Blue Label Software

Pascal

User Manual

/ ! microcenter

BLS Pascal User Manual -1-

INDEX

B: INTRODUCTION ,......

R YRR L R T e

1, THE COMMAND MODE

.
.
.
.
.
.
.
.
‘.
.
N
.
.
.
.
:
.
.
.
+
.
.
.
.
.
.
N
.
[PER

2. LOADING AND SAVING SOURCETEXTS
2.1 The SAVE command
2.2 The LOAD COMMANGA . uvuunrnnsssneecnnsscseenans teedamna
2.3 The VERIFY command svvesewen-

EE et bd e YA I e s A s

L R N N]

R

3. THE EDITOR vuevuwvuns L T eresses O
3.1 EQIting COMMBNAS uvuuissareeraerensnrameressavennennsss 5
3.2 Cursor movement commands T T A res B
3.3 Block commandsS ..evvenans Pretavnanaa vt samaaan veessnas B
3.4 Search commands Aresabianraresreuranna trresameaa 7
3.5 Tabulator COMMANAS +4isvevomrsenasarenanssancennrsonss 7
3.6 Other editor commands Feretaiesarar et ban e vee B

4. THE COMPILER .seveavocana Per e tr s usar e s st e sannaan 9
4.1 The COMPILE COMMANGA «uvsversnnnannoronrnnnn reeesanaaa 1B
4,2 The RUN commandeveeecenea Fve s varar et d e . 18
4.3 The TAPE command e ee st a st r e a veecss 10
4.4 The FIND commandoveuevena vedssnnana resianmame vas 11

5. MISCELLANEOUS COMMANDS ca e sttt drar sttt b e sevsman 12

5.1 The MEMORY COMMANA +.vvvevvussnosrncenas treeinmrasanas 12
5.2 The ZAP command fresane . 12
5.3 The QUIT command ...eeeeuveunmea cresebunmran thasaenaan 12

Appendix A: System Sstartup retaseianana retesianaaa vees 13
Appendix B: System workspace
Appendix C: MEmMOrYy MAPS .cuecrnssosnnaan rerseseeaanaa sereaaar 135
Appendix D: The user defined output routinevveweee... . 16
Appendix E: Command summary ..

..... B Y

-2- BLS Pascal User Manual

@: INTRODUCTION

Blue Label Scftware Pascal is a complete 12 K Pascal language
system developed for use on the NASCOM range of microcomputers,
The minimum computer system required to take full advantage of
the BLE Pascal is:

NAS~-S5YS 1 or NAS-SYS 3 monitor.)
16 K RAM (ROM version} or 32 K RAM (Tape version).

This manual describes how to operate the language system. In
programming matters the user should refer to the BLS Pascal
Programming Manual.

The Blue Label Software Pascal Language System is copyrighted
and all rights are reserved by Poly-Data microcenter ApS. The
distribution and sale of this prcduct are intended for use of
the original purchaser only. Copying, duplicating, selling or
otherwise distributing this product is a vioclaticon of the law,

Copyright (C} 1981 Poly-Data micrecenter ApS
Strandboulevarden 63, DK 2180 Copenhagen O

Blue Label Software is a trademark of Poly-Data microcenter ApS.

BLS Pascal User Manual -3-

l: THE COMMAND MODE

When started as described in APPENDIX A, the system will prompt :

BLS Pascal version x.x

Copyright (¢) 1981

Poly-Data microcenter ApS

>_ . .
where x.x is the version number. The '>' character is the
system prompt and indicates that the system is ready for command

entry. When entering commands the following control-keys may be
used:) .

<BS> Backspace,
<ESC> Clear line.
<ENTER> Process command line,

A command consists of a command werd eventually followed by a
command parameter. At least one blank is required between the
command word and the parameter. A command need not be written
fully, but may be abbreviated to the first character, e.qg. the
commandg :

LOAD game
can be abbreviated to
L game

The cperating system recognizes 11 commands, which, according to
their function, can be divided into 4 groups:

1. Loading and saving sourcetexts
2. The editor

3. The compiler

4. Miscellaneous commands

-4~ BLS Pascal User Manual

2: LOADING AND SAVING SOURCETEXTS

Sourcetexts are written to tape uging the NAS-5YS block format.
Thus, if a checksum error occurs during a load, the user can
rewind the tape and read the erroneous block once more.

2,1 The SAVE command

The SAVE command writes the current sourcetext to a cassette
tape. The command line format is:

SAVE filename or 5 filename
The filename can have any length and may contain blanks.
2.2 The LOAD command

The LOAD éommand reads a sourcetext from a cassette tape, The
command line format is:

LOAD filename or L filename

If the filename is omitted, the first file fognd will be loaded.
Each time a file is found, the system will print:

File filename found

When lcading a sourcetext it will be placed after the current
scurcetext, thus allowing the wuser to lcad several secperate
subroutines. If a new sourcetext is to be loaded the current
socurcetext must be deleted first e.g. by issuing a 2AP command.
A LOAD command can be aborted at any time by pressing <ESC>,

2.3 The VERIFY command

The VERIFY command is identical to the LOAD command, except that
the sourcetext read from the cassette tape ie not loaded into
memory. The purpose of the command 1is to check that the
sourcetext can be read from the tape without errcr, The command
line format is:

VERIFY filename or V filename

If the filename is omitted, the first file found will be
verified.

BLS Pascal User Manual -5-

3: THE EDITOR

The system editor is an on-screen editor, which means that the
display may be 1likened to a window, which can be moved abaut
over the sourcetext. The cursor always reside within the window
and its position determines where characters or lines are to be
edited, deleted or inserted,

The maximum line length is 8@ characters. As the display is
only 48 <characters wide the text window can, apart from moving
up and down, move to the left and to the right. If one enters
more than 48 characters on a line the cursor will not move to
the next line, but instead the display will scroll to the left
and the leftmost characters will 'disappear'. This may seen
confusing, but when writing Pascal programs it is often
preferable to have a 1line length greater than 48 characters.
Also it enables cne to take full advantage of an 88-coloumn
printer.

The editor is invcked by the command line;
EDIT or E

When entering the editor the cursor will be placed in the same
spot it left previcusly, or, if it is the first activation after
a cold start or a ZAP command, the display will be cleared and
the cursor will be moved to the top left corner.

The editor recognizes 27 commands which uses the ASCII values
between @1H and 1BH, i.e. the control characters, All other
characters will, when entered, be inserted in the sourcetext at
the current cursor position.

If &ll available RAM has been used, the system will return to
the command mode and print:

Overflow
The sourcetext is undamaged, but any attempt to enter more text
will be denied. If possible one has to expand the buffer area,
by moving MTOP to a higher adress {see APPENDIX B), before
continuing., :

In the description of the editor commands the following
notations will be used:

CTRL/ or SHFT/ followed by a character indicates that
the character is te be entered while depressing either
<CTRL> or <SHIFT>.

<RI> means right arrow, <LE> means left arrow, <UP>
means up arrow, and <DO> means down arrow,

3.1 Editing commands
The editing commands are used to edit the sourcetext,

<BS> Move the cursor left and hlank the cursor pesition.
If the cursor is in the first column of a line, move

<ENTER>

<BSC»

SHFT/<RI>

SHFT/<LE>

SHFT/<DO>

SHFT/<UP>

BLS Pascal Ugser Manual

it to column 79 in the line above.

Move the cursor to the first column in the next line
and insert an empty line.

Delete the current line and move the curscr to the
first column in the line above.

Insert blank at the cursor and move rest of line to
the right, CTRL/V may be used instead of SHFT/<RI>,

Delete character at cursor and move rest of line to
the left. CTRL/U may be used instead of SHFT/<LE>.

Insert a blank line, and move the cursor to the
first column. CTRL/Z may be wused instead of
SHFT/ <DO>

Delete current line, and move the cursor to the
first celumn. CTRL/Y may be used instead of
SHFT/<UP>.

3.2 Cursor movement commands.

The cursor movement commands are used to move the cursor without
altering the sourcetext.

<RI>

<LE>

<DO>

<UP>

CTRL/B
CTRL/E
CTRL/N
CTRL/0

<LF>

<CS5>

Move the cursor right. If the curscr @s in column
79 move it to first column in the next line., CTRL/R
may be used instead of <RI>.

Move the cursor left, If the curser is in the first
column move it toe <column 79 in the line above.
CTRL/Q may be used instead of <LE>.

Move the curscr down. If the curser is at the
bottom line scroll the display up. CTRL/T may be
used instead of <DO>,

Move the cursor up. 1f the cursor is at the top
line scroll the display down., CTRL/S may be used
instead of <UP>,

Move the cursor to the first line of the sourcetext.
Move the cursor to the last line of the sourcetext.
Move the cursor 14 lines down.

Move the cursor 14 lines up.

Move the <cursor to the first column in the current
line, CTRL/J may be used instead of <LF>.

Move the cursor to the column after the last
character on the current line. CTRL/L may be used
instead of <CS5>.

3.3 Block commands

BLS. Pascal User Manhual =-7-

The block commands affect blocke of the sourcetext. A block is
marked by block markers which can be inserted using the CTRL/A

command,

& block command only affect the first marked block in

the sourcetext. If no blocks are marked all block commands
{except CTRL/A) will be ignored.

CTRL/A

CTRL/D

CTRL/ I

CTRL/P

This command must be followed by a character. A 'B®
indicates that a begin-block marker is to be
inserted, an 'E' indicates that an end-block marker
is to be inserted. Block markers are always
inserted in front of the first character in the
current line. If the current line already contains
a block marker the CTRL/A command is ignored.

Delete the first marked block ({including block
markers) from the sourcetext and move the cursor to
the line which contained the end-block marker.

Insert the first marked block {excluding block
markers) before the current line. If the cursor is
within the first marked block CTRL/I is ignored,

Print the first marked block to the user defined
cutput routine (see APPENDIX D). The CTRL/P command
must be followed by a character. 'L' indicates that
the listing should include line numbers and any
other character indicates that no 1line numbers
should be issued.

3.4 Search commands

The search commands are used to locate a target string in the

sourcetext.

CTRL/F

CTRL/C

Find the first occurance of a target string of
maximum 4@ characters. When CTRL/F 1is typed an
empty line is inserted and, as a promt character, a
right arrow is printed. The target string |is
entered using the same control-keys as when entering
commanéd lines. When <ENTER> is pressed the target
string will disappear. If the string searched for
is found the curscr will be placed at the first
character. If not found, the cursor does not move.
The search always starts at the next line.

Continue searching for the last entered target
string,

3.5 Tabulator commands

CTRL/K

This cemmand is used to alter the tabulator length.
The command must be followed by a character, which
determines the length. The character 'A' denotes
the length 1, 'B' denotes the length 2, etc., which
means that the length will be the ASCII value ¢f the
character less 64. The maximum length is 63, If
one selects a length of zero (by typing CTRL/K
followed by f8'), the tabulator enters the indent
mode, In this mode, when activating the tabualtor,
the cursor will move to the position bepeath the

<CH>

BLS Pascal User Manual

first character in the line above.

Move the cursor to the next tabulator position, or,
if the tabulator is in the indent mode, to that
column in the current line which corresponds to the
column of the first c¢haracter in the previcus line.
CTRL/W may be used instead of <CH>.

3.6 Other editor commands

CTRL/G

CTRL/X

This command is used to alter the <GRAPH> key
function, The command must be followed by a
character. An 'A' means that the <GRAPH> key is to
function as an ALPHA-LOCK key: Each time it is
depressed it will reverse the function of the

' ¢SHIFT> key (for the letters A-Z only}. A 'G' means

that the <GRAPH> key is to function normally.

Clear the display and return to the command mode.
In addition delete all block markers.

BLS Pascal User Manual -9-

4: THE COMPILER

The compiler is the heart of the language system. It is capable
of translating the sourcetext into executable Z-88 machine code.

