Danish Society for Computer History

History
The Danish Society for Computer history was founded on August 15, 2002.
Prior to this, a group of people - named “Computer Archaeologists” - in Ballerup just
outside Copenhagen had started to collect material about the three Danish computer

manufactures: Regnecentralen, Dansk Data Elektronik, and Christian Rovsing A/S.

The purpose of this society is to collect information about computers (hardware,
software, and documentation) that have been produced in Denmark.

We will arrange exhibitions to present the historic material we have collected.

We hope that we can open a physical museum not later than February 13, 2008 - this
will be the 50 year anniversary of the inauguration of the first computer made in
Denmark, the DASK.

Another important issue is running a “Virtual Museum” on the Internet - our home page.

The committee of the society has the following members:

Jorgen O. Bjerregaard (chairman): job@datamuseum.dk

Henning Isaksson (treasurer): hi@datamuseum.dk

Poul Testmann (secretary): pt@datamuseum.dk
Knud Viuf: kv@datamuseum.dk

Mogens Kjeer: mk@datamuseum.dk

We meet every Thursday, 1990, on Gammel Radhusvej 32, Ballerup.

Annual membership: 200 DKK for individuals, and 2000 DKK for institutions and
companies.

For more information:

Dansk Datahistorisk Forening
Postbox 88

DK-2750 Ballerup
info@datamuseum.dk
http://www.datamuseum.dk

The logo of the society (above) was originally made as a logo for Regnecentralen.

In the late 60’s, the charismatic manager of Regnecentralen, Niels lvar Bech, referred
to the company as a “computer workshop in growth”. As the enthusiastic firm was
populated with “dynamic jumping jacks”, a bright person suggested that a computer
jumping jack was needed.

The jumping jack was designed by Freddi Schlechter, and we thank his family for
permitting us to use it as logo for the society.

The home page

The home page of the society is found at the following address:

http://www.datamuseum.dk

Our plan is to make as much information as possible available on this site:

» Description of the three companies, Regnecentralen, Dansk Data Elektronik, and
Christian Rovsing A/S.

» A database of our collection.

» Photographs from the companies.

» Documentation - scanned and presented as PDF files.

» Personal essays from the persons involved in these companies.

A configurable time line: The visitor selects the subjects, level of details, time
period, etc. and the search result is presented as a time line.

Much of this is still in the planning stage.

Examples of pictures from our home page:

Above: Left: Old picture of a GIER installation. Right: Picture of a GIER machine
shown on an exhibition held i Ballerup, 1999-2000. The title of the exhibition was:
“When the computer became adult”.

Below: Left: Microcomputers from Christian Rovsing A/S. Right: Supermax
computers made by Dansk Data Elektronik. Both pictures were also taken at the
exhibition mentioned above.

The GIER simulator

History

The first computer produced in Denmark was the DASK machine. The machine was
inaugurated on February 13, 1958. This machine was modeled from the Swedish BESK
machine. The DASK machine had a core store of 1024 words, each of 40 bits. A home-
made drum storage contained 8192 words. The machine was equipped with vacuum
tubes. The company, Regnecentralen, was established to produce this machine. Only
one specimen of this machine was made.

Work on the GIER machine started immediately after DASK was built. It was ordered
by the Royal Geodetic Institute from Regnecentralen, hence the name GIER:
Geodeetisk Instituts Elektroniske Regnemaskine. The first machine had a core memory
of 1024 words of 42 bits, and a drum of 12800 words. The use of transistor technology
made the machine much smaller and more reliable than the DASK.

The instruction set of the GIER machine had many new features: The logic of the
instructions were coded into a microcode storage, making it possible change the
instruction set. The instruction set includes floating point arithmetic.

The GIER machine was ready in 1960. Originally, only one copy of the machine was
planned, but the machine was such a success than more than 50 copies were made
and sold to institutions not only in Denmark, but also to many places in the rest of
Europe.

A key element to the success of the GIER machine was the ALGOL compiler available.
Programming a machine with only 1024 words is non-trivial: Every bit in every word had
to be used. The GIER ALGOL compiler addresses this issue in two ways: The
compilation takes place in 9 scans of the code. The first pass reads the source code
from paper tape, and stores the analyzed code in intermediate form on the drum.
Subsequent passes read intermediate code from the drum and store the result again on
the drum. The code of the compiler for a single pass is kept entirely in the core store,
together with the necessary tables. The last pass delivers the compiled program on the
drum, ready for execution. The compiled program is divided into segments of 40 words
(one drum track), and the running system of the compiler contains a smart method for
reading in the segments to core, leaving as much memory as possible for data.

We find it important not only to describe the hardware of the old machines, but also the
software produced for them. One way to bring life to this software is to simulate the
machines on a modern PC. We have all the necessary information: A description of the
electronics in the GIER machine, a listing of the microcode steps, and paper tapes with
operating system (HJALP and Help 3), and of course the GIER ALGOL compiler itself.
We have received GIER ALGOL programs from many places (some as paper tape, and
some printed on paper), making it easy to test the simulated machine.

