R

Fap

SLETT]

[
N

W

N
y

NI

European UNIX® systems User Group

Volume 7, No. 2
1987

CONTENTS
® The Native Language System

® Grouse: Messages and Prompts

® ANSI/ISO C Standardisation
® News Scheme Proposal
® Printing Music Scores

EUROPEAN
UNIX SYSTEMS USER GROUP

NEWSLETTER

Volume 7

Number 2
) 21651147 o 1 TR 1
Packets Vs. Circuits, in Two Centuries ...c...cceessuercssnneenne 3
Music: a Troff Preprocessor for printing music scores 7
An Overview of the Native Language System 25
Grouse: Messages and Prompts in Programs.......ccceeeeeee 35
Another Proposal for a News SCheme......cererseecsnecrernas 45
UKUUG 1987 Summer Technical Meetingcceceeereeenees 47
Glasgow Local UNIX GIOUD....cceicssiessssssssesssssnsnssssaasasscsses 49
EUUG wccciiiiniiniinniinnicniinnisiississnimsioisosisiimomsssssessees 51
Progress of ANSI/ISO C Standardisationcceeeeeseeeecens 53
X/OPEN — What, Who, Why, When...cmeiicnenee 59
EUUG Tape Distributions cceeeieecsseeiecnnnsisccsssnsesssssssaneeecses 61
EUDEL.uciiiicnrinniiniennninnisnissniiniisnismiosnissnssssiosssneessanes 67
UNIX CHRIC iuueeueeseesaeseessessossesssssnssasssssssssssssssssssosssssessasresaes 71
ReVIEW Of POSIX ..ccvvcrrresreesansssnncsssssnsssasecssacsssassannessassnaes 73

EUUGN Vol7 No2 i

This newsletter was set in Times Roman on a LaserGrafix
LG800 printer, driven by troff from the UNIX time-
sharing system.

Editorial Team:

Peter Collinson University of Kent at Canterbury
(EUUG Secretary/Newsletter Editor)

Alain Williams Parliament Hill Computers
Sally Rutter The Instruction Set

Nigel Martin The Instruction Set

Typesetting:

Sally Rutter The Instruction Set
City House,
190, City Road
London EC1V 2QH
UK.

Printed by: Atterbury Associates
2 Passey Place
London SE9 1BN
U.K.

Published by: The EUUG
Owles Hall,
Buntingford
Essex SG9 9PL
U.K.

This document may contain information covered by one
or more licences, copyrights and non-disclosure
agreements. Copying without fee is permitted provided
that copies are not made or distributed for commercial
advantage and credit to the source is given; abstracting
with credit is permitted. All other circulation or
reproduction is prohibited without the prior permission of
the EUUG.

il EUUGN Vo7 No2

o

WILLIAMS EDITORIAL

The EUUG Newsletter:
Time for Another Conference.

Alain Williams
.. .Imcvaxlukclinset!phcompladdw

FEUUG Newsletter Editor

1. Total Chaos
I sit typing this in the midst of preparing to fly to Helsinki. An old envelope lists
items not to be forgotten: ticket, passport, socks, sea sickness pills, ... A pile of

other necessities is growing in the middle of the floor; my new suitcase is starting
to look a bit small. How should I pack the wine so that Customs don’t notice that
I have too much?

By the time you read this I will have nursed a sore head on board the M/S
Mariella, as I traditionally do on the second morning of an EUUG conference. Some
of the papers look interesting (add a notepad to the list), I will get the best
published in the next newsletter. I hope that they serve better coffee than at
Manchester.

Where did those pills go to?
2. UNIX Soaps

This issue sees the birth of regular features in the newsletter. These are the first
of a series of articles by the same person with some particular theme. Their nature
varies: in many cases it will keep you up to date with developments in the field
from the point of view of the author; in the others different topics will be
discussed in some related way.

There are more in the pipeline than have met today's copy date. Let me know
what you think of them, and what new themes you would like to see.

3. The Next Newsletter

The copy date for the next issue is the 1st of August. All sorts of articles are
needed: short, long, serious, or funny. Too many of the articles in this issue are
written in the UK: now it's time for you to show that you exist and have done
something interesting.

If you are organising an event or wish to announce a new product, or Yyour
marriage: mail me the details and I will put it in as a short.

If you have good photographs we can print them — send me one of your user
group chairman at his Christmas party.

You may e-mail articles to me, or to euug-n@mcvax. If you want to chat, you can
reach me on +44 1 435 0200. I will send rough guidelines on how to produce a
paper to anyone that asks.

EUUGN Vo7 No2 1

UNBIASED INFORMATION,
European UNIX" systems User Group ELEU WOMC MA/L/

Are YOU a UNIX® User: JRAAGRZNC A
If'so, you can dramatically extend your WT ERNAWWAL C’ ONERENC&S’

know lcdgc of UNIX systems and share
vour views and expertise with other UNIX
users throughout the world by becominga
Member of the

European UNIX systems User Group

The EUUG is a non-commercial
organisation which is in-being to:

* Enable regular contact between
UNIX users

* Provide a source of unbiased
information

* Provide forums for discussion by
means of exhibitions, conferences
and symposia

* Improve knowledge of UNIX and
thus improve the System itself ’

In addition to a quartul\ Newsletter, the
EUUG makes available its EUnet
electronic mail and news services to all
Members; supports the activities of its
National User Groups throughout Europe;
provides a Software Distribution
Service; and has a large number of specialists
within its Membership to help users with
their problems.

Its International Conferences are now
a very important part of the UNIX scene
with future events scheduled to take
place in Finland and Sweden (May
1987); Dublin (Autumn 1987); and
London (Spring 1988).

It vou want to play a bigger part in
promoting the cause of the UNIX
Operating System and — at the same time
— benefit from the many services oftered by
the EUUG, then contact the Secretariat
NOW for further details.

European UNIX® systems User Group
Owles Hall, Buntingford, Herts SG9 9PL, England Tel: 0763 73039 Nerwork address: cuug@inset.uucp

2 BUUGN Vo7 No2

LESK PACKETS VS. CIRCUITS

Packets vs. Circuits, in Two Centuries

Michael Lesk
lesk@cs.ucl.ac.uk

UNKNOWN AFFILIATION

Should complex transmission systems make routing decisions at
each hop of each item, or should routing decisions be made in
advance for an entire transmission? Recently this argument has
been best known as a dispute between packet switched and virtual
circuit computer data networks. In the last century, the railroads
had a similar problem: should trains proceed signalman by
signalman, or according to complete schedules? If the analogy
really holds, heavy traffic networks should prefer virtual circuits.

In the last century, the Midland Railway in England found itself with a problem.
Coal wasn’t getting through to London. At this time (1890’s) they, and all other
British railways, scheduled their passenger trains but not their slow freights. A coal
train meandered from signal cabin to signal cabin, each signalman deciding whether
to send it forward or hold it on a siding. He did that by telegraphing the next
signalman forward, and asking whether the line was clear. If the next signalman
accepted the train, it moved forward one block section, and then the process
repeated.

Readers should understand some of the constraints here. Typical British goods
wagons did not then have any kind of brake that could be applied while the train
was moving. Until about ten years ago, on British freight trains brakes were often
found only on the locomotive, tender and guard’'s van. Even though these trains
were short by some standards (British railways were built with short sidings and
locomotives were at that time much less powerful than today), they were still
underbraked, and safety was preserved by running at slow speeds. So a coal train
out on the line represented a substantial delay to any passenger train caught behind
it.

Time-keeping on passenger trains, of course, was important. Signalmen were
instructed that delaying any passenger train was a serious error, while it did not
matter much how fast coal moved down the line. So they tended to be conservative,
and when in doubt to put the freight trains into the sidings. But now consider the
consequence: suppose you are a signalman, and all your siding space is full of
trains, and an adjacent signalman proposes to send you another train; you must
refuse it, because if you can not get one of your sidings empty before it arrives a
main line will be blocked.

You can now imagine the consequences: as the traffic builds up, the sidings fill, and
once all the sidings at important junctions are full nothing can move. The line may
be empty; but the trains will sit there until the sidings clear from the destination
back. The Midland Railway eventually had to pay enginemen for a day's work in
which their train never moved, and it had to refuse traffic because it had no place
to put the trains. Computer scientists will recognize this behavior as “thrashing” if
too much working memory is needed by the resident processes the CPU spends its
time swapping to disk and only rarely does a process get to run.

EUUGN Voi7 No2 3

PACKETS VS. CIRCUITS LESK

The normal English solution to the situation was to put down additional tracks.
Two-track railways became four-track or six-track. The Midland didn’t have the
money for that. Instead, a new general manager named Cecil Paget invented the idea
of “train paths”. Roughly speaking, the idea was that you could accomodate the
irregular freight traffic by having a schedule that displayed not only the trains that
ran each day, but also showed the slots for additional trains that only ran
occasionally. The schedule showed not just the trains that were, but all the trains
that might be.

In a train path schedule, the compiler first works out the maximum capacity of the
line. This involves picking minimum intervals between trains, and also deciding on
the maximum speed trains can be expected to maintain. Since different classes of
trains will run at different speeds, the schedule must present a balance between slow
freights, passenger expresses, and everything in between. In addition, both long
distance and local services must be provided for. And when trains must meet or
pass, the schedule must arrange that this happens at a place with a siding.

Once the full list of possible paths was made, the job of the train dispatcher
became easier. Given a new request for a slow coal train to London, he simply
looked down the list for the next appropriate path, and telegraphed all the
signalmen that a train would run on that path today. They could now send it on
confidently because they knew that it would not interfere with more important
traffic. At each point where there was a conflict, the schedule would so indicate and
there would be a siding. As the train left the mine, its arrival time in London
would be known.

Doesn’t this all sound familiar? The choice is between pre-routing and dynamic
routing. Today we have packets or datagrams instead of trains, we have network
nodes instead of signalmen, and we have store-and-forward buffers instead of
sidings. But we have the same basic problem: in heavy traffic, dynamic routing can
overfill buffers and prevent a guarantee of service. Virtual circuits may instead deny
a circuit, but once the circuit is allocated the routing is known and the service
dependable. Some papers in the literature recommend virtual circuits for heavy
traffic (Butrimenko, 1979); others recommend datagrams for heavy traffic (Matsushita,
Yamazaki, and Yoshida, 1977).

What is the lesson? If we accept the analogy, we should conclude that
a. virtual circuits should be preferred to datagrams in heavy traffic situations;
b. pre-routing is more efficient than dynamic routing.

Of course, there are differences between railroad scheduling and data switching. The
variety of routings in data networks far exceeds that in railroading, and the ratio of
data transmitted to storage in the network nodes is greater. But don’t be too smug
about present day systems: after all, no Victorian railwayman could throw away a
train of coal and ask the mineowner to please retransmit.

References
0. S. Nock Steam Railways in Retrospect A. & C. Black London, 1966.

Cecil J. Allen Railways of Today F. W. Warne London, 1929.

F. J. Salzborn Timetables for a Suburban Rail Transit System Transportation Science
Volume 3, Number 4, Pages 297-316, 1969.

Yutaka Matsushita, Haruaki Yamazaki, Isamu Yoshida An Evaluation of Virtual
Circuits and Lettergram Services Computer Networks, Volume 3, Pages 287-294,
1979.

4 EUUGN Vol7 No2

LESK PACKETS VS. CIRCUITS

Alexandr Butrimenko, Ulrike Sichra Virtual Circuits vs. Datagram - Usage of
Communication Resources Performance of Computer Systems, Pages 525-537, North-
Holland, 1979.

Vinton G. Cerf, Peter T. Kirstein Issues in Packet-Network Interconnection Proc.
IEEE, Volume 66, Number 11, Pages 1386-1408, 1978.

G. Pujolle, O. Spaniol Modelling and Evaluation of Several Internal Network Services
Performance Evaluation, Volume 1, Pages 212-224, 1981.

UNIX Clones

EUUGN Voi7 No2 O

European UNIX® systems User Group

AUTUMN MEETING

UNIVERSITY OF DUBLIN

Trinity College

21st—25th
September

For further details contact:
The Secretariat: European UNIX® systems User Group,
Owles Hall, Buntingford, Herts SG9 9PL, UK.
Tel: Royston +44 (0) 763 73039 Facs: Royston +44 (0) 763 73255
Network address: enug@inset.uucp

®UNIX is a Registered Trade Mark of AT&T in the USA and other countries.

6 EUUGN Voir Noz

FOXLEY MUSIC

Music:
A Troff Preprocessor for printing music scores

Eric Foxley
ef@cs.nott.ac.uk

Departments of Mathematics
and Computer Science
University of Nottingham
UK.

ABSTRACT

The music preprocessor provides a language for describing music scores, which
can then be processed to produce output suitable for the troff typesetting system and its
other preprocessors, which run under the UNIXt operating system. This document
describes the basic facilities available in the music preprocessor, and gives examples of
1ts use.

1. Introduction
The output

Cock of the North (Kevin)

A 4t
7 B JTRL o IEH—E"_& . =T
@ % ?“ ; y ——— III;F ;
A A D A B7 E7
A e T e
S = e
A A D A G

. was created from an input file containing

MS

title = "\ fBCock of the North\ fP \ fI(Kevin)\ {P";
timesig =6 8;

autobeam;

key = a.

e< ’A’ d< |

c"A"dccbal
a"A"cefl> "D" e |

\11

b "B7" ¢cbb"E7" e d |
\1, 21|
c>"A"cb"G"g=b |
a>. "A" a> I

.ME

+ UNIX is a trademark of Bell Laboratories. EUUGN Vo7 No2 T

MUSIC FOXLEY

The music system is another troff* 8 preprocessor. It passes most of its input through untouched, but
translates those lines between lines ".MS" and ".ME" into commands suitable for the pic+© preprocessor,
which can then draw the necessary pictures. Text outside and inside the music system can use the full
features of the other troff preprocessors such as egn? and tbl’ if required. A typical UNIX command would
then be

music source.file | pic | troff -ms
or
music source.file | pic | eqn | troff -ms

if the facilities of eqn are required.

The particular rules for layout of the musical symbols are based on examples given in Stonel? and in
the Oxford Concise Dictionary of Music® subject to interpretation and variation. Suggestions for alterna-
tive rules would be appreciated, and could perhaps be built into the system as options. For a more general
discussion in this area, the reader is referred to! for discussion of languages for representing music scores,
and to? for information on the current state of comupter applications in music printing and in general
musicology.

2. The input language

The basic input for the musical score is contained between lines ".MS" and ".ME", and consists of
header information describing the output format required, and input defaults, followed by the score details.
All text not within a ".MS" to ".ME" section is passed straight through unchanged.

2.1. Header information

The header sets up variables such as the piece title, output width, time signature and key, each of
which is specified by an entry of the form

<identifier> = <value>

The header items are separated by semi-colons, and terminated by a full-stop. A typical header for a
straightforward example might be

title = "Twinkle twinkle little star";
timesig =4 4;
key =d.
In all straightforward cases a short header is acceptable, since most items default to sensible values. How-

ever, the header items have to allow for many variations in output format, and examples of the major possi-
bilities are shown in the following example:

title = "...."; # printed at top left of output; the default is to have no title
ctitle = "....";# this title is printed at the top centre of the output, if given
rtitle = "....";# this title is printed at the top right of the output, if given

timesig = 3 4; # sets the default note length to semi-breve divided by 4,
and the default bar length to this times 3
the musical length of bars is checked against the bar length

key =g; # the key of the piece is "G" for both input and output
all "F" notes on input now default to F-sharp

keyin = f; # the input key can be specified distinctly from

keyout = a; # the output key to produce transposed output
the "key =" entry sets both these values

transpose = 1 -1;# instead of using "keyin" and "keyout", this option

8 rvueN Vo o2

FOXLEY MUSIC

specifies the number of additional sharps and octave displacement in the
output key compared with the currently set output key

octave = s; # sets the default octave to that within the stave of the treble clef
"octave = c;" causes the default octave to start at middle "C"
"octave = k;" causes the default octave to start at the current key note
"octave = p;" causes the default octave to make each note as close as
possible to the previous; the first note follows the "octave = s" rule

bars =8; # the number of bars in the piece
used for checking, incorrect value produces a warning
bps=8; # bars per stave; bars are spaced on the stave proportionally to their
musical length; notes within a bar are spaced
proportionally to their musical length
bps = 0 (default) fits as many bars as possible on the stave

width = 6.5i; # the stave width in inches
the maximum depends on the output device;
the current troff default width is 6 inches
our current laser printer maximum is 7.5 inches portrait
i, # and 11 inches in landscape mode
height = .25i; # the height of a 5-bar stave
the default is 0.28 inches
) isg = .20i; # increase the spacing to be left between staves,
the "inter-stave-gap" by 20 units

sig=ckt. # the "c" is "print a clef at the left of each stave"
the "k" is "print the key on each stave”
the "t" is "print the time-signature on the first stave”
the default is to have all

The header items are in any order, separated by semi-colons; the last is terminated by a full stop. All
unspecified items default from any previous header. An empty header is indicated by a full stop. Further
header itcms will be described later.

