
Title:

® | — SODA

2nd edition

Edition: Oktober 1979

Author: Paul Lindgreen,

Edith Rosenberg

[fo SREBNECENTHALEN RCSL No: 21- vo54 (pp 198)

RC SYSTEM LIBRARY: FALKONERALLE | DK-2000 COPENHAGEN F

Keywords: po4goo, RC8000, SYSTEM80, database, DBMS, Subschema,
DB access, inter-record structures, logical data description,

record set, subscripted set, external declarations, r

standardization, data independence, ALGOL, DUET, DATABASES80. .

Abstract: This manual describes the SODA system. SODA comprises a

database management system (DBMS), a formal language for

local data description (subschema/external schema) and a

compiler to process such a description. The DBMS provides

convenient and powerful DB access possibilities based on

record sets, which is a generalized version of the set type

known from CODASYL like systems.

English edition.

Users of this manual are cautioned that the specifications)

syTt (®) ASS sant: contained herein are subject to change by RC at any time

Cop oe Ay Regnecentralen, 1976 without prior notice. RC is not responsible for typographi-
cal or arithmetic errors which may appear in this manual
and shall not be responsible for any damages caused by
reliance on any of the materials presented.

Printed by A/S Regnecentralen, Copenhagen

Preface

The SODA system is a serious attempt to raise the level on

which application programmers must work when the program

operates on databases. Through intensive use of specifications

in a tabellized manner outside the program, by application of

declarative compiler technique, and by means of a certain

degree of standardization, the programmer can now concentrate

on the logic and the tasks of the application. The tedious and

often complicated set up of parameters to the available file

systems is removed from the application program and taken over

by the SODA DBMS. This manual introduces the concepts behind

SODA and describes all the features, rules and principles that

must be known in order to utilize SODA.

‘The system was designed by the present author together with

Edith Rosenberg. The programming was done by the same two

persons together with Isabella Carstensen.

Paul Lindgreen

CONTENTS

1. Introduction

2. System survey and basic concepts

2.1 The main components of SODA

2.2 The SODA record accessing scheme

2.3 The SODA field accessing scheme

3. The SODA Local Data Description

3.1 Declaration of SODA variables

3.1.1 The variable table

3.1.1.1 Variable declaration without numbers

-2 The value spectra table
1

-1.3 The norm value table

3.2 Declaration of record sets

3.2.1 The set declaration head

3.2.2 Set restrictions

3.2.3 The usage specification

3.2.4 The log specification

3.2.5 The ident specification

3.2.6 The mother specification

3.2.7 The daughter specification

3.2.8 The field specification

3.3 Automatical declaration of record sets

3.3.1 Record output 7

3.3.2 Implicit variable declarations |

3.3.3 Record input

3.4 Connection to the Data Base Description

4o

ii

4. The SODA LD compiler

4.1 Activation of the compiler

4.2 Listing and log

4.3 Reaction on errors

5. The SODA DBMS

5.1 GET

NEXT

LOOKUP

5.4 PUT

CREATE

5.6 DELETE

5.7 NEWSET

6. How to include the SODA DBMS in a program

ALGOL block structure and SODA program texts

6.2 Initiating the SODA DBMS

6.3 The log mechanism

6.4 The DBMS error mechanism

6.5 Reserved ALGOL identifiers

Appendix A. Formal description of the SODA LD syntax

Appendix B. Error messages from the SODA LD compiler

Appendix C. References

Alphabetical index

150

165

184

185

Introduction

SODA

Components

Record access

via sets

This manual describes the so-called SODA system

for RC 4000/8000. The description is intended

for system analysts, programmers, and datamatic

consultants.

SODA, which is an acronyme for Set Oriented Data-

base Access, is the name of a datamatic tool to

be used for flexible and convenient access of a

common database (DB) from individual application-

programs.

Access from a given program is performed by a

DBMS (database management system) which is

incorporated as a part of the program. The DBMS

is governed by information derived from a program-

specific local data description, which again

refers to those parts of a common DB description

that are relevant to the program *). SODA consists

of the DBMS, a local data description language

called SODA-LD, and a compiler for this language.

The SODA system realizes two important access

principles:

As the name indicates the DB access is based on

the concept a record set. A record set in SODA

is in many respects similar to a set type in

the CODASYL proposal (ref.7), but in SODA it is

considered in a more general and simple form

resulting in a much easier access scheme.

*) Readers familiar with CODASYL terminology will observe that we

use the term 'local data description' for 'subschema' and
"DB description' for 'schema'.

Field access

via variables

Data

independence

In the LD description any number of record sets

can be declared, each one defined as a subset of

the records belonging to a logical file in the

DB. Access to the records is performed entirely

with reference to a record set, whereby it becomes

possible to have one record ‘at hand' at the

same time for each set, regardless of how the

logical files are associated with physical files.

The definition of the sets can be specified as a

list of relevant record types and furthermore by

a general restriction expression in values of @

record fields and program variables.

The second access principle realized in SODA is

that references to record fields for use or for

updating take place via ordinary variables in the

employed programming language. In the LD description

a two way mapping between fields and variables is

specified. In the DBMS read or write operations

values are transferred in accordance with this

mapping. In this way the programmer does not need

to know or refer to buffers or zone records.

The implementation of these principles provides °

a solid base for a high degree of data independence,

i.e. that each application program is less sensi-

tive to logical extentions or physical reorganiza-

tions of the DB caused, for example, by new

requirements to other application programs.

ALGOL and

DUET

Advantages

of SODA

The present implementation of SODA permits

the programmer to employ ALGOL 6 as well as

DUET (see ref. 5) as programming language.

In nearly all respects the DBMS will operate

in the same way whatever language is used.

SODA is designed and implemented with the

primary intention to facilitate the implementation

and maintenance of application programs. The main

advantages obtained through the use of SODA are:

-. ‘logical view' of the relevant part of

the DB with record grouping suited to

the task of the application program.

- no complicated parameter lists for the

accessing operations.

very extensive checking against all kinds

of formal errors both in the LD descrip-

tion as well as dynamically. This will

minimize the effort necessary for debugg-

ing and improve the integrity of the DB.

- improved and well structured documentation

of use of the DB.

~ more straightforward logic and fewer state-

ments in’ the application program.

- support of repeating groups, possibly

resulting in faster or simpler application

programs.

Drawbacks of Owing primarily to limitations in the underlying

SODA file systems (ref. 1 and 4), SODA does not

permit concurrent access to the same files from more

than one program. Furthermore, because the

DB description (ref. 2) does not support any

data protection no precautions have been taken

in the implementation of SODA to remedy this.

Although these missing features could seem to

be serious disadvantages in certain cases, this

should not prevent the user from employing SODA.

In most cases the use of SODA will lead to much

simpler and easy-to-maintain systems than if

DB access is based directly on the file systems,

which, anyway, do not support concurrent access.

|
Guide for the If you receive this manual for the first time

new reader and have no, or only a limited, knowledge of

SODA, you are advised to read it in the following

way:

1; Read section 2 in lexicographical order, but

ignore reference to more detailed descrip-

tions in other sections. Only exceptions are

references to figures, which may help you. e

Readers are assumed to be familiar with the

Database 80 language (ref. 2). A general

knowledge of the CF system (ref. 1) is

probably useful but is not absolutely

necessary.

If you have time enough then read the paper

in ref. 3, but be aware of a slight change

in the terminology in some cases.

You. should now have a reasonable general

overview of SODA. If you are lucky to have

access to persons who have used SODA (they

do exsist and some have learned it

the hard way without this manual) then

discuss any mysterious or unclear points

with them, but do not get stuck in details.

You still have much to learn.

Select a simple application problem. If you

do not have one, invent one. It must be

one referring to a DB where a DB description

is available. Now, read slowly, possibly

iteratively, through section 3 and follow

all references and local hints as long as

you feel the jumps in reading will help you

to understand. Parallel to the reading try

to write down selected parts of the LD

description relevant to your application

problem. If you feel you cannot do it,

reduce the complexity of your problem. It

can be done !

Now read section 5 guided by a parallel

programming of your application program at

some reasonable level of abstraction (skip

details irrelevant to the logic of DB

accesses).

6: Finish your LD description, at least to the

point where it is formally correct (or you

think it is). Then read section 4 and try

to run a compilation of your LD description.

Correct all errors and continue until your

description is formally correct.

7: Read section 6 fast, just to get an impres-

sion of it. If you shall use DUET as program-

ming language you may possibly skip this

section. ®

Now you should be prepared for the troubles of

really using the manual. Good luck !

System survey and basic concepts

This section gives a broad survey of SODA and

introduces most of the notions and concepts on

which a thorough understanding of the system

is based. The text is organized so that the

reader should be able to follow it as it appears.

However, since the remaining sections assume the

reader to be familiar: with all the concepts pre-

sented here, it may later on be neccessary to

consult certain parts in order to be sure

of a correct understanding.

The section is divided into three parts:

First, the principal components of the system are

presented and the interface to other systems or

tools is illustrated. Then, in two other parts, the

two. main access principles are described - how

records are selected and transferred to and from

the DB and how the individual fields of the

records are manipulated from the application

programs.

2.1 The main components of SODA

The SODA Each application program intending to use the

LD description facilities of SODA must be associated with a

formal description called the SODA LD description.

It specifies those elements of the DB which are

relevant to the application program. Normally

an application program will have its own LD

description, but it is possible that one

description is common to several programs. ®

The LD description can be regarded as an external

set of declarations to the application program.

In the selection of relevant parts of the DB,

the LD description refers to entries in a common

DB description expressed in the Database80

language (see ref. 2).

The LD description contains declarations of two

kinds of entities - SODA variables and record sets.

SODA variables A SODA variable is a variable of one of the types

permitted in the programming language employed.

The head of the LD description contains a @

reference to this language so that the SODA LD

compiler can check that only variables of legal

types are declared. Apart from this, the

declarations are independent of the programming

language - also concerning the syntax. A SODA

variable is primarily used for access of record

fields as described in 2.3, but aside from this

they can be used freely in the program. In case

Record sets

THE SODA

LD language

The SODA

LD compiler

of ALGOL, SODA variables will appear exactly

as other variables declared in the ordinary

way; in the case of DUET, it is the only way

variables can be declared.

For a number of reasons, access of records with

a direct reference from the program to the files

in which they are stored is not supported by

SODA. The intention is to allow the designer

and programmer, as far as possible, to think

in logical data structures rather than in

physical ones. Therefore, in the LD descrip-

tion, the user must declare one or more record

sets as groups of relevant records which are

candidates for access. The record accessing

scheme is explained in detail in section 2.2.

The LD description is expressed in a formal

language called SODA LD. This language is

explained and described in detail in section 3

while a formal syntax description is available

in appendix A.

When the LD description is finished - or at least

assumed to be formally correct - it must be

checked and processed by the SODA LD compiler.

It reads the LD description and the referenced

parts of the DB description (from its internal

form in the DB description file) and checks the

specified information for completeness and formal

consistency. A format-edited listing of the LD

The SODA

DBMS

description is produced together with possible

error messages. If the description is formally

correct, the compiler will produce a binary file

- the SODA LD file - containing the information

necessary for the DBMS to operate properly (see

fig. 2.1). The compiler may also produce a text

file with ALGOL declarations of variables to be

incorporated in the application program (cf.

section 3.1.1). The function of the compiler and

the rules for its activation are described in

detail in section 4. e@

The DBMS is an ALGOL text containing

declarations of:

- procedures corresponding to the DBMS opera-

tions for direct or sequential reading and

updating of records and for creation or

deletion of records.

- procedures for initialization, testing

etc.

- variables and tables to be used by the

procedures. ®

If DUET is chosen as programming language, the

user should note that these declarations are a

part of the DUET system programs. The initialization

of SODA, the DBMS operations, and the dynamic error

handling are fully integrated in DUET as described

in ref. 5. However, when the user employs ALGOL

as programming language the above-mentioned text

must be incorporated in the application program

itself. This is described in section 6 of this

manual.

11

1 \
DB H Common for \

descr. }----- 4 several appli- |
file ' cation programs!

\ /
Ne cae ate re we eee eae cure eee eee aes wim eae 4

rc LD listing

SODA \ SODA LD Error messages

LD . _—

descr. Compiler Le reg

I
i
i
|

prrcb nanan NN
/ / :

! One for each \ LD ALGOL i Optional for
| apoli . b——— decla- }—---..-__ ~ 4 DUET i

pplication r . . j
\ ! file ratio { Required for j

\ Program f \ ALGOL i
Neve one ee ew ace cee eee eee core ce oe ee ~ Na me ee ee /

y

Application SODA DB _ -_= _

routines - DBMS

'

fi an ‘

: . i Common for \

Application program | several appli-
\ cation programs /

\ L--—-——-—---- J

Fig. 2.1 General survey of SODA component relations

12

The DBMS will operate in accordance with the

activation of the various procedures from the

application program, but governed by the

information stated in the LD description and

represented in the SODA LD file. The initialization

procedures will read the data stored in this file

into the internal tables of the DBMS and the

accessing procedures will then refer to these

tables for the necessary information.

13

2.2 The SODA record accessing scheme

SODA enables the user to regard the database as

a collection of records of various types organized

in record sets.

Record sets A record set (RS) is a collection of records

which have something in common of interest to

the application program. Normally, it reflects

an entity class in the user system about which

information is represented in the database.

Every record type that a given program wishes to

access must be specified as a member of at least

one record set declared in the corresponding LD

description, but the same record type may be a

member of more than one set.

Different application programs are permitted to

have their own individual views of the database,

both as regard to the subset of interest and the

grouping of record types into record sets.

Physical However, the grouping may not violate the physical

dependence structure of the database as defined in the

e DB description. This is because the SODA operations

(see 5) are implemented by means of the available

file systems which draw heavily on the organization

of records in different types of physical files

(CF master, CF list, and BS sequential (ref 1 and

4)).

14

Set types Accordingly, SODA will distinguish between

different set types primarily corresponding

to the above mentioned physical file types.

In most respects, sets of different types are

treated the same way - at least from the user's

point of view - but there are some differences.

In the description we shall refer to set types

denoted like this:

Settype M: Sets associated with CF master files.

Settype B: Sets associated with BS files. @

Settype L: Sets associated with CF list files.

Record access Access of records in the database is performed

operations from the application program with reference to

a declared set by activation of one of the SODA

DBMS operations listed below.

GET provides a directly accessible record

belonging to a set from the DB,

according to specified ident field

values.)

NEXT provides the next record in the

sequence of a set from the DB.

LOOKUP verifies that a directly accessible

record is present in the DB as the

member of a set.

CREATE generates a new record to be inserted

in the DB.

Direct read

access

via ident

fields

15

PUT returns a record read by GET/NEXT

to the DB or inserts one generated

by CREATE in the DB.

DELETE removes a record belonging to a set

from the DB.

The use of any of these operations must be

announced to SODA in the set declaration and

must furthermore follow a set of rules dependent

on the set type, the dynamic sequence of activation

of the individual operations, and on the DB itself.

The set of rules cannot be described in a single

scheme nor can a straightforward classification

of the rules be made. Because of all these

logical dependencies, in the design of SODA much

attention was given to obtaining uniform, general,

and simple functions. However, constraints imposed

by the file systems and the DB description as well as

attempts to cover most user applications in a

reasonable way have caused some ad hoc rules and

certain limitations in the intended generality.

The fetching of an individual record, regardless

of any previous access operation on a set, is

performed by the operation GET. The information

necessary to identify the record in question -

the so-called key values - must be supplied

from the application program in one or more

variables specified in the LD description as a

part of the set declaration (see 3.2.5). For sets

of type M it is necessary to provide a (user-

specified). value for each ident field in the

via recno

Sequential

read access

*)

16

records as defined in the DB description. For the

other two set types, the records are identified

by the so-called recno value. This is a system-

generated value which is available to the

application program originally when the record

is inserted in the DB by a PUT operation after

a CREATE and later on after every NEXT operation

that provides the record. *)

For all set types it is possible to perform a

sequential scan of the records belonging to the

set, regardless of possible direct access

operations on the same set. SODA maintains the

necessary information about which record was

last accessed by a NEXT operation and which

one by a GET operation. The NEXT operation

will always provide the next record in the set

relative to the one last accessed by NEXT. The

sequence of records in the set is dependent on

the set type in the following manner:

M: Increasing values of ident fields

B: Physical location in secondary storage

L: Position in the chain used for access

For set type L the recno value is identical with the record

number provided by the CF system. For set type B it is

defined as follows:

segment_no shift 8 add baseword_adr

Scan

initialization

(NEWSET)

Set sequential

status

Set sequential

position

Record updating

17

A scan must be initiated by activation of the

operation NEWSET. Then NEXT can be activated

repeatedly until it, as result, announces that

the last record of the set was provided. At

this time, or at any previous time, NEWSET can

be activated to indicate the start of a new scan.

The sequential access of records in a set is thus

characterized by two values of what is called

set sequential status.

-~ closed: Before first NEWSET or after the

NEXT of a scan that announces

"no more records'

- open: After NEWSET, but before the above

mentioned last NEXT of a scan.

NEWSET will locate a pointer - the set sequential

position - to a certain location in the sequence

of records in the set. Normally this position

will be just in front of the first record, but

for settype M and B it is possible to locate the

position to any record belonging to the set. The

location is defined for NEWSET in the same way

as a record is identified for GET (see 3.2.5).

The set sequential position will be modified

whenever NEXT is activated, but it will not be

affected by a possible GET in between.

When a record has been read by GET or NEXT, the

application program can use or modify the record

fields according to specifications in the set

Record creation

Insert location

18

declaration as explained in section 2.3 and

3.2.8. If the values of one or more fields are

changed, the record must be returned to the DB

to replace the previous occurrence of it. This is

done by activation of the operation PUT.

The insertion of new records in the DB is per-

formed via a set in full accordance with the

record definition in the DB description. The

insertion takes place in two steps: First, by

activation of CREATE,a record of a type defined

for the set is generated and provided for the @

application program. The various fields are

initialized to standard values in accordance

with specifications in the LD description.

Second, by activation of PUT, the generated record,

with fields possibly modified by the program, will

be inserted in the DB. The location where the

record is inserted is dependent on the set type

in the following manner:

M: The location of the record is defined

by values of the ident fields communi-

cated in the same way as for direct

access. Set sequential position is not @

affected.

B: The record is inserted just after the

last record in the physical file. Set

- sequential position is not affected.

L: The record is inserted just prior to

set sequential position.

Record deletion

Current record

Record status

19

In order to remove a record from the DB it

must first have been read from the DB by GET

or NEXT. Then an activation of the operation

DELETE will remove the record. For records

declared in the DB description to be mother

records (see ref. 2 or the entry "Subscripted

sets" below), some further rules must be obeyed

(see 3.2.7 and 5.6).

For each set, one and just one record can be

available at a time for the application

program to operate on. This record is called

the current record of the set.

A current record is obtained either by a read

Operation (GET/NEXT) from the DB or by a CREATE

operation. It is released again by a subsequent

PUT operation or, if the user wishes to remove

it, by a DELETE operation. Only when a current

record is available in a set is it possible

for the application program to operate on it - that

is, use its field values or modify them.

Accordingly SODA keeps track of the current

record situation for each set. From the users

point of view this is represented in the so-

called record status which in many respects defines

the legality and the function of the DBMS operations.

The possible values of record status for a set

are:

- empty : No current record in the set

- DB currec : Current record read from DB

- new currec : Current record established by

CREATE

20

Record The same record type (in fact even the same

availability record) may be available as current record in

more than one set at the same time. For

certain applications this will result in a much

simpler program logic with less need for inter-

mediate storage. On the other hand, if this

feature is misused, SODA may be forced to

perform many, otherwise unnecessary, physical

file accesses. The descriptions in sections

2.3 and 5 should give the user the necessary

information to decide which is the optimal rd

solution in a given situation.

Set declarations The record sets of relevance to the application

program must be declared in the LD description.

A set declaration defines an identification

of the set, it refers to a logical file declared

in the DB description *) (see ref. 2) and specifies

the record membership of the set (see fig. 3.9).

Furthermore it defines which fields of the records

the application program wishes to use or update

as explained in section 2.3.

Record Sets may be declared to comprise all the records @

membership of a logical file or. just a subset of it.

Subsets may be specified either as a list of

selected member record types or by means of a

logical expression (possibly one for each record

type) or both.

The selection expressions may be composed of

relations separated by the logical operators

‘and' or 'or' and the relations may refer to

*) In the Danish text of ref. 2 the term 'register' is used for
‘logical file'.

21

fields, constants,or SODA variables (see fig.

3.10) . The logical expression defines member-

ship as those records of the relevant types for

which the expression is true at the time of

access.

The SODA view The representation in the DB of the information

of the structure in the user system will normally be

information so that different entities are represented as

structure — different records. The various sets of charac-

teristic properties of the entities are re-

flected in the DB in corresponding record types.

Each record type is defined in the DB description

by a set of fields representing attribute as

well as relational properties. In the DB descrip-

tion the record types are partitioned into logical

files, but SODA enables a further organization

with a possible overlapping grouping of record

types in record sets reflecting different appli-

cation oriented properties.

When the information structure comprises entity

relations of the one-to-many kind this is re-

presented as inter record structures where a set

of so-called daughter records by a chaining

technique are linked sequentially to each other

and to a single mother record. Physically the

daughter records must be stored in a CF list

file (see ref. 1) and normal access will require

a previous access of the mother record. In the

mother record. the one-to-many relational property

is represented in a so-called d-ref field *).

*) In the Database80 language (see ref. 2) d-ref fields are
declared as type 'list'.

