
Blue Label Software

Bee
Ueer Manual

BLS Pascal User Manual

INDEX

@: INTRODUCTION ..ueaees ere re eee Rea | oe

1. THE COMMAND MODE ere tt ae eee ee ee es

2. LOADING AND SAVING SOURCETEXTS ..
Z.1 The SAVE command wesuecnsavaenactanenerecacuautaaucaga
2.2 The LOAD command wwe eee tanec ue cana aeaenccuae sae taeee
2.3 The VERIFY command ...ccenancaccavacacaraa teehee rae

3. THE EDITOR st ba eaeae ee ee aes sFet ere Ft

3.1 Editing commandS wavcccssecceacrevurencrecseucccrueens
3.2 Cursor movement commands ee wee
3.3 Block commands00+. Pe vee eae eee nanan
3.4 Search commands ere eee eens
3.5 Tabulator commands .icacceenreccaavae er rr
3.6 Other editor commands-. eee eee eee ee ae wae

4. TEE COMPILER V..aeaenaaae eee hee Ae a ee ee
4.1 The COMPILE command ...ccccaeecacnevecceuace eae ena eee
4.2 The RUN command ...eucseaacancsa oe ee a .
4.3 The TAPE command wee e eee eae orem tern ae veeeee
4.4 The FIND commandecucuacene se ae eee eae ade wae

5. MISCELLANEOUS COMMANDS Ce eee eeeennae
5-1 The MEMORY command-.eceeneeaacacas Pee eee aw enee
5.2 The ZAP command an eeaee
5.3 The QUIT command 2... .ceceencuee ene eee

Appendix A: System startup Peat Perea eee
Appendix B: System workspace weceeaeeees er eaeenae
Appendix C: Memory Mapseeee0eunaae ee eon reneae
Appendix D: The user defined output routine ...eeeeerecaees .
Appendix E: Command summary . see eee emer ee a eee ee

K
D

a
e

-2- BLS Pascal User Manual

@: INTRODUCTION

Blue Label Software Pascal is a complete 12 K Fascal language
system developed for use on the NASCOM range of microcomputers,
The minimum computer system required tc take full advantage of
the BLS Pascal is:

NAS~-SYS 1 or NAS-SYS 3 moniter.
16 K RAM {ROM version} or 32 K RAM (Tape version).

This manual describes how to operate the language system. In
programming matters the user should refer te the BLS Pascal
Programming Manual.

The Blue Label Software Pascal Language System is copyrighted
and all rights are reserved by Foly-Data microcenter Aps, The
distribution and sale of this product are intended for use of
the original purchaser only. Copying, duplicating, selling or
otherwise distributing this product is a violation of the law.

Copyright (C} 1981 Poly-Data micrecenter Aps
Strandboulevarden 63, DK 21#8 Copenhagen @

Blue Label Software is a trademark of Poly-Data microcenter Aps,

BLS Pascal User Manual -3-

1: THE COMMAID MODE

When started as described in APPENDIX A, the system will prompt:

BLS Pascal version x.x
Copyright (¢) 1981
Poly-Data microcenter ApS
> . .

where x.x is the version number, The '>' character is the
system prompt and indicates that the system is ready for command
entry. When entering commands the following control-keys may be
used:

<BS> Backspace,
<ESC> Clear line.
<ENTER> Frocess command line,

& command consists of a command word eventually followed by a
command parameter. At least one blank is required between the
command word and the parameter. A command need not be written
fully, but may be abbreviated to the first character, e.g. the
command :

LOAD game

can be abbreviated to

L game

The operating system recognizes 11 commands, which, according to
their function, can be divided into 4 groups:

1. Loading and saving sourcetexts
2. The editor
3. The compiler
4. Miscellaneous commands

-4- BLS Pascal User Manual

2: LOADING AND SAVING SOURCETERTS

Sourcetexts are written to tape using the NAS-SYS block format.
Thus, if a checksum @€rror occurs during a lead, the user can
rewind the tape and read the erroneous block once more.

2.1 The SAVE command

The SAVE command writes the current sourcetext to a cassette
tape. The command line format is:

SAVE filename or & filename

The filename can have any length and may contain blanks.

2.2 The LOAD command

The LOAD command reads a sourcetext from a caSsSette tape, The
command line format is:

LOAD filename or L filename

If the filename is omitted, the first file found will be loaded,
Each time a file is found, the system will print:

File filename found

When loading a sourcetext it will be placed after the current
sourcetext, thus allowing the user to load several seperate
subroutines. If a new sourcetext is to be loaded the current
sourcetext must be deleted first e.g. by issuing a 2AP command.
A LOAD command can be aborted at any time by pressing <ESC>,

2.3 The VERIFY command

The VERIFY command is identical to the LOAD command, except that
the sSourcetext read from the cassette tape is not loaded into
memory. The purpose of the command is to check that the
sourcetext can be read from the tape witheut error, The command
line format is:

VERIFY filename or Y¥ filename

If the Filename is omitted, the first file found will be

verified.

BLS Pascal User Manual -5-

3; THE EDITOR

The system editor is an on-screen editor, which means that the
display may be likened to a window, which can he moved about
over the sourcetext. The cursor always reside within the window
and its position determines where characters or lines are to be
edited, deleted or inserted,

The maximum line length is 8@ characters. As the display is
only 48 characters wide the text window Can, apart from moving
up and Gown, move to the left and to the right. If one enters
more than 48 characters on a line the cursor will not move to
the next line, but instead the Gisplay will scroll to the left
and the leftmost characters will ‘disappear’, This may seen
confusing, but when writing Pascal programs it is often
preferable to have a line length greater than 48 characters,
Also it enables one to take full advantage of an 88-coloumn
printer,

The editor is invoked by the command line;

EDIT or E

When entering the editor the cursor will be placed in the same
Spot 1t left previously, or, if it is the first activation after 4 cold start or a ZAP command, the display will be cleared and
the cursor will be moved to the top left corner,

The editor recegnizes 27 commands which uses the ASCII values
between @1H and I1BH, i.e. the control characters, All other
characters will, when entered, be inserted in the sourcetext at
the current cursor position.

if all available RAM has been used, the system will return to
the command mode and print:

Overflow

The sourcetext is undamaged, but any attempt to enter more text
will be denied. If possible one has to expand the buffer area,
by moving MTOP to a higher adress (see APPENDIX B), before
continuing. .

In the description of the editer commands the following
notations will be used:

CTRL/ or SHFT/ followed by a character indicates that
the character is to be entered while depressing either
<CTRL> or <SHIFT>,

‘Rie means right arrow, <LE> means left arrow, <UP>
Means Up arrow, and <DO> means down arrow.

3.1 Editing commands

The editing commands are used to edit the sourcetext.

<BS> Move the cursor left and blank the cursor position,
If the cursor is in the first column of a line, move

CENTER?

CESC?

SHFT/ <RI>

SHPT/<LE>

SHFT/ <DO>

SHFT/<UP>

BLS Pascal User Manual

it to column 79 in the line above,

Move the cursor to the first column in the next line

and insert an empty line.

Delete the current line and move the cursor to the

first column in the line above.

Insert blank at the curser and move rest of Jine to
the right. CTRL/V may be used instead of SHFT/<RI>.

Delete character at cursor and move rest cf line to

the left. CTRL/U may be used instead of SHFT/<LE>.

Insect a blank line, and move the cursor to the
first column. CTRL/Z may be used instead of
SHF4/<DO>

Delete current line, and move the cursor to the

first column. CTRL/Y may be used instead of

SHFT/ <UP>.

3.2 Cursor movement commands.

The cursor movement commands are used to move the cursor without

Altering the sourcetext.

<RI>

<LE>

<DO>

<UP>

CTRL/B

CTRL/E

CTRL/N

CTRL/O

<LF>

<CS>

Move the cursor right. If the cursor is in column
79 move it to first column in the next line. CTRL/R

may be used instead of <RI>.

Move the cursor left. If the curser is in the first

column move it to column 79 ain the line above.

CTRL/Q may be used instead of <LE>.

Move the curser down, If the cursor is at the

bottom line scroll the display up. CTRL/T may be
used instead of <bBOC>,

Move the cursor up. If the cursor is at the top

line seroll the display down. CTRL/S may be used

instead of <UF>.

Move the cursor to the first line of the sourcetext.

Move the cursor te the last line cf the sourcetert.

Move the cursor i4 lines down.

Move the cursor 14 lines up.

Move the cursor to the first column in the current

line, CTRL/J may be used instead of <LF>.

Move the cursor to the column after the last

character on the current line. CTRL/L may be used

instead of <CS>.

3.3 Block commands

BLS Pascal User Manual -7-

The block commands affect blocks of the sourcetext. <A block is
marked by block markers which can be inserted using the CTRL/A
command, A block command enly affect the first marked bleck in
the sourcetext. If no blacks are marked ali bleck commands
{except CTRL/A) will be ignored.

CTRL/A

CTRL/D

CTRL/I1

CTRL/P

This command must be followed by a character, A ‘B'

indicates that a begin-block marker is to be
inserted, an 'E' indicates that an end-block marker

is to be inserted, Block markers are always
inserted in front of the first character in the
current line. If the current line already contains
a block marker the CTRL/A command is ignored.

Delete the first marked block {including block
markers) from the sourcetext and move the cursor toa
the line which contained the end-block marker.

Insert the first marked block {excluding block
markers) before the current line. If the curser is
within the First marked block CTRL/I is ignored,

Print the first marked block to the user defined
cutput routine (see APPENDIX DBD). The CTRL/P command
must be followed by a character. 'L' indicates that
the listing should include line numbers and any
other character indicates that no line numbers
should be issued.

3.4 Search commands

The search commands are used to locate a target string in the
sourcetext.

CTRL/F

CTRL/C

Find the first occurance of a2 target string of
maximum 48 characters. When CTRL/F is typed an
empty line is inserted and, as a promt character, a
right arrow is printed, The target string is
entered using the same control-keys as when entering
commana lines. When <ENTER> is pressed the target
String will disappear. If the string searched for
is found the cursor will be placed at the first

character. If net found, the cursor does not move.
The search always Starts at the next line.

Continue searching for the last entered target
string.

3.5 Tabuiator commands

CTRL/K This command is used to alter the tabulator length.
The command must be followed by a character, which
determines the length. The character 'A' denotes
the length 1, 'B' denotes the length 2, etc., which
means that the length will be the ASCII value of the
character less 64, The maximum length is 63, If
one selects a length of zero {by typing CTRL/K
Followed by "@"), the tabulator enters the indent
mode, In this mode, when activating the tabualtor,

the cursor will move to the position beneath the

<CH>.

BLS Pascal User Manual

first character in the line above.

Move the cursor to the next tabulator position, or,
if the tabulator is in the indent mode, to that
column in the current line which corresponds to the
column of the first character in the previous line.

CTRL/W may be used instead of <CH>.

3,6 Other editor commands

CTRL/G

CTRL/X

This command is used to alter the <GRAPH> key
function, The command must be followed by a
character. An 'A' means that the <GRAPH? key is toa
function aS ah ALPHA-LOCK key: Each time it is
depressed it will reverse the function of the

' <SHIFT> key (for the letters A-Z only}. A ‘G" means
that the <GRAPH> key is to function normally.

Clear the display and return to the command mode.
In addition delete all block markers.

BLS Pascal User Manual -3-

4: THE COMPILER

The compiler is the heart of the language system. It is capable
of translating the sourcetext into executable 2-88 machine code.

