A REGNECENTRALEN

= ‘ SCANDINAVIAN INFORMATION PROCESSING SYSTEMS

28-D5
May 1972

Inge Borch
Edith Rosenberg
Jgrgen Winther

"Cj\/fv (j/

)

Connected Files System

Users Manual

RC L4000, Software Algol, Fortran,K Procedures,
Disc, Indexed Sequential Files List Files Chains

The system is a set of procedures, which can
set up and process two kinds of backing store files., Records
are accessed either by logical key or by chain, 97 pages.

E SYSTEM LIBRARY

J DK-2500 VALBY - BJERREGAARDSVEJ 5 - TELEPHONE: (01) 46 08 88 - TELEX: 64 64 rcinf dk

. CABLES: INFOCENTRALEN

CF-SYSTEM

Content: page

Introduction

Masterfli les

Listfliles

Chalns

Flle conflguratlons
Protection of flles

Format of procedure descriptlions
Procedure descriptlions
Reorganlzatlon of flles
Reorganlizatlon procedures
Appendix A: Survey of alarms

Appendl x B: - - procedures
Appendix C: N - «cf-states
Appendix D: Format of array chains:
Appendix E: - - description flles
Appendix F: & - extracted record

Appendix G: Zone bufferlength

Appendix H: Programmlng example
Appendix J: How to dimension the flles
Appendix Z: List of keywords

CF=SYSTEM 2
Introduction

Introductlion

The connected-flles-system Is a set of RC 4000 Algol standard
procedures, designed to handle records and 1links between
records In flles with direct access.

The system has been planned malnly to suit ordinary admini-
strative Information systems such as productlon- , purchase- ,
and sales-control, but the structures, which may be deflined and
processed by the system, are so general that other applications
should be possible.

The central feature of the system is the chalining of records,

i.e. one record holds a pointer to a next-In-chaln-record., All
records 1In one chain wlll have one common property, namely the
starting point, which Is a speclal record, the mother-record of
the chaln. Thus, when several chalns passes through one record,
this record will mark a 1ink between the properties specifled
by the mother-records of the colinciding chains.

Chalns and two Kkinds of flles are used by the system to
achleve dlrect access to records by key or by chain.

Master-flles{_—

A record In a master-file 1Is addressed by a user-defined
logical key <carried In the record. The master-flles are

organized lndexed-sesuen&lg!Lx so that fast sequentlial proces-
sing can be anticlpated. Varlable record-length Is posslble,

List-flles:

e —

A record Is addressed by Itsg?g;ggg;ggghgy which 1s _selected
&By the, system at the Insertion-time. The record-numbers are
used Internally for the chalning polnters. The physical block,
In which a record Is stored, Is calculated directly from the
record-number, but the placement of the record Inside the block

Is read in a record-table heading the block to allow for
records of variable length.

A list-flle record will always be a daughter-record of one
or more chains, but It may also be the mother-record of any
number of «chalins, whereas master-flle records are used as
mother-records excluslively,

Chalins:
et

A chain will always start at one record (the mother-record)
In a mother-file (flle holding mother-records, master- or

list-flle) and continue In one or more records (daughter-
records) 1In a daughter-file (file holding daughter-records,
always a list-file),

Any actual chain (string of loglcally connected records) 1In

the system will belong to a certain predefined logical group
of actual chalns=R 86@ AU T Ple cotkiasse

Depending on the contbxt, the concept of a chaln will be used
Iin the following to denote one actual chaln or a whole group

CF-SYSTEM 3
Introductlion

- of actual chains.

A group of actual chalns Is characterlzed by the two flles
concerned and by the position of the record-flelds used for
chaining (two files may be connected by any number of chains).

The chain-groups are numbered within an actual flle-confl-

// guration from one and up, the chaln-number belng used for

o

initialization of the processing of that particular group of
chalins.

An actual flle-configuration set up and processed by the
connected-f1lle-procedures may contaln any number of flles and
any number of chalns connecting them. The only limitation Is
that Joops In the structure are forblidden, I.e. It must not be
possible to meet the same file twice by stepping over the
mother-flle to daughter-flle connectlons.

All flles are RC 4000 backing store areas, which must be
‘ treated separately wlth regards to Inttltalizatlion, opening,

closure and dumping. The connectlons are only checked when
chalns are processed and when It Is attemptedJpo,delq&gnrecords
In mother-files. T = -

Any flle may be prolonged to a certaln predefined 1limit In
order to accommodate more data, but the best distributlon of
records will most likely be obtalned If this facillty Is used
sparingly.

An algol-zone ls connected to each flle used by a certaln
program, and records appear as zone-records so that no super-
fluous core-store-copylng Is performed. The record-flelds wused

for the adminlstration of chains are not accessible from the
\\users program. - e R

e , <, ¢

\

N,

T

" =

\5 PQC{(C ’f’\{%\,}‘«‘éﬂ; ML ARAEAED (")‘ 3»

5 : N # & A %
M Ern Lrethgtn L‘*CJC(ﬁiuft&(wwwﬂ -@7&,
N ¢

ﬁé ey eleh &&aﬂwﬁﬂﬁﬁwﬁ~

V.

do

CF-SYSTEM L
Masterfl les

0 DIREKTE ACCES

\

Master flles ,) \/"EU N@.G ‘"‘

These files contaln the recokds which should be accessed,
dlirectly through user-deflnedjkeywords carrled !n the records.

The baslic flle-administration-system Is the Indexed-Sequen-é‘:ISF
tial-Flle-System of RC 4000 described in RCSL No.55-D99. As
regards the fundamental propertlies of the master-flles, this
manual should be consulted, since the corresponding procedures
of the cf-system only provldes for the admlnlstratlon1 of the
chain-flelds. w‘"} cCe - MO{:{M:M maft»(,»,{z ([J7VE (k,l oo el Q(LK€

In fact, it 1is possible to process a slngle master- flle by
-the indexed-sequentlial procedures, If these procedures are used
excluslively, but It Is not recommended, since the <chain-flelds
" of the cf-system will not be protected, and It will be possible
to delete a mother-record without deleting the corresponding
daughter-records.

One major difference between the set of procedures described
In RCSL No.55-D99 and the cf-procedures Is the way In which the
files are opene nd _closed. In connection with the cf-system,
the standard open- and close-procedures of RC 4000 algol are
never wused, and 1[It Is not necessary to call one of the
3‘mode chang*mg“procedures to ensure that the flle 1Is properly
¢ updated.
‘ File-Initialization can only be terminated by the close-cf
procedure and not by the mode-changing procedures.
Another dlfference Is that the delete-m procedure..has. long-
range effects, as It also deletes all list-file records
connected to chalns orliglnating In the master-flle-record.

An opened master-file |Is _protected against unauthorized
Input=-output-procedures by means of special zone-state value

In principle, these zone-states are Just a parallel dlsplace¥
ment of the zone-states used by the Indexed-sequential proce-
dures, see appendlix C.

The cf-system will, In some cases, reference master-flile-
records Internally for the wupdating of chaln-fields. The
logical key and not some physical address Is used In thls case,
too, primarlly because the physical location of a master-flle-
record may change, due to Insertions and deletions, but also
because the reference by key Is standard, and makes It possible
to reorganize a master-flle wlithout touchlng any other file In

.a flle-configuration., The costs are that the chain-flields wused
for mother-reference are rather long, and that reference to the
mother-record of a chaln will require the usual search In the
tables of the Indexed-sequential file.

The master-record reference, which Is carrled In chain- flelds)
and In the chaln-tables (see chains), Is a copy of the keypart
described In RCSL__No.55-D99, l.e. a data-field holding the
keywords of a master?glle-record In a compressed form.,

oF n
{pfft’r{ ﬂf&{& \

CF-SYSTEM 5

b Listfliles

List files
e S e s

This kind of flle Is desligned especlally for the cf-system
and s Intended to hold the
accessed through 11nks from. . or

The file-administration faclilitates access to a certaln
record in _one step bx a_short address, as opposed to the
master-files, where 1long key-fields and access In two steps,

block-table and block, is the rule.

A record 1s ldentified by a record- numberl
not greater than a maximum number determlned by the slze of the
file and the range of record-numbers allocated to one block
(The greatest possible record-number is 8.388.606).
It {1 g noL... 'r_\ncc‘h]e for..the user &Q Insert %&%@&gw@&» -
ce = , the flle-administration itself will find
‘ an unused record-number according to a certaln strategy, Insert
P the record at thlis number, and insert the record-number as a
el 24-bit 1integer In the chaln-field of the record which Is
: prior-in-chain to the Inserted.

File-structure:

The list-file Is stored as a backing store area contalning
a file-head, a block-table, and a varlable number of blocks.
The e‘ﬁead contalns Information for the processing of
records and the chalin-tables (descrlibed under chalns) of the
chain-groups of which the file Is the daughter. The flle-head
_ls.never. wrltten back to the flle™ éae heuw Clecocs

The blgock=table contalns a 6-blit entry per block holding a
logarithmic derivative of the percentage of free room 1In the
corresponding block. The table 1Is held permanently In core

during the processing and It 1Is wused to obtain an equal
distribution of records over the whole‘flle. This Is Important
. for the physical clustering (see Insert-strategy) of records

being daughters of the same chaln and it limits the number of
block-accesses to find a suitable block for an insertion to a

maximum of two (see Insert-strategy). The block-table 1Is
written back to the flle together with some status-varlables by
the close-cf procedure or the read-only-cf procedure, If

records have been removed or Inserted.

occupies an Integral n egments

o8 n] 2 bytes of 12 blits). All ocks

are of equal length and one _block corresponds to _a _certaln
Mser=deflned.range of record-numbers..,

Each block 1is prefaced by some status-varliables and a
record-table of one entry per record-number allocated to that
block. An entry In the record-tablesconsists of a 12-bit byte,’
the rlightmost bit defining, whether the record number Is free

or not, and the rest, the base _of _the corresponding record|
glven relatlve.to the base of the block,

. A flle may be declared to hold records of elther flxed orz“{ *{{f

CF=-SYSTEM 6

‘ Listflles
Vg g‘gf;fkéﬂ‘{ Mmf“

...
4«_4,,

varlable length, In the latter case, the first 4 bytes of _the

LA~

user=part of each record Is reserved by the system, The first
2 bytes will tell the length of the user-part measured In bytes

and the next 2 bytes contaln the _record-number, both repre-
sented as Integers. These 4 bytes are always restored before
a new zone-record Is fetched.

. égéJ?% There are two limitations to the number of records which can
. ““be accommodated In one block:{)The number of record-numbers per

T§¢ﬁ¥ block and{khe amount of room for records In one block.

k&%ﬁ In case of fixed record-length, both 1limitations are made
' ¢ equal by the cf-system, but In connection with variable length
A A records, the user himself must balance the 1limitations by

lkﬁhi%%ﬁ lestimating the length of the minimum record which Is goling to

w%> exploit all the room of some blocks without particlipation of
other records.
R
‘ The cost of setting thls minimum length too low, Is one 12
| blt byte per superfluous record-number, on the other hand,
setting It too high, may cause some room to be left unusable
in blocks mainliy containing small records.

A list=-file may be prolonged, but not shortened, simply by
Increasing the size of the backing store area of the flile., This
can be done during a run by use of the procedure extend-cf, or
between runs by the utllity-program set (System 3). However,
the maximum number of blocks In one file must be given when the
flle-head Is created, because room for_a maximum block-table Is
reserved before the flrst.block of the file (a block-table of
one segment corresponds to 1008 blocks, two segments to 1008
+ 1024, etc.).

During processing only the actlive part of the block-table is
held in core, a large upper limit Is thus not very expensive,
but It Is not advisable to let a list-file grow too much, and

especlially not too often, since this will tend to disturb the
‘ clustering of records (see insert-strategy).

Flle-processlngi

The zone used for a list=file, holds the file-head In the
filrst part of the zone-buffer, then the block-table as the
first share of the zone, and after that a number of shares (at
least one), each able to hold one block., Each block=share
demands a bufferlength equal to the blocklength plus one word
of 24 blLS.-

Jhe.use of at least two block-shares. . can. be advantagequs..
because return to the previously accessed block will be quite
common during the malntenance of chain-flelds 1In connectlion
with Insertion and deletlion of records.

on the other hand more than one block-share can be Incon-
venient, as an updated block will not be written back untll
some other blocks have been read, so that the disc-heads have
changed position.

If at least three block-shares are used, the cf-system will
‘ write back updated blocks In parallel to program executlon, so

Plate af aulel |lodk- shors

Q<

Aakal el o or CF=SYSTEM 7
kel vad“‘w 2 . Listflles

that one block-share Is always ready for Input with a minimum
of walting~-time.

{I;m — The cf-system holds a sorted llst of one.ec er block-

share, the flirst entry polnting to the block wh)ch:'has been

Qﬂaqyudgérﬁztessed most recently, and the last entry pointing to the

‘ - % victim, i.e. the block which Is going to be overwritten next,
S

because It has not been accessed for the longest perliod.

2ﬁﬁfm If the victim-block has been updated, then the transfer back
il to the flle will be Initiated, but not walted for, at the time

(ﬁ%%& 7 when the block becomes the victim, provided that at least three

block-shares are avallable.
n‘é;{?« A
) In order to make multi-block-share runs economical and to

n » ‘
’QQ $““ diminish transfer-time, the user should define a small block-
length, on the other hand, short blocks will demand more core
. for the block-table and will Increase the total size of
unusable block-remnants.

G

Insert-strategy:

The Insert-strategy concerns the way In which records are
placed physically In the fille.

The ldeal 1s to have records with a high probabillity of
sequential retrleval placed sequentially or at least placed In
the same nelghbourhood in the flile, T.e. In so few physical
blocks as possible.

In a list-flle, records linked logically together In the same
chain will have such a great probablility of sequentlal retrie-
val, It Is therefore attempted to concentrate connected records
physically. Thls will In the follow]ng be called to clus&g the
records.

The Intention Is to obtaln a great probability of finding the
next record of a chain In the same block as the 1last accessed
record, the galn of having two daughter-records of one chailn

‘ placed In the same block being one block-access each time the
chaln Is traversed.