The compiler can be invoked in several different modes:

1} Using the COMPILE/RUN commands the object code will be
placed directly into memory after the sourcetext. This
method is the fastest, but also requires the most RAM space
as both the sourcetext and the object code must reside ihb
memory at the same time.

2) When the compiler is activated from a TAPE command the
object code will be dumped to the cassette recorder using
NAS-5YS block format. Of course this method is somewhat
slower than the above, but it saves memory, and allows the
user to direct the object code to any address.

3} WwWhen activated from a FIND command the compiler can be used
to locate a statement in the sourcetext which corresponds to
a certain address in the object code, e.g. the address of a
runtime error, This mode is extremely useful for easy
debugging ¢of programs.

When locating an error the compiler will automatically invoke
the editor, and place the cursor in the erroneous statement.

Let us assume that the following program has been entered:

VAR number: REAL;
BEGIN

readln{numbr);

writeln{'The square root is',sqrt{number}};
END.

The program contains an error, as the identifier number is
misspelled in the readln statement. If a compilation is
attempted, this is what will happen:

Cempilation error 64
readln{numbr) ;
writeln('The sguare root is',sqgrt{number});

END.

Press {(SPACE>

To indicate the error the cursor is placed at the 'n' in the
misspelled identifier, When the spacebar is pressed the top
line will be cleared and the user may edit the scurcetext in the
same way as usually.

If the buffer overflows during a compilation the compiler will
abort, and print:

Cverflow

If it is possible the user must expand the buffer area, using
one of two methods:

1) If there is more RAM available MTOP should be moved to a

-18- BLS Pascal User Manual

higher address (see APPENDIX B).

2) If the compiler was activated from a COMPILE or a RUN
command, the TAPE commahd should be used instead.

4.1 The COMPILE command.

Activating the compiler from a COMPILE command will place the
object code directly into memory in succession of the
sourcetext. The command line format is:

COMPILE or C

When the command line is entered the compiler will print:
- Compiling .

If no errors occur the following will be printed when the
compilation is completed:

Compiling OK
Text: Saaaa $bbbb <{xxxxx>
Code: $ccce $dddd <yyyyy>

aaaa and bbbb are the start and end address of the sourcetext
{in hex) and xxxxx is the size in bytes. cccc, dddd, and yyyyy
are the corresponding parameters of the object code.

4.2 The RUN command

This command is used to execute a program. The command line
format is:

RUN or R

If no object code is present the compiler will be activated
prior to executing the program. Assuming no errors occcured
during compilation, or if the object ccde was already present,
the system will print:

Running

and control will be transferred to the program. When the
program ends the control will ke transferred back to the
language system.

If a runtime error occurs during program execution the system
will print:

Runtime error xx at $nnnn

and control will be transferred to the language system {or to
NAS-5YS if the program was compiled using the TAPE command; see
chapter 4.3). =xx is the error number and nnnn is the error
address (in hex). The error address is not an abseclute address
but an offset address from the start address. By issuing a FIND
command (see chapter 4.4) the user may locate the statement that
caused the runtime error.

4.3 The TAPE command

BLS Pascal User Manual =11~

When activating the compiler from a TAPE command the cobject code
will be dumped to the <cassette recorder using WNAS-5YS block
format. The command line format is:

TAPE nnhn or T nhnn

where nnnn is the absolute start address (in hex) cf the
ptogram, If nnnn is omitted the system will choose $218@ ($188P
for the ROM version) as start address ($2188 is the end address
of the runtime package in the tape version). When compilation
is complete the system will print:

xxxx End,
where xxxx is the end address of the object code.

When the tape is loaded (using the R command in RAS-5YS) the
program can be executed by entering the NAS-5YS command Exxxx.
The program reguires the runtime package to be present between
$18P@ and $2180 (SDOBEG and $E18@ for the ROM version). However
the rest of the language system is not needed during program
execution, Thus, when a program is thoroughly tested it can be
compiled using the TAPE command (and, if you are using the tape
version, merged to the runtime package) to form a directly
executeable object code.

4.4 The FIND command

The FIND command is used to locate a statement in the scurcetext
which corresponds to an offset address in the object code, In
this mode the compiler will generete no object code. The
command line format is:

FIRD nnnn or F nnnn
where nnnn is the offset address. The offset address is
calculated by subtracting the start address from the address one
wishes to locate. If a program starts at $2188 the command:
FIND 115
will locate the statement, which origins at $229%5. If nnnn is
omitted the address of the last runtime error is substituted.
When activated from a FIND command the compiler will print:
Searching

If the offset address is reached during compilation the editor
will be invoked and the top line will display:

Compilation error PR Press <SPACE>
The cursor will be placed at or just after the relevant text.
When the spacebar is pressed the top line will be cleared and

the user may edit the sourcetext in the same way as usual. If
the offset address is not reached the system will print:

Searching ?

-12- BLS Pascal User Manual

5: MISCELLANEQUS COMMANDS

5.1 The MEMORY command
This command displays the start and end addresses and the size
of the sourcetext, and the same parameters of the object code if
it is present. The command line format is:

MEMORY or M
The command will print:

Text; Saaaa $bbbb <xxxxx>
and, if the object code is present, in addition:

Code: Sccecc $dddd <yyyyy>
aaaa and bbbb are the start and end address of the sourcetext
(in hex} and xxxxx is the size in bytes. ccce, dddd, and yyyyy

are the corresponding parameters of the object code,

5.2 The ZAP command

This command deletes the sourcetext as well as the object code.
The command line format is:

ZAP

NOTE: To secure that the ZAP command is not invoked
accidentally, command word abbreviation does not apply
here.

5.3 The QUIT command

This command transfers the control to NAS-SYS. The command line
format is:

QUIT or 8]

The language system may be warmstarted later, using the method
described in appendix A.

BLS Pascal User Manual -13-

APPENDIX A;:; SYSTEM STARTUP

Tape version:
The BLS Pascal tape version is recorded at 12PP baud using the
NAS-SYS block format. The tape is loaded using the R command.
The system is coldstarted by entering:

E2188 aaaa

where aaaa i1s the highest RAM address the system is allowed to
access. If aaaa is omitted all available RAM will be used.

The system is warmstarted by entering:

E2182

ROM version:
The system is coldstarted by entering:
J aaaa

where aaaa 15 the highest RAM address the system is allowed to
access. If aaaa is omitted all available RAM will be used.

The system is warmstarted by entering:

E

-14- BLS Pascal User Manual

APPENDIX B: SXSTEM WORKSPACE

The system workspace resides from $CBP to $DPP. In this area
the following addresses may be of interest to the user:

CBB-C81 MTOP The highest RAM address the system is allowed

to access,
C82-C83 EOQFP The end address of the sourcetext.
C84-C83 PEND The end address of the object code.

BLS Pascal User Manual

APPENDIX C; MEMORY MAPS

Tape versiocn:

@CBO +—————————— s mm—mm e
1 system workspace

D98 +-———————m e
1 system stack

1¢08 +- - ——
! runtime package

2188 +-—emeem e e
1 operating system

2980 +--—r————————
1 compiler

4088 +-———-- -—
: sourcetext

EQFP +—- —— _—
1 object code

PEND + ———————— e
1 program workspace

MTOP 4w——mem e mmmm e mm e e

ROM version:

gcee
Dea
1000
EQFP
PEND
MTOF
Depe
E180
ES8P

FFFF

+ ______________________
! system workspace

+ ______________________
1 system stack

+ ______________________
! sourcetext

+ ______________________
! object code

e s o
1 program workspace

+ ______________________
t

e e e
! runtime package

+ ______________________
! operating system

+ ______________________
! compiler

+ ----------------------

~16- BL5 Pascal User Manual

APPENDIX D: THE USER DEFINED OUTPUT ROQUTINE

When using the editor command CTRL/P, output will be directed to
the NAS—S?S user routine. A jump vector to this routine should
be placed in $UQUT ($C77-$C79). Listed below is a routine to
control a printer connected to the serial port with a BUSY line
{active high] connected to bit 7 of port B:

0861 ADOY ORG @D@PH
Bepn2

08083 dDPE FS PRINT: PUSH AF
G804 ODPl DBBS Pl: IN A,{0)
6985 2Do3 17 RLA

@006 ODP4 3EBFB JR C,Pl
29p7 2D Fl POP AF
@ed8 ¢DP7 DFGF SCAL 6FH
2029 4ppg C9 RET

go1g :

491l @pla END

BLS Pascal User Manual

APPENDIX F: COMMAND SUMMARY

Command mode:

SAVE filename
LOAD filename
VERIFY filename
EDIT

COMPILE

RUN

TAPE nnnn
FIND nnnn
MEMORY

ZAP

QUIT

The editor:

<BS>
<ENTER>
<ESC>
SHFT/<RL>
SHFT/<LE>
SHFT/<DO>
SHFT/<UP>

<RI>
<LE>
<DO>
<Up>»
CTRL/B
CTRL/E
CTRL/N
CTRL/ 0
<LF>»
<Cs>

CTRL/A {B,E)
CTRL/D
CTRL/ I
CTRL/P (L,?)

CTRL/F
CTRL/C

CTREL/K ({char)
<CH>

CTRL/G (A,G)
CTRL/X

Write sourcetext to cassette.
Read sourcetext from cassette.
Verify.

Activate editor.

Compile sourcetext,

Execute object code.

Compile and dump cbject code to cassette.

Locate address in sourcetext,
Display program parameters.

Delete sourcetext and object code.

Return to NﬁSfSYS.

Backspace.

Move curseor down and insert line,
Delete 1line and move cursor up.

Insert blank.
Delete character.
Insert line.
Delete line,

Move cursor right.
Move curscr left.
Move cursar down.
Move cursor up,

Move cursor to beginning of sourcetext.
Move cursor to end of sourcetext.

Move cursor down 14 lines.
Move cursor up 14 lines.
Move curspr to first coloumn.

Move curser to last character.

Insert block marker,
Delete first marked block.
Insert first marked block.
Print first marked block.

Find target string.
Continue searching.

Alter tabulator length.
Move curseor to next tabulator

Blter <GRAPH> key function.
Return to command mode,

position.

-

-17=

e Fasdid SedTwipe
Pascal

Prsgrarmening Maral

BLS Pascal Programming Manual

INDEX

7.

INTRODUCTION w.esissnmanassonanssaosnrnanssisrnannassrennred

BASIC ELEMENTS OF THE LANGUAGE ... cciverrsannaiosvancavens
1.1 SYMBDOLS svrvecssaerananisrsnnsssosssansnasrannan casne

1.2 Reserved words and standard identifiers ...seevacnaces

1.3 SePeratOrS .usasnracmcsssasarrosnoranastssraravaterss

USER DEFINED ELEMENTS .. .cuievveransssrsnanatssrannnsasens
2.1 I3entIifieIS seamucisoronnrutsnrsnansototanansssnsanass

2.2 NUMDELS +evwnansosonanan I T

2.3 SEYiNgS .ccvessraritsoranassssranavionananaroronnanss
2.8 COMMENES o eeuvesrsranarisrsansarsnsnanenrisranssmsisoen

T2 TYPES v iveerrarisasnsannvsnssamnas wererEra Rt s
1 INCEQEYS sevirevaranavionamsasororarans teesannan ceena
2 PEALS 4oceirerasnaisssssnsstsrananasisssnnatssnossanrs
3 Booleans ...ievecanan ievasans Fesvanebsaemannn csisevan
4 SLIINGS wuvavorersansessraravaresancassesanans vraaanae
5

AFFAYE +vinsrsnravearonsrannsiasrassvtosanansssssssaran

3.5.1 The MEM AITAY ssvassvsasssnsmararsnnnarssssaans

FEXPRESSIONS st vcumsssrasnvaonsnnanaa [Y
5.1 The operator HOT Ceresraman vdererre et A
5.2 Multiplying OPErators .esvescsniosrorsconseracramniss
5.3 Adding operators ..eesccavessranan- feeenanan feer e
5.4 Relatiénal OperatorsS s.essssssrascartcasraranvansrrans
5.5 Function designatofs .i.c.iesecrcnsnsssarananssrssnnns

TATEMENTS .4 ereacvoesvanaciosrannrnitasranamassssanantis

=

Simple statementscvesvemmisrosaaacasroanncn T
6.1.1 Assignment statements- fevaramsaasanans
6.1.2 Procedure sStatements ...cisisnsraravonennanns ..
6.1.3 GOTO statements svscevvvsnarsscassronannes saserea
6.1.4 INIT statements .saecercvensaanas fedasramru e
6.1.5 Empty Statements .eesrcvraarennarrtsrsnrannnsas
6.2 Strucktured statements ... scacrasrrs it s> e
6,2.]1 Compound statements et snanes ieeraaean ‘e
6$.2.2 Conditional statements .s.c.sessanans seasranavs .