The compiler can be invoked in several different modes:

1} Using the COMPILE/RUN commands the object code will be
Placed directly into memory after the sourcetext, This
method is the fastest, but also requires the most RAM space
as both the sourcetext and the object code must reside in
menory at the same time.

2) When the compiler is activated from a TAPE command the
object code will be dumped to the cassette recorder using
NAS-S5Y¥S block format. Of course this method is somewhat
slower than the above, but it Saves memory, and allows the
user to direct the object code to any address.

3) When activated from a FIND command the compiler can be used
to locate a statement in the sourcetext which corresponds to
a certain address in the object code, e.g. the address of a
runtime error, This mode is extremely useful for easy
debugging cf programs.

When locating an errors the compiler will automatically invoke
the editor, and place the cursor in the erroneous statement.

Let us assume that the following program has been entered:

VAR number: REAL;
BEGIN

readlninumbr);
weiteln('The square root is',sqrt (number}};

END.

The program contains an error, as the identifier number is
misspelled in the readin statement. If a compilation is

attempted, this is what wil] happen:

Compilation error 64
readin(pumbr);
writeln('The square root is',sqrt(number});

END.

Press <SPACE>

To indicate the error the cursor is placed at the ‘nn’ in the
misspelled identifier, When the spacebar is pressed the top
line will be cleared and the user may edit the sourcetext in the
same way as usually.

If the buffer overflows during 4 compilation the compiler will
abort, and print:

Overflow

If it is possible the user must expand the buffer area, using
one of two methods:

1) If there is more RAM available MTOP should be moved to a

-18- BLS Pascal User Manual

higher address (see APPENDIX B).

2) If the compiler was activated from a COMPILE or a RUN
command, the TAPE command should be used instead.

4.1 The COMPILE command.

Activating the compiler from a COMPILE command wili piace the
object code directly into memory in succession of the
sourcetext. The command line format is:

COMPILE OF Cc

When the command line is entered the compiler will print:

. Compiling .

If no errors occur the follewing will be printed when the
compilation is completed:

Compiling OK
Text: Saaaa $bbbb <xxxxx>
Code: $ccce $dddd <yyyyy>

aaaa and bbbb are the start and end address of the sourcetext
{in hex) and xxxxx is the size in bytes. cccc, dddd, and yyyyy
are the corresponding parameters of the object code,

4,2 The RUN command

This command is used to execute a program. The command line

format is:

RUN or R

If no object code is present the compiler will be activated
Prior to executing the program. Assuming no errors occured
during compilation, or if the object code was already present,
the system will print:

Running

and control will be transferred to the program. When the
program ends the control will be transferred back to the

language system.

Tf a runtime error cccurs during program execution the system

will print:

Runtime @rror xx at $nnonn

and control will be transferred to the language system {or to
NAS-SYS if the program was compiled using the TAPE command; see
chapter 4.3). xx is the error number and nnnn is the error
address (in hex). The error address is not an absolute address
but an offset address from the start address. By issuing a FIND
command (see chapter 4.4) the user may locate the statement that

caused the runtime error.

4.3 The TAPE command

BLS Pascal User Manual ~ -ll-

When activating the compiler from a TAPE command the object code
wili be dumped to the cassette recorder using NAS-S¥S_ block
format. The command Jine format is:

TAPE nnnn or T nnn

where nono is the absolute start address {in hex) of the
program, If nnnn is omitted the system will choose $2188 ($1808
for the ROM version) as start address ($2188 is the end address
of the runtime package in the tape version). When compilation
is complete the system will print:

xxxx End,

where “xxx is the end address of the object code.

When the tape is loaded (using the R command in NAS-SYS) the
program can be executed by entering the NAS-SYS command EXXxx,
The program requires the runtime package to be present between
$1888 and $2188 (SDO8@ and $E18@ for the ROM version). However
the rest of the language system is not needed during program
execution, Thus, when a program is thoroughly tested it can be
compiled using the TAPE command (and, if you are using the tape
version, merged to the runtime package) to form a directly
executeable object code.

4,4 The FIND command

The FIND command is used to locate a statement in the sourcetext

which corresponds to an offset address in the object code, In
this mode the compiler will generete no object code. The
command line format is:

FIND nonn Or F nnnn

where nnnn is the offset address. The offset address is
calculated by subtracting the start address from the address one
wishes to locate. If a program starts at $2188 the command:

FIND 115

will locate the statement, which origins at $2295. Jf nmnnn is
omitted the address of the last runtime error is substituted.
When activated from a FIND command the compiler will print:

Searching

If the offset address is reached during compilation the editor
will be invoked and the top line will display:

Compilation errer ##@ Press <SPACE>

The curser will be placed at or just after the relevant text.
When the spacebar is pressed the top line will be cleared and
the user may edit the sourcetext in the same way as usual. If
the offset address is not reached the system will print:

Searching ?

-12- BLS Pas¢al User Manual

2: MISCELLANEOUS COMMANDS

5.1 The MEMORY command

This command displays the start and end addresses and the size
of the sourcetext, and the same parameters of the object code if
it is present. The command line format is:

MEMORY or La)

The command will print:

Text; $aaaa Sbbbb <xxxxx>

and, if the object code is present, in addition:

Code: $ccce $dddd <yyyyy>

aaaa and bbbb are the start and end address of the sourcetext
(in hex} and xxuxx is the size in bytes. cccc, dddd, and yyyyy
are the corresponding parameters of the object code,

5.2 The ZAP command

This command deletes the sourcetext as well as the object code.
The command line format is:

ZAP

NOTE: To séecuré that the ZAP command is not invoked
accidentally, command word abbreviation does not apply
here.

5.4 The QUIT command

This command transfers the control to KAS-S¥S. The command line
format is:

Quit or Q

The language system may be warmstarted later, using the method
described in appendix A.

BLS Pascal User Manual -13-

APPENDIA A: SYSTEM STARTUP

Tape version:

The BLS Pascal tape version ifs recorded at 1208 baud using the
NAS-SYS block format, The tape is loaded using the R command.
The system is coldstarted by entering:

E2188 aaaa

where aaaa is the highest RAM address the system is allowed to
access. If aaaa is omitted all available RAM will be used.

The system iS warmstarted by entering:

E2182

ROM version:

The system is coidstarted by entering:

J daaa

where aad@a i85 the highest RAM address the system is allowed to
access. If aaaa is omitted all available RAM will be used,

The system i8 warmstarted by entering:

PF

-14- BLS Fasecal User Manual

APPENDIX B: SYSTEM WORKSPACE

The system workspace resides from $C8B to $DO8. In this area
the following addresses may be of interest to the user:

Caa-C8l MTOP The highest RAM address the system is allowed
to access,

C82-C$3 EOFP The end address of the sourcetext,
C84-C8S PEND The end address of the object code,

BLS Pascal User Manual

APPE

Tape version:

OCBR toe e on nre r e rnr nc ac nn
1 system workspace

ODER +---- on rn
| system stack

1@Q8 +------------ n-ne eee rn
| runtime package

2180 +------+----------- =

| operating system
2988 tree nn ne nn errr

! compiler
4000 to--- nee ene ere

sourcetext
EQFP +-----------+ 0+ 8-9-5 = HH

1 object code
PEND +7 seen nnn eee nnn

1 program workspace
MTOP +~----<-~+-------------------

eee ee ee ee ee ee ee ee

——— ee

ee ee

a ee ee

Ca et ee

~lé6é- BLS Fascal User Manual

APPENDIX D: THE USER DEFINED OUTPUT ROUTINE

When using the editor command CTRL/P, output will be directed to
the NAS-SYS user coutine. A jump vector to this routine should
be placed in $UGUT ($C77-$C79). Listed below is a routine to
control a printer connected to the serial port with a BUSY line
(active high) connected to bit 7 of port @:

HEAL PDBe ORG &Dee@H
Baa?

BYBS BDBB FS FRINT; PUSH AF
8884 O8Dbl DRE Pl: IN A, {8}
6985 BDB3 17 RLA
B06 OD04 30FB JR C,Pl
#007 BDB6 F1 POP AF
BG08 @D87 DFEF SCAL 6FH
@829 @DB9 C9 RET
#018

@@1l @pla END

BLS Pascal User Manual

APPENDIA FE: COMMAND SUMMARY

Command mode:

SAVE filename
LOAD filename

VERIFY filename

TAPE nnonn

FIND nnnn

MEMORY
ZAP
OUTT

The editor:

<BS>
<ENTER>
<ESC>
SHFT/<RI>
SHFT/ <LE>
SHFT/ <DO>
SHPT/<UP>

<RI>
<LE>
<DO>
<UP>
CTRL/B
CTRL/E
CTRL/N
CTRL/O
<LF>
<CS>

CTRL/A {B,E)
CTRL/D
CTRL/I
CTRL/P (L,?)

CcTRL/F
CTRL/C

CTRL/RKR (char)
<CH>

CTRL/G (A,G)
CTRL/X

Write sourcetext ta cassette.
Read sourcetext from cassette,
Verify.
Activate editor.
Compile sourcetext.
Execute object code.
Compile and dump object cede to cassette,
Locate address in sourcetext.
Display program parameters.
Delete sourcetext and object code.
Return to NAS-SYS.

BackSpace.,
Moye cursor down and insert line,
Delete line and move cursor up.
Insert blank.
Delete charactec.
Insert line.
Delete line,

Move cursor right.
Move cursar left.

Move Curser down.
Move cursor up,
Move cursor to beginning of sourcetext.
Move cursor te end of sourcetext.

Move cursoc down 14 lines.
Mave cursor up 14 lines.
Move curser to First coloumn.
Move cursor to last character.

Insert block marker.
Delete E£irst marked block,
Insert First marked block.

Frint first marked block,

Find target string.
Continue searching.

Altec tabulator length.
Moye cursor to next tabulator position.

Alter <GRAPH> key function.
Return to command mode,

-l7-

PUlnes Paradneed Seal al

Pasca
Mreggreaniening Manual

BLS Pascal Programming Manual

INDEX

fo.

T.

INTRODUCTION arb age Re eae ae ea eee eae

BASIC ELEMENTS OF THE LANGUAGE ,....:5
1.1 Symbols Pe

ea tet e

ee |

1.2 Reserved words and standard identifiers ..sesess

1.3 Seperators ee ee

USER DEFINED ELEMENTS ..-..0000s
D2ol TdentifierS wean ence erent ent eaaee
2.2 NumberS ween n an aenenanee bee a eae
Zed SCYVGNgS sasesen nae ceeeranaeneneae
2.4 CommentS waar eereeee arse ean aeane

A TYPES wesc eee ear te tee

INCGQGErS wert tere reese rene neaee
RealS pacer eee ee eee ates
Bocle@ansS s.saeneeanae see ree

SEQViNGS secasevensareeeeneraean
ALE AYE ecuserenaereeeenanr enna
3.5.1 The mem array weveenwcaee

W
h
o

la
l

BR

Re

eg

E DECLARATION PART ww. cceusnnneneenea

1 Label declaration part sereceaee .
2 Constant definition part .-seeues
3 Variable declaration part «-..e.

4

EXPRESSIONS caaeentae reese raw eae .
5.1 The operator NOT+.- see eae
5.2 Multiplying Operators seereeeaeas

5.3 Adding OPeratOlsS wevesaeaeeeenans

5.4 Relational operators ..esseceenee
$5.5 Function designators sseeseuneees

STATEMENTS ee ee

6.1 Simple statements aeep eer eee em ee

6.1.1 Assignment statements
6.1.2 Procedure statementsa+
6.1.3 GOTO statementS sesveeeeaeae
6,1.4 INIT StALOMENtTS weave aeaven
6.1.5 Empty statements .seerseuee

6.2 Structured statementS wraaanannae
6.2.] Compound statements o.
6.2.2 Conditional statements

6,2.2.1 IF statements .eaee

6.2.2.2 CASE statements ...
6.2,3 Repetitive statements

6.2.3.1 WHILE statements ..

6.2.3.2 REFEAT statements .
6.2.3.3 FOR statements ,...

PROCEDURES wecuan ae ee eee oan .

