.

Title:

Connected Files System

Users Manual

[E s HEGNECENTRALEN

RC SYSTEM LIBRARY: FALKOMNERALLE 1 DK-2000 COPENHAGEN F

RCSL No:
Edition:
Author:

28-D5
May 1972

Inge Borch
Edith Rosenberg
Jorgen Winther

Keywords:

RC 4000, Software, Algol, Fortran, Procedures, Disc, Indexed Sequential Files,
List Files, Chains

Abstract:

The system is a set of procedures, which can set up and process two kinds of
backing store files. Records are accessed either by logical key or by chain.

98 pages.

Users of this manual are cautioned that the specifications
contained herein are subject to change by RC at any time

8

Copynght@ A/S Regnecenfmlen, 197 without prior notice. RC is not responsible for typographi-
. cal or arithmetic errors which may appear in this manual

Printed b)’ A/S Regnecen?ruien, Copenhugen and shall not be responsible for any damages caused by

reliance on any of the materials presented.

v

CF=SYSTEM

Content: page
Introduction 2
Masterfiles L
Listflles 5
Chalns 9
Fille configurations 12
Protection of files 15
Format of procedure descriptions 18
Procedure descriptions 19
Reorganization of flles 50
Reorganization procedures 53
Appendix A: Survey of alarms 57
Appendix B - - procedures oL
Appendix C - - cf-states 67
Appendix D: Format of array chains 69
Appendix E: - - description files 70
Appendix F: - - extracted record 71
Appendix G: Zone bufferlength 73
Appendix H: Programming example 74
Appendix J: How to dimension the files 88
Appendix Z: List of keywords 94

CF~SYSTEM 2
Introduction

Introduction

The connected-files-system is a set of RC 4000 Algol standard
procedures, designed to handle records and 11nks between
records In filles with direct access.

The system has been planned mainly to sult ordinary adminl-
strative Information systems such as production= , purchase- ,
and sales-control, but the structures, which may be deflined and
processed by the system, are sO general that other applications
should be possible.

The central feature of the system Is the chaining of records,
i.e. one record holds a pointer to a next—-in-chain-record. ATl
records 1In one chain wlll have one common property, namely the
starting polnt, which is a special record, the mother-record of
the chain. Thus, when several chains passes through one record,
this record will mark a 1ink between the propertles specifled
by the mother-records of the coinciding chalns.,

Chains and two kinds of flles are used by the system 1O
achieve direct access to records by key or by chain.

Master=files:

A record in a master-file 1Is addressed by a wuser-deflned
logical key carried In the record. The master-files are
organized Indexed-sequentially so that fast sequentlial proces-

sing can be anticlpated. Variable record=length Is possible.
List-files:

A record is addressed by Its record-number which Is selected
by the system at the insertion-time. The record-numbers are
used internally for the chalning pointers. The physical block,
in which a record Is stored, Is calculated directly from the
record-number, but the placement of the record Inside the block
is read in a record-table heading the block to allow for
records of wvariable length.

A list-file record will always be a daughter-record of one
or more chains, but it may also be the mother-record of any
number of chains, whereas master-file records are used as

mother-records exclusively.
Chains:

A chain will always start at one record (the mother=record)
Iin a mother-file (file holding mother-records, master- or
list-flle) and continue in one or more records (daughter-
records) 1In a daughter-file (file holding daughter-records,
always a list=file).

Any actual chain (string of loglcally connected records) In
the system will belong to a certain predefined logical group
of actual chains.

Depending on the context, the concept of a chain will be used
in the followlng to denote one actual chaln or a whole group

CF-SYSTEM 3
Introduction

of actual chains.

A group of actual chains Is characterized by the two flles
concerned and by the position of the record-fields used for
chaining (two files may be connected by any number of chalins).

The chain-groups are numbered within an actual flle-confl~-
guration from one and up, the chain=-number being used for
initialization of the processing of that particular group of
chains.

An actual flle-configuration set up and processed by the
connected~file-procedures may contain any number of flles and
any number of chalins connecting them, The only limitation Is
that loops in the structure are forblidden, i.e. It must not be
possible to meet the same file twice by stepping over the
mother-flle to daughter-flile connectlions,

All flles are RC 4000 backing store areas, whlch must be
treated separately wlith regards to initializatlon, openlng,
closure and dumping. The connectlons are only checked when
chains are processed and when it is attempted to delete records
in mother=-files.

Any file may be prolonged to a certaln predefined l1imit In
order to accommodate more data, but the best dlstributlion of
records wlill most likely be obtalned iIf this facillty is used
sparingly.

An algol=-zone I1s connected to each file wused by a certain
program, and records appear as zone-records so that no super-—
f luous core-store-copying is performed., The record-flelds wused
for the administration of chains are not accesslible from the
users program.

CF=-SYSTEM 4
Masterfliles

Master files

These files contain the records which should be accessed
directly through user-defined keywords carrled In the records.,

The basic file-administration-system is the Indexed-Sequen-
tial-Flle-Systemn of RC L4000 described in RCSL No.55-D99. As
regards the fundamental propertles of the master-flles, this
manual should be consulted, since the corresponding procedures
of the cf-system only provides for the administration of the
chain-flelds,

In fact, It 1Is possible to process a single master-file by
the indexed-sequential procedures, If these procedures are used
exclusively, but It Is not recommended, since the chain-flelds
of the cf-system wlll not be protected, and It will be possible
to delete a mother-record without deleting the corresponding
daughter=-records.

One major difference between the set of procedures described
In RCSL Neo.55-D99 and the cf-procedures is the way In which the
files are opened and closed. In connection with the cf-system,

the standard open- and close-procedures of RC 4000 algol are
never used, and It Is not necessary to call one of the
mode~-changing procedures to ensure that the flle 1is properly
updated.

File-Initiallization can only be terminated by the close-cf
procedure and not by the mode-changing procedures.

Another difference is that the delete-m procedure has long=
range effects, as It also deletes all list-flile records
connected to chains orliginating in the master-flle-record,

An opened master-flle Ils protected against wunauthorized
input-output-procedures by means of special zone-state values,
In principle, these zone-states are just a parallel displace-

ment of the zone-states used by the Indexed-sequential proce-
dures, see appendix C.

The cf-system will, In some cases, reference master-fille-
records internally for the wupdating of chalin-fields, The
logical key and not some physical address Is used in this case,
too, primarlly because the physlical location of a master—-file-
record may change, due to Insertions and deletions, but also
because the reference by key Is standard, and makes It possible
to reorganize a master-flile without touchling any other file In
a file-configuration., The costs are that the chain-flields used
for mother-reference are rather long, and that reference tc the
mother-record of a chain will require the usual search in the
tables of the Indexed-sequential flle.

The master=record reference, which is carried In chain-fields
and in the chaln-tables (see chains), Is a copy of the Kkeypart
described in RCSL No.55-D99, Il.e. a data-fleid holding the
keywords of a master-fille-record In a compressed form,

CF-SYSTEM 5
Listfiles

List files

This kind of file iIs designed especlally for the cf-system

and is intended to hold the records which only should be
accessed through links from other records,

The file~administration facllitates access to a certaln
record in one step by a short address, as opposed to the
master-files, where 1long key-fields and access In two steps,
block-table and block, Is the rule.

A record is ldentified by a record-number, a positive Integer
not greater than a maximum number determined by the slize of the
file and the range of record=-numbers allocated to one block
(The greatest posslible record-number is 8.388.606).

It is not possible for the wuser to Insert a record at a
certain record-number, the flle-administration Itself will find
an unused record-number according to a certain strategy, insert
the record at this number, and Insert the record=number as a
24-bit integer In the chaln-field of the record which is
prior-in-chain to the Iinserted.,

Flle=structure:

The list=file is stored as a backlng store area contalning
a file-head, a block-table, and a varlable number of blocks.
The flle~-head contalns information for the processing of

records and the chain-tables (described under chains) of the
chain-groups of which the file iIs the daughter. The file-head
is never written back to the file,

The block-table contalns a 6-bit entry per block holding a
logarithmic derivative of the percentage of free room in the
corresponding block. The table is held permanently In core
during the processing and It Is wused to obtain an equal
distribution of records over the whole file. This is important
for the physical clustering (see insert=strategy) of records
being daughters of the same chalin and It 1imits the number of
block~accesses to find a suitable block for an insertion to a

maximum of two (see insert-strategy). The block-table s
written back to the flle together with some status-varlables by
the close~cf procedure or the read-only=-cf procedure, if

records have been removed or Iinserted.

A block occupies an Integral number of backling store segments
(1 to 8§ segments, each of 512 bytes of 12 bits). All blocks
are of equal length and one block corresponds to a certaln
user-defined range of record-numbers.

Each block 1is prefaced by some status-varlables and a
record-table of one entry per record-number allocated to that
block. An entry In the record-table consists of a 12-bit byte,
the rightmost bit defining, whether the record-number [s free
or not, and the rest, the base of the corresponding record
glven relative to the base of the block.

A file may be declared to hold records of elther flixed or

CF=SYSTEM 6
Listfiles

variable length, in the latter case, the first 4 bytes of the
user—-part of each record Is reserved by the system. The first

2 bytes will tell the length of the user-part measured In bytes
and the next 2 bytes contain the record-number, both repre-
sented as integers. These 4 bytes are always restored before

a new zone-record is fetched.

There are two limitations to the number of records which can
be accommodated In one block: The number of record-numbers per
block and the amount of room for records In one block,

In case of fixed record-length, both limitations are made
equal by the cf-system, but in connection with variable length
records, the user himself must Dbalance the 1limitations by
estimating the length of the minimum record which Is going to
exploit all the room of some blocks wlthout participation of
other records.

The cost of setting this minimum length too low, is one 12
bit byte per superfluous record-number, on the other hand,
setting It too high, may cause some room LO be left unusable
in blocks mainly containing small records.

A list-flle may be prolonged, but not shortened, simply by
increasing the size of the backing store area of the file. This
can be done during a run by use of the procedure extend-cf, or
between runs by the utllity—-program set (System 3). However,
the maximum number of blocks In one file must be glven when the
file-head 1s created, because room for a maximum block-table I's
reserved before the first block of the file (a block-table of
one segment corresponds to 1008 blocks, two segments to 1008
+ 1024, etc.).

During processing only the active part of the block-table is
held in core, a large upper limit Is thus not very expensive,
but It 1is not advisable to let a list-file grow too much, and
especially not too often, since this will tend to disturb the
clustering of records (see insert-strategy).

File-processing:

The zone used for a list=file, holds the flle-head In the
first part of the zone-buffer, then the block-table as the
first share of the zone, and after that a number of shares Cat
least one), each able to hold one block. Each block=share
demands a bufferlength equal to the blocklength plus one word
of 24 bits,

The use of at least two block-shares can be advantageous
because return to the previously accessed block will be qguite
common during the maintenance of chaln-flelds In connection
with insertion and deletion of records.

on the other hand more than one block-share can be Incon-
venient, as an updated block will not be written back until
some other blocks have been read, so that the disc-heads have
changed position.

If at least three block-shares are used, the cf-system will
wrlte back updated blocks In parallel to program executlon, so

CF-SYSTEM 7
Listfiles

that one block-share iIs always ready for Input with a minimum
of waiting=time.

The cf-system holds a sorted llst of one entry per block~-
share, the first entry polnting to the block which has been
accessed most recently, and the last entry polinting to the

victim, i.e. the block which Is going to be overwritten next,
because 1t has not been accessed for the longest perlod.

If the victim-block has been updated, then the transfer back
to the file will be inlitiated, but not walted for, at the time
when the block becomes the victim, provided that at least three
block-shares are avallable.

In order to make multi=-block~share runs economical and to

diminish transfer-time, the user should define a small block-
length, on the other hand, short blocks will demand more core
for the block-table and will increase the total slize of

unusable block=remnants.
Insert-strategy:

The Insert-strategy concerns the way in which records are
placed physically In the flle.

The ideal is to have records with a high probabllity of
sequential retrieval placed sequentlally or at least placed In

the same neighbourhood in the file, l.e. In so few physical
blocks as possible.

In a list-file, records linked loglcally together In the same
chain will have such a great probabllity of sequential retrie-
val. It s therefore attempted to concentrate connected records
physically., This will in the following be called to cluster the
records.

The intentlon Is to obtaln & great probability of finding the
next record of a chain In the same block as the last accessed
record, the galn of having two daughter-records of one chain

placed In the same block being one block-access each time the
chaln Is traversed,

The clustering 1is only taken into account when a new record
s golng to be inserted, i.e. already placed records are never
moved as that would involve very high costs.

By this simple method, it is only realistic to hope for
clustering of one group of chalns. A general optimization of
all chains might be the task of a later, probably rather
complicated, reorganization program.

Therefore, the user should favour one chain-group in each
list=file by letting the Insert-]| procedure work upon this
chain-group, as this procedure performs the physical Insertion
of a list-file-record.

A list-file-record may be connected to one actual chain of
each chalin-group defined. One chaln Is connected by the
insert-1 procedure, the remaining chalns may be connected by
the procedure connect.

The block wused for the insertion Is selected by insert-1
according to the following algorithm:

CF=SYSTEM 8

Listflles
1. if new chain then find the block of most free room
else
2. if room in block containing the neighbour-record
then select this block
else
3. If overflow has occurred earlier from the block

containing the nelghbour-record and room is
available in the overflow-block
then select the overflow=block
else
4, find the block of most free room and make this
block the overflow=block of the block containing
the nelghbour-record,

The block containing most free room 1|s searched In the
block=-table, the nelghbour=-record Is the record which Is going

to be prior to the inserted record, or in case the Inserted |is
next to the mother-record, then the record next to the
inserted. The insertion 1is not performed in case the flle Is
already filled beyond a user-specified percentage, or |In case

the block of most free room 1s not able to hold the record.