6.2.2.1 IF statements ...cevcean~ treremmuns cean
6§.2.2.2 CASE statements ..svecasvs toenemnas cara
6.2.3 Repetitive statements issaaemsesireanans e
§.2.3,1 WHILE statements ...cesevernnsssonnaraa
6.2.3.2 REPEAT statements ..,..... carenraren ces
6.2.3.3 FOR statements fereramraesasra s

PROCEDURES .o evarnvtovannana seennans ftaeranmed e
7.1 Procedure declarations ... ssaassns ciaraaaas tisevansa
7.1.1 Procedure headiNg .scsmeavassssanaciasrnanns “en
7.1.2 The declaration part ,..... isrsmanann iseranaaas
7.1.3 The statement part ...aceu.a- deremara ey ceeavan
7.2 Standard ProCedUrES ..ivevarassarsnsrsanaasssensarnas

THE DECLARATION PART ...cevscnnrissrannns cier e amny cerann
4,1 Label declaration part ..eeceaa. ssnemanan csssesrarass
4.2 Constant definition Part .c.eissisrasernvessanans iasraea
4.3 Variable declaration patt «eca-a.. ficdsmarar e v anna
4.4 Procedure and function declaration part ss.se.vnveesas

[PY]

hn o Th Y [EL I - %

Co e wd =]]]

—
D D D MD

—
[

11

[
[

13
13
13
13
13
14
15
15
15
15
15
16
16
16
17
17

i8
18
18
18
18
18

2= BLS Pascal Programming Manual BLS Pascal Programming Manual -3-

B: INTRODUCTION
B, PUNCTIONS ,ivuveaseacnnnmrosnoraansasuunmrrnarssnasacnvene 20
8.1 Function declarations

sesessasararrrrarrararaasnrnras 20

8.1.1 Function heading .suvuiseecsssnansvnerasassancanss 2B The Blue Label Software Pascal Language System is meant to offer
8.1.2 The declaration PArt cveeeeveossesasansmrrnneas 28 an alternative to BASIC, Not only will the user gain executicn
8.1.3 The statement Part .i.iieeinroveeracsreonacnnss 28 : speed, Dbut he can also practise better programming techniques,
8.2 Standard fUNCEIONSE ..seserasanasvnrasnasassssncnsanss 28 as Pascal is far more versatile than BASIC.
8.2.1 Arithmetic fUNCLIONS vvvvvrerarcassncncnarnnras 20
8.2.2 Integer FunctionNB .iuciuveverrenaonasesasananas 21 As the BLS Pascal system is very compact {only 12K, hereeof 5.5K
8.2.3 String functions ,.veeecsnseasnnenaseasenasaanea 21 compiler}, it has not, of course, been possible to implement
B.2.4 Transfer FUNCLIONS .vuvseensosenensonnrnssnonns 22 standard Pascal in full: The BLS Pascal subset does not support
B.2.5 Further standard functionseeesessononasnns 22 user defineable types, sets and file-types, However all of the
basic statement constructions are retained, and procedures and
9. PARBMETERSvvvsevonvonacnrrosnsonensenssnssssasnnnnnny 23 functions allow for both value and variable parameters. The
5,1 Formal and actual PAramMeLerS -cueevnvresenavaransanes 23 fundamental data types INTEGER, REAL and BOOLEAN are likewise
9.2 Parameterl tYDPES .uvvvenavssasasassasssicnnrnsnerarranes 23 supported, while the type CHAR has been replaced by the type
9.2.]1 Valie PAarameters .uisvsmeneosaosaoasasoncasanen 23 STRING, which offers a more flexible character handling.
9.2.2 Variable parameters .sieusisvcvevsessncransananes 23 . -
9.3 Rules applying t0 PAramMeters .usicceecesescoeavaasases 24 This manual fully defines the BLS Pascal subset, and should be

carefully studied before any programming efforts are made.

18. INPUT AND OUTPUT ..vvemesnassasarsosnssamrnnenesasaanenan 25
10.1 INPUL sueeesnsunnmonmevnaoassasasantnnsrsnasanassas 25
10.1.1 The procedure read .uiuieeavsvessososasassea 25
18.1.2 The procedure readli .iuiesecsssassscssannnss 23

10.2 OutpPut cveieueavssoasrnvansveransasscsssssssnnnanas 26
18.2.1 The procedure Write ..vsvsasssnassvisacannes 26
10.2.2 The procedure writeln ...veviesarasasancuven 27

18.3 Saving and 10ading ALLAYE .utuiiucnmesnerenanassasas 27
18.3.1 The procedure SaVe .vwwssssvsassasssnsasasven 27
12.3.2 The procedure 1loadvvvsvvsnnnasssansassas 27

Appendix A: BLS Pascal BYNEAX ..uvvrvacrasascscsacnnnnnnenes 28
Appendix B: Some uSeful TOULINES iavwvivinrnevnnononanasanse 32

Appendix C: The system WOIKSBPACE ..ovvusenenvavssnarsnasasss 34
Appendix D: Internal data formatcceccnrvsssesanasesnass 35
Appendix E: Machine code Subroutin@s .vuvscescsccecnnvronens 37
Appendix F: Benchmark teBLS .oeevewevrsssnsvnosrasasasnssnsans 39
Appendix G: Compiler ©rrOr MESSAGES5 .vewsavresasasssansenens 42
Appendix H: Runtime €CIOF MESSAGES .curcrsnnesesosasasssraas 43

The Blue Label Software Pascal Language System is copyrighted
and all rights are reserved by Poly-Data microcenter ApS. The
distribution and sale o¢f this product are intended for use of
the original purchaser only. Copying, duplicating, selling or
otherwise distributing this product is a wiolation of law.

Copyright (C) 1981 Poly-Data microcenter ApS
Strandboulevarden 63, DK 21P8 Copenhagen O

Blue Labe]l Software is a trademark ¢f Poly-Data microcenter ApS.

i: BASIC ELEMENTS OF THE LANGUAGE

1.1 SYMBOLS

The basic wvocabul
classified into let

Letters:
Digits:
Symbols:

2]

+ =
[

ary of

BLSE Pascal Programming Manual

consists of basic symbols

ters, digits, and special symbols:

Z
2
*

o

’ t
3 56
/ <>

and '\',

The compiler does not differ between capital and non capital

letters.

Some operatores and delimiters

symbols:

1. <> &= >=

.

are formed using two special

2. {. and .} can be used instead of [and].
3. (* and *) can be used instead of { and }.

1.2 RESERVED WORDS AND STANDARD IDENTIFIERS

The reserved words listed below can not be used as user defined

identifiers;

AND
ARRAY
BEGIN
BOQLEAN
CASE
CODE
DIV

Do
DOWNTO
ELSE
END
EXOR

EXTERNAL
FCR
FUNCTION
GOTO

IF

INIT
INTEGER
LABEL
MOD

NOT

OF

OR

OTHERS
PROCEDURE
PROGRAM
REAL
REPEAT
SHIFT
STRING
THEN

TC
UNTIL
VAR
WHILE

Certain identifiers, called standard identifiers, are predefined
Unlike the reserved words these identifiers

{e.g. sin, cos).

can be redefined by the user:

abs
addr
arctan
call
chr
concat
cos
empty
exp
false
frac
inp
int
keyboard

left
1n
load
maxint
mem
mid
odd
ord
out

pi
plot
point
pred
random

read
readln
right
round
save
sin
Bqr
sqrt
sUCC
true
trunec
write
writeln

BLS Pascal Programming Manual =5~

1.3 SEPARATORS

Blanks, ends o¢f lines, and comments are ceonsidered as
separators. At least one separator most occur between any pair
of consecutive identifiers, numbers or reserved words.

-6~ BLS Pascal Programming Manual

2t USER DEFINED ELEMENTS

2.1 IDENTIFIERS

Identifiers are names denoting constants, procedures, functions,
variables, and labels. They must begin with a letter, which may
be followed by any number of letters, digits, or '.'-characters,
Examples:

PASCAL Pascal NAME. 41 ,CODE

2,2 NUMBERS

Numbers may be written in both decimal and hexadecimal
notations. Hexadecimal numbers must be preceeded by a $-sign.
The letter E preceeding the scale factor is pronounced as 'times
18 to the power of'. Examples:

1 189 $25EC 8.138 S5E18 87 .13556E-8
No separators may occur within numbers.
2.3 STRINGS

Sequences of characters enclosed by single quote marks are
called strings. To include a quote mark in a string it should
be written twice. Examples:

'BLS Pascai' Al ‘A ' 'that''s all folks®

2.4 COMMENTS

A comment is a sequence of characters enclosed in curly brackets
{or (* and *)}, which can be removed f£from +the program text
without altering its meaning. Example:

(* This is a comment *)

BLS Pascal Programming Manual -7=

3; DATA TYPES

A data type defines the set of values & variable may assume.
Every variable occuring in a program must be associated with one
and only one data type. BLS Pascal supports four basic data
types: Integer, real, boolean, and string.

3.1 INTEGERS

An integer is a whole number within the range -32768 to 32767.
When operating on integers overflow and underflow will not be
detected.

3.2 REALS
A real is a real number within one of these ranges:

-1.7914118346E+38 <= R <= -2,9387358770E-3%
R=4
2,9387358778E-39 <= R <= 1,7014118346E+38

Reals provide 11+ significant digits. If an overflow occurs
during an arithmetic operation involving reals, the program will
break and display an error message. If an underflow occurs the
result will be zero. :

3.3 BOOLEANS

A boolean variable should only assume the predefined values true
{-1) and false (@8). However, ag BLS Pascal does not differ
between integers and booleans, a beoolean variable c¢an assune
other values, but this is strongly discouraged.

3.4 STRINGS

When a string variable is declared one informs the compiler of
the maximum length it may assume (between 1 and 255). Examples:

STRING[32]
STRING[stringsize]

3.5 BARRAYS

An array 1s a structure consisting of a fixed number of
components which are all of the same type, called the component
type. The elements of the array are designated by indices,
which are of the type integer. Upon declaration the upper and
lower bound of each index 1is written seperated by '..'.
Examples:

BARRAY [(1,.19] OF INTEGER
ARRAY [@.,maxsize] OF STRING[32]
ARRAY [|-5..11,29,.45]) OF REAL

Components in an n-dimensional array are designated by n integer
expressions. Examples:

data[l2]
bli+j,7]

-8- BLS Pascal Programming Manual

names [pecinters[8],3]
3.5.1 The mem array

The mem array is a predefined ocne-dimensional array representing
memory. Each component designates a byte, whose address is
given by the index. Compohents of the mem array can only assume
values between # and 255, If a value greater than 255 is
assigned the actual value will only be the least significant 8
bits., Examples:

i:=mem[SCBB] AND 516

FOR p:=1 TO lengthis) DO
memloffset+pl:=ord(mid(s,p,1)):

BLS Pascal Programming Manual -9~

4: DECLARATIONS;

A program consists of 3 parts:

1, The program header
2. The declaration part
3. The statement part

The program heading gives the program & name and lists its
parameters, through which the program communicates with the
environment. Examples:

PROGRAM conversicon;
PROGRAM calculation{input,output);

In BLS Pascal the program header is purely coptional, and if it
is used everything between the reserved word PROGRAM and the
first semicolon is considered as a comment.

