
Title:

Connected Files System

-) Users Manual

fe 8 REGNECENTRALEN RCSL No: 28-5
Edition: May 1972

Author:RC SYSTEM LIBRARY: FALKONERALLE 1 DK-2000 COPENHAGEN F Inge Borch
Edith Rosenberg

Jorgen Winther



Keywords:

RC 4000, Software, Algol, Fortran, Procedures, Disc, Indexed Sequential Files,
List Files, Chains ‘o)

Abstract:

The system is a set of procedures, which can set up and process two kinds of

backing store files. Records are accessed either by logical key or by chain.

reliance on any of the materials presented.

98 pages.

;

|

Users of this manual are cautioned that the specifications )
8 contained herein are subject to change by RC at any time

Copyright© A/S Regnecentralen, 197 without prior notice. RC is not responsible for typographi-
. cal or arithmetic errors which may appear in this manual

Printed by A/S Regnecentralen, Copenhagen and shall not be responsible for any damages caused by



Content:

Introduction

Masterfiles

Listfiles

Chains

CF-SYSTEM

File configurations

Protection of files

Procedure descriptions

Reorganization of files

Reorganization procedures

Appendix

Append!x

Appendix

Appendix

Appendix

Appendix

Appendix

Appendix

Appendix

page

2

4

5

9

12

15

Format of procedure descriptions 18

19

50

53

Survey of alarms 57

- - procedures 64

- - cf-states 67

Format of array chains 69

- - description files 70

- - extracted record 71

Zone bufferlength 73

Programming example 74

How to dimension the files 88

: List of keywords 94Appendix

A

B

c

D:

E:
F:

G

H

J

Zz



CF~SYSTEM 2

Introduction

Introduction

The connected-files-system is a set of RC 4000 Algol standard

procedures, designed to handle records and Jinks between

records in filles with direct access.

The system has been planned mainly to sult. ordinary adminti-~

strative Information systems such as production~ , purchase~ ,

and sales-control, but the structures, which may be defined and

processed by the system, are so general that other applications

should be possible.

The central feature of the system is the chaining of records,

i.e. one record holds a pointer to a next-in-chaln-record. All

records In one chain will have one common property, namely the

starting point, which is a special record, the mother-record of

the chain. Thus, when several chains passes through one record,

this record will mark a link between the properties specified

by the mother-records of the colnciding chains.

Chalns and two kinds of files are used by the system to

achieve direct access to records by key or by chaln.

Master-fliles:

A record in a master-flle is addressed by a _ user-defined

logical key carried in the record. The master-files are

organized indexed-sequentially so that fast sequential proces-

sing can be anticipated. Variable record-length Is possible.

List-files:

A record is addressed by its record-number which Is selected

by the system at the Insertion-time. The record-numbers are

used Internally for the chaining pointers. The physical block,

In which a record is stored, Is calculated directly from the

record-number, but the placement of the record Inside the block

Is read in a record-table heading the block to allow. for

records of variable length.

A list-file record will always be a daughter-record of one

or more chains, but it may also be the mother-record of any

number of chains, whereas master-file records are used as

mother-records exclusively.

Chains:

A chain will always start at one record (the mother-record)

In a mother-file Cfile holding mother-records, master- or

list-flle) and continue in one or more records Cdaughter-

records) in a daughter-file (file holding daughter~records,

always a list-file).

Any actual chain (string of logically connected records) in

the system will belong to a certain predefined logical group

of actual chains.

Depending on the context, the concept of a chain will be used

in the following to denote one actual chaln or a whole group



CF-SYSTEM 3

Introduction

of actual chains.

A group of actual chains is characterized by the two files

concerned and by the position of the record-fields used for

chaining (Ctwo files may be connected by any number of chains).
The chain-groups are numbered within an actual file-confl-

guration from one and up, the chailn-number belng used for

initialization of the processing of that particular group of

chains.

An actual file-configuration set up and processed by the

connected-file-procedures may contain any number of files and

any number of chains connecting them. The only limitation Is

that loops in the structure are forbidden, i.e. It must not be

possible to meet the same file twice by stepping over the

mother-file to daughter-file connections.

All files are RC 4000 backing store areas, which must be

treated separately with regards to initialization, opening,

closure and dumping. The connections are only checked when

chalns are processed and when it is attempted to delete records

in mother-files.

Any file may be prolonged to a certain predefined limit in

order to accommodate more data, but the best dIstributlon of

records will most likely be obtained if this facillty is used

sparingly.

An algol-zone Is connected to each fille used by a certain

program, and records appear as zone~records so that no super-

fluous core-store-copying is performed. The record-fields used

for the administration of chains are not accessible from the

users program.



CF-SYSTEM 4

Masterfliles

Master files

These files contain the records which should be = accessed

directly through user-defined keywords carrled In the records.

The basic file-administration-system Is the Indexed-Sequen-

tial-Flle-System of RC 4000 described in RCSL No.55~D99. As

regards the fundamental properties of the master-files, this

manual should be consulted, since the corresponding procedures

of the cf-system only provides for the administration of the

chain-flelds.

In fact, it is possible to process a single master-file by

the indexed~sequential procedures, if these procedures are used

exclusively, but It Is not recommended, since the chalin-flelds

of the cf=-system wlll not be protected, and It will be possible

to delete a mother-record without deleting the corresponding

daughter-records.

One major difference between the set of procedures described

In RCSL No.55-D99 and the cf~procedures is the way In which the

files are opened and closed. In connection with the cf~system,

the standard open- and close-procedures of RC 4000 algol are

never used, and it Is not necessary to call one of the

mode-changing procedures to ensure that the fille is properly

updated.

File-Initiallzation can only be terminated by the close-cf

procedure and not by the mode~changing procedures.

Another difference Is that the delete-m procedure has long-

range effects, as it also deletes all list-flle records

connected to chains orlginating in the master-flile-record,.

An opened master-file Is protected against unauthorized

Input-output~procedures by means of special zone~state values.

In principle, these zone-states are just a parallel displace-

ment of the zone-states used by the indexed-sequential proce-

dures, see append!x C.

The cf-system will, im some cases, reference master-file-

records internally for the updating of chain-fields. The

logical key and not some physical address is used in this case,

too, primarily because the physical location of a master-file-

record may change, due to Insertions and deletions, but also

because the reference by key Is standard, and makes It possible

to reorganize a master-file without touching any other file in

a file-configuration. The costs are that the chain-fields used

for mother-reference are rather long, and that reference to the

mother-record of a chain will require the usual search in the

tables of the indexed-sequential file.

The master~record reference, which is carrled In chain-fields

and in the chaln-tables (see chains), is a copy of the keypart

described in RCSL No.55-D99, I.e. a data-fleid holding the

keywords of a master-flle-record in a compressed form,



CF-SYSTEM 5

Listfiles

List files

This kind of file Is designed especially for the cf-system

and is Intended to hold the records which only should be

accessed through links from other records.

The file-administration facilitates access to a certain

record In one step by a short address, as opposed to. the

master-files, where long key-fields and access in two steps,

block-table and block, is the rule.

A record is identified by a record-number, a positive Integer

not greater than a maximum number determined by the slze of the

file and the range of record-numbers allocated to one block

(The greatest possIble record-number is 8.388.606).

It is not possible for the user to insert a record ata

certain record=number, the file-administration Itself will find

an unused record=number according to a certaln strategy, insert

the record at this number, and insert the record-number as a

24-bit integer In the chalin-field of the record which is

prior-in-chain to the Inserted.

File-structure:

The list-file Is stored as a backing store area containing

a file-head, a block-table, and a varlable number of blocks.

The file-head contains information for the processing of

records and the chain-tables Cdescribed under chains) of the

chaln-groups of which the file is the daughter. The file-head

is never written back to the flle.

The block-table contalns a 6~bit entry per block holding a

logarithmic derivative of the percentage of free room in_ the

corresponding block. The table is held permanently in core

during the processing and it is used to obtain an equal

distribution of records over the whole file. This Is Important

for the physical cluster!Ing Csee Insert-strategy) of records

being daughters of the same chain and It limits the number of

block=accesses to find a suitable block for an insertion to a

maximum of two (see insert-strategy). The block-table is

written back to the flle together with some status-varlables by

the close-~cf procedure or the read-only-cf procedure, if

records have been removed or inserted.

A block occupies an Integral number of backing store segments

C1 to 8 segments, each of 512 bytes of 12 bits). All blocks

are of equal length and one block corresponds to ae certain

user-defined range of record-numbers.

Each block is prefaced by some status-variables and a

record-table of one entry per record-number allocated to that

block. An entry in the record-table consists of a 12-bit byte,

the rightmost bit defining, whether the record-number Is free

or not, and the rest, the base of the corresponding record

given relative to the base of the block.

A file may be declared to hold records of elther flxed or



CF-SYSTEM 6

Listfiles

variable length, in the latter case, the first 4 bytes of the

user-part of each record Is reserved by the system. The first

2 bytes will tell the length of the user-part measured In bytes

and the next 2 bytes contain the record=number, both repre-

sented as integers. These 4 bytes are always restored before

a new zone-record is fetched.

There are two limitations to the number of records which can

be accommodated In one biock: The number of record-numbers per

block and the amount of room for records In one block.

In case of fixed record-length, both limitations are made

equal by the cf-system, but in connection with variable length

records, the user himself must balance the limitations by

estimating the length of the minimum record which Is going to

exploit all the room of some blocks without participation of

other records.

The cost of setting this minimum length too low, Is one 12

bit byte per superfluous record~number, on the other hand,

setting [It too high, may cause some room to be left unusable

in blocks malnly containing small records.

A list-file may be prolonged, but not shortened, simply by

Increasing the size of the backing store area of the file. This

can be done during a run by use of the procedure extend-cf, or

between runs by the util lity~program set (System 3). However,

the maximum number of blocks In one file must be given when the

flle-head Is created, because room for a maximum block-table is

reserved before the first block of the file Ca block-table of

one segment corresponds to 1008 blocks, two segments to 1008

+ 1024, etc.).

During processing only the active part of the block-table is

held in core, a large upper limit is thus not very expensive,

but It is not advisable to let a Illst-fille grow too much, and

especially not too often, since this will tend to disturb the

clustering of records (Csee insert-strategy).

File-processing:

The zone used for a list-file, holds the fille-head In the

first part of the zone-buffer, then the block-table as the

first share of the zone, and after that a number of shares Cat

least one), each able to hold one block. Each block=share

demands a bufferlength equal to the blocklength plus one word

of 24 bits.

The use of at least two block-shares can be advantageous

because return to the previously accessed block will be quite

common during the maintenance of chain-flelds In connection

with insertion and deletion of records.

on the other hand more than one block-~share can be [Incon-

venient, as an updated block will not be written back until

some other blocks have been read, so that the disc-heads have

changed position.

If at least three block-shares are used, the cf-system will

write back updated blocks In parallel to program execution, so



CF-SYSTEM 7

Listfiles

that one block-share is always ready for Input with a minimum

of walting~time.

The cf-system holds a sorted IIst of one entry per block-

share, the first entry pointing to the block which has been

accessed most recently, and the last entry pointing to the

victim, i.e. the block which Is going to be overwritten next,

because It has not been accessed for the longest period.

If the victim-block has been updated, then the transfer back

to the file will be initiated, but not waited for, at the time

when the block becomes the victim, provided that at least three

block-shares are available.

In order to make multi-block-share runs economical and to

diminish transfer-time, the user should define a small block-

length, on the other hand, short blocks wl11 demand more core

for the block-table and will increase the total size of

unusable block~-remnants.

Insert-strategy:

The insert-strategy concerns the way in which records are

placed physically In the file.

The ideal is to have records with a high probability of

sequential retrieval placed sequentially or at least placed In

the same neighbourhood in the file, i.e. in so few. physical

blocks as possible.

In a list-file, records linked logically together In the same

chain will have such a great probability of sequential retrie-

val. It is therefore attempted to concentrate connected records

physically. This will in the following be called to cluster the

records.

The intention is to obtain a great probability of finding the

next record of a chaln In the same block as the last accessed

record, the gain of having two daughter-records of one chain

placed in the same block being one block-access each tlIme_ the

chain is traversed,

The clustering is only taken into account when a new record

is going to be inserted, i.e. already placed records are never

moved as that would involve very high costs.

By this simple method, it Is only realistic to hope for

clustering of one group of chains. A general optimization of

all chains might be the task of a later, probably rather

complicated, reorganization program.

Therefore, the user should favour one chain-group iIn- each

list-file by letting the insert-] procedure work upon this

chain-group, as this procedure performs the physical insertion

of a list-file-record.

A list-file=-record may be connected to one actual chain of

each chain-group defined. One chain is connected by the

insert-1 procedure, the remaining chains may be connected by

the procedure connect.

The block used for the insertion is selected by insert-1]

according to the following algorithm:



CF-SYSTEM 8

Listfiles

1. if new chain then find the block of most free room

else

2. if room In block containing the neighbour-record

then select this block

else

3. if overflow has occurred earlier from the block

containing the neighbour-record and room fs

available in the overf low-block

then select the overflow~block

else

4, find the block of most free room and make this

block the overflow=block of the block containing

the neighbour-record,

The block containing most free room is searched Jn the

block-table, the neighbour-record is the record which is gotng

to be prior to the inserted record, or in case the inserted Is

next to the mother-record, then the record next to the

inserted. The insertion is not performed in case the file is

already filled beyond a user-specified percentage, or In case

the block of most free room is not able to hold the record.

