
& REGNECENTRALEN

SCANDINAVIAN INFORMATION PROCESSING SYSTEMS

28-D5

May i972

Inge Borch

Edith Rosenberg

Jgrgen Winther

Connected Files System

Users Manual

- Cal e GUEPS
7; f

{

RC 4000, Software, Algol, Fortran, Procedures,

Disc, Indexed Sequential Files, List Files, Chains

The system is a set of procedures, which can

set up and process two kinds of backing store files. Records

are accessed either by logical key or by chain. OT pages.

(= SYSTEM LIBRARY
DK-2500 VALBY - BUERREGAARDSVEJ 5 - TELEPHONE: (01) 4608 88 - TELEX: 64 64 rcinf dk - CABLES: INFOCENTRALEN

SF | epee Sieh amperage RE or Wow h ONRCRa rien SBS Tas ees RR ee Eee AR a EE

CF-SYSTEM

Content: page

Introduction 2
Masterflles 4

Listflles 5
Chains 9
File configurations 12
Protection of filles 15
Format of procedure descriptions 18
Procedure descriptions 19
Reorganization of filles 50
Reorganization procedures 53
Append! x A: Survey of alarms 57
Append!x B: - - procedures 64
Appendix C: - - cf-states 67
Append! x D: Format of array chains. 69
Append!x E: - - description filles 70
Appendix F: -~ - extracted record 71
Appendix G: Zone bufferlength 73
Appendix H: Programming example 74
Append! x J: How to dimension the files 88
Appendix Z: List of keywords 94

CF-SYSTEM 2

Introduction

Introduction

The connected-files-system Is a set of RC 4000 Algol standard
procedures, designed to handle records and 1J!Inks' between
records In flles with direct access.

The system has been planned malnly to suit ordinary admini-
Sstrative Information systems such as productlon- , purchase- ,
and sales-control, but the structures, which may be defined and
processed by the system, are so general that other applications

should be possible.

The central feature of the system Is the chaining of records,

i.e. one record holds a pointer to a next-In-chain-record. All
records’ In one chain wlll have one common property, namely the

Starting point, which Is a special record, the mother-record of
the chaln. Thus, when several chains passes through one record,
this record will mark a link between the properties specified

by the mother-records of the colnciding chains.

Chains and two kinds of files are used by the system to

achleve direct access to records by key or by chain.

Master-files:

A record In amaster-file Is addressed by a_e user-defined
logical key carried In the record. The master-flles are
organized Indexed=sequentlal Ly so that fast sequential proces-

sing can be anticlpated. Varlable record-length Is possible.

List-files:
antes

A_record Is addressed by I rer which Is _ selected
by the ae ystem at the Insertlon-time. The record-numbers are

used ‘Tnternal ly for the chalning polnters. The physical. block,
In which a_=record Is stored, Is calculated directly from the

record-number, but the placement of the record Inside the block

Is read In a record-table heading the block to allow for
records of variable length.

A list-flle record will always be a daughter-record of one
or more chains, but It may also be the mother-record of any

number of chalns, whereas master-flle records are used as
mother-records exclusively.

Chalns:
eee

A chain will always start at one record (the mother-record)

In a mother-file (Cflle holding mother-records, master- or
list-flle) and continue In one or more records Cdaughter-
records) In a daughter-file Cfile holding daughter-records,
always a lIist-flle).

Any actual chain Cstring of logically connected records) In
the system will , belong to a certain predefined logical group
of actual chains= evellauyyne 5% Pls cat Rlarre

Depending on the context, the concept of a chaln will be used

In the following to denote one actual chaln or a whole’ group

2
S
N

\
\

\ \

CF-SYSTEM
3

Introduction

of actual chains.
A group of actual chalns Is character!zed by the two files

concerned and by the position of the record-flelds used for

chaining Ctwo files may be connected by any number of chalns).

The chaln-groups are numbered within an actual flle-confi-

guration from one and up, the chaln-number being used for

Initlallzation of the processing of that particular group of

chalns.

An actual flle-configuration set up = and processed by the

connected-f1lle-procedures may contaln any number of filles and

any number of chalns connecting them. The only limitation Is

that Joops In the structure are forbidden, I.e. It must not be

possible to meet the same file twice by stepping over the

mother-flle to daughter-fille connections.

All filles are RC 4000 backing store areas, which must be

treated separately with regards’ to Initiallzation, opening,

closure and dumping. The connections are only checked when

chalns are processed and when It Is attempted to delete records

In _mother-files.
“ ae ae

Any fille may be prolonged to a certain predefined limit In

order to accommodate more data, but the best distribution of

records will most likely be obtalned If this facility is used

sparingly.

An algol-zone_ls connected to each file used by a certain

program, and records appear as zone-records so that no super~

fluous core-store-copyling Is performed. The record-flelds used

for the administration of chains are not accessible from the

users program. ~ > —_ ;

\
\ \

\

\

\ Kade Arey Mmrauererer 4 4, 2,5,-
¢

” ~ * & \ - *

Mitte Drtrata vtd Liha lAtrer -
OO) , -

uy rrey Law ke lh kadeg rt wv Ye ;

- L eo alo - fetter Lhbre nepube 3¢ t

éo

ve!
e

Teicltse

SeqyT3, §
=ISeE

CF-SYSTEM 4

Masterfliles

o-pveecte. Acces
Master flles " VEO N@GLER

These filles contaln the records which should be accessed,
directly through user-def I ned/ keywords carried In the records,

The basic flle-adminIistration-system Is the Indexed-Sequen-
tial-File-System of RC 4000 described in RCSL No.55-D99. As
regards the fundamental properties of the master-flles, this
manual should be consulted, since the corresponding procedures

of the cf-system only provides for the administration , of the
chaln-flelds, => CB -preecduits bragr Seq ime af Beedle else

In fact, It is possible to process a single master- -flle by

-the Indexed- lal pro ur. If these procedures are used

exclusively, but It Is not recommended, since the chain-flelds
“ of the cf-system will not be protected, and It will be possible

to delete a mother-record without deleting the corresponding
daughter-records.

One major difference between the set of procedures described

In RCSL No.55-D99 and the cf-procedures Is the way In which the
files are opened and closed. In connection with the cf-system,

the standard open- and close-procedures of RC 4000 algol are

never used, and it Is not necessary to call one of the
5 mode- changing procedures to ensure that the file Is properly

¢ updated.

File-fInitialilzation can only be terminated by the close-cf

procedure and not by the mode-changling procedures.
Another difference Is that the delete-m procedure..has..long-

range effects, as it also deletes all Jlist-file records
connected to chalns orlginating In the master-f!lle-record.

An opened master-file Is _protected against unauthorized
Input~output~procedures by means of special zone-state value

In principle, these zone-states are Just a parallel displace-

ment of the zone~states used by the Indexed-sequential proce-
dures, see append!x C.

The cf-system will, In some cases, reference master-file-
records Internally for the updating of chain-flelds. The
logical key and not some physical address Is used in this case,

too, primarlly because the physical location of a master-file-

record may change, due to Insertions and deletions, but also
because the reference by key Is standard, and makes it possible
to reorganize a master-flle without touching any other file In

.a flle-configuration. The costs are that the chain-flelds used
for mother-reference are rather long, and that reference to the
mother-record of a chain will require the usual search In the

tables of the Indexed-sequential file. ; ‘by

The master-record reference, which Is carrled in chain- -flelds
and In the chaln-tables (see chains), Is a copy of the keypart

o.55-D99, 1.e. a data-fleld holding the
Ile-record In a compressed form.

described In RCSL.
iia

keywords of a master

af © tre 2 Aplhe te felece feoue.

Aa @ il va, i Oh me 4

ve Wa DRR Lebean

$= DSF

CF-SYSTEM 5
te Listfiles

List files
uae

This kind of file Is designed especially for the cf- system
and is Intended to hold. the d jo

The FTlesadmini stration facilitates access to a_certaln
record In one step by short address, as opposed to the
master-files, where one key-fields and access In two steps,
block-table and block, is the rule.

A record Is identified by a record- number, a pos ltive...LAteger
not greater than a maximum number determined by the size of the
fille and the range of record-numbers allocated to one block
(The greatest possible record-number is 8.388.606).