Declarations must be listed in the following order:

1. Label declaraticn part

2. Constant definition part

3. Variable declaration part .

4, Procedure and function declaration part

Nocne of the above mentioned parts need to be present (thus the
declaration part may be empty).

4.)1. LABEL DECLARATICN PART

All labels used in the program nust be declared in the label
declaration part, which is introduced by the reserved word
LABEL, A label may either be an identifier or amn unsigned
number. Examples:

LABEL l,errceor,999,stop;

Any statement in the program may be prefixed by a label follewed
by a colon (making possible a reference by a goto statement),
Examples:

$99: write{'Done..."'};

A label =should only be referenced within the block in which it
is declared.

4.2 CONSTANT DEFINITION PART

A constant definition intioduces an identifier as a synonym for
a constant., The symbol CONST introduces the constant definition
part. Example:

CONST
number=45;
max=193.158;
min=-max;
name="Johnson';

-1~ BLS Pascal Programming Manual

Predifined constants are as follows:

pi Real 3,1415926536.

true Boclean True (-1).

false Booclean False (0}.

maxint Integer 32767.

empty String '' {The empty string).

4.3 VARIABLE DECLARARTION PART

Every variable occuring in the program must be declared in the
variable declaration part, which is introduced by the reserved
word VAR, A variable declaration associates an identifier and a
data type to the variable. More variables of the same data type
can be declared on the same line. Examples:

VAR
i,i,k: INTEGER;
xcoor,ycoor: RERL;
names: ARRAY [1..18@] CF STRING [32]

The variable is accessable throughout the entire block
containing the declaration, unless the identifier is redefined
in a subordinate block.

When entering a block all variables declared within the block
will cleared, e.g. reals and integers assumes the value 8,
booleans assumes the value false, and strings assumes the value
empty.

4.4 PROCEDURE AND FUNCTION DECLARATION PART

The procedure declaration serves to define procedures within the
cutrent procedure or program (see chapter 7). A procedure is
activated from a procedure statement (see chapter 6.1.2).

The function declaration part serves to define a program part
which computes and returns a value (see chapter 8). Functions
are activated by the evaluation of a function designator, which
is a constituent of an expression [see chapter 5.4).

BLS Pascal Programming Manual -11-

2: EXPRESSIONG

Expressions are constructs dencting rules of computation for
obtaining values of variables and generating new values by the
application of operators. Expressions consist of operateors and
operands, i.e. variables, constants, and functions.

The rules of composition specify operator precedences according
to four classes of operators., The NOT operator has the highest

precedence, followed by the multiplying operators
{* / DIV WOD AND SEIFT), then the adding operators
{+ - CR EXQOR), and, finally, with the lowest precedence, the
relational operators (= <> > < »= <=}, All operators
allowing integers as operands will also allow booleans. Any
expression enclosed within parentheses is evaluated

independently of preceeding or succeeding operators.
5.1 THE NOT CPERATOR

The NOT operator denotes complementation of its operand, which
must be of the type integer or of the type boolean. Examples:

NOT true = false
NOT false = true
NOT 5 = -6
5.2 MULTIPLYING OPERATORS
Operator Operation Type of operands Type of result
* Multiplication real, integer teal, integer
7/ Division real, integer real
DIV Integer divisioeon integer integer
MOD Modulus integer integer
SHIFT Logical shift integer integer
AND Logical AND integer integer

The operaticn I SHIFT J has the following effect: I will be
shifted to¢ the left J times, if J is positive, and -J times to
the right, if J is negative, Thus the result will always egual
zero if ABS{J} is greater than 15.

5.3 ADDING OPERATORS

Cperator COperation Type of operands Type of result
4 Addition real, integer real, integer

- Subtraction real, integer real, integer
OR Logical OR integer integer

EXOR Logical EXOR integer integer

When used as operatcrs with one operand only, - denotes sign

inversion, and + denotes the identity operation.
5.4 FUNCTION DESIGNATORS

& function designator specifies the activation of a function.

I T T EEEEE————E————————————————

BLS Pascal Programming Manual ' -13-

~12- BLS Pascal Programming Manual
E: STATEMENTS
It consists of the identifier designating the functicn and a
list of actual parameters. The parameters are variables or
expressions, and are substituted for the corresponding formal Statements denote algorithmic actions and are said to be
parameters. Examples: executable. They may be prefixed by a label which can be
referenced by a GOTO statement (see chapter 6.1.3).
sin(y) *cos(x) y
concat ("Name: ',firstname,' ',surname) 6.1 SIMPLE STATEMENTS
arctan(l.8)*4.0
{sum{a,18@8) <5} AND (z=8) A simple statement is a statement of which no part constitutes

another statement. In this group are the assignment, procedure,
GOTC, INIT, and empty statements.

6,1.1 Assignment statements

The asgignment statement serves to replace the current value of
a variable or a function identifier by a new value specified as
an expression.

The wvariable (or function} and the expression must be of
identical type, with the following exceptions being permitted:

1} If the type of the variable is real, the type of the
expression may be integer.

2] A string expression need not have the same length as the
maximum length o©f the string wvariable. If more
characters are assigned than specified by the maximum
length, only the lefmost characters will be transferred.

Example:

x:=y+z {replace current value of x by sum of y and z}

6.1.2 Procedure statements

A procedure statement serves to execute the procedure denocted by
the procedure identifier. The procedure statement may contain a
list of actual parameters which are substituted in place of

their corresponding formal parameters {see chapter 9) defined in
the procedure declaration. Examples:

sort {names) ;
~ exchange(x,y);
plot (x,round{sin{x*£)*28)+24,1);

6.1.3 GOTO statements

- 2 GOTO statement serves to indicate that further processing
should continue at another part of the program, namely, at the
place of the label.

The following restrictions hold cencerning the applicability of
labels:

1) The scope of a label is the plock within which it is
declared., It is, therefore, not possible to Jump into
or out of a procedure or a function.

Z2) Jumps into and out of FOR statements are not allowed.

-14- BLS Pascal Programming Manual

3} Every label must be specified in a label declaration in
the heading of the bleock in which the label marks a
statement.

6.1.4 INIT statements

An INIT statement serves te initialize an array structure to a
set of censtant values, The constants and the components of the
array must be of identical type. Example:

VAR

data: ARRAY[1l,.6] OF INTEGER;
BEGIN

INIT data TO 15,6,19,8,1,3;

-

ERD.

The above program is equal to:

VAR
data: ARRAY[1..6] OF INTEGER;
BEGIN
data[l]l:=15; data{2]:=6; data[3]:=19;
datal[4]:=8; datal{5]:=1; datal[6]:=3;
END.

If less constants are specified than the total number of
components in the array, only the first components will be
initialized., Example:

VAR
numbers: ARRAY!@,.9] OF STRINGI[S5];
BEGIN
INIT numbers TO empty,'one','two','three',"four','five’;

END,

When the INIT statement has been executed, the components of
numbers will have the following values:

numbers (@] =empty numbers{l]="one'
numbers([2]="two! numbers[3]="three’
numbers[4]="four’ numbers[5]="five"'
numiers[6]=empty numbers [7]=empty
numbers[8]=enpty . numbers (9] =empty

When initializing array structures with more than one dimension
the components will be processed with the rightmost dimension
increasing first. Example:

VAR

a: ARRAY([1,.3,1..3] OF INTEGER;
BEGIN

INIT & TC 9,6,8,15,18,33,7,190,1%;

BLS Pascal Programming Manual -15-

END,

The above program will initialize the components of a to:

ali,1]=9; all,2}=6; all,3]=8;
al2,1]1=15; al2,2i=18; al2,3]1=33;
al3,11=7; all,2]=18; al3,3]=19;

The INIT statement can in addition serve to initialize a section
of memory. Example:

INIT mem|[base] TO $EF,$41,542,543,500,5C9;

Assuming that the variable base equals $DPE, the byte at $DPB
will equal $EF, the byte at $D@l1 will equal $41, etc., upon
completing the INIT statement.

6.1.5 Empty statements

The empty statement denotes no action and occurs whenever the
syntax of Pascal requires a statement hut no statement appears,
Examples:

BEGIN END;
WHILE digit AND {a>17} DO {nothing}:
REPEAT {wait} UNTIL keyboard;

6.2 STRUCTURED STATEMENTS

Structured statements are constructs composed of other
statements which have to be executed in sequence (compound
statements), conditionally {conditional statements}, or
repeatedly (repetitive statements).

6.2.1 Compound statements

The compound statement specifies that its ccmponent statements
are to be executed 1in the same seguence as they are written.
The symbols BEGIN and END act as statement brackets. Ezample:

BEGIN

z:=X; A:=y; y:=2; f{interchange values of x and y}
END;

The compound statement neither forbids nor requires a * semicolon
succeeding the last statement.

6.2.2 Conditional statements

A conditional statement selects for execution a single of its
component statements.

6.2.2.1 IP statements

The IF statement specifies that a statement be executed only if
a vcertain conditien (boolean expression) is true, TIf it is
false, then either no statement is to be execoted, or the
statement fcllowing the symbol ELSE is to be executed.

The syntactic ambiguity arising from the construct

-16~ BLS Pascal Programming Manual

IF <el> THEN IF <e2> THENR <gl> ELSE <s52>
is resolved by evaluating

IF <el> is false, no statement is executed,
IF <el> is true and <e2> is true, <sl> is executed.
IF <el> is true and <e2> is false, <s52> is executed.

Examples:

IF x<1.5 THEN z:=x+y ELSE z:=1.5;
IF name=empty THEN name:='Not stated';

6.2,.2,2 CASE, statements

The CASE statement consists of an expression (the selector) and
a list of statements, each labelled by a constant or a list of
constants of the type of the selector., It specifies that the
one statement be executed whose constant 1list contains the
current value of the selector. If no constant equals the wvalue
of the selector, contrel is given to the statement succeeding
the OTBERS: label, if it exists, Otherwise, no statement will
be executed.

valid selector types are integer, boolean, and string types
{reals are not allowed}. Examples:

CASE operator OF
YT xr=x4y:
V-V Xi1=X-y;
TRV xi=x*y;
/v xi=x/y

END;

CASE number OF
1l: write{'one');
2: writef{'two');
3,4,5; write('some');
OTHERS: write('several'};
END;

The CASE statement neither forbids nor reguires a semicolon
succeeding the last statement.

6.2.3 Repetitive statements

Repetitive =statements specify that certain statements are to be
executed repeatedly. If the number of repetitions is Known
peforehand (i.e. pefore the repetitions are started}, the FOR
statement is the appropriate construct to express this
gsituation; otherwise, the WHILE or the REPEAT statement should
be used.

6.2.3.1 WHILE statements

The expression controlling repetition must be cf type boolean.
The statement ie repeatedly executed until the expression
becomes false. If ite value is false at the beginning, the
statement is not executed at all. Example:

e

BLS Pascal Programming Manual -17-

WHILE a<1P8p DO
BEGIN

asr=sqr(al; b:=b+l;
END:;

6.2,3,2 REFEAT statements

The expression controlling repetition must be of type boolean.
The sequence of statements between the symbols REPEAT and UNTIL
is repeatedly executed (and at least once) until the expression
becomes true. Example:

REPEAT
read{digit); write{digit);
number :=number*1@+ord{digit)—48;
UNTIL number>18989;

The REPEAT statement neither forbids nor reguires a sgemicolon
succeeding the last statement.

