pointing right

flatring5 pointing left put N at 5 double 3,4 with .V1 at B.V2
H with .n at F.N.s

ring pointing right with .V4 at B.Vé

front bond right from R.V6 ; H

ring pointing right with .V2 at R.V6 put N at 1 double 3,4
bond right from R.N.e ; CH3

back bond -60 from R.V5 ; H

bond up from R.V5 ; CO

bond right ; N(C2H5)2

The awk program translates this description into pic commands, which, combined with some macro
definitions and passed through zroff, produce the following picture:

CO — N(C,H,),

N
H

Awk has turned out to be a good implementation language for simple compilers. Implicit
input, field-splitting and regular expressions handle parsing of input. Associative arrays provide
both symbol tables and arbitrary data structures. Functions encapsulate basic operations. All
storage management and type conversion is done implicitly. As a result, the programs are probably
a factor of five smaller than they would be in C. (Honesty compels me to admit that they are at
least an order of magnitude slower too.)

4. Conclusions

There have been some strains in keeping compatibility between old and new versions of awk,
most notably the handling of command-line arguments, but most changes have gone in smoothly.

The new version is actually faster than the old one, largely because the detailed code is cleaner
and simpler. Unfortunately, there does not seem to be any way to make the program a great deal
faster without a complete revision, although one perennial option is to have awk generate C for sub-
sequent compilation.

Larger programs require more emphasis on error reporting. The new version is much
improved over the old in this area; the laconic “syntax error” has been replaced by reasonably accu-
rate identification of the offending piece of code. For example, omitting the 1 from the line

for (i = 1; i <= succctlnodel; i++)
in the program above produces the message

awk: syntax error at source line 5 in function visit
context is
for (i = >>> ; <<< i <= succctlnodel; i++)

(Not all error messages are this precise, of course.)
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The evolution of awk retains the useful attributes of the original while providing new features.
In particular, it appears that the area of little languages is a fruitful one, and that awk is a good
tool for prototyping and often for actual production use.
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The STREAMS Facility in System V

Bob Duncanson
Senior Software Consultant
Unix Europe Limited

STREAMS is a set of mechanisms within the UNIX system kernel
that allow character 1/O to be implemented in a modular way. As a
result. the drivers for character-type devices have a structured inter-
face 1o the UNIX system kernel. The STREAMS mechanisms also
provide a flexible framework within which different networking ar-
chitectures can casily be designed and implemented.

STREAMS includes a conceptual model of character /0, a
well-defined interface with the rest of UNIX System V. a library of
utility programs. other utilities (such as an administration driver)
and several new (or modified) system calls.

1. Introduction

UNIX * System V is designed to provide comprchensive support for networking services. This
paper describes a major building block of that support. Although this paper describes STREAMS in
some detail. no assurance is given that System V Release 3 conforms to this description.

The original strecams concepts were developed in the Information Sciences Research Division of
AT&T Bell Laboratorices under the 7th and 8th Editions of the UNIX system. [DMR] ¥

The UNIX system was originally designed as «a general-purpose. multi-user. interactive operating
system for minicomputers. This design objective and hardware state of the art during the initial
development resulted in data communications capabilites principally intended to support slow to medi-
um speed asynchronous terminals. This environment did not require rigorous emphasis on performance
and modularity as other parts of the system.

Since then, support for a broad range of devices, speeds, modes and protocols has been incorporat-
ed into the system. Development of this support has been impeded by overhead inherent in the original
implementation, in which characters are processed one at a time.

The current generation of networking protocols, such as OSI, SNA. TCP/IP, X.25 and XNS, is
characterized by diverse functionality, layered organizations and various feature options. Developers of
these protocol suites have encountered problems arising from lack of mechanisms, structure. and
software interface standards for the introduction of new components or modification of existing ones.

* UNIX is a Trademark of AT&T in the U.S.A. and other countries.
T D.M. Ritchie, "The UNIX System: A Stream Input-Output System”, AT&T Bell Labora-
tories Technical Journal, p 1897, Vol 63 no 8§ part 2
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Attempts to compensate for performance and structural limitations have led to differing, ad hoc im-
plementations. Different implementations of functionally equivalent protocol software will not mesh
with layers above or below. Protocols and device drivers are often intertwined with the hardware confi-
guration. This has limited portability, adaptability and reusebility of software parts, resulting in in-
creased cost and confusion for system developer and customer. Various patchwork solutions have been
tried with limited success.

In consideration of these problems, and of the intent to provide broad support for networking and
internetworking in UNIX System V., the need to enhance character I/O was recognised.

The result is STREAMS. STREAMS will define interface standards for character input/output
within the kernel. and between the kernel and the rest of UNIX System V. It implements an associated
flexible. simple. open-ended mechanism, constructed from a set of system calls. kernel resources and li-
brary routines. The standard interface and mechanism will enable modular. portable development and
easy integration of high performance network services and their components. STREAMS provides a
development framework, rather than imposing any specific architecture. It coexists with the existing
character i/o facilities and provides a user interface consistent with these facilities.

The power of STREAMS resides principally in its modularity. STREAMS design reflects the
"layers” and "options” characteristics of contemporary networking architectures. The basic components
in a STREAMS implementation are referred to as modules. Each module represents a set of process-
ing functions. >From user level. modules can be dynamically selected and interconnected in the kernel
to form processing sequences, with no kernel programming. assembly, or link editing required.  As dis-
cussed later, this allows

e  User level programs to be independent of underlying protocols and physical communication media.

Network architectures and higher level protocols to be independent of lower level protocols, drivers
and physical media.

Protocol portability - As shown in figure 1, the same protocol modules can be used on different

computers. The X.25 packet layer module interfaces with the higher Connection Oriented Net-
work Service (CONS) and the lower Link Access Procedure (LAPB) driver.
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MACHINE A MACHINE B

CONS CONS
Interface Interface

Protocol Layer ' MODULE

LAPB LAPB
Interface Interface

DIFFERENT
DRIVER

fig.1: Protocol Portability

®  Protocol substitution - As shown in figure 2, alternative protocols (and device drivers) can be inter-
changed on the same computer.

SAME MACHINE

Operating Operating
ystem ystem
Function Function

Transport

fig.2: Protocol Substitution

Protocol migration - As shown in figure 3 - protocol functions can be transferred between kernel
software and front-end hardware. The standard interface allows higher level modules to be tran-
sparent to the number of modules below. The ability to easily shift functions between software and
firmware allows cost effective implementation of equivalent systems over a wide range of configura-
tions, as well as rapid assimilation of technological advances.
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( Class 1 SAME l Class 1
|

Transport Transport
| Protocol f MODULES Protocol ,
[
X.25
Packet Layer
Module
X.25
LAPB R
L Driver ___F_E__I_\T_E_I:___ Packet Layer .

HARDWARE Driver

fig.3: Protocol Migration
®  Higher level services to be created by selecting and connecting lower level services and protocols.
In addition to modularity and flexibility, STREAMS offers library routines and facilities that ex-
pedite design and development. The facilities include:

®  Buffer management - STREAMS maintains its own independent buffer pool that can be shared by
all STREAMS modules.

®  Automatic flow control to conserve STREAMS buffer resources.
®  Scheduling - STREAMS provides its own module/driver scheduling mechanism.

e Error and trace loggers exist for debugging and administrative functions.

>

Internal Architecture

stream is a full-duplex connection between a user process and an open device (or pseudo-device).
Existing entirely within the kernel, it provides a general character I/O interface. plus the ability to inter-
pose some intermediate processing modules between the user-process and the device-driver end.

The beginning of the stream, where it starts near the system call interface. is called the “stream
head”, and is upstream of the rest. The device-driver is at the downstream end.

System calls are converted by the stream head into messages, that are passed downstream through

each processing module sequentially until they are consumed. and messages can be generated by pro-
cessing modules and passed upstream, usually to the stream head.
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2.1 queues

Each processing stage in a stream is represented by a pair of queues. The queue structures are al-
located in even/odd pairs so that it is simple to locate any specific queue’s backstream partner.

2.2 scheduling

A queue is scheduled for servicing when it has messages waiting, and when it is not blocked for
flow control. All the queues ready for servicing are linked together on the run list. When the system is
ready to run them, it calls the service procedure.

2.3 data structures

2.3.1 streamtab

cdevsw

]
| info|--|
[

|
v

stream initialization table

| upper read queue \
| upper writequeue |
| lower read queue |
| lower writequeue \
4 l

fig.4: Streamtab

The streamtab table contains the linkage between the cdevsw for a particular device, and the queue ini-
tializations for a module’s type of read and write queues.

2.3.2 queue initialization and module info
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queue initialization structure

| put procedure \
| service procedure \
| open procedure \
| close procedure |
| module statistics (
| module information | ==
| |

-

|

|

|

|

\%
module information structure

| module id number

| module name |
| min packet size |
| max packet size |
| hi_water mark \
| lo_water mark |

fig.5: Queue initialization

The ginit structure is a static part of the module. It contains pointers to the module-specific put, ser-
vice, open and close routines.

2.3.3 queue

data queue

procedures and limits
first data block in Q
last data block in Q
Q of next stream

next Q for scheduling
private data pointer
number of blocks on Q
queue state

max packet size accepted
queue high water mark

|
(
l
|
|
l
|
| . .
| min packet size accepted
I
l
| queue low water mark

l

fig.6: QUEUE information structure

A pair of queue structures is allocated for each stream head, driver and protocol module.
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2.4 Modules and Drivers

A driver is a stream endpoint, it has an inode in the file system and can be open()-ed; there are
media drivers and multiplexing drivers.

A module has no inode. It is referenced by a string "name” wholly kept within kernel. It can only
be PUSHed or POPped on a STREAM.

2.5 Opening a STREAM

A stream is set up when a stream device is opened. A new info field has been added to the cdevsw
table. If it is null then the device is an ordinary character device. But if it is non-null, the info field
points to the streamtab table for the device. On first open, the system initializes two pairs of queue
structures with linkages to each other and their queue initialization structures. Then the stream open
routine calls the drivers open routine referenced in the qinit structure.

If the driver needs to maintain state information across calls, it must allocate its own storage area.
There is a pointer in the queue structure for the driver’s use in locating its driver-specific data.

Such a simple stream could be useful, for example: "raw” tty driver.
User Space
Kernel Space

|

‘ ldownstream Stream

Head

downstream

1 EEN
B

Module (optional)

upstream upstream

| Driver , Driver

fig.7: Basic stream

2.5.1 adding a protocol module

Other protocol modules can be added at the top of the the stream by an ioctl call. Whenever a
new module is pushed in, its module-specific open-routine is called to allow for initialization.

2.5.2 removing a protocol module

Similarly, protocol modules can be removed by an ioctl call. The system calls the modules close-
routine. Then the modules queues are removed from the stream.
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2.5.3 Use of queue functions

When a process sends data or control information to a stream, the streamhead converts the write,
send or ioctl system call into a message. Each processing element passes the message along the stream
by calling the put() procedure of the next processing element. The system provides a generic procedure
putg() to enqueue messages. But a module developer may design a special put procedure to do some
special processing on arriving messages.

Usually the put procedure will enqueue the message (using putg()) and this enables the queue for
servicing. The system, some time later, unrelated to the process that may have caused the original mes-
sage, calls the modules service procedure. It is the function of the service procedure to dequeue mes-
sages (using the system routine getq()).

It is possible to do without a service procedure if the processing can be done entirely by the put
procedure. In that case the module’s put procedure forwards processed messages by the system provid-
ed putnext.

The system routines implement flow control by checking the amount of data in a queue against the
queue’s limit. When this "high-water mark” is reached, queues that would attempt to pass a message to

this one are disabled from servicing. When the amount of data then passes below a queue’s low-water
mark (having been serviced), the queue behind it is re-enabled.

3. Messages

3.1 data structures that define a message

Message block descriptor

prev |-—- message block *
next |-- message block *

*

|
|
| rptr |- char lst byte to read

| wptr |- char * lst byte to write —--—-
| datap

| cont

|

buffer|

next message block of same message

fig.8: Message Structures
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3.2 queueing priorities

Most messages are normal priority; they are placed at the end of a queue. A few messages are
high-priority; they are placed before the normal priority messages in any queue, and are allowed to
bypass the normal flow-control mechanism.

3.3 message types

* Data and protocol messages (regular priority)

DATA regular data
PROTO protocol control

* Control messages (regular priority)

BREAK line break

SIG  generate process signal

DELAY real-time xmit delay (1 param)
CTL  device-specific control message
IOCTL ioctl; set/get params

SETOPTS set various stream head options

* Control messages (high priority; go to head of queue)

IOCACK acknowledge ioctl

IOCNAK negative ioctl acknowledge
PCPROTO priority proto message

PCSIG  generate process signal

FLUSH flush your queues

STOP  stop transmission immediately
START restart transmission after stop
HANGUP line disconnect

ERROR fatal error used to set u.u_error

fig.9: Message Types

3.4 common routines for manipulating messages and data
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allocate a message block

trim bytes in a message

get pointer to the queue behind a given queue
recover from failure of allocb()

test for room in a queue

make a copy of a data block (with data)

make a copy of a message (with data)

test whether message is a DATA message
duplicate a message block

duplicate a data block

flush a queue

free entire message

get next message from qucue

concatenate two messages into one

remove message block from front of message
get number of data bytes in a message
prevent a queue from being enabled
concatenate data bytes in a protocol message
return a message to the front of the queue
forward message along to following queue

put a message onto a queue

put a control message onto a gqucue

put a control message with a 1-byte parameter
enable a queue (schedule for servicing)

send a message back up the other side of a stream
get the number of messages on a qucue
remove a message block from a message

test if a buffer is available

returns address of partner queue structure

fig.10: Common Utility Routines

4. System call interfaces

4.1 open()

This has been discussed above in the section "Opening a stream”.

4.2 close()

This has been discussed above in the section "Opening a stream”.
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4.3 write()

The stream head turns a write system call into a DATA message.

4.4 read()

The stream head turns a read system call into a fetch of the first message in the stream head read

queue.

4.5 ioctl()

The stream head turns an ioctl system call into an IOCTL message. The following type are special

for streams modules;

push named module onto top of stream
remove module just below stream head

retreive name of uppermost module
flush queues, input, output or both

register to be sent SIGSEL signal when an event occurs
returns bitmask of SIGSEL events enabled

tell whether named module is anywhere in the stream

look at first readable message without removing it from queue
set read mode: byte-stream. msg-discard, or msg-nondiscard

return current read mode setting

return size of next message to be read
send control message about another stream

send ioctl message downstream

connect a stream underneath a multiplexing driver
disconnect a stream from a multiplexor

fig.11: list of ioctl() options

4.6 send()

The purpose of send() is to allow high-level protocol information to be kept and passed with the
data that it is associated to. The stream head turns a send() system call into a DATA or protocol mes-
sage, depending on the presence of normal data, control information, and high-priority flags.

4.7 recv()

The purpose of recv() is to allow high-level protocol information to be kept and passed with the
data that it is associated to. The stream head turns the recv() system call into a retrieve of the first
message on the read queue of the stream head. Because of the expanded arguments, it is possible to re-
ceive protocol control information in association with data by use of recv().
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4.8 select()

The select() system call provides users with a mechanism for multiplexing I/O over a set of file
descriptors that reference open streams. Select identifies those streams for which a user can receive
messages, send messages, or receive expedited messages. A user can receive messages through read(2)
and recv(2).

5. Some Features Built on STREAMS

Remote File Sharing (RFS)
The Remote File Sharing System feature. planned for a future release of System V. uses
STREAMS to access its network transport service.

Transport Layer Interface (TLI)

A set of primitives has been defined to provide a transport service interface for user processes.
This transport service interface enables two processes to transfer data between them over a com-
munication channel. The user interface is defined as a set of library routines for the UNIX system.
It is designed to be independent of any specific transport protocol, and any specific UNIX system
implementation. The interface is called the Transport Layer Interface. The implementation pro-
vided for a forthcoming release of System V is implemented using STREAMS to access the services
of an underlying Transport Provider.

UUCP over TLI
A new version of UUCP for system V has been enhanced to use TLI as a universal networking in-
terface. Thus, UUCP can be run over any network for which a TLI transport provider exists,
without having to alter or add special code to UUCP.

Higher level protocols
Implementations of TCP/IP, SNA and OSI Transport Protocol are being planned using STREAMS.

EUUG Copenhagen, sept. 1985. Page 24




6. CONCLUSION

The STREAMS architecture provides
® structured intermodule interfaces
® cfficient message passing
¢ automatic flow control
® scheduling of service procedures
®  multiplexing

® new system calls send(), recv() and select.

Use of the STREAMS architecture will make networking in System V modular, allowing
® media and protocol independent user services
® media independent protocol servers, and
¢  simplified device drivers

through standard interfaces between kernel drivers, kernel-resident protocol modules, and user
processes.

Bob Duncanson Technical Support, UEL
UNIX Europe Limited, phone: +44 1 785-6972
27A Carlton Drive, fax: +44 1 785-6916

London SWi5 2BS, UK  telex: 914054 UNIXTM G
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ABSTRACT

The ACE tailored UNIX System V kernel for MC680X0 based
systems accepts an extended version of the System V COFF
format as standard load format., New are the support for
more segments, flexible attributes, shared segments, and
shared libraries. Fundamental has been to get the semantics
of the segment attributes as explicit as possible, and to
strive for a memory management implementation of the highest
level of portability.

The advantages are numerous: increased functionality,
reduced memory usage, reduced disk usage, and an improved
system performance and maintainability. The extended COFF
is implemented for all MMUs supported by the ACE-UNIX ker-
nels for single and multiprocessor Motorola MC680X0 based
systems.

The paper starts with an overview of UNIX object formats and
memory management techniques.

1. Introduction

The ACE tailored UNIX System V kernel for MC680X0 based systems accepts
an extended version of the System V COFF format [AT&T83] as standard

load format [VanSomeren85]. The extension consists of a new set of sec-

tion types, among which the indirect section type stands out, and a set
of binary attributes, such as shared and writable. These are described

in detail in section 3.

UNIX is a trademark of AT&T Bell Laboratories
PDP11, ULTRIX, and VAX are trademarks of Digital Equipment Cor-
poration
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Section 1 puts the ACE-COFF UNIX kernel into a historic perspective by
highlighting the evolution of its memory management support, showing
what led to COFF, and indicating which developments will be next.

Section 2 gives an overview of object formats (a.out and COFF) and
memory management techniques (swapping and paging) in UNIX systems. It
can be skipped by readers familiar with the topic.

Section 3 introduces ACE-COFF with particular emphasis on its exten-
sions. After a treatment of the use of shared libraries, section 4
deals with the implementation of ACE-COFF in the kernel. As an example
the execution of /bin/ls is highlighted, using a shared C-library.

Compatibility with System V, and future developments conclude the paper.

1.1. History of memory management implementation in the ACE kernel

The ACE-UNIX kernel is functionally a System V kernel. Its implementa-
tion has gone through an evolution parallel to the Bell UNIX efforts
from Version 7 [Thompson78], through System III to System V [AT&T83].
Its evolution has been guided by the following rules:

- reconfiguration and portability to other hardware: different MMUs
and peripherals;

easy capacity tuning: tuning the code and the amount of data for a
specified capacity;

easy adaptability: new functionality, home-grown as well as from
the outside should be easy to incorporate;

efficient maintenance: testing, profiling, debugging, and updating
the kernel should be easy;

concentration of functionality: never two implementations of the
same functionality.

Performance improvements have also been guided by these rules. In

retrospect, most improvements have been small, localised changes, to
central and heavily used code and were implemented in a few days.

In 1980 ACE started adapting the UNIX kernel to different hardware
architectures, Larger applications (>64k, cf., PDP11), different
"strange" MMUs, 32-bit address space, all forced revision of the res-
tricted assumptions as they occur in the original V7 code.
As a first phase the code was:

cleaned in respect to the use of '"standard" C,

made independent of the integer size (16 vs. 32 bits),

rigorously split in architecture dependent and architecture
independent code,

September 3, 1985
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This had its impact on a large portion of the code, For memory manage-
ment it induced a reconsideration and redesign of the physical alloca-
tion of memory, the process-notion, swap-handling and the accessibility
of memory spaces from the kernel,

The following layers of abstraction were recognised and implemented:

1. The process' address space, range and attributes. This led to a
per process administration organised per (user-) segment with its
attributes. To this layer belongs a set of functions that manipu-
late the segments, validate addresses and address ranges and mani-
pulate mapped data.

2. The address and memory space as seen from the kernel. With this
layer comes a sct of functions that allocate and manipulate kernel
data, where user-segments after de-mapping are considered to be
kernel data. The ACE-UNIX kernel supports various memory manage-
ment schemes,

3. The machine dependent memory handling. This layer deals with the
actual hardware characteristics, e.g. the MMU. There are in fact
three hardware dependent functions that must be written when ACE-
UNIX is adapted to a new hardware architecture. This layer also
deals with the (bus-dependent) organisation of the "real" physical
memory, gaps, and other system peculiarities, through table driven
generalised functionality.

This portable generalised kernel was used to incorporate the System ITI
characteristics. Due to its division in system dependent and system
independent parts, the integration of functionality only had its influ-
ence on the machine independent parts.

System V Release 1 as it was distributed implied more serious adapta-
tions to the ACE-UNIX kernel; however since it still preserved the old
a.out scheme functionally, no architecture dependent modifications were
required. Only now that the additional functionality of multi segmenta-
tion has been added to the ACE kernel has it become necessary to provide
some extra interface facilities to handle the functionality System V
does not offer,

1.2. COFF and future developments

In the search for an object file format suitable for the definition of
multiple segments in a UNIX environment, after some consideration, COFF
was accepted, COFF is general enough to allow extension and experimen-~

tation. Furthermore software is available with System V, such as the
link editor, debugger, archiver, and utilities such as size(1), nm(1),

etc., although System V makes limited use of it.

However it was felt that the multiple segment aspect of COFF in a UNIX
environment is not mature. The segment description is not powerful
enough: how to describe that a segment can be expanded (such as bss and
the stack) either upward or downward, or how to describe that a segment
is read-only, or that a segment has to be shared, also when it is writ-
able? To this end the flags definition of a COFF section header was
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upward compatibly extended with a set of binary attributes describing
these characteristics,

Since the attributes of segments are made explicit, segments can be
treated orthogonally, enhancing the structure of the kernel., This
improvement will pay off in the future when new functionality is added.

The source level implementation of virtual memory in System V has not
been adopted in ACE-UNIX since it would reduce the functionality and the
power of the ACE-COFF kernel. However the paging algorithms in System V
served as a start for the design of paging in the ACE-COFF kernel since
it is one of the cleanest implementations today.

2. Overview of object formats and memory management techniques in UNIX
systems

After a brief description of the two major directions in current UNIX
systems some terminology is introduced. This is then followed by the
main discussion on object formats and memory management techniques
employed by most current systems.

ACE-COFF and its implementation will be discussed in the next sections.

2.1, Major directions in UNIX systems
Among current UNIX systems two major directions can be recognised:

The official and marketed AT&T Bell kernels, which have evolved
from Versions 6 and 7, side-stepping to the Programmers Work Bench
PWB/UNIX, to System III and System V.

Internally within Bell Edition 8 is widespread. Through AT&T's
aggressive marketing policy, System V now has evolved into a stan-
dard: the "Purple Book" [AT&T85] has been published and the Euro-
pean companies Bull, ICL, Nixdorf, Olivetti, Philips, and Siemens
have publically announced they will support System V as part of
their X/OPEN efforts [X/OPEN85].

Until the end of 1984, the UNIX kernels available from Bell lacked
virtual memory support. They used swapping as their main means of
sharing the physical memory resource. The new virtual memory ver-
sion, described for the VAX in [McCormickBH] and here abbreviated
to SV2.0p, looks promising.

Many of the ports to micro systems are in this direction but still
do not support paging.

Most UNIX implementations claim to be compatible with System V.
But especially its semaphore, ipc, and shared memory support are
not universally accepted. Not without reason in our opinion.

The virtual memory UNIX kernel that was developed by the University
of California at Berkeley at the end of 1979 from the VAX port of
UNIX Version 7, is the ancestor of the second direction., The
development of this Berkeley Systems Distribution is discussed in
[BabaogluJoy81]; [VanSomeren84] describes it in detail., Since 1979
it has gone tQ{ough various incarnations, resulting in the current
version Bsd4,3 , but the basic memory management functionality has
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remained the same [McKusick85]. It was written closely around the
VAX architecture. Later it was ported to a SUN (with MC68010)
using comparable memory management hardware.

The kernel supports paging of user space; to make the paging imple-
mentation cost-effective quite some effort went into tuning [Babao-
gluJoy81]. A minor deficiency of VAX memory management hardware,
the absence of a page referenced bit, proved to be costly in a UNIX
environment.

With respect to the system call 1level functionality, Bsdid.x has
gone its own way, diverging from Bell with System III and System V.
Several UNIX implementations for larger machines such as Digital's
VAX-UNIX implementation, Hewlett Packard's implementation for the
HP9000 and that of Gould for the PN900OQ stem from Bsdid.x.

2.2. Terminology

A program is built up from sections. Sections are the prototypes for
segments and are prepared by a link editor. When a program is loaded by
the kernel its sections are used to create or attach to segments.
Processes may request the loading of a particular program by means of
the exec(2) system call of UNIX.

A process is a program in execution; its image consists of segments. A
segment implements a contiguous logical address space starting at a log-
ical (base) address and of a certain size; furthermore a segment has
attributes such as sharability, writability, and extensibility. Seg-
ments can be private to a process or be shared between processes,

Note that segments are software notions and throughout this paper they
do not indicate so called hardware segments. They exist as the live
incarnation of a program's section, even if the underlying MMU does not
support segmentation at all,

2.3. Object formats

The object formats currently in use in most UNIX systems are derived
from the UNIX/V6 PDP11 a.out format and the System V COFF format.

2.3.1. A.out

The a.out format stems from UNIX systems running on the PDP11. Figure 1
shows that it is composed of a small header describing the format and
the sections, the .text section, the .data section, relocation informa-
tion and a symbol table. Every individual UNIX kernel adapted the for-
mat to fit its own need: for 32-bit machines the relocation information
was not adequate; for paging systems there was the need for starting
sections on block boundaries; to allow external names longer than 8
characters the symbol table format was rearranged; furthermore the
header often was not defined such that the different formats could be

this paper uses "Bsdd.x" to refer to these versions to emphasize
the similarity
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Header

Text

Data

Relocation
information

Symbol
table

Figure 1. A.out format

recognised, But common to all a.out formats is the definition of 3 sec-
tions: a program section called " _text", a data section called " .data",
and a bss section called ".bss"., For these sections only the size and
the initial image are defined; other attributes such as logical base
address and sharing are implicit in the format, The .bss section
results in a segment that is initially cleared.

2.3.2. COFF

With the introduction of System V [AT&T83], COFF was introduced into the
UNIX world. Basically it recognised that the process of 1link editing
and archiving is largely a machine and operating system independent
operation. COFF, the Common Object File Format, defines the object file
in such general terms that it should be easy to use in a variety of
environments.

The format (see figure 2) is self-describing: it starts with a file
neader defining the format globally; the file header is optionally fol-
lowed by system specific information (in UNIX often the a.out header);
then the descriptions of the multiple sections follow (called section
headers); after these section headers, for each section there is the
initial image (called the raw data); then for each section relocation
information; for each section line number information; the last part is
a symbol table. The file header consists of a magic word, the number of
sections, a time and date stamp, a byte offset to the symbol table, the
number of entries in the symbol table and the number of bytes in the
optional header, and finally some flags indicating whether some of this
information is missing (is stripped from the file), or whether all
external references are resolved, etc. The section header contains an 8
byte name for the section, a physical and logical start address, a size,
byte offsets to the raw data part, the relocation information, and the
line number information of the section, the number of line number
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...........

Line numbers section n

Symbol table

Figure 2, Common Object File Format

entries and some flags defining the type and some attributes of the sec-
tion.

2.3.3. Object format peculiarities

Although the raw data parts of the sections are machine specific, it is
in the definition of COFF that the headers shouldn't be. As an example

it suffices to note that the byte offset of the start of a raw data part
is a long, and that e.g. VAX and MC68000 disagree about the correspon-
dence of most significant and lowest addressed byte in a long. The file
header contains provisions for this: it shows in its flags whether the
file was created on a machine with bytes numbered from right to left or
left to right in a long, and what the word length of that machine was.
But a certain source of trouble is that these flags are specified in a
short! Also note that the magic number is a short, and not two bytes!
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For systems employing paging and especially loading pages on demand from
files it is advantageous to align the section's raw data part on a block
boundary. Then transfers of pages from the file correspond to an exact
number of blocks starting at a block boundary. When preparing an object
file for another system, one must know the size of blocks it uses for
the file system, which makes the COFF object file non-portable.

2.3.4. what UNIX does not expect to be supported by object formats

Once the UNIX link editor has made its final pass over the object file
the logical addresses and sizes of sections are frozen. UNIX will not
attempt to relocate on loading (during exec). Also, the object file
will contain a complete description of the program; there is no linking
during loading, let alone dynamically during execution.

UNIX does not understand about dynamic segment management. System V
contains a scaled-down facility for it, 1In SV.2 the shared segments are
not swapped; in SV2.0p, the paging version, they can be.

Files and segments are different concepts, contrary to systems like Mul-
tics [Organick72]. Authorisation and access in UNIX are different for
segments and files. But support for treating files as segments is
needed from the machine architecture, and is therefore less portable.

2.4. Memory Management techniques

Swapping and paging are used in UNIX systems to manage main memory.
After an introduction to the essentials of swapping and paging some typ-
ical implementations are examined, Finally performance is discussed.

2.4.1. Swapping vs. Paging

Most UNIX systems employ swapping as their main technique for managing
the physical memory resource, With swapping, processes are typically
either completely present in main memory or are swapped out to secondary
storage.

This is an essential difference with paging systems (or more exactly,
systems to which paging has been added). In these systems usually only
the most essential segments are always present in main memory; of the
other segments, pages will be brought in when a process makes a refer-
ence to them. In this context a page is a small part of the logical
address space of a process: in fact this space is composed of a set of
pages, all equal in size, Logical pages are mapped onto physical pages
by the paging MMU. Usually the mapping is specified to this MMU by
means of page tables: tables of page table entries each of which speci-
fies the mapping of one page. With small pages, a large logical address
space, and the possibility of extending the addressable logical address
space, page tables tend to be large too, and segments on their own,
Page table segments are only accessible to the UNIX kernel.

Important in paging systems is that there is a supply of empty physical
pages. Since user processes try to grab these pages and do not release
them voluntarily, there must be a mechanism to bring them to the free
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pool again. In the two virtual systems described here this function is
performed by a second kernel process, the page daemon., It regularly
scans all pages in use, determines referencing frequency, and detaches
the least referenced ones from the process, To obtain "referenced"
information for a page, some minimal hardware support, e.g. setting of a
bit in a page table entry when the corresponding page is referenced,
certainly is cost effective [BabaogluJoy811].

From theory and practice it is known that a process requires a minimal
set of its pages to be present to run comfortably: its working set.
When the sum of the working sets of the processes exceeds the amount of
physical memory available, a swapper still has to exercise control to
swap processes out. 3o paging is not an alternative for swapping, it is
a refinement to postpone swapping as long as possible,

2.4.2. Pure swap based systems

Many UNIX systems are pure swap based. To this set belong the original
UNIX systems Version 6, Version 7, and System III, and until this year
System V., There are however degrees in how much memory is swapped each
time, If we assume that a process should be swapped out because another
process must be swapped in- but cannot be allocated memory, it can be
seen that if the chance that memory allocation is successful can be
increased, swapping will be reduced. This chance can be increased
through allocating in smaller portions, making better use of fragmented
memory.

The following implementations can be discerned:

- All segments of a process are allocated in one chunk of physical
menmory, and are swapped in one operation. The chance of allocation

failure 1is very high. Also problems arise when a segment is
extended and the boundary is somewhere in the middle of the chunk:
the complete chunk has to be extended.

- One memory chunk is allocated for each segment, and segments are
the unit of swapping. On a segment extension only the correspond-
ing chunk has to be reallocated.

- More physical memory chunks may be allocated for each segment,
Each segment then may require more swap I/0 actions. This alloca-
tion method optimises physical memory usage, at the cost of requir-
ing more but shorter swap actions,

2.4.3. Virtual swap based systems

A variant of the swap based systems are the systems that allow chunks of
segments to be swapped in on demand. Usually the size of the chunks is
much larger than any paging system uses for pages. Again systems can be

categorised as done for pure swap based systems above, But when swap-
ping is done is another criterion:
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The simplest virtual swapping systems always swap out all segments,
and swap in all segments on demand.

More advanced systems also employ "load on demand", "zero on
demand", and "copy on write" (see below) on segment level,

When segments of a process are also swapped out while the process
is running, it has more of the characteristics, including the over-
head, of a paging system,

Especially in the case of a large number of segments, a virtual swapping
system performs well,

2.4.4, Paging systems

The utmost limit in allocation and page I/0 actions is reached when each
page 1is individually allocated and swapped. The two most important
improvements to this behaviour that are found in Bsdl4.x are:

Increasing the page size of the system to a multiple of the
hardware supported page size, Typically the optimal page size is
in the order of 2k bytes.

Clustering pages on I/0 transfers: when one of a set of (for the
I/0 controller) contiguous pages has to be transferred, check
whether it is advantageous to transfer the neighbouring pages too,
e.g. when they have been modified, to update the swap image. Clus-
tering also has the effect of prefetching pages.

Extensions, related to paging on demand, are:

lod Allocate and load the page from the object file on the first
reference, instead of loading all pages from the object file
at once as result of the exec(2) system call. The obvious
advantage is that the working set is allowed to grow gradu-
ally, and not forced to a maximum immediately.

Allocate and zero the page on the first reference: the compan-
ion of lod in the case of a page that only has to be cleared
upon loading. :

Allocate and copy the page on the first write access. The
original is shared and set temporarily read-only. Copy on

write is used to reduce the overhead of forking.

Paging is not for free; the effort of implementing paging is not compar-
able to implementing allocation of segments in more than one chunk.
Additional effort should be put in:

The page daemon, referred to above, to steal pages from processes
on behalf of the free page pool., This introduces additional con-
currency which has always been a weak point of the UNIX kernel.
Also hardware support for obtaining referenced information is

extremely useful,
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- The page table management. Due to their importance page tables and
the user structure play a special role in the kernel. In Bsdli.x
they are swapped instead of paged. They form an additional layer
of memory space that has to be managed logically as well as physi-
cally.

- Sharing management., With Bsd4.x and SV2.0p we see different solu-
tions for mapping shared segments, Bsdd.x keeps page tables per
process; the page table entries of a segment are not shared, only
the physical pages are shared. SV2,0p for the VAX shares page
table entries of a shared segment, at the expense of fragmenting
the logical address space of processes in pieces of 64k bytes.
This is done by keeping blocks with page table entries associated
with the segments, and using the fact that page tables are mapped
in system logical address space, to map these page table blocks
into the page tables of the sharing processes,

- The swapping algorithm. 1In Bsdld.x the swapper bases its actions on
averages of the number of free pages, and the paging rate; these
have to be monitored. It has two modes of operation: if memory
becomes very tight, it switches to desperate mode in which it only
swaps out processes.

In summary, paging not only interferes with memory allocation but also
with many process operations such as forking, execing, and exiting; it
adds an additional level of management to the implementation of the ker-
nel; and it requires the introduction of advanced monitoring and dedi-
cated processes.

2.4.5. Performance of memory management techniques

Extensive measurements and simulations of swapping behaviour in loaded
(non-paged) UNIX systems have shown that:

The amounts of process swap-outs initiated because allocation
of a segment in physical memory fails due to lack of free con-
tiguous memory (e.g. as a result of fragmentation) is reduced
by more than 20 percent if segments are not allocated in one
contiguous chunk of physical memory but in several smaller
chunks of memory.

This result implies that scattered allocation of physical memory in
several chunks per segment gives a considerable improvement of loaded

systems behaviour, To allow this, the hardware MMU should allow logical
contiguous mapping of physical scattered memory.

The often claimed disadvantage of a scattered scheme, is the supposed
overhead of multiple IO (DMA) operations per segment-swap. That this is
an example of penny-wise/pound-foolish thinking is supported by the fol-
lowing considerations:

1. 20 percent reduction of process(!) swaps certainly compensates for
a few more (interrupt-) IO operations;
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the majority of disk controllers do not allow for large (e.g. more
than 32 or 64k bytes) DMA ranges anyway; so there will often be
multiple IO actions for a swap, even if a segment is allocated con-
tiguously.

For a large collection of measurement results see the report [Van-
Konijnenburg851].

3. ACE-COFF

3.1. Object format

Very regrettably System V only makes little use of the potentials of
COFF: object files in System V are just a COFF representation of the old
a.out format. Only 3 sections (.text, .data, and .bss) are accepted by
the System V kernels and their arrangement in memory is the same as with
the a.out format. Only for debugging the power gained is exploited
(sdb). To discriminate between the many segments in ACE-COFF the sec-
tion header of System V COFF has been adapted: the flags field is
replaced by an attribute-type combination, and the header has been
extended with a version stamp; see figure 3. The following binary
attributes are defined:

Shared: desired and visible sharing of segment

Read: read allowed

Write: write allowed

Exec: instruction fetches allowed

Upext: upward extension allowed

Downextidownward extension allowed

Group: combine segments after loading

Bonded: on a re-link-edit, do not reallocate this segment
Stack: this segment may be grown by the kernel (up or down!)

And the following types of sections are recognised:
Regular:(already in SV-COFF) initial image in raw data part
Clear: (generalisation of bss type) initial image is cleared

Indir: use section from other COFF object file

Next the indirect section type, and the shared and group section attri-
butes will be discussed in more detail.

3.1.1. Indirect section type

Due to the introduction of the indirect section it is no longer neces-
sary for all raw data parts to be present in one COFF object file., An
indirect section refers to a section in another COFF object file., The
(absolute) path name of this file forms the raw data part of the sec-
tion; the section size indicates the length of the name., The target
section will be the section in the target file with the same section
name as the invoking (indirect) section. The target section may be an
indirect section itself thus forming a chain of sections starting in the
program file specified by the user and ending at a non-indirect section,
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seclion name (8 bytes)

physical address (not used)

virtual address (base)

section size in byles
file ptr to raw data

file ptr to reloc entries

file ptr to lineno entries

no of reloc entries
no of lineno entriss
section attributes
section type
version stamp
Section header in ACE-COFF

Figure 3.

Figure 4 shows such a chain.

called the effective section.
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Each such effective section will usually be of the regular or clear
type. In the former case, the effective section's raw data part will be
used as initial image for the segment; otherwise it will be cleared ini-
tially.

Generation of the effective attributes that will be used to create or
attach to a segment is discussed below. These effective attributes also
determine whether the effective section will be part of a group or will
be shared.

Of all files in the chain it is required that they are executable and
regular files, that they not be open for writing, and that they are in
COFF format. A new magic word is defined to disallow execution of a
COFF object file present only as target for indirect sections., To
prevent running through a cycle in the chain of indirect sections, a
maximum on the number of indirect sections in the chain has been defined
(currently 8). For all sections in the chain, the version stamp should
be the same.

One may use indirect sections to impose one's own attributes on the
attributes of the sections of an existing COFF object file, e.g. to make
a section writable to set break-points. But more important, when
indirect sections are made to refer to the sections of a large library
(in which all routines are linked together), the raw data of these
library sections do not have to be physically included in the invoking
COFF object file, saving disk space.

3.1.2. Shared section attribute

Regardless of other section attributes the shared section attribute
indicates desired and visible sharing of the resulting segment. The
conventional sharing semantics of text segments is visible when the
attribute's value is true: writing to the COFF object file is not
allowed; the kernel considers the COFF object file opened, etc. When
its value 1is false, any sharing or association with a file is not
detectable, The ACE-UNIX kernel then also shares the segment, if it is
read-only, but detaches on a relevant open for write or a dismount.

If a segment is shared, it cannot be extended. For grouping shared seg-
ments, see grouping below. :

3.1.3. Section attributes effective during loading

Stepping through the chain of indirect sections leading to the effective
section the effective attributes are derived to meet the following
requirements:

1. the segment corresponding to the effective section will only be
shared if all sections in the chain of indirect sections specify a
true shared attribute value, and

2. additional indirect sections in a chain to an effective section

cannot increase the capabilities derived from the effective attri-
butes, when the corresponding segment will be shared,
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Expressed as an algorithm, the effective binary attribute values for a
segment are derived as follows. For a section S1 with the chain

St => ... 81 .. => Sn
E, the set of effective values, is computed as:

for attr in {binary attributes}

do
E.attr := S1.attr
od
for i in [2..n]
do
E.Shared := E.Shared & Si.Shared
if E.Shared
then
for attr in {binary attributes}
do
E.attr := E.attr & Si.attr
od
fi
od
if E.Shared
then
. for attr in {Upext, Downext, Stack}
do
E.attr := false
od
fi

Now, if the effective shared attribute is true, sharing of the segment
is desired; otherwise sharing must not be externally detectable, and
private instances of the segment appear to exist, The initial size of
the segment is taken from the size field of the effective section; the
logical base address is taken from the vaddr field of the section in the
program file,

3.1.4. Group section attribute
Loading sections together in one contiguous logical address space can be

achieved through the group attribute., This group attribute indicates
that the next section belongs to the same group as the current section,

Use of groups:

- gives the user control over the grouping of segments in fewer
hardware segments, especially if the number of these for a particu-
lar system is small compared to the number of supplied sections;

- provides downward compatibility to the old a.out format, where in
the 0407 format text, data, and bss must be contiguous in logical

address space, and in the 0410 format data and bss must be contigu-
ous in logical address space,
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Limited by the fact that the size of a segment may not be a multiple of
the MMU granularity of the underlying hardware, segments of the same
group may have to be mapped by the same MMU descriptor. The effective
attributes for all sections in a group from the set {shared, read,
write, exec} must be the same. Only the section in a group with the
lowest addresses may specify downward extensibility, or the section with
the highest addresses upward extensibility. Section types may differ in
a group. Note that the effective value of the group attribute is com-
puted just as the other attributes, so grouping is only done if all
intermediate sections agree.

3.1.5. Example

The program "/bin/ls" will be used in three examples below: first an
ordinary 0410 equivalent COFF object file will be shown; the second
example shows the C-library in COFF format; in the third example /bin/ls
will use indirect sections to refer to the C-library.
The examples will abbreviate the section attributes by their first
letter, and the section types by the first 3 letters.

Ordinary 0410 a.out equivalent:
/bin/ls: :
filehdr

aouthdr

scnhdr SR-X=—wue
scnhdr

scnhdr

scnhdr -RW-=D--3
raw data

raw data

C-library as target for indirect sections:
/1ib/1libc,.shrd:
filehdr
aouthdr
scnhdr libctext SR=-X===m-
scnhdr libcdata -RW=eeG~—-
scnhdr libcbss
raw data libctext
raw data libcdata

LI
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/bin/ls using the shared C-library:

/bin/ls:
filehdr
aouthdr
scnhdr libctext Ind SR-X---B-
scnhdr libcdata Ind ~RW---GB-
scnhdr libcbss Ind ~RW==--B-
scnhdr .text Reg SR=X==e=-
scnhdr .data Reg ~RW===G~--
scnhdr .bss Cle -RW-U===-
scnhdr .stack Cle -RW--D--3
raw data libctext /1ib/1libc.shrd
raw data libcdata /1ib/1libc.shrd
raw data libcbss /1ib/libc.shrd
raw data .text
raw data .data

3.2. Using shared libraries

The System V linkage editor accepts and generates COFF object files,
Unlike the old UNIX linkage editors this linkage editor is more con-
veniently controlled by means of a command file. This new linkage edi-
tor has been adapted to accept and generate the ACE-COFF format.
Because of indirect section types in ACE-COFF, conventions have to be
established where to find the libraries. And because of the shared sec-
tion attribute in conjunction with the indirect section type, one has to
agree on the placement of library segments in the logical address space.
Having indirect section types saves file system space; sharing segments
saves physical memory space, and speeds up the loading of programs.

3.2.1. COFF link-edit command file

With the System V linkage editor, individual sections of the output file
can be composed of specified sections from input files. Output sections
can be located at a logical address that can be expressed in a powerful
notation; the default is to locate them next to each other starting at
the lowest addresses, Files that should always be -incorporated in the
output file can be specified, as well as which directories should be
used for the library search. With the ACE extension, attributes of out-
put sections can be specified,

The following COFF link-edit command files generate the COFF object
files of the example in the previous chapter,
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The ordinary 0410 a.out equivalent is generated by:

SECTIONS

{
.text  ALIGN(0x10000) (REGULAR: READ, EXEC):
GROUP  ALIGN(0x10000):
{

.data (REGULAR: READ, WRITE): {1},
.bss (CLEAR: READ, WRITE, UPEXT): {}

},
.stack Oxfff000 (CLEAR: READ, WRITE, DOWNEXT, STACK):
{
.=.+0x1000
}
}
/%
¥ link with crt0.o
®/
/1lib/ert0.0

The C-library in /lib/libe.shrd is generated from the ordinary object
module libc.o (with all routines linked together in the sections .text,
.data, and .bss) by:

-0 /1lib/libc,shrd
SECTIONS
{
libctext Oxb00000 (REGULAR: SHARED, READ, EXEC):
{
libe.o (.text)
},
0xb10000:
{
libcdata (REGULAR: READ, WRITE):
{
libc.o (.data)
},
libcbss (CLEAR: READ, WRITE):
{

}

libc.o (,bss)
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And /bin/ls using the shared C-library is generated by:

SECTIONS
{
libctext (INDIR: READ, EXEC, SHARED, BONDED):
{
/1ib/libc.shrd (libctext)
},
GROUP:

libcdata (INDIR: READ, WRITE, BONDED):
{ /1lib/libe.shrd (libcdata)
i{bcbss (INDIR: READ, WRITE, BONDED):
i /1lib/libe.shrd (libcbss)

.text ALIGN(0x10000) (REGULAR: READ, EXEC): {1,
GROUP  ALIGN(0x10000):

.data (REGULAR: READ, WRITE): {1},
.bss (CLEAR: READ, WRITE, UPEXT): {1

.stack Oxfff000 (CLEAR: READ, WRITE, DOWNEXT, STACK):

{
.=.+0x1000
}
}
/%
¥ link with crto0.o
*®/
/1lib/ert0.o

Note that the bss segment of a shared library is not upward extensible;
one upward extensible segment for mallocs seems enough. The alignment
clauses in the examples cause placement of the section in the logical
space at the next address that is a multiple of the ALIGN parameter, and
are needed for a particular MMU that does not allow two segments with
different attributes within a certain logical area, Note the specifica-
tion of the .stack section: the initial stack size is Uk bytes; the
stack will grow downward as usual during execution as indicated by the
STACK and DOWNEXT attribute.

COFF link-edit command files will only be used for special purposes.
The compiler will pass a command file at a default location to the COFF
link editor when no command file is explicitly passed to it, so that
ordinary users will not be confronted with such files,
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3.2.2. Conventions about logical location of shared segments

In UNIX systems the load image is completely prepared in advance, to
make loading by the kernel into the user's memory simple; there is no
load-time relocation or whatsoever,

There is thus the problem that the logical locations of a program and of
a shared library may conflict. Having a large amount of logical address
space allows a partioning of that space into "segments": it 1is thus
acceptable to make a decision for a particular machine-MMU combination

about a fixed position of the segments of a shared library in the logi-
cal address space of every process, using the COFF command language for
customising purposes,

To 1imit the number of relinks when a change is made in a shared
library, ACE-COFF uses vectoring.

The text segment of the shared library has been fixed at the logical
location 0xb00000, and its data segments at 0xb10000.

3.2.3. Conventions about location of libraries in the file system

Since absolute path names of libraries are incorporated into object
files, their location in the file system has to be decided upon. At ACE
"/1ib" has been chosen,

Libraries should always be reachable:

When present on a standard but mountable file system, they cannot
be accessed during boot-time,

When a shared library file has to be replaced by a new version,
there is a moment in time that it is absent. When it is done by
executing two mv(1) commands, the second mv cannot use the shared
library itself.

If a disk block becomes bad and it happens to be in the shared
library, it cannot be repaired by programs using the shared

library.

Programs needed to boot, to maintain, or to upgrade a shared library
should not use the same shared library. ACE uses a separate system with
a private file system with programs not using shared libraries, or, when
a system does not have a removable file system, a small set of per-
manently available commands,

4, ACE-UNIX kernel

The ACE-UNIX kernel accepts ACE-COFF as object file format {Van-
Someren85), and supports it on a variety of MMU types. Functionally it
is an upward extension of a standard System V kernel.
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4.1. COFF Memory Management support

The memory management support for COFF has been designed following the
rules given in the introduction,

4_.1.1. Overview

Special treatment of particular and known segments in the UNIX kernel
has been replaced by operations based on segment attributes. The text
segment now essentially is a shared, non-writable, non-extensible seg-
ment, to be initialised from a regular COFF section. Likewise the stack
is a non-shared, readable, writable, downward extensible, automatically
growable segment, initialised from a COFF section of type clear. Simi=-
lar characteristics can be given for the data and bss segments.

Each individual attribute of a segment is reflected in private code in
the kernel to implement it. The management of sharing segments has been
redesigned, as have the extension of segments, loading of segments,
allocation of segments, mapping of segments, swapping of segments, and
the management of which of the images is valid in case of replicated
segments.

Based on a generic queue package and a flexible dynamic memory pool
package (called "chip pool"), a memory management database has been
designed. This database has an interface to the processes having seg-
ments, files (actually inodes) being the association for shared seg-
ments, physical memory and swap space implementing segment images, and
the MMU dependent part implementing mapping of segments.

4.1.2. Views, segments, maps and chunks

For the single processor swap based kernel, an overview will be given of
the memory management database., The important structures are view, seg-
ment, map and chunk:

view: Views implement the process private effective attributes of an
individual segment. They contain the logical base and size of
the segment, and the binary effective attributes (shared,
etc.). Each logical address domain of a process is described
by a list of views rooted in a queue in the process structure,

segment: The segment structures represent the logical segments as the
system sees them: the size and maximal effective attributes,
some hidden flags, and sharing and loading information. The
loading information consists of the section's name, version
stamp, type, pointer to the raw data part, and the section's
size,
Sharing is by association with the internal representation of
a file, an inode, that contains the head of a list of segments
that are associated with that file. The section's name in a
segment is used to discriminate between the segments in this
list.
Furthermore each segment is the head of a list of the views
using the segment,
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Maps implement the logical but mappable image of a (group of)
segment(s). Each map is the head of a 1list of segments
belonging to the group using the same map.