In case 1 of the algorithm above, an Insertlon will require
1 read and 1 write block-access, whereas the worst case, case
4, reguires 2 read and 2 write block-accesses when at least two
block=-shares are available, but 4 read and 2 write block-
accesses, If only one block-share Is available.

Wwhen a block becomes more than half empty after a record
deletion, the overflow-polnter is erased.

Zone-states:

A zone opened to a list=file may be in one of the following
three states analogous to those used for the master-files:

read-only-1 It is only possible to read the file; this is
the state set by the open-cf procedure. The
state is not recommended, because the removal
of dead records is not carried out (see chains-

R

read-update=| Both reading and writing are allowed, but to
ensure that changes In a record retrieved by
the procedure get-1 or get=-numb=-1, will be
reflected in the file, the procedure put-cf
must be called after the retrieval. Any record
read by the user may end up in the flile, so the
user should not make any transient changes of
record-fields.

update-all=1 All accessed records are written back to the
file.

CF=SYSTEM 9

Chalns
Chalns
A chain in the cf-system is baslcally a string of records,
each record except the last one holding the reference to its
successor.,
The first record is called the mother-record and the other

ones are called the daughter-records of the chain.

The mother-record and the daughter-records are placed In two
separate files, called the mother-file and the daughter-file of
the chain respectively,

The mother=flle may be either a master-file or a list-flile,
but the daughter-file is always a list=flile, i.e. reference Lo
the next-in-chain record is always a list=flle record-number,

A1l records in a chain will have a 24-bit chainflield holding
either the reference to the next record In the chain or
indicating end of chaln, i.e. all chalns are open and one-way.

In addlition a daughter-record may contaln a reference to the
mother-record, the chain Is sald to be headed. This reference
is either a compressed key of a master-file-record or the

record-number of a list-file record. The mother-reference may
be fetched by means of the procedure get-head, in order to look
up the mother-record by get-m or get-numb-1, according to the

type of the mother=file.

The mother-reference is intended for this purpose, which only
can be of any value In case the mother-reference is wanted far
a chain, different from the chain by which the record was
accessed, but for the reason of securlty, It is checked
internally that the mother-reference 1Is the samne in all
daughter-records of one chain.

All records Iin one file will have a chain-part of the same
format, each field in the chaln-part corresponding to a certain
chain-group, of which the file is either the mother or the
daughter.

A chaln-group corresponds to a certalin mother-file and a

certaln daughter-file, and it will wutilize some speciflic
chain=fields in the records of these files,
A record in any file will contain a user-part followed by a

chain-part, the user=-part belng of fixed or variable length and
the chain-part of fixed length.

Specification:

A1l chain-groups In a certain file-configuration are speci-
fied by an integer array used as a parameter of the two
head~procedures head-m and head-1.

A call of one of these procedures wlll In a backing store
area generate a file-head holding among other things the
specification of the chaln~groups assigned to the flle,

The fundamental informatlon concerning a chaln=-group is the
number of the chain=-group (all chain-groups are numbered by the
system from one and wup), the poslition and size of the

corresponding chaln-flelds, and the role of the file, mother or
daughter,

CF=-SYSTEM 10
Chains

Processing:

Before a certain group of <chains can be processed, the
corresponding mother-file and daughter-file must be opened and
the init-chain procedure called.

This procedure wili cet up some absolute addresses in the
zone-buffers of the two files to enable cross-reference between
the two zones, and 1t will return a real parameter holding two
absolute addresses pointing to the Information In the zone-
buffers concerning the chain-group.

This return value must later be used as a parameter of the
various chaln-processing procedures to speclify the chalin=-group.
The parameter is the one named chainref in the procedure
descriptions.

Chain-tables:

The list-=file =zone-buffer contains a table for each chalin-
group of which the file Is the daughter.,

Each chain-table can hold the Information needed to define a
position 1in an actual chaln of the corresponding chaln-group.

This information consists of the following four parts:

prior The record-number of the record which precedes the
last accessed record. If the last accessed record
is the first daughter-record, then prior is zero.
last , The record=-number of the record accessed most
accessed recently through the chain-group. It is zero If the

chain-state is empty (see chain-states),.

next The record-number of the record succeeding the last
accessed record. This field is copied from the next
chain-fileld of the last accessed record.

mother The reference to the mother-record of the actual
chain stored in the same format as the correspon-
ding record=-chain=fleld.

The <chain-tables are used by almost all procedures having a
chaln-parameter, the procedure get-1, for example, will use the
next-field of the chain-table to retrlieve the next record of
a chain. The prior-field s used when the last accessed record
is deleted, and when a record is connected to a chain prior to
the last accessed record.

Chain-states:
A chain=group is in one of the following three states:
not=init This is the state before the call of the procedure
init-chain, but the state is also assumed when one

of the two corresponding =zones is closed, No
chain-processing can occur in this state.

CF=SYSTEM 11

Chalns
empty The empty-state Is assumed after the first call of
init-chain, and in other cases specifled 1in the

procedure descriptions.

last~-acc- A chaln=position is defined by the chain-table. The
def ined last accessed record is not necessarlily the current
record of the daughter-file.

Dead records:

A list-file record wiil always be deleted as the last
accessed record of a chain-group, whether the deletion 1Is
performed explicitly by the wuser or internally through the
file-connections.

For thls chaln-group it is possible to remove the record from
the chain as the prior record Is noted In the chain=table.

I[f a record is connected to one chain only, It Is also
removed from the file, but In the case of more than one
connected chain, the record wlll remalin in the file as a dead
record until it has been dlisconnected from all the remaining
chalns. The disconnection will be performed by the system each
time the dead record Is retrieved as the next record of a

chain, provided that the zone is in one of the wupdate states
(the mother-zone must also be in an update state 1f the dead
record happens to be the first in the chain).

The user will thus never retrleve a deleted record, but a
certaln percentage of dead records in a list-flle, depending on
the use of the chains, must thus be taken Into account. This
strategy together with the use of the one-way chain has been
selected to obtain a fast maintenance of chains.

CF-5YSTEM 12
File-configurations

of this chapter is to propose a way of drawlng

The purpose
file-configurations.

diagrams defining the structure of actual

fig. 1 1 Master-file
(mother of chain 1)

1 chain (clustered, no
reference to mother)

2 list=-file
(daughter of chain 1)

The diagram of fig. 1 shows a single master-flle given the
logical file-number 1, a single list=file given the logical
file-number 2, and a single not headed chaln, chain 1 of the
configuration., The double arrow is used to indicate the chain,
the daughter-records of which are clustered by the insert-l

procedure, exactly one double arrow must point to a llst-file.
This simple structure might be wused 1In cases where some
record=-part Is varying strongly In length or is Infrequently

used.

CF=SYSTEM 13
File-configurations

Master-file
fig. 2 ; (mother of both chains)
1 chain 2
—— (clustered, headed) —— chain
i (not clustered,
headed)
list-file

([daughter of both chains)

In fig. 2 the structure Is extended by an extra chain-group,
and both chain-groups are headed, i.e. each daughter-record
holds a reference to the mother-record of the chain, This is
specifled by two bars crossing the arrows. Chaln 1 is the
clustered one.

By this configuration it is possible to look up a record in
the master-file, retrieve a record of the corresponding chain
1, fetch the mother-reference of chain 2, and look up the
mother-record in the master-file. Each record In the list-file
may thus Dbe thought of as a link between two records of the
master-file, nanely the two mother-records of the actual chalns
to which the list-file record is connected.

The chains of fig. 2 may, for example be used to establish
the bill-of-material/where=-used structure of manufactured com-
ponents.

CF=SYSTEM 14
File-configurations

fig. 3 1 customers
6 order-chain
dl/
<:::::;%:::::> order-heads
5 order-line-~-chain
J
ii:::::> order-lines
orders-for-
4 1 component-chain
description
chain components
/- 2
3 used-on—
) chain
3 3 \u’
descriptions 1 relations
40

Where-used-chain

In fig. 3 an exanple is shown of the file-configuration of a
sales-control system,

It may, for example, through this structure be found out, how
many components are needed to effectuate the orders of one
customer, or which orders have been received for a specific
component,

The orders are split into two files, as one order may hold
some informaticon common to a number of order-lines, each
corresponding to a certalin component.

[f the component-records have some lengthy and infrequently
used parts, for example some text-descriptions, these parts may
be stored in a separate list=file.

CF=SYSTEM 15
Protection System

M b e L L R il e S e e e m D e e — = o o e e S s e e s e

An administration of the permanent files of an adp-system
will face the following two error causes:

1. A file is not properly updated if the processing 1is not
terminated by a call of some closing procedure. This call
may not be executed, 1f a program Is terminated by an
operation system or by a run time alarm.,

2. If more than one permanent file Is used, there Is a risk
that different generations of files are mixed 1In a run,
This risk 1Is greater 1if a lot of files of different
updating frequencies are used,

Errors of the first type may not be so serious In systems
using sequential files, because the flles are scanned from one
end to the other, so the lack or Inconsistency of some
endoffile label will reveal the error.

For systems wusing random access flles, like the cf-system,
errors may remain undetected for long periods and may give rise
to alarms, which are wvery difficult to trace back to the
orlginal cause,

The wuse of random access files introduces another error
cause.

3, The same job or program may erronecus be run twice causing
a double updating of the files involved. This is not
possible in connection with sequential files, where the two
runs would be completely identical, because the old ver-
sions of the files are unchanged.

- e . e B T e i e S m - -

The cf-system has been provided with protection against the
error causes 1 and 2, but not against 3.

The catalog entry of a file is used by the protection system
in this way:

file = set <segments> <bs device> <verslon> <update mark>.
The two last quantities are special for the cf-system:

<version> A number (0 <= version <= 3 000 000), which is
increased by one each time the processing mode

CF~SYSTEM 16
Protection System

is changed from read-only to update.

<update mark> Either 0 or 1.

0: The file is in read-only-state, This should be
the state between runs, and this is the state
accepted by open=-cf.

1: The file s in update-state. This state must
not occur between runs, and a file in update-
state is rejected by open=-cf.

Errors of type 1 are detected by means of the update-mark,
which will be equal to one, if a processing in an update mode
is terminated by an index alarm f.ex..

The second error type is remedied through the use of the
version number In connection with a supervisory register
holding the actual version numbers of all the files of a
fileconfiguration, The procedure open-af wil' check that the
version numbers in the supervisory register, and In the catalog
entry of the flle are identical.

A masterfile is used as the supervisory register, It is
called the description file because it can be used for all
Kinds of descriptions, f.ex. files, records, and fields.

A maintenance program for description files has been pro-
duced, and wutllity programs, and higher level cf-procedures,
planned at present, will use the description file.

It is possible though, but not recommended, to switch off the
version number checking. In this case the description file is
not necessary, but the version number In the catalog entry 1is
still increased.

The update mark checking can not be switched off.

The format of the description file is given in appendix E.

set-descr-cf

This Is the name of a procedure, which must be called before
the first call of open=-cf.

The call of set-descr-cf will provide the cf-system with the
name of the relevant description flle. The name is lateron used
by the procedures open-cf, read-upd-cf, and update-all-cf.

If an empty string is glven as the parameter of set-descr-cf,
the procedures will not attempt to access a description flle.

Whenever the description file Is accessed, it Is checked that
the update mark of the description file itself is zero.
Therefore the wuser must avoid simultaneous updating of the
description file, in a zone of his own, and calls of open-cf,
read-upd-cf, and update-all-cf concerning other fl les.

CF=SYSTEM 17
Protection System

Alarms

when the protection Is violated, or If the protection system

has troubles with a catalog entry or the description flle, a
run time alarm will terminate the program. The alarm is issued
by the external algol procedure protect-cf, which actually

performs the functions of the protection system,
Such an alarm ls headed by the following two lines:

xxxprotectcf alarm:
file <flile number> <file name> vers.In.cat <verslion>

The text: file, is replaced by the text: descr, if the trouble
concerns the description file,

The run time alarm following these two lines will explain
what happened, see appendix A, under protectcf,

Other alarms than mentioned in appendix A may arlise, If the
description file is not ok. The alarm will originate from
either buf-length-cf or open-cf used upon the description flle.

CF-SYSTEM 18
Procedure Description

<procedure name> proc.no.<proc, no,>

<abstract> (A short functional description).

Call: <procedure call> (Format of call),
<parameter description>» (Explanation of each parameter),

Requirements:
(Conditions for a successful exit from the procedure.
If the requirements mentioned are not fulfilled, the
run will be terminated by an alarmmessage).

Results:
(Results from the procedure, inclusive notes on states

and accessible records).

result_cf current record
(possible values (specification of the
of the standard accessible record, if
variable result_cf), any).

<further explanation> (Eventually some extra notes and warnings).

CF-SYSTEM 19
Procedure Description

buf_length_cf proc.no. 1

Returns the bufferlength of a zone to be used for a connected
file, ‘

Call: buf _length_cf (filename, blocks_in_core)
buf_length_cf (return value, integer) The needed buf-
ferlength.
filenane (call value, string) The name of a

backing store area holding a cf-file.
blocks_in_core (call value, integer) Defines the num-

ber of blocks wanted In core at the

same time:

Masterfiles.

blocks_in_core = 1, or 2 if full
insertion is wanted,
Listfiles:

blocks_in_core >= 1, >= 2 1Is
recommended.