Notc that all text from any "#" symbol to end-of-line is ignored, and that if the last character of a line
is the escape character "\, then the next line is treated as a continuation of the current line.

2.2. Score details

The header is terminated by a full stop, and is followed by the score. The score consists of notes
interspersed with bar-lines. There is a warning if the sum of the note lengths in any bar does not add up to
the required bar length as deduced from the time signature, or if the total number of bars does not agree
with that specified in the header. Both of these checks have been found to be useful.

The pitches of the notes are typed as lower-case letters relative to the current key, as in
ddaalbbalggffleed

Sharps and flats of the current key are omitted. Other required accidentals are typed at the first occurrence
in the bar using "+" for sharp, "-" for flat, and "=" for natural. For example, "g+" represents g-sharp, "e-"
represents e-flat, and "f=" represents f-natural in a key such as "d". A "+" symbol against an already shar-
pened note is ignored; a "+" symbol against a note which is sharp in this key, but which occurred with a
natural carlier in the bar, cancels the natural accidental. On output, the computer will print only the neces-
sary accidentals, omitting, for example, accidental signs on all but the first occurrence of a given accidental
within a bar. A cancelling accidental will be printed if the note is used in the following bar.

EUUGN Vol7 No2 9

| O

MUSIC FOXLEY

The length of a note defaults to the value indicated by the denominator of the time signature, and is
thus a quaver if the denominator is 8, a crochet if it is 4, and so on. To specify other lengths, symbols ">"
after the note double its length, symbols "<" halve it, "." increases it by 50%, and ".." increases it by 75%.
Thus in 4/4 time, "c>." represents a dotted minim, and in 6/8 time "c<<" represems a demi-semi-quaver.
As an example, the source

MS

timesig = 4 4;

key =d;

bars = 4.

ddaalbba>lgcgcgcgsf. f<leed>|
.ME

produces the output

A_# . l]

% I — — — y
A% ! — p — 1t K

N34 - — D L 1

o s c

The length of the default note for input may be changed by using these note duration symbols in
association with the note given as the key in the header. Thus if the key is specified as "d>", the key is "d",
and the default note length is double that which would otherwise be expected. If the above example is
repeated changing two header entries to halve both the bar-length and the default note-length, the file
becomes

MS

timesig = 2 4;

key = d<; # half-length default note

bars = 4.
ddaalbba>lgc<g<gc<gf.f<leed>|
.ME

and the resulting output is

A ¥
¢

ke | — I —
(54— —— 5 s s s
Y e S R T T e ') o—o
PY) e o 5

For this effect, the key must be set after the time signature in the header, since the "timesig" entry itself
resets the default note-length. The full-stop cannot be used to increase the default note-length by 50%, the
default can be changed only by factors of 2.

For each note in the source, the letter (and possible accidental) specifying the pitch can be followed
by an indication of octave displacement. Symbols "T" after the pitch indicate an octave upward, symbols
"l" indicate an octave down. The default octave can be set in diffcrent ways. It can be set to that from
middle C to the B above using the header entry

octave =¢C

In this case "c¢TT" is two octaves above middle C, and "bl" is one note below middle C. Thus in the key of
G, the score

g<d<blad<gebecT<dT<leTeTdT>1cTcTbblaags>|

produces the output

10 Evven vorr No2

FOXLEY

A #
&

MUSIC

17]

[&

3V

| TR

| VN

—F

|
+

|

Y] ‘-i—‘

The octave symbols(s) must at present precede the note duration symbol(s). The default octave can be
moved up or down an octave by appending "T" or "J" symbols to the note in the key definition in the
header. The previous example, if the default key is specified as

key = gT; # g up an octave
we obtain the output

A
A

pef EEE

-

'
L]

e

/
k)

-

k)

BE)

N

C,@;Ln

The header entry
octave = s;

sets the default octave to that contained within the treble clef stave, from F above middle C to the E above
that. The header entry

octave =k;
sets the default octave to be that starting at the current key note. The entry
octave = p

causes the octave of each note to be chosen to make its pitch as close as possible to that of the previous
note. Thus in this mode the notes

abcdlefgalagfeldcbal

would give a run up and down an octave scale. In this mode, the very first note is set according to the
“octave = s” rule. Note that although this option minimises the typing of input, it has the unfortunate side
effect that octave errors now propogate throughout the rest of the piece.

Bar-lines

Bars are delimited by bar-lines. A limited variety of bar-lines is available, some indicated by an
obvious construction, others by a letter following the bar symbol. A selection of these is indicated by

g>g>lla>a>ITh>b>1Ub>b> IV TS et EdTS>dT> i eT>el> il g> g H

which produces
A4 R
iy ¢ lL ;
y ’ o (2] F f"’ f". P
SV] | I |
I I I I
A ¥
J & &
2] F7J 0 . .)| | 0
1 1 0 . . 1 | 0
D i] ;
o

Note that the system is sufficiently intelligent to replace for example the ":I:" symbol if it occurs at the end

of astave by a

n,'n

symbol at the end of that stave, and a "I:" symbol at the beginning of the next stave.

EUUGN Vo7 No2 11

MUSIC FOXLEY

Rests

Rests are indicated by the underscore symbol "_", with lengths specified as for notes using the sym-
bols ">", "<" and ".". The default length is the same as the value set for notes. Not all rest symbols are
currently implemented on the printer. The input

a >la_c._<<la<_<c<_<a_|

gives the output
A U .
J = | N |
- I P & 1T o ~ | 2
&) Py by &/ - L& Py
Q) -°° .‘,J
Beams

To cause notes shorter than crochets to be joined under a common beam, the notes to be joined are
put within square brackets, as in

[abc]l[def]

A beam will correctly fail if it includes any notes longer than or equal to a crochet; at the moment, it also
fails if it includes any rests. The latter restriction should be removed soon. A beam cannot cross a bar-line.
As an example of beams, the source

timesig = 4 4; key =d.
d! [dl<<el<<f<cge<]aal[b<a<g<b<]a>|
glg<. g<<]f[f<g<]l [a<< g+<<a<< b<<][a<< ge< fe<ed<<] dd> IT

appears as
A & :
Jd @ P | | 1 | r—— - | e
fo—t S E— . 1 S (o i e B W 1 I R
A\3V/ = Y A g s v “#’" el 3
) s 2

To simplify the typing of input in straightforward cases, a system for automatically inserting beams
is available, and can be invoked by inserting the additional line

autobeam;

in the music heading. The automatic beaming uses rules from the Oxford Concise Dictionary of Music?
which may not always be exactly what is required. However, automatically generated beams will never
over-ride beams inserted manually. Having been invoked, auto-beaming can be switched off by the header

autobeam = 0;

As a further facility, the auto-beamer can be instructed never to let a beam cross for example a "2 times
default note-length” interval using

autobeam = 2;

Different formulae for the slope of the beam are built into the program; formula number 2 can be
accessed by the header entry

beamslope = 2;

Details are the formulae are availablc from the author. Other formulae could easily be added; suggestions
are welcome.

12 Evwen vorr N2

FOXLEY MUSIC

Text

The title of the piece as (and if) given with the keyword title in the header information appears at the
top left corner of the output. Other titles can be given to appear at the the centre and at the top right-hand
corner of the output using the keywords ctitle and rtitle in the header.

Additional items of text can be given to be positioned relative to any note or bar. For text associated
with notes, the text required is contained within quotes to indicate its positioning. Single quotes
(’Moderato’) indicate text to be positioned above the stave, left justified and starting at the horizontal co-
ordinate of the note; text in double quotes ("Twinkle") indicates text to be positioned below the stave; and
text between "@" signs (@3@) indicates text to be positioned close to the note. Text of the last form will
be positioned just above the note if it has a downward stick, and vice versa. Thus the input

g 'Legato’ "Twin-" g "-kle" d "twin-" d "-kle" |
e "lit-" [e< "-tle" fT< @3@ e<] d> "Fin’ "star" |

generates the output

Legato 3 Fin
A b
\J # y_J F i‘ F
% |
ANV A '
o Twin- -kle twin- -kle lit- -tle star

The particular string @3@ is interpreted to imply a triple, three notes in the time of two. The spacing of
the notes on the score and the checking of bar-lengths takes this into account.

Text can also be associated with a bar. It is given after the bar-line, and is printed lined up with the
start of the bar; it will be above the stave if contained in single quotes, and below if in double quotes.

Text strings starting with the escape character "\" arc treated specially. Any text string starting "\ b"
appears in a box, any starting "\ ¢" appears in a circle. and text starting "\ 1" or ™\ 2" above the stave is
used for alternative bars on repeats. The second type, starting "\ ¢", will be expected to be single character
strings. For example, the file

g \cA’ "\bBelow" g \bB’ddle \1st.’ed>:le \2nd.’ f gT>IT

produces the output

® [Tst Er
4 |
1

]
]
r)

FER=

Q,@;P:)

[Bdow] °

Text starting "\ >" is assumed (o be a diminuendo; its width will stretch over two notes if written "™\ >
2n", over two bars if written "\> 2b", and over 2 inches if written "\ > 2i".

Text between @ symbols starting "™ .", "\ -", "\ <", "\ >" is interpreted as accent symbols and posi-
tioned accordingly.

It is hoped that most recognised musical symbols (such as pause and segno) will eventually be
included in the standard font; such additional characters are then accessed by the usual methods appropriate
to troff, such as the "\ (sh" for the sharp-character, and ™\ (ft" for the flat-character.

If text is given as two strings, such as
lll. Gll "2. Em"

the two text strings "1. G" and "2. Em" appear one above the other, vertically aligned at the left, as in

EUUGN Voi7 No2 13

]

MusIC FOXLEY

A U
iJd =
=
) 1.G G 1.C
2.Em 2. Am
Ties

Ties are indicated by putting parentheses (round brackets) around the notes to be joined under the tie.
Their production is through the use of splines in pic; an angular version is available if splines are not pro-
vided.

Duplicate copies of earlier bars
The notation

\41
cause a duplicate of bar number 4* to be inserted at this point. The similar notation
\ 1,31

causes bars 1 to 3 to be duplicated at this point. Numbering starts at bar 0 for the lead-in notes, and bar 1
for the first full bar. The notation

\-11

causes a duplicate of the previous bar to be inserted (current position minus one), and
\4,-11

inserts copies of the preceding four bars. The notation
\Legato’+2, 'Legato’+4

duplicates source from the bar two beyond the most recent which contains the text Legato’ to the bar four
beyond it. Such a bar must occur earlier in the current ".MS" to ".ME" section. Only complete bars can be
copied.

It is unwise to use absolute bar numbers in cases where an extra bar could perhaps be added or
deleted at a later stage. Relative bar references (using the -4 or "Legato’ notations) are safer in such cir-
cumstances. References to bars not yet encountered are unacceptable.

Changes of signature
The notation

\timesig = 3 4,

occurring at the start of a bar resets the time signature, dcfault note length and bar length on the fly to a
new value, causing the new value of the time signature to be printed on the stave. The input and/or output
keys can be reset similarly using, for example

\key = g<.
resets both input and output key, or
\keyout = d.

resets only the output key. If such a change alters the pitch of the output key, the new key signature will be
printed on the stave at that point; if it is used to change only the default note length or octave on input, no

* This bar number must already have been entered, i.e. we must be currently positioned at bar number 5 or beyond.

14 zvuen vorr Noz

FOXLEY MUSIC

key signature is printed.
The notation
\barno = 25.

moves the source to the start of bar 25; if the specified bar number is ahead of the current bar, any interven-
ing bars are filled with rests. If the bar number given is less than the current bar, it is assumed that a further
part is being added; see multi-part music below for details.

The notation
\sticks = u.
causes the sticks of all following notes to be forced upwards until cancelled by either
\sticks = d.
to send sticks downwards, or
\'sticks = x.
to leave sticks free to move in either direction.
The notation
\bps =4.

resets the current "bars-per-stave” value to the given integer. This can be used to lay out varying specified
numbers of bars on each stave. This can however be achieved by a further facility; if the ’I’ separator
representing a bar-line is replaced by a "!" symbol, the stave is ended at that point.

Any of the above items can be combined as in a normal header, separated by semi-colons and ter-
minated by a full-stop, as in

\bps = 4; keyout = d.
With the exception of "\ sticks =", the above notations starting with the escape character "\" are not
guaranteed except when used at the start of a bar.

Changes of width

If, say, music is being printed at 8 bars per stave, but there are 4 bars left over at the end, those bars
would normally be spread to fit the full width of the page. To reduce their width, use the inserted header

\ width = 400 .
which will decrease the width of the page to 4 inches. To reset back to the original width, use
\width = 0.

Source from a separate file
The ".MS" line can be replaced by

.MS < filename

causing music input to be taken from the named file. The file should start and end with "MS" and "ME"

lines respectively. This enables music source to be easily tested before insertion into the main text. The
line can be extended by header items, for example

.MS < filename keyout = b,

Any information given on the ".MS < file" line and following the filename is read after the first heading of
the the file which is being read. Thus if the named file contains a piece of music which is required to be
printed in several keys, or in several different layouts, this can usually be done using extra header items in

EUUGN Vo7 No2 15

MUSIC FOXLEY

this way. The use of the escape character at the end of a line enables several header items to be given, as in

MS < file keyout = gT; rtitle = "arranged Foxley"; \
bps=4.

which specifies a new output key, right-hand title and bars-per-stave setting.

Output key

The facility to specify the output key independently of the input key takes account of the fact that a
natural in one key may become a sharp in another. A piece may be printed in a key other than that in

which it is entered by using the "keyout = ..." facility in the heading of the piece. To print a particular
piece in two distinct keys, first in the key in which it was input, and then in a second key, store the input
MS

rtitle = "\ fIAs input in key of A\ fP";
key = a; chords; autobeam; bars = 8.

e<d<|

c""A"aab<c<|d"E7" bbe<d<«!
c"A"aab<c<ld<"G" c=<b<a<g=e<d</|
c"A"aab<c<|d"D"bb"E7"e< d</|
c"A"a<c<b"G" g=<b<la>"A"|

.ME

in a file, then use
MS < file
to produce the first copy, and
MS < file rtitle = "\ fIOutput in key of F\ fP"; keyout = f.

for a second copy. This then appears as

Glengarﬁ:y’s March Input given in key of A major
A b . . l
J #gll Py ! | |
A — ¢ e ————
NV | E— {
9] A E7
A U
o » { ' — - — f—p
"k\iy 1t I) d — i LJ h | ~e—
) A G
A 4
U | 1 H_
f L s ? —f it 1t =——
ANV I— | |
Q) 1 1
A D E7
L ! o é D :
Gy i “ F 8

16 EvveN Vo7 No2

FOXLEY MUSIC

Glengarry’s March Output in key of F
e — 33 ——
4 ANV | ——
| v F C7
~’ A .
4 \J] + . 1
{5—>—2 ' i e s e o e f——
J & hat é N ~—
Y F Eb
) i —
T ——
J F Bb C7
A .
A — — :
- 117 hd as
J F Eb F

An alternative technique for transposition is to use a simple
key =d;
header, and to follow it with a header entry such as
transpose = 2;
This will cause all output to be printed two sharps up {from the output key currently set, following all output
key changes during the piece. Negative values, of course, imply less sharps or more flats.

In transpositions, single sharps, naturals and flats are printed correctly relative to the new key. How-
. ever, double sharps and flats (arising from, for example, an accidental sharp when transposed to a key in
which that note is already sharpened) are re-coded to a new note. It should be noted that the input notation
does not currently allow double sharps or flats to be specified in the input key. Both these and quarter-
1. tones will be added to the program.