The map heads the lists implementing the replicas of the map's
contents: in the example the blocks on swap space and the
chunks of physical memory. In the map structure the real
size, the map's state, and the in-core count are kept. The
map's state records whether the in-core or on-swap image 1is
valid, or allocated but invalid, or not allocated., Dirty map
management and swapping are completely guided by this state
information.

A chunk describes a range in an address space, in particular
the physical memory. The attributes kept are the base and
size, and some hidden flags.

The queues that are used to implement the relations in the database pro-
vide a doubly linked list between the queue's elements, a mechanism to
get from each element to the queue's head and from there to the struc-
ture physically containing the queue's head, and (particularly relevant
for the multi processor implementation) a synchronisation element,
Queues are very carefully typed to get the utmost profit from the com-
piler and lint, This typing is done as interface between the queue
implementation and a particular type of queue; the queue implementation
has been written generically for these different types.

The database can be very concisely described in the database relation
notation in which "N <~--->> M" indicates a one-to-many relation between

N and M; see figure 5,

SEGMENT

t

Figure 5. ACE-UNIX memory management database relations
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4.1.3. Example

Figure 6 shows the database structure for the case that /bin/ls is
loaded using the shared C-library. The text segment is linked in the
association queue rooted at the inode of /bin/ls, and the libctext seg-
ment linked in a queue rooted at the inode of /lib/libc.shrd. Also if
there are more users of .text of /bin/ls, their views are linked in a
queue rooted in the text segment, and the views using libctext are
linked in a queue rooted in the libctext segment,

When the segments had not been loaded, the data segment would also have
been linked in /bin/ls's association queue; as would libcdata have been
in the library's association queue, Segments of type clear do not need
an association because of loading.

4,2, MMU Overview

With the number of segments, their sizes and relative positions depend-
ing on the user's specification, the kernel's algorithms to map the seg-

ments in memory have to be very general.

In a swap based kernel it is important to guarantee that the process can
be completely allocated and mapped in memory. Generally it is required
to check that the maps of a process do not overlap. The ease of these
checks heavily depends on the type of MMU. Obvious is that the opera-
tions to manipulate the MMU are MMU dependent. Furthermore, whether the
processor employed allows recovery from bus errors, influences MMU han-
dling; especially for the MC68451 MMU handling can be much simpler with
the MC68010 processor.

The ACE-UNIX kernel has to map ACE-COFF with all its generality with the
help of many different types of MMUs. A classification of MMUs is dif-
ficult; rather by focussing on some peculiarities the mapping problems
may be appreciated:

- The MMU may define one logical address space for user and kernel
(e.g. VAX), or have different logical address spaces, In one space

data transfers between user and kernel space are Jjust copy loops;
with two spaces special machine instructions have to be used, or
mapping must be simulated. '

- When a DMA IO controller has to do a transfer such as for swap or
physical IO to user logical space, it is important in which address
space it generates addresses. It may employ a private address
space, the kernel's address space, or Jjust the physical address
space, In case of a private address space, it must set its mapping
to physical space equal to the user's mapping. In case of the phy-
sical address space, it has to split 1its transfer 1in parts
corresponding to physically contiguous parts mapped to from the
user address space., With kernel address space, either this space
should contain the complete physical space, or it should be possi-
ble to change the mapping of a part of it.

September 3, 1985

EUUG Copenhagen, sept. 1985. Page 49




PROC
/bin/ls

K

VIEW SEGMENT MAP CHUNK
base=000000 name=.text size=0001 size=0001
s1ze=000fc4 base=000000
attr=SR-X----—-
v
VIEW SEGMENT HMAP CHUNK
base=010000 name=.data size=0001 5ize=0001
size=00047a base=000000
a;tr=-Rw--—G-— L
VIEW SEGHMENT
base=01047a name=.bss
size=000280 base=00047a
attr=-RW-U---—-|
v
VIEW SEGMENT HMAP CHUNK
base=b00000 name=libctext s5ize=0004 5ize=0004
size=003010 base=000000
attr=SR-X---B-

v

VIEW SEGMENT MAP CHUNK
base=b 10000 name=libcdata 5i26=0001 5ize=0001

size=00025a base=000000
a;tr=-Rw—--GBJ l

VIEW SEGMENT
basesb1025a name=libcbss
size=0005b0 base=00025a
a;b*-RW-——-B-
VIEW SEGMENT MAP CHUNK
base=ffrf000 name=,stack size=0001 size=0001
size=001000 | base=000000
attr=-RW--D--S

Figure 6, Example of the /bin/ls database
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- The MMU may partition the logical address space in a number of
hardware segments of fixed size. Each of these may be individually
mapped on a contiguous range of physical memory. Two segments with
different attributes within one hardware segment cannot be mapped.
See the discussion on groups above., Also the number of partitions
may be too small to accommodate the number of segments,

- The ranges of logical addresses in which the MMU partitions the
logical address space may be arbitrary except for a small granular-.
ity. As before, the number of ranges may be restricted.

- There may be a relation between the logical range and physical
range onto which it is mapped. The MC68451 is a well-known example

of this category: for a given size of a hardware segment, the logi-
cal base and the physical base must be a multiple of that size.
Especially large segments and segments not beginning on a nice log-
ical boundary cause trouble, Frequently more MMU segment descrip-
tors are used to map one segment.

- On every context switch the MMU may have to be fully reset, it may
be able to remember a (too) small set of settings, or may fetch its
new setting from memory itself,

- Referenced information or modified information may be kept or not.
If not, it may have to be simulated: e.g. a writable segment will

always be modified, or segment faults are used to catch accesses to
the segment,

4,3. Core format and debugging

For COFF, core dumps usually contain more than the ordinary three seg-
ments. The ACE kernel's core format is COFF again. 1In an effort to
decouple the kernel implementation and specification, the ptrace(2) sys-
tem call has been respecified. As a result it is possible to continue
"correctly" aborted programs.

3.3.1. Core format

Having the access routines for COFF object files-at hand, dumping in
COFF format is an obvious choice. All segments are dumped as regular
typed sections, the logical address and size reflecting the segment's
base address and size, and the attributes equal to the segment's effec-
tive attributes, The sections are named after their originals. The
correspondence between the sections in the object file and the core file
is now simple.

For the debugger this means a tremendous relief from core format
details,

The process information saved from the processor is dumped in an addi-
tional section called ".state": it contains the register contents,

status register, and an indication whether the image is restartable with
these values,
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The kernel's private process information, stored in the user structure,
is dumped in a section called ".envunix", and is a structure of struc-
tures each corresponding to the type of a ptrace(2) packet,

4.3.2. Ptrace

Instead of allowing ptrace access to the process' user structure by
specifying offsets from its base, the information in the user structure
and proc structure has been collected and regrouped in logical packets:
process id, signals, timing, accounting, user limits, global file infor-
mation, profiling, and open file information. For open files as much
information as possible is saved; the name of the files, if any, however
is not part of the immediate knowledge of the UNIX kernel.

Access to the process' segments is by logical address; the maximum
amount of bytes to be transferred is now 512 instead of the original 2.
New are a counter for single steps, the possibility to catch every sys-
tem call issued by the debuggee, and execution of a system call on
behalf of the debuggee. These facilities are used by the ACE versions
of adb(1) and sdb(1).

4.3.3. Continuing an aborted process

Because the core file is much like an object file, little effort is
needed to use the core file as object file. By using the .state section
for its register values and processor status value the process is effec-
tively continued after the point causing the dump. Of course, it only
makes sense to continue if the process did not dump because of an irre-
coverable error but because of a voluntary abort, or a quit signal.
Restoring the UNIX environment state of the process is not done by the
kernel; usually the shell is used to open files again. In extreme
cases, a separate program is used, Restoring a process completely,
including its open file state is impossible: these files may be deleted
after dumping core, even worse, their identifying <dev, inumber> may
have been occupied by another file.

h .4, System V compatibility

4.4,1., COFF format

The ACE-COFF format very closely resembles the System V COFF format,
There is a translation program for conversion between the two formats,.

The kernel accepts both, The System V COFF format is only accepted as
far as System V2.0 kernels accept COFF, i.e, at the level of a.out. In
fact the ACE-COFF implementation can handle both section header formats.
In the same way the old a.out format is accepted; the kernel contains
prototype section headers for a.out sections,

§.4,2, System calls

The break(2) system call to extend one's data segment, extends the seg-
ment created from a .bss section, There is a new system call to set,

get, or change the attributes of particular views and segments.
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4.4,.3, Shared segment handling

System V shared segments are simulated with the segments of the kernel;
only the functionality for matching and attaching is special for System
V compatibility. ACE-UNIX uses another, more elegant, mechanism for
dynamically creating and sharing segments.

4.4.4, Paging (SV2.0p)

The System V2.0p kernel running on 3B20 and VAX, described in [McCor-
mick84], allows four "regions": a text, data, stack, and shared memory
region. Regions correspond to combinations of segment and map in the
ACE-UNIX kernel, As can be deduced from the description, only data,
located in the VAX's PO space, may grow upward, and the stack, located
in the P1 space, may grow downward. User specifiable shared memory is
only allowed to be in the shared memory region. This paging implementa-
tion uses a new object file format (0O413). It presumably is COFF with a
0413 a.out header as optional header, This a.,out header has been
updated to allow starting text and data on separate segment boundaries
50 that they do not fall in the same region. Apart from these remarks,
the paging implementation does not show in the external kernel specifi-
cation,

5. Benefits

The gains of indirect sections are immense,

Rough calculations on the programs in "/bin" and "/usr/bin" show the
following about disk space. The disk space occupied by the 118 stripped
programs in "/bin" on a particular system running the standard ACE-UNIX
distribution was 1395k bytes; that is about 12k bytes per program, For
"/usr/bin" these counts were 149 programs using 2195k bytes, or 15k
bytes per program. Inspections of the symbol tables of the original
non-stripped versions showed that about 4,5k bytes per program was occu-
pied by the text segment of the C-library with standard IO, Not taking
the small .data sections of the 1libraries into account, a reasonable
estimate is a disk space reduction of 30 percent,

Loading of programs is faster too: text segments of shared libraries
often already are loaded by other programs running concurrently. The

amount of bytes to be copied from the file system to user memory because
of loading thus also will be reduced by about 30 percent.

Once programs are running and paged or swapped, shared segments are
treated independently. Their images are allocated and swapped out only
once, That reduces memory usage as well as swap IO traffic.

On the negative side of the balance is that for each program load more
files have to be opened by the kernel causing more lookup operations and

more scattered file I0.
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6. Future developments

Starting from the given specification of ACE-COFF new applications are
being developed and new features are added:

The user segment interface looks like the file interface. Segments
must be opened first; a (second) set of file descriptors is used
for identification. A segment create creates a segment from the
section header passed as parameter. System calls such as open,
close, fstat, etc., are used for other operations. Where with the
file interface a path name is used, now a section header is passed.
The interface is compatible with the memory mapped file interface,

Memory mapped files will be implemented as segments having an asso-
ciation with a regular file. The corresponding ACE-COFF section
will be of a new type, associated section, similar to an indirect
section but without the requirement that the target file is a COFF
object file.

Inter process communication may use message boxes: these will be
implemented as shared segments; a new attribute, position indepen-
dent, indicating indifference about the logical location of the
segment by the process, is then needed.

Binding between images and segments must be refined: the sticky bit
trick of UNIX can be generalised by letting the kernel keep segment
images in memory or on swap space as long as their space is not
needed for other reasons. That gives the effect of segment cach-
ing. Several layers of binding strength may be used: the sticky
bit is just a hint then.

With paging the ACE-UNIX map structures will be associated with
sets of page table entries mapping a contiguous set of logical
addresses. The unit of maintaining referenced and modified infor-

mation then is the page.
7. Conclusions
.ue benefits of using indirect sections have been elaborated upon in a

preceding section: a reduced disk space usage, reduced main memory
usage, faster loading of programs, and less swapping.

By the generalisation of segment handling, a very sound base has been
developed for future extensions: MMU handling has been more formalised,
porting to other MMUs will be easier, and adding new functionality (as
mentioned in the previous section) is easier.
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ABSTRACT

During the last 5 years, operating systems have been evolving towards new concepts
and design in order to integrate inter-systems communications. The work done by intema-
tional standardization bodies within 1ISO has been conceptualized into the Basic Reference
Model for Open Systems Interconnection. The protocols on which this Model is based have
now reached a level where they are quite well specified (state of International Standards),
and thus can be incorporated into operating systems.

This paper presents an application of the OS! Model to the case of a Local Area Net-
work environment. It mostly concems the four lower layers of the Model. All the protocols
used here are those specified by ISO. The Class 4 Transport Protocol has been reworked and
simplified to operate in a Local Area networking context, but the resulting implementation
enforces I1SO conformance rules. It covers integration of this set of protocols into the 4 2BSD
UNIX kernel, and details changes made to the standard Berkeley code. A brief overview of
the current development of an X25 environment, and a LAN/WAN gateway is also given.

This work has been developed for the ROSE/ESPRIT Project of which a presentation
has been made at Cambridge EUUG Conference (September 1984). The implementation has
been done on a BULL Mini6 with Berkeley networking code added to a V7 kemnel.

September 11, 1985
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1. Introduction
Until now, computer communications within the UNIX world is mainly following two directions:
the UUCP software [NOWITZ et al. - 78] is using asynchronous telephone lines to perform file transfer
and some limited remote execution commands between UNIX machines only

a more sophisticated set of protocols, available since 4.2BSD and known as the DoD Internet Architec-
ture, built on top of TCP/IP protocols, allows communications between UNIX and non-UNIX machines, in
a very reliable way.

On the other hand, international standardization bodies have come now to a stable communication archi-

tecture, by developing an Open System Interconnection Reference Model [1SO/7498 - 83] defined by a set of pro-
tocols which, for the most of them, have now reached the state of International Standards. It is not going too
far to say that in the very near future most of the systems, whatever the hardware they may be implemented
on. should be reachable whether through Wide Area Networks {such as the numerous specialized data net-
works already existing in many countries), or Local Area Networks (within a private company, university
campus, ...) using a basic common set of internationaly approved protocols.

In 1984, the European Economic Commission launched the ROSE Project (Research Open System for
Europe, ex EIES), within the Europesn Strategic Program in Information Technology (ESPRIT) with the aim of
implementing an operational network based on the ISO protocols under the UNIX Operating System, and offer-
ing to all the different ESPRIT contractors services such as: message passing, file transfer, remote login and
execution, document transfer, ... [BITTLESTONE et al. - 84] . Starting with standard UNIX applications (ma/l,
news, ...} using uucp and cu facilities over asynchronous lines or PAD to PAD connection, developments are
evolving gradually in accordance with international standardization, to finally allow distribution of applications
over a set of UNIX and non-UNIX interworking systems, as shown on figure 1.

(*) UNIX 1s a trademark of ATA T, Bell Laboratones
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MHS(*) FTAM(**)

Session (BAS + BCS + BSS)

Transport Ci3/2 Transport Ci4 Gateways

X285 CSMA/CD LAN

(*) Message Handling System
{**) File Transfer Protocol

Fig. 1: ROSE Architecture (end of year 1)

2. The OSI Reference Model and UNIX kernel
The main problem to solve in this development was to clearly define which part of the OS! Architecture

should be integrated into the UNIX kernel, and, symmetrically, what can be developed as user level software.

Mainly, three constraints were to be taken in account:

1) guaranty kernel homogeneousness: due to its monolithic nature, maintenance of a UNIX kemnel is not trivial,
and this especially applies to the V7 and System il versions. This underlined the need of clear kernel
structuration,

2) make it portable: as shown on figure 2, the 0S| Model can be split into two subsets: protocols used for
“pure’’ data transfer and those which actually process data in order to offer the expected service to the
user application. Obviously, hardware dependent {or related) proto..ols had to be implemented inside the
kermnel,

3) take care of performance: optimal memory management tn avoid multiple copies from one protocol space to
the other, management of physical communication resources, such as X25 circuits, or CPU load are
strong arguments which influence the kernel additions.

Application Layer

Data processing Presentation Layer

Session Layer

Transport Layer

Data Transfer Network Layer

Link Layer

Physical Layer

Fig. 2: OSI Reference Model

As described in the above remark 2), it is quite natural to think that Transport layer Service is the obvious
bridge between these two abstract subsets of the Model. The connection multiplexing facility was also leading
to integration of Transport Protocol in the kernel. Some experiments made with Transport Protocol at user level
have strongly underiined that most of the UNIX versions were not appropriate to such a design (no shared
memory among processes, lack of interprocess communication means) [MARTIN et al. 84].

The driver approach, and the lack of flexibility of the standard operv2), readl2), write(2), iocth2). closel2)
interface provided by the V7 and Slll versions were not exactly adapted to what we wanted to do. The OSI
Model assumes a clear hierarchy among all layers, and a strong cooperation between protocols. The Service
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concept covers many features which cannot be “‘cleanly’ " implemented in these versions.

On the contrary. the 4.2BSD offers a more flexible and superior system environment: the new interpro-
cess mechanism (sockets) and the memory management features {mbufs) [LEFFLER et al. - 82] made it more
attractive. The DoD TCP/IP protocols implementation was also a good example to start from.

However, the Rose Project was committed to first deliver an implementation in a V7 Unix environment
and a first implementation of the 1SO prntocols has been done in such a way. As it has been thought that all ver-
sions of the system should be impacted, we did it using the 4. 2BSD version and some work has also begunin a
SV environment. In any case, all the user level software (Session, Message Handling System) will be adapted
for all UNIX versions.
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3. Architecture

3.1. Protocols
Our work began with the development of a Local Area Network environment, following I1SO Architecture.
We are now extending this by incorporating a WAN environment as well.

The LAN protocols are based on a CSMA/CD technology, and consists of those specified by [ECMA/82 -
83} and [ECMA/81-83], which represent the ECMA version of the ETHERNET protocol.

In order to facilitate interconnection of different LANs to build up a global network, we used the I1SO Inter-
net Protocol [ISO/8473 - 84] at the network layer level. It offers a sub-network independent Network Service,
operating in a datagram mode, to the Transport Layer and provides a fragmentation facility which makes use of
different underlying LANs possible. This protocol is very similar to the DoD IP Protocol, though they are totaly
incompatible. Nevertheless, they provide approximatively the same set of options, so that the Network Service
can be customized to what is exactly required by the upper layer entity {source routing, route recording, secu-
rity, ...). Another feature of this protocol is variable length addresses. This can be extremly useful when the pro-
tocol operates over multiple interworking LANs and encourages multi-vendor architectures. it may be all the
more interesting as there is no addressing standard currently approved; it allows use of this protocol with dif-
ferent addressing schemes for now, without waiting for the standardization bodies to agree on one.

The Transport Layer gathers two different protocols. The Connectionless Transport Protocol [ISO/8602
- 84] provides the user with the means of sending a single TSDU (Transport Service Data Unit) to another in a
datagram fashion: no logical relationship is maintained among multiple TSDUs. it is primarily intended to serve
applications which do not require a high reliability, using simpler mechanisms than connection-oriented proto-
cols {mainly transactional-like applications). This protocol has not reached its final specifications within ISO, but
it has been taken into account here because of its simplicity: we thought it was a good, and easy, way of testing
the lower layers implementations.
At the time we started this work, the Connection Oriented Transport Protocol specifications [ISO/8073a - 83]
were not satisfactory with respect to the use of this Protocol on top of a connectionless Network Service. It is
obvious that the LAN environment we wanted to build was requiring use of a Class 4-like Transport Protocol.
The provided Network Service needed a Transport Protocol able to detect and recover from transmission
errors, possible data loss, duplication or misordering. It was not in our mind to re-write our own Transport Pro-
tocol, but rather re-work the 1SO specifications and adapt this protocol to a local area networking context.
Overall, we wanted to have an implementation which enforced ISO conformance rules. So we better thought
about establishing some simplifications in the existing protocol which can be seen as implementation choices
for optimization in a LAN context (see 3.3) [LANGLOIS et al. - 84] .

3.2. Addressing

According to the protocol architecture, and with the aim of facilitating network interconnections, the
Rose Project chose a hierarchical type for Transport level addresses (TSAPs), in a human readable form (this
latter point allows easy mapping of names in some applications which could be directly interfaced to the Tran-
sport protocol, such as network management facilities). These addresses are built on a 19 bytes character
string, as follows:

<site-name>> <<host-name> <transport selector>>

where the site length is 8 bytes, the host also 8 bytes, and the selector 2 bytes. The transport selector is used
as an application switch. An extra header byte (value 40 in hex) has been added for ECMA compatibility reasons
[ECMA/20 - 84] ).

Things are less simple for determining the network address structure. This problem is currently dis-
cussed within 1SO. The only published recommendation [ISO/DAD2 - 84] stll needs some work to be done
and this problem hasn’t been solved among ROSE contractors. For the first implementation, we are using an
ARPA IP Class A type address, specified on a 4 byte quantity, dividedin two fields:
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<site-number> < host-number>>

(site-number is defined on 7 bits, host-number on 24 bits, with a null bit header). This scheme assumes that
only one Transport Protocol sits on top of the network layer, and thus doesn't fit to our architecture. We think
about switching to the following address structure:

< site-number>> <host-number> <network-selector>>

as soon as this is agreed by al! ROSE partners. This last structure can have a variable size.

3.3. Transport Protocol

3.3.1. Protocol Options

We decided not to use the ""extended format’’ for Transport Protocol Data Units (TPDUs) numbering,
and the ""checksum’’ facility. The ETHERNET is already using an FCS field to detect data corruption, and the
CNP Protocol is also checksumming the header of received datagrams. There was no need to check again
TPDUs validity, and ,in doing so, this was saving processing time.

However, for compatibility with other implementations, the *‘checksum’’ option had to be supported if
required by a remote entity initiating a Transport connection. At the same time, many TPDUs parameters {such
as ‘‘version number'’, ‘‘security’’ parameters, ‘‘reassignement time’’, ...) are not used, and simply skipped and
ignored if present in a received TPDU.

3.4. Multiplexing

As the Network Service was datagram based, talking about multiplexing multiple Transport connections
onto a single Network connection was irrelevant. However, multiple Transport connections can be established
between the same pairs of NSAPs.

3.5. Connection/Disconnection Phase
When initiating a Transport connection, our implementation should propose:
non use of checksum,
exclusive use of Class 4 (i.e. the "Alternative Protocol Class’’ is never sent),
use of normal format,

a maximum TPDU size of 1024 bytes (thus, a TPDU with the network protocol header can fit into an ETH-
ERNET frame data area),

use of expedited data.

3.6. Protocol error and disconnection phase

The disconnection phase has not been changed. But the protocol error handler has been slightly modi-
fied. When the local Transport entity detects some misfunctionning in the remote entity behaviour, it will initiate
a disconnection rather than reporting an error via an ER TPDU. On the other hand, when an ER TPDU is
received, the disconnection phase is entered.

3.7. Data Transfer

To allow high speed data transfer, our implementation never reduces the upper edge of a transmit win-
dow: if the protocol is getting short of space, it will let the remote credit fall down to zero, but once a credit has
been sent, the protocol makes sure that enough space is available to handle incoming data. However, upper
window edge reduction shall be supported if received from a remote entity.
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For the previous reason, there is no need to use the TPDU sub-sequence numbering scheme. But, on the
other hand, the '‘Flow Control Confirmation’’ parameter has to be supported. If it is not used under “"normal”’
conditions operating, it has to be sent when the remote Transport entity reduces, and increases the upper win-
dow edge back again, to make sure that both entities update their emission and reception credits in a correct
manner and then synchronize the data transfer.

3.8. Protocol validation

The resulting protocol still enforces I1SO conformance rules: as we said before, the protocol has not been
changed in itself, we just optimized its implementation according to the environment we had. The re-written
state tables have been automaticaly checked, using the LISE formal validator [ANSART et al. 83] . Some of the
fixes we made have been reported to the ISO Transport Comittee and incorporated in the last version of the
protocol specifications [ISO/8073b - 84] .
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a. Implementation in a 4.2BSD kernel

The LAN protocols organization was easy to integrate as its design is similar to the one used for TCP/IP
implementation. Things were getting more difficult when integrating the WAN environment. X25 boards are
now appearing on the market place. and we thought it would be mare useful to code the X25 protocol at the
4.2BSD interface level, so that, one could easily remove this part of software and change it to a hardware X25,
when available. Figure 3 details kemel organization.

1ISO Ref. Model 4.28SD Layers ROSE Layers
Application

- User Programs User Programs
Presentation

Session

Session
Sockets Sockets

Transport TSP -CTP
Protocols
CNP

Network

Interfaces X25 - ETHERNET

Link
Physical | Hardware Hardware

TSP: Transport Protocol {Cl 2/3/4)
CTP: Connectionless Transport Protocol
CNP: Connectioniess Network Protocol (over ETHERNET only)

Fig 3: OSI Model and kernel layering

4.1. Integration of a new Protocol Family

If it can’t be denied that the networking facilities incorparated in the Berkeley UNIX system [LEFFLER et
al. - 82] are a major enhancement to the UNIX system, it is also true that this particular part of kernel code
(socket, protocols and network interface code) was designed around TCP/IP protocols and is making strong
assumptions about network addresses, some data structures and protocols functionnalities. On the other hand,
most of the network interface code assumes that the Service provided by the network is connectionless, which
is not the case when using the X25 protocol. We didn’t want to introduce toc many modifications in the kernel
code, to stay compatible with the standard Berkeley distribution. Nevertheless, integration of an AFJ/SO family
required some changes. One can also ask about the long term utility of having multiple families inside the same
kernel: the size of the resulting kernel makes it hardly portable on small workstations, which was not our objec-
tive and one can hope that everybody is going to adopt ISO standards soon.

Besides declaration of new queues, bringing up the AFJSO family obliged us to extend the sockaddr struc-
ture size to be able to pass all the addressing information down to the kernel. Because we wanted to take
advantage of the already existing address manipulation code, we defined two compatible sockaddr structures
within one! Berkeley had all these user library routines to format an in.addr and we had nearly the same net-
work level address format, so we thought it worth keeping these utilities, so that /etc/hosts, [/ etc / networks,
...could be used without any modification. We had to have two addressing structures to be passed to the ker-
nel, the TSAP and the NSAP. The use of TSAP is limited to the Transport Protocol and is not used at all below
this layer: under such conditions, it is possible to have a sockaddr structure known at user level which includes
the TSAP, and another sockaddriso structure known by the kernel code. In doing so. we had to increase the
data area of the sockaddr structure up to 32 bytes (was 14 bytes before). This doesn’t have any consequence on
the other families code (AF.UNIX, AFJNET). The new structures are detailed in figure 4,
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struct sockaddr_ul {
struct sockaddr_iso ul_saddr;/* kernel sockaddr */
char ul_tsapid [19] ;/* TSAPID as a string */

}:

struct sockc 22, _iso {
short siso_family; /* protocol family */
u_short siso_tsel; /* TSP selector */
struct iso_addr; /* kernel NSAP */
char siso_zero [8] ; /* padding area */

Fig 4: Address structures

4.2. Transport Connection Parameters

Transport Service makes extensive use of "‘user’’ defined parameters, such as Service options
(expedited data) and Quality Of Service parameters {(Q0S), {maximum transit delay, ...). These parameters are
initialized by the connection initiator: we modified the setsockoptf2) and getsockopti2) to operate directly at
Transport level {*). They are negociated between the two users involved in the communication. The receiving
user level application needs to indicate to the Transport Protocol that negociation has been performed (after
possible changes of these values) for the protocol to complete its three way handshake. To do so, we have
introduced a new system call, confirm{2), which is to be invoked after the listening process does an accept/2). If
confirrmf }is not issued, the Transport Protocol will assume, after a certain amount of time, that the user process
is refusing the connection and will automatically disconnect the peer.

4.3. Data transfer

When using CTP, data transfer takes place quite easily in the standard Berkeley code, and is done in the
same way as UDP. ISO Transport Service doesn’t specify any maximum size to TSDUs. It assumes that data
received from the upper layer in a single shot forms a single TSDU (i.e. the upper level process does not seg-
ment its data). It is up to the Transport Protocol to segment it according to its current TPDUs maximum length.
The existing socket buffer code was making the assumption that the underlying protocols were either connec-
tion and byte stream oriented, in which case the upper level application is segmenting data itself (data passed
to TCP are up to 2K bytes), or connectionless and then, data exchange between user space and kemel space
was made on an atomic basis {PR.ATOMIC and PR.ADDR flags set): for example UDP has been implemented
such that its maximum send and receive queue sizes are 2K bytes each. These constraints were not acceptable
when implementing the ISO Transport data transfer phase, which is block oriented and delivers EOT indications
(in contrast, TCP is stream oriented and uses a “'push’* mechanism). However flexible the implementation had
to be, we had to keep the code compatible with the existing protocols and applications. Supporting applica-
tions transmitting huge amount of data (voice or image transfer) has to be done in such a way as to respect
user required options {non blocking 1/0s).

We then modified the sendf2) system call (via the sosend routine) to allow Transport Service to exercize
flow control against the user in the following way:

- the protocol satisfies user process requests up to the space it has available in its retransmission queue.
When functionning in a2 non-blocking mode, the protocol wil! block the user if the data can not be handled
in a single shot up to the time some space becomes available (when some previous data are ack-
nowledged and then removed from the retransmit queue). It mustn’t be forgotten that the Session Proto-
col is supposed to negociate the size of the messages it is going to transfer; thus, it seemed reasonable
to fix the length as an implementation dependant constant {which is up to 8K bytes in our current code)

{*) These routines are also used 10 pass user data durnng the connection establishment phase.
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depending on the machine ressources.

In the reception mode, the upper level process is supposed to be passed a whole TSDU also. In this case,
we can't do anything else than segmenting the TSDU if a non-blocking recv( ) is invoked, asking for a length of
data which is longer than that which can be stored in the receive queue. We introduced a new socket butfer
flag in the recv call, MSGMOREDA TA indicating to the user process that the remaining TSDU has not been
received yet. That's why, we made recv retum a long instead of an /nt: this flag is represented in the high bytes
of the long, while the count of actually received bytes stands on the low order bytes. This trick is still compatible
with the standard recv call, and thus, some 4.2BSD applications can be used with this modified system call
without knowing what happened.

The expedited data transfer also differs from that used by TCP, but both modes can be solved in the
same way. A problem of synchronization between normal and expedited flows may appear, but this part of the
code is still under test.

4.4, X25 Interface

The design of the interface code supposes that all exchange between this level and the hardware level are
using the same “packet’’ type. which is directly passed to IP. In our architecture, an incoming packet can be
either a CNP datagram, in which case it is passed to the CNP protocol on software interrupt, using an /isointrq, or
an X25 packet, in which case it is analysed by the X25 driver. We had to add some "'glue’’ to the transport
Class3 interface to the network layer to perform specific X25 processing, namely:

- generate X25 requests (connection and disconnection requests),
- respond to specific X25 events, such as connection, disconnection, and reset indications,

- maintain X265 protocol control blocks (basically, virtual circuit management). All these operation are
made transparent to the transport entity. In fact, this part is not fully satisfying as it should be handled by
a proper X25 ifnet structure, but would have resulted into major modifications of the existing code.

4.5. LAN/WAN Gateway

A LAN/WAN gateway is now being developed in order to enable communications between ETHERNET
and X25 networks. This bridge simply consists of a Transport relay function, using a Transport Class4 - Tran-
sport Class 3 back to back facility. As both of these protocols provide the same Service, the gateway mainly
translates indication primitives of one Transport Class into requests of the other Class. It also exercizes flow
control between the two networks.
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§. Conclusion

Our work introduced some modifications in the standard 4.2BSD. The implementation of the ISO Tran-
sport Protocol could be seen as a first step in implementing the sequenced packet socket facility, but it might
need to be done in a slightly different way which can result in major changes in the 4.2 BSD existing code. We
also think that all the address related code needs to be reviewed to be more Protocol Family independant than
it actually is. This last point would surely make integration of new families much easier. The resulting additions
consists in about 90K bytes of new code inside the kernel. The code is being ported on a VAX: this is hoped to
reduce its size a little bit, because of some machine dependant adaptation we had to make on the Level 6
(related to some memory alignement problems). The following steps of our work is now to interface the ISO
Session to this new kernel. The Session code is already working in a V7 environment and shouldn’t be too diffi-
cult to adapt. We would also like to use some standard Berkeley applications {TELNET for example) with the
AFJSO family and make sure that the modifications don’t have any side effects on the existing code. We
already have TFTP working over both CTP and UDP, with about 30 modified lines in TFTP sources only.
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Sendmail Now and Its Next Generation
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The University of California at Berkeley released Sendmail, an internetwork mail routing facil-
ity, with its 4.2BSD release almost two years ago. Since then sendmail has become the comparative
yardstick for UNIX mail systems. However, because sendmail’s size, complexity, and flexibility,
some consider it to be overkill. This paper looks at sendmail as it is now and discusses the points of
consideration for the next generation of the Berkeley mail system.

The first section describes sendmail’s features and design considerations. The second section
describes the design goals and considerations in the evolving Berkeley mail system.

1. Sendmail Today

Sendmail is an internetwork mail routing facility. Features include aliasing and forward-
ing, queueing, an implementation of SMTP (the Simple Mail Transfer Protocol [RFC821]),
automatic routing to network gateways, and flexible configuration [Allman85]. Sendmail does
not interact with the user nor perform the actual delivery of the message. It simply collects the
message generated by either a user interface, such as, Berkeley’s Mail [Shoens83] or MH [Bor-
den79], or an intermediate mailing channel. Once sendmail collects the message, it manipulates
the header as needed for validity at the destination, and then passes the message on in the next
step of delivery.

Sendmail interacts with many diverse networks. Some networks provide a point-to-point
routing as in UUCP [Nowitz78], while others provide only end-to-end addressing as in DECnet.
Some use a left-associative syntax, while others use a right-associative syntax. When both are
mixed, ambiguity in the proper interpretation of the address arises. These differences between
networks are why sendmail exists and why it performs the functions it does. Sendmail as an
internetwork mail router bridges these networks with their different syntaxes and semantics.

1.1. Original Design Goals
Sendmail was designed with a number of goals in mind [Allman&3]. In particular:
® Sendmail was to be compatible with existing mail facilities.

® No message was to be lost. Once a message was accepted for delivery, it was to be
delivered, returned, or passed to a human for some approprate action.

® Existing software was to be used when possible.

® Sendmail was to be an expandable system so it could handle the changing mail environ-
ment.

® The configuration information was not to be compiled into the code to simplify installa-
tion.

Amos Sendmail
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® Individual forwarding and access to mailing lists were to be provided such that both could
be performed without modification to a system-wide alias file.

® The selection of a mailer was to be placed at the individual’s choice, allowing the user to
create his/her desired environment.

® Mail for a given destination host was to be batched when possible to reduce network
traffic.

1.2. Features

The actual implementation of sendmail meets its designer’s goals [Allman85]. Sendmail
successfully provides a reliable and flexible mail system. What follows is a description of
sendmail’s features and functionality.

1.2.1. Message Delivery

When a message is to be sent, the generator of the message communicates with
sendmail in one of three ways. It can call sendmail via the standard UNIX method for
communication with a process, or by invoking SMTP over pipes, or by invoking SMTP
over the 42BSD IPC mechanism. By whatever means it is called, sendmail first does a
preliminary verification of the recipient list. This includes syntax checking, alias expan-
sion, and verification of local addresses. It should be noted that files and programs are
valid recipients. The actual verification on non-local recipients is done at delivery.

Next sendmail collects the message. The message consists of two sections — a
header section and a body section. The header section is made up of ASCII lines in
specific formats with information relating to the delivery of the message. The body sec-
tion is ASCII text. The header is parsed and stored within sendmail, while the body of
the message is stored in a temporary file.

Once the message is collected, sendmail attempts to deliver the message. Message
delivery is optimized by batching mail according to the destination site and mailer. Send-
mail then calls the mailer by one of the above methods used for its own invocation. If
the mailer is invoked by the first method, then the recipients are passed as arguments
while the body of the message is passed via standard input. The latter methods pass the
recipients one at a time according to the Simple Mail Transfer Protocol to the mailer’s
standard input. Once all the recipients have been transferred, the body of the message is
then sent to the mailer’s standard input. Sendmail does compensate for mailers that can
only deliver to one recipient at a time.

Sendmail checks the mailer exit status upon completion and reports to the sender if
an error occurred. Additional error information can be sent by the mailer over it stan-
dard output to sendmail. Sendmail will then return the undelivered message, complete
with the error information, to the originator. The contents of the error message will usu-
ally contain the host and recipients it was unable to deliver to, as well as why it was
unable to deliver the message.

1.2.2. SMTP

SMTP (as defined in [RFC821]) was included as the “backbone” sendmail protocol.
SMTP controls mail message transfers over the ARPAnet. The incorporation of SMTP
into sendmail resulted in the inclusion of some desirable features to the actual mail
delivery, such as, multiple recipients per message, control over the status of each indivi-
dual recipient, and requeueing of an undelivered message. The inclusion of SMTP pre-
cipitated the need for queueing.
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1.2.3. Queueing

Queueing improved the reliability and performance. Once a message is place in the
queue, it is preserved and can survive most causes of message loss. Queueing allows send-
mail t0 be responsive to user agents, because it can return as soon as the message is
“checkpointed” into the queue.

Sendmail provides some interaction with the queue. The decision of when to queue
a message can be controlled by the configuration file /usr/lib/sendmail.cf. In the
configuration, file the option x can be set to a decimal value. The value of x is used for
comparison against the system load average. If the load average is greater than the value
of x, sendmail will queue a message for later delivery. Otherwise sendmail will attempt
immediate delivery of the message. If the delivery fails because of a temporary condition,
the message can be requeued for later delivery.

1.2.4. Aliasing

Sendmail provides aliasing in multiple forms. First, system-wide aliases are pro-
vided in the /usr/lib/aliases file. This file gives system-wide consistency for mapping
names to mailing lists.

The next level of aliasing is provided as a subset function within the /usr/lib/aliases
file. By using inclusion a mailing list can specify a file that is contained outside of
/ust/lib/aliases. This provides the consistent system-wide name of the mailing list, but it
also allows the list to be maintained by an unprivileged user. This obviates the need to
rebuild alias database when simply updating a group list.

At the lowest level of aliasing, an individual can set up forwarding. If a .forward
file exists in the user’s home directory, sendmail will read the file and forward the message
to the indicated recipient list. This same mechanism can be used to select a private
incoming mailer. To select a mailer one would create a .forward file with the contents:

“|/usr/local/newmail myname”
With all these levels sendmail furnishes a rich complement of aliasing capabilities.

1.2.5. Configuration File

The configuration file is an ASCII file that is read each time sendmail is executed.
This file contains information for the interpretation of addresses, manipulation of headers,
selection of a mailer for delivery, specifications for calling the mailer, and the controlling
parameters for sendmail’s execution. Within the configuration file running options can be
manipulated without recompiling the program.

The configuration file provides sendmail’s flexibility. However, this file is also the
most difficult aspect of sendmail to understand. The rewrite rules (found in the
configuration file) are what give sendmail its reputation for black magic. They are an
ordered list of pattern-replacement rules, which are applied to each address. Each rule is
divided into two parts — the pattern to be matched, and the replacement format it is to
be rewritten as. Once the pattern is matched and rewritten, the rule is applied until it
fails. To terminate a ruleset, either the address matches a rule where termination is indi-
cated, or the address falls off the end. The difficulty is not in the interpretation of the
individual rule, but how the rules tie together to perform their rewritting tasks.
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2. The Next Generation of Sendmail

Sendmail was the successor to delivermail, Berkeley’s first solution the the internetwork
mail problem. While it has improved on delivermail’s shortcomings, it has introduced its own set
of flaws. The successor to sendmail will try to correct these flaws, hopefully without introducing
new ones.

2.1. Design Goals

The majority of the design goals of the next Berkeley mail system are the same as those
of sendmail. These goals are general design goals which should be adhered to when develop-
ing a mail system.

® Reliable delivery is a must: no message should be lost.
@ Network use should be optimized by batching mail for a given destination host.

® The new system should be compatible with existing mail facilities.

® Aliasing should be provided.
® The user should be able to tailor his/her own mail environment.
Those goals that are specific to the next Berkeley mail system are:

® To provide a group of programs that together will provide the same functionality as send-
mail. Breaking sendmail into several programs should ease the maintenance cost of the
mail system.

® To utilize existing code when possible.
® To simplify the configuration file scheme.
® To provide a mail system that is specific to the Berkeley release.

2.1.1. Maintenance Issue

The goals of the next Berkeley mail system do not differ that much from the origi-
nal goals of sendmail. What is different is the emphasis on maintainability. Many large
sites must have a “sendmail wizard”. This person must spend time in understanding the
configuration file and internetwork addressing. A cost of software packages usually con-
siders the initial expense, but also considers the expense of continual use of the package.
This expense includes the manpower involve in maintaining the package. Taking this into
account, sendmail has not been cheap.

This cost in manpower caused some sites to rewrite sendmail into a smaller, less
complex, system such as SM, the mail system at Lucasfilm Ltd. [Ostby85]. By applying
the KISS (Keep It Simple, Stupid) philosophy to sendmail, the next Berkeley mail system
will be easier to understand and maintain.

2.1.2. Utilization of Existing Code

The reusing of existing software is an engineering decision. It is far more efficient
and timely to reuse code. Because one the main goals of the project is to decompose
sendmail into smaller programs, it only makes sense to use the existing code when feasi-
ble.

2.1.3. Configuration File

Parts of the configuration file which appear to be mostly static will be pulled back
into the code. The rewrite rules for handling the addressing problem of an internetwork
environment will still be handled outside of the code. Consideration is being given to fol-
lowing the Upas [Presotto85] concept of filters. A filter could exist for each network
mailer. This would isolate the particular header munging needed when transferring mail
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from one network type to another.

2.2. Components of the Next Generation

The new mail system will take the specific functions of sendmail and provide them in
separate programs. Together these programs will provide an internetwork mail routing sys-
tem.

Breaking sendmail into separate programs should simplify the mail system. It is real-
ized that by forcing more programs to interact performance could be affected. A message
will now have to be passed to the central control point. If the controller is unable to pass
the message to the delivery agent or if the delivery agent cannot delivery the message at that
time, the message will have to be passed to a queueing program for insertion into the queue.
When the same message is later delivered, it will be copied again to the delivery agent. This
scheme has two major performance considerations — the number of times a message will be
copied before delivery and the number of forks or execs that are required to carry out the
interaction between the different parts of the mail system. Great care will have to be taken
to minimize the performance overhead.

2.2.1. Mail Crossbar

Mail crossbar (for lack of a better name) will be the main controller of the delivery
procedure. This is the program that is called by the user agents and in turn calls the
delivery agents. By keeping the concept of a central focus point, the mail crossbar can
preserve the standard UNIX method for communications with a process used by send-
mail. However, the mail crossbar will not implement SMTP as sendmail did, nor any
specific mail protocol. The mail crossbar will act only as an mail exchange point.

The mail crossbar will be the decision point at which mail is passed on to a delivery
agent. Depending on the status it returns, the message will be passed to a queueing pro-
gram for insertion into a queue. Certain delivery agents (such as UUCP) have their own
queueing, so it is not necessary to submit the message into the mail queue.

2.2.2. Queueing Routines

Breaking the queueing related functions into separate programs allows flexibility in
how each of the programs can be implemented. Cleanqueue mentioned below could be
implemented as a shell script that is run by cron. The queueing functions of sendmail
and some new functions will be provided by five programs.

® Queueup to insert messages into the mail queue.

® Runqueue to process entries in the queue.

® Printqueue to print out the mail queue.

® Cleanqueue to remove expired messages and perform basic consistency checking,
® Rmqueue to remove jobs from the queue.

Queueing has the greatest potential for experimentation. Consideration has been
given to using separate queue directories per delivery agent or even by host, as some
UUCP implementations and MMDF (Multi-channel Memo Distribution Facility [Kings-
ton]) have done. However, because the major mail delivery agents used are UUCP, local,
and internet it is not clear that the a more complex queueing scheme would be beneficial.
UUCP provides its own queueing thus eliminates itself from the queueing question.
Local mail is almost always delivered immediately, so the current scheme of a single mail
queue appears to fit the needs of the mail system.
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2.2.3. Aliasing Routines

The manipulation of the alias file will be provided by two programs: newaliases to
rebuild the alias file and editaliases to modify the alias database, providing access control
and locking.

A past problem with sendmail has been the mutilation of the alias database. By
providing separate utilities for the control of the database, access to who can modify the
database and when the database is to be rebuilt can be more efficiently handled.

2.24. SMTP Server

A SMTP server will be provided as a separate mail delivery agent like /bin/mail the
local mail delivery agent. Consideration was given to separating the SMTP server into
two separate programs: one to handle incoming connections and another to handle outgo-
ing connections. This scheme was use in the DECnet-Ultrix mailers and proved to sim-
plify the implementation. However, this does not take advantage of the SMTP ability to
turn a SMTP session around. SMTP has the ability to turn a connection around much
the same way UUCP does. Because connections would not be taken down and put back
up for the exchange of mail between two sites, the implementation of a single server with
the turn around functionality would be a performance enhancement.

3. Summary

As has been discussed in this paper, it is the goal of the next generation of sendmail to
continue to implement the best points of sendmail and to rectify its weaknesses.
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ABSTRACT

In the past few years, the nature of computing has changed dramatically as
the technology has made it possible to provide computers for small groups or
individual users, while sharing more expensive resources via networking.
Unfortunately this has also created problems since it is still desirable to easily
access data belonging to others that may now reside on another system. When this
capability i1s provided across a network in such a way that the remote files retain
the basic attributes of a local file, it is referred to a remote file system (RFS).
While not in widespread use, there have been a large number of attempts at
developing an RFS capability for the UNIX operating system. The scope of such
work has varied greatly between different attempts. This reflects changes in the
design criteria, the underlying capabilities expected in the UNIX system, and the
extent to which people were willing to alter UNIX itself. The implementations have
varied greatly in their transparency and efficiency, the two most important qualities
of an RFS. In addition, the proprictary nature of many of the RFS
implementations has greatly hampered their widespread acceptance by the UNIX
community. The ideal RFS is totally transparent to all UNIX user processes, has
no noticeable effect on operating system performance, and is available to be
implemented on a variety of systems. The paper will survey many of the remote
file systems that have been implemented on UNIX, explain their basic designs, and
comment on how well they approximate the ideal RFS, at what cost and with what
disadvantages.

Based on the preceding review, and the implementations that we have been
able to obtain or test, we have undertaken to implement an RFS for 4.3BSD that
will be generally available to the UNIX community. The RFS is implemented in
the kernel for transparency and efficiency. Implementation is underway and a test
system was completed two months ago. We will detail the design and
implementation choices and report on current progress.

Introduction

The design and implementation of remote file systems is still an area of active research and
experimentation in the UNIX community. This paper has three major sections. In the first we will
try to outline the major issues in remote file system design. In the second we will describe a number
of past and present remote file system implementations, and finally we will describe the system in
development at BRL and CWI for 4.3BSD. The paper assumes some familiarity with the UNIX file
system and the UNIX kernel layering.
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Part 1: Remote File System Design Issues

Types of Remote File Systems

Remote file systems can be implemented at several levels in the UNIX system. The lowest
level at which one can be implemented is the device driver level. The device driver interface consists
of routines to open and close the device, and to read and write individual blocks on the device.
Read and writes can be done with or without using the UNIX block cache (cooked vs. raw devices).
A number of remote file systems have been done that used this interface to give remote access to
disk segments on another machine. Generally a pseudo device driver is installed that packages
block read and write requests and sends them via a network link to another host for processing,
This is the simplest of the interfaces and is consequently very fast. Problems with this interface in-
clude lack of concurrency control and the required homogeneity of the systems involved. This im-
plies identical directory format, byte ordering, word size, and user ids.

The next logical level at which to implement remote file access is at the inode access level.
The operations here operate on an inode or use them as references to access the contents of files.
Inodes are read and written with iget/iput or operations like chmod and stat, and reading and writ-
ing of data is done through rdwri(). In these implementations, inodes for remote files are marked,
usually by using a new inode type (“remote”). Data is read or written from a logical location in a
file and is not constrained to be block aligned or block sized. Concurrency control is less of a prob-
lem at this level since inodes are locked before modification. When inodes are manipulated
remotely one must solve deadlock and race conditions on locking and freeing inodes. In particular,
one must solve the problem of letting a remote machine lock your inodes and then fail to unlock
them.

The next logical level to place a remote file system interface is at the system call level, and
here there are two choices, just inside the kernel, or just outside. In both cases, system calls that
refer to remote files are packaged and sent to a remote machine for interpretation, but the semantics
of the two implementations are quite different. An implementation just outside the kernel must
manage the assignment of file descriptors itself, and arrange for connections to remote sites using
“hidden file descriptors”. An external implementation also requires that all user programs be
recompiled to include the networking code. The added overhead of doing multiple system calls for
even local operations adversely impacts the performance of these implementations. An implementa-
tion just inside kernel can be more effective at emulating the exact semantics of the system calls,
and requires little or no changes to any user-mode programs. It is often easier for kernel level imple-
mentations to share network connections, one of the bottlenecks for remote file systems. Kernel
implementations also avoid the added system call overhead and context switching of user mode
implementations. Unfortunately, kernel implementations are harder to implement and test.

Naming: Super roots vs. remote mounts

One of the most important aspects of a remote file system is how remote files are named.
Everybody agrees that remote files should look just like regular files to users and programs, but
there seem to be two schools of thought on how to actually reference the root of a remote directory
hierarchy. The first is to have a special directory above the root of your file system which contains
entries for each remote system. This is generally referred to as the “super root” technique. Accesses
look like /../host/remotefile. This has the disadvantage that semantics of ”..” in / are changed, but
the advantage that a given file will always have the same name since /../host/remotefile names the
same file on all systems including the local system regardless of the host interpreting the path.

The second technique is to mount remote directory hierarchies much like a local file system
would be mounted, except that the file system mounted there is marked as being remote. Subse-
quent actions on the remote file system are handled by remote file system code instead of the regu-
lar file system code. In the case of remote disks, this comes naturally, since the file system code can
not generally tell the difference between a local disk drive and a disk accessed over the network
(except it is generally slower). As implied by the last paragraph, allowing files to have the same
name on all machines is more difficult in this case since you can not be sure that the mount point is
the same on all machines, but with cooperation this can be possible, and if symbolic links are avail-
able, even files on the local machine can have the same name. In particular if the special case of
/common-mount-point/thishost/file is caught and treated as /file, then you can have the advantages
of the super root without the disadvantages, but it is more difficult.
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Whatever the naming scheme, one must be careful to avoid the possibility of infinite loops
while evaluating paths. This is more likely in the case of remote mounts than with super roots.
Symbolic links just make the problem worse.