7.1 Procedure declarations wiscaasaaes

7.1.1 Procedure heading0..04

7.1.2 The declaration part
7.1.3 The statement part sweveaees

7.2 Standard procedures ..sceranseeas

er ear eke eee ere

ee

wae tae nara rae es

awh eae ere ee

el

Frocedure and function declaration part weveeene

ee ee

ee ee ee =e ene

Ce ed - Ce ed

ee ee ee ee | aonee

arhe ee eee ee a

Ce

pepe eat Re eee

orwraraee eee senate

ed ee

. ee wa

eae eas ee

em e mere ee Pa

tr eer te eee

ee ed

ee ee ed

a ere eam

oe e eer rFetepamea

ae ee eae ee ee

wee RR aha

en emeana 2. r ee ree

Ce oe)

ee

ee

Ce ed a

Go

wh

el

ad

ee

Hd

+]

A
c

m
a
o

Ra

wo

Oo

4o

Wo

ee

ede

ol

ll

ell

oe
cl
l

se
ll

el

el

pe

p
e

ee

e
t

et

et

BS

e
l
e

ch

oy

n
n

G
e

L
e

ed

e
e

O
o
o
o

m
o

8. FUNCTIONS

8.1 Function declarations

BLS Pascal Frogramming Manual

Le ee ee ee ee 2

| ei ee

8.1.1 Function heading | i ee

8.1.2 The declaration Part wscesaecevracsesaeusenacers
8.1.3 The statement partcsecse eee evacarscsscunes

Arithmetic FuNCtions weve erevasceasuansuaureves
Integer Functions ccc scace rece eran nasecasunanns
SEFINg LUNCLLIONS sasacesaacaasnnavoveereracaane
Transfer FUNCtIONS weeceeeerernanaccerucaeuurens
Further standard functions weveevananeeretauuue

a, PRRAMETERS a de

9.1 Formal and actual parameters .-... ce es cea racareacecees
9.2 Parameter CyPeS .ceccevacracecaacaasucavevssesasnanaa

9.2.1 Valve parameters wiscesncecccaeranacsasnaneanen

9.2.2 Variable parameters .ecacacersevevsvecesuauacas
9.3 Rules applying to parameters ee ee ee

18. INPUT AND OUTPUT 2 er 2 er

LB.1 Enput w.c cece nee cee eae eee tana ee eavavesnas
18.1.1 The procedure réad ...cc eee eae eee nen esusaaa
18.1.2 The procedure read n wea scccac re vencncaeunan
Output Ce ee er ee |

18.2.1 The procedure write sevsevascasceevasunaeces
18.2.2 The procedure writeln eevee nenanacacsueucan
Saving and loading arrayS wssasaeneravevevavacsceas
16.3.1 The procedure Save woceeescunareneatatutaten
18.3.2 The procedure load wo. e ewe eee eee eee eae ean

18.2

18.3

Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix

BLS Pascal SYMNtax . nce cree nce ana e wenn newnawae
Some useful routines sasaescanenesuvcsnenanarauee
The SyStem Workspace seve asesnenvsevcnenenacacee
Internal data FOrMat weasacacansevavsnavaceenane
Machine code subroutines weavaccaneuencuacrevaer
Benchmark t@StS wssncenarensvsusanacacananeanuae
Compiler error MESSAGES ween a vse cana eaesneeenes
Runtime @rlOr MESSAGES - peewee eee ees eaeae nae

28
28
2B
28
28
28
26
21
21
22
22

23
23
23
23
23
24

25
25
25
25
26
26
27
27
27?
27

268
32
a4
35
37
39
42
43

BLS Pascal Programming Manual ~3-

2; INTRODUCTION

The Blue Label Software Fascal Language System is meant to offer
an alternative to BASIC, Not only will the user gain execution
speed, but he can also practise better programming techniques,
45 Pascal is far more versatile than BASIC.

As the BLS Pascal system is very compact {only 12K, hereof 5.5K
compiler), it has not, of course, been possible to implement
standard Pascal in full: The BLS Pascal subset does not support
user defineable types, sets and fFile-types, However all of the
basic statement constructions are retained, and procedures and
functions allow for both value and variable parameters, The
fundamental] data types INTEGER, REAL and BOOLEAN are likewise
supported, while the type CHAR has been replaced by the type
STRING, which offers a more flexible character handling.

This manual fully defines the BLS Pascal subset, and should be
carefully studied before any Programming efforts are made.

The Blue Label Software Pascal Language System is copyrighted
and all rights are reserved by Poly-Data micrecenter ApS. The
distribution and sale of this product are intended for use of
the origina] purchaser only. Copying, duplicating, selling or
otherwise distributing this product is a violation of law.

Copyright (C) 1981 Poly-Data microcenter Aps
Strandboulevarden 63, DK 218@ Copenhagen ©

Blue Label Software is a trademark of Poly-Data micracenter Aps,

-4-+ BLS Pascal Programming Manual

i: BASIC ELEMENTS OF THE LANGUAGE

1.1 SYMBOLS

The basic vocabulary of Pascal consists of basic symbols
classified into letters, digits, and special symbols:

Letters: Ato Z, ato az, "_' and '\',
Digits: Bl23456769

Symbols: +-* f= <> () >E].,- 7:27 {4

The compiler does not differ between capital and non capital
letters.

Some operatores and delimiters are formed using two special
symbols:

1. <> <= >= = +

2. {. and .} can be used instead of [and].
3. (* and *) can be used instead of f{ and }.

1.2 RESERVED WORDS AND STANDARD IDENTIFIERS

The reserved words listed below can not be used as user defined
identifiers:

(e.g.

AND EXTERNAL OTHERS
ARRAY FOR PROCEDURE
BEGIN FUNCTION PROGRAM
BOOLEAN GOTO REAL
CASE IF REPEAT
CODE INIT SHIFT
Di¥ INTEGER STRING
GO LABEL THEN
DOWNTO MOD TG
ELSE NOT UNTIL
END OF VAR
EXOR OR WHILE

abs
addr
arctan
call
chr
concat
cos
empty
exp
false
trac
inp
int
keyboard

Certain identifiers, called standard identifiers, are predefined
Sin; cos}, Unlike the reserved words these identifiers

can be redefined by the user;

left
In
load
Maxinkt
mem
mid
odd
ord
out
Bi
Plot
point
pred
random

read
readln

right
round
fave
sin
Sqr
sqrt
Bucc
true

trune
write

writeln

BLS Pascal Programming Manual -5-

1.3 SEPARATORS

Blanks, ends of lines, and comments are considered as
separatars, At least one separator most occur between any pair
of consecutive identifiers, numbers or reserved words.

-6- BL& Pascal Programming Manual

2: USER DEFINED ELEMENTS

2.1 IDENTIFIERS

Identifiers are names denoting constants, procedures, functions,

Variables, and labels. They must begin with a letter, which may
be followed by any number of letters, digits, or '.'-characters,
Examples:

PASCAL Pascal NAME,.41,CODE

2,2 NUMBERS

Numbers may be written in both decimal and hexadecimal
notations. Hexadecimal numbers must be preceeded by a $-sign.
The letter E preceeding the scale factor is pronounced as 'times
1@ to the power of'. Examples;

1 188 $25EC 8.138 5El¢ 87,.135565-8

No separators may occur within numbers.

2.3 STRINGS

Sequences of characters enclosed by single quote marks are
called strings. To include a quote mark in a string it should
be written twice. Examples:

"BLS Pascai' "At "A ' "that''s all folks’

2.4 COMMENTS

A comment is a sequence of characters enclosed in curly brackets
(or (* and *)), which can be removed from the program text
without altering its meaning. Example:

(* This is a comment *}

BLS Pascal Programming Manual -T-

3; DATA TYPES

A data type defines the set of values a variable may assume,
Every variable occuring in a program must be associated with one

and only one data type. BLS Pascal supports four basic data
types: Integer, real, boolean, and string.

3.] INTEGERS

An integer is a whole number within the range -32768 to 32767.
When operating on integers overflow and underflow will not he
detected.

3.2 REALS

A real is a real number within one of these ranges:

-1L.7BL41 1 B346E+38 <= R <= -2,938743587708E-39
R= 4

2,93873558778E-39 <= R <= 1,76814118346E+38

Reals provide 11+ significant digits, If an overflow occurs
during an arithmetic operation involving reals, the program will
break and display an error message. If an underflow occurs the
result will be zero.

3.3 BOOLEANS

A boolean variable should only assume the predefined values true
{-1) and false (8). However, as BLS Pascal does not differ
between integers and boocleans, a boolean variable can assume
other values, but this is strongly discouraged.

3.4 STRINGS

When a string variable is declared one informs the compiler of
the maximum length it may assume {between 1 and 255). Examples:

STRING [32]
STRING [stringsize]

43.5 ARRAYS

An array i8 a structure consisting of a fixed number of
components which are all of the same type, called the component
type. The elements of the array are designated by indices,
which are of the type integer. Upon deciaration the upper and

lower bound of each index i8 written seperated by '..'.
Examples: ,

ARRAY [1,..18] OF INTEGER
ARRAY [@.,maxsize] OF STRING[32]
ARRAY [-5..11,29..45] OF REAL

Components in an n-dimensional array are designated by n integer
expressions. Examples:

data[12]

blitj,7]

-8- BLS Pascal Programming Manual

names([pointers|[8],3]

3.5.1 The mem array

The mem array is a predefined one-dimensional array representing
memory. Each component designates a byte, whose address is
given by the index. Components of the mem array can only assume
values between @ and 255, If a value greater than 255 is
assigned the actual value will only be the least significant 8
bits, Examples:

iz=mem(SCAa8] AND $16;

FOR p:=1 TO length(s}) DO
memloffset+p]:=ord(mid(s,p,1)};

BLS Pascal Programming Manual -9-

4a DECLARATIONS:

A program consists cf 3 parts:

1, The program header
2. The declaration part
3, The statement part

The program heading gives the program a name and lists its
Parameters, through which the program communicates with the

environment. Examples:

PROGRAM conversion;

PROGRAM calculation (input, cutput);

In BLS Pascal the program header is purely optional, and if it
is used everything between the reserved word PROGRAM and the
first semicolon i858 considered as 4 comment.

Declarations must be listed in the following order:

1, Label declaration part
2. Constant definition pact
3. Variable declaration part ;
4, Procedure and function declaration part

None of the abave mentioned parts need to be present (thus the
declaration part may be empty).

4.1. LABEL DECLARATICN PART

All labels used in the program must be declared in the label
declaration part, which is introduced by the reserved word
LABEL, A label may either be an identifier or an unsigned
number. Examples:

LABEL],ercor,999,stop;

Any statement in the program may be prefixed by a label followed
by a colon (making possible a reference by a goto statement).
Examples:

999: write('BDone...'};

A label should only be referenced within the block in which it
is declared.