The <clustering 1Is only taken Into account when a new record

Is golng to be Inserted, l.e. already placed records are never
moved . asmthquQqu%LnxQngmxery high costs.
By thls simple method, It 1Is only reallstic to hope for

clustering of one group of chalns. A general optimization of

all chains might be the task of a later, probably rather
§?£@ awAchompllcated, reorganization program.

/ Therefore, the user should favour one chain=group 1In each.
Auév(u ¢ka list=file by letting the Insert-1 procedure work upon this
\chain group, as this procedure performs the physical insertion
{of a list-flle-record.
& A list=-file-record may be connected to one actual chain of

each chain-group deflned. _One <chaln Is connected by the

, ~nsert-1 procedure, the remaining chalns may be connected by,
JUL the procedure connect. ‘ '

The block used for the Insertion Is selected by Insert-1
. according to the following algorithm:

CF-SYSTEM 8
Listflles

1. If new chaln then find the block of most free room
else
2. If room In block containing the neighbour-record
then select this block
else
3. If overflow has occurred earlier from the block
containing the nelghbour-record and room Iis
available in the overflow=-block
then select the overflow=block
else .
L4, find the block of most free room and make this
block the overflow=block of the block containing
the nelghbour-record.

The block containing most free room is searched 1In the
block-table, the nelghbour-record Is the record which Is going
to be prior to the Inserted record, or Iin case the inserted Is
next to the mother-record, then the record next to the
inserted. The 1Insertion 1Is not performed In case the flle Is
already filled beyond a user-specifled percentage, or |In case
the block of most free room Is not able to hold the record.

In case 1 of the algorithm above, an Insertion wlll require
1 read and 1 write block-access, whereas the worst case, case
4k, requlires 2 read and 2 write block-accesses when at least two
block-shares are avallable, but 4 read and 2 write block-
accesses, If only one block-share Is available.

When a block becomes more than half empty after a record
deletion, the overflow-pointer Is erased.

Zone-states:

A zone opened to a list=file may be in one of the following
three states analogous to those used for the master-files:

read-only-=1 It Is only possible to read the file; this Is
the state set by the open-cf procedure. The
state Is not recommended, because the removal
of dead records Is not carried out (see chains-

J.

read-update=-1 Both reading and writing are allowed, but to
ensure that changes 1In a record retrlieved by
the procedure get-1 or get-numb-1, will be
reflected In the file, the procedure put-cf
must be called after the retrieval. Any record
read by the user may end up In the file, so the
user should not make any translient changes of
record-flelds. .

update-alli=-1| All accessed records are written back to the
flle.

e

CF=SYSTEM 9

b Chalns

Chalns

A chaln iIn the cf-system Is baslically a string of records,
each record except the last one holding the reference to |Its
successor., ~

The first record 1Is called the mother-record and the other
ones are called the daughter-records of the chalin.

The mother-record and the daughter-records are placed In two
separate flles, called the mother-file and the daughter-file of
the chaln respectively.

The mother-file may be eilther a master file or a list-file,
but the daughter-file Is always a list=flle, l.e. reference to
the next-in-chain record ls always.a llist=flle record-number.,.

Alt records In a chaln will have a _24=-bit _chalnfleld holding
. either the reference to the next record 1In the chaln or
Indicating end of chain, l.e. all chalns are open and _one-waY.

In addition a daughter-record may contaln a reference to the
mother-record, the chaln Is sald to be headed,. This reference
Is elther a compressed key of a master-flle-record or the
record-number of a list-file record. The mother-reference maygﬂq%
be fetched by means of the procedure get-head, In order to look y
up the mother-record by get-m or get-numb-1, according to the<éw”
type of the mother-flle.

The mother-reference Is Intended for this purpose, which only &
can be of any value In case the mother-reference Is wanted for
a chain, different from the <chain by which the record was
accessed, but for 'the reason of securlity, It 1Is checked
Internally that the mother-reference Is the same 1In all
daughter-records of one chaln.

(:‘ b J&C A1l records 1In one flle will have a chaln-part of the same
4&{S*Uﬂfformat, each fleld In the chaln-part corresponding to a certaln
1&¢{ chaln-group, of which the flle is either the mother or the
'ffdaughter.
% A chaln-group <corresponds to a certain mother-file and a
certaln daughter-file, and It will wutlilize some specific
khaln-Fields In the records of these flles.
yQ ﬂwﬁfﬁ A record In any file will contaln a user-part followed by a
s)chann -part, the user=-part being of fixed or varliable length and
\the chain-part of fixed length

Specification:
TR S AR

All chain-groups 1In a certaln flle-configuration are gpecl=
by an In r used as a parameter of the two
head-procedures head-m and head-1.

A call of one of these procedures will in a backing store
area generate a file-head holding among other things the
specification of the chaln-groups assigned to the flle.

The fundamental Information concerning a chaln-group Is the
number of the chaln-group (all chain-groups _are numbered gx the,
gx;ggmr_iggmﬁ_ggg_ﬂggg_“up), the position and slze the

‘ corresponding chaln-flelds, and the role of the file, mother or
daughter. ML u§'§fﬁaﬁaﬂfy%Au
g;*CL @c:’f{im“ P p@;(&»cmw fw 5{"@!‘@(!4(f“vm-

Aa. e Yorvel e af oot re—
&C N £ @ ole ?wﬁ“’é) MW &% %“?‘ié‘v J{, (5"

CF=SYSTEM 10

b Chalns
e g o

Pro

Before a certain group of chains can be processed, the

corresponding other-file and daughter-file must be opened and
the init-chaln/procedure called. o
This procedure will set up some absolute addressesg/ln the

zone-buffers of the two flles to enable cross-referencqg between
the two zones, and It will return a real paramet holding two
absolute addresses pointing to the Information/ in the zone-
buffers concerning the chaln-group.

This return value must later be used as
various chaln-processing procedures to specl
The parameter Is the one named chainr

parameter of the
y the chain=group.
In the procedure

descriptions.
2 ¢ v “ A/ u
" Lhaln-tables: Jﬁ%ﬁﬁJ A',?%2€W&0¢ww&2#
EL~A&£”£ The 1l1ist-flle zone-buffer contains a table for each chaln-
- Uuplv S group of which the flle Is the daughter,
é&%%@? A Each chain-table can hold the Information needed to define a

-~

) " positlon 1In__an actual chaln of the corresponding chaln=group.
This Information conslists of the following four parts:

o

prior The record=number of the record which precedes the
last. accessed record. If the last accessed record
Is the first daughter-record, then prior 1Is zero.

last) The record-number of the record accessed most

accessed recently through the chain-group. It is zero If the
chain-state Is empty (see chaln-states).

next The record-number of the record succeeding the last
accessed recard, This field is copied from the next

chain-field of the last accessed record.= x%uUMAAQI

' meste Aunelins <+ k &%gzj&

‘ mother The reference to the mother-record of the actual
chain stored In the same format as the correspon-
ding record-chain-fleld.

The chain-tables are used by almost all procedures having a
chaln-parameter, the procedure get-1, for example, will use the
next-fleld of the chaln-table to retrieve the next record of
a chaln., The prior-field Is used when the last accessed record
Is deleted, and when a record Is connected to a chaln prior to
the last accessed record.

Chalin-states: e—dﬁgﬂ L ﬁﬂﬁéﬁaﬁwuﬁwha
~ v v

A chalin=-group Is In one of the following three states:

not=init This 1Is the state before call of the proce .
init-chain, but the state is also assumed when one
of the two corresponding zones 1Is <closed., No

‘ chain-processing can occur in this state,

Not ed

CF-SYSTEM 11
Chalns

empty The empty-state Is assumed after the flirst call of

Inft-chain, and In other cases speclifled In the
procedure descriptlions.

last-acc- A chalin=-position Is defined by the chain-table. The _

def lned last _accessed record Is not negg§§ggllxwgﬁgumg;;gngm
record of the daughter=flle...

Dead records:

Aa&a&aﬁéhuﬁaAA list-flle record will always be deleted as the last

w{a alfed

accessed record of a chalin-group, whether the deletion 1Is
performed explicitly by the user or internally through the
file-connections.

For thils chaln=group it Is possible to remove the record from
the chain as the prior record Is noted Iin the chain-table.

If a record Is connected to one <chaln only, It 1Is also
removed from the file, but |In the case of more than one
connected chaln, the record wlll remain in the flle as a dead
record wuntil It has been disconnected from all the remaining
chains. The disconnection will be performed by the system each
time the dead record 1Is retrieved as the next record of a
chaln, provided that the zone Is In one of the update states
(the mother-zone must also be In an update state If the dead
record happens to be the first In the chain).

The user will thus never retrieve a deleted record, but _a

certaln percentage of dead records. lin. a. llst=fll ing on
the _use _of the chalns, must thus be taken Into account, This

strategy together with the use of the one-way chalin has been
selected to obtaln a fast maintenance of chains.

0

@

CF-SYSTEM 12
' File-configuratlions

- - - wn s S > - - -

The purpose of this chapter is to propose a way of drawing
dlagrams defining the structure of actual flle-conflgurations.

fig. 1 1 Master-file
(mother of chain 1)
1 chain (clustered, no
' reference to mother)
\l
2 list-file

(daughter of chain 1

The diagram of flg. 1 shows a single master-flle given the
logical file-number 1, a single 1list-file given the loglical
file-number 2, and a single not headed chaln, chain 1 of the
configuration. The double arrow is used to indicate the chain,
the daughter-records of which are clustered by the insert-l
procedure, exactly one double arrow must point to a 1ist=-file.

This simple structure might be used In cases where some
record-part Is varylng strongly in length or s Infregquently

' used.,

CF-SYSTEM 13
File-conflgurations

Master-file
fig. 2 4 (mother of both chains)
1 chain : 2
- (clustered, headed) —I— chain
(not clustered,
headed)
list-file

(Qaughter of both chains)

In fig. 2 the structure Is extended by an extra chaln=-group,
and both chaln-groups are headed, 1Il.e. each daughter-record
holds a reference to the mother-record of the chain. This Is
speciflied by two bars crossing the arrows. Chain 1 1is the
clustered one.

By this configuration It Is possible to look up a record in
the master-file, retrieve a record of the corresponding chain
1, fetch the mother-reference of <chain 2, and look up the
mother-record In the master-file. Each record in the list-file
may thus be thought of as a link between two records of the
master-flle, namely the two mother-records of the actual chains
to which the list-file record Is connected.

The chains of fig. 2 may, for example be used to establish
the blll-of-material/where-used structure of manufactured com-
ponents.

CF-SYSTEM 14
File-conflguratlons

fig. 3 1 customers

6 order-chain

N| %

1%:::::> order-heads
y

order-line-chain

N

ig::::>> order-lines

orders-for-
component-chain

descriptio
chain

components

used-on-
chain

descriptions

relations

Where-used-chain

In fig. 3 an example Is shown of the file-configuration of a
sales-control system. :

It may, for example, through thils structure be found out, how
many components are needed to effectuate the orders of one
customer, or which orders have been recelved for a speclific
component.,

The orders are split into two files, as one order may hold
some informatlon common to a number of order-lines, each
corresponding to a certaln component.

If the component-records have some lengthy and infrequently
used parts, for example some text-descriptions, these parts may
be stored In a separate list-flle.

CF-SYSTEM 15
Protection System

An administration of the permanent flles of an adp-system
will face the following two error causes:

A flle Is not properly updated If the processing s not

terminated by a call of some closing procedure. This call
may not be executed, If a program Is termlinated by an
operation system or by a run time alarm.

() If more than one permanent flle Is used, there Is a risk
" that different generations of fliles are mlxed In a run.

This "risk 1Is greater If a lot of flles of different
updating frequencies are used.

Errors of the first type may not be so serious In systems
using sequentlal files, because the files are scanned from one
end to the other, so the 1lack or Inconsistency of some
endofflle label will reveal the error.

For systems wusling random access files, like the cf-system,
errors may remaln undetected for long perliods and may glve rise
to alarms, which are very difficult to trace back to the
original cause.

The wuse of random access flles Iintroduces another error
cause:

g;;} The same Job or program may erroneous be run twice causlng

- a double wupdating of the files 1iInvolved. This Is not
posslible In connectlion with sequential files, where the two
runs would be completely Identlcal, because the old ver-
slons of the flles are unchanged.

The cf-system has been provided with protection against the
error causes 1 and 2, but not agalnst 3.

The catalog entry of a file Is used by the protectlon system
In thlis way:

file = set <segments> <bs device> <verslon> <update mark>.

Scacarsmesrsases

The two last quantitlies are speclal for the cf-system:

<version> A number (0 <= verslon <= 8 000 000), which Is
— - Increased by one each time the processing mode

CF-SYSTEM
Protection System

Is changed from read-only to

<up§3£§43§£k2 Elther 0 or 1.

accepted by open-cf.
1: The flle 1Is In update-stat

The file is In read-only-state.
the state between runs, and this is

update.

e. This

not occur between runs, and a flile |

state is rejected by open-cf.

16

This should be
" the state

state must
n update-

Errors of type 1 are detected by means of the update-mark,

n an update mode

which will be equal to one, if a processing |
is termlnated by an index alarm,f.ex..

The second error_type is remedied through the use of the

version number In connection with a supervisory

holding the actual version numbers of all

the fi

register
les of a

flleconfiguration. The procedure open-cf wlll check that the
and In the catalog

entry of the flle are identical. 7 f&ks“f{%”&i{&) y«&g ﬁﬁﬁ‘:{{

verslion numbers In the supervisory reglster,

A masterfile Is used as the - supervisory

kinds of descriptions, f.ex. fliles, records,
A maintenance program for description flle

duced, and utllity programs, and higher le

planned at present, will use the description

It Is possible though, but not recommended,

version number checking. In this case the description
not necessary, but the version number In the catalog entr

still Increased.

reglster. It 1Is

called the description flles because it can be used for all
and fields.

s has

been pro-

vel cf-procedures,

file.

to swlitch off the

The update mark checking can not be swltched off.

The format of the description file Is given

Set-descr-cf

file g@&%

OV
ChLe/%‘e e séous, - m,

in appendix E.

This [Is the name of a procedure, which must be called before

the first call of open-cf.