Authentication Techniques

There have been two approaches to user identification and access abilities, the easy way and
the hard way. Those that chose the easy way decided to rely on the standard UNIX access controls
and did not bother to do any mapping of user ids across network connections. As a result, these
systems require that a global /etc/passwd and /etc/group file be maintained identically on all sys-
tems. The hard way is to pass userids across the network symbolically and map them into
equivalent userids on the remote machine. This method is required if you cannot arrange for glo-
bally maintained accounting files, and reduces the maintenance effort on the network at a small cost
for id mapping. One of the problems with this method is that there are files that when listed on the
remote system by a local process, will have no equivalent local user. These files are often listed as
belonging to “nouser” and “nogroup” or some equivalent notation for an unknown remote user. In
order to avoid mapping every remote userid as it is encountered on the remote system, this scheme
is often used for every remote file that is not in the user or group of the user making the remote
request.

Transparency of Implementations

The key quality by which to judge a remote file system implementation is the transparency of
the implementation to users and more importantly, programs. In general this means that you must
continue to support the existing UNIX syntax and semantics of file system operations. One of the
best tests of this is the UNIX command pwd. This serves as a very good test that the system has
correctly implemented the semantics of joining a file system to a mount point. This includes getting
the entry into /etc/mtab, properly chdiring from the root of the remote system into a directory on
the local system, and that the entry for the remote system can be found in the directory on the local
system. This is non-trivial.

Another good test is to check the evaluation of long paths that when evaluated, traverse to
another machine and back again (via chdir .. or symbolic link) and then on to a third machine.
This forces proper evaluation of chdir .. from the root of the remote machine, which may not be the
same for local and remote processes.

Yet another telling test is to cause a program that has chdir'ed to a remote system to dump
core. The core file should get dumped on the remote system if the remote file system is truly tran-
sparent, but less transparent implementations may cause core dumps on the local system. This can
be one of the most difficult parts to get right because it is so tightly coupled with the kernel.

The meaning of chdir ”..” from the root of your local machine on a regular UNIX is that you
are still in the root. It would be nice to preserve this feature, since there are programs that use this
feature to discover they have reached the root directory.

Finally there is the issue of portability. The days of one vendor computing shops is slowly
coming to an end, particularly in the micro to super-mini segment of the market. With more
advanced programming interfaces and networking, it is now common to have a network of hetero-
geneous machines with different word lengths, byte ordering, and operating systems. To a remote
file system implementor, this implies the need for machine independent protocols and canonical for-
mats for the data passed between machines such as directories. In particular, there are now several
different file system types in existence. These arise from the fact that directories contain binary
information in the form of inode numbers and there are two basic directory formats, Version 6 and
Berkeley 4.2BSD. The Berkeley 4.2BSD file system has even more binary data than Version 6. This
leads to at least 4 to 6 different formats when byte ordering differences are combined with format
differences, and there is no reason to believe that there won’t be further changes or new directory
formats now that there is a format independent interface. This almost dictates a canonical interface
to the directory information rather than having each program know the format of directories.
Unfortunately this issue was largely ignored until 4.2 was released. This canonicalization comes at
some cost, and can be a significant performance factor, especially on CPU starved machines.
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Part 2: Remote File Systems Past and Present

BRL Remote Disk

The BRL remote disk facility was designed to give remote access at the device driver level to
block structured special files on a remote system. The system was built on top of DEC PCL11-B
network hardware, which gave 8 to 16 megabits per second transfer rate over a 16bit DMA Unibus
parallel link which was time division multiplexed.

Assignment of major/minor device codes was unique across all machines, and the devsw table
had the host id of the machine on which the device was resident. Each kernel knew where to send a
read or write request if the device in question was not on its machine. A static routing table told
which network device and address to send the request to. This meant that multiple network devices
could be used and routing would happen at little cost. For devices not resident on your system, a
pseudo disk driver was entered in the devsw table. This device drive took the request and put it in
a network message and shipped it off to the remote system. Raw disk access was not provided over
the network.

The server was a kernel process much like the swapper. The server was awakened to handle
any incoming network packets, and would enqueue the request with the approprate device driver.
Note that this procedure could recurse on a different network device if the requested device was not
resident locally. Since the entire implementation was in the kernel, it was very fast. Speeds in
excess of 100K bytes/second were not uncommon when going disk to disk.

Because the network worked at the block transaction level, it was not possible to have the
same disk mounted write enabled on multiple systems simultaneously since the kernels did not
cooperate. It was also unwise to mount a disk write protected which was mounted write enabled by
another system, since the disk contents might change underneath the client system. Block cacheing
was done by the client through the normal block cacheing mechanism. Due to the speed of the net-
work (very fast for its day) and the simplicity of the implementation, the remote disks were virtually
as fast as local ones, with some minor additional latency. Network packets looked a lot like buf
structs but with a network source address. The destination was specified by the b_dev field!

The typical use of this system was to mount write protected disks on multiple systems so that
only one copy of the information was required. Occasionally write enabled disks were mounted if it
was known that the sections desired were not going to change. Sometimes people were surprised.

The MIT RVD

One of the earliest remote disk protocols was the “remote virtual disk” protocol done by Mike
Greenwald and Larry Allen at the MIT Laboratory for Computer Science. As with the BRL remote
disk facility, sharing of remote file systems was only possible if the disks were write protected, since
there was no high level interprocessor cooperation. MIT used multiple VAX/750s running RVD as
file farms for remote systems.

Sun’s Network Disk

SUN Microsystems has been responsible for two different remote file system implementations.
The first is called the Network Disk protocol (or ND for short) and is basically a simple protocol
for providing access to remotely resident disk segments. The interface to the client is at the device
driver level, where a standard block style device driver packages disk 1/0 operations into packets to
be serviced on the server machine. Sun has run diskless workstations using this protocol for several
years. Each system thinks of the remote disk segment as though it were local. There is no coordi-
nation between systems, so unless the segment is mounted write protected, on all systems, there is
no joint access possible.

This protocol was designed to be simple to implement and debug and as fast as possible given
that it is treated as though it were a local disk segment. The local disk buffer cache can help to
reduce network accesses unless raw disk accesses are made. Disadvantages of this protocol were the
low level of the interface which made simultaneous access unwise, and the inability to work on other
than a single Ethernet since it was not built on top of an existing internet protocol capable of rout-
ing across multiple networks. Recently the University of Maryland has reverse engineered this facil-
ity and can provide it to those with Sun source licenses. Maryland is now using VAXen as file
servers for Suns using this code.
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The Version 8 Remote File System

Peter Weinberger has a remote file system for the research version of UNIX used by Dennis
Ritchie and friends at Bell Labs. Peter has an interesting philosophy about how a remote file sys-
tem should function which he explained at the Utah Usenix conference in 1984. To paraphrase
him: “I want my system to be able to get at your files.” The client is in the Version 8 kernel, which
removed the need for any user mode changes. The server runs as a user mode daemon which ser-
vices requests over the network link. One of his design criteria was that he could do as much as he
wanted to his machine, but others would probably only let him run a user-mode program. Having a
user mode daemon to give to other people to run makes it easier for him to get other people to par-
ticipate as remote servers. This also makes debugging the server much easier. The server normally
runs as root and handles authentication on a per-user basis, but can be run totally unprivileged with
degraded abilities.

The Version 8 remote file system is done at the inode interface level. Where there had been
calls to the inode level routines, there are now switch statements based on the file system type such
as local, network, process, and faces. A generalized mount system call was added to the Version 8
kernel:

gmount(fd, path, id)
int fd;
char *path; /* Typically ”/n/host” */
int id; /* file system type */
Remote file systems are mounted by first opening a connection to the remote host and then
issuing the gmount system call. The connection is periodically checked for connectivity and if the
connection fails, an automatic umount occurs. The network is only assumed to give virtual circuits.

Every file accessible through the remote file system has essentially two names. First it has its
native name on the remote host, like ”/usr/lib/crontab”. It also has a different name on the client
system, e.g. ”/n/remotehost/usr/lib/crontab”. For convenience, it is possible to create a link so
references to local files can be made by the name /n/localhost/filename. If this is done
/n/host/filename becomes a valid reference for filename on all machines. Files that are read or
written on a remote machine get the modification times of the remote machine. This can cause
problems with some programs such as make. A throughput number of 16K bytes/per/second was
given at the Summer 1984 Usenix conference in Utah, but this may be out of date.

NETIX File System

NETIX was an attempt at a distributed UNIX system, including a remote file system capabil-
ity that was done at the Bell Telephone Manufacturing Company in Antwerp, Belgium around 1982.
Transparent access to all files in the NETIX system was an important goal. The NETIX implemen-
tation was entirely within the kernel and at the inode level. The naming convention used by
NETIX was the super-root. Remote files were accessed by using names such as
/../hostname/remotefile. The UNIX system was expanded to include a “network inode” which
would trigger remote request processing. These may have allowed the /../hostname naming to be
bypassed, the paper was unclear on this,

On every host was kept a list of the other hosts participating in the NETIX system and a
mapping from that hostname to a unique machine id. Each user had a base machine on which his
login was established. User authentication was handled by generating a network user id from the
concatenation of the machine id and the user’s id on his base machine. Superusers did not have
remote privileges unless explicitly granted by the remote machine.

The Masscomp Extended File System

In 1984, Masscomp implemented a remote file system for their high performance workstation.
Their implementation has many similarities with the Version 8 remote file system done by Peter
Weinberger. Their design criteria had two major components. They could not change the semantics
or syntax of the UNIX system call interface, and they did not want users to have to recompile or
relink their programs to operate under the new UNIX that supported remote file access. Portability
of the implementation to other architectures was not a major design consideration. They chose to
implement both the client and the server in the kernel. While there was no reason forcing the use of
a kernel mode server, the performance gain from using a kernel mode server was felt to be sufficient
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reason for the additional effort it involved. The implementation was done at the inode level and the
notion of a remote inode was introduced. No changes to the UNIX file structure were required
since the remote inode only existed in core. Consequently, the current file position was stored by
the client and passed to the server with each read or write request.

Masscomp chose to implement an “rmount” system call to add remote file systems to the
namespace of the local host. An “rumount” was also added. The network communication was
based on a 4.2BSD style implementation of the Internet Protocol family as defined by the United
States Department of Defense (DOD). A new high level protocol called the Reliable Datagram Pro-
tocol was implemented and added on top of the DOD IP layer for use by the EFS. (This is not the
same as the forthcoming DOD RDP).

The server was implemented as a collection of lightweight kernel processes. This ”process
pool” had the ability to set up its user structure as necessary to fulfill each request. There was a
queue of processes and a queue of requests. Multiple server processes were used so that operations
could continue if one of the servers blocked on an I/0 operation. A single ”lifeguard” process
managed the process pool, dispatching incoming requests to servers and handling error recovery.

The Newcastle Connection (aka UNIX United)

The Newcastle Connection was probably the first and certainly the most complete implemen-
tation of a remote file system in user mode. This system was developed at the University of
Newcastle-upon-Tyne, and subsequently maintained and marketed by MARL

The interface for the Newcastle Connection is just above the system call interface. The New-
castle Connection client is embodied in a special version of the C library which provides replace-
ments for all the standard file system routines. If a file is local, the local system call is used. If the
file is remote, then the system call parameters are sent to the remote host for execution, and the
results are returned in a response message. The server is a standard user-mode daemon.

Until recently, the Newcastle code used its own low level networking protocols, but it has sub-
sequently been implemented on top of more standard protocols such at UDP/IP.

There are several problems with this approach to implementation. The worst problem is that
with much of the code to support remote file system operations in the C library, every program one
desires to use across machines has to be recompiled to include the network client code, and subse-
quently relinked every time there is an update to the client code. This is probably the single
greatest failing of the system. Since the code is in the C library, assembler programs, or programs
written in languages which do not use the C library are also unusable across system boundaries.
Information is passed between processes in a special environment variable, so processes which play
with the environment may break the remote file system operation.

The naming convention chosen by Newcastle was the super-root. Remote files are accessed by
referencing /../hostname/remotefile. There can in fact be a hierarchy of naming “above” the root,
for example, /../../ee/vax]/remotefile from the host cs/vax2. The naming hierarchy is independent
of the actual connections which may be present. Actual routing of packets is handled at a lower
level.

Authentication in the Newcastle Connection is symbolic. No assumptions are made about
globally unique userids or usernames. Each client is expected to verify userids before sending the
information to the remote server. The system administration on the server system can exert as
much or as little access control as they like to files on their system based on user/host pairings.

There is not a great deal of information available on the performance of the Newcastle con-
nection, but Randall made the following observations in his talk at the April 1983 European UNIX
Users Group (EUUG) conference:

®  Local file descriptor syscalls: check for remote FD, negligible.
Local pathname syscalls: 1 stat syscall (to determine file is local).

°
®  Remote file descriptor syscalls: check for remote FD, network 170
°

Remote pathname syscalls: 1 stat syscall (to determine file is remote), some number of
additional stats to determine the local portion of the pathname, network 1/0.

The summary ignores the costs associated with setting up server processes, which are used
quite generously by the Newcastle Connection. To the last case I would add that it is necessary for
the remote server to essentially duplicate the code in the kernel routine namei() so that it can
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properly determine when a path leads off the root and on to another machine, or back to the origi-
nal. This essentially involves a stat per path component. This becomes particularly important when
symbolic links are available.

Purdue IBIS, Phase 1

Over a year ago, Walter Tichy from Purdue University made available some user mode code
to provide a remote file system capability on 4.2BSD UNIX systems in a manner analogous to the
Newcastle Connection. The code was made available as the first step in a more ambitious project
called IBIS. This user-mode remote file system came to be referred to by the larger project name,
IBIS.

The client portion consisted of a library of replacement routines for all of the common file sys-
tem related system calls and a special startup program. The real system call interfaces were
renamed to an unlikely name (e.g. open would become 1 open). To use the system, all that was nor-
mally required was to recompile all the programs you wanted to have remote file access with this
new library. The special startup program was used to establish trusted connections with the remote
hosts and ran as a privileged process. All connections were carried out on top of TCP/IP connec-
tions, giving reliable data transfer and sequencing. Remote files were named by preceding the name
of file with ”“host:”, for example ”purdue-merlin:/etc/passwd” would access the passwd file on the
host Purdue-Merlin. This notation for remote files eventually proved to be a significant problem. It
simply did not fit well enough with the standard UNIX naming style. Programs which checked to
see a path was absolute by looking at path[0] and comparing that to a slash were quite confused.

The server for this system was a standard user-mode daemon process under 4.2BSD. Authen-
tication was carried out between the startup process and the daemon after initializing the connec-
tion. The daemon used the same authentication facilities used by the 4.2BSD programs rsh and rlo-
gin. This meant that authentication was completely symbolic and controllable by the user through
his .rhosts file.

There were numerous problems with this system, including many of the same ones found in
the Newcastle Connection. Several items were unimplemented or incompletely done. It was not
machine independent. There was no attempt to take care of byte ordering or word alignment in
structures. Every client process had one or more remote server processes shadowing it. If a process
forked, the daemons forked. Remote files were not maintained across execs, even if both processes
were compiled with the remote file access library. Remote file names that did not specify an abso-
lute path, were taken to be relative to the users home directory by default. Recompiling every pro-
gram is a massive undertaking, and in some cases programs would not work remotely due to the
problems already mentioned.

Harvard Remote File System

The Harvard University Science Center did a remote file system back around 1979 called
RFS. Steve Dyer was one of the principals in this effort. Their RFS was installed in PDP-11 sys-
tems running Harvard’s own version of V6 UNIX. Under the Harvard RFS, network access was
completely transparent to any program or user. The Harvard system was implemented just below
the system call level so effectively all operations on remote files caused the request to be sent to the
remote host for completion.

The Harvard RFS is a generalization of the mount facility, but the sub-hierarchies are found
on different processors, rather than on different disk packs. When a program operates upon a file
which is remotely mounted, the kernel sends packets over the link requesting an operation be per-
formed. The program is blocked pending a response. At the remote end, a “server” process reads
the commands, performs the operation if it can, and writes back any data expected, along with a
success/failure indication. A particular machine may be both server and requestor, in a symmetric
relationship with another machine. However, a processor may be connected to any number of
machines in either capacity.

Harvard RFS: Client

To attach to another processor’s file system, the “r-mount” system call takes three arguments:
a "machine number”, a small integer which selects a particular communications line to another
machine, the ”“local name”, an existing file which will later refer to the other processor’s files, and
the “remote name”, which is a pathname string that refers to a hierarchy on the remote machine.
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Unlike the “mount” system call which incorporates the entire tree structure of a disk pack, "r-
mount” may select a sub-portion of the remote machine’s files by specifying the pathname of a
directory other than ”/” as the remote name. The "remote name” is mapped into a unique integer,
the string number, and the server is notified of the correspondence between this small number and
the longer remote path name. Only the string number is passed to the server in subsequent
requests. “r-mount” constructs a device name from the machine number and the string number,
and a flag identifying it as an RFS device. It inserts this into an available slot in the mounted file
system table, along with the i-number of the local file.

When a program issues a system call to access the file system, the UNIX kernel calls a subrou-
tine to translate the pathname of a file into a device name and i-number. If an error is detected as
it descends the pathname, the routine returns with an code describing the problem (e.g., no such file,
not a directory), and the system call passes this back to the user’s program. When this procedure
reaches a component of a pathname that is flagged as a remote mount in the mount table, it returns
a special error code, EREMFS. The device name found in the mount table specifies the machine
number and sub-hierarchy. It is the responsibility of every system call which searches a pathname
to recognize the EREMFS condition, package the remainder of the path name and any other neces-
sary data, and hand them to the subroutine responsible for sending requests across the link. If a
system call does not handle the EREMFS condition, it is treated like any other error, generating an
message of the form: “Unimplemented Remote File System Operation”. Because of the existing
behavior of the UNIX system calls, the RFS system could be debugged piece-by-piece, without
exhaustively incorporating large amounts of untried code.

Harvard RFS: File 1/0

Opening or creating a file and reading or writing from that file, were more difficult to imple-
ment under RFS. Unlike once-only operations such as deleting files, or changing ownership or pro-
tection codes, "open” and “create” return small integers called file descriptors, which are subse-
quently used by the “read” and “write” system calls. These integers are indices into per-process
tables, which ultimately access copies of i-node structures describing the opened files. There are two
problems: first, “read” and ”write” no longer have access to a pathname; hence, they cannot obtain
the error, EREMFS, and perform the appropriate operation. Second, because the files are located
on a remote machine, it is difficult to imagine what data are stored in the i-node on the local
machine. Both problems are solved by having “open” and “create” construct a local i-node which is
a “special file”. Special files on UNIX do not access any data on a file system. Rather, when
opened, read, written, or closed, they invoke device-specific subroutines. Usually, this is a clever
way to allow hardware devices such as magtapes or disks to be accessed through the normal path-
name convention. Here, by providing a set of subroutines to handle reading, writing, and closing of
RFS files, and representing the open file as a special device, the main system calls were not
modified. These special i-nodes are unusual in that they are constructed as needed by “open” and
“create” and never appear on the disk. Their subfields have been filled in with data needed by the
subroutines to route requests to the appropriate machine.

Harvard RFS: Server Process

The Harvard RFS server is a privileged program running in user mode. It is not part of the
UNIX kernel. It reads from a special file that directly accesses the communications line, performs
the requested operation, and writes its reply back on the same file. The length of request packets
varies, depending on the system call which sent it. In general, a packet has the following byte-string
format:

HDR1 HDR2 CHAN# MSGBYTECOUNT OPCODE
REPLYCHAN# USERID.HIBYTE USERID.LOBYTE
GROUPID.HIBYTE GROUPID.LOBYTE DATA ..

The server changes its effective privileges to the user with the specified UID and GID. This ensures
that the server executes the system call with the same permissions as the program on the local
machine. It reassembles the remaining data from the packet, performs the system call specified in
the OPCODE, packages any data returned and sends it back to the requestor. It then resets itself to
a privileged state. HDR1 and HDR2 are bytes to indicate the start of a requestor packet; they are
included to ensure synchronization between the two machines. REPLYCHAN# is an index into
the processes that are blocked waiting for the server to respond. The server includes this byte in the
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packets it writes back to the requestor, which demultiplexes its data stream, sending the data to the
appropriate process.

When the server receives a request to open or create a file, it spawns a new instance of itself,
called the ”sub-server”, using the UNIX primitive “fork”. This sub-server opens the file and pauses
indefinitely, expecting read or write requests to arrive later from the requestor. The main server
uses the CHAN# byte to distinguish between once-only requests that it can satisfy and read/write
requests directed to the sub-servers. CHAN# 0 indicates a packet which is directed to the main
server; other channels are used as indices into the currently existing sub-servers. If the server begins
to read a request with a non-zero CHAN#, it wakes up the particular sub-server indexed by the
byte, and the sub-server reads the remainder of the packet, completing the operation. During the
time the sub-server reads and writes from the communications link, the main server suspends itself.
When the sub-server has completed a request, it signals the main server to resume reading. At any
instant, only one server process has control of the link.

When a program on the requestor closes an RFS file, a packet is sent to its associated sub-
server on the remote machine. The sub-server reads the request, closes the file, sends an affirmative
acknowledgement that the file has been closed, and dies.

Because the server program runs in user mode as a separate process, it was very easy to
debug. It reads a stream of bytes from its standard input and writes response packets onto its stan-
dard output. By writing small, interactive front and back ends for the program which generated the
requestor packets and interpreted the response packets, a fully debugged server existed well before
any modifications were made to the requestor side in the UNIX kernel.

Harvard RFS: Reflections on the Design

An RFS operation will never be serviced quite as quickly as a normal file system request. An
ordinary read operation of a UNIX file causes data to be copied from the file into the user’s pro-
gram. At the same time, UNIX enqueues the next logical block of the file to be read into a system
buffer. If the program requests this block, it should already have been read in from the disk. A
write operation causes data to be copied to a system buffer which is enqueued to be written out
later. The program does not wait for the actual I/0O operation to be performed. These read-
ahead/write-behind buffering algorithms greatly improve the throughput of the file system.

The Harvard RFS does not use this scheme because of the danger of keeping local copies of a
remote machine’s data, which could possibly be invalidated by another program running on the
remote machine. All 170 operations on an RFS file are synchronous--when a program executes a
system call, even a write operation, it must send the request packet and wait for a response. This is
a significant penalty. Because open RFS files are represented as ”special files”, not reflecting the
actual state of the file, errors cannot be forseen on the local machine before a request is made.

A single accounting system is maintained between the two machines. This ensures that UID
and GID numbers are not duplicated between the two machines. If a user on one machine has the
same user-id as a different user on another machine, he IS that user as far as RFS is concerned.
Therefore, unless some mechanism is implemented to insure that user-ids are not duplicated, UNIX
protection mechanisms are worthless across RFS. For this reason, a system like RFS is not optimal
for communication between unrelated sites.

On the HRSTS systems there are 8 separate file systems accessible from either machine.
These are named ”/rfs”, ”/fs/a”, "/fs/b”, through ”/fs/g”. The file system named ”/rfs” is, by
convention, the other 11/70’s root file system. It is remotely mounted. On one of the machines, the
file systems ”/fs/a” through ”/fs/d” are physically mounted on the machine; the remainder,
”/fs/e” through ”/fs/g” are remotely mounted. On the other, it is the converse: "/fs/e”, "/fs/f",
and ”/fs/g” are physically present, ”/fs/a” through ”/fs/d” are remotely mounted. However, pro-
grams on both machines see the same directory structure. This makes the transition to a single
machine trivial in the case of a failure, assuming that all disk drives are dual-ported. All file sys-
tems could then be physically mounted under the same names while the other machine was being
repaired.
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COCANET

Around 1981, the Department of Electrical Engineering and Computer Science at UC Berke-
ley developed a network system called COCANET. This system was in a sense somewhat more
than just a remote file system since it also has facilities for remote execution, but the basic facility
was remote file access and manipulation. The system took 18 months to implement. The time was
spent equally between kernel modifications, the network manager process, and the server processes.
The main change to the UNIX operating system was to add a message oriented IPC facility for net-
work applications such as the remote file system. The other major change was to modify namei()
and other kernel routines to recognize references to remote files. If a system call failed because of a
reference to a network special file, the kernel would pass the system call to the network manager
process for interpretation by the remote machine. The network manager was a special memory
resident process analogous to the swapper that passed requests to the network and processed incom-
ing responses.

Two types of servers were employed in COCANET. The shared server process handled state-
less requests such as stat, chmod, and unlink. Whenever a file was opened on the remote machine,
the network manager and the remote server would cooperate to create a private server that would
shadow the original process. File descriptor operations were subsequently handled by the private
server for that process. Whenever the original process forked, the server would fork twice. The one
server would become a shared server, maintaining files open to both processes. In addition, each
process also has a private server to maintain process specific data such as current working directory.

Execs of remote files caused the program to be run on the remote host by a private server.
The local process would exec a ghost server in place of the originally requested program. The ghost
would then handle 1/0 requests back to home machine for the now remote process. Most often the
ghost would be needed to handle STDIN, STDOUT, and STDERR back to the original login termi-
nal.

User authentication in COCANET was handled by static and dynamic mapping tables. These
tables contained mappings from host/userid to local-userid. Remote accesses as root were not per-
mitted.

The naming strategy used by COCANET was to have the root of each remote machine show
up as a subdirectory of the local root. For example, the root of host2 would be referenced from
hostl as /host2, and the passwd file on host2 would be /host2/etc/passwd when referenced from
host1.

Lucasfilm Extend File System

The Lucasfilm Ltd. (LFL) remote file system, called EFS (Extended File System), uses kernel
hooks at the system call level. A character structured special file is used to trigger special handling
by namei and the system call code. All client support is in the kernel, all server code is embodied
in user-level client server processes.

Authentication is the same as for rcmd (/etc/hosts.equiv and 7/.rhosts). There is no uid-gid
mapping scheme, all machines must share common passwd and group files.

Naming is wired down to be /net/hostname because of code in the kernel for handling “cd
... This could be fairly easily fixed by doing pathname translation a component at a time.

Aside from the normal system calls, chdir and execv are supported. In addition symbolic
links almost work correctly. There is one problem which makes it impossible to cd across the net
then reference a symbolic link which comes back to the client machine (a single server buffer which
is re-used).

The system has been used mostly with 4.1BSD - 4.2BSD machines, though there is a UDP
based version for talking to V7 machines written back when LFL had it’s own 68K port of a V7
kernel. Byte order is not important, LFL has VAXen, SUN’s, CCI’s, and so on, all tied together.
In addition, directory structure differences are handled -- this is a big problem with VAX-SUN-CCI
combinations.

Information on performance is not readily available. The server has a 12.5KByte buffer which
limits read-write calls to send-receive’s of at most this size. All data is sent across TCP connections
so performance is pretty much limited by TCP and hardware performance except for the V7 variant
which isn’t used any more. One guess is that a write to /dev/null across the network runs at no
more than 60-80KBytes per second. EFS is commonly used to transfer very large files (8-12MB
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pictures) and the LFL users are reasonably satisfied, though it could easily be sped up some if some-
one was interested in moving the server into the kernel.

Some work was done about a year ago on improving performance by cacheing information in
the server and re-using server processes. In addition, the kernel client code caches connections and
re-uses a server when possible. In general latency is very good. The big problems are the overall
design (where it sits in the kernel and how it is integrated), the fact that ¢d is really glued onto the
side (a server process is used for each cd), and the fact that the server process is at the user level
(degrading performance).

EFS has been around a long time. Early versions existed before 4.1a and it’s been in produc-
tion use with TCP since 4.1a. This predates most people’s systems, including Peter Weinberger’s
Version § stuff, though it was done after most of the “remote disk” interfaces.

Sun’s Network File System

The second remote file system Sun Microsystems has designed is the Network File System, or
NFS for short. The NFS is a much more ambitious project than the ND protocol. NFS was
designed from the start to give simultaneous access across multiple machine architectures. NFS
operates on top of existing protocols and uses a machine independent data format called XDR
(eXternal Data Representation).

To understand where NFS interfaces to UNIX, it is useful to understand some changes Sun
made to the UNIX file system code. Sun generalized the notion of a file system and built a canoni-
cal file system interface in UNIX. A new data structure called a vnode was introduced between the
file structure and the file system specific inode structure. A set of operations was defined for
vnodes, and implemented for each file system type. Each mounted file system has not only a mount
point, but also a type which is used to select which type of file system operations to use on that file
system. As of January 1985, there were three different file system types supported. The first was
locally mounted 4.2BSD style file systems. The second type was locally mounted MS-DOS style file
systems. The third type was a remote file system using the NFS interface.

Operations on the 4.2BSD file systems have a fairly one-to-one mapping with the operations
in the vnode interface. Operations on the MS-DOS file systems are more restrictive or no-ops due
to the comparitive simplicity of the MS-DOS file system. Operations on the Network File System
map quite closely to the operations on vnodes except they are encapsulated in messages to the
remote host on which the remote file system actually resides.

The Sun NFS uses a stateless network protocol. This has both advantages and disadvantages.
The biggest advantage of stateless protocols is much easier error recovery from server failures.
One-time operations on file names, e.g. stat() and rename(), are straightforward to implement and
are effectively atomic. Conversely, operations like open, creat, flock naturally cause state to be car-
ried somewhere. Sun chose to keep this state in the client an not to propogate it to the server.

In the Sun NFS, files are not opened on the server in the sense of section 2 of the manual.
Opening a file simply results in a unique “handle” being generated that can be used to reference
that file in the future without passing the name of the file again. The client records this handle in a
remote inode structure. For a UNIX file system, this basically consists of the device and inode
number, along with a reference to the system. Subsequent operations like read and write simply
send along the device/inode handle with the request. The server can use this to identify the file that
is to be read/written. Since read/write requests also include the offset, the offset need not be main-
tained on the remote host as this would be a form of state information. Sun also designed their
RFS protocol so that if the same operation was made more than once, the second and subsequent
actions would be no-ops. This means they do not have to carry any network connection state
either. If a packet was received more than once as the result of retransmissions or network error, no
damage would result from acting on it twice regardless of prior actions.

The problem is that several file system operations effectively force you to keep state. There
are two notable examples that cause problems for the Sun Network File System. The first is file
locking. Applying a lock is an operation that is only effective if applied at the server. If the server
fails, the lock is lost, so file locking is not supported on the basic NFS system. They may provide
locking later through a separate network locking service. The second problem for NFS is that the
semantics of removing an open file cannot be properly supported. Since the server is stateless, it
does not know that someone has the file open, so when you issue an unlink() call on the file, it is
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really removed. Subsequent references to that device/inode combination will fail. To get around
this problem, the Sun NFS client tries to move the file to a hidden name and issues a remove call
on the file after final close is called on the file. If the client crashes before final close, NFS leaves
unremoved funny filenames in the directories of the server. Presumably there is some daemon to
clean these up occasionally.

As a result of limitations on the Sun NFS, it is not a truly transparent remote file system.
This is a major problem if it is to be used with existing programs. It is likely that existing programs
that used facilities such as flock, will never run under NFS without modification or relinking.

Sun Microsystems has spoken a great deal about trying to make NFS an industry standard by
publishing the XDR and remote procedure call facilities, and calling on others to adopt the NFS
system. Unfortunately Sun has failed to make the one move that would more than any other make
NFS an acceptable standard: make their 4.2BSD implementation available for public distribution
free of proprietary restrictions. Even IBM did this when they wanted DES accepted. The lack of
true public accessibility to NFS combined with its other shortcomings does not bode well for Sun’s
attempt at standardization.

LOCUS

LOCUS started as a DARPA research project at UCLA CS Department. The LOCUS
development has now been spun off from the UCLA and is primarily in the hands of an indepen-
dent company (Locus Computing Corporation, or LCC), headed by Dr. Gerald Popek and staffed
by many of his former graduate students.

LOCUS is what you might call a “tightly coupled” network. That is, the computers in a
LOCUS network continuously keep track of one another and attempt to act to the world as a single,
unified resource. One advantage of a tightly coupled network is that authentication issues are pretty
much irrelevant. It is not necessary to go to heroic measures to determine remote access permis-
sions, since the entire collection of computers is a single entity, and every site can safely “trust”
every other site to do the right things as far as access control is concerned. The possibility of an
intruder eavesdropping or forging traffic on the LAN has not been addressed to date in LOCUS
and should be handled at a lower network level.

Although a file system in LOCUS may be thought of as physically “mounted” on the site that
is actually connected to the disk, the data is actually accessible from any site on the network.
LOCUS has a concept of a “global mount table”, so that every site on the net knows about every
file system mounted everywhere on the net. Every file system has a “global file system number”, a
"GFS number” for short, by which it is known internally. Thus, for instance, a file can be
identified uniquely by the ordered pair (GFS#, inode#).

LOCUS file names do not, in general, tell you which site the file system is physically mounted
on. This information is available through the global mount table, but it is not really important to
users in general from the standpoint of ordinary file access. LOCUS differs in this respect from sys-
tems where the site name is somehow embedded in the path name. Since a file name does not
include the physical location of the file, it is possible (as an occasional maintenance operation) to
move a file system from one site to another, just as you might move a file system from one part of a
disk to another on a single site, and allow the users to access the files at the new location via the
same names as before, as if nothing had happened.

All the remote file access stuff is in the kernel. Hence, programs do not have to be recompiled
or modified in any way in order to access remotely stored files.

LOCUS has experimented with various kinds of replication strategies for file systems (i.e.,
storing multiple copies of all or part of a file system, to guard against failure either of a single site
or of the network communication links). Unfortunately, the massive problems related to reconciling
conflicting versions of a file on two different sites (e.g., when reuniting the net after a partition)
caused LOCUS to abandon for the time being most attempts at replication.

The one kind of replicated file system which LOCUS does support uses what they call a
”primary-site” replication strategy. That is, the file system is stored on several (typically all) sites,
and a process which only wants to read a file can use any copy of the file (typically the copy stored
on the site where the process is running). But all modifications to the file must go only through a
designated ”primary site” for the file system. The “primary site” coordinates the distribution of
updated copies of the file to the other sites. If the primary site for a file system happens to be down
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at a given time, files in that file system can be read (via copies on other sites), but the file system is
in effect marked as read-only until the primary site returns. UCLA has set up the root file system
as a replicated file system in this manner since read-only accesses to the root are extremely common
(e.g., binaries and the passwd file), and since each site must have its own root so that it can run as
an autonomous site when necessary.

Now, there are some cases where full location transparency in a file system is impossible or
undesirable. For example, it would be highly inefficient if there were only one ”/tmp” for the entire
net, since this would require all ”/tmp” activity to go through a single site, and if that site were
down, all kinds of programs would curdle. Also, some files (such as ”/etc/utmp” and the things in
”/usr/adm”) cannot conveniently be maintained in a global fashion; rather, each site really wants to
have its very own separate ”/etc/utmp”.

The way LOCUS handles this problem is via a special directory name (currently called
”/local”), together with a new parameter in a process’s user structure which defines a directory path
to be substituted in place of ”/local” whenever it is encountered. Also, they use symbolic links to
map such directories as ”/tmp” to ”/local/tmp”, or ”/usr/spool” to ”/local/spool”, or to map indi-
vidual files to site-specific places (e.g., ”/etc/utmp” is a symbolic link to ”/local/utmp”).

Each site at UCLA has a file system named after that site and stored on that site. Two of
their sites are named Jason and Medea, with “local” file systems named ”/jason” and ”/medea”,
respectively, as well as file systems named ”/jason/tmp” and ”/medea/tmp”, and so on. This
means that a reference to ”/tmp”, in a process running on the site Jason, will resolve via the sym-
bolic link to “/local/tmp”, which in turn will be transformed to ”/jason/tmp”. On the other hand,
a reference to ”/tmp” in a process running on Medea will end up referring to ”/medea/tmp”. A
process could explicitly utter ”/jason/tmp” or ”/medea/tmp” if it wanted to, of course, but this is
not generally necessary.

The system is being modified slightly so that the magic string at the beginning of a file name
will be “<<LOCAL>" instead of ”/local”. This substitution will eventually be valid only when the
magic string occurs in a symbolic link. This is being done because it has turned out to be somewhat
of a confusion and a problem for ”/local” to be valid in the context of arbitrary commands.

LOCUS has facilities for process migration (moving an existing process from one site to
another) where the two sites are of identical CPU types, as well as for initiating a new process on a
different site from the parent. Depending on what one is doing, the information in the user struc-
ture which tells the system how to map references to ”/local” can either remain the same when site
boundaries are crossed, or it can be changed to refer to the environment of the new site.

The various sites in a LOCUS network communicate via message packets sent over a LAN.
For efficiency’s sake, they do not use any kind of layering in the LOCUS kernel-to-kernel protocol.
As an experiment, one graduate student last year linked two LOCUS sites over the ARPANET
using IP packets. Message packets are of two basic kinds: short packets for control messages and
system calls which do not require passing of data from a file, and long packets which contain every-
thing in a short packet, plus a block of file data. All message packets are individually acknowledged
via a special packet type and retransmitted as necessary. LCC is working on batch acknowledgment
of several packets at once in order to improve throughput and efficiency.

Unfortunately, LOCUS is implemented in the 4.1BSD kernel and is quite cumbersome, requir-
ing modifications here and there throughout the kernel. If UNIX were a message-passing kernel, it
would probably have been much easier to transform it into LOCUS, since the machine-to-machine
message packets could simply have been shunted into the already existing message queueing and
processing routines.

LOCUS does not currently support demand-paging of binaries across the net. Hence, a
demand-paged binary (magic number 413) residing on a file system physically mounted on another
site is treated as if it were a regular read-only-text binary (magic number 410). The LOCUS people
at LCC may be working on improvements to this feature. In any case, the efficiency of system
binaries is not affected since the root is replicated on all sites. A private user’s applications will run
somewhat less efficiently if he were running on a remote site but accessing files on the local system.

UCLA is currently working on forming a heterogeneous network (adding an IBM 4381 to
their VAX farm). This will involve a scheme of "hidden” directories, to allow multiple load
modules for different CPU types to be accessed via the same name. It will also involve a
modification to the ”“primary-site” replicated file system to allow selected files in a file system to be
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stored on some sites but not others. The primary site will have to store everything, but the other
sites will only have to store the binaries of their own type -- VAX binaries on VAXen, IBM binaries
on 4381’s, and so on.

Part 3: The CWI Remote File System

Remote File System Plans at CWI

Given the variety of remote file system implementations already in existence, you might
wonder why someone would choose to implement yet another remote file system. There are several
reasons. First, none of the ”“good” remote file systems are in the public domain, or even readily
available. Second, most of the systems rely on remote systems having the same login name to
UID/GID assignments as the client. While this simplifies authentication, it is often impossible to
arrange in a network of hosts managed by different organizations. None of the existing systems
have been designed to be used as commonly as current network services such as mail, file transfer,
or remote login. Most require the use of an explicit remote mount system call to allow access to the
remote system. Generally this is a privileged request. The expectation is that remote file system
service will eventually replace in some way the explicit file transfer services of today. As such, one
might expect to see a hundred hosts to be accessed in a period of several days from a single host on
a net such as the DARPA Internet which has hundreds (and soon thousands) of hosts. The explicit
use of mount for every remote filesystem is somewhat mindboggling in such an environment.

As the result of the shortcomings mentioned above, we have decided to implement a remote
file system for 4.2/4.3 BSD. While not limited to this operating system, it makes a good starting
point. The system is implemented at the system call level. System calls on remote files result in the
generation of a remote procedure call (RPC) to the remote host to accomplish the request. The
client is being implemented entirely within the kernel. As a result most programs will run without
changes of any kind. At the same time we will also be implementing a canonical file system inter-
face much like the UNIX Version 8 system so we can experiment with alternative file systems for
fonts and bitmaps. Initially our server will run in user mode, but will probably be implemented in
the kernel as an option if it significantly improves performance.

The work on this implementation was started over a year ago when I was still at the Ballistics
Research Laboratory of the U.S. Army. Dan Tso from Rockefeller University and I started experi-
menting with the IBIS code from Purdue. We concluded that a different solution was called for.
Since then we have worked intermittently on its development in a user mode testbed and on a full
kernel mode client. I joined CWI in July of this year in a temporary one year appointment with the
remote file system as my major assignment. As a result development has moved from BRL to CWI.

There are several goals to our project. We want all authentication to be done symbolically,
based on hostname/username pairs. The system should be relatively independent of the underlying
network topology and protocols. Connections to remote hosts should happen automatically without
the user having to explicitly issue a remote mount request to the system. Performance is important
as well. We hope the limiting factor for data transfers will be the TCP/IP networking code being
used in the initial implementation. The system is designed to be independent of the actual network-
ing protocols used, but will require either a reliable stream or a reliable datagram facility from the
network. The upcoming DOD Reliable Datagram Protocol should be a natural choice for use by
the remote file system.

The remote procedure call protocol will have two modes, generic and native. In generic mode,
all RFS data will be transferred in a canonical format, easily handled by hosts with different word
sizes, byte ordering, and operating systems. The native mode will be used by hosts that find they
have the same byte ordering and data formats, and hence can avoid the conversion to canonical net-
work format. In native mode, things like stat structures are transferred without alteration from one
machine to the other. This saves considerably on CPU intensive data conversion.

A new descriptor type has been introduced called DTYPE RINODE. This complements the
existing types, INODE and SOCKET. A RINODE is created whenever a remote file is opened.
The RINODE contains a pointer to information necessary to contact the remote server (an rfs con-
nection structure) and a unique identifier for the remote inode. This notation may change when the
canonical filesystem interface becomes better defined.
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Client Operation

The client side of the RFS is activated when a portal directory is named by a special rfs system
call. Eventually this will be accomplished with by a generalized mount system call. This system call
causes the directory to be treated specially by namei(). If namei() finds that it is searching this por-
tal directory, typically /n, then it takes the next element in the path as a hostname and the rest of
the path as a path from the root of the remote host. If a connection does not exist to that host
already, one is initiated by namei() on the users behalf (and by the users process). If a connection
is made, an RPC occurs to satisfy the file system request, such as an open or a stat. The contents of
the ”/n” directory are actually a figment of the kernel’s imagination, and include ., .., and an entry
for each remote host which has an active connection. This allows the pwd command to operate as
expected. The namei routine returns to the caller if a remote reference is encountered, and the
caller then passes the request to the remote system using information left in the user structure. It is
possible that the remote system will determine that a path has led back to the client system (chdir ..
off the root of the remote system). In this case, the client loops back and calls namei again with
data left from the remotenamei() call.

There are at least two operations that the client code must perform that are best done in user
mode. Since our implementation is in kernel mode, we have to provide a user mode daemon that
services requests from the kernel for information. The interface is in the form of a privileged system
call which the daemon calls with results to queries that are returned by the system call. In a sense it
is a reverse system call. The two queries supported at this time map UIDs to usernames, and host-
names into network address structures.

A new system call will be added to the system called readndir(), whose semantics will be simi-
lar to the readdir subroutine, but will read a large chunk of the directory at once. A readndir sys-
tem call is necessary for two reasons. First, the readdir subroutine still “knows” the format of
directories and uses the regular read system call to get the contents. Remote manipulation of the
directory will be easier if directory entries are treated as atomic entities. This will also make the
directory format conversion easier, and more explicit, rather than burying it as a special case in the
read system call.

An additional field will be added to the stat structure giving a unique host identification. This
number will be assigned at runtime and will be monotonically increasing. Its purpose is to create a
unique triplet which will unambiguously identify a file to the system or user. Without this addi-
tional information, two stat calls on files of two different systems could yield identical device and
inode indications. A number of programs rely on being able to identify files in this manner.

Server Operation

The servers are started up by the daemon whenever a new host attempts a connection to the
server’s host, one server per host. All of the requests between a given client and server are carried
on one network connection, which is assumed to deliver reliable datagrams or a reliable stream.
Multiplexing is done based on client process ID causing the RPC. Once a client and server have
authenticated each other as being valid host representatives, the client introduces each new user as
they request access to files on the remote host. Users are then accepted or rejected based on their
ability to access the remote host. The current authentication scheme is based on the Berkeley R*
protocol authentication mechanisms (/etc/hosts.equiv and .rhosts). It is trivial to add additional or
different schemes by modifying the server appropriately.

Most operations can be handled with a simple request/response model with one small packet
in each direction. There are a few cases where this is not possible. In particular, reads and writes
can often be much larger than the maximum packet size. When a read or write exceeds the max-
imum packet size, the data is sent as a sequence of packets which form a single logical packet. The
client is expected to keep track of the current offset into a file so that the server need not preserve
file offsets. Each read or write request carries the current offset in the file. Atomic append mode
still has the expected effect. This will make eventual server recovery procedures much simpler.
Each communications channel will in fact carry many simultaneous request/response transactions,
but only one per process under normal synchronous operations.

Areas still requiring attention are the implementation of select on remote files, and asynchro-
nous 170 on remote special files. While simple operations should succeed without effort, the
ramifications of blocking on disconnected tty ports could cause problems by consuming server
resources. Use of select on the server side will greatly ease this problem when reading special files.
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4.3BSD Overview

Kevin J. Dunlap
Digital Equipment Corporation
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The definitive paper on 4.3BSD is “Performance Improvements and Functional Enhancements
in 4.3BSD” by M. Kirk McKusick, Mike Karels and Sam Leffler, presented at the Summer 1985
USENIX in Portland, Oregon, USA.

4.2BSD provided new functionality, but due to the lack of time was not tuned to the level the
developers would have liked. 4.3BSD is the next release of Berkeley’s Unix offering. This release
includes the system tuning that time restraints prohibited on the previous release as well as addi-
tional functionality. Performance improvements were provided by use of cacheing, optimization of
existing algorithms, selection of more efficient search algorithms, and utilizing the more efficient
facilities provided by 4.2BSD. Some of the newly added functionality were expansion of the net-
work capabilities to handle subnets and gateways, support for windows and system logging. Also
added to the release was the extension of the libraries and utilities to handle the new Internet name
server, new system management tools, and Pascal support for dbx.

1. Introduction

4.3BSD is a concentration on performance improvements to the Berkeley operating system
and its complement of utilities. This release provides some new functionality, but not in the
sense that 4.2BSD did. 4.2BSD supplied major new functionality such as the inclusion of the
networking software. This new release from Berkeley provides a tuned system.

The first section describes the performance improvements made in the kernel, libraries and
utilities. The second section describes the new functionality of the system.

1.1. Performance Improvements

1.1.1. Kernel Optimizations

The optimization of the system was done for a general timesharing environment.
As new machines are costly, most 4.2BSD sites have resorted to increasing the machines
memory as memory costs have declined. Taking this into account, optimizations to the

kernel were done at the cost of memory usage. The following sections list the changes
made the the kernel.

1L1.1.1. Name Cacheing

The major improvement to name cacheing was to use a data structure that
stored names with pointers to the inode* table. This data structure is independent of
the inode table. By using this table of names, the cache gives an accurate representa-
tion of the most recently accessed names. The table’s independence from the inode

*Inode is an abbreviation for “Index node”. Each file on the system is described by an inode; the inode maintains ac-
cess permission, and an array of pointers to the disk blocks that hold the data associated with the file.
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table allows the size of the cache to be flexible.

The improvement to the name cacheing resulted in a cache hit rate of more than
70%. It did not however improve the performance of programs that sequentially scan
a directory. A second performance improvement was made to name cacheing to
alleviate this behavior. The system now tracks the directory offset of the last com-
ponent of the most recently translated path name for each process. If the next name
the process requests is in the same directory, the search is started from the point that
the previous name was found.

During normal working hours, a timesharing system may be expected to do
500,000 to 1,000,000 name translations. The name cache for timesharing systems at
Berkeley have a hit rate of 70% to 80%; with the directory offset cache getting a hit
rate of 5% to 15%. Together the two cacheings will give almost an 85% hit rate.
These two changes to name cacheing have reduced the system time spent on name
translation from 25% to 10% [McKusick85].

1.1.1.2. Intelligent Auto Siloing

The standard VAX{ terminal input hardware runs in two modes. They can
either generate interrupts for every character typed or collect characters into a silo
that is checked and drained periodically by the system. For the system to give quick
response for interactive input and flow control, the silo must be checked 30 to 50
times per second. Normal users of Ascii terminals type at a rate less then 30 charac-
ters per second, for this use it is more efficient to interrupt for every character typed.
When input is being generated by a another machine the input rate is more than 50
character, for this use it is more efficient to use the device’s silo input mode. Since
most systems use their dial up ports for both users logins and uucp logins, we can not
set these ports to a static mode. Thus, the system monitors the input rate and selects
the mode used based on the rate character are being received on the port.

1.1.1.3. Process Table Management

Systems have grown larger and with them the process table has grown past 200
entries. With tables this large, linear searches consume large amounts of CPU time
and should be eliminated from frequently used facilities. The kernel process table is
now multi-threaded to allow selective searching of active, zombie and unused process
slots. Free slots can be found in a constant time by taking one from the front of the
free list. The number of process slots used by a user can be found by scanning only
the active list. In the 4.2BSD release, the kernel maintained link lists of descendents
of each process. This list is now being used when dealing with process exit status;
parent processes seeking the status of their children now avoid linear searches of the
process table and examine only their direct descendents. The algorithm for finding all
descendents of an exiting process has been changed to follow the links between child
process and siblings, instead of performing multiple linear searches.

A unique process identifier is assigned whenever a process is forked. When
creating a new process, the system previously scanned the entire process table looking
for a unique process identifier. Now, the process table is scanned once looking for a
range of unique identifiers and does not do another scan until that range is exhausted.

1.1.14. Scheduling

The scheduler previously scanned the entire process table once per second to
recompute the process priorities. A process that ran for its entire time slice had its
priority lowered, and a process that had been sleeping or used up its time slice had its
priority raised. On a systems running many processes, the sc'eduler represented
nearly 20% of the system time. This overhead has been reduced by changing the

1VAX, MASSBUS, UNIBUS, and DEC are trademarks of Digital Equipment Corporation.
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scheduler to only consider runnable processes when recomputing priorities. To insure
the sleeping processes get their boost, their priority is recomputed when they are
placed back on the run queue. The list of runnable processes is a fraction of all the

processes on the system, thus the cost of invoking the scheduler has dropped propor-
tionally.

1.1.1.5. Clock Handling

The hardware clock interrupts the processor 100 times per second. Since most
of the clock-based events do not need to be done at a high priority, the system
schedules a lower priority software interrupt to do less time-critical events. Often
there are no such events, and the software interrupt handler finds nothing to do. The
high priority event now checks to see if there are any low priority events, before it
schedules the software interrupt. Rather than posting a software interrupt that would
occur as soon as 1t returns, the hardware clock interrupt handler simply lowers the
processor priority and calls the software clock routines directly. These two optimiza-
tions have eliminated nearly 80 of the 100 interrupts per second.