The additional entry
chords;

in the header of the above example causes the system to assume that any text below the stave represents the
names of chords, and transposes them correctly; other text is left unchanged. In chord names, it is assumed
that the full note is given, for example "F+m" for a chord bascd on F-sharp, even in a key in which the note
of F is by default already sharpened. This appears to be the general convention.

The "chords;" entry also allows the use of "+" to represent sharps and "-" to represent flats in the text
of chord names; the "+" and "-" characters will be correctly replaced by "#' and "," symbols when printed.
To print a "+" symbol, escape it with the "\" character.

If the "chords" entry is not given, text is printed exactly as specified, so that a "+" sign in the text
appears on the output as a "+" sign; a sharp sign would be printed by the string "\ (sh".

3. Multi-staff multi-part music
For multi-staff multi-part music, the music source must specify to which part each note belongs, and

the parts must then be linked to particular staves.

3.1. Specification of stave layout
Two additional lines must be included in the header, typically

staves =t b;
parts=1uld2x;

EUUGN Vo7 No2 17

O

MUSIC FOXLEY

These indicate
a) that there are to be two staves, the first in the treble clef, the second in the bass clef; and

b) that there will be three parts, the first to be printed on stave 1, sticks up, the second on stave 1, sticks
down, and the third on stave 2, sticks either way.* The default is

staves = t;
parts = 1 x;

To allow for more complicated situations, more information can appear optionally between the clef
names on the "staves =" line. If a "=" sign appears between two clef characters, as in

staves=t=tb="b;

the bar-lines of those two staves will be connected on the final output; in this example the first and second
staves will be connected, as will be the third and fourth. If the clef letter is followed by a positive or nega-
tive integer, the output on that stave will be in a key offset from the basic output key; a positive integer
represents a number of additional sharps or less flats, a negative integer represents a number of less sharps
or more flats. This facility is essential for scores involving transposing instruments. In addition this posi-
tive or negative key offset may be followed by a number of "T" or "{" symbols to indicate octave displace-
ments for that stave relative to the current key. Finally, any string in double quotes following the clef letter
will appear at the left of that staff in the output; this is used typically to indicate instrumental parts. The
example

key=g;

staves =t "flute” t "violin" t "clarinet” +2 t "trombone" -2;
will give output on four staves, the first two in the key of G (but perhaps changing during the piece), the
third always transposed two sharps up (initially in A), and the fourth always transposed two flats down (ini-

tially in F). Permitted clef letters are "t" for the treble clef, "b" for the bass clef, "a" for the alto clef, and
"n" for the tenor clef.

3.2. Specifying the separate parts

The music source needs additional notation to identily which of the source belongs to each part.
Parts may be given bar-by-bar, as in the two-part music

\partno=1.ggdd\partno=2.dl dl bb|
\partno=1.eed>\partno=2.cc b> |
\partno=1.ccbb \partno=2.aagg]
\partno=1.aag> \partno = 2. f fdl> |

When a new part is specified, as in "™\ partno = 2.", the following source is assumed to restart at the begin-
ning of the current bar. Alternatively, the complete source may be specified part by part, as in

\partno=1.ggdd|eed>|ccbblaag>|
\bamo=1; partno=2.dl dlbblccb>laagglffdl>|

where the "\ barno = 1" indicates a return to (the beginning of) bar number one.
In multi-part scores, when earlier bars are to be copied, the notation
\1,8I
inserts the current part number from bars one to eight at the current point. The notation
\1,8p2l

inserts bars one to eight of part 2 into the current part at the current point. To ignore a particular part which
you wish to leave in the file for other reasons, specify it as printing on stave number 0, as in

* The notation "\ sticks = u" in the source over-rides the default stave settings.

18 ewven verr No2

FOXLEY MUSIC

staves =t b;
parts=1ul1d0x2x;
to print the first two parts on stave 1, the fourth part on stave 2, and to ignore the third part.

Facilities to refer to parts by names rather than numbers will be added shortly, together with a tran-
sposing option to insert transposed or inverted duplicates of earlier bars.

3.3. Example

Typical source to print a multi-part piece, and then to print the first part on its own, and then to print
the last part on its own, would be done by storing the basic score in a file as follows:

MS

title = "Complete score”;
key = g;

bars = 16;

staves = t b; # treble and bass clefs
parts=1u1ld2u2d. # two parts on each staff

source for all parts follows
\partno = 1. ... # soprano part inserted here

\partno = 2; barno = 1. ... # alto part inserted here
\ partno = 3; barno = 1. ... # tenor part inserted here
\partno = 4; barno = 1; key = gv. ... # bass part defaults an octave down

.ME

To print the complete piece as specified in its header (two staves), use
MS < file

To print the soprano part only, use

MS < file title = "soprano part”; # all settings remain as specified \
staves = t; # one staff, treble clef \
parts = 1 x 0 x 0 x 0 x. # one part, sticks either up or down \

To print the bass part, use

.MS < file title = "bass part"; \
staves = b; # one staff, bass clef\
parts = 0 x 0 x 0 x 1 x. # one part, sticks cither up or down

Alternatively the full score could be printed on its own, and then the soprano part could be printed
alone in a separate run by altering the "stave" and "parts” entrics in the first heading to read

staves = t;
parts=1x0x0x0x;

i.e. to ignore parts 2, 3 and 4.

To print on four separate staves, but with the second stave always transposed to two more sharps
than the current output key, and the third to one less, the relevant header entries would be

EUUGN Vo7 No2 19

MUSIC FOXLEY

staves =t {+2 b-1 b;
parts=1x2x3x4x;

4. Error reporting

A number of suspicious constructs in the source file produce warning or error messages. After an
error message, the program will terminate. After a warning message, processing proceeds as normal.
Error messages include the line number of the suspect line, and a pointer to the position at which the error
became detected. Possible errors include invalid characters at any point and beams which are opened but
not closed. A warning message is produced if the notes in a bar do not add up to the correct length for that
bar, but is suppressed if the bar starts or ends with a non-standard bar-line. Un-necessarily repeated
accidentals also produce a wairing,

5. Miscellaneous additional features

Text omission
The header line

text = 0;
causes text under the stave (in double quotes) to be suppressed, text over the stave printed. The line
text = u;
causes the text over the stave (in single quotes) to be suppressed, while
text = ou;
causes both to be printed, and
text,

causes both to be suppressed.

Cancelled Accidentals
The header entry

natural;

causes an appropriate accidental to be placed against a note which was set with an accidental in the preced-
ing bar. The entry

natural = 0;

cancels the effect.

Inter-stave gap

To increase the vertical spacing between staves, usc the header entry
isg = 25;

for an inter-stave gap of 0.25 inches. To increasc in addition the gap between the combined staves in
multi-staff music, use

isg =25 10;

where the first number is the spacing between groups of stave, and the second between staves in a group.

20 EwUGN Voir No2

FOXLEY MUSIC

Setting defaults

The program first reads a file called "mus_default" if such a file exists. It must be a file containing
only a header, of the form

MS

sig=kt,

octave = s; '
rtitle = "Copyright Fred’s Music Ltd";
height = 0.35i;

width = 700.

ME

and sets all defaults for the program.

PIC commands

The output of the music preprocessor is fed into the pic preprocessor. Any text string starting "\ p...."
is assumed to be a PIC command. The program moves to the appropriate position (above the stave if the
string is within single quotes, for example) and plants the given PIC commands. In addition, the program
reads a file named "pic_default" on start-up, to enable PIC-macros to be used.

6. Further enhancements under consideration
Possible further enhancements include the following.

Font characters

The font characters need to be enhanced, new characters added, and a variety of fonts for music sym-
bols made available. Different available digitised music fonts are being studied. The exact align-
ment of all symbols awaits the choice of a font. (A variety of fonts for text is already available.)

Varying the height of the stave

Refinement of the ability to vary the height of the stave; at the moment some slight misalignment
occurs, but the output is as follows: '

Knick-Knack 2 height 0.24 inches, 8 bars/s ‘ave
Al 1 1 !
e]
.J [4 [4

Jnl - t | - 1 |

:jl | = L 1 j == -)

A ¥ 1 1

7 : = :

:)_v [4 } ¥

— e — . : :
D] = — - =
Knick-Knack 2 height 0.45 inches, 4 bars/

stave

A
ﬂﬂ'ﬂ. o
©— P - P -

EUUGN Vo7 No2 21

FOXLEY

@

Knick-Knack 2 default height 0.32 inches, 4 bars/

A stave
Ak ———] | l
J o | A—H— 1 1 ——l# 1
7 e e e e . P ———— .
Q) I
{4 | 1 1 1
—Ff—rr— ———
\;j} | = 1 1 ! i L—-—l 1] & !

I ! | — P] | i | — >
) — —— I
L4] 1 i i
e : :

Text can, of course, be set to any size using troff conventions; the above examples show how the
default text size is set in proportion to the stave height.

7. Acknowledgments

Thanks are due to many people for their comments at various stages of the development. The author
is indebted in particular to Graeme Lunt who looks after the laser printer, and to Dave Brailsford who
obtained it for the department. Other colleagues in my department helped at many points, among them
Andy Walker, Jim Duckworth and William Shu. Members of the music department are always helpful,
and compensate for my lack of musical expertise; they include Ian Bent, John Morehen and Peter Neslon.
The testing of the system has been assisted by Toby Bennett of the Genetics Department, who also devised
a system for proof-reading my scores by by writing a program to play them directly on a BBC micro-
computer.

Eric Foxley
April 24, 1987

References

1. John S Gourlay, ‘‘A Language for Music Printing,”” CACM, vol. 29, no. 5, p. 37, May 1986.

2. Walter B Hewlett and Eleanor Selfridge-Field, Directory of Computer Assisted Research in Musicol-
ogy,June 1986. Center for Computer Assisted Research in the Humanities, Menlo Park
3. Brian W Kernighan and Lorinda L Cherry, ‘‘A System for Typesetting Mathematics,”” Comm A C

M, vol. 18, no. 3, pp. 151-157, 1975.

22 EUUGN Voi7 No2

PRSI ———-

FOXLEY MUSIC

10.

Brian W Kernighan, A TROFF Tutorial, 1978. Bell Laboratories

Brian W Kernighan, ‘‘PIC — A Language for Typesetting Graphics,”” Software — Practice and
Experience, vol. 12, no. 1, pp. 1-21, 1982.

Brian W Kernighan, PIC — A Graphics Language for Typesetting : User Manual, March 1982.
Bell Laboratories

M E Lesk, “Tbl — A Program to Format Tables,”” UNIX Programmer’s Manual, vol. 2, January
1979. Section 10

Joseph F Osanna, ‘‘NROFF/TROFF User’s Manual,”” UNIX Programmer’s Manual 2, January 1979.
Bell Laboratories

Percy A Scholes, The Concise Oxford Dictionary of Music (2nd Ed), 1964. Oxford University Press
Kurt Stone, Music Notation in the Twentieth Century, 1980. W W Norton & Co

EUUGN Vo7 No2 23

24 EwUGN Vorr No2

TERRY NLS

An Overview of the Native Language System

Michael J. C. Terry
mjct@inset.couk
«Imcvaxlukclinsetmjct

The Instruction Set Ltd
City House, City Road
London EC1V 9QH

Michael Terry is a technical consultant at The
Instruction Set, involved mainly with relational
databases.

He originally studied French and Swedish (with a dash
of Norwegian and Finnish) at university, before crossing
the great divide and plunging headlong into computing
(“because there was nothing left to do™).

Having an intimate knowledge of European collating
sequences, hospitality, and drinking habits, he is
uniquely qualified to be working with NLS. Earlier this
year he spent 6 weeks at Hewlett-Packard’'s Cupertino
office working with them on their NLS project and
learning how to operate the jacuzzi.

“If English was good enough for Jesus, it's good enough for me.”

1. A New UNIX Internationalisation Standard

In January this year, the X/OPEN group? published the second edition of its X/OPEN
Portability Guide (XPG)!l. Section 3 of the guide included a software
internationalisation interface standard specification — the Native Language System
(NLs). Although many proprietary solutions to the internationalisation problem have
been attempted over the years, this is the first time that a commercial standard has
been specified for internationalisation on UNIX® systems.

The X/OPEN NLS standard specification has arrived as a response to a pressure that
has been growing slowly but relentlessly from non-English-speaking UNIX users as
use of the system has filtered down from the ivory towers of academe to the air-

conditioned offices of modern commerce. It is not surprising that this
internationalisation specification has emerged from the X/OPEN group rather than
from AT&T — after all, despite the recent addition of American companies to the

X/OPEN roll call, X/OPEN started out as a purely European grouping, and is still

t AT&T, Bull, DEC, Ericsson, Hewlett-Packard, ICL, Nixdorf, Olivetti, Phillips, Siemens, Unisys

EUUGN Vol7 No2 25

NLS TERRY

predominantly European. What is perhaps surprising is that the NLS specification is
based on an internationalisation architecture developed in the USA by Hewlett-
Packard.

Being Europeans, the members of the EUUG will be well aware of the problems that
result from the American nature of UNIX — the ASCII codeset does not support
many of the characters in the various European alphabets; the system uses US
cultural practices (the US assumptions, for example, that the radix character is a dot
and that thousands are separated by commas, are reversed in many FEuropean

countries); moreover, the terse UNIX error messages are all in (sometimes bizarre)
English.

The aim of NLS, then, is to provide the specification of an internationalisation
framework — a set of utilites and library functions — that enables applications
software to be adapted appropriately for use in any country or local environment.

2. Major Design Goals of NLS
NLS is designed to provide the following features:

e Support of multiple extended (8-bit) character sets on the same machine,
simultaneously.

o Preservation of 8-bit data integrity.

e Multilingual program messages.

o Proper representation of local conventions.

e No need for multiple versions of software for different languages.

e Ability to add new languages without the need to recompile existing software.

In addition, UNIX systems with NLS must still retain the original 7-bit ASCII
functionality.

3. Implementing NLS

Hewlett-Packard have a working version of NLS on their HP-UX operating system.
The source code has been made available to the other members of X/OPEN in order
to expedite its implementation on currently available versions of UNIX. Whether
they are using the H-P code or not, the other members of X/OPEN are in the process
of implementing NLS on their versions of UNIX.

Thus AT&T, having recently joined the X/OPEN group, are committed to the eventual
release of NLS on a future version of UNIX. However, it is unknown if AT&T will
ever release NLS on any version of System V.2.

\r P
Currently, implementing NLS on a UNIX system entails the creation of new utilities
and C library functions, as well as modifications to pre-existing UNIX code. No
kernel level changes are required.

The next six sections outline the work involved in implementing NLS on UNIX.

3.1 Extended Character Set Support

Because ASCII is a 7-bit codeset, it is capable of representing a maximum of 128
characters. 8-bit codesets can represent up to 256 characters.

The eventual intention is that NLS will support multiple 8-bit character sets. The
XPG states:

26 EUUGN Vo7 No2

TERRY NLS

This first issue of the X/OPEN NLS specification defines the major transmission
codeset for Western European use as the standard 1S8859/1, and also
recommends its use as the corresponding internal codeset. Other codesets will be
identified in later issues.

The 158859/1 codeset is capable of supporting most major Western European
languages. In addition, it is compatible with ASCII functionality, since it
incorporates the ASCII codeset as the first 128 characters of the codeset.

3.2 Cleaning Up 8th Bit Usage

Everything sounds hunky dory until we take into account the problem that the
UNIX utilities have a bad 8th bit habit — many of them use the 8th bit for their
own arcane internal purposes. For example, the shell sets the 8th bit of characters
read in from the command line if they were quoted. Consequently, 8-bit data is
corrupted if passed through any such offending commands.

Another problem is that sign-extension can occur with 8-bit characters when they
are manipulated as integers.

The upshot of this is that the UNIX utilities must be gone through with a fine
tooth-comb in order to detect and correct any possible areas of corruption. This is
a tedious, long-winded and, in the case of some commands, non-trivial task.

3.3 Character and String Handling

Many languages share the same codeset, but there are differences in the way each
language handles the component characters of its alphabet.

Lookup tables must be supplied indicating character class membership, up/downshift
relationships, and collation (sorting) orders for each language. These tables must
understand 1-2 character mappings such as Spanish ch and U.

The affected library routines include the ctype(3C), conw(3C) and string(3C)
routines, which must be amended to make use of these tables.