In case l of the algorithm above, an insertion will require

1 read and 1 write block-access, whereas the worst case, case

4, requires 2 read and 2 write block~accesses when at least two

block-shares are available, but 4 read and 2 write block-

accesses, If only one block-share is available.

When a block becomes more than half empty after a record

deletion, the overflow-pointer is erased.

Zone~states:

A zone opened to a list-file may be in one of the following

three states analogous to those used for the master-files:

read-only-] It is only possible to read the file; this is
the state set by the open-cf procedure. The

state Is not recommended, because the removal

of dead records 1s not carried out (see chains-

d.

read-update-] Both reading and writing are allowed, but to
ensure that changes In a record retrieved by

the procedure get-1 or get-numb-1, will be

reflected in the file, the procedure put-cf

must be called after the retrieval. Any record

read by the user may end up in the file, so the

user should not make any transient changes of

record-fields.

update-all-1] All accessed records are written back to the
file.



CF-SYSTEM 3

Chains

Chains

A chain in. the cf-system is basically a string of records,

each record except the last one holding the reference to Its

successor.

The first record Is called the mother=record and the other

ones are called the daughter-records of the chain.

The mother-record and the daughter-records are placed In two

separate files, called the mother-file and the daughter-file of

the chain respectively.

The mother-file may be either a master-file or a list-file,

but the daughter-file is always a list~flile, i.e. reference to

the next-in-chain record is always a list-flle record-number,

All records in a chain will have a 24-bit chainfield holding

either the reference to the next record jin the chain or

indicating end of chain, i.e. all chains are open and one-way.

In addition a daughter-record may contain a reference to the

mother-record, the chain is said to be headed. This reference

Is elther a compressed key of a master-file-record or the

record-number of a list-file record. The mother-reference may

be fetched by means of the procedure get~head, In order to look

up the mother-record by get-m or get~numb-1, according to the

type of the mother-file.

The mother-reference is intended for this purpose, which only

can be of any value in case the mother-reference is wanted for

a chain, different from the chain by which the record was

accessed, but for the reason of security, it is checked

internally that the mother-reference is the same in all

daughter-records of one chain.

All records In one file will have a chain-part of the same

format, each field in the chain-part corresponding to a certain

chaln-group, of which the file is either the mother or the

daughter.

A chaln-group corresponds to a certain mother-file and a

certain daughter-file, and it will utilize some = specific

chain-fields in the records of these files.

A record in any file will contain a user-part followed by a

chain-part, the user-part being of fixed or variable length and

the chain-part of fixed length.

Specification:

All chain-groups ina certain file-configuration are speci-~

filed by an integer array used as a parameter of the two

head-procedures head-m and head~-1l.

A call of one of these procedures will In a backing store

area generate a file-head holding among other’ things’ the

specification of the chain-groups assigned to the file.

The fundamental information concerning a chaln~group is the

number of the chain-group Call chain-groups are numbered by the

system from one and up), the position and size of the

corresponding chain-fields, and the role of the file, mother or

daughter,



CF-SYSTEM 10

Chains

Processing:

Before a certain group of chains can be processed, the

corresponding mother-file and daughter-file must be opened and

the init-chain procedure called.

This procedure will cet up some absolute addresses in the

zone-buffers of the two files to enable cross-reference between

the two zones, and it will return a real parameter holding two

absolute addresses pointing to the Information jin the zone-

buffers concerning the chain-group.

This return value must later be used as a parameter of the

various chaln=processing procedures to specify the chain-group.

The parameter is the one named chainref in the procedure

descriptions.

Chain-tables:

The list-file zone-buffer contains a table for each chaln-

group of which the file Is the daughter.

Each chain-table can hold the Information needed to define a

position in an actual chain of the corresponding chain-group.

This information consists of the following four parts:

prior The record-number of the record which precedes the

last accessed record. If the last accessed record

is the first daughter-record, then prior fs zero,

last The record-number of the record accessed most

accessed recently through the chain-group. It is zero If the

chain-state is empty (see chain-states).

next The record=number of the record succeeding the last

accessed record. This field is copied from the next

chain-field of the last accessed record.

mother The reference to the mother-record of the actual

chain stored In the same format as the correspon-

ding record-chain-field.

The chain-tables are used by almost all procedures having a

chaln-parameter, the procedure get~1l, for example, will use the

next-field of the chain-table to retrieve the next record of

a chain. The prior-field is used when the last accessed record

is deleted, and when a record is connected to a chain prior to

the last accessed record.

Chain-states:

A chain-group is In one of the following three states:

notrinit This is the state before the call of the procedure

init-chain, but the state is also assumed when one

of the two corresponding zones is closed, No

chain-processing can occur in this state.



CF-SYSTEM 
ll

Chains

empty The empty-state is assumed after the first call of

Init-chain, and in other cases specified in the

procedure descriptions.

last~acc~ A chain-position is defined by the chain-table. The

def ined last accessed record is not necessarily the current

record of the daughter-file.

Dead records:

A list-file record wiil always be deleted as the last

accessed record of a chain-group, whether the deletion Is

performed explicitly by the user or internally through the

file-connections.

For this chain-group it is possible to remove the record from

the chain as the prior record is noted In the chain-table.

If a record is connected to one chain only, It is also

removed from the file, but In the case of more than one

connected chain, the record will remain in the file as a dead

record until jit has been disconnected from all the remaining

chains. The disconnection will be performed by the system each

time the dead record is retrieved as the next record of a

chain, provided that the zone fs in one of the update states

(the mother-zone must also be in an update state if the dead

record happens to be the first in the chain).

The user will thus never retrieve a deleted record, but a

certain percentage of dead records in a list-flle, depending on

the use of the chains, must thus be taken into account. This

strategy together with the use of the one-way chain has been

selected to obtain a fast maintenance of chains.



CF-SYSTEM 12

File-configurations

of this chapter is to propose a way of drawingThe purpose
file-configurations.diagrams defining the structure of actual

fig. 1 1 Master-file
(mother of chain 1)

1 chain (clustered, no

reference to mother)

list-file

(daughter of chain 1)

The diagram of fig. 1 shows a single master-file given the

logical file-number 1, a single list-file given the logical

file-number 2, and a single not headed chain, chain 1 of the

configuration, The double arrow is used to indicate the chain,

the daughter-records of which are clustered by the insert-]

procedure, exactly one double arrow must point to a list-file.

This simple structure might be used In cases where some

record-part is varying strongly in length or is infrequently

used,



CF-SYSTEM 13

File-configurations

Master-file

fig. 2 4 (mother of both chains)

1 chain 2

aC (clustered, headed) —t chain

(not clustered,
headed)

list-—file

@aughter of both chains)

In fig. 2 the structure is extended by an extra chain-group,

and both chain-~groups are headed, i.e. each daughter-record

holds a reference to the mother-record of the chain. This is

specified by two bars crossing the arrows. Chain 1 is the

clustered one.

By this configuration it is possible to look up a record in

the inaster-file, retrieve a record of the corresponding chain

1, fetch the mother-reference of chain 2, and look up the

mother-record in the master-file. Each record in the list-file

may thus be thought of as a link between two records of the

master-flle, namely the two mother-records of the actual chains

to which the list-file record is connected.

The chains of fig. 2 may, for example be used to establish

the bill-of-material/where-used structure of manufactured com-

ponents.



CF-SYSTEM 14

File-configurations

fig. 3 4 customers

6 order-chain

NIZ

<> order-heads
5 order—line-chain

Ww

> order—lines
orders-—for-

4 ae component—chain

description

chain components

(- 2

3 used-on-

2 chain

oo. 

NE

descriptions 4 relations

40

Where-used-chain

In fig. 3 an example is shown of the file-configuration of a

sales-control system,

It may, for example, through this structure be found out, how

many components are needed to effectuate the orders of one

customer, or which orders have been received for a_ specific

component,

The orders are split into two files, as one order may hold

some informatlhon common to a number of order-lines, each

corresponding to a certain component.

If the component-records have some lengthy and infrequently

used parts, for example some text-descriptions, these parts may

be stored in a separate list-file.



CF-SYSTENM 15
Protection System

An administration of the permanent files of an adp-system

will face the following two error causes:

1. A file is not properly updated If the processing Is not

terminated by a call of some closing procedure. This call

may not be executed, if a program is terminated by = an

operation system or by a run time alarm,

2. Qf more than one permanent file is used, there Is a risk

that different generations of files are mixed in a_erun,

This risk is greater if a lot of files of different

updating frequencies are used.

Errors of the first type may not be so serious in systems

using sequential files, because the files are scanned from one

end to the other, so the lack or inconsistency of some

endoffile label will reveal the error.

For systems using random access files, like the cf-system,

errors may remain undetected for long periods and may give rise

to alarms, which are very difficult to trace back to. the

original cause.

The use of random access files introduces another error

cause:

3. The same job or program may erroneous be run twice causing

a double updating of the files involved. This is not

possible in connection with sequential files, where the two

runs would be completely identical, because the old ver-

sions of the files are unchanged.

The cf-system has been provided with protection against the

error causes 1 and 2, but not against 3.

The catalog entry of a file is used by the protection system

in this way:

file = set <seginents> <bs device> <version> <update mark>.

The two last quantities are special for the cf-system:

<version> A number (0 <= version <= 8 000 000), which is

increased by one each time the processing mode



CF-SYSTEM 16

Protection System

is changed from read-only to update.

<update mark> Either 0 or l,.

0: The file is in read-only-state. This should be

the state between runs, and this is the state

accepted by open-cf.

1: The file is in update-state. This state must

not occur between runs, and a file in update-

state is rejected by open-cf.

Errors” of type 1 are detected by means of the update-mark,
which will be equal to one, if a processing in an update mode

is terminated by an index alarm f.ex..

The second error type is remedied through the use of the
version number In connection with a supervisory register

holding the actual version numbers of al} the files of a
fi leconfiguration, The procedure open-cf wil’? check that the

version numbers in the supervisory register, and in the catalog

entry of the fille are identical.

A masterfile is used as the supervisory register. It is
called the description file because It can be used for all

kinds of descriptions, f.ex. filles, records, and fields.

A maintenance program for description files has been pro-

duced, and utility programs, and higher level cf~procedures,
Planned at present, will use the description file.

It is possible though, but not recommended, to switch off the
version number checking. In this case the description file is
not necessary, but the version number in the catalog entry Is

still increased.

The update mark checking can not be switched off.

The format of the description file is given in appendix €.

setrdeser-cf

This is the nane of a procedure, which must be called before
the first call of open-cf.

The call of set-deser-cf will provide the cf-system with the
name of the relevant description file. The name is lateron used
by the procedures open-cf, read-upd-cf, and update-all-cf.

If an empty string is given as the parameter of set-descr-cf,
the procedures will not attempt to access a description file,

Whenever the description file 1s accessed, It Is checked that
the update mark of the description file itself is zero,
Therefore the user must avoid simultaneous updating of the
description file, in a zone of his own, and calls. of open-cf,
read-upd-cf, and update-all-cf concerning other files.



CF-SYSTEM 17.

Protection System

Alarms

When the protection Is violated, or If the protection system

has troubles with a catalog entry or the description file, a

run time alarm will terminate the program. The alarm is issued

by the external algol procedure protect-cf, which actually

performs the functions of the protection system.

Such an alarm !s headed by the following two lines:

xxxprotectcf alarm:

file <file number> <file name> vers.in.cat <version>

The text: file, is replaced by the text: descr, if the trouble

concerns the description file,

The run time alarm following these two lines will explain

what happened, see appendix A, under protectcf,

Other alarms than mentioned im appendix A inay arise, If the

description file is not ok. The alari will originate’ from

either buf-length-cf or open-cf used upon the description file.



CF-SYSTEM 18

Procedure Description

<procedure name> proc.no.<proc.no.>

<abstract> CA short functional description).

Call: <procedure call> (Format of call).

<parameter description> CExplanation of each parameter).

Requirements:

CConditions for a successful exit from the procedure,

If the requirements mentioned are not fulfilled, the

run will be terminated by an alarmmessage).

Results:

CResults from the procedure, inclusive notes on states

and accessible records).

result_cf current record

Cpossible values Cspecification of the

of the standard accessible record, if

variable result_cf). any).

<further explanation> CEventually some extra notes and warnings).



CF-SYSTEM 19

Procedure Description

buf _length_cf proc.no. 1

Returns the bufferlength of a zone to be used for a connected

file.

Call: buf_length_cf (filename, blocks_in_core)

buf _length_cf (return value, integer) The needed buf-

ferlength.

filename C€call value, string) The name of a
backing store area holding a cf-file.

blocks_in_core (call value, integer) Defines the num-

ber of blocks wanted in core at the

same time:

Masterfiles:

blocks_In_core = 1, or 2 if full

Insertion is wanted.

Listfiles:

blocks_in_ core >= 1, >= 2 is

recommended.

Requirements:

filename must describe a backing store area holding a

correct masterfile or listfile, and must not be reser-

ved.

Results:

result_cf = 1, ok

Further explanation:

Declares a zone, opens the file, reads the first seg-

ments, and computes the needed bufferlength according

to blocks_in_core,.

A masterfile-zone may be declared:

zone zinCbuf_length_cfCfilename, 1 or 2), 3, blockproc);

A listfile-zone may be declared:

zone zliCbuf_length_cfCfillename, blocks_|In_core),

blocks_in_core +1, blockproc);

Documenterrors will cause stderror to be called.