22

Set kinds In SODA these two different organizations of

records are reflected in a distinction between - é

two kinds of record sets - singular sets and

(mother) subscripted sets. This distinction is

in some way similar to that known from program-

ming where the programmer must consider both

simple variables and arrays.

Singular sets A singular set in SODA is a set where the records

are accessed and set membership defined by a

reference to the set declaration only. The)

records of a singular set can be accessed

directly or sequentially, in general as explained

above. The only exception is for singular sets

of set type L. Here only GET and PUT can be

employed and only if the recno identification

is known.

Subscripted A mother subscripted record set in SODA is a

sets set where the records are organized in separate

groups, so that each group is associated uniquely

with a single record (the mother record) belonging

to another set - the mother set.

Access of the records in the mother subscripted

set - the daughter records - can take place only

within one group at a time. Whenever the program

wishes to access records belonging to another

group that group must be selected separately

before the access can take place (see fig. 2.2).

23

Mother record Group of daughter records

Mother set

Mother subscripted set
(daughter set)

Fig. 2.2 Principle of mother subscription

Array analogy The analogy to arrays now becomes clear: An

. array is a collection of elements eachre-

presenting some value. In most programming

languages the elements are identified by a

number called the subscript or index. In SODA

an element of the 'array' is one of the groups

of daughter records and the identifying subscript

is the mother record.

Subscription

Multi mother

linking

24

The selection of a group is performed in two

steps. First, the appropriate mother record P

must be accessed by a read operation whereby

it becomes the current record of the mother set.

Second, the operation NEWSET must be activated

with reference to the daughter set. The records

of the group can now be accessed, created and

deleted just as if it was a singular set. The reason

why the subscription requires two steps is to

enable access of (other) records in the mother

set, regardless of the treatment of the records @

belonging to a selected group.

In the-DB description it is possible to declare

inter-record structures so that a given record

is linked to more than one mother record. This

- reflects information structures where a given

entity class is many-to-one related to more than

one other entity class. The user may regard this

so that a set of (daughter) records is organized

in groups in several independent ways. Each set

of groups is associated with its own set of

mother records as shown in fig. 2.3 and the

daughter records can then be accessed from which- @

ever mother set is convenient.

25

Mother set B

;
— | 7

—\ Daughter

r (a _-” records
OC) organized

Mother set A

in two
subscripted

O sets

Alo”
Sli og

Ss ee

0 0 O

\
\

pa \

A group of records A group of records

@ associated with set B associated with set A

Fig. 2.3 Independent subscription in two dimensions

Array analogy The analogy to arrays is still valid. As probably

again well known, arrays in most programming languages

can be declared to have more than one dimension,

each one with its own set of subscript values.

The program may then choose to operate on the

elements in a row or it may choose to operate:on them

Declaration of

subscripted

sets

26

by column, each method corresponding to the

selection of a certain subscript in one of the © é

dimensions. In SODA this holds for any number

of dimensions, but in the present implementation

it is only possible to operate on 'Sub-arrays'

with one dimension fixed. This corresponds to

the rule that a subscripted set can have only

one mother set.

In the LD description a subscripted set is

declared in the same way as a singular set @

except for the declaration head, which contains

a reference to the mother set (see s8 in fig.

3.9).

2.3

27

The SODA field accessing scheme

Zone records

Not in SODA

Access via

SODA variables

From an ALGOL program it is possible, via field

addressing of zone records, to refer to attribute

fields of records which are accessed by procedures

of the file systems (see ref. 8). A DUET program

cannot refer to zone records, since zones are not

defined in the language, and from an ALGOL program

the zone reference method would be violated by

the SODA record accessing scheme: During access

each physical file is bound to exactly one zone

and only one record is available as the zone

record for each file. SODA, however, maintains

one current record for each set and permits

several sets to be associated with the same

physical file.

For this and a number of other reasons (see ref. 3),

SODA provides access to record fields via the

declared SODA variables. When a record is

read from the DB, values of the relevant fields

are transferred to a set of variables and before

a current record is returned to the DB, values from

another set of variables are transferred to those

record fields which the program is to update. The

two sets of variables may be identical, partly

overlapping, or quite distinct, just as it is

appropriate to the application. The field access

principle is shown in fig. 2.

Shorter

programs

28

Variables

Record N SN , .

SQ \

IN \ \X

Fig.2.3. Principle of transfers between fields
and variables

Especially in administrative data processing ®

the transfer of values from fields in one record

to fields in other records is a very common

operation requiring numerous statements of the

type a:=b scattered throughout the program. Since

the relevant field values in accordance with the

chosen principle in SODA must be moved anyway, it

seems obvious to associate the same variable both

with the field in the yielding record and the field

in the receiving record, thereby saving an assignment

in the program text as well as in the execution.

The field

specification

CREATE

transfers

29

In many cases this will result in a considerable

reduction of program length. SODA, on the

other hand, may make the reading and under-

standing of a program more difficult, because

the detailed information is represented in two

documents instead of one.

The mapping between record fields and variables

is specified for each set in the LD description.

In a section of the set declaration called the

field specification any number of field/variable

associations can be specified, each defining a

transfer from a field to a variable, a transfer

from a variable to a field, or a transfer in both

directions. The direction of transfer is specified

by a symbolic arrow-like operator between the

references to field and variable (see fig. 3.23).

Transfer can be specified for all kinds of fields

and variables - simple elements as well as whole

arrays. Constants may be transferred to fields.

Transfers to and from elements of arrays with

either a constant or a variable subscript, are

also possible. Elements of repeating groups in

records are in most respects treated as arrays

with variable length.

When a current record is established by CREATE,

it is possible to have standard values transferred

to variables which are associated with fields in

the created record. (Fields not associated with

variables will be assigned zero or empty anyway).

A PUT following a CREATE will cause values

30

to be transferred to the fields from a set of

variables which may be more or less different

from the one used for PUT after a read operation

These destructions are also indicated by the

symbolic transfer operator.

Ident A special case of field/variable association

specifications must be considered for values of ident fields

in records which are to be accessed directly.

For sets where records are accessed by GET (and

for settype M, if CREATE is employed, the user

must specify which values are to be used as @

keys for the record. This is done in a separate

section of the set declaration called the ident

specification. Here, for settype M,each ident

field is associated with a variable or a constant.

For the other settypes,the reserved word 'recno'

is associated with a variable.

When GET (or,for settype M,CREATE) is activated,

the record to be the current one will be

identified by the values specified in the ident

specification of the set.

Independent of the ident specification the e

values of ident fields can always be transferred

to variables according to associations in the

field specification. Transfers to ident fields

are only performed for settype M at the time

of creation according to the ident specification.

31

3. The SODA Local Data Description

As mentioned in section 2 the user must declare the record sets

needed by the program for access to the database and the

variables through which the fields of the records are accessed.

The declarations are specified in the SODA LD description by

means of a formal language described in this section. Section 4

explains how the LD description by means of a compilation is

prepared for use by the program and the DBMS. The complete

syntax description of the SODA LD language is given in appendix

A.

The overall structure of an LD description is as shown in

figure 3.1

local data 7/inventory : algol <*head line*>

Declaration of SODA variables <*variable section, see 3.1*>

Declarati a ion of record output <*see 3.3*>

and/or record input sets

Declaration of record sets <*set section, see 3.2*>

end 7 <*end line*>

Fig. 3.1. Overall structure of a SODA LD description

Every line of the description may be terminated by a comment

enclosed in the short-comment brackets <* *>. Between the

various sections and subsections of the description any number

of empty lines or lines containing a comment only are permitted.

32

The head line contains the reserved word ‘local data' followed

by a user specified identification and a specification of the

programming language used for the application program. At

present the two languages ALGOL and DUET for RC 4000/8000 can

be used.

The identification consists of a number and a name separated by

a /. The name should be an identifier with no more than 17

characters. The identification together with a version number

will identify the compiled LD description in the LD file. It

will secure that a program at runtime is executed with the

correct LD file present to govern the SODA operations (see 5) @

and that a DUET program is translated based on the correct LD

description (see ref. 5).

The end line contains the reserved word ‘end' followed by the

same identification number as in the head line.

33

3.1 Declaration of SODA variables

The variables used in the application program for access of

record fields must be declared in the variable section of

the LD description. It is composed of three subsections

each headed by a separate line with an appropriate reserved

word as shown in figure 3.2

variables:

variable table

values spectra:

value spectra table

norm values:

norm value table

Fig. 3.2 Variable section

3.1.1 The variable table

The variable table consists of a number of lines each one

declaring a single variable. The declaration can be specified

in various ways most of which are -illustrated in the example

in figure 3.3.

34

variables:

vi : customer_number : word

v2. .: balance : long.2 w6 n2

v4 : customer_ident : text.29(5) n5

v5: stock_on_hand : real (2) wi7

vo* : : date

v7 : order spec : bits.8

v10 : order line key : recno

vi1*: soda_ok : result.soda

vi2 : vendor_ident : = vendor name

Fig. 3.3 A piece of a variable table

An ordinary variable declaration is composed of three main

parts: an identification, a type specification, and possible

value spec and norm value references as shown for the variables

vi - v11. An alternative way is to declare a variable by

reference to a field in the DB description as shown for v12.

The identification of a variable consists of a variable number

composed by a 'v' followed by an integer, and of a variable

name which is an ordinary identifier formed by letters, digits,

and the character '_' as a connector. The connector is

Significant in the recognition of identifiers in SODA LD. In

this way the two identifiers soda1 and soda_1 are different.

The variable name may b2 left out in which case the variable

number is regarded as the name. Both variable numbers and

names must be unique in the LD description. It is advisable

(but not required) to let the declarations appear in ascending

order of the variable number. Single numbers or intervals of

numbers may be left out.

35

The type specification defines the type of the variable and

whether the variable is simple or an array. A variable may

be declared as a so called explicit variable by indicating

one of the following types:

word: 24 bits. Equivalent to the ALGOL 'integer' type

long: 48 bits. Equivalent to the ALGOL 'long' type.

The types 'word' and 'long' may be followed by a

decimal point and an integer indicating an implied

number of decimals. This is fully utilized by the
DUET system, but will have no influence when ALGOL

is used as the programming language.

real: 48 bits. Equivalent to the ALGOL 'real' type.

date: 24 bits. Equivalent to the ALGOL 'integer' type.

Assumed to represent a date as a 6 digit integer with

the format VYMMDD intended for automatic printing in

DUET. However, at present the automatic printing of a

date is not yet implemented and DUET will treat a

date variable as a word variable.

text: A variable physically quantified in units of 48

bits and intended for storing a text. The length is

specified after the type as a decimal point followed

by an integer indicating the maximum number of

characters in the text excluding the terminating zero

character. The type is an ordinary type in DUET, while

it is treated as a real array of appropriate length in

ALGOL.

36

recno: 24 bits. Equivalent to the ALGOL 'integer' type.

Intended for storing the system generated key (CF record

number/BS block position) of a record in a sequential

file for a possible later direct access (see section 5.1).

bits: A variable physically quantified in units of 24

bits, primarily intended for anonymous storing of

consecutive fields. The length of the variable is speci-

fied after the type as a decimal point followed by an

integer indicating the number of bytes. The type is an

ordinary type in DUET, while it is treated as an integer

array of appropriate length in ALGOL.

result: A variable equivalent to the ALGOL 'integer' type.

It is intended to communicate the result of some SODA

and DUET operations to the program. The kind of result is

specified after the type as a decimal point followed by

one of the result indicators below.

readterm: After a DUET read operation the value of

the terminating character.

readspec: After a DUET read operation the number

of the specification that matches the

recognized field.

recno: After a SODA NEXT or PUT operation the

position of the current record in the

file.

soda: The result of any SODA operation.

error: In DUET the identification of an error

situation.

Only one variable of each of the above-mentioned result

kinds is permitted in an LD description.

37

The array specification may appear after all types.except

"recno' and 'result'. It defines that the variable is an

array of the specified type with the number of elements

indicated as an integer enclosed in parentheses. An array

of type 'text' will appear in ALGOL as a one dimensional

real array with a number of elements defined as the product

of the real elements needed to represent one text element

and the number of text elements.

The optional value spec reference defines by a reference to

an entry in the value spectra table (see 3.1.2) the set of

relevant values for the variable. Primarily the reference is

intended for use in DUET to enable value checking in the read

operation.

The optional norm value reference defines by a reference to an

entry in the norm value table (see 3.1.3) a standard value

for the variable. This value is assigned to the variable by

SODA in the CREATE operation if specified so in the declara-

tion of the record set (see 3.2.8). Furthermore the standard

values may be assigned to the variable in DUET in connection

with a read operation. If the norm value reference is omitted,

zero (or an empty text) is regarded as the standard value.

The declaration of a variable as an associated variable by reference

to a field is indicated by an equal sign after the colon following

the variable name. This must be followed by the name of a record

field in the DB description. The variable will then be declared

with the type and kind of the refered field. A possible standard

value and value spectrum indication for the field will result in

corresponding references for the variable to anonymous entries in

the norm value and spectra tables. The variable name and the field

name may be identical, but it is not required.

When the programming language. is ALGOL the SODA LD compiler

automatically will generate a textfile containing correct ALGOL

declarations equivalent to the variables specified in the

variable table. This textfile must then be incorporated in the

“user program as a part of the ordinary declarations. In DUET,

on the other hand, all variables are allocated in a common

array and accessed by means of anonymous field addressing.

Accordingly the DUET processor, that executes a DUET program,

operates directly on the internal representatioh of the variable

table (see ref. 5).

If in a DUET system the surrounding ALGOL program containing

the DUET processor need to refer a variable declared in the

LD description this is possible without any interference with

the variable table. If in this case - i.e. when the programming

language is specified as DUET - the user indicates an asterisk (*)

after the variable number, the LD compiler will generate an |

ALGOL declaration of a field variable of the corresponding

name and type. The declaration is generated in a textfile to

be incorporated in the ALGOL program for the DUET system. The

file will furthermore contain a procedure declaration containing

for each such indicated variable a statement that assigns the

correct address to the field variable. For further explanation

of this feature see ref. 5. r

Finally a special facility in the LD language concerning

operational variable names should be mentioned. In the DUET

system the name of a variable is used operationally in two

situations:

- in standard error messages from the read operation

to indicate which variable was the receiver of a

value when the error was recognized.

- in standard layout ‘a' in the print operation to

produce the name and value of a variable.

When the LD compiler is activated a parameter may specify a

non standard language code for the compilation (see 4.2).

39

The presence of such a code indicates that the user wishes to

produce a variable table with a set of alternative variable

names to be used by the DUET system in the above mentioned

two situations (and only there).

v4 : stock_on_hand : real (2) wi7

(2) lager_menge

(3) varebeholdning

v6: date

v7* : order _spee : bits.8

(3) ordrespecification

Fig. 3.4 Specification of alternative operational names

The alternative operational names for a given variable which

can be selected by the language code are specified in separate

lines after the variable declarations as shown in figure 3.4.

The appropriate language code is indicated in parentheses

followed by the alternative name which should be specified as

an identifier.

Alternative names may be specified for all or just for

selected variables. Not all relevant language codes with

corresponding names need be specified for a given variable.

If an alternative name is missing for a selected language |

code the ordinary variable name will be used.

3.1.1.1

40

Variable declaration without numbers

Variable

reference

by name

Variable

reference

by number

The variables can be declared with anonymous

variable numbers as shown in figure 3.4a.

variables:

customer number word

*balance long.2 w6 n2

vendor_ident = vendor_name

soda_ok result.soda

fig. 3.4a: A part of a variable table

Except the variable number and the colons around

without variable numbers.

the variable name, the syntax is the same as

for declaration of numbered variables. But

numbered and unnumbered variables can not be

declared together in one LD-description.

All variables can be referred to by their name

in the LD description as well as in a DUET

program, regardless of how they are declared.

On the other hand, variable numbers can only be

used for

declared

generate

but this

variable references, if the numbers are

explicitly. Indeed, the compiler will

an internal number for each variable,

number may change in a recompilation

of the LD description.

41

3.1.2 The value spectra table

As mentioned above a variable may be declared with a reference

to an entry in the value spectra table thereby defining the set

of relevant values for the variable - the so-called value

spectrum. Several variables may refer to the same entry. Entries

in the value spectra table may also be referred in the

declaration of record sets to express restrictions on the set

(see 3.2.2).

The value spectra table consists of a number of lines each one

defining a value spectrum. A representative piece of a value

spectra table is shown in figure 3.5.

value spectra:

wi: r 1 to 15.99

w2: n 5, 3, v7 to -12, 19 to v35, v69

w4: t 5 to 17

w5: r limit1l to limit2, 2»v33

w6: n -1.000 to 5.999

w7: n .a., .ab., 2000000, .abc., vi0

w8: n <0, >3500

Fig 3.5 A piece of a value spectra table

The declaration of a variable spectrum consists of an identifi-

cation followed by a main type and a sequence of single values

or intervals.

The identification is formed by a 'w' followed by an integer

and a colon.

42

The main type defines the types of variables which may refer

to the entry and indicates how the values of the spectrum

should be interpreted or represented according to the

following scheme:

t: The spectrum defines the minimum and maximum number

of characters in a text variable. It may only be

referred from variables of type ‘text’.

r: The spectrum defines the relevant values of a real

variable or field. The constant values of the

spectrum are represented as floating point numbers. r

It may only be referred from variables of type real

or from real ‘in'-relations of set restrictions

(see 3.2.2).

n: The spectrum defines the relevant values of a

variable or field of type word or long with possible

implied decimals. It may only be referred from

variables or ‘in'-relations of these types. All

specified elements of the spectrum (see below) should

have the same number of decimals, and the variables

or fields referring to the spectrum must be declared

with this number of decimals also.

The value spectrum itself is a list of elements which are either r

intervals or single values separated by commas. The list may

degrade to a single element. A value used to form the elements

may be one of the following kinds:

- a numeric positive or negative constant with possible

decimals *)

- a variable number on name referring to a numeric variable

- a so-called short text constant which consists of one to three

characters enclosed in decimal points. These characters are

packed with their ISO values in 24 bits right justified with

possible zeroes to the left.

*) See section 3.1.3 for the limitations of a

numerical constant.

43

3.1.3 The norm value table

A variable may also be declared with a reference to an entry

in the norm value table defining a standard value for the

variable. Several variables may refer to the same entry. The

standard values are used in connection with the SODA CREATE

Operation (see 5.5) and in DUET in connection with the READ

operation.

The norm value table consists of a number of lines each one

defining a standard value. A piece of a norm value table is

shown in fig. 3.6.

norm values:

ni: n 3.00

n3: r v32

n6: t ‘'‘unknown'

n7: n customer number

n8: r -1

Fig 3.6 A piece of a norm value table

The declaration of a standard value consists of an identification

followed by a main type and the standard value. The identification

is formed by the letter 'n' followed by an integer and a colon.

The main type defines the types of variables which may refer to

the entry and how the standard value is represented according

to the following scheme.

t: The standard value should be a text constant or text

variable, and the variables referring to the entry

must also be of the type 'text',

44

r: The standard value should be a decimal number or a

variable of type real, and the variables referring

to the entry must also be of type real.

n: The standard value should be a decimal number, a

short text constant, or a variable of type word,

long or date, and the variables referring to the

entry must also be of type word, long or date.

A variable referring to an entry of type 'n' must

be declared with the same number of decimals as

the specified standard value.

The number of digits in a numerical constant (principals and

decimals) must not exceed 15, and the greatest possible value

is 140 737 488 355 327.

45

3.2 Declaration of record sets

Access of records by SODA will require that the user declares

the necessary record sets in the LD description. The

declarations are closely connected to the DB description.

It is not possible to declare sets that violate. the logical

data structure of the database as it is implied in the DB

description.

As mentioned in section 2, record sets can be singular or

mother subscripted. This must be specified in the head of

the declaration and for mother subscripted sets it must be

in accordance with the data structures possible from the DB

description.

The declarations of record sets are specified after the

declarations of variables, value spectra and norm values.

This section of the LD description is headed by a single

line containing the reserved word ‘record sets' followed by

a colon.

record sets:

declaration of first set

declaration of second set

declaration of last set

Fig 3.7 General format of the record set section

Each set is declared by a set declaration head followed by

a number of specifications, some of which are optional and a

some only relevant for certain kinds of sets (see below). A

'full' set declaration is shown schematically in fig. 3.8

with the specifications in required order.

set declaration head

set restriction

usage specification

log specification

ident specification

mother specification

daughter specification

field specification

Fig 3.8 General format of a set declaration

3.2.1 The set declaration head

The set declaration is headed by a single line that identifies

the set, relates it to a logical file in the DB description

and possibly selects a subset of the record types to be the

members of the set. Furthermore, in case of mother subscrip-

tion the line contains a reference to the mother set. Fig 3.9

shows some examples of set declaration heads

47

s2: customers customers

s3: sales items products (i17, i18)

s5: spare parts products (items, parts,

item parts)

s6: departements depts in org1 file (i58, i59)

s8: special deliveries (s3) = order_elements (i88)

Fig 3.9 Examples of set declaration heads

A set is identified by a set number and an ordinary name. The set

number is used in references from other set declarations as for

instance the mother set reference in the declaration of s8.

The identification is followed by an equal sign and a reference to a

logical file that must be declared in the DB description. If the

logical file is declared as a constituent of more than one physical

file the reference must be qualified with the name of the physical

file as in the declaration of sé.

If all the record types of the logical file are required as members

of the set, nothing more need be specified in the head line, as

for s2. If, on the other hand, only some of the record types shall

belong to the set, this must be indicated by a list of the selected

types enclosed in parentheses following the logical file reference

as shown for the four other sets. The list may constitute the full

set of record types in the logical file but not references to

record types declared outside the file.