Dt 1S NO be POSSADLE FOC tN CrntdSer,,.to Insert a record at a

certain cecord=number, the flle- administration Itself will find
6. an unused record-number according to a certain strategy, Insert

the record at this number, and insert the record=number as a
a 24-bit Integer In the chaln-fleld of the record which Is

prior-In-chain to the Inserted.

Fi le-structure:

The list-flle Is stored as a backing store area _ contalning
a file-head, a block-table, and a variable number of blocks.

The é=head contains Information for the processing of

records and the chaln-tables Cdescribed under chains) of the
chain-groups of which the flle Is the daughter. The file-head

wh Son NOVEL. WELLLED..BaCk,..tO the filled 2a bet Clady ~

The blegk=table. contalns a 6-bit entry per block holding a
logarithmic derivative of the percentage of free room in_ the

corresponding block. The table Is held permanently In core

during the processing and It is used to obtain an equal

distribution of records over the whole file. This Is Important

@ for the physical clustering (see Insert-strategy) of records
belng daughters of the same chain and [t limits the number of

block-accesses to find a sultable block for an Insertion to a

maximum of two (Csee Insert-strategy). The block-table Is
written back to the fille together with some status-varlables by
the close-cf procedure or the read-only-cf procedure, if

records have been removed or Inserted.

occupies an Integral _n egments

© Gk 7.) n 2 bytes of 12 bits). All ocks
are of equal length and one. block corresponds toa certaln

user-defined range of record-numbers..
Each block ts prefaced by some gtatus-varlables| and a

record-table of one entry per record-number allocated to that
block. An entry In the record-table;consists of a 12-bit byte, »

the rightmost bit defining, whether the record-number Is free
Or not, and the rest, the base..of the corresponding. record(**¢> At

given. relatJlue...tQ the base ofthe plock.

© A file may be declared to hold records of elther fixed or 24 bit

CF-SYSTEM 6
~» Listfiles

variable length, In the latter case, the first 4 bytes of the
user=-part. of each record Is reserved by..the system,, The first
2 bytes will tell the length of the user-part measured In bytes

and the next 2 bytes contaln the _record~-number, both repre-
sented as Integers. These 4 bytes are always restored before
a new zone-record !s fetched.

There are two IImitations to the number of records which’ can
, t accommodated in one block:4)The number of record-numbers per
Or am, block and2}the amount of room for records In one block.

In case of fixed record-length, both limitations are made
Veer, equal by the cf-system, but In connection with variable length

me = , records, the user himself must balance the IJlimitatlIons by
heh aQe jestimating the length of the minimum record which Is golng.to |

=> exploit all the room of some blocks without participation of
_}other records.
a cneonatanieren

@ The cost of setting this minimum length too low, Is one 12
| bit byte per superfluous record=-number, on the other’ hand,

setting It too high, may cause some room to be left unusable
In blocks malnly containing small records.

A list-file may be prolonged, but not shortened, simply by
Increasing the size of the backing store area of the fille. This

can be done during a run by use of the procedure extend-cf, or
between runs by the utlllty-program set (System 3). However,
the maximum number of blocks In one file must be given when the
file-head Is created, because room for_a maximum block-table is
reserved before the first..block of the file Ca block-table of
one segment corresponds to 1008 blocks, two segments to 1008
+ 1024, etc.).

During processing only the active part of the block-table Is

held In core, a large upper limit Is thus not very expensive,

but It is not advisable to let a list-file grow too. much, and
especially not too often, since this will tend to disturb the

@ clustering of records Csee insert-strategy).

Fi le~processing:

The zone used for a list-file, holds the file-head In the
first part of the zone-buffer, then the block-table as_ the
first share of the zone, and after that a number of _shares. Cat

least one), each able to hold one block. Each block-share
demands a bufferlength equal to the blocklength plus _one word

of 24 bits.

The.use of at least two block-shares..can.. be. advantageaus...
because return to the previously accessed block wlll be quite

common during the maintenance of chain-fields In connection
with Insertion and deletion of records.

on the other hand more than one block=-share can be Incon-
venient, as an updated block will not be written back unt!
some other blocks have been read, so that the disc~heads have
changed position.

If at least three block-shares are used, the cf-system will
@ write back updated blocks In parallel to program executlon, so

Vale art Are feo blo ole ~ Shares

>
—

Ontal ehearerx CF-SYSTEM 7
Onkol Shaner Listfiles

that one block-share Is always ready for Input with a= minimum

of walting~-time.

dye rm The cf-system holds a. sorted. Ilst of one entry per block-
(: me share, the first entry polnting to the block which has een
Qh rimrdbya ‘accessed most recently, and the last entry polnting to the

* - l.e. the block which Is going to be overwritten next, Aton . victim,
tae Gf because It has not been accessed for the longest period.

If the victim-block has been updated, then the transfer back
BOM to the flle will be Initiated, but not walted for, at the time
lbas, when the block becomes the victim, provided that at least three
oO block-shares are aval lable.

>) In order to make multi-block-share runs economical and to
diminish transfer-time, the user should define a small block-
length, on the other hand, short blocks wlll demand more core

@ for the block-table and will Increase the total size of
unusable block-remnants.

bese

Insert-strategy:

The Insert-strategy concerns the way In which records are
placed physically In the file.

The tdeal Is to have records with a high’ probabillty of
sequential retrieval placed sequentially or at least placed In
the same neighbourhood in the file, I.e. In so few. physical
blocks as possIible.

In a list-flle, records linked logically together In the same
chain will have such a great probability of sequential retrie-

val. It Is therefore attempted to concentrate connected records

physically. This will In the following be called to cluster the

records.
The Intention Is to obtain a great probability of finding the

next record of a chain In the same block as the last accessed
record, the galn of having two daughter-records of one chain

@ placed In the same block being one block-access each time the
chalIn Is traversed,

The clustering Is only taken Into account when a new record
Is golIng to be Inserted, I.e. already placed records are never
moved. as_that would Involve very high costs.

By this simple method, it Is only reallstic to hope for

clustering of one group of chains. A general optimization of
all chains might be the task of a later, probably rather

. complicated, reorganization program. ,
Therefore, the user should favour one chain-group in each.

Mi list-flle by letting the Insert-1 procedure work upon this
‘chal n- group, as this procedure performs the physical Insertion

fof a list-flle-record.
~ A list-file-record may be connected to one actual chain of
each chaln-group defined. _One chain is. connected by the
Lnsert-1 procedure, the remaining chains may..._be connected by.

the procedure connect. -

The block used for the Insertion Is selected by Insert-]

@ according to the followlng algorithm:

CF-SYSTEM 8
Listflles

l. If new chaln then find the block of most free room

else

2. If room In block containing the nel ghbour-record
then select this block

else

3. If overflow has occurred earlier from the block

containing the nelghbour-record and room Is
available In the overf low-block
then select the overflow~block

else a

4, find the block of most free room and make this
block the overflow=-block of the block containing
the nel ghbour-record.

The block containing most free room is searched In the
block-table, the nelghbour-record Is the record which Is golng

to be prior to the Inserted record, or In case the inserted Is

next to the mother-record, then the record next to. the
Inserted. The Insertion Is not performed In case the file Is

already filled beyond a user-specified percentage, or In case

the block of most free room Is not able to hold the record.

In case 1 of the algorithm above, an Insertion will require
1 read and 1 write block-~access, whereas the worst case, case
4, requires 2 read and 2 write block-accesses when at least two
block-shares are available, but 4 read and 2 write block-
accesses, If only one block-share Is available.

When a block becomes more than half empty after a record
deletion, the overflow-polnter Is erased.

Zone-states:
as con

A zone opened to a list-file may be in one of the following
three states analogous to those used for the master-fliles:

read-only-] It Is only possible to read the file; this Is

the state set by the open-cf procedure. The

state Is not recommended, because the removal
of dead records Is not carried out Csee chalins-

).

read-update-] Both reading and writing are allowed, but to
ensure that changes In a record retrieved by
the procedure get-1] or get~=numb-1, will be
reflected In the file, the procedure put-cf
must be called after the retrieval. Any record
read by the user may end up In the file, so the

user should not make any translent changes of
record-flelds..

update-all-1 All accessed records are written back to_ the

file.
e

CF-SYSTEM 9
) Chains

Chalns

A chain In the cf-system Is basically a string of records,
each record except the last one holding the reference to Its

successor. ~
The first record Is called the mother-record and the other

ones are called the daughter-records of the chain.
The mother-record and the daughter-records are placed In two

separate files, called the mother-file and the daughter-file of
the chaln respectively.