34 Message Catalogues

NLS uses a message catalogue mechanism to provide program messages and prompts
in multiple languages. A utility, gencat(1), is used to generate message catalogues
from a source file containing program message strings. The library functions
catopen(3C) and catclose(3C) are provided to open and close appropriate message
catalogues. The routines catgets(3C) and catgetmsg(3C) are provided for access to
messages from the currently open catalogue.

A message number is associated with each message. This number is used to index
into the catalogue to retrieve the message.

An environment variable, NLSPATH, can be used to specify a catalogue search path.
The advantage of this is that new languages can be added to a system without the
need to recompile software. For example:

NLSPATH=/usr/1ib/nls/XL/%N.cat:/usr/me/cats/XL/%N.cat

The special notation %L maps to the name of whichever language is currently being
used, while XN maps to the name of the program being run. Thus if the current

EUUGN Vo7 No2 27

NLS

language is french, and the command is rm, the above maps to:
NLSPATH=/usr/l1ib/nls/french/rm.cat:/usr/me/cats/french/rm.cat

If the catalogue cannot be accessed, a default string (specified in the original source
code) is printed out. However, if the catalogue is opened succesfully, but the
numbered message cannot be found, then a null string, rather than the default, is
returned. When such errors occur, this results in strangely silent programs. I think
X/OPEN got that one wrong.

3.5 Local Customs Database

A local customs database must be supplied for each language. This contains the
names of months and days, currency formats, yes/no strings etc.. A routine,
nl_langinfo(3C), is supplied for accessing elements from this database.

3.6 Language Announcement Mechanism

Means must be provided to enable users and programs to determine the language to
be used. An environment variable, LANG, enables the user to set and reset the
language in which prompts and messages from internationalised programs will appear.
For example, the following shell commands will force any program that uses the
catopen(3C) call to access the Italian message catalogues from the directory
/usx/lib/nls/italian:

NLSPATH=/usx/1ib/nls/%L/%N.cat
LANG=italian
export NLSPATH LANG

The nl_init(3C) routine is provided to set up the working environment for the
current language. This routine reads in the appropriate character tables and local
customs data:

nl_init("italian");

N1_init() can be called more than once by a single program, thus for example
permitting the same process to work in multiple languages. An example of a very
simple program that prompts for a language name and then runs the date(1)
command in that language is given in Figure 1.

Note that the %L notation can be used to force the catopen(3C) routine to use the
value of the environment variable LANG to determine the catalogue to be accessed.
The nl_init(3C) routine, on the other hand, uses the value of its single argument
to decide which character tables and local customs database will be used. Thus it is
possible, by setting LANG to one language and calling n1_init(3C) with a different
language as its argument, to have a program putting out prompts in one language
(say French) while processing data using the tables for another language (say
Norwegian).

28 zvveN Vo Noz

TERRY NLS

#include <nl_types.h>
#define NL_SETN 1
char =getenv(), »catgets();

main()
{
nl_catd nlmsg_£d;
char newlang(15], envstr[20];
nlmsg_f4d = catopen{ "menu", 0);
for(; ;)
{
printf(catgets(nlmsg_fd,NL_SETN,1, "Make selection: "));
catclose(nlmsg_fd)};
scanf("%s", newlang);
nl_init(newlang);
sprintf(envstr, "LANG=%s", newlang);
putenv(envstr);
nlmsg_fd = catopen("menu", 0);
system("date");
}
}
Example owtput:

Select Language: french

lun 04 mai 1987 10h32 42
Choisissez la langue: swedish
M&n 04 Maj 1987 10.32.43
valja sprdket: english

Mon. 04 May, 1987 10:32:44 AM

Figure 1. Program to Run the date(1) Command in Multiple Languages

4. Handling Mixed Codesets — Software Implications

The nature of the UNIX operating system poses one insurmountable problem when it
comes to handling data from a mixture of character sets. UNIX files are merely
streams of bytes, and it is impossible to tell what character set the data in a file is
composed of.

Although kludges such as file-naming conventions, or storing information on file
contents externally to files in some kind of catalogue, etc., have limited usefulness,
there is absolutely no way of determining the contents of pipes. The other problem
is that a file might contain data from a mixture of character sets.

Consider also a multilingual system where users of different nationalities and
different character sets have accounts. The contents of the /etc/passwd file are
going to be semi-incomprehensible to everybody. This kind of problem extends to
many other areas. In the end, it will probably be necessary to retain ASCII
functionality for system administration, or else each system will have to have a
basic “nationality” that determines the character set used in system administration.

For the moment, these problems are immaterial, since only a single codeset has been
specified thus far.

EUUGN Vo7 No2 29

NLS TERRY

5. Handling Mixed Codesets — Hardware Implications

The X/OPEN NLS specification deliberately makes no attempt to address the device-
handling problems that may result from the introduction of new, non-ASCII codesets.

No one wants to have to buy a completely new set of terminal and printer
equipment in order to be able to use internationalised software. However, this is
exactly what the introduction of NLS implies at those sites where the hardware does

not support 8-bit character sets, or where 8-bit codesets are supported but not
158859/1.

One can expect that it will be a long time (if ever) before the majority of
terminals offer 158859/1 codeset support. In the interim, users will want to make
do with what equipment they have. As long as terminals and printers support
alternate character sets some means can be found to force (maybe virtual) 8-bit
character support.

If 7- or 8-bit devices are to be used, IS8859/1 can be used for internal purposes,
and terminal and printer device drivers amended to use lookup tables that enable
them to transmit translated character codes to output devices, along with appropriate
escape sequences for swapping between codesets, and to decode and translate
incoming escape sequences and characters from input devices. This problem has been
addressed in the past!?! and the area is well understood.

6. Limitations of the NLS Specification

The specification for NLS was outlined for the first time in Issue 2 of the XPG in
January 1987. Since the standard is very new, it is necessarily somewhat limited in
scope. However, future editions of the XPG can be expected to extend the
specification into new areas.

Only 22 UNIX commands are specified as having to guarantee processing 8-bit data
correctly. It can be expected that this list will be extended in future to cover all
the standard UNIX Section 1 commands.

Only one extended 8-bit character set is specified. This set does not provide support
for languages that have mainly non-Roman alphabets — Greek, for example, or
Hebrew. Further codesets will however be named at a later date.

The introduction of dictionary collation for sorting, etc., rather then machine
collation means that the old regular expression syntax for character classes is no
longer sufficient. A special syntax will need to be introduced, that uses generic
ctype(3C) class identifiers. For example:

[A-Za-20-9]
will need to be replaced by something like:
[(isalnum)]

The exact form of the syntax for character classes is in the process of being decided
by a working committee.

The language announcement mechanism defined in X/OPEN NLS is not very flexible.
It is possible to set a new language/culture/codeset combination with nl_init(3c),
but not possible to set only a single element of the combination. This means that
“mix-and-match™ environments are not possible. If a program wants to switch a
single element of the local environment, the entire new environment must be loaded
into memory. The ANSI XJ311 draft standard for the C programming language

30 EvweN Vo Noz

TERRY NLS

proposes a more sensible solution to this issue (see the next section for more details
on the differences between NLS and XJ311).

Problems of coping with mixed character sets and with hardware that does not
support 1S8859/1 are covered in Sections 4 and S.

7. NLS and the XJ311 Draft Standard

The ANSI XJ311 Draft Standard for the C Programming Language specifies a number
of “international” library routines.

The NLS and the XJ311 internationalisation specifications share the same general
architecture. However, they do differ in some minor ways:

— NLS's nl_init(3C) function is replaced in XJ311 by the more flexible
setlocale(3C), which allows programs to set and reset individual elements of
the local customs data.

— XJ311 separates string collation away from string comparison — strcmp(3C) and
strnemp(3C) remain unchanged, while an extra function, strcol1(3C), must be
used to collate the strings before comparing them. This is a sensible separation
of functionality.

— slightly different routines are used for handling date and time.

— NLS includes some enhanced I/0 routines — nl_printf(3C), etc. — that allow
parameters to be passed in variable orders to print routines, to support
variations in word order between languages. These are extremely useful
routines, surprisingly absent from XJ311.

Overall, there are no substantial or irreconcilable differences between the two
standard specifications. It is to be expected that they will eventually converge —
. hopefully taking up the best features from both.

8. 16-Bit Character Sets

At some stage in the future it is inevitable that NLS will have to take the question
of the extremely large Far Eastern alphabets into consideration. Since they contain
so many characters, these languages can only be represented with 16-bit (or larger)
character sets.

16-bit implementations of UNIX already exist, especially in Japan, where a number
of companies (including AT&T Pacific) have their own proprietary Kanji solutions.
The problem here is suggested by the very word proprietary. Many different
methods of implementing 16-bit character sets are used and it is difficult at present

. to predict which, if any, will eventually turn out to be a future standard.
Meanwhile, it is a fact of life that there is little or no data compatibility between
different vendors’ systems, and that software must be rewritten, maybe substantially,
to work on different vendors’ machines.

Moreover, if UNIX needs a lot of work to make it 8-bit compatible, it needs an
order of magnitude more work to make it support 16-bit character sets.

There are certain other problems that may or may not crop up depending on the
way in which 16-bit character sets are implemented. These include, amongst others:

| — in designing a 16-bit character set, there is a trade-off between efficiency of data
| storage and efficiency of run-time processing (i.e. either one or the other will
deteriorate, in certain circumstances badly);

EUUGN Vo7 No2 31

]

NLS TERRY

— byte redefinition may occur. For example, a “/” in the second byte of a
character in a 16-bit filename might be taken as a directory delimiter;

— most implementations allow for a mixture of 8- and 16-bit characters, which
may cause difficulties in character recognition (and thus especially in string
handling), and

— due to the large size of the alphabets, dictionary collation may entail an
excessive amount of processing (in fact, there are at least three possible different
collation orders for Kanji).

The viability of UNIX in the Far East cannot really be assured until standard
codesets are agreed for each country, such that reliable, portable software can be
produced, and machines of all persuasions can talk to each other easily.

9. The Future

It is the intention of the X/OPEN group to continue to develop and extend the NLS
specification. It is likely that NLS and the ANSI XJ311 standards will converge at
some future point.

It is to be expected that eventually all the UNIX commands will have to be 8-bit
clean. Other areas will be cleaned up to support 8-bit data, most notably and
importantly regular expressions and the curses library.

We can also expect to see an internationally accepted set of translations of the UNIX
utility error messages, hopefully administered by an international body such as the
X/OPEN group. Currently, if any translations exist at all, they are proprietary
translations, and so the same error message will appear differently on different
systems. However terse and incomprehensible the original UNIX error messages may
be, they do have the advantage of being (with some minor exceptions) identical on
all UNIX systems — this is a great help to debugging shell scripts, and generally to
feeling at home in the UNIX environment. It is obviously vitally important that
standards are maintained in this area.

At some stage, NLS will be extended to include other 8-bit codesets, to support such
languages as Greek, Turkish, Arabic and Hebrew. The Ilatter two pose new
problems, being right-to-left alphabets (e.g. how are left-to-right and right-to-left
languages embedded within each other?). Eventually, 16-bit codesets will be
introduced.

My personal view is that one day in the future, when storage and processing are
really cheap, we will see the introduction of a single, literally global, 32-bit
character set. This character set would be so large that it could contain every
single character of every single alphabet in the world, with some left over for the
extra-terrestrials when they arrive. Such a codeset would be capable of referencing
other things beyond mere characters — graphical icons, colours, etc.. Gone would be
the problems of having somehow to work out what character set someone is trying
to communicate with.

““And ASCII shall lie down with Cyrillic...”

10. Finally...

Internationalisation has become a real market requirement now that UNIX is starting
to become widely accepted and used outside the academic world. There has always
been fierce debate as to whether UNIX is a user-unfriendly operating system. If
that is true in any way, its solidly American bias must be the most user-unfriendly
aspect of all. Despite its limitations, NLS does at least offer a standard solution to

32 EUGN Vo7 No2

TERRY NLS

the problems of internationalising software.

All the member companies of X/OPEN are committed to supporting NLS on their
UNIX systems. According to Mike Lambert of ICL, speaking on behalf of the
X/OPEN group at a recent UNIX seminar in London, the members of X/OPEN are
committed to conformance with Issue 2 of the XPG by the last quarter of 1987.

Portability of software that utilises the NLS interface will thus be guaranteed across
the entire range of X/OPEN companies’ UNIX systems. In addition, it can be
expected that other computer manufacturers will follow the X/OPEN lead and
provide NLS on their systems.

X/OPEN also guarantees a future upgrade path with backwards compatibility. This,
in conjunction with the portability of NLS applications, ensures protection of
software investment.

Although the present NLS specification is not perfect and is limited in many ways,
it represents at least a pragmatic solution to the problem of internationally
acceptable UNIX.

References

[1] xvs Supplementary Definitions X/OPEN Portability Guide, Volume 3, January
1987, Elsevier Science Publishers B.V.

[2] Conor Sexton European Languages in UNIX Proceedings, EUUG Autumn 1985
Conference, pp. 195-210.

UNIX Grows Up

EUUGN Vo7 No2 33

34 reN Vo Noz

WILLIAMS GROUSE: MESSAGES AND PROMPTS IN PROGRAMS

Grouse: Messages and Prompts in Programs

Alain D. D. Williams
...Imcvaxlukclinset!phcompladdw

Parliament Hill Computers

Alain Williams is an independent consultant specialising
| in UNIX and C. His interests are: finding what
people’s problems are, and building good tools to solve
them once and for all; doing the job properly as it
takes less time: drinking cider; and jumping out of
small boats into a cold sea.

He is the editor of the EUUG newsletter.

Editor’s Note:

This is a reprint of a paper which was given at the UKUUG meeting, 15 December
1986.

Grouse can be used in programs to replace printf() statements, the
text for the messages coming from files. Printf() style argument
substitution is available, arguments can appear in any order.

This paper discusses:

— What grouse is like to use.

— Implementation.

— The advantages of choosing compiled text files.

— The way in which grouse is used by higher level functions to
permit automatic interpretation of errno in error messages.

— A greatly simplified prompting procedure dlowing help to be
taken with little action by the applications programmer.

— Language independent option prompting trivially supplied.
— The way this is tied into a help package.

— How grouse can easily crash a program and why this is, in
practice, not a problem.

— Portability of code and message files.

Version 14
Updated 12/9/86

EUUGN Vo7 No2 35

GROUSE: MESSAGES AND PROMPTS IN PROGRAMS WILLIAMS

I like work: it fascinates me. I can sit and look at it for hours.
Jerome K. Jerome

Grouse: (noun) grumble (slang) (Oxford English Dictionary).

1. Introduction

What follows is basically an exercise in laziness, one in which I was prepared to
invest a large amount of effort. There are two major topics in this paper: grouse a
text from files subroutine, and a set of subroutines built up on top of grouse.

1.1 Ancient History

The initial impetus came from a set of routines which I first wrote in 1979. These
were to help me debug BCPL programs. I put assert type traps in them which
printed a rude message, and quit. Often needing different amounts of information I
soon got bored with recompiling, something which took a long time — even with an
illegally raised priority.

Editing text files was fast. So I put all the messages into a file (along with flags
requesting things like dumps, and stack traces) and wrote a routine to find and
print numbered messages. Because this was always used in a situation where
programs complained about errors I called the routine grouse.

The next ingredient is numbering arguments. Thus referenced I could substitute and
format them using writefl. This is easy to do in BCPL, which implements a word
based machine architecture: I just indexed on the address of the first argument.

I then became a UNIX® acolyte and implemented grouse on a PDP11. The way the
C compiler worked allowed the old indexing trick, but different objects had different
lengths. This caused problems. I wrote a compiler to fudge the issue, it massaged the
numbers. A compiled file also offered greater efficiency of message location and
meant that the run time code could do away with much format checking — code
size ever a problem on a 64K machine.

1.2 The Present Day

As a simple message system grouse is nothing unique. Its great usefulness has come
from a set of subroutines which all use grouse as a base. The most interesting are
those concerned with prompts in interactive programs. The programmer is presented
with a simple, clean, standard interface; he need not care if the actual form of the
prompt is changed to suit the flavour of the month.

Grouse and its family are in the throes of a third birth. This opportunity has
allowed me to try and avoid past problems (and introduce new bugs). It is this
version that is described here.

2. Overview

This section should give you an impression of what using grouse is like, and the
effort involved in using it.

