

INDEX

0: Introduction ... 2

1. THE COMMAND MODE
2. LOADING AND SAVING SOURCETEXTS ..
2.1 The SAVE commend
2.1 The SAVE command . 4
2.3 The VERIFY command
3. THE EDITOR

3.2 Cursor movement comand
3.3 Block commands
3.4 Search commands
3.5 Tabulator command
. 8
4. THE COMPILER
4.1 The COMPILE command ..
4.2 The RUN command ...
4.3 The TAPE command ..
4.4 The FIND command ... 11
5. MISCELLANEOUS COMMANDS ... 12

5.3 The QUIT command 12

Appendix A: Systen startup .. 13
Appendix B: System workspace .. 1
Appendix C: Memory maps ... 1

Appendix E: Command summary .. 17

1：INTRODUCTION

Blue Label Software Pascal is a complete 12 K Pascal language system developed for use on the NASCOM range of microcomputers． The minimum computer system required to take full adyantage of the BLS Pascal is：

NAS－SYS 1 or NAS－SYS 3 monitor．
16 K RAM（ROM version）or 32 K RAM（Tape version）．
This manual describes how to operate the language system．In programing matters the user should refer to the BLS Pascal Programming Manual．

1：THE COMMAHD MODE

When started as described in APPENDIX A ，the system will prompt：

```
sLs Pascal version x.x
Copyright (C) 1981
Poly-Data microcenter ApS
>-
```

wherex．x is the version number．The＇＞＇character is the system prompt and indicates that the system is ready for comand entry．When entering commands the following control－keys may be used：

〈BS〉
〈ENTER〉
Backspace．
Clear line．
Process command line．
A command consists of a command word eventually followed by a command parameter．At least one blank is required between the command word and the parameter．A command need not be written fully，but may be abbreviated to the first character，e．g．the command：

LOAD game
can be abbreviated to
L game
The operating system recognizes 11 commands，which，according to their function，can be divided into 4 groups：

1．Loading and saving sourcetexts
2．The editor
3．The compiler
4．Miscellaneous commands

The Blue Label Software Pascal Language System is copyrighted and all rights are reserved by Poly－Data microcenter Aps．The distribution and sale of this product are intended for use of the original purchaser only．Copying，duplicating，selling or otherwise distributing this product is a violation of the law．

Copyright（C） 1981 Poly－Data microcenter ApS
Strandboulevarden 63，DK 2100 Copenhagen 0
Blue Label Software is a trademark of Poly－Data microcenter ApS．

2：LOADING AND SAVING SOURCETEXTS

Sourcetexts are written to tape using the NAS－SYS block format． Thus，if a checksum error occurs during a load，the user can rewind the tape and read the erroneous block once more．

2．1 The SAVE command

The SAVE command writes the current sourcetext to a cassette tape．The command line format is：

SAVE filename

or
S filename
The filename can have any length and may contain blanks．
2．2 The LOAD command
The LOAD command reads a sourcetext from a cassette tape．The command line format is：
LOAD filename
or
L filename

If the filename is omitted，the first file found will be loaded． Each time a file is found，the system will print：

File filenatme found

When loading a sourcetext it will be placed after the current sourcetext，thus allowing the user to load several seperate subroutines．If a new sourcetext is to be loaded the current sourcetext must be deleted first e．g．by issuing a zAP command． A LOAD command can be aborted at any time by pressing＜ESC＞．

2．3 The VERIFY command

The VERIFY command is identical to the LOAD command，except that the sourcetext read from the cassette tape is not loaded into memory．The purpose of the command is to check that the sourcetext can be read from the tape without error．The command line format is：

VERIFY filename
or
V filename

If the filename is omitted，the first file found will be verified．

3：THE EDITOR

The systen editor is an on－screen editor，which means that the display may be likened to a window，which can be moved about over the sourcetext．The cursor always reside within the window edited，deleted or inserted．

The maximum line length is 80 characters．As the display is only 48 characters wide the text window can，apart from moving up and down，move to the left and to the right．If one enters more than 48 characters on a line the cursor will not move to and next line，but instead the display will scroll to the left and the leftmost characters will＇disappear＇．This may seen confusing，but when writing Pascal programs it is often preferable to have a line length greater than 48 characters． Also it enables one to take full advantage of an 80－coloumn printer．

The editor is invoked by the command line：
EDIT
or
E
When entering the editor the cursor will be placed in the same spot it left previously，or，if it is the first activation after a cold start or a ZAP＇command，the display will be cleared and the cursor will be moved to the top left corner．

The editor recognizes 27 commands which uses the ASCII values between 01H and lBH，i．e．the control characters．All other characterswill，when entered，be inserted in the sourcetext at the current cursor position．

If all available RAM has been used，the system will return to the command mode and print：

Overflow

The sourcetext is undamaged，but any attempt to enter more text will be denied．If possible one has to expand the buffer area， by moving MTOP to a higher adress（see APPENDIX B），before continuing．

In the description of the editor commands the following
notations will be used： tions whll be used

> CTRL/ or SHFT/ followed by a character indicates that the character is to be entered while depressing either <CTRL> or 〈SHIFT〉. <RI〉 means right arrow, <LE〉 means left arrow, <UP> means up arrow, and <DO> means down arrow.
3.1 Editing commands

The editing commands are used to edit the sourcetext．
＜BS＞

it to column 79 in the line above．

〈ENTER〉 Move the cursor to the first column in the next line
and insert an empty line．
＜ESC＞Delete the current 1 ine and move the cursor to the first column in the line above．

SHFT／＜RI〉 Insert blank at the cursor and move rest of line to the right．CTRL／V may be used instead of SHFT／＜RI＞．
SHFT／＜LE＞Delete character at cursor and move rest of line to the left．CTRL／U may be used instead of SHFT／〈LE＞．

SHFT／＜DO＞Insert a blank line，and move the eursor to the Insert a blank line，and move the cursor to the
first column．CTRL／z may be used instead of SHFT／＜DO）

SHFT／〈UP＞Delete current line，and move the cursor to the first column．CTRL／Y may be used instead of SHFT／＜UP〉．

3．2 Cursor movement commands．
The cursor movement commands are used to move the cursor without altering the sourcetext．
＜RI〉 Move the cursor right．If the cursor is in column
＜LE＞Nove the cursor left．If the cursor is in the first column move it to column 79 in the line above． CTRL／Q mây be used instead of 〈LE〉．
＜DO＞Move the cursor down．If the cursor is at the bottom line scroll the display up．CTRL／T may be used instead of 〈DO〉．
＜UP＞Move the cursor up．If the cursor is at the top line scroll the display down．CTRL／S may be used instead of 〈UP＞．

CTRL／B Move the cursor to the first line of the sourcetext．
CTRL／E Move the cursor to the last line of the sourcetext．
CTRL／N Move the cursor 14 lines down．
CTRL／O Move the cursor 14 lines up．
＜LF＞Move the cursor to the first column in the current line．CTRL／J may be used instead of 〈LF〉．
＜CS＞Move the cursor to the column after the last character on the current line．CTRL／L may be used instead of 《CS〉．

[^0]The block commands affect blocks of the sourcetext．A block is marked by block markers which can be inserted using the CTRL／A command．A block command only affect the first marked block in the sourcetext．If no blocks are marked ali block commande （except CTRL／A）will be ignored．

CTRL／A This command must be followed by a character．A＇B＇ indicates that a ${ }^{\prime}$ ndicates that a begin－block marker is to be inserted，an ${ }^{\text {is }}$ indicates that an end－block marker is to be inserted．Block markers are always inserted in front of the first character in the a block marker the CTRL／A command is ignored．

CTRL／D

CTRL／I

CTRL／P
Delete the first marked block（including block markers）from the sourcetext and move the cursor to the line which contained the end－block marker．
insert the first marked block（excluding block markers）before the current line．If the cursor is within the first marked block CTRL／I is ignored．
rint the first marked block to the user defined output routine（see APPENDIX D）．The CTRL／P command must be followed by a character．＇L＇indicates that the listing should include line numbers and any ther character indicates that no line numbers should be issued．

3．4 Search commands

The search comands are used to locate a target string in the sourcetext．
CTRL／F Find the first occurance of a target string of maximum 40 characters．When CTRL／F is typed an empty line is inserted and，as a promt character，a right arrow is printed．The target string is entered using the same control－keys as when entering command lines．When＜ENTER〉 is pressed the target string will disappear．If the string searched for is found the cursor wili be placed at the first character．If not found，the cursor does not move． The search always starts at the next line．

CTRL／C Continue searching for the last entered target string．

3．5 Tabulator commanōs
CTRL／K
This command is used to alter the tabulator length． The command must be followed by a character，which determines the length．The character＇A＇denotes the lens which character less 64 The maximum length is 63 If one selects a length of zero（by typine Cnidi folloued by rid lige of zer enters the indent mode Tn this mode when activating the tabualer the cursor will move to the position beneath the

4：THE COMPILER

first character in the line above．
Move the cursor to the next tabulator position，or， if the tabulator is in the indent mode，to that column in the current line which corresponds to the column of the first character in the previous line． CTRL／W may be used instead of 〈CH〉．
3．6 Other editor commands
CTRL／G This command is used to alter the＜GRAPH＞key function．The command must be followed by a character．An A means that the＜GRAPB key is an an an function as an all reverse the function of the ＜SHIFT＞key（for the letters A－z only）．A＇G＇means that the＜GRAPH＞key is to function notmally．

CTRL／X
Clear the display and return to the command mode． In addition delete all block markers

The compiler is the heart of the language system．It is capable of translating the sourcetext into executable $7-80$ machine code．
The compiler can be invoked in several different modes：
1）Using the COMPILE／RUN commands the object code will be placed directiy into memory after the sourcetext．This method is the fastest，but also requires the most RAM space as both the sourcetext and the object code must reside in memory at the same time．
2）When the compiler is activated from a TAPE comand the object code will be dumped to the cassette recorder using now bre format．it course this method is somewhe lower than the above，but it saves memory，and allows the user to direct the object code to any address．

3）When activated from a FIND comand the compiler can be used to locate a statement in the sourcetext which corresponds to a certain address in the object code，e．g．the address of a runtime error．This mode is extremely useful for easy debugging of programs．

When locating an error the compiler will automatically invoke the editor，and place the cursor in the erroneous statement．

Let us assume that the following program has been entered：

VAR number：REAL；

BEGIN
readln（numbr）；
writeln（＇The square root is＇，sqrt（number））；
END．
The program contains an error，as the identifier number is misspelled in the readin statement．If a compilation is attempted，this is what will happen：

Compilation error 64 Press 《SPACE）
readln（numbr）；
writeln（＇The square root is＇rsgrt（number））；
END．
To indicate the error the cursor is placed at the＇n＇in the misspelled identifier．When the spacebar is pressed the top line will be cleared and the user may edit the sourcetext in the same way as usually．

If the buffer overflows during a compilation the compiler will abort，and print：

Overflow

If it is possible the user must expand the buffer area，using one of two tuethods：

1）If there is more RAM available MTOP should be moved to a

higher address (see APPENDIX B).

2) If the compiler was activated from a Compile or a RUN command, the TAPE command should be used instead.
4.1 The COMPILE command.