The mother-file may be either a master- file or a list-file,
but the daughter-file Is always a list-fille, i.e. reference to

the next-in-chain record Ils always.ailist-fille.cecord=number....

Alt records In a chaln wlll have a 24-bit chalnfleld holding

elther the reference to the next record In the chain or

@ indicating end of chain, I.e. all chains are open and. oneswaye
In addition a daughter-record may contaln a reference to the

mother=record, the chaln Is sald to be headed,. This reference
Is elther a compressed key of a master-fille-record or the

be fetched by means of the procedure get~head, In order to look
up the mother-record by get-m or get~numb-1, according to thes ,
type of the mother-flle.

The mother-reference Is Intended for this purpose, which only “*

can be of any value In case the mother-reference Is wanted for
a chain, different from the chain by which the record was
accessed, but for the reason of security, It Is checked
Internally that the mother-reference Is the same In all

daughter-records of one chain.

fm bn fel All records In one fille will have a chaln-part of the same
f herkwstitormat, each fleld In the chaln-part corresponding to a certain

= ot jchaln-group, of which the fille Is either the mother or the

4 rad (daughter.

A chaln-group corresponds to a certain mother-fille and a

te Chev certain daughter-file, and It will utilize some specific

ichaln-flelds In the records of these files.
Pa ;

f A record in any fille will contain a user-part followed by a

/chain- “part, the user-part being of fixed or variable length and

\the chain-part of flxed length.

oat

Specification:
ee)

All chain-groups In a certain fille-configuration are specla
by an_in rr used aS a parameter of the_ two

head-procedures head-m and head-l.
A call of one of these procedures wlll In a backing store

area generate a file-head holding among other’ things’ the

specification of the chaln-groups assigned to the file.
The fundamental Information concerning a chaln-group Is the

record-number of a list-flle record. The mother-reference may

Lf Al
Re

number of the chaln-group Call chaln-groups_ are numbered a the,
system _=from one and up), the position = and size the

@ corresponding chaln-flelds, and the role of the fille, mother or

daughter. a? . MMUMAM ALS we Rad a dee

Syecefilea heoucs. 2 | PAN bate fou lace ott felt

. forrette af ~
(te V bir Cee che quant Yor ce Mat 7 fu

wy Meade

CF-SYSTEM 10
te Chalns

wolf ,
ihe he

a
fi Ag AAn

Pro

Before a certain group of chains can be- processed, the
corresponding “prother- file and daughter-file must be opened and
the Init-chaln/procedure called. 2

This procedure will set up some absolute addresses | in the
zone~buffers of the two files to enable cross-referenc@ between
the two zones, and It will return a real paramet
absolute addresses pointing to the Information

buffers concerning the chain-group.
This return value must later be used as

varlous chaln-processing procedures to spec!
The parameter Is the one named chainr

holding two

In the zone-~

parameter of the

y the chain-group.
In the procedure

‘ ¢ Ae ‘4A 7]

Shaln-tables: Aggey 4 ‘fee -hovede “
Br derbel The list-fille zone-buffer contains a table for each chaln~

“ey Uvév $ group of which the file Is the daughter.
badeqre: eye Each chain-table can hold the Information needed to define a

dy” position In_an actual chaln of the corresponding chaln-group.
This Information consists of the following four parts:

prior The record-number of the record which precedes the.
Jast. accessed record. If the last accessed record
Is the first daughter-record, then prior Is zero.

last ; The record=number of the record accessed most

accessed recently through the chain-group. It is zero If the
chailn-state Is empty Csee chaln-states).

next The record-number of the record succeeding the last.

accessed record, This field is copied from the next
chaln-field of the last accessed record.= 4 AL

° MALAPE EF tinct t fe = feo

r mother The reference to the mother-record of the actual

chain stored In the same format as the correspon-

ding record-chain-fleld.

The chaln-tables are used by almost all procedures having a

chaln-parameter, the procedure get-1, for example, will use the

next-fleld of the chain-table to retrieve the next record of

a chain. The prior-field Is used when the last accessed record

Is deleted, and when a record Is connected to a chain prior to
the last accessed record.

Chain-states: ~ fer gn bw@dle gripe
te i ,

A chain-group Is In one of the following three states:

not-init This Is the state before call of the proce .
Init-chain, but the state is also assumed when one
of the two corresponding zones Is _ closed. No

@ chain~processing can occur In this state.

4 @

fad te

CF-SYSTEM 11

Chalns

empty The empty-state Is assumed after the first call of
Init-chaln, and In other cases specifled In _ the

procedure descriptions.

last~accu~ A chaln-position Is defined by the chaln-table. The _

def Ined last accessed record is not necessarlly the current.
record of the daughter-=file,

Dead records;

(eo colton A list-flle record will always be deleted as the last.

dru alhee

lortaccess
performed explicitly by the user or internally through the
fi le-connections.

For this chaln-group it Is possIble to remove the record from
the chain as the prior record Is noted In the chain-table.

If a record Is connected to one chain only, It Is also
removed from the file, but In the case of more than one
connected chain, the record wlll remain in the flle as a dead
record until Jt has been disconnected from all the remaining
chains. The disconnection will be performed by the system each
time the dead record {fs retrieved as the next record of a

chain, provided that the zone Is In one of the update states
Cthe mother-zone must also be In an update state If the dead
record happens to be the first In the chain).

The user will thus never retrieve a deleted record, but a
certaln perce

the. use. of the chaln NSy must. thus be taken into xeeeente this

strategy together with the use of the one-way chaln has’ been

selected to obtalIn a fast maintenance of chains.

dlperforne record of a chain-group, whether the deletion is

0
@

CF-SYSTEM 12
‘@ Fille-configurations

The purpose of this chapter Is to propose a way of drawing

diagrams defining the structure of actual flle-conflgurations.

fig. 1 1 Master-file
(mother of chain 1)

1 chain (clustered, no
@ reference to mother)

Sw

2 list-file
(daughter of chain 1)

The diagram of fig. 1 shows a single master-file given the

logical file-number 1, a single list-file given the logical

file-number 2, and a single not headed chaln, chain 1 of the

configuration. The double arrow is used to Indicate the chain,

the daughter-records of which are clustered by the Insert-l

procedure, exactly one double arrow must polnt to a list-file.

This simple structure might be used In cases where some

record-part Is varying strongly In length or Is Infrequently

used.

CF-SYSTEM 13
File-conflilgurations

Master-file
fig. 2 4 (mother of both chains)

1 chain 2
a a (clustered, headed) —t— chain

(not clustered,
headed)

list-—file

@aughter of both chains)

In fig. 2 the structure Is extended by an extra chaln-group,
and both chain-groups are headed, I!.e. each daughter-record
holds a reference to the mother-record of the chain. This Is
specifled by two bars crossing the arrows. Chain 1 is’ the
clustered one.

By this configuration It Is possible to look up a record in

the master-file, retrieve a record of the corresponding chain

1, fetch the mother-reference of chain 2, and look up the
mother-record In the master-fille. Each record In the list-file

may thus be thought of as a link between two records of the
master-flle, namely the two mother-records of the actual chains
to which the list-file record Is connected.

The chains of fig. 2 may, for example be used to establish
the bill-of-material/where-used structure of manufactured com-

ponents.

CF-SYSTEM 14

File-configurations

fig. 3 4 customers

6 order-chain

NIZ

> order—heads

5 order-line-chain

WY

> order-lines

. orders-for—

4 ae component—chain

descriptio
chain components

2

3 used-on-
2 chain

descriptions relations

Where-used=-chain

In fig. 3 an example Is shown of the file-configuration of a

sales-control system.

It may, for example, through this structure be found out, how

many components are needed to effectuate the orders of one

customer, or which orders have been recelved for a specific

component.

The orders are split Into two files, as one order may hold

some information common to a number of order-lines, each

corresponding to a certaln component.

If the component-records have some lengthy and Infrequently

used parts, for example some text-descriptions, these parts may

be stored In a separate list-file.