CF-SYSTEM 20
Procedure Description

close_cf proc.no. 6

Terminates the use of the zone by writing back eventual up-

dated blocks.

Call: close_cf (Cz, rel)

z €call and return value, zone) Connected

to a masterfile or listflile.

rel As for algol procedure close.

Requirements:

zonestate = any cf-state, exept after-declaration.

Results:

zonestate 4, after-declaration.

result_cf 1 ok

Chainstates wlll be not_init for associated chains.



connect

CF-SYSTEM 21

Procedure Description

proc.no. 13

The procedure connects the last accessed record In one chain to

another

Call:

chain according to a specified mode.

connect (zl, chainref_1, chainref_2, Icmode)

zl C€call and return value, zone) Connected

to a listfile.

chainref_1 Ccall value, real) Return parameter from

init_chain. The record to be connected

Is the last accessed record of this

chain.

chainref_2 (call value, real) Return parameter from

Init_chain. The reference for the chain

to connect to.

icmode €call value, integer)

=1 connect chain_1 record as first member

of chain_2 from current record In the

motherflle of chain_2.

= 2 connect chaln_1 record as next to last

accessed record In chain_2.

= 3 connect chain_1l record as prior to last

accessed record in chain_2.

Requirements:

Results:

Note:

zl must be daugtherfile of both chain_1 and chain_2.

zonestate = read_update_1 or update_all_l.

chainstate Cchain_1) = last_accessed_def.

If icmode = 1, chalnstate Cchain_2) may be empty else

last_accessed_def.

If tcmode = 1, then current record in the motherfile

must exist.

If the connected record is next to the mother record,

the motherfile must be In an update state.

If result_cf = 1, the connected record will be last-

accessed jn chain_2, too. Zonestates are unchanged.

result cf current record

1 connected the connected

2 not connected Calready none

conn. to another chain)

For icmode = 3: see the note for the procedure Insert_1].



CF-SYSTEM 22

Procedure Description

delete_chain proc.no. 16

The procedure deletes all records in a chain headed to current

record of a flle and all records in chains originating In re-

cords of the specified chain.

Call: delete_chain (z, chainref)

Zz (call and return value, zone) Connected

to a masterfile or listfile.

chal nref Ccall value, real) Return parameter from
Init_chain.

Requirements:

zonestate = read_update_m, update_all_m or read_update_l,

update_all_1 depending on the type of the specified fille.

All chains originating In the daughterfile glven by

chainref must be Initilalized. Current record must exist.

All daughterfiles must be in an update state.

Results:

zonestate Is unchanged. Chainstates become empty for

all chains associated to flles, where records have

been deleted.

result_cf current record

1 deleted unchanged

2 no chain to delete ~



CF-SYSTEM 23

Procedure Description

delete_] proc.no. 15

The procedure deletes the last accessed record Jn the chaln and

all records in chains originating In the record. The next record

In the chain becomes current record of the file.

Call: delete_1] (zl, chainref)

z1 €call and return value, zone) Connected

to a listfliie.

chalnref €call value, real) Return parameter from

Init _chain.

Requirements:

zonestate = read_update_1! or update_all_l.

chainstate = last_accessed_def.

All chains orlginating In the listflle must be Initia-

lized.

All daughterfilles and the motherflle corresponding to

chainref must be in an update state,

Results:

zonestate is unchanged. Chainstates become empty for

all chains assoclated to files where records have been

deleted, except the chain specified as parameter Csee

below). Other files where records have been deleted,

will have no current record.

result cf current record

1 deleted the next In chaln

2 - » last in chain, none

chainstate = empty



CF-SYSTEM 24

Procedure Description

delete_m proc.no, 14

The procedure deletes the current record of the file and all re-

cords In chains originating In the masterrecord.

Call: delete_m Czm)

zm Ccall and return value, zone) Connected

to a masterfile.

Requirements:

zonestate = read_update_m or update_all_m. All chains

originating In the masterfile must be Initialized.

All daughterfiles must be in an update state.

Results:

Chainstates become empty for all chaingroups associated

to daughterfiles, where records have been deleted.

Other files, where records have been deleted, will have

no current record.

result_cf current record

1 deleted the next In the file

2 - ,end of file the first

3 not deleted, only one the one

left In the flle.

It Is obvious that the call may have rather wide consequences.

In case of several connected filles It Is advisable to use the

procedure delete_chain in connection with delete_m to get more

Informative results.



CF-SYSTEM 25

Procedure Description

extend cf proc.no. 2

The procedure increases the length of a cf-file during the pro-

cessing. The current record, zone- and chainstates are preserved.

Call: extend_cf (z, segments)

z €call and return value, zone) Connected

to a masterfile or listfile.

segments (call value, integer) The extension In

segments.

Requirements:

zonestate = read_only, read_update, or update_all, _m or

_l. The zonestate is checked by a call of read_only_cf.

Segments >= 0, and not so great, that max_bucks or max_

blocks is violated.

The bufferlength of the zone must be sufficient for the

extended file.

Segments and bufferlength are checked In a call of open_

cf performed on the extended file.

Results:

Current record, and all states are unchanged for any

value of result_cf.

resultcf

1 ok

2 ok, but only room for simple insertion In mas~

terfile buffer.

> 10000 error in a call of a monitor function.

result_cf = result of monitor call =x 10 000

+ number of monitor function.

Probable results:

40044 change-entry, the scope of the file

does not permit change.

60044 change-entry, there is not room for

the extension.



CF-SYSTEM 26

Procedure Description

get_head proc.no. 10

The procedure is used on current record ina list_file to give

the key of the mother~record of a chain to which the listfile-

record Is connected.

The key inay evt. be a rec_no of a listfile record.

Call: get_head (zl, chainref, key)

Requirements:

Results:

zl Ccall and return value, zone) Connected

to a listfile

chainref (call value, real) Return parameter from
init _chain.

key (return value, real array) See keywords,

app. 2.

zonestate = read_only_1l, read_update_1 or update_all_l.

chainstate = last_acc_def or empty, current record must

exist.

zl must be the daughter_file of the chain.

result_cf current record

1 ok unchanged

2 record not connected unchanged,

and key unchanged



CF-SYSTEM 27

Procedure Description

get_] proc.no. 9

The procedure searches a new current record in a listfile.

Call: get_1€z1l, chainref, gmode)

zl Ccall and return value, zone) Connected

to a listfile.

chainref Ccall value, real) Return parameter from

Init_chain.

gmode Ccall value, integer)

= 1 the wanted record is the first member of

the chain from current record in the

motherfile.

= 2 the wanted record Is the one next to the

last accessed record in the chain.

= 3 the wanted record is the last accessed

in the chain.

Requirements:

zonestate = read_only_l, read_update_1] or update_all_l.

chainstate = last_accessed_def, or if gmode = 1, empty.

If gmode = 1, current record in the motherfile must

exist.

Results:

result_cf current record

1 found the wanted

2 not found If gmode=2 then the last

accessed else none

If no current record then chainstate = empty else last accessed

record corresponds to current record.



CF-SYSTEM 238

Procedure Description

get_m proc.no. 38

The procedure searches a record in a master-file with a specified

key and makes it current record,

Call: get_mCzm, Key)

zm Ccall and return value, zone) Connected

to a masterfile.

key Ccall value, real array) See keywords,

app. Z.

Requirements:

zonestate = read_only_m, read_update_m, or update_all_m.

Results:

result_cf current record

1 found the found

2 not found next with a greater key

30 - - , end of file the first



CF-SYSTEM 29

Procedure Description

get_numb_1

The procedure makes a

available as Current record.

listflle record

proc.no. 23.

glven by its record-number

Call: get_numb_1] C€zl, rec_no)

zl Ccall and return value, zone) Connected

to a listfile.

rec _no Ccall value, integer) Contains the num-

ber of the

Requirements:

zonestate = read_only_|l,

Results:

resultcf

l record active

2 record dead

zonestate and chainstate

wanted record.

read_update_1 or update_all_l.

current record

the wanted

none

are unchanged.



CF-SYSTEM 30

Procedure Description

get_parain_cf proc.no. 30

The procedure ylelds the values of a selected set of parameters

from the zonebuffer of a cf-file.

Call: get_param_cf (z) one or more pairs: Cparamno, val)

Zz €call and return value, zone) Conncted

to a masterfile or listfile.

par amno Ccall value, Integer) Identifies the

wanted zoneparameter.

val Creturn value, integer) Receives the

value of the zoneparameter identified

by paramno.

Requirements:

The zone must be opened by open_cf or Init _flle_m.

If the file is a masterfile, paramno must be one of the

values listed in RCSL No. 55-D99, appendix Bl.

If the file is a listfile, paramno can be one of the

following numbers:

paramno name

1 dead-bytes

2 used-bytes

3 Fill-Vimit

Results:

result_cf = 1, ok.

meaning

Number of bytes occupied by dead

records Cincluding chalin-parts).

Number of bytes used by records

Cinel. dead records).

The maximum allowed percentage of

used-bytes in the flle. CStandard

is 80 pet. for a not empty file.)

Alarm -par.pair~ occurs when an error Is found in the parameter-

list. Alarmno shows the number of the parameterpair, where the

error was found.



CF-SYSTEM 31

Procedure Description

head_1 proc.no. 26

The procedure will generate the head of a listfile in a backing

store file. (See app. J. for selection of size_1)

Call: head_1 (filename, file _no, chains, size_1)

filename see procedure headm

file_no - - -

chains - - -

size l Ccall value, integer array)

Contains the following 4 integers:

fixed rec_length

= 0 means variable record length Is

wanted,

> 0 means fixed length Is wanted,

the value specifies the length

in bytes.

min rec_length in case of variable

length, this integer specifies the

minimum length of records, which

should fill a block without parti-

clpation of longer records,

segs_per_block number of segments In

a block. C1<= segs_per_block <= 8).

The length of the greatest record

that can be inserted in a block may

be calculated thus:

chain_part_size i=

2xno_of_associated_chains

+ siginaCtypexcompressed_key_

size) over all chains of which

the file Is the daughter;

comment see array chains;

max_no_of_recs_per_block :=

€512xsegs_per_ block //

(min rec_length +

chain_part_size + 1) + 1)

// 2x 2;

max_rec_length :=

512 x segs_per_block -

Cchain_part_size +

max_no_of_recs_per_block + 8);

max_blocks the maximum number of

blocks the file will ever hold,

Results:

result_cf = 1 ok, flle_head is created.



CF-SYSTEM 32

Procedure Description

head_m proc.no. 25

The procedure will generate the head of a masterfile in a back-

ing store file. (See app. J. for selection of size_m)

Call: head_m (filename, file_no, chains, rec_descr,

no_of_keys, size_m)

filename (call value, string)

The name of the backing store file.

file_no (call value, integer)

The logical number of the file used

in chain specifications,

chains Ccall and return value, integer array)

Contains the specification of all chaln-

groups In the system. The procedure re-

turns the quantity compressed_key_size

for the associated chalns.

See format of array chains In app. D.

rec_descr (call value, Integer array) A two di-

mensional array Cl:ino_of_keys+1,1:2)

holding Information about types and re-

lative locations of the keywords and

the length In a record.

Same conventions as in RCSL 55-D99, the

length in element no_of_keys+1l, with

type=0 for fixed length records.

no_of_keys €call value, Integer) The number of key-

words.

size_m €call value, integer array)

Contains the following 4 integers:

maxreclength maximum length, In bytes,

of records which will be stored In

the file.

maxbucks maximum number of buckets the

file will ever hold.

segsperbuck the number of segments in

one bucket.

segsperblock the number of segments in

one block.

Results:

result_cf = 1 ok, flle_head is created.



CF-SYSTEM 33

Procedure Description

init _chain proc. no. 5

The procedure establishes the connection between the two zones

used for the motherfile and the daughterfile of a chaln-group.

Call: init_chain Cz, zl, chainno, chalnref)

z Ccall and return value, zone) Connected

to a masterfile or listfile. This zone

must be opened to the mother-file.

zl Ccall and return value, zone) Connected

to a listfile. This zone must be opened

to the daughter-file.

chainno Ccall value, integer) The number of

the chaln-group in the array chains.

CSee app. D).

chalnref Creturn value, real) This real is

lateron used as chaln-reference,

Requirements:

zonestate (z) = read_only_m or _1, read_update_ mor _1,

update_all_m or _1

zonestate (z!)= read_only_}, read_update_1l, update_all_1

Chainno must describe a chaingroup connecting the two

files to which z and zl have been opened.

Results:

result_cf = 1, ok

if chainstate = not-init then chalnstate = empty

else chainstate is unchanged.

chainref = chain-reference



CF-SYSTEM 34

Procedure Description

Init_file_m proc.no. 27

The procedure prepares a backing store file for Initialization.

The file must contain a master file head. The initialization

must be effectuated by successive calls of Init_rec_m and ter-

minated by a call of close-cf.

Call: Init_file_m Czm, filename, giveup, buckfactor,

blockfactor)

zm Ccall and return value, zone) A zone

with room for at least one block (see

procedure buf length_cf).

filename Ccall value, string) The name of a

backing store area holding a file head.

giveup As for algol standard procedure open,

buckfactor Ccall value, real) See file_i procedure

init_file_i.

blockfactor Ccall value, real) See file_i procedure

Init_file_l.