$.2,3.3 FOR statements

The FOR ctatement indicates that the component statement is to
be repeatedly executed while a progression of values is assigned
to a variable which is called the control variable of . the FOR
statement. The progression can be up TC (succeeding) or DOWNTO
{preceding} a final value.

The contrel variable, the initial value, and the final value
must be of type integer.

If the initial value is greater than the final value when using
the TO clause, or if the initial value is less than the final
value when using the DOWNTO clause, the component statement is
not executed at all.

Bxamples:
FOR i:=1 TO max DO writeln(i:5,sgr{i):8);

FOR i:=1 TC 168 DO FOR j:=1 TO 18 DO
BEGIN
IF ali,j}>5 THEN afi,j]l:=5;
count:=count+ali,j};
END;

Upon completion of a FOR statement the value of the control
variable is given by:

1) If the component statement was not executed the control
variable will egual the initial walue.

2) When using the TO clause the contrel variable will egual
the final value plus one.

3) When wusing the DOWNTO clause the control variable will
egqual the Tinal value less one,

BLS Pascal Programming Manual -19-

-18~ BLS Pascal Programming Manual
screen{x, vy} Move the curser to line y, coloumn X. x and y
1: PROCEDURES are integer expressions, If a coordinate value
is illegal, the current value of this coordinate
is unchanged by the procedure activation. Thus
A procedure is a seperate program part which may be activated the screen procedure may be used as a tabulator

from a precedure statement (see chapter 6.1.2}. by zeroing the y-coordinate.

7.1 PROCEDURE DECLARATIONS plot(x,v,f) %x,¥, and f are integer expressions. Alter the
state of the semigraphic pixel at x,y, according

A procedure declaration generally consists of 3 parts: ta the value of f:

1) The procedure heading. : £=p
2) The declaration part. £=1
3} The statement part. f=2

: Reset x,¥y.
1 Set x,.v.

: Invert x,¥-.
7.1.1 The procedure heading The plot procedure compensates for the offset of
line 16 on the NASCOM display. Hence, pixels

The procedure heading specifies the identifier naming the with y-coordinates within the interval @<=y<=2

procedure, an opticnal formal parameter list, and an opticnal resides on line 16, A procedure activation

EXTERNAL or CODE specification. invelving illegal coordinate wvalues will be
ignored.

The paramaters are either wvalue or variable parameters ([see

chapter 9}. out {p,d} Qutput least significant 8 bits of d to the pert

given by the least significant 8 bits of p. p

EXTERNAL specifies that the procedure is a seperate machine code and d are integer expressions.

subroutine, which resides at the address given by the integer
constant following the EXTERNAL symbol (see appendix E). CODE The standard procedures supporting inpnt and output are
specifies that the procedure is listed in 2-80 machine code, described in chapter 18,

directly following the CODE symbol {see appendix E}. In the

case of EXTERNAL and CODE procedures the declaration part as

well as the statement part is empty.

7.1.2 The declaration part

The declaration part has the same form as that of a Frogram.
All identifliers introduced in the formal parameter list and the
declaration part are local to the procedure declaration, which
is called the scope of these identifiers., They are not known
cutside their scope. A procedure declaration may reference any
constant, variable, procedure, or function identifier global to

it f{i.e. defined in an outer block), or it may choose to
redefine the name.

7.1.3 The statement part

The statement part specifies the algorithmic actions to be

executed upon activation of the procedure by a procedure
statement, The statement part takes the form of a compound
statement (see chapter 6.2.1). The use of a procedure .
identifier in a procedure statement within the statement part

implies recursive execution of the procedure.

7.2 STANDARD PROCEDURES

A standard procedure need not be declared, and may be redefined
by the programmer by using its name as a procedure identifier in
a procedure declaration.

call(a} Generate a call to the memory address given by
the integer expression a,

-2p- BLS Pascal Programming Manual

8: FUNCTIONS

A functien is a program part which computes and returns a value.
FPunctions are activated by the evaluation of a function
designator (see <chapter 5.5} which is a constituent of an
expression.

8.1 FUNCTION DECLARATIONS
A function declaration generally consists of 3 parts:

1) The function heading,
2) The declaration part.
1) The statement part.

8.1,1 The function heading

The function heading specifies the identifier naming the
function, an optional formal paramater list, the result type,
and an optional EXTERNAL or CODE specification.

The paramaters are either value or variable parameters {see
chapter 9).

The result type of the function can be either integer, boclean,
real, or string.

EXTERNAL specifies that the function is a seperate machine code
subroutine which resides at the address given by the integer
constant following the EXTERNAL symbol {see appendix E}. CODE
specifies that the function 1is listed in Z-80 machine code,
directly following the CODE symbol. In the case of EXTERNAL and

CODE functions the declaraticn part as well as the statement
part is empty.

8.1.2 The declaration part

The declaration part hag the same form as that of a procedure
{see chapter 7.1.2).

8.1,3 The statement part

The statement part takes the form of a compound statement (see
chapter 6.1.2)., Within the statement part at least one
statement assigning a value to the function identifier must
occur. This assignment determines the result of the function.
The appearance of the function identifier in an expression
within the function itself implies recursive execution of the
function.

8.2 STANDARD FUNCTIONS
A standard function need not be declared, and may be redefined
by the programmer by using its name as a function identifier 1in
a function declaration.

8.2.1 Arithmetic functions

In the functions listed below the type of x must be either real

BLS Pascal Programming Manual -21-

or integer, and the type of the result is the type of x.
abs(x) Computes the abscolute value of x.
sqrix) Computes x*x.

In the functions listed below the type of % must be either real
or integer, and the type of the result is real.

sin{x) Sine,

cos(x) Cosine.

arctan(x} Arccus tangent.,

In(z) Natural logatithm.

expi{x) Exponential function.

sqrt(x} Square root.

int{x) The whole part 0} Xy 1i.,e the result jis the

greatest whole number 1less than or equal to x
for x>=08, and the least whecle number greater
than or equal to x for x<d.

frac(x) The fractiocnal part of x with the same sign as
x, l.e., frac{xj=x-intix).

8.2.2 Integer functions

In the functions listed below the type of i is integer.

succ{i} Computes i+l. The type of the result is
integer,

pred({i} Computes i-1. The type of the result 1is
integer. !

odd{i) Returns the boolean value true if i iz odd, or

the boolean value false if 1 is even.

8.2.3 String functions

length(s) Returns the length of the string s. The type of
the result i1s integer.

mid(s,p,n) Returns a string containing n characters copied
from s starting at the p'th positien in s. The
type of 8 is string, and the type of n and p 1is
integer.

mid(s,p) Returns the leftmost cahracters copied from s
starting at the p'th pomsiticer in s. The type of
5 i5 string and the type of p is integer.

leftis,n) Rettrns the leftmost n characters copied from s.
The type of s is string and the type of n is
integer.

-22- BLS Pascal Programming Manual

right (s, n) Returns the rightumost n characters copled from
s, The type of s is string and the type of n is
integer.

concat(strs) strs is any number of string expressions

separated by commas. The result is a string
which is the concatenation of the parameters in
the same Sequence as they are written.

8.2.4 Transfer functions

trunc{x) .The type of =x is real; the result 1is the
greatest integer less than or equal to x for
x»=@, and the least integer graeter than or
equal to x for x<@.

round(x) . The type of x is real; the result, of type
integer, is the value ¢f x rounded, i.e.:

round{x}) = trunc(x+8.5), for x>=8
trunci(x+0.5), for =x<@

ord(s) Returns the ASCII value of the leftmost
character in the string s. If s 1is empty the
result will be zero. The type of the result is
integer.

chr(i) Returns a string containing one character whose
ASCII value is i. The type of i is integer.

8.2.5 Further standard functions

addr (v) Returns the memory address of the variable v.
The memory address of an array can be calculated
by referring to the first element of each
dimension.

random Returns a random number within the interval
#<=r<l, The type of the result is real,

randomii) Returns a random integer within the interval
P<=r<i. The type of the result is integer.

inp{p} Returns the value read from pert p. p must be an
integer expression within the interval

B<=p<=255, The type of the result is integer.

keyboard Scans the keyboard and returns the value of the
currently depressed key. If ne key is depressed
B is returned. The ¢type of the result is
integer,

pointix,y) Returns the boolean value true if the
semigraphic pixel x,y is set, otherwise returns
the boclean wvalue false. The type of x and y
must be integer.

BLS Pascal Programming Manual ~23-

5: PARAMETERS

Parameters provide a substitution mechanism that allows the
algorithmic actions of a precedure or a function {in this
chapter referred to as a subprogram) to be repeated with a
variation of its arguments,

9.1 FORMAL AND ACTUAL PARAMETERS

A procedure statement or a function designator may contain a
list of actual parameters, which are substituted for the
corresponding formal parameters that are defined@ in the heading
of the subprogram. The correspondance is established by the
positioning of the parameters in the lists cof actual and formal
parameters,

9.2 PARAMETER TYPES

BLS Pascal supports two kinds of parameters: Value parameters
and variable parameters.

9.2.1 Value parameters

When no symbol heads a formal parameter part of a subprogram
heading, the parameter(s) of this part are said to be value
parameters, In this case the actual parameter must be an
expression (of which a wvariable is a simple case). The
corresponding formal parameters represents a local variable in
the subprogram. As its initial value this variable receives the
current value of the corresponding actual parameter {i.e. the
value of the expression at the time of the call)}, The
subprogram may then change the value of this wvariable by
assigning to it; this will not, however, affect the value of the
actual parameter, Hence, a value parameter can never represent
a result of a computation.

Consider the folleowing procedure declaraticn:

PROCEDURE printline{width: INTEGER);s

BEGIN -
FOR width:=width DOWNTO 1 DO write('*'}):
writeln;

END;

The procedure statement “"printline(a);" will bhave the same
effect as executing

width:=a;
FOR width:=width DOWNTO 1 DO write{'*'};
writeln;

Although the varijable width is altered during the procedure, the
varjable a will be left unchanged, as width 1is a value
parameter. As mentioned above the actual parameter need not be
a variable, but can be any expression, e.g, "printline{a+2Z*bj;"
and "printline{25};".

9.2,.2 Variable parameters

-24- BLS Pascal Proagramming Manual

wWhen the symbol VAR heads a formal parameter part of a
subprogram heading, the parameter{s} of this part are said to be
variable parameters. In this case the actual parameter must be
a variable. The correspending formal parameter represents this
variable during the entire execution of the subprogram. Any
operation involving the formal parameter is preformed directly
upon the actual parameter, Hence, whenever a parameter isg to
tepresent a result of the subprogram, it must be declared as a
variable parameter.

Consider the fellowing procedure declaration:

PROCEDURE swap{VAR x,y: REAL);
VAR temp: REAL;
BEGIN
temp:=Xx; x:=Yy; yi=temp;
END;

The procedure statement "swapia,h);" will have the same effect
as executing "temp:=a; a:=b; b:=temp;". Obviously the statement
"swap{2@,a+b}:" will vresult in an error, as the statements
"temp:=20; 2@:=a+b; atb:=temp;" are impossible to execute.

9.3 RULES APPLYING TO PARAMETERS

The formal parameter list and the actual parameter 1list must
agree with respect +to the total number ¢of parameters and the
type of each of the parameters respectively.

All address calculation is done at the time of the call. Thus,
if a variable is a component of an array, its index
expression(s) is evaluated upon activating the subprogram.

In the case of a parameter being an array structure, the actual
parameter and the formal parameter must agree with respect to
component type and number of components. However the lower and

upper limits of each dimension, and the number of dimensions
need not agree,

If a formal parameter is a variable parameter of the type real,
the corresponding actual parameter may be an expression of the
type integer, This does not apply tc variable parameters.

If a formal parameter is a variable parmeter of the type string,
the corresponding actual parameter can be a string expression of
any length, However, if the length of the actual string
parameter is greater than the maximum length of the formal
parameter, only the leftmost characters will be transferred.
This does not apply to variable parameters.