CF-SYSTEM 15
Protection System

2 om me cae eee ce ee ome om ee oe oe Ee ee me ee ee ee ae ame me ee ee ee we Oe oe Oe OOO OOO OO Oe OO ew ewe eee ee ew we oe a

An administration of the permanent filles of an adp~system
wlll face the following two error causes:

~~

A fille Is not properly updated If the processing Is not
terminated by a call of some closing procedure. This call
may not be executed, If a program Is terminated by an
operation system or by a run tlIme alarm.

() If more than one permanent flle Is used, there Is a risk
“that different generations of files are mixed. In oa orun,.

This “risk Ts greater If a lot of files of different
updating frequencies are used.

Errors of the first type may not be so serious In systems

using sequential files, because the files are scanned from one

end to the other, so the lack or Inconsistency of some
endofflle label will reveal the error.

For systems using random access files, like the cf-system,
errors may remain undetected for long periods and may glve rise

to alarms, which are very difficult to trace back to the
original cause.

The use of random access files Introduces another error

cause;

G.) The same job or program may erroneous be run twice causIng

“\=“_ a double updating of the files Involved. This Is not
possible In connection with sequential files, where the two

runs would be completely Identical, because the old ver-

sions of the filles are unchanged.

The cf-system has been provided with protection against the

error causes 1 and 2, but not against 3. _

The catalog entry of a file Is used by the protection system
In this way:

file = set <segments> <bs device> <verslon> <update mark>.

The two last quantities are special for the cf-system:

<version> A number (0 <= version <= 8 000 000), which Is
a a Increased by one each time the processing mode

CF-SYSTEM 16
(Protection System

Is changed from read-only to update.

Supcate mack Elther 0 or 1.
— The file Is In read-only-state. This should be

the state between runs, and this is the state
accepted by open-cf.

1: The file Is in update-state. This state must

not occur between runs, and a fille In update-
State is rejected by open-cf.

Errors of type 1. are detected by means of the update-mark,

which will be equal to one, if a processing In an update mode
Is terminated by an Index alarm)f.ex..

The second error type is remedied through the use of the

version number In connection with a supervisory register

@ holding the actual version numbers of all the files of a
fileconfiguration. The procedure open-cf wlll check that the

verslon numbers In the supervisory register, and In the catalog

entry of the flle are Identical. , Beskey wtlats j mbacater

A masterfile Is used as the .Supervisory register. It Is

called the description file” because It can be used for. all

kinds of descriptions, f.ex. files, records, and fields.
A maintenance program for description files has been. pro-

duced, and utility programs, and higher level cf-procedures,
planned at present, will use the description file.

It Is possible though, but not recommended, to switch off the é. fe
version number checking. In this case the description file v
not necessary, but the verslon number In the catalog entr a6 ea,
stlll Increased, Ove Ie a, hoe

The update mark checking can not be switched off. Anaad belec 2 4

Checke. er vkons Wh,
The format of the description file Is given In appendix €E.

Setrdeser-cf

This Is the name of a procedure, which must be called before
the first call of open-cf.

The call of set-descr-cf will provide the cf-system with the.
name of the relevant description file. The name Is lateron used

by the procedures open-cf, réad-Upd-cf, and update-all-cf.
If an empty string Is given as the parameter of set-desecr-cf,

the procedures will not attempt to access a description fille.

Whenever the description file Is accessed, It Is checked that
the update mark of the description fille Itself !s zero.
Therefore the user must avoid simultaneous updating of the

description fille, In a zone of his own, and calls of open-cf,
read-upd-cf, and update-all-cf concerning other files.

@ Thee mette a Beeb. os} Aombicia wed at

~ ette 4’ flere | >

CF-SYSTEM 17.
Protection System

Alarms

When the protection Is violated, or If the protection system
has troubles wlth a catalog entry or the description fille, a
run time alarm wlll terminate the program. The alarm Is Issued

by the external algol procedure protect-cf, which actually
performs the functions of the protection system.

Such an alarm Is headed by the followlng two lines:

xxxprotectcf alarm:

fille <flle number> <flle name> vers.In.cat <verslon>

The text: file, Is replaced by the text: descr, If the trouble

concerns the description file.

The run time alarm following these two lines will explain
what happened, see appendix A, under protectcf.

Other alarms than mentioned in appendix A may arlse, If the

description fille Is not ok. The alarm will originate from

either buf-length-cf or open-cf used upon the description file.

CF-SYSTEM 18

Procedure Description

<procedure name> proc.no.<proc.no.>

<abstract> CA short functional description).

Call: <procedure call> (Format of call).
<parameter description> CExplanation of each parameter).

Requirements:

CConditions for a successful exit from the procedure.

If the requlrements mentioned are not fulfilled, the

run wlll be terminated by an alarmmessage).

Results:
(Results from the procedure, Inclusive notes on states

and accessible records).

result_cf current record

Cpossible values Cspecification of the
of the standard accessible record, if
variable result_cf). any).

<further explanation> CEventually some extra notes and warnings).

CF-SYSTEM 19
Procedure Description

buf_length_cf proc.no. 1

Returns the bufferlength of a zone to be used for a connected

file.

Call: buf_length_cf Cfllename, blocks_!In_core)

buf_length_cf Creturn value, Integer) The needed buf-

ferlength. ludtyyPt 4 VERE)

fi lename Ccall value, string) The name of a

backing store area holding a cf-file.
blocks_In_core (call value, Integer) Defines the num-

ber of blocks wanted In core at the
same time:
Masterfiles:

blocks_In_core = 1, or 2 if full
Insertion is wanted.

Listfiles:

blocks_Iin_core >= 1, >= 2 Is
recommended.

Requirements:

fllename must describe a backing store area holding a

correct masterfile or listfile, and must not be reser-

ved.

Results:
result_cf = 1, ok

Further explanation:

Declares a zone, opens the fille, reads the first seg-

ments, and computes the needed bufferlength according

to blocks_In_core.

A masterfile-zone may be declared:

zone zmCbuf_length_cfCfilename, 1 or 2), 3, blockproc);

A listflle-zone may be declared:
zone z1Cbuf_length_cfC(fllename, blocks_In_core),

blocks_In_core +1, blockproc);

Documenterrors wlll cause stderror to be called.

CF-SYSTEM 20
Procedure Description

close_cf ; proc.no. 6

Terminates the use of the zone by writing back eventual up-
dated blocks.

Call: close_cf (z, rel)

z Ccall and return value, zone) Connected

to a masterfile or listfile.
rel As for algol procedure close.

Requirements:

zonestate = any cf-state, exept after-declaration.

Results:

zonestate 4, after-declaration.

result_cf 1 ok

Chalnstates will be not_InIit for assoclated chains.

CF-SYSTEM 21
Procedure Description

connect proc.no. 13

The procedure connects the last accessed record In one chain to
another chain according to a specified mode.

Call: connect (zl, chalnref_1, chainref_2, Icmode)

zl Ccall and return value, zone) Connected
to a listfile.
(call value, real) Return parameter from

Init_chain. The record to be connected
Is the last accessed record of this
chain.
€call value, real) Return parameter from
Init_chain. The reference for the chain
to connect to.

Icmode Ccall value, Integer)
= 1 connect chain_1 record as first member

of chain_2 from current record In the
motherflle of chain_2.

= 2 connect chaln_1 record as next to last
accessed record In chain_2.

= 3 connect chaln_1 record as prior to last
accessed record In chain_2.

Requirements:

zl must be daugtherfile of both chain_1 and chaln_2.
zonestate = read_update_] or update_all_l.
chainstate Cchain_1) = last_accessed_def.
If Icmode = 1, chalnstate Cchain_2) may be empty else
last_accessed_def.
If Icmode = 1, then current record in the motherflle
must exist. ;
If the connected record Is next to the mother record,
the motherfile must be In an update state.

Results:

If result_cf = 1, the connected record will be last-
accessed In chain_2, too. Zonestates are unchanged.

result_cf current record

1 connected the connected
2 not connected Calready none

conn. to another chaln)

Note: For tcmode = 3: see the note for the procedure Insert_]!.

CF-SYSTEM 22

Procedure Description

delete_chaln proc.na. 16

The procedure deletes all records In a chain headed to current
record of a file and all records In chains originating In re-
cords of the specitfled chain.

Call: delete_chaln (z, chalnref)

z Ccall and return value, zone) Connected
to a masterfile or Ilistfile.

chalnref Ccall value, real) Return parameter from
Init_chain.