1. The BCPL equivalent of printf.

36 EwwGN Vo No2

WILLIAMS GROUSE: MESSAGES AND PROMPTS IN PROGRAMS

2.1 The Bad Old Days

This is the era in which most programmers still live. Two examples follow: they
are fragments of code typical of what I have seen many people generate — though
they usually don’t have as many comments.

fprintf(stderr, "%s: Cannot open ’‘%¥s’ as %s\n", progname, file_name,
sys_errlist[errno]);

Figure 1. An error reported

name = "master";
for(;;) {
position(22, 0);
line_clearx();
position(23, 0);
line_clear();
position(22, 0);
printf("Oh %s: shall I rename %s as %8s ?\nReply (Y)es or (N)o : ",
name, old, new);
switch(getchar()) {

case ‘y’: /% He agrees with me | »/
case ‘Y’:
break;
default: /% Idiot can’t read the options &/

position(21, 0);

line_clear();

position(21, 0);

printf("Please reply with one of the options below");
name = "idiot";

continue;

break;

Figure 2. A Question Asked
Notes on the examples:
— The message text is embedded in the program.

— In Example 2, the programmer needs to cope with the error case himself. This
results in extra, unwanted, code. A for loop is needed with resultant extra
indenting, control structures, and so complexity.

— An explicit test needs to be made for both upper and lower case.
— There needs to be screen positioning code, etc.
2.2 Modern Times

With grouse the two examples may be coded like this:

EUUGN Vo7 No2 37

GROUSE: MESSAGES AND PROMPTS IN PROGRAMS

/% Report the open failure #»/
egrouse(stderr, GR_OPEN, (chars)errno, progname, file_name);

/% What does he want to do ? #/
switch(gaskq(GR_PROMPT, (chars)0, name, old, new)) {
case 1: /% He agrees with me | #/

break;

Figure 3. Grouse
Notes:
— There is less code to type.
— The message text is not obvious.
— The reply has been checked, there is no need for an error condition.
— Both prompt and reply are language independent.
— Help comes free, the programmer does not need to do anything to get it.

— The second argument is always errno, even if it is not wanted. It must be cast
as shown.

Unfortunately the immediacy of having text in the code is lost. You have to look
in a message file to inspect or create that text. The messages are referenced
symbolically by #defines — which are probably contained in a third file. This
requires a disciplined approach and a little documentation.

Grouse can also be used to obtain constant text which may be expected to change
from one situation to another; e.g. the names of days of the week, customer name,
file/directory names.

3. Message Files and Message access
A message file exists in two forms: source and compiled.

There are two compiled files that grouse may use at any one time. The idea is that
one contains text that may be common between a group of related programs.
Grouse decides from which file to obtain the message on the basis of the message
number: numbers in the range O to 19999 are read from the first file, numbers
20000 and up from the second.

The way that I have used this feature is to put in the first file text used in many
places, e.g.. strings representing the values of errno, prompts for help routines
(being library routines common to a suite of programs), a language collating
sequence.

There may be large gaps in the message numbering sequence. This is very
important in providing a stable environment to existing code, yet allowing new
messages to be added to a common part. In previous versions a break in the
sequence meant a corresponding waste of disk space.

38 EwvGN Vo No2

WILLIAMS GROUSE: MESSAGES AND PROMPTS IN PROGRAMS

3.1 How to Find a Compiled Message File

This is a big key to (human) language independence. The name of the file opened is
built up of: an application supplied grouse file name; a constant part; a suffix, and
two environment variables. These variables are LANGUAGE and MSG_LEVEL. Standard
uses are: the first names the user’s mother tongue, and the second is a measure of
his incompetence.

In this way an individual's environment can be set so that he uses the machine
(reading, and replying) in his native language. Similarly it is trivial to arrange for
a beginner to see prompts that would be unacceptably long to an expert. So two
people running the same application, on the same computer, at the same time could
see something very different.

3.2 The Source Message File

This is a plain text file created with a suitable editor. The messages are delimited on
a line basis. They contain the text that is to be retrieved by grouse; this may be
several lines long. The backslash \ character is used in a similar, but extended, way
to the C language.

As with printf, arguments are introduced with a %. However, the character
immediately following indicates the position of the argument as passed to the top
level function. If any arguments are unused, what they are must be indicated in a
special way.

~ There are several different message formats. This corresponds to the different higher
level function that will end up using it. The type will be checked by the message
compiler.

What does it look like?
%1s: Cannot open ‘%2s’ as %0s
Figure 4. Grouse Text for the First Example

Oh master: shall I rename %18 as %2s ?
Reply (Y)es (N)o (H)elp : ~ iyinih?rename_help
Figure 5. Grouse Text for the Second Example

Notes:
— The arguments are indexed by the character after the X.
— The arguments can occur in any order.
— You don’t have to use the first argument.
— Message length, in lines, is not important to the application programmer.
— In choice prompts the reply is encoded in text after the prompt.

— Help is obtainable by entering H. The file containing the help text is also
encoded as part of the reply text.

3.3 The Compiled Message File

This is what the grouse subroutines see. The main advantages of a compiled
message file remain as they were originally:

— The ability to work on a non-word-based architecture. The message numbers are
changed to make the old, simple indexing scheme work. With some awkward

EUUGN Vo7 No2 39

GROUSE: MESSAGES AND PROMPTS IN PROGRAMS WILLIAMS

machines it is necessary to also include extra information on length and
positioning.

— The message file contains information that allows grouse to calculate the file
offset of the desired message. This is much more efficient than sequentially
searching for it.

— The compiler has syntax-checked the messages, and made them easier to parse for
use.

The compiler offers facilities such as argument type cross check (with the
corresponding message in another file) and symbolic referencing of one message to
another.

There is also a certain amount of control information, including version numbers and
the compilation date.

4. Higher Level Functions

This is where the fun starts.
4.1 Egrouse — Errno Interpretation

You have already seen this in the new coding method for the first example.
Egrouse is functionally the same as grouse except that it takes its second argument
to be a value of errno. It calls a function to return a string into a secondary
buffer, which provides an interpretation of the number. It then overwrites that
argument with the address of the secondary buffer and calls grouse.

It is because of this overwriting that, as you will have noticed, errno must be cast
to chars. Many of the high level functions use egrouse and so need a cast value
of errno passed to them. This is initially confusing, but soon becomes natural.

If the situation has no use for a value of errno one must still be provided. In this
case zero may be passed. The empty string will then be assumed, i.e. no file access
will occur.

4.1.1 Errno Extended
Not being restricted to the list of messages that I found in sys_errlist came as a
boon. I was able to easily add my own definitions of values for erzno.

Up until now if something went wrong in a library routine it had to report the
problem itself. This might be difficult if it was something of general use — what
method should it use, should it complain at all?

All that was needed was for the routine to set something meaningful into errno
and return failure, this being transmitted up a calling sequence. At some convenient
level, and if appropriate, the problem could be reported with egrouse. It made no
real difference whether the error status was one of my own invention, or one from
the vanilla list.

4.2 Gaskq — Prompts

A common event in an interactive program is prompting of the user for information.
This can occur in several different ways, the most common of which is a prompt
for a choice of action. This is what was happening in the second example. Gaskq
egrouses the message into a buffer and calls askq. The latter puts the message on
the terminal and looks at the reply.

A list of acceptable replies is encoded at the end of the message. If a match is
found the default action is to return the position in the list of the matching reply.

40 EVUGN Vo7 No2

WILLIAMS GROUSE: MESSAGES AND PROMPTS IN PROGRAMS

Thus, in the example, y returns one and n returns two. This action may be changed
by following the reply by an action string. The one illustrated directs askq to call
the help function, and gives the name of the help file to use.

Other actions include: reprompt with another prompt and return a number other
than that deduced from the positional rule. It is possible to specify a default.

Related functions prompt for a string or simply display a message.
4.3 Help

One of the askq built-in actions is the provision of help. This is obtained through a
standard interface from gaskq. The default help routine allows the user to peruse
or dip into the help text as he wishes, moving back and forth in the text, following
links into other files for explanation of common parts.

The routines prompt the user to direct his perusal using gaskq. Help on how to
use help is trivially provided.

A “mini help”, ie. a slightly longer, more explicit, prompt can be obtained by
switching to another message number to use as prompt. This will be displayed, again
using the same arguments as the original.

The calling program knows nothing of all of this as it is done by askq directed
from the message file.

4.4 List Building

There are occasionally lists of words that a program may need to get going, for
instance the names of the days of the week, or column headings. These can be
obtained from grouse.

The action in each case is similar, i.e. read the text, allocate storage, and split it up
into different elements of a string array. A routine is available to do this, and it
checks more than one might normally do on a once off basis: are the number of
elements between certain limits, is any element too long?

5. Programming Considerations

As you have seen grouse may be used in a similar way to fprintf(). To be
useful in the higher level functions, the text needs to be put into a character buffer
— as with sprintf(). The trick employed is that if grouse sees that the message
number is negative it considers its first argument to be a chars rather than a
FILE+.

The programmer has to specify the names of the two grouse files. This is managed
by setting a name into a global structure. There is no need to explicitly open the
files.

The defined arguments to the open routine are a name and a suffix. This routine is
thus available for finding other sorts of file in a similar way, for example, help
files. If screen layout files are used, this area of the MMI can also vary in the
same way as the messages and prompts.

5.1 Ranargs

This is a facility which enables the arguments to a function to be accessed in a
random order. It is designed to have a feel similar to varargs.

Define an argument list as being the arguments that a function has, possibly
omitting a specified number at the start. There are two things that ranargs lets
you do with a list of arguments: access a specific argument, and pass the list to

EUUGN Vo7 No2 41

GROUSE: MESSAGES AND PROMPTS IN PROGRAMS WILLIAMS

another function. The latter ability is vital in constructing the higher level functions.

This is all simple enough on machines where the arguments are placed, one after
another, on the stack, and there is no greater alignment needed than that of an
integer. If these conditions are not met, the ranargs macros become complicated,
possibly invoking functions. To get some idea of the problems involved consider
why, on a machine where doubles indeed have a greater alignment than an integer,
the compiler may have to leave a gap on the stack before it.

The lack of exact control over what the compiler does is one of the consequences of
using a high level language. The problems I have had are similar to those who try
to do single precision floating point in C, and I know of several device drivers that
cannot be optimised.

5.2 Errors

As with printf() grouse returns -1 if it can't do what it was asked to.
Frequently programmers don't bother to test return values because “It always
works™”, and because it is a chore. The problem becomes even more difficult if an
error is detected by a higher level function; what should it do?

Firstly, the external result is always sensible. Even if the function’s return value is
ignored there should be no bad effects, e.g. grouse never leaves an unterminated
string. Next, on finding trouble all the routines in the package call an error
function, suitably indicating the problem. The library default of this function does
nothing, but it can easily be replaced by the application programmer.

5.3 Robustness

The code in grouse, and the higher level functions, has proved solid. The problems
that are likely to arise are in their use; probably not in the coding itself but
through the message file — particularly if this gets changed. The three areas with
greatest potential for grouse crashing a program are:

1. Inappropriate use of an argument.
For example trying to output an integer as a string. In practice this is rare as
the programmer will normally create the message file when he writes the code.
If the messages are changed by someone else, the compiler cross-check action
can be used to pick up any mistakes.

2. Overwriting the end of a string buffer.
If text is going to a character buffer grouse does not check that it does not
overflow the buffer. In four years of having a primary buffer of 550 bytes,
and a secondary one of 150, I have not experienced any problem because of
this. The choice of buffer size is important and needs to be carefully
considered; those changing the message file should be aware of the problem.

3. A message not being found.
This could be because the message file is not accessible, or a message is missing.
This occasionally happens (often in gaskq); the usual result is that at that
point the program always takes a certain branch — occasionally leading to an
infinite loop. This situation is now easier to trap with the introduction of the
grouse error function.

If the file exists, the usual cause is running a new program with an old file.
The version number feature is designed to avoid this.

42 EUUGN Vo7 No2

WILLIAMS GROUSE: MESSAGES AND PROMPTS IN PROGRAMS

54 Malleability

Much recent effort has been made in the area of ease of programmer customisation:
how he can best make it do what-he wants. This has been done without making
simple or standard use any more difficult. The programmer has much control, but
only if he wants it.

Some standard routines can easily be replaced by the programmer. One version of
the grouse open function that I have searches down a path taken from the
environment in a similar way to the shell when finding commands.

Askq (and hence gaskq) is independent of the method of communication with the
terminal. Thus by replacing the low level display routine it is easy to change the
user’s view of the program from dumb terminal, to a cursor addressed prompt line
scheme, to a mouse-driven pop-down menu approach; all involving no change to the
main body of the program. It may be expected that the message file may have to
change to match the different styles, though I am working on a way of
transparently incorporating alternatives into the message file.

The grouse package is designed to cope with 16 bit characters. There is no hard-
wired dependence on special characters or character size; these may exist in utility
functions called by the package. There is still much work to do in this area: I
have still to find a 16 bit terminal on which to test this.

5.5 Portability
There are two aspects here: the code and the message files.

With the invention of ranargs the code has proved to be portable. Other than this
there is little in the code that is contentious — except to 1lint which is vastly
unhappy about some of the strange type casts.

The message files are only portable in source form. This is because of the massaging
needed on message number.

6. How does it Work in Practice?

A version of grouse has been available for four years. During this time it has been
used on two major projects, both involving several large programs, and a total of
some 1500 messages. The latest version is too young to have been used in anger, but
was designed to alleviate problems or restrictions in earlier attempts.

6.1 Programming

The main problem has been one of initial learning and acceptance. People get set in
their ways, and I found that, even with some encouragement, some are reluctant to
use new tools. There is a short learning phase (grouse has always been well
documented), and a certain discipline is required to ensure that the symbolic
numbering does not get out of step with what is in the file. Once this has been
done the attitude changes to “this is the easier way".

If a model of interaction is chosen that is not available as standard, then some new
low level display routines need to be written. This can be a barrier to those with
the “I'm only interested in today’s problem™ attitude — especially if they know
that someone else is to maintain and possibly modify the code for another language.

6.2 Speed
I bave not done much quantitative analysis. However, is it pleasing to report that

an interactive groused program does not appear to be significantly slower than a
hard-wired equivalent. This is even in a situation where a composite message may

EUUGN Vo7 No2 43

GROUSE: MESSAGES AND PROMPTS IN PROGRAMS WILLIAMS

be produced from several fragments.
6.3 Altering Messages

Documentation is the key. If this is not complete and explicit then references need
to be made to the code: having a quick peep is error prone — even for an
experienced programmer. This applies if the text is being translated or the style is
being changed. Rewriting a grouse file is not a quick and easy task. Message files
tend to be large, and the translator needs some understanding of printf. I have
found that, with a little tuition, even managers can do this.

7. Conclusions

— It has been worth while. The increase in productivity through using the tools
discussed here is great. More work is needed to take them further, both in the
programmers’ tool kit and to simplify the task of the application customiser.

— C has been criticised for being too low level a language for applications
programming — I quite agree. However lack of precision can cause problems, as
evidenced by ranargs. What to do is not obvious. C has served us well and
doubtless will for some time yet.

— There are many things which I find boring: writing similar code several times is
one of them. Subroutines were discovered years ago. I am still surprised by how
often people who ought to know better will still “lift and hack™ code rather
than “doing it once and doing it well”.

44 ErUGN Vo No2

COLLINS
Another Proposal for a News Scheme
John Colins
jmc@xisl.co.uk
Xi Software Limited
1. The Problem

There are at present two options regarding the news:
1. Don't get it at all.
2. Get all of it.

NEWS SCHEME

Assuming that the reader wishes to avoid option 1, option 2 may be undesirable for

any or all of the following reasons.

There is so much of it he/she doesn’'t have the disk space.

The phone bills involved are prohibitive.

bl o A

It takes so long to transmit that the phone is constantly engaged.

Having got it. about 5% is interesting and the remainder is about someone

selling a second-hand goldfish bowl on the other side of the world (usually an
American with an imperfect understanding of the relationship “usa != world™).

5. People at various sites spend hours every morning wading through all these
news items trying to find interesting ones instead of doing useful work.

The following is my suggestion for a way to compromise between the two extreme

options with regard to the news.

2. The Proposed Solution

For the sake of argument, let us suppose that a section of the network is as

follows:

/N
I
N

At present, sites A to D obtain news from UKC, and site B sends a copy to each of
sites B1 to B3, site B3 sends further copies to B3A to B3C. This represents a great

EUUGN Vo7 No2 495

NEWS SCHEME COLLINS

deal of duplication — especially if only a few items are of interest at each site.