Requirements:
filenane must describe a backing store area holding a

correct masterfile or listfile, and must not be reser-
ved,

Results!:
result_cf = 1, ok

Further explanation:
Declares a zone, opens the file, reads the first seg-
ments, and computes the needed bufferlength according
to blocks_in_core.

A masterfile-zone may be declared:
zone zm(buf_length_cf(flilename, 1 or 2), 3, blockproc);

A llstfile-zone may be declared:
zone z1(buf_length_cf(filename, blocks_Iin_core),
blocks_in_core +1, blockproc);

Cocumenterrors will cause stderror to be called.

CF-SYSTEM 20
Procedure Description

close_cf proc.no. 6O

Terminates the use of the zone by writing back eventual up-
dated blocks.

Call: close_cf (z, rel)
z (call and return value, zone) Connected
to a masterfile or listflle,.
rel As for algo!l procedure close,

Requirements:
zonestate = any cf-state, exept after-declaratlon,

Results:

zonestate L, after—-declaration.

result_cf 1 ok

Chainstates will be not_inlt for assoclated chalns.

connect

CF-SYSTEM 21
Procedure Description

proc.no. 13

The procedure connects the last accessed record In one chain to

another

Call:

chain according to a specifled mode.
connect (z1, chainref_1, chainref_2, lcmode)

zl (call and return value, zone) Connected
to a listfile.

chainref_1 (call value, real) Return parameter from

Intt_chain., The record to be connected
Is the last accessed record of this
chain,

chainref_2 (call value, real) Return parameter from
init_chain. The reference for the chailn

to connect toO.

icmode (call value, Integer)
=1 connect chain_1 record as first member
of chain_2 from current record In the

motherflle of chaln_2.

= 2 connect chaln_1 record as next to last
accessed record In chain_2.

=3 connect chain_1 record as prior to last
accessed record in chain_2.

Requirements:

Results:

Note:

z] must be daugtherfile of both chain_1 and chaln_2.

zonestate = read_update_1 or update_all_]1.

chainstate (chain_1) = last_accessed_def,

If Icmode = 1, chalnstate (chain_2) may be empty else
last_accessed_def.

If lcmode = 1, then current record In the motherflle

must exlst.
If the connected record is next to the mother record,
the motherfile must be In an update state.

If result_cf = 1, the connected record will be last-
accessed in chain_2, too. Zonestates are unchanged.

result_cf current record
1 connected the connected
2 not connected (already none

conn., to another chaln)

For icmode = 3: see the note for the procedure Insert_1,

CF=SYSTEM 22
Procedure Description

delete_chain proc.no., 16
The procedure deletes all records In a chain headed to current
record of a fille and all records in chains originating In re-

cords of the specified chain.

Call: delete_chain (z, chainref)
z (call and return value, zone) Connected
to a masterfile or listfile,
chalnref (call value, real) Return parameter from

Init_chain.

Requirements:
zonestate = read_update_m, update_all_m or read_update_1I,
update_all_1 depending on the type of the specified flle.
All chalns origlinating In the daughterflile glven by
chalnref must be Initlalized. Current record must exlist,
All daughterfiles must be In an update state,

Results:
zonestate is unchanged. Chainstates become empty for
all chains associated to flles, where records have
been deleted.

result_cf current record

1 deleted unchanged
2 no chain to delete -

CF-SYSTEM 23
Procedure Description

delete_ proc.no, 15

The procedure deletes the last accessed record In the chaln and
all records in chains originating In the record. The next record
In the chaln becomes current record of the flle.

Call: delete_1 (z1, chalnref)
zl (call and return value, zone) Connected
to a llstflie,.
chainref (call value, real) Return parameter from

init_chain.

Requirements.

zonestate = read_update_1 or update_all_1,

chainstate = last_accessed_def.

All chalns orliginating In the listfile must be Initia-
lized.

A1l daughterfliles and the motherfile corresponding to

chalnref must be In an update state.

Results:
zonestate Is unchanged. Chainstates become empty for
all chains assoclated to files where records have been
deleted, except the chain specified as parameter (see
below), Other files where records have been deleted,

wlll have no current record.

result_cf current record

1 deleted the next in chaln
2 - last In chaln, none

chainstate = empty

CF-SYSTEM 24
Procedure Description

delete_m proc.no. 14

The procedure deletes the current record of the file and all re-
cords In chains originating In the masterrecord.

Call: delete_m (zm)

zm (call and return value, zone) Connected
to a masterfile,

Requirements:
zonestate = read_update_m or update_all_m. All chalns
originating In the masterfile must be Initialized.
All daughterfliles must be In an update state.

Results:
Chainstates become empty for all chalngroups assoclated
to daughterflles, where records have been deleted,
Other files, where records have been deleted, will have
no current record.,

result_cf current record

1 deleted the next in the file
2 - (end of file the first

3 not deleted, only one the one

left In the flle.

It Is obvicus that the call may have rather wlde consequences.
In case of several connected flles It 1s advisable to use the

procedure delete_chain in connection with delete_m to get more
Informative results,

CF=-SYSTEM 25
Procedure Description

extend_cf proc.no. 2

The procedure increases the length of a cf-flle during the pro-
cessing. The current record, zone- and chainstates are preserved.

Call: extend_cf (z, segments)
z (call and return value, zone) Connected
to a masterfile or listfile.
segments (call value, integer) The extenslon in

segments.,

Regquirements:
zonestate = read_only, read_update, or update_all, _m or
_1. The zonestate Is checked by a call of read_only_cf.

Segments >= 0, and not so great, that max_bucks or max_

blocks is violated.

The bufferlength of the zone must be sufficient for the

extended file,

Segments and bufferlength are checked in a call of open_
cf performed on the extended file.

Results:
Current record, and all states are unchanged for any

value of result_cf,

result_cf

1 ok

2 ok, but only room for simple Insertion In mas-
terfile buffer,

> 10000 error in a call of a monitor function,
result_cf = result of monitor call x 10 000

+ nunber of monitor function.
Probable results:
Loouu change-entry, the scope of the file
does not permit change.
6004Y change-entry, there is not room for
the extension,

CF-SYSTEM 26
Procedure Description

get_head proc.no. 10

The procedure Is used on current record in a llst_file to give
the key of the mother-record of a chalin to which the listfile-
record Is connected.

The key may evt. be a rec_no of a listfile record.

Call: get_head (z1, chainref, key)

zl (call and return value, zone) Connected
to a listfile

chainref (call value, real) Return parameter from
init_chain.

key (return value, real array) See keywords,
app. 4.

Requirements:

zonestate = read_only_1, read_update_1 or update_all_lI.

chainstate = last_acc_def or empty, current record must

exist.

z1 must be the daughter_file of the chain.

Results:
result_cf current record
1 ok unchanged
2 record not connected unchanged,

and key unchanged

CF=SYSTEM 27
Procedure Description

get_1 proc.no. 9
The procedure searches a new current record In a listfile.
Call: get_1(z1, chalnref, gmode)
z1 (call and return value, zone) Connected
to a listflle,
chainref (call value, real) Return parameter from

Init_chalin.

gmode (call value, Integer)
=1 the wanted record is the first member of
the chain from current record in the
motherfile.

= 2 the wanted record [Is the one next to the
last accessed record In the chain.

= 3 the wanted record is the last accessed
in the chalin.

Requirements.

zonestate = read_only_1, read_update_1 or update_all_1,
chainstate = last_accessed_def, or if gmode = 1, empty.
I[f gnode = 1, current record in the motherflle must
exist.

Results:
result_cf current record
1 found the wanted
2 not found If gnode=2 then the last

accessed else none
[f no current record then chainstate = empty else last accessed

record corresponds to current record.

CF=-SYSTEM 23
Procedure Description

get_m proc.no. 38

The procedure searches a record In a master-file with a specified
key and makes 1L current record.

Call: get_m{zm, key)
zm (call and return value, zone) Connected
to a masterfille.
key (call value, real array) See keywords,
app. Z.
Requirements:
zonestate = read_only_m, read_update_m, or update_all_m.
Results:
result_cf current record
1 found the found
2 not found next with a greater key

3 - - , end of file the first

CF-SYSTEM

29

Procedure Description

get_nunb_1

The procedure makes a
available as current record.

listfile record

proc.no. 23.

given by its record-number

Call: get_numb_1 {z1, rec_no)
z1 (call and return value, zone) Connected
to a listfile,
rec_no (call value, integer) Contains the num-

ber of the

Requirements:

zonestate = read_only_1,

Results:
result_cf

l record active
2 record dead

zonestate and chainstate

wanted record.

read_update_1 or update_all_1,

current record

the wanted
none

are unchanged.

CF-SYSTEM 50

Procedure Description

get_paran_cf

proc.no. 30

The procedure yields the values of a selected set of parameters
from the zonebuffer of a cf-file,

Call:

z (call

get_paran_cf (z) one or more pairs: (paramno, val)

and return value, zone) Conncted

to a masterfile or listfile.

par amnno

(call

value, Integer) Identifies the

wanted zoneparameter.

val (return value, Integer) Receives the
value of the zoneparameter identified
by paramno.

Requirements:

The zone must be opened by open_cf or Init_file_m,

[f the file is a masterfile, paramno must be one of the
values listed in RCSL No. 55-D99, appendix Bl.

If the file is a listfile, paramno can be one of the

following nunbers:

paramnno name

1 dead-bytes
2 used-bytes
3 fill=1imit
Results:
result_cf = 1, ok.

meaning

Number of bytes occuplied by dead
records (including chaln-parts),
Number of bytes used by records
(incl. dead records).

The maximum allowed percentage of
used-bytes In the flle. (Standard
is 80 pct. for a not empty file.)

Alarm —-par.pair~ occurs when an error Is found in the parameter-—
list. Alarmno shows the number of the parameterpair, where the

error was found,

CF=-SYSTEM 3]
Procedure Description

head_1 proc.no. 26

The procedure will generate the head of a listfile In a backing
store file. (See app. J. for selectlion of size_1)

Call: head_1 (filename, file_no, chains, size_1)
filename see procedure head_m
file_no - - -
chains - - -
size_1 (call value, integer array)

Contalns the following 4 integers:

fixed_rec_length
= 0 means varliable record length Is
wanted,
> 0 means fixed length Is wanted,
the value specifies the length
in bytes.

min_rec_length in case of wvariable
length, this Iinteger specifles the
minimum length of records, which
should fill a block without parti-
clpation of longer records,

segs_per_block number of segments In
a block. (1<= segs_per_block <= 3).
The length of the greatest record
that can be inserted in a block may
be calculated thus:
chain_part_size =
Z2xno_of _assoclated_chains
+ sigmna(typexcompressed_key_
slze) over all chains of which
the flle Is the daughter;
comment see array chains;
max_no_of _recs_per_block :=
(512xsegs_per_ block //
(min_rec_length +
chaln_part_slize + 1) + 1)
/2 x 2;

max_rec_length =
512 x segs_per_block -
(chain_part_size +
max_no_of_recs_per_block + 8);

max_blocks the maximum number of
blocks the file will ever hold,

Results:
result_cf = 1 ok, flle_head is created.

CF-SYSTEM 32
Procedure Description

head_m proc.noc. 25

The procedure will generate the head of a masterfile In a back-
ing store file. (See app. J. for selection of size_m)

Call: head_ m (filename, file_no, chalns, rec_descr,
no_of_keys, size_m)

filename (call value, string)
The name of the backing store file,

file_no (call value, Integer)
The logical number of the flle used
in chain specifications.,

chains (call and return value, integer array)
Contains the specification of all chaln-
groups In the system. The procedure re-
turns the guantity compressed_Key_size
for the associated chalns,
See format of array chains In app. D.

rec_descr (call value, integer array) A two di-
mensional array (lino_of_keys+1,1:2)
holding Information about types and re-
lative locations of the keywords and
the length In a record.

Same conventions as In RCSL 55-DS9, the
length in element no_of _keys+l, with
type=(0 for fixed length records,

no_of_keys (call value, Integer) The number of key-
words.
size_m (call value, Integer array)

Contalns the following 4 integers:

maxreclength maximum length, [In bytes,
of records which will be stored In
the file,

maxbucks maximum number of buckets the
file will ever hold.
segsperbuck the number of segments in

one bucket.

segsperblock the number of segments in
one block.

Resultls:
result_cf = 1 ok, flle head is created.

CF-SYSTEM 33
Procedure Description

init_chain proc. no, 5
The procedure establishes the connection between the two zones
used for the motherfile and the daughterfile of a chaln-group.

Call: init_chain (z, z1, chainno, chalnref)

z (call and return value, zone) Connected
tc a masterfile or listfile, This zone
must be opened to the mother-file,

z1 (call and return value, zone) Connected
to a listfile, This zone must be opened
to the daughter—-file.

chalnno (call value, Integer) The number of
the chain-group In the array chalns,
(See app. D).

chalnref (return value, real) This real is
lateron used as chaln-reference.

Requirements:

zonestate (z) = read_only_m or _1, read_update_m or _1,
update_all_m or _1
zonestate (z1)= read_only_1, read_update_1, update_all_]l

Chainno must describe a chaingroup connecting the two
files to which z and 21 have been opened.

Results:
result_cf = 1, ok
if chainstate = not-init then chalinstate = empty
else chainstate is unchanged.
chainref = chain-reference

CF-SYSTEM 34
Procedure Descriptlion

Init_file_m proc.no. 27

The procedure prepares a backing store flile for Initialization.
The file must contain a master file head. The initiallzation
must be effectuated by successive calls of Init_rec_m and ter-
minated by a call of close-cf,.