A record type can be stated as an 'i' followed by the record type

number (in s3), or as the record type name (in s5). The record

types are separated by a comma and a possible new-line-character.

It is permitted to declare any number of sets referring to the

same logical file. Such sets may define any grouping of the

record types of the file ranging from a partition, via all

combinations of overlapping groups to sets with identical

member record types.

If the set is subscripted by mother record this must be indicated

in the set declaration head by a reference to the mother set

enclosed in parentheses as shown in the declaration of s8 in

fig 3.9. The mother set must be declared elsewhere in the LD

description but it is insignificant whether it is done before

or after the subscripted set. @

The mother subscription defines that the subscripted set - the

daugther set - is a collection of record sets all referred to

by the same set identifier, but each one associated with

exactly one record from the mother set. Accordingly, access

to one of the subsets of the daugther set can only be obtained

by a prior selection of the appropriate mother record. In the

application program this is performed by means of the operation

NEWSET referring to the daugther set. The current record in

the mother set at that moment will then define the selection

(see further in 5.7),

For a mother subscripted set the LD compiler will check in the e

DB description that the records are physically stored ina

list file *) (cf ref. 1). Furthermore it will check that the

records are physically connected to the records of the mother

set. Consistency checks will also be performed according to

the information in the associated mother and daugther specifi-

cations of the two sets (see 3.2.6-7).

*) The opposite is not the case. It is permitted to declare
a set for records ina list file without mother subscription.

However only direct access is possible and, in order to
utilize this, it is required that the internal record

numbers of the records have been stored previously.
See 3.2.5 and 5.1.

49

3.2.2 Set restrictions

Definition of set membership may be further specified for each

declared set (mother subscripted or not) by.a set restriction.

‘This is a logical-expression in variables and constants and

values of fields from potential member records of a declared

set. The restriction is specified in a separate clause following

the set declaration head. If, upon a physical read access of

one of the record types defined for the set, the expression

becomes true, the record is regarded as a member of the set,

otherwise it is not. (see operations GET and NEXT in 5.1-2) Fig. 3.10

shows restrictions for two sets - one defined for all record

types of the set and one which is record type dependent.

s12: bad_customers = customers

for which cu_balance > 10000 and £319 in w7

or cu_number <= v.min_ number

$13: payments (s2) = transactions (i63, i64, i66, i67, i68)

for which i63, i166: £119 >= £120 or £130(2) <> 'payment'

i64: £111 -, in wil

else : £28=1 and (v12(1)<0.5 or £2 in w8)

Fig 3.10 Examples of set restrictions

The logical expression is either a single relation or it is

composed of relations separated by ‘and' or ‘or' operators and

parentheses in the usual way. A relation is either a comparison of

two values by means of the ordinary relational symbols

=<> > < >= <= or it tests for membership or non-

membership of a value in a value spectrum defined by a reference

to the value spectra table.

50

The left side operand of a relation is a reference to a field

or a variable - either simple or subscripted by a constant. e

Operands of type bits, aggr, group, recno, mref, or dref are not

allowed. The right side operand of an ordinary relation may

furthermore be a constant. The two operands should be compatible

in type and possible implied number of decimals according to

the scheme in fig. 3.11.

word.y

right operand—m| text real long.y | date text | integ.|decim.

left operand 7 var/fld | var/fld | var/fld | var/fld | const | const | const @

text var/fld + - - - + - -

real var/fld - + - - - + +

word. | var/fla - - 1) - - + 3)
long.x

date var/fld - - - + - 2) -

+ permitted

- not permitted

1 permitted if x=y (declared with same number of

decimals)

2 permitted if the constant is < 8388608 (24 bits)

permitted if x>= number of decimals in constant oe

Fig 3.11 Rules for type correspondance in relations

51

The comparison of texts will be performed from left to right

according to the ISO value of the characters.

Fields and variables in a set restriction can be referred by name

or by number. In order to distinguish between a field name and a

variable name, the latter must preceed by a 'v.' as shown in

figure 3.10.

A record type dependent restriction like the one shown in

fig 3.10 for s13 contains one or several logical expressions

preceeded by a record type list or the last one possibly by

"else'. The record type list defines which record types

of the set the associated restriction is valid for. The

restriction associated with a possible '‘else' is then valid

for record types of the set not mentioned explicitly.

Only record types belonging to the set may appear in the

record type lists and no record type may be specified more

than once in a set restriction. Furthermore the fields

specified in a certain logical expression must be contained

in all the record types of the corresponding list. Record types

for which no restriction is specified (no 'else' specified) are

considered unconditional members of the set.

52

3.2.3 The usage specification

In a separate clause following immediately after the possible

set restriction the user must specify a list of the SODA

access operations that in the application program will refer

to the current set. The purpose of this statement is

primarily to enable the system to check that the various other

specifications of the set declaration are consistent with the

intended use of the set. Such a check may prevent alarm

reactions during the run.

The complete format of the usage specification is shown in

fig. 3.12.

s2: customers = customers

usage: next, get, put, create, delete, lookup, newset

Fig 3.12. A usage specification

The names of the intended SODA operations must be specified

in a single line following the reserved word 'usage'" and a

colon. The order of the specified operations is insignificant.

The specification of LOOKUP and NEWSET is permitted but not

required.

53

3.2.4 The log specification

The fact that SODA hides every physical operation on the

database from the user may cause problems in some application

systems where it is necessary to track or survey changes in

the physical state of the database or the like. Therefore SODA

provides a set-specific facility for activating a so-called

log procedure when the database is touched. (see 6.3). Ina

separate clause following the usage specification the user

may specify in which situations the log procedure should be

activated. Fig. 3.13 shows a representative example of a log

specification.

s2: customers = customers

usage: next, get, put, create, delete

log before: all

log after : get,. next, update, insert, delete

Fig 3.13 A log specification

The log specification may consist of one or two lines or may be

left out completely. The two lines define the activation of the

log procedure just before and just after the file operations

involved by the SODA operation, respectively. In both lines either

the word 'all' or any combination of the words 'read', 'put',

"newset', 'create', 'get', 'next' 'update', '‘insert', or 'delete'

may be specified. 'all' means the activation on every operation,

‘update' on a 'put' after a read operation and 'insert' on a

‘put' after 'create' (see 5.4). Finally the word 'read' means

‘get' and 'next', and the word 'put' means 'update' and 'insert'.

The other keywords refer directly to the SODA operations. The log

specification should be consistent with the usage specification.

3.2.5 The ident specification

The identification of records in SODA operations for direct

access and for insertion of such records, is not transmitted

by means of explicit parameters. Instead the set declaration

must contain a specification of how the necessary values of

the ident (or key) fields are derived. This specification is

then common for all direct access operations referring to the

set, i.e. GET (5.1) and CREATE (5.5). Furthermore it is

utilized for positioning in sets where a sequential access

should start with a certain record, see NEWSET (5.7).

The ident specification is required for sets if ‘'get' appears

in the usage specification or if 'create' appears and the set

is associated with a logical file of type 'CF master' (see ref.

2). It must be stated after a possible log specification as

shown in fig 3.8.

Fig 3.14 shows two examples of ident specifications.

s2: customers = customers

usage: get, create, delete

log after: all

ident spec: | compiler produced |

v32 = £17 | documentation of |

5 = £19 | Variable and

v35 = £20 | field names |

Lowe 4

s9: modify orders = order elements (i88, i90)

usage: get, put

ident spec:

vi5 = recno

Fig 3.14 Ident specifications in two sets

55

The ident specification is headed by a line with the words

‘ident spec' and a colon. In the normal form (shown in the

figure for s2) this is followed by one or more lines each

one associating a numeric constant or a SODA variable with

an ident field (cf ref. 2). The variable is referred by the

variable number or variable name from the variable table and

the ident field by the field number or field name from the DB

description. The association symbol is an equal sign. When the

association lines are read the LD compiler will automatically

supply the corresponding variable and field names in the listing

as more comprehensible documentation. The normal form is applied

in sets associated with master files.

In order to define a proper identification each ident field

must appear once and once only in association lines of the

ident specification. Moreover for the operands of each

association the types must be compatible according to the

table in fig 3.15.

left operand right operand

word var byte field

date var word field

long var long field

num constant

real var ;

real field
num constant

text var text field

bits var aggr field

recno var 'recno'

Fig 3.15 Compatibility rules for operands in ident spec.

56

In case of 'byte'’ and 'word' fields the constant or the

contents at runtime of the variable at the left side may

not exceed the value range for the field type.

An possible implied number of decimals for a variable must

match that of the corresponding field.

A field of the type 'aggr' should be associated with a variable

of the type 'bits', but if it is declared with a specification of

its component fields, a complete set of associations for the

components may replace the one for the whole aggregate. Note, °

however, that only one of the two possibilities may be

applied for a given aggregate ina set.

A field array should be associated with a variable declared as

array with a number of elements not less than that of the field.

The types of the arrays should obey the same rules as those of

simple elements.

A special form of the ident specification is applied when a set

is used for direct access of records stored in purely

sequential files such as a list file (see ref. 1) or a BS file

(see ref. 4). In this case the presence of possible ident

fields in the records will not influence the access. @

Instead an internal key - the record number *) - serve as the

identification. This is indicated in the ident specification

by a single association line with the word 'recno' instead of

a field reference as shown in fig. 3.14 for s9. In this case

the variable must be declared with type ‘recno' (cf. 3.1.1).

*) see page 2-10

57

3.2.6 The mother specification

are familiar with section 2, 3.2.5 and 3.2.8. Even then some

cross-reading to the description of CREATE, NEXT and GET

(section 5) may be necessary. Anyway be prepared: The whole

matter is complicated - and will possible remain so until

you really understand all the aspects of the mother/daughter

relationship.

One important characteristic of daughter records (see 2.2) is

that they have no user-specified ident fields that can serve

as an identification suited for direct access. Daughter records

are in some sense identified by the mother records they are

connected to. In the LD description this is reflected in the

mother specification. It defines a communication of values of

m-ref fields from SODA to the application program and/or vice

versa. In this way the mother specification can be regarded as

a special kind of a field specification or ident specification

respectively, depending on whether it is used when a daughter

record is read from the database or created as a new one.

When a daughter record is read the values of its ordinary fields

are made available for the program in variables according to

the variable/field associations in the field specification

(see 3.2.8). However, if one or more of the values of an m-ref

field are needed the problem arises that the DB description

does not provide local names for the possible sub-fields of an

m-ref field - those which are direct pictures of the ident

fields in the corresponding mother record. (see fig 3.16).

58

ident fields declared in the DB description

1 12 3 mother record

virtual sub field referenced by
means of the corresponding ident

\ field

3 daughter record

S
s

H
b
=

—
4

m-ref field

Fig 3.16 An m-ref field mapping the set of ident fields

in the mother record.

For this reason it is necessary to use references to the

ident fields in the mother record when the (virtual) sub-

fields of an m-ref field are associated with variables. The

associations are then grouped so that the appropriate m-ref

fields appear as a common qualifier for all fields in the

associations of the group. (cf. fig 3.18).

When a daughter record is created by SODA it can only be done

in a mother subscripted set. If now the daughter record (in

the DB description) is declared to be connected by one link

only then its insertion in the database is well defined as

soon as it by CREATE is established as the current record of

the daughter set. At the following PUT operation it will be

inserted in the database linked to the subscripting mother

record. However, if it is declared as connected by more than

one link to other records the implicit reference to the

subscripting record of the mother set alone will not do it.

59

The CREATE/PUT operation will need the identification of the

secondary mother records too. This is derived from informa-

tion in the mother specification which for this purpose must

associate a variable (or a constant) with each virtual sub

field of the ('non subscripting') m-ref fields. (see fig 3.17).

Secondary mother record
Subscripting record from mother set

}
/ values for this field are

defined implicitly through
the subscripting mother record

\ daughter record with three
[m-ref fields

create-associations for these (and only
these) m-ref fields must appear in the
mother specification

Secondary mother record

Fig. 3.17 Derivation of values for m-ref fields when a

daughter record is created in a mother subscripted set.

The mother specification must appear after a possible ident

specification as shown in fig 3.8. It is composed of one or,

more entries each one headed by a single line with the word

"‘mspec' followed by a colon and the field number of an m-ref

field. For mother subscripted sets an entry for the m-ref

field corresponding to the subscripting record is not allowed.

Fig 3.18 shows the structure of a mother specification.

mspec: £558

associations for

m-ref field £558

mspec: £560

associations for

m-ref field £560

Fig 3.18 General format of mother specification.

The association lines of each mspec entry is composed of a e

variable reference (or a numeric constant), an association

symbol, and a reference to an ident field in the mother record

corresponding to the m-ref field. The association symbol

defines in which direction the values are transferred and

thereby the SODA operation by which the transfer is performed

(see fig 3.19).

The association symbol < declares that the value of the specified

sub-field in the m-ref field should be moved to the specified

variable (no constant allowed) whenever a read operation on the

set results in the establishment of a current record for the

set. r

The association symbol -> declares that the value of the

specified variable or constant should be used in CREATE.

Here it serves as (a part of) the identification of the

mother record to which the daughter record should be linked

when the following PUT is activated. At this time the value >

will be transferred also to the appropriate subfield of the

m-ref field in the daughter record.

61

s8: special deliveries (s3) = order_elements (i188)

¢ . "usage: next, create, put -

mspec: £558 fl TO 7

v131 < £17 | ‘compiler produced !

1000 -> £17 | documentation of

v36(2) <-> £18 : variable and |

mspec: £560 field names

v120. ->—s«£57 ! |
, Po |

r s10: old _ deliveries = order_elements

usage: get, put

ident spec:

v35 = recno
reer ee eee eee eee |

mspec: £559 | !

v2 < £100 | |
v3(1) << ~ £102 |

| mspec: £560 |

v120 < £57 } |
Le

Fig 3.19. Two examples of mother specifications

The association symbol <-> combines the function of < and

-> and defines a transfer between the two operands both on

a read operation and on a CREATE/PUT operation. A constant

is not allowed in connection with this symbol.

The variable reference is a variable number possibly followed

by a constant subscript if the variable is declared as an

array. The LD compiler will supply the name of the variable

and of the field as an automatically generated comment in

the same line of the listing.

62

The field reference is a field number referring to an ident

field in the mother record, or more precisely: an ident field

declared in the logical file to which the m-ref is linked

according to its declaration (see ref. 2).

The two operands of an association should match in type and

possible number of decimals in the same way as defined for

ident specifications (see 3.25 and fig 3.15). Moreover the

association symbols should be in accordance with the usage

specification. The symbols < and <-> are allowed only if .

"get' or 'next' are specified and the symbols -> and <->

only if 'create' is specified.

63

3.2.7 The daughter specification

As mentioned in section 2.3 access of record fields representing

attribute properties is accomplished via variables of compatible

types. The variables are linked to the fields in a set of

variable/fields associations in the field specification (see

3.2.8). For the fields representing relational properties of

the 1:n-type - the so-called d-ref fields*)

have no meaning. From the user's point of view their 'value'

should rather be regarded as the whole collection of records

that are linked to the one containing the relational field.

- such associations

Therefore, it is more sensible to associate such a field with

a record set, and since it expresses a mother/daughter relation

it should be a mother subscripted set. An association of this

kind then declares that when the mother record is at hand

the user wish to access the value of the relational field -

that is, the daughter records - just like the ordinary asso-

ciations indicate access to values of attribute fields. The

difference is that values of attribute fields become available

in variables while the records must be accessed one at a time

after an introductory activation of NEWSET.

The associations appear in the daughter specification as

simple lines following a common head line consisting of the

word 'dspec' followed by a colon. The daughter specification

should be stated before a possible field specification. Each

association is composed of a reference to a mother subscripted

set declared elsewhere in the LD description, the association

x) In the Database 80 language (see ref. 2) d-ref fields are
declared as type ‘list'

64

symbol <, and a reference to a field declared in the DB descrip-

tion as a d-ref field in at least one of the record types of

the set. Fig. 3.20 shows a daughter specification.

usage : get

ident spec:

1
1
|

vi3 = £111
pT TTT 1

dspec: | compiler produced

s8 < £127 documentation of)

s14 < £129 | | field names
a
|
|

s8: special deliveries (s3) = order_elements (i88)

Fig 3.20 A daughter specification illustrating the relation
between mother and daughter sets

The daughter specification is used for another purpose too,

which is related to the deletion of mother records. SODA requires

that when a record is deleted, that according to the DB descrip-

tion could be a mother record, it should not have any daughter

records linked to it. (If there are any, they have to be deleted

previously). This is checked by SODA and an alarm reaction will @

occur if the mother record actually is linked to any daughter

records. On the other hand, SODA enables the user to delete freely

any such potential mother record that satisfies the above-mentioned

condition, also when none of its potential daughter record types

are declared as members of sets and whereby no operations can be

performed on them in the program.

65

In order to remind the user of these conditions, SODA requires

that all d-ref fields belonging to the member records should

be referenced once in the daughter specification for a_ set

where 'delete' is indicated in the usage specification. In

such a situation it is not necessary to associate the d-ref

fields with mother subscripted sets, but each field reference

should occupy its own line in the daughter specification.

Fig. 3.21 shows an example of such a daughter specification.

s4: products = products

usage : get, next, delete

ident spec:

v122 = £57

dspec: [

£77
s17 < £78

£79 !
Lu

fig. 3.21 A daughter specification with all d-ref fields
indicated, some without association to a daughter
set.

3.2.8 The field specification

In order to access the ordinary record fields - i.e. fields

representing attribute properties - the user must specify a

list of field/variable-associations organized in the last

kind of entries in the set declaration - the field specification.

The field specification should appear after possible ident,

mother and daughter specifications in the set.

The associations specify the relevant fields of the record in

the set and how the application program wishes to access them. @

By means of the association operator it is indicated whether it is

just the value after a read operation, or whether the program

wishes to insert its own value in a field before the record is

returned to the database, or possibly both. It can also be

indicated whether the insertion of a new field value should be

performed on all put operations, or exclusively on those

following a read operation or those following a CREATE operation.

The associations should be grouped so that each group is

headed by a separate line. It contains the reserved word

'fieldspec' followed by an integer and a colon. If the integer

is greater than zero it serves as an identifier of the group

and must be unique inside the set. Each group may contain up ©

to 63 individual associations *).

*) The purpose of this grouping is primarily to enable the
introduction of a copy operator to be applied in the LD
description when the same set of associations are relevant
in more than one set. The copy operator will then refer to

the group by its number.

67

s5: spare parts = products (items, parts,

item _parts)

usage : get, put, create

identspec:

v122 = £57

fieldspec 2:

associations

fieldspec 3:

associations

Fig. 3.22 Two groups of associations forming a field speci-

fication

An association is composed of:

- a left part containing either a numeric constant or a

variable reference

- an association operator

- a right part containing a field reference or the reserved

word 'recno'.

Not all combinations of these elements are meaningful. Fig. 3.23

shows a representative set of valid associations.

68

fieldspec 2: ee 1

vi7 < £310 | *

v18(3) > £310 | Compiler produced

2.5 -> £310 |
v18 < > £311 | documentation |

v20 * <-> g28 | |

v17 * ‘=> £312 (v16) | of variable and |
v21 <=> £312 (3) | !
v22 <-> recno | fieldnames |

v23 - £313 | |

v24 - g21 | | @

fn ces se ces eee ne men ees ee es ce es ee —i

Fig. 3.23 A representative set of associations in a field
specification

The various possibilities and the rules to apply for composing

associations concern the association operator and the type

of the two operands. The description below follows this scheme,

but the great number of possible combinations resulting from

the intended flexibility may cause the description to appear

rather instructed.

The association operator defines both a direction of transfer and r

when the transfers are executed. Each association is checked

against the usage specification so that it is impossible, for

example,

without a usage PUT.

to specify a transfer from variable to a field

69

The operator < (to be interpreted as an arrow) defines that upon

a GET or NEXT operation the value of the specified field in the

current record of the set is moved to the variable specified in

the left part. If the field is not present in the current record,

no transfer will take place. The same field may be moved to more

than one variable, but a given variable may not be specified in

a set to receive values from more than one field, unless the

) fields are exclusive with respect to record type™ .

The operator > defines that before a current record obtained by

GET or NEXT (but not by CREATE) is transferred back to the data-

base by PUT, the value of the left part variable or constant is

moved to the location of the specified field. If the field is

not contained in the current record no transfer will take place.

The same variable or constant may be moved to more than one

field, but a given field may not be specified to receive values

) x
from more than one source’.

The operator -> works like the operator > except that the transfer

is performed only when a current record obtained by CREATE is

inserted in the database and PUT.

The operator => combines the function of the operators > and ->

so that the transfer to the field is performed on all PUT opera-

tions.

It is possible in the same association to combine the operator <

with any of the operators >, ->, or => resulting in transfers in

both directions. Thus, in the example in fig. 3.23 the value of

£311 will be moved to v18 upon a GET while the value of v18 will

be moved to £311 on a following PUT.

x) At present and until further notice this is not checked by
the compiler.

70

The operator * may be specified in front of association operators

containing either -> or => if the left part is a variable. The

presence of an * will not influence the transfers defined by the

association operator. It defines that on a CREATE operation the

standard value (from the norm value table) will be assigned to

the variable. If no such value is specified, zero or an empty

text is assumed as the standard value.

The operator - requires that the left part is a variable. It

defines a transfer to the variable upon a GET or NEXT operation.

If the specified field is present in the current record - formally

spoken : declared as a member of the record type - then the record

type value is assigned to the variable. If the field is not pre-

sent zero will be assigned.