Watching the old ALGOL programs coming to life again on the simulator has been like
Jurassic Park: Suddenly, we have brought the old “dinosaurs” into life again!

The simulator (source code for Linux and executable for Windows) is available for
download on our home page. Included are tapes with Help 3, GIER ALGOL 4, and a lot
of demonstration programs.

Implementation

An example of a page from the description of the GIER microcode is shown below, to
the right.

Each step in the microcode consists of making bits from a register (this could be a
general register, a register communicating with the core store, the adder in the
arithmetic unit, etc) available on the bus (Gs), and moving the contents of the bus to
another register (Gm). The execution of the instructions in the microcode is controlled
by conditions, shown in the column labeled Betingelse. The column Hop contains the
number of the next microstep to execute.

The GIER simulator is written in C. Manipulating a GIER word of 42 bits is done using
64-bit arithmetic. The Gs and Gm microstep building blocks are implemented as
macros in C. This makes it easy to convert the microcode documentation into code. An
example of this is shown below, to the left.

Operation nr
Cperation Mode 1
Ma Gs Gm FL Betingelse nr. |Hep
1| or ADL
case 4: 0l0=41 HLO=33 S| [E—
Cs_5%; B—— .
. 2] am AD2 | — =
GS_02 0_4 1g 020l | MD20-39 leaO=0l 3
Gm_AD2; 3| ADz sxrd MPL0=19 skedvy | L)
Gm_OR30_39; e
MA=5; 020=41 _|oRio-39 | 5
break; s| 1Ioee | BOO=9 = i
LI10-19 = I
case 5: <4r‘—‘—_—— uuuuu _B20-41
if (!IF_LI40) “—‘“—-*———';ﬁ o el &
{ 3
Gs_LIO_9; mﬁ:?n :gk
= —r LI20-29 Q2029
a LR -
Gs_LI10_19; 11-:":&7&1— f :_-."-"L.—-_ i Tis
Gs_LI20_41; 5| Lno-1a ™
9 LI0-%3
Gs_0Oh; u..m?"n zn=zsi' - DE20=2"
Gm_HO00_9; s OR4O-41
Gm_TD-_ oh tel 4 0P LI40h 1le| &
— ’
HOn-9 7
Gm_OR20_41; o E— —
Gm_tael i Z{-F10m m =
MA=8; Al al0=19 EIS-“
} TD skri q 2qu] 9
else 1if (IF_LI40 && !IF_h) i elo-13 HLO=19 = =l
{
a10m1 _HL0-19
ADZ Jullw\.a I 204 |
Bl sl0=1 H10=19
oo WDO0-G ra 20s| 1%
i - — = Zor
Ll Oelil B
123
REGNECENTRALEN 0763 FW | 5 Sider
Dansk Institut for MlKROPROGRAM -
Matematikmatkiner) G]ER Side 1

A special feature of the GIER machine was the loudspeaker: This was connected to the
sign bit of the accumulator, a program changing the sign of this register 1000 times a
second would thus produce a tone of 1 KHz. We have several GIER music programs
on paper tape! The loudspeaker is implemented in the simulator by setting the sample
rate on the sound card to 45 KHz, and sampling the sign bit every 10th microstep. This
matches the clock speed of the GIER machine of 450 KHz.

The user interface

A typical GIER machine is equipped with a paper tape reader, a tape punch, a
typewriter, a main control board, and an auxiliary control board. The main control board
has 42 lamps, one for each bit in a GIER word, and buttons to select registers to be
displayed. 42 sets of buttons manipulate the selected register.

The control boards are implemented using scanned images of the control boards. The
lamps are shown as green lines. Mouse clicks on the buttons simulate pressing a
button. The state of the control boards are updated periodically when the machine
executes.

Paper tapes are simulated as a file on the PC. Some GIER installations had a line
printer or a drum plotter. This is simulated, and output is sent to the printer connected
to the PC. Two examples of interface windows are shown below. The left window is the
main control board, and the right window is the paper tape reader.

GIER Paper Tape Reader

RESET| REFD| SKIP| UP|

t his program w

B DEg (slelalalslele]
[elalslslele] o o o
(e e R a1l] jala]
o Qoo o]

B G IEE DEgE

Below is an example of an ALGOL program, and the output produced on the attached
typewriter. The program reads a tape with a series of numbers, and prints the sum.
Note the use of “Jensen’s Device” in the SUM procedure.

algol<
Program d-MK-6. Sum
begin
real sum;
integer i,antal;
real procedure SUM(x, i, fegrste, sidste);
value forste, sidste; GIER Typewriter
real x;
integer i, feorste, sidste;
begin
real sum;

sum := 0;
for 1 := forste step 1 until sidste do
sum := sum + X;
SUM := sum
end SUM; £g
select (16); ok
antal := read integer; aum: 5.50000 1

begin
array A[l:antal];

for i := 1 step 1 until antal do
A[i] := read real;
sum := SUM(A[i], i, 1, antal);

writecr;
writetext (|<<Sum: |[|>);
write (|<-d.ddddd'-dd|>, sum)
end indre blok
end
run<
10

1,2,3,4,5,6,7,8,9,10,