Requirements:

zonestate = 4, after declaration.

The zone must be declared with exact 3 shares, and have

a sufficient large buffer area, The file must contain

a correct head.

Results:

result_cf

zonestate

1 ok

init_m.W
o
y



CF-SYSTEM 35

Procedure Description

Init_rec_m proc.no. 28

The procedure is used to add records to the file one by one in

the key order. All chain-fields are empty after the Insertion.

The initialization should be terminated by a call of close-cf.

Call: inlt_rec_m Czm, record)

zm €call and return value, zone) Connected

to a masterfile by init_file_m.

record Ccall value, real array) The record to

be inserted,

Requirements:

zonestate = init_m,

Results:

result _cf current record

1 record added none

2 not added, file is full none

3 - - 1 Improper length none

4 - - , - key none



CF-SYSTEM 36

Procedure Description

insert_1 proc.no. 12

The procedure inserts a record in a chain according to a speci-

fied mode, and makes it available as the current record.

Call: insert_] (zl, chainref, Icmode, record)

zl Ccall and return value, zone) Connected

to a listfile.

chainref Ccall value, real) Return parameter from

init chain.

icmode Ccall value, integer)

= 1 insert record as first member of the

chain from current record in the mo-

therfile.

A = 2 next to last accessed record [n the
chain

= 3 prior to last accessed record in the

chain.

record €call value, real array). If variable-

length the lexicographical first ele-

ment must contain 0.0 shift 24 add

length shift 24,

Requirements:

zonestate = read_update_! or update_all_}!.

chainstate = last_accessed_def or if icmode = 1, empty.
If icmode = 1 then current record in the motherfile must
exist. If the motherfile is touched, it must be In an
update state.

Results:

A chainstate = last_accessed_def If result_cf = 1.

result_cf current record

1 inserted the inserted
2 f111 limit exceeded none

3 length error -

4 no block can take this record -

The users record is expanded with the necessary chainfields
Call empty) before the insertion.
The Inserted record will later be transferred to the fille.

Note: For icmode = 3: if last accessed is next to a motherfile
record, this record will be current record of the motherfile
after the call.



CF-SYSTEM 37

Procedure Description

insert_m proc.no. 11

The procedure inserts a record In the proper place In the file

and makes it available as the zonerecord.

Call: insert_m Czm, record)

zm €call and return value, zone) Connected

to a masterfile.

record Ccall value, real array) The record

to be inserted.

Requirements:

zonestate = read_update_m or update_all_m.

Results:

result_cf current record

1 inserted the inserted

2 record already in file the one in the file

3 not inserted, too expensive next with a greater key

4 file is full - - = - -

5 length error - - = - -

6 no buffer - - - -

The users record is expanded with the necessary chainfields

Call empty) before insertion,

The inserted record will later be transferred to the file.



CF-SYSTEM 38

Procedure Description

new_recl_cf proc.no. 24

The procedure is used for changing the record-length of the

current record, only possible for masterfiles with variable

recordlength.

Call: new_recl_cf Czm, length)

zm Ccall and return value, zone) Connected

to a masterfile.

length Ccall value, integer) Defines the new

length In bytes.

Requirements:

zonestate = read _update_m or update_all_m.

variable record length defined.

Results:

result cf current record

1 changed the same
2 last rec. in file same with the old length

3 too expensive - ~ - - -

4 file is full - - - - -

5 length error ~- - - -

6 no buffer - - - - -

In case length is less than the original length, ele-

ments are squeezed out from the upper end, otherwise

data are unchanged.



CF-SYSTEM 39

Procedure Description

next_m proc.no. 17

Makes the next record in a master-file current record,

Call: next_m Czm)

zm (call and return value, zone) Connected

to a masterfile.

Requirements:

zonestate = read_only_m, read_update_m or update_all_m.

Results:

result _cf current record

1 found the next

2 found, end of file the first



CF-SYSTEM 40

Procedure Description

open_cf proc.no. 3

The procedure opens the zone for the specified file and prepares

it for use by the other file_cf procedures.

Call: open_cf (z, filename, giveup)

z Ccall and return value, zone) A zone

with room for at least one block Csee

procedure buflength_cf).

filename Ccall value, string) The name of a

backing store area holding a file head.

giveup As for the algol standard procedure

open. Yet open_cf wlll always set the

end-of-document-bit Cl shift 18) In the

give-up-mask.

Requirements:

zonestate = 4, after declaration.

Fllehead ok, masterfiles must contain at least one

record.

Filename must be known.

Set_descr_cf must have been called.

Results:

zonestate = if masterfile then read_only_m

else read_only_l.

result _cf current record

1 ok If masterflle then the

first else none

2 ok, but only room for simple the first in the

insertion In the masterfile masterfile

zonebuffer

If the program tries to open a file, which is not initialized,

the run will be terminated by an alarm probably concerning a
masterfile-error, even if the file was expected to be a listfile.



CF-SYSTEM 41

Procedure Description

protect_cf proc.no. 33

Special purpose procedure.

The procedure is called internally by the cf-system In order to

have update marks and version numbers checked. But It can be

called directly if the name of the current description register

is wanted by some standard procedure.

Call: protect_cf (z, action)

z (return value, zone) Will contain the

name of the description file if set_

descr_cf was called before this call.

action €call and return value, Integer)

Must equal -l.

It is changed to 0 If set_descr_cf was

not called.

Requirements:

action = -l.

Other values of action may have peculiar results.



CF-SYSTEM 42
Procedure Description

put_cf proc.no. 18

The procedure ensures that the current record will be transfer-

red to the file.

Call: put_cf (z)

z Ccall and return value, zone) Connected

to a masterfile or listfile.

Requirements:

zonestate = read_update or update_all.

Results:

result _cf current record

lok unchanged

The procedure is ~-dummy- when zonestate = update_all, or the

current record is created by insert.



CF-SYSTEM 43

Procedures Descrintion

read_only_cf proc.no. 19

Transfers updated blocks to the file, and sets the zonestate to

read_only_m or _].

Call: read_only_cf (Cz)

z (call and return value, zone) Connected

to a masterfile or listfile,

Requirements:

zonestate = read_only_m or _1, read_update_m or _1l, or

update_all_mor _1l.

Results:

result_cf = 1, ok

zonestate = read_only_m or _1}.

current record is unchanged.



CF-SYSTEM 44

Procedure Description

read_upd_cf proc.no. 20

If zonestate = read_only_m or _1] and a current record exists,

a new copy is transferred from the fille. Zonestate Is set

to read_update_m or _1.

Call: read_upd_cf (z)

z (call and return value, zone) Connected

to a masterfile or llstfile.

Requlrements:

zonestate = read_only_m or _1, read_update_m or _],

update_all_m or _].

Results:

result_cf = 1, ok

zonestate = read_update_m or _}.

current record is the same, but evt. a new copy from

the file.



CF-SYSTEM 45

Procedure Description

set_descr_cf proc.no. 32

This procedure imust be called at least once In any program

using open_cf. The call must precede the first call of open_cf.

The procedure provides the cf-system with the name of a

description file. The description file is accessed Internally

by the cf-system for checking, and updating of version numbers

in the procedure open_cf, and in the procedures read_upd_cf and

update_all_cf if the prior zone state was readonly.

Set_descr_cf may be called several times, if more description

files are involved in a run, and the parameter of set_descr_cf

may be empty, Indicating that no description flle should be

accessed.

Call: set_descr_cf Cdescr_file)

descr_file €call value, string) The name of the

description file, or an empty string

(<::>). In the latter case the ver-

slon number check is not performed.

Requirements:

The call is always legal, the existence of the descrip-

tionflle is not checked by set_descr_cf.



CF-SYSTEM 46

Procedure Description

set_jumps_cf proc.no. &

The procedure specifies for a certain zone a user-procedure to

be called when certain values of cf-proc-no and result-cf coln-

cide at exlt from a cf-procedure. These cases are specified by

the parameter-pairs cf_proc_no and results.

Call: set_Jumps_cf (z, jump_proc)

one or more pairs: Ccf_proc_no, results)

z Ccall and return value, zone) Connected

to a masterfile or listfile.

jump_proc Cprocedure) The name of the users pro-

cedure, which must be declared at the

same blocklevel as the zone, or at an

outer level. It should be declared

thus:

Jump_proc (z, cf_proc_no).

cf_proc_no Ccall value, Integer) and

results Ccall value, Integer)

Specifles the result_cf-values for

which jump_proc should be called upon

exit from the cf-procedure identified

by cf_proc_no.

Requirements:

The zone must be opened by open_cf or init_file_m.

Jump_proc cannot be called from those cf=procedures which are
external algol procedures (see app. BD, nor from open_cf,
get_param_cf, or set_param_cf. If cf_proc_no specifies one of
these procedures, It will be neglected.

cf_proc_no = 0 denotes all possible cf-procedures.
results = Q denotes clearing of a1] previously specified
result_cf values for cf_proc_no. Non-existing result_cf values
are ignored,

Any number of result_cf values can be specified In one
parameter by representing each result_cf value as one digit in
the decimal representation of results. As the result-digits are
processed from behind, result = 120 will clear old specifica-
tions and set the new values 2 and l.

Alarm -par.pair- occurs when an error 1s found In the parame-
terlist. An alarmno > 0 shows the number of the Parameter pair,
where the error was found, alarmno = 0 denotes an error In
jump proc Ce.g. declared at a wrong blocklevel).,



CF-SYSTEM G7

Procedure Description

The parameter pair (1,1) needs a special explanation:

If this parameter pair has been given, the jumpproc Is called

asi

alarmproc (z, -cf_proc_no, alarm_number)

where alarm_number is an Integer specifying the number of = an

alarm occurring during the processing of zone z.

If alarmproc returns through its final end, the usual alarm is

given, but it is possible by a goto out of alarmproc to

continue the processing.

It is only possible to trap alarms occurring when it is sure

that zone z contains a correct filehead. I.e., it is not

possible to trap zonestate alarms or the alarms from open_cf

and init file lm,

Alarms from procedures coded in algol cannot be trapped.



CF-SYSTEM 43

Procedure Description

set_param_cf proc.no. 31

The procedure assigns new values to a selected set of parameters
In the zonebuffer of a cf-file,

Call: set_param_cf Cz) one or more pairs: Cparamno, val)

Zz Ccall and return value, zone) Connected
to a masterfile or listfile.

Par arino Ccall value, integer) Identifies the
zoneparameter to be changed.

val Ccall value, integer) The new value to
be assigned to the zoneparameter iden-
tiffed by paramno.

Requirements:

The zone must be opened by open_cf or init_file_m,

For a masterfile the allowed set of values for paramno
and val is listed in RCSL No. The
Parameters will only be changed in the zonebuffer,
but not in the file, 55-D99, appendix B82.

For a listfile the only parameter which can be changed
is flll-limit, i.e. paramno = 3 Csee get_param_cf),
and 1 <= val <= 100. The value will be inserted in the
zonebuffer as well as in the file.

Results:

result_cf = 1, ok.

Alarm ~par.pair- occurs when an error is found In the parameter-list. Alarmno shows the number of the Parameterpair, where the
error was found.



CF-SYSTEM 49g

Procedure Description

update_all_cf proc.no. 21

If zonestate = read_only_m or _1 and a current record exists, a

new copy Is transferred from the file. Zonestate is set to

update_all_mor _1.

Call: update_all_cf (Cz)

z (call and return value, zone) Connected

to a masterfile or listfile.

Requirements:

zonestate = read_only_m or _1, read_update_m or _],

update_all_moor _1.

Results:

result_cf = 1, ok

zonestate update_all_m or _1.

current record is the same, but evt. a new copy from

the file.



CF-SYSTEM 20
Reorganization

Normally the cf-files should be selfmaintaining, special

overflow areas f.ex. are never used, and deleted records can

be cleaned out during the normal use. But {it may of course

happen, that record formats must be changed, that new chain-

groups must be created, or old ones removed, or that a new

version of the cf-system demands that fileheads of the existing

files are changed.

For doing this kind of reorganization, four procedures are

introduced: init _extract, extract_cf, init_add, and add cf.

The basic scheme of a file reorganization, using these

procedures, Js the following:

1. All records of a file are extracted one by one in

sequential order. The extracted records wlll contain the

userparts as well as the chalnparts of the original

records.

2. The extracted records are transformed according to the new

record format. Care must be taken to preserve inter-

record-references. If listfile records are renumbered or

masterfile keys are changed, the corresponding references

must also be changed.

3. A new filehead is created according to the new demands.

4, Records are added to the new file [in sequential order.

Masterfile records are added in ascending keyorder and

listfile records are added at certain record-numbers,

normally the same record-numbers as before the reorganiza-

tion, in increasing record-number order.

The procedures Inilt_extract and extract_cf are used in step

1 to fetch the records.

Tools for execution of step 2 are not provided here, but it

should on the other hand be possible to perform step 2 ina

reasonable way by means of prograins coded in algol or’ fortran.

The procedures head_m or head_1 may be used in step 3 for the

creation of the new filehead, and the procedures init_add,

add_cf, and close_cf are used for the reinsertion of records

in step 4,

The scheme can be used for any kind of reorganization, but

it should be emphasized that reorganization involving resequen-

cing of records will be very complicated, even remeval of dead

records from a listfile , if done sequentially, will involve

much sorting and access to the relevant motherfl les.