The call of set-descr-cf will pr - em with

name of the relevant description flle. The name Is

lateron used

by the procedures open-cf, read-upa-cF; and update-all-cf.
If an empty string Is given as the parameter of set-descr-cf,
the procedures will not attempt to access a description flle.

Whenever the description file Is accessed,
the update mark of the description flle

it Is checked that

jtself

Is zero.

Therefore the wuser must avoid simultaneous updating of the
description flle, In a zone of his own, and calls of
read-upd-cf, and update-all-cf concerning other flles.

T rke /@!9{ retfe A Lol zrf% Nomdcdle a ke L ad

&(ﬁﬁ?&né, =

open=-cf,

CF=-SYSTEM 17
Protection System

Alarms

When the protection Is violated, or If the protectlon system
has troubles with a catalog entry or the description flle, a
run time alarm will terminate the program. The alarm Is Issued
by the external algol procedure protect-cf, which actually
performs the functions of the protectlon system,

Such an alarm Is headed by the followling two lines:

xxxprotectcf alarm:
flle <flle number> <flle name> vers.in.cat <verslon>

The text: file, Is replaced by the text: descr, If the trouble
concerns the description file,

The run time alarm following these two 1lines will explaln
what happened, see appendix A, under protectcf.

Other alarms than mentioned in appendix A may arlise, If the
description file Is not ok. The alarm will originate from
either buf-length-cf or open-cf used upon the description fille.

CF-SYSTEM 18
Procedure Descrliption

<procedure name> proc.no.<proc.no.>
<abstract> (A short functlional description).

Call: <procedure call> (Format'of call).
<parameter description> (Explanation of each parameter).

Requirements:
(Conditions for a successful exlit from the procedure.
If the requlirements mentioned are not fulfilled, the
run will be terminated by an alarmmessage).

Results:
(Results from the procedure, inclusive notes on states
and accesslible records).

result_cf current record
(possible values (specification of the
of the standard accesslible record, Iif
variable result_cf). any). '

<further explanation> (Eventually some extra notes and warnings).

CF-SYSTEM 19
Procedure Description

buf_length_cf - proc.no. 1

Returns the bufferlength of a zone to be used for a connected

file,

Call:

buf_length_cf (fllename, blocks_In_core)

buf_length_cf (return value, Integer) The needed buf-

ferlength. Cuﬁ%v@ﬁﬁ‘g rvea s)

filename (call value, string) The name of a

backing store area holding a cf-flle.
blocks_in_core (call value, Integer) Defines the num-
ber of blocks wanted In core at the
same time:
Masterflles:
blocks_Iin_core = 1, or 2 If full
Insertion iIs wanted.
Listflles:
blocks_Iin_core >= 1, >= 2 1Is
recommended.

Requirements:

Results:

Further

filename must describe a backing store area holding a
correct masterfile or listfile, and must not be reser-
ved.

result_cf = 1, ok

explanation:

Declares a zone, opens the flle, reads the first seg-
ments, and computes the needed bufferlength according
to blocks_Iin_core.

A masterfile-zone may be declared:

zone zm(buf_length_cf(filename, 1 or 2), 3, blockproc);

A listflle-zone may be declared:

zone z1(buf_length_cf(fllename, blocks_Iin_core),
blocks_In_core +1, blockproc);

Documenterrors will cause stderror to be called.

CF-SYSTEM 20
Procedure Description

close_cf ; proc.no. b

Terminates the use of the zone by writing back eventual up-
dated blocks.

Call: close_cf (z, rel)
z (call and return value, zone) Connected
to a masterfile or listfile.
rel As for algol procedure close.

Requirements:
zonestate = any cf-state, exept after-declaratlion,

Results:
zonestate

4L, after~-declaration.
result_cf = 1 ok

Chalnstates will be not_Iinlt for assoclated chains.

CF-SYSTEM 21

. Procedure Descriptlion
connect ‘ proc.no. 13
The procedure connects gngyigéixg%g$§3gg‘record In one chain to
another chain according to a speciflied mode. ,
Call: connect (z1, chalnref_1, chainref_2, Icmode)
zl (call and return value, zone) Connected

to a listfile.
é chainr f 1 (call value, real) Return parameter from
‘pqa % init_chain. The record to be connected
by P Is the last accessed record of this
&ﬂ@ﬁki) chain.,
chainref_2 (call value, real) Return parameter from
) Iinit_chain. The reference for the chain
‘ to connect to.

fcmode (call value, Integer)

=1 connect chaln_1 record as flrst member
of chain_2 from current record Iin the
motherfile of chalin_2.

=2 connect chaln_1 record as next to last
accessed record In chain_2,.

=3 connect chaln_1 record as prior to last
accessed record In chain_2,

Requlirements:
z1 must be daugtherfile of both chain_1 and chain_2.

zonestate = read_update_1 or update_all_1,.

chainstate (chain_1) = last_accessed_def.

If Tcmode = 1, chainstate (chain_2) may be empty else

last_accessed_def.

If Tcmode = 1, then current record in the motherflle
‘ must exist. ‘

If the connected record Is next to the mother record,
the motherfile must be In an update state,

Results:
If result_cf = 1, the connected record will be last-
accessed In chain_2, too. Zonestates are unchanged.

result_cf current record
1 connected the connected
2 not connected (already none

conn., to another chaln)

Note: For Icmode = 3: see the note for the procedure Iinsert_1,

CF-SYSTEM 22
Procedure Description

delete_chaln - proc.na. 16

The procedure deletes all records In a chain headed to current
record of a file and all records In chalns origlinating in re-
cords of the speciflied chailn.

Call: delete_chaln (z, chalinref)
z (call and return value, zone) Connected
to a masterfile or listfile.
chalnref (call value, real) Return parameter from

Init_chain.

Requlirements:
zonestate = read_update_m, update_all_m or read_update_1,
update_all_1 depending on the type of the specified flle.
All chalns originating In the daughterfile given by
chalnref must be Initlallzed. Current record must exist.
All daughterflles must be in an update state.

Results:

zonestate Is unchanged. Chalnstates become empty for
all chalns associated to files, where records have
been deleted.

result_cf current record

1 deleted unchanged
2 no chaln to delete -

CF-SYSTEM 23
Procedure Descriptlion

delete_1 proc.no. 15

The procedure deletes/the last accessed record In the chain and
all records In chains{originating In the record. The next record
Th the chalin becomes current record of the file.

Call: delete_1 (z1, chainref)
zl (call and return value, zone) Connected
to a listflle.
chalnref (call value, real) Return parameter from

Init_chain.

Requirements:
zonestate = read_update_1 or update_all_1.

chalinstate = last_accessed_def.
All chalns originating in the listfile must be Initia-
lized.

All daughterflles and the motherflle corresponding to
chalnref must be In an update state,

Results:
zonestate Is unchanged. Chainstates become empty for
all chains assoclated to files where records have been
deleted, except the chain specifled as parameter (see
below),. Other files where records have been deleted,
will have no current record.

result_cf current record
1l deleted the next In chaln
2 = ylast In chaln, none

chalinstate = empty

CF-SYSTEM 24
Procedure Description

delete_m : proc.no. 14

The procedure deletes the current record of the file and all re-~
cords In chains orlginating In the masterrecord,

Call: delete_m (zm)

zm (call and return value, zone) Connected
to a masterfile.

Requirements:
zonestate = read_update_m or update_all_m. All chains"
originating In the masterflle must be Initialized.
All daughterflles must be In an update state.

Results:
Chainstates become empty for all chalngroups associated
to daughterfiles, where records have been deleted.
Other files, where records have been deleted, will have
no current record. '

result_cf - current record

1 deleted the next in the file
2 - end of file the flrst

3 not deleted, only one the one

left In the flle.

It Is obvious that the call may have rather wlide consequences.
In case of several connected files it Is advisable to use the
procedure delete_chalin in connectlon with delete_m to get more
Informative results,

CF-SYSTEM 25
Procedure Description

extend_cf . proc.no. 2

The procedure Increases the length of a cf-flile durlng the pro-
cessing. The current record, zone- and chainstates are preserved.

Call: extend_cf (z, segments)
z (call and return value, zone) Connected
to a masterflle or listflile.
segments (call value, Iinteger) The extenslion in

segments.

Requirements:
zonestate = read_only, read_update, or update_all, _m or
_1. The zonestate Is checked by a call of read_only_cf.

Segments >= 0, and not so great, that max_bucks or max_
blocks is violated. ;%

The bufferlength of the zone must be suffliclent for the
extended flle.

Segments and bufferlength are checked In a call of open_
cf performed on the extended file.

Results:

Current record, and all states are unchanged for any
value of result_cf.

result_cf

1 ok
2 ok, but only room for simple insertion In mas-
terfile buffer.
> 10000 error in a call of a monlitor function.
result_cf = result of monitor call x 10 000
+ number of monitor function.
Probable results:
booL4y change-entry, the scope of the flile
does not permit change.
60044 change-entry, there is not room for
the extenslion.

CF-SYSTEM 27
Procedure Description

get_1 _ proc.no. 9

The procedure searches a new current record Iin a listfile.

Call: get_1(z1, chalnref, gmode)
zl (call and return value, zone) Connected
to a listflle.
chainref (call value, real) Return parameter from

Init_chaln.

gmode (call value, Iinteger)

=1 the wanted record is the first member of
the chain from current record In the
motherfile.

' = 2 the wanted record Is the one next to the
last accessed record in the chain.

=3 the wanted record Is the last accessed
in the chain.

Requirements:

zonestate = read_only_I, read_update_1 or update_all_1l.
S@fgwég chainstate = last_accessed_def, or if gmode = 1, empty.
If gnode = 1, current record In the motherfile must
exist. :
Results:
result_cf current record
1 found the wanted
2 not found If gmode=2 then the last
accessed else none
‘ If no current record then chainstate = empty else last accessed

. record corresponds to current record.

get_m

| The procedure searches a record

CF-SYSTEM
Procedure Description

23

proc.no. 8

In a master-flile with a specified

. key and makes It current record.

Call: get_m(zm,
zm
key
Requirements:

zonestate

Results:
result_cf

1 found

2 not found
3 - -

key)
(call and return value, zone) Connected
to a masterflle. _
(call value, real array) See keywords, .
app. Z. g, 5. é'«fﬁgf L 2 /’y‘»@{fﬁﬁvfé @i At ’{

iﬁ‘]) H

= read_only_m, read_update_m, or update_all_m,

current record

the found
next with a greater key

v end of file the first

CF-SYSTEM 29
Procedure Description

get_numb_1 . proc.no. 23,

The procedure makes a listflle record glven by Its record-number
avallable as current record.

Call: get_numb_1 (z1, rec_no)
zl (call and return value, zone) Connected
to a listflle.
rec_no (call value, Integer) Contains the num-

ber of the wanted record.

Requirements:
zonestate = read_only_1, read_update_1 or update_all_l.

Results:
result_cf current record
l record active the wanted
2 record dead ' none

zonestate and chalnstate are unchanged.

CF-SYSTEM 30
Procedure Description

get_param_cf . proc.no. 30

The procedure ylelds the values of a selected set of parameters
from the zonebuffer of a cf-file.

Call: get_param_cf (z) one or more pairs: (paramno, val)
z (call and return value, zone) Conncted
to a masterfile or llistfile,
paramno (call value, Integer) Identifles the
wanted zoneparameter.
val (return value, integer) Receives the

value of the zoneparameter ldentified
by paramno.

Requirements:
The zone must be opened by open_cf or init_file_m,

If the file is a masterfile, paramno must be one of the
values listed In RCSL No. 55-D99, appendix Bl.

If the file is a listfile, paramno can be one of the
following numbers:

paramno name meaning
1 dead-bytes Number of bytes occupied by dead
records (including chaln-parts).
2 used-bytes Number of bytes used by records
(incl. dead records).
3 fill=-1imit The maximum allowed percentage of

used-bytes in the file. (Standard
Is 80 pct. for a not empty file.)

Results:
result_cf = 1, ok.

Alarm -par.pair=- occurs when an error is found Iin the parameter-
list. Alarmno shows the number of the parameterpalr, where the
error was found,

CF-SYSTEM 31
‘ Procedure Description

head_1 _ proc.no, 26

The procedure will generate the head of a listflile In a backing
store file. (See app. J. for selection of size_1)

Call: head_1 (filename, flle_no, chains, size_1)
filename see procedure head_m
flle_no - - -
chains = = = :
size_1 (call value, Integer array)

Contains the following 4 integers:

fixed_rec_length
= 0 means varlable record length Is

‘ wanted,
> 0 means flxed length Is wanted,
the value speciflies the length
in bytes.

min_rec_length In case of variable
length, this Integer specifles the
minimum length of records, which
should fill a block without parti-
clpation of longer records.

segs_per_block number of segments In
a block. (1<= segs_per_block <= 8).
The length of the greatest record
that can be Inserted In a block may
be calculated thus:

chaln_part_slize :=
2xno_of_associated_chalns
+ sigma(typexcompressed_key_
. size) over all chains of which
the file Is the daughter;
comment see array chains;

max_no_of_recs_per_block :=
(512xsegs_per_ block //
(min_rec_length +
chain_part_slize + 1) + 1)
// 2 x 2;

max_rec_length =
512 x segs_per_block -
(chaln_part_size +
max_no_of _recs_per_block + 8);

max_blocks the maximum number of
blocks the file will ever hold.

Results:
' result_cf =1 ok, flle_head Is created.

CF-SYSTEM 32
Procedure Description

head_m . proc.no. 25

The procedure will generate the head of a masterfile In a back-
ing store file. (See app. J. for selection of slze_m)

Call: head_m (fllename, flle_no, chalins, rec_descr,
no_of_keys, slze_m)

f1lename (call value, string)
The name of the backing store file.

file_no (call value, Integer)
The logical number of the flle used
in chaln specifications.

chains (call and return value, integer array)
Contalns the specification of all chain-
groups In the system. The procedure re-
turns the quantlty compressed_key_size
for the assoclated chains.
See format of array chalns In app. D.

rec_descr (call value, Integer array) A two di-
mensional array (l:no_of_keys+1,1:2)
holding Information about types and re-
lative locations of the keywords and
the length In a record.