The left part of the association is normally a variable reference,

but it may be a numeric constant if the operator defines a trans-

fer to a field only and not the opposite way. A variable is refer-

red by means of the variable number’). In the listing the LD

compiler will supply the variable name. The reference may specify:

- a simple variable

- a whole array

- an array element (constant index only)

The variables must be declared in the variable table and their types

should be compatible with the types of the corresponding fields.

A survey of the rules for the type match is given in Fig. 3.24-25.

The right part of the association is normally a field reference,

but it may be the reserved word 'recno' if the association opera-~

tor is <, indicating a transfer of a system generated key value.

A field is referred to by means of the field number (or group number)

from the DB description’). In the listing the LD compiler will

supply the field name together with the name of the variable in the

association.

+) It is possible to specify the names of the variable and/or the
field of an association in stead of the numbers, in which case the
numbers are supplied as compiler generated documentation. In order
to obtain a nice listing, however, one should only use one reference
type inside a set declaration.

71

The field reference may specify:

- a simple field

- a field array

- an element of a field array (constant or variable index)

- anon repeating group (group or aggreate)
referred to by

- a repeating group group-number

- a repeating group vector (see next page)

- an element of a repeating group vector (variable index only)

Each referred field must be declared in the DB description for

at least one of the record types of the set. The type of the

field should be compatible with the type of the corresponding

left part of the association according to the survey in fig.

3.24 and 3.25.

The values to be transferred depend on the type of the two

operands. The following description covers the various kinds

of transfers. (cf. fig. 3.24-25).

Simple values: This case refer to associations where the left

part is a simple variable, an array element, a numeric

constant, or a short text (see 3.1.2), and the right part is

a simple field or an element of a field array or repeating

group vector. The rules depend on the type of the value:

Numeric: A real value can be moved to a real location and

nowhere else. A non real value can be moved to a non real

location. A decimal constant must match a real field and

an integer constant or a short text a non real field. The

values are moved irrespectively of any implied decimals,

but the system secures that a value will not exceed the

range of a receiving field.

72

Date: A date value can be moved to a date location and

nowhere else.

Text: The length of the text must not exceed the length

of the receiving location

Group/aggr/bits: The length of the value must not exceed

the length of the receiving location. The bits are moved

irrespectively of a possible internal type specific

structure

Arrays: If both the left and right part are arrays (not elements

of arrays) the contents of the whole array is transferred.

The receiving array should have at least the same number of

elements as the sending array. The types should match as for

simple values.

If the left part is a constant its value is transferred to

all elements of a numeric field array. Again, here, decimal

constants to real fields and integer constants or short texts

to non real fields.

Repeating group vectors: A repeating group (rpg) vector is

an element of a repeating group. It can be regarded as an

array with a variable number of elements specified by a

value associated with the rpg itself (and stored ina

separate location in the group). The number of repetitions

is defined and fixed when the record is created. Accordingly,

rpg vectors are treated in most respects as arrays with rules

as mentioned above. The only exceptions are that the number

of elements transferred is decided dynamically and that a

variable array in the left part should have at least the same

number of elements as the maximum number of repetitions for

the rpg.

73

Repeating group number of repetitions: The right part should

be a group number referring to a repeating group. An

association of this kind is relevant in the following two

situations:

Creation of a record containing the rpg: The number of

repetitions is defined by the left part of an association

with the operator ->. After the creation the number of

repetitions cannot be changed.

Reading of a record containing the rpg: The actual number

of repetitions of the rpg in the current record is

transferred to the variable in the left part of the

association.

System generated record keys (record numbers): This case

refers to associations with < as the operator and 'recno'

as the right part. Such associations are only legal for sets

associated with BS files or CF list files where direct

access by means of values of user specified ident fields

cannot be accomplished. When records from such files are

read by SODA, an association as mentioned will supply a system

generated key value in the left part variable (of type

"recno'). This value can be used for direct access of the

record at another time (see 3.2.5).

NOTE: The associations belonging to field specifications for

a given set will be 'executed' in lexicographical order. In

this way it is possible to get a value transferred from a record

field - a value which may be used to select an element of an

array or repeating group vector present in the same record.

74

0a
right|simple or array element OY AXP

read Of fe
part Cy A

transfer Oo fe 8

left part

word

long 1 1 1 0 0 0 0 0 0 0; 0 0 0

date 0 0 0 1 0 0 0 0 0 0; 0 0 0

real 0 0 0 0 1 0 0 0 0 070 0 0

text 0 0 0 ;.0 0; 1,44 O 0 0 0; 0 0 0

bits 0 0 0 0 0 0; 1,4 O 0 0; 0 0 0

recno| 0 1 0 0 0 0 0 0 0 0; 0 0 3

hum array 0 0 0. 0 0 0 O |5,6,8) 0 | 10} O 0 0

text array} 0 | o0]0] 0] of o| of o J of 79lo Jo

Illegal operand combination

Transfer of whole value

Transfer of rightmost 24 bits of value

: Transfer of system generated key

: Length of field may not exceed length of variable

Transfer of whole array

Number of elements in variable may not be less than number

of elements in field

: Length of element in field and variable must be equal

: Types of operands must match as for simple values

Transfer of the actual number of elements in the rpg. vector

: Number of elements in variable may not be less than the

declared maximum number of repetitions in the rpg.

: Transfer of the actual number of repetitions (= number of

elements in the vectors)

fig 3.24

75

put right | simple or array element

part or element of rpg.vector
transfer

o LL eo fe fo fe (% Kr x ae uy (e) left part 3S fe kr we ff [se fs

word 2 141 0 0 0 0 0

long 2 2/1 0 0 0 0 0 0 0 0 0

simple
date 0 0; 0 1 0 0 0 0 0 0 0 0

or

rs real 0 0 | 0 0 1 0 0 0 0 0 0 0
ray

element text 0 0;0 0 0 11,4] 0 0 0 0 0 0

bits 0 01;0 0 0 0 11,4] 0 0 0 0 0

recno 0 110 0 0 0 0 0 0 0 0 0

integer constant/
short text

real constant 0 010 0 1 0 O {8,11; 0 48,11 0 0

num array 0 07] 0 0 0 0 0 pres 0 aa 0 0

text array 0 0] 0 0 0 0 0 0 pres 0 no 0 Fig 3.25

@ 0: Illegal operand combination

1: Transfer of the whole value

2: Transfer of value if it does not exceed the range of the

receiving field

3: Only permitted in connection with the association -> Defines

the actual number of repetitions of the group to be reserved

in the created record

4: Length of variable may not exceed length of field
5: Transfer of the whole array

6: Number of elements in field may not be less than number of

elements in variable

7: Length of element in field and variable must be equal

@ Fig. 3.25 continued on next page

76

Types of operands must match as for simple values

Transfer of the actual number of elements in the rpg. vector

Number of elements in the variable may not be less than the

declared maximum number of repetitions in the rpg.

Transfer of the value to all elements of the array or to the

actual number of elements in the rpg. vector.

77

. Automatical declaration of record sets

3.3.1

By means of the reserved words 'record output'

and 'record input' you can declare in the LD

description two record sets to be used for

creation of, and for sequential reading from

a bs-file, respectively. The declaration of

these sets will automatically generate variable

declarations and field-variable-associations.

These sets must be declared before the ordinary

record sets, and they are only allowed, if

variables are declared without numbers.

Record output

Figure 3.26 shows the declaration of a set for

creating a bs-file.

record output: transfile

transactions (i17, i18)

fig. 3.26: Example of a record output set.

The compiler will on this declaration simulate

a set declaration like the one shown on figure

3.27.

usage: create put

sl: trans = transactions in transfile (i17,i18)

fig. 3.27: How a record output set is

interpreted.

Sequential

file

Record types

Set number

s1

78

Here 'transactions' is the name of the logical

file, whereas 'transfile' is the name of the

physical file, which is required to be a

sequential file (file type = outvar).

The record types can be omitted, if all record

types in the logical file are required as

members of the set. If any record types are

indicated, a record type can be specified as

an 'i' followed by the record type number, or

as the record type name. The record types are

separated by a comma and a possible newline_

character.

The set number for a record output set is always

s1. This indicates that only one record output

set can be declared. On the other hand, this

set can, contrary to a normal set declaration,

contain more than one logical file as shown in

the example in figure 3.28.

record output: transfile

db_copy (items, customers, orders)

genius _trans (il, i2, i5, i27, i28,

i33, i37, i45)

transactions

fig. 3.28: A record output set comprising

several logical files.

Implicit

variables

Field association

symbol ~>

79

The compiler produces implicit variable decla-

rations corresponding to the fields in all

record types belonging to the set. The prin-

ciples of this variable generation are

described in section 3.3.2.

Furthermore, field associations of the type ->.

between the variables and the corresponding

fields are produced, so that every field will

be assigned when a record is inserted into the

file.

80

3.3.2 Implicit variable declarations

Variable The variables for a record output set are

name declared with the same name as the corresponding

field, except the prefix *) of the field name,

which is removed. So, every field in the DB

description used for record output must have

a prefix and the first character after the prefix

must be a letter in order to obtain a legal

. variable name,

Type The variable is declared with the same type,

dimension, value spectrum, and norm value as

the field.

Many fields can be. attached to the same variable,

as the prefix is removed from the field name.

The compiler checks that all these fields have

the same type and possible array dimension.

The norm value of the fields, must be the same,

too, whereas the value spectra of the fields

may be different. In this case the value spectrum

of the variable is defined as the union of the

different field value spectra.

*) The prefix is all characters up to (and

including) the first underlined space.

Explicit and

implicit

variables

Associated and

implicit

variables

Administrative

status

Copy record

81

A variable to be used in the record output

set may be declared explicitly in the variable

part of the LD description; this is in order

to define the value spectrum and the norm

value independently of the value references

of the fields. These are in this case ignored.

A variable declared as an associated variable

in the variable part, however, is completely

juxtaposed to the implicit variables concerning

the value references.

Most of the record fields having an admini-

strative status do not cause a declaration of

variables and field associations, as these

fields are assigned by the PUT procedure. This

holds for the fields with administrative status

reclength,

checksum,

rectype,

whereas fields with adm.status

adate,

ident

are treated as ordinary fields.

(The other possible administrative fields are

of no interest in a sequential file and will

be skipped too).

NB ! If a record type contains a 'copyrecord'

all fields from the copied record have no

administrative status, i.e. they are recognized

as normal fields, even if they were administra-

tive fields in the original record.

Aggregate,

group

Repeating

group

Mref, dref

82

A field of the type ‘aggr', 'copyaggr', or

‘group’ (but not a repeating group) is skipped,

because only the detailed fields are of interest.

This implies that a copy aggregate should not

be declared in the DB description without

naming of the detailed fields *).

A field of type 'rpg' will declare a word

variable, which shall define the number of

repetitions in the actual record. For each

element of the repeating group an array variable

is declared with a number of elements correspond-

ing to the maximum number of repetitions.

A field of the type 'mref' or 'dref' can occur

only in a copy record. Both are skipped, but

following an mref field, the ident fields of

the mother record are placed. These fields

will be associated with variables declared

with special names constructed as

mref j{listno mother field name

‘listno' is the list number defined by the list

name in the mref field. 'mother field name' is

the field name of the mother field, the prefix

included.

*) At present this is not checked by the

compiler.

83

Equivalence If an equivalence field is used for naming

field an array element, the SODALD compiler gene-

rates variable declarations and field

associations for the array field as well

as for the equivalence field. The equivalence

variable is declared as a simple variable,

but with the same type and value reference

as the array.

The array variable should never be used by

your program, as the transfer from the

equivalence variable will be executed after

the transfer from the array variable.

Listing of The LD compiler produces to each record type

record type a listing of all fields, their types and

value references, and - if a variable is

attached to a field - the variable name.

Figure 3.29 shows an example of this listing,

based upon the example 11 in DATABASE80

(ref.2).

84

O
N
S
F
A
V

l
d
w
3
a
%
v
w
e
2
d
a
d
w

J
L
V
G
S
F
H
I
N
O
A
N

O
N
Y
A
H
I
N
O
A

L
w
v
?
a
5
H
L
o
O

d
w
v
e
l
s
a
n
s

I
N
V

I
W
A

L
N
3
d
1

J
d
A
L
P
v
V
S
9
L
I
s
d
w

O
N
A
S
V
I
P
V
S
A
L
I
A
a
d
w
W

a
i
v
i
S
d

j
i
v
i
s
o
d
a
a

v
i
v
d
y
v

3
d
A
L
I
3
9
8

4
9
7
0
N
9
9
3
8

H
L
O
N
I

VIIa
a
d
A
l

J
d
A
L
I
S
V
I

O
N
A
S
W
O

yasSnNiInged

a
i
v
a
y

2
t
n
G
i
s
a
g
n

*"o
SHAS

T
V
N
N
Y
W

F
A
O
U
S
A
S

G1
=

y
a
o
s
 x * KK KKK K KKK KKK KK XK x

oC Om oN

dIaAn
O
N
O
]

7"
a
d
9
V

(2)
4
4
d

a
g
g

y
s
l

3
1
v
q

G
u
o
M
m

y*Yxoaq
ald

2°
9
N
0
7

2
°
9
N
0
7

2
"
°
9
K
O
1

agaon

a
d
o

q
a
u
m

y
*
a
¥
s
o
y

Cb)
4
4
a

C7)
3
L
A
B

q
a
o
n

GaoMm

Qd4dum

q
a
u
n
m

q
d
o
m

aqaom

q
a
o
m

g
q
a
o
m

yw?
a
y

q
d
u
"

aqauMm

d
a
o
m

q
d
0
m

G40Mm

i
n
d
i
n
o

d
d
0
)
9
3
4
a

V
W
w
A
N
w
w

/
oL

ee ot #5 oe Ge ef oF ae @& 8@ 88 oe 68 Ge Be Ge Ge we 66 G9 8B @& @e ae oF

O
N
A
S
A
U

T
I
N
I
A
N

A
Q
A
P
V
A

L
d
W
O
S
N
O
I
J
S
U
W

4
3
0
3
9
3
A
0
1
d
w
W
3

J
L
V
d
Y
F
H
I
N
O
A
X
E
4

O
N
d
S
H
I
N
M
O
A
X
E
S

A
I
N
I
Y
S
H
I
A
O
N

L
W
V
P
H
S
H
L
O
9
8
4

d
w
v
?
e
i
S
a
n
s
e
a
d

L
w
v
?
w
r
r
d
d

I
N
3
Q
d
1
9
a
4

A
d
A
L
P
V
S

O
N
A
S
V
I
O
N
S

A
Q
A
M
V
S

L
d
W
A
S
N
O
J
9
V
S

a
l
v
i
S
d
e
d
d

a
i
v
i
S
d
a
u
e
a
d

V
L
V
I
V
e
d
4

3
d
A
L
I
3
4
2
8
4

4
D
9
O
N
D
I
S
4
9
8
4

H
L
O
N
I
J
V
I
G
N
s
0
4

J
d
A
L
I
0
A
N

3
d
A
L
I
S
V
I
I
0
2
N

O
N
3
S
S
V
I
2
9
0
2
N

A
j
y
n
e
v
S
9
0
2
N

¥
4
a
S
N
I
n
3
9
2
G
e
N

j
L
v
a
v
e
a
e
n

3
d
A
L
I
I
9
8
7
2
0
2
@
N

W
O
S
A
I
F
H
I
P
A
O
2
N

H
L
O
N
I
T
I
A
4
=
9
0
2
e
N

Lb4

O
L
d

bOL4

bOov79

2
0
2
4

bod4

2
9
7
9

g
0
0
e
4

2
0
0
2
4

boo2d4

L64

ébd

|

OLd

G
6
4

94
G3
93

|

ed

bd

64
34

24
94
G3
74

gd
24

Ld
®
A
d
O
0
J
P
I
Z
A
V
A
L

Z2OvLI

@
3
9
V
d
-

GO*2ZL
=

R
2
6
b
°
S
O
7
*

2b
HVv3

a record ting of a record type in is Example of the l

output set.

Record Input

A set intended for sequential reading from a

bs-file can be declared as a record input set

as shown in figure 3.30.

record input: inputfile

db copy (items, customers, orders)

fig. 3.30: Example of a record input set.

The compiler will on this declaration simulate

a set declaration like the one shown in figure

3.31.

s2: intrans = db_copy in inputfile (items,

customers, orders)

usage: next

fig. 3.31: How a record input set is

interpreted.

"db copy' is the name of the logical file,

and 'inputfile' the name of the physical file,

which must be a sequential file.

The compiler generates implicit variable

declarations and field associations in the

same way as described for record output sets

(section 3.3.1 and 3.3.2).

Association

symbol <

No value spectra

and norm value

Administrative

field status

86

There are a few differences in the generation

of variables and field associations, as listed

below:

- The field association symbol is <, i.e.

every variable connected to the record

will be assigned when a record is read

from the file by NEXT.

- Implicit variables are declared without

any value spectra and norm values. (But

if the variable already exists with a

value spectrum or a norm value, these

will of cause remain).

- The fields with administrative status

reclength,

rectype

are treated as ordinary fields, i.e.

variable declarations and field associations

are generated. So, if a record contains a

‘copyrecord', you must provide for different

names - after the prefix - to these fields

in the new record and the copied record.

87

3.4 Connection to the Data Base Description

Normally, the LD description is referring to

only one DB description. A record output set

or a record input set may, however, refer to

another DB description but the ordinary record

sets.

Change of A change of DB description file is specified

DB descr. by the line

descripfile = | db file index

where db file index must be a number 1, 2, or

3, referring to the descripfile names specified

in the activation parameters (cf. section 4.1.1).

The descripfile line can be specified

immediately before each of the following lines:

variables:

record output:

record input:

record sets:

When no descripfile has been specified,

‘descripfile = 1' is implied. After a

specification of a descripfile, this DB file

is used until a new descripfile is stated.

88

If more than one DB file is used by the

LD description, you must specify in the

activation parameters, which one is going

to contain the compiled LD file.

89

The SODA LD compiler

Main function

Input:

LD text

@ DB description

file

Output:

This section describes the compiler for the

‘SODA LD language, its main function, how it

is activated, and the different results it

may produce.

Readers of this section are assumed to be:

familiar with section 2 and 3 and to have a

common knowledge of how programs are activated

on RC4000/8000 under BOSS and the file processor

(ref. 9). ,

The purpose of the SODA LD compiler is to read

a SODA LD description, check it for correctness

and produce a file with the information necessary

for the DBMS to operate on the DB.

The compiler requires two input files - the LD

description and the DB description file.

The LD description may either be an ordinary text

file or it may be represented in a SYSDOK file.

The DB. description file contains the information

from a correct DB description as produced by the

Database80 compiler.

The compiler may produce up to four output files

three of which are optional or depend on the

result of the compilation. The output files are:

- Standard output with log and possible error

list

The log

The listing

The declaration

file

The LD file

90

- Listing of the LD description (optional)

- Text file with generated declarations

(optional/result dep.)

- LD file with information to the DBMS

(optional/result dep.)

The log contains a documentation of the

compilation with identification and description

of the files involved and produced.

Details are explained in 4.2.

The listing, which is produced on demand only,

contains a complete reproduction of the LD

text as read from the input, but edited in format

to improve the readability and supplemented with

compiler generated comments. Details are explained

in 4.2.

This text file will be produced if the programming

language for the application program is ALGOL,

or, in case of DUET, if so specified in the

variable declarations of the LD description (see

3.1.1). The text must be incorporated in the

ALGOL program before it is compiled as explained

in 6.1. and 6.2. .

This file will be produced on demand if the LD

description is formally correct. It contains

an internal representation of the information

from the LD description and the referred parts

of the DB description which are necessary for

the DBMS. Furthermore the file is used by the

DUET compiler, primarily because it contains

information about all the declared variables to

be used in the DUET program.

91

The file is identified with information both

from the LD text and from the activation

parameters for the LD compiler as documented

in the log. The LD file is stored in the same

physical file as the DB description file.

Error If the compiler recognizes formal errors each

messages one will be communicated to the user as an error

message. Errors concerning the activation of

the compiler will appear on standard output as

described in 4.2 while errors concerning the

LD description will appear both on standard out-

put and on a possible listing (see 4.3 and

appendix B).

Ordinary
text file or

LD DB =one of ; descript descrip . ; bext files / DB descrip
“7 files

/
/

/

SODA
Activation _ .
parameters LD compiler

Log and LD

error listing

messages

Fig. 4.1 Input to and output from the SODA LD compiler

92

Activation of the LD compiler

The LD compiler is normally activated as any

other program on RC4000/8000, that is, as a

part of the BOSS job with the necessary information

to control its function represented as FP para-

meters. In order to obtain a reasonable compile

time for realistic LD descriptions the size of

the process should be at least 150000 bytes. *)

The data specifying an activation must obey the

general FP syntax rules (see ref. 9), that is, r

it is the name of the compiler 'sodald' followed

by a list of parameter groups which together may

occupy one or more lines. Each parameter group

consists of a keyword possibly followed by a number

of specifying parameters seperated by points.

Figure 4.2 contains a survey of all parameter

key-words.

Most of the parameter groups can be left out, in

which case standard values are used, as described

for each parameter group. If a parameter group is

mentioned more than once, the last will be valid. @

Figure 4.3 at the end of this section shows two

examples with explanation of activation commands.

Below is a description of each parameter group.

*) The compiler is programmed entirely in ALGOL and requires a

rather large area in the main storage for tables and variables. @

93

parameters concerning source text:

sysdok

section

version

ldtext

init

parameters concerning description files:

descripfile

ldfile

section

parameters concerning listing:

list

listout

paper

xref

parameters concerning compilation:

names

vardecl

size

parameters concerning test output

test

testout

fig. 4.2: Survey of fp-parameter key-words

94

Parameters concerning source text:

The source text for the LD description can be

Sysdok file read either from a Sysdok file or from an or-

dinary text file. When read from a Sysdok file

the following parameter groups should be men-

tioned:

sysdok.<sysdokreg_ name>

section. <section_number>

version. <version_number>

The Sysdok parameter states which Sysdok file

the text is to be read from.