So, in the fotlow!ng, only the simple reorganization of one



CF-SYSTEM 51

Reorganization

flle, i.e. cases, where all records of one file are extracted

and added again In the same order, will be considered.

In this kind of reorganization, the keys of master records,

and the keys of list records will be unchanged.

The reason for such a_ reorganization can be one of the

following:

1. A new version of the cf-system demanding a new filehead is

released.

2. You want to make a compressed dump of a flle on magnetic

tape without unused space and administrative tables.

3. You want to have masterfile records distributed evenly over

the whole file with a certain filling factor, or you will

decrease the total length of the masterfile. Listfiles

cannot be shortened because the mapping of record numbers

on the physical blocks is not changed.

4, Some file parameters should be changed, f.ex. segs-per-

block, segs-per-bucket, max-bucks, or max~blocks.

In these four cases step 2 in the basic reorganization scheme

is not needed.

5. The record format should be changed. New fields must f.ex.

be added, or old ones removed, or the recordlength should

be made variable, etc..

6. New chain. groups. should be created or old ones removed.

This involves a change of the chainparts of all records of

files associated with those chain groups.

Warning concerning _listflles_ of varlable length records.

The simple reorganization can always be performed on master~

files, and on listfiles of fixed length records.

But in connection with listfiles of variable length records

it is not sure, that all records can be added to the new

version of the file, If some recordlengths have been increased,

or if the min-rec-length- or the segs-per-block-parameter of

head_1] has been changed.

This problem is due to the fact that the record number of a

listfille record Is not changed by the reorganization.

A group of longer records, which In the old version of the

file were placed In separate blocks, may happen to belong to

the same block in the new version, or have grown so big, that

they cannot be accomodated in the block any more.



e

CF-SYSTEM 52

Reorganization

A remedy to this, is to have a smaller quantity of record

numbers per unlit of physical room. This can be obta!lned through

the use of a greater value of min-rec-length, the parameter

size_1€2) of the procedure head_1. But you can normally not be

sure, that all records can go Into the new verslon of the file,

and the more sparce mapping of record numbers on the physical

room, wlll on the other hand Increase the size of the Ilstfile.

NB. The reorganization procedures are not coded yet.



CF-SYSTEM 53

Reorganization

Inlt_extract proc.no. 34

Reorganization procedure.

The procedure prepares a cf-file for extraction of records.

The extraction must be effectuated by successIlve calls of the

procedure extract_cf, and termlnated by a call of close cf.

Call: Init_extract (z, filename, giveup)

z Ccall and return value, zone) A zone

with room for at least one block Csee

procedure buflength_cf).

fl lename Ccall value, string) Name of backing

store area holding a cf-file.

giveup Ccall value, integer) As for algol stan-

dard procedure open.

Requirements:

zonestate = 4, after declaration.

filename must point to a backing storage area containing

a cf-file.

If the file is a masterfile, it must contain at least

one record.

Results:

zonestate = extract-cf,

result_cf = 1, no current record.



CF-SYSTEM 54

Reorganization

extract_cf proc.no. 36

Reorganization procedure.

The procedure creates an extracted record In the array glven as

the second parameter. Before extract_cf can be used, the proce-

dure Init_extract must have been called.

The first call of extract_cf will yleld the first record of the

file, the next call the next etc..

Note that also dead listfile records are extracted.

See appendix F for the format of an extracted record.

Call: extract_cf (z, extract_rec)

z Ccall and return value, zone) Connected

to elther a masterfile or a listfile by

init _extract.

extract_rec Creturn value, real array or zone) WI1]

hold the extracted record if not end of

file. The record is stored from byte 1

and on.

Requirements:

zonestate = extract cf.

result_cf = 2 must not have occurred.

The bounds of extract_rec must include the byte numbers

l and total_length. Csee appendix F).

Results:

no current record,

result_cf

1 ok

2 end of file

In case of result_cf = 2 extract_rec 1s unchanged, and a

succeeding call of extract_cf will glve an alarm.



CF-SYSTEM 9
Reorganization

Init_add proc.no. 35

Reorganization procedure,

The procedure prepares a cf-file for addition of records.

The addition must be effectuated by successive calls of the

procedure add_cf, and terminated by a call of close cf.

Call: init_add (z, filename, buckfactor, blockfactor)

z €call and return value, zone) A zone

with room for at least one block Csee

procedure buflength_cf).

fl lename Ccall value, string) Name of a backing

store area holding a cf-file.

giveup €call value, Integer) As for algol

standard procedure open.

buckfactor Ccall value, real) If listflle then

not used, if masterfile then see flle_!

procedure Init_file_l.

blockfactor Ccall value, real) See buckfactor above.

Requirements:

zonestate = 4, after declaration.

fllename must point to a backing storage area holding

a correct cf-fllehead.

Results:

zonestate

result_cf

add_cf.

1, no current record,



CF-SYSTEM 56

Reorganization

add_cf proc.no. 37

Reorganization procedure.

The procedure adds an extracted record glven by the second para~

meter to the file given by the first parameter.

Before add_cf can be used, the procedure Init_add must have been

called.

The records are added In ascending key- or recordnumber~order.

See appendix F for the format of an extracted record.

Call: add_cf (z, extract_rec)

z Ccall and return value, zone) Connected

to either a masterfille or a listfile by

Init_add.

extract_rec €call value, real array or zone) The

extracted record must be stored here

from byte 1 and on.

Requirements:

zonestate = add_cf.

The bounds of extract_rec must include the byte numbers

1 and total_length.

The total_length must equal 8 + user_part_silze + chaln_

part_size. (See appendix F.)

Results:

no current record.

result_cf

ok

not added, masterfile Is full, or recno too great

- - , Improper user_part_size

- - , descending master key or recno.

- ~ , not room In tistfite block.W
F
W
N
n
e
e



CF-SYSTEM 57
Appendix A: cf-alarms

Errors may be found at several levels:

1. Standard errors, l.e. errors concerning the device and the

transfers, may be analysed In the blockprocedure, as In = any

other algol Input-output procedure. The giveup mask Is a call

value to the cf_procedure open_cf. However, end of document

has a special treatment In the cf_system, as the masterfliles

are regarded as being cyclic, and end of document In a

listflle means addressing outside the area, which should be

impossible. (See the procedures get_m and get_i).

Unnormal situatlons: As a general philosophy Is chosen that

it Is not up to the cf-system to decide what may be regarded

as -normal-~ and -unnormal-, as far as normal -bookkeepIng-

can be maintalned, The standard Integer variable result_cf

will yield the result of a procedure call, which always

should be checked by the user. Any result of any cf-procedure

may also be caught In a procedure specifled as a call value

to the procedure set_Jumps_cf, though Its original purpose

rather is to give a facility for supervision durlng debugging

of the program.

Grave logical errors, i.e. requirements are not fulfilled at

a procedure call, will always terminate the run with an algol

run time alarm. In this case the various zones are not

closed, and files which were In an update mode at the time

of the alarm will not be updated correctly.

The format of the alarm depends on, whether the error

occurs In a code-procedure or In an external algol procedure,

see the survey of alarm-messages on the following pages.

An alarm is generally caused by the users program, for

example If the procedures are called In a wrong order, or If

the program does not care for unexpected vaiues of result_cf.

Some alarms may be due to an error In the fille, as for

example checksumerror In the flilehead. A f!le-error may

however be caused by a program~error In a_ previous run, or

by combining flles of different generations.

A few of the errors should be quite Impossible. They have

the alarmtext ~-cf-error- and can only be due to some grave

error In the cf-code, or to some hardware-error during the

run.



CF-SYSTEM 58

Appendix A: cf-alarms

All alarms from code~procedures have the follow!ng format:

<alarmtext> <alarmno> cf-system

called from...

where <alarmtext> Is a short mnemonic cause, and <alarmno> a

further specification.

The following survey of alarms is arranged alphabetically after

the alarmtext.

text alarmno explanation error caused by

array p 13. The parameter array Is too short for the program

masterflle-key.

cf-error 10 The mother-record of the actual chaln has cf-system

disappeared.

cf-error 37 The record-number Inside a listfille-record cf-system

does not correspond to the position of the

record in the fille.

chain p 15 Parameter chainref does not contain a va- program

lid chainreference.

ch.ass. 9 The file and the chain-group are not program

associated,

ch. head 18 The head of a listfile-record is not con- file

sistent.

ch.state 16 The chain is not initialized, I.e. init- program

chain has not been called after open-cf.

ch.state 17 Last accessed record is not defined, I.e. program

the chainstate has become empty after the

last use of the chain,

ch.type 20 The chaln Is not headed, so a call of program

get~head is ImpossIble.

d.state 29 The daughter-zone is In read-only-mode, program

so deletion of the mother-record and !ts

daughter-chaln is Impossible.



express.

mode p

m.state

no curr.

par. pair

prep-cf

prep-cf

prep-cf

prep-cf

prep-cf

prep i

prep |

prep

36

ll

28

14

<i>

24

25

26

32

33

CF-SYSTEM

Append!x A: cf-alarms

A return-parameter Is glven as an expres-~

sion In the procedure-call.

Wrong mode~parameter In call of get-l,

Insert-1 or connect, I.e.

mode<>1 and mode<>2 and mode<>3,

The mother~zone is In read-only~mode, so
delete-1, insert~] or connect In mode 1
Cnext to mother-record) Is Impossible.

Current record In a listflle does not
exist.

An error in the parameter-lIst In the call
of set-jumps-cf, get-param-cf or set-param
-cf. If | > 0, i shows the number of the
wrong parameterpair. i = 0 denotes an

error In the parameter jumpproc In call
of set-jumps-cf.

too few segments in the. document of a
listfile, Il.e. segs < segs-In-head, or
the number of segments Is less than It
was In the last run In update-mode.

The zonebuffer Is too small to open a
listfile.

Checksumerror or some other error In the
fllehead of a listfile.

The zone for a file Is not declared
with at least two shares.

Too many segments In the document of a
listfile, i.e.

Csegs - segs-in-head)//segs~per-block
> max~bliocks.

Too few or too many segments In the docu-
ment of a masterfile, l.e.

segs < segs~per=buck or

segs > segs-per~buck x max-bucks.

The filelength Is jess than It was In the
last run In update-mode, or some error In
the bucket-head.

The zonebuffer Is too smail to open or
initlallze a masterfile.

59

program

program

program

program

program

file

program

file

program

file

file

flle

program



prep |!

prep fi

prep |

prep|

rec.no.

rec.no.

z.state

19

22

CF-SYSTEM

Appendix A: cf-alarms

Checksumerror or some other error In the

filehead of a masterflile.

The zone for a masterfile Is not declared

with three shares.

Wrong zonestate internally

Empty masterfile

The record=number of a listflle-record Is

outside limits. This may happen explici-

tely In a call of get-numb~-1 as a program-

error or IiImplicitely In other procedures,

lf the file has been destroyed.

No listflle-record Is assIlgned to the

record=number. Program- or fllererror as

for alarmno. 19.

Wrong zonestate. <i> Is the actual

zonestate,.

60

flle

program

cf-system

file

program

or

fille

program

or

file

program



CF-SYSTEM 61
Appendix A: cf-alarms

Alarms from external algol procedures have the followlng format:

xxx<proc.name> alarm:

<alarmtext> <I nteger> ext <line-Interval>

called from...

An exception is alarms from the protectlon-system, which have the

format:

xxxprotectcf alarm:

flle <filleno> <f!llename> vers.in cat: <verslon>

<alarmtext> <Integer> ext <line-Interval>

called from... :

Here the text -file- Is replaced by the text -descr-, If the

trouble concerns the descriptlon-flle.



program

CF-SYSTEM

Append!x A: cf-alarms

62

caused by

xxxbuf lengthcf

xxxbuf lengthcf

xxxhead]

xxxhead|

xxxhead1

xxxheadm

xxxheadm

xxxheadm

xxxheadm

xxxheadm

block p

prep-cf

chains p

loop-ch

slze-] p

<I>

0

<I>

0

chalns p <I>

recdescr

head

head

head

i

I

I

p

p

p

<I>

The parameter blocks-In-

core has an |]legal value.

<I> Is the erroneous value.

Some error In the fl lehead.

Chaln-type or compressed-

key-size In parameter ar-

ray chalns has an Illegal

value, or If 1 = 0 then

wrong bounds of array

chalns, or If | > number

of the last chain, then

listfille not daughter of

any chaln group.

A loop Is found In the

chain-structure glven in

parameter array chalns.

One of the values given In

parameter array size-l is

lllegal.

As for procedure head-1

One of the values given In

Parameter array rec-descr

Is Illegal, or if 1 > 2044

then too many keyflelds.

COnly for noofkeys > 50).

Some unreasonable size

parameter.

Not room for 2 records of

maxlength In one block,

Not room for 1 biock In

the first bucket.

program

file

program

program

program

program

program

program

program

program



xxxnewreclicf

xxxnewrecicf

xxxnewrecicf

xxxprotectcf

xxxprotectcf

xxxprotectcf

xxxprotectcf

xxxprotectcf

xxxprotectcf

xxxprotectcf

xxxprotectcf

Append!x A:

cf-error

fixed |

z.state

change

descrrec

lookup

reserve

setdescr

updmark

updmark

version

CF-SYSTEM

<I>

<i>

<I>

cf-alarms

Trouble with Insert-m, <I>

Is the value of result-cf.

The flle contalns records

of fixed length, so It

has no meaning to use

new~recli-cf.