Call: init_file_m (zm, filename, giveup, buckfactor,
blockfactor)

zm (call and return value, zone) A zone
with room for at least one block (see
procedure buflength_cf).

filename (call value, string) The name of a
backing store area holding a file head.

giveup As for algol standard procedure open.,

buckfactor (call value, real) See file_i procedure
init_file_1i.

blockfactor (call value, real) See file_l procedure

Init_flle_1I.

Requirements:
zonestate = 4, after declaration.
The zone must be declared with exact 3 shares, and have
a sufficlent large buffer area. The flle must contain
a correct head.

Results:
result_cf
zonestate

1 ok
init_m.

Iy

CF~-SYSTEM 35
Procedure Description

Init_rec_m proc.no. 28

The procedure is used to add records to the file one by one in
the key order. All chain-flelds are empty after the Insertion.
The initialization should be terminated by a call of close-cf.

Call: init_rec_m (zm, record)
zm (call and return value, zone) Connected
to a masterfile by init_file_m.
record (call value, real array) The record to

be Inserted.

Requlrements:

zonestate = init_m,
Results:
result_cf current record
1 record added none
2 not added, flle Is full none
3 - - , Improper length none
L - -, - key none

CF-SYSTEM 36
Procedure Description

insert_| proc.no., 12

The procedure inserts a record in a chaln according to a specl-
fied mode, and makes 1t available as the current record.

Call: Insert_1 (zl, chainref, lcmode, record)
zl (call and return value, zone) Connected
to a listfile,
chalnref (call value, real) Return parameter from

init_chain.

icmode (call value, integer)
=1 insert record as first member of the
chain from current record in the mo-
therfile,.
C.’ = 2 next to last accessed record in the
' chain
= 3 prior to last accessed record in the
chain.
record (call value, real array). |If variable-

length the lexicographical flrst ele-
ment must contain 0.0 shift 24 add
length shift 24,

Requlrements:

zonestate = read_update_1 or update_alli_1.
chainstate = last_accessed_def or if icmode = 1, empty.
If icmode = 1 then current record in the motherflle must

exist. If the motherfile is touched, it must be In an
update state,

Results:
(’ chainstate = last_accessed_def if result_cf = 1.
result_cf current record
1l inserted the inserted
2 fill limit exceeded none
3 length error -
4 no block can take this record -

The users record Is expanded with the necessary chainflields
(all empty) before the insertion.
The inserted record will later be transferred to the flle.

Note: For lcmode = 3! if last accessed Is next to a motherf]le
record, this record will be current record of the matherfile
after the call.

Cr=-SYSTEM 37
Procedure Description

Insert_m proc.no. 11

The procedure Inserts a record in the proper place In the flle
and makes it available as the zonerecord,

Call: insert_m (zm, record)
zm (call and return value, zone) Connected
to a masterfile.
record (call value, real array) The record

to be inserted.

Requirements:

zonestate = read_update_m or update_all_m.

Results:
result_cf current record
1 inserted the inserted
2 record already in file the one in the file
3 not inserted, tooc expensive next with a greater Key
b file is full - - - - -
5 lenygth error - - - - -
6 no buffer - - - - -

The users record is expanded with the necessary chainfields

(all empty) before insertion.
The inserted record will later be transferred to the file.

CF=-SYSTEM 38
Procedure Description

new_recl_cf proc.no. 24

The procedure Is used for changing the record-length of the
current record, only possible for masterfiles with varlable

recordlength,

Call: new_recl_cf (zm, length)
zZm (call and return value, zone) Connected
to a masterfile.
lTength (call value, integer) Defines the new

length In bytes.

Requirements:
zonestate = read_update_m or update_all_m.
variable record_length defined.

Results:
result_cf current record
1 changed the same
2 last rec, in file same with the old length
3 too expensive - - - - -
4 file is full - - - - -
5 length error - - - - -
6 no buffer - - - - -

In case length Is less than the original length, ele-
ments are squeezed out from the upper end, otherwise
data are unchanged.

CF-SYSTEM 29
Procedure Description

next_m proc.no., 17
Makes the next record in a master-file current record,

Call: next_m (zm)

zm (calil and return value, zone) Connected
to a masterfile,

Requirenents:
zonestate = read_only_m, read_update_m or update_all_m.

Results:
result_cf current record

1 found the next
2 found, end of file the first

CF-SYSTEM 40
Procedure Description

open_cf proc.no., 3

The procedure opens the zone for the specified file and prepares
it for use by the other file_cf procedures.

Call: open_cf (z, filename, giveup)
z (call and return value, zone) A zone

with room for at least one block (see
procedure buflength_cf),

filename (call value, string) The name of a
backing store area holding a file head.

giveup As for the algol standard procedure
open, Yet open_cf wlll always set the

end-of-document=bit (1 shift 18) In the
give~up=-mask.

Requirements:

zonestate = 4, after declaration.
Filehead ok, masterfiles must contain at least one
record.

Fllename must be known.
Set_descr_cf must have been called.

Results:
zonestate = if masterfile then read_only_m
else read_only_1.

result_cf current record

1 ok If masterflile then the
first else none
2 oky but only room for simple the first in the
insertion in the masterfile masterflle
zonebuffer

If the program tries to open a flle, which is not Inltialized,
the run will be terminated by an alarm probably concerning a
masterfile-error, even if the file was expected to be a listfile.

CF=-SYSTEM b1
Procedure Description

protect_cf proc.no. 33

Special purpose procedure,

The procedure Is called Internally by the cf-system In order to
have update marks and version numbers checked. But It can be
called directly if the name of the current description register

is wanted by some standard procedure.
Call: protect_cf (z, action)

z (return value, zone) Will contain the
name of the description flle If set_
descr _cf was called before this call.

action (call and return value, integer)

Must equal -1.
It is changed to 0 If set_descr_cf was
not called,

Requirements:
action = -1,
Other values of action may have peculiar results,

CF=SYSTEM 42
Procedure Descriptlion

put_cf proc.no. 18

The procedure ensures that the current record wlll be transfer-
red to the file.

Call: put_cf (z)

z (call and return value, zone) Connected
to a masterfile or listfile,.

Reguirements:

zonestate = read_update or update_all.
Results:
result_cf current record
1 ok unchanged
The procedure is —-dumny- when zonestate = update_all, or the

current record is created by insert.

CF-SYSTEM 43
Procedur= Descriztion

read_only_cf proc.no. 19

Transfers updated blocks to the file, and sets the zonestate Lo
read_only_m or _1.

Call: read_only_cf (z)

z (call and return value, zone) Connected
to a masterflle or listflile,

Requirements:

zonestate = read_only_m or _1, read_update_m or _1, or
update_all_m or _1.
Results:
result_cf = 1, ok
zonestate = read_only_m or _1.

current record Is unchanged,

CF-SYSTEM L4
Procedure Description

read_upd_cf proc.no. 20
I[f zonestate = read only_m or _1 and a current record exlsts,
a new copy is transferred from the file. Zonestate |s set

to read_update_m or _1.

Call: read_upd_cf (z)
z (call and return value, zone) Connected
to a masterfile or llistflle.
Requl rements:
zonestate = read_only_m or _1, read_update_m or _1,
update_all_m or _1.
Results:
result_cf = 1, ok
zonestate = read_update_m or _1.

current record Is the same, but evt. a new copy from
the file.

CF-SYSTEM 45
Procedure Description

set_descr_cf proc.no, 32

This procedure must be called at least once In any program

using open_cf. The call must precede the first call of open_cf,
The procedure provides the cf-system with the name of a
description file. The description file is accessed Internally

by the cf-system for checking, and updating of version numbers
in the procedure open_cf, and in the procedures read_upd_cf and

update_all_cf if the prior zone state was readonly,

Set_descr_cf may be called several times, If mcre description
files are involved in a run, and the parameter of set_descr_cf
may be empty, Indicating that no description flle should be

accessed,

Call: set_descr_cf (descr_file)

descr_file (call value, string) The name of the
description file, or an empty string
(<::>). In the latter case the ver-
slon number check is not performed.

Requirements:
The call is always legal, the existence of the descrip-
tionflile Is not checked by set_descr_cf.

CF=-SYSTEM L4
Procedure Description

set_Jjumps_cf proc.no. 4

The procedure specifies for a certaln zone a user-procedure to

be called when certain values of cf-proc-no and result-cf coin-
cide at exit from a cf-procedure. These cases are specified by

the parameter-pairs cf_proc_no and results,

Call: set_Jjumps_cf (z, Jjump_proc)
one or more palrs: (cf_proc_no, results)
z (call and return value, zone) Connected
to a masterfile or listfile.
Jjump_proc (procedure) The name of the users pro-

cedure, which must be declared at the
same blocklevel as the zone, or at an

outer level, It should be declared
thus:
Jump_proc (z, cf_proc_no).
cf _proc_no (call value, integer) and
results (call value, Iinteger)

Specifies the result_cf-values for
which jump_proc should be called upon
exit from the cf-procedure ldentified
by cf_proc_no.

Requlrements:
The zone must be opened by open_cf or init_file_m.

Jump_proc cannot be called from those cf-procedures which are

external algol procedures (see app. B, nor from open_cf,
get_param_cf, or set_param_cf. If cf_proc_no speclifies one of
these procedures, It will be neglected.

cf_proc_no = 0 denotes all possible cf-procedures.

results = 0 denotes clearing of all previously specified

result_cf values for cf_proc_no. Non-existing result_cf wvalues
are ignoered,

Any number of result_cf values can be specified Iin one
parameter by representing each result_cf value as one digit in
the decimal representation of results., As the result-digits are
processed from behind, result = 120 will clear old specifica-
tions and set the new values 2 and 1.

Alarm =-par.pair- occurs when an error s found In the parame-
terlist. An alarmno > 0 shows the number of the parameter pair,
where the error was found, alarmno = 0 denotes an error in

Jump_proc (e.g., declared at a wrong blocklevel),

CF=SYSTEM 47
Procedure Description

The parameter pair (1l,1) needs a special explanation:

If this parameter palr has been given, the jumpproc Is called
as.

alarmproc (z, -cf_proc_no, alarm_number)
where alarm_number is an integer specifying the number of an
alarm occurring during the processing of zone z.

If alarmproc returns through its final end, the usual alarm Is
given, but it is possible by a goto out of alarmproc to
continue the processing.

It is only possible to trap alarms occurring when it is sure
that zone z contains a correct fillehead, l.e., 1[It is not
possible to trap zonestate alarms or the alarms from open_cf
and Init_file_m.

Alarms from procedures coded in algol cannot be trapped.

CF-SYSTEM 43
Procedure Lescription

set_param_cf proc.no, 31

The procedure assigns new values to a selected set of parameters
In the zonebuffer of a cf-file.

Call: set_paran_cf (z) one or more pairs: (paramno, val)
z (call and return value, zone) Connected
Lo a masterfile or listfile.
par amno (call value, integer) Identif]es the
Zoneparameter to be changed.
val (call value, integer) The new value to

be assigned to the zoneparameter Jden-
tified by paramno.

Requlrements:
The zone must be opened by open_cf or inft_file_m,

For a masterfile the allowed set of values for paramno
and val Is listed in RCSL No. The

parameters will only be changed in the zonebuffer,

but not in the flle. 55-D99, appendix B2.

For a listfile the only parameter which can be changed
is fill=limit, i.e. paramno = 3 (see get_param_cf),
and 1 <= val <= 100. The value wil] be inserted in the
zonebuffer as well as In the file,

Results:
result_cf = 1, ok.

Alarm -par.pair- occurs when an error is found in the parameter-
list. Alarmno shows the number of the parameterpair, where the
error was found,

CF-SYSTEM 49
Procedure Description

update_all_cf proc.no, 21

If zonestate = read_only_m or _1 and a current record exists, a
new copy Is transferred from the file, Zonestate is set to
update_all_m or _1,

Call: update_all_cf (z)

z (call and return value, zone) Connected
to a masterfile or listfile.

Requirements:
zonestate = read_only_m or _1, read_update_m or _1,
' update_all_m or _1.

Results:
result_cf = 1, ok
zonestate update_all_m or _1.
current record Is the same, but evt. a new copy from
the file,

CF-SYSTEM 50
Reorganization

Normally the c¢f-files should be selfmaintaining, special
overflow areas f.ex. are never used, and deleted records can
be cleaned out during the normal use., But It may of course
happen, that record formats must be changed, that new chain-
groups must be created, or old ones removed, or that a new
version of the cf-system demands that fileheads of the existing
files are changed.

For doing this kind of reorganization, four procedures are
introduced: init_extract, extract_cf, init_add, and add_cf.

The basic scheme of a file reorganization, using these
procedures, Is the following:

1. All records of a file are extracted one by one in
sequential order. The extracted records will contain the
userparts as well as the chalnparts of the original
records.,

2. The extracted records are transformed according to the new
record format. Care must be taken to preserve Inter-
record-references. If listfile records are renumbered or
masterflile Keys are changed, the corresponding references
must also be changed.

3., A new filehead Is created according to the new demands.

k., Records are added to the new file In sequential order.
Masterfile records are added In ascending keyorder and
listfile records are added at certain record-numbers,
normally the same record-numbers as before the reorganiza-
tion, in increasing record-number order,

The procedures Iinit_extract and extract_cf are used in step
1 to fetch the records,

Tools for execution of step 2 are not provided here, but It
should on the other hand be possible to perform step 2 in a
reasonable way by means of prograns coded in algol or fortran.

The procedures head_m or head_1 may be used in step 3 for the
creation of the new fllehead, and the procedures init_add,
add_cf, and close_cf are used for the reinsertion of records
in step b4,

The scheme can be used for any kind of reorganization, but
it should be emphasized that reorganization involving resequen-
cing of records will be very complicated, even removal of dead
records from a listfile , if done sequentially, will Involve
much sorting and access to the relevant motherf] les,

Soy in the fellaowing, only the simple reorganization of one

CF-SYSTEM 51
Reorganization

file, 1i.e. cases, where all records of one flle are extracted
and added again In the same order, will be considered.