Requirements:

zonestate = read_update_m, update_all_m or read_update_1,
update_all_1] depending on the type of the specified fille.
All chalns originating In the daughterfile given by
chalnref must be Initlallzed. Current record must exist.
All daughterflles must be In an update state.

Results:

zonestate Is unchanged. Chainstates become empty for
all chalns associated to files, where records have
been deleted.

result_cf current record

1 deleted unchanged
2 no chaltn to delete -

CF-SYSTEM 23

Procedure Description

lew, ane | | fel

delete_1 - or ‘. proc.no. 15

The procedure deretes [sh last accessed record In the chain and
all records In chalinsi originating In the record. The next record
Th the chain becomes current record of the file.

Call: delete_1] (zl, chainref)

zl Ccall and return value, zone) Connected
to a listflile.

chalnref (call value, real) Return parameter from
Init_chain.

Requirements:

zonestate = read_update_1 or update_all_l.
chainstate = last_accessed_def.
All chalns originating In the listfile must be Initlia-
lized.
All daughterflles and the motherfille corresponding to
chalnref must be In an update state.

Results:

zonestate Is unchanged. Chainstates become empty for
all chains associated to files where records have been
deleted, except the chaln specifled as parameter (see
below). Other files where records have been deleted,
wlll have no current record.

result_cf current record

1 deleted the next In chaln
2 - » last In chain, none

chainstate = empty

CF-SYSTEM 24
Procedure Description

delete_m proc.no. 14

The procedure deletes the current record of the file and all re-
cords In chains orlginating In the masterrecord.

Call: delete_m Czm)

zm Ccall and return value, zone) Connected
to a masterfile.

Requirements:

zonestate = read_update_m or update_all_m. All chains -~
originating In the masterflle must be Initialized.
All daughterflles must be In an update state.

Results:

Chainstates become empty for all chaingroups associated
to daughterfiles, where records have been deleted.
Other files, where records have been deleted, will have
no current record,

result_cf - current record

1 deleted the next In the file
2 - ,end of file the first
3 not deleted, only one the one

left In the flle.

It Is obvious that the call may have rather wide consequences.
In case of several connected files it Is advisable to use the
procedure delete_chain In connection with delete_m to get more
Informative results.

CF-SYSTEM 25
Procedure Description

extend_cf ; proc.no. 2

The procedure Increases the length of a cf-flle during the pro-
cessing. The current record, zone- and chalinstates are preserved.

Call: extend_cf (z, segments)

z €call and return value, zone) Connected
to a masterfile or listfile.

segments Ccall value, integer) The extension in
segments.

Requirements:
zonestate = read_only, read_update, or update_all, _m oor
_!. The zonestate Is checked by a call of read_only_cf.

Segments >= 0, and not so great, that max_bucks or max_
blocks is violated. Se
The bufferlength of the zone must be sufficient for the

extended file.
Segments and bufferlength are checked In a call of open_
cf performed on the extended file.

o&

Results:

Current record, and all states are unchanged for any
value of result_cf.

result _cf

1 ok

2 ok, but only room for simple insertion in mas-
terfile buffer.

> 10000 error in a call of a monitor function.

result_cf = result of monitor call =x 10 000
+ number of monitor function.

Probable results:

4OO44 change-entry, the scope of the file
does not permit change.

60044 change-entry, there is not room for
the extensIon.

CF-SYSTEM 27
Procedure Description

get_] ; proc.no. 9

The procedure searches a new current record Ina listfile.

Call: get_1(zl, chalnref, gmode)

z) €call and return value, zone) Connected
to a listfile.

chainref Ccall value, real) Return parameter from
Init_chaln.

gmode Ccall value, Integer)
= 1 the wanted record Is the first member of

the chain from current record In the

motherflile.

@ = 2 the wanted record Is the one next to the
last accessed record in the chain.

= 3 the wanted record Is the last accessed

In the chain.

Requirements:

zonestate = read_only_1l, read_update_! or update_all_l.
Se § 8 chainstate = last_accessed_def, or If gmode = 1, empty.

If gmode = 1, current record In the motherfile must
exist.

Results:

result_cf current record

1 found the wanted
2 not found If gmode=2 then the last

accessed else none

@ If no current record then chainstate = empty else last accessed

record corresponds to current record,

CF-SYSTEM 28

Procedure Description

get_m ; proc.no. 8

\ The procedure searches a record In a master-file with a specified
| key and.makes It current record.

Call: get_mCzm, key)

zm €call and return value, zone) Connected

to a masterflle.
key Ccall value, real. array) See keywords,

app. Z.$, 45". cok, ee ptoarel Grau Aa 1

de aklkuctlo ubgley ©
Requirements: a HeelKe, MEG,

zonestate = read_only_m, read_update_m, or update_all_m.

Results:

result_cf current record

1 found the found
2 not found next with a greater key

3 - - , end of file the first

CF-SYSTEM 29

Procedure Description

get_numb_1 proc.no. 23.

The procedure makes a listfille record given by Its record-number
avallable as current record.

Call: get_numb_1 (z1, rec_no)

z] (call and return value, zone) Connected
to a listfile.

rec_no €call value, Integer) Contains the num-
ber of the wanted record.

Requirements:
zonestate = read_only_1l, read_update_1 or update_all_l.

Results:

result_cf current record

1 record active the wanted

2 record dead , none

zonestate. and chainstate are unchanged.

CF-SYSTEM 30

Procedure Description

get_param_cf ; proc.no. 30

The procedure ylelds the values of a selected set of parameters
from the zonebuffer of a cf-file.

Call: get_param_cf (€z) one or more pairs: Cparamno, val)

z €call and return value, zone) Conncted
to a masterfile or listfile.

paramno Ccall value, Integer) Identifies the
wanted zoneparameter.

val Creturn value, Integer) Receives the
value of the zoneparameter Identified

by paramno.

Requirements:

The zone must be opened by open_cf or Init_file_m.

If the file is a masterfile, paramno must be one of the

values listed In RCSL No. 55-D99, appendix Bl.

If the file is a listfile, paramno can be one of the
following numbers:

paramno name meaning

1 dead-bytes Number of bytes occupied by dead

records Cincluding chaln-parts).
2 used-bytes Number of bytes used by records

Cinel. dead records).
3 Fill-limit The maximum allowed percentage of

used-bytes in the fille. CStandard
Is 80 pct. for a not empty file.)

Results:

result_cf = 1, ok.

Alarm -par.pair- occurs when an error is found in the parameter-
list. Alarmno shows the number of the parameterpalir, where the
error was found.

CF-SYSTEM 31

Procedure DescrIiption

head_1 proc.no,. 26

The procedure will generate the head of a listfile In a backing

store file. (See app. J. for selection of size_1)

Call: head_1 Cfilename, file_no, chains, size_1)

filename see procedure head_m
Fille_no - - -
chains - - - ‘
size_l €call value, integer array)

Contains the following 4 integers:

fixed_rec_length
= 0 means variable record length Is

wanted,
> 0 means flxed length Is wanted,

the value specifies the length

In bytes.

min rec_length In case of variable
length, this Integer specifies the
minimum length of records, which
should fill a block without part!I-

cilpation of longer records.

segs_per_block number of segments In
a block. C1<= segs_per_block <= 8).
The length of the greatest record
that can be Inserted In a block may
be calculated thus:

chaln_part_size <=
2xno_of_associated_chalns
+ sigmaCtypexcompressed_key_
size) over all chains of which
the flle Is the daughter;
comment see array chains;

max_no_of_recs_per_block :=
€512xsegs_per_ block //
(min _rec_length +
chaln_part_size + 1) + 1)
// 2x 2;

max_rec_length :=
512 x segs_per_block -
Cchaln_part_size +
max_no_of_recs_per_block + 8);

max_blocks the maximum number of
blocks the fille will ever hold.

Results:

result_cf 1 ok, flle_head Is created.

CF-SYSTEM 32

@ Procedure Description

head_m proc.no. 25

The procedure will generate the head of a masterfile In a back-

ing store file. CSee app. J. for selection of size_m)

Call: head_m (fllename, file_no, chains, rec_descr,
no_of_keys, size_m)

fl lename Ccall value, string)
The name of the backing store file.

file_no (call value, integer)
The logical number of the file used
In chaln specifications.