Wrong zonestate. <I> Is

the actual zonestate.

The catalog entry with the

name <fllename> could not

be changed. <I> Is the re-

sult-value of the moni tor-

function.

The file-description-

record In the description-

file could not be fetched

by get-m. <I> Is the value

of result-cf after get-m.

The catalog entry with the

name <fllename> could not

be looked up. <I> Is the

result-value of the monli-

tor-function.

The file with the name

<fllename> could not be

reserved. <i> Is the re-

sult-value of the monitor-

function.

The procedure setdescr-cf

was not called before

open-cf.

The flle is In the state

of an unterminated update.

An updatemark was expected

In the catalog entry of

the file.

The verslon-number of the

File does not correspond

to the verslon-number In

the description-file.

<i> Is the verslon-nunvcer

In the description-flie.

63

cf-system

program

program

job adm

file

Job adm

Job adm

program

file

cf-system

Job adm



CF-SYSTEM 64
Appendix B: cf-procedures

procedure names result-cf

no. and parameters jmp value and meaning current record

1x buf_length_cf - 1 ok meaningless

Cfilename,

blocks_in_core)

2x extend_cf (z, - 1 extended unchanged

segments) 2 ext, simple ins. -

>2 not extended -

moni tor-error

3 open_cf (Cz, - 1 ok zm:ifirst; zlinone

filename, 2 ok, simple Insert zm: first

giveup)

4 set_Jjumps_cf ~ 1 ok unchanged

Cz, Jump_proc,

procno, results)

5 Inlt_chain Cz, zl, + 1° ok unchanged

chalnno,

chainref)

6 close_cf (z, rel) + 1 = ok none

7

8 get_m Czm, key) + 1 record found the wanted

2 not found the next In fille

3 - -~ , eof the flrst - -

9 get_1 (zl, + 1 record found the wanted

chainref, 2 not found gmode=2: last acc.

gmode) else: nome

10 get_head (zl, + 1 ok unchanged

chainref, key) 2 not connected -

11. Insert_m Czm, + 1 inserted the Inserted

record) 2 already in file the one In file

3. too expensive the next In fille

4 file full - - - -

5 length error - - - -

6 no buffer - - - -

12 Insert_! (zl, + 1 Inserted the inserted

chalnref, 2 fill-limit exceeded none

Icmode, 3 length error -

record) 4 no block -



13

14

15

16

17

18

19

20

21

22

23

24x

25%

26x

27

Append!x B:

connect (zl,

chainrefl,

chainref2,

Icmode)

delete_m Czm)

delete_J] (zl,

chalnref)

delete_chain (z,

chainref)

next_m Czm)

put_cf (Cz)

read_only_cf (Cz)

read_upd_cf (z)

update_all_cf (Cz)

get_numb_1 (zl,

recno)

new_recl_cf (Cz,

length)

head_m (filename,

filleno, chains,

recdescr,

no_of_kKeys,

size_m)

head_1 Cfilename,

flleno, chains,

size_1)

Init_file_m Czm,

fllename,

giveup,

buckfactor,

blockfactor)

~
~

N
e

O
m
r
P
W
h
E
e

CF-SYSTEM

cf-procedures

connected

not connected

Calready conn.)

deleted

- , eof

not del. last left

deleted

del, last In chain

deleted

no chaln to del.

found

not found, eof

ok

ok

ok

ok

record active

record dead

changed

last rec. In fille

too expensive

fille full

length error

no buffer

ok

ok

ok

65

last acc.In chainl

none

the next in file

the first - -

the one

the In chain

none

next

unchanged

the next in file

the first - -

unchanged

unchanged

unchanged

unchanged

the wanted

none

same, new length

- , Old length

'

’

'

'

meaningless

meaningless

none



28

29

30

31

32x

33x

34

35

36

37

Procedures marked with =< are

in the jmp-column means,A+

Append!ix B:

init_rec_m Czm,

record)

get_param_cf (z,

paramno, val)

set_param_cf (z,

paramno, val)

set_descr_cf

Cdeserfile)

protect_cf (z,

action)

Init_extract (z,

filename,

gi veup)

init_add (z,

filename,

giveup,

buckfactor,

blockfactor)

extract_cf (z,

record)

add_cf (z,

record)

this procedure.

F
U
N
R
e

n
N

W
U
 
E
P
W
 
N
e

CF-SYSTEM 66
cf-procedures

record added none

file full -

length error -

key error -

ok unchanged

ok unchanged

unchanged unchanged

unchanged unchanged

ok none

ok none

ok none

end of fille -

record added none

flle full -

length error -

key or recno.err. -

no block -

external algol procedures.

that set~jumps-cf can be used upon



CF-SYSTEM 67

Appendix C: Survey of cf-states

Zonestates for masterfiles:

after-declaration Cvalue = 4). The zone has been declared,

but not yet opened. This Is also the state

after a call of close-cf.

Initiallze-m Cvalue = 20). During initialization.

read-only-m Cvalue = 16). During processing of the

fille. Changes in records will not be re-

flected in the file. Updating procedures

are illegal.

read-update-m Cvalue = 18). During processing of the
file. A block of records Is only trans-

ferred to the file, if an updating proce-

dure has worked upon one of Its records.

update-all-m Cvalue = 19). During processing of the
file. All records will be transferred to

the file.

Zonestates for listfiles:

after-declaration Cvalue = 4). As for masterfiles.

read-only-| Cvalue = 22). The analogy of read-only-m.

read-update-] Cvalue = 23). The analogy of read-update-m.

update-all~-1] Cvalue = 24). The analogy of update-all-~].

Zonestates for reorganization (masterflles and listflles):

extract-cf Cvalue = 17). During the extraction of

records from a masterfile or a listfile.

The state Is set by procedure Init-extract.

add-cf Cvalue = 21). During the addition of re-

cords to a masterfile or a listfile. The

state is set by procedure Init-add.



CF-SYSTEM 68

Appendix C: Survey of cf-states

Chainstates:

not-Init

empty

last-accessed-def

Record-states of

active

dead

The cf-procedure iInit-chaln has not” yes

been called.

There Is not defined a last~accessed record

for the chain.

There Is defined a last-accessed record In

the daughterflle of the chaln.

listflle-records:

The record can be processed vila a chaln or

its recordnumber.

The record has been deleted, but Is still

member of one ore more chains. CIt cannot

be processed).



CF-SYSTEM 69

Appendix D. Array chains

The purpose of the array is to specify the connections between

flles in the cf-system, i.e. the chain groups.

Chains are represented by the identifications of the motherflle

and the daughterfile and a chalnnumber. The chainnumbers”) are

indirectly given by the order In which the chainspecifications

appear in the array chains, while the logical filenumbers,

which Identify the files in the system, must be supplied by the

user. The user must take care that the filenumbers identlfy the

files unambiguously. The array is used as parameter for the two

procedures head_m and head_].

Declaration of chains:

A chainspecification consists of 4 consecutive elements of the

array and the first specification must start In element no. 1.

The upper limit of the array willl stop the specification. The

4 elements of a chainspecification should be Initiallzed as
follows:

1. mother_no, the flle_no of the motherflile.

2. daughter_no, the file_no of the daughterfile.

3. chain type, the value 1 denotes a headed chaln, the value

0 a not headed chain,

4. compressed_key_size Cequivalent to key_part_size, RCSL 55-
D99 p. 4), the quantity gives the number of bytes occupied
by a compressed key of a motherrecord. It may be calculated
according to the following rules:

1. if_motherfile_ Is_a_masterfile
add 4 for each long- or real keyfield

add 2 for each integer keyfleld

add 2 for two successive byte keyfields

add 2 for each single byte keyfield

CA field containing a length~specification is not
counted).

2. if _motherfile_is_a_ listfile

the size is 2.

The quantity is a return value of the procedures head_m= and
head_!} for all chaingroups of which the actual file Is the
mother, I.e. the user need not be troubled by the calculation,
If he calls the head_ procedure of a motherfile before those
of the corresponding daughterfiles.

Chainznumbers:
The chains are numbered by the natural numbers C1, 2, 4...)
according to their appearance in the array chalns. The chaln-
number is a call value of the procedure Init_chain.



CF-SYSTEM 70

Appendix E. Description File

This appendix defines the format of the description flle as

required by the protection system,

File format:

The file Is a masterfile of variable length records.

Format of file description record:

Comments:

field no

type address content

Integer 2 record length >= 30

long 12 keyfleld_1 = 2

long 16 keyfleld_2 = fi lenumber

long 20 keyfield3 = 0

integer 30 verslon_number >= 0,

<= 8000000.

comment

the key consistes of field no 1 to 3, longs in

ascending order.

this field is called the description type.

the file number is the number used as a parameter

for head_m or head_l.

the version number Is checked and updated by the

protection system.



Format of a

fleld no

Comments:

fleld no

CF-SYSTEM 71

Appendix F. Extracted records

record extracted by procedure extract_cf:

type address content

integer 2 total length of extr.record

integer 4 not used by the cf-procs

Integer 6 record number

integer 8 user part size

array 8 user part

array 8t+reclength chain part

comment

total length = 8 + user_part_size + chain_part_size.

this field is Intended for the checksum of

Invar/outvar.

the record number is the record number of a listfile

record, and the natural number (1, 2, 3,...) of a

master record.

the user part size Is equal to the normal record

length except in the case of variable length list-

file records, where It Is 4 bytes smaller because

the first 4 bytes are not Included in the user part.

the user part is a copy of that part of a record,

which appears as a zone record, with the exception

of the first 4 bytes of a variable length listfile

record,

the size of the chain part is given In the descrIip-

tion of the procedure head_l.

A more detailed format of the chain part is given

here:

<chain part>::= <mother field> 0/nl

<daughter field> 0/n2

This notation means that a chaln part consists of

nl mother fields followed by n2 daughter fields.

nl and n2 may be zero, but they are fixed for all

records of a certain file.

<mother fleld>::= Integer (2 bytes)

The mother fields are placed in chain group number

order, one mother field corresponding to each chaln
group of which the fille is the mother.



CF-SYSTEM 72
Appendix F. Extracted records

value of mother field:

0 end of chain, i.e. there are no daughter

records.

> 0 the record number of the first daughter

record,

<daughter field>::= <next fleld> <ref.to mother>0/1

The daughter fields are placed in chain group num-

ber order, one daughter field corresponding to each

chain group of which the file is the daughter.

<next fleld>::= Integer (2 bytes)

sign of <next field>

>= 0 the record is active.

< 0 the record is dead. The next fields of

all daughter fields are negative in

this case, and at least one daughter

field will be not connected.

<next field> extract 23:

8388607 = the record Is not connected to any

all ones chain of the chain group corresponding

to this daughter fleld.

0 end of chain, i.e. this is the last

record in this chain.

>0 and the record number of the next daughter

<8388607 record in this chain,

<ref.to mother>::= <compressed key of mother>

This field is omitted If the chain group Is not

headed.

If the mother file is a listfile, this fleld is

just a 2 byte integer holding the record number

of the mother record.

If the mother file Is a masterflle, the fleld

is more complicated:

The keyflelds of the mother record are laied out

close to each other in the order of decreasing

priority. €1 to no_of_keys).

The close packing is disturbed by byte keyfields,

because a keyfield of type integer, long, or real

must be preceeded by an even number of bytes In

the compressed key.

A single byte keyfield between two keyflelds of

other type will thus require 2 bytes room In the

compressed key, the first byte holding the key-

field, and the other belng equal to zero.

Two succeeding byte keyfields are packed Into 2

bytes.



CF-SYSTEM 73

Appendix G. Zonebufferlength

Formulas for the zone bufferlength required by cf-filles. The

formulas will in some cases specify up to a few bytes more than

actually needed.

Masterfiles:

required _bytes:=

176

+ 8 x no_of_associated_chain_groups

28 x no_of_keys

8 x no_of_keyfields_of_type_long

if fixed_record_length then 0 else 12

Ccompressed_key_size + 4) x C(segments_in_flle - 1)

// segs_per_buck + 3)

512 x segs_per_block_table

512 x segs_per_block x Cif full_insert then 2 else 1);

t
+
+
e
e
t

+
+

The term Involving compressed_key_size covers the room needed

for the bucket table,

The quantity segs_per_block_table needs a specification. It

is the number of segments occupied by the blocktable placed in

the beginning of each bucket.

blocks_per_bucket:=

512 x segs_per_buck // (512 * segs_per_block
+ compressed_key_size + 4);

segs_per_block_table:=

CCcompressed_key_size + 4) x blocks_per_bucket - 1)

// 512 + 1;

Listfiles:

required _bytes:=

84

+ 8 x no_of_chain_groups_of_which_file_is_mother

+ 18 x no_of_chaln_groups_of_which_file_is_daughter

+ sum of Ccompressed_key_size of all mother files)

+ segments_in_fille // segs_per_block // 4 x 2

+ (512 x segs_per_block + 2) x blocks_Iin_core;



CF-SYSTEM 74

Appendix H. Programming example

CF-SYSTEM Programming example.

begIn

comment

This Is an example of an algol 6 program which creates 2

master files: master_1 and master_2, and one listfile:

list.

2 chain groups: chaln_1 and chain_2, are associated to

master_l and list, and to master_2 and list respective-

ly.

‘

A rudimentary description file: deserfile, sufficient

for the check of version numbers performed by the cf

protection system is also created.