Activating the compiler from a COMPILE command will place the object code
ompiler f directly into memory

COMPILE
or
C
When the comand line is entered the compiler will print:

Compiling

If no errors occur the following will be printed when the compilation is completed.

> Compiling OK
> Text: \$aaaa \$bbbb 〈xxxxx>
> Code: \$ccec \$dddd <yyyyy>
aaaa and bbbb are the start and end address of the sourcetext (in hex) and xxxxx is the size in bytes. cccc. dddd, and yyyyy are the corresponding parameters of the object code.
4.2 The RUN command

This comand is used to execute a program. The comand line format is:

RUN
or
R
If no object code is present the compiler will be activated prior to executing the program. Assuming no errors occured during compilation, or if the object code was already present. the system will print:

Running

and control will be transferred to the program. When the program ends the control will be transferred back to the language system.

If a runtime error occurs during program execution the system will print:

Runtime error $x x$ at $\$ n n n n$
and control will be transferred to the language system for to NAS-SYS if the program was compiled using the TAPE command; see chapter 4.3). xx is the er cor number and ninn is the error address (in hex). The error address is not an absolute address but an offset address from the start address. By issuing a FIND comand (see chapter 4.4) the user may locate the statement that caused the runtime error.

When activating the compiler from a TAPE command the object code will be dumped to the cassette recorder using NAS-SYS block format. The command line format is:
TAPE nnnn
or
T nnnn
where nnnn is the absolute start address (in hex) of the program. If nnon is omitted the system will choose $\$ 2180$ (\$10日0 for the ROM version) as start address ($\$ 2188$ is the end address of the runtime package in the tape version). When compilation is complete the system will print:

xxxx End

where xxxx is the end address of the object code.
When the tape is loaded (using the R command in NAS-SYS) the program can be executed by entering the NAS-SYS comand Exxxx. The program requires the runtime package to be present between
 Slde rest of the language system is not needed during program execution. Thus, when a program is thoroughly tested it can be compiled using the TAPE command tand, if you are using the tape version, merged to the runtime package) to form a directly executeable object code.
4.4 The FIND command

The FIND command is used to locate a statement in the sourcetext which corresponds to an offset address in the object code. In this mode the compiler will generete no object code. The command line format is:
FIND תnnn
or
F nnnn
where mann is the offset address. The offset address is calculated by subtracting the start address from the address one wishes to locate. If a program starts at $\$ 2180$ the command:

FIND 115
wili locate the statement, which origins at $\$ 2295$. If nnn is omitted the address of the last runtime error is substituted. When activated from a FIND command the compiler will print:

Searching

If the offset address is reached during compilation the editor will be invoked and the top line will display:

> Compilation error 0n Press <SPACE>

The cursor will be placed at or just after the relevant text. When the spacebar is pressed the top line will be cleared and the user may edit the sourcetext in the same way as usual. If the user may edit the sourcetext in the same way as us

Searching?

5：MISCELLANEOUS COMMANDS

5．1 The MEMORY command

This command displays the start and end addresses and the size of the sourcetext，and the same parameters of the object code if it is present．The command line format is：

MEMORY

or

M
The command will print：

Text；\＄aada \＄bbbb 〈xxxxx〉

and，if the object code is present，in addition：

Code：\＄cccc \＄dddd 〈yyyyy〉

aaaa and bbbb are the start and end address of the sourcetext （in hex）and xxxxx is the size in bytes．cccc，dddd，and yyyyy are the corresponding parameters of the object code．

5．2 The 2 AP command

This command deletes the sourcetext as well as the object code． The cofumand line format is：

ZAP
NOTE：To secure that the $2 A P$ command is not invoked accidentally，command word abbreviation does not apply accid

5．3 The QUIT comand
This comand transfers the control to NAS－SYS．The command line format is：
QUIT
or
Q

The language system may be warmstarted later，using the method described in appendix A ．

Tape version：
The BLS Fascal tape version is recorded at 1200 baud using the NAS－SYS block format．The tape is loaded using the R comand． The system is coldstarted by entering：

E2180 aaaa

where aaaa is the highest RAM address the system is allowed to access．If aaaa is omitted all available RAM will be used．

The system is warmstarted by entering：
E2182

ROM version：
The systen is coldstarted by entering：

J aaaa

where adaa is the highest RAM address the system is allowed to access．If aaaa is omitted all available RAM will be used．
The system is warmstarted by entering：
Z

APPENDIX B: SYSTEM WORKSPACE

The system workspace resides from \$CBD to \$DO日. In this area the following addresses may be of interest to the user:
C80-C81 MTOP The highest RAM address the system is allowed to access.
C84-c85 PEND The end address of the object code.

APPENDIX C : MEMORY MAPS

Tape version:

ROM version:

5ystem workspace

EOFF ! Sourcetext
PEND ! object code 1
1 program workspace

DROB
------_ packag
E180 +-------------------- operating system
980
FFFF compiler

APPENDIX D：THE USER DEFINED OUTPUT ROUTINE

When using the editor command CTRL／P，output will be directed to the NAS－SYS user routine．A jump vector to this routine should be placed in SUOUT（ $\$ C 77-\$ C 79$ ）．Listed below is a routine to control a printer connected to the serial port with a BuSy line
（active high）connected to bit 7 of port 0 ：

00010000
0902
0003 ODOD F5
$\begin{array}{lll}0804 & 0 \mathrm{DQ1} & \mathrm{DB} 06 \\ 0905 & 0 \mathrm{D} 03 & 17\end{array}$
00060 DO 430 FB
0087 0006 Fl
0087 00067 DFGF
0069 0D09 C9
0010
gall Dia

ORG OD®日H

PRINT PRI

PUSH AF
IN $A,(1)$

RLA
$\begin{array}{ll}\mathrm{JR} & \mathrm{C}, \mathrm{Pl}\end{array}$
POP AF
SCAL
RET
END

APPENDLX E：COMMAND SUMMARY

Command mode：

SAVE filename ERIFY Iil ename EDIT
COMPILE
RUN
TAPE nnnn
FIND nnan
MEMORY
2AP
QUIT

The editor：
＜BS＞
〈ENTER＞
〈ESC〉
SHFT／＜RI〉
SHFT／〈LE〉
SHFT／〈DO〉
SHET／〈UP〉
＜RI＞
＜LE〉
〈UP〉
CTRL／B
CTRL／B
CTRL／ N
CTRL／O
〈LF〉
＜CS〉
CTRL／A（B，E）
CTRL／D
CTRL／D
CTRL／P \｛L，？
CTRL／F
CTRL／C
CrRL／K（char）
$\langle\mathrm{CH}\rangle$

CTRL／
CTRL／X

Write sourcetext to cassette．
Read sourcetext from cassette．
Verify．
Activate editor．
Compile sourcetext．
secute object code．
Compile and dump object code to cassette．
Locate address in sourcetext．
isplay program parameters．
Delete sourcetext and object code．
Return to NAS－SYS．

Backspace．
Move cursor down and insert line．
pelete line and move cursor up．
Insert blank．
Delete character．
Insert line．
Move cursor right．
Move cursor left．
Move cursor down
Move cursor up．
Move cursor to beginning of sourcetext．
Move cursor to end of sourcetext．
ove cursor down 14 lines
Move cursor up 14 lines．
Move cursor to first coloumn
Move cursor to last character．
Insert block marker．
Delete first marked block．
Dilete first marked block．
rrint first marked block．

Find target string．
Continue searching．
Aiter tabulator length．
Move cursor to next tabulator position．

Alter＜GRAPH＞key function
Return to command node．
INDEX
a. InTRODUCTION 3

1. BASIC ELEMENTS OF THE LANGUAGE 4
1.1 Symbols identifier
4
5 1.2 Reserved 1.2 Reserved
6
2. USER DEFINED ELEMENTS 6
2.1 Identifiers. 3 Strings2.4 Comment\cdots
\cdots
$\cdots 6$
\cdots3. DATA TYPES7
3.1 Int
3.2 Reals 7 3.3 Booleans3.4 Strings7
3.5 Arrays - 8
3. THE DECLARATION PART 9 - 9

4.1 Labe declaration part

4.1 Labe declaration part
4.2 Constant definition par 9
4.4 Procedure and function deciaration part 1
5. EXPRESSIONS 11
5.1 The operator NOT 11
5.2 Multiplying operators 11
5.3 Adding operators11
6. STATEMENTS 13
6.1 Simp 13
13
6.1.1 Assignment statements 13
6.1.2 Procedure statements 13 13
6.1 .4 (NT 13
1414
15
15
6.2 Structured statements15
15
.2.1 Compound statements15
15
6.2 .2 Conditional statement
6.2.2.1 IF statements $\begin{array}{r}15 \\ 15 \\ \hline\end{array}$ 16
6.2.2.2 CASE statements
6.2.2.2 CASE statements 6.2.3 Repetitive statements 16
16
6.2.3.1 WHILE statements 16
17
6.2.3.3 FOR statements 17

1. PROCEDURES 18
7.1 Procedure declarations18
18
18
7.i.1 Procedure heading18
18
7.1.2 The declaration part 18
7.2 standard procedures 18
2. FUNCTIONS 20
B.l Function declarations 20 20
8.1.1 Function heading
8.1.1 Function heading
8.1.3 The cetaration part 29
8.2 Standard functions29
8.2.1 Arithmetic functions 21
8.2 .2 Integer functions
22
8.2.4 Transfer functions 22
9 PARAMETERS 23
9.1 Formal and actual parameters 23
9.2 Parameter types
23
9.2.1 Value parameters
23
9.3 Rules applying to parameter 24
3. INPUT AND OUTPUT 25
10.1 Input 25
10.1.1 The procedure read 25
0.2 Outpu 26
26
10.2.1 The procedure write 26
27
10.2.2 The procedure writel27
10.3.1 The procedure save 27
Appendix A: BLS Pascal syntax 28
Appendix B: Some useful routines 32
34
Appendix D : Internal data format 35
Appendix E: Machine code subroutines 37
39

Appendix F: Benchmark test | 39 |
| :--- |
| 42 |

Appendix H : Runtime error messages 43

2: INTRODUCTION

The Blue Label Software Pascal Language System is meant to offer an alternative to BASIC. Not only will the user gain execution speed, but he can also practise better programing techniques, as Pascal is far more versatile than BASIC.
As the BLS Pascal system is very compact conly l2K, hereof 5.5 K compiler), it has not, of course, been possible to implement standard Pascal in full: The BLS Pascal subset does not support user defineable types, sets and file-types. However all of the basic statement constructions are retained, and procedures and functions allow for both value and variable parameters. The fundamental data types INTEGER, REAL and BOOLEAN are likewise supported, while the type Char has been replaced by the type

Shing wich offers ane flexiblecharacter handing.
This manual fully defines the BLS Pascal subset, and should be carefully studied before any programming efforts are made.

The Blue Label Software Pascal Language System is copyrighted and all rights are reserved by Poly-Data microcenter Aps. The distribution and sale of this product are intended for use of the orjginal purchaser only. copying, duplicating, selling or otherwise distributing this product is a violation of law.

Copyright (C) 1981 Poly-Data microcenter Ap
Strandboulevarden 63, DK 2100 Copenhagen o
Blue Label Software is a trademark of Foly-Data microcenter ApS.