The proposal is that site B continues to receive the news from UKC as at present
(note: no work for UKC!), but instead of passing it on, passes a ‘“headline file” to
each of the sites on the line. This file is a text file, derived from the newsgroup
name, the article id and the subject line, possibly of the form:

mod . sources

xyzabc. 1234 Public Domain ADA compiler Part 01/87

xyzabc. 1235 Public Domain ADA compiler Part 02/87
misc.rumors

foobar.1234 ATAT to give free source licence with every 3B
blech. 1383 IBM to pull out of computers

frozb.3934 Re: IBM to pull out of computers

Users on each site then put up this file and request any articles of interest, using a
full screen program. The requests are collected at each site one down from the
“headline sender” site. Thus each of sites Bl to B3 collects requests relating to the
“headlines” sent by site B.

At the sites Bl to B3 the requests are “weighted” using some or all of the
following factors:

1. Number of requests for each item.

2. Age of item (so that old news decays in importance)
3. Cost of transmission to requesting site.

4. News group importance.

5. Item size in bytes.

For each site Bl to B3 there is a “‘request threshold™; if the total weight of requests
exceeds this, then the item is obtained from site B.

Likewise for each site B3A to B3C there is maintained at site B3 a threshold for
passing the item on.

This can all be extended downwards, say from one of sites B3A to B3C, and in
that way, subject only to a day or so’s delay in getting the news, some control is
obtained in the volume of the news.

46 EUUGN Vo7 No2

DAS

UKUUG SUMMER TECHNICAL MEETING

UKUUG 1987 Summer Technical Meeting

Sunil K Das
sunil@ucl-cs.ac.uk

UKUUG Chairman

Date: PM Tuesday 7th - AM Wednesday 8th July 1987
Programme Chairman: Sunil K Das

Host: Lindsay Marshall

Venue: Newcastle University

International Speaker: Michael Lesk

1. Provisional Programme
Tuesday 7th July, 1987

1100

1230

1300

1400

1400

1420

1520

1600

1630

1700

1730

Tour of the Computer Laboratory (optional)
Registration Begins

BUFFET LUNCH Begins (optional)

Meeting Begins

- 1420 “Implementing a Turnkey Package under UNIX”
Alain Williams (Parliament Hill Computers)

- 1520 “Route Finding in Street Maps” and “Keywords vs.
Menus in a Library Catalog Interface”
Michael Lesk (Bellcore)

TEA

- 1630 “High Performance UNIX Multiprocessor Systems"
Peter Lee (Newcastle University)

- 1700 “Integrating the Apple Macintosh in a UNIX Environment”
Nick Nei (Glasgow University)

- 1720 “Opening Windows on UNIX"
Paul Davison et al (Newcastle University)

Adjourn to the bar
DINNER — waitress service inclusive of wine
Adjourn to the bar

Wednesday 8th July, 1987

0800
0930

BREAKFAST
Meeting Reconvenes

EUUGN Vol7 No2 47

UKUUG SUMMER TECHNICAL MEETING DAS

0930 - 0950 “Recoverable Object Management in Arjuna (using C++)”
Graeme Dixon (Newcastle University)
0950 - 1050 “Computer Technology Forecast™
Michael Lesk (Bellcore)
1050 COFFEE
1130 - 1200 “Experiences with MINIX and Networking"
Jim Lyons (Newcastle University)
1200 - 1220 “UKUUG Business Meeting”
Sunil K Das (City University, London)
® Election of Officers
® Presentation of Accounts
@ News from EUUG
1215 - 1245 “Improved Models of Natural Language for Consultative
Computing™
Eric Foxley and G M Gwei (Nottingham University)
1245 Meeting Ends
1300 BUFFET LUNCH (optional)
1400 Tour of the Computer Laboratory (optional)

Michael Lesk is well known for etc...(see vol. 2 of the 7th edition manual and the
1978 UNIX BSTJ).

He will speak for 1 hour on Tuesday on some of his recent research:

e “Route Finding in Street Maps™
This talk explains a computer system for giving people driving directions, using
machine-readable maps. It also compares how computers find routes with how
people find routes.

e “Keywords vs Menus in a Library Catalog Interface”
This talk compares two interfaces for an online public access catalogue. It's a
software psychology experiment with real data.

On Wednesday, Michael will speak for another hour:

e “Computer Technology Forecast™
Bellcore keep asking him to predict the future.

48 rvUGN Vor No2

PODOLSKI GLASGOW LOCAL UNIX GROUP

Glasgow Local UNIX Group

Zdravko Podolski
zp@glasgow.cs.ac.uk
zp@glasgow.uucp
«.mcvaxlukclglasgow!zp

Computing Science Department,
University of Glasgow,
UK

The group consists of about half a dozen companies, several departments of the two
Universities and a few other Government and local council funded bodies such as
Paisley College of Technology. We have been meeting regularly for about six
months now. We meet every 2nd Tuesday of the month at the premises of one of
the members, when the agenda consists of a short presentation of what someone is
doing, followed by a discussion of which pub we should proceed to (hence the
name). We welcome all interested parties to come and participate. There is no
charge and we do not see the need for introducing one. There is no formal
committee structure, we operate in a spirit of cooperative anarchy. A tape of free
software and the compilation of hardware and software so that folk can get access
to things for evaluation are being put together. We help and encourage folk to get
networked to UKnet and/or JANET for news and mail feeds.

Some of the talks we have had were:

Jim Reid Electronic Mail and addressing conventions
Strathclyde University

Mick Hughes Typesetting using TeX

Turing Institute

Nick Nei Networking Macintoshes and UNIX machines
Glasgow University

Jim Reid (again) NFS

Allan Birse Cryptography and UNIX

Strathclyde Electrical Engineering

Anyone interested in coming to our meetings is invited to contact:
Hossein Baniamer, ABACUS, Strath. Uni. 041-552-4400 extn 3024 or
Jim Reid at the Computer Science Department, University of Strathclyde,
041 552 4400 extn 3319 or

Zdravko Podolski, Computing Science Department, University of Glasgow,
041 339 8855 ext 4469.

Email addresses:

hossein@uk.ac.strath.abacu (no UUCP! and no “s” at the end either)
jim@uk.ac.strath.cs, jim@strath-cs.uucp, ...lukclstrath-cstjim
zp@uk.ac.glasgow.cs, zp@glasgow.uucp, ...lukclglasgow!zp

EUUGN Vo7 No2 49

50 evven voir Noz

HAGEN EUUG

EUUG

Teus Hagen
EUUG Chair
teus@oce-rdl.nl

EUUG executive board

8| Teus Hagen was born in 1945. He graduated from the

University of Amsterdam. His computer science
| knowledge was gained mostly at the Free University of
Amsterdam.

}l He has been involved in UNIX since 1975, at the
| Mathematical Center (currently CWI) in Amsterdam (the
second UNIX site in Europe?).

Since 1985, he has worked in UNIX companies, and is
currently at Oce Holland (Office Automation).

| Teus has been involved with the EUUG since 1977, and
| has been the EUUG chairman since 1985. He was
| responsible for starting Eunet at Paris in 1982, and
§ arranging the current structure of the EUUG in 1983.

1. Academic, that is a long time ago

Some old hackers say the group started in Edinburgh, others say it was in
Canterbury, continental hackers believe it was in Amsterdam, but nevertheless all
are right. It was about ten years ago that some enterprising people started to
complain about UNIX. They exchanged software on huge disk cartridges in order to
adjust their feelings for the next time. From about 15 academic students and
professors from a few countries in Europe, the EUUG went in ten years to 2500
members (mainly from institutions and industry) from almost every country in
Europe. In Dublin the EUUG will celebrate its tenth anniversary. That event
should not be missed!

Apart from the countries behind the iron curtain, and Portugal, a national UNIX
group can be found in every country, all bundling their common efforts under the
umbrella of the EUUG. Each national group has appointed her representative to the
governing board. The daily bother is left to eight persons in the executive board.
They meet about every two months in order to keep the EUUG going. The
secretarial assistance comes from the people at Owles Hall in England. Those people
really make a good job of all the peculiarities arising from all those languages and
national specialities.

With the big growth and the success of the organisations and the EUUG one can
expect some growing pains. On the national level, there is plenty work in
combating the national problems. This means less effort to be expended on the
European level. Also the enormous amount of work which accompanies the EUUG
work is very hard to see. Conferences need a lead time of at least one year. To
get plans adjusted and agreed takes a very long time on the European level. The
effect of all that work is seen too late. Still, the enormous encouragement from the
national level is a big motivation for the executive board to continue.

EUUGN Vo7 No2 51

|

EUUG HAGEN

COUNTRY GROUP MEMBERS | COUNTRY GROUP MEMBERS
Denmark DKUUG 164 Britain UKUUG 304
Finland FUUG 131 Ireland IUUG 43
Sweden EUUG-S 195 Swiss UNIGS 28
France AFUU 362 Germany GUUG 392
Italy 12U 291 Austria AUUG 20
Holland NLUUG 190 Belgium BUUG 31
Iceland ICEUUG 10 Norway NUUG 68

EUUG Membership January 1987

Normally the time spent by board members on EUUG tasks is too long (usually
about 20% of their working hours). One can expect that more full time paid
personnel will be needed in the future to limit their EUUG working hours.

Clearly the conferences, with their technical contents, industry presentations, and
tutorials, are the first things from the EUUG one sees. The EUUG newsletter is felt
not to be distributed frequently enough. More effort is being put into meeting that
problem. More EUUG publications similar to UNIGRAM weekly, a glossy journal
(probably UNIX Review), a UNIX technical journal, a catalogue and a European UNIX
diary, can be expected.

Unexpectedly, the EUUG software distributions are meeting the needs of the
members. There are thoughts of making that software available on other media as
well as magnetic tapes. Also there are discussions going on about making them
available on EUnet.

EUnet is being registered as a trademark throughout Europe. The network is
recognised as one of the largest in Europe. Gateways exist to other networks such
as CSNET and DFN. For every country a domain is being registered (was Holland
with the domain nl the first?). The backbones are very well interconnected.
Sometimes I'm a bit angry that my electronic mail takes more than an hour to get
answered by someone in France. Sometimes I get worried that the people of a
particular company in the US have gone home before they have had a chance to
read my mail. Due to the efforts of the people involved directly with EUnet, email
has less failures than one could imagine some years ago. EUnet is very successful.

Sometimes it is necessary not to put some of the work in the direct sunlight. That
certainly is true for the regular meetings with the organisations in the front lines of
the UNIX fields: for instance UNIX Europe, AT&T International, but also X/OPEN.
Especially, perhaps, X/OPEN needs some more input from the user group. More
manpower is needed to support that effort. Think about the enormous experience
Europe has with international peculiarities (character sets, languages, etc.).

The EUUG has recovered from her past financial problems. The financial situation is
sound now, so we can direct our attention more now on those problems and tasks
which are common throughout Europe. For just that reason, there is an EUUG.
The enormous stimulation, the contributions, from the national groups make this
UUG organisation a success, which should not be missed in any country.

52 rvuGN voiz No2

BOLDYREFF ANSV/ISO C STANDARDISATION

Progress of ANSI/ISO C Standardisation

Cornelia Boldyreff
...Imevaxlukclreadingluoseevicorn

Department of Electronic and Electrical Engineering
University of Surrey
Guildford GU2 5XH

1. Brief Historical Background

There exists a high degree of homogeneity between various implementations of C for
a variety of reasons:

e the common origins of C compilers;

e its link with the UNIX system (it has been remarked that successfully compiling
the UNIX system is quite a rigorous test for a C compiler);

e C is used as a vehicle to achieve portability in general which militates against
adding non-standard extensions;

e Dennis Ritchie and Brian Kernighan's clear exposition of the C language.

The latters’ book, “The C Programming Language”, has become an informal standard
for the language; it is not uncommon for suppliers of non-UNIX C compilers to
assert that they support Kernighan and Ritchie. This book was published in 1978
and as a standard is becoming somewhat outdated.

It formed the base document for the ANSI C standard committee’s development of a
standard for C. They also drew on work by the US commercial UNIX users group,
/ust/group; particularly for the definition of the C library. The ANSI effort has
received support from AT&T as well as major C compiler developers, suppliers and
users including UK companies: ICL, The Instruction Set and Edinburgh Portable
Compilers. In December 1985, ANSI proposed a New Work Item on C to the
International Standards Organisation based on their work.

2. Introduction to Work of the BSI C Panel

The BSI Technical Committee on Programming Languages, IST/5, had been monitoring
the progress of C standardisation efforts prior to the proposal by ANSI of an ISO
New Work Item on the programming language C. Following approval of the C NWI
in April 1986, an ISO Working Group on C was formed; and the formation of the
BSI C Panel was set in motion. The role of the C Panel is to provide a UK focus
for contributing to the progress of an ISO Standard for C. This panel met for the
first time in the summer of 1986. The first meeting of the ISO Working Group was
in September 1986; countries represented were the USA, Canada and the UK. The
ISO standard work is progressing in parallel with that of the ANSI X3J11
Committee. It is very much a collaborative effort as the draft proposed ANSI C
standard is the basis for the ISO standard rather in the way that the BSI Pascal
standard was the basis of ISO Pascal.

The BSI C Panel

— is a representative group of UK experts including commercial, industrial and
academic users of C as well as suppliers and developers of C compilers;

EUUGN Vol7 No2 93

ANSI/ISO C STANDARDISATION BOLDYREFF

— meets informally and has no official BSI status; all members of the panel act in a
voluntary capacity usually supported by their employers;

— reports regularly to the BSI's Technical Committee on Programming Languages,
IST/5, through its Convenor who is a member of IST/5 on its activities and the
progress of the C standard;

— advises IST/5 on issues concerning C and ISO ballots relating to C;
— monitors progress of and contributes to the ANSI work on C;

— contributes to the progress of the ISO C Standard through participation in the ISO
Working Group on C as individual experts with “awareness of UK reactions”.

— collaborates with other UK BSI committees concerned with C related standards
work; for example, graphics standards with C Bindings, and the proposed POSIX
standard.

The C Panel meets quarterly preceding ANSI (ISO) meetings and BSI IST/5 meetings.
Panel meetings are usually attended by a dozen or so members — the panel officially
has 16 members. New members are always welcome. Membership is considered to
lapse if a member does not attend for three consecutive meetings of the panel.
(Intere;eted parties could contact the author who is convenor and chairman of the C
Panel.

3. C Standard Open Meeting

The British Standards Institution’s C Panel organised a one-day “Open Meeting” on
the proposed C standard to coincide with the BSI's publication of a Draft for Public
Comment on the programming language C. The meeting was held on the 9th
February 1987 at City University, London.

The keynote speaker at the meeting was Dr P. J. Plauger, President of Whitesmiths
Ltd. Bill Plauger is a prominent member of the ANSI committee, X3J11, which
drafted the proposed C standard, acting as secretary to X3J11; and chairman of the
C library sub-committee. In his opening lecture, he gave delegates an overview of
the current draft C standard concentrating on major decisions reached by X3J11 and
issues which had taken up the most “air time™” in committee meetings over the past
three years. He enumerated the tenets of the philosophy which has guided X3J11 in
their efforts to standardise C as follows:

— Codify existing practice.

— Existing code is important.

— Portability needs a “fighting chance”.

— Non-portable code is OK, too.

— Quiet changes (to C) are bad.

— The standard is a treaty between implementor and programmer.
— The “Spirit of C” is important.

He discussed three major decisions made by X3J11 regarding characteristics of the C
machine, C programs’ conformance to the standard, and implementations of C. A “C
machine” has 8 bit or larger bytes: “no holes” in objects (i.e. except for bit fields,
objects are contiguous sequences of bytes); performs weighted binary arithmetic; and
has an arbitrary character set. A C program is either strictly conforming to the
standard i.e. fully portable; conforming; undefined, or erronious. An implementation
of C may be either hosted or freestanding.

54 rwuen vor Ne2

BOLDYREFF ANSL/ISO C STANDARDISATION

The standard has endeavoured not to radically change the C language; major issues
which have concerned the committee identified by Plauger were:

e Conformance issues;
e Widening rules;
e Preprocessor issues;
e Library issues.

In conclusion, Plauger explained the rationale behind the introduction of function
prototypes to the C language by elaborating the committee’s own version of the US
Supreme Court’s Miranda Ruling. He also listed extensions considered by the
committee which failed to gain approval showing that there was scope for framers
of the C standards to come in the 1990s.