Same conventions as In RCSL 55-D99, thjijfJ?ﬁi

length in element no_of_keys+l, with \ eiots 4G
type=0 for flxed length records. 8‘&/3;
no_of_keys (call value, Integer) The number of key-
words.
size_m (call value, Integer array)
/ . Contalns the following 4 integers:
, /'
LVQ%‘E§” Ctéﬁgkb | maxreclength maximum length, Lo _bytes,
p i _ of records which will be stored In
CL2e, W '.tl \ the flle.

' maxbucks maxImum number of buckets the
file will ever hold.

segsperbuck the number of segments in
one bucket.

segsperblock the number of segments In
one block.

Results:
result_cf =1 ok, flle_head is created.

CF-SYSTEM 33
Procedure Description

Init_chaln ; proc. no. 5

The procedure establishes the connection between the two zones
used for the motherfile and the daughterflile of a chaln-group.

Call: init_chaln (z, z1, chalnno, chalnref)

z (call and return value, zone) Connected
to a masterfile or listfile. This zone
must be opened to the mother-file.

zl (call and return value, zone) Connected

to a listflile. This zone must be opened
to the daughter-flle,

chainno (call value, Integer) The number of
the chain-group In the array chalins.
(See app. D).

chalnref (return value, real) This real Is
lateron used as chaln-reference.

Requirements:
zonestate (z)

read_only_m or _1, read_update_m or _1,
update_all_m or _1

zonestate (z1)= read_only_1, read_update_1, update_all_]I
Chainno must describe a chaingroup connecting the two
files to which z and z1 have been opened,

Results:
result_cf = 1, ok
if chalnstate = not-init then chalnstate = empty
else chainstate Is unchanged.
chalinref = chaln-reference

CF=-SYSTEM 34
Procedure Description

intt_file_m ; proc.no. 27

The procedure prepares a backing store flle for inftlalization.
The flle must contaln a master f1le head. The Initlallzation
must be effectuated by successlve calls of Init_rec_m and ter-
minated by a call of close-cf.

Call: init_file_m (zm, fllename, glveup, buckfactor,
blockfactor)

zm (call and return Value, zone) A zone
with room for at least one block (see
procedure buflength_cf).

f1lename (call value, string) The name of a
backing store area holding a file head.
giveup As for algol standard procedure open,
buckfactor (call value, real) See flle_1 procedure Sé;
init_flile_1I. ;Zf;E:
blockfactor (call value, real) See file_I procedure oud

Init_file_I. gZ@
Requirements: ?

zonestate = L4, after declaration.

The zone must bewdeclargd”wiph‘exaﬂ;q%mﬂbgggga and have
a sufficlent large buffer area. The file must contain
a correct head.

Results:
result_cf
zonestate

1 ok
init_m.

.

/é{x(,! B 440(11 2 5{

Lotk _nee . i \

pm—— o

o TR

/ bm.czf’e_%g etov ! suked bolokeky(usthlogks) | dev leat
\ j},u%@, £ e, beeket 0, Mw;tzm%ﬁm, v quoet
/ ‘U@&‘E tnebloeles = é@%e«%”émm‘v ¥ blocks per bueke
| loekefactn s st bulen (asebyies) e, obat

) Trugtai boes flok undes iuikatierigon §

iyebeyfen s [lockelactor x eqtize x g tpe

CF-SYSTEM 35
Procedure Description

Init_rec_m ; proc.no. 28

The procedure Is used to add records to the file one by one In
the key order. All chain-fields are empty after the Insertion.
The initlalization should be terminated by a call of close-cf.

Call: init_rec_m (zm, record)
zm (call and return value, zone) Connected
to a masterfile by Iinit_flle_m.
record (call value, real array) The record to

be inserted.

Requirements:

zonestate = init_m.
Results:
result_cf current record
1 record added none
2 not added, file Is full none
3 - - , Improper length none
4 - - - key none

CF=-SYSTEM 36
‘ Procedure Description

insert_1 : proc.no. 12

The procedure Inserts a record in a chaln according to a speci-
fied mode, and makes it available as the current record.

Call: insert_1 (z1, chainref, lcmode, record)
zl (call and return value, zone) Connected
to a listfile. ‘
chainref (call value, real) Return parameter from

init_chain.

Icmode (call value, integer)
=1 insert record as first member of the
chaln from current record in the mo-

’ therflile.

= 2 next to last accessed record In the
chain
= 3 prior to last accessed record in the
chaln,
‘?L“ %wgrecord (call value, real, array). If variable-
~1&&%iﬁ, length the lexlcographical flirst ele-
y ment must contaln 0.0 shift 24 add- ctel ¢
, Tength shift 24, = Letedlen ~bkeal ST €
) o B B e ’~\~‘\: S q ‘ i
‘ M@&,fﬁqw . ort 4 vy el
E Requirements: : ghﬁ &u}éﬁéia wﬁ%%

zonestate = read_update_1 or update_all_1.

chainstate = last_accessed_def or If icmode = 1, empty.
If icmode = 1 then current record In the motherfile must
exist., If the motherfile Is touched, It must be In an
update state.

‘ Results:

chainstate = last_accessed_def If result_cf = 1.
result_cf current record

1l inserted the inserted

2 fil1l 1imit exceeded none

3 length error =

4L no block can take this record -

The users record Is expanded with the necessary chainflields
(all empty) before the Insertion.
The Inserted record will later be transferred to the flle,

Note: For icmode = 3: If last accessed is next to a motherflle
record, this record will be current record of the motherflle
after the call.

CF-SYSTEM 37
Procedure Description

insert_m : proc.no. 11

The procedure inserts a record In the proper place In the flle
and makes it avallable as the zonerecord.

Call: insert_m (zm, record)
zm (call and return value, zone) Connected
to a masterfile.
record (call value, real array) The record

to be inserted.

Requirements:

| zonestate = read_update_m or update_all_m.
Results:
result_cf current record
1 inserted ‘the inserted
2 record already in flle the one In the flle
3 not inserted, too expensive next with a greater Kkey
L file is full = o - =
5 length error = - - - -
6 no buffer - - - - -

E The users record is expanded with the necessary chainfields
. Call empty) before insertion.
' The inserted record will .later be transferred to the flle.

CF-SYSTEM 38
Procedure Description

new_recl_cf - proc.no. 24

The procedure s used for changing the record-length of the
current record, only possible for masterfiles with varlable
recordlength.

Call: new_recl_cf (zm, length)
zm (call and return value, zone) Connected
to a masterflle.:
length (call value, Integer) Defines the new

length Iin bytes.

Requlirements:
zonestate = read_update_m or update_all_m.
variable record_length defined.

Results:
result_cf current record
1 changed the same
2 last rec., In file same with the old length
3 too expenslve - - - - -
L file is full - - - - -
5 length error - - = - -
6

no buffer - - - - =

In case length is less than the original length, ele-
ments are squeezed out from the upper end, otherwise
data are unchanged.

CF-SYSTEM 39
Procedure Description

next_m ’ proc.no. 17
Makes the next record in a master-flle current record.
Call: next_m (zm)

zm (call and return value, zone) Connected
to a masterfile.

Requirements:

zonestate = read_only_m, read_update_m or update_all_m.
Results:

result_cf current record

1 found the next

2 found, end of file the first

open_cf

CF=SYSTEM 4o

Procedure Description

proc.no. 3

The procedure opens the zone for the specifled flle and prepares
it for use by the other file_cf procedures.

Call: open_cf (z, filename, giveup)

z

filename

giveup

Requirements..

record.

after declaration. A’P? .
Filehead ok, mii}erflles must contain at

zonestate = 4,

(call and return value, zone) A zone
with room for at least one block (see
procedure buflength_cf).

(call value, string) The name of a
backing store area holding a file head.
As for the algol standard procedure
open. Yet open_cf will always set the
end-of-document=bit (1 shift 18) in the
glve-up-mask.

¢ ¥

}
least one..

-

Filename must be known.
Set_descr_cf must have been called...
Lo T Whoritn e P

Results:
zonestate =

result_cf

1 ok

I1f masterfile then read_only_m
else read_only_1.

current record

If masterfile then the
first else none

2 ok, but only room for simple the first In the
insertion In the masterflle masterflle

zonebuffer

If the program tries to open a flle, which Is not Initlalized,
the run will be terminated by an alarm probably concerning a
masterfile-error, even If the file was expected to be a listfile.

CF-SYSTEM L2
Procedure Description

put_cf ' proc.no. 18

The procedure ensures that the current record will be transfer-
red to the file.

Call: put_cf (z)

Z (call and return value, zone) Connected
to a masterfile or listflle.

Requlrements:
zonestate = read_update or update_all.

Results:
result_cf current record
1 ok unchanged
The procedure is -dummy- when zonestate = update_all, or the

current record is created by Iinsert.

CF-SYSTEM 43
Procedure Description

read_only_cf _ proc.nho., 19

Transfers updated blocks to the flile, and sets the zonestate to
read_only_m or _1.

Call: read_only_cf (z)

z (call and return value, zone) Connected
to a masterflle or listflle,

Requirements:

zonestate = read_only_m or _1, read_update_m or _1, or
update_all_m or _1.
Results:
result_cf = 1, ok
zonestate = read_only_m or _1.

current record Is unchanged.

CF-SYSTEM Ly
Procedure Description

read_upd_cf : proc.no. 20

If zonestate = read_only_m or _1 and a current record exlsts,
a new copy Is transferred from the flle. Zonestate Is set
to read_update_m or _1.

Call: read_upd_cf (2)

z (call and return value, zone) Connected
to a masterflle or listfile.

Requlrements:
zonestate = read_only_m or _1, read_update_m or _1,
update_all_m or _1.

Results:
result_cf = 1, ok
zonestate = read_update_m or _1.
current record Is the same, but evt. a new copy from
the file.

CF-SYSTEM 45
Procedure Description

set_descr_cf . proc.no. 32

This procedure must be called at least once In any program
using open_cf. The call must precede the first call of open_cf.
The procedure provides the cf-system with the name of a
description flle. The description flle is accessed Internally
by the cf-system for checking, and updating of verslon numbers
in the procedure open_cf, and In the procedures read_upd_cf and
update_all_cf If the prior zone state was readonly.
Set_descr_cf may be called several times, If more description
files are Involved In a run, and the parameter of set_descr_cf
may be empty, Indlcating that no description flle should be
accessed,

Call: set_descr_cf (descr_flle)

descr_file (call value, string) The name of the
description file, or an empty string
(<::>). In the latter case the ver-
sion number check Is not performed,

Requirements:
The call Is always legal, the existence of the descrip-
tionflle is not checked by set_descr_cf.

CF-SYSTEM Lo
Procedure Description

set_Jjumps_cf : proc.no. &

The procedure speclfies for a certaln zone a user-procedure to

be called when certain values of cf-proc-no and result-cf coln-
cilde at exlt from a cf-procedure. These cases are specifled by

the parameter-palrs cf_proc_no and results.

Call: set_Jjumps_cf (z, Jjump_proc)
one or more palrs: (cf_proc_no, results)

z (call and return value, zone) Connected
to a masterflle or listflile.
Jump_proc (procedure) The name of the users pro-

cedure, which must be declared at the
same blocklevel as the zone, or at an
outer level. It should be declared

thus:
jump_proc (z, cf_proc_no).
cf_proc_no (call value, Integer) and
results (call value, Iinteger)

Specifles the result_cf-values for
which jump_proc should be called upon
exit from the cf-procedure identified
by cf_proc_no.

Requirements:
The zone must be opened by open_cf or init_flile_m.

Jump_proc cannot be called from those cf-procedures which are

external algol procedures (see app. B), nor from open_cf,
get_param_cf, or set_param_cf. If cf_proc_no specifies one of
these procedures, It will be neglected.

cf_proc_no = 0 denotes all possible cf-procedures.

results = 0 denotes <clearing of all previously specified

result_cf values for cf_proc_no. Non-existing result_cf values
are lgnored,

Any number of result_cf values can be specified 1In one
parameter by representing each result_cf value as one digit In
the decimal representation of results. As the result-digits are
processed from behind, result = 120 will clear old specifica-
tions and set the new values 2 and 1.

Alarm -par.pair- occurs when an error Is found in the parame-
terlist. An alarmno > 0 shows the number of the parameter palir,
where the error was found, alarmno = 0 denotes an error |in

Jump_proc (e.g. declared at a wrong blocklevel).

CF=-SYSTEM 47
Procedure Description

The parameter pair (1,1) needs a special explanation:

If this parameter pair has been glven, the jumpproc Is called
as:

alarmproc (z, -cf_proc_no, alarm_number)
where alarm_number Is an Integer specifying the number of an
alarm occurring during the processing of zone z.

If alarmproc returns through its final end, the usual alarm Is
given, but it Is possible by a goto 'out of alarmproc to
continue the processing.

It Is only possible ta trap alarms occurring when it Is sure
that zone z contains a correct fllehead. I.e., It 1Is not
possible to trap zonestate alarms or the alarms from open_cf
and Inlt_file_m.

Alarms from procedures coded In algol cannot be trapped.

CF=-SYSTEM Lg
Procedure Description

set_param_cf proc.no. 31

The procedure assigns new values to a selected set of parameters

In the zonebuffer of a cf-flle.

Call:

set_param_cf (z) one or more palirs: (paramno, val)

z (call and return value, zone) Connected
to a masterfile or listfile.

paramno (call value, Integer) Identifles the
zoneparameter to be changed.

val (call value, Integer) The new value to

be assigned to the zoneparameter Iden-
tifled by paramno.

Requlirements:

Results:

Alarm =-par.pair- occurs when an error Is found In the parameter-

list. Al

The zone must be opened by open_cf or Init_flle_m.

For a masterfile the allowed set of values for paramno
and val Is listed In RCSL No. The

parameters will only be changed In the zonebuffer,

but not in the flle. 55-D99, appendix B2,

For a listfile the only parameter which can be changed
is fIl11=-1imit, l.e. paramno = 3 (see get_param_cf),

and 1 <= val <= 100. The value will be Inserted in the
zonebuffer as well as In the file.

result_cf = 1, ok.

armno shows the number of the parameterpair, where the

error was found.