L: BASIC ELEMENTS OF THE LANGUAGE

1.1 SYMBOLS

The basic vocabulary of Pascal consists of basic symbols classified into letters, digits, and special symbols:

```
Letters: A to 2; a to zr '_', and '\'.
Symbols: + - */= < > ( ) [ ] . , ; : ' { }
```

The compiler does not differ between capital and non capital letters.

Some operatores and delimiters are formed using two special symbols:

1. $\rangle \lll=;=$.
2. (; and i) can be used instead of $[$ and $]$.
3. (* and *) can be used instead of $\{$ and $\}$.

1.2 RESERVED WORDS AND STANDARD IDENTIFIERS

The reserved words listed below can not be used as user defined identifiers:

AND	EXTERNAL	OTHERS
ARRAY	FOR	PROCEDURE
BEGIN	FUNCTION	PROGRAM
BOOLEAN	GOTO	REAL
CASE	IF	REPEAT
CODE	INIT	SHIFTH
DIV	INTEGER	STRING
DO	LABEL	THEN
DOWNTO	MOD	TO
ELSE	NOT	UNTIL
END	OF	VAR
EXOR	OR	WHILE

Certain identifiers, called standard identifiers, are predefined (e.g. sin, cos). Unlike the reserved words these identifiers can be redefined by the user

abs	left	read
addr	ln	readln
arctan	load	right
call	maxint	round
chr	mem	save
concat	mid	sin
cos	odd	sqf
empty	ord	sqrt
exp	out	succ
false	pi	true
frac	plot	trunc
inp	point	write
int	pred	writeln
keyboard	random	

1.3 SEPARATORS

Blanks, ends of lines, and comments are considered a separators. At least one separator most occur between any pai of consecutive identifiers, numbers or reserved words

2: USER DEFINED ELEMENTS

2.1 IDENTIFIERS

Identifiers are names denoting constants, procedures, functions, variables, and labels. They must begin with a letter, which may be followed by any number of letters, digits, or '.'-characters. Examples:

PASCAL Pascal NAME.41.CODE

2.2 NUMBERS

Numbers may be written in both decimal and hexadecimal notations. Hexadecimal numbers must be preceeded by a $\$$-sign. The letter E preceeding the scale factor is pronounced as 'times 10 to the power of'. Examples:
1100
0.138
$5 E 10 \quad 87.13556 \mathrm{E}-8$

No separators may occur within numbers.
2.3 STRINGS

Sequences of characters enclosed by single quote marks are called strings. To include a quote mark in a string it should be written twice. Examples:
'bls Pascal' 'A' 'A ' 'that's all folks'

2.4 COMMENTS

A comment is a sequence of characters enclosed in curly brackets (or (* and *)), which can be removed from the program text without altering its meaning. Example:

* This is a comment *

3. DATA TYPES

A data type defines the set of values a variable may assume. Every variable occuring in a program must be associated with one and only one data type. BLS Pascal supports four basic data types: Integer, real, boolean, and string.
3.1 INTEGERS

An integer is a whole number within the range -32768 to 32767 When operating on integers overflow and underflow will not be detected.
3.2 Reals

A real is a real number within one of these ranges:

$$
\begin{aligned}
& -1.7014118346 \mathrm{E}+38<=\mathrm{R}<=-2.9387358770 \mathrm{E}-39 \\
& \mathrm{R}=\mathrm{g} \\
& 2.9387358770 \mathrm{E}-39<=\mathrm{R}<=1.7014118346 \mathrm{E}+38
\end{aligned}
$$

Reals provide $11+$ significant digits. If an overflow occurs during an arithmetic operation involving reals, the program will break and display an error message. If an underflow occurs the result will be zero.

3.3 BOOLEANS

A boolean variable should only assume the predefined values true (-1) and false (0). However, as BLS Pascal does not differ between integers and booleans, a boolean variable can assume other values, but this is strongly discouraged.
3.4 STRINGS

When a string variable is declared one informs the compiler of the maximum length it may assume (between 1 and 255). Examples:

STRING [32]
STRING[stringsize]
3.5 ARRAYS

An array is a structure consisting of a fixed number of components which are all of the same type, called the component type. The elements of the array are designated by indices, aich are of the type integer. Upon declaration the upper and lower bound of each index is written seperated by '..'. Examples:

> ARRAY [1..1日] OF INTEGER
> ARRAY $[6 \ldots$ maxsize] OF STRING[32]
> ARRAY $[-5 . .11,29 \ldots 45]$ OF REAL

Components in an n-dimensional array are designated by n integer expressions. Examples:

[^1]
names[pointers[8],3]

3.5.1 The mem array

The mem array is a predefined one-dimensional array representing The mem array is a predefined one-dimensional array representing
memory. Each component designates a byte, whose address is given by the index. Components of the mem array can only assume values between \quad and 255 . If a value greater than 255 is assigned the actual value will only be the least significant 8 bits. Examples:
i:=mem[\$C日も] AND \$16;
FOR $p:=1$ To length(s) DO
mem $[o f f \operatorname{set}+\mathrm{p}]:=\operatorname{ord}(\operatorname{mid}(\mathrm{s}, \mathrm{p}, \mathrm{l}))$;

4. DECIARATIONS;

A progran consists of 3 parts:

1. The program header
2. The declaration part
3. The statement part

The program heading gives the program a name and lists its parameters, through which the program communicates with the environment. Examples:

PROGRAM conversion;
PROGRAM calculation(input, output);
In BLS Pascal the program header is purely optional, and if it is used everything between the reserved word pROGRAM and the first semicolon is considered as a comment.
Declarations must be listed in the following order:

1. Label declaration part
2. Constant definition part
3. Variable deciaration part
4. Procedure and function declaration part

None of the above mentioned parts need to be present ithus the declaration part may be empty).
4.1. LABEL DECLARATION PART

All labels used in the program must be declared in the label declaration part, which is introduced by the reserved word LABEL. A label may either be an identifier or an unsigned number. Examples:

LABEL 1, er \quad (9r,999,stop;

Any statement in the program may be prefixed by a label followed by a colon (making possible a reference by a goto statement). Examples:
999: write('Done...');

A label should only be referenced within the block in which it is declared.
4.2 CONSTANT DEFINITION PART

A constant definition introduces an identifier as a synonymi for a constant. The symbol CoNsT introduces the constant definition part. Example:

CONST

number=45;
max $=193.158$
min=-max;
name='Johnson':

Predifined constants are as follows:

pi	Real	3.1415926536.
true	Boolean	True (-1).
false	Boolean	False ($).$
maxint	Integer	32767.
empty	String	$1 \quad$ (The empty string).

4.3 VARIABLE DECLARATION PART

Every variable occuring in the program must be declared in the variable declaration part, which is introduced by the reserved word VAR. A variable declaration associates an identifier and a data type to the variable. More variables of the same data type can be declared on the same line. Examples:

VAR

i,j,k: INTEGER;
xcoor,ycoor: REAL;
names: ARRAY [1..100] OF STRING [32]
The variable is accessable throughout the entire block containing the declaration, unless the identifier is redefined in a subordinate block.

When entering a block all variables declared within the block will cleared, e.g. reals and integers assumes the value D, booleans assumes the value false, and strings assumes the value empty.

4.4 PROCEDURE AND FUNCTION DECLARATION PART

The procedure deciaration serves to define procedures within the current procedure or program (see chaptet 7). A procedure is activated from a procedure statement (see chapter 6.1.2).
The function declaration part serves to define a program part which computes and returns a value (see chapter 8). Functions are activated by the evaluation of a function designator, which is a constituent of an expression (see chapter 5.4).

5: EXPRESSIONS

Expressions are constructs denoting rules of computation for obtaining values of variables and generating new values by the application of operators. Expressions consist of operators and operands, i ee variables, constants, and functions,

The rules of composition specify operator precedences accordirg to four classes of operators. The NOT operator has the highest precedence, followed by the multiplying operators (*/DIV HOD AND SHIFT), then the adding operators (+ - OR EXOR), and, finally, with the lowest precedence, the relational operators $\langle=\langle \rangle\rangle\rangle=\langle=\}$. AIl operators allowing integers as operands will also allow booleans. Any expression enclosed within parentheses is evaluated independently of preceeding or succeeding operators.

5.1 THE NOT OPERATOR

The NOT operator denotes complementation of its operand, which must be of the type integer or of the type boolean. Examples:

$$
\begin{array}{ll}
\text { NOT true } & =\text { false } \\
\text { NOT false } & =\text { true } \\
\text { NOT } 5 &
\end{array}
$$

2 MULTIPLYING OPERATORS

Operator	Operation	Type of operands	Type of result
*	Multiplication	real, integer	real, integer
$/$	Division	real, integer	real
DIV	Integer division	integer	integer
MOD	Modulus	integer	integer
SHIFT	Logical shift	integer	integer
AND	Logical AND	integer	integer

The operation I SHIPT J has the following effect: I will be The oped to the left J has the if 1 the right, if J is negative. Thus the result will always equal the right, if $\begin{aligned} & \text { is negative } \\ & \text { zer }\end{aligned}$
5.3 ADDING OPERATORS

Operator Operation	Type of operands	Type of result	
	Addition	real, integer	real, integer
	Subtraction	real, integer	real, integer
OR	Logical OR	integer	integer
EXOR	Logical EXOR	integer	

When used as operators with one operand only, - denotes sign inversion, and + denotes the identity operation.
S.4 EUNCTION DESIGNATORS

A function designator specifies the activation of a function.

[^2]
6: STATEMENTS

Statements denote algorithmic actions and are said to be executable. They may be prefixed by a label which can be referenced by a Goro statement (see chapter 6.1.3).
6.1 SIMPLE STATEMENTS

A simple statement is a statement of which no part constitutes another statement. In this group are the assignment, procedure, GOTO, INIT, and empty statements.
6.1.1 Assignment statements

The assignment statement serves to replace the current value of a variable or a function identifier by a new value specified as an expression.

The variable (or function and the expression must be of identical type, with the following exceptions being permitted:

1) If the type of the variable is real, the type of the expression may be integer.
2) A string expression need not have the same length as the maximum length of the string variable. lf more characters are assigned than specified by the maximum length, only the lefmost characters will be transferred.

Example:
$x:=y+z$ \{replace current value of x by sum of y and $z\}$
6.1.2 Procedure statements

A procedure statement serves to execute the procedure denoted by the procedure identifier. The procedure statement may contain a list of actual parameters which are substituted in place of their corresponding formal parameters (see chapter 9) defined in the procedure declaration. Examples:
sort (names) ;
exchange (x,y);
plot $(x$, round $(\sin (x * f) * 20)+24,1)$;
6.1.3 GOTO statements

A GOTO statement serves to indicate that further processing should continue at another part of the programir nanely, at the place of the label.