In this kind of reorganization, the keys of master records,
and the keys of list records will be unchanged.

The reason for such a reorganization can be one of the
following:

1. A new version of the cf-system demandling a new filehead 1is
released.

2. You want to make a compressed dump of a flle on magnetic
tape without unused space and administrative tables.

3, You want to have masterfile records dlstributed evenly over
the whole flle with a certain filling factor, or you will
decrease the total length of the masterflle. Listfiles
cannot be shortened because the mapping of record numbers
on the physlical blocks is not changed.

4, Some file parameters should be changed, f.ex. segs-per-
block, segs-per-bucket, max-bucks, or max-blocks.

In these four cases step 2 in the basic reorganlzation scheme
is not needed.

5. The record format should be changed. New fields must f.ex.
be added, or old ones removed, or the recordlength should
be made variable, etc..

6. New chain groups should be created or old ones removed,
This involves a change of the chainparts of all records of
files associated with those chalin groups.

e o e et am o o m ot s . A - . - n . A -

The simple reorganization can always be performed on master-
files, and on listfiles of flxed length records.

But in connectlon with listfiles of variable length records
it is not sure, that all records can be added to the new
version of the file, if some recordlengths have been increased,
or if the min-rec-length~ or the segs-per-block-parameter of
head_1 has been changed.

This problem is due to the fact that the record number of a
listfile record Is not changed by the recrganization.

A group of longer records, which in the old verslion of the
flle were placed 1In separate blocks, may happern to belong to
the same block in the new version, or have grown so big, that
they cannot be accomodated In the block any more.

i

CF~SYSTEM 52
Reorganlizatlion

A remedy to this, Is to have a smaller quantity of record
numbers per unit of physical room. This can be obtalned through
the use of a greater value of min-rec-length, the parameter
size_1(2) of the procedure head_1. But you can normally not be
sure, that all records can gc Into the new verslon of the flle,
and the more sparce mapping of record numbers on the physlical
room, wlll on the other hand increase the slze of the listfile.

NB. The reorganization procedures are not coded yet.

CF-SYSTEM 5%
Reorganlzation

Inlt_extract proc.no. 34

Reorganlzation procedure,

The procedure prepares a cf-flile for extraction of records.
The extraction must be effectuated by successlve calls of the
procedure extract_cf, and termlinated by a call of close_cf.

Call: Init_extract (z, filename, gliveup)

z (call and return value, zone) A zone
wlith room for at least one block (see
procedure buflength_cf).

filename (call value, string) Name of backing
store area holding a cf-file,
giveup (call value, Integer) As for algol stan-

dard procedure open.

Requlrements:
zonestate = 4, after declaration.
filename must polnt to a backing storage area containing
a cf=-file,
If the file is a masterfile, it must contain at least

one record,

Results:
zonestate = extract-cf,
result_cf = 1, no current record,

CF-SYSTEM 54
Reorganization

extract_cf proc.no. 36

Reorganlzation procedure,

The procedure creates an extracted record In the array glven as
the second parameter. Before extract_cf can be used, the proce-
dure Init_extract must have been called,

The first call of extract_cf will yleld the first record of the
file, the next call the next etc..
Note that also dead listfile records are extracted.

See appendix F for the format of an extracted record.

Call: extract_cf (z, extract_rec)
z (call and return value, zone) Connected
to either a masterflile or a listfile by
Inlt_extract.
extract_rec (return value, real array or zone) Wil

hold the extracted record If not end of
file, The record Is stored from byte 1
and on.

Requlrements:
zonestate = extract_cf,
result_cf = 2 must not have occurred.
The bounds of extract_rec must include the byte numbers
1 and total_length., (see appendlix F).

Results:
no current record.
result_cf
1 ok
2 end of flle
In case of result_cf = 2 extract_rec Is unchanged, and a

succeeding call of extract_cf will glve an alarm.

CF-SYSTEM 25
Reorganizatlion

Init_add proc.no. 35

Reorganization procedure.
The procedure prepares a cf-file for addition of records.

The addition must be effectuated by successive calls of the
procedure add_cf, and terminated by a call of close_cf.

Call: init_add (z, filename, buckfactor, blockfactor)

z (call and return value, zone) A zone
with room for at least one block (see
procedure buflength_cf).

fllename (call value, string) Name of a backing
store area holding a cf-flle.

glveup (call value, Integer) As for algol
standard procedure open,

buckfactor (call value, real) If listfile then
not used, If masterfile then see flle_I
procedure Init_flile_I.

blockfactor (call value, real) See buckfactor above.

Requlirements:
zonestate = 4, after declaration.
fllename must point to a backing storage area holding
a correct cf-fllehead.

Results:
zonestate
result_cf

add_cf.
1, no current record.

CF-SYSTEM 56
Reorganlzatlion

add_cf proc.no. 37

Reorganization procedure.

The procedure adds an extracted record glven by the second para-
meter to the file given by the first parameter.

Before add_cf can be used, the procedure Inlt_add must have been
called.

The records are added In ascending key- or recordnumber-order.
See appendix F for the format of an extracted record.

Call: add_cf (z, extract_rec)

z (call and return value, zone) Connected
to either a masterfile or a 1listfile by
init_add.

extract_rec (call value, real array or zone) The

extracted record must be stored here
from byte 1 and on.

Requlrements:
zonestate = add_cf.
The bounds of extract_rec must include the byte numbers
1 and total_length.
The total_length must equal 8 + user_part_slize + chaln_
part_size. (See appendix F.)

Results:
no current record.

result_cf

ok

not added, masterflile Is full, or recno toc great
- - , Improper user_part_slize
- - , descending master Key or recno,

- - , not room In listfile block.

W N e

CF~SYSTEM 57
Appendix A: cf-alarms

- — e e A o

Errors may be found at several levels:

1. Standard errors, l.e. errors concernling the device and the
transfers, may be analysed In the blockprocedure, as In any
other algo]l Input-output procedure. The glveup mask Is a call

value to the cf_procedure open_cf. However, end of document
has a special treatment In the cf_system, as the masterflles
are regarded as belng cyclilc, and end of document In a
listflle means addressing outslide the area, which should be
impossible. (See the procedures get_m and get_1).

Unnormal slituations: As a general philosophy Is chosen that
It Is not up to the cf-system to declde what may be regarded
as -normal- and -unnormal-, as far as normal -bookkeeplng-
can be malntalned. The standard Integer varlable result_cf
will vyield the result of a procedure call, which always
should be checked by the user. Any result of any cf-procedure
may alsc be caught In a procedure specifled as a call value
to the procedure set_Jjumps_cf, though Its origlnal purpose
rather is to glve a faclllty for supervision during debugging
of the program.

Grave loglical errors, l.e. requirements are not fulflilled at
a procedure call, will always terminate the run wlith an algo!
run time alarm, In this case the varlous zones are not
closed, and flles which were In an update mode at the time
of the alarm will not be updated correctly.

The format of the alarm depends on, whether the error
occurs In a code-procedure or In an external algol procedure,
see the survey of alarm-messages on the followlng pages.

An alarm is generally caused by the users program, for
example If the procedures are callad 'n a wrong order, or 1If
the program does not care for unexpected values of result_cf.

Some alarms may be due to an error In the flle, as for
example checksumerror In the fllehead., A flle-error may
however be caused by a program-error in a previous run, or
by combining flles of different generatlions.

A few of the errors should be qulte Impossible. They have
the alarmtext -cf-error- and can only be due to some grave
error In the cf-code, or to some hardware-error durlng the
run.

CF-SYSTEM 58
Appendix A: cf=-alarms

A1l alarms from code-procedures have the followlng format:

<alarmtext> <alarmno> cf-system

called from ...

where <alarmtext> Is a short mnemonlic cause, and <alarmno> a

further specification,
is arranged alphabetically after

The following survey of alarms

the alarmtext,.

text alarmno explanation error caused by

array p 13 The parameter array Is too short for the program
masterflle~key.,

cf-error 10 The mother~-record of the actual chaln has cf-system
disappeared.

cf-error 37 The record-number Inside a listflle-record cf-system
does not correspond to the position of the
record In the flle.

chaln p 15 Parameter chainref does not contaln a va- program
1id chainreference,

ch.ass. 9 The file and the chain-group are not program
associated,

ch.head 18 The head of a listfile-record Is not con- flle
sistent,

ch.state 16 The chain Is not initiallzed, l.e., init- program
chaln has not been called after open-cf.

ch.state 17 Last accessed record is not deflned, i.e. program
the chainstate has become empty after the
last use of the chaln.

ch.type 20 The chaln Is not headed, so a call of program
get-head is Impossible,

d.state 29 The daughter=zone is In read-only-mode, program

,
Ls

so deletlon of the mother=-record and
daughter~chaln Is Impossible.

express.

mode p

m.state

no curr.

par.palr

prep=-cf

prep-cf

prep-cf

prep-cf

prep-cf

prep i

prep |

prep |

36

11

28

14

<i>

24

25

26

32

33

CF-SYSTEM
Appendlx A: cf-alarms

A return-parameter Is glven as an expres-
sion In the procedure-call.

Wrong mode=-parameter In call of get-1,
insert-1 or connect, l.e.
mode<>1 and mode<>2 and mode<>3,

The mother-zone Is In read-only-mode, so
delete~1, insert-1 or connect In mode 1
(next to mother-record) Is Impossible.
listflile does not

Current record in a

exist,

An error In the parameter-list In the call
of set=-jumps-cf, get-param-cf or set=-param

—cf. If I > 0, i shows the number of the
wrong parameterpalr, | = 0 denotes an
error in the parameter Jumpproc In call
of set-jumps=-cf,

too few segments In the document of a
listfile, l.e. segs < segs-In~head, or
the number of segments is less than It
was In the last run In update-mode,

The zonebuffer Is too small to open a
listfile,

Checksumerror or some other error In the
fllehead of a l1lstfile,

The zone for a flle Is not declared
with at least two shares,

Too many segments In the document of a
listfile, i.e.
(segs - segs-in-head)//segs~per-block
> max-blocks.

Too few or too many segments In the docu-
ment of a masterfile, l.e.

segs < segs=-per-buck or

segs > segs-per-buck x max-bucks.

The fllelength Is less than It was In the
last run In update-mode, or some error In
the bucket-head,

The zonebuffer !s too small
initlalize a masterfile.

to open or

59

program

program

program

program

program

file

program

file

program

flle

file

flle

program

prep |

prep |

prep |

prep |

rec.no.

rec., no.

Z.state

19

22

CF-SYSTEM
Appendix A: cf-alarms

Checksumerror or some other error In the

filehead of a masterflile,
The zone for a masterflle Is not declared
with three shares,

Wrong zonestate internally

Empty masterfile

The record-number of a listflle=-record Is
outside limits. Thls may happen expllcl-
tely in a call of get-numb-1 as a program=
error or implicitely In other procedures,
if the file has been destroyed.

No listflle-record is asslgned to the
record=number., Program- or fllererror as
for alarmno, 19.
Wrong zonestate. <i> Is the actual
zonestate,

60

flle

program

cf-system
file
program

or
flle

program
or
file

program

CF-SYSTEM 61
Appendix A: cf-alarms

Alarms from external algol procedures have the followlng format:

xXxx<proc.name> alarm:
<alarmtext> <integer> ext <line-Iinterval>
called from ,..

An exception is alarms from the protectlion-system, which have the
format:

xxxprotectcf alarm:

flle <flleno> <f!l lename> vers.In cat: <verslon>
<alarmtext> <Integer> ext <line-interval>
called from ... -

Here the text ~-flle- |1Is replaced by the text ~descr-, If the
trouble concerns the description-file.

CF=SYSTEM 62
Append! x A: cf-alarms

program text alarmno expianation error caused by
xxxbuf lengthcf block p <I> The parameter blocks=1n- program
core has an Jllegal value.

<i> Is the erroneous value,
xxxbuf lengthcf prep-cf 0 Some error In the fllehead. file

xxxhead] chains p <!> Chaln-type or compressed- program
key-size in parameter ar-
ray chalns has an lllegal
value, or If I = 0 then
wrong bounds of array
chains, or If I > number
of the last chaln, then
Iistfile not daughter of
any chaln group.

xxxhead] loop=ch 0 A loop Is found In the program
chaln=structure glven In
parameter array chalns,

xxxhead | slze-1 p O One of the values glven In program
parameter array slze-1 is
illegal.
xxxheadm chalns p <I> As for procedure head-1 program
xxxheadm recdescr <i> One of the values glven In program
parameter array rec-descr
Is Illegal, or if | > 2044

then too many keyflelds.
(Only for noofkeys > 50).

xxxheadm terad T p 0 Some unreasonable slize program
parameter,

xxxheadm head | p 1 Not room for 2 records of program
maxlength Iin one block.

xxxheadm head | p 2 Not room for 1 biock In program
the first bucket.

xxxnewreclcf

xxxnewreclcf

xxxnewreclcf

xxxprotectcf

xxxprotectcf

xxxprotectcf

xxxprotectcf

xxxprotectcf

xxxprotectcf

xxxprotectcf

xxxprotectcf

Append! x A:

cf-error

flxed 1

Z.5tate

change

descrrec

lookup

reserve

setdescr

updmark

updmark

version

CF=SYSTEM

<i>

<i>

<l>

<i>

cf-alarms

Trouble with Insert-m, <!>
is the value of result-cf.