CF-SYSTEM 49
Procedure Description

update_all_cf _ proc.no. 21

If zonestate = read_only_m or _1 and a current record exlists, a
new copy Is transferred from the flile. Zonestate Is set to
update_all_m or _1,

Call: update_all_cf (z)

p 4 (call and return value, zone) Connected
to a masterfile or listfile,

Requirements:
zonestate = read_only_m or _1, read_update_m or _1,
update_all_m or _1.

Results:
result_cf = 1, ok
zonestate = update_all_m or _1.
current record Is the same, but evt. a new copy from
the file.

CF-SYSTEM ’ 50
Reorganization

- o> - @ - = - - - - - - -

Normally the cf-files should be selfmaintalning, special
overflow areas f.ex. are never used, and deleted records can
be cleaned out durlng the normal use. But It may of course
happen, that record formats must be changed, that new chaln-
groups must be created, or old ones removed, or that a new
version of the cf-system demands that flleheads of the existing
files are changed.

For doing this kind of reorganlzatloh, four procedures are
Introduced: init_extract, extract_cf, init_add, and add_cf.
\ — \ & $ | ——

The basic scheme of a flle reorganization, wusing these
procedures, Is the following:

1. All records of a flle are extracted one by one 1In
sequential order. The extracted records will contalin the
userparts as well as the chalnparts of the original
records.

2, The extracted records are transformed according to the new
record format. Care must be taken to preserve Inter-
record-references., If listflile records are renumbered or
masterflle Kkeys are changed, the corresponding references
must also be changed.

3. A new fllehead is created according to the new demands.

4. Records are added to the new file In sequential order.
Masterfile records are added 1iIn ascending keyorder and
listfile records are added at certain record-numbers,
normally the same record-numbers as before the reorganiza-
tion, In increasing record-number order.

The procedures Inlt_extract and extract_cf are used in step
1 to fetch the records.

Tools for execution of step 2 are not provided here, but it
should on the other hand be possible to perform step 2 in a
reasonable way by means of programs coded in algol or fortran.

The procedures head_m or head_1 may be used in step 3 for the
creation of the new fllehead, and the procedures init_add,
add_cf, and close_cf are used for the relnsertion of records
In step 4.

The scheme can be used for any kind of reorganizatlon, but
It should be emphasized that reorganlzation involving resequen-
cing of records wlill be very complicated, even removal of dead
records from a listflle , if done sequentially, will involve
much sorting and access to the relevant motherfl les.

So, in the followling, only the simple reorganization of one

CF=-SYSTEM 51
Reorganization

flle, Il.e. cases, where all records of one flle are extracted
and added agaln In the same order, will be conslidered.

In this kind of reorganizatlon, the keys of master records,
and the keys of list records wlll be unchanged.

The reason for such a reorganization can be one of the
following:

1. A new verslion of the cf-system demanding a new filehead 1is
released.

2, You want to make a compressed dump of a flle on magnetic
tape without unused space and administrative tables.

3. You want to have masterfile records distributed evenly over
the whole flle with a certain filling factor, or vyou will]l
decrease the total 1length of the masterflile. Listfiles
cannot be shortened because the mapping of record numbers
on the physlcal blocks Is not changed.

4k, Some flle parameters should be changed, f.ex. segs—-per-
block, segs-per-bucket, max-bucks, or max-blocks.,

In these four cases step 2 in the baslc reorganization scheme
Is not needed.

5. The record format should be changed. New flelds must f.ex.
be added, or old ones removed, or the recordlength should
be made varliable, etc..

6. New chaln groups should be created or old ones removed.
This Involves a change of the chainparts of all records of
flles associated with those chalin groups.

The simple reorganization can always be performed on master-
files, and on listfiles of flxed length records.

But in connection with listfiles of variable 1length records
It is not sure, that all records can be added to the new
version of the file, If some recordlengths have been Increased,
or If the min-rec-length- or the segs-per-block-parameter of
head_1 has been changed.

This problem 1Is due to the fact that the record number of a
listfile record Is not changed by the reorganization.

A group of longer records, which in the old verslion of the
flle were placed 1In separate blocks, may happen to belong to
the same block In the new verslon, or have grown so blig, that
they cannot be accomodated In the block any more.

CF=-SYSTEM 52
Reorganization

‘A remedy to thls, Is to have a smaller quantity of record
numbers per unit of physical room. This can be obtalned through
the use of a greater value of min-rec-length, the parameter

size_1(2) of the procedure head_1. But you can normally not be
sure, that all records can go into the new verslon of the file,
and the more sparce mapping of record numbers on the physical
room, will on the other hand increase the size of the listfile.

NB. The reorganlization procedures are not coded yet.

inft_extract

CF-SYSTEM 53
Reorganization

proc.no. 34

Reorganization procedure.
The procedure prepares a cf-file for extraction of records.
The extraction must be effectuated by successive calls of the

procedure extract_cf,

Call:

and terminated by a call of close_cf.

init_extract (z, filename, giveup)

r4

filename

glveup

Requirements:

Results:

zonestate

(call and return value, zone) A zone
with room for at least one block (see
procedure buflength_cf).

(call value, string) Name of backing
store area holding a cf-file.

(call value, Integer) As for algol stan-
dard procedure open.

after declaration.

filename must polint to a backing storage area containing

a cf-file.

If the file Is a masterfile, it must contain at least
one record.,

zonestate
result_cf

extract-cf.

no current record.

CF=-SYSTEM 54
Reorganization

extract_cf proc.no. 36

Reorganization procedure.

The procedure creates an extracted record in the array glven as
the second parameter. Before extract_cf can be used, the proce-
dure Init_extract must have been called.

The first call of extract_cf will yleld the first record of the
file, the next call the next etc..

Note that also dead listflle records are extracted.

See appendix F for the format of an extracted record.

Call: extract_cf (z, extract_rec)

z (call and return value, zone) Connected
to elther a masterfile or a listfile by
inlt_extract.

extract_rec (return value, real array or zone) Will
hold the extracted record if not end of
file. The record Is stored from byte 1
and on,

Requirements:
zonestate = extract_cf.
result_cf = 2 must not have occurred.
The bounds of extract_rec must include the byte numbers
1 and total_length. (see appendix F). »

Results:
Nno current record,

result_cf

1 ok
2 end of file

In case of result_cf = 2 extract_rec Is unchanged, and a
succeeding call of extract_cf wikl give an alarm.

Init_add

CF-SYSTEM 55
Reorganization

proc.no. 35

Reorganization procedure.

The procedure prepares a cf-flle for additlon of records.
The addition must be effectuated by successive calls of the
procedure add_cf, and terminated by a call of close_cf.

Call: init_add (z, fllename, buckfactor, blockfactor)

¥4

fillename
glveup

buckfactor

blockfactor

Requirements:
zonestate =

(call and return value, zone) A zone
with room for at least one block (see
procedure buflength_cf).

(call value, string) Name of a backing
store area holding a cf-flle.

(call value, integer) As for algol
standard procedure open.

(call value, real) If listflile then
not used, If masterflile then see file_l
procedure Init_file_I.

(call value, real) See buckfactor above.

after declaration.

fillename must point to a backing storage area holding
a correct cf-fllehead.

Results:
zonestate
result_cf

add_cf.

no current record.

CF-SYSTEM 56
Reorganization

add_cf : proc.no. 37

Reorganization procedure.

The procedure adds an extracted record glven by the 'second para-
meter to the file glven by the first parameter.

Before add_cf can be used, the procedure Iinit_add must have been
called.

The records are added In ascending key- or recordnumber-order.
See appendix F for the format of an extracted record.

Call: add_cf (z, extract_rec)
z (call and return value, zone) Connected
to either a masterfile or a listfile by
Init_add.
extract_rec (call value, real array or zone) The

extracted record must be stored here
from byte 1 and on.

Requirements:
zonestate = add_cf.
The bounds of extract_rec must include the byte numbers
1 and total_length.
The total_length must equal 8 + user_part_slze + chain_
part_size. (See appendix F.)

Results:
no current record.

result_cf

ok

not added, masterflile Is full, or recno too great
- - , Improper user_part_size
- - , descending master key or recno.
- - , not room In listfile block.

VT NN e

CF-SYSTEM 57
Appendix A: cf-alarms

Errors may be found at several levels:

1.

Standard errors, l.e. errors concerning the device and the
transfers, may be analysed In the blockprocedure, as Iin any
other algol Input-output procedure. The giveup mask Is a call
value to the cf_procedure open_cf. However, end of document
has a special treatment In the cf_system, as the masterfiles
are regarded as belng cyclic, and end of document In a
listflle means addressing outside the area, which should be
impossible. (See the procedures get_m and get_1).

Unnormal situations: As a general philosophy Is chosen that
It Is not up to the cf-system to decide what may be regarded
as -normal- and =-unnormal=-, as far as normal =-bookkeeping-
can be maintalned. The standard Integer variable result_cf
will yield the result of a procedure call, which always
should be checked by the user. Any result of any cf-procedure
may also be caught In a procedure specified as a call value
to the procedure set_jumps_cf, though its original purpose
rather Is to give a facility for supervision during debugging
of the program.

Grave logical errors, l.e. requirements are not fulfilled at
a procedure call, will always terminate the run with an algol
run time alarm. In this - case the various zones are not
closed, and files which were in an update mode at the time
of the alarm will not be updated correctly.

The format of the alarm depends on, whether the error
occurs In a code-procedure or In an external algol procedure,
see the survey of alarm-messages on the followlng pages.

An alarm is generally caused by the wusers program, for
example |[f the procedures are called 'n a wrong order, or if
the program does not care for unexpected values of result_cf.

Some alarms may be due to an error In the file, as for
example checksumerror In the fllehead. A flle-error may
however be caused by a program-error in a previous run, or
by combining flles of different generations.

A few of the errors should be quite Iimpossible. They have
the alarmtext -cf-error- and can only be due to some grave
error in the c¢f-code, or to some hardware-error during the
run.

CF-SYSTEM 58
Appendix A: cf-alarms

All alarms from code-procedures have the following format:

<alarmtext> <alarmno> cf-system
called from ...

where <alarmtext> Is a short mnemonic cause, and <alarmno> a
further specification.

The following survey of alarms Is arranged alphabetically after
the alarmtext.

text alarmno explanation error caused by

array p 13 The parameter array Is too short for the program
masterfile-key.

cf-~error 10 The mother-record of the actual chaln has cf-system
disappeared.

cf-error 37 The record-number inside a listflle-record cf-system
does not correspond to the position of the
record in the flle.

chaln p 15 Parameter chainref does not contalin a va- program
1id chainreference.

ch,ass. 9 The file and the chaln=-group are not program
associated,

ch.head 18 The head of a listfile~record Is not con- file
sistent,
ch.state 16 The chain iIs not initialized, l.e. init- program

chain has not been called after open-cf,

ch.state 17 Last accessed record Is not defined, l.e. program
the chainstate has become empty after the
last use of the chain.

ch.type 20 The chaln Is not headed, so a call of program
get-head is Impossible.

d.state 29 The daughter-zone Is In read-only-mode, program
so deletion of the mother-record and Its
daughter-chaln 1s Impossible.

express.,

mode p

m.state

no curr.

par.pair

prep-cf

prep-cf

prep-cf

prep-cf

prep-cf

prep |

prep |

prep |

36

11

28

14

<i>

24

25

26

32

33

CF=-SYSTEM
Appendix A: cf-alarms

A return-parameter Is glven as an expres-
slon In the procedure=call.

Wrong mode-parameter In call of get-1,
Insert-1 or connect, I.e.
mode<>1 and mode<>2 and mode<>3,

The mother-zone Is In read-only-mode, so
delete-1, Insert-1 or connect In mode 1
(next to mother-record) is Impossible.
listfile does not

Current record in a

exist.

An error In the parameter-1list In the call
of set=-jumps~-cf, get-param-cf or set-param
-cf. If I > 0, | shows the number of the
wrong parameterpair. | = 0 denotes an
error in the parameter Jjumpproc In call

of set-jumps-cf.

too few segments in the document of a

listfile, l.e. segs < segs-in-head, or
the number of segments Is less than it
was In the last run In update-mode.

The zonebuffer iIs too small

listfile.

to open a

Checksumerror or some other error
fllehead of a listflle,

in the

The zone for a file Is not declared
with at least two shares.
Too many segments In the document of a
listfile, i.e.
(segs - segs~in-head)//segs-per-block
> max-blocks.

Too few or too many segments in the docu-
ment of a masterfile, l.e.

segs < segs-per-buck or

segs > segs=—per-buck x max-bucks.

The fllelength Is less than It was in the
last run In update-mode, or some error In
the bucket-head.

The zonebuffer Is too small
initiallize a masterfiie.

to open or

59

program

program

program

program

program

fille

program

file

program

flle

file

file

program

prep | 4
prep | 5
prep | 6
prep 1 7
rec.no, 19
rec.no. 22

zZ.state <i>

CF-SYSTEM
Appendix A: cf-alarms

Checksumerror or some other error In the
filehead of a masterfile.

The zone for a masterflile Is not declared
with three shares.

Wrong zonestate internally
Empty masterfile

The record-number of a listflile-record iIs
outside limits. This may happen explici-
tely in a call of get-numb-1 as a program-
error or implicitely In other procedures,
If the file has been destroyed.

No listflle-record is assligned to the
record-number. Program- or fllererror as
for alarmno. 19.

Wrong zonestate. <i> Is the actual
zonestate,

60

flle

program

cf-system
file
program

or
flle

program
or
file

program

CF-SYSTEM ' 61
Appendix A: cf-alarms

Alarms from external algol procedures have the followlng format:

XxXxX<proc, name> alarm:

<alarmtext> <Integer> ext <line-interval>
called from ...

An exception is alarms from the protection-system, which have the
format:

xxxprotectcf alarm:

file <flileno> <fl lename> vers.in cat: <verslon>
<alarmtext> <integer> ext <line-interval>
called from ...

Here the text -flile- 1Is replaced by the text -descr-, if the
trouble concerns the description=flle.

program

xxxbuf lengthcf

xxxbuf lengthcf

xxxheadl

xxxhead 1

xxxhead]

xxxheadm

xxxheadm

xxxheadm

xxxheadm

xxxheadm

Appendix A:

text

block p

prep-cf

chalns p <i>

loop=-ch

slze=1 p

chains p

recdescr

head 1 p

head | p

head | p

CF=SYSTEM

alarmno explanation

cf-alarms

<!> The parameter blocks=In=-

0

0

0

<i>

<i>

core has an lllegal value.
<i> ls the erroneous value,

Some error 'Iin the fillehead.