1.1.1.6. File System

The file system typically uses a large block size of 4096 or 8192. To store small
files efficiently, these large blocks are broken into smaller fragments, usually in multi-
ples of 1024 bytes. The 4.2BSD file system uses a best fit strategy to fragment these
blocks. This minimizes the number of full size blocks that have to be broken up. As
the file grows, fragmented blocks are copied to larger and larger fragments until it fills
a full block. With the new method, the first time the file system is forced to copy a
growing fragment it places it at the beginning of a full size block. This will accommo-
date growth without continually copying the fragment. Thus allowing the file to fill the

rest of the block. If the file stops growing, the rest of the block can be used for hold-
ing other fragments.

As files are created in a directory, the directory structure grows based on the
number of files in the directory. Each time a new file is created this structure must be
scanned to see that the file name is unique. Previously as the files in the directory were
removed the corresponding blocks within the directory structure were not removed.
In this situation file creations are expensive, because the system spends time scanning
a relative empty structure. In 4.3BSD this problem has been corrected; when the sys-
tem scans the directory structure to create a new file, it removes the empty blocks it
finds. The next time it has to do a scan of the structure, it does not have to scan these
empty blocks.

1.1.1.7. Network

The buffer space allocated for streams sockets and pipes has been increased to
4096 bytes. Stream sockets and pipes now return their buffer size in blocks in the stat
structure. This allows the standard 1/0 library to use optimal buffering. To increase
compatibility with other pipe implementations, stream sockets return a dummy device
and inode number in the stat structure. The TCP maximum segment size is calculated
according to the destination and interface in use; non-local connections use a more
conservative size for long-haul networks.

1.1.1.8. Exec

When exec-ing a new process, the kernel creates the new program’s argument
list by copying the arguments and environment from the parent process’s address
space into the system, then copying it to the stack of the newly created process. The
two copies were done one byte at a time. The copies are now done a string at a time.
This reduced the time to process an argument list by a factor of ten; the average time
to do an exec call decreased by 25% [McKusick85].
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1.1.1.9. Context Switching

When the kernel posted a software event to force a process to be rescheduled,
the process could be rescheduled for other reasons and would delay the event trap.
At a later time the process would be selected to run, the pending system call would
complete, and the event would take place. This causes the scheduler to be called for a
second time to schedule the process yet again. This has been fixed by canceling any
software reschedule events when saving the process context. This change doubles the
speed with which processes can synchronize using pipes or signals.

1.1.1.10. Setjmp/Longjmp

When the kernel routine sezjmp saves its current system context it would save
more registers than necessary. By trimming the save to the minimum set of register
needed, the overhead of the system call decreased by an average of 13%
{McKusick85].

1.1.1.11. Compensating for Lack of Compiler Technology

The current C compilers available do not do any significant optimization. The
C language is not well suited for optimization because of its liberal use of unbounded
pointers. In the past optimization was done by having sed scripts run over assembly
language and replace calls to small routines with the code for the body of the routine.
This would eliminate the cost of the subroutine call and return, it did not eliminate
the pushing and poping of several arguments to the routine. The sed script has been
replaced by a more intelligent expander, inline, that merges the pushes and pops into
moves to registers.

1.1.2. Improvements to Libraries and Utilities

It would seem that optimizations to the kernel would have the greatest payoff since
they affect all the programs that run on the system. The kernel has been tuned many
times before, so there are few areas for significant improvements. However, many of the
libraries and utilities have never been tuned. There were many programs that spent 90%
of their run time doing single character I/0. Changing these programs to use the stan-
dard 170 library cut their run time by a factor of five! Described in the following sec-
tions are other such non-kernel improvements made to the system.

1.1.2.1. Hashed Databases

There is a standard set of database management routines called dbm, that can be
used to speed up lookups in large data files. These routines have been rewritten to
use multiple files and are being used for lookups in the password and host files. This
has significantly improved the running times of programs that use these files, such as
mail subsystem, /s and the C-sh doing tilde expansion.

1.1.2.2. Buffered 1/0

Buffered 170 is an optimal way of doing 1/0, it is a method of doing reads and
writes with out performing multiple function calls for each 1/0 of a character. Single
character output degrades the performance of programs and causes congestion on a
network. The standard error file (stderr) is now using buffered 170 that is found in the
standard 170 library. Several important utilities did not use the standard I/0
libraries and make use of its optimal 17O routines. These programs include the editor,
the assembler, loader, C compiler and many other commonly used programs. They
were fixed.

1.1.2.3. Mail System

The file locking primitives for mail previously used link and unlink. These rou-
tines modify the contents of directories, hence requires synchronous disk operations
and cannot take advantage of the system name cache. The mail locking primitives
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have been changed to use the 4.2BSD advisory locking facility. The mail system has
also benefited from extensive profiling and tuning of sendmail.

1.1.2.4. The C Run-time Library

The memory allocation routines have been tuned to make better use of memory
for allocations with sizes that are powers of two. The string routines have been
rewritten to take advantage of the VAX string instructions, and the I/0 routines were
fixed to do buffered 1/0.

1.1.2.5. Network Servers

With the introduction of network servers in 4.2BSD a number of servers were
introduced, most of these servers daemons would sit in the process table waiting for
another process to use them. These daemons spent a vast amount of time sitting idle,
and consuming up resources. Most of these daemons were eliminated from the pro-
cess table by merging them into a single ”Internet daemon.” This daemon listens to
all the service ports and forks the appropriate server process when a request for their

service is requested. This eliminated as many as twenty processes from the process
table.

1.1.2.6. Csh

The C-shell in 4.2BSD was grossly inefficient. When it was converted to run on
4.2BSD a set of routines were written to simulate the old jobs library. These routines
would generate up to twenty system calls per prompt. The Csh has been modified to
use the new signal facilities and this has cut the number of system calls in half. There
have also been some additional tuning to cut the cost of frequently used features.

2. Functional Extensions

There were many new utilities added to 4.2BSD but many of them were not fully imple-

mented. Many of these utilities have been cleaned up and unified both old and new features in
4.3BSD.

2.1. Kernel Extensions
Many changes have been made in expanding the limits of the kernel. Most of these
changes were made to allow greater flexibility and expansion in the kernel.

2.1.1. Number of File Descriptors

The hard limit of 30 open file descriptors per process has been relaxed. The default
per-process descriptor limit was raised from 20 to 64. This will allow full use of the many
descriptor based services available.

2.1.2. Kernel Limits

Many internal kernel configuration limits have been increased by suitable
modifications to the data structures. The physical memory has been changed from 8
megabytes to 64 megabytes, and the maximum number of mounted file system has been
increased from 15 to 255. The maximum file size has been changed to 8 gigabytes, and
the number of processes increased to 65536. The system has been tuned for 4-8 mega-
bytes of physical memory.

2.1.3. Memory Management

The global clock page replacement algorithm used to have a single hand that use
was used both to mark and reclaim memory. The first time it encountered a page it
would clear its reference bit. If the reference bit was still clear on its next pass across the
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page, it would reclaim the page. The use of the single hand does not work well with large
physical memories as the time to complete a single revolution of the hand can take up to
a minute or more. By the time the hand gets around to the marked pages, the informa-
tion is usually no longer pertinent. During periods of sudden shortages, the page daemon
will not be able to find any reclaimable pages until it had completed a full revolution. To
alleviate this problem, the clock hand has been split into two separate hands. The front
hand clears the reference bits, the back hand follows a constant number of pages behind
reclaiming pages that still have cleared reference bits.

2.14. Signals

The 4.2BSD signal would push several words onto the normal run-time stack before
switching to an alternate signal stack. In 4.3BSD this has been corrected, the entire sig-
nal handler’s state is pushed on to the signal stack. Users can now write their own return
exception handler.

2.1.5. System Logging

A system logging facility has been added that sends kernel messages to the syslog
daemon for logging in /usr/adm/messages and possibly printing on the system console.
This gives a finer control on the messages logged and eliminates the degradation in
response during the printing of low-priority kernel messages.

2.1.6. Windows

The tty structure has been modified to hold the information about the size of an
associated window or terminal. These sizes are useful to programs such as editors that
want to know the size of the screen they are manipulating. Other programs which need
the width and height of the screen have been modified to use this facility.

2.1.7. Configuration of UNIBUS Devices

The UNIBUS configuration routines have been extended to allow auto-
configuration of dedicated UNIBUS memory held devices. This makes it easier to
configure memory-mapped devices and corrects the problem of reseting the UNIBUS.

2.2. Functional Extensions to Libraries and Ultilities

The changes to the utilities and libraries are to allow them to handle a more general set
of problems, or to facilitate the same set of problems more quickly.

2.2.1. Name Server

The name resolution routines (gethostbyname, getserverbyname, etc.) in 4.2BSD used
a set of database files resident on the local machine. If these files were changed on one
system and then not distributed to the other systems on the network, this would cause
inaccessibility of hosts or services on the network. These files may be replaced by a net-

work name server that can insure a consistent view of the name space on a multi-machine
network.

2.2.2. System Management

Rdist, is a new utility provided to assist system managers in keeping all their
machines up to date with a consistent set of sources and binaries. New versions of getty,
init and login merge the functions of several files into a single place, and allow more flexi-
bility in startup of processes such as window managers.

A new utility keeps the time on a group of cooperating machines synchronized to
within 30 milliseconds of each other.

Fall 1985 EUUG

EUUG Copenhagen, sept. 1985. Page 100




Dunlap 4.3BSD Overview

2.2.3. Routing
Many bugs have been fixed in the routing daemon. It now understands how to deal
with subnets and point-to-point networks
2.24. Compilers

The symbolic debugger dbx has had many new features added, and all known bugs
fixed. Dbx has also been extended to work with the Pascal compiler. The fortran com-
piler f77 has had many bugs fixed.

REFERENCES

[McKusick85] McKusick, M. K., Karels, M., Leffler, S., “Performance Improvements and Func-
tional Enhancements in 4.3BSD.” Proc. of The Summer 1985 USENIX Conference.
Portland, Oregon, USA June 1985.

Fall 1985 EUUG Copenhagen

EUUG Copenhagen, sept. 1985. Page 101




EUUG Copenhagen, sept. 1985. Page 102




The cat -v discussion is irrelevant

David M. Tilbrook

Imperial Software Technology

ABSTRACT

“This feels like a Republican victory party ... -- Vic Vyssotsky, 1985

The so-called UNIX-philosophy has been preached from the pulpits by the high-
priests of orthodoxy at many a UNIX conference. Does this zealous fervour have
any connection with the failure of UNIX to make any significant advances in
recent years? Why are there large areas of computer science that seem to be
ignored by the UNIX world and why is that when some areas are attempted on
UNIX they prove to be as unworkable or cumbersome as they were on the more
traditional environments? This paper is a highly personal view by one who has
been dismayed by the failure of the UNIX community (himself included) to make
any significant advances in real-time systems (whatever they may be), software
engineering (something palatable at least) and a variety of other problems.

“The first clue something is wrong with APL is that whenever two APL
users/programmers get together they start discussing extensions to the language.” --
Tom Duff, 1975

This is not a attack on the ‘cat -v’ talk or ideas. For the most part I agree with Mr. Pike’s main
points. However, I do feel that there have been two major problems with respect to the original
talk:

1)  Many people reacted with misdirected hostility to BSD, a system that has made tremendous
contributions to the community in some areas and certainly provides a much superior environ-
ment to other available environments for certain applications;

2) The arguments were largely expending energy in the wrong direction, concentrating on minor
issues (i.e., stylistic points such as flags to commands) rather than fundamental problems with
current UNIX implementations and uses.

I am not going to defend the first point. There are large parts of the BSD system that I find
dismaying. However, my experience with the commercially available alternatives has been far from
pleasant [1]. Rather, I would like to put the case that the arguments and discussions about UNIX
are highly reminiscent of the APL hacks discussing the ravel operator. The fundamental limitations
of the system are not going to be overcome through either stylistic adherence to a set of loosely
defined principles or the power coding of myopic hackers in universities of vulture capital shops.

It is high time that the UNIX research community recognize and accept that it is time to apply one
of the so-called UNIX philosophy principles; that one should be prepared to throw out tools and
start again, and the tool that should be thrown away is UNIX itself.

To defend this position is difficult and unpopular. Such a move threatens many people. There is a
huge investment in UNIX at both the individual and corporate levels. Indeed I am not proposing
that everyone rip up their licenses. There is a large segment of the UNIX world that must continue
to use UNIX and will do so for a long time. However, UNIX’s successor is not going to be reached
by constant enhancement of the current system: neither is it going to evolve in parallel with what is
becoming a major obsession within the UNIX community, that of satisfying the market place.

It is essential to recognize that the evolution of UNIX thus far has been less than graceful and the

[1] When the Cambridge conference panel was asked to choose between 4.2bsd and System V, five of the six
members chose 4.2bsd. The sixth chose V8, which is not commercially available.
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‘real’ progress less than spectacular [2]. I recognize that there have been improvements in some
ideas and facilities and that some have definitely been of major importance to the computer science
community (e.g., Make). However, there is little evidence that there will be any change in the way
UNIX evolves and a great deal of evidence that progress is going to be hampered by commercial
interests.

This gradual decrease of progress and the accompanying increase in complexity and problems (i.e.,
bugs) in a system’s ‘middle age’ is not unprecedented. In fact it seems inevitable. What sufficed or
was deemed inessential in a system’s beginning in the interest of meeting initial requirements or
objectives inevitably become insufficient and essential as the system’s use and its users’ objectives
change.

In the case of UNIX, the initial developers created a system that was the well designed integration
of four or five good ideas. It was relatively conventional in approach, on a popular machine, fairly
small and understandable, etc., etc., etc. It was not designed to do everything. In fact certain areas
were deliberately excluded (e.g., Read-time, IPC, data-base support) and it was there that the prob-
lem began.

There were many efforts to shoe-horn the missing parts into the UNIX environment. This was done
out of a need to handle certain applications (e.g., real-time in MERT) while simultaneously taking
full advantage of the tools and facilities offered by the base system. Sometimes UNIX was sold into
areas which were completely outside the UNIX realm and required substantial developments to
satisfy the needs of those areas. For example many of us are guilty of building applications which
are ill-suited to UNIX, but required if UNIX was to be available to us for our own uses (e.g.,
COBOL compilers, RT-11 emulators, data-base systems).

From a small two person development, UNIX exploded into a mega-project with rapidly expanding
and diversifying objectives and applications, and as is inevitable, rapidly decreasing coherence and
quality.

Furthermore, due to the nature of the UNIX community, some problems have been tolerated due to
cost of rectification, and certain application areas have either been ignored (as not being of interest)
or developed by teams who lacked sufficient UNIX-experience to ensure that their implementations
were compatible with the rest of the system [3].

To catalogue all the sins and follies would take too long. The list of things UNIX does not handle
or handles poorly should be obvious to anyone who has used it for any period of time or who has
tried to bend it further than it yields (e.g., trying to ensure reliability when signals must be handled).
My own major concerns relate to controlling multiple process applications (what facilities exist are
primitive, undisciplined and complicated [4]), to documentation which is largely unchanged in 15
years (why do people still insist on orienting documentation to paper output [5]) and a seemingly
inability of suppliers to adequately test their products (I mention no names). These are just some of
many areas where UNIX, whilst offering a good solution for 80% of the problem, seems sadly
deficient for the remaining 20%. Others have expressed views about its inadequacy on large systems
(it was initially a small-machine system) and the problems with security and reliability which are
likely to remain unsolved.

{2] I ignore the commercial and marketing success as being of little interest to the researcher except in that it has
meant increased availability.

[3] Signal handling is an area that is largely unchanged since the early days of UNIX despite the fact that it is ex-
tremely difficult to create reliable systems that avoid all possible race conditions. SCCS is a splendid example of a
non-UNIX tool in the way files are named, and input and flags are handled. Worst of all is the difficulty encoun-
tered in managing large numbers of related source files, facility of UNIX that has proved to be so important.

[4] There is a glimmer of hope that streams can offer some relief in the area of multiple process control and com-
munication. However, it is unlikely, when commercially available, that a style of use will-have evolved that will
provide the ‘standard’ way of building systems from components. Part of UNIX’s success is due to the fact that
the developers used and tuned it for a number of years before its release to the outside world thus had time to ex-
periment sufficiently to develop (perhaps unconsciously) a ‘standard’ approach to software and its combination.

{5] The answer is of course so they can sell books to a captive readership and documentation reading software
packages to those who recognize paper is inadequate.
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Having complained a great deal about the system, I should now propose a solution. However, I
recognize that as I am a long-time UNIX user I am no longer qualified to create such a system. It
is unlikely that the next generation of the research computing environment can come from the
UNIX community itself. I hope that the developers will be aware of UNIX’s strengths, however, a
team whose primary background is UNIX will probably not recognize a solution to a problem
(unless it is called grep) without trying to cast it into the UNIX mould.

If this is the case, what role can the UNIX research community play in the advance to the ‘UNIX’
replacement?

Our first priority is to recognize our true requirements for a computing environment. Such an
evaluation should be done without regard to actual implementation considerations. This is an ambi-
tious assignment, which must be done, however, to evaluate other solutions with respect to their
acceptability. Such an evaluation should be done on the basis of how well it fulfills our particular
needs, not our prejudices towards particular solutions.

Secondly we must understand how the basic UNIX features or facilities succeed or fail in fulfilling
our needs. To demand the existence of a facility without an appreciation of its true importance or
value can be dangerous. For example, it is unlikely that any system that does not provide some sort
of hierarchical file organization would be acceptable to most of us. But why? Can we honestly
reject a system that doesn’t provide such a file system on that basis alone? Far too often users fail
to recognize the difference between a requirement and a partial fulfillment of that requirement.

Finally we must be prepared to honestly accept UNIX’s short-comings and be prepared to evaluate
alternatives without prejudice. To continue to design or code around UNIX short-comings is too
costly and it is unlikely that some of the rare ‘real’ advances (e.g., streams, C+ +) will be available
without unacceptable costs [6].

The last task is the most difficult to accomplish. The UNIX community has worked very hard at
promoting UNIX for their own needs and in many cases are now unable to separate the marketing
hype from the true value. We have been telling each other how wonderful the system is for so long
that we are in danger of suffering from the symptoms discussed in the following article from The
Guardian, Saturday, August 31, 1985, entitled: “What the team thinks is wrong”

“Group think” can be self-defeating, said Dr. Pat Shipley, an occupational psychologist,
at a session on ergonomics, the science of the workplace.

“Group think was used to describe the British Cabinet’s deliberations leading to the
Falklands war,” said Dr. Shipley.

The irrational dimensions of group think underlying impaired critical judgement
included: the group protecting itself from adverse information with self appointed mind
guards; stereotyping the enemy as too stupid to be a threat, or too evil to negotiate
with; dealing with challenges to cherished values and assumptions by ignoring them or
rationalising them away.

I hope that I am wrong.

[6] It has been announced that future releases of UNIX for the VAX will not be forthcoming from the original
supplier and, from my experience, the alternative offered is not a pleasant one.
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Recent Work in Unix Document Preparation Tools

Brian W. Kernighan

AT&T Bell Laboratories
Murray Hill, NJ 07974

ABSTRACT

Document preparation based on troff continues to be an active area of
research. This paper describes a new tool, grap, a program for typesetting graphs.
Grap is a preprocessor for pic, rather than the usual troff preprocessor. Although
originally intended only for document preparation, it has also been used for algo-
rithm animation and exploratory data analysis, and has served as an “‘assembly
language” for several compilers for specialized graphs.

The paper also describes enhancements to pic, particularly built-in functions
and control-flow primitives, that permit the creation of figures of some complexity.

1. The GRAP Language for Graphs

In most document preparation systems, the only way to include a graph is by (mechanical or
electronic) cutting and pasting of a separately prepared figure. The grap language for describing
graphs [1] is meant to make it easy to include them in documents prepared with troff and the other
document preparation tools [2] on the Unix system. Grap was designed and implemented by J. L.
Bentley and the author.

In its simplest use, grap converts a set of x,y pairs into a scatter plot, generates ticks automati-
cally, and puts the result in a standard frame, as in this plot of remaining life expectancy as a func-
tion of age:

60

40 —

20 —
T l | T |
0 20 40 60 80

Normally a graph is part of a larger document. The parts of the document intended for grap are
delimited by the commands .G1 and .G2; everything else is copied through untouched. The input
for the graph above is just the data itself:
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.G1

0 73.6
5 69.8
10 64.9
85 6.5
.G2

The default display may be refined by specifying more parameters. Labels may be added on
any side, ticks may be placed by an explicit list or an iterator, data may be copied from a separate
file, and the points may be connected by lines of various styles:

Label bottom "Present Age"

Label left "Remaining" "Life" "Expectancy' left .3
ticks Left from 0 to 70 by 10

frame top invis right invis

draw solid

copy "life.d"

70 —
60 -
50 -

Remaining 40

Life
Expectancy 30 —

20 —
10 —

0—

I I I I I
0 20 40 60 80

Present Age

The file Llife.d contains the age-expectancy data shown above. The clause Left .3 moves the
text from its default position.

The central core of grap includes commands for plotting aribtrary text at any point, drawing
arbitrary lines and arrows, setting range and optional logarithmic scaling of coordinate axes expli-
citly, and drawing grid lines.

Grap does not attempt to provide a large variety of built-in graph types. Rather, it offers
primitive operations out of which many different graphs can be built. One of the most important of
these primitive operations is a simple macro processor.

define name { replacement text

defines a macro. Subsequent occurrences of name will be replaced by the replacement text.
Instances of $1, $2, etc., in the replacement text will be replaced by the corresponding arguments in
a macro call like name(arg,,arg,,...).

To illustrate, consider plotting expected age at death rather than remaining years, for which
the y coordinate is the sum of age and expectancy:
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Present Age

label bottom "Present Age"

Label left "Expected Age' "at Death" left .3
define show { bullet at $1, $1+%$2 >

copy "life.d" through show

In a copy statement, each line of the source file is converted into a call of the specified macro, with
each field becoming the corresponding argument. In fact, it is not necessary to define the macro
separately:

copy "life.d" through { bullet at $1, $1+3$2 )

is equivalent, and notationally more convenient.

As this example suggests, grap provides the ability to do arithmetic, both on input data and
on variables. It also has an if-else statement and a for loop.

It is possible to show multiple curves on a single plot; each set of values is independently
scaled and plotted. For example, this graph plots a second set of data that shows the fraction of an
original 100 people still alive at the given age:

70 — — 100
60 - ,
— 75
Remaining >0 |
Life 40 Fraction of
— 50  Survivors
Expectancy 30
207 25
10 —
0 )
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label bottom "Age"
ticks bottom from survivors 0 to 80 by 20
Label Left '"Remaining"” "Life" "Expectancy”™ "\L'.3i'" left .3
ticks left from expectancy 0 to 70 by 10
label right "Fraction of" "Survivors" "..." right .2
ticks right from survivors 0 to 100 by 25
draw expectancy solid
draw survivors dotted
copy "life3.d" through {
next expectancy at expectancy $1, $2
next survivors at survivors $1, $3
}

Data or parameters intended for a particular coordinate system are labeled with the name of that
system.

One of the most useful features of grap is the ability to place several subgraphs in one overall
graph. As a simple example, consider plotting the life expectancy and survivor data above as two
separate graphs sharing a common x axis:

graph Expectancy
frame ht 1.25 wid 2
ticks left from 0 to 70 by 10
tick bottom off
Llabel left "Life" "Expectancy" left .3
draw solid
copy "life3.d" through { $1, $2 }
graph Fraction with .Frame.north at Expectancy.Frame.south
frame ht 1.25 wid 2
ticks left from 0 to 100 by 25
Label left "Fraction of" "Survivors" left .3
draw solid
copy "life3.d" through { $1, $3 }
label bottom "Age"

70

60 —

50 —

Life 40 —
Expectancy 30 -
20

10 —

0

100 —

75 —
Fraction of

Survivors 30+

25 —

0 -

The graph statement defines a sub-graph with its own coordinate systems, data, etc. Subgraphs
may be positioned arbitrarily with respect to previous subgraphs using pic positioning commands.

One unexpected use of grap has been as an assembly language for “compilers” for small,
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specialized languages for preparing restricted kinds of graphs. The most interesting of these is a
language called scatmat, for describing scatter-plot matrices; it makes heavy use of the facility for
defining subgraphs.

Give a set of n observations of k attributes, a scatter-plot matrix is a k Xk array of scatter
plots. For example, given distance, temperature, mass and radius for the nine planets, as in

1 330 1 1

1.5 300 11 .5
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a scatter-plot matrix would look like this:
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This graph is described in a simple language that is processed into grap by a small compiler
written in awk. The input language looks like this:

file "planets.d"
frames ht 1 wid 1
spread 0
alllog
name Distance
field $1
name Temperature
field $2
name Mass
field $3
name Radius
field $4
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2. PIC Enhancements

Pic is a language for drawing figures and diagrams, in the same spirit as eqgn and tbl. The
primitive objects in pic are lines, boxes, circles, ellipses and spline curves. Each object has attributes
of size, position and associated text that may be set, either absolutely or in terms of previously
defined objects. As in grap, there is a simple macro processor and facilities for doing arithmetic and
storing the results in variables. In addition, pic has block structure, so that aggregate objects may
be defined and treated as a unit.

The development of the grap program made it easy to add several features to pic to make it
more broadly useful than it was before. One trivial example is the addition of built-in functions for
sine, cosine, log, exp, etc. Another change was to add the same if-else, for and copy state-
ments as are found in grap. These made it possible, for example, to do stereo pictures (visible to
readers who can cross their eyes):

The program is:
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.PS
lpiecx = 2; rpicx = 0; gs = 3.8; planez = -.5
eyey = .5; eyez = -1; leyex = .44; reyex = 1 - leyex
define bullet { "\s-4\(bu\s+4" }
# plot point at $1,%2,%3
define p {
tx=%1; ty=$2; tz2=%$3; sf=gs*(planez-eyez)/(tz-eyez)
bullet at (lpicx,0) + (sfx(tx-leyex),sf*(ty-eyey))
bullet at (rpicx,0) + (sfx(tx-reyex),sf*x(ty-eyey))
}
# Lline from $1,%$2,%$3 to $4,%5,%6 of type $7
define L {
ax=$1; ay=$2; az=$3; bx=%4; bby=%$5; bz=%6
sfa=gs*(planez-eyez)/(az-eyez); sfb=gs*(planez-eyez)/(bz-eyez)
line $7 from (lpicx,0)+(sfa*(ax-leyex),sfa*x(ay-eyey))\
to (lpicx,0)+(sfb*x(bx-leyex),sfb*(bby-eyey))
line $7 from (rpicx,0)+(sfa*(ax-reyex),sfa*(ay-eyey))\
to (rpicx,0)+(sfb*(bx-reyex),sfb*(bby-eyey))

}
# frame
tco,o0,0, 0,1,0>; LC0,1,0, 1,1,00; L¢1,1,0, 1,0,0); w1,0,0, 0,0,0)
t¢o,0,1, 0,1,1, dashed); L€0,1,1, 1,1,1, dashed)
t¢1,1,1, 1,0,1, dashed); ¢1,0,1, 0,0,1, dashed)
t¢o,o0,0, 0,0,1, dashed); L€0,1,0, 0,1,1, dashed)
t¢1,0,0, 1,0,1, dashed); t¢1,1,0, 1,1,1, dashed)
tp = 2 * 3.1415926535; dx = .05; ub = 3

for x=0 to ub by dx do { p(.5+.5*cos(tp*x),x/ub,.5+.5*%sin(tp*x)) }
for x=0 to ub-dx by dx do {

L(.5+.5*%cos(tp*x), x/ub, S+ 5*%sin(tp*x), \
5+.5%cos(tp*(x+dx)),(x+dx)/ub,.5+.5*sin(tp*(x+dx)))
)
.PE

These features have also been used for some fairly complicated diagrams in the new edition of
*“the Dragon book™ [3]:

b

Pic in its new form has also been used as the output for a program that implements a
language for drawing chemical structure diagrams. The program itself is written in awk; its output
is pic, with numerous calls to a set of macros that define common chemical structures like rings and
bonds. For example, this input:
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# Nicotine

benzene put N at 4

bond right

ring5 pointing down put N at 1
bond down from .N.s

CH3

produces this output:

The benzene ring is defined as a series of macro calls that looks like this:

define benzene {[
makering(6é, ringside, $1); ringlines(); ringcirc(.5)
1}
# makering(numverts, radius, rotation): make symmetric ring
define makering {
verts = $1; thisrad = $2; rot = $3; cr = 0.08
if verts<3 || verts>6 then { illegal verts }
v0: circle invis rad
V1: circle invis rad
v2: circle invis rad
V3: circle invis rad
V4: circle invis rad
if verts >= 4 then { V5: circle invis rad
if verts >= 5 then { V6: circle invis rad
if verts »>= 6 then { V7: circle invis rad
c: 0,0
)
# ringlines(invis): fill in all lines in this ring
define ringlines {
for i=0 to verts-1 do { Lline $1 from tt(i) to tt(i+1) }
>
# tt(i) -- make vertex i of verts for this ring
define tt {
(thisrad * sin((($1)/verts*360+rot)/57.296), \
thisrad * cos((($1)/verts*360+rot)/57.296)) }
# ringcirc(relative radius): make circle at center of ring
define ringcirc { circle radius $1*thisrad at C }

One other improvement in pic has been the removal of all static limits on sizes or numbers of
objects. Machine-generated input stresses programs quite differently than people do, so a program
must be prepared to cope with a lot of input. Of course this applies to grap as well as pic, espe-
cially with input generated by scarmat.

3. Conclusions

Although often denigrated for appalling syntax and unpredictable semantics, troff remains an
excellent tool for experimenting with document preparation. With the addition of grap and the
enhancements to pic, our ability to cope with complicated graphical displays has been substantially
improved.

It appears that many tasks can be profitably approached by designing and implementing a
language specialized to that task, so that users speak in terms closely related to their problem. The
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specialized languages for graphs, scatter-plot matrices and chemistry diagrams are examples from
one domain, but many others can be found in other areas.

In most of these languages, it appears necessary to provide some degree of programmability;
otherwise, users are restricted to those things that the implementor thought of. For grap especially,
the ability to program the processor to define a new style has proven invaluable.
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HE PERSONAL COMPUTER WORKSTATION IS THE

new tool of modern literacy. The appeal of
the personal workstation comes from the imme-
diacy of the relationship between person and ma-
chine, as expressed in a dynamic sequence of im-
ages on a video screen: an interactive dialogue be-
tween computer and user [1].

In his Phaedrus, Plato tells us that true knowl-
edge comes from dialogue. The images in ahuman-
computer dialogue are predominantly composed of
text, and the text is composed of letters. The Latin
word for letter, littera, gives us the [English] word
“literacy”. Modern “computer-literacy” is like tra-
ditional literacy — reading and writing. Therefore,
legibility of text is a crucial factor in the usefulness
of a personal workstation. If text written on a com-
puter screen cannot be read, the system is useless.

Discussions [in English] of computer typog-
raphy by computer engineers and scientists fre-
quently use “font” as a general term for all forms
of alphabet designs, though traditional typogra-
phers would distinguish “typefaces” from “fonts”.
Typefaces are images that are designed and read,
whereas fonts are objects that are manufactured
and distributed.

Accordingly, “typeface” means a group of char-
acters whose forms are shaped in accordance with a
particular set of design principles and which share
certain design features. A typeface design is thus
an abstract work of art intended to create a cer-
tain kind of visual image in the perception of the
reader. A typeface may be independent of particu-
lar devices, though dependent upon, or influenced
by, the kind of technology used to create the typo-
graphic image. In contrast, “font” means a concrete
rendering of atypeface in a particular character set
for a particular size-range for a particular imaging
system. A font is thus a crafted, technical product
which implements a design in a specific device or
system. Fonts are linked to particular devices, even
within one kind of imaging technology.

The most readable typefaces are transparent
to the reader, presenting the text in the clearest
way possible while remaining essentially invisible
themselves [2]. The best text types are not noticed
by the reader because their qualities are transferred
to the reading experience. The visual pleasure of
reading text composed in a readable type is per-
ceived as part of the pleasure of the text. The con-
verse is also true: a barely decipherable type is per-
ceived as part of the difficulty of the text. The diffi-
culty of deciphering poorly designed types on com-
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puter terminals may be manifested in other ways —
as eye strain, headaches, or diffuse dissatisfaction
with the work environment.

Until recently, there were few remedies to the
problem of illegible types on video display screens.
The standard “character generator” technology
provided only a single font of one size of one style
of coarse-resolution dot-matrix letters. Computer
users and programmers could not modify such
fonts because the character images were contained
in hardware or firmware.

The video terminal characters themselves were
too often designed by engineers untrained in letter-
form design. Computer manufacturers concerned
with hardware and software did not realize that ty-
pography is an essential part of the “user-interface”
between person and machine, and that art is neces-
sary for the design of legible text. Moreover, the de-
sign of computer characters was not attractive to
traditional lettering artists because the computer
tools were clumsy and mechanical in comparison
to the responsive pens and brushes and receptive
papers used in calligraphy and lettering.

Computer literacy has therefore been less pleas-
ant and productive for the reader than traditional
scribal and typographic literacy. The crude appear-
ance of barely decipherable dot-matrix characters
glowing on a rigid glass screen has prevented full
acceptance of computers by a tradition-minded lit-
erate public. Readers are justifiably conservative
about the shapes of letters because literacy requires
an expensive educational investment from the in-
dividual and society. Any change in the appearance
of letters that makes them less legible wastes pre-
cious educational resources.

But now the look of computer literacy is chang-
ing. The newer computer graphics technologies of-
fer technical solutions to some of the aesthetic
problems of digital screen types. These new tech-
niques also pose new problems, to which the so-
lutions will determine whether the personal work-
station will be a worthy successor to the pen, the
typewriter, the printing press, and the book.

The new generation of computer workstation
uses raster graphics display technology. A raster
image is a mosaic comprised of individual “pixels”
(picture elements). In the simplest kind of raster,
each pixel represents one of two possible values:
black or white; on or off. An on/off pixel can be rep-
resented by asingle “bit” (binary digit) of computer
information. A two-dimensional “map” of such abi-
nary image is called a “bit-map” [3].




A bit-mapped screen can display several sizes
and styles of types in “windows"” where images,
texts, and programs can be stored, edited, and run.
Windows can be like pages or documents arranged
on a desk, as well as like virtual terminals access-
ing the computer system. Computer information is
typographically displayed to the user with greater
clarity than on atraditional terminal. The computer
screen image is becoming more like a book, though
it does not yet approach the typographic complex-
ity of a modern newspaper [4].

However, the analog shapes of traditional ty-
pography cannot be directly transported to digital
media. Each technology has its own unique way of
rendering letterforms [5]. Printing types that were
designed for hand casting and mechanical compo-
sition cannot be faithfully reconstructed as pixel
fonts on a digital raster display screen. Digitization
at low resolution degrades traditional typefaces.
Text on display screens is obviously inferior to text
in awell printed book. We can understand this if we
consider the matter of resolution.

A raster image is a matrix composed of parallel
rows and columns of marking dots which can be
turned on or off at regularly spaced intervals, to
form a mosaic image. Because the image is created
by regularscanning of the display, the term “raster-
scan” display may also be used [6]. The resolution
of a raster device is determined by the number of
image lines per centimeter. Early digital typesetting
machines had resolutions in the range from 240
to 300 lines per centimeter, equivalent to an em
square of 100by 100 lines fora 10 or 12 point font.
This was adequate for certain kinds of publishing,
such as newspapers, but many traditional typefaces
did not look as good in digital format as in their
original analog letterpress form. Digital typesetters
became popular for a broad range of typesetting
applications when resolutions were raised to 400
and 500 lines per centimeter. Today, even higher
resolutions of 700 - 900 lines per centimeter are
used in some laser image setters which can render
the subtlest details of delicate typefaces.

In comparison, CRT screens for terminals and
workstations have resolutions in the range of 24 to
40 lines per centimeter — only 10 percent or less
of the linear resolution of an average digital type-
setter. In engineering terms, the typeface designs
are “undersampled”. Not only is important infor-
mation lost, but noise is introduced in the form of
false patterns — the familiar jagged stair-cases and
crenellations of computer images [7].
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The minimum resolution for high quality dig-
ital text can be estimated by reference to studies
of visual perception. Experiments by psychophysi-
cists and perceptual psychologists suggest that the
visual system cannot detect spatial frequencies
greater than 60 cycles per degree of visual angle [8].
For example, abar grating of regularly spaced black
and white lines will be perceived as asolid gray tint,
rather than a grating pattern, if the spacing is so
fine that more than 60 black and white line pairs
are imaged in one degree of visual angle, as mea-
sured at the retina. This provides a measure of the
upper limit of the visual system’s ability to resolve
the kind of detail produced by a digital raster. At a
reading distance of approximately 30 centimeters,
60 cycles per degree of visual angle is equivalent
to a resolution of 120 cycles per centimeter at the
screen.

In the 1920’s, Harry Nyquist, a mathematician
studying digital signal processing at Bell Laborato-
ries, showed that a signal can be sampled and re-
constructed without loss or distortion if the sam-
pling rate is at least twice the rate of the highest
frequency in the original signal [9]. This minimum
sampling rate is commonly known as the Nyquist
limit, or the Nyquist rate. Sampling at a rate be-
low the Nyquist limit introduces a form of noise
called “aliasing,” in which the high frequency com-
ponents of the original signal are erroneously re-
produced as spurious lower frequency components
of the reconstructed signal. In digital typography,
one form of these aliases is termed [in English] “jag-
gies”"—the jagged stair-case patterns that fringe the
edges of digital type. Other kinds of aliasing include
distortions of stem weights and letter proportions.

To faithfully sample and reconstruct a signal
of 120 cycles per centimeter, a minimum sampling
rate of 240 lines per centimeter would be neces-
sary. This Nyquist limit is only a theoretical min-
imum sampling rate. The difficulty of quantify-
ing the mechanisms of human visual perception
means that for high quality text images, real sam-
pling rates often have to be higher than the theo-
retical minimum. The practical evidence suggests
that today’s screen resolutions of 24 - 40 lines per
centimeter are at least one decimal order of mag-
nitude too low to produce text of optimal visual
quality. Traditional analog typefaces cannot be im-
itated and jaggies cannot be eliminated on today's
display screens.

The design of low-resolution screen types is
thus an excercise in “minimalist” lettering art. Al-
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though the designer is constrained by technical
limitations, there is also a fascinating aesthetic
challenge to distill the essence of letterforms in a
difficult medium.

How can we produce readable screen types
without becoming mired in the intractable prob-
lem of imitating traditional analog types in a low-
resolution digital medium that cannot reproduce
the details of classical typefaces? The answer is
to design digital types which follow the princi-
ples of readability found in traditional letterforms,
while tuning the letter features and details to the
low-resolution digital raster. Imitative letter design
demonstrates that a new technology can produce
decipherable text. Creative design shows that the
technology can produce beautiful text.

During the Renaissance transition from script
to print, early printing types were not successful
copies of Humanist handwriting. A skilled scribe
writing with an edged pen on vellum could produce
a sharper, clearer, more lively and more rhythmic
page of text than could an early printer confronted
by rough, hand-made papers, soft lead-alloy types,
uncertain recipes for printing inks, and imprecise
methods of printing. Types that attempted to im-
itate handwriting were inevitably of inferior qual-
ity. We are told that some bibliophiles refused to
allow printed books into their library. Within a
few decades after the invention of printing, punch-
cutters ceased to imitate and began to originate.
Types were cut for optimum legibility in the print-
ing medium. A new kind of letterform, based on the
precise sculpting of refined contours rather than
the real-time traces of a moving pen became the
dominant look of literacy. The elegant engraving
of Garamond replaced the lively script of Sinibaldi.

In discussing the effect of technology on writ-
ing, itis helpful to have names that denote the prin-
ciples of formation of the different kinds of writing
rather than names that denote particular histori-
cal or technical features. Scribal letterforms, such
as handwriting and calligraphy, can be called duc-
tal, because their essential shapes are traced out as
the path of a moving pen. (The sequence and pat-
tern of pen (or brush) strokes is called “ductus”,
from the Latin word ducere, ‘to lead’.) Typographic
letterforms, such as printing types, can be called
glyptal, because their essential shapes are carved
orengraved contours. (The compound term “gram-
matoglyptae”, from the Greek words grammata,
‘letters’, and glyphein, ‘to carve’, was used to de-
scribe printing type by Aldus Manutius in the pre-
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liminaries of his Virgil edition of 1501. For those
who prefer aLatin root, another term sculptal from
Latin sculpere, ‘to carve’, would serve as well.) Both
ductal and glyptal letters are analog forms — pro-
duced by smoothly varying changes — though the
logic and evolution of the resultant letters are dis-
tinctly different, as can be seen in the histories of
the Latin alphabet.

Digital letterforms, such as raster-based screen
and printer types can be called “pictal”, because
their essential shapes are composed of patterns
of discrete “pixels” (picture elements). (The terms
come from the Latin word pingere, ‘to paint, to tat-
too, to embroider’) In the lower resolutions, pic-
tal letters appear to have closer affinities with mo-
saics, tile patterns, and pointillist paintings than
with handwriting or traditional letterpress print-
ing. The specifically pictal details of digital letters
tend to obscure their basic functional qualities, and
therefore it isimportant to look beyond the surface
features to the deeper structure of the letterforms
inorder todesign readable letters for digital rasters.

Because the digital raster is a virtual design
medium without tactile or material characteristics,
the designer of pictal letters cannot rely upon tra-
ditional tools such as pen, brush, or graver to help
guide the resulting shapes. The pictal letter re-
quires arational analysis and orderly methodology
for the resulting text image to be readable.

Letterforms have a perceptual structure as well
as a conceptual structure; attempts to design types
by logic and mathematics alone have failed. The tra-
ditional lettering artist learned intuitive principles
of visual perception as one part of an apprentice-
ship that also emphasized correct tool use through
long practice. Our task today is to rationalize as
much of this traditional knowledge as possible so
that pictal letters produced with computer tools
will have the same degree of readability as letters
produced by traditional craftsmanship.

The main principles to be followed in design-
ing screen types are familiar to lettering designers:
Size; Weight; Contrast; Spacing; Proportion: Dif-
ferentiation. The difficult part of the task is apply-
ing these principles in the Procrustean digital grid.

Size

The screens of computer workstations are often
viewed at a greater distance than books and type-
wrritten documents. A reader can easily adjust a
hand-held book to the ideal reading distance, but
a computer terminal is more like an appliance:; it is




heavy and requires a stable position with a certain
amount of surrounding space on a desk or work
surface. Additional paraphernalia such as a key-
board, mouse, or graphics tablet also tend to inter-
vene between reader and screen. The ideal screen
viewing distance depends on the legibility of the
maintextfontand the characteristics of the display.
Some ergonomic guidelines recommend a viewing
distancerange of 40to 70 centimeters; other guide-
lines, arange of 33 to 50 centimeters. As an approx-
imate guideline, screen fonts should be from 1.2 to
2 times as large as corresponding printed fonts.

This measure must be corrected for the fact that
the apparent size of text in the Latin alphabet is de-
pendent more on the height of lower-case letters,
or capitals in German-language orthography, than
on the nominal body size of the font. The x-heights
of common text types range from about 40% to 60%
of the type’s body size. A type with an x-height of
50% of the body is of medium-large appearance,
and thus alegible 10 point text face might have an
x-height of about 5 points. If we assume a display
screen with resolution of approximately 28 lines
per centimeter (72 lines per inch) or one pixel per
printer’s point, then a corresponding screen font
should have an x-height of 7 to 10 pixels, to adjust
for the greater average reading distance.

Weight

The weight of a typeface is its relative density, or
proportion of black image to white background.
This density is sometimes called “color” by print-
ers and typographers, but it is an achromatic color,
based on the shade of gray of the text image rather
than on hue. For typefaces of normal proportions,
weight can be measured as the ratio between the
thickness of a straight vertical stem (such as the
stem of an T') and the x-height. The greater the stem
thickness in proportion to the x-height, the heavier
the weight, and the darker the text appears. Con-
versely, the smaller the stem thickness in propor-
tion to the x-height, the lighter the face. Condensa-
tion and extension of the width of a face will also
change the density, but most text faces will have
normal width proportions.

The normal weight ratio of text types ranges
from 5 to 6 stems per x-height. Book faces for ex-
tended reading may be slightly lighter, up to 6.5:1,
and display faces heavier.Ratioslower than 5:1 gen-
erally make the face appear too dark for easy read-
ing, and ratios greater than 6:1 may make the face
appear too light.
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This presents a difficult problem for the screen
type designer. For example, on a screen with square
pixels, afont with an x-height of 7 pixels and a stem
weight of one pixel will be too light, but a stem
weight of two pixels will be too heavy. The digi-
tal raster cannot permit non-integer stem weights,
and thus an optimal ratio seems unachievable.

The arithmetic of the problem will be differ-
ent if the nominal aspect ratio of the screen pixel
is not square. Some popular personal computers
have pixels which are vertical rectangles. These will
make some sizes and proportions easier to design,
but others more difficult, because the basic prob-
lem is raster resolution rather than aspect ratio.
Yet, the square aspect-ratio is a better typographic
design medium because it permits greater symme-
try and is easier to comprehend than an arbitrar-
ily proportioned rectangle. Most modern worksta-
tions use a square grid, and typographers should
welcome this trend. Nevertheless, a skilled designer
can produce good types in a non-square grid be-
cause the visual image, not the mosaic matrix, is
the true typeface.

The actual pixels on a CRT display screen are
not idealized squares and rectangles, but blurred
circular or elliptical spots and lines. Therefore, the
perceived stem thickness is almost always differ-
ent than the nominal thickness computed from
the specified raster resolution. Physical factors
which influence perceived stem weight include: the
size and intensity contour of the writing spot, the
amount of spot overlap, the on-to-off speed of the
writing beam vs. the off-to-on speed, the character-
istics of the phosphor, and the brightness and con-
trast of the display. When the letterforms are black
and the screen background is white, these factors
may combine to erode away a significant portion of
the perceived stem weight. Illuminated letters on a
dark screen background may appear bolder for sim-
ilar reasons. In many cases, the physical character-
istics of the display influence the designer’s choice
of type proportions.

Other factors such as the ambient illumination
of theroom, thesize of the display screen, and read-
ing distance may also influence the acceptability of
typeface weight. A weight ratio that appearsaccept-
able in text on a large, brightly illuminated screen
of 800 by 1000 pixels may appear too bold on a
small, dimmer screen of 300 by 400 pixels.

Thus, there is an interaction between font size
and stem thickness which makes some size/stem
combinations significantly more legible than oth-
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ers. The set of all possible low-resolution type pro-
portions must be sifted to pass only those of accept-
able weight ratios. The designer must attempt to
understand the conditions under which the screen
text will be read as well as the technical parameters
of the screen.

Contrast

In traditional text typefaces and writing in the Latin
alphabet, vertical letter elements are almost always
thicker than horizontal elements. The stems of an
‘n’ are thicker than the serifs or the connecting
arch; the vertical bowls of an ‘o’ are thicker than the
horizontal hairlines. This noticeable difference be-
tween vertical and horizontal features can be called
contrast. Faces with high contrast have a brilliant,
glittery look, whereas faces with low contrast have
a stolid, monotonous look. Non-Latin scripts, such
as Hebrew, Arabic, and Devanagari (used for sev-
eral languages of India) have an opposite contrast
in which horizontal elements are thicker than the
vertical.

Originally a result of the way the scribal writ-
ing tool was held and manipulated, contrast is pre-
served in glyptal and pictal typefaces because it aids
recognition and discrimination of letterforms. For
screen types to have some of the legibility of tra-
ditional typefaces, the traditional contrast must be
preserved. Types in which the vertical and horizon-
tal elements are the same thickness have an unfa-
miliar texture; this unfamiliarity impairs legibility.

When both horizontals and verticals are only
one pixel in thickness, and the letters are black
on an illuminated background, the problem is ex-
acerbated by the erosion of vertical stems de-
scribed above. Stems become even thinner than
horizontals, contrary to the visual expectations
of the reader. Such types not only appear weak
and spindly, they seem unclear and ill-defined, as
though the reader’s vision were blurred, or some-
thing were misadjusted on the display screen. What
is actually blurred and misadjusted is the design of
the type. Note, however, that thicker stems require
alarger x-height to maintain the proper weight, so
there is a lower limit to the size at which contrast
can be achieved on screen types.

Spacing

Lettering artists know that the “counters”, the neg-
ative shapes of the background, are as important as
the positive shapes of the letters. The relation be-
tween form and counter-form, between letters and
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their surrounding and internal spaces, is a crucial
part of alphabet design. The vision researcher un-
derstands this in a different way: a text image is
composed of spatial frequencies, regular alterna-
tions of dark shapes on a light background.

Experiments in vision research suggest that the
human visual system is most sensitive to spatial fre-
quencies in the range from 2 to 6 cycles per degree
of visual angle. In the same way that a phrase of
music may be composed of multiple voices in har-
mony, a line of text is composed of multiple spatial
frequencies. The fundamental frequency of text is
the regular alternation of black vertical stems with
intervening white counters (the space inside a let-
ter like ‘n’ or ‘0’) or inter-letter spaces. Estimates
of the fundamental spatial frequencies of printing
types at text sizes show a range from 4 to 6 cy-
cles of degree of visual angle — within the range
of peak sensitivity of the visual system. When the
larger text sizes used in luxury books, where ty-
pographic economy is not a factor, are included in
the estimates, the range expands to include 2 and
3 cycles per degree, the range predicted by vision
research.

The sizes and spacings of type are not arbitrary;
they have been carefully tuned to the mechanisms
of the visual system, not by rational analysis, but
by centuries, even millennia, of careful scribal ex-
perimentation.Screen typesshould alsobe tunedto
this band of fundamental frequencies. Throughout
the ages, scribes and type designers have painstak-
ingly adjusted the spacing and fitting of letters to
maintain a rhythmic and harmonious visual pat-
tern in the line of text. This is equivalent to main-
taining aregular fundamental frequency in the text
image. Intentional interruptions in the basic fre-
quency, such as word spaces, are thereby noticeable
and significant. Accidental irregularities in the ba-
sic spatial frequency, such as dark tangles or light
voids caused by poor letter spacing, also attract
attention, but they impart no information. Irreg-
ular spacing is therefore noise that distracts the
reader, interrupts the smooth flow of reading, and
obscures the real textural information, thus impair-
ing the legibility of the text.