4.2 CONSTANT DEFINITION PART

A&A constant definition introduces an identifier as a synonym for
a constant, The symbol CONST introduces the constant definition
part. Example:

CGNST

number=45:
max=193.158;
min=-maxy

name="Johnson';

-lg- BLS Pascal Programming Manual

Predifined constants are as follows:

pi Real 3,1415926536.
Lrue Boclean True (-l).
false Boolean False (@}.
Iaxint Integer 32767.
empty String '' {The empty string).

4.3 VARIABLE DECLARATION PART

Every variable occuring in the program must be declared in the
variable declaration part, which i5 introduced by the reserved
word VAR, A variable declaration associates an identifier anda
data type to the variable. More variables of the same data type
can be declared on the same line, Examples:

VAR

i,j,k: INTEGER;

XCOGOLr,ycoor: REAL;

Names: ARRAY [1..188] GF STRING [32]

The variable is accessable throughout the entire block
containing the declaration, unless the identifier is redefined

in a subordinate block.

When entecing a block all variables declared within the block
will cleared, ¢.g. reals and integers assumes the value 8,
booleans assumés the value false, and strings assumes the value

empty.

4.4 PROCEDURE AND FOUNCTIGN DECLARATION PART

The procedure declaration serves to define procedures within the
current procedure or program (see chapter 7). A procedure is
activated from a procedure statement (see chapter 6.1.2).

The fonetion declaration part Serves to define a program part
which computes and returns a value (see chapter 8}. Functions
are activated by the evaluation of a function designator, which
is a constituent of an expression (see chapter 5.4).

Neen EEE EEE Om

BLS Pascal Programming Manual -ll-

2i_EXPRESS TONS

Expressions are constructs denoting rules of computation for
obtaining values of variables and generating new values by the
application of operators. Expressions consist of operators and

operands, i.e. variables, constants, and functions,

The rules of composition specify operator precedences according
to four classes of operators. The NOT operator has the highest
precedence, followed hy the multiplying operators

‘ (* / DIV MOD AND SHIFT), then the adding operators
{+ - GR EXOR}, and, finaliy, with the lowest precedence, the

relational operators (= “> 2 << >= <=}. ALL operators
allowing integers a5 operands will also allow booleans. Any
@#xpression enclosed within Parentheses is evaluated
independently of preceeding or succeeding operators.

5.1 THE NOT GCPERATOR

The NOT operator denotes complementation of its operand, which
must be of the type integer or of the type boolean. Examples:

NOT true = false
NOT false = true
NOT 5 = -6

5.2 MULTIPLYING GPERATORS

Operator Operation Type of operands Type of result

* Multiplication real, integer real, integer
f Division real, integer real
BIV Integer division integer integer
MOD Modulus integer integer
SHIFT Logical shift integer integer
AND Logical AND integer integer

The operation 1 SHIFT J has the following effect: 2 wili he
shifted te the left J times, if J is positive, and ~—J times to
the right, if J is negative. Thus the result will always equal
zero if ABS{J} is greater than 15.

5.3 ADDING OPERATORS

Operator Operation Type of operands Type of result

4 Addition real, integer real, integer
- Subtraction teal, integer real, integer
OR Logical OR integer integer
EXOR Logical EXOR integec integer

When used as operators with one operand only, - denotes sign
inversion, and + denotes the identity operation.

5.4 FUNCTION DESIGNATORS

A function designator specifies the activation of a function.

a

BLS Pascal Programming Manual -13-
~12- BLS Pascal Programming Manual

G; STATEMENTS
It consists of the identifier designating the function and a
list of actual parameters, The parameters are variables or
expressions, and are Substituted for the corresponding formal Statements dencte algorithmic actions and are said to be
Parameters. Examples: executable. They may be prefixed by a label which can be

referenced by a GOTO statement (see chapter 6.1.3).
sin(y) *cos(x) ,
concat("Name: *',firstname,' ',surname) 6.1 SIMPLE STATEMENTS

arctan(1.6)*4.8
{sum{a,188}<5} AND (z=8) A simple statement is a statement of which no part constitutes

another statement. In this group are the assignment, procedure,
GOTG, INIT, and empty statements.

6.1.1 Assignment statements

The assignment statement Serves to replace the current value of
a variable or a function identifier by a new value specified as
an expression.

The variable for function} and the expression must be of
identical type, with the following exceptions being permitted:

1} If the type of the variable is real, the type of the
expression may be integer.

2) A String expression need not have the same length as the
maximum length of the string variable, If more

characters are assigned than specified by the maximum
length, only the lefmost characters will be transferred.

Example:

xrsytz {replace current value of x by sum of y and z}

6.1.2 Procedure statements

A procedure Statement serves to execute the procedure denoted by
the procedure identifier. The procedure Statement may contain a
list of actual parameters which are substituted in place of
their corresponding formal parameters (see chapter 3) defined in
the procedure declaration. Examples:

sort (names);
~ exchange(x,y¥);

plot(x,round(sin{x*£) *28)+24,1);

6.1.3 GOTO statements

. A GOTO statement serves to indicate that further processing
should continue at another part of the program, nanely, at the
place of the label.

The following restrictions hold centerning the applicability of
labels:

1} The scope of a label is the block within which it is
declared, It is, therefore, not possible to jump into
or Gut of a procedure or a function,

2) Jumps into and out of FOR statements are not allowed,

-14- BLS Pascal Programming Manual

3) Every label must be specified in 4 label declaration in
the heading of the block in which the label marks a
statement.

6.1.4 INIT statements

An INIT statement serves to initialize an array structure to af
set cf constant values. The constants and the compenents of the
array must be of identical type. Example:

VAR

data: ARRAY[1..6] OF INTEGER;
BEGIN

INIT data TO 15,6,19,8,1,3;

END,

The above program is equal to:

VAR

data: ARRAY[1..6] OF INTEGER;

BEGIN

Gata[1]):=15; data[2]+=6; data[3]:=19;
data[4]:=8; datai5]:=l; data[6]:=3;

END,

If less constants are specified than the total number of
components in the array, only the first components will be
initialized. Example:

VAR

numbers: ARRAY(@..9] GF STRING[5];
BEGIN

INIT numbers TO empty,'one',"two','three'’,'four','five';

END,

When the INIT statement has been executed, the components of
numbers will have the following values;

numbers [8] =empty numbers[{1]="'one'
numbers[2]="twa!' numbers (3)]="three!'
numbers[4]='"four’ numbers [5]='five'
numbers [6]=empty numbers [7]=empty
numbers [8]=empty . numbers [9] =empty

When initializing array structures with more than ane dimension
the components will be processed with the rightmost dimension
increasing first. Example:

VAR
a: ARRAY[1,..3,1..3] OF INTEGER;

BEGIN

INIT a TO 9,6,8,15,18,33,7,10,19;

BLS Pascal Programming Manual -15-

END,

The above program will initialize the components of a te:

afl,1]=9; all,2}=6; a{1,3]=8;
al2,l]=15; a[2,2}]=18; a[2,3]=33;
a[l3,1l}=?7; al3,2)=1@; a[3,3]=19;

The INIT statement can in addition serve to initialize a section
of memory. Example:

INIT mem[base! TO SEF,$41,$42,$43,388,$C9;

Assuming that the variable base equals $DBB, the byte at SDB
Will equal $EF, the byte at $D@1 will equal $41, etc., upon
completing the INIT statement.

6.1.5 Empty statements

The empty statement denotes no action and occurs whenever the
syntax of Pascal requires a statement but no statement appears,
Examples:

BEGIN END;

WHILE digit AND (a>17} DO {nothing};
REPEAT {wait} UNTIL keyboard;

6.2 STRUCTURED STATEMENTS

Structured statements are constructs composed of other
Statements which have to be executed in sequence’ (compound
statements), conditionally {conditional statements! , Or
repeatedly (repetitive statements).

6.2.1 Compound statements

The compound statement specifies that its component statements
are to be executed in the Same sequence as they are written.
The symbols BEGIN and END act as statement brackets. Example:

ZOEK RrHye Yr=Zz {interchange values of x and y}

The compound statement neither forbids nor requires a: semicolon
Succeeding the last statement.

6.2.2 Conditional statements

A conditional statement selects for execution a single of its
component statemente.

6.2.2.1] IF statements

The IF statement specifies that a statement be executed only if
a certain condition (boolean expression) is true, If it is
false, then either no statement is to be executed, or the
statement following the symbol ELSE is to be executed,

The syntactic ambiguity arising frem the construct

~-16- BLS Pascal Programming Manual

IF <el> THEN IF <e2> THEN <sl> ELSE <s2>

is resolved by evaluating

IF ¢e1> is False, no statement is executed,
IF <el> is true and <e2> is true, <sl> is executed.
IF <el> is true and <e2> is false, “<s2> is executed,

Examples:

IF x4<1.5 THEN z:=x+y ELSE z:=1.5;

IF name=empty THEN name:='"Not stated';

6.2.2.2 CASE, statements

The CASE statement consists of an expression (the selector) and
a list of statements, each labelled by a constant or a list of
constants of the type of the selector, It Specifies that the

one statement be executed whose constant list contains the
current value of the selector, If no constant equals the value
of the selector, contro] is given to the statement succeeding
the OTRERS: label, if it exists, Otherwise, no statement will
be executed.

Valid selector types are integer, boolean, and string types
{reals are not allowed}. Examples:

CASE operator OF
"+": xr=exe4y>

'-": x:=x-y?
Pers eI=K*y]
"e's xr =n/y¥

END;

CASE number OF
l: write('one'l);
2: write{'two');
3,4,5: write('some");
OTHERS: write('several'};

END;

The CASE statement neither forbids nor requires a semicolon

succeeding the last statement.

6.2.3 Repetitive statements

Repetitive statements specify that certain statements are to be
executed repeatedly. If the number of repetitions is known
beforehand ({(1.¢. before the repetitions are started), the FOR
statement is the appropriate construct to express this

situation; otherwise, the WHILE cor the REPEAT statement should

be used.

6.2.3.1 WHILE statements

The expression controlling repetition must be cf type boclean.
The statement is repeatedly executed until the expression
becomes false, If ite value is false at the beginning, the
Statement is not executed at all. Example:

FN See

BLS Pascal Programming Manual ~l?-

WHILE a<l#88 DO

BEGIN

ar=sqrla}; br=btl;

END:

6.2.3.2 REPEAT statements

The expression controlling repetition must be of type boolean.
The sequence of statements between the symbols REPEAT and UNTIL

is cepeatedly executed (and at least once) until the expression

becomes true. Example:

REPEAT
read({digit): write({digit);
number:=number*18+ord{digit}—48;

UNTIL number>1@88@;

The REPEAT statement neither forbids nor requires a semicolon

succeeding the last statement.

6.2,3,.3 FOR statements

The FOR statement indicates that the component statement is toa
he repeatedly executed while a progression of values is assiqned
to a variable which is called the control variable of .the FOR
statement. The progression can be up TO (succeeding) or DOWNTO
{preceding) a final value.

The control yariable, the initial value, and the final value

must be of type integer.

If the initial value is greater than the final value when using
the TO clause, or if the initial value is less than the final

value when using the DOWNTO clause, the component statement is
not executed at all.

Examples:

FOR i:=1l TO max DO writeln(i:5,sqr{ij}:8);

FOR i:=1 TO 168 DO FOR j:=1 TO 16 DO
BEGIN

IF ali,j!>5 THEN ali,j]:=5;

count:=counttali,ji;
END?

Upon completion of a FOR statement the value of the contrel

Variable is given by:

1) If the component statement was not executed the control
variable will equal the initiai value.