Chaln-type or compressed-
key-size In parameter ar-
ray chalns has an lllegal
value, or iIf | = 0 then
wrong bounds of array
chains, or If | > number
of the last chain, then
listfile not daughter of
any chaln group.

A loop is found In the
chain-structure glven In
parameter array chains.

One of the values gliven In
parameter array size-1 is
illegal.

As for procedure head=1

One of the values given In
parameter array rec-descr
Is 1llegal, or If I > 2044
then too many keyfields.,
(Only for noofkeys > 50).

Some unreasonable size
parameter.,

Not room for 2 records of
maxlength in one block.

Not room for 1 block In
the first bucket.

62

caused by

program

file

program

program
program
program

program

program
program

program

xxxnewreclcf

xxxnewreclcf

xxxnewreclcf

xxxprotectcf

xxxprotectcf

xxxprotectcf

xxxprotectcf

xxxprotectcf

xxxprotectcf

xxxprotectcf

xxxprotectcf

Appendl!l x A:

cf-error

fixed 1

z.state

change

descrrec

lookup

reserve

setdescr

updmark

updmark

version

CF~SYSTEM

<>

<i>

<i>

<i>

<i>

<i>

<i>

cf-alarms

Trouble with Insert-m, <!>
Is the value of result-cf.

The flle contalins records
of fixed length, so It
has no meanlng to use
new=recli=cf.

Wrong zonestate., <I> Is
the actual. zonestate.

The catalog entry with the
name <fllename> could not
be changed. <i> Is the re-
sult-value of the monltor-
function.

The fille-description=
record In the description-
flle could not be fetched
by get-m. <I> Is the value
of result-cf after get-m.

The catalog entry with the
name <fllename> could not
be looked up. <i> Is the
result-value of the moni-
tor=-function.,

The file with the name
<fllename> could not be
reserved. <iI> Is the re-
sult-value of the monitor-
functlion,

The procedure setdescr-=cf
was not called before
open-cf.

The file Is In the state
of an untermlnated update.

An updatemark was expected
In the catalog entry of
the file.

The verslon-number of the
flle does not correspond

to the version=-number In

the description=file.

<l> Is the version-number
In the description=flile.

63

cf-system

program

program

Jjob adm

flle

Job adm

Jjob adm

program

file

cf-system

Jjob adm

10

11

12

Appendix B:

procedure names
and parameters

buf_length_cf

(filename, .
blocks_Iin_core)

extend_cf (z,
segments)

open_cf (z,
fllename,
gliveup)

set_Jjumps_cf
(z, Jjump_proc,
procno, results)

init_chain (z, z1,
chalnno,
chalinref)

close_cf (z, rel)

get_m (zm, key)

get_1 (z1,
chalnref,
gmode)

get_head (z1,
chalnref, key)

Insert_m (zm,
record)

Insert_1 (21,
chalnref,
lcmode,
record)

Jmp

CF-SYSTEM
cf-procedures

result=cf

value and meaning

N =

N - N WN -

OV FEFWN =

FWN =

extended

ext, simple Ins,.

not extended
monitor-error

ok

ok, simple insert

ok

ok

ok

record found
not found

, eof

record found
not found

ok
not connected

Inserted
already In flle
too expenslive
file full
length error

no buffer

Inserted

flll=-1imit exceeded

length error
no block

64

current record

meaningless

unchanged

zm:flrst; zlinone

zm:first

unchanged

unchanged

none

the wanted
the next In file
the first - -

the wanted

gmode=2: last acc.
else: norme
unchanged

the Inserted
the one In flle
the next in flle

the Inserted
none

13

14

15

16

17

18
19
20
21
22

23

24 x

25%

26%

27

CF=SYSTEM
Appendix B: cf=-procedures
connect (z1, 1 connected
chalnrefl, 2 not connected
chalinref2, Calready conn.)
Icmode)
delete_m (zm) 1 deleted
2 - , eof
3 not del. last left
delete_1 (z1, 1 deleted _
chainref) 2 del, last In chaln
delete_chain (z, 1 deleted
chainref) 2 no chain to del.
next_m (zm) 1 found
2 not found, eof
put_cf (z) 1 ok
read_only_cf (z) 1 ok
read_upd_cf (z2) 1 ok
update_all_cf (z) 1 ok
get_numb_1 (z1, 1 record active
recno) 2 record dead
new_recl_cf (z, 1 changed
length) 2 last rec. In file
3 too expenslive
b flile full
5 1length error
6 no buffer
head_m (f1lename, 1 ok
flleno, chains,
recdescr,
no_of_keys,
size_m)
head_1_(filename, 1 ok
fileno, chains,
size_1)
Intt_flle_m (zm, 1 ok

fllename,
glveup,
buckfactor,
blockfactor)

65

last acc.in chainl
none

the next In flile
the flrst = =~
the one

the next In chaln

none

unchanged

the next in flle
the first - =~

unchanged
unchanged
unchanged

unchanged

the wanted
none

same, new length
- , old length

meaningless

meanlingless

none

28

29
30

31

32%

33x%

34

35

36

37

Procedures marked with x are external algol
A + In the Jmp-column means,

Init_rec_m (zm,
record)

get_param_cf (z,
paramno, val)

set_param_cf (z,
paramno, val)

set_descr_cf
(descrflile)

protect_cf (z,
action)

Iinlt_extract (z,
filename,
gl veup)

Inlt_add (z,
filename,
gl veup,
buckfactor,
blockfactor)

extract_cf (z,
record)

add_cf (z,
record)

thls procedure,

NN e

B =2

Ul W N e

CF-SYSTEM
Appendlix B:

cf-procedures

record added
file full
length error
key error

ok

ok

unchanged

unchanged

ok

ok

ok
end of flle

record added

fille full

length error

key or recno.err.
no block

none

unchanged

unchanged

unchanged

unchanged

none

none

procedures.
that set=Jjumps=cf can be used upon

66

CF-SYSTEM 67

Appendix C: Survey of cf-states

Lonestates for masterfiles:

after-declaration

initialize-m

read-only=-m

. read-update-m

update~all=-m

(value = 4), The zone has been declared,
but not yet opened. This Is also the state
after a call of close-cf. '

(value = 20). During.initlialization.
(value = 16). Durling processing of the
file. Changes 1In records will not be re-

flected in the flile. Updating procedures
are illegal.

(value = 18), During processing of the
file. A block of records 1Is only trans-
ferred to the file, If an updating proce-
dure has worked upon one of Its records.

(value = 19). Durlng processing of the
file. All records will be transferred to
the file.

Zonestates for listfiles:
SIS

after-declaration (value = 4), As for masterfiles.

read-only-1 (value = 22). The analogy of read-only-m.

read-update-1 (value = 23)., The analogy of read-update-m.
" update-all-1 (value = 24), The analogy of update—all-ﬁg;?

Zonestates for reorganlization (masterfiles and listflles):

extract-cf (value = 17). During the extractlon of

add=-cf

records from a masterflile or a listflle.
The state Is set by procedure init-extract.

(value = 21). During the additlon of re-
cords to a masterfile or a listflile. The
state iIs set by procedure Inlt-add.

CF=SYSTEM 68

Appendix C: Survey of cf-states

Lhalnstates..

not=init

empty

last-accessed-def

The cf=-procedure Init=chaln has not vyes
been called.

There Is not defined a last—-accessed record
for the chain,

There 1Is deflned a last-accessed record in
the daughterfile of the chain.

Record-states of listflile-records:

active

dead

The record can be processed via a chain or
its recordnumber.

The record has been deleted, but Is still
member of one ore more chains. (It cannot
be processed).

44

CF=SYSTEM 69
Appendix D. Array chalns

The purpose of the array ls to specify the connections between
flles In the cf-system, l.e. the cha IRS.

Chains are represented by the identificatlons of the motherflle
and the daughterfile and a chalnnumber. The chalnnumbers are
indirectly gliven by the order in which the chainspecifications
appear In the array chalns, while the logical filenumbers,
which identify the flles In the system, must be supplied by the
user. The user must take care that the fillenumbers identify the
files unambiguously. The array Is used as parameter for the two
procedures head_m and head_1.

Declaration of chalins:

A chainspecification consists of 4 consecutive elements of the
array and the flrst specification must start in element no. 1.
The wupper 1imit of the array will stop the specification. The
L elements of a chalinspecification should be Initialized as
follows: '

1. mother _no, the file_no of the motherflle.
2. daughter no, the flle_no of the daughterflile.
3. chain_type, the value 1 denotes a headed chalin, the value

L U0 a not headed chaln.
WA 4, compressed key size (equivalent to key_part_slze, RCSL 55-

kade -

D99 p. &), the quantity gives the number of bytes occupled
by a compressed key of a motherrecord. It may be calculated

according to the following rules:
L ’ ’

1. 1f_motherfile Is_a _masterflle
add 4 for each long- or real keyfleld
add 2 for each Integer keyfleld
add 2 for two successive byte keyflields
add 2 for each single byte keyfield
(A fleld containing a length-specification 1is not

counted).

if motherfile Is a listfile

the size is 2,

(e
N

The quantity is a return value of the procedures head_m and
head_1 for all «chalngroups of which the actual flle Is the
mother, l.e. the user need not be troubled by the calculation,
If he calls the head_ procedure of a motherfile before those
of the corresponding daughterfiles.

Chalnznumbers:
The chains are numbered by the natural numbers (1, 2,)
according to thelr appearance in the array chains. The chaln-

number Is a call value of the procedure init_chaln.

CF-SYSTEM
Appendix H. Programming example

CF=-SYSTEM Programming example.

begin

comment
This Is an example of an algol 6 program which creates 2
master files: master_1 and master_2, and one llstflile:
list.
2 chaln groups: chain_1 and chaln_2, are assoclated to
master_1 and list, and to master_2 and list respectlive-
ly. .
A rudimentary description file: descrfile, sufficlient
for the check of version numbers performed by the cf
protection system Is also created.
Various functlons are performed on the flle confligura-
tion,

procedure check_one;
comment gives a case alarm if result_cf <> 1;
case result_cf of begin end;

procedure printtime(text);
string text;
comment
prints the time consumed since last call;
begin
own boolean later_call;
own real cpubase, timebase;
real cpu, time;

If later_call then
begin
cpu:= systime(l, timebase, time) = cpubase;
" write(out, <:<10>:>, text, <: In seconds, cpu::>,
<<dddd.dd>, cpu, <:, real::>, time);
end later_call
else later_call:i:= true;

cpubase:= systime(l, 0, timebase);
end printtime;

s o PRSI ——

prlntti&éf£5:>); blocks_read:= 0;

begin
comment
block for creation of flle heads;

Integer
file_no,
flxed_rec_length,
Ty
max_blocks,

. max_bucks,

CF-SYSTEM 75

Appendl x He Programming example

max_rec_length,
min_rec_length,
no_of _keys,

segs_per_block,
segs_per_buck;

Integer array
chalns(1:(2x4)),
rec_descr(1:h, 1:2),
size_1, size_m(l:i4);

comment
initiallize array chaigi}
chaln group mother daughter chaln type compr . key
1 1 100 headed see head_m
. 2 2 100 headed see head_m
; —
- L {OC{
for 1:= 1 step 1 until 2x4 do ﬂ“'”“ -“wgﬂi i) (ﬁW >
chains(1):= case 1 of(P i;a' @N\V |
1 [] 1 0 0 [] 1 (] 0 [} .r"r,/ ’t
2, 100, 1, 0); /

H

comment — S
the fourth fleld In each line above,icompressed k?XiL;QI}IS

initialized by head_m, and used by head_1l.

(from the record description below It can be seen to be 8
) bytes).

B e, S

create the head of master 1;

.
s R —

S,

file_no:= 1;

comment
initialize the record description:

keyfield type order address
1 long ascending L

2 byte descending 11

3 word ascending 10
length f1xed

no_of_keys:= 3;

for 1:= 1 step 1 until (no_of_keys + 1) x 2 do

rec_descr((1+1)//2, 2-1 mod 2):= case | of (
+3, b4, '
=1, 1l
+2, 10,
0, 0);

T

Append! x H.