A failing common to many screen types is ir-
regular letter spacing, too tight in some combina-
tions, too loose in others. This results from design-
ing atype as a collection of individual letters rather
than as an organized system of figure and ground.
The negative space of the background must be de-
signed simultaneously with the positive shapes of




the letters, and in many cases the designs of indi-
vidual letters are shaped by the need to fine-tune
the spacing of the entire font. Attempts to achieve
the tight inter-letter spacing fashionable in adver-
tising typography prevent good overall spacing, be-
cause they create disparities between letter combi-
nations that can space closely, such as pairs like ‘1I’,
and those that must space widely, like ‘vy’. Tight, ir-
regularletter spacing is useful in advertising typog-
raphy, where it attracts attention to sales “blurbs”
that a reader would otherwise ignore, but readable
text requires aregular rhythm. Jan Tschichold's di-
dactic discussion of spacing in his Meisterbuch der
Schriftis as relevant to screen types as to printing
types [10].

Proportion

Because the alphabet is a system, the proportions
of the letters must be tuned to each other and to
the overall proportions of the alphabet design. The
widths of the lower-case letters must conform to
three main criteria: the x-height of the alphabet
design; the optimal spatial frequency of the text;
and our historically evolved letter shapes. The av-
erage width of the letters in relation to the size of
the type determines the fundamental spatial fre-
quency of the font at a particular reading distance.
This frequency should be within a certain range, as
discussed above. Moreover, the different widths of
the letters in relation to each other help the reader
to discriminate their forms.

Proportionally spaced types are more legible
than monospaced types because of the more finely
tuned pattern of the text. When monospaced types
are a necessity, great care must be taken to com-
pensate for the irregular rhythm and distorted pro-
portions. The limitations of mechanical typewriter
technology created a need for monospaced types,
but these limitations are not technically necessary
in digital typography, and therefore monospaced
types can be retired from many text applications
on display screens.

Differentiation

The alphabet is a semiological system of graphic

signs which signify the phoneticelements of speech.

In speech, these phonetic elements, sometimes
called phonemes, are carefully differentiated from
each other; therefore the letters of the alphabet
mustbesimilarly differentiated. Alegible type com-
prises letterforms that are easily discriminated one
from the other. The task of type design is then to
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ensure that the letterforms are unambiguous, dis-
criminable, and distinguishable. Although resolu-
tion is limited for screen fonts, these goals can be
achieved by concentrating on three areas: serifs;
primitive elements; asymmetry.

Serifs. Serifs act as ‘flags’ on the character
shapes to aid in discrimination. Note that in a sans-
serif type, an ‘r’ followed by ‘'n’ can easily be con-
fused with an ‘m’, whereas the same combination in
aserifed typeislesseasily confused.Similar demon-
strations can be made for other combinations. such
as'c’+'l'compared to ‘d’. While sans-serif types may
seem more modern (though they first appeared in
1816) and thus more appropriate to the computer,
they are less legible for text because they lack these
smallbutsignificantdistinguishing elements. How-
ever, in the smallest screen sizes, ten pixels or fewer
per body, there is so little information available for
each letter that serifs become obtrusive elements
which can alter the basic forms and interrupt the
regular spacing of letters. The careful designer ap-
plies serifs sparingly to the letters of the smallest
sizes.

Primitive Elements.Latin-based alphabetic char-
acters are like molecules constructed from sim-
pler atomic elements. These primitive elements are
called “strokes” because they were originally a sin-
gle motion of a pen or brush. The various kinds
of strokes include: verticals, horizontals, curves,
and diagonals. The alphabet can be sub-divided
into various groups of letters made up of partic-
ular primitive elements. For example, in the lower
case, the letters ‘n’, ‘m’, ‘h’, ‘u’, 'r’ form one group
based on the vertical straight stem and arch; ‘o’‘c’,
‘e’ form a group based on the curved bowl; 'b’, ‘d’,
‘P, ‘q’.form arelated group based on the curve plus
straight; and V', ‘'w’, ‘X', 'y’ form a group based on
the diagonal stroke.

These form groups help the reader to discrimi-
nate and distinguish the letterforms. To avoid the
“jaggies”, the digital noise that appears as annoying
stair-case patterns on curves and diagonals of low-
resolution fonts, many screen fonts have been re-
duced to combinations of straight vertical and hori-
zontal elements. This design technique reduces the
Jjaggies, but it also destroys the legibility of the font
by eliminating two of the three basic primitive el-
ements and collapsing the form groups together.
When every letter in the alphabet resembles every
other letter, discriminability is lost and the alpha-
bet degrades toward indecipherability. It is prefer-
able to maintain the traditional shape primitives
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and to keep the letterforms unambiguous, even if
the diagonals and curves show jaggies.

Asymmetry. The principle of construction from
primitive elements must nhot be applied in a simple-
minded way. Traditional letterforms, while related
by constructive principles, are neither rigidly sym-
metrical nor strongly assimilated. In particular, the
upper portions of the lower-case characters are the
most carefully differentiated parts of an alphabet
design. The gaze of the reader appears to fixate
moreon the “x-line” (the top of the lower-case) than
on the base line. When the forms of the lower-case
are strongly assimilated toward one basic shape
with vertical and horizontal mirror symmetry, the
individual characters lose their identity. This can
easily be seen in the set that includes ‘a’, 'b’, ‘d’,
‘g’ ‘'p, and ‘q’. The ‘b’, ‘d’, 'p’. and ‘q’ should share
many features, but they should not be strict mirror
or rotational images of one another. Care must also
be taken to prevent the ‘a’ and ‘g’ from being too
closely assimilated to the others. Similar principles
should be observed throughout the rest of the font
design.

Screen + Printer: What You See, What You Get,
What You Read

The goal of legible screen fonts assumes that the
screen is where the text will be read. However, text
written on a screen may also be printed on paper.
There are now systems which attempt to integrate
screen and printer typography, by representing the
arrangement and typefaces of a document on the
screen. These are called “What You See Is What You
Get” (WYSIWYG) editing and layout systems. The
WYSIWYG principle is that the screen should show
exactly how the printed document will look. WYSI-
WYG text editors and document formatters attempt
to show text in various typeface styles, sizes, spac-
ings, and page organizations. Traditional typogra-
phy offers so vast and complex a range of possibil-
ities that present WYSIWYG systems can only offer
a much restricted subset. It is inevitable that ty-
pographic information will be lost or distorted at
screen resolutions.

Atrue WYSIWYG systemisimpossible to achieve,
but the principle has been beneficial in focusing at-
tention on legibility and the typographic design of
documents. It can, however, lead to serious prob-
lems when rigidly and naively applied to real edi-
torial situations.

Some WYSIWYG systems start with the screen
resolutions and force the printer to conform to
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the limitations of the screen. In the simplest case,
each screen pixel is mapped one-to-one onto the
page of paper output by the printer. While this pro-
vides a certain cartesian satisfaction, since it can
be logically demonstrated that the printer page is
“exactly” like the screen display, the two images
will actually appear very different. As discussed
above, the screen characters are often eroded by the
characeristics of the display technology, whereas
the printed characters are usually emboldened, ei-
ther by ribbon-spread on a dot-matrix printer or
by toner effects on a “black-writing” laser printer.
A “white-writing” laser printer will erode charac-
ter weight, but often to a different degree than the
screen fonts. Thus, if a font is tuned to the optimal
weight and contrast on the screen, it will appear too
dark and too low in contrast on the printer output.
Conversely, if the fonts are tuned to the printer,
they will often appear too light and too high in con-
trast on the screen. What you see is not what you
will get, at the present level of display and printer
technology.

A second problem with forcing the printer to
match the screen is exaggeration of jaggies. The
stair-case aliases on the screen are somewhat ame-
liorated by the soft, fuzzy contour of the CRT writ-
ing spot. The spot does not have sharp edges, nor
is it square or rectangular; instead it is blurry and
round. The low-contrast edges of the pixels tend
to soften the apparent jaggies. Printers, however,
produce a high-contrast spot at a higher resolu-
tion which clearly renders the edges of the stair-
case aliases. A laser printer with several times the
resolution of the screen will render a single screen
pixel with several printer pixels. This emphasizes
the rectangularity of the raster, and further en-
hances the jagginess of the digital artifacts. Printer
fonts that are constrained to simulate screen res-
olutions look noticeably inferior to printer fonts
that are optimized to the full resolution and imag-
ing characteristics of the printer.

A different WYSIWYG approach stores fonts as
high resolution outline master images. These are
scan-converted by the computer to the screen bit-
map images to represent the sizes of typefaces cho-
sen by the user. This “device-independent” method
is intellectually appealing because the same master
outline is used to produce all actual raster “glyphs”
on the screen or on the printer or typesetter. How-
ever, the automatic scan-conversion algorithms do
not perform as well as a skilled type designer at
display screen resolutions. Current font data struc-




tures and scan-conversion algorithms do rasteriza-
tion that is good at bitmap resolutions around 480
lines per centimeter, (equivalent to 200 x 200 pix-
els per em-square at 12 point size), acceptable at
240 lines per centimeter (100 x 100 pixels per em),
mediocre at 120 lines per centimeter (50 x 50 pix-
els per em), incompetent at 60 lines per centime-
ter (25 pixels per em), and a hopelessly botched
hash at 30 lines per centimeter (12 x 12 pixels per
em). The best bit-map screen fonts are presently
produced by designers hand-tuning the pixel pat-
terns of each character and coordinating the over-
all structure of each alphabet. Various workstation
tools called “bit-map editors” have been created to
aid designers in this task.

Although the automatic systems are the work
of skilled mathematicians, it is unlikely that we
will see major improvements in automatic scan-
conversion until the mathematicians develop more
powerful structural descriptions of the alphabet
while paying more attention to the actual appear-
ance of the characters. This requires the active as-
sistance of lettering artists during the design of the
data structures and algorithms. Scan-conversion is
a problem that is as much perceptual as mathemat-
ical. Letterforms must lookright to the reader. Suc-
cessful alphabet design, even at low resolutions, re-
quires knowledge of historical forms as well as un-
derstanding of the mechanisms of perception. This
understanding is intuitively perceived by artists,
but not yet successfully analyzed by computer sci-
entists. As Blaise Pascal, a great mathematician him-
self, wrote in his Pensees, “The reason why mathe-
maticians are not intuitive is that they cannot see
what is in front of them.”

WYSIWYG spacing

It is difficult to match the letter spacing and fit-
ting of a 28 line per centimeter screen font with
a 120 line per centimeter printer font such that a
given text will have the same words on each line,
the same line endings and hyphenation, and oc-
cupy the same relative space on both screen and
printer page. Engineers who build WYSIWYG sys-
tems tend to conceive of the coordination of screen
fonts with printer fonts as a numerical problem in
matching spacing values, and to believe that this is
the most significant aspect of the WYSIWYG prob-
lem. Type designers tend to perceive it as two paral-
lel problems in optimizing legibility, because they
are thinking more about the needs of the reader
than of the computer.
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The “real” typeface is neither the screen font
nor the printer font, nor the typesetter font, nor
even the artist’s drawings or the dot image on a
bit-map editor, but the image in the mind of the
reader. Solving the numerical problems of match-
ing letter spacing is not enough. The text must also
be readable. The spacing rhythms of the text, cru-
cial for legibility, must not be tortured on a pro-
crustean bed — stretched and truncated to fit an
arbitrary numerical measure. Instead, both low and
high resolution fonts must be developed in parallel
— matched in spacing but optimized in legibility.
This can be done most effectively when the type-
faces are original designs, crafted for the digital me-
dia.

We must not forget that fonts are for reading. In-
ferior fonts degrade the entire information system
at the crucial human interface. There is nothing to
be saved by wasting expensive hardware, software,
and human time by attempting to make do with in-
ferior, semi-legible fonts.

There is increasing suspicion that the auto-
mated office has not provided the increases in pro-
ductivity promised by computer system vendors.
One reason is that the fonts on such systems have
not been as legible as the traditional typewriter
and printing typefaces familiar to the literate of-
fice worker. Modern office workers spend a vast
amount of time reading digital fonts. Literate edu-
cation in modern society is an immense investment
matched by the expense of office workers’ salaries
and wages. Fonts of inferior legibility waste these
investments.

Grayscaling

While designers have been working on aesthetic
solutions to screen font design, engineers have
beenseekingtechnical solutions.Itis expensive and
difficult to increase the spatial resolution of CRT
screens, but ideal workstations should be inexpen-
sive — no more than the cost of a typewriter - and
so other solutions are being explored. One idea is
to use varying levels of pixel intensity to increase
the display information from one bit per pixel (the
black & white bit-map display of current worksta-
tions) to several bits per pixel (the grayscaled dis-
play of a few experimental and commercial work-
stations). A monochromatic but variable intensity
pixel-map display is often called a grayscale display
[11].

Grayscaled fonts contain more information and
appear to better depict traditional letterforms, at
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least when viewed in isolated words and phrases.
Also, the low-contrast edges of grayscaled curves
and diagonals reduce the visual effect of the jag-
gies. The letterforms appear smoother. There is ex-
perimental evidence that for small details, the vi-
sual system confuses intensity and size. Many re-
searchers have therefore suggested that grayscaled
text would better approximate the fine details of
traditional alphabets, and thus be more readable
than bitmap text.

The improved legibility of grayscaled fonts for
continuous, long-term reading, is, however, only
an hypothesis. There is also evidence that the eye
relies upon high-contrast edges to focus the text
image during reading, and that readers may suffer
greater visual fatigue when reading text displayed
on a CRT raster [12]. The soft, low-contrast edges
of grayscaled fonts could actually reduce legibil-
ity by preventing the visual focusing mechanism
from finding a clear, sharp edge. Our alphabet has
evolved as a system of high-contrast edges. It is not
yet certain whether the conservative eyes of read-
ers will accept grayscaled text, nor whether gray-
scaled text is physiologically more difficult to read,
despite its less jagged appearance. It may be that
a “hybrid” grayscaled font in which the vertical
stems have high-contrast edges but the curves and
diagonals have gray valued edges would be less fa-
tiguing during long reading sessions. At the mo-
ment, there are more speculations than firm knowl-
edge.

Grayscaled fonts are also more expensive to dis-
play and more difficult to design. They require
more bits of memory to store the gray value at each
pixel, and more elaborate and stable CRT’s and con-
troller electronics. The shapes of grayscaled letter-
forms are inherently more dependent on precise
control of brightness and contrast on the CRT mon-
itor.

The design of gray valued characters is prob-
lematic because as yet we have no common agree-
ment on what kinds of digital filters will optimize
legibility when creating grayscaled low-resolution
fonts from high-resolution master images. Pixel-
by-pixel construction of grayscaled fonts by let-
tering artists could aid in the perceptual problem,
since the artist could judge the designs by eye on
the screen, but there are no effective pixel-editing
tools for grayscaled fonts as yet. We do not yet have
a clear concept of how such an editor should func-
tion for an artist, since the choice of gray value for
each pixel is influenced by the values of the neigh-
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boring pixels. Furthermore, it may be difficult for
artists to work with more than 8 levels of gray (3
bits of information per pixel), while some research
suggests that 64 or 128 gray levels (6 or 7 bits of
information per pixel) is theoretically optimal for
screen font representation.

Proper letter spacing also remains a serious
problem with grayscaled fonts. For economy, a
computer system will store each letter in only one
grayscaled version for a given font size, but spacing
and fitting would be improved by using alternate
versions of characters, selected according to their
combination. Yet, if multiple versions are stored or
automatically produced from high-level masters,
there will be serious computational and memory
burdens on the system. Special hardware would be
necessary to convert fonts stored as outlines into
grayscaled text “on the fly”, line by line rather than
character by character.

Grayscaled fonts show great promise, and sev-
eral grayscale screen displays will certainly be pro-
duced in the next few years, but the problems of
grayscale are subtle and not easily solved. Legibil-
ity forlong-termreading and working at grayscaled
display screens may prove elusive without further
research and experimentation.

The Visual Editing of Text

Of course, legible fonts are simply the foundation
of typography. The type designer builds and tunes
the perceptual instrument, but authors and edi-
tors compose the text, and typographers and print-
ers display it in its full-dress performance for the
reader. Once readable types have been achieved
on workstation screens, the next problem of com-
puterliteracy is to produce clear layouts and under-
standable arrangements — what Fernand Baudin
has called “the visual editing of text” [13] and what
Max Caflisch has called “the logical arrangement of
information”[14]. Even with legible types, the com-
puter display screen remains ignorant of the accu-
mulated knowledge of our typographic traditions.
It is an unexplored wilderness that beckons a new
generation of typographers.

Conclusion

The personal workstation offers powerful tools to
the literate person, but these tools are dependent
upontypography:legible fontsin effective arrange-
ments. Digital technology is presently limited in
its ability to reproduce analog letterforms: tradi-
tional typefaces cannot be successfully reproduced




at current display screen resolutions. To optimize
legibility, new fonts mustbe designed for the digital
media. These fonts will be most effectiveif they take
intoaccountthenature of the human visual system,
thelogical and historical principles that shaped our
present day alphabets, the characteristics of cur-
rent digital imaging devices, and the conceptual
structures underlying typographic variations and
arrangements. Computer technology requires a ty-
pography that preserves the fundamental features
of the literate image, but expresses them with new
clarity in a new medium.
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Simula and C - a Comparison

by
Georg P. Philippot
NCR Education Nordic Area
P.0.Box 2685 St.Hanshaugen
N-0131 OSLO 1
Norway

1. Introduction

A newcomer to the UNIX world, Simula is an object oriented language of
the same family as C. They are both block structured, machine
independent, general purpose high level languages. Though in principle you
may use any of the two for any given task, there are individual areas for
which one is better than the other.

This paper describes the similarities and differences between two great
languages, assuming some basic knowledge of C. It is hoped that this may
give the audience some appetite for learning more about Simula and how it
fits into a UNIX environment.

2. When are they equal?

As mentioned above, Simula and C belong to the same family of languages.
This family also includes Pascal, Ada, and Modula, to mention a few. This,
for one thing, means that a Simula programmer easily learns C and vice
versa. Although they may look differently, programs in the two languages
have the same structure, as can be seen from the stepwise development of
this program:

main() { procedure main; begin
initialiser(); initialiser;
oversett(); oversett;
} end;

initialiser() { procedure initialiser; begin
} end;

oversett() { procedure oversett; begin
} end;

As we will see, the compilation process (under the UNIX system) is
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identical. The source program, on a .c or .sim file, is compiled and then
linked to become an absolute program on a.out format. Even some of the
preprocessor commands are equivalent, even though two different
preprocessors are used: #include is %compile, #if #else #endif is %if
%else %fi. Naturally, program libraries can be constructed in the same
manner for Simula as for C.

Simula’'s types are basically those of Algol. In C we find the same types,
though the names tend to be shorter. The only type which has no paratlel
is unsigned. Most constants are similar in both languages, for example,
strings can either be fixed named locations or pointed to by char pointers.

Several control structures are equivalent: if, for, while exist in both
languages. As we shall see later, C has at least one more that would be
nice to have in Simula as well.

3. C advantages

The macro feature of C is unique. It aliows the user to make tradeoffs
between speed and program size with very few changes in the source code.
Of course Simula might do this with a preprocessor - perhaps even cpp -
but it doesn't. The only macro function supported by Simula is that of
symbolic constants.

Due to the simplicity of C's array structure, it is also very flexible.
without any effort, programmers can create, for example,
multidimensional arrays with variable row lengths. Simula can do the
same thing using objects, but at an extremely high cost of space and time.

C allows general types, thus an object can be declared inline, not just
generated dynamically. This possibility saves space and time overhead
when the number and types of objects are known anyway.

All kinds of variables and inline objects, even arrays, can be initialised in
their declarations. This has a documentary value, and it makes the
program more compact. In most cases this form of initialisation is also
faster.

C has a plethora of operators. Though most of these exist in all languages,
C has the specialty of allowing most of the bit and shift manipulations
that are normally only possible in assembly code. Of course you can do the
same thing through special library procedures, but the program then soon
becomes full of parentheses and procedure calls, and the intention of the
bit operations becomes fairly unreadable. It is probably for this reason
that C has been called “a high level assembly language”.
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Here is the one control statement missing from Simula: A case statement.
Strangely enough, this exists in most other languages of the family, but
then Simula is one of the oldest, and the masters of that language have
never managed to agree upon a suitable syntax for itl

Being brought up together with UNIX, C has a complete library in the sense
that all UNIX system calls are available as routines. This is difficult to
accomplish in other languages, since they do not develop in paraliel with
the operating system(s) they are used on.

| like the printf call. It is compact, flexible, readable for those who
remember its conventions. It takes several different calls to generate the
same output in Simula. The reason why Simula can never have a printf is
simply that it does not support variable argument count and types.

4. Simula advantages

C has many useful features. One may be so much attracted to these, that
one is led to believe the only disadvantage is that of being a little hard to
read (for beginners). However, there are some strong cards up Simula's
sleeve t00.

Take the garbage collector, for example. There is no need to remember to
free unused storage, and also no danger that someone may still be using it.
All you have to do is release the last pointer to an object, and if you really
did, then sooner or later the g.c. comes along and eats it up. This of course
requires somewhat more disciplined use of pointers than is the case in C.

Simula objects support the notion of letting the objects themselves do
appropriate actions determined by their type, also known as object
oriented programming. An important tool for this is the possibility of
declaring procedures local to objects. These may even be virtual, i.e. the
same message from another object may trigger different procedures
depending upon who is receiving the message.

In addition to value mode, procedure parameters may be transmitted by
reference or by name. The specifications for this are entirely contained
within the procedure declaration, so the caller need not know whether a
value or an address should be passed.

FILE objects in Simula can exist also before being opened or after being
closed. This is sometimes useful, for example when the same file is to be
processed several times.

The long jump in C looks extremely clumsy. It is impossible to jump to
somewhere you have never been before, and you have to keep label
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jmp_buf wil;

int errorcode;
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errorcode til a velge riktige
handlinger og/eller meldinger...
return;
};

Vilkarlig rutine i feilsituasjon

longjmp(wl, xxx);

C programmering =
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variables for every potential jump destination. In Simula a simple gote is
sufficient. Of course C has a good reason (stack balance) behind its
implementation of long jumps, but this does not help the user.

S. Interesting and useful differences

Simula is a high Tevel language, C is rather low. This only means they may
have slightly different applications, not that one is inferior. We will look
at some differences which may help you choose the right one in each case.

First of all, they look differently. Most Simula programmers think that C
looks ugly. Fortunately, some #define statements will allow stubborn
Simula fans to write C programs that almost look like Simula. However,
time shows that they soon learn to appreciate the opportunity of writing
compact programs, and forget about their beloved begin end symbols.

Arrays and pointers are a quite important issue in this comparison. Being
very flexible in C, they are totally unsafe - nothing is checked by the C run
time system, and "anything” can happen. The reward is speed. In Simula,
on the other hand, there are restrictions - sometimes severe - but you can
never use a wrong pointer or exceed an array bound without the friendly
system’s telling you at once. Similarly, the union is a very dangerous
concept, only available in C, which allows memory to be saved by letting
the same cell take on different meanings at different phases of the
program.

The input/output system is actually quite similar. Both languages use a
set of procedures for /0, callable by the user in his own preferred
sequence. They only have different names and parameters.

6. Conclusion

Judging from my own experience, | would recommend Simula for the safe
development of both simple and complex programs. The checks built into
the run time system save the programmer from wasting countless hours on
debugging.

On the other hand, | would not hesitate to use C, even translate a Simula
program into C, whenever speed can and should be increased by an order of
magnitude. | can also recommend C for those areas of file and bit
manipulation where a Simula program becomes clumsy.

The UNIX system allows the complete application to consist of a mixture
of modules, each one programmed independently in that language which
best supports that module. Thus one can make the considerations above
for each individual section in turn, and then use pipes and a supervisory C
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program to connect these sections together.
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A C++ Tutorial

Bjarne Stroustrup

Bell Laboratories
Murray Hill, New Jersey 07974

“The only way to learn a new programming language
is by writing programs in it” (K&R',page 5).

Abstract

This is a tutorial introduction to the C++ programming language. With few exceptions C++ is
a superset of the C programming language. After the introduction, about a third of the text
presents the more conventional features of C++: basic types, declarations, expressions, statements,
and functions. The remainder concentrates on C++’s facilities for data abstraction: user-defined
types, data-hiding, user-defined operators, and hierarchies of user-defined types. Finally there are a
few comments on program structure, compatibility with C, efficiency and a caveat.

1 Introduction

This tutorial will guide you through a sequence of C++ programs and program fragments. At
the end you should have a general idea about the facilities of C++, and enough information to
write simple programs. Little is assumed about your knowledge of programming, but the progress
through the concepts may be mind-boggling if you are a novice. If you are familiar with C you will
notice that with few exceptions C++ is a superset of it. However, the examples have been chosen
so that only few could have been written identically in C.

A precise and complete explanation of the concepts involved in even the smallest complete
example would require pages of definitions. To avoid this paper turning into a manual or a discus-
sion of general ideas, examples are presented first with only the briefest definition of the terms used.
Many of these terms are reviewed later when a larger body of examples are available to aid the dis-
cussion. Reference 2 contains a more systematic and complete discussion of C++.

Output
Let us first of all write a program to write a line of output:

#include <stream.h>

main()
{

cout<<"Hello, world\n";
b

The line #include <stream.h> instructs the compiler to "include” the declarations of the
standard input and output facilities into the program. Without these declarations the statement
cout<<"Hello, world\n"; would make no sense. The operator << (“put to”) writes its second
argument onto its first (in this case, the string "Hello, world\n" onto the standard output
stream cout). A string is a sequence of characters surrounded by double quotes; in a string the
backslash character \ followed by another character denotes a single “special” character; in this
case \n is the newline character, so that the characters written are Hel Lo, world and newline.

The rest of the program
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main() € ... }

defines a function called main. A program must have a function named main, and the program
starts by executing that function.

Compilation

Where did the output stream cout and the code implementing the output operator << come
from? A C++ program must be compiled to produce executable code (the compilation process is
essentially the same as for C, and shares most of the programs involved): The program text is read
and analyzed, and if no error is found code is generated. Then the program is examined to find
names and operators that have been used but not defined (in our case cout and <<). If possible,
the program is then completed by adding the missing definitions from a library (there is a standard
library and users can provide their own). In our case cout and << were declared (in stream.h);
that is, their types were given, but no details of their implementation were provided. The standard
library contains the specification of the space and initialization code for cout and the code for <<.
Naturally there are many other things in that library, some of which are declared in stream.h, but
only the subset of the library needed to complete our program is added to the compiled version.
The C++ compile command is typically called CC. It is used like cc for C programs; see your
manual for details. Assuming the “Hello, world” program mentioned above is stored in a file called
hello.c you can compile and run it like this ($ is the system’s prompt):

$ CC hello.c
$ a.out
Hello, world
$

a.out is the default name for the executable result of a compilation.

Input

The following (rather verbose) conversion program prompts you to enter a number of inches.
When you have done that it will print the corresponding number of centimeters.

#include <stream.h>

main()

{
int inch;
cout<<"inches=";
cin>>inch;
cout<<inch;
cout<k" in = ";
cout<<inch*2.54%;
cout<<" cm\n";

>

The first line of main() declares an integer variable inch. Its value is read in using the operator
>> (“get from”) on the standard input stream cin. The declarations of cin and >> are of course
found in <stream.h>.

After executing it your terminal might look like this

$ a.out
inches=12

12 in = 30.48 cm
$

This example had one statement per output operation; this is unnecessarily verbose. The output
operator << can be applied to its own result, so that the last four output operations could have been
written in a single statement:
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cout<<inch<<" in = "<<inch*2.54<<" cm\n";

Input and output will be described in greater detail below. In fact, this whole tutorial can be
seen as an explanation of how it is possible to write the programs above in a language that does not
provide an input or an output operator! That is, the C++ language does not define facilities for
input and output; instead, the operators >> and << were defined using only language facilities avail-
able to every programmer.

2 Types and Declarations

Every name and every expression has a type that determines the operations that may be per-
formed on it. For example, the declaration

int inch;

specifies that inch is of type int; that is, inch is an integer variable.

A declaration is a statement that introduces a name into the program. It must specify a type for
that name. A type defines the proper use of a name or an expression. Operators like +, =, *, and /
are defined for integers; so are, after stream.h has been included, the input operator >> and the
output operator <<. A

The type of an object determines not only which operations can be applied to it, but also the
meaning of those operations. For example, the statement

cout<<inch<<" in = "<<inch*2.54<<" cm\n";

correctly treats the 4 values to be written out differently. The strings are printed as presented,
whereas the integer inch is converted from its internal representation to a character representation
fit for human eyes. So is the floating point number obtained by multiplying the integer inch by
the floating point constant 2.54.

C++ has several basic types and several ways of creating new ones. The simplest forms of
C++ types are presented in the sections below; the more interesting ones are saved for later.

Basic Types
The basic types, corresponding most directly to hardware storage facilities are:

char short 1int Llong float double

The first four are used for representing integers. A variable of type char is of the natural size to
hold a character on a given machine (typically a byte), and a variable int is of the natural size for
integer arithmetic on a given machine (typically a word). The range of integers that can be
represented by a type depends on its size. In C++ ”sizes” are measured in multiples of the size of
a char, so by definition char has size one. The relation between the integer types can be written
like this:

1=sizeof{char)<sizeof{short)<sizeof{int) <sizeofflong)

In general it is unwise to assume more about the sizes of integers. In particular, it is not true for all
machines that an integer is large enough to hold a pointer.
Float and double are used for representing floating point numbers.

sizeof(float) < sizeof{double)

The adjective const can be applied to a basic type to yield a type that has identical properties
to the original, except that the value of variables of a const type cannot be changed after initializa-
tion.

const float pi = 3.14;
const char plus = '+';

Note that most often a constant defined like this need not occupy storage; its value can simply be
used directly where needed. A constant MUST be initialized at the point of declaration, as shown
above. For variables the initialization is optional, but strongly recommended. There are very few
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good reasons for introducing a local variable without initializing it.
The arithmetic operators

+ (both unary and binary)
(both unary and binary)

*
/

can be used for any combination of these types. So can the comparison operators

(equal)

(not equal)

(Less than)

(greater than)

(less than or equal)
(greater than or equal)

though if you use == or != on the result of floating point computations you are likely to get what
you deserve. Note that integer division will yield an integer result: 7/2 is 3. The operator % can
be used on integers to produce the remainder: 7%2 is 1.

In assignments and in arithmetic operations C++ will perform all meaningful conversions
between the basic types so that they can be mixed freely. For example:

double d = 1;
int i = 1;

d = d+i;

i = d+i;

The compiler will, however, warn about loss of precision in the last assignment.

Derived Types
These operators create new types from the basic types:

* pointer to

*const constant pointer to
& reference to

] vector of

@) function returning

For example,

char* p;

char *const q;
char v[10]1;
int f(char¥*);

declares p as a pointer to character, q as a constant pointer to character, v as a vector of 10 charac-
ters, and f as a function taking an argument of type char* and returning an integer. A pointer
variable can hold the address of an object of the appropriate type. For example:

char c;
p = &c;

Unary & is the “address of” operator.
The name of a vector doubles as the name of its first element, so given the declarations above
you could write:

// means p = &v[0]

p v,
X f(v); // means x f(&vl0])

All vectors have zero as their lower bound. The characters // starts a comments which terminates
by the end of the line they occur on.
Functions will be explained in §4. References will be explained in §10.
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3 Expressions and Statements

Except for a minor extension to the syntax of the for statement, C++ statements are identical
to those provided by C, but note that in C++ local declarations are statements and can be mixed
freely with other statements. Except for the addition of the scope resolution operator :: (§14)
C++ expressions are identical to those provided by C. If you know C, please skip this section.
The discussion of expressions and statements below is very brief.

Expressions

C++ has a host of operators that will be explained if and where needed. However, it can be
noted that the operators

! (not)
- (complement)
(and)
(exclusive or)
(inclusive or)
< (left logical shift)
> (right logical shift)

VA— >0

apply to integers, and that there is no separate data type for logical operations.

C++ has an assignment operator =, rather than an “assignment statement” as in some
languages. Assignments can therefore appear in contexts where one might not expect them. For
example x=sqrt(a=3*x). This is often useful; for example a=b=c means assign ¢ to b and then
to a. Another aspect of the assignment operator is that it can be combined with most binary opera-
tors into “assignment operators”. For example xLi+31*=4 means x[i+31=x[i+31*4 except the
expression x[i+3] is evaluated only once. This gives a pleasing degree of run-time efficiency
without having to resort to optimizing compilers. It is also more concise.

Pointers are used extensively in most C++ programs. The unary * operator dereferences a
pointer. For example, given char* p; *p is the character pointed to by p. An alternative way of
expressing this is pLO]. In fact, pLi] is defined to mean *(p+i). Not only can a vector name be
used as a pointer but a pointer can be used as if it were the name of a vector. A vector name is a
constant though, whereas a pointer is a variable unless declared otherwise. The increment operator
++ and the decrement operator == are often used for pointers.

Expression statements

The most common form of a statement is an expression statement; it consists of an expression
followed by a semicolon. For example:

a = b*3+c;
cout<<'"go go go";
lseek(fd,0,2);

Null statements
The simplest statement is the null statement,
it does nothing. It can, however, be useful when the syntax requires a statement, but you have no
need for one.
Blocks
A block is a possibly empty list of statements enclosed in curly braces. For example:
{ a=b+2; b++; }

It enables you to treat several statements as one. The scope of a name declared in a block extends
from the point of declaration to the end of the block. It can be “hidden” by declarations of the
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same name in inner blocks.

If statements

The following example performs both inch to centimeter and centimeter to inch conversion; you
are supposed to indicate the unit of the input by appending i for inches or ¢ for centimeters:

#include <stream.h>

main()
{
const float fac = 2.54;
float x, in, cm;
char ¢ch = 0;
cout<<"enter length: ";
cin>>x>>ch;
if (ch == 'i'") {
in X,
cm x*fac;
3
else if (ch == '¢') {

cout<<in<<"” in = "<<cm<<" cm\n";
}

As can be seen the condition in an if-statement must be parenthesized. The else part may be
omitted. For the input 101 this program will produce

10 in = 25.4 cm

Switch statements

A switch-statement tests a value against a set of constants. The tests in the example above could
have been written like this:

switch (ch) {
case 'i':
in X;
cm x*fac;
break;
case 'c':
in = x/fac;
cm = x;
break;
default:
in = cm = 0;
break;

)

The break statements are used to exit the switch-statement. The case constants must be distinct,
and if the value tested does not match any of them the default is chosen.

While statements

Consider copying a string given a pointer p to its first character and a pointer q the target. By
convention a string is terminated by the character with the integer value 0.
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while (*p != 0) {

*q = *p;
qQ = qt1;
P = pt1;
)
*q = 0;

The condition following while must be parenthesized. The condition is evaluated, and if its value
is non-zero the statement directly following is executed. This carries on until the condition evalu-
ates to zero.
This example is rather verbose. The operator ++ can be used to express increment directly, and
the test can also be simplified:
while (*p) *q++ = *p++;
*q = 0;
where the construct *p++ means: “take the character pointed to by p then increment p”.
The example can be further compressed since the pointer p is dereferenced twice each time
round the loop. The character copy can be performed at the same time as the condition is tested:

while (*q++ = *p++) ; .
which takes the character pointed to by p, increments p, copies that character to the location
pointed to by q and increments q. If the character is non-zero, the loop is repeated. Since all the

work is done in the condition, no statement is needed. The null-statement is used to indicate this.
Cis both loved and hated for enabling such extremely terse expression oriented coding.

For statements

Consider copying ten elements from one vector to another:
for (int i=0; i<10; i++) qLil=pLi];
This is equivalent to
int i = 0;
while (i<10) (
qlil = pLil;
it++;
}
but more readable since all the information controlling the loop is localized. The first part of a for-
statement need not be a declaration, any statement will do. For example:
for (i=0; i<10; i++) qlil=pl[il;

is again equivalent provided 1 is suitably declared earlier.

4 Functions

A function is a named part of a program that can be invoked from other parts of the program as
often as needed. For example, consider writing out powers of 2:

float pow(float,int);

main()
{

for (int i=0; i<10; i++) cout<<pow(2,i)<<"\n";
}

The first line is a function declaration specifying pow to be a function taking a float and an int
argument returning a float. A function declaration is used wherever the type of a function
defined elsewhere is needed.

In a call each function argument is checked against its expected type exactly as if a variable of
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the declared type were being initialized. This ensures proper type checking and type conversion.
For example, a call pow(12.3,"10") will cause the compiler to complain because "0" is a
string and not an int, and for the call pow(2,1) the compiler will convert the integer constant 2
to a float as expected by the function.

Pow might be defined as a power function like this:

float pow(float x, int n)
{
if (n < 0) error("sorry, negative exponents");

switch (n) {
case 0: return 1;
case 1: return x;
default: return x*pow(x,n-1);
)
)

The first part of a function definition specifies the name of the function, the type of the value it
returns (if any), and the types and names of its arguments (if any). A value is returned from a func-
tion using a return-statement as shown.

Different functions typically have different names, but for functions performing similar tasks on
different types of objects it is sometimes nicer to let these functions have the same name. When
their argument types are different the compiler can distinguish them anyway. For example, one
could have one power function for integers and another for floating point variables:

overload pow;
int pow(int,int);
double pow(double,doubtle);

pow(2,10);

X
y pow(2.0,10.0);

S Program structure

A C++ program typically consists of many source files, each containing a sequence of declara-
tions of types, functions, variables, and constants. To refer to the same thing in two source files it
must be declared appropriately. For example:

extern double sqrt(double);
extern istream cin;

The most common way of guaranteeing consistency between source files is to place such declara-
tions in separate files, called “header files”, and then “include”, that is copy, those header files in all
files needing the declarations. For example, if the declaration of sqrt was stored in the header file
for the standard mathematical functions math.h, and you wanted to take the square root of 4 you
could write:

#include <math.h>
Il ...
X = sqrt(4);

Since a typical header file is included into many source files it does not contain declarations that
should not be replicated. For example, function bodies are only provided for inline functions (§13)
and initializers only for constants (§2.1). Except for those cases, a header file is a repository for
type information; it provides an interface between separately compiled parts of a program.

In an include directive a file name enclosed in angle brackets like <math.h> above refers to the
file of that name in a “standard include directory”; files elsewhere are referred to by names enclosed
in double quotes. For example

#include "math1.h"
#include "/usr/bs/math2.h"
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would include math1.h from the user’s current directory and math2.h from the directory
/usr/bs.

6 Structures

Let us define a new type ostream to represent an output stream. The first version is trivially
simple, but it will be refined until you get a feel for the real ostream used in the stream i/o sys-
tem. The idea is to put characters into a buffer buf until it is full and then write buf to a file
file:

struct ostream {
FILE* file;
int nextchar;

char buf[1281;
};

You can now declare an output stream like this:
ostream my out = { stdout, 0 };

The construct
={ ... 2

is an initializer. The members of my out are initialized in order, so that my out.file is
stdout, my_out.nextchar is zero and my_out.buf uninitialized. (The . (dot) operator is used
to access a member of a structure; stdout is the “standard output stream” of the underlying
operating system. The basic output operation write can be used for stdout).

A simple character output function can be defined for an ostream like this:

void putchar(ostream* s, char ch)

{
if (s=->nextchar==128) {
write(fileno(s->file),s->buf,128);
s->nextchar = 0;
>
s=->bufls->nextchar++] = ch;
}

The keyword void is used to indicate that putchar does not return a value. As shown, the ->
operator is used to get to a member of a structure given a pointer. This code is sloppy (why?), but
will actually handle the simplest cases; by writing

putchar(&my out,'H');

putchar(&my out,'e');

/...

you could eventually manage to say Hello, world.
Naturally you would next define a function like

void putstring(ostream* s, char* p)
{

for (int i = 0; pLil; i++) putchar(s,p[il);
>

and a putlong, and a putdouble, etc.
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7 Problems

Proceeding as described above you could get a quite acceptable i/o system: C standard i/0 is
designed along this line. To save writing you would add functions that implicitly applied to the
most common output stream. For example:

void mputlong(long i)
{

putlong(&my out,i);
b

These functions produce a character string representaticr of their arguments. Versions that write
that representation onto a string instead of a file are also useful:

void sputlong(char* s, long 1)
{

/! ...
)

However, there are problems. The most obvious, the proliferation of function names, can be han-
dled simply by giving them all the same name:

overload put;

void put{ostream*, char%);
void put(ostream*, long);
void put(ostream*, double);
/1 ...

void put(char*);

void put(long);

/1l ...

void put(char*, char¥*);
/...

Worse, there is no formal connection between these put functions and type ostream. Suppose
you wanted to change the representation of an ostream. In any but the smallest program there is
no easy way of finding all the places a member of ostream was used, and supposing ostream was
a type used by many programs, how would you find the programs needing modification after even
the most trivial change? Reversing the order of declaration of file and nextchar would poten-
tially affect every program on your system, and would also invalidate every initializer.

8 C(lasses

A solution is to split the declaration of ostream into two parts: a private part holding informa-
tion only needed by its implementer, and a public part presenting an interface to the general public:

class ostream {
FILE* file;
int nextchar;
char buf[128];
void putchar(char);
public:
put(char*);
put(long);
put(double);
};

Now a user can only call those three put functions, and only those can use the names of the data
members. In other words a class is a struct whose members are private unless their declarations
appear after the label public. For example

my_out.put("Hetlo, world\n");

calls put using the usual syntax for members. A member function can only be called for a specified
object of its type. When in a member function, the object for which the function was called is
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accessed through a pointer called this. In a member function of class C, the keyword this is
implicitly defined as

C*x this;
You can now write

void ostream::put(char* p)
{

while (*p) this->putchar(*p++);
}

The ostream prefix is necessary to distinguish ostream’s put from functions called put in other
classes. The function body can be simplified, however, since this use of this is optional; in a
member function, member names used without qualification refer to the object for which the func-
tion was called.

void ostream::put(char* p)
{

while (*p) putchar(*p++);
)

would have been enough, and that is the more typical way of writing member functions. Conse-
quently, most uses of this are implicit.

A struct is actually defined as a class with all members public, so a struct can have
member functions too.

Since the representation of an ostream now is private, output functions for user-defined types
must be written in terms of the basic put functions. For example, if you had a type complex you
could define a put function for it;

void put(ostream* s, complex z)

{
s=>put("(");
s=>put(z.real);
s=>put(",");
s=>put(z.imag);
s=>put(")");

)

It could be called like this:
complex z
/...

put(&my out, z);

This is actually not very nice: the syntax for printing a value of a “basic” type is different from the
one needed to print a value of a user-defined type. Furthermore, you need to write a separate call
for each value.

9 Operator Overloading

Both problems can be overcome by using an output operator rather than an output function. To
define a C++ operator @ for a user-defined type you define a function called operatora@ which
takes arguments of the appropriate type. For example:
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class ostream {

/! ...

ostream operator<<(char¥);
};

ostream ostream::operator<<(char* p)
{

while (*p) putchar(*p++);

return *this;
}

defines the << operator as a member of class ostream, so that s<<p will be interpreted as
s.operator<<(p) when s is an ostream and p is a character pointer. Returning the ostream
as the return value enables you to apply << to the result of an output operation. For example
s<<p<<q is interpreted as (s.operator<<(p)).operator<<(q). This is the way output
operations are provided for the “basic” types. Using the set of operations provided as public
members of class ostream, you can now define << for a user-defined type like complex without
modifying the declaration of class ostream:

ostream operator<<(ostream s, complex 2z)
{

return s<<"("<<z.real<<","<<z.imag<<")";
}

This will write the values out in the right order since <<, like most C++ operators, groups left-to-
right; that is, a<<b<<c means (a<<b)<<c. The compiler knows the difference between member
functions and non-member functions when interpreting operators. For example, if z is a complex
variable s<<z will be expanded using the standard (non-member) function call
operator<<(s,z).

10 References

This last version of ostream unfortunately contains a serious error and is furthermore very
inefficient. The problem is that the ostream is copied twice for each use of <<: once as an argu-
ment and once as the return value. This leaves nextchar unchanged after a call (the example
above does work correctly, however; why?). A facility for passing a pointer to that ostream rather
than the ostream itself is needed.

This can be achieved using “references”. A reference acts as a name for an object; T& means
reference to T. A reference must be initialized and becomes an alternative name for the object it is
initialized with. For example:

ostreamg s1 = my_out;

ostream& sZ2 = cout;

The reference s1 and my _out can now be used in the same way, and with the same meaning. For
example, assignment

s1 = s2;

copies the object referred to by s2, that is cout into the object referred to by s1, that is my_out.
Members are selected using the dot operator

s1.put("don't use ->");
and if you apply the address operator you get the address of the object referred to:
&s1 == &my_out

The first obvious use of references is to ensure that a pointer rather than the object itself is
passed to an output function (this is called “call by reference” in some other languages):
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ostream& operator(ostream& s, complex z) {
return s<<"(""'<<z.real<<","<<z.imag<<'")";
b

Interestingly enough the body of this function is unchanged, but had you assigned to s you would
now have affected the object given as the argument itself rather than a copy. In this case, returning
a reference also improves efficiency.

References are also essential for the definition of input streams, since the input operator is given
the variable to read into as an operand.

class istream {
/7 ...
int state;

public:
istream& operator>>(charg&);
istream& operator>>(charx);
istream& operator>>(int&);
istream& operator>>(longé&);
// ...

};

Note that istream needs more functions than ostream, since type conversion applies to basic
types like int and Long, but not to pointers to those types.

11 Constructors

The definition of ostream as a class made the data members private. In particular it rendered
the initialization
ostream my out = { stdout, 0 };

illegal. Only a member function can access the private members, so you must provide one for ini-
tialization. Such a function is called a constructor and is distinguished by having the same name as
its class:

class ostream {

/1l ...

ostream(FILE* fp);
ostream(int size, char* s);
}; :

Here two were provided; one takes a file descriptor like stdout above for real output; the other

takes a character pointer and a size for string formatting.
You can now declare streams like this:

ostream my_out(stdout);
char xx[2561];
ostream xx_stream(256,xx);

Providing a class with a constructor not only provides a way of initializing objects, but also
ensures that all objects of that class will be initialized. It is not possible to declare a variable of a
class with a constructor without a constructor being called. If a class has a constructor that does
not take arguments, that constructor will be called if no arguments are given in the declaration.

12 Vectors

The vector concept built into C++ was designed (for C) to allow maximal run-time efficiency
and minimal store overhead. It is also, especially when used together with pointers, an extremely
versatile tool for building “higher level” facilities. You could, however, complain that a vector size
must be specified as a constant, that there is no vector bounds checking, etc. An answer to such
complaints is “you can program that yourself”. Let us therefore test C++ s abstraction facilities by
trying to provide these features for vector types of our own design and observe the difficulties
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involved, the costs incurred, and the convenience of use of the resulting vector types.

class vector {
int*y;
int sz;
public:
vector(int);
“vector();
int size() { return sz; }
void set_size(int);
int& operator[1(int);
int& elem(int i) { return vlil;
};

The function size returns the number of elements of the vector, that is indices must be in the
range [0..size()-1]; set_size is provided to change that size; elem provides access to
members without checking the index, and operator[] provides access with bounds check.

The idea is to have the class itself be a fixed sized structure controlling access to the actual vec-
tor storage which is allocated by the vector constructor using the free store allocator operator new:

vector::vector(int s)

{
if (s<=0) error("bad vector size'");
sz = s;
v = new intls];

b

You can now declare vectors very nearly as elegantly as “real vectors”:

vector v1(100);
vector v2(nelem*2-4);

The access operation can be defined as

int& vector::operatorll(int 1) {
if (0<=i && i<sz) return &v[il;
error("vector index out of range')
}

The operator && (andand) is a logical-and operator. Its right hand operand is only evaluated if
necessary, that is, provided its left hand operand does not evaluate to zero. Returning a reference
ensures that the [] notation can be used on either side of an assignment:

vilx] = v2lyl;

The function with the funny name “vector is a destructor. A destructor is called implicitly
when a class object goes out of scope, so if you define it like this:

vector::"vector()
{

delete v;
3

it will, using the de Le te operator, deallocate the space allocated by the constructor, so that when a
vector goes out of scope all its space is reclaimed for potential re-use.

13 Inline expansion

Given the frequency of very small functions you might worry about the cost of function calls. A
member function is no more expensive to call than a non-member function with the same number of
arguments (remembering that a member function always has at least one argument), and C++
function calls are about as efficient as you can get for any language. However, for extremely small
functions the call overhead can become an issue. If so, you might consider specifying a function to
be “inline expanded”. If you do, the compiler will try to generate the proper code for the function
at the place of the call. The semantics of the call is unchanged. For example, if vector::size()

EUUG Copenhagen. sept. 1985. Page 152




and vector::elem() were inline substituted:

vector s(100);
/1l ...

i = s.size()

x = elem(i-1);

would generate code equivalent to

/...
i = 100;
x = s.vli-1]1;

The C++ compiler is usually smart enough to generate code as good as you would have got from
straightforward macro expansion. Naturally it will sometimes have to use temporary variables and
other little tricks to preserve the semantics.

You can indicate that you want a function inline expanded by preceding its definition by the
keyword inline, or, for a member function, simply by including the function definition in the class
declaration, as was done for size() and elem() above.

Inline functions slow down compilation and clutter class declarations so they should be avoided
when they are not necessary. For inline substitution to be a significant benefit for a function the
function must be very small. When used well inline functions simultaneously increase the run-
ning speed and decrease the object code size.

14 Derived classes

Now let us define a vector for which a user can define the index bounds:

class vec: public vector {
int low, high;
public:
vec(int, int);
int& elem(int);
int& operator[l(int);
)

Defining vec as
: public vector

means that first of all a vec is a vector. That is, type vec has all the properties of type vector
in addition to the ones declared specifically for it. Class vector is said to be the “base” class for
vec, and conversely vec is said to be “derived” from vector.

Class vec modifies class vector by providing a different constructor, requiring the user to
specify the two index bounds rather than the size, and by providing its own access functions
elem() and operator[1(). A vec’s elem() is easily expressed in terms of vector’s elem():

int& vec::elem(int i)
{

return vector::elem(i-low);
}

The scope resolution operator : : is used to avoid getting caught in an infinite recursion by calling
vec::elem() from itself (unary : : can be used to refer to global names).
The constructor can be written like this:

vec::vec(int Lb, int hb) : (hb-lb+1)

<
if (hb-lb<0) hb = Lb;
low = Lb;
high = hb;

)’

The construct :Chb=lb+1) is used to specify the argument list needed for the base class
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constructor vector().

This line of development of the vector type can be explored further. It is quite simple to provide
multi-dimensional arrays (overload () as the access function), arrays where the number of dimen-
sions is specified as an argument to a constructor, Fortran style arrays that can be accessed both as
having two and three dimensions etc.

Such a class controls access to some data. Since all access is through the interface provided by
the public part of the class, the representation of the data can in fact be changed arbitrarily to suit
the needs of the implementer. For example, it would be trivial to change the representation of a
vector to a linked list. The other side of this coin is that any suitable interface for a given imple-
mentation can be provided.