2) When using the TO clause the control variable will equal

the final value plus one.

3) When using the DOWNTO clause the cantrol variaple will
equal the final value less one,

-18- BLS Pascal Programming Manual

7: PROCEDURES

A procedure if a Seperate program part which may be activated
from a procedure statement (see chapter 6.1.2}.

7.1 PROCEDURE DECLARATIOCNS

A procedure declaration generally consists of 3 parts;

1) The procedure heading.
2} The declaration part.
3) The statement part.

7.1.1 The procedure heading

The procedure heading specifies the identifier naming the
procedure, an optional formal parameter list, and an optional
EXTERNAL or CODE specification.

The paramaters are either value or variable parameters {see
chapter 9},

EXTERNAL specifies that the procedure is a seperate machine code
subroutine, which resides at the address given by the integer
constant following the EXTERNAL symbol (see appendix F). CODE
specifies that the procedure is listed in 2-88 machine code,
directly following the CODE symbol {see appendix £). In the
case of EXTERNAL and CODE procedures the declaration part as
well as the statement part is empty.

7.1.2 The declaration part

The declaration part has the same form as that of a program,
All identifiers introduced in the formal parameter list and the
declaration part are local te the procedure declaration, which
is called the scope of these identifiers, They are not known
outside their scope. A procedure declaration may reference any
constant, yartiable, procedure, or function identifier global toa
it fi.e. defined in an outer block), or it may choose to
redefine the name.

7.1.3 The statement part

The statement part specifies the algorithmic actions to be
executed upon activation of the procedure by a procedure
statement, The statement part takes the form of a compound
statement (see chapter 6.2.1). The use of a procedure
identifier in a procedure statement within the statement part
implies recursive execution of the procedure,

7.2 STANDARD PROCEDURES

A standard procedure need not be declared, and may be cédefined
by the programmer by using its name as a procedure identifier in
a procedure declaration,

call (a} Generate a call to the memory address given by
the integer expression a,

BLS Pascal Programming Manual -195-

screenix,y} Move the curser to line ¥, coloumn x. x and y
are integer expressions, If a coordinate value
is illegal, the current value cof this coordinate
is unchanged by the procedure activation. Thus
the screen procedure may be used as a tabulator
by zeroing the y-coordinate.

plot (x,¥,f£} Xp¥, and f are integer expressions. Alter the
state of the semigraphic pixel at x,y, according
ta the value of f:

f=: Reset x*,¥.
f=l: Set #,y¥.
f=2: Invert x,;¥-

The plot procedure compensates for the offset of
line 16 on the NASCOM display. Hence, pixels
with y-coordinates within the interval #<=y<=2
resides on line i6. A procedure activation
invelving illegal coordinate values will be
ignored.

out (p,d) Output least significant 8 bits of d to the port
given by the least significant 8 bits of bp. bp
and d are integer expressions.

The standard procedures supporting anpnt and output are
described in chapter 18,

-2B- BLS Pascal Programming Manual

BB: FUNCTIONS

A function is a program part which computes and returns a value.
Functions are activated by the evaluation of a function
designator (see chapter 5.5} which is a constituent of an
expression,

8,1 FUNCTION DECLARATIONS

A function declaration generally consists of 3 parts:

1} The function heading.
2) The declaration part,
3) The statement part.

8.1.1 The function heading

The function heading specifies the identifier naming the
function, an opticna] formal paramater list, the result type,

and an optional EXTERNAL or CODE specification.

The paramaters are either value or variable parameters {see
chapter 9),

The result type of the function can be either integer, boclean,

real, or string.

EXTERNAL specifies that the Function iS a Seperate machine code
subroutine which resides at the address given by the integer
constant following the EXTERNAL symbol {see appendix €£). CODE
specifies that the function is listed in 2-868 machine code,
directly following the CGDE symbol. In the case of EXTERNAL and
CODE functions the declaration part as well as the statement
part 18 empty.

8.1.2 The declaration part

The declaration part has the same form as that of a procedure
(see chapter 7.1.2).

8.1.3 The statement part

The statement part takes the form of a compound statement (see
chapter 6.1.2}. Within the statement part at Ileast one
statement assigning a value te the function identifier must
eccur. This assignment determines the result of the function.
The appearance of the function identifier in an expression
within the function itself implies recursive execution of the

function.

&.2 STANDARD FUNCTIONS

A standard function need not be declared, and may be redefined
by the programmer by using its mame as a function identifier in

a function declaration.

8.2.1 Arithmetic functions

In the functions listed below the type of x must be either real

BLS Pascal] Programming Manual -2l1-

er integer, and the type of the result is the type of x.

abs (zx) Computes the absolute value of x.

sqr (x) Computes x*x,

In the functions listed below the type of x must be either real
or integer, and the type of the result is real.

sin(x}) Sine,

cos(x) Cosine.

arctan(x} Arecus tangent,

in(x) Natural logarithm.

exp{x} Exponential function.

sqrt(x} Square root.

int (x) The whole part oF x, i.e the result is the
Greatest whole number less than or equal to x
for x?=@, and the least whole number greater
than or equal to x for x<@.

frac(x) The Fractional part of x with the same sign as
x, i.8@. frac(a}=x-intix).

8.2.2 Integer functions

In the functions listed below the type of i is integer.

suce {i} Computes itl. The type of the result is
integer.

pred(i} Computes ivl. The type of the result is
integer. .

odd{i) Returns the boolean value true if iis odd, of
the boolean value false if i is even,

B.2.3 String functions

length (s) Returns the length of the string s. The type of
the result is integer.

mid(s,p,n) Returns a string containing n characters copied
from 6s Starting at the p'th position in s, The
type of s is string, and the type of n and p is
integer.

mid(s,p) Returns the leftmost cahracters copied from s
Starting at the p’th pesition in s. The type of
S is string and the type of pis integer.

left(s,n) Returns the leftmost n characters copied from s.
The type of s is string and the type of nn is
integer.

-23-

right(s,n)

concat(strs}

BLS Pascal Programming Manual

Returns the rightmost n characters copied from
5s, The type of 5 is string and the type of n is

integer.

strs is any number of string expressions
separated by commas. The result is a string
which is the concatenation of the parameters in
the Same sequence as they are written.

6,2.4 Transfer functions

trune {x}

round (x)

ord({s)

ehrti)

-The type of x is real; the sresult is the
greatest integer less than or equal to x for
x>=8, and the least integer graeter than or
egual to x for x<@.

The type of x is real; the resuit, of type
integer, is the value of x rounded, i.e.:

round(x) = trunc(xt8.5), for x>=8
trunc(x+8.5), for x<B

Returns the ASCII value of the leftmost
character in the string s. If 5s is empty the
result will be zero. The type of the result is
integer.

Returns a string containing one character whose
ASCII value is i. The type of 1 is integer.

8.2.5 Further standard functions

addr(v)

random

random({i)

inpip)

keyboard

point(x,¥)

Returns the memory address of the variable v.
The memory address of an array can be calculated
by referring to the first element of each

dimension.

Returns a random number within the interval
@<=r<l, The type of the result is real,

Returns a random integer within the interval
O<=ceci. The type of the result is integer.

Returns the value read from port p. p must be an
integer expression within the interval
@<=p<=255, The type of the result is integer.

Scans the keyboard and returns the value of the
currently depressed key. If no key is depressed
Bis returned. The type of the result is

integer.

Returns the boolean value true if the
semigraphic pixel x,y is set, otherwise returns
the boclean vaiue false. The type of x and y
must be integer.

BLS Pascal Programming Manual ~23-

3; PARAMETERS

Parameters provide a substitution mechanism that aliows the
algorithmic actions of a precedure or a funetion fin this
chapter ceferred to as a subprogram) to be repeated with a

variation of its arguments.

9,1 FORMAL AND ACTUAL PARAMETERS

A procedure statement or a function designator may contain a
list of actual parameters, which are substituted for the
corresponding formal parameters that are defined in the heading
of the subprogram, The correspondance is established by the
positioning of the parameters in the lists cf actual and formal

Parameters,

9,2 PARAMETER TYPES

BLS Pascal supports two kinds of parameters: Value parameters
and variable parameters.

9.2.1 Value parameters

When no symbol heads a formal parameter part of a& subprogram
heading, the parameter(s) of this part are said to be value
Parameters, In this case the actual parameter must be an
expression (ef which a variable i185 a simple case}. The
corresponding formal parameters represents a local variable in
the subprogram. As its initial value this variable receives the
current value of the corresponding actual parameter f{i.e. the
value of the expression at the time of the call), The
subprogram may then change the value of this variable by
assigning to it; this will not, however, affect the value of the
actual parameter. Hence, a value parameter Can never represent
a result of a computation.

Consider the following procedure declaraticn:

PROCEDURE printline({width: INTEGER) ;
BEGIN |

FOR width:=width DOWNTO 1 DO write('*');
weiteln:

END;

The procedure statement "printline(a});" will have the same
effect as executing

width:=a;
FOR width:=width DOWNTO 1 DO write{'*"):

wreiteln;

Although the variable width is altered during the procedure, the

Variable a will be Jleft unchanged, as width is a value
parameter. AS méntioned above the actual Parameter need not be
a Varjable, but can be any expression, e.g, “"printline{a+2*b)};"
and "printline{25);".

9.2.2 Variable parameters

-24- BLS Pascal Programming Manual

When the symbol VAR heads a formal parameter part of a
subprogram heading, the parameter{s) of this part are said to be
variable parameters, In this case the actual parameter must he
a variable. The corresponding formal parameter represents this
Variable during the entire execution of the subprogram., Any
operation involving the formal parameter is preformed directly
upon the actual parameter, Hence, whenever a parameter is to
represent a result of the subprogram, it must be declared as a
variable parameter.

Consider the following procedure declaration:

PROCEDURE swap{VAR x,y: REAL);
VAR temp: REAL;
BEGIN

tempr=xX; Kr=¥: yi=temp;
END;

The procedure statement "“swap(a,6);" will have the same effect
aS executing “temp:=a; a:=b; br=temp;". Obviously the statement
"swap{28,atbj:" will result in an error, as the Statements
*"temp:=28: 2@:=atb: atb:=temp:" are impossible to execute.

9.43 RULES APPLYING TO PARAMETERS

The formal parameter list and the actual parameter list must
agree with respect to the total number of parameters and the
type of each of the parameters respectively.

All address calculation is done at the time of the call. Thus,
if a variable is a component of an array, its index
expression(s) is evaluated upon activating the subprogram.

in the case of a parameter being an array structure, the actual
Parameter and the formal parameter must agree with respect to
component type and number of components. However the lower and
upper limits of each dimension, and the number of dimensions
need not agree,

If a formal parameter is a variable parameter cf the type real,
the corresponding actual parameter may be an expression of the
type integer. This does not apply tc variable parameters.

If a formal parameter if a4 variable parmeter of the type string,
the corresponding actual parameter can be a string expression of
any length, However, if the length of the actual string
parameter is greater than the maximum length of the formal
parameter, only the leftmost characters will be transferred.
This does not apply to variable parameters,

BLS Pascal Programming Manual -25-

12; INPUT AND OUTPUT

BLS Pascal allows for input and output by means of four standard
procedures {read, readin, write, and writeln). In addition two
standard procedures (load and save) allows for loading = and
saving of arrays from and to the tape recorder.

18.1] INPUT

Input is supported by the standard procedures read and readin.

1@.1,.1 The procedure read

The proceduce read allows for strings and numeric values to be

input. The format of the procedure statement is:

read(vil,v2,..e.,;¥M}?