Cornelia Boldyreff, the Convenor and Chairman of the BSI C Panel, spoke briefly
introducing the work of the BSI language panel concerned with C standardisation.
The BSI C Panel was formed in the summer of 1986. Its role is largely advisory; it
advises the BSI's Technical Committee on Programming Languages on issues
concerning C and ISO ballots relating to C. It monitors progress of and contributes
to the ANSI work on C; and panel members contribute to the progress of the 1SO C
Standard through participation in the ISO Working Group on C as individual experts
with “awareness of UK reactions™.

The morning session was concluded by John Souter of the BSI's Certification and
Assessment Service addressing the issue of testing conformance to standards by
language processors. He outlined the work of the BSI evaluating potential candidates
for a C Validation Test Suite. According to Souter, the USA validation service is
planning to follow the British lead in establishing a test service for C language
Processors.

The afternoon session was given over to discussing the three main aspects of the
standard, dealing with the C language, the C library, and the C preprocessor. Mike
Banahan of The Instruction Set addressed the C language and the C preprocessor in
two lectures; and Bill Plauger spoke again in greater detail on the C library.

Banahan reiterated that it was not the intention of the committee to radically change
the C language; he reassured the meeting that much of Ritchie's original description
of C could still be found in the text of the draft standard. His lecture concentrated
on illustrating key points where the language has changed.

In his introductory remarks on the work of the library sub-committee, Plauger
mused given his involvement in the development of the Whitesmith’'s C library,
some must have seen his selection as chairman of this group as comparable to
putting “a fox in charge of the hen house”. Of particular interest to the
international C user community were the ways outlined by Plauger in which the
committee had addressed the issue of “Internationalisation” by inclusion in the
library of a runtime selectable locale. The library defined in the draft standard has
had ASCII dependencies removed:; is more complete; and covers domain and range
errors in mathematical functions. Areas of the library identified by Plauger as still
needing attention included functions to restore calling environment: setjmp/longjmp;
signal handling: signal/raise; and variable arguments handling macros.

Describing his reactions to the preprocessor defined in the draft, Banahan speculated
that here the ANSI committee had used great artistic licence. Existing preprocessor
code would be broken. On the positive side, Banahan suggested that now the
preprocessor was better described. By a series of interesting examples, he illustrated

EUUGN Vol7 No2 55

ANSI/ISO C STANDARDISATION BOLDYREFF

features of the proposed preprocessor.

The final lecture in the afternoon session was given by David Tilbrook, a veteran C
programmer and UNIX guru. Tilbrook gave a historical prespective to the
development of C from its early PDP-11 days to the present. Tilbrook made the
point that most early C programmers were experienced professionals while today C
is being used by programmers without knowledge of any other language and little
understanding of the underlying machine on which their programs will run. These
programmers will certainly benefit from the proposed standard.

The open meeting concluded with a panel session including all the speakers. The
audience raised a variety of questions ranging from when will AT&T supply UNIX
with a standard conforming C compiler to the relationship between the proposed
standard C and Stroustrup’s C++. The BSI organisers co-ordinated by Paul Neale
received a vote of appreciation from the chair for their efforts in contributing to the
success of the meeting.

A major objective of the C Panel in organising this open meeting was to promote
standardisation of C and faciliate UK public comment on the draft standard. The
meeting was attended by the C user community at large in commerce, industry and
education as well as C compiler developers and suppliers in the UK.

Interested BSI members and members of the public can obtain copies of the current
C standard draft directly from the BSI. Public comment is invited; and all
comments received by the BSI will be processed by the BSI C Panel and copied to
the ANSI X3J11 committee.

4. Future Meetings in 1987

ANSI ISO BSI
X3J11 Working Group 14 IST/5/14 “C Panel”
5 May 87

+————— June 87 —88

Joint ISO/ANSI Meeting

Paris
11 Aug 87
14-18 Sept 87
Boston
3 Nov 87
7-11 Dec 87
Phoenix

Once an ANSI standard for C has been approved, it is likely to be put forward for
registration as a Draft International Standard for C and, following review and
approval, become the basis for ISO C. The ISO Standard for C would then be
adopted as a BSI C standard. It would be subject to regular standard review
procedures; and as long as C continues to be a “living language” subject to new
developments, the work of the BSI C Panel will continue.

5. Summary of Progress to Date and Future Timescales

The standardisation process is essentially an iterative one; the essence being to
achieve agreement between all parties — in a word: consensus. The figure below
charts progress to date and milestones for the future.

56 rvven vou Noz

BOLDYREFF ANSI/ISO C STANDARDISATION

ANSI ISO BSI
C project approved and Monitoring C
X3J11 committee formed Standard Progress

(1983)
C Language Information
Bulletin published for
informal comment (July
1985)
NWI on C proposed by
ANSI (Dec 85)
NWI approved and
Working Group 14
formed (Apr 86)
BSI C Panel formed
(July 86)
X3J11 reach consensus on
Draft Proposed Standard
(Sept 1986)
’ dpANS submitted as
Working Paper
Public Review of dpANS Registration of dpANS
(7.11.86-7.3.87) as ISO DP Letter ballot
11.86
BSI publication of
dpANS as BSI Draft
for Public Comment
(Jan 87)
C Panel Open
Meeting (Feb 87)
ANSI Standard (end of
877)
Draft International
Standard (end of 877)
International Standard
for C (sometime in
887) —= BSI C
Standard

The iteration involved in the process consists of several loops. Within the ANSI
work, there is a tight inner loop where agreement on the proposed standard must be
achieved within X3J11 and an outer loop where public approval is sought.
Internationally, agreement on the standard must be achieved within the C Working
Group and the standard must gain approval from the member countries of ISO.

EUUGN Vo7 No2 57

58 EvvGN vorr No2

TOTTENHAM X/OPEN

X/OPEN — What, Who, Why, When

John Tottenham
ICL

1. What is X/OPEN?

The X/OPEN Group is a unique consortium of eleven of the world’s major
information systems suppliers who have come together to agree on standards for
operating systems and applications portability.

X/OPEN is not a standards setting organisation, it is a joint initiative by members of
the business community to integrate evolving standards into a common, beneficial
and continuing strategy. The keystone of this strategy is the common Applications
Environment, a complete environment for the easy development, porting and running
of applications across systems from all X/OPEN Group members.

2. Who are the members of X/OPEN?

Currently, the eleven full members of X/OPEN are: AT&T, Bull, DEC, Ericsson,
Hewlett-Packard, ICL., Nixdorf, Olivetti, Philips, Siemens, and Unisys. All these
eleven members have made substantial financial and technical commitments and will
continue to do so, providing users with a higher level of insurance for the future
supply of systems based on industry standards than a single manufacturer alone
could do.

In addition to the full members, numerous other companies and consultants in the
Information Technology Industry have contributed to the technical and marketing
programmes of X/OPEN.

3. Why was X/OPEN formed?

The formation of the X/OPEN Group was a direct result of two major changes in
the Information Technology Industry in the early 1980’s, the emergence of the
Department as a large scale user of computer systems, and the growing market
fragmentation caused by propriety operating systems, particularly amongst the small
to medium sized mini-computers.

The three major categories of systems are simply identified according to the number
of terminals attached:

Mainframe
Computers

Mini-Computers

Personal &
Mini-Computers

1 - 4 Users 4 - 64 Users 65+ Users

EUUGN Vo7 No2 59

X/OPEN TOTTENHAM

This breakdown is significant since it maps the current areas where market dominant
or defacto operating systems prevail, i.e. the personal and mainframe segments. and
the “middle ground” when major growth was predicted but lacked any dominant
operating regime.

It was this absence of a single operating system standard that was seen as a
constraint on the development of the middle ground or Departmental computing
market. The continuation of propriety operating systems fragmenting the market
into small machine specific populations that would not attract the software industry
to develop applications and hence the application software tends to be limited to
that developed by the manufacturer. This means that the computer manufacturers
find themselves caught in a vicious spiral with insufficient applications to expand
their base and too small a base to attract the independent software industry to
develop applications for it.

Recognising this problem, X/OPEN was formed in early 1984 to adopt an Industry
Standard Operating System (ISOS) in the “middle ground”. At that time, the only
credible ISOS appeared to be UNIX, and it is the System V Interface Definition
(SVID) that was eventually adopted as the first plank of the Common Applications
Environment.

4. When did X/OPEN happen?

As mentioned above, X/OPEN was originally formed in early 1984, though at that
time it was wholly European with the initial five members being: Bull, ICL, Siemens,
Olivetti, and Nixdorf (in these early days it was called BISON from the company
initials).

During 1985 Philips and Ericsson joined, and the first edition of the Portability
Guide was published, making the X/OPEN standards available to the public.

In 1986 X/OPEN gained its American members, Hewlett-Packard, Sperry (Unisys),
and DEC, with AT&T joining in January 1987 at the same time as the second edition
of the Portability Guide became available.

In three years X/OPEN had evolved from an idea to a practical reality backed by
eleven major international information systems suppliers and with wide support from
users, software industry, and government.

60 EvUGN Vor No2

KUIPER EUUG TAPE DISTRIBUTIONS

EUUG Tape Distributions

Frank Kuiper
...Imevaxl!frankk
...Imcvaxleuug-tapes

Centrum voor Wiskunde en Informatica
Amsterdam

Frank Kuiper was born in the lucky year of 1959 (a
good vintage!), in Winschoten, in the north of Holland.
He has a Bachelors degree in computer science and in
his spare time (if he can find it), he “just goes nuts”
about real-size and model trains. As young boy., he
dreamed of machines with flashing lights and lots of
buttons to push on. He also dreamed of sitting at a big
desk, shuffling papers around and giving orders. Apart
from the “giving orders” part, he thinks he has
managed nicely.

He is involved in the EUUG tape distribution because
“somebody told me to do it".

This is a list of the EUUG distributions, as available in September 1986. It is a
general description of the available tapes. Any changes of the contents of the tapes,
as well as announcements of new tapes, will be placed in eunet.general and the
EUUG Newsletter.

Prices of the tapes are in Dutch guilders (DFI), and do not include VAT or postage.
Note also that you have to be an EUUG member (or a member of a local UUG) to
obtain tapes at list prices. Non-members will have to pay an extra DFl 300,- per
tape.

EUUGDI1 R6

UNIX V7 system, specially made for small DEC PDPs (11/23, 11/34, etc.). The
kernel supports the UK terminal driver. V7 source license minimum.

Price: DF1 120,-

EUUGD2

Early Pascal compiler of the Free University of Amsterdam. V7 source license
minimum.

Price: DF1 120,-

EUUGD3 R3

UNIX networking software, news, and some auxiliary programs. A fairly debugged
version of UUCP and X.25 support will be added if a copy of the source license
agreement for at least UNIX Version 7 is included.

Price: DF! 60,-

If requested, two tapes containing the major news-groups received on the Continent
for the last several months are available.
Price: DF1 240,-

EUUGN Voi7 No2 61

EUUG TAPE DISTRIBUTIONS KUIPER

EUUGD4

Software tools, sampled by the Software Tools Users Group. Most of the software is
written in Ratfor, for which a Fortran support tool is included. This tape is
available in different formats: DEC RSX, DEC VMS, UNIVAC, IBM MVS, UNIX tar,
MIT line feed format, and MIT card format (80 columns).

Price: DF1 150,-

EUUGDS
A collection of benchmark programs made up by EUUG.
Price: DF1 60,-

EUUGD6 (USENIX 83.1)

USENIX tape, containing contributions from various UNIX System Group Members.
This is a license dependent distribution: V7, V32, SIII, V6 or no license disclosure
available.

Price: DF1 240,-

EUUGD7

UNIXISTAT Version 5.2. A collection of about 25 data manipulation and analysis
programs written in C by Gary Perlman.

Price: DFI 60,-

EUUGDS
A collection of useful software, based on the so-called Copenhagen tape (EUUG UNIX
conference Autumn 1985). It consists of the following:

cph8Sdist The Copenhagen 85 distribution (Including all the Langston binaries).
astro Miscellaneous programs about astronomical events.
compress A program to compress large files.
hack A game (Version 1.0.3).
kermit A file transfer program. (Version 42).
langston A large number of games from Peter Langston.

macintosh Miscellaneous programs for UNIX to Macintosh
communication.

magtape Manipulation of ANSI tapes.

mandelbrot Image generation program.

mh.5 A message handling system.

new_curses Bug fixes to curses for making wm run.
patch A program to automatically install bugfixes.

ptxnews A program to generate an index of news subject.

rand An editor.
rman A remote manual server system.
rn A newsreader program (Version 4.3).

search Another game (4.2 BSD only).
shar Shell archiver.

stage2 A compiler.

62 UGN Vour No2

KUIPER EUUG TAPE DISTRIBUTIONS

stars A database on bright stars in our galaxy.

stat A statistical package from Gary Perlman.
strings A portable version of the 1libc strings routines.
vttest Test of VT-100 emulations.

webster2 Webster's 2nd dictionary.

wirewrap A component generator for wirewrap constructions.

wm A window manager (4.2 BSD only).
xlisp A 1lisp interpreter.
Emacs latest public domain version of this editor (currently 16.60.10). |

Netnews the public domain part of EUUGD3.

(Yace-pcc By: J. A. Dain, Dept of Computer Science, University of Warwick.
For Yacc-pcc you need at least AT&T V7 source licence. This part is
only included on request.)

Price: DF1 120,-

EUUGD9
A collection of useful software, based on the so-called Florence tape (EUUG
conference Spring 1986). It consists of the following:

INDEX Indexes of articles on the net.

RFC “Request For Comments” — proposed standards papers.
nh-6.4 Berkeley’s enhanced UCI Mail Handling system .
emacs17.49 Richard Stallmans GNU emacs editor.

ned The rand editor, version E17.
scame An Emacs-like editor.
teco The editor known from DEC systems, for VAX and 6502.

netnews The source needed to run news, 2.10.3-alpha.
xn Larry Wall’s program to read the news stuff, version 4.3.
statistic The UNIXISTAT statistical package from Gary Pearlman.

forth A compiler for the forth language for VAX BSD systems.

x1lisp A 1isp interpreter, version 1.4 by David Betz.

tre Daniel Kary's expert system building package.

terminfo A library of routines handling screens through TERMCAP.

vsh Visual shell 4.2, for various UNIX systems and machines.

window A windowing system.

less A paginator a la more or pg.

rfs The Remote File System from T. Brunhoff of the University of Denver.
rpe The Remote Procedure Call system from Sun Microsystems.

kermit The C-kermit transmission program version 4C(057).

EUUGN Voi7 No2 63

EUUG TAPE DISTRIBUTIONS KUIPER

langston The Langston games for 4.2 BSD VAX and Sun systems.
hack The famous rogue-like game, 1.0.3.

rogomatic The automatic rogue game.

battlestar An adventure-like game.

galaxy Yet another game.

Price: DF1 150,-

EUUGDI0

MMDFIIb. Multichanel Memo Distribution Facility (version IIb). This is a powerful,
domain oriented mail system with access control and the ability to communicate
over a variety of network systems including TCP/IP, JANET, UUCP, PHONENET, etc.
It has been ported to a variety of UNIXs including but not limited to 4.[123] BSD,
2.9 BSD and System III/V, on a variety of different hardware. You should first
obtain a license agreement by sending a message to euug-tapes@mcvax. Return the
signed license with your order.

Price: DF1 90,-

Ordering Tapes
If you want to order any tape, please write to:

EUUG Tape Distributions

c/o Frank Kuiper

Centrum voor Wiskunde en Informatica
Kruislaan 413

1098 SJ Amsterdam

The Netherlands

For information only:

Tel: +31 20 5924056 (or: +31 20 5929333)
Telex: 12571 mactr nl
Internet: euug-tapes@mcvax (or: frankk@mcvax)

Please note that for distributions D1, D2 and D3 (and in some cases also for D8) a
copy of your source license agreement with AT&T for at least UNIX Version 7
should be enclosed.

Note also that you have to be an EUUG member (or a member of a national UUG)
to obtain tapes at list prices. Non-members will have to pay DFl 300,- per tape
extra as handling fee. Please enclose a copy of your membership or contribution
payment form when ordering. All tapes come in tar format, 1600 bpi (unless
specified otherwise). 800 bpi is possible on request. Tapes and bill will be sent
separately.