15 More about operators
An alternative direction of development is to provide vectors with operations:

struct Vec : public vector {
Vec(int);
Vec(Vect);
“Vec();
void operator=(Vec&);
void operator*=(Veck);
void operator*=(int);
/1l ...

};

Since a Vec has no private members (except the ones inherited from vector) it can be specified as
a struct. The assignment operator is overloaded, and can be defined like this:

void Vec::operator=(Vec& a)

{
int s = size();
if (s'=a.size()) error("bad vector size for =");
for (int 1 = 0; i<s; i+t+) elem(i)=a.elem(i);

>

Assignment of Vecs now truly copies the elements, whereas assignment of vectors simply copies
the structure controlling access to the elements. However, the latter also happens when a vector is
copied without explicit use of the assignment operator: (1) when a vector is initialized by assign-
ment of another vector, (2) when a vector is passed as an argument, and (3) when a vector is
passed as the return value from a function. To gain control in these cases for Vec vectors you
define the constructor:

Vec::Vec(Vec& a) : (a.size())
{

int sz = a.size();

for (int i = 0; i<sz; i++) elem(i)=a.elem(i);
}

This constructor initializes a vector as the copy of another, and will be called in the cases mentioned
before.

For operators like = and += the expression on the left is clearly “special” and it seems natural to
implement them as operations on the object denoted by that expression. In particular, it is then
possible to change that object’s value. For operators like + and - the left hand operand does not
appear to need special attention. You could, for example, pass both arguments by value and still
get a correct implementation of +:
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Vec operator+(Vec a, Vec b)

{
int s = a.size();
if (s != b.size()) error("bad vector size for +");
Vec sum(s);
for (int i = 0; i<s; i++) sum.elem(i) = a.elem(i) + b.elem(i);
return sum;
b

This function does not operate directly on the representation of a vector, indeed it couldn’t since it
is not a member. However, it is sometimes desirable to allow non-member functions to access the
private part of a class object. For example, had there been no “unchecked access” function,
vector::elem(), you would have been forced to check the index i against the vector bounds
three times every time round the loop. This problem was avoided here, but it is typical, so there is
a mechanism for a class to grant access to its private part to a non-member function. A declaration
of the function preceded by the keyword friend is simply placed in the declaration of the class.
For example, given

class vector {

/1l ...

friend Vec operator+(Vec, Vec);
};

you could have written:

Vec operator+(Vec a, Vec b)

{
int s = a.size();
if (s != b.size()) error("bad vector size for +");
Vec& sum = new Vec(s);
int* sp = sum.v;
int* ap = a.v;
int* bp = b.v;
while (s=-) *sp++ = *ap++ + *bp++;
return sum;
X

One particularly useful aspect of the friend mechanism is that a function can be the friend of two
or more classes. To see this consider defining a vector and matrix and then defining a multipli-
cation function.

16 Generic vectors

“So far so good”, you might say, “but I want one of those vectors for the type matrix I just
defined”. Unfortunately, C++ does not provide a facility for defining a class vector with the type
of the elements as an argument. One way to proceed is to replicate the definition of both the class
and its member functions. This is not ideal, but often acceptable.

You can use a macro processor to mechanize that task. For example, class vector presented
above is a simplified version of a class that can be found in a standard header file. You could
write:
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#include <vector.h>
declare(vector,int);

main()
{

vector(int) vv(10);

vvl2]l = 3;

vvl10] = 4; /* range error */
}

implement{vector,int);

The file vector.h defines macros so that declare(vector,int) expands to the declaration of
a class vector very much like the one defined above, and implement(vector,int) expands to
the definitions of the functions of that class. Since implement(vector,int) expands into func-
tion definitions it can only be used once in a program, whereas declare(vector,int) must be
used once in every file manipulating this kind of integer vectors.

declare(vector,char);
/!l ...
implement(vector,char);

would give you a (separate) type of vector of characters.

17 Polymorphic vectors

Alternatively you might define your vector and other “container classes” in terms of pointers to
objects:

class cvector {
common** v;
/...

public:
common*& elem(int);
common*& operatorl[l(int);
/1l ...

};

Note that since pointers and not the objects themselves are stored in such vectors an object can be
“in” several such vectors at the same time. This is a very useful feature for container classes like
vectors, linked lists, classes, etc.

Furthermore, a pointer to a derived class can be assigned to a pointer to its base class, so the
cvector above can be used to hold pointers to objects of all classes derived from common. For
example:

class apple : public common { ... };
class orange : public common { ... };
/! ...

cvector fruitbowl(100);

/!l ...

apple aa;
orange 00;
/...
fruitbowl[0]
fruitbowl[1]

gaa;
&00;

However, the exact type of an object entered into such a container class is no longer known by the
compiler. For example, in the example above you know that an element of the vector is a common,
but is it an apple or an orange? Typically that exact type must be recovered later in order to use
the object correctly. To do this you must either store some form of type information in the object
itself or ensure that only objects of a given type are put in the container. The latter is trivially
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achieved using a derived class. For example, you could make a vector of apple pointers:

class apple_vector : public cvector {

public:
apple*& elem(int i) { return (apple*&) cvector::elem(i); 2}
/1l ...

};

using the “type casting” notation (typejexpression to convert the common*& (a reference to a pointer
to a common) returned by cvector::elem to an apple*& The alternative, storing type
identification in each object, brings us to the style of programming referred to as “object based”.

18 Virtual functions

Consider writing a program for displaying shapes on a screen. The common attributes of shapes
will be represented by class shape, specific attributes by specific derived classes:

class shape {
point center;
color col;
/7 ...
public:
void move(point to) { center=to; draw(); }
point where() { return center; }
virtual void draw();
virtual void rotate(int);
/1l ...
};

Functions that can be defined without knowledge of the specific shape (for example move, and
where), can be declared as usual. The rest is declared virtual, that is to be defined in a derived
class. For example:

class circle: public shape {
int radius;
public:
void draw();
void rotate(int i) {2}
/!l ...
};

Now if shape_vec is a vector of shapes as defined above you can write:

for (int i = 0; i<no_of_shapes; i++) shape_vec[il.rotate(45);

to rotate (and re-draw) all shapes 45 degrees.

This style is extremely useful in all interactive programs where ”objects” of various types are
treated in a uniform manner by the basic software. In a sense the typical operation is for the user
to point to some object and say Who are you? What are you? or Do your stuff! without providing
type information. The program can and must figure that out for itself.

19 Compatibility
C++ is not completely compatible with C, but it comes very close. In C++
int f();

declares a function that does not accept arguments; in C it declares a function that takes any
number of arguments of any types (in C++, that can be stated as int f(...)). In C names of
structures have their own name space separate from the one used for variable names; in C++ there
is only one name space. To compile a C program as a C++ program you typically (only) need re-
write your own header files (there are already C++ versions of the standard ones). In addition,
C++ has 11 more keywords than C; these cannot be used as names of variables, etc.. You can link
C and C++ object files together without modification.
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20 Efficiency

Run-time efficiency of the generated code and compactness of the representation of user defined
data structures was considered of primary importance in the design of C++. A call of a member
function is as fast as an equivalent (C+ + or C) non-member function call with the same number of
arguments. A call of a virtual function typically involves only three memory references extra. The
representation of a class object takes up only the space needed for the data members specified by
the user (allocated conforming to machine dependent alignment requirements). When virtual func-
tions are declared for a class, objects of that class will containing one extra hidden pointer.

21 Caveat

Experienced C programmers have ended up with perfectly awful C++ programs because they
immediately started using all the new features at once. It is worth remembering that most programs
are best written without operator overloading, and using only a few examples of inline functions,
private data, friends, references, derived classes, and virtual functions. Proceed with caution.
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Error Recovery for Yacc Parsers
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We aim to improve error recovery in parsers generated by the
LALR parser-generator Yacc. We describe an error recovery
scheme which a new version of Yacc automatically builds into its
parsers. The scheme uses state information to attempt to repair in-
put which is syntactically incorrect. Repair by alteration of a single
token is attempted first, followed by replacement of a phrase of the
input. A parser for the C language is generated from existing
specifications and tested on a collection of student programs. The
quality of error recovery and diagnostic messages is found to be
higher than that of the existing portable C compiler. The new ver-
sion of Yacc may be used by any current user of Yacc, with minor
modifications to their existing specifications, to produce systems with
enhanced syntax error recovery.

1. Introduction

The portable C compiler pcc [Johnson78b] is widely used in UNIX environments but its diagnostic
messages are poor. The parser for pcc is built by the LALR parser-generator Yacc [Johnson78a] which
automatically generates error recovery routines. Many other popular UNIX utilities contain syntax ana-
lysers built by Yacc, such as the pattern matchers lex, awk and grep and the FORTRAN 77 and C++
compilers, and these utilities would also be easier to use if they had improved diagnostics. The aim of
the work presented here is to improve the error recovery scheme which Yacc builds into its parsers and
thus to improve the error handling in pcc.

This paper describes the old method for error recovery in parsers built by Yacc, and a new
general-purpose method which is independent of source language and which may be used with existing
Yacc input specifications with minor changes. We present tests on the resulting C compiler which show
an improvement in error handling. We assume familiarity with LR parsing as described in [Aho77] for
example.

UNIX is a trademark of AT&T
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2. The portable C compiler and Yacc

In some computing environments, for example a university where many students are learning to use
a new language, the quality of error diagnostics produced by a compiler is at least as important as the
efficiency of generated code. Students using a UNIX environment who learn C after Pascal often ask
why the portable C compiler is so poor compared with the Berkeley Pascal system [Joy80]. A reason
for their dissatisfaction is that pcc is unable to diagnose many simple syntax errors and produces
misleading error messages, whereas the authors of the Berkeley Pascal compiler paid particular atten-
tion to developing a good error recovery scheme, presented in [Graham79j.

Yacc produces LALR(1) parsers from a set of grammar rules (productions) and actions. The
parsers contain default reductions, that is any state of the parser which has a unique reduction in its ac-
tions is given that reduction as entry for all symbols which cannot be shifted. To make use of the exist-
ing automatic error recovery scheme, described in [Aho74], the productions of the grammar should con-
tain error productions of the form A — a error 3. where A denotes a non-terminal, «.f} denote strings
of grammar symbols, and error denotes the token reserved by Yacc for error handling. When the
parser is presented with an input token which is not a legal symbol for the current state, it enters error
recovery mode and inserts the error token on the input. The parser pops states from the stack until the
top state is one which can shift error. Parsing then continues as dictated by the parse tables, except that
any token for which there is no parsing action is deleted from the input. When three input tokens have
been shifted, the parser assumes recovery is complete and leaves error recovery mode. In effect the
parser assumes that an error has occurred while looking for a derivation of a non-terminal A and that a
series of tokens approximating to a derivation of A has been consumed from the input.

Yacc allows the user some control over error recovery actions by permitting error productions to
have semantic actions associated with them. These can be used to specify actions to be taken in particu-
lar cases. Yacc also allows the user to force the parser out of error recovery mode before three tokens
have been shifted, and to clear the lookahead token.

The grammar for pcc contains eight error productions, one for the external definition construct (the
highest-level block of which C programs are composed, that is function and data definitions), five for
various forms of declarations and two for the statement construct. Only three of these productions have
semantic actions, and these only change local variables. The productions for the statement construct are

statement — error ';' | error '}’

These productions mean that if the parser detects an error in a statement it will skip all input to the
next semi-colon or right curly bracket. All the other error productions have the form

declaration — error

These cause the parser to skip input to anything which can follow the declaration. No use is made of
the facilities to force the parser out of error recovery mode or clear the lookahead token.

In general, the method for error recovery in Yacc has some disadvantages. The user has to write
error productions which will control error recovery to an extent which the user may not realise. These
productions may introduct ambiguities into the grammar. During recovery, input and stack states are
deleted silently. No information about the nature of an error is available. The advantages of the
method are that it is simple to implement and efficient to run. In the particular case of pcc, the main
disadvantage is the poor quality of diagnostic messages, which is a result of the lack of information
about errors.
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3. The new method

‘The new method for error recovery in parsers generated by Yacc uses two techniques, local correc-
tion with a forward move, and phrase-level recovery as presented in [Leinius70). When the parser
meets an illegal input token. it first tries to make a local correction to the input string by changes of a
single token. If no local correction is successful, where success is judged by the number of moves which
can then be made by the parser. a phrase-level recovery is made by replacing a part of the input with a
non-terminal. Both already parsed input and input still remaining may be replaced.

3.1 Local correction

The set of tokens which are legal shift symbols for the current configuration is determined by the
current state. The parser attempts to repair the input by actions in the following order: inserting a to-
ken from this set on the input before the next token, deleting the next token. or replacing it with one
from the set of legal tokens. In order to determine whether a repair is "good” the parser runs a forward
move on the repaired input. This is achieved by copying some of the parse stack onto an error stack.
buffering the input and turning off the semantic actions. The parser then restarts from the error state
(the state in which it detected error). with the altered input. If the parser can continue to make moves
without detecting a further error before five input tokens are shifted. or before accepting, the alteration
is taken to be a good repair. The parser is returned to the error state and the parse stack, the input is
backed up to the chosen alteration, and semantic actions are turned on again. If an alteration does not
allow the parser to run a forward move which consumes five tokens from the input, a forward move is
run with the next altered configuration from the set above.

3.2 Phrase-level recovery

If no local correction succeeds, the parser is restored to the error state and the input is backed up
to the illegal token. The parser chooses a goal non-terminal from the set of kernel items for the current
state. Its item has the form

A->vie . Vim+1 - -V
where the v; are grammar symbols. The phrase to be replaced by the goal non-terminal A is v, - - - v,.
Vi - vm have been parsed, so the parser pops m states from the stack and pushes the goto state for

the new top of stack and A. Further reductions may now take place. To complete the recovery. input
is discarded until the next input token is legal for the current state. In effect. a reduction by the pro-
duction A — vi - - Vw1 - - - vy, has taken place.

A heuristic rule is used to choose the goal phrase from the kernel items of the error state. namely
the last item to have been added to the kernel during construction of the item sets, except for the spe-

cial case of state 0, where the first item is chosen.

The scheme is guaranteed to terminate, because it always consumes input tokens during a success-
ful repair.
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3.3 Changes to Yacc input specifications

Error productions are no longer required for error recovery and so may be deleted from grammar
rules. The user must supply a routine vyverrlval as part of the Yacc environment. The purpose of this
routine is to supply a default semantic value which is required for tokens inserted during local correction
and for non-terminals used as goals for phrase-level recovery. This semantic value will typically be a
leaf of the syntax tree. suitably tagged.

3.4 Error messages

The parser synthesises an error message from the recovery action taken in each case. It use the
terminal and non-terminal names from the input grammar to Yacc. Examples of messages are
SEMICOLON inserted before RIGHTCURLY
for a successful local repair and

e ASSIGN IF NAME replaced by e

for replacement of a phrase.

3.5 Space requirements

Parsers generated by the new Yacc require extra space for information for phrase-level recovery
and diagnostic messages. No extra space is required for local recovery, as the information required, the
valid shift symbols for each state. is present in the existing tables. For phrase-level recovery, two extra
words are required for each state. the goal non-terminal and the number of symbols to pop from the
stack. Tables of strings arc needed for synthesizing diagnostic messages; one string is required for a
meaningful name for each grammar symbol. excluding literal tokens.

The parser generated by the new Yacc will have fewer states than the equivalent parser generated
by the old Yacc, because there are no crror productions in its grammar. The space-saving device of de-
fault reductions for all states with a single reduction is still used.

4. The C compiler

The existing C compiler pcc contains a syntax analyzer which is generated by Yacc. We took the
source of this compiler. removed the error productions from the Yacc specifications and included a new
function yverrival which returns a semantic value for inserted tokens and non-terminals. This value is a
new leaf of the svntax tree. The only other changes made were to the names of some of the terminals.
such as changing SM to SEMICOLON and RC to RIGHTCURLY. to improve the error messages.

The relative sizes of the old and new C compilers are shown in Figure 1.
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pcc new version
Size in bytes of binary (ccom) 86776 98312
Parser only:
Number of grammar rules 187 179
Number of states 312 303
Size in chars of source (y.tab.c) | 42980 54617

Figure 1. Space required by the C compilers

It is obvious that the compiler performs identically to pcc on C programs which are syntactically
correct. Error recovery for incorrect programs consists of repairs to the input and error messages. For
the new compiler, repairs may be simple changes of one token or replacement of a phrase, and error
messages describe the repairs. For the old compiler, error messages do not describe the action taken by
the parser to recover, but are either uninformative ("Syntax error”) or indicate what the parser finds in-
correct.

In order to test the compiler’'s performance on incorrect programs, we made a collection of all C
programs submitted by undergraduate students in the Department of Computer Science at the Universi-
ty of Warwick to pcc for compilation over three twenty-four hour periods, October 9, 10 and 16, 1984.
Duplicate programs were removed and the programs were run through pcc and the new compiler. The
code generated for syntactically correct programs was identical. Error recovery was evaluated according
to the criteria used by Sippu [Sippu83]. rating a correction as excellent if it was the same as a competent
programmer might make, good if it introduced no spurious errors and missed no actual errors, fair if it
introduced one spurious error or if it missed one error, and poor otherwise, or if the error message gen-
erated was meaningless. Missed errors, that is syntax errors that were present in the source code but
not reported by the compiler, were counted. Also counted was the number of extra messages, that is
messages about errors introduced into the source by incorrect recovery action taken by the compiler. A
comparison of the performances of the two compilers, evaluated according to these criteria, is shown in
Figure 2. Figure 3 shows a sample C program and its diagnostics.

pce new version
Quality of recovery action:
Excellent 1% (1) 549  (64)
Good 39%  (3) 11%  (13)
Fair 54%  (64) | 13% (15)
Poor 27%  (32) | 19% (22)
Missed errors 15%  (18) 3%  (4)
Total number of errors 118 118
Extra messages 127 82

Figure 2. Comparison of the performance of the C compilers
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/* Kernighan and Ritchie p. 102 - mutilated */

stremp(s, t)
char *s, *t
{
for (; *s == *t; s++, t++4)
if s ==""
return(0)!
return(*s - *t);

7}

BN RNe JEEN B SRV I T B S

—

Diagnostics from pcc:
Line 5: Syntax error

Diagnostics from new version:
Line 6: SEMICOLON inserted before LCURLY
Line 7: LPAREN inserted before MUL
Line 8: RPAREN inserted before RETURN
Line 9: UNOP replaced by SEMICOLON
Line 11: QUEST deleted

Figure 3. A sample C program

5. Discussion

The C compiler generated by the new Yacc performed better on the collection of incorrect pro-
grams than pcc. The majority of the errors were simple ones which occurred sparsely, and were there-
fore amenable to repair by the local recovery tactic. This pattern of occurrence of simple errors concurs
with Ripley and Druseikis’ analysis of syntax errors in Pascal programs [Ripley78], which showed that
the majority of these are single-token errors and occur infrequently. Clusters of errors and complicated
errors were not handled so well by the phrase-level recovery, and these were responsible for the large
number of extra messages generated.

The diagnostic messages produced depend on the names for the terminals and non-terminals, which
should be carefully chosen by the grammar-writer. Ideally, messages should be at source level rather
than lexical token level, as the user will understand a message of the form

Line 16: X=y
Semi-colon inserted

better than one of the form
Line 16: SEMICOLON inserted after ID

More communication between the lexical analyzer and the parser may be needed for this sort of mes-
sage. Line numbers at present are occasionally out by one because of buffering of the lexical tokens.
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A disadvantage is that the scheme shows bias towards assuming correctness of the left context. Lo-
cal recovery assumes a single error in the current input token. and secondary recovery makes an arbi-
trary choice of item from the error state which takes no account of the right context.

Several other error recovery schemes for LR(1) parsers have been described. [Sippu8l1] and
[Dain84] contain recent reviews of the literature. The scheme presented here bears resemblance to that
devised by Graham, Haley and Joy for a Pascal compiler [Graham79]. in that a two-stage recovery is at-
tempted. There are several differences to note. Firstly, our scheme is a general-purpose recovery
scheme incorporated in a new version of Yacc, and is used by any parser generated by the new Yacc.
Graham requires special purpose error recovery routines and cost vectors to be supplied for use by their
parser generator Eyacc which contains no error recovery scheme. Secondly, Eyacc produces parsers
with certain states calling for reductions having their lookahead tokens enumerated, i.e. some default
reductions are not made. Our Yacc has the usual default reductions. Thirdly, Graham requires the
user to supply error productions in the grammar, to control secondary recovery. These are not required
for our scheme.

The error recovery scheme for the compiler-writing system HLP [Raiha83] incorporates a local
recovery tactic into the phrase-level recovery scheme [Sippu83]. No forward move is made on the input
and there is less check on the “correctness” of a local correction; the user must supply costs for deletion
and insertion of each terminal in local correction. Different criteria are used for identifying and replac-
ing the error phrase in phrase-level recovery.

A two-stage recovery scheme for LL(1) and LALR(1) parsers which uses the concept of scope
recovery is implemented by Burke and Fisher [Burke82]. The scheme cannot be used however in LR
parsers with default reductions. The user must supply additional language information such as con-
structs which open and close scope in the language, lists of tokens which cannot be inserted between a
given pair of tokens, and lists of tokens which cannot be substituted for a given token. Pai and
Kieburtz [Pai80] use fiducial (trustworthy) symbols, typically reserved words, in a scheme for LL(1)
parsers which they suggest as suitable for extending to LR parsers.

Requiring the user of a parser-generator to supply information to aid error recovery in addition to
the grammar may result in recovery which is more tailored to the language, but imposes an extra bur-
den on the user, who may not have a full understanding of the mechanism of the parser and its error

handling. The scheme which we have implemented in Yacc makes few demands of this nature on its
users, yet improves the quality of error recovery in its parsers.
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ABSTRACT

It is shown that the LL(l) and L[ALR(l) parsing schemes are too
close to each other to justify the quality gap between their
respective error-handling capabilities. Even within the con-
straints of a one-symbol-lookahead strategy a reasonable error-
recovery with clear and precise syntax-derived messages is possi-
ble without adding any explicit error information.

A considerable improvement is obtained by synchronizing on so-

called fiducial symbols, PROLOG was suitable to find a formal
specification of the set of fiducials for any grammar. The fidu-
cials optimize error-handling without disturbing the efficiency
and robustness of the underlying parsing scheme. They are imple-
mented by context parameters in LL(l) procedures and by automatic
insertion of error tokens in LALR(l) grammars.

Avallable syntax descriptions in YACC of ADA and AWK are used to
demonstrate the effectiveness of the method.

September 4, 1985
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1. Introduction.

Programming languages contain a fundamental auality. As communication vehicles
they give many usergroups a culture and an identity. But above the tower of
Babel the glimmering of a universal and unified language from a mathematical
world never vanishes. It is interesting that while a certain language 1is advo-
cated for a very specific domain, its real power is due to some ygeneral purpose
aspect. A classic example is Simula-67, enabling opbject-oriented programning
'avant la lettre'.

The techniques of parser generators are not limited to the field of compiler
writing. We introduce the concept 'pattern-directed' programming to indicate
the simularity within a wide range of languages. A pattern 1is an abstraction
for a number of internal states. Examples are algebraic expresssions (APL),
functions (FP), strings (SNOBOL) , templates (PROLOG, SASL}), messages
(SMALLTALK), regular expressions (AWK, LEX), and context-free grammars (YACC).
The absence of explicit declarations is considered as another aspect of the
pattern-directed programming style. The compactness of a program representation
is mainly determined by the capabilities of patterns, because the syntactic
redundancy of explicit control structures is practically the same for the aif-
ferent languages.

When patterns are used to hide internal states, it is quite unpleasant to be
pushed back to lower levels in order to hanale input errors. Automatlc error-
recovery should be regarded as an essential feature of pattern—directea facili-
ties. In this article we will restrict ourselves to the domain of LL(1l) and
LALR (1) grammars, where a solid theoretical base and efficient implementations
are avallable. Our contribution to automatic error-recovery consists of an
effective combination of well-known mechanisms [1,2,3,4,5,6,7] into a single
framework.

Using PROLOG as description language was an experiment, resulting in a short and
elegant representation of the algorithms. It might be visible it was the first
PROLOG experience of the author, but the presence of global variables is part of
minimizing the distance with traditional compiler implementations.

With an emphasis on the last three points we have tried to fullfill the follow-
ing basic requirements of automatic syntactic error-recovery:
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— robustness.
No input sequence should be unrecoverabple.

- minimal distance.
The recovered text should be close to the minimal distance change.

— spurious errors.,
Recovery should not introduce spurious errors into correct input fragments.

- tlime and space complexity.
The recovery algorithm should have the same tiime and space complexity as
the given parsing method,

- error—-free parsing.
Recovery should not degrade the performance of parsing error-free input.

- error messages.
Error messages should be clear, precise and grammar-derived. A single
error should not cascade into redundant messages.

- transparancy.
The recovery mechanism should be understandable and predictable.

- interfaces.
There should be a flexible interface between error-handling and the lexi-
cal, syntactic and semantic analysis.

Three languages (PICO, AWK, ADA are used to demonstrate the effectiveness of our
approach. With the small hypothetical PICO the basic mechanisms are explaineda,
Awk is a typical YACC based UNIX product with terriple error messages in its
original shape. ADA was interesting to validate the method for a very large
grammar .

2. A meta-parser in PROLOG.

In order to tune and test different error-recovery schemes a complete parser
generator has been created in PROLOG.

The LL(1l) and [ALR(l) parsers share the same meta-parser frontend. This fron-
tend transforms an EBNF syntax specification into a canonical database represen-
tation of the rules and the vocabular:

rulename (Name) .

token (Symbol) .

rule (Nr, Name, Body).
A simple meta-scanner recognizes layout characters, end-of-file, identifiers,

numbers and constants, and keeps track of token positions. It constitutes the
base for an automatic scanner that reads a token into the database as:

nexts (Symbol).

The LL(1) system 1s completely written in PROLOG. To transform a syntax
description into a LALR(l) action- and goto-table YACC and AWK are 1involved too:

step 1) ebnf -> prolog —> canonized rules.
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step 2) canonized rule -> prolog -> syntax + error tokens.
step 3) syntax + error tokens -> YACC -> y.output
step 4) y.output -> AWK —> action + goto table.
The action- and goto-table representation in PROLOG is quite simple:
action(State,Token,Action) .

goto (Statel,Rulename,State2).

The meta-parser 1s not shown in the appenaix. It does not contain anything spe-
cial. We use it as an excercise for our students,

3. The LL(l) parsing scheme.

A standard implementation of the LL(1l) method is a recursive descent parser.
The fact that it is deterministic, without the need for backtracking, makes it
efficient but also problematic for error-recovery. However there is an heuris-
tic way to make errors more or less deterministic too by passing 'Context' as
parameter of each syntactic procedure. The idea is not to skip any token in any
recursion level when it is present in 'Context'. An obvious choice for 'Con-
text' is including at each level the set of valid tokens following the current
symbol. For example {FI, ELSE} is addea when <stat> is parsed within:

ifstat : IF expr THEN stat L19 FI ;

If the first token of a rule is missing a LL(l) parser will not parse that rule
at all. This shortcoming can be resolved by introducing fiducials. A fiducial
sympbol is defined by a unigue occurrence in just one of the rules. Some experi-
ments revealed that a reasonable set of fiducial tokens identifying a rule is
formed by the fiducials occurring in the rule itself combined with the ones
found by propagating recursively the first nonempty nonterminal symbol. A fidu-
cial nonterminal symbol is replaced by its body with the consequence that the
quality of the recovery is independent of special features like meta-brackets in
the original meta-syntax. The resulting set of fiducials for <ifstat> is:

{ IF, THEN, ELSE, FI }
This set however may bring the parser in a loop. When somewhere within <stat>
the token 'ELSE' or 'FI' is encountered, <ifstat> will be called recursively
without ever meeting that token. The explanation is that by using a fiducial to
start a rule left-recursion is introduced again. A solution is to consider a
token as non-fiducial if it becomes valid in a rulebody somewhere after a symbol
of which it was a fiducial. Now the final set for <ifstat> becomes:

{ IF, THEN }
Another improvement is further to equal the effect of a rule terminating into a
single nonfiducial token with that of an empty rule. This causes the fiducial
set for

Llg : ';' stats ;

{ 'Do*, '=', "THEN', 'IF', 'PRINT'}
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in stead of the empty set,
During parsing all the work for error-handling is done only by:
match nexts(Symbol,Starters,Context).

'‘Starters' contains the valids and fiducials of 'Symbol'. Match nexts will skip

an 1input token wunless it belongs to 'Starters' or 'Context', in which case it
will return with true or fail respectively. The two possible error-messages
within match nexts reveal that in fact the recovery actions are restricted to
inserting and skipping a token.

The recursive descent procedures are represented by:
11 parse(Rulename, Context).
As actual parameter 'Context' is not only filled with the next valias but also

with the fiducials of 'Rulename' itself. This improved the behaviour for
repetitive syntactical constructs considerable.

4. The LALR(l) parsing scheme.

YACC 1s based on the LALR(1l) method, and produces from a rather primitive meta-
syntax a table-ariven parser in C. Much of its work is involved in optimizing
the space-time characteristics of a sparse matrix implementation. This has the
advantage that even for very large grammars parsing is still efficient.

One of our basic decisions has been to change nothing in the meta-syntax or
tables. Only the grammar independent parse routine is rewritten. Like before
this routine consists out of a state-transition loop with only three valid tran-
sitions:

accept.
Input, as specified by the syntax, is completely parsed.

shift,
Push the current input-token and scan a new one.

reduce,
Pop a rule from the parse-stack, but only if the current input-token will
be become valid in forward parsing direction.

error recovery.
Try after each other the following alternatives to construct a valid tran-
sition for the current input-token:

- insert a missing token.

Go backwards on the parsestack until a state enables the current input-
token to:

- synchronize with the error-token.
- reduce an incomplete rule.

- error panic mode.
Skip the current input-token if not end-of-file.

One has to notice that preventing reductions before errors without changing
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tables implies a certain degradation of error-free parsing.

The already available error-token has been used to introduce fiducial tokens.
The error-token is automatically inserted in the grammar before fiducials. The
definition of fiducials is changed compared with the LL(l) case, due the proper-
ties of LALR(l) tables and the loss of certain grammar information. A rulename
now is defined fiducial if each of its alternatives start with a fiducial token.
New rules are added in which the error-token replaces a nonempty left rulepart
before a fiducial, followed by a nonempty remaining rulepart. Another condition
is that such a fiducial may not cause a valid shift in the replaced rulepart.

To restrict the number of added states the error-token is not inserted before
each rule starting with a fiducial, but only a fiducial rulename generates such
an extra alternative. The given recept will append the following new rules to
<ifstat>:

ifstat : error THEN stat L19 FI ;
ifstat : error ifstat ;

5. Results.

Appendix 1 gives the PICO syntax in YACC with the addition of generated error
rules. It is not written left-recursive to use it in the same shape for LL(1).

Appendix 2 shows the LL(1l) and LALR(l) error-messages together for a very artif-
icial pbut illustrative PICO program.

In Appendix 3 the old and new error-messages are compared for an AWK program
{8], wusing a new version of YACC with symbolic state information and the new
parseroutine, transformed from PROLOG into C. Because no changes were made to
the AWK sources only the linenumper was avallable for position indication.

Appendix 4 is the result for a small ADA program [9], using a complete YACC/LEX
parser from the public domain([18].

In Appendix 5 some (VAX) statistics are given for a complete syntax—directed
screen—-editor for ADA. This editor was generated with our LYSE [11] system,
which was basically inspired by the described error-recovery implementation,

The relevant PROLOG sources are given in appendix 6. It should be noted that
the basic primitives are not optimized for execution. Parsing is made efficient
by putting first all the static sets (like Starters and Contexts) into the data-
base.

6. Conclusions.

The effectiveness and simplicity of the given strategy for automatic syntactic
error-recovery prove that other methods often impose an unnecessary complexity.
Of course one should not forget the inherent limitations of the one-symbol-
lookahead approach. Certain ambiguities could have been resolvea taking more
input tokens into account. However a very small average improvement would not
justify the violation of at least three of our pasic requirements.

The symmetry between LL(1l) and LALR(l) can be paraphrased with: in the first
case one tries to forsee the future and in the second to update the history.
The context parameters are the counterpart of look-ahead sets of pushed states.
The definitions of fiducials are different but the idea and result are almost
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the same.

There remains also a fundamental difference between LL(1) and LALR(l), because
will never come back to a point already parsed before, while LALR(1) may
recover from any state not yet popped from the stack.

LL(1)

The use of PROLUG contributed substantially in formalizing and validating cer-
tain intuitive insights about practical error-hanaling.
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/*
* rulename L1¢,L19,L23,L26 are generated
* from another meta-syntax

*/

%
pico: BEGIN decls stats END ;
decls:

| decl ',' decls ;
decl: INT IDENT init

| BOOL IDENT init ;
init:

| ':' expr ;
L1@:

| ',! stats ;
stats: stat L10 ;
stat: compstat

| assstat

| ifstat

| prinstat ;
compstat: DO stats OD ;
assstat: IDENT '=' expr ;
L19:

| ELSE stat ;
ifstat: IF expr THEN stat L19 FI ;
prinstat: PRINT expr ;
L23:

| '+' expr
expr: term L23
L26:

| '*' term ;
term: factor L26
factor: IDENT

| CONSTANT

| NUMBER

l |(| expr |)|;

-
’
.

7

/* added to introduce LALR(1l) fiducials */
pico: error pico ;

decl: error decl ;

compstat: error compstat ;

assstat: error '=' expr ;

ifstat: error ifstat ;

ifstat: error THEN stat L19 FI ;
prinstat: error prinstat ;

%%
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Appendix 2.

BEGIN

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

17 END
Position

(2,13]
(2,16]
(3,15]
(3,17]
(3,19]
(4,15]
(4,17]
(4,19]
(4,20]
(4,25]
(5,9]

(5,15]

(7,17]

(7,27]
(7,29]
(8,17]

(8,27]

(8,35]
(8,36]
(18,25)
(11,25]

(12,25]
(13,17)
[13,25]
(14,17]
[15,9]
(16,9]
(16,17)
(16,18]
(17,1]

INT 101;
INT a 2 * 5;
INf bc: (4 +5;
BOOL d;
DO
THEN a * 6
PRINT
IF b
THEN if ¢
THEN PRINT 23
FI
ELSE PRINT
FI

a= ('3 );

oD
PRINT a b;

LL(1)

skipped: NUMBER(101)
missing: IDENT
skipped: NUMBER (2)
Skipped: '*!
skipped: NUMBER (5)
missing: ';°
skippea: ':'
missing: '='

missing: ')’
skipped: BOOL
missing: '='
missing: expr
missing: IF
missing: expr
skipped: '*'
missing: '='
missing: ';°
missing: FI
missing: ';'
missing: IDENT
missing: expr

o
’

missing:
missing:
missing: FI
missing: IF
missing: expr

skipped: ELSE
missing: ';°
skipped: FI
missiny: expr
missing: ';'
skipped: IDENT (D)

missing: stats

LALR (1)

skipped: NUMBER(101)
incomplete: decl
missing: ':'
incomplete: factor
missing: ':'
skipped: ':'
skipped: '('
skipped: NUMBER(4)

synchronized: THEN

Tkt

skipped:
missing:
synchronized: PRINT
synchronized:

incomplete: expr
incomplete: stat
missing: '='
synchronized: THEN

skipped: FI
incomplete: stat

incomp.lete: L19
incomplete: stats
synchronized: PRINT
incomplete: decls
incomplete: stat
incomplete: stats
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++predct[$2]
predct[$1] = predct([$1]
succlist[$1 "," ++succent([S1] = $2
}
END {
gQlo =1
for (i in predct {
n++ if (predct[i] == @) g[++yhi] =1

O OO W

—
=

}
while (ylo <= ghi) {
t = glglo++]; print t
for (i=1; i<=succcnt(t];i++) |
s = succlist[t "," 1]
if (——predct[s] == @) g[++ghi] = s

=
U W N

}

—
~

}

if (ghi !'= n) print ,"tsort error: cycle in input"

s
[e0]

syntax error near line 4
illegal statement near line 4
syntax error near line 8
illegal statement near line 8
illegal statement near line 11
illegal statement near line 12
syntax error near line 18
bailing out near line 18

SPRINTF, SPLIT, ..., or ']' expected in <var>;
<var> incomplete reduced before ASGNOP.
SPRINTF, SPLIT, ..., or ']' expected in <var>;
<simple stat> incomplete reduced pbefore NL.
') ' expected in <for>;

<for> synchronizea before '{'.

NL or ';' expected in <statement>;

<statement> synchronized before IF.

NL or ';' expected in <statement>;

<pe_list> incomplete reduced before
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Appendix 4.

Starting Ada grammatical analysis

(1]
[2] generic type labeltype is private;

[3] with function "<" (11,12: in laoeltype)
[4] return boolean is <>

[5] package LabeledBinaryTree is

(6] type binarytreenode;

{7] type binarytree is access binarytreenode;
[8] type binarytreenode is record

[9] label: labeltype;

{10] left,right: binarytree;

(11] end record;

[12] procedure INSERT (label: in labeltype;
[13] root: in out binarytree;
[14] node: out binarytree;

[15] end LabeledBinaryTree;

(16]

[17] —-> Gramnatical analysis complete!!

@ lex error(s), 3 yacc error(s) <---

3: '; ' expected in <object d>;
<prm_spec> incomplete reduced before .
5: ';' expected in <gen prm d>;
<gen_prm d> synchronized before PACKAGE .
15: identifier expected in <.,_.prm_spec..>;
<.PRIVATE..basic_decl_item...> incomplete reduced before END .

Appendix 5.

95/127 terminals, 238/30@ nonterminals

459/600 grammar rules, 860/1000 states

@ shift/reduce, @ reduce/reduce conflicts reported
238/350 working sets uged

memory: states,etc, 4125/1200@0, parser 3113/12000
601/800 distinct lookahead sets

946 extra closures

1235 shift entries, 65 exceptions

571 goto entries

1414 entries saved by goto default

Optimizer space used: input 3376/12000, output 1147/12000
1147 table entries, @ zero

maximum spread: 333, maximum offset: 857

size ada.parser

text data bss dec hex
13312 76800 18332 198444 la7Y9c

size ada.lyse

text data bss dec hex
61449 121856 28904 212200 33ce8
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% find all valid starters of a rule
first (Token,Rulenane) .
first(Token,Rulename,[]).
first (Token,Name ,Hist) :-—
rule(_,Name,L),
not (member (Name ,Hist)),
valid(Token,L, [Name|Hist]).

¢ find all valid starters of a list
valid(Token,List).

valid(Token,List,{]).
valid('Sempty', (], ) :- !.
valid(T,[Tl_J, )

token(T), !.
valid (T, [X|L],Hist) :-

first(T,X,Hist), T = 'Sempty'.
valid (T, [X|L] ,Hist) :-

valia('$enpty',X,Hist), !, valid(T,L, [X|Hist]).

fiducial ('Sempty') :-
1, fail,

fiducial (X) :-
once ((rule(nrl, ,L1), member (X,L1))),
rule(Nr2, ,L2), Nrl = Nr2, memper (X,L2),
t, fail,

fiducial ().

% find all non-list members recursively
memper (X, [X| 1) :-
Xx=[1]].
member (X, [[YIL]|_]) :-
member (X, [YIL]).
member (X, [_|L]) :-
member (X,L).

% split a list as a for-loop

decompose (L, [],L).

decompose ( [X|L], [X|L1],L2) :-
decompose (L,L1,L2).

specific LL(l) predicates

11 fiducial(Token,Nr) :-
rule(Nr, ,L),
11 fiducial (Token,L,[]).
11 fiducial (Token,L,Hist) :=
dgecompose (L, [YIL1], [XI| 1),
once ( (token(X); fiducial (X);
valid('Sempty',[YIL1]);
single nonfia([YIL1]))),
11 fiducial (Token, [X],[Y,L1l|Hist]).
11 fiaucial (Token, [X|_],Hist) :-
not (member (X,Hist)),
(token (X)=> (fiducial (X), T=X);
(rule( ,X,L), 11 fiaucial(Token,L,[X|H]))).
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single nonfid(List) :-
/* terminates List to a single non-fiducial token? */.
1]l sets :-
© /* calculates all needed static sets
(fiducials, valids) before parsing */.

% find looping fiducials
11 nonfiduc(T) :-
rule(Nr, ,L), fiducials(Nr,Fg),
decompose (L,L1,L2), member (T,F@),
member (R,L1), fiducials(R,Fl), nember (T,Fl),
member (X,L2), valid([X],T).

Y — LL(1) parser

11 parse(Rulename) :-—
scan, valids(Rulename,V),
parsepody( [Rulename] , [V], ['Seof']) .

% only called after a valid or fiducial token
11 parse(Token, ) :-

token(Token), !, scan.
11 parse(Rulename,Context) :-—

" rule(Nr,Rulename,L), valids(Nr,[V1|V]),
nexts (Token) , member (Token,Vl1), !,
parsebody(L, [V1|V], Context).

11 parse(Rulename,Context) :-—
rule(Nr ,Rulename,L), fiducials(Nr,F),
nexts (Token) , member (Token,F), !,
valids(Nr,V), parsebody(L,V,Context).
ll_parse(Rulename,_) ;-
empty (Rulename) .

parsebody([],[], ) := 1.

parseboay({X], [V], Context) :-
(Eigucials(X,F) -> true; F = []),
match nexts(X, [V|F],Context), !,
11 parse(X, [F|Context]).

parsebody([X|L], [V1,V2]V], Context) :-
(fiducials(X,F) -> true; F = []),
match nexts(X, {V1|F],[V2]|Context]),
11 parse(X,[V2,F|Context]), fail.

parsebody([_IL}, [_IV], Context) :-
parsebody(L,V,Context) .

% error recovery procedure
match nexts(X, , ) :-
nexts(X), !.
match_nexts(X,Starters,_) -
rulename (X) ,
nexts(T), member (T,Starters), !.
match nexts(X, ,Context) :-
empty (X) ,
nexts(T), memper (T, Context), !.
match nexts(X, ,Context) :-
nexts(T), member (T,Context),
perror ("missing", X), !, fail.
match nexts(X,Starters,Context) :-—
nexts(T), perror ("skipped", T),
scan, match nexts(X,Starters,Context).
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§ ————————— specific LALR(1l) predicates

lalr sets :-
/* calculates all needed static sets
(fiducials, valids) before parsing */,

% generate error—token rulebody tails
lalr newrulebody([X|L1],L2) :-
valids(X,V), subtract(Vv,(['Sempty'],[1), !,
lalr newrulebody(L1l,L2).
lalr newrulebody((X|L1],L2) :-
valids(X,V), lalr newrulebody(Ll,L2,V).
lalr newrulebody(([XIL],[XIL],Hist) :-
fiducials(F), member (X,F),
valids(X,V), subtract(Hist,V,Hist),
once ( (member (Y,L), valids(Y,Z2),
not (member ('Sempty',Z)))).
lalr newrulebody([X|L1],L2,Hist) :-
valids(X,V), lalr newrulebody(Ll,L2,[VIH]).

§ ————————- LALR(1l) parse loop

lalr parse :—
“scan, push(@), lalr loop.
lalr_loop :-
nexts (Token) , stack([Statel| ]),
do_action(State,Token,Z), Z == stop, !.
lalr loop :-
lalr loop.

do action(State,Token,stop) :-
T action(State,Token,accept), !.
do_action(Statel,Token,shift) :-
action(Statel,Token,shift (State2)), !,
push(State2), scan.
do_action(_,Token,reduce) :-
stack(Ll), do_reduce(Token,Ll,L2),
forward(Token,L2), !,
renew(stack(L2)) .
do_action(Statel,Tokenl,error) :-
action(Statel,Token2,shift (State2)),
Token2 = ‘error’',
action(State2,Tokenl,shift(_)), !,
push(State2), perror ("missing”, Token2).
do_action(_,Token,error) :-
stack(Ll), backward(Token,Ll,L2), !,
renew(stack(L2)) .
do_action(State,'Seof',stop) :- !
perror ("not aple to skip", '
do_action(_,Token,error) :-
perror ("skipped", Token), scan.

éeof').

do reduce(Token, [Statel|Ll], [State3,State2|{L2]) :-
~  action(Statel, Token, reduce(M)), !,
rule (M,R,B), poplist(B, [Statel|Ll], [State2|L2]),
goto (State2,R,State3).
do reduce('S.', , ) :-
1, fail.
do reduce(_, L1, L2) :-
" do _reduce('$.', L1, L2).
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% forward stack movement
forward (Token, [State| ]) :-
action(State, Token, shift( )), !.
forward (Token, [State| ]) :-
action (State, Token, accept), !.
forward(Token,Ll) :-
do_reduce (Token,Ll1,L2),
forward (Token,L2) .

% backward stack movement

backward( , [], ) :-
1, fail.

backward (Token, [Statell|L], [State2,Statell|L]) :-
action(Statel, ‘error', shift(State2)),
action(State2, Token, shift(_)), !,
perror ("synchronized", Token).

backward (Token, [Statel|L], [State2,Statel|L]) :-
goto(Statel, Rulename, State2),
action(State2, Token, shift(_)), !,
perror ("incomplete", Rulename).

backward (Token, [_[|L1], L2) :-
backward(Token, L1, L2).

stack([]) .
push(N) :-
stack (L), renew(stack([N|L])).

poplist([], L, L) :- !.
poplist([_|L1], [_IL2], L3) :-
poplist(L1,L2,L3).
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Screen Based History Substitution for the Shell

Mike Burrows
Cambridge University Computer Laboratory

Several UNIX + command interpreters now incorporate a history
mechanism to assist interactive users in repeating or correcting com-
mands. Many of these are similar in style to Bill Joy's C Shell,
which provides a simple line oriented interface and a numbered his-
tory list. More advanced shells, such as the Korn Shell, allow
screen editor facilities, but still reference history items by an event
number or an explicit pattern matching syntax. This paper describes
an interface that allows history substitutions to be performed as a
command is typed and with minimal user effort. Entire lines or sin-
gle words may be substituted with equal facility. The technique has
been fully integrated with more normal editing features and Tenex-
style filename completion.

The interface is extremely simple to use even with large history
lists, without requiring the user to repeat “‘event numbers” or to re-
view the history list periodically. Versions of the interface have
been added to various existing shells and have been in use for
several months, proving popular with both novices and experienced
users. The latest version has been implemented as one of a number
of enhancements to the System 5.2 Shell.

1. Introduction

Over the past few years there has been much interest in improving the user interfaces of interactive
command interpreters (shells) under UNIX. Despite the widespread use of screen editors, most users
are still tied to the conventional line-oriented interface of the Bourne Shell(ref.1) released with Version 7
UNIX. One of the most significant improvements was the introduction of history substitution in Bill
Joy’s C Shell.(ref.2) More recently, command line editing has been added to shells such as the Edit
Shell(ref.3) and the Korn Shell.(ref.4)

Although the C Shell includes many features that make it particularly suitable for interactive use. it
has remained unpopular except at sites which require support for Berkeley job control. Even then.
many C Shell users prefer the Bourne Shell when writing scripts. Some of the more obvious deficiencies
in the C Shell are:

® The C Shell cannot run standard Bourne Shell scripts.

® The command syntax is considered by manyt to be inferior to that of the Bourne Shell.

t UNIX is a Trademark of AT&T Bell Laboratories
1 Including the present author
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C Shell scripts run more slowly than Bourne Shell scripts.
The history mechanism is line based; its syntax is complicated and obscure.

C Shell control constructs are not properly integrated with the history mechanism and with job con-
trol.

These problems are not shared by the Korn Shell, which offers many advantages over the Bourne
Shell, including the most useful features of the C Shell. Unfortunately, its popularity has been limited
by problems of availability and cost. Although a great improvement over most other shells, the Korn
Shell does leave some room for improvement:

® It retains a fairly simple history interface which treats the command as its primary unit. Individual
arguments can be manipulated in various ways, but they cannot be recalled and inserted with the
same facility as complete lines.

The editor is constrained by the decision to emulate the styles of both Vi(ref-5) and Emacs(ref.6)
without using the termcap/terminfo databases. This does not allow the shell to automatically recon-
figure itself to use special keys available on different terminals.

The remainder of this paper describes Msh, a shell which incorporates a command line editor, a
novel interface for history substitution and many other enhancements. When this project began the au-
thor used the Bourne Shell exclusively, so early versions of Msh were based on the Bourne Shell.
Later versions have been integrated with the System 5 release 2 Shell and incorporate many C Shell
features, including C Shell style job control.

The original aim of the project was to provide a measure of uniformity between the interfaces
presented by the screen editor and the shell. Experience gained from early versions led to the investiga-
tion of history mechanisms, and ways of integrating them with a command line editor. The style of his-
tory substitution has evolved as the author gained more experience. The overall trend was towards sim-
plicity, which eventually led to the use of a single key for all common history operations. The following
sections describe the features of Msh, compare them with analogous other shells and explain some of
the decisions made in the design.

2. The Msh Editor

The Msh editor provides the user with a one line window in which a command may be typed and
edited before being executed by the shell. The single line display greatly simplifies the structure of the
editor, without causing major inconvenience. Long lines are displayed by scrolling the text horizontally
whenever the cursor would move off the edge of the screen.

The main design aims for the editor were simplicity and upward compatability with the standard
shell command line. To avoid confusion, printable characters are always entered as text at the current
cursor position. Control characters and special purpose keys are used for cursor positioning and editing
functions. The user’s erase and kill characters are preserved so that normal shell usage is unchanged.

The most important differences between the Msh editor and the editors of the Edit Shell and the
Korn Shell are:
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®  Msh provides only one style of editing, which bears little resemblance to Vit or Emacs. Unlike Vi,
Msh has no concept of “text input’ and ‘“‘cursor motion” modes.

® Msh can make full use of the keys available on a particular terminal, such as the cursor motion
keys. All the operations accessible through function keys are also available as control keys.

®  Most common operations are available as single keystrokes. For example, *‘backword™ and “delete
previous word” are both single keystrokes.

® Multiple keystroke commands are built up from logical combinations of other keys. For example,
one key signifies “‘more’’; more left moves the cursor to the beginning of the line and more right
moves it to the end of the line.

® Msh uses the termcap and terminfo databases to obtain information about the current terminal.
This allows better use of terminal capabilities at the expense of slightly increased startup times for
interactive shells.

Although Msh was designed with simplicity in mind, some quite complex functions have been pro-
vided, such as the ability to undo edits and to enter text repeatedly. All such operations have been pro-
vided in a manner which is convenient for the experienced user, but which does not affect the novice.
A complete list of keyboard functions is given in the appendix.