Standard: sysdok.sysdokfile

Section The section parameter states which section in

the Sysdok file the text is to be read from.

The section number is given in the usual Sys-

dokmanner with the main section and subsect-

ion numbers, if any, separated by decimal

points. The parameter cannot be left out, if

the text is read from a Sysdok file. e@

Version The version parameter states the version of

the Sysdok section to be translated.

Standard: last version

Textfile When reading from an ordinary text file, the

name of the text area, from where the LD de-

scription is to be read, is stated with:

ldtext.<ldtext_names>

Initials

95

Standard: if this parameter is left out, the

compiler reads from the Sysdok file. If the

parameter is stated, no Sysdok parameters must

then be stated.

init.<initials>

This parameter group states the initials of

the person responsible for the activation of

the LD compiler, to be printed in the log.

<initials> is a string of max five letters.

Standard value (= empty textstring) should

not he used.

DB descr.

file

LD file

96

Parameters concerning description files:

The name (or names) of the description file(s)

containing the actual DB description(s) can be

specified by the following parameter group:

descripfile 4.<descripfile_name> ;

In a normal LD description only one descripfile

name is used, but in an LD description containing

‘record output' or ‘record input' up to 3 descrip- r

files can be specified. In this case, the first

name corresponds to db file index = 1 (cf.

section 3.4), the second name to db file index =

2, and so on.

Standard: descripfile.descripfile

The LD file produced by the compiler is treated

as specified by the following command unit:

no

ldfile. yes
<descripfile name>

‘ldfile.no' means that no binary LD file is

generated. A descripfile name indicates the

name of the descripfile, in which the compiled

LD description will be stored, if it is for-

mally correct. This file must be one of the

descripfiles stated for the DB description.

'ldfile.yes' means the same as standard:

the compiled LD description is stored in the

first-mentioned DB description file.

Section

List

97

The binary LD file is always stored in the

descripfile section with the same section

number as the source text in the Sysdok file.

If, however, the source text is read from a

text file, a section number for the descrip-

file must be specified by

section.<section_number>

where <section_number> is given in the usual

Sysdokmanner.

Parameters concerning listing:

yes

list.¢ source

no

alpha

xref.¢ num

no

listout.<listout_name>

<boss paper format_code>

paper. <lines pr _page>.<characters pr_line>

The list command states whether an edited

listing of the LD description is produced

or not.

‘list.source' indicates that a listing is to

be produced without the compiler-generated

comments. in the record input/record output

section.

Standard: list.no

Xref

Listout

98

The xref command indicates the wanted format

of the variable cross reference list, which

can be produced only if list.yes or list.source

is stated (cf. section 4.2).

xref.alpha: The xref list is arranged

alphabetically according to the variable

names. Furthermore, a simple variable number

list is produced, if the variables are

declared with numbers.

xref.num: The xref list is arranged numerically

according to variable numbers. This is of

meaning only if the variables are declared with

numbers. In this case the simple variable

number list is suppressed.

xref.no: The listing is produced with no cross

reference lists.

Standard: xref.alpha

The listout parameter states the name of the

disc-area on which the listing is written. If

the area does not already exist, it will be

created as a temporary file, which is auto-

matically converted on the local printer. If

the area already exists, the user must provide

for the converting.

Standard: listout.listout

Paper

99

The paper command indicates the format of

the edited listing by one or two integers.

<lines_pr_page>.<characters pr _line> is

stated if the user wishes an individually

selected maximal number of lines printed on

a page. If <lines pr page> exceeds 15 the

value will define this maximum. Otherwise it

indicates no automatic line-number-controlled

new-page operation during the listing, that

is, the listing will be more compact.

The value of <characters_pr_line> has no effect

in the present implementation, but its presence

with the preceding point indicates the specific

meaning of the 'paper' command unit.

<boss paper format_code> indicates a standard

format for a Boss paper type, i.e.

monitor paper (62 lines/page)

A4-horizontal (40 lines/page)

Standard:

When reading from a Sysdok file: as stated

in the owner information.

When reading from a textfile: paper.0O.

100

Parameters concerning compilation:

Language code The language code for selection of alterna-

tive variable names (cf. section 3.1.1) can

be specified by the following parameter group

names .<language_code>

Standard: names.0 means that the ordinary

names are used.

Variable If the programming language specified in the

declaration head line of the LD description is ALGOL, or

if it is DUET and some of the variables are

declared with an asterisk (cf. section 3.1.1),

the compiler produces a text file of variable

declarations to be incorporated in the applica-

tion program or in the DUET control program

| respectively.

This declaration file can be specified by the

parameter group

no
vardecl.

<vardecl_ name>

"'vardecl.no' means that no declaration file

is generated.

<vardecl name> indicates the name of the de-

claration file. If this file does not already

exist, it will be created as a temporary file.

Standard: vardecl. vardecl

Size

Utilization

survey

101

The size of the internal compiler tables can be

changed by one of the following two parameter

groups:

4

size.<extension percent>

size. minus.<reduction percent>

size.<extension_percent> states in percentages

the ezpansion of all the compiler's internal

tables. It should only be used, if the compilation

terminates with an index-error, and the mainte-

nance group must be notified, when this becomes

necessary. Size.100 means doubling of all tables.

Size.minus.<reduction_percent> states a reduction

of all the compiler's internal tables, which

can be usefull when compiling a relatively small

LD description in a limited care. Size.minus.5o

means halving of all tables.

Standard: size.0.

The log produces by the compiler (see 4.2) con-

tains a complete list of all the arrays that can

be expanded, with a specification of how much

was used in the current activation. In this way

the user has a chance to monitor if the use of

some arrays are approaching the limit, and pos-

sibly to repart the expected overflow in due

time to the maintenance so that the next version

of the compiler will contain arrays which are

large enough.

Note! The emergency expansion will influence

the size of all the expandable arrays, indepen-

dent of whether it is necessary or not. This

will inevitably cause the compiler to require

a process size that is considerable larger than

necessary. Therefore, report all new recognised

array overflows to the maintenance.

102

Parameters concerning test output:

Test These parameters must only be used in agree-

ment with the maintenance group when an error

in the Sodald compiler occurs.

(testan

testb

(. testc eyes

testd »no

teste) \ { . <number> aa \

testf L enot { <number> as

testg

 testh J

Indicates which testbits are to be inserted in the

respective test variables. Testbits are numbered

from 0 to 23.

Standard: no textbits

testout. <testout_name> t extend} }

Testout Indicates the name of the area, where the test

output is printed. If 'extend' is stated, the

area is extended, if necessary, to contain the

test output. If not, the test output is written

cyclically in the area, in which case the test-

out area must contain at least 5 segments. The

testout area is neither created nor converted

automatically.

Standard: testout.testout

103

sodald init.pl Ildtext.lddescript dbfile.descrfile ldfile.no,

_Llist.ves listout.ldlisting,

paper.2 vardecl.no :size.5o

Translation of an LD description in the text file 'lddescript'

using a DB description file in 'descrfile' and with no LD

file produced. A listing is required on the area 'ldlisting'

to appear edited on standard format A.4 horizontal. A text

containing declarations for an ALGOL program/DUET system shall

not be produced, and the translation should be performed with

a 50% expansion of the internal tables

sodald init.eah sysdok.systest35 section.3.34.5.27.8 version.13,

dbfile.descrfile list.yes names.2

Translation of.an LD description present as version 13 in the

sysdok file 'systext35' from the specified section number. The

DB description will be read from and the LD file generated in

the file 'descrfile'. A listing will be produced on the standard

area 'listud' edited in standard format ‘monitor’. A possible

text with declarations for an ALGOL program/DUET system will be

generated on the standard file 'vardecl'. Alternative operational

names will be generated according to language code 2.

Fig. 4.3. Two examples of activation commands for the LD compiler

104

4.2 ~ Listing and log

Listing The LD description text will be listed by the

compiler if required (see 4.1). The listing

is edited by indentions, formatting, page

headings, and generated comments to improve

the readability and present the text in a

pleasant way. However, the editing is

completely loyal to the original text, so that

it appears in the listing as a correct subset

except for extra spaces.

New page The listing consists of a number of pages each

one headed by a compiler generated text. A new

page will appear at the beginning, at the head

of the value spectra table and at the head of

each new set declaration. Furthermore new pages

will appear whenever the standard number of

lines pr page (62) have been printed, unless

this number has been changed by the 'paper'

command unit in the activation (see 4.1).

Page heading The generated heading contains the following

, fields.

1. line: - the constant text 'SODA-LD'

- the LD identification from the head

line of the text (not on page 1)

- the time of the compiler activation

in the form:

dd.mm.19yy - hh.mm

Line numbers

Vertical

editing

105

2. line: - the name of the area containing the

LD text or in SYSDOK mode: the section

number

3. line: - the standard date identification of

the text file (from the catalog) or

in SYSDOK mode: the version number.

- the page number

Each line appearing in the input text will appear

in the listing preceded by two line numbers:

- the external number which for ordinary text

files is equivalent to the BOSS line number

and for SYSDOK files to the SYSDOK line

number

- the internal number which is a sequence number

independent of paging and external numbers.

The internal number is referred in the error

messages

The compiler will insert an extra blank line

(without line numbers) before lines starting

with the reserved words:

- ‘norm values'

- ‘record sets'

- 'usage'

- '‘log'

- ‘identspec'

- ‘'dspec'

- ‘'‘mspec'

- ‘'fieldspec

Horizontal

editing

Error messages

106

The compiler may edit the lines in several

ways:

~ indention: Insertion of 2 or 4 extra spaces

before the line as a simple representation

of the structure in the description.

- tabulation: For detail lines of the same

kind the compiler will try to let the same

type of fields appear in the same position

under each other, In the variable table the

use of variable names longer than 23

characters will cause the remaining fields

in the respective lines to appear out of

position.

- documentation: In lines with field/variable

associations the compiler will generate a

text repeating the association but with use

' of the corresponding names derived from the

variable declarations and the DB description.

These generated comments are preceeded by the

special symbol -!- to indicate the start of a

text not present in the input.
i

Errors recognized during the reading of the text

will appear in the listing at the correct

location. The erroneous line may be printed

without a possible editing. Errors recognized

later on during the compilation will be printed

after the listing with reference to the internal

line numbers.

Cross refe-

rence list

Variable

references

107

After the listing of the LD description the

compiler produces cross reference lists of

variables, value spectra, norm values, and

sets.

The variable reference list can be printed in

alphabetical order according to the variable

names or in numerical order according to the

variable numbers, the latter of course only

if variables are declared with explicit numbers.

The variable reference list - of which an

example is shown in figure 4.4 - contains for

each variable its name, number and type. For

an explicit variable are given the w- and n-

numbers, whereas for an associated variable or

an implicit variable the vref-number for all

fields belonging to this variable are shown.

If more than one DB-file is used in the DB-

description, the descripfile-index is shown

in a parenthesis.

The definition line number is only printed if

the variable is declared explicitly or

associated.

The variable references are printed separately

for each set. If the variable is used for

record input or record output, the list contains

the number of the logical file and the record

types to which the variable belongs.

Variable

number list

108

If the variable is used in a normal set

definition, the reference line numbers are

printed together with a possible association

symbol. The reference line numbers are also

printed if the variable is referred to in

the value spectra table or the norm value

table.

If the variable reference list is printed in

alphabetical order, and the variables are

declared with numbers, the compiler will pro-

duce a variable number list in numerical

order, containing the name, type and definition

line for each variable.

The variable reference list and the variable

number list can be suppressed by an fp-

parameter in the call of the compiler (cf.

section 4.1).

109

te
=

‘6
6S

2
U
7
L
I

Sov
L_I

Oda
F
L
O

vd4on
ZLA

3SdAl

2orv7LI
ozd

t
i
o

ze07dtl
c
b
a

e
i

C2)
8
4
4
4
"

2
°
9
N
0
7

C?2AN
L
w
v
e
i
S
a
n
s

2
0
7
L
I

C
O
v
L
I

ues
sL090

2uebtl
Z2LY

tNI
qdaom

SLA
3
d
A
L
9
3
4

2
0
7
L
I

S
O
7
L
L

O2a
@1fio

adyom
2LA

3
i
v
i
s
d
a
a

2
0
9
7
1

SOU7LI
Oda

@
1
n
o

2
H
2
L
1

24a
inl

gaom
SLA

H
L
O
N
3
S
V
I
3
a

2
0
7
1

S
O
7
L
I

O
d
d

e
L
6

a
a
y
o
m

W
E
A

4
D
2
C
N
9
D
F
4

S
G
7
t
l

o
2
d

s
1
9
0

G
d
o
m

e
e
n

G
O
U
9
I
a

C
O
v
L
I

O
g
e

e*Lfo
d
4
0
™

LEA
O
O
u
v
I
a

Saovitd
O
2
e

e
1
9
0

d
4
0
M

S
E
N

C
O
S
I

c
u
7
L
l

G
e
d

sine

2
u
d
e
t
l

c
b
a

i
n
t

C
2
)

e
4
s
3
4
n

2"
9
O
N
O
F

i
L
A
V

P
H
Y
I
H
L
O

¢2
>

a
)

va
C
L
I
L
A
A
H
A

"
d
a
o

SA
ON

HY
2
C
z
>
e

ee
$

$7
LM

U
T
"

L
X
3
L

SA
dwViv

.
“
4
°
9
O
G
7

4355
"
4
3
G

W
H
O
N
=
3
N

104A
J
d
A
L
H
V
A

O
n
A

S
w
V
N
a
V
A

Ql
ddvd

LS17
3
9
N
3
8
4
5
9
4

3
l
b
v
I
a
v
A

2
t
n
o
r
s
a
a
a

“C
SAD

T
W
A
N
Y
W

F
H
O
T
S
A
S

SO"2ZL
=

Q
2
6
b
L
°
S
O
"
2
L

HWA
W
w
n
a
w
w

fob
dy

=
y
u
o
s

t. ble reference lis 1a Example of a page of the var 4.4 fig.

110

Log The compiler will document the result of the

activation in a log printed on standard output,

The log contains the following fields:

Head:

- the constant text: 'SODA-LD LOG'

- the LD identification from the head line of

the LD description

- the time of the compiler activation dd.mm.yy -

hh.mm

@
Binary files:

- the area name of the DB description file

- the following description of the LD file: *)

* a version number. This is increased by one

every time the LD file is replaced by a

new version. In SYSDOK mode it is the

version number from input.

* the initials as supplied by the activation

command unit ‘'init' (see 4.1)

* the activation date and time

* the LD identification from the head line of

the LD description

Text files:

- the following description of the LD text file:

* the area name of the file

* the standard date identification from the

catalog or in the SYSDOK case: the version

number

*) This information is represented in the header record of the LD
file and serves.as its identification. It is reproduced in the
log from the DUET system (cf. ref. 5).

111

- the following description of the possible

declaration file:

* the area name of the file

* the activation date and time

Survey of table utilization:

This is a list of the various arrays of the

compiler in which the internal representation

of the description is stored. For each array

the list specifies the declared number of

elements and how many of these were used during

the compilation. The survey will specify a

possible emergency expansion of the arrays (cf.

4.1 the 'size' command unit).

4.3 Reaction on errors

The compiler may recognize two different kinds

of errors:

~ formal errors in the activation parameters

- formal errors in the LD description.

Activation Formal errors in the activation parameters

errors will be documented on standard output. Syn-

tactical errors are indicated by the follow-

ing symbols:

<*< if a new command unit appears as an

incorrect termination of the previous

unit

<*> aif a wrong key word or parameter is

recognized

Consistency errors or illegal values of

parameters are specified by messages of the

following type:

*** error in activation command:

error specification text

The recognition of any error in the activa-

tion parameters will result in immediate ter-

mination of activation.

LD errors

Std. output

messages

113

Formal errors recognized during the compilation

of the LD description will be documented on

standard output and in the LD listing if such

one is produced.

The error messages on standard output have the

format as shown in the following example:

LINE CHAR SYNT. ERROR
NO NO UNIT

832 15 s65 12: ILLEGAL SET NUMBER 65

1387 0 81: TYPE CONFLICT 3 7

The line number refers to the internal numbers

in the listing.

The char number refers to the number inside the

current line of the last character read when

the error was recognized. This value is

relevant only for errors recognized during the

input phase of the compiler.

The column denoted 'SYNT.UNIT' shows the last

read syntactical unit.

The error specification consists of an error

number, an error text and possibly some

specifying error parameters. The full list of

error specifications with explanations is

given in appendix B.

Messages in Messages about errors recognized during the

the listing input phase will appear in the listing at

the location where they are recognized. They

have a format as the following example:

***** 12: ILLEGAL SET NUMBER 65

The message is followed by the erroneous line

preceded by **.

Errors recognized in the later phases of the . }

compiler will appear after the listing. They

have a format as the following example:

*#*K*K* Line 1387 81: TYPE CONFLICT 3 7

Check for errors an error which causes termination of the compila-

tion will set the "ok bit" to ‘false’. An error

in the LD description involves that no binary LD

file is updated, and the "warning bit" is set to

"true'. These error bits can be checked for pos-

sible termination of the job in case of errors: —

sodald «....-.

if warning.no

compilation ~e

terminate the job ~e

if ok.no if any errors have we

finis been discovered =e

eee ; else continue job

115

The SODA DBMS

Static check

This section describes the seven SODA operations

that can be activated from a program in order to

access a data base. The reader is assumed to be

familiar with the notions and principles of SODA

as described in section 2 and with the concepts

and semantics of the SODA LD language as described

in section 3.

The use of the DBMS operations is checked for

legality in several ways:

Any access operation on a given set requires

that the name of the operation is specified in

the usage entry of the set declaration.

Although much has been done to obtain a uniform

set of rules, deficiences in the file systems

or a wish to avoid too much overhead ‘behind the

back' have caused some restrictions in what is

permitted for sets associated with list files.

The LD compiler will check the usage entry

according to the following scheme: (+ allowed,

- not allowed)

singular sets type L subscripted sets

GET + -

NEXT - +

LOOKUP - -

PUT +

CREATE -

DELETE -

NEWSET -

CLOSEFILE + +
+

+
+

+

Dynamic check

A special rule

for NEWSET

Result:

In DUET:

result

Most of the operations are only permitted for

certain values of record state or if the set

is open for sequential access. This is checked

by the DBMS and an error result will occur.

The rules and the possible results that occur

if they are violated are specified individually

in the descriptions of the operations.

Furthermore the legality of the operations may

depend on the structure of the DB itself and

of its actual contents when the operations are

activated. Also the state of associated sets @

(mother/daughter relations) may influence the

legality. These rules and the results are as

well specified individually in the descriptions.

In the present implementation a special rule

applies for subscripted sets: One set only,

among those associated with the same file, can

be open for sequential access at the same time.

Every activation of NEWSET on a subscripted set

will automatically turn any other open set

associated with the same file into a closed state.

The result of an operation is communicated back

to the application program in a way depending

on the programming language:

The single integer result-value specified in the

individual descriptions of the operations is

available for the program in the possible variable

declared as result.soda (cf. 3.1.1).

recno

errors

In ALGOL:

result

recno

errors

117

The system generated ident value (recno key)

provided on certain operations on set type

B or L is available in the possible variable

declared as result.recno (cf. 3.1.1).

When a normal result occurs the DUET system

will activate an automatic error reaction of

one of the three kinds: data error, program

error, or system error. The DUET manual (ref. 5)

contains a comprehensive description of the

error handling mechanisms in DUET.

The result value is available as the value of

the procedure call.

The system generated ident value (recno key)

provided on certain operations on set type B or

L is available in the standard variable

"recno cf'.

Information about whether an error has occurred

or not is available as the result value.

However, by proper initialization of a global

variable the SODA DBMS may activate a_user

coded error procedure in which any error action

could be performed. In order to simplify the

coding of this procedure the result values are

defined so that the same error situation will

cause the same result value to be assigned for

all SODA operations. In 6.4 and 6.5 the

possible communication between SODA and an error

procedure is described.

118

General frame The individual descriptions of the SODA operations

of descrip- in the remaining part of section 5 are all

tions structured in the following sequence:

1: activation format

2: specification of main rules. for dynamic

legality

3: macro algoritmic specification of actions

performed during activation. Each step is

executed in the specified order. If an error

‘is recognized the remaining steps are skipped @

and anerror specific result value is returned

4: specification of relevant result values and

possible changes in record state and

sequential state or other effects caused by

the activation. The result value column

supplies two values:

- the value returned in the result variable

and in ALGOL as value of the procedure

- the possible DUET error type and number

(cf. ref. 5):

D: data error

P: program error r

S: system error

119

GET 5.1

Activation: get (setno)

Leg

The

ide

ality: No restrictions

purpose of GET is to provide from the set in the DB, a record

ntified according to the ident specification and establish it

as

GET

the current record of the set.

operates in the following manner:

check for legal setno and usage

registration of the ident values according to the ident specifi-

cation

activation of the log procedure if 'log before' is specified for

the current set and operation

physical DB access with possible reaction: 'No record with that

key'

check for record type membership of set

check for record membership of set according to a possible

restriction

check for correct record lenght

activation of the log procedure if 'log after' is specified

for the set ;

transfer of field values to variables according to possible

field specifications

for settype L: check that the record is connected to mother

records according to the mother specification and transfer of

specified m-ref values to variables.