CF=SYSTEM

Programming example

76

comment P [? ,6 ,gﬁ (' e \(@!\ e év%(é\ t
Initlalize size parameters; t))

K (1 byle))
size_m(1):= max_rec_length:= 120;- 2¢) P (.
slze_m(2):= mex_bucks:= 100; = 12 f! 20 nN9§L“M3 ‘
slze_m(3):= segs_per_buck:= 40;
size_m(4):= segs_per_block:= 2;

'y é comment
_%4 L2/ create the flle head, the backing :tore area:_masterl,
must exlist; 5 a0 A2 1,
! @ﬁ$* ! W\ WA?‘ <
head_m(<: masterl: >, file_no, chains, rec_descr, no_of_keys,
size_m);

f commeﬁt ‘{ﬂ%@}

for simplicity,

A4 fille_no:= 2;

———

slze_m);

T B S

head_m(<:master2:>, file_no, chains,

rec_descr,

e T

comment

L

file_noi= 1000;

comment

keyfield type
1 long
2 long
3 long
. length word
5 k.euzei%@
no_of_keys:= 3;
for 1:= 1 step 1 until
rec_descr((i+1)//2,
+3, 12,
+8, 18,
2, 2);

create the descrlptlon flle head;

order

ascendlng
ascendling
ascendlng

address\
12 {
20 @A

(no_of_keys + 1) x 2 do

2

i mod 2):

case | of(

QN*‘(. q’g

the same parameters are used for master_2;

no_of_keys,

Im——————R A

initialize the record description according to appendix E:

CF~SYSTEM 77
. Appendix H. Programming example

comment ‘

Initiallze slze _m, the description flle Is regarded as
being a small flle; ww[im Lé dea

u@%&‘{x t’ 4 Q 2. M‘C
size_m(1):= max_rec_length: 100;* ,‘uﬂa Lyt ai%@ﬁﬁgf {g@afit

size_m(2):= max_bucks: 50; 4%; g€§h£$A} X

size m(3)" segs_per_ buck" 10; L%é”# g geedihy .
comment ‘%iﬂqéiJ 25

never choose a smaller value for segs_per_buck;

size_m(hk):= segs_per_block:= 1;

head_m(<:descrfile:>, flle_no, chains, rec_descr, no_of_keys,
~slze_m);

comment
‘ create the Hst.flle head:

varlable record length, minimum about 20 bytes;

file_no:= 100;

slze_1(1):= flixed_rec_length:= 0; ? ¢um**€ onds e -
size_1(2):= min_rec_length:= 20; (o @g{ MAQ‘ﬂJw(ﬁhwv
size_1(3):= segs_per_block:= 3 {

slze_1(4):= max_blocks:= 2000;

head_1(<:11st:>, file_no, chains, slize_1); é§mmww7
end block for the creation of flle heads;

—————

printtime(<:file heads created :>);

¢ ol Lin L«”f&eu %«:M?&r :

e Zoser.
- Mo, ~*"*f é@ﬁ% |
da JU ~ hlet, 24 el - levindetlly

CF=SYSTEM 78
. Appendix H. Programming example

begin
comment
block for iInltlallizatlon of master flles,

- . master_1, and master_2 are provided with a dummy record
xg;. | having all flelds equal to zero, because open_cf requlres
%Aﬁw"éﬁ ~ that a master flle contalns at least one record.
X 4

the description flle Is Initlallzed with 4 flle description
INT I records;) AN
A ol weals (004 & 2oy, bel Shaven

i D , vy Zone \ B
ngfg&ﬁg%ﬁ%> rzleEuFlength_cf(<:master1:>, 1), 3, stderror),

0 zm2(buflength_cf(<:master2:>, 1>, 3, stderror),
N zdeschpuflength cf(<:descrflie:>, 1&, 3, stderror);
s i
l nteger {“‘l:if{.,ﬂf LAReSe, A { :f{i“ig fiv%%‘(; . f p ;
flle_no;) Autal | *{vﬁ‘ff"féfﬁ Auictn
o Newdielte Ll (Lae ¢
Iinteger fleld /

} :
descr_length; %Q’%@:t{*((i;;f‘ <, (*'?)
long field

descr_key_1, '

descr_key_2,

descr_key_3,

1_fid;

real array
rec(1:50);

comment

Initialize the field varlables for the description flle;
descr_ length:= 2; AN C e Jolh "
descr_key_1l:= 12; {V

< YR
~ descr_key_2: 16; | ¥ ‘Zgu v A A
descr_key_3: 20; '

%

comment

set all fields of array rec to zero;
for 1_fld:i= 4 step 4 untll 200 do rec.1_fild:= 0;

}nitlalize master_1 with one record havlngrallrfye)ds
equa 1 to zero; Tt y MAUAA / yu‘«;a? = ek ¢ ey 4% “open N

§aY Y
?

Init_file m(zml, <imasterl:>, 0, 1, 1;

g, - A I:I tirec_mszl, rec); L Lﬂjbﬁﬁ‘fwigf‘@g'fw
’ | checkone; X N Apr—
' | comment ’ ‘bﬁ@gdkﬁﬁ&r'

this procedure checks that result_cf was one, see the
X procedure declaration at the beginning of the program;

close_cf(zml, true);

£ -

!

o+

CF=SYSTEM 79
Appendlx H., Programming example

comment

the same Is done for master

Inlt_flle_m(zm2, <:master2: § 0 1,
Inlt_rec m(zm2, rec);
checkone,

. Close_cf(zm2, true);

1)}

S

~comment

initialize the description flle with &4 records, describlng
the fliles including the description file Itself;

0, 1, 1); &gé’s’%(ISFE“TS*

init_fille_m(zdescr, <:descrflile:>

vastvh& u(/féﬁf
for flle_no:= 1, 2, 100, 1000 do BErR C» {"~'5.
ibegln (qng}
| comment M»{/b '6‘2«& :
{ the file numbers of master_1, master_ 2, list, and
descr_file;

| rec. descr_length:= BOA“" le@i*»ﬁ{fﬁfa) {’ﬁ,@{f‘\ \f}k{e’@,é@&
| rec.descr_key_1: v

- Al & 27 SR
v rec.descr_ _key_2:= flle _ho; BN me e Bl bt
| vecldescrokey:sis W nee. Lune Hx,,. =160 bytey
Ft el B e 64’ = 2§ nead sl
| Init_rec_m(zdescr, rec);
i checkone;

st

B

i NS

S

»comment

: initialization;
,*,“Q end block for inTtTaTization;

masterl= set 120, etc. Jjust before the call of this
‘ program;
~end for file_no;

_close_cf(zdescr, true);

comment

the version numbers are zero

In the description records as
well as in the catalog entries of the corresponding files,

If the files were created by set In this way:

the list file needs no

printtime(<:files initialized. . :>);

’

|

CF-SYSTEM 80
Appendix H, Programming example

begin

comment
block for processing of the file configuration:
200 records are Inserted In both master flles, at random
keys, and 1000 1ist records are connected to records
in both files via chain group 1 and chain group 2;

A &
gt‘\,‘\ﬂmé:@ SN

&, T =
zone _ . o

zml(buflength_cf(<:masterl:>, 2) +10x12//4,"3, stderror),
zm2(buflength_cf(<:master2:>, 2) +.10x12//4,'3, stderror),

z1(buflength_cf(<:1ist:>, 3) + 100//8, 4%, stderror);

comment ' *4?

the addition to buflength_cf provides for extra bufferlength
for extenslions of the files during the processing: 10 extra
buckets for the master flles, and 100 extra blocks for the
listfile. I I T 7YY 1 € -
the factor 12 In the expression for the master zone buffer
length Is equal to compressed_keyslize + 4, see appendix G;

integer
1y
Ic_mode;

integer fleld
length, -
m_key_3;

long field
1_fld;

real
chaln_ref_1,
chalin_ref_2;

real array o b " 7 g
m_rec, 1_rec(l:50); ﬁ»ﬁza‘mgﬁgief*“ﬁN% san Leciae Ll
V

procedure create_key;
comment
this procedure generates a pseudo random master Kkey
In array m_rec;
begin
own Integer ps_random;
random(ps_random) ;
m_rec.m_key_3%= ps_random mod 10000;
end cré&féﬂké?;

gA

open|
L

;
|
|

, CF-SYSTEM
Appendix H, Programming example

81

comment
Iinitialize the fleld variables;

length:= 2;

comment the length fileld of list records;
m_key_3:=10;
\“g,\\d

comment see the flle head creation;
ALIDeu ya B mgele ([ukeons) Xk Lbuastes
g .

e

set_descr_cf(<:descrflle:>);

comment : Ra
this call provides the cf-system with the name of the
description file;
open_cf(zml,
checkone;
open_cf(zm2, <:master2:>, 0);
checkone;
open_cf(z1, <:list:>, 0);

. comment

% the version numbers and the u

L~ and the zone states are read_

<imasterl:>, 0);

pdate marks have been checked,
only; '

read_upd_cf(zml);

read_upd_cf(zm2);

read_upd_cf(z1);
comment

now the zone states are read_update, Insertions are al lowed,

and the update marks ar;,;gt In the catalog entries;
Pote ¢ ol dis , ol
T Zowne b, clafter A
Init_chain(zml, z1, 1, chaln_ref_1); ehiaian 1»%%%&&%@ als

init_chain(zm2, 21, .2
comment Mlltangy $’f kegals < Grr. chaiing

the 2 chalin groups are ready for processling, the chaln%rgf§

are used to reference them; oy

v Chaln_ref_2);

for 1_fld:= 4 step &4 until 200 do
m_rec.1_f1d:= 1_rec.,1_f1d:= 0;

N

CF=-SYSTEM 82
Appendix H, Programming example

9Ge> { wated

|

} for 1:= 1 step 1 until 200 do
f begin
| comment
% insert 200 master records In master_1l, with random values
§ of keyfleld 3, and the other fields equal to zero;
i
! make_a_key: , 2 o
create_key; -_-»> ,{g{ \&j u‘i{(és M&?ﬂ&* ,(f (T . e . é’%W% >
! Insert_m_rec: ' ‘
% insert_m(zml, m_rec); A
? case result_cf of
! begin
comment 1, ok, do nothing;
’
comment 2, record exists already, try another key;
goto make_a_key;
comment 3, not inserted, too expenslve,
this is not possible when param_cf has not been used
to change the Insertion parameters;
checkone;
_comment 4, the file Is full, extend the file with one
bucket = 40 segm - -4 " X
beglgn t’ S S0 S g ent::ms:“ ﬁ”;’ g o]{n tat ‘:{‘ ;;‘é" - L’% :\“‘?} - (‘36 “’2}5 . % Af m‘h;}i
; A B> extend_cf(zml, 40); '
{ checkone;
| goto Insert_m_rec;
! end &4;
| comment 5, length error, not possible with fixed length;
checkone; ,
i comment 6, no buffer, not possible because result_cf has
i been checked after open_cf and extend_cf;
: checkone
end case result_cf;
end Insertion of 200 records in master_l;

Lele =

#

CF=-SYSTEM 83
Appendix H., Programmlng example

;_//7'?#"’1 MEC & (Mo antes 2

= 'S
A
comment
insert 200 records In master_2 In a more crude way;

for 1:= 1 step 1 until 200 do

begin
create_Kkey;
‘ insert_m(zm2, m_rec);
\ case result_cf of
begin

comment 1, ok;

.

’
comment 2, exlsts already, repeat;

fe= 1 =1
end case result_cf;
comment
other results will give a case alarm;
end Insertion of 200 records In master_2;

i printtime(<:master recs Inserted:>);

for 1:= 1 step 1 until 1000 do

) begin
mifpw comment
insert 1000 1ist records connected to random master
records.
A% fmy Jf the 11st records are clustered In chalin group 1, |-
?, lnsert_l works uponwchaln_ref_l;
create_key; . ‘ { ieles ov i MNC el
& ”‘*’ﬁ et_m(zml, m_rec); —S£ & .28 5 o dafk dele
jd} i Cﬁ cor?wmer-wt ' ’ uﬁf‘gﬁm & 4(,{ e ucf}@ %‘?é:g{;f;@w%

the result is Ignored, there will always be a current
record In a master file;

comment
insert a list record as the last In the chain_1 depar-
ting from the current master_1l record.
Iinsertion as the first In chaln Is faster, but
it does not demonstrate the use of get_1;

5\%&4}% den, forade liske -
’

get_1(z1, chain_ref_1,

comment
read the first record In this chain, 1If any;
Ao, Munded m»ua£w~5ﬁfcﬁﬁf
lc_mode:= If. result cF = 1lithen 2 else 1;
comment ‘

insert mode Is next to last accessed, IF there Is any
record iIn the chalin, else next to mother;

CF-SYSTEM
Appendix H, Programming example

I for 1:= | while result_cf = 1 do get_1(z1, chaln_ref_l,gg);
comment ,
read all records In the chain, last accessed In chaln
\ group 1 Is now the last In chain, If any;
T

1_rec.length:= 30; Hor saoffes dew ey
T2z (8D

Insert_1_rec:
,~:£;>» lnsert 1(z1, chain_ref_1, Ic_q%ge, 1_rec); { leot .+ lad

" case result_cf of mmu‘“““{

g begin

comment 1,' ok, do nothing;

’
[comment 2, flil11 1imit exceeded, extend the file with
. 20 blocks = 20 segments;
| begin
| extend_the_file:
| extend_cf(z1, 20);
! checkone;
goto Insert_1_rec;
| end 2;
\ comment 3, length error;
| checkone;
\ comment 4, no block can take this record;
\ goto extend_the_flle
\.... end case result_cf;

(s

g R

jf { comment
' L‘f.ﬁﬂf(connect the 1ist record to a random master_2 record as

{&M first In chain;

%?fﬂ.g create_Kkey;
get_m(zm2, m_rec);

Ic_mode:= 1; comment connect next to mother;

‘,___2§5 connect(z1, chain_ref_1, chaln_ref_2, lc_mode); . "
o laq D dutlied lioe affe.

checkone;
end Insert 1000 1ist records; Mroelpttan
comment , ﬁ S R bmsenmsmassne
master_1 Is not updated any more; \

read_only_cf(zml);

printtime(<:1ist recs Inserted :>);

%3£ﬂ%ﬁ< g&g)
’ 4 v((‘ éﬁ’@‘ ({f% .