3. The History Mechanism

3.1 The History List

The shell maintains a list of the last few lines that have been submitted as input. The number of
lines retained in the list can be specified by the user, but the total space occupied by the history list is
limited by the shell. In an effort to save space, the shell does not save identical copies of a single line.
If a line is reused, it is appended to the history list, and the previous instance of the line is deleted.
This behaviour does not allow the history list to be used as a full record of commands typed by the user,
but it assists in implementing history substitution.

As in Ksh, the editor window can be moved up and down the history list, showing one line from
the list at a time. In this way, lines from the history list can be edited and executed as though they had
been retyped. Although this technique is occasionally useful, the most common method of accessing the
history list is through the history substitution mechanism described below.

3.2 History Substitution
Several experimental user interfaces have been tested with Msh during its development. The trend

has always been towards a simpler interface, without event identifiers and without complex key se-
quences. Eventually, a single key system was developed in which the shell attempts to infer the desired

1 This is considered an advantage :-)
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substitution from the current context. This technique greatly simplifies history substitution and causes it
to be regarded as the norm rather than the exception. Users can afford to make much more use of the
history list when the cost of a failed substitution is only one keystroke. Although context sensitive sub-
stitution requires more computational effort than interpreting explicit requests from the user, it has been
found that the additional costs are low. Low cost context sensitivity has been achieved by adopting a
completion model, rather than a substitutional model. The interface encourages users to type one or
two characters of a command or a word, then request completion by the shell. This approach has
several advantages:

® The history list can be accessed at any time during command entry.
® There is no need to remember the exact contents of the last few lines, or any event identifier.

History completion integrates well with other shell features, such as filename completion. (See the
description below)

Once the basic idea of history completion had been introduced. the only remaining problem was
the exact nature of the user interface. Experimental versions proved that it was unnecessary to provide
separate keys for line and word completion, provided that alternative completions for ambiguous re-
quests could be easily selected. The following rules are used in the current version of Msh to satisfy
history completion requests.

If the current line is a prefix of a previously used line, the current line is replaced by the old line.
Otherwise,

If the current wordt (delimited by white space) is a prefix of a previously used word, the current
word is replaced by the old word. Otherwise,

If the current word component (delimited by white space or slashes) is a prefix of a previously used
word component, the current word component is replaced by the old word component. Otherwise,

Filename/command name completion is performed on the current word. (See following section.
“Filename Completion”). Otherwise,

If no (more) matches can be found, the line is returned to its original state and the terminal bell is
rung.

The history list is always searched starting with the most recently used lines.

If, when a match has been found, the history completion key is pressed again, the search continues
as though no previous matches had occurred.

Repetitions and certain inappropriate substitutions are suppressed, such as substituting a flag where
a command name is required.

Msh allows the user to select from a number of alternative possibilities by pressing the completion
key repeatedly. This approach is successful because not all possible completions are equally likely. The
ordering imposed by the history list ensures that few keystrokes are needed to obtain the desired result;
one keystroke is usually sufficient. This technique for resolving ambiguities is in contrast with the

+ The current word is taken to be the word to the left of the cursor
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filename completion scheme of Ken Greer’s Tenex C Shell, which requires the user to remove any am-
biguity before a completion is made. However. since Msh allows a completion to be aborted at any
time during the selection process,t the user can choose to resolve ambiguities by supplying additional
text if required.

The following examples demonstrate the finer points of the history completion mechanism. Sup-
pose that the history list contains the lines:

echo Hello, World!
cat /etc/passwd
ed /tmp/foo

The most recently input line was ed /tmp/foo . In the following sequences, the first line is the origi-
nal, and subsequent lines are obtained by pressing the history substitution key. The cursor is shown as
In the interests of clarity, no filename completion has been performed.

1. e original line
ed /tmp/foo line completion
echo Hello, World! line completion
ed h word completion
echo word completion
e B original line restored
2. ed/ original line
ed /tmp/foo line completion
ed /etc/passwd word completion
ed/ h original line restored
3. cpp foo original line
cp passwd foo word completion
cppfoo ~ original line restored

In (1), the word etc is not substituted because it is inappropriate at the start of a command.

In (2), the line ed /tmp/foo appears only once. Msh suppresses the substitution of the word
/tmplfoo to avoid repetition.

Example (3) shows that completions need not be at the end of the line.

T Completions are aborted with the user’s quit character.
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4. Filename Completion

Msh allows filename completion similar to that supported by Ken Greer’s “Tenex” C Shell. When
a history completion has failed, or when the filename completion key is pressed, Msh attempts to per-
form filename completion on the current word. If the word is the start of a command, Msh searches
through its builtin commands and directories on the search path to perform the completion. Otherwise,
it tries to complete the last filename component of the word by examining the appropriate directory.

In order to allow the two mechanisms to be merged, alternative filename completions are treated in
the same way as ambiguous history completions. Although the selection mechanism is less suitable for
filename completions, it has proved beneficial to maintain a single style throughout the programme.
There is no attempt to expand shell meta-characters on the command line in the style of the Korn Shell.

To illustrate the technique with an example, consider the following line. Once again, the cursor
position is indicated with .

cat /etc/pas original line
cat /etc/passwd filename completion

The same result could be obtained using the history completion key, once all matching history lines
had been tried.

5. Other Features and Improvements

5.1 Berkeley Style Job Control

The C Shell is forced upon many users of Berkeley UNIX, because standard versions of the
Bourne Shell do not support Berkeley job control. Msh supports Berkeley job control in a style almost
identical to the C Shell. The most important differences are:
® There is no indication of current directory for foreground jobs.

Notification of job termination is always immediate.

Exit status is reported only for the last process in a pipeline.

Foreground loops can be stopped.
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5.2 Home Directory Expansion ( user)

The C Shell's "username syntax for home directories has been included in Msh. This syntax is un-
derstood by the filename completion system, which also allows usernames to be expanded after a ~
(tilde).

5.3 Function Definitions Override Shell Builtins

Function definitions have been modified to allow the redefinition of builtin shell commands, such
as cd . Normally, function definitions with the same names as shell builtins are ignored. A new key-
word builtin has been introduced to allow the redefined command to be called. One of the most com-
mon uses of this modification is in the redefinition of the cd builtin. This is frequently changed to pro-
vide facilities similar to the C Shell “directory stack”. One of the most simple applications is to provide
a simple “‘undo” facility for c¢d :

# Version of cd that saves last directory in $lastwd
cd(){

lastwd="pwa’

builtin cd $1

}

# Undo the last cd command.

uncd(){

cd $lastwd

}

Note that the cd in uncd () is a reference to the function defined above, not the builtin ¢d . Thus
uncd also sets the value of $lastwd , and ‘“‘uncd; uncd” does not change the working directory.

5.4 Pwd Builtin Fixed Under Berkeley UNIX

Many shells that include the pwd (print working directory) command as a builtin do not behave as
expected when the shell cd’s through a symbolic link. Msh maintains the true (unique) pathname of the
working directory at all times.

5.5 Initialisation Commands for Interactive Shells

Interactive invocations of Msh execute commands from an environment variable (SHINIT) on start-
up. This is analogous to the C Shell initialisation file (.cshrc). Use of SHINIT has been limited to in-
teractive shells in order to avoid incompatabilities with standard shell scripts and to prevent possible
security breaches. SHINIT is typically used to export function definitions to sub-shells, or to read ini-
tialisation files:

SHINIT="pg() more’

or
SHINIT=". $HOME/ shrc’
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6. Conclusion

Msh is an extended version of the standard UNIX shell. providing character based line editing and
a powerful history substitution mechanism. The simplicity and speed of the history interface have
proved to be especially effective. The main features of Msh are:

®  The interface is simple to learn. Almost all history substitutions are requested with a single key.

e  The history list can be accessed more frequently and more effectively than in existing shells.

® It is upward compatible with the Bourne Shell; naive operation requires no additional knowledge.
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A. Appendix: Msh Editor Keyboard Functions

At the start of an interactive session, Msh automatically binds functions to particular keys. First,
Msh tries to preserve most of the functions performed by the terminal driver by binding appropriate
functions to the terminal driver special characters (i.e. erase, kill, interrupt etc). Then terminal keys
with well defined uses are bound to obvious functions (e.g. delete line). Other common functions are
assigned to the terminal’s general purpose function keys. To provide compatability across terminal
types and systems, control characters that have not been assigned are bound to fixed functions. This
also ensures that certain heavily used functions are always available.

The following tables provide a complete list of Msh editor functions. The first table describes func-
tions bound to single keystrokes and indicates which keys are bound to each function. Terminal driver
special characters and control characters are shown against their associated functions. If a function can
be bound to a key described by termcap/terminfo, the function is marked with an asterisk (*). The
second table describes the action of the more key when used as a prefix to other keys.

Although Msh provides all the functions found in most screen editors, novices need learn only the
first few commands of table 1.
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Table 1: Single Key Functions

Name Special Termcap
Char Defined

execute

rubout erase
history

delline kill
delword werase
eof eof
interrupt intr
left

right

more

tab

quit

redraw

literal

overtype

filename

insline

put

undo

backword
nextword

fastleft

fastright

up

down

delete

delchar

delnxtwrd

delsol

deleol
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Control
Char

AJor AM
DEL
ESC or A]
AX

AW

AD

AC
AHor AY
AL or AP
AF

Al

AN

AR
AVor An
AO

AA
A._

AG
AB
AN

Action

Execute displayed command !
Delete last character
History/filename completion
Kill current line.

Delete last word *

End of file, if line is blank >
Kill current line 2
Cursor left one space
Cursor right one space
See table 2.

Space to next tabstop 3
Abort current substitution
Redraw current line

Input control char
Overtype/insert toggle

Filename completion.

(n times) Insert nth previous line
Reinsert text last deleted

Undo last modification

Cursor back one word *

Cursor forward one word *
Cursor to previous tabstop 3
Cursor to next tabstop 3

Scroll up history list

Scroll down history list

Delete specified text ?

Delete current character

Delete next word *

Delete start of line

Delete to end of line

1

1
1




Table 2: Key Sequences Introduced by more

Function Modified function

overtype Reset insert mode

undo Undo, allowing further regression
more Recall last line typed.

left Cursor to start of line.

right Cursor to end of line.

backword  Cursor back to last space.
nextword  Cursor forward to next space.

fastleft Cursor to start of line.

fastright Cursor to end of line.

up Get “next” line in history list. ©
down Go to bottom of history list.
delete Equivalent to delete more
delword Delete to last space.

delnxtwrd  Delete to next space.

Notes:

Multiple control characters are bound to the same function to ensure that these functions will be
available.

If the current line contains text, it is placed in the history list.
Tabstops are set every 8 characters.
Simple words are delimited by non-alphanumerics. See also table 2.

Delete can precede any cursor motion function. Text between the current cursor position and the
new position is deleted.

This can be used to reenter sequences of commands, such as loops.
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European Languages in UNIX1

Conor Sexton

Motorola International Software Development Centre
Cork, Ireland.

ABSTRACT

This document describes the approach adopted by Motorola to the
internationalization of a UNIX System V derived operating system - Convergent
Technologies' CTIX 3.0. The initial goal was the provision within CTIX of
character sets enabling easy use and interchangeability of U.S English, French-
Canadian and six European Llanguages. The problem is broken down into its
constituent parts and the solution, as well as the scheme of character set
representations employed, is outlined. The many difficulties encountered during
the development and testing are described. Finally, an insight 1is given into
the direction of future Motorola development in the area of international UNIX.

1 UNIX is a Trademark of AT&T Bell Laborotories.

20 August 1985
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Introduction.

The basis for the solution of the problem of CTIX 'internationalization' is
found in the bi-directional flow of data between the user and the operating

system.

The user has at his disposal one or more devices for input and output of
data to and from the computer system. Typically, these devices are a
terminal for input/output and a printer for output. Data sent from or to
these devices pass through CTIX device drivers. The device drivers in turn
send data to and receive data from the CTIX operating system, which
manipulates and stores the data.

The procedure can be represented graphically as follows:

| STORAGE

Device
Operating
Drivers
System

MANIPULATION

from which it can be seen that four subsidiary functions are involved in
the flow of data between the user and the operating system:

o] Input

o Output

o Storage

o] Manipulation.

It is with this functional breakdown in mind that we consider the problem
of providing extended character sets within CTIX.

20 August 1985
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2. Aspects of the Problem.
2.1 Requirements of 'international' CTIX.

The following were the initial goals of the ‘international' CTIX
implementation:

o Handling by CTIX of characters required in eight Latin-letter
languages, specifically U.S. English, U.K. English, French,
German, Spanish, Dutch, Swedish and French-Canadian.

o) Retention of a ‘'vanilla' ASCII (English) capability. With the
system in this mode, it would behave the same as earlier CTIX
versions.

o Support of multiple concurrent languages on different devices on
a single computer system.

o Correct terminal dinput and display for the particular (7-bit)
terminal used with Motorola systems, for all the Languages.

o Support of print output for all the Llanguages for all of six
different printer types used with the host system.

o Enable, insofar as possible, continued wuse of existing
application software.

o Accommodation of both 8=bit and 16-bit CPU internal character
representation to allow both immediate implementation and scope
for future incorporation of more languages.

2.2 Internal Character Set Considerations.

When applied to character sets, the term 'internal' is here used to denote
the manner in which a given character (either ASCII or non-ASCII) is
represented in the processor to CTIX and its applications.

To internally accommodate the required languages necessitates use of at
least an eight-bit internal character representation scheme. To enable a
far greater range of characters to be used, with a consequent increase in
the number of available languages, a 16-bit (2-byte) coding scheme is
desirable. Within the European languages alone, there are nearly 800
different accented and other characters to be represented; when other
languages (e.g Hebrew, Farsi, Kanji) are taken into account, at Lleast a
further 8000 character codes may be required. Japanese kanji alone
incorporates 6349 '"most frequent" characters! It was envisaged that an
eight-bit coding scheme might provide an acceptable short-term solution,
but that use of 16 bits would eventually be necessary. Both eight- and
sixteen-bit schemes, as we shall see later, cause numerous problems in the
use of CTIX and its applications.

It was considered desirable not to develop an entirely new, Motorola-
specific, system of dinternal character coding but to determine if a
suitable external code standard existed for this purpose.

20 August 1985

EUUG Copenhagen, sept. 1985. Page 197




2.3 Terminal Hardware and Software.

The standard terminal in use with the target Motorola processors is a 7~
bit, intelligent, model. This greatly multiplies the problems inherent in
the implementation of an extended character set, since the restriction to 7-
bit transmission and reception by the terminal makes necessary intermediate
transtation of character codes between the terminal and processor.

The terminal download program determines the characters generated by
depression of given keys or key sequences. It also defines which characters
are displayed on the screen upon reception by the terminal of given
character codes. The Llist of characters generated by keyboard depressions
forms a keyboard definition table; the List of displayed characters forms a
font definition table. The two tables are together assembled and loaded to
make the download program. The Motorola terminal character set, which we
will later describe more fully, has one 'configurable' range of characters
-- 32 positions reserved for the characters of various international
languages.

It is required that character codes generated by the terminal be translated
to a form 'understandable' by CTIX and applications, and that characters
sent to the terminal from the processor be reverse-translated to produce a
correct terminal-displayable form. Although the current 7-bit terminal is
the one to be immediately catered for, the translation scheme must not
foreclose on future use of other 7- or 8-bit terminals.

It is also required that all of several terminals connected to the host
processor may, if necessary, operate concurrently in different languages.

A very significant =-- if mundane -~ part of the terminal hardware
considerations is the provision of keyboards and keytops acceptable in the
various target countries. If, for example, keytops purporting to conform to
the Swedish keyboard standard do not, in fact, conform, then it will be
very difficult to market the entire ‘'international' solution, however
elegant and effective, in Sweden.

Printer Hardware.

The other typical 1I/0 device generally 1in use on the Motorola host
processors 1is the printer, in various forms. It is required that six
different printer types be supported. These include various daisy-wheel and
band printers. Happily, for printers, we are only concerned with
translation of characters output by CTIX or applications, so the size of
the character translation problem is half that for terminals.

Character codes sent to a given printer type after translation from their
internal CPU forms must match the codes expected by the printer if sensible
output in the required language is to be printed. The correct daisy-wheel
or band for the required language must be used. The codes expected by the
printers determine the form of tables which must translate characters
output from the processor to the printer.

Character Translation Considerations.

As already noted, facilities for translation of character codes in transit
between the host processor and 1its printers and terminals must be
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2.6

3.1

incorporated into the printer and terminal device drivers respectively.
These must take the form of terminal- and printer-specific translation
tables, residing in CTIX kernel space and accessed by the device drivers.
Character codes transmitted from the terminal must be converted, in the
terminal device driver by means of access to the terminal translation
table, to the equivalent internal CPU representations. Character codes
generated by an application in the CPU and bound for the terminal must be
similarly reverse-translated to the correct screen-displayable form.
Similar character translatijon facilities must be provided by the printer
device drivers and translation tables, except that, in the case of
printers, the translation is only in one direction.

The terminal and printer translation tables should take the form of lookup
tables of character codes, supplied on input with a character code by the
device driver and delivering, on output, a character code conforming to the
requirements at the destination. In the case of terminals, both 'inbound'
(character code en route from terminal to processor) translation and
'outbound' (internal CPU code en route from processor to terminal)
translation must be provided. For printers, translation tables need only
provide 'outbound' translation facilities.

It is required that the translation tables (and hence the Llanguage) in use
should be software-switchable, i.e. that it should be possible with a CTIX
shell directive to change the translation table currently being accessed by
the terminal and/or printer device driver. Given that it is possible for
the terminal to have many download programs corresponding to different
Languages, and that these can be changed easily, it is also desirable that
the terminal translation table be capable of replacement. Typically,
download files and translation tables supporting the same language will be
in use on a given terminal at any one time.

CTIX Manipulation of Internal Characters.

The initial 'international' solution involves use of an eight-bit internal
character representation scheme, with a 16-bit solution developed, but its
implementation deferred. Use of a 16-bit character in any UNIX or UNIX-
derived operating system environment would cause great problems, notably
the doubling in Llength of all text files and disk files. CTIX support of
8-bit characters should be less problematic, but it is nonetheless Llikely
that some CTIX utilities will fail. Results of testing of CTIX utilities
with 8-bit characters are given later in this document.

Since it is required that the system be commercially saleable, and since
there are many existing applications which run on Motorola hardware under
(7-bit) CTIX, we must determine the impact of an 8-bit character scheme
implementation on these applications and minimize this impact, if possible.

An 'International' Solution.
Internal Character Set.

One of the initial requirements of the CTIX internationalization project
was that any internal character set scheme adopted should conform to some
widely recognized character code standard. At the time of initiation of
this project, several character set standards existed, but Little
information was available in respect of which, if any, of these standards
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was gaining broad acceptance for the purpose of extending UNIX character
sets. Motorola has adopted as its basic character set the Xerox Character
Code Standard XSIS 058404. The Xerox character set is a generalization of
familiar ISO and ANSI standards for coded character sets for text
communication. Each character code in the set is represented by two bytes
(16 bits), the first byte denoting the subset number in which a given
character is to be found, the second representing the actual character
itself. There is space in the Standard for each of 65536 characters to be
represented with a unique, absolute numeric code. This covers the
foreseeable requirements for known international Languages. Presently-
assigned Xerox Standard character subsets include:

o] Character Set 0. Character set zero 1is the default 8-bit
character codespace. The first 128 codes
conform to ISO standard 646; the second 128
codes are the same as the supplementary
graphic set for text communication from ISO
6937. Character Set 0. is shown in Fig 3.1.1.

Character JIS 1. Punctuation and Symbols not in
Character Set 0.

Character JIS 2. Punctuation and Symbols not in
Character Set O.

Character Extended Latin characters.
Character JIS Hiragana.

Character JIS Katakana.

Character Greek.

Character Cyrillic.

Character Miscellaneous Japanese symbols.

Character General & Technical symbols 2.

Character General & Technical symbols 1.

Character Ligatures, Graphical entities and
Format symbols.

Character Accented Characters.
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XEROX Character Set 0
ASCII/ISO/CCITT Roman Alphabet & Punctuation

000 020 040 060 100 120 140 160 200 220 240 260 300 320 340 360
B 10

00 ol@]| P| "~ P ° -1 Q1 x
space Grave(s) Degree ] ] Bar Ohms {Genland

01 ! 1 Al Q a q ' i s ) t El =
Spen. |Plus-Min{ Grave | Super. § Diphth. diphth.

02 "1 2| B|R|b|r el ] |*|D|a
Neut. Cent super. | Acute Regd | Croat | Croat,

03 #l3lcls]|c]s gl " el ]|s
. Pound super. | Circum. | Copyrt Span. | lceland

04 o[ 4]|D]|T|d]|t S x| " [™1#]|n
Curr. Dollar | Times Tilde | Trd mrk | Maltese | Maltene

05 %| 5| E|lU|e|u ¥ R 1
Yen Micro- | Macron | Note Dotless

06 &l 6| F|V]|f|v j U A
Pilerow | Breve Dutch Dutch

07 TG W g |w § L |
Apos. Section | Center Dot Catalan | Catalan

10 (1 8lH|X|[h|x - L |1
Divide § Dieresis Polish Polish

11 ) 9 I1|1Y i y ) ’ Q| g
el right | Norw. Norw.

12 sl lJdlz|i]z ] E | e
left nght Ring Diphth. | diphth,

13 I 0O B I I o I e o2
1. Quote | r. Quote § Cedilla m Span. | German

14 ) < L \ 1 I « 1 - + b

Enfrac § Undrine | Enfrac. | lceland | loeland

15 — =M1 |m])} INEINEERERRE
Minus . Enfrac | Dbacute| Enfrac | Lapp Lapp

16 . > | N ) n i -] 32 . D]l
[Circum. (sf Tilde(s) Enfrac. | Ognek | Enfrac. Lapp Lapp

17 rl2lof_ 1o : Vel |3 n
Low bar Delete | Span. Hacek | Enfrac |S. Afnea
EH
Bl
Reserved, Character Set Reserved,
unassigned Select Code not used

Fig. 3.1.1 Xerox Standard XSIS 058404 -- Character Set 0.
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The Llong-term requirement for the ‘'international' CTIX solution is to
jncorporate the full 16-bit character code range provided by Xerox XSIS
058404. It has already been noted that the effects of a 16-bit internal
representation scheme on the utilities of UNIX or a UNIX-derived operating

system would be traumatic. An eight-bit solution is therefore the first
to have been implemented for CTIX. It has been necessary to use an eight-
bit (256-element) character set, incorporating the most-used Xerox Standard
codes, as the basis for the 'international' CTIX implementation. To this
end, Motorola has adopted its own private character set, referred to as
Motorola Private Set 040. This character set is depicted in Fig. 3.1.2
below. A character code incoming to the processor from a terminal passes
through the terminal translation table accessed by the tty driver and is
thus translated to its equivalent Xerox Standard representation. Code in
the tty driver further translates the Xerox representation to the
appropriate character in the Motorola Private Set 040. This last
representation is the internal code used by CTIX wutilities and
applications. The reverse translation process is used for internal CPU
codes sent to terminals and printers. The adoption of the Motorola Private
set is intended as a temporary measure until there is some prospect of UNIX
or a UNIX derijvative successfully handling 16-bit codes.
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Motorola Peivate Charuc+¢r Se+ 408 ?‘j ht Hc\”:

200 220 1?‘»07 7 240 300 310 3‘10 340
60 . a8 | ¢ |—]—
o1 Ala |3 ||~
02 A & | o é - DY
03 A le | e — 0|7
o A lg | # ////// A
0s C |e | B T \\\\\ y
0¢ Elé |u N IRERE
o1 N |& |4 : L. 1 y
10 O [ e |u N ™ | o
l BRI EE e |
12 = 7’ u 1//, ® - ]
13 g |7 ° f—— e l 'j
I+ u i ' “{ = R
5 a n £ L f. ’
e a o T P w
07 a o o} ‘ ¥ |
Reserved, cmgsa

Net Used Scleet Ceode

Fig 3.1.2 Motorola Private Character Set 040.
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3.2 Terminal Hardware and Software.

The Motorola proprietary 7-bit terminal currently in use with the targe

processors incorporates, on a ROM, its own character sets. These character
sets conform to ANSI x3.64 specification, which details the interpretation
of character codes exchanged between the host processor and the terminal.
Three ANSI character sets are supported: GO, G1 and G2. The host processor
switches back and forth between these sets by sending different control
sequences thus:

Name Sequence Operation

SI (shift In) 0/15 Select GO character set (ASCII)

SO (shift out) 0/14 Select G1 character set (Line
Drawing)

§S2 ESC N Select G2 Character set for next
character only.

To extend this character set to allow use of 'international' characters, a
portion of the G2 character set is bank switched to allow one of eight
groups of international characters to be substituted for codes 4/0 through
5/7. This provides 32 configurable character code spaces in terminal
character set G2. Selection of these eight character groups is controlled
by setting of a dedicated register in the terminal download program.

ASCII codes are transmitted and received by the terminal in their plain, 7-
bit, forms. Other characters, of higher numeric values than the ASCII Llimit
of 128, are sent and received by means of three-byte escape sequences.
Since the international characters are configured into set G2, it can be
seen from the table above that the first two (of three) seven-bit sequences
used to represent a special international character will be ESC N, when
transmitted or received by this terminal.

The terminal download program determines exactly the code sequences to be
sent and how incoming code sequences are interpreted by the terminal. The
source form of the program is of two tables, the keyboard and font
definition tables. Upon depression of a given key or sequence of keys, the
download program, configured for one of eight possible Languages, causes
the terminal either to transmit a given ASCII code or escape sequence, oOr
to dinterpret 1in a displayable form an 1incoming ASCII code or escape
sequence.

It is possible for a single terminal to be used with any of eight download
programs configured for any of eight different Languages. Several terminals
may be used on one host processor, all using different Languages. Keytops
for keyboards conforming to the different national keyboard standards,
including use of 'dead-keys' for characters not explicitly represented on
the keyboards have been made available. We have defined the internal CPU
character set representation method and the transmission and reception of
character codes by the terminal. It remains to define the method of
character code translation between the I/0 devices and the processor.

Character Translation.

The character translation tables developed for 'international' CTIX take
the form of Lline-image files which define terminal and printer input and

20 August 1985

EUUG Copenhagen, sept. 1985. Page 204




output character code translations. The present translation tables are
specific to the terminal and printers already referred to, but it is
possible with Llittle effort to modify translation tables to accommodate
other terminal and printer types. Terminal and printer translation tables
differ in their form; there follows a description of both.

3.3.1

Terminal Translation.

ALL character codes generated by or destined for the terminal undergo
transtation. ASCII characters are disregarded, but escape sequences en
route from the terminal to the processor ('inbound') are converted to
the internal CPU code, while character codes destined for the terminal
from the processor ('outbound') are converted to the proper escape
sequences. Fig. 3.3.1.1 below depicts a segment of a terminal

 translation table. The table 1is divided into inbound and outbound

translation directives.

The inbound transtations shown operate as follows: when ESC N A is
received from the terminal, character number 0243, character set zero,
is extracted from the Xerox character set, to be then further
translated to character code 0315 (Pound (Sterling) sign) in the
Motorola Private Set 040. This code, which is the internal CPU
representation, is delivered to CTIX or an application program. When
ESC N C 1is received from the terminal, character number 0310,
character set zero (diaeresis) is extracted from the Xerox set. The \a
sequence indicates the presence of an accented character and that the
character to be accented is 'U'. A 'U' diaeresis must be delivered to
the processor, so code 0254 is selected from the Motorola Private Set
040 and delivered.

Outbound translation is the reverse process. The 'primary' directive
selects the GO terminal character set as default for output to the
terminal; the G1 set is labelled 001 by the 'cselect' directive. If
Xerox character number 0243, character set zero, is received bound for
the terminal, then ESC N A is generated and sent to the terminal.
Similarly, if \000\373 is received, ESC N B is generated and
dispatched to the terminal, where it is interpreted as a German
esset. If \0O0O\310 (diaeresis) is received and if the following
character is 'U', ESC N C is sent to the terminal, to be interpreted
as a 'U' diaeresis. Question marks '?' in the outbound part of the
tramslation table represent Xerox codes for which there exist no
counterpart in the terminal font definition code. For example, Xerox
character \000\241 denotes the Spanish inverted exclamation mark. The
German font definition does not include this character so, 1in the
segment of the German translation table shown in Fig 3.3.1.1, a
question mark is transmitted to the terminal in its place.
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inbound

translate \EN\x range A C

\00O0 \243 # pound sign

\000 \373 # esset (German)

\a \310 U # U diaeresis

# When the input sequence ESC N is received from the terminal,
# if the next character is A then output \000 \243,

# if the next character is B then output \000 \373,

# if the next character is C then output \000 \310 \000 U.

outbound

primary \017 # ASCII shift-in code selects GO character set.
cselect \001 \016 # ASCII shift-out code selects G1 character set.
translate \0OO\x range \241 \377

0

é

\ENA # pound sign

\044 # dollar sign

\ENB # esset position 373
2

?
?
?

# position 377

translate \000\a accent \310
U \ENB # U diaeresis

Fig 3.3.1.1 Terminal Translation table, inbound and outbound.
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In the present implementation, there is one terminal translation table
and one terminal download file 1in the system for each Llanguage
supported. The download file required is selected at terminal boot
time. Also at terminal boot time, a default terminal translation table
is selected and activated. A set of shell-level commands has been
provided to facilitate the user's changing active translation tables.
The most general of these commands is as follows:

cstty [-dcstrans [-Jcst16 [-Jcsfmt? [-1cs040 t=<term>.<lang>

The directive
cstty —-cstrans -cst16 =-csfmt?7 -cs040 t=

switches off all translation features, and is useful if the terminal
is intended to operate in 'vanilla', predominantly ASCII mode. When
the ‘'cstrans' option is selected, the terminal driver translates
inbound and outbound characters to and from the internal character
representation. The 'cst16' option is currently always deselected
since it causes characters in their two-byte Xerox code form to be
supplied to CTIX as a valid internal character representation. The
'csfmt7?' option selects representation of internal character codes as
7-bit values, preceded and followed by SO and SI. Selection of ‘'cs040"
enables translation of the type described in this document, according
to the rules specified by a translation table of the form
<term>.<lang>. Thus, for translation to be enabled, using Motorola
Private Set 040 and the German translation table, the following
directive is used:

cstty cstrans -cst1é6 -csfmt? ¢s040 t=tm31.deut
3.3.2 Printer Translation.
Character translation tables for printers are similar to those for

terminal, but have no rules for ‘'inbound' characters. An example
segment for a daisy-wheel printer is given in Fig 3.3.2.1.
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Revision History:

#
#
# GOC. ISDC, Cork, Ireland. Feb. 13 1985.
# Initial version.

#

#

primary \E(B f#USA-ASCII

cselect \E(A UK

cselect \E(K ffGerman

cselect \E(2 #Swedish

cselect \E(R #French

cselect \E(4 #Spanish

cselect \E(1 #ltalian

cselect \E(3 #Norweglan

outbound # internal character codes translated into device-
# dependent codes

translate \000\x range \2U41 \376

\005 [ \241 Inverted Exclamation Point
? \242 Cent Sign

\243 Pound (Sterling) Sign
\24y Dollar sign

\ 245 Yen Sign

\246 Reserved

\247 Section Mark

\250 Reserved

\N251 Left single quote
\252 Left double quote
\253 Left double guillemet
\254 West arrow

\ 255 North arrow

\256 East arrow

\257 South arrow

\260 Degree sign

\261 Plus/minus sign

\262 Superscript 2

\ 263 Superscript 3

\26U Multiplication Sign

\ 265 Micro sign

\266 Paragraph Mark

\N267 Centered dot

\270 Division Sign

\aT1 Right single quote
\272 Right double quote
\273 Right double guillemet
\274 Fraction 1/4

\ 275 Fraction 1/2

\276 Fraction 3/4

\277 Inverted Question Mark
\300 Reserved

\OO1 #
\O44

?

?

\Q02 &

el

?
?
?
?
?
?
)

T R T T TE OTH R TR I TH TR OIH TE T oWMmoTH I TH T Th Th I e Sh 3w Ix Th I Sk e Sh R

(A IR RI LS S BEEC BN RIS BN S BEEC IS RN IS I SN W

Fig. 3.3.2.1 Printer Translation Table.
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A shell-level utility is provided with CTIX for the easy configuration
of printer types and translation table options.
3.4 CTIX Manipulation of Internal Characters.

Before system testing of the 'international' CTIX began, it was envisaged
that the operation of utilities would fall into three classes:

1 those working correctly with 8-bit internal characters

2 those indifferent to 8-bit characters, but giving unexpected
results

3 those refusing, under some or all circumstances, to handle 8-bit
characters.

Commands which have been tested give the following results:

Class 1 Class 2 Class 3
ar nice awk banner prof
bc nl diff basename pwck
bdiff nm diff3 bfs sed
cal nohup echo cc sh
cat pack file chgrp sort
chmod passwd lint chown spell
cmp paste regcmp col test
cp pcat cu tsort
comm pr cxref vi
cpio ptx date wait
crypt pwd dc who
csplit rm dd write
cut sdiff dircmp
devnm setuname ed
df size edit
du sleep env
factor split expr
find tail getopt
grep tee hyphen
join time install
kill touch login
Ld tr Logname
Line tty lorder
Link uname mail
tln uniq message
Ls unpack mm
make uucp mmt
mount umask mvdir
myv wall
newgrp wC
news xargs

By far the most critical of the above results is the fact that the shell
and all the standard CTIX editors use the eighth bit for their own
purposes, thus rendering themselves inoperable with the internationalized
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version of CTIX. Work 1is currently in hand towards the modification of
editor and shell source code to remedy this problem.

Extensive testing was also carried out on the operation of several well-
known commercial application packages with the extended character scheme.
While, on some of these applications, the effect of eight-bit characters is
minor, none of the six packages tested -- a word processor, relational
database, spreadsheet and implementations of COBOL, BASIC and SIBOL -- was
bug-free.

Future Direction.

We believe that the approach adopted in this implementation is a good one
and that the character set convention adopted is as good as any other. We
wish, however, to concentrate our efforts in the future on a System V
'*standard' version of UNIX, rather than a derivative of the operating
system. We await announcements from AT&T of a 'standard' UNIX accommodating
8- or 16-bit internal character code representations, and would Llike to
adopt a de facto character set standard, if such emerges.
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Communications Solutions for Mainframe UNIX

J.F. Hughes
Manager, Summit Operations
Amdahl Corporation

Bringing UNIX 1 to the world of high-speed mainframe computers
presents major challenges to communications. UNIX was developed
around full-duplex, asynchronous terminals, which are not common-
ly used in large data centers. In creating UTS, f which is a port of
UNIX to the 370 architecture class of processors, special interfaces
and protocols were established to allow the use of fuli-duplex, asyn-
chronous terminals as well as the more standard bisynchronous ter-
minals. With this full-duplex support software, users can interface
with UNIX applications in exactly the same fashion as would be
used on mini- or micro-processor based implementations of UNIX.
Thus, an editor such as VI is available.

This paper discusses the technical aspects of full-duplex support
software as well as current interfaces for X.25, Ethernet and other
networks. Through these communications solutions and the power of
UNIX on a mainframe computer, the end-user has an effective tool
for creating and accessing corporate applications.

1. UNIX COMMUNICATIONS OVERVIEW

This section provides an overview of the communications paths used between UNIX and its termi-
nal devices.

1.1 UNIX and Communications

The I/O portion of a standard UNIX system is divided into two distinct parts: the block I/O system
and the character I/O system.

A device in the block I/O system consists of randomly addressed, auxiliary memory blocks of a par-
ticular size. In a typical microprocessor or miniprocessor implementation of UNIX, the block size is
nominally 512 or 1024 bytes; however, in UTS, the block size is a larger 4096 bytes. The file systems
available to the user use this block I/O system to access the mounted disk devices.

The character I/O system contains all devices that do not fall into the block I/O system. As point-
ed out in the Bell System Technical Journal, + the term "character I/O” is a misnomer and really should
be "unstructured 1/0O”, or I/O that does not use the blocking system.

T UNIX is a trademark of AT&T Bell Laboratories.
$ UTS is a trademark of the Amdahl Corporation.
T The Bell System Technical Journal, July-August 1978, Vol. 57, No. 6, Part 2, p-1939.
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As a consequence of this definition, character I/0 requests from the user are passed directly to the
device driver for the particular device, whether it is a communications line, line printer, or even a disk
if it doesn’t follow the block I/O buffering procedures. The actual hardware device driver determines
how the I/O is handled rather than higher level software in the kernel.

A discussion of UTS communications centers on a description of the various kernel device drivers
that support the communications devices found in a UTS system.

For example, user I/O to a particular terminal is carried out by presenting a stream of characters to
the device driver for output, and expecting a stream of characters from the device driver for input. The
actual software interacting with the device driver. of course, may be a shell, a user application or even
an error message routine deep in the kernel.

Input Output

Driver | Driver

Input | Output
Device | | Device

fig.1: Traditional UNIX 1/O Interface

1.2 Fundamental 1/0 Device Support

To discuss I/O device support in a UNIX system, it is helpful to review basic terminology. An
understanding of full-duplex, half-duplex, echoplex, and canonical processing will lead into a discussion
of the UNIX and mainframe environments.
1.2.1 Full-Duplex Communications

In a classic UNIX system, a user terminal is actually treated as two distinct devices - one device is

a display screen that responds to characters from an output device driver in the UNIX kernel, and the
second device is a keyboard that provides characters to an input device driver.
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Physically, the two devices are housed in the same cabinet, but from the viewpoint of the UNIX
system, they are logically separate. Input from the keyboard device may or may not relate to the actual
output being placed on the screen device by the output device driver.

As a consequence of this architecture, the echoing of characters to the display screen as they are
typed on the keyboard is actually a function of the software in UNIX - the software receiving characters
from the input device driver may or may not decide to echo by sending the characters to the output dev-
ice driver.

In this definition of full-duplex devices, there are separate input and output paths between the dev-
ice and the central processor. The software running on the central processor decides whether data com-
ing in over the input line is echoed back over the output line.

For example, a Teletype was an early console device. It contained two physical interfaces between
the keyboard, print element and the central processor. Using a current loop protocol, pulses on one
line from the keyboard went to the input driver in the host, and pulses on the other line from the output
driver went to the print head to print characters. There was no physical interaction between the two
hardware paths.

Today, a somewhat standard RS-232 interface describes the analogous transmit and receive (both
are one-way) lines that, together with some common signaling lines, connect a modern display/keyboard
with the central processor in a full-duplex mode.

With these modern devices, a single standard host-resident device driver handles all similar physical
devices. Within such a driver, there is an input portion and an output portion to handle the data follow-
ing from and to the family of devices.

1.2.2 Half-Duplex Communications

In a physical sense, half-duplex communications refers to the use of a bidirectional communications
line that can both send and receive data. This is contrasted with the full-duplex environment described
previously, which uses dedicated input and output lines.

In this half-duplex mode, after data is passed in one direction, the line must be turned around elec-
tronically to allow data to pass in the other direction. This is a physical operation. As long as the
drivers in the central processor know how to do this, application software in the central processor will
still see separate input and output device drivers and will still have to decide whether or not to echo
characters to the display as they are received from the keyboard.
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fig.2: Half-Duplex I/O Interface

A consequence of this physical operation is that while output is being sent to the terminal, input
cannot be received from the terminal. In most systems, some buffering takes place at the terminal to

save up terminal input until the communications line is ready to send data to the central processor.

This definition is a physical definition of the connection between the device and the central proces-
sor.

Sometimes, half-duplex devices are permanently unidirectional and will either transmit or receive
data (but not both) from a central processor. This is known as a simplex connection. A console printer
is an example of this device.

1.2.3 Echoplex Communications

On some ASCII display terminals, a switch setting labeled half-duplex is available. Usually, this is
not the physical half-duplex mode described in the previous section, but a mode in which the characters
generated by keystrokes on the keyboard are placed on the display as well as being sent to the central
processor.

This is known as echoplex and is really a variant of the physical full-duplex mode described previ-
ously. There are still separate input and output paths between the device and the host processor, but
through the use of this switch, printable characters are echoed to the display as they are sent to the
host. This both reduces processing time in the host and loading on the communications line.

In this mode, the central processor does not have to echo characters from the input device driver to
the output device driver. The user’s terminal has taken care of this operation.
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1.2.4 Canonical Processing Modes

When using full-duplex terminals, UNIX programs interact with the terminals in one of two modes:
canonical or noncanonical.

In the canonical mode, the terminal driver in the kernel assembles input characters into lines delim-
ited by newline, end of field or end of line characters before the input lines are presented to the applica-
tion. Erase and line kill functions are enabled and character echoing is done by the terminal driver.

In this mode, the user can perform simple line editing and the application does not have to be con-
cerned with echoing.

In the noncanonical mode, the terminal driver passes characters from the device directly to the pro-
gram, which is then responsible for echoing characters to the display. Simple editing functions, such as
line kill, must be performed by the program.

The majority of UNIX programs use canonical processing because it allows the programs to remain
independent of the source of the input data. Programs of this type may then use the powerful I/O
redirection facilities of UNIX and may also effectively use half-duplex terminals.

Noncanonical processing is used by fewer, but more significant programs. Most of them are full-
screen editors; however, some are games, a few are graphics-related and a few are used in intercomput-
er communications.

1.3 UNIX and Mainframe Communications Environments

UNIX, as an operating system, has its origins in the mini and microprocessor hardware environ-
ments where a great variety of user terminals and central processors exists. This necessitated a simple
interface to various communications devices, but it had a pronounced effect on the style of communica-
tions.

This is most evident when the connection between full-duplex ASCII terminals and the central pro-
cessor is examined.

1.3.1 Historical UNIX Device Connections

Early UNIX processors used a single processor architecture where the various I/O devices were ad-
dressed by the processor over a common bus.

Output to the device was accomplished by using an output device driver that sent a character at a
time to the device using the I/O instructions of the central processor. Although there might be some
buffering and error recovery procedures in the device driver, there was no further logical processing
after the character was sent by the central processor.

Input from the device was character-oriented and interrupt-driven: as a character appeared from
the device, an interrupt was signaled in the host and the central processor was vectored to a service rou-
tine to read the character and place it in the appropriate input queue. When the character had been
read, the central processor was released to resume its interrupted task.

Several observations may be made about this classic interface:
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e Devices are connected directly to the central processor with minimal character processing between
the device and the central processor.

The central processor is involved in each transfer of a character to or from the 1/O device.

There is no fundamental hardware relationship between receiving and sending characters, allowing
true full-duplex operations.

1.3.2 Mainframe Device Connections

In the mainframe environment, devices are normally connected directly to an intermediate proces-
sor that can do I/O processing in parallel with the processing of the central processor. This procedure
recognizes the inherently greater speed of the central processor, which is better utilized by operating on
non-I/O tasks, leaving the I/O activities to more specialized processors.

A channel is a specialized processor in the mainframe environment designed for I/O processing.
This hardware device is a part of the processing system and accesses the central memory both for in-
structions and for data transfer.

Devices are connected either directly to the channel, or to a controller or communications proces-
sor that is then attached to a channel.

Communications devices such as the full-duplex ASCII terminals common to the UNIX world can-
not attach directly to a channel. Consequently, a communications processor such as the Amdahl 4705
Communications Processor is used to provide an interface between the device and the channel.

A similar picture can be drawn for other devices such as DASD or tape drives, which use controll-
ers rather than a communications processor to connect to a channel.

A 4705 used within a typical mainframe environment usually contains one of the following pro-
grams:

Emulation Program (EP) is the software that was created to emulate an early class of hardwired
communications processors. It supports asynchronous and binary synchronous communications
lines and is relatively stable due to its long life. Both public domain and IBM program product
versions exist.

Network Control Program (NCP) is the System Network Architecture (SNA) component that re-
sides in a 4705. It is undergoing continual change and is a licensed IBM program product.

Partitioned Emulation Program (PEP) allows both EP and NCP to reside in the same physical
4705S.
A normal EP provides for the definition of half-duplex and full-duplex lines, but these definitions

are considerably different from the common UNIX definitions.

With these standard EP definitions, half-duplex and full-duplex lines differ in the way the lines are
enabled and how the lines are turned around after a write operation.
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The full-duplex lines always have the Request to Send lead on. The half-duplex lines turn off the
Request to Send lead during terminal read operations. Both types of lines send data in only one direc-
tion at a time and, during a read operation, the host doesn’t see the data until an End of Line character
is received.

In both of these cases, there is only one data path between the device and the host processor,
which makes it impossible to implement a true physical full-duplex connection that would permit non-
canonical mode.

The EP definition of full-duplex does not satisfy UNIX requirements. Consequently, EP must be
modified to support UNIX-style full-duplex operations. Through extensions to the procedures for creat-
ing an EP, additional code supporting full-duplex operations is included in the 4705 control program.
This code is contained in the UTS/F program product.

When an EP is installed in the 4705, subchannels are used to represent the data path between the
host and a device attached to the 4705. With a maximum of 256 subchannels per physical channel, a
normal EP supports 255 devices (or communication lines) and a native subchannel, which is used to con-
trol the 4705.

Several important observations about mainframe 1/O can be made at this point:

¢ The central processor is never interrupted directly by the external I/O device. The channel is used
to transfer data to and from central memory and then signal the central processor.

o Although the central processor and channel can be involved in the transfer of data on a character
by character basis, it is normally advantageous to transfer data in blocks. This blocking reduces the
number of times the host processor must respond to channel activity.

e The channel, since it is a processor that transmits data between central memory and the external
device/controller, can transmit data in one direction or the other, but not in both directions at the
same time.

As a consequence of these architectural characteristics of the mainframe environment, the interface
between the host and full-duplex devices in the mainframe world is more complicated than the interface
in the micro or minicomputer environment.

The Amdahl UTS/F program product is software that solves this problem by integrating standard
UNIX full-duplex devices into the mainframe environment.

1.3.3 Hardware Support for UNIX Communications

As the power of central processors in typical UNIX miniprocessor systems increases, vendors are
discovering that it is advantageous to provide supplemental processors specifically designed for I/O.
Typically, these microprocessors are contained on a device support board that is physically within the
miniprocessor.

These support processors can perform routine I/O tasks, freeing the central processor for more im-
portant activity. In many ways, these boards resemble the channel or front-end processor architecture

of the mainframe environment.

In early versions of UNIX, support for these boards was the vendor's responsibility. With the
release of System V UNIX, however, a special interface protocol was established for these processors.
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Known as the virtual protocol machine (vpm), this specification allows a vendor to implement the
vpm interface on a particular microprocessor board within the overall processor system. Higher-level
protocols such as Remote Job Entry (RJE) that are defined on the virtual protocol machine can then be
downloaded to the microprocessor board with little effort on the vendor’s part.

The 4705 communications processor does not implement the virtual protocol machine interface.
From the host central processor’s point of view, the 4705 only provides an interface to binary synchro-
nous half-duplex lines, asynchronous half-duplex lines and asynchronous full-duplex lines. Any higher

level protocols on other UNIX systems that might be defined through a vpm script are implemented in
the host.

2. UTS TERMINAL SUPPORT

This section provides information on the two typical terminal interfaces provided to users on UTS.

2.1 General

Historically, UNIX users have used full-duplex ASCII terminals that are connected to the central
UNIX processor. The applications (or shell) controlling the terminal expected to see a serial stream of
characters coming from the user’s keyboard, and send a serial stream of characters to the user’s display.

With the early slow-speed teletype devices, short keyboard sequences (such as the abbreviated
commands available in ed(1)) and even shorter responses to the display (such as little or no indication of
command state or prompt) were the norm.

Today’s large data processing center user, however, is accustomed to using 3270-style block mode
terminals. In this environment, full-screen operations are standard. Command sequences explicitly
describe the action desired and voluminous responses are common.

2.2 Full-Duplex ASCII Terminals

Most terminals of this type contain a keyboard and a display, which logically operate as separate
devices from the central processor’s point of view.

Data is passed in American Standard Code for Information Exchange (ASCII), which is a seven-
bit-plus-parity * code established by the American National Standards Institute (ANSI). This provides
for 128 different characters and differs from the code used in most IBM equipment.

Individual keystrokes cause data to be passed to the host. This means that when a key is pressed.
its character representation is immediately passed to the central processor as input to the program re-
questing the terminal read. No buffering or other logic is used that might cause the delay of the charac-
ter until other keys are pressed. Even if the transmission connection is best used by blocks of data
(such as when there is a large cost to set up or break down the communications link that is better

+ Some UNIX programs, such as uucp(1C), use the full eight bits to allow transfer of binary
files without using encoding schemes.
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spread across a block of data), individual characters must be transmitted on their own.

Another way of looking at this is to recall that the lines are asynchronous: there is no way to
predict the time between the receipt of characters since it is a function of how fast the typist uses the
keyboard.

The characters themselves are made up of regularly spaced signals on the line. The terms baud
and bits-per-second (bps) measure the time between the bits that make up the characters and not the
time between the characters.

For example, data transmitted to a display at 4800 bps from one system may appear to be received
faster than data transmitted at 9600 bps from another system if the time between characters from the
4800 bps system is considerably less than the time between characters from the 9600 bps system. How-
ever, the bits making up each individual character are transmitted twice as fast in the 9600 bps system as
the 4800 bps system.

The immediate receipt of characters allows for full program control over the display. In addition,
special combinations of keys may be used that are beyond the normal shift-key combinations found on
typewriters.

The early displays or printer elements did little more than place characters on a page or screen at
the cursor or printhead position when they were received from the host. Many of the standard UNIX
programs expect terminals to operate in a mode in which the only control characters on the output
stream are carriage returns or line feeds, which control the position of the print head.

Newer devices allow for many different escape sequences to control the output device. These con-
trols range from simple sequences to place the cursor or print head in a new position to elaborate se-
quences that change character sets or invoke special programs within the terminal. With the lowering
cost of electronics, the trend will be to have more functionality within the user’s workstation.

Although there have been some attempts to develop a standard set of terminal escape sequences,
most terminals have unique character sequences to invoke special functions.

To provide a common interface to a wide variety of terminals with varying escape sequences, many
versions of UNIX, including UTS, use a terminfo(4) database to describe the various terminals. Using
this database, programs such as the full-screen editor vi(1) or the CRT screen handling and optimization
package curses(3X) can use the full capabilities of most standard ASCII terminals.

As an example, the vi(1) editor has a command to move the cursor one word to the right on the

same line. With terminfo in the ASCII environment, vi simply looks up the escape sequence to move
the cursor one character to the right and uses it to move the appropriate number of spaces.

2.3 Half-Duplex EBCDIC 3270 Terminals

The 3270 Information Display System is the general name for a group of devices typically found in
the mainframe environment. The family consists of a number of terminals, printers, controllers and
auxiliary devices that follow a standard architecture.

All of these devices require the use of a controller, which serves as an interface between the device
and either the channel (local mode) or a communications line (remote mode).
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There are two generations of the 3270 family that differ in their device characteristics and the pro-
tocols used on the coaxial cables connecting the devices to the controllers.