120

Result Situation New record state

0 - Record read from DB db currec

1 D11 Record not in the set empty

2 P9 Illegal setno "

3 P10 Usage GET not specified "

5 P12 Spill during transfer of ident values

or index during transfer of values

to variables "

17 S7 For set type B: checksum error "

18 S8 Incorrect record length "

19 S9 Record not correctly connected to

mother records "

24 S6 Internal error (please contact main-

tenance) "

25 S16 Internal error (please contact main-

tenance) "

27 D15 File not open (data entry)

Set sequential state is not affected by activation of GET.

121

5.2. NEXT

Activation: next (setno)

Legality: record state: No restrictions

sequential state: Open

The purpose of NEXT is to provide from the DB the next record in

the set relative to set sequential position and establish it as

the current record of the set.

NEXT operates in the following manner:

- check for legal setno and usage

- check for sequential state

- for subscripted sets: check that the last activation of

NEWSET for sets associated with the current list file, was

for the current set. Furthermore, for first NEXT after

NEWSET: check that the mother record has not been removed

from the DB

- activation of the log procedure if 'log before' is specified

for the set.

- repeated physical access of records in the associated file.

For subscripted sets access is performed in the chain

associated with the mother set. A possible reaction of this

may be: 'No more records in the set'.

For each access:

- check for record type membership of set

- check for record membership according to a possible

restriction

- check for correct record length

122

for the set

- transfer of field values to variables according to possible

field specifications

activation of the log procedure if 'log after' is specified

- for subscripted sets: check that the record is connected to

mother records according to the mother specification and

transfer of specified m-ref values to the variables

Result Situation New record | New seq.
state state

0 - Record read from DB db currec open

1 - No more records in the set empty closed

2 P9 Illegal setno . " "

3 P10 Usage NEXT not specified unchanged unchanged

6 | P13 Set closed for seq. access by
NEWSET on another set empty closed

11 P18 Mother record removed since NEWSET " unchanged

15 P25 Illegal BS.operation, position , closed

after eof

17 S7 Checksum error (for set type B) " unchanged

18 S8 Incorrect record length " "

19 S9 Record not correctly connected to
mother records " "

24 S6 Internal error (please contact
maintenance) " "

25 S16 Internal error (please contact
maintenance) " "

26 P27 Set closed for sequential access " closed

27 D15 File not open (data entry) " "

e

123

5.3 LOOKUP

Activation: lookup (setno)

Legality: no restrictions

The purpose of LOOKUP is to check in a simple and relatively fast

way whether a record defined according to the ident specification

is present in the DB as a member of the set.

LOOKUP operates in the following manner:

- check for legal setno and usage

- registration of the ident values according to the ident

specification

- activation of the log procedure if ‘log before' is specified

for the set

- physical DB access with the possible reaction: 'No record

with that key'

- check for record type membership of the set

- check for record membership of the set according to a

possible restriction

Result — Situation

0 - Record is a member of the set

1 - Record is not a member of the set

2 P9 Illegal setno

3 P10 Usage LOOKUP not specified

5 P12 Spill during transfer of ident values

25 S16 Internal error (please contact maintenance)

27 D15 File not open (data entry)

Record state and set sequential state are not affected by activation

of LOOKUP.

In the present implementation LOOKUP can only be used on sets of

the settype M.

124

5.4 PUT

Activation: put (setno)

db currec
Legality: record state:

new currec

sequential state:

subscripted sets: Open

Other sets : no restrictions

The purpose of PUT is to transfer the current record of a set to @

the DB. If the current record was established by CREATE it will

be inserted in the DB as a new record and if it was established

by GET or NEXT it will replace its former instance in the DB.

PUT Operates in the following manner:

- check for legal setno and usage

- check for legal record state

- for subscripted sets: check for sequential state and that

the last activation of NEWSET was for the current set.

- activation of the log procedure if 'log before’ is specified

for the set

Then the operations depend on the record state:

db currec (after GET or NEXT)

- if the current record of the set is not the current record

of the file (due to operations on other sets associated

with the same file) then reestablish it by the necessary

physical file operations

- transfer of values from variables to relevant fields according

to the field specifications

125

- activation of the log procedure if 'log before' is specified

for the set

- for settype B: generation of new record checksum

- physical transfer of the record back to the DB

- activation of the log procedure if 'log after’ is specified

for the set

new currec (after CREATE)

a establishment of a physical record which is initialized With

zeroes or empty strings

- transfer of values from variables to relevant fields

according to the field specification. Hereby possible

repeating groups are fixed concerning the number of repetitions,

and their control fields are assigned

- assign of record length and record type (as defined by CREATE)

- for set type B generation of the record checksum

- activation of the log procedure if 'log before' is specified

for the set

- insertion of the record into the DB depending on the set

type:

M: according to ident values as recorded at the time

of the previous CREATE

B: after the last record in the physical file

L: as the néxt record in the chain connected to the

mother record of the subscripted set. *)

- for subscripted sets:

- transfer of ident values for secondary mother records to

which the current one should be connected according to

possible mother specifications

*) The user familiar with the CF system will know that the insertion
of a new record after recognizing 'end chain' where the last
record was deleted, is not permitted. SODA circumvenes this
restriction by a 'behind-the-back' reaccessing of the records in
the chain from mother record to ‘end chain' before the new record

is inserted.

- physical access of and connection to these records 'next

activation of the log procedure if ‘log after'

to mother'

for the set

according to the DB description

is specified

Record state Situation New record

state

Result

0 -

0 ~—

2] P9

3 | P10

4] P11

5 | P12

5 | P12

6 | P13

8} D12

9} P16

10] P17

11] P18

21] S10

22 {S11

24 | S6

25] S16

27 | D15

DB currec

new currec

empty

new currec

new currec

DB currec

new currec

Ww

Record transferred back to DB

Record inserted in DB

Illegal setno

Usage PUT not specified

PUT not allowed in empty record
state

Spill or index during transfer of
field values

Number of repetitions for
repeating group exceeds maximum

Set closed for sequential access by
newset on another set since current

record was established

For set type M:

DB
Record is already in

Current record removed from DB via

other set

For subscripted sets: Secondary
mother record is not present in DB

For subscripted sets, first
insertion: Mother record removed

from DB since NEWSET

For set type M and L: File cannot be
extended

For set type M and ii: Record cannot

be inserted for a reasonable price,
or length error x) (see ref. 1)

Internal error (Please contact main-

tenance)

Internal error (Please contact main-

tenance)

File not open (data entry)

empty

unchanged

empty

empty

Set sequential state is not affected by put,

x) A length error can only occur in case of an error in the physical
file, or in the combination of versions of the physical file and the
sodald file.

127

5.5 CREATE

Activation: create (setno, record_type)

Legality: record state: no restrictions

sequential state:

for subscripted sets: Open

else : no restrictions

The purpose of CREATE is to provide from the program a record

of the specified type and establish it as the current record

of the set. On a following PUT it will be inserted in the DB.

CREATE operates in the following manner:

- check for legal setno and usage

- for subscripted sets: check for sequential state and that

the last activation of NEWSET concerning this physical file

was for the current set

- check that the specified record type is declared as a

member of the set

- for set type M: Registration of ident values according to

the ident specification

- for subscripted sets: Registration of ident values for

possible secondary.mother records according to mother

specifications.

- activation of the log procedure if "log before' is

specified for the set

possible assign of standard values to variables according

to field specifications

activation of the log procedure if ‘log after' is

specified for the set

128

Result Situation New record
state

0 - Current record created from program new currec

2 {| P9 Illegal setno empty

3 | P10 Usage CREATE not specified unchanged

5 | P12 Index during transfer of standard values new currec

6 | P13 For subscripted sets: Set closed for empty
sequential access by NEWSET on another set

14 | P21 Record type not member of set "

24 | S6 Internal error (Please contact maintenance) "

25 | S16 Internal error (Please contact maintenance) "

26 | P27 For subscripted sets: The set is closed for " ©

sequential access

27} D15 File not open (data entry) "

Set sequential state is not affected by CREATE.

129

5.6 DELETE

Activation: delete (setno)

new currec
Legality: record state =

DB currec

sequential state:

for subscripted sets: Open

else : no restrictions

The record to be deleted must not have any daughter

records in the DB.

The purpose of DELETE is to remove from the DB the record which

is current of the set.

DELETE operates in the following manner:

oo check for legal setno and usage

- for subscripted sets: check for sequential state and that

the last activation of NEWSET was for current set

The remaining actions are carried out only if record state = DB

Ccurrec.

- for set type B: check the position of current record;

all other sets associated with the same file having a

current record after this position, will be closed.

- for set type M and L: possible physical re-access of the

current record if other sets have operated last on the

file

130

- for settype M: check that the record has no daughter records

- activation of the log procedure if ‘log before' is specified

for the set

- physical removal of the record from the DB

- activation of the log procedure if ‘log after' is specified

for the set

Result Situation New record
state

0 - Current record deleted empty

2 |P9 Illegal setno empty)

3 | P10 Usage DELETE not specified unchanged

4 |P11 DELETE not allowed in empty record state empty

6 | P13 Set closed for sequential access by NEWSET empty

on another set

7 |P14 Daughter records associated with current unchanged

record

P16 Current record removed from DB via other set empty

23 {S12 For settype M: Last record in file must not unchanged
be deleted

24 |S6 Internal error: (Please contact maintenance) empty

27 |D15 File not open (data entry) empty

Set sequential state is not affected by DELETE.

131

5.7 NEWSET

Activation: newset (setno)

Legality: for subscripted sets: record state for the mother set

must be: DB currec

The purpose of NEWSET is to open a set for sequential access.

For singular sets set sequential position is initiated according

to a possible ident specification. For subscripted sets the scan

is initiated to comprise the daugther records of the current

record in the mother set.

NEWSET operates in the following manner:

- check for legal setno and usage

- for set type M and B: transfer of ident values according to

a possible ident specification. No ident specification implies

that all ident values are zero. The ident values define set

sequential position to be just before a possible record with

that key

- for set type B: check that the derived set sequential

position is not after the last record of the file

- for subscripted sets:

- check for record state of the mother set

- check that the record type of the current record in the

mother set may have the current set as daughter set

- registration of the ident values of the mother record

- activation of the log procedure if ‘log before' is specified

for the set

- for set type B: positioning to set sequential position in the

the file

- activation of the log procedure if 'log after' is specified

for the set

132

Result Situation New

sequential

state

0 - Set open for sequential access. Position open

initialized

2 |P9 Illegal setno

12 | P19 Illegal record state in mother set closed

13 | P20 Illegal mother record type closed

15 | P25 For set type B: Initial position after last closed

record in file

24 |S6 Internal error (Please contact maintenance) closed

27 |D15 File not open (data entry) closed e

Record state will be 'empty' regardless of the result.

For subscripted sets: The activation of NEWSET will imply that

other subscripted sets associated with the same file will have

their sequential state changed to ‘closed’. *)

*) This is so due to a design error in the present implementation.
A change is planned that will restrict the side effect to
concern sets only which are associated with the same chain (list

entry in Database80).

5.8 CLOSE FILE,

Activation:

Legality:

132 a

close _file (setno)

no restrictions

The purpose of CLOSE _FILE is to finish the physical access on the

file of the current set. Usually all physical accesses are performed

by the DBMS, but in some special cases (f.ex. before a sorting) the

user may want to control this process.

CLOSE FILE operates in the following manner:

- check for legal setno

- finish the last physical acces

- assign record state = closed for all

to the same file.

\

sets connected

Result Situation New record New seg.
state state

C - Physical access finished] empty closed

2 P9 Illegal setno unchanged unchanged

Obs! The record state and sequential state will be empty/closed

for all sets connected to the same physical file.

133

6. How to include the SODA DBMS in a program

This section describes the elements of the SODA DBMS and how it

is incorporated in a program. DUET application programmers may

stop the reading here but designers and programmers of DUET

systems and ALGOL application programmers will need the

information presented in this section.

6.1

134

ALGOL block structure and SODA program texts

A DUET system or an ALGOL application program employing SODA must

be structured in two block levels as shown in fig. 6.1, or at least

contain this structure at the same inner block level *). We shall refer

to this structure as 'the program'.

begin comment first SODA block level;

algol copy.sodatext_1; <*SODA declarations*>

result := init _soda_1; <*SODA initialization™>
if result <> 0 then

begin comment second SODA block level;

procedure sodalog (record) ; <*optional application specific*>
procedure soda_error; <*optional application specific*>
algol copy.sodatext 2; <*SODA declarations*>
algol copy.vardecl; <*declarations from variable table*>

result := init soda 2; <*SODA initialization*>
if result <> 0 then...

close_soda;
end second SODA level;

end first SODA level;

application specific declarations in first SODA block

initializing statements in first SODA block

application specific declarations in second SODA block

initializing statements in second soda block

ordinary application statements

<*terminating SODA actions*>

Fig 6.1. Block structure of a program employing SODA

Designers of DUET systems are advised to consult ref. 5 section
5.1 with the corresponding fig. 5.2 which contains more DUET
specific details.

135

The SODA DBMS is programmed in ALGOL as a set of procedures and

variable declarations which must be incorporated in the program

before compilation by means of ‘algol copy'. The SODA program

text is available in four text files organized as shown in fig.

6.2.

sodatext_1 to be incorporated at the first block level,

this text itself will incorporate the text file:

sodafields

sodatext_2 to be incorporated at the second block level,

this text itself will incorporate the text file:

sodatext_3

Fig. 6.2. The organization of the four SODA text files.

In all normal situations the user can regard sodatext_1 and

sodatext_2 independent of this internal copy structure.

Returning to fig 6.1 the following further explanation may be useful:

At the first block level 'sodatext_1' must be incorporated among

the possible declarations before the first proper statement of

the block. 'sodatext_1' contains certain variable declarations and

especially the procedure 'init_soda_1' which must be called once

at this block level after some variable initializations as

described in 6.2.

136

At the second block level the user may declare the two application

dependent procedures 'sodalog' and 'soda_error' as explained in

6.4 and 6.5 respectively. Furthermore among the declarations on

the second block level, before any statements, the declarations

generated by the LD compiler in the file 'vardecl' must be

incorporated. For a DUET system this incorporation is optional.

Also on this block level, before any statements 'sodatext_2' must

be incorporated. It contains further declarations of variables

used by the DBMS and declarations of most of the fixed size and

all variable size internal tables. Their length are determined by

the LD compiler and communicated via the LD file and the call of

init _soda_1 to the program. Moreover 'sodatext_2' contains

procedures for all the DBMS operations and the procedure

‘init soda _2' which must be called before any DBMS operations are

activated as described in 6.2.

Finally 'sodatext_2' contains the procedure 'close_soda' which

must be called at the end of execution before exit of the second

block level.

The SODA procedures use some SLANG code procedures, which must be

translated by calling

i prim

i sdtrans

i tduetcode

before calling the ALGOL compiler.

137

6.2 Initiating the SODA DBMS

As mentioned in 6.1 the first block level must contain a call

of the procedure init_soda_1 and the second block level a call

of init_soda_2. This section contains a description of the

primary function of these procedures and specifies the set of

variables that is used for communication with them.

init_soda_1: This procedure performs the following tasks:

- reading of the header record of the LD file

- check for identification and version of the LD file

- assignment of upper limit values for variable size

arrays to be declared in the second block level.

- assignment of other values from the header record

for use in the surrounding program or by the DBMS at

the second block level.

The physical file containing the LD file is accessed via a

locally declared zone.

Information is communicated to and from 'init_soda_1' through

a set of variables also declared in 'sodatext_1'.

Before activation of init _soda_1 the following variables must

be assigned:

beskrivnavn real array (1:2)

The area name of the LD file

ld_afsnit_nummer long

The section number that serves as key for

the LD file in the physical file (cf. 4.1,

LD file generation)

138

ld_ident integer

The identifying number from the head line of

the LD description (cf. fig. 3.1)

ld_version integer

The version of the LD file. If zero is

assigned the version check will be suppressed

sd.extend_buf integer

The size measured in reals of the available

space for buffer extension for each CF master

file involved (cf. ref. 1)

Upon return the integer value of init _soda_1 will indicate the

result as a bit pattern. A one-bit in the positions mentioned

below will indicate an error while a zero-bit indicates OK.

bit 0 = 1 : No records with specified section number

bit 1= 1 : The specified section is not a SODA LD file

bit 2 = 1 : The LD file is not the result of a correct

compilation

bit 3 = 1 : The version of the LD file does not match the

specified version

bit 4 = 1 : The header record of the LD file is missing

bit 5 =1 : The identification number of the LD file does

not match the specified identification

bit 23-6 Not used (invariantly zero)

ld_brugernr integer

The user number from the head line of the LD

description (see 3)

1ld_initialer

ld_navn

ld_regdato

ld_regtid

ld_varsum

sd_sprogkode

soda-giveup

139

real array (1:1)

The initials from the ‘init' command unit in

the activation of the LD compiler (see 4.1)

real array (1:3)

The LD identifying name from the head line

of the LD description (see 3)

integer

The compilation date as it appears in the

log from the compiler

integer

The compilation time as it appears in the

log from the compiler

integer

A compressed checksum of the variable numbers

and names that for DUET systems will secure

that the use of another version of the LD

file than that present during compilation of

the DUET program will not cause errors due to

different variable declarations

integer

An internal representation of the programming

language specification from the head of the

LD description.

1: DUET

2: ALGOL

integer

Is initialised = 0. If this variable is changed

before the call of 'init_soda2' to a bit mask

containing '1 shift 1', then during the run, the

DBMS will count the number of disc accesses for

CF-files and BS-files in the variables

"soda_cfaccess' and 'soda_bsaccess'r respec-

tively.

140

init_soda_2: This procedure performs the following tasks:

co calculation and assign of base address variables

- reading of internal DBMS tables from the LD file

- initialization of the DBMS zone array according to

physical file properties and opening of the zone

elements.

- initialization of the CF 'chainref' array (see ref 1)

- initialization of the dynamic DBMS file and set tables

The physical file containing the LD file is accessed via a

locally declared zone

The integer value of init soda_2 will indicate the result of

the activation in the following manner:

0: All tasks performed correctly

1-33: Error during reading of a DBMS table from the LD

file

40: Unknown file (BS file only)

41: Blocklength of BS file does not match that derived

from the DB description

The procedure does not require any special assign of variables

before the activation and it will not communicate special

values of interest for the program except those intended for

the DBMS.

141

6.3 The log mechanism

As described in 3.2.4 the user may specify for each set whether

a special user coded log procedure should be activated by the

DBMS just before and/or just after physical access of the files

associated with the set. The purpose of such an activation could

be to monitor or survey certain operations on the DB in an

application—specific way.

At the first SODA block level a dummy procedure 'sodalog' is

declared in order to avoid any undeclared references from the

DBMS procedures. At the second block level the user may re-declare

"sodalog' with the application-specific code. Then it will be this

procedure that is activated from operations on sets where ‘'log' is

specified.

The log procedure should be declared according to the skeleton

shown in fig 6.3

procedure sodalog (record) ;

real array record;

begin

end;

Fig 6.3 Skeleton for declaration of a log procedure

*)

142

When 'sodalog' is activated the parameter will contain an image

of the record involved in the physical operation.) This image is

complete in all situations, except in the 'log before insert'

situation for subscripted sets. Here the m-ref fields (located

after the ordinary fields of the record) will have an undefined

contents, because the necessary connect operations have not been

executed yet.

In order to enable sensible operations the following DBMS

variables and tables may be used, but not altered!

sd_setnr integer @

The set number equal to that supplied as

parameter to the DBMS operation

sd_procno integer

Internal code defining the current DBMS

operation:

GET

PUT in function 'update'

DELETE

CREATE

NEWSET

NEXT ©

LOOKUP

ee

ee

ee

wo

nr

a
w
n

fF

W
H

=

ry
}

e
e

e
e

o
s

e
e

PUT in function ‘insert'

No record is available in the following situations:

‘log before': NEWSET, CREATE, GET, NEXT, LOOKUP, PUT (UPDATE, INSERT)

‘log after' : NEWSET, CREATE, DELETE

In these situations the record parameter is an array in which

the first element is zero (corresponding to the length field in

a normal record).

143

sd settype integer array (1: max_setno)

A set table that may be subscripted with

sd_satnr.

It contains an internal code defining the set

type and set kind:

0: undeclared set

set type M

2: set type B

3: set type L singular

L set type subscripted

filnr integer

An internal number used as index in the zone

array 'sdz' which is common for all the

physical files. The name of the file or other

relevant information can be derived from the

zone descriptor of 'sdz(filnr)'.

Warning: The value of 'filnr' is a unique

identification of the file in all runs

performed with the same LD file. However,

changes in the set section of the LD

description may cause the internal file number

to be altered for any number of sets

sd_log_before boolean

true => log before

false => log after

sd_kedeindex integer

This value is defined only when sd_procno = 8

and sd_settype = 4. It contains an index into

the SODA table 'kedeinf', which holds the infor-

mation necessary for connecting a listfile record

to the mother records in a possible reestablishing

of the database.

If the user needs more information than described here to design and

program a log procedure the maintenance group must be contacted.

144

6.4 The DBMS error mechanism

The treatment of DBMS errors - that is, abnormal results from the id

operations as described in section 5 - is completely taken care

of by the DUET system as described in ref. 5.

When the programming language is ALGOL the user may choose either

to let the program check the result of each DBMS operation and

take the proper action on errors, or to specify to the DBMS that

it should activate a common error procedure before the operation

returns with the abnormal result value, ®

The standard reaction is that SODA will not automatically activate

such a procedure, but if the user in a statement after the call

of init _soda_1 assigns:

sd_alarm := true;

then the DBMS will activate the procedure:

soda_error

when abnormal results are recognized. ©

The text soda_text_1 contains a declaration of 'soda_error' with

a very rude and primitive action. It simply announces on

standard output that some error has occured on some set and then

immediately terminates the execution. Surely, this is quite

unacceptable for any real application program. The procedure is

just a part of sodatext_1 to avoid undeclared references. The

intention, of course, is that the user supplies his own

"soda_error' on the second block level if 'soda_alarm' is set to

true.