Which is equal te

BEGIN read(vl}; read({v2}; ... read(vn) END;

During data entry the following control keys are available to

the user:

<BS> Backspace
<ESC> Clear line
< ENTER? Process entry

For a variable of one of the numeric types (real or integer) the
read procedure expects to read a string of characters which can

be interpreted as a numeric value of the same type, Leading
spaces are allowed. The numeric value should follow the rules
that apply to numeric constants (see chapter 2.2}. The entry
must be terminated by @& carriage return [i.e. <ENTER?}
immediately following the last character of the numeric value.
The carriage return is not echoed. If the interpretation
results in an error the entry field will be cleared, indicating

that the user is to re-enter the value.

When reading strings with a maximum length greater than one,
read will accept all characters up to but not including the
terminating carriage return. The maximum number cof characters
which can be entered is given by the maximum length of the

string variable (however, not more than 63 characters),

When reading strings with a maximum length of one program

execution will resume the moment the user depresses 4 key. The
character read will not be echoed.

10.1.2 The procedure readin

The procedure readln is identical to read, except that after 4a

walue has been read a carriage return is output. The format cf
the procedure statement is:

read|n{vl,v2,.0e,¥O)3

which is equal to

~26- BLS Pascal Programming Manual

BEGIN readinivi); readlniv2}; ... readin(vn) END;

32,2 OUTEUT

Qutput if supported by the standard procedures write and

writein.

if .2Z.i The procedure write

‘tthe procedure write allows strings and numeric values to he
nutput. The format of the procedure statement is:

weite(plsp2,-... pm} ;

which is equal ta

BEGIN write(rl): writeip2j); ... write(pn) END;

pl,.p2,...,;pn denote so-called write parameters, which, according
to the type of the value to be output, can take on one cf the
follewing formats (m, n, and i denote integer expressions, f£
dencte a real expression, and s denote a string expression):

i The decimal representation of i is output with no
preceding bianks.

kar The decimal representation of i is output preceded
ky am appropriate number of blanks to make the field
width n.

r The decimal representation of tft is output in
floating point format in a field of 18 characters:

* sd,ddddddddddEtdd"

fe tf HA where § stands for either or "-", d stands far a
digit, and t stands for either "+" or "-".

The decimal representation of r is output in
floating point format. The field width and the
number of significant digits depends on the value of

fhe

ry

++

uw

n<&é: "d.dEtdd" cor "-d.dEtdd”®

a<en<i7: “sd.<digits>ftdd", where <digits>
denotes n-6 decimal digits.

n>1?: "<spaces>d, ddddddddddEtdd", where
<spaces> denotes n-1? blanks.

rimim The decimal representation cf r is sutput in fixed
point format with m digits after the decimal point
jn a field of n characters, mmust be within the
interval O6<=m<=24. TE not, floating point format is

used,

g 5 is output with no preceding blanks.

sin 6 is output preceded by an appropriate number of

BLS Pascal Frogramming Manual -27-

blanks to make the field width n.

18.2.2 The procedure writeln

The procedure writeln is identical to write, except that after
the last value has been written, a carriage return is output.
The format of the procedure statement is:

woitein{pl,p2,s,.eesPn)7

which is equal to

BEGIN write(pl}; write{p2); ... writeln{pn) END;

To produce a single carriage return the wser may call writeln
without any parameters,

1@.3 SAVING AND LOADING ARRAYS

Input and output of arrays from and to the tape recorder are
supported by the standard procedures load and save.

18.3.1 The procedure save

The procedure save will output arrays of any type to the tape
recorder. The format cf the procedure statement is:

savefa):

where a denotes an array identifier. Upon activation of the
procedure the tape LED will be switched on, a brief pause will
be issued, the array will be cutput, and the tape LED will be
switched off.

1@#@.3.2 The procedure load

The procedure load will read a tape previously written by the
save procedure. The format of the procedure statement is;

leoad(a,i};

where a denotes an array identifier, and i denotes the
identifier of an integer variable in which an error status will
be returned.

Upon activation of the procedure the tape LED will be switched
on. When the procedure ends the tape LED will be switched off,
and the variable i will contain the error status of the
procedure call:

i=8: No errors occured,

i=l: Type mismatch. The number of components or the
component type does not agree.

i=2: Checksum error,
i#3: The procedure was aborted by the user pressing the

<ESC> key.

-28- BLS Pascal Programming Manual

APPENDIX A: BLS PASCAL SYNTAX

The syntax of BLS Pascal is presented using BNF formalism. The
following symbols are meta-symbclS belonging to the BNF
formalism, and not symbols of the Fascal language:

igs Means ‘is defined as'.

I Means ‘or’,
{..4} Denotes possible repetition of the enclosed

symbols Zero or more times.

The symbol <character> denotes any printable character, i.e.
a character with an ASCII value between $28 and SFF.

<letter>
—
—
—
4

c
o
m

—
—
=
—

nD

—
—
—
7

a

r
o

a
.
°
 =

No
on

oi

e

a
7
a
—
-

f
r
e
e
s

w
o
.

a —
-
—
-
-
-

<digit> i:= @ |il]2i{3/)/4tt1/5!/6/7+ 859

<headigit>? ::= <digit> | A | Bl/|C |D/|E]|F

<empty> re

<program> ::= <program heading? <block> .

<program heading> ::= <empty> | PROGRAM { <character> } ;

<Block> ::= <declaration part? <statement part>

<declaration part> t:= <label declaration part>
<constant definition part> «variable declaration part>
<procedure and function declaration part>

label declaration part> ::= <empty> | LABEL <label> { , <label> }

élabel> ::= <unsigned integer> | <identifier>

<unsigned integer> ::= <digit> { <digit> }

<identifier> ::= <letter> { <letter or digit> |}

letter or digit> t= <letter> | <digit> |.

<constant definition part> ::= empty |
CONST <constant definition> ; { <constant definition> ; }

<constant definition> ::= “<identifier> = <constant>

<constant> ::= <unsigned number> | <sign> <unsigned number> |
<constant identifier> | <sign> <cconstant identifier? |
<string>

<unsigned number> ::= <unsigned integer> | <ungigned real> |

<unsigned hexinteger>

cunsigqned real> ::= “unsigned integer> . <digit> { <digit> | |
<unsigned integer> . “<digit> { <digit> } E <scale factor>
cunsiqned integer> E <scale factor>

BLS Fascal Programming Manual -29-

éscale factor> ::= <unsigned integer> | <sign> <unsigned integer>

€sign> r:= + | -

<unsigned hexinteger> ::= $ <hexdigit> { <hexdigit> |

<constant identifier? ::= <identifier>

€string> ::= 7’ { <character> } '

<variable declaration part> ::= <empty> |
VAR <variable declaration> ; { <variable declaration> ; }

<variable declaration> ::= <identifier> { , <identifier> | : <type>

<type?> i:= <simple type> | <structured type>

<simple type> ::= INTEGER | REAL | BOOLEAN | <string type>

éstring type> ::= STRING [<constant>]

<structured type> ::= ARRAY [<index type> { , <index type> }] OF
<simple type>

<index type> it= <constant> .. <constant>

<procedure and function declaration part> ::=
<procedure or function declaration> ; }

<procedure or function declaration> ::=
<procedure declaration> [| <function decliaration>

<procedure declaration> ::= <procedure heading> <block>

<procedure heading> ::= PROCEDURE <identifier>
<formal parameter list> ; | PROCEDURE <identifier>
<formal parameter list> + <external/code specification> ;

<formal parameter list> ::= <empty? |
{ <formal parameter part> { ; <formal parameter part> | }

<formal parameter part? ::= <parameter group? |

VAR <parameter group?

<parameter group> 3:3 = <wariable declaration>

external /code specification> ::= <external specification> |
<code specification>

<external specification? ::= EXTERNAL <constant?>

<code specification> rt= CODE <constant> { , <constant> }

<function declaration> ::= <function heading> <block>

<function heading> ::= FUNCTION <identifier?>
«formal parameter list? +: “result type> ; | FUNCTION
<identifier> <formal parameter list>® : «result type> ;
¢external/code specification? ;

<resuit type> ::= <simple type>

-38- BLS Pascal Programming Manual

«statement part> ::= <compound statement>

<compound statement> ::= BEGIN <statement> { ; <statement> } END

<statement> ::= { <label> : } <unlabelled statement?

éunlabelled statement> ::= <simple statenent>? |
<structured statement>

<simple statement> ::= <assiqnment statetement> |
<proecedure statement> | <qoto statement? |
“init statement> | <empty statement>

Sassignment statement> t:= <variable> := <expression> |
“function identifier> := <expression>

<variable> ::= <simple variable> | <component vyariable>

<simple variable> ;:= <identifier>

<component variable> ::= «array identifier> [<expression>
{ , <expression> } J

sarray identifier? ::= <identifier>

<function identifier? ::= <identifier>

sexpression> s:= <simple expression> | <simple expression>
<relational cperator> <simple expression>

«relational operator> ::= = | <> | > |< J >= | <=

“simple expression> ::= <term> { <adding operator> <term> }

<adding operator> ::= + | - | OR | EXOR

<term> z:= <factor> { <multiplying operator> <factor> }

<multiplying operator> ;:= * | / ij DIV [| MOD | AND | SHIFT

<factor> ::= <uncomplemented factor> [| NOT <uncomplemented factor>

<uncomplemented factor> ::= “unsigned factor> |
<sign> <unsigned factor>

scunsigned factor? i:= <variable> | “unsigned constant? |

{ <expression> }) | <function designator>

<unsigned constant> ::= <unsigned number> | <string> |
«constant identifier>

<function designator? ::= <funetion identifier>
<actual parameter list>

<actual parameter list> ::= <empty> | (<actual parameter>
{ , <actual parameter> } }

<actual parameter> ::= “expression> | <variable> |
“array identifier>

<procedure statement? ::= <procedure identifier>
<actual parameter list>

BLS Pascal Programming Manual -31-

<gote statement? ::= GOTO <label>

“init statement> ::= INIT <array identifier> TO <constant list> |
INIT MEK [<expression>] TO <constant list>

<constant list? ::= <constant> { , <constant> |

sempty statement> ::= “empty>

<structured statement> ::= <campound statement? |
<conditional statement> | <repetitive statement?

<conditional statement> ::= <if statement> | <case statement?