The following restrictions hold concerning the applicability of labels:

1) The scope of a label is the block within which it is declared. It is, therefore, not possible to jump into or out of a procedure or a function.
2) Jumps into and out of $F O R$ statements are not allowed.
3) Every label must be specified in a label declaration in che heading of the block in which the label marks a statement.
6.1.4 INIT statements

An INIT statement serves to initialize an array structure to a set of constant values. The constants and the components of the array must be of identical type. Example

VAR

data: ARRAY[1..6I OF INTEGER

BEGIN

INIT data TO $15,6,19,8,1,3$;
END.
The above program is equal to:
VAR
data: ARRAY[1..6] OF INTEGER;
BEGIN
data[1]:=15; data[2]:=6; data[3]:=19
data[4]:=8; data[5]:=1; data[6]:=3;
:
END
If less constants are specified than the total number of components in the array, only the first components will be components in the a

VAR
numbers: ARRAY[0..9] OF STRING[5]
BEGIN
INIT numbers To empty,'one','two','three','four','five'; :
END.
When the INIT statement has been executed, the components of numbers will have the following values;

```
numbers[0]=empty numbers[1]='one'
numbers[2]='two''
numbers[4]=' four'
numbers[6]=empty
```

numbers[9]=empty

```
```

numbers[3]='three'

```
numbers[3]='three'
numbers[5]='five'
numbers[5]='five'
numbers[7]=empty
```

numbers[7]=empty

```

When initializing array structures with more than one dimension the components will be processed with the rightmost dimension increasing first. Example:

\section*{VAR}
a: ARRAY[1..3,1..3] OF INTEGER;
BEGIN
\[
\text { INIT a TO } 9,6,8,15,18,33,7,10,19 \text {; }
\]
:

END.
The above program will initialize the components of a to:
\begin{tabular}{lll}
\(a[1,1]=9 ;\) & \(a[1,2]=6 ;\) & \(a[1,3]=8 ;\) \\
\(a[2,1]=15 ;\) & \(a[2,2]=18 ;\) & \(a[2,3]=33 ;\) \\
\(a[3,1]=7 ;\) & \(a[3,2]=10 ;\) & \(a[3,3]=19 ;\)
\end{tabular}

The INIT statement can in addition serve to initialize a section of memory. Example:

INIT mem[basel TO \$EF,\$41,\$42,\$43,\$06,\$C9;

Assuming that the variable base equals SDOQ, the byte at SDBa will equal \(\$ E F\), the byte at \(\$ D 01\) will equal \(\$ 4 \mathrm{~F}\), etc., upon completing the INIT statement.
6.1.5 Empty statements

The empty statement denotes no action and occurs whenever the syntax of pascal requires a statement but no statement appears. Examples:

\section*{BEGIN END \\ WHILE digit AND (a>17) DO \{nothing\}; \\ REPEAT \{wait\} UNTIL keyboard}

\subsection*{6.2 STRUCTURED STATEMENTS}

Structured statements are constructs composed of other statements which have to be executed in sequence (compound statements), \(\qquad\) conditionally (conditional statements), or repeatedly (repetitive statements).
6.2.1 Compound statements

The compound statement specifies that its component statements are to be executed in the same sequence as they are written. The symbols BEGIN and END act as statement brackets. Example:
\[
\begin{aligned}
& \text { BEGIN } \\
& \text { z:=x; } x:=y ; y:=z ; \text { interchange values of } x \text { and } y\} \\
& \text { END; }
\end{aligned}
\]

The compound statement neither forbids nor requires a semicolon succeeding the last statement.
6.2.2 Conditional statements

A conditional statement selects for execution a single of its component statements.
6.2.2.1 IF statements

The IF statement specifies that a statement be executed only if a certain condition (boolean expression) is true. If it is false, then either no statement is to be executed, or the statement following the symbol ELSE is to be executed.

The syntactic ambiguity arising from the construct

IF 〈el＞THEN TF＜e2〉 THEN 〈s2〉 ELSE 〈s2〉
is resolved by evaluating
IF＜el〉 is false，no statement is executed．
IF 〈el〉 is true and 〈e2＞is true，〈sl〉 is executed．
IF 〈el〉 is true and 〈e2〉 is true，〈sl〉 is executed．
IF 〈el〉 is true and＜e2〉 is false，〈s2〉 is executed．

\section*{Examples：}

IF \(x<1.5\) THEN \(z:=x+y\) ELSE \(z:=1.5 ;\)
IF name＝empty THEN name：＝＇Not stated＇；

\section*{6．2．2．2 CASE statements}

The CASE statement consists of an expression（the selector）and a list of statements，each labelled by a constant or a list of constants of the type of the selector．It specifies that the one statement be executed whose constant list contains the
current value of the selector．If no constant equals the value of the selector，control is given to the statement succeeding of the selector，control is given to the statement succeeding be executed．

Valid selector types are integer，boolean，and string types （reals are not allowed）．Examples：
```

CASE operator OF
'+': x:=x+y;
'-': x:=x-y;
*': x:=x*y;
//': x:=x/y
END;
CASE number OF
1: write('one');
2: write('two');
3,4,5; write('some');
OTHERS: write('several');
END;

```

The CASE statement neither forbids nor requires a semicolon succeeding the last statement．

\section*{6．2．3 Repetitive statements}

Repetitive statements specify that certain statements are to be executed repeatedly．If the number of repetitions is known beforehand（i．e．before the repetitions are started），the FOR statement is the appropriate construct to express this situation；otherwise，the WHILE or the REPEAT statement should be used．

\section*{6．2．3．1 WHILE statements}

The expression controlling repetition must be of type boolean． The statement is repeatedly executed until the expression becomes false．If itg value is false at the beginning，the statement is not executed at all．Example：
```