%.{* . Ouf; ,,f,gg;; el
‘ Cuirré wt Nees c’*‘f <

[} & %
&fﬁﬂamwégf

i

85

CF=SYSTEM
Appendix H, Programming example

halin group 2, at the same time

d being the mother of the chain

comment
t last delete the

go through all éhalns of ¢

look up the master_1l recor
1 passing through each 1ist record, and a

to check that all 1000 have

list record,
tHe 1ist records are counted,

been deleted;

omment
master_2 Is read by means of next_m, starting at the dummy

: Y record created by Init_rec_m;
. e e)

& 3
iﬁﬁé@vwié m_rec.m_key_3:= 0; 4

get_m(zm2, m_rec);" -

checkone; ’
f:= 0;
for 1:= | while result_cf = 1 do)

~begin z

| comment s

read the flrst record in the chain_Y departing from the

current record of master_2;

get_1(z1, chain_ref_ 2, 1);

é;
|
{ for 1:= | while result_cf = 1 do
~begin
_l;E} get_head(z1, chain_ref_1, m_rec);
checkone;

comment
now m_rec contalns the key of the record, which is the
mother of the chaln_1 passing through the current list

record;
5 ~Ppget_m(zml, m_rec);
‘ i checkone;
comment
the calls of get_head and get_m above are performed
as a demonstration of how each 1ist record acts as a
l1ink between a record in master_2 and a record In mas=
; ter_1;
i delete_1(z1, chain_ref_2);
| te= 1 + 1;
comment
i delete and count the list file record, delete will
% access the next record In chain_2, If any; ——
| _end reading and deleting of one chaln; v
% g g 4 {&”‘”{} & gﬁp{/ 1
B next_m(zm2); e, keodlin
comment P ; *
npuld.efe 2

read the next master_2 record;
reading of master_2;

i ————

—

Lend

CF-SYSTEM
Appendix H., Programming example

If 1 < 1000 then
write(out, <:<10>xxxerror In count >, DD

close_cf(zml, true);
close_cf(zm2, true);
close_cf(zl, true);
end block for processing of flle configuration;

printtime(<:1ist records deleted:>);

write(out, <:<10>blocks read: :>, blocks_read);
end program

.
14

86

CF-SYSTEM 87
Appendix H, Programming example

A run of the programming example,
The flles were dimensioned to be fllled up to about
70 percent,

Master_l1 and _2 were slituated on disc_l and the listflile
on disc_2 (see lookup cat.yes in the output),

The disc stores were of type RC 433,

The cpu and the disc stores were slightly loaded by other
processes,

Note that the version numbers in the catalog entries of
the 3 files have been increased to 1 during the run,

Output from the run.

xmasterl=set 80
xmaster2=set 80
xlist=set 140
xdescrfile=set 10

xcfex

file heads created In seconds, cpu: 0.82, real: 2.47
flles Initlallzed In seconds, cpu: 0.16, real: 1.32
master recs Iinserted In seconds, cpu: 9,23, real: 214,16

list recs inserted In seconds, cpu: 26,26, real: 510.76
1ist records deleted In seconds, cpu: 10.22, real: 178.85
blocks read: 103

end

xlookup cat.yes masterl master2 list descrfile

masterl 15 0 27 1634
80 01 00 00O
master2 17 0 27 3842
80 01 00O0O
list 3 0 27 3,872
140 01 0 0 0 O
descrfile 22 0 27 820
10 0 00 00O

CF=SYSTEM 88
Appendix J, How to dimenslon the flles,

This appendix contains some rules for the cholice of the size
parameters for the two procedures head_m and head_l.

The rules are based on one vyears experience with flle
configurations for administrative data processing,

The size_m parameters of head_m.,

The 4 parameters are described In the order of occurrence In
array slize_m, a more natural order of specification Is:
max_rec_length, segs_per_block, segs_per_buck and max_bucks.

max_rec_length

The maximum 1length In bytes of the user part of a
record,

The sum of max_rec_length and the size of the chaln
part must not exceed 512 x segs_per_block//2, i.e. half
the block slze,

The slize of the chaln part is 2 x number_of-
_assoclated_chaln_groups, see appendix F., format of
extracted records.

Note that both max_rec_length, chain_part_size, and
the actual record lengths are rounded up to a multiplum
of 4 In case of variable record length,
~ In the case of fixed record length, max_rec_length
and chaln_part_size are rounded [f the sum max_rec_
length + chaln_part_slize Is not a multiplum of &4,

In case of varlable record length the value of
max_rec_length should not be speclified much greater
than the actual maximum record length, because that
tends to decrease the efficliency of Insertions.

max_bucks
The maximum number of butkets the flle will ever hold.

This quantity should be chosen high (f.ex. 8000
//segs_per_buck = max_bucks for a whole RC 433 disc
store)., The only cost Is max_bucks x (compressed_key_
size + 4) bytes of backing storage for the bucket
table, (Normally only a few segments in the head of the
file).

The amount of core store used for the bucket table
in the zone buffer depends only on the actual size of
the file,

For compressed_key_size see appendix D., format of
array chains.

CF=SYSTEM 89
Appendix J, How to dimension the flles,

segs_per_buck
The number of segments In one bucket,

The quantity segs_per_block should be selected before
segs_per_buck,

Segs_per_buck should not be chosen too small, espe-
cially not so small that only one block Is left in the
first bucket, because this will disturb the (Insertion
of new records seriously,

A magic number concerning segs_per_buck Is 40, the
number of segments of one cylinder of the RC 433 dlisc

With each bucket equal to a cylinder of the disc
store, the maximum number of cylinder shifts required
for a call of get_m Is one, against two In the general
case.

On the other hand It Is not quite simple to syn-
chronize buckets and cylinders Iin practice.

In the following segs_per_buck 1Is selected as to
economize the use of core storage and backing storage
for bucket table and block tables. .

The block table always needs an integral number of
segments both In the flle and 1in the zone buffer,
whereas the bucket table Iin the 2zone buffer Jjust
demands room corresponding to the actual number of
buckets,

This suggests a bucket size which iIs so great that
the entries In the block table utilizes an area which
Is Just below or equal to an (Integral number of
segments,

If the size of the block table 1{s called segs_per_
block_table, then segs_per_buck can be calculated thus:

segs_per_buck =
(segs_per_block_table x 512//
(compressed_key_size + 4))
x segs_per_block + segs_per_block_table

The compressed_key_size Is the total slze In bytes of
all keyfields of a record, see appendix D., format of
array chains.

Normally segs_per_block_table can be set to 1, but In
case of a great value of compressed_key_slize or If the
flle 1Is very great this may give rise to too small
buckets and a bucket table of excessive size,

Balance between bucket table and block table 1Is
achleved if the value of segs_per_buck Is not far from:

CF=-SYSTEM 90
Appendix J, How to dimension the flles,

square_root(max_segs_Iin_file x segs_per_block)

I.e. the mean proportional of the file size and the
block stze,

But, segs_per_buck should not be selected too small,
as a small bucket size will decrease the Insertion
efficlency, and It should in any case not be less than
the value which makes the first bucket contalin 2
blocks: A

segs_per_buck >=
3
+ ((compressed_key_slize + 4) x max_bucks
+ 9)//512
+ segs_per_block_table
+ 2 x segs_per_block

If the value of segs_per_buck Is not set below 40
segments thls problem Is unlikely to occur, and on the
other hand there s no reason In normal cases to go
below the 40 segments.,

segs_per_block

The number of segments In one block.,

A reasonable: number of records should fit into one
block, say 5 or more. This minimizes the 1loss of
backing storage and Increases the speed of a sequential
reading.

On the other hand room Is reserved In core for up to
2 blocks during the processing, so In case of great
record lengths 1[It might be better to use a shorter
blocklength.,

The balance between the core store demands of bucket
table, block table, and block should also be taken Into
consideration, especially 1In connection with greater
files,

The two aspects are Included In the following formu-
la:

segs_per_block = maximum_of
(5 x (max_rec_length + chain_part_size) // 512 + 1)
and
cube_root(max_segs_iIin_file x
(Ccompressed_key_size + 4)/256)%xx2))

The flirst expression will let a block contain a

CF-SYSTEM 91
Appendix J. How to dimension the flles,

reasonable number of records.

The second one will 1let the block table and the
bucket table together use about as much room as one
block, If the value of segs_per_buck 1Is selected
according to the rules In this appendix.

The quantity max_segs_Iin_file can be estimated as the
the maximum volume of records plus 20 to 30 percent
extra for administrative tables and spare room,

Example of a great master flle,

max_rec_length = 150 bytes

chaln_part_size = 10 bytes (5 chaln groups)
compressed_key_size = 8 bytes (2 long keyfields)
max_segs_In_file = 8000 segments (one RC 433)

The first quantity to calculate Is segs_per_block:

segs_per_block = maximum_of
(5 x (150 + 10> // 512 + 1) = 2

and
cube_root(8000 x ((8 + 4)/256)xx2)) =
cube_root(17.6) = 3 (the rounded value)

The 1last expression Is decislive, we choose: segs_per_
block = 3,

The next quantity 1[Is segs_per_buck, For segs_per_
block_table equal to 1 and 2 we get respectively:

(1 x 512 /7 (8 + 4)) x 3 + 1
127

segs_per_buck

and
segs_per_buck = (2 x 512 // (8 + 4)) x 3 + 2

257

These values are compared with the expression:
square_root(max_segs_In_file x segs_per_block)
= square_root(8000 x 3) = 155
The choice of segs_per_block_table = 1 gives the best
fitting to this value, so the conclusion Is: segs_per_

buck = 127,

Max_bucks Is Just set to 8000//127 = 63,

e

CF-SYSTEM 92
Appendix J. How to dimension the flles.,

The size_1 parameters of head_1,

The 4 parameters are described In the order of occurrence In
array size_1, which Is also a reasonable order of speciflica-
tion,

fixed_rec_length

The fixed vrecord 1length If the value Is positive., If
It Is zero, variable record length Is specified.

It Is emphasized that fixed record 1length glves
advantages concerning reorganization,

The value of this parameter depends entirely on the
format of the users records, Fixed_rec_length Is roun-
ded up to a multiplum of 2, not 4 (see max_rec_length
for master flles),

min_rec_length

In case of variable record 1length this parameter
specifies the minimum length of records which should be
able to fil1l a block entirely,

It should not be chosen too great because it can be
necessary to Increase I[ts value In connection with
reorganization.,

The waist of backing storage depending on min_rec_
length Is glven by this formula:

100/(min_rec_length + chain_part_size + 1) percent,

segs_per_block
The number of segments in a block,

The block length should be so great that a reasonable
number of records can go into one block. This number
should not be less than 5 and not less than the average
number of records In a clustered chailn,

It Is also of importance that each block demands half
a byte of core store for a block table entry, if.e. a
file of 1000 blocks demands about one segment of core
for the block table. .

If the block table shall not take up more room than
half a block the following formula arises:

& >
®

CF=SYSTEM
Appendix J., How to dimension the flles,

segs_per_block = maximum_of
((5 or number_of_recs_in_clustered_chain)
x (max_record_length + chain_part_size)
//512 + 1)
and
square_root(max_segs_Iin_file/512)

For chain_part_slze see appendix F,, format of ex-
tracted records,

This means, (the last term), that a file of more than
500 segments should have segs_per_block >= 2, and that
a flle of more than 2000 segments should have segs_
per_block >= 3, ’

max_blocks
The maximum number of blocks the file will ever hold.

This quantity should be chosen high (f.ex., 8000
//segs_per_block = max_blocks for a whole RC 433 disc
store). The cost Is only max_blocks//2 bytes of backing
storage 1In the block table. (Normally only a few
segments In the head of the fille),

The amount of core store used for the block table 1In
the zone buffer depends only on the actual size of the
file.

assoclated
chains

buckets

cf_proc_no

chain

chainfield

chalngroup

chainno

chalnref

chalnstate

current
record

daughterflile

fllename

flle_no

CF=-SYSTEM 94
Appendix Z., Keywords

Unintelligent use of the cf-system will terminate
the run with an algol runtime alarm, The alarm Is
ldentified by a short alarmtext, see the survey
of these In app. A,

A term used In procedure descriptions for the
chaingroups, that are deflned for a specific
file, .

See RCSL 55-D99, file-lI.

An integer call value to the users Jjump procedure
Every cf-procedure has a procedure number which
may may be found In the head 1line of the
procedure description, The number Is also used In
calls of set_Jumps_cf to specify when the Jump
procedure should be called,

A term for listrecords with cbmmon head,

A flield In the protected part of a record used
for 1inking. The format of the field depends on
the type of the chain,

All the <chalns connecting two specific flles by
means of one set of chain fields,

A number of a chaln-group. (See the procedure
description of iInit_chaln, and the description of
array chains, app. D).

The reference for a specific connection between
two files., This reference 1Is created by the
procedure init_chaln, and is used as parameter in
several procedures., . (See the procedure descrip-
tions). ' ’

Some of the cf-procedures are dependent on the
latest use of a specified chain, The chainstate
keeps track of that. See the possibilities In the
survey of the cf-states, app. C.

A term for the last processed record in a file.
Current record iIs the same as the zonerecord.,

The subordinate file of a chain, I.e. the file
that contains the elements of a chain. (always a
listfile).

The name of a backing store area.

The 1logical number of a file used In chaln

head

key

Jump_proc
last_accessed
record

listfile

list_record
_state

masterfile

max_rec
_length

min_rec
_length

motherfile

orlginating
In

proc.no.

CF=-SYSTEM 95
Appendix Z, Keywords

specliflcations, (See the description of array
chains, app. D).

A term for a record In a motherfile contalining
the record number of the first record In a chain,
Chains are salid to be headed if all records In

a chaln contalin the reference to the head.

A group of flelds In a masterfile record used for
ldentification and organization, When used as a
parameter of a procedure, a real array with the
same format as a record (see record) long enough
to hold all keyflelds,

An exlt procedure specified by the user, See app.
A (Errors during processing, =-Unnormal sltua-
tions), and the procedure description of set_
Jumps_cf,

The record number of a daughterfile record, which
has been last accessed via a specific chain-
group.

Is elther a daughterflile or a daughterfile and a
motherflle. Records are referred to by a record-
number (see recordno.). Characteristics of list~-
flles are that they are badly accessed sequen-
tially, and that Insertion of records Is done
according to a strategy, so that the user cannot
determine the physical address or record number
of the new record.

Every record Iin a listfile has an Indlcation of
Its =-state-. See the possibilities In the survey
of the cf-states, app. C.

Is always a motherflle, Records are referred to
and Identified by a key, and the organfization Is
Indexed sequential, See RCSL 55-D99,

Is for a masterflile less than segs_per_block X
256, For a 1llistflle see the calculation |In
procedure description for procedure head_1.

Is the 1length of a record, which can hold the
whole key and lengthfield,

A term for a file that contalns the head-records
of a chain-group, May be a masterflle or a
listfile,

l.e. rooted in. A term used only in the procedure
descriptions of the delete-procedures,

See cf_proc_no,

result_cf

rec_no_cf

record

recordlength

recordno.

zonestate

CF-SYSTEM 96
Appendix Z, Keywords

A standard Integer variable used to deslignate the
result of a call of a cf-procedure,

A standard Integer varlable holding the last
delivered rec_no In listfiles,

A number of consecutlive bytes, When used as a
parameter of a procedure the elements must be
stored In the lexicographical first elements of
an arbitrary array., The record may hold a length
speciflication,

A cf-flle may consist of either variable length
or fixed 1length records, If flxed 1length |Is
chosen, all records are of max_rec_length, Re-
cordlength Is always given as the number of bytes
of the users part of the record,

(short: rec-no). Records In listfiles are identl-

filed and referred to by record numbers, which are
allocated by the cf-system during the Insertion.

The cf-procedures are dependent on the latest use
of the zone, The zonestate keeps track of that.
See the possible zonestates In the survey of
cf-states, app. C.