The file contalns records
of flixed length, so It
has no meanling to use
new-recl=-cf.

Wrong zonestate, <> Is
the actual zonestate.

The catalog entry with the
name <fllename> could not
be changed. <I> Is the re-
sult=-value of the monltor-
functlion,

The flle~-description-
record In the descrliptlion=
flle could not be fetched
by get-m. <I> Is the value
of result-cf after get-m.

The catalog entry with the
name <fllename> could not
be looked up. <I> 1s the
result-value of the monl-
tor-function.

The flle with the name
<fllename> could not be
reserved. <i> Is the re-
sult~-value of the monltor-
functlon.

The procedure setdescr-cf
was not called before
open=-cf,

The flle Is Iin the state
of an unterminated update,

An updatemark was expected
In the catalog entry of
the flile.

The verslon-number of the
file does not correspond

to the verslon-number In

the descriptlion-flle.

<i> Is the verslon=nuncer
In the descriptlion=flie,

63

cf~system

program

program

job adm

file

Job adm

Job adm

program

flle

cf~system

Job adm

10

11

12

procedure names
and parameters

buf_length_cf
(filename,
blocks_in_core)

extend_cf (z,
segments)

open_cf (z,
fllename,
gliveup)

set_Jumps_cf
(z, Jump_proc,
procno, results)

Inlt_chain (z, z1,
chal nno,
chalinref)

close_cf (z, rel)

get_m (zm, key)

get_1 (z1,
chalnref,
gmode)

get_head (z1,
chainref, key)

Insert_m (zm,
record)

Insert_1 (z1,
chalnref,
Icmode,
record)

+

CF-SYSTEM
Appendi x B:

cf-procedures

result-cf

value and meanling

- —— - A M S S M S W S e M R A G G W R N G GGR NS M W N M T G W W G G O M G S M S GES NS M RN e I e S W Gm e e

- (WY L

PO g

VU AN RO

o N e

ok
extended
ext, slmple Ins.

not extended
monl tor-error

ok

ok, simple Insert

ok

ok

ok

record found
not found

y eof

record found

bl

current record

meaningless

unchanged

zm:flrst; zlinone
zm:flrst

unchanged

unchanged

none

the wanted
the next In flle
the flrst - -

the wanted

not found gnode=2: last acc.
else: nome

ok unchanged

not connected -

Inserted the Inserted

already In flle the one In flle

too expenslive the next In flle

file full - - - -

length error - - - -

no buffer - - - -

Inserted the inserted

fill=-1imit exceeded none

length error
no block

13

14

15

16

17

18
19
20
21
22

23

20 x

25x%

20

27

connect (z1,
chainrefl,
chainref2,
Icmode)

delete_m (zm)

delete_1 (z1,
chainref)

delete_chain (z,
chainref)

next_m (zm)

put_cf (z)
read_only_cf (z)
read_upd_cf (z)
update_all_cf (z)

get_numb_1 (z1,

recno)

new_recl_cf (z,
fength)

head_m (filename,
fileno, chains,
recdescr,
no_of _keys,

size_m)

head_1 (filename,
flleno, chains,
size_1)

inft_file_m (zm,
filename,
giveup,
buckfactor,
blockfactor)

[

A I)

T E A R p

CF=-SYSTEM
Appendix B:

cf-procedures

connected
not connected
(already conn.)

deleted

- , eof
not del, last left
deleted
del, last In chaln
deleted

no chaln to del.

found
not found,

eof
ok
ok
ok

ok

record active
record dead

changed

last rec. In file
too expensive
file full

length error
no buffer

ok

ok

ok

65

last acc.ln chainl
none

the next in flle
the flrst - -
the one

the next Iin chain
none

unchanged

the next in flle
the first - -

unchanged
unchanged
unchanged

unchanged

the wanted
none

same, new length
- , old length

§
L]
1
- - -

meaningless

meanlingless

none

Appendl] x
28 Inlt_rec_m (zm, + 1
record) 2
3
M
29
30 get_param_cf (z, - 1
paramno, val)
31 set_param_cf (z, - 1
paramno, val)
32x set_descr_cf -
(descrfile)
33x protect_cf (z, -
actlon)
34 init_extract (z, - 1
filename,
gl veup)
35 intt_add (z, - 1
filename,
glveup,
buckfactor,
blockfactor)
36 extract_cf (z, - 1
record) 2
37 add_cf (z, - 1
record) 2
3
i
5

Procedures marked with x are
A + In the jmp=-coclumn means,
this procedure,

CF-SYSTEM
B: cf-procedures

record added none

file full -

length error -

key error -

ok unchanged
ok unchanged
unchanged unchanged
unchanged unchanged
ok none

ok none

ok none

end of flle -

record added none

file full -
length error -
key or recno.err. -
no block -

external algol procedures.

that set-jumps=-cf can be used upon

b6

CF-SYSTEM 67
Appendix C: Survey of cf-states

Zonestates for masterfiles:

after-declaration (value = 4). The zone has been declared,
but not yet opened., This iIs also the state
after a call of close=-cf,

initiallize=-m (value = 20). During Inftlallzatlon.

read-only-m (value = 16). Durling processing of the
file. Changes In records will not be re-
flected in the file. Updating procedures
are illegal.

read-update-m (value = 18). Durling processing of the
file. A block of records Is only trans-

ferred to the flle, 1f an updating proce-
dure has worked upon one of Its records,

update-all-m (value = 19), During processing of the
fille. All records will be transferred to
the file,

Zonestates for listflles:

after—declaration (value = 4). As for masterflles.

read-onliy=-1 (vaiue = 22). The analogy of read-only-m.
read-update=-1 (value = 23). The analogy of read-update-m,
update-all-1 (value = 24), The analogy of update-all=-1.

Zonestates for reorganization (masterflles and 1lstflles):

extract-cf (value = 17). During the extractlon of
records from a masterflile or a listflile,
The state Is set by procedure init-extract.

add=-cf (value = 21). During the additlon of re-
cords to a masterflle or a listflle, The
state is set by procedure Inlt-add,

CF=SYSTEM 68

Appendix C: Survey of cf-states

Chainstates:

not=Init

empty

last—accessed~-def

Record-states of

actlive

dead

The cf-procedure Inlt=-chaln has not ves
been called.

There Is not deflned a last~accessed record
for the chain.

There Is deflned a last-accessed record In
the daughterflile of the chaln.

listflle-records:

The record can be processed via a chaln or
its recordnumber,

The record has been deleted, but Is stil]
member of one ore more chalns. (It cannot
be processed).

CF=SYSTEM 69
Appendix D. Array chalins

The purpose of the array is to specify the connections between
flles In the cf-system, 1.e. the chain groups.

Chains are represented by the identifications of the motherflle
and the daughterfile and a chalnnumber. The chainnumbers are
indirectly given by the order In which the chalnspecifications
appear in the array chains, while the loglcal filenumbers,
which identify the flles in the system, must be supplled by the
user. The user must take care that the fllenumbers identlfy the
files unambiguously. The array is used as parameter for the two
procedures head_m and head_1.

Declaration of chains:

A chainspecification consists of 4 consecutive elements of the
array and the first specification must start In element no. 1.

The upper IImit of the array will stop the specificatlion. The
k elements of a chainspecification should be Initiallzed as
follows:

1. mother_no, the fille_no of the motherflile,

2. daughter_no, the file_no of the daughterflle.

3. chain_type, the value 1 denotes a headed chaln, the value
0 a not headed chaln,

k. compressed_key_size (equivalent to key_part_slze, RCSL 55-
D99 p. 4), the guantity glves the number of bytes occupled
by a compressed key of a motherrecord. It may be calculated
according to the following rules:

1. If _ motherfile Is_a_masterflle
add 4 for each long=- or real keyfield
add 2 for each Integer keyfleld
add 2 for two successive byte keyfields
add 2 for each single byte keyfleid
(A fleld containing a length~specification is not

counted).

2, if motherfile is a listfile

the size is 2.

The guantity is a return value of the procedures head_m and
head_1 for all <chaingroups of which the actual flle is the
mother, l.e. the user need not be troubled by the calculatlion,
If he <calls the head_ procedure of a motherfile before those
of the corresponding daughterfiles.

Chaln-numbers:
The chains are numbered by the natural numbers Cr, 2,)
according to their appearance in the array chalins. The chaln-

number is a call value of the procedure init_chailn.

CF-SYSTEM 70
Appendix E., Descriptlion File

This appendix defines the format of the description flle as
required by the protection system,

File format:
The flle Is a masterfile of varliable length records.

Format of flile description record:

field no type address content
101 Integer 2 record length >= 30
1 long 12 keyfleld_1 = 2
2 long 16 keyfleld_2 = filenumber
3 long 20 keyfield_3 = 0
5 integer 30 version_number >= 0,
<= 8000000.
Comments:
fileld no comment
1-3 the key consistes of fleld no 1 to 3, longs in
ascending order,
1 this field is called the description type,
2 the file number is the number used as a parameter
for head_m or head_1.
5 the version number Is checked and updated by the

protection system.

CF~SYSTEM 71
Appendix F. Extracted records

Format of a record extracted by procedure extract_cf:

field no type address content
1 integer 2 total length of extr.record
2 integer L not used by the cf-procs
3 Iinteger 6 record number
L integer 8 user part size
5 array 8 user part
) array 8+reclength chain part
Comments:
fleld no comment
1 total length = 8 + user_part_slize + chaln_part_size.
2 this field is intended for the checksum of

invar/outvar.

3 the record number is the record number of a listfile
record, and the natural number (1, 2, 3,...) of a
master record.

4 the user part slze 1s egual to the normal record
length except in the case of varliable length list-
file records, where It Is 4 bytes smaller because
the first 4 bytes are not included In the user part.

5 the user part Is a copy of that part of a record,
which appears as a zone record, with the exception
of the flrst 4 bytes of a variable length llstfile
record,

6 the size of the chain part is given In the descrip-
tion of the procedure head_l1.
A more detailed format of the chaln part is given
here:

<chain part>::= <mother fleld> 0/nl
<daughter field> 0/n2

This notation means that a chalin part consists of
nl mother flelds followed by n2 daughter fields.
nl and n2 may be zero, but they are fixed for all
records of a certain file.

<mother fleld>:!:= integer (2 bytes)
The mother flelds are placed in chain group number

order, one mother field corresponding to each chaln
group of which the flle is the mother.

CF=-SYSTEM 72
Appendix F, Extracted records

value of mother filield:

0 end of chain, i.e. there are no daughter
records.

>0 the record number of the flrst daughter
record.

<daughter field>::= <next fleld> <ref.to mother>0/1

The daughter fields are placed in chain group num-
ber order, one daughter field corresponding to each
chain group of which the file Is the daughter,

<next field>::= integer (2 bytes)

sign of <next field>

>= 0 the record is active.

< 0 the record is dead. The next fields of
all daughter flelds are negative In
this case, and at least one daughter
field will be not connected,

<next field> extract 23:

8388607 = the record Is not connected to any

all ones chain of the chaln group corresponding
to this daughter fleld.

0 end of chain, l.e. this is the last
record in this chain,

>0 and the record number of the next daughter

<8388607 record in this chaln.

<ref.to mother>::= <compressed key of mother>
This field is omitted if the chain group Is not
headed.

I[f the mother file is a listflle, this field Is
Just a 2 byte Integer holding the record number
of the mother record.

If the mother file Is a masterflle, the fleld

is more complicated:

The keyfields of the mother record are laied out
close to each other in the order of decreasing
priority. (1 to no_of_keys).

The close packing is disturbed by byte keyflelds,
because a keyfield of type integer, long, or real
must be preceeded by an even number of bytes In
the compressed key,

A single byte keyfleld between two keyflelds of
other type will thus require 2 bytes room In the
compressed key, the first byte holding the key-
field, and the other being equal to zero.

Two succeeding byte keyfields are packsd Into 2
bytes.

CF-SYSTEM 73
Appendix G. Zonebufferlength

Formulas for the =zone bufferlength requlred by cf-flles. The
formulas will In scme cases specify up to a few bytes more than
actually needed.

Masterfiles:

requlred_bytes:=
176
+ 8 x no_of_assocliated_chain_groups
28 x no_of_keys
8 x no_of_keyfields_of_type_long
if fixed_record_length then 0 else 12
(compressed_key_size + 4) x ((segments_in_flile - 1)
// segs_per _buck + 3)
512 x segs_per_block_table
512 % segs_per_block x (If full_insert then 2 else 1);

+ 4+ +

+ +

The term Involving compressed_key_slize covers the room needed
for the bucket table,

The guantity segs_per_block_table needs a specliflication, It
is the number of segments occupled by the blocktable placed in
the beginning of each bucket.

blocks_per_bucket:=
512 x segs_per_buck // (512 % segs_per_block
+ compressed_key_size + L4);

segs_per_block_table:=
((compressed_key_size + 4) x blocks_per_bucket - 1)
// 512 + 1;

Listfiles:

required_bytes:=
84
+ 8 x no_of_chain_groups_of_which_file_is mother
+ 18 x no_of_chain_groups_of_which_flle_is_daughter
+ sum of (compressed_key_size of all mother files)
+ segments_in_flile // segs_per_block // 4 x 2
+ (512 x segs_per_block + 2) x blocks_In_core;

CF=SYSTEM
Appendix H. Programming example

CF=SYSTEM Programming example.

begln

comment
This Is an example of an algol 6 program which creates 2
master files: master_1 and master_2, and one listfile:
list,
2 chain groups: chain_1 and chain_2, are associated to
master_1 and list, and to master_2 and 1list respective-
ly.