BLS Pascal Programming Manual -25-

1@; INPUT AND QUTPUT

BLS Pascal allows for input and output by means of {our_sgandaxd
procedures {read, readln, write, and writeln). 1In addition two
standard procedures (load and save) allows for loading and
saving of arrays from and to the tape recorder.

19.1 INPUT

Input is supported by the standard procedures read and readln.
19.1,1 The procedure read

The procedure read allows for strings and numeric values to be
input. The format of the procedure statement is:

read({vl,v2,...,vn);
Which is equal to
BEGIN read(vl}; read(v2); ... read{vn) END;

During data entry the following control keys are available to
the user:

<BS> Backspace
<ESC> Clear line
<ENTER> Process entry

For a variable of one of the numeric types (real or integer) the
read procedure expects to read a string of characters which can
be interpreted as a numeric value of the same type. Leading
spaces are allowed. The numeric value should follow the rules
that apply to numeric constants (see chapter 2.2}. The entry

must bhe terminated by & carriage return (i.e. <ENTER>)
immediately following the last character of the numeric valge.
The carriage return 1is not echoed. If the 1interpretation

results in an error the entry field will be cleared, indicating
that the user is to re-enter the wvalue.

when reading strings with a maximum length greater than one,
read will accept all characters up to but not including the
terminating carriage return. The maximum number o©f characters
which can be entered 1is given by the maximum length of the
string variable {however, not more than 63 characters).

when reading strings with a maximum length o©f one program
execution will resume the moment the user depresses a key., The
character read will not be echoed.

18.1.2 The procedure readln

The procedure readln is identical to read, except that after a
value has been read a carriage return is output. The format cof
the procedure statement is:

readin{vl,v2,...,vn};

which is egual to

~35= BLS Pascal Programming Manual

BEGIN readlni{vl); readln{v2}; ... readln(vn} END;
18 .2 COTEUT

Output is supported by the standard procedures write and
writelin.

ig,2,1 The procedure write

‘‘he procedure write allows strings and numeric values to be
nutput. The format of the procedure statement is:

write{plep2p0j:
which js egual to

BEGIN writei{pl}; write{p2); ... write({pn) END;
pl,p2:...,pn denote so-called write parameters, which, according
to the type of the value to be output, can take en one cof the
follewing formats (m: n, and i denote integer expressions, r

denclte a real expression, and s denote a string expression):

i The decimal representation ¢f i is output with no
preceding blanks.

iim The decimal representation of i is output preceded
Loy an appropriate number of blanks to make the field
wideh n.

r The decimal representation of r is output in

floating point format in a field of 18 characters:

? sd.ddddddddddEtdd”

L H_H

where & stands for either or "=", d stands for a

digit, and t stands for either "+" or "-".

The decimal representation of r is output in
fleating point format. The field width and the
number of significant digits depends on the value of
iz

Lal
=]

n<@: "d,dEtdd" or "-d.dEtgd”

H<=n<17: "sd.<digits>Etdd™, where <digits>
denotes n-6 decimal digits.

n>17: "¢{spaces>d.ddddddddddEtdd”, where
<spaces> denotes n-17 blanks.

finsm The decimal representation of r is cutput in fixed
point format with m digits after the decimal poeint
in a field of n c¢haracters, wmw must Dbe within the
interval 0<=m<=24. If not, floating point format is
used.

g s is output with no preceding blanks.

sin 5 is output preceded by an appropriate number of

BLE Pascal Programming Manual -27-

blanks to make the field width n.
18.2.2 The procedure writeln
The procedure writeln is identical to write, except that after
the last wvalue has been written, a carriage return is output.
The format of the procedure statement is:
writeln{pl,p2,....pn}:
which is equal to

BEGIN write(pl}; write{p2); ... writeln{pn) END;

To produce a single carriage return the user may call writeln
without any parameters.

18.3 SAVING AND LOADING ARRAYS

Input and output of arrays from and to the tape recorder are
supported by the standard procedures load and save.

18.3.1 The procedure save

The procedure save will output arrays of any type to the tape
recotder. The format of the procedure statement is:

savefal:

where a denotes an array identifier, Upon activation of the
procedure the tape LED will be switched on, a brief pause will
be issued, the array will be output, and the tape LED will be
switched off.

14.3.2 The procedure load

The procedure load will read a tape previously written by the
save procedure. The format of the procedure statement is:

load(a,i);

where a denotes an array 1dentifier, and i denotes the
identifier of an integer wvariable in which an error status will
be returned.

Upon activation of the procedure the tape LED will be switched
on. When the procedure ends the tape LED will be switched offF,
and the wvariable 1 will contain the error status of the
procedure call:

i=f: HNo errcrs occcured,

i=l: Type mismatch. The number of <components or the
compohent type does not agree.

i=2: Checksum error.

i=3: The procedure was aborted by the user pressing the

<ESC>» key.

-28- BLS Pascal Programming Manual

APPENDIX A; BLS PASCAL SYNTAX

The syntax of BLS Pascal is presented using BNF formalism. The
following symbols are meta-symbols belonging to the BNF
formalism, and not symbols of the Pascal language:

HEE Means 'is defined as'.
| Means 'or’.
{ead} Denotes possible repetition of the enclosed

symbols zero or more times.

The symbol <character> denotes any printable character, i.e.
a character with an ASCII value between $20 and $FF.

{letter>

=

BIlC
| |
| |
! |

=3 '
—_—
oRO—
oo —
20—
_—
oo —
—_—_m
o wn—
£ omeE —
_—
M e —
———=
A
——

g =

<digit> 1:= @8 | 1| 213 | 4|5 |6 |T7T}t8!39
<hexdigit> ::= <digit> | 2 | B | C | D | E | F
<empty> :z:=

{program> ::= <program heading> <block> .

<program heading> ::= <{empty> | PROGRAM [<character> }

£

<block> ::= <declaration part> <statement part>

{declaration part> ::= <label declaration part>
<constant definition part> <variable declaration part>
{procedure and function declaration part>

<label declaration part> ::= <empty> | LABEL <label> { , <label> }

<label> ::= <unsigned integer> | <identifier>

{unsigned integer> ::= <digit> { <digit> }

<identifier> ::= <letter> { <letter or digit> 1}

<letter or digit> r:= <{letter> | <digit> | .

<congtant definition part> ::= empty |
CONST <constant definition> ; { <constant definition> ; 1}

<constant definition> ::= <identifier> = <{constant>

<constant> ::= <unsigned numbetr> | <gign> <unsigned number> |
<constant identifier> | <sign> <ccnstant identifier> |
<string>

<unsigned number> ::= <unsigned integer> | <unsigned real> |
<unsigned hexinteger>

<unsigned real> ::= <unsigned integer> . <digit> { <digit> } |
<unsigned integer> . <digit>» { <digit> |} E <scale factor>
<unsigned integer> E <scale factor>

BLS Pascal Programming Manual 29~

<scale factor> ::= <unsigned integer> | <sign> <unsigned inteqger>

<sign> 1:= + | -

<unsigned hexinteger> ::= § <hexdigit> { <hexdigit> }
<constant identifier> ::= <identifier>
<string> ::= ' { <character> } '

<variable declaration part> ::= <empty> |
VAR <variable declaration> ; { <variable declaration> ; }

<{variable declaration> ::= <identifier> { , <identifier> } : <{type>
{type> ::= <simple type> | <structured type>

<simple type> ::= INTEGER | REAL | BCOLEAN | <string type>

¢string type> ::= STRING [<constant>]

<structured type> ::= ARRAY [<index type> { , <index type> }] OF
<simple type>

<index type> ::= <{constant> .. <constant>

{procedure and function declaration part> ::=
<procedure or function declaration> ; }

<{procedure or function declaration)> ::=
<procedure declaration> | <function declacaticn>

<procedure declaratiocn> ::= <procedure heading> <block>
<{procedure heading> ::= PROCEDURE <identifier>
<formal parameter list> ; | PROCEDURE <identifier>
<formal parameter list> ; <external/code specification> ;

<formal parameter list> ::= <empty> |
{ <formal parameter part> { ; <formal parameter part> } }

<formal parameter part> ::= <{parameter group> |
VAR <parameter group>

<parameter groupr ::= <variable declaraticn>

<external/code specification> ::= <external specification> |
<code specification>

<external specification> ::= EXTERNAL <constant>
<code specification> ::= CODE <constant> { , <constant> 1}
<function declaration> ::= <function heading> <block>
<function heading> ::= FUNCTION <identifier>
<formal parameter list> : <result type> ; | FUNCTION
{identifier> <formal parameter list> : <zesult type> ;
<external/code specification> ;

<result type> ::= <simple type>

-38- BLS Pascal Programming Manual
<statement part> ::= <compound statement>
{compound statement> ::= BEGIN <statement> { ; <statement> } END

<statement> ::= { <label> : } <unlabelled statementy

<unlabelled statement> ::= <simple statenent> |
{structured statement>

<gsimple statement> ::= <assignment statetement> |
<procedure statement> | <goto statement> |
<init statement> | <empty statement>

<assignment statement> ::= <variable> := <expression> |
<function identifier> := <{expression>

<variable> ::= <{simple variable> | <component variable>
<simple variable> ::= <identifier>

<component wvariable> ::= <array identifier> [<expression>
{ , <expression> }]

<array identifier®» ::= <identifier>
<function identifier> ::= <identifier>

<expression> ::= <simple expression> | <simple expression>
<relational operator> <simple expression>

<relational operator> ::= = | <& | > | < | »= | <=
{simple expression> ::= <term> { <adding operator> <term> }
<adding operator> ::= + | - | OR | EXOR

<term> ::= <factor> { <multiplying operator> <factor> }
<multiplying operator> z:= * | / | DIV | MOD | AND | SHIFT
<factor> ::= <uncomplemented factor> [NOT <uncomplemented factor>

{uncomplemented factor> ::= <unsigned factor> |
<sign> <unsigned factor>

<unsigned factor> ::= <variable> | <unsigned constant> |
{ <expression>) | <function designator>

<unsigned constant> ::= <unsigned number> | <string> |
<constant identifier>

<function designator> ::= <function identifier>
<actual parameter list>

{actual parameter list> ::= <empty> | { <actual parameter>
{ + <actual parameter> |)

<actual parameter> ::= <expression® | <variable> |
<array identifier>

<procedure statement> ::= <{procedure identifier>
<actual parameter list>

BLS Pascal Programming Manual -31-

<{goto statement’> :3;= GOTO <label>

<init statement> ::= INIT <array identifier> TO <constant list> |
INIT MEM [<expression>] TO <constant list>

<constant list> ::= <constant> { , <constant> }
<empty statement> ::= <empty>

<structured statement> ::= <{compound statement> |
<conditional statement> | <repetitive statement>

{conditional statement> ::= <if statement> | <case statement>

<if statement> ::= IF <{expression> THEN <statement> |
IF <expression> THEN <statement> ELSE <statement>

{case statement> ::= CASE <expression> OF <case list>» END |
CASE <expression> OF <case list» ; OTHERS: <statement> END

<gagse list> ::= <{case list element> { ; <case list element> }
<case list element> ::= <{constant list> : <statement>

<repetitive statement> ::= <while statement> | <{repeat statement> |
<for statement>

<while statement> ::= WHILE <expressiocn> DO <(statement>

{repeat statement> ::= REPEAT <statement> { ; <statement> }
UNTIL <expression>

<for statement> ::= FOR <control variable> := <{for list> DO
<statement>

<contrel variakle» ::= <variahble>

<for list> ::= <initial walue> TO <final value> |
<initial value> DOWNTO <final value>

<initial value> ::= <expression>

<final value> ::= <expression>

=32~ BLS Pascal Programming Manual

{ value will convert the decimal number contained in s into }
{ a real value

FUNCTION value{s: STRING[48]): REAL;