Various functions are performed on the file conf! gura-

tion.

procedure check_one;

comment gives a case alarm if result_cf <> 1;

case result_cf of begin end;

procedure printtime(text);

string text;

comment

prints the time consumed since last call;

begIn

own boolean later_call;

own real cpubase, tlmebase;

real cpu, time;

if later_call then

begin

cpu:= systime(1l, timebase, time) - cpubase;

writeCout, <:<l0>:>, text, <: In seconds, cpuii>,
<<dddd.dd>, cpu, <:, reali:>, time);

end later_call

else later_call:= true;

cpubase:= systime(l, 0, timebase);

end printtime;

printtime(<::>); blocks_read:= 0;

begin

comment

block for creation of file heads;

integer

File_no,

flxed_rec_length,

l,
max_blocks,

max_bucks,



CF-SYSTEM 75

Appendix H. Programming example

max_rec_length,

min rec_length,

no_of_keys,

segs_per_block,

segs_per_buck;

Integer array

chains(€1:(€2x4)),

rec_deser(1:4, 1:2),

size_l, size_m(€1:4);

comment

initialize array chains:

chain group mother daughter chain type compr.key

1 1 100 headed see head_m

2 2 100 headed see head_m

w
e

for i:= 1] step 1 until 2x4 do

chainsCi):= case I of¢

1, 100, 1, 0,

2, 100, l, 0);

comment

the fourth field in each line above, compressed keysize, is

initialized by head_m, and used by head_l!.

Cfrom the record description below it can be seen to be 8

bytes).

create the head of master_1;

flie_no:= 1;

comment

initialize the record description:

keyfield type order address

1 long ascending 4

2 byte descending il

3 word ascending 10

length fixed

3

no_of_keys:= 3;

for I:= 1 step 1 until Cno_of_keys + 1) x 2 do

rec_descr(Cit1)//2, 2-1 mod 2):= case i of¢

+3, uy
~1, di,

+2, 10,

0, 0);



CF-SYSTEM 76
Appendix H. Programming example

comment

initialize size parameters;

size_m(€1):= max_rec_length:= 129;

size mC?ai= mex_bucksi= 100;

size_mC3):= segs_per_buck:= 40;

size_mC4):= segs_per_block:= 23

comment

create the file head, the backing store area: masterl,

must exist;

head_m(€<:masterl:>, file_no, chains, rec_descr, no_of_keys,

size_m);

comment

for simplicity, the same parameters are used for master_2;

file_no:= 2;

head_m(€<:imaster2:>, file_no, chains, rec_descr, no_of_keys,

size_m);

comment

create the description flle head;

file_no:= 1000;

comment

Initialize the record description according to append!Ix E:

keyfield type order address

1 long ascending 12

2 long ascending 16

3 long ascending 20

length word - 2

no_of_keys:= 3;

for i:= 1 step 1 until Cno_of_keys + 1) x 2 do

rec_descr(Ci+1)//2, 2 - 1 mod 2):= case i of(¢

+3, 12,

+3, 16,

+3, 20,

2; 23;



CF-SYSTEM

Append!x H. Programming example

comment

initialize size_m, the description file is regarded as

being a small file;

size_mC1):= max_rec_length:= 100;

size_m(€2):= max_bucks:= 50;

size_m(€3):= segs_per_buck:= 10;

comment

never choose a smaller value for segs_per_buck;

size_mC4):= segs_per_block:= 1;

77

head_m(<:deserfile:>, file_no, chains, rec_descr, no_of_keys,
size_m);

comment

create the listfile head:

varlable record length, minimum about 20 bytes;

file _no:= 100;

slze_1C1):= fixed_rec_length:= 0;
size_1€2):= min_rec_length:= 20;
size_1C3):= segs_per_block:= 1;

size_1C4):= max_blocks:= 2000;

head_1(<:list:>, file_no, chains, size_1);

end block for the creation of file heads;

printtime(<:file heads created :>);



CF-SYSTEM 78
Appendix H. Programming example

begIn

comment

block for initialization of master files.

master_1, and master_2 are provided with a dummy record

having all fields equal to zero, because open_cf requires

that a master file contains at least one record.

the description file Is Initialized with 4 file description

records;

zone

zml(buflength_cfC<:imasterl:>, 1), 3, stderror),

zm2Cbuf length_cf€<:master2:>, 1), 3, stderror),

zdescr(buflength_cf(<:descrfile:>, 1), 3, stderror);

Integer

file_no;

integer fleld

descr_length;

long field

descr_key_1,

descr_key_2,

descr_key_3,

l_fld;

real array

rec(1:50);

comment

Initialize the field variables for the description file;

descr_ length:= 2;

descr_key_li= 12;

descr_key_2:= 16;

descr_key_3:= 20;

comment

set all fields of array rec to zero;

for I_fld:= 4 step 4 until 200 do rec.1_fid:= 0;

comment

Initialize master_1l with one record having all fields

equal to zero;

Init_file_mCzml, <:imasterl:>, 0, 1, 1);

Init_rec_m(€zml, rec);

checkone;

comment

this procedure checks that result_cf was one, see the

procedure declaration at the beginning of the program;

close_cfCzml, true);



CF-SYSTEM 79

Appendix H. Programming example

comment

the same is done for master_2;

Init_file_mC€zm2, <imaster2:>, 0, 1, 1);

init_rec_mCzm2, rec);

checkone;

close_cf(€zm2, true);

comment

initialize the description file with 4 records, describing

the files including the description file itself;

init_file_m(zdescr, <:descrfile:>, 0, 1, 1);

for file_noi= 1, 2, 100, 1000 do

begin

comment

the file numbers of master_1, master_ 2, list, and

descr_file;

rec.descr_length:= 30;

rec.descr_key_li= 23

rec.descr_key_2:= flle_no;

rec.descr_key_3: 0;

Init_rec_mCzdescr, rec);

checkone;

comment

the version numbers are zero in the description records as

well as in the catalog entries of the corresponding files,

if the files were created by set in this way:

masterl= set 120, etc. just before the call of this

program;

end for file_no;

close_cf(zdescr, true);

comment

the list file needs no initialization;

end block for initialization;

printtimeC<:files initialized :>)3



CF-SYSTEM 80

Appendix H. Programming example

begin

comment

block for processing of the file configuration:

200 records are Inserted jin both master files, at random

keys, and 1000 list records are connected to records

in both files via chain group 1 and chain group 2;

zone

zmlCbuf length_cfC<imasterl:>, 2) + 10*12//4, 3, stderror),

zm2Cbuf length_cfC<:master2:>, 2) + 10x12//4, 3, stderror),

z1Cbuf length_cfC€<:list:>, 3) + 100//8, 4, stderror);

comment

the addition to buflength_cf provides for extra bufferlength

for extensions of the files during the processing: 10 extra

buckets for the master files, and 100 extra blocks for the

listfile.

the factor 12 in the expression for the master zone buffer

length Is equal to compressed_keysize + 4, see appendix G;

integer

i,
ic_mode;

integer field

length,

m_key_3;

long field

l_fid;

real

chain_ref_l,

chain_ref_2;

real array

morec, l_rec(1:50);

procedure create_key;

comment

this procedure generates a pseudo random master key

In array m_rec;

begin

own integer ps_random;

randomCps_random);

m_rec.m_key_3:= ps_random mod 10000;

end create_key;



CF~SYSTEM 81
Appendix H. Programming example

comment

Initlalize the field vartables;

length:= 2; comment the length fleld of list records;
m_key_3:= 10; comment see the file head creation;

set_descr_cf(€<:descrfile:>);

comment

this call provides the cf-system with the name of the
description file;

open_cfCzml, <imasterl:>, 0);

checkone;

open_cfCzm2, <:master2:>, 0);

checkone;

open_cfCzl, <:list:>, 0);

comment

the version numbers and the update marks have been checked,
and the zone states are read_only;

read_upd_cf(€zml);

read_upd_cfCzm2);

read_upd_cf(z1);

comment

now the zone states are read_update, Insertions are allowed,
and the update marks are set In the catalog entries;

Init_chain€zml, zl, 1, chain_ref_1);
intt_chalnCzm2, z1, 2, chaln_ref_2);

comment

the 2 chain groups are ready for Processing, the chaln_refs
are used to reference them;

for I_fld:= 4 step 4 unt!1] 200 do
mlirec.1_fldi= llrec.l_fld:= 0;



CF-SYSTEM 82
Appendix H, Programming example

for 1:= 1 step 1 until 200 do

begin

comment

insert 200 master records In master_1, with random values

of keyfield 3, and the other fields equal to zero;

make_a_key:

create_key;

Insert_m_rec:

Insert_mCzml, m_rec);

case resultcf of

begin

comment 1, ok, do nothing;

;

comment 2, record exists already, try another key;

goto make_a_key;

comment 3, not Inserted, too expensive.

this Is not possible when param_cf has not been used

to change the Insertion parameters;

checkone;

comment 4, the file is full, extend the fille with one

bucket = 40 segments;

begin

extend _cfC€zml, 40);

checkone;

goto Insert_m_rec;

end 4;

comment 5, length error, not possible with fixed length;

checkone;

comment 6, no buffer, not possible because result_cf has

been checked after open_cf and extend cf;

checkone

end case result cf;

end insertion of 200 records in master_1;



CF-SYSTEM 83

Append!Ix H. Programming example

comment

Insert 200 records In master_2 in a more crude way;

for I:= 1 step 1 untI1 200 do

begIn

create_key;

Insert_m€zm2, m_rec);

case result _cf of

begin

comment 1, ok;

?

comment 2, exists already, repeat;

P:= 7-1

end case result cf;

comment

other results wlll give a case alarm;

end [Insertion of 200 records In master_2;

printtimeC<:master recs Inserted:>);

for f:= 1 step 1 until 1000 do

begin

comment

Insert 1000 lIlst records connected to random master

records,

the list records are clustered In chaln group 1, I.e.,

Insert_} works upon chaln_ref_1;

create_key;

get_mCzml, m_rec);

comment

the result Is [gnored, there will always be a current

record In a master file;

comment

Insert a list record as the last In the chain_1 depar-

ting from the current master_l record.

Insertion as the first In chain Is faster, but

It does not demonstrate the use of get_1;

get_1lC€zl, chaltn_ref_1l, 1);

comment

read the first record In this chain, If any;

Ic_mode:= If result_cf = 1 then 2 else 1;

comment

Insert mode is next to last accessed, If there Is any

record In the chain, else next to mother;



CF-SYSTEM 84

Appendix H. Programming example

for 1:= | while result_cf = 1 do get_iC€zl, chain_ref_1, 2);

comment

read all records In the chaln, last accessed In chain

group 1 Is now the last In chain, If any;

l_rec.length:= 30;

Insert_l_rec:

insert_1(€zl, chain_ref_1, Ic_mode, 1]_rec);

case resultcf of

begin

comment 1, ok, do nothing;

,

comment 2, fill limit exceeded, extend the file with

20 blocks = 20 segments;

begin

extendthe _ file:

extend _cf(z1l, 20);

checkone;

goto Insert_l]_rec;

end 2;

comment 3, length error;

checkone;

comment 4, no block can take this record;

goto extend _the_file

end case result_cf;

comment

connect the list record to a random master_2 record, as

first In chatn;

®

create_key;

get_mCzm2, m_rec);

Ic_mode:= 1; comment connect next to mother;

connect(zl, chain_ref_1, chain _ref_2, fc_mode);
checkone;

end [Insert 1000 list records;

comment

master_1 Is not updated any more;

read_only_cf(zml);

printtimeC(<:list recs Inserted :>);



CF<SYSTEM 85

Appendix H. Programming example

comment

go through all chains of chaln group 2, at the same time

look up the master_1 record being the mother of the chain

1 passing through each list record, and at last delete the

list record,

the llst records are counted, to check that all 1000 have

been deleted;

comment

master_2 Is read by means of next_m, starting at the dummy

record created by Init_rec_m;

m_orec.m_key_3:= 0;

get_m(zm2, m_rec);

checkone;

P:= 0;

for 1:= | while result _cf = 1 do

begin

comment

read the first record In the chaln_1 departing from the

current record of master_2;

get_1€zl, chain_ref_2, 1);

for i:= I while result_ef = 1 do

begin

get_head(zl, chaln_ref_1, m_rec);

checkone;

comment

now m_rec contains the key of the record, which is the

mother of the chaln_1 passing through the current list

record;

get_mCzml, m_rec);

checkone;

comment

the calls of get_head and get_m above are performed

as a demonstration of how each IIst record acts as a
link between a record In master_2 and a record In mas-
ter_1;

delete_1l(zl, chaln_ref_2);

P:= 1 + 1;

comment

delete and count the list flle record, delete will
access the next record tn chain_2, If any;

end reading and deleting of one chain;

next_mC€zm2);

comment

read the next master_2 record;

end reading of master _2;



CF-SYSTEM 86

Appendix H. Programming example

lf | <> 1000 then

writeCout, <:<10>xxxerror In count >, 1);

close_cfCzml, true);

close_cfCzm2, true);

close_cf(zl, true);

end block for processing of file configuration;

printtimeC<:list records deleted:>);

writeCout, <:<l0>blocks read: i>, blocks read);
end program



CF-SYSTEM 87
Appendix H. Programming example

A run of the programming example.

The filles were dimenstoned to be fllled up to about

70 percent,

Master_l and _2 were situated on disc_1l and the listfile

on disc_2 Csee lookup cat.yes In the output).