A rudimentary description file: descrfile, sufficient
for the check of version numbers performed by the cf
protection system Is also created,

Various functions are performed on the file conflqgura-
tion,

AT

procedure check_one;
comment gives a case alarm if result_cf <> 1;
case result_cf of begin end;

procedure printtime(text);
string text;
comment
prints the time consumed since last call;
begin

own boolean later_call;
own real cpubase, timebase;
real cpu, time;

if later_call then

begin
cpu:= systime(l, timebase, time) = cpubase;
writeCout, <:<10>:>, text, <: In seconds, cpu: >,
<<dddd.dd>, cpu, <:, real::>, time);

end later_call
else later_call:i= true;
cpubase:= systime(l, 0, timebase);

end printtime;
printtime(<::i>); blocks_read:= 0;

begin
comment
block for creation of fille heads;

integer
file_no,
fixed_rec_length,
by
max_blocks,
max_bucks,

CF-SYSTEM
Appendix H, Programmlng
max_rec_length,
min_rec_length,
no_of _keys,
segs_per_block,
segs_per_buck;
Integer array
chains(l:(2x4)),
rec_descr(l:4, 1:2),
size_1, size_m(1:4);
comment
initialize array chains:
chaln group mother daughter
1 1 100
2 2 100

AT

for 1T:= 1 step 1 until 2x4 do

chains(i):= case 1 of(
1, 100, 1, 0,
2, 100, 1, 0J;
comment
the fourth flield in each line above,

initialized by head_m, and used by h

example

chain type

75

compr . key

headed see head_m
headed see head_m
compressed keysize, is
ead_1.

(from the record description below it can be seen to be 8

bytes).
create the head of master_1;
file_no:i= 1;

comment
initialize the record description:

address

4

11

10

1) x 2 do

keyfield type order

1 long ascendlng

2 byte descending

3 word ascending

length fixed

;
no_of_keys:= 3;
for 1:i= 1 step 1 until (no_of_keys +
rec_descr((i+1)//2, 2-1 mod 2):= case | of(

+3, 4y
-1, 11,
+2, 10,

0, 0);

CF-SYSTEM 76
Appendix H. Programming example

comment
initialize size parameters;

slze_m(1l):= max_rec_lengthi= 120;
size_m(Phrs por_ocks: = 100;
slze_m(3):= segs_per_buck:= Lo;
slze_m(4):= segs_per_block: 2;

comment
create the file head, the backing store area: masterl,
must exlist;

head_m(<:masterl:>, file_no, chains, rec_descr, no_of_keys,
size_m);

comment
for simplicity, the same parameters are used for master_2;

file_no:= 2;

head_m(<:master2:>, file_no, chains, rec_descr, no_of_keys,
size_m);

comment
create the description flle head;

file_no:= 1000;

comment
initialize the record description according to appendix E:

keyfield type order address
1 long ascendlng 12
2 long ascendlng 16
3 long ascending 20
length word - 2

no_of_keys:= 3;
for i:= 1 step 1 until (no_of_keys + 1) x 2 do
rec_descr((i+1)//2, 2 = 1 mod 2):= case 1| of(

+3, 12,
+3, 16,
+3, 20,

2, 2);

CF-SYSTEM 77
Appendl x H., Programming example

comment
initialize size_m, the description file is regarded as

being a small file;

size_m(1):= max_rec_length:= 100;
slze_m(2):= max_bucks:= 50;
slze_m(3):= segs_per_buck:= 10;
comment
never choose a smaller value for segs_per_buck;
size_m(4):= segs_per_block:= 1;

head_m(<:descrfile:>, file_no, chains, rec_descr, no_of_keys,
size_m);

comment
Create the listfile head:
variable record length, minimum about 20 bytes;

file_no:= 100;

slze_1(1):= fixed_rec_length:= 0;
size_1(2):= min_rec_length:= 20;
size_1(3):= segs_per_block:= 1;
size_1(4):= max_blocks:= 2000;

head_1(<:1lst:>, flle_no, chains, size_ 1);
end block for the creation of file heads;

printtime(<:file heads created :>);

CF-SYSTEM 78
Appendix H., Programming example

begin

comment
block for inltialization of master flles,
master_1, and master_2 are provided with a dummy record
having all fields equal to zero, because open_cf requlires
that a master file contalns at least one record.
the description file Is initialized with & file description
records;

zone
zml(buflength_cf(<:masterl:>, 1), 3, stderror),
zm2(buflength_cf(<:master2:>, 1), 3, stderror),
zdescr(buflength_cf(<:descrfile:>, 1), 3, stderror);

integer
file_no;

integer field
descr_length;

long field
descr_key_1,
descr_Kkey_2,
descr_key_3,
1_fid;

real array
rec(1:50);

comment
Initialize the field varlables for the description flle;
descr_ lengthi= 2;
descr_key_l:i= 12;
descr_key_2:= 16;
descr_Key_3:= 20;

comment
set all fields of array rec to zero;
for 1_fldi= 4 step 4 untll 200 do rec.1_fid:= 0;

comment
Initialize master_1 with one record having all fields
equal to zero;

Intt_file_m(zml, <imasterl:>, 0, 1, 1);
Init_rec_m(zml, rec);
checkone;

comment
this procedure checks that result_cf was one, see the
procedure declaration at the beginning of the program;

close_cf(zml, true);

CF=SYSTEM 79
Appendix H, Programming example

comment
the same is done for master_2;
init_file_m(zm2, <:imaster2:>, 0, 1, 1);
init_rec_m(zm2, rec);
checkone;
close_cf(zm2, true);

comment
initialize the description file with 4 records, describing

the files including the description file itself;
init_file_m(zdescr, <:descrfile:>, 0, 1, 1);

for file_no:= 1, 2, 100, 1000 do
begin
comment
the file numbers of master_1, master_ 2, list, and
descr_file;
rec.descr_length:= 30;
rec.descr_key_l:= 2;
rec.descr_key_2:= flle_no;

rec.descr_Kkey_3: D;-

oot

Inlt_rec_m(zdescr, rec);
checkone;

comment
the version numbers are zero in the description records as
well as in the catalog entrles of the corresponding files,
if the files were created by set In this way:
masterl= set 120, etc., Jjust before the call of this
program;

end for file_no;

close_cf(zdescr, true);
comment
the list file needs no Initialization;

end block for initialization;

printtime(<:files initialized >);

CF=SYSTEM 30
Appendix H., Programming example

begin
comment
block for processing of the flile configuration:
200 records are inserted In both master files, at random
keys, and 1000 list records are connected to records
in both files via chain group 1 and chain group 2;

zone
zml(buflength_cf(<:masterl:>, 2) + 10x12//4, 3, stderror),
zm2(buflength_cf(<:master2:>, 2) + 10x12//4, 3, stderror),
z1(buflength cf(<:list:>, 3) + 100//8, 4, stderror);

comment
the addition to buflength_cf provides for extra bufferlength
for extensions of the files during the processing: 10 extra
buckets for the master files, and 100 extra blocks for the
listfile.

the factor 12 in the expression for the master zone buffer
length Is equal to compressed_keysize + 4, see appendix G;

integer
Iy
ic_mode;

integer fleld
length,
m_key_3;

long field
1_fid;

real
chalin_ref_1,
chain_ref_2;

real array
m_rec, 1_rec(l:50);

procedure create_Kkey;
comment
this procedure generates a pseudo random master KkKey
in array m_rec;
begin
own Iinteger ps_random;
random(ps_random) ;
m_rec.m_Kkey_3:= ps_random mod 10000;
end create_Kkey;

CF--SYSTEM 81
Appendix H, Programming example

comment
Iinitlalize the field varliables;

length:= 2; comment the length fileld of list records;
m_key_3:= 10; comment see the file head creatlon;

set _descr_cf(<:descrfile:>);

comment
this call provides the cf-system with the name of the

description file;

open_cf(zml, <:masterl:>, 0);
checkone;
open_cf(zm2, <:master2:>, 0);
checkone;
open_cf(zl, <:list:>, 0);
comment
the version numbers and the update marks have been checked,
and the zone states are read_only;

read_upd_cf(zml);
read_upd_cf(zm2);
read_upd_cf(z1);
comment
now the zone states are read_update, Insertions are allowed,
and the update marks are set In the catalog entries;

init_chain(zml, z1, 1, chaln_ref_1);
Init_chain(zm2, z1, 2, chaln_ref_2);
comment

the 2 chain groups are ready for processing, the chaln_refs
are used to reference them;

for 1_fld:= 4 step 4 until 200 do
m_rec.1_fld:= 1_rec.1_fld:= 0;

CF-SYSTEM 82
Appendix H, Programming example

for 1:= 1 step 1 until 200 do
begin

comment
insert 200 master records in master_l, with random values

of keyfleld 3, and the other flelds equal to zero;

make_a_Kkey:
create_key;

Insert_m_rec:
Insert_m(zml, m_rec);

case result_cf of

begin

comment 1, ok, do nothing;
»

comment 2, record exists already, try another Kkey;
goto make_a_Kkey;

comment 3, not Inserted, too expenslive,

this is not possible when param_cf has not been used
to change the Insertion parameters;
checkone;

comment &4, the file is full, extend the file with one
bucket = 40 segments;
begin

extend_cf(zml, 40);
checkone;
goto Insert_m_rec;

end 4;
comment 5, length error, not possible with fixed length;
checkone;
comment 6, no buffer, not possible because result_cf has
been checked after open_cf and extend_cf;
checkone

end case result_cf;

end Insertion of 200 records In master_1l;

CF~SYSTEM
Appendlx H, Programming example

comment
insert 200 records In master_2 in a more crude way;

for 1:= 1 step 1 until 200 do
beglin
create_key;

Insert_m(zm2, m_rec);
case result_cf of
begin

comment 1, ok;

.

’
comment 2, exists already, repeat;

fi= 1 -1
end case result_cf;

comment
other results will give a case alarm;
end Insertion of 200 records in master_2;

printtime(<:master recs Inserted:>);

for 1:= 1 step 1 until 1000 do

begin

comment
Iinsert 1000 1ist records connected to random master
records.
the 1ist records are clustered In chain group 1, l.e.,
insert_1 works upon chain_ref_1;

create_key;
get_m(zml, m_rec);
comment
the result Is ignored, there will always be a current
record In a master flle;

comment
Insert a list record as the last In the chain_l depar-

ting from the current master_l record,
Insertion as the flrst in chain Is faster, but
It does not demonstrate the use of get_1;

get_1(z1, chaln_ref_1, 1);

comment
read the first record In this chaln, If any;
tc_mode:= If result_cf = 1 then 2 else 1;

comment
Insert mode is next to last accessed, If there Is any

record In the chain, else next to mother;

CF=SYSTEM 84
Appendix H, Programming example

for 1:= | while result_cf = 1 do get_1(zl, chain_ref_1, 2);
comment

read all records in the chaln, last accessed In chaln

group 1 Is now the last In chaln, If any;

1_rec.length:= 30;

insert_Il_rec:
Insert_1(z1, chain_ref_1, ic_mode, 1_rec);

case result_cf of

begin
comment 1, ok, do nothing;
;
comment 2, fIlll limit exceeded, extend the file with
20 blocks = 20 segments;
begin

extend_the_file:
extend_cf(zl, 20);
checkone;

goto Insert_1_rec;
end 2;
comment 3, length error;
checkone;
comment 4, no block can take this record;

goto extend_the_flle
end case result_cf;

comment
connect the list record to a random master_2 record, as

first In chain;

L)
create_Kkey;
get_m(zm2, m_rec);

fc_mode:= 1; comment connect next to mother;
connect(zl, chain_ref_1, chain_ref_2, lc_mode);
checkone;
end insert 1000 list records;
comment

master_1 Is not updated any more;
read_only_cf(zml);

printtime(<:list recs Inserted :>);

CF=SYSTEM 85
Appendix H, Programming example

comment
go through all chains of chaln group 2, at the same time
look up the master_1 record being the mother of the chain
1 passing through each 1lst record, and at last delete the
1ist record,
the list records are counted, to check that all 1000 have

been deleted;

comment
master_2 Is read by means of next_m, starting at the dummy

record created by Init_rec_m;

m_rec.m_key_3:= 0;
get_m(zm2, m_rec);
checkone;

= 0;
for 1:= | while result_cf = 1 do
begin
comment
read the first record in the chain_1 departing from the

current record of master_2;

get_1(z1, chain_ref_2, 1);

for 1:= I while result_cf = 1 do
begin
get_head(z1, chain_ref_1, m_rec);
checkone;
comment

now m_rec contains the key of the record, which Is the
mother of the chaln_1 passing through the current list
record;

get_m(zml, m_rec);

checkone;

comment
the calls of get_head and get_m above are performed
as a demonstration of how each list record acts as a
link between a record In master_2 and a record in mas-
ter_1;

delete_1(z1, chaln_ref_2);

T2 1 + 1;

comment
delete and count the list file record, delete will
access the next record In chain_2, If any;

end reading and deleting of one chaln;

next_m(zm2);
comment

read the next master_2 record;
end reading of master_2;

CF=SYSTEM
Appendix H. Programming example

If I <> 1000 then
write(out, <:<10>xxxerror In count >, 1);

close_cf(zml, true);
close_cf(zm2, true);
close_cf(zl, true)d;
end block for processing of file conflguration;

printtime(<:list records deleted:>);

write(out, <:<10>blocks read: :>, blocks_read);
end program

86

CF=SYSTEM
Appendix H. Programming example

A run of the programming example,.