145

A user coded version of 'soda_error' would possibly document

the situation properly and for each type of error it could

then react in one of three ways:

- return to the DBMS, possibly after some attempts to cure

the situation, so that the program can go on after return

from the DBMS

- terminate the execution. In this case the procedure

'close_soda' should be activated before exit of the

program

- jump to some location in the application program. Attempts

after this to re-access the same set may for certain error

types cause inpredictable results, especially for set type

L and in case of sequential scans. However, in most cases

a call of NEWSET should reestablish a normal situation for

the set.

From the error procedure the user has access to all the internal

DBMS tables and variables. The following survey exposes those

which may be of special interest for the error procedure.

Users who look in vain in the survey for necessary information

must contact the maintenance group.

sd_setnr

sd_settype see 6.3

filnr

sd_procno integer

Internal code defining the current DBMS

operation. NOTE a slight difference from

the survey in 6.3

GET

PUT

DELETE

CREATE

NEWSET

NEXT

LOOKUP N
D

WO

FP

W
DY

=
|

sd_resultat

_ sd_tilstand

146

integer

The result value from the DBMS operation

(see 5.1 - 5.7).

error

integer

It indicates the type of

Indicates the record status and the set

sequential status in the following way:

sd. record seg.
tilstand | situation state state

re) after open empty closed
1 after get DB currec irrelevant
2 after put-direct empty irrelevant
3 after delete-direct empty irrelevant
4 after create New currec | irrelevant
5 after newset irrelevant | open
6 after next DB currec open
7 after put-sequential empty open
8 after delete-sequential empty open
9 after end-of-chain at delete} empty open

lo after end-of-chain at next empty closed
11 as lo, but chain empty empty closed
12 after end-of-set at next empty closed

sd_fejl long array (0:20)

For some values of "sd_resultat' a further

specification of the error:

sd_resultat = 18

sd_fejl (1) =

sd_fejl (2) =

sd_resultat = 5/25

sd_fejl (0) =

sd_fejl (1:*)

illegal record length

min rec.length from DB descr.

rec.length in record

number of recognized errors

error specification

The specification is packed with one

element pr. recognized error. Bit 0-5

of each element contains an error code

that determines the contents of the

remaining element fields as explained

below.

error during field value transfers:

147

If any error with error code 1, 2 or 6 is

recognized the value of sd_result will be

25, otherwise 5. Result 25 indicates a

system error and should be reported to

the maintenance group together with a

printout of the contents of 'sd_fejl'.

The contents of sd_fejl is interpreted in

the following way:

bit 0-5: error code:

1: Illegal entry address *)

2: Illegal instruction *)

3: Spill during transfer of values

from variables

4: Illegal index for array or rep.

group

5: Illegal number of repetitions

specified for new rep. group

6: Illegal field address for rpg.

bit 6-17: rel.w.address for var. (err.code 3-5)

bit 18-19: base address code (err.code 3-5)

bit 20-23: number of var. bytes (err.code 3-5)

bit 24-47: depends on error code:

1/2: address of ‘machine instruction'

3: 0

4: the index value

5: the specified number of repetitions

6: irrelevant

*) The transfer of field values is performed by the procedure

"sdtransfer'. It operates like a virtual machine with a 'program'
generated by the LD compiler from the field/variable
associations.

148

6.5 Reserved ALGOL identifiers

Since the DBMS must be incorporated as ALGOL text in the program

there is a chance for conflict between DBMS identifiers and

user declared identifiers. To avoid this the user should consult

the following list of reserved identifiers before starting the

programming. Except for the variables and procedures mentioned in

6.3 and 6.4 the user is urgently advised not to interfere in any

way with the reserved identifiers.

In general: All variables with prefix 'sd' or 'ld' are

reserved.

At the first block level:

Variables: b_ fellesadresse

b_krit3

k_afsnit_nummer

k_afsnit_type

k_afsnit_version

k_felles_ adresse

k_overset_tilstand

max iadr

max _n

max var

max verdispec

max _W

Procedures: init _ldfields

les ldtab

At the second block level

Variables:

Procedures:

array base

konst_base

modernggle ad

n¢ggle

nggleadr

n¢ggleslut

n¢gglestartadr

recnoadr

recposadr

simpel base

start _restrik

testa

testb

testc

testparam1

testparam2

z_ilengde

z_itype

zonestartadr

close soda

for which

getblock

149

r

init _ld_tabeller

sa transfer

soda_block proc

sodatestab

sodatestc

sodatestprocl

sodatestproc2

ség_itypekede

s¢g_itypelist

udskriv_d

e

150

Syntax of the SODA LD language

The following is a complete syntax description of the SODA LD

language. While section 3 describes the language by means of

examples and verbal explanations, the description here is formal

and as exact and precise as possible. The notation used here to

express the syntax rules is a slightly modified version of the

INFORMAL language described in ref 11. Compared to the reference

the concatenation symbol -* has been replaced by space.

The principle of the notation is illustrated by the first state-

ments below that expresses the overall structure of an LD description

in fig. 3.1. In short, the applied symbols have the following

meaning:

= ‘is defined as'

: alternatives

’ elements with optional order

(.) optional element

(*) any number of occurrences

(+) at least one occurrence

ro a constant syntactical unit

<> members of a character set

; termination of statement @

ld_description .= head_line variable section

record _output_input_section(.)

set_section(.) endline;

The statement declares that an ld_description consists of five

syntactical units (SU) that must appear in the order as specified.

Each non constant SU must be defined in a separate statement.

151

head_line "local data' 1ld_ident ':' program_language

user spec(.) nl,

The SU 'head_line' is composed of six units where the first and

third are constant and defined by the characters enclosed by the

apostrophes. The SU 'user_spec' is optional as indicated by the

suffix (.) In the 'head_line' as well as in other parts of the

LD description any number of spaces may appear between syntactical

units.

ld_ident

ld_number

ld_name

ld_number '/' 1d_name,;

NUMBER (1 to 99);

identifier, <* max 17 characters *>

The symbol "NUMBER' with its parameters declares that the SU is

an integer in the specified range.

program language

user spec

user number

end_line

'duet' ! '‘algol',

‘user' user number,

NUMBER (1 to 63),

‘end' 1d number,

152

Apart from 'nl' and ‘'identifier' which are defined below and

‘variable section! and 'set_section' defined on page A4 and AT

respectively, this ends the formal description concerning fig 3.1. °

The remaining parts of the formal description will not contain

explanatory comments. If neccessary, the reader must consult ref 11.

<* General definitions *>

nl -= comment(.) newline char}

newline char -= <10>;

comment = text text_char (*);

text_char = <ident_char , '+-*/_!?:;,.()<>=' , 32>,

identifier -= letter i_group (*);

letter -= <'abcdefghijklmnopgrstuvwxyzega'>,;

i_ group = ' ident_char(+),

ident _char | -= <letter, digit>,

digit -= <'1234567890'>,;

NOTE!! Numbers which appear enclosed in the comment brackets

<* *> and preceded by the letter A or N, will refer to

the page where the SU is defined or to a semantic note

on page Al2ff, respectively.

153

descripfile_spec *= 'descripfile' '=' db file index nl;

db file index -= NUMBER (1 to 3);

variable section = descripfile spec (.)
'variables:' nl variable decl (*)
'value_spectra:' nl value_spectrum (*) <#a5%»
‘norm values: ! nl normvalue-spec(*); <#a6*>

variable decl ‘= num_variable decl !

name_variable decl ;

num_variable decl -= varno fieldvar_spec(.) ':' varname(.) ':!
(typespec valuespec_ref (.) normvalue ref !

field equiv)

nl alternative name spec(*) ;

varno -= 'v' NUMBER(1 TO 2047) ;

name_variable decl = fieldvar_spec(.) varname

(typespec valuespec_ref (.) nomwvalue ref |

field_equiv;

fieldvar_spec -= IF program-language = 'duet' THEN '*';

varname . -= identifier;

typespec <= '‘word' ('.' decimals)(.) arrayspec(.). !

"long! ('.' decimals) (.) arrayspec(.) !

"real' arrayspec(.) !

"text! ",'number of chars arrayspec(.) !

‘date' arrayspec(.) !

"bits' ".'number_of bytes arrayspec(.) !

"recno' :

"result! '.'result indicator;

decimals

number of chars

number _of bytes

result_indicator

arrayspec

number of elements

valuespec_ref

normvalue_ref

field_equiv

field name

alternative _name_spec

language_code

value_spectrum

value_spec_no

154

NUMBER(1 TO 6); ‘

NUMBER(1 TO 767); , .

NUMBER(1 TO 511);

"soda! :

'recno' t

IF program language = ' duet’ THEN(

‘readspec'

‘readterm' !

~Yerror') ; ©

'(' number of elements ')';

NUMBER(1 TO 511);

'w' valuespec_no;

'n' normvalue_no;

'="" field name;

"identifier';

'(' language_code ')' text_constant nl; e

NUMBER(1 ‘TO 9);

'w' valuespec_no ':' main type

value_segment (',' value _segment) (*) nl;

NUMBER(1 TO 127) ;

main_type

value segment

open_interval

closed_ interval

single value

num_constant

principals

decimals

short_text

short char

norm _value_spec

norm_value_no

norm_value

text_constant

155

single value +
' open_interval .

closed_interval;

-o
~

Vv
 : ‘'<') single value;

single value 'to' single value;

num_constant +

short text °

varno ' | <*N23*>

varname 5

sign(.) principals ('.' decimals) (.);

integer;

integer;

short _char(.) '.'; ',' short char short_char(.)

<text_char, ap>;

‘n' norm value_no ':' main _type norm value nl;

NUMBER(1 TO 127);

IF main type = 't’

THEN (varno ! varname ! text constant) <*N23*>

ELSE single value;

ap text_char(*) ap;

record _output_input section

record_output_section =

logical file spec =

record input section =

set_section =

156

(record output section(.), record_input_section) ;

descripfile spec(.)

"record output' ':' physical file nl

logical file spec(+) ;

logical file record_spec(.) nl;

descripfile spec(.)

"record input’ ':' physical file nl

logical file spec(+);

descripfile spec(.)

'record sets' ':' nl set _declaration(*) ;

set_declaration -= set _decl_head(.)

set_restriction(.)

usage_specification(.)

log_specification (.)

ident_specification(.)

mother specification (.)

daughter _specification(.)

field_specification(.);

set_decl_head = 's' set number ':' set_name mother _subscript(.)

'=" logical file file _qualification(.)

set_number -= NUMBER(1. TO 63);

set_name -= identifier;

<* A& *>

<* AQ *>

<* AQ *>

<* a9 *>

<*A10*>

<*a10*>

<*a11*>

record_spec(.) nl;

mother_subscript

logical file

file qualification .

physical file .

record_spec :

record_type list .

record_type

set_restriction

general_ restriction

selective_restriction

logical expr

relation

157

"(' set number ')'; <*N1*>

db identifier; <*N2*>

‘in' physical file;

db identifier; <* N3*>

record type list ')';

record type (',' record type) (*);

("i' NUMBER (1 to 9999)) ! <* N4*>
record type name

"for' 'which'

(general restriction ‘: selec tive restriction) ;

logical_expr nl;

logical_expr nl) (+) (record _type_list ' :!

("else' ':' logical_expr nil) (.);

relation !

logical_expr logical_opt logical_expr -

'(" logical_expr ')';

<*N5 *>

<*N6 *>

operand rel_opt (operand ! constant) +

operand ('-,')(.) ‘in' valuespec_ref;

operand

field_ref

restr_var_ref

subscript

rel_opt

constant.

logical _opt

valuespec ref

158

field ref subscript (.)

restr _var_ref subscript(.)

fieldno ! fieldname;

varno ! ‘'v.' varname;

te! '

ty! '

hes! t

'S=! '

Vem! ;

num_constant °

text_constant };

‘and’!
‘or! :

'w' valuespec_no;

g

<*NQ*>

usage_specification

usage-element

log_specification

access

ident specification

normal ident assoc

varref

159

‘usage’ ':' usage_element(+) nl;

"get' :

"next! :

"lookup! ¢

"put! :

‘create’ !

‘delete' !

"newset';

(‘log' 'before' ':' access(+) nl) (.)

("log' ‘after' ':' access(+) nl) (.)3

'read' ! 'put' !

"get' ' 'next' !
'

"insert'! 'update' °

"‘newset'! 'create' !

‘ident' 'spec' ':' nl

(normal _ident_assoc(+) +

recno_ident_assoc) ;

(varref ! mumconstant) '=' ident field

simple var +

array_var subscript;

n)

simple var

array var

ident field

fieldno

recno_ident_ assoc

mother_specification

mref field

m_ spec line

m_ass

daughter specification

d_spec_line

daughter access spec

dref field

daughter delete spec

160

_ varno_ ' varname; <*N11,N23*>

varno ! varname ; <*N12 ,N23*>_

fieldno ! fieldname; <*N13*>

'£" NUMBER(1 TO 2174) <*NT#>

simple var '=' "recno' nl; <*®N14>

('mspec' 'mref field nl m spec line (+)) (4);

fieldno ! fieldname; <*N15*>

varref mass ident field nl : <*N10*>

num constant '->' ident field nl; <*N16*>

I Vv

7

il ‘dspec' ':' nl

d_spec_line (+) ;

= daughter_access spec |}

daughter delete spec;

= 's' set number '<' dref field nl; <*N17*>

= fieldno ! fieldname; <*N18*>

-= dref field;

161

field specification] .= ('fieldspec' fspec_no(.) ':' nl fspec(+)) (*);

fspec_no -= NUMBER(0 TO 15);

fspec = recno fspec !

const_fspec !

var_fspec;

recno_fspec -= simple var 0< '‘recno'; <*N14*>

const_fspec -= (num_constant ! short_text)

(' > ' '

1 -> 5 '

'—>! '

on = '

i >);

var_fspec = £ varref :

co
' > ' '

’ -> i '

i => 1 '

' < ' i]

i] <> 1 '

"<->! !

"<=>! !
wy rap! 1

rey '=>! '

| Ven>! '

Mrores yt) fieldref ni; <*n10*>

£ varref

field ref

simple field

array field

field_subscript

group_no

162

simple var

array var subscript(.);

simple field ! <*N21*>

array field field subscript(.) ! <*N19*>

group _no;

fieldno ! fieldname;

fieldno ! fieldname

'(' (simple var ! numconstant) ')'; <*N20*>

'g' NUMBER(1 TO 9999); <*N22*>

163

Semantic notes:

1.

11.

12.

The set number refers to the mother set which must be declared

elsewhere in the LD description.

The identifier must be declared as a physical file in the DB

description.

The identifier must be declared as a logical file (register)

in the DB description.

The record type must be declared in the DB description as

associated with the logical file.

The operands/constants associated with a given 'rel_opt' should

be compatible in type.

The operand must be numeric and compatible with 'main_type'

of the referred value specification.

The field must be declared in the DB description as a member

of at least one of the records of the logical file.

The value must not exceed the number of elements in the array.

The value specification number must be declared in the value

spec. table.

The type of field and variable must be compatible.

The variable must not be declared as an array.

The variable must be declared as an array.

13.

17.

18.

19.

20.

21.

22.

23.

The field must be declared as an ident field.

The variable type must be 'recno'.

The field type must be 'mref'.

The type of the ident field must be numeric

The referred set must be declared as a mother subscripted set

referring the mother set containing the "daugther_ access spec'.

The field type must be ‘dref' (list). @

If a subscript is specified the field must be declared as an

array.

The variable type must be numeric and the value of 'num_constant'

must not exceed the number of elements in the array filed.

The field must be a member of at least one of the record types

of the current set.

The group must be declared in the DB description as a member

of at least one of the record types of the current set. @

Variable number must not be used if variables are declared

without explicit variable numbers.

B.

165

Error messages from the SODA LD compiler

An entry in the list below will be composed according to the

following frame:

error number: error text

possible error parameters

possible further explanation and reaction

1: SYNTAX

The part of the input text under treatment when the error

was recognized.

The current line of input text.

A wrong syntactical construction was recognized. The remaining

part of the line is skipped. In case of serious errors ina set

declaration the remaining part of the set declaration is skipped

‘with a sequence of (possibly) irrelevant syntax errors.

2: SYNTAX

3: SYNTAX

As for 1.

As for 1, but the compiler proceeds with the text of the current

line.

4: ILLEGAL ERROR NUMBER

The wrong number

System error: Please contact maintenance group.

166

5: ILLEGAL END NUMBER

The identifying number of the LD description.

The wrong end number.

The two numbers should be equal.

6: SYNTAX

As for 1.

As for 1.

7: ARRAY INDEX MISSING FOR FIELD/VAR:

The field or variable number.

The arrays may not be used in set restrictions.

8: ILLEGAL DB DESCRIPTION. ERROR TYPE:

Error code:

-1i: no DB description file.

-2: illegal version of DB description.

-3: (not used).

-4:; other error.

9: UNDECLARED VARIABLE

Variable name and number.

10: VARIABLE PREVIOUSLY DECLARED IN LINE

The line number where the variable was first declared.

11: ILLEGAL VARIABLE NUMBER

The illegal value.

A variable number is outside the legal range.

12: ILLEGAL LANGUAGE CODE

The illegal value.

The language code is outside the legal range (1 TO 9).

167

13: ILLEGAL USE OF ARRAY VARIABLE

The variable name and number.

An.array variable may not be used in the current situation.

14: INCONSISTENT NUMBER OF DECIMALS

The sequence number of the value inside the current line.

The number of decimals in all values should be the same.

15: ILLEGAL NUMBER OF ELEMENTS

The illegal value.

The specified number of array elements is outside the legal

range (1 TO 511).

16: ILLEGAL W-NUMBER

The illegal value.

The reference to the value spectra table is outside the legal

range (1 TO 127).

17: ILLEGAL N-NUMBER

The illegal value.

The reference to the norm value table is outside the legal

range (1 TO 127).

18: ILLEGAL VARIABLE NUMBER

The illegal value.

A variable reference is outside the legal range. (1 TO 2047).

19: ILLEGAL TYPE OF VARIABLE

The variable name and number.

A variable of this type is not allowed in the current situation.

20: W-NUMBER PREVIOUSLY DECLARED IN LINE

The line number where the number was first declared.

168

21: ILLEGAL W-NUMBER

The illegal value.

The value spectrum number is outside the legal range (1 TO 127).

22: ILLEGAL VALUE TYPE

The sequence number of the value inside the current line.

The value is incompatible with the type of the w-spec/n-spec

entry.

23: ILLEGAL LENGTH OF VARIABLE OR TEXT

The illegal value.

The specified length is outside the legal range.

24: ILLEGAL N-NUMBER

The illegal value.

The norm value number is outside the legal range (1 TO 127).

25: N-NUMBER PREVIOUSLY DECLARED IN LINE

The line number where the number was first declared.

26: ILLEGAL SET NUMBER

The illegal value.

A set number is outside the legal range (1 TO 63).

27: SET NUMBER PREVIOUSLY DECLARED IN LINE

The line number where the set was first declared.

28: UNKNOWN LOGICAL FILE

The logical file is not declared in the DB description.

29: DB DESCRIPTION ERROR. LOGICAL FILE

Error in DB description file.

If error is persistent after re-generation of the file,

please contact maintenance group.

169

30: ILLEGAL RECORD TYPE

Record type number.

The record type is not declared for the logical file in the

DB description.

31: ILLEGAL RECORD TYPE

Record type number

The record type value is outside the legal range (1 TO 9999)

(Temporary restriction in SODA). The reference is ignored.

32: ILLEGAL SECTION FOR LD FILE IN DESCRIPFILE

Logical file type.

The specified section for the location of the ld file

in the physical description file is occupied by a logical

file of the type indicated.

33: ILLEGAL NUMBER OF DECIMALS

The number of implied decimals for a variable may not exceed 6.

34: LOGICAL FILE NOT UNIQUE

The logical file name should be qualified by a reference to

the proper physical file. The whole set declaration is skipped.

35: UNKNOWN PHYSICAL FILE

The physical file is not declared in the DB description. The

whole set declaration is skipped.

36: DB DESCRIPTION ERROR. PHYSICAL FILE

Error in DB description file. If error is persistent after

regeneration of the description file, please contact maintenance

group.

37: ILLEGAL FILE TYPE

DB physical file type.

The set declaration does not match the type of the associated

physical file.

170

38: CONFLICT BETWEEN LOG AND USAGE SPECIFICATION

39: FIELD SPEC. NUMBER NOT UNIQUE IN SET

The illegal number.

40: USAGE SPECIFICATION MISSING

A statement covering all usage elements is assumed.

41: USAGE OR LOG ELEMENT DOUBLE SPECIFIED

42: COPY NOT IMPLEMENTED

43: EMPTY SPECIFICATION

May appear if all associations in a specification group are

erroneous.

44; ILLEGAL INDEX

A variable index or an index at all is illegal in the current

situation.

45: ILLEGAL INDEX VALUE

The illegal value.

The declared number of elements in the array.

The index value is outside the range defined by the array.

171

46: ILLEGAL ASSOCIATION OPERATOR

47: ILLEGAL FIELD NUMBER

The illegal value.

SODA cannot. accept field numbers outside the range (1 TO 2'7u4),

48: UNKNOWN FIELD

The field number.

The field is not declared for the associated logical file.