® chains €call and return value, integer array)

Contains the specification of all chaln-
groups In the system. The procedure re-

turns the quantity compressed_key_size
for the assoclated chalns.
See format of array chalns in app. D.

rec_descr Ccall value, Integer array) A two di-
mensional array Cl:no_of_keys+1,1:2)
holding Information about types and re-
lative locations of the keywords and

the length In a record.
Same conventions as In RCSL 55-D99, tne TD SF-
length in element no_of_keyst+1l, with § ¢ ol ate AO
type=0 for fixed length records. / Stele 4

no_of_keys Ccall value, Integer) The number of key-

words.

@ size_m Ccall value, Integer array)
. , Contains the following 4 integers:

hurdten OO eve /
Marlttn ard / maxreclength maximum length, Lo bytes,

:) QO) . of records which will be stored In
St2e mn (45 4 the file.

- maxbucks maximum number of buckets the

file will ever hold.

segsperbuck the number of segments in

one bucket.

segsperblock the number of segments In
one block.

Results:
result_cf = 1 ok, fille _head is created.

CF-SYSTEM 33
Procedure Description

Init _chalin proc. no. 5

The procedure establishes the connection between the two zones
used for the motherfile and the daughterflle of a chaln-group.

Call: iInit_chain Cz, z1, chainno, chalnref)

z Ccall and return value, zone) Connected
to a masterfile or listflle. This zone
must be opened to the mother-file.

z1 €call and return value, zone) Connected
to a listflle. This zone must be opened
to the daughter-flile.

chalnno Ccall value, Integer) The number of
the chain-group In the array chains.
(See app. D).

chalnref Creturn value, real) This real Is
lateron used as chaln-reference.

Requirements:

zonestate (z) = read_only_m or _!, read_update_m or _1,
update_all_m or _1

zonestate (z1)= read_only_l, read_update_1l, update_all_]
Chainno must describe a chalngroup connecting the two
files to which z and zl have been opened.

Results:

result_cf = 1, ok
if chalnstate = not-init then chalinstate = empty
else chainstate Is unchanged.
chalnref = chaln-reference

CF-SYSTEM 34

Procedure Description

Init_file_m proc.no. 27

The procedure prepares a backing store fille for Initlalization.

The fille must contain a master flle head. The Initialization

must be effectuated by successive calls of Init_rec_m and ter~

mtnated by a call of close-cf.

Init_file_m Czm, filename, giveup, buckfactor,
Call:

blockfactor)

(call and return value, zone) A zone
zm

with room for at least one block (see

procedure buflength_cf).

fl lename (call value, string) The name of a

backing store area holding a file head.

giveup As for algol standard procedure open.

buckf actor (call value, real) See file_! procedure Se

Init_file_1i. TSF

blockfactor (call value, real) See file_l procedure |“

Init_flle_l.
$2

Requirements:
Q

zonestate = 4, after declaration.

The zone must be declared with exact 2. hares, and have

a sufficient large buffer area. The fille must contain

a correct head.

Results:
result_cf
zonestate

1 ok
Init_m.

c
e

ii
ne
ro
ne
sa
ii
l

Auth _ fle be

hurk_ NEE LA

\
[o@)

(alo) \

eres aa aa

: = sla
— reer

all

“ane RDNA

tor antel lobolle| wrehloeks) dby alee

bruger I lure, \prrekeet 0, luthalintrinasn , ty ofivek

pede usebloecer = buckfacter x blocks per bel

bloeleJactor © autal Aw ler (cae bytes) Me, aleal

hnge i boey sole Unto Lui baltic br 2

Wwyebufer= bloclefactor x eqvige x Sty Alocle

CF-SYSTEM 35

Procedure Description

Init _rec_m ; proc.no. 28

The procedure Is used to add records to the file one by one In
the key order. All chain-fields are empty after the Insertion.
The Initialization should be terminated by a call of close-cf.

Call: init_rec_m Czm, record)

zm (call and return value, zone) Connected
to a masterfile by Init_flle_m.

record Ccall value, real array) The record to
be inserted.

Requirements:

zonestate = Init_m.

Results:
result_cf current record

1 record added none
2 not added, file is full none
3 - - , Improper length none
4 - - y - key none

. CF-SYSTEM 36

e@ Procedure Description

Insert_] proc.no. 12

The procedure Inserts a record in a chain according to a speci-

fled mode, and makes it available as the current record.

Call: Insert_1] (zl, chalnref, Icmode, record)

zl (call and return value, zone) Connected
to a listfile.

chainref Ccall value, real) Return parameter from

init_chain.

Icmode Ccall value, integer)
= 1 insert record as first member of the

chain from current record in the mo-

@ therfile.

= 2 next to last accessed record in the

chain

= 3 prior to last accessed record in the
chaln.

ttae/
pA te qe record Ccall value, real, array). If variable-

* An ode length the lexlcographical first ele-
ment must contain 0.0 shift.24. add ede |S
length shift 24. => etme ali. aha ste ¢

Requirements: fawthe Lubeges a Garvey et

zonestate = read_update_1 or update_all_l.
chainstate = last_accessed_def or If icmode = 1, empty.

If icmode = 1 then current record In the motherfile must

exist. If the motherfile Is touched, It must be In an
update state.

@ Results:

chainstate = last_accessed_def If result_cf = l.

result_cf current record

l inserted the Inserted

2 fill limit exceeded none

3 length error -
4 no block can take this record -

The users record Is expanded with the necessary chainflelds

Call empty) before the Insertion.
The Inserted record will later be transferred to the file.

Note: For icmode = 3: if last accessed is next to a motherfile
record, this record will be current record of the motherflle

after the call.

CF-SYSTEM 37

Procedure Description

Insert_m proc.no. ll

The procedure Inserts a record in the proper place In the file

and makes it avallable as the zonerecord.

Call: insert_m Czm, record)

zm (call and return value, zone) Connected

to a masterfile.
record (call value, real array) The record

to be Inserted.

Requirements:
L zonestate = read_update_m or update_all_m.

Results:
result_cf current record

1 inserted ‘the Inserted

2 record already in file the one In the file

3 not inserted, too expensive next with a greater key

4 file is full - - - - -

5 length error - - = - -

6 no buffer - - - - -

\ The users record is expanded with the necessary chainfields

' Call empty) before insertion.

|The inserted record will .later be transferred to the file.

CF-SYSTEM 38

Procedure Description

new_recl_cf proc.no. 24

The procedure Is used for changing the record-length of the
current record, only possible for masterfiles with varlable
recordlength.

Call: new_recl_cf Czm, length)

zm Ccall and return value, zone) Connected
to a masterfile.-

length Ccall value, Integer) Defines the new
length In bytes.

Requirements:
zonestate = read_update_m or update_all_m.
variable record_length defined.

Results:

result_cf current record

1 changed the.same

2 last rec. In file same with the old length

3 too expens!ve - - - - -
4 file Is full - - - - -
5 length error - - - - -
6 no buffer - - - - -

In case length is less than the original length, ele-

ments are squeezed out from the upper end, otherwise

data are unchanged.

CF-SYSTEM 39
Procedure Description

next_m proc.no. 17

Makes the next record in a master-flle current record.

Call: next_m Czm)

zm (call and return value, zone) Connected
to a masterfile.

Requirements:

zonestate = read_only_m, read_update_m or update_all_m.

Results:
result_cf current record

1 found the next
2 found, end of file the first

CF-SYSTEM 4Q

Procedure Description

open_cf proc.no. 3

The procedure opens the zone for the specified fille and prepares
it for use by the other file_cf procedures.

Call: open_cf (Cz, filename, giveup)

z (call and return value, zone) A zone
with room for at least one block Csee

procedure buflength_cf).
filename Ccall value, string) The name of a

backing store area holding a file head.
giveup As for the algol standard procedure

open. Yet open_cf will always set the

end-of-document-bit Cl shift 18) In the

give-up-mask.

Requirements.

zonestate = 4, after declaration. APP. ¢ »%. o'?
Filehead ok, masterfiles must contain at least one...
record . ala A SC ere aN AST RUE OMIT III ISLE “ “_

Filename must be known.
Set_descr_cf must have been called...