The files were dimensioned to be fllled up to about
70 percent,

Master_1 and _2 were situated on disc_1 and the listflle
on disc_2 (see lookup cat.yes In the output),

The disc stores were of type RC 433,

The cpu and the disc stores were slightly loaded by other
processes,

Note that the verslion numbers in the catalog entries of
the 3 flles have been increased to 1 during the run.

Output from the run.

xmasterl=set 80
xmaster2=set 80
xlist=set 140
xdescrfilezset 10

xcfex

file heads created In seconds, cpu: 0.82, real: 2.47
files Initiallized In seconds, cpu: 0.16, real: 1.32
master recs Inserted in seconds, cpu: 9.23, real: 214,16
list recs Inserted In seconds, cpu: 26.26, real: 510,76

1ist records deleted in seconds, cpu: 10.22, real: 178.85
blocks read: 103

end

xlookup cat.yes masterl master?2 list descrflle

masterl 15 0 27 1634
80 01 00 0O
master2 17 0 27 3842
80 01 00 0O
list 3 0 27 3.872
140 01 0 0 0 O
descrfile 22 0 27 820
10 0 0 0 00 0O

87

CF=SYSTEM 88
Appendix J. How to dimenslon the flles,

This appendix contains some rules for the choice of the size
parameters for the two procedures head_m and head_1.

The rules are based on one years experience with file
configurations for administrative data processing,

The slze_m parameters of head _m,

The 4 parameters are described in the order of occurrence In
array slze_m, a more natural order of specification Is:
max_rec_length, segs_per_block, segs_per_buck and max_bucks.

max_rec_length

The maximum length [In bytes of the user part of a
record,

The sum of max_rec_length and the slze of the chain

part must not exceed 512 x segs_per_block//2, 1.e. half
the block slize,

The size of the chain part 1is 2 X number_of-
_assoclated_chaln_groups, see appendix F,, format of

extracted records,.

Note that both max_rec_length, chaln_part_size, and
the actual record lengths are rounded up to a multiplum
of 4 In case of variable record length,

In the <case of fixed record length, max_rec_length
and chain_part_size are rounded |if the sum max_rec_
length + chalin_part_size Is not a multiplum of &4,

In case of wvariable record length the value of
max_rec_length should not be specifled much greater
than the actual maximum record length, because that

tends to decrease the efficlency of Insertions.

max_bucks
The maximum number of buckets the file will ever hold.

This quantity should be chosen high (f.ex., 8000
//segs_per_buck = max_bucks for a whole RC 433 disc
store). The only cost Is max_bucks x (compressed_key_
size + 4) bytes of backing storage for the bucket
table, (Normally only a few segments In the head of the
flle).

The amount of core store used for the bucket table
in the zone buffer depends only on the actual size of
the file,

For compressed_key_size see appendix D., format of
array chains,

CF-SYSTEM 89
Appendix J. How to dimenslion the flles,

segs_per_buck
The number of segments in one bucket,

The quantity segs_per_block should be selected before
segs_per_buck,

Segs_per_buck should not be chosen too small, espe-
cially not so small that only one block is left in the
first bucket, because this will disturb the Insertion
of new records seriously,

A maglc number concerning segs_per_buck Is 40, the
number of segments of one cylinder of the RC 433 disc
store.

With each bucket equal to a cylinder of the dlsc
store, the maximum number of cylinder shifts requlred
for a call of get_m Is one, against two In the general
case,

On the other hand It Is not qulte simple to syn-
chronize buckets and cylinders In practice.

In the following segs_per_buck 1Is selected as to
economize the use of core storage and backing storage
for bucket table and block tables.

The block table always needs an Integral number of
segments both In the file and In the zone buffer,
whereas the bucket table 1In the zone buffer just
demands room corresponding to the actual number of

buckets,

This suggests a bucket slze which Is so great that
the entries In the block table utilizes an area which
is Just below or equal to an Integral number of

segments.
If the size of the block table 1Is called segs_per_
block_table, then segs_per_buck can be calculated thus:

segs_per_buck =
(segs_per_block_table x 512//
(compressed_key_slize + 4))
X segs_per_block + segs_per_block_table

The compressed_key_slze is the total size In bytes of
all keyflelds of a record, see appendlx D., format of
array chains,.

Normally segs_per_block_table can be set to 1, but In
case of a great value of compressed_key_size or If the

file Is very great this may give rise to too small
buckets and a bucket table of excessive slze.
Balance between bucket table and block table 1Is

achlieved If the value of segs_per_buck Is not far from:

CF=SYSTEM 90
Appendix J. How to dimension the flles,

square_root(max_segs_In_flle x segs_per_block)

I.e. the mean proportional of the file size and the
block size.

But, segs_per_buck should not be selacted too small,
as a small bucket slze will decrease the Insertlon
efficiency, and it should In any case not be less than
the value which makes the first bucket contain 2
blocks:

segs_per_buck >=
3
+ ((compressed_key_size + 4) x max_bucks
+ 9)//512
+ segs_per_block_table
+ 2 x segs_per_block

If the value of segs_per_buck Is not set below 40
segments this problem Is unlikely to occur, and on the
other hand there Is no reason In normal cases to go
below the 40 segments,

segs_per_block
The number of segments In one block,

A reasonable number of records should fit Into one

block, say 5 or more. This minimizes the loss of
backing storage and increases the speed of a sequential
reading.

On the other hand room Is reserved In core for up to
2 blocks during the processlng, so In case of great
record lengths It might be better to use a shorter
blocklength,

The balance between the core store demands of bucket
table, block table, and block should also be taken into

consideration, especially In connection with greater
files,
The two aspects are included in the following formu-
la:
segs_per_block = maximum_of
(5 x (max_rec_length + chain_part_slize) // 512 + 1)
and

cube_root(max_segs_Iin_file x
((compressed_key_size + 4)/256)xx2))

The flrst expression wll] let a block contain a

_—

Example

CF=SYSTEM 91
Appendix J., How to dimension the files,

reasonable number of records,

The second one will let the block table and the
bucket table together wuse about as much room as one
block, if the value of segs_per_buck Is selected
according to the rules in this appendlx.

The quantity max_segs_in_file can be estimated as the
the maximum volume of records plus 20 to 30 percent
extra for administrative tables and spare room,

of a great master file,

max_rec_length = 150 bytes

chain_part_size = 10 bytes (5 chaln groups)
compressed_key_size = 8 bytes (2 long keyfields)
max_segs_Iin_file = 8000 segments (one RC 433)

The first gquantity to calculate Is segs_per_block:

segs_per_block = maximum_of
(5 x (150 + 10> // 512 + 1) = 2
and

cube_root(8000 x ((8 + 4)/256)xx2)) =
cube_root(17.6) = 3 (the rounded value)

The last expression Is decislve, we choose: segs_per_
block = 3,

The next quantity s segs_per_buck, For segs_per_
block_table equal to 1 and 2 we get respectively:

segs_per_buck = (1 x 512 // (8 + 4)) x 3 + 1
=127

and

segs_per_buck = (2 x 512 // (8 + 4)) x 3 + 2

257

o

These values are compared with the expression:
square_root(max_segs_in_file x segs_per_block)
= square_root(8000 x 3) = 155
The cholce of segs_per_block_table = 1 gives the best
fitting to this value, so the concluslon Is: segs_per_

buck = 127,

Max_bucks Is Just set to 8000//127 = 63,

—~—

—

-

—

CF=-SYSTEM g2
Appendix J. How to dimension the flles,

The slze_1 parameters of head_]l.

The 4 parameters are described in the order of occurrence In
array slize_1, which Is also a reasonable order of specifica-
tion,
fixed_rec_length

The fixed record length If the value ls positive, If
It Is zero, variable record length Is specifled.

It Is emphasized that fixed record 1length glves
advantages concernling reorganizatlion,

The wvalue of this parameter depends entirely on the
format of the users records. Fixed_rec_length is roun-
ded up to a multiplum of 2, not 4 (see max_rec_length
for master filles),

min_rec_length

In case of wvariable record length this parameter
specifies the minimum length of records whlch should be
able to fill a block entirely,

It should not be chosen too great because It can be
necessary to Increase [ts wvalue In connection with
reorganization,

The waist of backling storage depending on min_rec_
length Is given by this formula:

100/(min_rec_length + chain_part_size + 1) percent.

segs_per_block

The number of segments in a block.

The block length should be so great that a reasonable
number of records can go into one block. This number
should not be less than 5 and not less than the average
number of records In a clustered chaln,

It Is also of Importance that each block demands half
a byte of core store for a block table entry, i.e. a
file of 1000 blocks demands about one segment of core
for the block table.

If the block table shall not take up more room than
half a block the following formula arises:

—

o

a—

CF=-SYSTEM
Appendix J., How to dimenslion the flles,

segs_per_block = maximum_of
({5 or number_of_recs_in_clustered_chalin)
x (max_record_length + chain_part_size)
//512 + 1)
and
square_root(max_segs_In_file/512)

For chain_part_size see appendix F., format of ex-
tracted records,

This means, (the last term), that a file of more than
500 segments should have segs_per_block >= 2, and that
a file of more than 2000 segments should have segs_
per_block >= 3,

max_blocks

The maximum number of blocks the flle will ever hold,.

This quantity should be chosen high (f.ex, 8000
//segs_per_block = max_blocks for a whole RC 433 disc
store). The cost is only max_blocks//2 bytes of backing

storage in the block tabie. (Normally only a few
segments In the head of the flle),.
The amount of core store used for the block table in

the zone buffer depends only on the actual size of the
file.

93

o - ——— -

alarm

assoclated
chains

buckets

cf_proc_no

chain

chainfleld

chalngroup

chalnno

chalnref

chalnstate

current
record

daughterfile

filename

flle_no

CF-SYSTEM 94
Appendix Z., Keywords

e T Kk T R

Unintelligent use of the cf=-system will terminate
the run with an algol runtime alarm. The alarm Is
identified by a short alarmtext, see the survey
of these in app. A.

A term used In procedure descriptions for the
chalngroups, that are defined for a specific
file,

See RCSL 55-D99, file-i.

An integer call value to the users Jump procedure
glving the proc.,no, of the procedure last called,
Every cf-procedure has a procedure number which
may may be found Iin the head 1line of the
procedure description, The number Is also used In
calls of set_Jjumps_cf to specify when the Jump
procedure should be called,

A term for listrecords with common head.

A field In the protected part of a record used
for linking, The format of the fleld depends on
the type of the chain,

All the <chains connecting two specific flles by
means of one set of chain fields,

A number of a chalin=-group. (See the procedure
description of inlt_chaln, and the description of
array chains, app. D).

The reference for a specific connectlion between
two files, This reference 1Is created by the
procedure Init_chain, and is used as parameter In
several procedures. (See the procedure descrip-
tlons).

Some of the cf-procedures are dependent on the
latest wuse of a specifled chaln. The chalnstate
keeps track of that. See the possibilities In the
survey of the cf-states, app. C.

A term for the last processed record In a fiie.
Current record Is the same as the zonerecord.

The subordinate file of a chain, i.e. the file
that contains the elements of a chaln. (always a
listfile),

The name of a backing store area,

The logical number of a file used 1In chain

head

key

Jump_proc

last_accessed

record

listflile

list_record
_state

masterfile

max_rec
_length

min_rec
_length

motherflle

origlinating
In

proc,no.

CF=-SYSTEM 95
Appendlix 7. Keywords

speclfications, (See the description of array
chains, app. D),

A term for a record In a motherflile contalining
the record number of the first record In a chaln.,
Chains are sald to be headed If all records in

- ws m -

a chain contain the reference to the head,

A group of flelds in a masterflle record used for
Identification and organization. When used as a
parameter of a procedure, a real array wlith the
same format as a record (see record) long enough
to hold all keyflelds.

An exlt procedure specified by the user. See app.
A (Errors during processlng, -Unnormal sltua-
tions), and the procedure description of set_
Jumps _cf,

The record number of a daughterfile record, which
has been last accessed via a specific chain-
group.

Is either a daughterfile or a daughterfile and a
motherflle. Records are referred to by a record-
number (see recordno.). Characteristics of list~-
flles are that they are badly accessed sequen=
tially, and that Insertion of records Is done
according to a strategy, so that the user cannot
determine the physlical address or record number
of the new record.

Every record In a listfile has an Indication of
Its =-state-. See the possibllities In the survey
of the cf-states, app. C.

Is always a motherfile, Records are referred to
and ldentifled by a key, and the organization Is
Indexed sequential., See RCSL 55-D99,

is for a masterfile less than segs_per_block x
256, For a 1istfile see the calculation In
procedure description for procedure head_1,

is the length of a record, which can hold the
whole key and lengthfield,

A term for a file that contalns the head-records
of a chaln-group. May be a masterflle or a
listfile.

if.e. rooted In. A term used only in the procedure
descriptions of the delete=-procedures,

See cf_proc_no.

result_cf

rec_no_cf

record

recordlength

recordno,

zZzonestate

CF=SYSTEM 96
Appendix Z., Keywords

A standard integer variable used to deslgnate the
result of a call of a cf=procedure,

A standard Integer wvariable holding the last
delivered rec_no In listflles,

A number of consecutive bytes, When used as a
parameter of a procedure the elements must be
stored In the lexicographical flrst elements of
an arbitrary array, The record may hold a length
specification.

A cf=flle may consist of elther variable length
or fixed Jlength records, If flxed length Is
chosen, all records are of max_rec_length, Re-
cordlength is always given as the number of bytes
of the users part of the record.

(short: reczno). Records in listfiles are Identi-
fied and referred to by record numbers, which are
allocated by the cf-system during the insertion.

The cf-procedures are dependent on the latest use
of the zone. The zonestate keeps track of that.
See the possible zonestates In the survey of
cf-states, app. C.