49: DB DESCRIPTION ERROR. FIELD

Error code.

See error 29.

50: ASSOCIATION OPERATOR INCONSISTENT WITH USAGE

51: SPECIFICATION TYPE ILLEGAL FOR CURRENT SET

Specification type: 1: Ident specification

2: Mother specification

3: Field specification

4: Daughter specification

Set type (internal code: see page 6-10)

52: RECNO ILLEGAL FOR CURRENT SET

The word 'recno' is not allowed for set type M.

53: TOO MANY ASSOCIATIONS IN SPECIFICATION GROUP

For field specifications max 63 is permitted.

For ident specifications with 'recno' only one is permitted.

172

54: INCONSISTENT USAGE SPECIFICATION

55: NOT IDENT FIELD

A field mentioned in the ident specification has not the admini-

strative status ident in the DB description (cf. ref 2).

56: DOUBLE SPECIFIED IDENT FIELD

The same ident field is mentioned twice in the ident specifica-

tion. @

57: ILLEGAL FIELD REFERENCE

The right side of the association must be 'recno'.

58: TYPE CONFLICT

The variable type must be 'recno'.

59: NOT M-REF FIELD

The field in a mother specification line must be declared as

m-ref in the DB description. @

60: DB DESCRIPTION ERROR. LIST

Error code.

See error 29.

61: NOT D-REF FIELD

The field in a daughter specification must be declared as a

d-ref (list) field in the DB description.

173

62: ILLEGAL LIST NUMBER

SODA cannot accept list numbers outside the range (1 TO 63).

63: IDENT SPEC. MISSING

Set number.

When usage 'get' is indicated or 'create' for set type 1 then

the ident specification must not be omitted.

64: ILLEGAL UPDATE OF FIELD

Field status code 1: ident

recno

: record length

&
W
h

: record type

The association defines the update of a constant field.

65: DB DESCRIPTION FILE CANNOT BE EXTENDED

Error code.

The ressources for the description file are insufficient.

66: ILLEGAL DB-DESCRIPFILE REFERENCE

DB file index.

DB file index must not exeed the number of DB descripfiles

specified in the activation of the SODALD compiler.

67: DB DESCR. FILE, INSERT ERROR 1

Error code.

System error. Please contact maintenance group.

68: DB DESCR. FILE, CONTROL RECORD ERROR

Error code.

System error. Please contact maintenance group.

69: AUTOMATIC CREATION OF VARIABLE DECL. AREA NOT POSSIBLE

No declaration text is generated.

70: AUTOMATIC CREATION OF LIST AREA NOT POSSIBLE

The translation is performed without listing.

174

71: LENGTH CONFLICT

Variable length.

Field length.

The receiving location is too short for the value.

72: UNDECLARED DAUGHTER SET

The daughter set number.

73: DAUGHTER/MOTHER SET CONFLICT

The daughter set number.

The daughter specification refers to a set that is not subscripted

with the set containing the daughter specification. @

74: ILLEGAL DAUGHTER SET

The daughter set number.

The referred daughter set is not mother subscripted.

75: UNDECLARED W-NUMBER

The illegal value.

76: UNDECLARED N-NUMBER

The illegal value.

77: TYPE OF VALUE SPECTRUM NOT COMPATIBLE WITH TYPE OF VARIABLE

Variable name and number. @

78: TYPE OF NORM VALUE NOT COMPATIBLE WITH TYPE OF VARIABLE

Variable name and number.

79: INACTIVE ASSOCIATION

The referred field is not declared for any of the record types

in the set.

80: ILLEGAL VARIABLE TYPE

The variable type code.

Only simple word variables are allowed for the association

operator -

175

81: TYPE CONFLICT

The left part type code.

The field type code.

The combination of types of the left and the right part is

illegal.

82: ARRAY/SIMPLE CONFLICT

Number of elements in the left part.

Number of elements in the field.

The combination of an array with a simple location or an array

element is illegal.

83: CONFLICT IN NUMBER OF ELEMENTS

Number of elements in the variable.

Number of elements in the field.

The receiving array has too few elements.

84: ILLEGAL NORM VALUE ASSIGN

The variable type code.

Assign of standard values is illegal for variables of that type.

85: UNDECLARED OR ILLEGAL MOTHER SET

Mother set number.

Only sets associated with CF master files may be mother sets.

86: DAUGHTER SPEC. INCOMPLETE IN MOTHER SET

Mother set number.

The daughter specification in the mother set does not contain

an association to the current set.

87: LOGICAL FILE CONFLICT

Mother set number.

Logical file number from daughter spec.

Logical file number for current set.

The logical file derived from the daughter spec. does not match

with the logical file of the current set.

176

88: MOTHER CHAIN CONFLICT

M-ref field number.

The chain associated with an m-ref field in the mother spec. is

the same as the chain to the mother set.

89: DB DESCRIPTION ERROR. RECORD

Error code.

See error 29.

90: FIELD REF. MISSING IN DAUGHTER SPEC.

The record type.

The field number.

When usage 'delete' is indicated, a daughter specification must

be stated with reference to all d-ref fields in the record type

of the set.

91: MOTHER SPEC. MISSING FOR

The record type.

The field number.

When usage 'create' is indicated, mother specifications must be

stated for all m-ref fields of the record types in the set

except for the one which defines the link to the mother set.

92: ILLEGAL FIELD TYPE

A field of this type is not permitted in the association.

93: ILLEGAL FIELD NUMBER

The illegal value.

SODA cannot accept field numbers outside the range (1 TO 21724),

94:

177

UNKNOWN FIELD

The

The logical file number.

The field number.

field is not declared in the DB description for the associated

logical file.

95: DB DESCRIPTION ERROR. FIELD

Error code.

See error 29.

96: ILLEGAL FIELD TYPE

The field number.

A field of this type is not allowed in restrictions.

97: ILLEGAL VARIABLE NUMBER

The illegal value.

The variable number is outside the legal range.

98: UNDECLARED VARIABLE

The variable number.

99: ILLEGAL VARIABLE TYPE

The variable name and number.

100: ILLEGAL RECORD TYPE

Record type number.

The record type is not declared for the logical file in the DB

descpription.

101: RECORD TYPE USED PREVIOUSLY IN RESTRICTION

The record type number.

178

102: ILLEGAL W-NUMBER

The illegal number.

The number is outside the legal range. (1 TO.127)

103: UNDECLARED W-NUMBER

The w-number.

104: ILLEGAL TYPE OF VALUE SPECTRUM

The w-number.

A value spectrum of type text cannot be used in set restrictions.

105: ILLEGAL INDEX VALUE

Index value.

The number of elements in the array.

‘The index value is outside the range defined by the array.

106: FIELD UNDECLARED IN RECORD TYPE

The field number.

The record type number.

107: TYPE CONFLICT

The combination of types for the two operands of a relation is

illegal.

108: NUMBER OF DECIMALS IN VALUE SPECTRUM NOT MATCHING VARIABLE

The variable name and number.

109: NUMBER OF DECIMALS IN NORM SPECTRUM NOT MATCHING VARIABLE

The variable name and number.

110: LENGTH OF NORM VALUE TEXT TOO LONG FOR VARIABLE

The variable name and number.

111: NORM VALUE EXCEEDING RANGE OF VARIABLE

The variable name and number.

179

112: ILLEGAL USER NUMBER

The illegal value.

The user number is outside the legal range (0 TO 127).

113. LD IDENTIFIER TOO LONG.

The identifier is truncated to 17 characters.

114: DOUBLE DECLARED VARIABLE IDENTIFIER

The variable name has been used in a previous declaration.

115: AGGR. AND ELEMENTARY FIELD IN SAME IDENT SPEC.

The field number (of elementary field).

The ident specification may not contain associations both

for an aggr. field and an element of the aggregate.

116: IDENT FIELD MISSING

The field number.

The ident specification must contain associations for all

ident fields.

117: LOGICAL AND PHYSICAL FILES NOT ASSOCIATED

The whole set declaration is skipped with (possibly) irrelevant

error messages in each line.

118: ILLEGAL FIELD SPEC. NUMBER

The illegal number.

The number is outside the legal range (0 TO 15).

119: ILLEGAL VARIABLE REFERENCE

The illegal variable name and number.

A variable is referred from an entry in the value spectra or

norm value table which is referred from the variable itself.

180

120: VARIABLE NUMBER NOT ALLOWED .

The variable number.

A variable number must neither be referred to nor declared, if © @

the first variable was declared without variable number.

121: NOT ALLOWED WHEN VARIABLES ARE NUMBERED

A set must not be declared by 'record output' or ‘record input',

if variables are declared with variable numbers.

122: SYNTAX

As for 1.

A syntactical error in the set declaration line. The remaining @

part of the set declaration is skipped without further check.

123: TOO MANY VARIABLES

The variable number of the last read variable.

The compilation is finished immediately.

124; ILLEGAL CHARACTER

The last read syntactical unit contains an illegal character.

125: UNKNOWN SYNTACTICAL UNIT

The last read syntactical unit cannot be recognized.

126: TOO MANY DIGITS IN NUMBER @

The number.

The number of digits in a numerical constant must not exceed

15, incl. decimals. And the greatest possible number is

140 737 488 355 327.

127: TOO MANY DECIMALS IN NUMBER

The number.

The number of decimals in a numerical constant must not exceed

6.

128: Not used

129: Not used ®

181

130: FIELD NAME WITHOUT PREFIX

The logical file number.

The field number.

All fields used for record output or record input must contain

a prefix in the field name and the first character after the

prefix must be a letter (cf. section 3.3.2).

131: FIELD TYPE ILLEGAL

The logical file number.

The field number.

The field type.

132: FIELD/VARIABLE TYPE CONFLICT

The logical file number.

The field number.

A variable with the same name has previously been declared with

another type.

133: REPRESENTATION CONFLICT

The logical file number.

The field number.

A variable with the same name has previously been declared with

another number of decimals or characters.

134: DIMENSION CONFLICT

The logical file number.

The field number.

A variable with the same name has previously been declared with

another array specification (dimension).

135: NORM VALUE CONFLICT

The logical file number.

The field number.

A variable with the same name has previously been declared with

another norm value (or possibly with no norm value).

182

136: ILLEGAL NUMBER OF DECIMALS

The logical file number.

The field number.

The number of decimals in SODA must not exceed 6.

137: ILLEGAL NUMBER OF ELEMENTS

The logical file number.

The field number.

The number of elements of any array in SODA must not exceed 511.

138: RECORD TOO LONG

The record type number.

The record length in SODA must not exceed 1024 halfwords (2 seg-

ments).

139: ILLEGAL REPRESENTATION

The logical file number

The field number.

The number of characters in a text variable in SODA must not

exceed 255.

140: REDEFINED RECORD TYPE

The record type name.

The record type has been specified previously.

141: ILLEGAL RECORD TYPE

The record type name.

The specified record type does not belong to the logical file.

142: RECORD INPUT NOT ALLOWED FOR DATA ENTRY

143: UNDECLARED VARIABLE

The variable name.

144: UNDECLARED VARIABLE

The variable name.

183

145: VARIABLE NUMBER NOT ALLOWED

The variable number.

See error 120.

146: ILLEGAL FIELD TYPE

The field type code.

The field number.

A field of this type must not be used in the declaration of

an associated variable.

147: ILLEGAL FILE TYPE

The file type code.

The physical file in a record output or a record input set must

be of type ‘outvar'.

148: NO PERMANENT VARIABLES SPECIFIED

Only used for Data Entry.

149: DB DESCRIPTION ERROR. RECORD TYPE

Error code.

See error 29.

150: UNKNOWN VREFNUMBER

The vref-number.

Inconsistency in the DB description. The value reference number

of a field is undeclared.

151: DB-DESCRIPTION ERROR. VALUE SECTION

Error code.

See error 29.

152: Not used.

153: ILLEGAL USAGE SPECIFICATION

Only used for Data Entry.

184

C. References

1. Connected Files System RCSL 28-D5

2. DATABASE80 RCSL 21-V031

3. P. Lindgreen, E. Rosenberg: SODA - A Flexible Scheme for

Database/Program Interface.

Proceedings of the International Computing Symposium 1977

North Holland Publ. Co

4. BS-System RCSL 31-D288

5. DUET RCSL 21-V046

6. DES80 - SODA LD RCSL 21-V018

7. CODASYL DBTG April 71 Report

8. ALGOL 6 | RCSL 31-D322

9. BOSS (users manual) RCSL 31-D108

File Processor RCSL 55-D21

10. SYSDOK RCSL 28-V033

11. P. Lindgreen: INFORMAL - A Comprehensive Method for

Input Data Description. Proc. Norddata, Helsinki 1976

Also see: INFORMAL RCSL 28-D17

185

Alphabetical index

An (a) specified for a term indicates a reserved ALGOL identifier’

in the SODA DBMS.

An (fp)

activation of the LD compiler.

adate field

Administrative status (of field)

Aggr. field

ALGOL

Algol declarations

Alternative var.name

Anonymous var.number

Application program

Array field

Array variable

Associated variable decl.

Association line

Association symbol

(*) Asterisk

beskrivnavn (a)

Bits variable

BS file

CF list file

CF master file

Character constant

Checksum field

CLOSE FILE

close_soda (a)

CODASYL

Command unit

specified for a term indicates an FP-parameter keyword in

81

81

50, 55f,

3, 9,

133ff,

11,

82

35f, 38,

144, 148

90, 100,

72,

1o, 32,

139,

38,

90, 117,

10, 111

38f

4o

3, 8, 13, 15, 133£f

see Field array

see Variable array

37, 81, 107

see Field/variable ass.

54f, 6o0ff, 63f, 68ff, 79,

38, 84

86, 108

70,

137

36,
13,

72

77,

55£,

73,

50,

56, 85

13, 21, 48, 56, 73

13, 55

see Short text

81

115, 132a

134, 136,

1

see FP-parameters

145

Comment

Concurrent access

Connect

Copyrecord

CREATE

Cross reference list

Current record

Database80

Data independence

Data protection

Date variable

Daughter record

Daughter set

Daughter specification

DB currec

DB description

DBMS

Declaration file

DELETE

descripfile (fp)

Direct access

d-ref field

dspec

DUET

DUET errors (DBMS)

End line

Equivalence field

error (result.var)

Error messages

Error procedure (DBMS)

Explicit variable decl.

31

4 , a

58f

81, 86

14, 18, 29f, 37, 43, 54, 58ff, 66,

69, 7o, 73, 115, 124, 127£, 142, 145

97, 98, 107£

19f, 36, 58, 60, 119, 121, 124

8 (see also DB description) ©

35, 72

21ff, 24, 57f, 60, 64, 129f

24, 48, 58

46, 48, 63ff

19, 124, 129, 146

1, 4, 11, 13, 18, 20, 21, 24, 37, 45

46, 55, 87

see SODA DBMS

see Algol declarations

15, 19, 64, 115, 129f, 142, 145

87, 96, 107, 110 r
15, 48, 54, 56

21, 50, 63ff, 82

see Daughter specification

3, 9, 10, 32, 35£, 38, 40, 90, 116f,

133, 139, 144

118ff, 144

32
83
36
91, 106 112ff, app.B
117, 144f£f @
35, 81, 107

Field access

Field array

Field group

Field name

Field number

Field reference

Field specification

Field/variable association

filnr (a)

for which

FP parameters

fspec

GET

Group

Head line

Ident fields

Ident specification

Implicit variable decl.

init (fp)

init_soda_1 (a)

init _soda_2 (a)

i-number

Insert location

Language code

LD compiler

LD description

LD file

187

2, 27

56, 71, 80

82

37, 55, 80

55

37, 55, 62, 64, 67, To

29, 46, 57, 66ff, 119, 122, 124f,

127

27££, 55, 57, 6off, 63, 66ff, 77,

86

143, 145

see Set restriction

92ff

see Field specification

14ff, 22, 30, 54, 69, 7o, 115, 119£,

124, 142, 145

see Field group

32

14f, 30, 55, 56, 81

30, 46, 54ff, 119, 123, 127, 131

79, 80, 107

95

134ff, 137, 144

134ff, 137, 140

see Record type

18

39, 100

see SODA LD compiler

1, 2, 8f, 11£, 13, 15, 18, 29, 31

1off, 32, 88, 90, 96, 110, 136f,

140, 143

LD identification

LD number

ld_afsnit_nummer (a)

ld_brugernr (a)

ld_ident (a)

ld_initialer (a)

1d_navn (a)

ld_regdato (a)

ld_regtid (a)

1d_varsum (a)

1ld_version (a)

ldfile (fp)

ldtext (fp)

Line numbers

List field

List file

list (fp)

Listing (of LD descr.)

listout (fp)

Logical expression

- Logical file

Log procedure

Log specification

LOOKUP

Master file

Mother/daughter relation

Mother record

Mother set

Mother specification

Mother subscription

m-ref field

mspec

names fp)

New currec

188

see LD number

32, 104, 151

137 . »

138

138

139

139

139

139

139

138

96 e@

94

105, 113

see d-ref field

see CF list file

97

11, 7o, 83, 90, 104, 114

97, 98

49f

1, 2o0f, 46f, 78

53, 141f£

(see also soda_log)

46, 53

14, 115, 123, 142, 146 ©

see CF master file

63, 116

21£f, 24, 58, 63f, 119, 122, 125f

22, 26, 46ff, 57ff, 63

46, 48, 57ff, 119, 122, 125, 127

22ff, 45ff, 48, 58, 59, 63ff

50, 57f£f, 82

see Mother specification

100

19, 124f, 129, 146

189

New page 104

NEWSET 17, 24, 48, 54, 63, 115, 116, 121,

124, 128, 131, 142, 145, 146

NEXT 14, 16f, 36, 69, 7o, 86, 115, 121f,

124, 142, 146

Norm value reference 37, 43, 80, 107

Norm value table 33, 37, A3fE£, 70, 127

n-ref see Norm value reference

Numeric constant 42, 44, 55, 7o, 71

Numeric variable 35, 55

ok bit 114

Operational var.name 38f£, 100

paper (fp) 97, 99

Parameter group see FP parameters

Physical file 2, 13, 20, 53

Prefix (in field name) 80, 82

prim (a) 136

Procedure number see sd_procuo

PUT 15, 18, 22, 29f, 36, 58ff, 69, 71,

81, 115, 124ff, 127, 142, 145

readspec (resultvar) 36

readterm (resultvar) 36

reclength field 81, 86

recno 16, 22, 30, 36, 50, 55, 56, 67, 73,

116f

recno (resultvar) 36£

Record access 1

Record field 8, 37

Record input 77, 85

Record membership 20, 47, 49f£, 119, 121, 123

Record number see recno

Record output 77, 80

Record set 1, 8, 9, 13, 20, 45

Record status 19, 116, 124, 129, 131

Record type

rectype field

. Relation

Repeating group

Repeating group vector

Repeating group no.of.

repetitions

Reserved identifiers

Result variables

Rpg

Scan

Schema

sd_alarm (a)

sd_extend_buf (a)

sd_fejl (a)

sd_kedeindex (a)

sd_log_before (a)

sd_procno (a)

sd_resultat (a)

sd_sprogkode (a)

sd_setnr (a)

sd_saettype (a)

sd_tilstand (a)

sd_transfer (a)

sdtrans (a)

sdz (a)

Secondary mother

(fp)

Selection expression

section

Sequential access

Sequential file

Set

Set

set

Set

Set

Set

declaration

decl. head

number

refereme

restriction

sequential position

190

20, 46f, 127

81, 86

49f

29, 71, 72£, 82

72

78, 83,

73

137££, 148£f

36, 116£

see Repeating group

see Sequential access

1

144

138

146

143

143

142,
146

139

142,
143,

146

147

136

143

59

94, 97

see Set restriction

16£, 116

see BS file and CF list file

15, 17, 20, 22, 26, 45ff

46ff

47,

48,

20,

17,

145

145

145

78, 85

63£

41,

18,

46, 49
121, 131

191

Set sequential status 17, 121, 124, 127, 129, 131f, 146

Set type 14, 16, 117, 143

Short text 42, 71

Singular set 22

size (fp) 101, 111

SODA DBMS 1, 1off, 14ff, 115ff, 133, 135, 137

SODA LD compiler 9, 11, 54f, 89ff, 115, 136

SODA LD language 9

SODA LD... see also LD ...

SODA program texts 134

SODA variable 8, 27f, 33ff

soda (resultvar) 36

soda_bsaccess 139

soda_cfaccess 139

soda_error (a) 117, 134, 136, 144€

soda_giveup (a) 139

soda_log (a) - 134, 136, 141ff

(see also Log procedure)

sodatext 1 (a) 134ff, 144

sodatext 2 (a) 134ff

sodatext 3 (a) 134

SQ file see BS file

Standard value see Norm value table

Sub schema 1

sysdok (fp) 94, 105, 110

tduetcode (a) 136

test (fp) 102

testout (fp) 102

Text variable 35, 72

Transfer (field/var.) see Field/variable ass.

Unnumbered variables 4o, 77

Usage specification 46, 52ff, 62, 65, 68, 71, 115

Value spec reference 37, 41, 49, 80, 107

Value spectra table

vardecl (a)

vardecl (fp)

Variable

Variable array

Variable/field association

Variable name

Variable number

Variable reference

Variable table

Variable type

version (fp)

warning bit

W-ref

xref (fp)

zone record

192

33, 37, 41f£f, 49

joo, 134, 136

(see also Algol declarations)

100

see SODA variable

37, 83

see Field/variable ass.

34, 40, 51, 55

34, 40, 55

4o, 42, 43f£, 49ff, 55, 61, 67,

70, 107£

33ff

35, 80

94

114

see Value spec reference

97, 98, 107£

27