Results:
zonestate = if masterfile then read_only_m

else read_only_].

result_cf current record

1 ok If masterflle then the

first else none

2 ok, but only room for simple the first In the
insertion In the masterfile masterfile

zonebuffer

If the program tries to open a fille, which is not Initialized,
the run will be terminated by an alarm probably concerning a

masterfile-error, even if the file was expected to be a lIstfile.

CF-SYSTEM 42
Procedure Description

put_cf , proc.no. 18

The procedure ensures that the current record will be transfer-

red to the file.

Call: put_cf (z)

z (call and return value, zone) Connected
to a masterfile or listfile.

Requlrements:
zonestate = read_update or update_all.

Results:

result_cf current record

1 ok unchanged

The procedure is -dummy- when zonestate = update_all, or the

current record is created by insert.

CF-SYSTEM 43
Procedure Description

read_only_cf . proc.no. 19

Transfers updated blocks to the file, and sets the zonestate to
read_only_m or _1.

Call: read_only_cf (z)

z (call and return value, zone) Connected

to a masterflile or listfile.

Requirements:

zonestate = read_only_m or _1l, read_update_m or _1, or
update_all_mor _1.

Results:

result_cf 1, ok
zonestate read_only_m or _1.
current record Is unchanged.

CF-SYSTEM Gu

Procedure Description

read_upd_cf proc.no. 20

If zonestate = read_only_m or _] and a current record exists,
a new copy Is transferred from the fille. Zonestate Is set

to read_update_m or _].

Call: read_upd_cf (z)

z (call and return value, zone) Connected
to a masterflle or listfile.

Requirements:
zonestate = read_only_m or _1, read_update_m or _1,

update_all_m or _1.

Results:
result_cf = 1, ok
zonestate = read_update_m or _].
current record Is the same, but evt. a new copy from

the file.

CF-SYSTEM 4s
Procedure Description

set_descr_cf proc.no. 32

This procedure must be called at least once In any program
using open_cf. The call must precede the first call of open_cf.
The procedure provides the cf-system with the name of a
description file. The description fille Is accessed Internally

by the cf-system for checking, and updating of verslon numbers

In the procedure open_cf, and In the procedures read_upd_cf and
update_all_cf If the prior zone state was readonly.
Set_descr_cf may be called several times, If more description

files are Involved In a run, and the parameter of set_descr_cf
may be empty, Indicating that no description flle should be

accessed.

Call: set_descr_cf Cdescr_file)

descr_file Ccall value, string) The name of the
description fille, or an empty string
C<::>). In the latter case the ver-
slon number check Is not performed.

Requirements:

The call Is always legal, the existence of the descrip-

tionfile Is not checked by set_descr_cf.

CF-SYSTEM 46

Procedure Description

set_Jjumps_cf proc.no. 4

The procedure specifies for a certain zone a user-procedure to
be called when certain values of cf-proc-no and result-cf coln-
cide at exIlt from a cf-procedure. These cases are specifled by
the parameter-pairs cf_proc_no and results.

Call: set_jJumps_cf (€z, Jjump_proc)
one or more pairs: (Ccf_proc_no, results)

z €call and return value, zone) Connected
to a masterfille or listfile.

jJump_proc Cprocedure) The name of the users pro-
cedure, which must be declared at the
same blocklevel as the zone, or at an
outer level. It should be declared
thus:

jump_proc (z, cf_proc_no).
cf _proc_no Ccall value, Integer) and
results Ccall value, integer)

Specifies the result_cf-values for
which jump_proc should be called upon

exit from the cf-procedure identified

by cf_proc_no.

Requirements:
The zone must be opened by open_cf or init_flle_m.

Jump_proc cannot be called from those cf=procedures which are

external algol procedures (see app. B), nor from open_cf,
get_param_cf, or set_param_cf. If cf_proc_no specifies one of

these procedures, It will be neglected.

cf_ proc_no = 0 denotes all possible cf-procedures.
results = Q denotes clearing of all previously specified

result_cf values for cf_proc_no. Non-existing result_cf values
are ignored,

Any number of result_cf values can be specified In one

parameter by representing each result_cf value as one digit in

the decimal representation of results. As the result-digits are

processed from behind, result = 120 will clear old = specifica-
tions and set the new values 2 and 1.

Alarm -par.pair~ occurs when an error {fs found in the parame-

terlist. An alarmno > 0 shows the number of the parameter pair,
where the error was found, alarmno = 0 denotes an error in
Jump_proc Ce.g. declared at a wrong blocklevel).

CF-SYSTEM 47

Procedure Description

The parameter pair (1,1) needs a special explanation:

If this parameter pair has been given, the jumpproc Is called
as:

alarmproc (z, -cf_proc_no, alarm_number)
where alarm_number Is an Integer specifying the number of = an
alarm occurring during the processing of zone z.

If alarmproc returns through Its final end, the usual alarm Is
given, but it Is possible by a goto ‘out of alarmproc. to
continue the processIing.

It fs only possible ta trap alarms occurring when it Is sure

that zone z contains a correct filehead. I.e., [It is not
possible to trap zonestate alarms or the alarms from open_cf

and Init_fille_m.

Alarms from procedures coded In algol cannot be trapped.

CF-SYSTEM 48

Procedure Description

set_param_cf proc.no. 31

The procedure assigns new values to a selected set of parameters
In the zonebuffer of a cf-flle,.

Call: set_param_cf (€z) one or more pairs: Cparamno, val)

z Ccall and return value, zone) Connected
to a masterflile or listfile.

par amno Ccall value, Integer) Identifles the
zoneparameter to be changed.

val Ccall value, Integer) The new value to

be assigned to the zoneparameter Iden-
tifled by paramno.

Requlrements:

Results:

Alarm ~-par.pair~- occurs when an error Is found In the parameter-
list. Al

The zone must be opened by open_cf or Init _flle_m.

For a masterfile the allowed set of values for paramno
and val Is listed in RCSL No. The

parameters will only be changed In the zonebuffer,
but not In the file. 55-D99, appendix B2.

For a listfile the only parameter which can be changed

is flli-limit, !.e. paramno = 3 Csee get_param_cf),
and 1 <= val <= 100. The value will be Inserted In the

zonebuffer as well as In the fille.

result_cf = 1, ok.

armno shows the number of the parameterpair, where the
error was found.

CF-SYSTEM 49g
Procedure Description

update_all_cf proc.no. 21

If zonestate = read_only_m or _1 and a current record exists, a
new copy Is transferred from the file. Zonestate Is set to
update_all_mor _1.

Call: update_all_cf (z)

z (call and return value, zone) Connected
to a masterfile or listfile.

Requirements:
zonestate = read_only_m or _1, read_update_m or _1,

update_all_mor _1.

Results:

result_cf = 1, ok
zonestate = update_all_mor _1.
current record is the same, but evt. a new copy from

the file.

CF-SYSTEM ; 50
Reorganization

Normally the cf-files should be selfmaintalning, special
overflow areas f.ex. are never used, and deleted records can
be cleaned out during the normal use. But It may of course
happen, that record formats must be changed, that new chaln-
groups must be created, or old ones removed, or that a new
version of the cf-system demands that flleheads of the existing
filles are changed.

For doing this” kind of reorganization, four procedures are

Introduced: Init_extract, extract_cf, Init_add, and add_cf.
L 7 + ry

Nqerreesuen semester?

The basic scheme of a file reorganization, using these

procedures, Is the following:

1. All records of a file are extracted one by one in
sequential order. The extracted records will contain the
userparts as well as the chalnparts of the original

records,

2. The extracted records are transformed according to the new
record format. Care must be taken to preserve Inter-

record-references. If listfille records are renumbered or
masterflle keys are changed, the corresponding references
must also be changed.

3. A new filehead is created according to the new demands.

4, Records are added to the new file In sequential order.

Masterfile records are added in ascending keyorder and
listfille records are added at certain record-numbers,
normally the same record-numbers as before the reorganiza-

tion, In Increasing record-number order.

The procedures Init_extract and extract_cf are used In step

1 to fetch the records.

Tools for execution of step 2 are not provided here, but it

should on the other hand be possible to perform step 2 In a

reasonable way by means of programs coded In algol or’ fortran.

The procedures head_m or head_1 may be used in step 3 for the
creation of the new flilehead, and the procedures init_add,
add_cf, and close_cf are used for the relnsertion of records
In step 4.