WHILE a<1080 DO
BEGIN
a:=sqr(a); b:=b+l;
END;

```

\section*{6．2．3．2 REFEAT statements}

The expression controlling repetition must be of type boolean． The sequence of statements between the symbols REPEAT and UNTIL is repeatedly executed（and at least once）until the expression becomes true．Example：

REPEAT
read（digit）；write（digit）
number：＝number＊10＋ord（digit）-48 ；
UNTIL number＞1000；
The REPEAT statement neither forbiós nor requires a semicolon succeeding the last statement．

6．2．3．3 FOR statements
The FOR statement indicates that the component statement is to be repeatedly executed while a progression of values is assigned to a variable which is called the control variable of the for to a variable which is called tan be up To（succeeding）or DOWNTO （preceding）a final value．

The control variable，the initial value，and the final value must be of type integer．

If the initial value is greater than the final value when using the ro clause，or if the initial value is less than the final value when using the DOWNTO clause，the component statement is not executed at all．

Examples：
FOR i：＝1 TO max DO writeln（i：5，sq（i）：8）；
FOR i：＝1 TO LDO DO FOR j：＝1 TO 10 DO
BEGIN
IF a［i，jl＞5 THEN a［i，j］：＝5；
count：＝count＋a［i，j］；
END；
Upon completion of a \(F O R\) statenent the value of the control variable is given by：

1）If the component statement was not executed the control variable will equal the initial value．

2）When using the To clause the control variable will equal the final value plus one．
3）When using the Downto clause the control variable wirl equal the ininal value less one．

\section*{7: PROCEDURES}

A procedure is a seperate program part which may be activated from a procedure statement (see chapter 6.1.2).

\subsection*{7.1 PROCEDURE DECLARATIONS}

A procedure declaration generally consists of 3 parts:
1) The procedure heading.
2) The declaration part
3) The statement part.

\subsection*{7.1.1 The procedure heading}

The procedure heading specifies the identifier naming the procedure, an optional formal parameter list, and an optional EXTERNAL or CODE specification.

The paramaters are either value of variable parameters (see chapter 9).

EXTERNAL specifies that the procedure is a seperate machine code subroutine, which resides at the address given by the integer constant following the EXTERNAL symbol (see appendix E). CODE directly following the CoDe symbol in \(2-80\) machine code, case of EXTERNAL and CoDe procedures the declaration part as well as the statement part is empty.
7.1.2 The declaration part

The declaration part has the same form as that of a program. All identifiers introduced in the formal parameter list and the declaration part are local to the procedure declaration, which is called the scope of these identifiers. They are not known is called the scope of these identifiers. They are not known
outside their scope. A procedure declaration may reference any constant, variable, procedure, or function identifier global to it (i.e. defined in an outer block), or it may choose to redefine the name.
7.1.3 The statement part

The statement part specifies the algorithmic actions to be executed upon activation of the procedure by a procedure statement. The statement part takes the form of a compound statement (see chapter 6.2.1). The use of a procedure identifier in a procedure statement within the statement part implies recursive execution of the procedure.

\subsection*{7.2 STANDARD PROCEDURES}

A standard procedure need not be declared, and may be redefined by the programer by using its name as a procedure identifier in a procedure declaration.
call(a)
Generate a call to the memory address given by the integer expression a.
screen ( \(x, y\) ) Move the cursor to line \(y\), coloumn \(x\). \(x\) and \(y\) are integer expressions. If a coordinate value is illegal, the current value of this coordinate is unchanged by the procedure activation. Thus the screen procedure may be used as a tabulator by zeroing the y-coordinate.
\(\operatorname{plot}(x, y, f)\)
\(x, y\), and \(f\) are integer expressions. Alter the state of the semigraphic pixel at \(x, y\), according to the value of E :
\(f=\emptyset:\) Reset \(x, y\).
\(f=1:\) Set \(x, y\).
\(f=2 ;\) Invert \(x, y\).

The plot procedure compensates for the offset of The plot procedure compensates for the offget of with \(y\)-coordinates within the interval \(0<=y<=2\) resides on line 16 . A procedure activation involving illegal coordinate values will be ignored.
Out (p,d) Output least significant a bits of a to the port Output least significant 8 bits of d to the port
given by the least significant 8 bits of p. \(p\) and d are integer expressions.

The standard procedures supporting input and output are described in chapter 16.

\section*{8: FUNCTIONS}

A function is a program part which computes and returns a value Functions are activated by the evaluation of a function designator (see chapter 5.5) which is a constituent of an expression.
B.l FUNCTION DECLARATIONS

A function declaration generally consists of 3 parts:
1) The function heading.
2) The declaration part.
3) The statement part.
8.1.1 The function heading

The function neading specifies the identifier naming the function, an optional formal paramater list, the result type, and an optional EXTERNAL or CODE specification.

The paramaters are either value or variable parameters (see chapter 9).

The result type of the function can be either integer, boolean real, or string.

EXTERNAL specifies that the function is a seperate machine code subroutine which resides at the address given by the integer constant following the EXTERNAL symbol (see appendix E). CODE specifies that the function is listed in \(\mathrm{Z}-80 \mathrm{machine}\) code, directly following the CODE symbol. In the case of EXTERNAL and CODE functions the declaration part as well as the statement part is empty.
8.1.2 The declaration part

The declaration part has the same form as that of a procedure see chapter 7.1.2).

\subsection*{8.1.3 The statement part}

The statement part takes the form of a compound statement (see chapter 6.1.2). Within the statement part at least one taterent a value to the function identicief funt oce. he wittin the
function.

\section*{8. 2 STANDARD FUNCTIONS}

A standard function need not be declared, and may be redefined
by the programmer by using its name as a function identifier in function declaration.
8.2.1 Arithmetic functions

In the functions listed below the type of \(x\) must be either real
or integer, and the type of the result is the type of \(x\).
\(\operatorname{abs}(x) \quad\) Computes the absolute value of \(x\).
sqr( \(x\) ) Computes \(x^{*} x\).
In the functions listed below the type of \(x\) must be either real or integer, and the type of the result is real.
\(\sin (x) \quad\) Sine,
\(\cos (x) \quad \operatorname{cosine}\).
arctan( \(x\) Arccus tangent.
\(\ln (x)\)
\(\exp (x)\)
sqrt(x)
int ( \(x\) )
frac (x) The fractional part of \(x\) with the same sign as
8.2.2 Integer functions

In the functions listed below the type of i is integer.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline succ (i) & Computes integer. & \(i+1\). & The & type of & th & esult & is \\
\hline pred(i) & Computes integer. & i-1. & The & type of & the & result & is \\
\hline odd (i) & Returns th the boole & \begin{tabular}{l}
e bool \\
n vaiu
\end{tabular} & \[
\begin{aligned}
& \text { ean va } \\
& \text { e fals }
\end{aligned}
\] & lue true e if i is & f i even. & odd, & or \\
\hline
\end{tabular}
8.2.3 String functions
\begin{tabular}{ll} 
length (s) & \begin{tabular}{l} 
Returns the length of the string \(s . ~ T h e ~ t y p e ~ o f ~\)
\end{tabular} \\
the result is integer.
\end{tabular}
right (s,n) Returns the rightmost \(n\) characters copied from \(s\). The type of \(s\) is string and the type of \(n\) is integer.
concat (strs)
strs is any number of string expressions separated by commas. The result is a string which is the concatenation of the parameters in the same sequence as they are written.
8.2.4 Transfer functions
trunc ( \(x\) ) The type of \(x\) is real; the result is the greatest integer less than or equal to \(x\) for \(x>=a_{1}\) and the least integer graeter than or equal to \(x\) for \(x<b\).
round \((x)\) The type of \(x\) is real; the result, of type integer, is the value of \(x\) rounded, i.e.:
\(\begin{aligned} \text { round }(x)= & \operatorname{trunc}(x+0.5), \\ & \text { frunc }(x+0.5), \text { for } x<\theta\end{aligned}\)
ord(s) Returns the ASCII value of the leftrost character in the string \(s\). If \(s\) is empty the result will be zero. The type of the result is integer.
chr(i) Returns a string containing one character whose ASCII value is i. The type of i is integer.
8.2.5 Further standard functions
addr(v) Returns the memory address of the variable v. The memory address of an array can be calculated by referting to the first element of each dimension.
random Returns a random number within the interval \(0<=r<1\). The type of the result is real.
random(i) Returns a random integer within the interval \(0<=r<i\). The type of the result is integer.
\(\operatorname{inp}(p)\)
Returns the value read from port \(p\). \(p\) must be an integer expression within the interv
keyboard Scans the keyboard and returns the value of the Scans the keyboard and returns the value of the currently depressed key. If no key is depressed integer.
point ( \(\mathrm{x}, \mathrm{y}\) )

Returns the boolean value true if the Returns the boolean value true lif the the boolean value false. The type of \(x\) and \(y\) must be integer.

\section*{9: PARAMETERS}

Parameters provide a substitution mechanism that allows the algorithmic actions of a procedure or a function (in this chapter referred to as a subprograra) to be repeated with a variation of its arguments.
9.1 FORMAL AND ACTUAL PARAMETERS

A procedure statement or a function designator may contain a list of actual parameters, which are substituted for the corresponding formal paraneters that are definedin the heading of the subprogram. The correspondance is established by the positioning of the parameters in the lists of actual and formal parameters.

\subsection*{9.2 PARAMETER TYPES}

BLS Pascal supports two kinds of parameters: Value parameters and variable parameters.
9.2 .1 Value parameters

When no symbol heads a formal parameter part of a subprogram heading, the parameter (s) of this part are said to be value parameters. In this case the actual parameter must be an expression (of which a variable is a simple case). The corresponding formal parameters represents a local variable in the subprogran. As its initial value this variable receives the current value of the corresponding actual parameter (i.e. the value of the expression at the time of the call). The subprogram may then change the value of this variable by assigning to it; this will actual parameter. Hence, a va a result of a computation.

Consider the following procedure declaration:
PROCEDURE printline (width: INTEGER);
BEGIN
FOR width:=width DOWNTO 1 DO write('*')
writeln:

\section*{END;}

The procedure statement "printline(a);" will have the same effect as executing
\[
\begin{aligned}
& \text { width:=a; } \\
& \text { FOR width:=width DOWNTO } 1 \text { DO write('*'); } \\
& \text { writeln; }
\end{aligned}
\]

Although the variable width is altered during the procedure, the variable a will be left unchanged, as width is a value parameter. As mentioned above the actual parameter need not be a variable, but can be any expression, e. \(q\). nprintline (a+2*b);" and "printiline (25);".

\footnotetext{
9.2.2 Variable parameters
}

When the symbol VAR heads a formal parameter part of a subprogram heading, the parameter (s) of this part are said to be variable parameters. In this case the actual parameter must be a variable. The corresponding formal parameter represents this variable during the entire execution of the subprogram. Any operation involving the formal parameter is preformed directly upon the actual parameter. Hence, whenever a parameter is to variable parameter.

Consider the following procedure declaration:
PROCEDURE swap(VAR \(x, y\) : REAL);
VAR temp: REAL;
\[
\begin{aligned}
& \text { BEGIN } \\
& \text { temp:=x; } x:=y ; y:=\text { temp; } \\
& \text { END; }
\end{aligned}
\]

The procedure statement "swap(a,b);" will have the same effect as executing memp:=a; \(a:-b ; b:\) temp; " Obviously the statement nswap(20,a+t); will result in an error, as the statements memp:=2日; 20:=a+b; a+b:=temp; are impossible to execute.
9.3 RULES APPLYING TO PARAMETERS

The formal paraneter \(1 i s t\) and the actual parameter list must agree with respect to the total number of parameters and the type of each of the parameters respectively.