CONST

zero=48: | ASCII zero }
VAR

r,f: REAL;

p: INTEGER;
ch: STRINGI[1];
neg,decpoint: BOOLEAN;

PROCEDURE nextchar;

BEGIN

p:=pred(p); ch:i=mid(s,p,1}
END;
BEGIN

f:=1; nextchar;

IF ch='~' THEW

BEGIN neg:=true; nextchar END;
WHILE {ch>='@"') AND (ch<='9') DO
BEGIN
r:=r*1@.9+{ord{ch)-zero};
IF decpoint THEN f:=£*1P.8;
nextchar:
IF {(ch='.') AND NOT decpoint THEN
BEGIN decpoint:=true; nextchar END;
END;
IF neg THEN value:=-r/f ELSE value:=r/f;
END { of value };

{ pos will return the position of the first occurrance of }
{ the target string t in the source string s, If t does not }
{ oceur within s, a zero will be returned }

FUNCTION pos{t,s: STRING[48])}: INTEGER;
LABEL exitpos;
VAR
1dif,1t,p: INTEGER;
BEGIN
lt:=length{t}); ldif:=lengthi{s)~-1lt;
WHILE p<=1dif DO
pi=succip);
IF mid{s,p,lt)=t THEN
~ BEGIN pos:=p; GOTC exitpcs END
END;
exitpos:
END { of pos };

D

BLS Pascal Programming Manual

{ topline will display the string s on line 16 of the }
{ NASCOM display }

PROCEDURE topline(s: STRING[48]);
CONST
toplineaddr=S$BC%; { topline address -~ 1 }
blank=32; { ASCII blank }
VAR
p: INTEGER;
BEGIN
FOR p:=1 TO length(s} DO
mem|[p+toplineaddr] :=ord{mid{s,p:1})):
FOR p:=p TO 48 DO
mem [p+toplineaddr]:=blank;
END;

-33-

-34- BLS Pascal Programming Manual
APPENDIX C: THE SYSTEM WORKSFACE

The system workspace resides between 5C88 and $DBB. 1In this
area the following addresses may he of interest to the user:

C92-C93 WSP The program workspace stack pointer. When
executing a program WSP will be set to peoint to
the end address of the program, Each time a
program block is activated {the main program, a
procedure, or a function), WSP will move to a
higher address, thus reserving memeory for the
variables of that program part. When exiting
the block, WSP wil]l be altered to point to its
criginal position.

C94~C95 PMTP The highegt RAM address the currently executing
program is allowed to access. Should WSP move
beyond PMTP, the program will break and display
a runtime error {runtime error 99).

C98-~C9B RHNDN The last calculated random geed. By
initializing these four bytes (to an abitrary
selected wvalue) the user «can cobtain the same
random sequence each time the program is run,

The first instruction sequence in the object code of a program
is a call to the initializing routine, followed by % bytes of
parameters:

CD xx xX aa bb cc dd ee

bbaa is the end address of the program. WSP will be initialized
to this wvalue. ddcc is the highest RAM address the program is
allowed to access (ddcc is obtained from MTOP (see BLS Pascal
User Manual, appendix <C} during compilation). PMTP will be
initialized to this value. ee is a byte telling the runtime
package where to transfer control to, in case of a runtime
error, or when completing execution of the program. If ee 1is

zerc a jump to the lanquage system will be executed, otherwise
control will be transferred to NAS-SYS.

The area between $D@@ and $1€80 is reserved for the systenm
stack. Upon initialization the stack pointer will be loaded

with $188€. The following applies concerning the use of the
system stack area:

2 procedure or a function call consumes two bytes of stack.
An active FOR loop consumes four bytes of stack.

When evaluating an expression the stack will be used to
store intermediate results. Hence, a <comparison of two
strings, may consume as much as 512 bytes, if both strings
are of length 255,

During program execution the position of the stack pointer will
not be checked. Thus, the user must be shure that recursive
execution of procedures or functions does not enter a loop with
no exits.

BLS Pascal Programming Manual -35-

APPENDIX D: INTERNAL DATA FORMAT

In the descripticns following below the symbol 'addr'_ denotes
the address of the first byte a variable of the described type
consumes. It is this value the standard function addr returns.

Integers and booleans:

Internally BLS Pascal does not differ between Iintegers aqd
booleans. An integer is stored as a 2's complement 16 bit
number, thus consuming 2 bytes. The least significant byte is
stored first, as the Z-80 standard specifies:

addr Least significant byte.
addr+1 Most significant byte.

Reals:

A real is stored as a 4P bit mantissa and an B bit 2's exponent,
thus consuming 6 bytes:

addr Most significant byte of mantissa.

addr+4 Least significant byte of mantissa.
addr+5 2's exponent.

The exponent is in binary format with an offset of $80. _ Hence,
an exponent of $84 means that the value of the mantissa is to be
multiplied by 2°($84-$88) = 274 = 16. An exponent value of zero
indicates that the the value of the variable is zero. The value
of the mantissa can be obtained by dividing the Aunsigned
integer, consisting of the first five bytes, by 2748. The
mantissa is always normalized, i.e. the most siginificant bit
should be interpreted is a 1. However, the sign of the mantissa
is stored in this bit, a 1 indicating that the wvalue Iis
negative, and a2 P indicating that the value is positive,

S5trings:

A string will consume its maximum length plus cne bytes of
storage., The first byte contains the current length eof the
string (called n}, the second byte contains the n'th character
of the string, the third byte contains the n-1'th character,
etc.,

addrx Curzrent length (n).

addr+1 n'th character,
adde+2 n-1'th character.

addr+n First character.

1f the current length of the string is less than the maximum
length, the contents of the unused bytes are unknown.

Arrays:

A component of an array uses the same internal format as a

-36~- BLS Pascal Programming Manual

simple variable of that specific type. The components with the
lowest 1index values will be stored first. An array with more
than one dimension will be stored with the rightmost dimension
increasing first. E.q. an array declared as:

a; ARRAY[1..3,1..23]
will be stored in this order:

lowest addr. afl,l)
all,2]
all,3]
al2,1]
afz2,2]

highest addr. a[3,3]

BLS Pascal Programming Manual -37-

APPENDIX E: MACHINE CODE SUBROUTINES

Declaring procedures and functions with the EXTERNAL or the CODE
specification allows the user to call seperate machine code
subroutines.

Parameters are transferred to the subroutine using the program
workspace stack. Each parameter value is 'pushed' onto the
stack, in the same order as they appear. When evaluating a
function designator, memory space for the result value is
reserved, before any parameters are pushed. The machine code
routine may access the parameters by indexing from the value
contained in WSP {(see appendix C).

The format of a value parameter is described in appendix D. 1In
the case of a variable parameter a word (2 bytes) will be pushed
containing the absclute address of the first byte of the
referenced variable. If the variable parameter is an array, the
absolute address of the first component will be pushed.

Assume that the following function declaration has been made:

FUNCTION test(VAR i: INTEGER; r: REAL): STRING[16];
EXTERNAL 5D80;

When evaluating the function designator a call will be placed to
$D@B, and the top of the workspace stack will be organised in
the following manner:

lowest addr. WSP-25 17 bytes reserved for the result
: value {of type string). These
: bytes ate cleared at the time of
WSP-% the call.
WSP-8 A word containing the address of
WSP-9 the integer wvariable.

WSP-6 Value of type real.

highest addz. WSP-1

The address of the first byte of the locations reserved for the
regult may be calculated like this:

W5P: EQU @C92H

LD HL, (W5P)
LD DE,-25
aDD HL,DE

When executing the <code HL will point to the first byte. The
address of the integer variable can be obtalned by executing:

LD HL, {(WSP}
LD DE,-8
ADD HL,DE
LD A, (HL)

-3g- BLS Pascal Programming Manual
INC HL
LD H, (HL}
LD L,A

As an example of user written machine code subroutines two
routines are shown below which will input and output values from
and to the data ports (NOTE: These routines are predeclared in
BLS Pascal, see chapters 8.2.5 and 7.2). In the main program
the following declarations sheould be made:

PROCEDURE ount({port,data: INTEGER); EXTERNAL SDO®;
FUNCTION inp{port: INTEGER): INTEGER; EXTERNAL $DED;

The machine code subroutines could be like this:

PGl PDAR ORG @D@BH
2682

pAB3 - =8C92 WSP: EQU @C92H
6Bo4

G065 GDEG DD2AY2PC OUTP: LD IX, (WSP)
@006 @DP4 DDTEFE LD A, (IX-2)
G697 ADB7 DDAEFC D C,(IX-4)
GP98 SDPA EDT9 OUT (C),A
@889 @DBC C9Y RET

4p19

@#11 @DAD DD2AY26C INF: LD IX,{WSP)
2612 9D11 DD4EFE LD €, {1%-2)
BP13 @014 ED7S N A, (C)
#9014 PD16 DD77FC LD (IX-4),A
g815 #D19 C9 RET

2016

2017 BDLA END

The above routines c¢an alsc be implemented using the CODE
specification:

PROCEDURE out (port,data: INTEGER);
CODE $DD, $2A,$92, $0C, $DD, S7E, $FE, $DD, S4E, $FC, $ED, $75;

FUNCTION inp{port: INTEGER): INTEGER;
CODE $SDD, $2A,$92,50C, $DD, $4E, $SFE, $ED, $78, $DD, §77,$FC;

It is important teo note that only fully relocateable routines
can be implemented using the CODE specification. Also note that
the RET instructicn ($C3) ending an EXTERNAL rcutine must not be
used in the case of a CODE toutine.

All RAM Dbetween WSP and PMTP can be used as workspace by the
machine code routine.

The object code produced by the compiler, as well as the runtime
package routineg, are fully interruptable. If using interrupts,
the interrupt service routine must save all registers to be used
on the stack.

BLS Pascal Programming Manual -39-

APPENDIX E: BENCHMARK TESTS

On the following pages the 15 Pascal benchmark tests, as
propeosed in Personal Computer World december 1980 issue, are
listed. The timings obtained using a HASCOM 2 (Z-B9
microprocessor, 4 MHz 1 waitstate), are listed below, and, for
comparison, the corresponding timings obtained on a Heathkit
H-11A (LSI 112 16 bit processor}), and on an APPLE 2 (6562
microprocessor), both running UCSD Pascal. All timings are
listed in seconds:

TEST BLS Pascal g3-11A APPLE 2
magnifier #.8 " 3.9 6.4
forloop 8.6 42.8 74.3
whileloop 23.8 40.1 70.8
repeatloop 2¢.8 35.98 63,3
litteralassign 11.7 5p.P 88.5
memoryaccess 15.1 52.9 9l.@
realarithmetic 59.8 61.7 93.9@
realalgebra 58,5 46,6 83.4
vector 62,2 ip2.9 283.3
equalif 24.3 66.8 116.7
unequalif 24.2 65.8 115.3
noparameters 6.8 26.4 . 58.2
value 12.5 29.3 54.4
reference 12.1 29.7 55.3
maths 65.3 25.8 66.9

It should be noted that UCSD Pascal provides only 6+ significant
digits when operating on reals, while BLS Pascal provides 1l+
significant digits.

-48- BLS Pascal Programming Manual

PROGRAM magnifier;
VAR k: INTEGER;
BEGIN
FOR k:=1 TO 10888 DO:
END.

PROGRAM forloop;
VAR j,k: INTEGER;
BEGIN
FOR k:=1 TC 18204 DO FOR j:=1 TO 18 DO;
END,

PROGRAM whilelocop;
VAR j,k: INTEGER;

BEGIN
FOR k:=1 TO 19088 DO
BEGIN
j:=1; WHILE j<=10 DO j:=3+1
END
END,

PROGRAM repeatloop;
VAR j,k: INTEGER;

BEGIN
FOR k:=1 TC 18888 DO
BEGIN
j:=1; REPEAT j:=j+1 UNTIL j>18;
END;
END.