<if statement> ::= IF <expression> THEN <statement> |
IF <expression> THEN <statement> ELSE «statement>

(case statement> i:= CASE <expression> OF <case list> END |
CASE <expression> OF «case list? ; OTHERS: <statement> END

<case list> ::= “case list element> { ; “case list element> }

scase list element> ::= ¢constant list> +: <statement>

<repetitive statement? ::=# <while statement> | <repeat statement>
<for statement>

<while statement> ::+ WHILE <expressicn> DO <statement>

<repeat statement> ::= REPEAT <statement> { ; <statement> }
UNTIL <expression>

<for statement? ::= FOR <centro] variable> := <for list> Bo
“Statement >

<control variable> ::= <variable>

for list> ::= <initial value> TO <final value> |
<initial value> DOWNTO <final value>

<initial value> ::= <expression>

“final value> t:= “«expressicn>

-32- BLS Faseal Programming Manual

{ value will convert the decimal number contained in s into }
{ a real value

FUNCTION value{s: STRING[48]}: REAL;

CONST

gzero=46; { ASCII zero }

VAR

r,f£: REAL;
pi: INTEGER;

ch: STRING[1];
neg,;decpoint: BOOLEAN;

PROCEDURE nextchar:
BEGIN

pi=pred(p); ch:=mid(s,p,1)
END:

BEGIN

CL:=l; nextchar;
IF ch='-' THEN

BEGIN neg:=true; nextchar END;
WHILE {(ch>='@') AND [ch<="9'} BO
BEGIN

ci=r*18.8+(ord(ch)-zero};
IF decpoint THEN f£:=f*18.0;
nextchar?:
IF {ch=','}) AND NOT decpoint THEN
BEGIN decpoint:=true;: nextchar END;

END;
IF neg THEN valuer=-r/f ELSE value:=r/f;

END { of value |};

{ pos will return the position of the first occurrance of }
{ the target string t in the source string s, If t does not }
{ occur within s, a zero will be returned

FUNCTION pos(t,s: STRING[48)]}: INTEGER;
LABEL exitpos;
VAR

ldif,lt,p: INTEGER;
BEGIN

ltr=length(t}); ldif:#lengthi(s)-l1t;
WHILE p<=ldif DO

pr=suce(p);
IF mid{s,p,1t})=t THEN

BEGIN pos:=p; GOTO exitpos END

END;

exitpos:
END { of pos |};

j

T
BLS Pascal Programming Manual

{ topline will display the string s on line 16 of the $}
{ NASCOM display }

PROCEDURE topline(s: STRING[48]};
CONST

toplineaddr=SBC9; { topline address ~ 1 }
blank=32; { ASCII blank }

YAR

p: INTEGER;

BEGIN

FOR pr=1 TO length{s} DO
mem[p+toplineaddr] :=ord(mid(s,p,1)};
FOR p:=p TO 46 BO
nem(pttoplineaddr]+=blank;

END;

=-t9-

-34- BLS Pascal Programming Manual

APPENDIX C; THE SYSTEM WORKSPACE

The system workspace resides between $C6@ and $D88. In this
area the following addresses may be of interest to the user:

C92-C93 WSP The program workspace stack pointer. When
executing a program WSP will be set to point to
the end address of the program, Each time a
program biock is activated {the main program, a
procedure, or a function), WSP will move to a
higher address, thus reserving memory for the
variables of that program part. When exiting
the block, WSP wil] be altered to point to its
original position,

C94-C95 PMTP The highest RAM address the currently executing
Program is allowed to access. Should WSP move
beyond PMTP, the program will break and display
a runtime error {runtime error 99).

C9B-C9IB RNDN The last calculated random seed. By
initializing these four bytes {to an abitrary
selected value} the user can obtain the same
random sequence each time the program is run.

The first instruction sequence in the object code of a program
is a call to the initializing routine, followed by 5 bytes of
Parameters:

CD xx xk aa bb ce dd ee

bbaa is the end address of the program. WSP will be initialized
to this value. ddcc is the highest RAM address the program is
allowed to access (ddec is obtained from MTOP {see BLS Pascal
User Manual, appendix C)} during compilation}. PMTP will be
initialized to this value. ee is a byte telling the runtime
package where to transfer control te, in case of a runtime
error, or when completing execution of the program. If ee is
zero a jump to the language system will be executed, otherwise
control will be transferred to NAS-SYS,

The area between $D@8 and $1082 is reserved for the system
stack. Upon initialization the stack pointer will be loaded
with $1888. The following applies concerning the use of the
system stack area:

A procedure or a function call consumes two bytes of stack.

An active FOR Joop consumes four bytes of stack,

When evaluating an expression the stack will be used to
store intermediate results. Hence, a comparison of two
strings, may consume as much as 512 bytes, if both strings
are of length 255,

During program execution the position of the stack pointer will
net be checked. Thus, the user must be shure that recursive
execution af procedures or functions does not enter a loop with
na exits.

BLS Pascal Proegramming Manual -35-

APPENDIA D: INTERNAL DATA FORMAT

In the descriptions following below the symbol ‘addr! denotes
the address of the first byte a variable of the described type
consumes. It is this value the standard function addr returns.

Tntegers and booleans:

Internally BLS Pascal does not differ between integers and
booleans. An integer is stored as a 2's complement 16 bit
number, thus consuming 2 bytes. The least significant byte is

stored first, as the 2-8@ standard specifies:

addr Least significant byte.
addr+1 Most significant byte.

Reals:

A réal is stored as a 48 bit mantissa and an 8 bit 2's exponent,
thus consuming 6 bytes:

addr Most significant byte of mantissa.

addr+4 Least significant byte of mantissa.
addr+s 2's exponent.

The exponent is in binary format with an offset of Sob. Hence,

an exponent of $84 means that the value of the mantissa is to be
multiplied by 2*($84-$88) = 2°4 = 16. An exponent value of zero
indicates that the the value of the variable is zero. The value
ef the mantissa can be obtained by dividing the unsigned
integer, consisting of the first five bytes, by 2°48. The
mantissa is always normalized, i.e. the most siginificant bit
should be interpreted is a 1. However, the sign of the mantissa
is stered in this bit, a 1 indicating that the value is
negative, and a B indicating that the value is positive,

Strings:

A string will consume its maximum length plus one bytes of

storage. The first byte contains the current length of the
string (called nm}, the second byte contains the n'th character
of the string, the third byte contains the n-l'th character,
etc.;

addr Current length (n).

addrt+l n'th charactec.
addr+2 n-l'th character,

addrt+n First character.

lf the current length of the string is less than the maximum
length, the contents of the unused bytes are unknown.

ALrays:

A component of an array uses the same internal format as a

-36- BLS Pascal] Programming Manual

simple variable of that specific type. The components with the
lowest index values will be stored first. An array with more
than one dimension will be stored with the rightmost dimension

increasing first. E.g. an array declared as:

a; ARRAY[1..3,1..3]

will be stored in this order:

lowest addr, afl,1)

all1,2]
al1,3]

a[2,1]
af2,2]

highest addr. al[3,3]

BLS Pascal Programming Manual -Ji-

APPENDIX £: MACHINE CODE SUBROUTINES

Declaring procedures and functions with the EXTERNAL or the CODE

specification allows the user to call seperate machine code

subroutines,

Parameters are transferred to the subroutine using the program

workspace stack. Each parameter value is ‘pushed’ onto the

stack, in the same order as they appear. When evaluating a

function designator, memory space for the result value is

reserved, before any Parameters are pushed. The machine code

routine may access the parameters by indexing from the value

contained in WSP (see appendix C}.

The format of a value parameter is described in appendix D. In

the case of a variable parameter a word (2 bytes) will be pushed

containing the absolute address of the first byte of the

referenced variable. If the variable parameter is an array, the

absolute address of the first component will be pushed.

Assume that the following function declaration has been made:

FUNCTION test (VAR i: INTEGER; r: REAL): STRING[16];

EXTERNAL SD;

When evaluating the function designator a call will be placed to

SD¢H, and the top of the workspace stack will be organised in

the following manner:

lowest addr. WSP-25 17 bytes reserved for the result

: value {of type string). These
: bytes are cleared at the time of
WSP-9 the call.

WSP-8 A word containing the address of

WSP-49 the integer variable.

WSP-6 Value of type real.

highest addr. WSP-1

The address of the first byte of the locations reserved for the

result may be calculated like this:

WSP; EQU 8C92H

LD HL, (WSP)
LD DE, - 25
ADD HL,DE

When executing the code HL will point to the first byte. The
address of the integer variable can be obtained by executing:

LD HL, (WSP}

ADD HL,DE
LD A, (HL)

—38- BLS Fascal Programming Manual

INC HL
LD H, (AL)
LD oOL,A

AS an example of user written machine code subroutines two
routines are shown below which will input and output values from
and to the data ports (NOTE; These routines are predeclared in
BLS Pascal, see chapters 8.2.5 and 7.2). In the main program
the following declarations should be made:

PROCEDURE out{port,data: INTEGER); EXTERNAL $D@@;
FUNCTION inp(port: INTEGER): INTEGER; EXTERNAL $D&@D;

The machine code subroutines could be like this:

p9a) SDB ORG @D@GH
@H02
BA83 - =8C92 WSP: EQU @C92H
b004
8885 BDA@ DD2A928C OUTP: LD IX, {WSP)
@806 @D#4 DDTEFE LD A, (1X-2}
8097 O@DB7 DD4EFC LD °C, (Ix-4}
6848 ODBA ED79 OUT (C),A
gg89 BDBC C9 RET
dole
@f11 @DBD DD2A926C INP: LD =X, {(WSP)
#612 @D12 DDSEFE LD oC, {1X-2)
6813 @D14 ED7T8 IN A, (C}
#014 BD16 DDT7FC LD o(1X-4) , a
@815 pD19 cg RET
ag16
9817 BD1A END

The above routines can alsa be implemented using the CODE
specification;

PROCEDURE out(port,data: INTEGER);
CODE $DD,$24,592,S$8C,$DD, 57E, SFE,$0D, $4E, $FC, SED, $79;

FUNCTION inp{port: INTEGER): INTEGER;
CODE SDD,$24,5$92,58C,SDD, $4E, SFE,$ED, $78, $DD, 577 ,$FC;

It is important to note that only fully relocateable routines
can be implemented using the CODE specification. Also note that
the RET instruction ($C9) ending an EXTERNAL routine must not be
used in the case of a CODE routine.

All RAM between WSP and PMTP can be used as workspace by the

INachine code routine.

The object cade produced by the compiler, as well as the runtime

package routines, are fully interruptable. If using interrupts,
the interrupt service routine must save all registers to be used

on the stack,

BLS Pascal Programming Manual -39-

APPENDIX FE; BENCHMARE TESTS

On the following pages the 15 Pascal benchmark tests, as
proposed in Personal Computer World december 1980 issue, are
listed. The timings obtained using a NASCOM 2 (Z-B2

microprocessor, 4 MHz 1 waitstate}, are listed below, and, for
comparison, the corresponding timings obtained on a Heathkit
H-l1A (LSI 112 16 bit processor}, and on an APPLE 2 (6582
microprocessor), both running UCSD Fascal. All timings are
listed in seconde:

TEST BLS Pascal A-lLA APPLE 2

magnifier 0.8 ' 3.9 6.4
forleop 8.6 42.8 74,3
whileloop 23.8 48.1 78.8
repeatloop 28.8 35.6 63.3
litteralassign 11.7 58.8 68.5
memoryaccess 15,1 52.8 91.8
realarithmetic 59.8 61.7 93.8
realalgebra 58.5 48.6 83.4
vector 62,2 182.9 283.3
equalif 24,4 66.3 116.7
unequalLif£ 24.2 65.8 115.3
noparameters 6.8 26.4 - 58,2
value 12.5 29.3 54.4
reference 12.1 29.7 5543
maths 65.3 25.8 66.28
cee me ms Re me ee A ee ee ee ee ee ee ee ee ee ee

It should be noted that UCSD Pascal provides only 6+ significant
digits when operating on reals, while BLS Paseal provides 11+
significant digits.

-48- BLS Pascal Programming Manual

PROGRAM magnifier:
VAR k: INTEGER;
BEGIN

FOR ki=l TO 18888 Do;
END.

PROGRAM fCorloop;
VAR j,k: INTEGER;
BEGIN

FOR K:=] TO 18808 DO FOR j:=1 To 16 Do;
END,

PROGRAM whileloop;
VAR j,k: INTEGER;
BEGIN

FOR k:=1 TO 18888 Do

BEGIN
jr=l; WHILE j<=18 DO 4:=441

END

END,

PROGRAM repeatloop;
VAR 3+,k: INTEGER;
BEGIN

FOR k:=1 TO 108898 DO
BEGIN

j:=l; REPEAT j:=j+1 UNTIL j>18;
END;

END.