All address calculation is cone at the time of the call. Thus, if a variable is a component of an array, its index expression(s) is evaluated upon activating the subprogram.

In the case of a parameter being an array structure, the actual parameter and the formal parameter must agree with respect to component type and number of components. However the lower and upper limits of each dimension, and the number of dimensions need not agree.

If a formal parameter is a variable parameter of the type real, the corresponding actual parameter may be an expression of the type integer. This does not apply tc variable parameters.
If a formal parameter is a variable pameter of the type string, the corresponding actual parameter can be a string expression of any length. However, if the length of the actual string paraneter is greater than the maximum length of the formal parameter, only the leftmost characters will be transferred. This does not apply to variable parameters.

\section*{10: 1NPUT AND OUTPUT}

BLS Pascal allows for input and output by means of four standard procedures (tead, readin, wite, and writeln). In addition two standard procedures (load and save) allows for loading and saving of arrays from and to the tape recorder.

\subsection*{10.1 INPUT}

Input is supported by the standard procedures read and readin.
10.1.1 The procedure read

The procedure read allows for strings and numeric values to be input. The format of the procedure statement is:
\[
\text { read }(v 1, v 2, \ldots, v n) ;
\]

Which is equal to
BEGIN read(vl); read(v2); ... read(vn) END;

During data entry the following control keys are available to the user:
\[
\begin{array}{ll}
\langle B S\rangle & \text { Backspace } \\
\langle E S C\rangle & \text { Clear line } \\
\text { <ENTER〉 } & \text { Process entry }
\end{array}
\]

For a variable of one of the numeric types (real or integer) the read procedure expects to read a string of characters which can be interpreted as a numeric value of the same type. Leading spaces are allowed. The numeric value should follow the rules that apply to numeric constants (see chapter 2.2). The entry must be terminated by a carriage return (i.e. <ENTER>) immediately following the last character of the numeric value. The carriage return is not echoed. if the interpretation
results in an error the entry field will be cleared, indicating that the user is to re-enter the value.

When reading strings with a maximum length greater than one, read will accept all characters up to but not including the terminating carriage return. The maximum number of characters terminating carriage return. The max bime be mentered is given by the mimplength of the


When reading strings with a maximum length of one program execution will resume the moment the user depresses a xcy. The execution will resume the monder read will not be echoed.
10.1.2 The procedure readin

The procedure readln is identical to read, except that after a value has been read a carriage return is output. The format of the procedure statement is:
readln\{vl,v2, ...,vn);
which is equal to

BEGIN readln（v1）；readin（v2）；．．．readln（vn）END；
32.2 OUTFIT

Outpui is supported by the standard procedures write and writeln．
if．2．i The procedure write
the procedure write allows strings and numeric values to be nutput．The format of the procedure statement is：
\[
\text { write }(p 1, p 2, \ldots, p n)
\]
whicn is equal to
BECTN write（pl）；שriteip2）；．．．Grite（pn）END；
pl，pi，．．．fpn denote so－called wite parameters，which，accoring to the type of the value to be output，can take on one of the follcwing formats（ m ． n ，and \(i\) denote integer expressions， r dencte a real expression，and s denote a string exptession）：
：The decimal representation of \(i\) is output with no preceding blarks．
i：n The decimal representation of is output preceded by an appropriate number of blanks to make the field wideh \(n\) ．
\(r\) The decimal representation of \(r\) is output in floating point format in a field of 18 characters：
n sã． \(\mathrm{c} d \mathrm{ddddddadEtd{ }}^{n}\)
where stands for either＂＂or＂－＂，d stands for a digit，and \(t\) stands for either＂\({ }^{+\pi}\) or \(n^{n}\) ．
rin The decimal representation of \(r\) is output in floating point format．The field width and the floating point format．The field width and the numb

> n<8: \({ }^{\text {nd.dEtdd" or }}\) "-d.dEtdd"
> g<=n<17: Msd.<digits>Etodn, where<digits> denotes \(n-6\) decimal digits.
> n>17: "〈spaces>d.ddddddddddEtdd", where «spaces> denotes n-17 blanks.
r：n：m The decimal representation of \(t\) is cutput in fixed point format with m digits after the decimal point in a field of \(n\) characters．m must be within the interval \(\mathfrak{G}<=\mathrm{m}\langle=24\) ．If not，floating point format is used．
a．s is output with no preceding blanks．
blanks to make the field width \(n\) ．
10．2．2 The procedure writeln
The procedure writeln is identical to write，except that after the last value has been written，a carriage return is output． The format of the procedure statement is：
\[
\text { writeln }\left(\mathrm{p}^{1}, \mathrm{p}^{2}, \ldots, \mathrm{pn}\right) ;
\]
which is equal to
BEGIN write（pl）；write（p2）；．．．writeln（pn）END；
To produce a single carriage return the user may call writeln without any parameters．

\section*{10.3 saving and Loading arrays}

Input and output of arrays from and to the tape recorder are supported by the standard procedures load and save．

\section*{10．3．1 The procedure save}

The procedure save will output arrays of any type to the tape recorder．The format of the procedure statement is：

> save (a);
where a denotes an array identifier．Upon activation of the procedure the tape LED will be switched on，a brief pause will be issued，the array will be output，and the tape LED will be switched off．

10．3．2 The procedure load
The procedure load will read a tape previously written by the save procedure．The format of the procedure statement is：
\[
\operatorname{load}(a, i) ;
\]
where \(a\) denotes an array identifier，and \(i\) denotes the identifier of an integer variable in which an error status wili be returned．
pon activation of the procedure the tape LED will be switched on．When the procedure ends the tape LED will be switched off， and the variable i will contain the error status of the procedure call：
i＝0：No errors occured
i＝l：Type mismatch．The number of components or the component type does not agree．
1＝2：Checksum error
i＝3：The procedure was aborted by the user pressing the〈ESC〉 key．

\section*{APPENDIX A：BLS PASCAL SYNTAX}

The syntax of BLS Pascal is presented using BNF formalism．The
following symbols are meta－symbols belonging to the BNF following symbols are meta－symbols belonging to the BNF formalism，and not symbols of the Pascal language：
\[
\begin{array}{ll}
::= & \text { Means 'is defined as'. } \\
\text { f...) } & \text { Means 'or'. } \\
& \text { Denotes possible repetition of the enclosed } \\
& \text { symbols zero or more times. }
\end{array}
\]

The symbol＜character＞denotes any printable character．i．e． a character with an ASCII value between \(\$ 20\) and \(\$ F F\) ．
\[
\langle\text { hexdigit> : : = <digit> | A | B | C | D | E | F }
\]

〈empty＞：：＝
〈program＞：：＝〈program heading〉 〈block＞．
〈program heading＞：：＝〈empty〉｜PROGRAM［＜character＞\} ;
＜block＞：：＝〈declaration part＞＜statement part＞
〈declaration part＞：：＝＜label declaration part＞
＜constant definition part＞＜variable declaration part＞
＜procedure and function declaration part＞
〈label declaration part＞：：＝〈empty〉｜LABEL 〈label〉 \(\{\) ，〈label＞\}
〈label＞：：＝〈unsigned integer〉｜〈identifier〉
＜unsigned integer＞：：＝＜digit＞\｛＜digit＞\}
〈identifier＞：：＝〈letter＞\｛＜letter or digit＞\}
＜letter or digit＞：：＝〈letter＞｜＜digit＞｜．
＜constant definition part＞：：＝empty｜
CONST＜constant definition＞；\｛constant definition＞；\}
＜constant definition＞：：＝〈identifier＞＝＜constant＞
＜constant＞\(:=\)＜unsigned number＞｜＜sign＞＜unsigned number＞ ＜constant identifier＞ i ＜sign＞＜constant identifier＞I ＜string＞
＜unsigned number＞：t＝＜unsigned integer＞｜sunsigned real＞｜ ＜unsigned hexinteger＞
＜unsigned real＞：：＝＜unsigned integer＞－sdigit＞\(\{\)＜digit＞f｜〈unsigned integer＞：〈digit〉 \｛＜digit＞\} E <scale factor> | ＜unsigned integer＞\(E\)＜scale factors．
\[
\begin{aligned}
& \text { 〈letter〉: : : = } A \\
& \text { M }
\end{aligned}
\]
＜scale factor＞：：＝＜unsigned integer＞｜〈sign＞＜unsigned integer〉
〈sign＞：：\(=+\)｜－
＜unsigned hexinteger＞：：＝\＄＜hexdigit＞\(\{\)＜hexdigit＞\}
＜constant identifier〉 ：：＝〈identifier〉
〈string＞：：＝，\｛＜character〉 \} '
＜variable declaration part＞：：＝〈empty＞｜
VAR＜variable declaration＞；\｛＜variable declaration＞；\}
〈variable declaration〉 ：：＝〈identifier〉 \｛ ，〈identifier〉 \} : 〈type〉
＜type＞：：\(=\) 〈simple type＞｜＜structured type〉
＜simple type＞：：＝INTEGER｜REAL｜BOOLEAN｜＜string type＞
＜string type＞：：＝STRING［＜constant＞］
＜structured type＞：：＝ARRAY \(\mid\) 〈index type＞\(\{\) ，＜index type＞\} OF ＜simple type＞

〈index type＞：：＝＜constant＞．．〈constant＞
＜procedure and function declaration part＞：：＝
\｛＜procedure or function declaration＞；\}
＜procedure or function declaration＞：：\(=\)
＜procedure declaration＞｜＜function declaration＞
〈procedure declaration＞：：＝〈procedure heading＞〈block＞
procedure heading＞：：＝PROCEDURE 〈identifier〉
＜formal parameter list＞；｜PROCEDURE＜identifier＞
＜formal parameter list＞；＜external／code specification＞；
〈formal parameter list＞：：＝〈empty〉｜
（＜formal parameter part〉\｛ ；〈formal parameter part〉；）
＜formal parameter part＞：：＝＜parameter group＞｜
VAR＜parameter group＞
〈parameter group＞：＝＜variable declaration＞
〈external／code specification〉 ：：＝〈external specification〉｜ ＜code specification＞
〈external specification〉 ：：＝EXTERNAL 〈constant＞
＜code specification＞\(:=\operatorname{CODE}\) 〈constant＞\(\{\) ，＜constant＞\}
＜function declaration＞：：＝＜function heading〉〈block〉
〈function heading＞：：＝FUNCTION＜identifier〉
＜formal parameter list〉 ：〈result type〉；｜FUNCTION
＜identifier＞＜formal parameter list＞：＜result type〉； ＜external／code specification）；
＜result type＞：：＝＜simple type＞
＜statement part＞：：＝＜compound statement＞
＜compound statement＞：：＝BEGIN 〈statement＞\｛ ；〈statement＞\} END ＜statement＞：：＝\｛＜label＞：\} <unlabelled statement>
＜unlabelled statement＞：：＝＜simple statement＞｜ structured statenent＞
＜simple statement＞：：＝〈assignment statetement＞ procedure statement＞｜＜goto statement＞ ＜init statement＞｜＜empty statement＞

〈assignment statement＞：：＝＜variable＞：＝〈expression＞｜〈function identifier〉 ：＝〈expression〉
＜variable＞：：＝＜simple variable＞｜＜component variable＞
〈simple variable〉 ：：＝〈identifier〉
＜component variable〉：：＝〈array identifier〉［ 〈expression〉 ［，〈expression＞\} ]
〈array identifier〉 ：：＝〈identifier〉
＜function identifier〉：：＝〈identifier〉
＜expression＞：：＝＜simple expression＞｜＜simple expression＞〈relational operator〉〈simple expression〉
＜relational operator＞：：＝\(=|\langle \rangle|>|\langle\mid\rangle=|<=\)
〈simple expression〉 ：：＝〈term〉 \｛ 〈adding operator〉〈term〉\}〈adding operator＞\(::=+|-|\) OR｜EXOR

〈term＞：：＝〈factor〉 \｛＜multiplying operator＞＜factor＞\}
＜multiplying operator＞：：＝＊｜／｜DIV｜MOD｜AND｜SHIFT
＜factor＞：：＝＜uncomplemented factor＞｜NOT＜uncomplemented factor＞
＜uncomplemented factor〉 ：：＝〈unsigned factor＞｜ ＜sign＞〈unsigned factor＞
＜unsigned factor〉 ：：＝〈variable＞｜＜unsigned constant＞ （＜expression＞）｜〈function designator〉
＜unsigned constant＞：：＝〈unsigned number＞｜＜string＞｜ ＜constant identifier＞
＜function designator＞：：＝＜function identifier＞ ＜actual parameter list＞
＜actual parameter list＞：：＝＜empty＞｜（＜actual parameter＞ ，＜actual parameter＞\}
＜actual parameter＞：：＝＜expression＞｜＜variable＞｜〈array identifier〉
procedure statement）：：\(=\) 〈procedure identifier〉 ＜actual parameter list＞
＜goto statement＞：：＝GOTO＜label＞
＜init statement＞：：＝INIT 〈array identifier＞TO＜constant list＞ INIT MEM［＜expression＞］TO＜constant list＞
＜constant list＞：：＝＜constant＞\｛ ，＜constant＞\}
〈empty statement＞：：＝〈empty＞
〈structured statement＞：：＝＜compound statement＞ conditional statement＞｜＜repetitive statement＞

〈conditional statement＞：：＝〈if statement＞｜＜case statement＞
〈if statement＞：：＝IF 〈expression〉 THEN 〈statement〉 ］ IF＜expression＞THEN＜statement＞ELSE 〈statement＞

〈case statement〉 ：：＝CASE 〈expression〉 OF 〈case list〉 END CASE 〈expression〉 OF 《case list〉；OTHERS：〈statement〉 END
＜case list＞：：＝＜case list element＞\｛ ；＜case Iist element＞\}
〈case list element〉 ：：＝〈constant list〉：＜statement＞
＜repetitive statement〉 ：：＝〈while statement＞｜＜repeat statement＞｜〈for statement〉
〈while statement＞：\(:=W H I L E\) 〈expression＞DO 〈statement＞
〈repeat statement＞：：＝REPEAT 〈statement＞\｛ ；＜statement＞\} UNTIL 〈expression〉

〈for statement＞：：＝FOR＜control variable〉 ：＝〈for list＞DO ＜statement＞
＜control variable〉 ：：＝〈variable＞
＜for list＞：：＝＜initial value＞TO＜final value＞ ＜initial value＞DOWNTO＜final value＞

〈initial value〉 ：：＝〈expression〉
〈final value〉 ：：＝〈expression＞

\section*{APPENDIX B: SOME USEPUL ROUIINES}
```