64 EvUGN Vo No2

KUIPER EUUG TAPE DISTRIBUTIONS

EUUG Tape Distributions Order Form

This page may be photocopied for use.

...

...
...
...

...

EUUG (or national UUG) membership form enclosed? Yes / No

Copy of AT&T source license enclosed? Yes / No

“I declare to indemnify the FEuropean UNIX systems User
Group for any liability concerning the rights to this software,
and I accept that EUUG takes no responsibilities concerning the
contents and proper function of the software.”

SIZNALUTEciiiiiiiriciiireinic ettt tsseeesnessste s e saeessasaesaeessssessnseens

EUUGN Vo7 No2 05

66 EUUGN Vor No2

HOULDER EUNET

EUnet

Peter Houlder
uknetQukc.ac.uk

Computing Laboratory, University of Kent

Peter Houlder has been in the Computing Laboratory at
the University of Kent for the last 30 months and
looked after day to day uknet admin work in the last
18 months of that period.

He graduated in Geography from Kings College, London
in 1970 and then spent 9 years in business — dropping
out in 1979. He then spent a year touring Norh,
Central, South and Carribean America, became interested
in archaeology and spent three years excavating in
Britain and Europe.

Two Masters degrees, the first in Archaeological Sciences
and the second in Computer Science, followed in
successive years. Maggie in the meantime reduced
archaeological funding, so he arrived in 1984 kicking
and screaming in the world of Computing. He has since
got to quite enjoy it.

He is married with two labradors.

1. Introduction

This is the first of a series of articles giving information about the European UNIX
network, EUnet. This particular article contains a short section on the UK network
and it is hoped that network administrators in different countries will write later
articles, or sections for inclusion in articles.

2. EUnet as part of International Networks

EUnet is the European UNIX network, which started in April 1982 at the European
UNIX Systems Users’ Group (EUUG) meeting in Paris. EUnet is part of the
international group of UNIX based networks, which at present include ACSnet
(Australia), USENET (USA), CDAnet (Canada), JUNET (Japan), SDN (Korea) and
unnamed network in Israel and New Zealand. Unlike its US predecessor, which
splits news and mail as two separate services, EUnet uses the same network for
both news and mail. There is some confusion in terminology when referring to
USENET. Officially it should be only used only to refer to the North American
mail network, but unofficially it tends to be used as a term for all the international
UNIX networks. The number of UNIX hosts connected to the international networks
listed above varies daily, but the number of unique claimed names at present
(27/4/87) stands at 9509. The backbone site for EUnet is mcvax in Amsterdam,
which has direct links to all the other intercontinental and European backbone sites,
along with direct or indirect links to many other non-UNIX based networks. Each

EUUGN Vo7 No2 67

EUNET HOULDER

country in EUnet also has its own backbone site: see table below. There are also
many important feed sites on the individual national networks, such as seismo and
ucl-cs, which have important links to other networks. All backbone and feed sites
must be capable of running UUCP, UNIX to UNIX CoPy, but it is possible for non-
UNIX based sites to connect to a UNIX site for mail purposes. All backbone and
feed sites must be capable of running UUCP, UNIX to UNIX CoPy, but it is possible
for non-UNIX based sites to connect to a UNIX site for mail purposes. All backbone
sites and some feed sites provide automatic routing, news feeding and some
gatewaying between networks, but only the backbone sites handle registration.
Backbone sites are important for several reasons. First they ensure uniqueness of
uucp names, as backbone sites should only register unique names. Second they try
to ensure protocols are maintained, by rejecting mail or warning sites that indulge in
dubious mail practices. Finally they pay the bills to the various carriers and in turn
collect the money to pay those bills on a network agreed usage basis.

3. EUnet

At present 16 countries, listed in the table below, are part of the EUnet. This is
not strictly true as the Greek and Norwegian sites are only acting as backbones and
the Yugoslavian site is not yet on-line. The actual size of any particular network is
however difficult to assess because “hosts” may be anything from single-user
machines to gateway machines for the internal networks of large multi-user
organisations. The other problem is that sites may use more than one name, either
because of name aliasing or the use of a local network that is not hidden to the
outside world. The terms “site” and ‘“‘host” are both used to refer to individual
mail-handling machines connected directly to EUnet national networks.

EUnet as of 27th April 1987

Country Hosts | Names Used | Backbone E-mail
Austria 19 27 tuvie tuvie!plank
Belgium 11 29 prib2 prib2!ml
Denmark 38 42 diku krus@diku
Eire 9 10 einode einodelsimon
Finland 45 45 tut tut'hmj
France 68 68 inria inrialdevill
Great Britain 208 248 uke uknet@ukc.ac.ukc
Greece 4 8 ariadne ariadne!kostas
Iceland 1 1 hafro hafro!gunnar
Italy 25 25 i2unix i2unixiroby
Netherlands 93 159 mcvax piet@cwi.nl
Norway 6 7 nuug kvvax4!franki
Sweden 123 146 enea enealber
Switzerland 29 29 cernvax dietrich@cernvax
West Germany 107 107 unido ap@unido
Yugoslavia 1 1 yupiter yupiter!root
Total 787 952

3.1 Uknet as part of EUnet

Great Britain started its EUnet links back in 1982, but a fortuitous short term link,
via an ex-student, directly to USENET in the USA, meant that its close involvement

68 rvuGN vorr No2

HOULDER EUNET

really began in 1984. In early 1985 it had some 29 sites all connecting directly or
indirectly to the Computing Laboratory at the University of Kent, hereinafter
referred to as ukc. The creation and continuation of the network is almost entirely
due to Peter Collinson, who had the necessary UNIX know-how and contacts to get
the network started. However Sean Leviseur, Richard Hellier and in the last 18
months myself have all helped with support software and day-to-day administrative
work. The first sites to join the network were predominately academic or
commercial sites with close academic affiliations. Later growth has however been
fairly evenly split between academic and commercial sites. In the first three months
of the network the number of sites doubled to some 60 sites. By the end of 1985
this number had increased to 80 sites. Since that time the number of sites has
grown by a steady 8 sites per month, and now stands at 209 sites (27/4/87). The
growth in the network shows no sign of flattening off, so if this continues in the
foreseeable future approximately 100 extra sites can be expected to join annually.

4. Further Reading

An excellent article on international networks called “Notable Computer Networks —
John S. Quartermain and Josiah C. Hoskins™ appeared in the October 1986 edition of
The Communications of the ACM. Some of the above information has been gleaned
from this article.

EUUGN VolZ No2 69

70 EvUGN Vo7 Noz

HORNE UNIX CLINIC

UNIX Clinic

Nigel Horne
njh@root.couk

ROOT Technical Systems

Nigel Horne has worked solely on UNIX since graduating
in 1980 from Westfield College, London (and to a
certain amount as an undergraduate as well). He has
been involved in UNIX from the early days of ‘“real”
UNIX, the days of seek(), roff, PDP11's (they didn't
even have split I+D in those days), keys for typing in
the bootstrap, through to today when there are System
V. 43 BSD, industry standards, and just as much
confusion as when it all started.

Nigel is now a Director of Root Technical Systems.

It is hoped that this page becomes a regular feature in future EUUG newsletters.
The idea is to start a forum of discussion and trouble shooting, on all aspects of
using the UNIX system. Whilst many of the questions may well be slanted towards
the beginner, it is hoped that there will be something of interest for just about
everyone in the column.

You can send questions to me either via EUUG, by direct mail or even using
electronic mail if your machine is connected to EUNET either directly or via another
machine. If you want to try sending mail electronically try both of the following
commands: if neither of them work, it is unlikely that your machine is connected
to EUNET.

mail mcvaxlukciroot44injh
or
mail njh@root.co.uk

I'm sorry that I can’t enter into any discussions about advice given in this column,
and any material sent to me by any of the means above will be deemed to be
acceptable for publication.

As an introduction I thought I'd cover two questions in one by covering a question
that recently showed itself to me. I've slightly doctored it for this example and no
names are mentioned to hide certain peoples’ identity. The problem manifested itself
on a PC/AT look-alike running System V Release 2. Everything was in order except
when we came to use the supplied screen editor vi. All that the editor did was to
print the message memory fault -- core dumped and leave the terminal in a strange
mode — without echo and the such. The problems here were: why didn't vi
work, and how do we get the terminal back into a sensible state? Answering the
second question is easy. The terminal was left in so called “raw” mode, which
meant no echo, no backspace facility, and the system no longer accepted carriage-
return as you'd expect. The cure is simple: first type control J. Why? Ah well,
UNIX actually takes control J to mean end of input, not carriage return; however it

EUUGN Vo7 No2 11

UNIX CLINIC HORNE

normally maps one on to t'other, so typing control J just clears any junk characters
in the input buffer. After doing this, type

stty sane<"J>

making sure to use control J again. This brings the terminal and keyboard back
into a “sane” state, that is with echo on, carriage return accepted. and so on.

The problem of the core dump? This took some looking for. No other programs
on the machine acted in this way, and we began to suspect that our copy of the
image of vi on the hard disk was corrupt. In fact it was far simpler, we were
using a PC/AT with 512Kb of RAM. Vi needs more RAM than this to enable it to
run (remember that a fair proportion of the 512Kb is taken up by the UNIX
operating system image), and instead of exiting gracefully with a need more core
message and returning the terminal to a sane state, it just crashed. Solution? Buy
more memory.

I hope to hear any questions about UNIX that you may have in the near future. I
regret that I cannot answer questions about which hardware to buy, or that I may
not cover all the questions I receive, but rest assured that I will try to acknowledge
all material I receive.

72 EUUGN Vo7 No2

BOLDYREFF REVIEW OF POSIX

Review of IEEE Trial-Use Standard
Portable Operating System for Computer Environments
POSIX+

Cornelia Boldyreff
...Imcvaxlukclreadingluoseevicorn

Department of Electronic and FElectrical Engineering
University of Surrey
Guildford, Surrey GU2 5XH

The draft standard published by the IEEE for comment and criticism was issued in
April 1986 with the proviso that its distribution for comment shall not extend
beyond one year. In order to facilitate wide-spread distribution, the standard is
available from the IEEE and ANSI as well as Wiley-Interscience. Its purpose is to
define a standard operating system interface and environment based on the UNIX
operating system. Primarily, its focus is the C language operating system interface
required to support portable applications at source code level. Similar issues are
addressed by the AT&T publication, System V Interface Definition (SVID). The SVID
addresses source-level interfaces across AT&T's UNIX System V product; however,
unlike the SVID, the POSIX standard is not a specification of a commercial product.
The X/OPEN group of UNIX manufacturers has also defined a similar UNIX
applications interface, the Common Applications Environment (CAE), based on the
SVID, their principal aim being to ensure software portability of UNIX-based
commercial products. Like the SVID, CAE is tied to the AT&T UNIX product.
X/OPEN has expressed its long term support for the POSIX standard, and AT&T's
SVID states that conformance with the IEEE standard will be “‘strongly considered”
after its formal approval.

There are three major components to the standard:

¢ Definitions — this initial chapter deals with terminology used through the
standard, general concepts are described informally, and various symbolically
named variables and constants are defined.

e System Interface and Functions — this forms the core of the standard. These
chapters define a C Language Binding for Process Primitives and the Process
Environment; Files, Directories and File Systems; Input and Output Primitives;
Device- and Class-Specific Functions; and Password Security.

e Key Interface issues — Portability; Media Formats; and Error Handling and
Recovery.

Currently, the POSIX standard does not address the user interface and associated
commands; graphical interfaces; DBMS interfaces; record 1/0; or object or binary code
portability. Since publication, the P1003 Working Group has formed in addition two
new groups addressing the shell and tools interfaces and conformance testing:

e P1003.2 — The shell and tools facilities
e P1003.3 — Verification test specifications

POSIX explicitly does not provide recommendations for an end-user interface; the
recently formed POSIX subcommittee is concerned with shell and tools facilities from

EUUGN Vol7 No2 13

REVIEW OF POSIX BOLDYREFF

the standpoint of syntax and services that an applications programmmer might wish
to access via the popen or system function calls. There are other groups concerned
with defining a User-Interface for Applications: the X/OPEN group and the ECC
ESPRIT PCTE. The latter tests are required because there is a Federal Information
Processing Standard targetted for POSIX in the USA.

The IEEE Working Group formulating the POSIX standard includes staff from all the
major US computer companies in the UNIX market. Those at a recent meeting
included staff from Amdahl, Apollo, AT&T, Charles River, Concurrent Computer
Corp. DEC, DG, Gould, IBM, Interactive Systems, H-P, P-E, Sperry, Sun, Tektronix,
and TI. UNIX user groups (USENIX, X/OPEN /usr/group) and US government and
military users are also represented on the Working Group; and there has been some
participation from outside the USA including British members. British companies
active in reviewing the POSIX standard include British Airways. In the
Acknowledgements concluding the P1003.1 text, over 200 organisations are thanked
for their contributions to the Working Group.

The POSIX standard is closely related to two other standards: the 1984 /usr/group
Standard and the Draft Proposed ANSI Standard for C formulated by the ANSI
X3J11 Committee. The /usr/group Standard work has been subsumed by IEEE
P1003’s POSIX Standard and ANSI's X3J11 C Standard work. P1003 has left the
definition of library functions required for a C implementation in any environment
to X3J11; that is, POSIX refers to the C Standard for these. The C standard in turn
does not define operating-system-specific functions, leaving these as the province of
the POSIX P1003 Standard. There is active liaison between the P1003 committee and
the X3J11 committee who over the past few years have developed a good working
relations.

This Trial Use Standard is expected to become a full-use IEEE standard and an ANSI
standard within two years; ANSI in turn have proposed to ISO a New Work Item
based on the P1003.1 effort. Their aim is to facilitate international participation in
this work leading to its adoption as an international standard.

In its present form, POSIX does not provide a “functional” specification of a portable
operating system independent of any specific language, i.e. in this case C, binding.

POSIX is a much needed effort to standardise an existing applications environment
interface based on UNIX systems and complementary to the C standard work. If it
could be made to assume this more generalised functional role, then it could well
become the basis for related standards work in the area of Open Systems
Interconnection.

74 EvUGN Voir No2

EUUG NATIONAL GROUPS

AFUU (France)

¢/o SUPELEC,

Plateau du Moulon,

91190 GIF-SUR-YVETTE,
France.

BUUG (Belgium)
Department of Medical
Informatics,

VUB, Laarbeeklaan 103,
B-1090 BRUSSEL,
Belgium.

DKUUG (Denmark)
Kabbelejvej 27B,
DK-2700 BRONSHQJ,
Denmark.

EUUG-S (Sweden)
NCR Svenska AB,
Box 4204,

17104 SOLNA,
Sweden.

FUUG (Finland)
OY Penetron ab,
Box 21,

02171 ESPOO,
Finland.

GUUG (Germany)
Mozartstrasse 3,

D-8000 MUNICH 2,

Federal Republic of Germany.

IUUG (Ireland)
Glockenspiel Ltd.,
19 Belvedere Place,
DUBLIN 3,
Ireland.

ICEUUG (Iceland)
University Computer Centre,
Hjardarhaga4,

Reykjavik,

Iceland.

i2u (Italy)

Viale Monza, 347,
20126, MILANO,
Italy.

NLUUG (Netherlands)
Xirion bv,

World Trade Center,
Strawinskylaan 1135,
1077 XX,
AMSTERDAM,

The Netherlands.

NUUG (Norway)
Unisoft AS,
Enebakkvn 154,
N-0680 OSLO 6,
Norway.

UKUUG (United Kingdom)
Owles Hall,

Buntingford,

Herts. SG9 9PL,

United Kingdom.

UNIGS (Switzerland)

c/o Instutut fur Informatik,
ETH Zentrum,

8092 ZURICH,
Switzerland.

UUGA (Austria)

TU Wien,

Inst fur Praktische Informatik,
Gusshausstr 30/180,

A-1040 WIEN,

Austria.

The Secretariat: European UNIX® systems User Group, Owles Hall, Buntingford,

Herts SG99PL, UK. Tel: Royston +44 (0) 763 73039

Network address: euug@inset.uucp

Facs: Royston +44 (0) 763 73255

The Secretary

European UNIX® systems User Group
Owles Hall

Buntingford

Herts. SG9 9PL.

Tel: Royston (0763) 73039.

SUNIX is a Registered Trade Mark of AT&T in the USA and other Countries