PROGRAM litteralassign;
VAR j,k,l: INTEGER:
BEGIRN
FOR k:=1 TO 188P% DO FOR j:=1 TO 19 DO 1:=8
ERD,

PROGRAM memoryaccess:
VAR j,k,1: INTEGER;
BEGIN
FOR k:=1 TO 18980 DO FOR j:=1 TO 18 DO 1:=7i
END. g

PROGRAM realarithmetic;
VAR k: INTEGER; x: REAL;
BEGIN
FOR k:=1 TO 1P880 DO x:=k/2*3+4-5;
END.

PROGRAM realalgebra;
VAR k: INTEGER; x: REAL;
BEGIN
FOR k:=1 TO 16009 DO x:=k/X*k+k-k;
END,

PROGRAM wvector;

VAR k,j: INTEGER; matrix: ARRAY[B..12] OF INTEGER;

BEGIN
matrix[@]):=1;
FOR k:=1 TO 1@@#6 DO FOR j:=1 TP 1@ DO
matrix{jl:=matrixfj-1]

BLS Pascal Programming Manual

END.

PROGRAM equalif:

VAR j,k,1: INTEGER;

BEGIN
FOR k:=1 TO 18868 DO FOR j:=1 TO
IF j<6 THEN 1l:=1 ELSE }:=9

END.

PROGRAM unequalif;

VAR j,k,l: INTEGER;

BEGIN
FOR k:=1 TC le@d@ DO FOR j:=1 TO
IF j<2 THEN l:=1 ELSE 1:=8

END,

PROGRAM noparameters;
VAR j,k: INTEGER:
PROCEDURE noneb; BEGIN j:=1 END:
PROCEDURE none4; BEGIN none5 END;
PROCEDURE none3; BEGIN noned END;
PROCEDURE none2; BEGIN ncne3 END;
PROCEDURE nonel:; BEGIN none2? END;
BEGIN

FOR k:=1 TC 18280 DO nonel:
ERD.

PROGRAM value;
VAR j,k: INTEGER;
PROCEDURE valueS5(i: INTEGER); BEGI
PROCEDURE valued(i: INTEGER}: BEGI
PROCEDURE valued(i: INTEGER); BEGI
PROCEDURE value2{i: INTEGER); BEGI
PROCEDURE valuel{i: INTEGER); BEGI
BEGIN

FOR k:=1 TC 1008¢ DO valuel(j)
END. :

FPROGRAM reference;
VAR j,k: INTEGER;
PROCEDURE refer5 (VAR i: INTEGER);
PROCEDURE refer4 (VAR i: INTEGER);
PROCEDURE refer3 (VAR i: INTEGER]);
PROCEDURE refer2 (VAR i: INTEGER);
PROCEDURE referl (VAR i: INTEGER):
BEGIN

FOR k:=1 TO 10888 DO referl(j)
END.

PROGRAM maths;
VAR k: INTEGER; x,y: REAL:
BEGIN -
FOR k:=1 TC 1869 DC
BEGIN
x:=sin(k); y:=expix)
END
EHD.

1¢ DO

16 DO

N i:=1 END;
N value5(i)
N value4 (i)
N value3 (i)
B value2ii)

END;
END;
END;
END;

BEGIN i:=1 ERD;
BEGIN refer5(i}
BEGIN refer4(i)
BEGIN refer3 (i)
BEGIN refer2iil

END;
END;
END;
END;

-41-

—42-

i)

Bl
2
B3
B4
5
6
87
e
P9
19
11

29
21
22
23
24
25

38
31
32
33

40
41
42
43
44
45
16
47
48
49
59

68
61
62
63
64
65

66
78
71
72
8o

99

BLS Pascal Programming Manual

H M ER ERR E

FIND address found.

Syntax error {e.g. missing ';' in the line above}.
'=' expected,
':+' expected.
'[' expected.
expected,
expected.
expected,
expacted.
expected,
.' expected.
="' expected,

Lower limit greater than upper limit in array declaration.
Overflow in array declaration.

'OF' missing in array declaration.

Illegal character in identifier.

String length cannot be zero.

Unknown data type.

Constant of type integer expected.

Constant of type string expected.

Constant of type real expected.

Integer constant sheould be within the interval P<{=i<=255.

'"BEGIN' expected.

'THEN' missing in if statement.

Case selector must be of type integer or of type string.
'OF' missing in case statement.

'END' missing in case statement.

'DO’ missing in while statement.

Varible of type integer expected.

"TO" or '"DOWNTO' missing in for statement.
'DO' missing in for statement.

Label]l identifier has not been declared.
'TO* missing in init statement.

Type string not allowed here,

Expression of type integer expected.

Expression of type string expected,

Type mismatch in expression,

Unknown identifier in expression.

Syntax error or overflow in numeric constant, or string
constant contains a carriage return.

String constant teoo long,

Type mismatch in assignment or parameter list.
Unknown variable identifier.

Unknown array identifier.

Label declared and referenced but not defined.

Unexpected end of scurce text.

BLS Pascal Programming Manual

-43-

APPENPIX H: RUNIJIME ERROR MESSAGES

gl
22
#83
B4

85

1@

29
99

Floating point overflow.

Pivislon by zero attempted.

Attempt to calculate the square root of a negative number,
Attempt to calculate the natural logarithm of a negative or
zero numbetr.

Attempt to convert a real value outside the integer range
inte an integer.

The resulting string at a concat function call is longer
that 255 characters, or the positicn at a mid functicn call
is less than or equal to zero,

An array index is outside range.

Workspace overflow. All available RAM has been used.

Software Reglstration ZFornm

The Blue Labsel Soltware Pascal Language System, version '
serial number , 18 copyrighted and all rights are

reserved by Poly-Dats microcenter ApS.

Name and address:

nersby asrees 527 to sell, rent, or otherwise distribute the
above mentioned program, or any part hereof, in any [{orm, without

prior written cornsent of Poly-Data microcenter ApS.

Siznature: Date:
Dealer:

] z Road, Englefield Green
- Hﬁz‘«. S‘J“REY TW20 OHBE
iy 33603 Telex: 26447

Regd in Ergland No. 1047769
VAT Registration Mo, 211 5797 71

i FEEFCTROVALLE LTD,

Qs€COo

Software

NASCOM PASCAL

NASCOM PASCAL is a complete 12K Pascal
language system, designed specially for the
NASCOM 1 or 2 with NAS-5YS 1 or NAS-5YS 3
monitor. NASCOM PASCAL is based on the
high-level programming language Pascal, widsly
recagnized -as the programming language of the
future.

NASCOM PASCAL basically consists of a runtime
package (4.5K), a control program (0.5K), an
on-screen editor (1.5K) and a compiler (5.5K).

The compiler is a one pass compiler which

directly produces Z—-80 machine code. This
architecture not only provide very fast compilation

Briefly, the NASCOM PASCAL subset includes:

Language System

(2000 lines pr. minute}, but also results in program
execution speeds 3 to 20 times faster than
equivalent BASIC programs.

in 5.5K only it is, of course, not possible to
implement standard Pascal. The. NASCOM
PASCAL subset does not support user defineable
types, sets, and file types. However, all basic
statement constructions are retained, and
procedures/functions are fully recursive and
support both variable and value parameters. The
fundamental data types INTEGER, REAL and
BOOLEAN are likewise supported, while the type
CHAR has been replaced by the type STRING,
which offers a more flexible character handling.

Statements: BEGIN .. END IF.. THEN .. ELSE WHILE . . DO
FOR..TO/DOWNTO .. DO REPEAT . . UNTIL GOTO
CASE .. OF .. OTHERS INIT .. TO Assignment (:=)
Procedure statements

Data types: REAL INTEGER STRING BOOLEAN ARRAY

Constants: MAXINT Pl TRUE FALSE EMPTY

Operators: + — * / DIV MOD SHIFT AND OR
EXOR = = > = == <=

Proceduras: - WRITE WRITELN READ READLN LOAD SAVE
CALL SCREEN PLOT ouT

Functions: ABS SQR SQRT SIN cos ARCTAN LN
EXP INT FRAC SUCC FRED ODD TRUNC
ROUND ORD CHR LENGTH MID LEFT RIGHT
CONCAT RANDOM ADDR POINT INP KEYBOARD

Declarations: LABEL CONST VAR PROCEDURE FUNCTION

Reals provide 11.5 significant digits. Integers are
within the range —32768 to 32767 (16 bits).

" Stiings can be up to- 255 characterstong. Arrays——& machine--ecde subprogram is treated by the _

may have any number of dimensions, and can be
of any of the types INTEGER, REAL, BOOLEAN,
of STRING. Constants may be presented in either
decimal or hex notation. User written machine

code subroutines are supported using procedures/
functions declared as EXTERNAL or CODE. Thus,

compiler as a normal procedure or function. The
procedure WRITELN allows for numbers or
strings to be output using a specific format.

Publication No. 4117

NASCOM PASCAL Language System

The compiler can be invoked in several different
modes. The COMPILE and the RUN commands
will load the object code directly into memory
after the source text, allowing you to execute your
programs almost immediately. The TAPEcommand
will output the object code to the tape recorder,
using NAS-SYS block format. When the com-
piler is invoked from a FIND command it will

-- locate-the statement that -caused-the most-recent—- —

runtime error. The object code produced by
NASCOM PASCAL requires only the runtime
package to be present in memory during execution,
Once a program is tested it can be merged to the
runtime package to form a directly executeable
machine code program.

The NASCOM PASCAL editor is a very powerful
on-screen editor. Apart from being able to scroll
up and down over the text, the display ¢an scroll
to the left and to the right, allowing lines to be up
to 80 characters in length. Blocks can be marked
and deleted or copied to any other location in the
source text. A build-in tabulator eases source
text entry, and the GRAPH key can be selected to
operate as a CAPS-LOCK key, which, when
depressed, reverts the SHIFT key function. The
find command will locate any target string in the
source text. Optionally, the continue command
can be used to find further occurrances. The
editor reacts to 27 different commands, all of

which _are_ control-characters, ie. _characters

“produced by depressing CTRL and another key,
or by depressing ENTER, BS, ESC, etc. This
greatly simplifies command entry.

Program texts can be saved using file names of up
to 60 characters. When a program is loaded it is
merged to the end of the current program, thus
allowing you to maintain a library of separate
subroutines.

NASCOM PASCAL is meant to offer an alterna-
tive to BASIGC. Programs written in NASCOM

PASCAL ~ will- execute much- faster - than their -

BASIC counterparts, and better programming
techniques can be practised, as Pascal is far
more versatile than BASIC, Compared to other
Pascals the NASCOM PASCAL offers a lot more
features in the same amount of memory, and
shows Benchmark timings comparable to those
obtained on 16-bit mini computers.

NASCOM PASCAL is available in two versions:
A tape version, which resides in memory from
1000H to 3FFFH, and an EFROM version, which
is situated between DOOOH and FFFFH. The
EPROM version is supplied in 6 2716 EPROMs,
together with instructions to fit the EPROMs on
the NASCOM 2 main PCB by paging the top 12K
of memory into two banks (NASCOM PASCAL
in one bank and NASCOM BASIC plus an
assembler in another bank). The documentation
consists of two printed manuals: An Operating
Manual (17 pages), which describes how to
operate the system, and a Programming Manual

(40 pages}, which describes the NASCOM

PASCAL subset.

Lucas Logic

l’

Lucas Logic Limited
Welton Road Woedgnock Industrial Estate
Warwick CV34 5PZ

Tel: Warwick {0926) 497733

Telex: 312333

Due to a policy of continued improvement, Lucas
Logic Limited reserve the right to amend the
specifications of all products without notice.

© Lucas Logic Limitsd 1982

Printed in England

10M/482/DL