{ value will c

```

FUNCTION value (s: STRING[48]): REAL;

\section*{CONST}
zero=4B; \{ ASCII zero \}
VAR
r,f: REAL;
p: INTEGER;
ch: STRING[1];
negrdecpoint: BOOLEAN;

\section*{PROCEDURE nextchar;}

BEGIN
p:=pred(p); ch:=mid(s,p,l)
END;
BEGIN
f:=1; nextchar
IF ch=r-1 THEN
BEGIN neg: =true; nextchar END;
WHILE ( ch\(\rangle=1 \mathrm{~g}^{\prime}\) ) AND ( \(\mathrm{ch}\left\langle=\right.\) '9') \(^{\text {DO }}\)
BEGIN
r:=r*lo.g+(ord(ch)-zero) ;

nextchar:
IF (ch=1.') AND NOT decpoint THEN
BEGIN decpoint:=true; nextchar END;
END;
IF neg THEN value: \(=-r / f\) ELSE value: \(=r / f\); END \{ of value \};
pos will return the position of the first occurrance of the target string \(t\) in the source string s. If \(t\) does not occur within s, a zero will be returned

FUNCTION pos(t,s: STRING[481): INTEGER;
LABEL exitpos:
VAR
ldif, lt, p: INTEGER;
BEGIN
lt:=length(t); ldif:=length(s)-lt;
WHILE \(p<=1 d i f\) D
p: =succ \((\mathrm{p})\);
IF mid \((s, p, l t)=t\) THEN
BEGIN pos:=p; GOTO exitpos END
END
exitpos
END \{ of pos ):
topline will display the string \(s\) on line 16 of the
RROCEDURE topline (s: STRING[48]) ;
CONST
toplineaddr=\$BC9; \{ topline address - 1
blank=32; ASCII blank
VAR
p: INTEGER;
BEGIN
FOR \(p:=1\) TO length (s) DO
mem [p+toplineaddr]:=ord(mid(s, p, l));
FOR \(p:=\mathrm{F}\) TO 48 DO
mem[p+toplineaddr]:=blank;
END;

\section*{APPENDIX C: THE SYSTEM WORKSPACE}

The system workspace resides between \(\$ C 80\) and \(\$ D 00\). In this area the following addresses may be of interest to the user:

C92-c93 WSP The progran workspace stack pointer. When executing a program WSP will be set to point to the end address of the program. Each time a program block is activated (the main program, a procedure, or a function), WSP will move to a variables of that program part. When exiting the block, WSP will be altered to point to its original position.

C94-C95 PMTP The highest RAM address the currently executing program is allowed to access. Should wSP move beyond PMTP, the program will break and display a runtime error (runtime error 99).

C98-C9B RNDN The last calculated random seed. By initializing these four bytes (to an abitrary selected value) the user can obtain the same randon sequence each time the program is run.

The first instruction sequence in the object code of a program is a call to the initializing routine, followed by 5 bytes of parameters:

\section*{CD \(x x \times x\) aa bb cc dd ee}
bbaa is the end address of the program. WSP will be initialized to this value. ddcc is the highest RAM address the program is allowed to access (ddcc is obtained from MTOP (see BLS Pascal User Manual, appendix C) during compilation). PMTP will be initialized to this value. ee is a byte telling the runtime package where to transfer control to, in case of a runtime error, wher in ee is zero a jump to the language system will be executed, otherwis
control will be transferred to NAS-SYS.

The area between \(\$ D 00\) and \(\$ 1000\) is reserved for the system stack. Upon initialization the stack pointer will be loaded with \(\$ 1600\). The following applies concerning the use of the system stack area:

A procedure or a function call consumes two bytes of stack.
An active FOR loop consumes four bytes of stack
When evaluating an expression the stack will be used to store intermediate results. Hence, a comparison of two strings, may consume as much as 512 bytes, if both strings are of length 255.

During program execution the position of the stack pointer will not be checked. Thus, the user must be shure that recursive execution of procedures or functions does not enter a loop with no exits.

\section*{APPENDIX D: INTERNAL DATA FORMAT}

In the descriptions following below the symbol 'addr' denotes the address of the first byte a variable of the described type consumes. It is this value the standard function addr returns.

Integers and booleans:
Internally BLS Pascal does not differ between integers and booleans. An integer is stored as a 2 's complement 16 bit number, thus consuming 2 bytes. The least significant byte is stored first, as the \(Z-80\) standard specifies:
\[
\begin{array}{ll}
\text { addr } & \text { Least significant byte. } \\
\text { addr }+1 & \text { Most significant byte. }
\end{array}
\]

Reals:
A real is stored as a 40 bit mantissa and an bit 2 's exponent, thus consuming 6 bytes:
\[
\begin{array}{ll}
\text { addr } & \text { Most significant byte of mantissa. } \\
: & \\
\text { addr+4 } & \text { Least significant byte of mantissa. } \\
\text { addr }+5 & 2 \text { 's exponent. }
\end{array}
\]

The exponent is in binary format with an offset of \(\$ 80\). Hence, an exponent of \(\$ 84\) means that the value of the mantissa is to be multiplied by \(2^{\wedge}(\$ 84-\$ 80)=2^{n} 4^{=} 16\). An exponent value of zero indicates that the the value of the variable is zero. The value of the mantissa can be obtained by dividing the unsigned integer, consisting of the first five bytes, by \(2^{\wedge} 40\). The mantissa is always normalized, i.e, the most siginificant bit should be interpreted is a 1 . However, the sign of the mantissa is stored in this bit, a i indicating that the value is negative, and \(a b\) indicating that the value is positive.
Strings:
A string will consume its maximum length plus one bytes of storage. The first byte contains the current length of the string (called n), the second byte contains the n'th character of the string, the third byte contains the \(n\)-l'th character, etc.:
\begin{tabular}{ll} 
addr & Curient length \((n)\). \\
addr +1 & \(n ' t h\) character. \\
addr +2 & \(n-1\) th character. \\
\(:\) & \\
addr \(+n\) & First character.
\end{tabular}

If the current length of the string is less than the maximum length, the contents of the unused bytes are unknown.

Areays:
A component of an array uses the same internal format as a
simple variable of that specific type. The components with the lowest index values will be stored first. An array with mofe than one dimension will be stored with the rightmost dimension increasing first. E.g. an artay declared as:
a: ARRAY[1..3,1..3]
will be stored in this order:
\begin{tabular}{cc} 
lowest addr. & \(a[1,1]\) \\
& \(a[1,2]\) \\
\(a[1,3]\) \\
& \(a[2,1]\) \\
& \(a[2,2]\) \\
& \(\vdots\) \\
& \\
& \\
& \\
&
\end{tabular}

\section*{APPENDIX E: MACHINE CODE SUBROUTINES}

Declaring procedures and functions with the EXTERNAL or the CODE specification allows the user to call seperate machine code subroutines.
Parameters are transferred to the subroutine using the program workspace stack. Each parameter value is 'pushed' onto the stack, in the same order as they appear. When evaluating a function designator, memory space for the result value is reserved, before any parameters are pushed. The machine code routine may access the parameters by indexing from the value routine may access the paramet

The format of a value parameter is described in appendix D. In the case of a variabie parameter a word ( 2 bytes) will be pushed containing the absolute address of the first byte of the containing the absolute acares if the variable parameter is an array, the referenced variable. the first component will be pushed.

Assume that the following function declaration has been made:
FUNCTION test (VAR i: INTEGER; \(r: ~ R E A L): ~ S T R I N G[16] ;\)
EXTERNAL SDOQ:
When evaluating the function designator a call will be placed to \$De0, and the top of the workspace stack will be organised in the following manner :
\begin{tabular}{|c|c|c|}
\hline lowest addr. & \[
\begin{aligned}
& \text { WSP-25 } \\
& : \\
& \vdots \\
& \text { WSP-9 }
\end{aligned}
\] & 17 bytes reserved for the result value (of type string). These bytes are cleared at the time of the call. \\
\hline & \[
\begin{aligned}
& \text { WSP-8 } \\
& \text { WS P-9 }
\end{aligned}
\] & A word containing the address of the integer variable. \\
\hline & WSP-6 & Value of type real. \\
\hline highest addr. & WSP-1 & \\
\hline
\end{tabular}

The address of the first byte of the locations reserved for the result may be calculated like this:

WSP: EQU 0C92
:
\(\begin{array}{ll}\text { LD } & \text { HL, (WSP } \\ \text { LD } \\ \text { DE, } & -25\end{array}\)
LD DE,-25
ADD HL,DE
When executing the code HL will point to the first byte. The address of the integer variable can be obtained by executing:
\begin{tabular}{|c|c|}
\hline LD & HL, (WSP) \\
\hline LD & DE, -8 \\
\hline ADD & HL, DE \\
\hline LD & A, (HL) \\
\hline
\end{tabular}
\[
\begin{array}{ll}
\text { INC } & \text { HL } \\
\text { LD } & H_{r}(H L) \\
\text { LD } & L_{r} A
\end{array}
\]

As an example of user written machine code subroutines two routines are shown below which will input and output values from and to the data ports (NOTE: These routines are predeclared in the following declarations should be made

PROCEDURE out (port, data: INTEGER); EXTERNAL SDQ日; FUNCTION inp(port: INTEGER): INTEGER; EXTERNAL \$DOD;

The machine code subroutines could be like this:
 specification:

PROCEDURE out (port, data: INTEGER);

FUNCTION inp(port: INTEGER): INTEGER;
CODE \$DD, \(\$ 2 A, \$ 92, \$ 0 C, \$ D D, \$ 4 E, \$ F E, \$ E D, \$ 78, \$ D D, \$ 77, \$ F C ;\)
It is important to note that only fully relocateable routines can be implemented using the CoDE specification. Also note that the RET instruction ( \(\$ C 9\) ) ending an EXTERNAL routine must not be used in the case of a CODE routine.

All RAM between WSP and PMTP can be used as workspace by the machine code routine

The object code produced by the compiler, as well as the runtime package routines, are fully interruptable. If using interrupts, the interrupt service routine must save all registers to be used on the stack.

\section*{APPENDIX E: BGNCHMARR TESTS}

On the following pages the 15 Fascal benchmark tests, as proposed in Personal Computer world december 2980 issue, are listed. The timings obtained using a NASCOM 2 (Z-B microprocessor, 4 MHz 1 waitstate), are listed below, and, \(f o r\) comparison, the corresponding timings obtained on a heathkit H-11A (LSI 11216 bit processor), and on an APPLE 2 ( 6562 microprocessor), both running UCSD Pascal. All timings are listed in seconds:
\begin{tabular}{|c|c|c|c|}
\hline TEST & BLS Pascal & H-11A & APPLE 2 \\
\hline magnifier & 0.8 & 3.9 & 6.4 \\
\hline forloop & 8.6 & 42.8 & 74.3 \\
\hline whileloop & 23.8 & 4 4 .1 & 79.0 \\
\hline repeatloop & 20.8 & 35.6 & 63.3 \\
\hline 1itteralassign & 11.7 & 50.0 & 88.5 \\
\hline memoryaccess & 15.1 & 52.0 & 91.6 \\
\hline realarithmetic & 59.8 & 61.7 & 93.0 \\
\hline realalgebra & 58.5 & 48.6 & 83.4 \\
\hline vector & 62.2 & 102.9 & 283.3 \\
\hline equalif & 24.3 & 66.8 & 116.7 \\
\hline unequalif & 24.2 & 65.8 & 115.3 \\
\hline noparameters & 6.8 & 26.4 & 50.2 \\
\hline value & 12.5 & 29.3 & 54.4 \\
\hline reference & 12.1 & 29.7 & 55.3 \\
\hline maths & 65.3 & 25.8 & 66.0 \\
\hline
\end{tabular}

It should be noted that UCSD Pascal provides only \(6+\) significant digits when operating on reals, while BLS Pascal provides \(11+\) significant digits.

PROGRAM magnifier：
VAR k ：INTEGER
BEGIN
FOR \(k:=1\) TO 10900 DO
END．
PROGRAM forloop：
VAR j，k：INTEGER；
FOR \(k:=1\) TO 10000 DO FOR \(j:=1\) TO 10 DO：
END．
PROGRAM whileloop