The earlier family used the 3271 (remote) and 3272 (local) controllers with 3277 displays. This
family of devices is often referred to as a type B coax system in recognition of the type of hardware sig-
nals used on the coaxial cable that connects the terminals to the controller.

The later family uses the 3274 controller (with different versions for local and remote use) and the
3278/3279/3280 displays. This family is often referred to as a type A coax system.

Various printers can be attached to either or both of these families.

Locally attached terminals are connected directly to a controller. which is connected to a channel.
Up to 32 devices are supported on one controller, and a number of controllers may exist on the same
channel.

Remote terminals are connected to a controller which is then connected to a binary synchronous
(BSC or bi-sync) protocol communications line. An Amdahl 4705 Communications Processor then pro-
vides an interface between this line and a channel.

A 327x display and its controller operate in a master-slave relationship: the controller is the master
and determines when data should be passed between the device and the host interface. This is dis-
tinguished from the micro or miniprocessor environment, where the display is directly attached to a pro-
cessor: if a key is pressed on the keyboard, an interrupt is generated in the processor to read the data
and store it in some buffer.

In the earlier family of 3277 displays, characters were saved in a local display buffer after being
echoed to the screen. After polling by the controller, the display would send a fixed size buffer of char-
acters to the controller, which would then forward portions of the buffer to the host.

In the later family of 3278 displays, characters are transmitted directly to the controller, which may
then echo them to the screen. The transmission of data to the host in this case is still under control of
the controller, but occurs from buffers in the controller rather than from the terminal.

As discussed earlier, transmission of data between the controller and the host is in a physical half-
duplex mode rather than the historical UNIX full-duplex mode.

Data transfer uses the Extended Binary Coded Decimal Interchange Code (EBCDIC). which pro-
vides for 256 different characters and is different from the encoding sequence used for characters with
ASCII terminals.

With 327x devices, there is a higher level protocol known as the 3270 Data Stream Protocol, which
is a formatted data stream used to transmit data between an application program and a terminal or
printer. While this is not as encompassing as the terminfo database used with ASCII terminals, it does
provide a method for independently accessing the various models and devices of the 3270 family.

The 3270 family of displays is field-oriented. Hardware support within most of the devices recog-
nizes the data fields specified in the 3270 data stream protocol. This is different from the character

orientation of ASCII devices.

In UTS, an extremely powerful and comprehensive full-screen 3270 editor, ned(1), was developed
that has a strong similarity to both mainframe editors and ed(1).
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Many of the key system utilities in UTS have full-screen 3270 interfaces built around the C
language quickscreen preprocessor gs(1). Through this facility, programs can quickly and efficiently ac-
cess the full-screen features of the 3270 family of displays.

3. HOST COMMUNICATIONS SOFTWARE

This section provides information on the communications software based in the UTS kernel.
General host communications software is provided in the following areas:

Host resident code to support full-duplex devices. In addition to the host code, full-duplex ASCII
support software is installed in the Amdahl 4705 Communications Processor by using the Amdahl

UTS/F program product.

uucp(1C) and cu(1C), which provide the capability to interact with a remote UNIX system (which
may or may not be UTS) to transfer files or execute commands.

o Remote Job Entry (RJE) support over binary synchronous protocol communication lines.

The following diagram illustrates components of a mainframe solution for UNIX:
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fig.3: Full-Duplex Devices and UTS/V
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3.1 Full-Duplex Support Code

Full-duplex support in a UTS system is provided through resident drivers that interface with
corresponding packetizing code in the 4705 Communications Processor. While the host drivers are
present in the standard UTS system, the optional Amdahl UTS/F program product must be used in the
Amdahl 4705 Communications Processor to communicate with these drivers.

3.1.1 Host Driver Interfaces

The full-duplex devices are identified in the host as devices in /dev/.... As with all other devices in
the UTS system, they are placed there through the sysgen(1M) process, which uses config(IM) and a
special device configuration list to automatically configure UTS.

Within the /etc/devicelist file used by config(1M), all of the terminals related to full-duplex opera-
tions are identified as fdxterm devices. Any autocall units are identified as acu devices and communica-
tions processors are identified as fep devices. Through this table, the channel/subchannel address of the

various devices is established and some device parameters are set.

Further configuration parameters, such as the line speeds, are set in the EP code controlling the
communications processor.

3.1.2 Communications Processor Software

The UTS/F product is shipped as an update to a standard Emulation Program (EP), which is
software that controls the Amdahl 4705 Communications Processor.

The UTS/F software implements a packet subchannel interface. This subchannel is used by the
host for input from all full duplex lines defined on the Amdahl 4705 Communications Processor. The
packet subchannel may be any valid emulator subchannel.

For simplicity and ease of operation, an Emulation Program is used as the base for this additional
code. Although a public domain version of EP is perfectly acceptable and is in fact shipped with the
UTS/F product, an installation may use a program product version of EP to install the UTS/F product.

Packets containing input data from the full duplex lines are sent to the host under three conditions:

e The packet becomes full.

e A specific period of time has elapsed since the last packet was sent to the host and there is some
data in the current packet to send.

o Error conditions exist that require host notification.
Two host subchannels are used for each full duplex line: one for output data and another for spe-
cial error status conditions. These two subchannels are in addition to the single packet subchannel used

for all input from full duplex devices.

Auto-call units (AT&T 801-compatible) are supported so that software in the host can place an out-
going call to another UNIX system.
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To install this support, extensions to the normal EP generation macros are provided to allow the
inclusion of Amdahl-developed full duplex support code. This extended EP macro library is shipped
with the UTS/F product. Through the use of new Amdahi-developed parameters to standard EP mac-
ros, special full duplex support code is taken from Amdahl object libraries and included in the Amdahl
4705 Communications Processor load module.

3.2 UUCP and CU Support

Through the use of the full-duplex software described in the previous section, standard uucp(1C)
and cu(1C) support is provided to allow a process on UTS to interact with a remote UNIX system.
Note that the optional UTS/F program product is required for this support.

This software is not described here since it is common UNIX software.

3.3 Remote Job Entry (RJE) Support

RJE support is an integral portion of a standard UNIX system. Through it, a UNIX system can
communicate with an IBM Job Entry Subsystem (JES) by mimicking an IBM 360 multileaving worksta-
tion.

In several popular minicomputer implementations of UNIX, a special microprocessor board is in-
stalled in the minicomputer to support communication protocols. This microprocessor is programmed
from a script generated in the UNIX system; through this, much of the tedious communications process-
ing is offloaded from the central UNIX processor.

In the version of UNIX distributed by AT&T, the "virtual protocol machine” interface is used as
the model for this offloading of scripts to an auxiliary communications processor.

Within UTS, there is no associated microprocessor card. The virtual protocol scripts to handle rje
lines have been incorporated in the kernel. The central processor executes this code by interacting with
an Amdahl 4705 Communications Processor, which actually manages the binary synchronous line that is
connected to a remote JES.

In programming the 4705, a binary synchronous line is generated in EP and made available as a
subchannel address to the host processor executing UTS. The optional UTS/F program product is not
required for this support.

4. UTS NETWORKING INTERFACES

The prior sections of this paper have discussed in detail the UTS support for standard UNIX com-
munications where a front-end processor is used to interface an RS-232 style device to the mainframe.
In many situations, networks are created using switches and telephone links based on this technology -
some examples are NETNEWS in the United States and proprietary switches to interconnect a large
number of terminals with a large number of UNIX processors.
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Of increasing interest are the X.25, Ethernet and Hyperchannel networks, which are discussed in
this section.

4.1 X.25 Network Interfacing

The current UTS/V product interfaces to an X.25 network through the use of the Comm-Pro X25
Network Access Support Package. +

This product is installed in exactly the same fashion as UTS/F is installed: additional code to a nor-
mal EP gen for the 4705 or 3705. It allows asynchronous interactive terminals, 3270 compatible termi-
nals and BSC contention terminals (2780/3780) to access UTS through any packet switched network that
uses X.25 link access procedures.

However, it is crucial to note that there is currently no distinction to UTS between a device con-
nected through the network and a half-duplex (eg.tty) device directly attached to UTS. As far as UTS
is concerned, it is talking to a common tty-type device and is not aware that the device is actuaily
reached through a network. The PAD functions are handled entirely within the 4705.

This level of support is perfectly adequate for applications on UTS that are not concerned with the
X.25 interface. In order to support applications that must recognize X.25 functions (particularly X3,
X28 and X29 protocols), work is underway at Amdahl to provide these interfaces within UTS as well as
a method of placing a call into the X.25 network (eg, generating a call request packet).

This current method of X.25 support does not require nor does it interface with the UTS/F
software product.

4.2 Ethernet Network Interfacing

Another popular networking media is ethernet; however, it is new to the mainframe environment
and hardware/software products are just now being developed for this class of processors.

Several companies market a channel-to-ethernet hardware device that can be used with UTS. In
addition, there are several instances of software products that will interface such a device to a VM or
other host operating system.

Work is underway at this time to interface such a device to UTS so that a basic internet protocol
[RFC-791] is provided at the level 3, or network layer. Above this protocol will be both the Transmis-
sion Control Protocol [RFC-793], which performs validation checks on data, and the Universal Da-
tagram Protocol [RFC-768], which does not perform validation checks.

Above the TCP layer will be such protocols as electronic mail [RFC-821], file transfer [RFC-765]
and remote login support [RFC-764]. Through these functions, users will be able to connect to UTS
over ethernet from a workstation, and UTS will be able to participate fully in existing ethernet net-
works.

+ Comm-Pro Associates, 121 West Torrance Blvd, Redondo Beach, California, 90277.
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4.3 Hyperchannel Network Interfacing

A third popular method of networking uses the Hyperchannel, + which can interface machines from
different architectures through the use of a common bus and special hardware to interface to the bus.
For example, a device exists to interface a standard ibm-style channel to the bus as well as another dev-
ice to interface a DEC processor to the bus.

A common protocol (NETEX) is used to interface the various architectures; work is underway to
provide this interface within UTS. Through it, mainframes of varying architectures will be able to com-
municate easily since many differing operating systems are supported.

This solution will be particularly attractive to installations that already have an installed base of
mini and micro-processors yet want to bring in mainframe power while still operating the existing pro-
cessors. The NSC family of communications products also supports satellite communications and re-
mote devices (eg, remoted printers, etc).

5. CONCLUSION

This paper has examined in detail the major technical problems found in bringing full-duplex
ASCII support to a mainframe environment that historically has not supported such a device. The
UTS/F program product, which provides this support has been described, and several examples have
been given of current work in network interfacing.

Through all these activities, it is now possible to provide the software portability and functionality
of UNIX in the mainframe environment such that the end-user has an effective tool for creating and ac-
cessing corporate applications.

T Network Systems Corporation, 7600 Boone Avenue North, Brooklyn Park, Minnesota,
55428.
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1. PRESENTATION OF MHS-X.400.

CCITT has voted in October 1984 the X.400 series of recommen-
dations. They define models, services and protocols allowing users
to exchange electronic mail. The following presentation 1s an
excerpt from the X.400 document, which may be referred to for
further details.

DESCRIPTION OF THE MHS MODEL

1.1.1. Overview

A fonctionnal view of the MHS Model is shown in Figure 1. 1In
this model, a user 1s either a person or a computer application. A
user is referred to as either an originator (when sending a mes-
sage}) or a recipient (when receiving one). MH Service elements
define the set of message types and the capabilities that enable
an orinator to transfert messages of those types to nne or more
recipients.
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Figurel  .Functional View of the MHS Model
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An originator prepares messages wlth the assilistance of his User
Agent. A User Agent (UA) 1s an application process that 1interacts
with the Message Transfert System (MTS) to submit messages. The
MTS delivers to one or more:.:recipient UAs the messages submitted
to 1t. Functions perfomed solely by the UA and not standardized as
part of the MH Service elements are called local UA fuAAA func-
tions.

The MTS comprises a number of Message Transfer Agents
(MTAs) . Operating together, the MTAs relay messages and deliver
them to the intended recipient UAs, which then make the messages
avalilable to the intended recipients.

The collection of UAs and MTAs 1s called the Message Handling
System (MHS). The MHS and all of 1its wusers are collectively
referred to as the Message Handling Environment.

The basic structure of messages 1is shown in Figure 2. The envelope
carries information to be used when transferring the message. The
content 1s the piece of information that the originating UA wishes
delivered to one or more recipient UAs.

Envelope + Content

Figure 2 Basic Message Structure
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1.1.2. Layered Description of the Message Handling System.

The Message Handling entities and protocols are located in
the Application Layer (No 7) of the 0SI Reference Model. This is
done to permit the MH applications to use the underlying layers.

=
MHS Layers ,/' UAL mﬁg

within the .- =
Application~

Layerof

the OSI

Reference

Model

Figure * 3 Layered Description

1.1.3. The Message Transfert System

The MTS provides the general, application-independent, store-
and-forward message transfert service.

1.1.3.1. Submission and Delivery

The MTS provides the means by which UAs can exchange mes-
sages. There are two basic interactions between MTAs and UAs.

The submission interaction is the means by which an originating
UA transfers to an MTA the content of a message plus the sub-
mission envelope.

The delivery 1interaction is the means by which the MTA trans-
fers to a recipient UA the content of a message plus the deli-
very envelope.

1.1.4. Relaying

Each MTA relays the message to another MTA until the message
reaches the the recipient’'s MTA, which then delivers it to the
recipient UA using the delivery interaction.
1.17.4.1. The User Agent

The UA uses the MT Service provided by the MTS. A UA 1s a set

of computer application processes that, as a minimum, contain the
functions necessary to interact with the MTS using the submission
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and delivery procedures.

The IPM UA ( Interpersonal Messaging UA )

1. Provide the functions necessary to pPrepare messages.
2. Perform the submission interaction with the MTS.

3. Perform the delivery interaction with the MTS.

4. Perform the functions necessary to present messages to its
user.

5. Provide functions to cooperate with other UAs in order to help
its user deal with messages.

6. Perform additional message preparation and manipulation func-
tions.

Optionally, the IPM UA may provide local UA functions not sub-
Ject to standardization by CCITT. For example, it might provide
word processing facilities, or database facilities for storing
and retrieving previously received messages.

1.2. CONSTRUCTION OF O/R NAMES

It 1s an objective that an originator be able to provide a
descriptive name for each recipient of a message using information
commonly known about that user. This Recommendation specifies a
set of standart attributes from which these O0/R names can be
construted.

1.2.1. Variantes of O/R Names.

An O/R Name may be of the four following variant.

Note:AttTibdtes enclosed 1n square brackets are optional

Variant 1

O/R name consist of:
Contry name
Administration domain name
[Private domain name]
[Personal name]
{Organization Name]
[{Organization Unit Name]l
[Domain-defined attributes]

Note: At least one of Private Domain Name, Personal Name ,
Organization Name and Organization Unit Names must be selected.
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Variant 2

O/R name consists of:
Contry name
Administration domain name
UA unique numeric identifier
[Domain-defined attributes]

Variant 3

O0/R name consist of:
Contry name
Administration domain name
X.121 Address
[Domain-defined attributes]

Variant 4

O/R name consist of:
Telematic Address
[Telematic Terminal Identifier]

This form comprises the X.121 address and,
terminal identifier.
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.3. SERVICE ELEMENTS
.3.1. The Message Transfer Service

The features of the MT Service are listed in Table 1

Service Group Service Elements

Easic Access Management
Content Type Indication
Converted Indication
Delivery Time Stamp Indication
Message Identification
Non-delivery Notification
Original Encoded Information types Indication
Registred Encodad Information Types
Submission Time Stamp Indication

Submission Alternate Recipient Allowed
and Deferred Delivery
Delivery Deffered Delivery Cancellation

Delivery Notification

Disclosure of Other Recipients

Grade of Delivery Selection
Multi-destination Delivery

Prevention of Non-delivery Notification
Return of Contents

Conversion Conversion Prohibition
Explicit Conversion
Implicit Conversion

Query Probe
Status Alternate Reciplient Assignment
and Inform Hold for Delivery

Table 1. Message Transfer Service Elements
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THE INTERPERSONAL MESSAGING SERVICE

The features of the IPM Service are listed 1in Table 2

Service Group

Submission and
Delivery and Conversion
{MT service elements)

Coopering IPM UA
Action

Cooperting IPM UA
Information Conveying

Query
(MT service elements)

Status and Inform
(MT service elements)

Service Elements

Basic MT Service Elements
IP-message Identification
Typed Body

See Table 1

Blind Copy Recipient Indication
Non-receipt Notification
Receipt Notification
Auto-forwarded Indication

Originator Indication
Authorizing Users Indication

Primary and Copy Recipients Indication

Expiry Date Indication
Cross-referencing Indication
Importance Indication
Obsoleting Indication
Sensitivety Indication

Subject Indication

Replying IP-message Indication
Repy Request Indication
Forwarded IP-message Indication
Body Part Encryption Indication
Multi-part Body

See Table 1

See Table 1

Table?2 Interpersonal Messaging Service Elements
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1.5. PROTOCOLS

The P1 protocol 1is used to exchange messages between MTA
entities. The P2 protocol 1s-used to exchange i1information between
UA entities.

1.5.1. Principles

The P1 and P2 protocols are described in terms of the X.409
syntax. This syntax uses a BNF notation to describe protocol ele-
ments and octets exchanged between entities. Each protocol element
is coded as a triplet (I,L,V) where I is an identifier, L a length
and V a value. A protocol element is represented as a tree struc-
ture. N Nodes are (I,L,V) and contain (I,L,V). Leaves are (I,L,V).
An advantage of this technique is that elements are not limited in
length or number.
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2. THE COSAC EXPERIMENTAL NETWORK

2.1. PRESENTATION

The experimental COSAC network (COmmunication SAns
Connexion), which operates 1in message mode, 1s being tested at
CNET. It allows users to exchange information of any type when
there is no need for real time interaction. E.g. mail, file ¢tra-
fert Presently, COSAC offers a mail service. A file transfer ser-
vice will be available at the end of 1985, and more services are
being defined.

Early CCITT work on electronic mail, which matured into the X.400
series, was ta ken as the base for defining COSAC concepts.
2.2. CCITT ELECTRONIC MAIL MODEL

The CCITT model comprises two entities, both in the layer 7
the 0SI model. Th ese entities are:

MTA : Message Transfer Agent (See 1)

UA : User Agent (See 1)

This model was initially used for building the COSAC prototype,
and then as a base for the experimental network.
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2.3. THE COSAC NETWORK

The CDOSAC network is composed of computers implementing MTA
and UA functions. MTA's handle P1 protocol elements regardless of
their content. Thus, such elements could be used as well for file
transfer, 3job transfer, and other applications. A network entity
comprises MTA functions and specific US functions, e.g. mail or
file transfer.

The functional diagram of this network (with only two MTA's) is
represented 1in the following figure.

Users Users
[ mm e \ [ m e \
I----1 I----1 I----1I I----1 I----1 I----1
I EM 1 I TF 1 I XX I I EM 1 I TF 1 I XX 1
I----1 I----1 I----1 I----1 I----1 I----1
e 1 I---ee e 1
I I P1 I I P1 I----1
MTA 1. I MTA I<....I1 AD 1
I 1 I I----1
I I I I

EM: electronic mail
TF: file transfer UA
XX: other service UA
AD: Adapter

SERVICES OFFERED BY COSAC

COSAC offers MTA functions. As UA functions are by and large
provided by existing message systems, it was more efficient to put
in COSAC adapters turning those closed systems into "open” systems
in the O0SI sense. Consequently, the interconnection of heteroge-
neous message systems is becoming possible. The COSAC software
includes adapters for the following message systems:

- UNIX mail
MULTICS mail

- MISSIVE (alias COMET)
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EUROKOM (alias KOM)

FORUM

At this time, users of those message systems can exchange mail.
FILE TRANSFER

File transfer in message mode (TFMM) for the COSAC network
has been specified at CNET. Ecole des Mines de St. Etienne is
implementing a first version on UNIX (SM-80), which will be ported
to other computers of the network (IBM, VAX, MULTICS). Services
comprise primarily file send and receive, with multi-destinations,
protection and attributes updating. The initial version of the
pProtocol can transfer structured files (text lines, T.73 document
structure) or binary files.

2.5. BULLETIN BOARDS INTERCONNECTION

Bulletin boards are similar to mailboxes by topics open for
reading and writing to all users of one system. This service (e.g.
“continuum” on MULTICS) is centralized. Several bulletin boards on
the same topic may be interconnected via COSAC would have to be
defined specific UA. In the meantime, for testing the concept,
this service is offered by using dedicated mailboxes for passing
messages between bulletin boards. Presently, a number of bulletin
boards are interconnected.

2.6. PORTING COSAC ON IBM, VAX, MULTICS

The COSAC software is written in PASCAL and runs under UNIX.
The experimental network described above comprises only SM-90's.
To cater for the needs of the research community, some institu-
tions (INRIA, CNUSC, CNAM, IMAG) have decided to port the COSAC
software on their computers. Thus, the future COSAC network will
include MULTICS, IBM, VAX and SM-80 computers. The first service
will be electronic mail. The second service will be file transfer.

Other services are being defined and include, job submission and
bulletin board interconnection.

3. PRESENT STATUS

The current software version is V3. The following mail sys-
tems are interconnected:

UNIX mail
MULTICS mail

EUROKOM
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- IBM UTS and CMS

~ VAX VMS

Bulletin boards on MULTICS and UNIX are interconnected.

The V3 software handles a subset of P1 and P2. E.g.

Ex: address: country
administrative domain
private domain
person name

It does not contain UA as defined 1in X.400.

Message transfer between COSAC nodes uses asynchronous TTY emu-
lators, PAD to PAD.

3.1. PRESENT DEVELOPMENTS

A new version V5 is under development. It contains MTA and UA
functions. The P1 and P2 protocols are handled as defined 1n
X.400, 1including address structures. It uses BAS session.

New nodes running the V5 version will start operating at the
beginning of 1986, with mail and file transfer. They will be
interconnected with V3 nodes.,

The V5 software will be ported to IBM, VAX and MULTICS mid 1986,
and will replace the V3 software.

Simultaneously, working groups are defining a distributed bulletin
board service (CRMM) and Job submission (STMM). MULTICS and UNIX
implementation should become available during 1986.

CONCLUSIONS

The V3 version has allowed an experiment of basic MHS services.
The V5 version is designed to offer more services (file transfer,
Job submission, bulletin board) on a larger set of heterogeneous
systems, while putting the 0SI model into concrete use.
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ANSI C Standard

Mike Banahan

Technical Director
The Instruction Set

1. The ANSI C Standard

1.1 Abstract

This paper discusses, briefly, some salient points relating to the X3J11 C Standard effort. It con-
siders the membership of the committee. then some of the more important changes and additions to the
language and preprocessor. It does not even try to be a complete summary of the work of the commit-
tee.

1.2 The Committee

The X3J11 committee, like other ANSI committees, is made up of volunteer members who are in-
terested enough to attend the meetings and can find the funds to pay for membership and attendance.

The committee meets quarterly for one week at a time, and currently only meets in North Ameri-
ca. Unusually, a meeting is planned to be held in the UK at a future date, but such international mind-
edness is a rare event.

The bulk of this committee is made up of systems-oriented people. Many compiler suppliers and
supporters are represented, with most of the major manufacturers fielding a team member. The
remainder of the group is a mixture of users from various fields. The committee is split into three
groups which are independently chaired: the language group, which considers the C that we know; the
libraries group, defining standard libraries and header files - C is useless in an applications environment
without libraries; and the environment group, who look at issues such as character sets, /O translation
mechanisms and other stuff that is usually taken for granted in a UNIX environment. The work done
by the three groups will be mentioned in the following discussion, but my own interest is mainly in the
language area, and that is where most of this paper will focus.

1.3 Committee Aims

The committee is relatively free to choose its own brief. However, wild schemes are tempered by
the knowledge that the standard will eventually be voted on by the world at large (I think), and it is cer-
tainly at the front of everyone’s mind that there is no point in defining a standard nobody wants to use.

EUUG Copenhagen, sept. 1985. Page 241




The effect is that the committee feels bound to keep to the original spirit of C. They are prepared
to introduce limited enhancements where a consensus feels that it would be a good idea, but the bulk of
the work is aimed at reducing ambiguity and tightening the existing definition of the language, together
with a well defined library set and I/O model.

It has certainly been a major influence that nobody wants to break existing programs unless they
were “‘already broken”; for example by tightening a specification, there is bound to be a body of code
that made use of a lax interpretation of the previous specification. Such code may no longer work.

1.4 Conformance

According to the standard, a conforming implementation of C must provide the mandatory syntax
of the language, provide a definition of the way that it implements certain operations (for example sign-
extend when right shifting an int.) Some things fall into the category of undefined behaviour - such as
divide by zero - and the implementation can do what it wants in these cases; ranging from aborting the
program to continuing with some unspecified value.

Associated with the idea of a conforming implementation, is the idea of conforming programs.
There are actually three classes of program: Erroneous, which use undcfined behaviour at some time;
Conforming, which use only defined behaviour; Non-portable, which use both fully defined and imple-
mentation defined behaviour.

Implementations (by which is meant a compilation system or interpreter) are obliged to report syn-
tax errors or the violation of a constraint, such as trying to declare an array of bitfields - a declaration
permitted by the grammar of the language, but prohibited by a constraint.

1.5 The Language

In the following sections there is no attempt to reproduce the new language reference manual. If
you want one of those, then send a cheque for USS$ 20.- (requesting a copy of the 'C Language Informa-
tion Bulletin’, and stating your address clearly), to

X3 Secretariat, CBEMA,
311 First Street, NW,
Suite 500,

Washington, DC 20001.
U.S.A.

+1-202-737-8888

The reference manual has been completely rewritten and now gives a full grammar for the language
(but there are quite a lot of rules), so YACC hackers can wander off and have a good time. Amazing-
ly, the same has been done for the preprocessor too - though the grammars are not compatible - so your
YACC will either need some systematic renaming or stuffing through a pipe.

The following will simply touch on interesting topics, give a flavour of what has been done, and
leave you to refer to the full standard for more information.
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1.5.1 External Declarations

This is a rich area: C has driven a coach and horses through traditional block structure by permit-
ting appalling declarations like this:

static x;
fO{
{
extern x; /* ho ho */
}
}

What does that do? Even better, what is the scope of x if the static x; declaration is dropped?
There are about four schools of thought. none of them compatible. There are now rules about that
stuff, and a good thing too. Any code relying on that working before was written by a lunatic anyhow.

1.5.2 Identifiers

Up to 31 chars in internal identifiers. more may be used but not guaranteed to be checked.

Only 6 monocase characters in externals - blame DEC linkers (and others). This one issue ab-
sorbed more committee time than is spent drinking at an EUUG meeting.

1.5.3 Types

A sprinkling of new types have appeared, plus a new keyword signed. You can now declare signed
char. unsigned char and char. The difference is that signed char guarantees to sign-cxtend on promo-
tion to a longer type. There is also the interesting long double which is cven longer than double for ex-
tra precision. This smacks of Algol-68 if I'm not mistaken. but isn't extendable to long long double etc.

1.5.4 Storage clusses

Two new keywords: const and volatile. These are not opposites of cach other, they are completely
orthogonal. The aim of const is to allow storage of something in ROM: a const object may not be used
as an lvalue.

To permit a whole class of optimisations not previously safe with C. it is now permissible to remove

apparent loop-invariants out of loops. If they aren’t really invariant - updated by interrupts perhaps -
they should be declared to be volatile. Here are some examples:
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const char s[]="hello";

const char *p;

const char *const cp = "hello”

volatile int *vp;

const volatile int *const timer = RTCLKADDR;

Strings are now of type const char and may not be modified. They are not guaranteed to be dis-
tinct any more, either. This should have very little impact on well-written code.

1.5.5 Void

This has been in UNIX for ages, but is now blessed. The rather odd type (void *) is now the
universal pointer, and pointer-to-anything can be assigned to it and back both safely and without requir-
ing an explicit cast: see below (which also uses a new feature of function declaration explained later).

void *malloc(size_t);
fO{
int *p;
p = malloc(sizeof(int));

1.5.6 Odds and ends

Arithmetic on purely float and shorter expressions is not forced to evaluate at double precision.

The misguided enum type is now officially int and that’s the end of it. A shame it wasn’t thrown
out all together.

The separate name space of structure members is now blessed - though not many people can
remember when this wasn’t true.

The restriction that only static or external aggregates can be initialised has been lifted.
1.5.7 Function prototypes

We can now declare the number and types of arguments that a function takes. This is mainly cour-
tesy of C+++, so there is an existence proof that it can be made to work: essential for new ideas that are
made a standard without testing (see the Ada tasking...). There is one constraint - if a function proto-

type is ever visible at the use or definition of a function, then an identical prototype must be visible at
every use or definition. Examples:
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double sqrt();
No argument specified

double sqrt(double arg):

double sqrt(double);

means that sqrt takes only one argument of type double
#include <math.h>

int i = sqrt(4);

Try passing 4 as the argument to current implementations of sqrt.

IR}

Also, the use of *..."" meaning ‘‘unspecified arguments follow” together with a portable version of
varargs.h allows a completely portable version of printf to be written.

#include <varargs.h>

printf(const char *fp, ... ){
The use of prototypes permits more optimisation:
int x(int, float);
allows a different calling sequence to be used and allows the passing of float arguments without forcing
widening.
Function definitions can now be made to look like the prototype, since the declaration of formal

parameters has been made to extend into the first block:

f(float f_arg, register i_arg){

1.6 Libraries

A whole bunch of standard library stuff has been incorporated, especially the stdio library. Most
of this is based on the /usr/group standard, although there is some debate as to who should be allowed
to define which routines. One useful thing is the guarantee that anything implemented as a macro will
also exist as a function (so its address can be taken). All names starting with “_" have been reserved
for library use, the same goes for macros starting **__ .
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There is also the concept of the freestanding environment - one without libraries - where the names
are not reserved.

The libraries come with a set of header files containing important declarations, and some
environmental/implementation enquiry facilities.

Though glossed over here, the library definitions may turn out to be the biggest single aid to porta-
bility in the whole effort.

1.7 110

The simple-minded UNIX view of files is unfortunately complicated by the real world and the stu-
pidity of operating system designers who didn’t exhibit the genius/naievityt of Ritchie when he designed
the UNIX I/O mechanism. This has forced two file types onto the standard I/O library.

1.7.1 Text files

Basically, these may have to cope with translating \r\n to \n on input and vice versa on output.
Even more bizarre convolutions are bound to be needed on some systems. (I shudder to think what
would happen on CDC NOS files that are not in display format. But that’s their problem.) The idea is
that you still write code like before, but the library has to make the I/O look right to the underlying sys-
tem. A restriction is imposed that this will only work on lines terminated by \n and less than 255 char-
acters long, consisting of only printable characters, space. tab and form feed. Subject to that, if you
write stuff out, it comes back looking the same.

1.7.2 Binary Files

These suffer no translation at all, but if you write text into a file, it may not actually look right if it
is sent direct to a printer. Furthermore, since some systems don’t even know how long their files are,
binary files may contain an unspecified number of null characters beyond the high-water mark, and ap-
pend mode may not work quite the way that you expected.

This whole area is tacky.

1.8 Preprocessor

Be warned - if you ever used more than

#define
#ifdef
#ifndef
#else
#endif
#if

genius/naievity Strike out which you think doesn’t apply
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and fancy tricks like name replacement in strings, then you have a rewrite to do.

The preprocessor has been defined in terms of a formal grammar and has been tightened up a lot.
Techniques exist for building strings and concatenating tokens, as shown below (NB adjacent strings
now merge):

#define debug(s, t) printf("x"#s"= %d, x" # t\
"= %s", X ## s, X##L)

debug(1,2)
gives

printf("x"1""= %d, x""2"'= %s", x1, x2)
then giving

printf("x1= %d, x2= %s", x1, x2)
1.9 Effects

What are the effects of all this? Well, it should considerably improve the portability of C pro-
grams, and allow for more efficient code generation.

The minus side is that the new keywords are bound to break some existing code. The preprocessor
changes won’t damage anything that wasn’t portable anyway.
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The X/OPEN Portability Guide

Jacques Febvre, Honeywell Bull
Mike Banahan, The Instruction Set

1. Introduction

The X/OPEN Developers’ Guide to Portability is a recently published collection of definitions, in-
tended to document a stable and substantial UNIX distribution. It is intended to be used as a basis for
applications developers who wish to write applications software but are not sure what systems they
should aim at. Current UNIX machines do not offer the full range of services needed for applications
software. This reduces the confidence of applications writers who must have a large and stable market
segment to aim at.

The X/OPEN document solves this problem by selecting industry standards and bringing them to-
gether under one common umbrella. This, plus a committment from X/OPEN member companies to
support such an environment on a large number of their systems, will provide the software market with
the sort of targets that they need. The end-user benefits from having a large number of portable appli-
cations packages available, and by being able to pick suppliers on criteria other than those imposed by
the necessity to run one particular package.

The commercial arguments have been covered in other discussions. This paper describes the con-
tents of the Portability Guide from a technical point of view.

1.1 Contents of the Guide

The Guide contains 6 sections, listed below.
- Introduction
- System V specification (system calls, libraries header files etc.)
- The C language definition.
- ISAM package
- Other programming languages, especially Fortran and Cobol.

- Source code transfer devices

The following sections describe the contents of the Guide, starting with the System V Specification.
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1.2 System V specification

There are two contenders for the title of "UNIX Standard”: the System V Interface Definition
(SVID), from AT&T, and the forthcoming /usr/group standard. They are in fact very closely compati-
ble, and the differences between them extremely small. X/OPEN chose, for commercial reasons, to en-
sure that the Interface Specification in the Guide should be compatible with the SVID. That is to say,
that applications written to conform to the SVID should also be able to run on an X/OPEN system
when recompiled. AT&T are also developing a verification suite of software which will check that a
given system conforms to the SVID. The specification in the Guide was chosen so that the verification
suite would be able to check, and agree, that X/OPEN systems also conform to the SVID.

Because the X/OPEN aim is to provide an environment for applications developers, the Guide is
not an exact copy of the SVID. The reasons are explained below.

The first reason is simply one of usability. The SVID is organised as a Base and a number of ex-
tensions. The Guide has made its choice of the Base and Extensions, and (except for some slight
changes required as a result of its choice). collects all of the SVID documentation. unchanged, into the
X/OPEN Specification. There is no question of extensions, so the structure of the SVID is not ap-
propriate. Instead, the X/OPEN specification is organised as manual pages which will be recognised by
anyone familiar with traditional UNIX documentation. They are still presented as system calls. library
routines and so on, in separate sections, but a comprehensive index is also supplied giving the name of
every entry point and the manual page where it is described. This reorganisation is expected to make
the document usable by programmers and designers on a day by day basis. The SVID is more of a
reference document for system implementors.

The second reason is one of utility. The Guide has chosen to present a superset of the SVID func-
tionality which more closely represents that found in current products. As a result, a number of library
routines (in particular) not described in the SVID are to be found in the X/OPEN Specification. It was
felt that their presence would be beneficial to a large number of applications developers.

The third reason is simply one of timing. The X/OPEN document was prepared later than the
AT&T one. The chance has been taken to correct a small number of errors in the SVID and to adopt a
number of “future directions” mentioned in the SVID. Most of these are simply the increased use of
symbolic names, rather than absolute constants.

Finally some of the items described in the SVID as being parts of extensions have been brought
into the Guide but marked optional. An example is ptrace, which is part of the SVID Kernel_Extension
set. It is part of the X/OPEN Specification, but marked optional because not all systems may be able to
support it. Its presence in the Guide means that if it is present in a system, then it will conform to the
published specification. This prevents the name being used for other purposes and causing confusion.

It is important to realise that on every page in the specification, the differences between the
X/OPEN Specification and the SVID have been noted in a special section. This means that applications
developers can check to make sure that they are not using features in the X/OPEN system which would
cause incompatibility with AT&T System V. The functions in the X/OPEN Specification which are not
in the SVID are:
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getgrent brk
getlogin cuserid
getpass ecvt
getpwent  end
getut getpw
13tol logname
monitor ttyslot
putpwent

1.3 C

As it is expected that a large number of applications will be written in C, the language is defined in
full in the X/OPEN Guide by reprinting the AT&T System V.2 definition of the language. There are
also a number of guidelines on portability given as notes to C programmers who want to make their
programs as portable as possible.

Obviously, complete portability is hard to acheive and no guidelines will cover all cases. As the
Guide says, the portability guidelines will be expected to grow in later releases of the document.

X/OPEN member companies are represented on the ANSI X3J11 C standard committee, and the
group has echoed AT&T’s committment to adopt that standard at an appropriate time. In the mean-
time, a number of guidelines are given on how to avoid incompatibilities between code written now and
the eventual standard for the language. It is currently possible to write syntactically correct programs
which will not compile under the proposed standard, because of the tightening up of some ambiguities
in the language and the introduction of some new keywords. The new keywords are bound to cause
problems to some existing code which has used the same words as identifiers.

1.4 Other Languages

1.4.1 COBOL

For large commercial applications, C is not the language in most common use. This is the province
of COBOL, and it is unrealistic to expect applications developers to change to C overnight, or ever.
For this reason, X/OPEN has chosen to specify MicroFocus Level 11 COBOL as the definition of the
X/OPEN COBOL.

It is important to note that it is not the MicroFocus product, that has been specified; it is perfectly
possible for some manufacturers to write their own compilers as long as the implementation provides the
same functionality as the MicroFocus product. It can probably be reasonably expected that at least
some of the XOPEN manufacturers will choose to use the MicroFocus product; conversely we can also
expect some to modify their existing compilers to conform.

The specification adheres relatively closely to ANSI standard X3.23, 1974, with extensions in the
area of interactive processing. A full definition of COBOL is not given in the Guide, but a set of syn-
tax diagrams shows the language that is supported. Interested readers should refer to the Portability
Guide for full details.
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1.4.2 FORTRAN

The standard for FORTRAN is FORTRAN 77, ANSI X3.9-1978. There are many certified com-
pilers available, so X/OPEN has not felt it necessary to specify a particular product as the definitive im-
plementation.

1.5 Data Management

As well as needing COBOL for commercial applications. it is also recognised that the file-handling
primitives in UNIX are not at the level needed by application writers. To provide a higher-level view of
file handling. an ISAM package has been defined. This is based on the RDS C-ISAM specification,
with minor modifications to the documentation to delete references to implementation details. Like the
COBOL, this is viewed as the definition of a set of interfaces. not a specific implementation.

The use of a standard package such as this is intended to increase the ease with which different ap-

plications can be integrated, and to encourage the use of data formats which will allow the data to be
shared amongst applications.

1.6 Source Code Transfer

A considerable problem in actually porting software between machines is the difficulty of getting

the source code from one machine to another onc. For this reason, a definition of media and archive
formats is given. The definitions are for 5% inch floppy disk and 9 track tape. Standard device names
are defined for each of the variants of these, for example the preferred magnetic tape device is
/devisctmtm, which is phase encoded 1600 bpi, 512 bytes per record.

These devices are not necessarily present on every system sold - the specification is for systems
which will be used in the porting of applications, not for every run-time system. Neither are these dev-
ices considered from the point of view of their suitability for file system back-up, although no doubt the
9 track tape device would probably also be used for this purpose if a machine has one.

It was not possible to define a cartridge tape format: there are too many conflicting standards in
common use already.

The tar and cpio tools are the recommended ones for creating archives to be transferred between
machines, with cpio -¢ being preferred from the point of view of portability.

1.7 Where to get the Guide

The X/OPEN Portability Guide is published by Elsevier Science Publishers B.V., P.O. Box 1991,
1000 BZ, Amsterdam, The Netherlands. It will also be for sale in various specialist bookshops ($75.-)
Happy reading!
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Introduction.

Within the computer industry, design teams are traditionally
split into seperate hardware and software groups. Consequently
hardware designers have given little or no consideration to the
subsequent software integration, leaving the software designer to
modify the software to fit, often to the extent of compromising
its performance. This has occurred widely in the super-micro
field, where the hardware and software are usually produced by
different companies.

This paper attempts to show that there is a better way of

designing hardware. That there should be a joint development
program where software designers have substantial influence on
the hardware design. The result of this co-operation is a better

system design giving higher performance lower cost systems.

Plessey Microsystems approach.

Approximately two and a half years ago, Plessey Microsystems
(a division of the UK. Electronics group Plessey) decided to
enter the expanding market for Unix-based microcomputer systems.
The decision was taken to initially buy in most of the cards used
in the system. This allowed us an early entry into the market and
acquisition of a substantial market share in the UK.
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Once our leading market position was established, we Dbegan

to consider product enhancements. Having identified the system
components which should be improved, we evaluated available
products in the marketplace. We discovered that all available

cards either lacked facilities or gave a poor performance when
used with Unix.

It was therefore decided that we should design our own card
set. This has subsequently proved to be a very sound decision.

As our hardware designers had very little Unix experience,
it was necessary for the software designers to take part in the
hardware design process. It quickly became apparent that this was
a Dbetter way of designing hardware, and our standard design
philosophy is now based on this approach.

The design process.

For each system component we have a small multi-disciplinary
design team comprising hardware designers, software designers and
firmware designers. The multi-disciplinary composition of this
team being the key to the design process.

We also have three design rules, these are:-

1) All components must be designed to implement completely
one facet of the Unix system. The basic design should
not be compromised for generality, though if it is
generally useful, then this is a bonus.

2) There must be no modifications to the Unix Kernel or
any of the utilities, so guaranteeing conformance with
established standards (System V).

3) The hardware must be 100% standard bus compatible
(Multibus or VMEbus).

In the commercial environment, it is necessary to adhere to
defined standards such as Unix System V and Multibus. This gives
customers the maximum possible flexibility in the choice of
applications and peripherals.

Manufacturers who do not hold to standards defeat the object
of using them.
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The entire design process 1s now the reverse of that
conventially used. Firstly it 1is necessary to 1look at the
software interface rather than considering a hardware
specification. This involves looking at the appropriate user
program interface definition as described in the Unix manual, and
the corresponding Unix kernel interface. From this a software
interface that best matches that given by the Unix definitions is
produced, this is the first approximation to the final design. At
this stage, it is also necessary to look at existing hardware and
associated software to see how well they have been integrated.
This 1is often the most enlightening part of the design process,
as it can show exactly how not to design the hardware.

Next it is necessary to look at the Unix kernel to see how
efficiently it handles the task that 1is Dbeing considered.
Surprising as it may seem to some members of the Unix community,
some areas of the kernel use techniques unsuitable for todays

requirements. In particular the handling of the c-lists
(buffering and character translation routines) in System V is
very inefficient (we are not the first to notice this, Berkeley

changed this completely in one of their first distributions).
Accurate kernel performance evaluation on systems running real
applications is the key to this analysis, and here the multi-
disciplinary approach again pays dividends, as oscilloscopes and
logic analysers can gquickly provide much more information than
simple kernel profiling.

From the information obtained, it is possible to produce a
software (device driver) interface specification. It is at this
point, that the greatest care must be exercised; this
specification is the key to the whole project. If this is correct
then the product will be good, 1if it is poor, the final product
will also be poor. Thus it is important that there 1is good
interchange of ideas between the members of the design team, to
ensure that the process of refining the initial design ideas
produces the best possible design specification. Because of the

importance of this stage of the design, it often takes longer
than the actual design of the final piece of hardware and
software. It is well worth the effort. It is also necessary to

keep the whole system in mind at this stage of the design to
ensure that the operation of one part does not interfere with
another.

The next task is to produce a specification of the hardware
to firmware interface (if there is any firmware). This is usually
much easier than the software interface specification, as most of
the important decisions have already been made.

The final stage of the design process is to produce the
hardware, firmware and software. Because there 1is a firm
specification of each interface, these are relatively simple
tasks, and can be done simultaneously.
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Example 1: The Plessey Inteligent I/0 Co-processor.

The first product on which this design process was used was
the Plessey Intelligent 1I1/0 processor. This 1is a processor
controlled eight channel serial 1I1I/0 card, with associated
firmware and device driver.

By 1looking at the stages in the design of this card, it is
possible to see how the design method was used. Firstly the non-
intelligent I/O card that had been used in our first system was
studied. This showed us several of the main areas that were 1in

need of improvement.

Our first analysis showed that for a typical systems, output
exceeds input by a factor of between 30 and 104 times.
Consequently, it is much more important to optimise the
output side of serial I/0 than the input side.

It was also found that most output was passed to the device
driver not as single characters, but as large Dblocks of
characters. These blocks are typically 512 bytes, or one line of
output. However, as the number of single character blocks was
similar to the number of large blocks, poor handling of these
would also seriously degrade system performance. The conclusion
was that it was more important to optimise multi character
output, but that it was also necessary to ensure that single
character output was reasonably efficient.

Timings of the various stages in sending characters from a
process to the I/0 card were taken. It was found that when
outputing single characters, 52% of the total time was taken up
by the c-list routines and 35% handling the interrupt. For 512

character Dblocks, these figures were 14% and 85% respectively.
Thus these two areas were those that needed optimisation.

Using these results, the software and firmware interfaces
were designed. It was relatively easy to design a system that
allowed both multi-character and single-character I/0 to Dbe
efficient, by ensuring that the firmware on the card had circular
buffers for output.

The problem of the overhead on c-list processing was more
difficult. Because no modifications to the kernel were allowed,
it was not possible to optimise the code. Thus the bold decision
was made to re-code the whole of the output c-list handling 1in
firmware. Because of this, different algorithms could be wused
which were tailored to our design and did not have to be
portable, making the code much more efficient. This solution
retained the full functionality of c-lists, so ensuring that the
software interface still conforms to the System V standard.
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The next problem, that of the interrupt overhead, had only

one obvious solution: avoid interrupts! Careful design of the
interface eliminated interrupts on output in all but the most
heavily loaded situations. In the worst possible case, each
channel generates one interrupt per thousand characters (ie. one

per second at 9600 baud).

The input side of the system was also optimised. The c-lists
are still used, though incoming x-on x-off sequences are
processed 1in the firmware. Input interrupts have been optimised
by restricting them to twenty per second. This moves some of the
processing work onto the device driver, as it must deal with a
block of characters on receipt of each interrupt, rather than
one character per interrupt. The figure of twenty interupts per
second was chosen as optimal, since it reduces the number of
interrupts to a manageable level, without causing an undue delay
(a 1/20 second delay is not noticeable).

The net result is that the main processor overhead on output
has been reduced to as little as ©.999ms per character for 512
character blocks (as against .7lms for the non-intelligent card).
The card will cope with all eight channels sending output at 9600
baud without slowing the output on any channel. All channels
being driven at 19200 baud should be possible, when terminals
that can properly support this become available.

Example 2: The Plessey Cache Processor Card.

The second design example is the Plessey Cache Processor
Card. The design brief for this was to make a cpu card that would
allow a 12.5MHz 68000/6801@0 to run as near to the maximum 12.5MHz
(the fastest available) as possible.

The first investigation centred on the best way of accessing
memory to minimise the number of wait states required by the

card. Because standard Dbus structures were used, it was not
possible to access memory directly at this speed. Therefore it
was necessary to look at alternatives, and consider how they

would fit into the memory usage of a Unix system. Three
approaches were examined:

1) A local memory bus. This was the most obvious approach
as it allowed the use of large amounts of high speed
memory. However, the memory would have to be dual-
ported onto the main system bus to allow the DMA
transfers that Unix requires for fast disk operation.
The wuse of dual ported memory would have increased the
cost of the system and, with arbitration time, would
not have been much faster than standard memory on the
system bus. This approach was therefore rejected.
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Local memory. This was another attractive approach as
it potentially allowed zero wait state memory. However
the amount of on-card memory would be limited and
almost all of this memory would be used by the kernel.
User programs would have to reside in slow memory on
the main bus. This approach was also rejected.

A memory cache. This was initially the least favoured
approach since it was the most complicated and
potentially expensive. However, from tests it seemed
likely that this would give the highest performance of
any approach and would enable the use of standard 1low
cost memory throughout. This was the approach adopted.

Cache architecture can be expensive both in terms of Dboard
area and cost. Studies showed that an 8k byte tagged cache would
be a feasible size. It was now necessary to decide whether to use
a single 8K cache, or to subdivide it into several parallel cache
sets. Analysis of Unix and application software showed that a
single set cache would not be very efficient, and that a multi-
set cache would be better. A two set cache with 4K bytes per set
appeared to give potential hit rates of 80% to 90%, more sets
would have required more board area than was available. Hence two
4K Dbyte sets were used. When the prototype had been built,
experiments with different cache arrangements were carried out,
and the original choice confirmed as the best.

Next the hardware facilities needed to support Unix were
considered. The most important requirement is a heartbeat timer.
This must be accurate, and at 58 Hz to 60 Hz; this was provided.
Some Unix systems have a Floating Point arithmetic unit on the
cpu card. As the system was being designed primarily for non-
technical customers, it was decided not to include this.

Unix System V has the option of automatically starting up in
multi-user mode. However, whilst doing this, it will ask for the
time and date. In order to allow a truly turnkey system to be
made, the c¢pu card was specified with a battery backed up clock
from which the Unix clock could be automatically initialised.

Having made these design decisions, it was possible to write
the design specification for the cpu card. This was now a simple
task, since the system architecture was fully defined. The
hardware, firmware and software development could procede. The
actual hardware design proved a little more difficult, since a
large number of components had to be fitted onto the board. When
this was finally achieved, the board performance proved to be
outstanding.
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The <card has a measured average cache hit rate of 92%,
giving an average of 0.24 wait states on each memory read cycle
using low cost memories with full error correction. This card has
been independently benchmarked, and found to have Dbetter
performance than a VAX 11/750 for non-floating point
applications. Because of the cache design, the processor also
provides optimal performance from a standard bus based system by
reducing the processor demands on limited bandwith bus
structures, leaving this free as a disk I/0 bus.

Conclusion.

Both o0f the cards given as examples are now in production,
and form part of the Plessey Microsystems Mantra Unix based
system. These cards are also being sold to other manufacturers
both in the UK. and Europe for inclusion in their own Unix based
products. Because of the way they were designed, these cards are
sold as a package, the I/O co-processor comes complete with the
firmware and a device driver, and the Cache Processor card with a
complete Unix System V port.

Viewing system components from both the software and
hardware angles gives Plessey Microsystems the ability to produce
low cost, high performance, versatile, Unix-based computer
systems. These are excellent Dboth as software development
machines and as general-purpose business machines. They are not
only very fast, Dbut support a full standard version of Unix
System V and standard bus structures, and hence maintain

compatibility with the widest range of other systems and
components.

Unix 1s a trademark of AT&T Bell Laboratories

Multibus is a trademark of Intel
Plessey and Mantra are registered trademarks of the Plessey

Company plc.
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