The disc stores were of type RC 433,

The cpu and the disc stores were slightly loaded by other

processes,

Note that the version numbers in the catalog entries of

the 3 flles have been Increased to 1 during the run.

Output from the run.

xmasterl=set 80

xmaster2=set 80

xlist=set 140

xdescrfille=set 10

xcfex

file heads created In seconds, cpu: 0.82, real: 2.47
files Initialized in seconds, cpu: 0.16, real: 1,32
master recs Inserted in seconds, cpu: 9.23, real: 214,16

list recs Inserted In seconds, cpu: 26.26, real: 510.76
list records deleted in seconds, cpu: 10.22, real: 178.85
blocks read: 103

end

xlookup cat.yes masterl master2 list descrfile

masterl 15 0 27 1634

80010000

master2 17 0 27 3842

80 010000

list 3 0 27 3.872

140010000

descrfile 22 0 27 820

10000000



CF-SYSTEM 88

Appendix J. How to dimension the files.

This appendix contains some rules for the choice of the size

parameters for the two procedures head_m and head_l.

The rules are based on one years experience with file

configurations for administrative data processing.

The silze_m parameters of head _m,

The 4 parameters are described in the order of occurrence In

array slze_m, a more natural order of specification Is:

max_rec_length, segs_per_block, segs_per_buck and max_bucks.

max_rec_length

The maximum length In bytes of the user part of a

record.

The sum of max_rec_length and the size of the chain

part must not exceed 512 x segs_per_block//2, i.e. half

the block size,

The size of the chain part Is 2 * number_of-

associated _chaln_groups, see appendix F., format of

extracted records.

Note that both max_rec_length, chaln_part_size, and

the actual record lengths are rounded up to a multiplum

of 4 In case of variable record length.

In the case of fixed record length, max_rec_length

and chain_part_size are rounded If the sum max_rec_

length + chaln_part_size is not a multiplum of 4,

In case of variable record length the value of

max _rec_length should not be specified much’ greater

than the actual maximum record length, because that

tends to decrease the efficiency of Insertions.

max_bucks

The maximum number of buckets the fille will ever hold.

This quantity should be chosen high Cf.ex. 8000

//segs_per_buck = max_bucks for a whole RC 433 disc

store). The only cost Is max_bucks = Ccompressed_key_

size + 4) bytes of backing storage for the bucket

table. CNormally only a few segments In the head of the

flle).

The amount of core store used for the bucket table

in the zone buffer depends only on the actual size of

the file.

For compressed _key_size see appendix D., format of

array chains,



CF-SYSTEM 89

Appendix JU. How to dimension the filles.

segs_per_buck

The number of segments in one bucket.

The quantity segs_per_block should be selected before

segs_per_buck,.

Segs_per_ouck should not be chosen too small, espe-

clally not so small that only one block is left in the

first bucket, because this will disturb the I[nsertion

of new records seriously.

A magic number concerning segs_per_buck Is 40, the

number of segments of one cylinder of the RC 433 disc

store.

With each bucket equal to aocylinder of the disc

store, the maximum number of cylinder shifts required

for a call of get_m Is one, against two In the general

case,

On the other hand it Is not quite simple to. syn-

chronize buckets and cylinders In practice.

In the following segs_per_buck Is selected as to

economize the use of core storage and backing storage

for bucket table and block tables.

The block table always needs an Integral number of

segments both In the file and in the zone buffer,

whereas the bucket table in the zone buffer just

demands room corresponding to the actual number. of

buckets.

This suggests a bucket size which Is so great that

the entries In the block table utilizes an area which

Is Just below or equal to an [Integral number of

segments.

If the size of the block table fs called segs_per_

block_table, then segs_per_buck can be calculated thus:

segs_per_buck =

Csegs_per_block_table x 512//

Ccompressed_key_size + 4))

x segs_per_block + segs_per_block_table

The compressed_key_size is the total size In bytes of
all keyfields of a record, see appendix D., format of

array chains.

Normally segs_per_block_table can be set to 1, but In

case of a great value of compressed_key_size or If the

file ts very great this may give rise to too small

buckets and a bucket table of excessive size.

Balance between bucket table and block table Is

achleved If the value of segs_per_buck Is not far from:



CF-SYSTEM 90
Appendix J. How to dimenston the flles.

square_root(max_segs_In_file =x segs_per_block)

I.e. the mean proportional of the file size and the
block size.

But, segs_per_buck should not be selected too small,
as a small bucket size will decrease the Insertion

efficiency, and It should In any case not be less than
the value which makes the first bucket contain 2
blocks:

segs_per_buck >=

3

+ CCcompressed_key_size + 4) x max_bucks
+ 9)//512

+ segs_per_block_table

+ 2 x segs_per_block

If the value of segs_per_buck Is not set below 40
segments this problem is unlikely to occur, and on the
other hand there Is no reason In normal cases to go
below the 40 segments.

segs_per_block

The number of segments In one block.

A reasonable number of records should fit Into one
block, say 5 or more. This minimizes the loss of
backing storage and Increases the speed of a sequential
reading.

On the other hand room Is reserved In core for up to
2 blocks during the processing, so In case of great
record lengths It might be better to use a shorter
blockliength.

The balance between the core store demands of bucket
table, block table, and block should also be taken Into
consideration, especially [In connection with greater
files,

The two aspects are Included In the following formu-
la:

segs_per_block = maximum_of

C5 * Cmax_rec_length + chain_part_ size) // 512 + 1)
and

cube_root(max_segs_In_file x

CCcompressed_key_size + 4)/256)xx2))

The first expresston will let a block contain a



—

i

Example

CF-SYSTEM 91

Appendix JU. How to dimension the files.

reasonable number of records.

The second one will let the block table and the

bucket table together use about as much room as one

block, if the value of segs_per_buck Is selected

according to the rules In this appendix,

The quantity max_segs_in_file can be estimated as the
the maximum volume of records plus 20 to 30 percent

extra for administrative tables and spare room.

of a great master file.

max_rec_length = 150 bytes

chain_part_size = 10 bytes (5 chatn groups)

compressed _key_size = 8 bytes (2 long keyflields)

max_segs_in_file = 8000 segments Cone RC 433)

The first quantity to calculate Is segs_per_block:

segs_per_block = maxIimum_of

C5 = €150+ 10) // 512+ 1) = 2
and

cube_root(8000 = €C8 + 4)/256)xx2)) =
cube_root(17.6) = 3 (the rounded value)

The last expression Is decisive, we choose: segs_per_
block = 3,

The next quantity is segs_per_buck, For segs_per_
block_table equal to 1 and 2 we get respectively:

C1 «x 512 // (8 + 4)) x 3 41
127

segs_per_buck

u
u

and

segs_per_buck C2 *% 512 // C8 + 4) x 3 + 2
257w
a
t

These values are compared with the expression:

square_root(max_segs_In_flle x segs_per_block)
= square_root(8000 x 3) = 155

The cholce of segs_per_block_table = 1 gives the best
fitting to this value, so the conclusion Is: segs_per_
buck = 127,

Max_bucks Is Just set to 8000//127 = 63,



_

-_

=

“im

CF-SYSTEM 92

Appendix J. How to dimension the filles.

The size_1] parameters of head_1.

The 4 parameters are described in the order of occurrence In
array size_1, which Is also a reasonable order of specifica-

tion.

flxed rec_length

The fixed record length If the value Is positive. If

It Is zero, variable record length Is specified.

It Is emphasized that fixed record length gives
advantages concerning reorganization.

The value of this parameter depends entirely on the
format of the users records, Fixed_rec_length Is roun-

ded up to a multiplum of 2, not 4 Csee max_rec_length
for master files).

min irec_length

In case of variable record length this parameter
specifies the minimum length of records which should be
able to fill a block entirely.

It should not be chosen too great because It can be
necessary to Increase [ts value In connection with

reorganization.

The waist of backing storage depending on min_rec_
length ts given by this formula:

100/Cmin_rec_length + chain_part_size + 1) percent.

segs_per_block

The number of segments In a block.

The block length should be so great that a reasonable
number of records can go into one block. This number
should not be less than 5 and not less than the average
number of records In a clustered chain.

It Is also of Importance that each block demands half
a byte of core store for a block table entry, Tee. a
file of 1000 blocks demands about one segment of core
for the block table,

If the block table shall not take up more room. than
half a block the following formula arises:



CF-SYSTEM

Appendix JU. How to dimenston the flles,

—

segs_per_block = maximum_of

(C5 or number_of_recs_in_clustered_chain)
x C(max_record_length + chain_part_size)
//512 + 1)

and

square_root(max_segs_In_file/512)

For chain part_size see append!Ix Fe, format of ex-
tracted records,

This means, (the last term), that a flle of more than
500 segments should have segs_per_block >= 2, and that
a file of more than 2000 segments should have segs_
per_block >= 3,

ji max_blocks

The maximum number of blocks the file will ever hold.

This quantity should be chosen high Cf.ex, 8000
//segs_per_block = max_blocks for a whole RC 433 disc
store). The cost Is only max_blocks//2 bytes of backing
storage in the block table. (Normally only a few
segments In the head of the file),

The amount of core store used for the block table In
the zone buffer depends only on the actual size of the
file.

—_



alarm

associated

chaltns

buckets

cf_proc_no

chain

chainfleld

chatngroup

chaltnno

chalnref

chalnstate

current

record

daughterfile

filename

fille no

CF-SYSTEM 94

Appendix Z. Keywords

Unintelligent use of the cf=system wlll terminate

the run with an algol runtime alarm, The alarm Is

Identifled by a short alarmtext, see the survey

of these in app. A.

A term used [In procedure descriptions for the

chalngroups, that are defined for a_ specific

file.

See RCSL 55-D99, file-t.

An tnteger call value to the users Jump procedure

giving the proc.no, of the procedure last called.

Every cf-procedure has a procedure number which

may may be found In the head ltne of the

procedure description, The number Is also used In

calls of set_Jumps_cf to specify when the Jump

procedure should be called,

A term for listrecords with common head.

A fleld In the protected part of a record used

for linking. The format of the fleld depends 9 on

the type of the chain.

All the chains connecting two specific filles by

means of one set of chaln fields.

A number of a chalin-group. (See the procedure

description of Init chain, and the description of

array chains, app. D).

The reference for a specific connection between

two files. This reference ts created by the

procedure Init_chain, and is used as parameter In

several procedures. (See the procedure descrip-

tions).

Some of the cf-procedures are dependent on the

latest use of a specified chain. The chalnstate
keeps track of that. See the possibilities In the

survey of the cf-states, app. C.

A term for the last processed record in a flie,.

Current record fs the same as the zonerecord.

The subordinate flle of a chain, t.e. the file

that contains the elements of a chain. Calways a

listfile).

The name of a backing store area.

The togical number of ai file used [fn chain



head

key

Jump_proc

last_accessed

record

listfile

list record

State

masterfile

max_rec

length

min rec

_length

motherflle

orlginating

In

proc.no.

CF-SYSTEM 95
Appendix Z. Keywords

specifications. (See the description of array
chains, app. D).

A term for a record In a motherfile contalning

the record number of the first record In a chaln.

Chains are sald to be headed If all records in

a chain contain the reference to the head.

A group of fields In a masterflle record used for

Identification and organization. When used as a
parameter of a procedure, a real array with the

same format as a record (see record) long enough

to hold all keyflelds.

An exit procedure specified by the user. See app.
A CErrors during processing, -Unnormal-§ sItua-
tions), and the procedure description of set.
jJumps_cf,

The record number of a daughterflile record, which

has been last accessed via a_ specific chatn-

group.

1s elther a daughterflle or a daughterfile and a
motherfile. Records are referred to by a record-
number (see recordno.). Characteristics of list-
filles are that they are badly accessed sequen-
thlally, and that Insertion of records Is done
according to a strategy, so that the user cannot
determine the physical address or record number
of the new record.

Every record Ina llstfile has an Indication of
Its -state-. See the possibilities In the survey
of the cf-states, app. C.

is always a motherflle. Records are referred to
and identified by a key, and the organization Its
Indexed sequential. See RCSL 55-D99,

is for a masterfile less than segs _per_block x
256, For a listfile see the calculation tn
procedure description for procedure head_}.

Is the length of a record, which can hold the
whole key and lengthfleld.

A term for a file that contains the head-records
of a chaln-group. May be a_emasterflle ora
listfile,

f.e. rooted In. A term used only fin the procedure
descriptions of the delete-procedures,

See cf_proc_no.



result icf

rec_no_cf

record

recordlength

recordno,

zonestate

CF-SYSTEM 96
Appendix Z, Keywords

A standard Integer varlable used to desIgnate the
result of a call of a cf=procedure,

A standard integer variable holding the last

delivered rec_no In listfliles.

A number of consecutive bytes. When used as a

parameter of a procedure the elements must be

stored In the lexicographical first elements of

an arbitrary array. The record may hold a length

specification,

A cf-flle may consist of elther vartable length

or fixed length records. If fixed length Is

chosen, all records are of max_rec_length. Re-
cordlength Is always given as the number of bytes
of the users part of the record.

Cshort: recz=no). Records in listfiles are Identi-
fied and referred to by record numbers, which are
allocated by the cf-system during the’ tfInsertton.

The cf-procedures are dependent on the latest use
of the zone. The zonestate keeps track of that.
See the possible zonestates In the survey of
cf-states, app. C.