VAR j，k：INTEGER；
BEGIN
FOR \(:=1\) TO 100月0 DO
BEGIN
j：＝1；WHILE \(j<=10\) DO \(j:=j+1\)
END．
PROGRAM repeatloop；
VAR j，k：INTEGER；
BEGIN
FOR k：＝1 TO 10000 DO
BEGIN
j：＝l：REPEAT \(j:=j+1\) UNTIL \(j>1 B ;\)
END．
PROGRAM litteralassign；
VAR j，k，l：INTEGER；
BEGIN
FOR k：＝1 TO 190日g DO FOR j：＝1 TO 10 DO \(1:=0\)
END．
PROGRAM memoryaccess；
VAR j，k，l：INTEGER；
BEGIN
FOR \(k:=1\) TO 1 日月Q日 DO FOR \(j:=1\) TO 10 DO \(1:=j\)
END．
PROGRAM realarithmetic；
VAR \(k\) ：INTEGER；\(x\) ；REAL；
BEGIN
FOR \(k:=1\) TO 1090 DO \(x:=k / 2 * 3+4-5\) ；
END．
PROGRAM realalgebra
VAR k ：INTEGER； x ：REAL：
BEGIN

END．
PROGRAM vector：
VAR k，j：INTEGER；matrix：ARRAY［0．，19］OF INTEGER； BEGIN
matrix［0］：＝1；
FOR \(\mathrm{K}:=1\) TO 100日B DO FOR \(j: \pm 1\) T0 1000
matrixtj］：matrix［j－1］

END．
PROGRAM equalif；
VAR \(j, k, 1\) ：INTEGER；
BEGIN
FOR \(k:=1\) TO 10000 DO FOR \(j:=1\) TO 19 DO IF \(j<6\) THEN \(1:=1\) ELSE \(k:=0\)
END．
PROGRAM unequalif；
VAR j，k，l：INTEGER
BEGIN
FOR \(\mathrm{k}:=1\) TO 16900 DO FOR j：＝1 TO l曰 DO IF \(j<2\) THEN 1：＝1 ELSE 1：＝0
END．
PROGRAM noparameters：
VAR J，k：INTEGER
PROCEDURE none5；BEGIN j：＝1 END
PROCEDURE none4；BEGIN none5 END
PROCEDURE none3；BEGIN none 4 END；
PROCEDURE none2；BEGIN none3 END；
PROCEDURE nonel；BEGIN none2 END；
BEGIN
FOR \(k:=1\) TO l日e日，DO nonel；
END．
PROGRAM value；
VAR jfk：INTEGER
PROCEDURE value5（i：INTTEGER）；BEGIN i：＝1 END；
PROCEDURE value4（i：INTEGER）；BEGIN value5（i）END； PROCEDURE value3（i：INTEGER）；BEGIN value4（i）END； PROCEDURE value2（i：INTEGER）；BEGIN value3（i）END； PROCEDURE valuel（i：INTEGER）；BEGIN value2（i）END； BEGIN
FOR k：＝1 TO 10908 DO valuel（j）
END．
PROGRAM reference；
VAR \(j, k:\) INTEGER；
PROCEDURE refers（VAR i：INTEGER）；BEGIN i：＝1 END；
PROCEDURE refer 4 （VAR i：INTEGER）；BEGIN refer5（i）END；
PROCEDURE refer 3（VAR i：INTEGER）；BEGIN refer4（i）END， PROCEDURE refer2（VAR i：INTEGER）；BEGIN refer3（i）END； PROCEDURE referl（VAR i：INTEGER）；BEGIN refer2（i）END；
BEGIN
FOR k：＝1 TO 1 a日月日 DO referl（j）

\section*{END．}

PROGRAM maths：
VAR \(k\) ；INTEGER；\(x, y\) ：REAL；
EGIN
FOR k：＝1 TO 1900 DO
BEGIN
\(x:=\sin (k) ; y:=\exp (x)\)
END

\section*{APPENDIX G: COMPILER ERROR_MESSAGES}

FIND address found.
Syntax error (e.g, missing ';' in the line above)
\(=1\) expected.
expected.
expected.
expected.
expected.
, expected.
, , expected.
'.' expected.
1: = r expected
:= expected
Lower limit greater than upper limit in array declaration overflow in array declaration.
'OF' missing in array declaration.
Illegal character in identifier.
String length cannot be zero.
Unknown data type.
Constant of type integer expected.
Constant of type string expected
Constant of type real expected.
Integer constant should be within the interval \(\theta<=i<=255\).
'BEGIN' expected.
'THEN' missing in if statement.
Case selector must be of type integer or of type string.
'END missing in case statement.
\({ }^{\prime} D^{\prime}\) ' missing in while statement.
Varible of type integer expected.
'TO' or 'DONNTO' missing in for statement.
'DO' missing in for statement.
Label identifier has not been declared.
'TO' missing in init statement.
Type string not allowed here.
Expression of type integer expected
Expression of type string expected.
Expression of type string ex
Type mismatch in expression.
Unknown identifier in expression.
Syntax error or overflow in numeric constant, or string constant contains a carriage return.
String constant too long.
Type mismatch in assignment or parameter list. Unknown variable identifier. Unknown array identifier.

0 Label declared and referenced but not defined.
99 Unexpected end of source text.

\section*{APPENDIX H: SUNQIME_ERROR MESSAGES}

01 Floating point overflow.
02 Division by zero attempted.
Attempt to calculate the square root of a negative number.
Attempt to calculate the natural logarithm of a negative or zero number.
05 Attempt to convert a real value outside the integer range into an integer.

10 The resulting string at a concat function call is longer that 255 characters, or the position at a mid function call is less than or equal to zero.

20
99

An array incex is outside range.
Workspace overflow. All available RAM has been used.

The Blue Label Sontware Pascal Language System, version \(\qquad\) , serial number \(\qquad\) , is copyrighted and all rights are reserved by Poly-Data inicrocenter ApS.

Name and address:
\(\qquad\)
\(\qquad\)
\(\qquad\)
hereby agreed noz to sell, rent, or otnerwise distributo the above mentioned progran, or any part hereof, in any form, without prior written consent of Poly-Data microcenter Aps.

SIGHED ATD AORED:

3ignature: \(\qquad\) Deto: \(\qquad\)

Dealer:

\section*{}

28 St Judes Road, Englefield Green EGHAM, SURREY TW20 OHE Telephone: Eghan 33603 Telex: 264475

Reg'd in England No. 1047769
VAT Registration Ho. 211579771

\section*{Software}

\section*{NASCOM PASCAL Language System}

NASCOM PASCAL is a complete 12 K Pascal language system, designed specially for the NASCOM 1 or 2 with NAS-SYS 1 or NAS-SYS 3 monitor. NASCOM PASCAL is based on the high-level programming language Pascal, widely recognized as the programming language of the future.

NASCOM PASCAL basically consists of a runtime package ( 4.5 K ), a control program ( 0.5 K ), an on-screen editor ( 1.5 K ) and a compiler ( 5.5 K ).

The compiler is a one pass compiler which directly produces \(Z-80\) machine code. This architecture not only provide very fast compilation
(2000 lines pr. minute), but also results in program execution speeds 3 to 20 times faster than equivalent BASIC programs.
In 5.5 K only it is, of course, not possible to implement standard Pascal. The NASCOM PASCAL subset does not support user defineable types, sets, and file types. However, all basic statement constructions are retained, and procedures/functions are fully recursive and support both variable and value parameters. The fundamental data types INTEGER, REAL and BOOLEAN are likewise supported, while the type CHAR has been replaced by the type STRING, which offers a more flexible character handling.

Briefly, the NASCOM PASCAL subset includes:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Statements: & \multicolumn{2}{|l|}{BEGIN.. END FOR . . TO/DOWNTO . . DO CASE . OF . . OTHERS Procedure statements} & IF . . &  & \[
\begin{aligned}
& \text { ELSE } \\
& \text { EPEAT . } \\
& . \text { TO }
\end{aligned}
\] & UNTIL & \multicolumn{2}{|l|}{\[
\begin{array}{r}
\text { WHILE . DO } \\
\text { GOTO } \\
\text { Assignment (:=) }
\end{array}
\]} \\
\hline Data types: & REAL & INTEGER & & & & BOOLEAN & & ARRAY \\
\hline Constants : & MAXINT & PI & \multicolumn{2}{|c|}{TRUE} & \multicolumn{2}{|r|}{FALSE} & \multicolumn{2}{|r|}{EMPTY} \\
\hline Operators: & \[
\stackrel{+}{\text { EXOR }}
\] & \[
<>
\] & \[
\stackrel{\text { DIV }}{>}<
\] & \[
\begin{gathered}
\text { MOD } \\
>=
\end{gathered}
\] & & \[
\underset{<=}{\substack{\text { SHIFT }}}
\] & AND & OR \\
\hline Procedures: & WRITE CALL & \[
\begin{aligned}
& \text { WRITELN } \\
& \text { SCREEN }
\end{aligned}
\] & READ & RE & READLN & & LOAD & SAVE \\
\hline Functions: & ABS EXP ROUND CONCAT & \begin{tabular}{lc} 
SQR & SQRT \\
INT & FRAC \\
ORD \\
RANDOM
\end{tabular} & & VGTH & \[
\begin{gathered}
\operatorname{COS} \\
\text { PRED } \\
\text { MOINT }
\end{gathered}
\] &  & ARCTAN ODD LEFT P & \[
\begin{array}{r}
\text { LN } \\
\text { TRUNC } \\
\text { RIGHT } \\
\text { YBOARD }
\end{array}
\] \\
\hline Declarations: & LABEL & CONST & VAR & & PROCE & EDURE & & NCTION \\
\hline
\end{tabular}

Reals provide 11.5 significant digits. Integers are within the range -32768 to 32767 (16 bits). Strings cañ be up to 265 characters long. Arrays may have any number of dimensions, and can be of any of the types INTEGER, REAL, BOOLEAN, or STRING. Constants may be presented in either decimal or hex notation. User written machine
code subroutines are supported using procedures/ functions declared as EXTERNAL or CODE. Thus, a machine code subprogram is treated by-the .-. compiler as a normal procedure or function. The procedure WRITELN allows for numbers or strings to be output using a specific format.

\section*{NASCOM PASCAL Language System}

The compiler can be invoked in several different modes. The COMPILE and the RUN commands will load the object code directly into memory after the source text, allowing you to execute your programs almost immediately. The TAPE command will output the object code to the tape recorder, using NAS-SYS block format. When the compiler is invoked from a FIND command it will tocate the statement that eaused the most recent runtime error. The object code produced by NASCOM PASCAL requires only the runtime package to be present in memory during execution. Once a program is tested it can be merged to the runtime package to form a directly executeable machine code program.
The NASCOM PASCAL editor is a very powerful on-screen editor. Apart from being able to scroll up and down over the text, the display can scroll to the left and to the right, allowing lines to be up to 80 characters in length. Blocks can be marked and deleted or copied to any other location in the source text. A build-in tabulator eases source text entry, and the GRAPH key can be selected to operate as a CAPS-LOCK key, which, when depressed, reverts the SHIFT key function. The find command will locate any target string in the source text. Optionally, the continue command can be used to find further occurrances. The editor reacts to 27 different commands, all of which are control-characters, i.e. characters produced by depressing CTRL and another key, or by depressing ENTER, BS, ESC, etc. This greatly simplifies command entry.

Program texts can be saved using file names of up to 60 characters. When a program is loaded it is merged to the end of the current program, thus allowing you to maintain a library of separate subroutines.

NASCOM PASCAL is meant to offer an alternative to BASIC. Programs written in NASCOM PASCAL will execute much faster than their BASIC counterparts, and better programming techniques can be practised, as Pascal is far more versatile than BASIC, Compared to other Pascals the NASCOM PASCAL offers a lot more features in the same amount of memory, and shows Benchmark timings comparable to those obtained on 16-bit mini computers.

NASCOM PASCAL is available in two versions: A tape version, which resides in memory from 1000 H to \(3 F F F H\), and an EPROM version, which is situated between D000H and FFFFH. The EPROM version is supplied in 62716 EPROMs, together with instructions to fit the EPROMs on the NASCOM 2 main PCB by paging the top 12 K of memory into two banks (NASCOM PASCAL. in one bank and NASCOM BASIC plus an assembler in another bank). The documentation consists of two printed manuals: An Operating Manual ( 17 pages), which describes how to operate the system, and a Programming Manual ( 40 pages), which describes the NASCOM PASCAL subset.```


[^0]:    3.3 Block commands

[^1]:    [i+j,7]

[^2]:    It consists of the identifier designating the function and a list of actual parameters. The parameters are variables or expressions, and are substituted for the corresponding formal parameters. Examples:

    ```
 sin(y)*\operatorname{cos(x) ',firstname,' ',surname)}
 concat('Name:
 (sum{arlob)<S} AND (z=0
    ```