PROGRAM litteralassign;
VAR j,-K,l: INTEGER:
BEGIN

FOR k:=1 TO 19808 DO FOR j:=1 TO 18 DO 1:=8
END,

PROGRAM méemoryaccess:
VAR j,-k,;l: INTEGER;
BEGIN

FOR k:=1 TO 18888 DO FOR j:=1 TO 18 DO 1:=j
END. :

PROGRAM realarithmetic;
VAR K: INTEGER; x: REAL;

BEGIN

FOR kr=1 TO 18880 DO x:=k/2*34+4-5;
END,

PROGRAM realalgebra;:
VAR kK: INTEGER; x: REAL:
BEGIN

FOR k;=1-TO 16009 DO x:=k/K*k+k-k:
END,

PROGRAM vector;
VAR k,j: INTEGER; matrix: ARRAY[@..1%] OF INTEGER;
BEGIN

matrix[(8):=1;
FOR k:=l TO 18880 DO FOR j:=1 TO 1@ DO
matrix[{j]:=matrix[j-1]

BLS Pascal Programming Manual

END.

PROGRAM equalif:
VAR j,-K,1l: INTEGER;
BEGIN

FOR k:=1 TO 1#086@ DO FOR j:=i TO 18 DO
IF 3<6 THEN l:=1 ELSE i:=@

END,

PROGRAM unequalif;
VAR j,k,1: INTEGER;
BEGIN

FOR k:=l TO 16888 DO FOR j:=1 TO 16 DO

IF j<2 THEN 1:=1 ELSE 1:=8
END,

PROGRAM noparameters;
VAR j,k: INTEGER;

PROCEDURE none5; BEGIN j:=1 END;

PROCEDURE none4; BEGIN noneS END;
PROCEDURE none3; BEGIN none4 END:
PROCEDURE none2; BEGIN none? END:
PROCEDURE nonel:; BEGIN none2 END;

BEGIN

FOR K:r=Ll TO 188688 DO nonel:
END,

PROGRAM value;
VAR j,k: INTEGER:

PROCEDURE value5 i
PROCEDURE valued [

PROCEDURE value? {

INTEGER); BEGIN i:=1 END;
INTEGER): BEGIN value5(i) END;

INTEGER); BEGIN value3{i}) END;

i:
i:

PROCEDURE value3f{i: INTEGER); BEGIN value4(i}) END;
it
it PROCEDURE valuel {

BEGIN
FOR k:=1 TO 18888 DO valuel(j)

END, ;

PROGRAM reference;
VAR j,k: INTEGER;
PROCEDURE refer5(VAR i: INTEGER); BEGIN

PROCEDURE refer4(VAR i: INTEGER); BEGIN

PROCEDURE refer3(VAR i: INTEGER); BEGIN
PROCEDURE refer2(VAR i: INTEGER); BEGIN
PROCEDURE referl(VAR i: INTEGER); BEGIN

BEGIN

FOR k:=1 TO 18888 50 referl(j)
END.

PROGRAM maths;
VAR kK: INTEGER; x,y: REAL;

BEGIN ;

FOR k:=1 TO 1968 DO
BEGIN

Mr=Sin(k); y:=exp(x)
END

END,

INTEGER); BEGIN value2(i) END;

i:=l1 END;

refer5(i}
refer4 (i)
refer3(i}
refer2 (i)

END;

END;
END;
END;

-d4i1-

-42- BLS Fascal Programming Manual

: M ER _ ERR E

FIND address found.

Syntax error (e.g. missing *;' in the line above},
'=' expected,
';' expected,
'(' expected.

]' expected,
{" expected.

})" expected,
,' expected.
.' expected,
».' expected,
:=' expected,

Lower limit greater than upper limit in array declaration.
Overflow in array declaration,
‘OF’ missing in array declaration.
Illegal character in identifier.
String length cannot be zerc,
Unknown data type.

Constant of type integer expected.
Constant of type string expected.
Constant of type real expected.
Integer constant should be within the interval B<=1<=255.

"BEGIN' expected.
'THEN' missing in if statement.
Case selector must be of type integer or of type string.
'OF'’ missing in case statement.
‘END' missing in case statement.
'DO' missing in while statement.
Varible of type integer expected,
'TO' or 'DOWNTO' missing in for statement.
'po' missing in for statement.
Label identifier has not been declared.
'TO' missing in init statement.

Type string net allowed here,
Expression of type integer expected,
Expression cf type string expected,
Type mismatch in expression,
Unknown identifier in expression.
Syntax error or overflow in numeric Constant, of string
constant contains a carriage return.
String constant too long.

Type mismatch in assignment or parameter list.
Unknown variable identifier.
Unknown array identifier.

Label declared and referenced but net defined.

Unexpected end of source text.

BLS Pascal Pregramming Mannal -~43-

APPENDIX H; RUNTIME ERROR MESSAGES

Bl Floating point overflow.
@2 DPivision by zero attempted.
83 Attempt to calculate the square root of a negative number,
#4 Attempt to calculate the natural logarithm of a4 negative or

zero number.
85 Attempt to convert 4 real value outside the integer range

inte an integer,

16 The resulting string at a concat function call is longer
that 255 characters, or the positicn at a mid function call
is less than oe equal to zero,

28 4#AN array index is outside range.

99 Workspace overflow. All available RAM has been used,

Software Registration Form

The Biue Label Software Pascal Language System, version '

serial number » LS copyrighted and all rights are

reserved by Poly-Data microcenter ApS.

Name and adaress:

nereby a@vrees nat to sell, rent, or otnerwise distribute the

above mentioned program, or any part hereof, in any form, without

prior written consent of Poly-Data microcenter ApSs.,

ez Road, Englefield Green

AM, SURREY TW20 OB

Telephone: Egham 33603 Telex: 2644?

Ree'd in Ergland No. 1047769
VAT Registration No. 211 5797 71

pEROCEROVALUE La WD. -

asco
Software

NASCOM PASCAL
NASCOM PASCAL is a complete 12K Pascal
language system, designed specially for the
NASCOM 1 or 2 with NAS-SYS 1 or NAS-SYS 3
monitor. NASCOM PASCAL is based on the
high-level programming language Pascal, widely
recognized as the programming language of the
future.

NASCOM PASCAL basically consists of a runtime
package (4.5K}, a control program (0.5K), an
on-screen editor (1.5K) and a compiler (5.5K).

The compiler is a one pass compiler which
directly produces 2-80 machine code. This
architecture not only provide very fast compilation

Briefly, the NASCOM PASCAL subset includes:

Reals provide 11.5 significant digits. Integers are
within the range —32768 to 32767 (16 bits).

may have any number of dimensions, and can be
of any of the types INTEGER, REAL, BOOLEAN,
or STRING. Constants may be presented in either
decimal or hex notation. User written machine

language System

(2000 lines pr. minute}, but also results in program
execution speeds 3 to 20 times faster than
equivalent BASIC programs.

in 5.5K only it is, of course, not possible to
implement standard Pascal. The NASCOM
PASCAL subset does not support user defineable
types, sets, and file types. However, all basic
statement constructions are retained, and
procedures/functions are fully recursive and
support both variable and vaiue parameters. The
fundamental data types INTEGER, REAL and
BOOLEAN are likewise supported, while the type
CHAR has been replaced by the type STRING,
which offers a more flexible character handling.

Statements: BEGIN .. END IF... THEN... ELSE WHILE.. BO
FOR ..TO/DOWNTS..DO REPEAT .. UNTIL GOTO
CASE..OF.. OTHERS INIT. . TO Assignment (:=)
Procedure statements

Data types: REAL INTEGER STRING BOOLEAN ARRAY

Constants: MAXINT PI TRUE FALSE EMPTY

Operators: 4 — * / DIV MOD SHIFT AND OR
EXOR = <> > < >= <=

Procedures: - WRITE WRITELN READ READLN LOAD SAVE
CALL SCREEN PLOT OUT

Functions: ABS SOR SORT SIN COs ARCTAN LN
EXP ENT FRAC succ PRED ODD TRUNE
ROUND ORD CHR LENGTH MID LEFT RIGHT
CONCAT RANDOM ADDR POINT INP KEYBOARD

Declarations: LABEL CONST VAR PROCEDURE FUNCTION

code subroutines are supported using procedures/
functions declared as EXTERNAL or CODE. Thus,

Strings can be up to-255 characterstong. Arrays-——a -machine-code subprogram is treated_by the __._@
compiler as a normal procedure or function. The
procedure WRITELN allows for numbers or
strings to be output using a specific format.

Publication No. 4117

NASCOM PASCAL Language System

The compiler can be invoked in several different

modes. The COMPILE and the RUN commands

will load the object code directly into memory
after the source text, allowing you to execute your

programs almost immediately. The TAPEcommand

will output the object code to the tape recorder,

using NAS-SYS block format. When the com-

piler is invoked from a FIND command it will

.. docate the statement that caused the most-recent-- ~~

runtime error. The object code produced by

NASCOM PASCAL requires only the runtime

package to be present in memory during execution.

Once a program is tested it can be merged to the
runtime package to form a directly executeable

machine code program.

The NASCOM PASCAL editor is a very powerful

on-screen editor. Apart from being able to scroll

up and down over the text, the display can scroll

to the left and to the right, allowing lines to be up

to 80 characters in length. Blocks can be marked

and deleted or copied to any other location in the

source text. A build-in tabulator eases source

text entry, and the GRAPH key can be selected to

operate as a CAPS-LOCK key, which, when

depressed, reverts the SHIFT key function. The
find command will locate any target string in the

source text. Optionally, the continue command

can be used to find further occurrances. The

editor reacts to 27 different commands, all of

_which _are__control-characters,
produced by depressing CTRL and another key.
or by depressing ENTER, BS, ESC, etc. This

greatly simplifies command entry.

ie. _characters ..

Program texts can be saved using file names of up

to 60 characters. When a program is loaded it is

merged to the end of the current program, thus

allowing you to maintain a library of separate

subroutines.

NASCOM PASCAL is meant to offer an alterna-

tive to BASIC. Programs written in NASCOM

PASCAL. will: execute” much: faster than their -

BASIC counterparts, and better programming

techniques can be practised, as Pascal is far

more versatile than BASIC, Compared to other

Pascals the NASCOM PASCAL offers a lot more

features in the same amount of memory, and

shows Benchmark timings comparable to those

obtained on 16-bit mini computers.

NASCOM PASCAL is available in two versions:
A tape version, which resides in memory from

1000H to 3FFFH, and an EPROM version, which

is situated between DOOGH and FFFFH. The

EPROM version is supplied in 6 2716 EPROMs,
together with instructions to fit the EPROMs on

the NASCOM 2 main PCB by paging the top 12K
of memory into two banks (NASCOM PASCAL
in one bank and NASCOM BASIC plus an

assembler in another bank}. The documentation

consists of two printed manuals: An Operating
Manual (17 pages), which describes how to

operate the system, and a Programming Manual
“(40 pages), which describes the NASCOM
PASCAL subset.

Lucas Logic

Lucas Logic Limited

Welton Road Wedgnock Industrial Estate
Warwick CV34 5PZ

Tel: Warwick (0926) 497733 Telex: 312333

Due to a policy of continued improvement, Lucas

Logic Limited reserve the right to amend the
specifications of all products without notice.

© Lueas Logic Limited 1982 Printed in England 1OM/482/0L