The scheme can be used for any kind of reorganization, but
It should be emphasized that reorganization Involving resequen-
cing of records wlll be very complicated, even removal of dead

records from a listfile , if done sequentially, will Involve
much sorting and access to the relevant motherf! les.

So, In the followIng, only the simple reorganization of one

CF-SYSTEM 51
Reorgan!ization

file, %.e. cases, where all records of one fille are extracted
and added again In the same order, wlll be considered.

In this kind of reorganization, the keys of master records,
and the keys of list records willl be unchanged.

The reason for such a ereorganization can be one of the
following:

1. A new version of the cf-system demanding a new filehead Is
released.

2. You want to make a compressed dump of a flle on magnetic
tape without unused space and administrative tables.

3. You want to have masterfile records distributed evenly over

the whole file with a certain filling factor, or you will
decrease the total length of the masterfille. Listfiles
cannot be shortened because the mapping of record numbers

on the physical blocks Is not changed.

4, Some file parameters should be changed, f.ex. segs-per-
block, segs-per-bucket, max-bucks, or max-blocks.

In these four cases step 2 In the basic reorganization scheme

Is not needed.

5. The record format should be changed. New flelds must f.ex.
be added, or old ones removed, or the recordlength should
be made variable, etc..

6. New chaln groups should be created or old ones removed.

This Involves a change of the chainparts of all records of
flles associated with those chain groups.

The simple reorganization can always be performed on master-
files, and on listfiles of fixed length records.

But In connection with listfiles of variable length records

It is not sure, that all records can be added to the new
version of the file, if some recordlengths have been Increased,
or If the min-rec-length- or the segs~per-block-parameter of
head_1] has been changed.

This problem Is due to the fact that the record number of a
listflle record Is not changed by the reorganization.

A group of longer records, which In the old version of the
file were placed In separate blocks, may happen to belong to
the same block In the new version, or have grown so big, that

they cannot be accomodated In the block any more.

CF-SYSTEM 52
Reorganization

A remedy to this, 1s to have a smaller quantity of record

numbers per unit of physical room. This can be obtalned through

the use of a greater value of min-rec-length, the parameter

size_1(€2) of the procedure head_1. But you can normally not be

sure, that all records can go Into the new version of the file,

and the more sparce mapping of record numbers on the_ physical

room, will on the other hand increase the size of the listfile.

NB. The reorganization procedures are not coded yet.

CF-SYSTEM 53

Reorganization

Init_extract proc.no. 34

Reorganization procedure.
The procedure prepares a cf-file for extraction of records.

The extraction must be effectuated by successive calls of the

procedure extract_cf, and terminated by a call of close_cf.

Call: Init_extract (Cz, filename, giveup)

z (call and return value, zone) A zone
with room for at least one block (see

procedure buflength_cf).
filename Ccall value, string) Name of backing

store area holding a cf-file.
giveup (call value, Integer) As for algol stan-

dard procedure open.

Requirements:

zonestate = 4, after declaration.
fllename must point to a backing storage area containing

a cf-file.
If the file is a masterfile, it must contain at least

one record,

Results:

zonestate

result_cf
extract-cf.
1, no current record.

CF-SYSTEM 54
Reorganization

extract_cf proc.no. 36

Reorganization procedure.
The procedure creates an extracted record in the array glven as

the second parameter. Before extract_cf can be used, the proce-
dure Init_extract must have been called.
The first call of extract_cf will yleld the first record of the
file, the next call the next etc..
Note that also dead l!istfille records are extracted.
See appendix F for the format of an extracted record.

Call: extract_cf (z, extract_rec)

z €call and return value, zone) Connected
to elther a masterfile or a listfile by
Inlt_extract.

extract_rec Creturn value, real array or zone) WI11
hold the extracted record if not end of
file. The record is stored from byte l
and on.

Requirements:
zonestate = extract_cf.
result_cf = 2 must not have occurred.
The bounds of extract_rec must include the byte numbers
l and total_length. Csee appendix F).

Results:

no current record.

result_cf

1 ok

2 end of file

In case of result_cf = 2 extract_rec is unchanged, and a
succeeding call of extract_cf wikl give an alarm.

CF-SYSTEM 55
Reorganization

Init_add ; proc.no. 35

Reorganization procedure.
The procedure prepares a cf-file for addition of records.

The addition must be effectuated by successive calls of the

procedure add_cf, and terminated by a call of close_cf.

Call: init_add (z, fllename, buckfactor, blockfactor)

z (call and return value, zone) A zone
with room for at least one block (see
procedure buflength_cf).

fl lename (call value, string) Name of a backing
store area holding a cf-file.

gi veup (call value, integer) As for algol
standard procedure open.

buckf actor (call value, real) If listfille then
not used, If masterfile then see file_l
procedure Init_file_]!.

blockfactor Ccall value, real) See buckfactor above.

Requirements:
zonestate = 4, after declaration.
fllename must point to a backing storage area holding

a correct cf-filehead.

Results:

zonestate

result_cf
add_cf.
1, mo current record.

add_cf

CF-SYSTEM 56
Reorganization

proc.no. 37

Reorganization procedure.
The procedure adds an extracted record given by the second para-
meter to the fille glven by the first parameter.

Before add_cf can be used, the procedure Init_add must have been
called.

The records are added In ascending key- or recordnumber-order.
See appendix F for the format of an extracted record.

Call: add_cf (z, extract_rec)

z €call and return value, zone) Connected
to elther a masterfile or a listfile by
Init _add.

extract_rec €call value, real array or zone) The
extracted record must be stored here

from byte 1 and on.

Requlrements:

Results:

zonestate = add_cf.

The bounds of extract_rec must Include the byte numbers
l and total_length.
The total_length must equal 8 + user_part_size + chain_
part_size. (See appendix F.)

no current record.

result_cf

ok
not added, masterfille is full, or recno too great

- - , Improper user_part_size
- - , descending master key or recno.

- - 4 not room In listfile block. U
W

F
W
D

CF-SYSTEM 57
Appendix A: cf-alarms

ee ee ee ee ee ee ee ee eee

Errors may be found at several levels:

1. Standard errors, 1.e. errors concerning the device and the
transfers, may be analysed In the blockprocedure, as in any
other algol Input-output procedure. The giveup mask is a call
value to the cf_procedure open_cf. However, end of document

has a special treatment In the cf_system, as the masterfiles
are regarded as belng cyclic, and end of document In a
listflle means addressing outside the area, which should be
impossible. CSee the procedures get_m and get_1).

Unnormal situations: As a general philosophy Is chosen that

It Is not up to the cf-system to decide what may be regarded
as -normal- and -unnormal~, as far as normal ~bookkeeping-
can be maintalned. The standard Integer variable result_cf
will yield the result of a procedure call, which always
should be checked by the user. Any result of any cf-procedure

may also be caught In a procedure specified as a call value

to the procedure set_jumps_cf, though Its original purpose

rather Is to give a facility for supervision during debugging
of the program.

Grave logical errors, I|.e. requirements are not fulfilled at

a procedure call, will always terminate the run with an algol

run time alarm. In this: case the various zones are not
closed, and files which were In an update mode at the time
of the alarm will not be updated correctly.

The format of the alarm depends on, whether the error

occurs In a code-procedure or In an external algol procedure,
see the survey of alarm-messages on the following pages.

An alarm is generally caused by the users program, for

example If the procedures are called !n a wrong order, or if
the program does not care for unexpected values of result_cf.

Some alarms may be due to an error in the file, as for
example checksumerror In the fllehead. A file-error may
however be caused by a program-error in a previous run, or
by combining flles of different generations.

A few of the errors should be quite Impossible. They have
the alarmtext -cf-error- and can only be due to some. grave

error in the cf-code, or to some hardware-error during the
run,

CF-SYSTEM 58

Appendix A: cf-alarms

All alarms from code-procedures have the following format:

<alarmtext> <alarmno> cf-system

called from ...

where <alarmtext> Is a short mnemonic cause, and <alarmno> a
further specification.

The following survey of alarms Is arranged alphabetically after
the alarmtext.

text alarmno explanation error caused by

array p 13. The parameter array Is too short for the program

masterfile-key.

cf~-error 10 The mother-record of the actual chaln has cf-system

disappeared.

cf-error 37 The record-number Inside a listfille-record cf-system
does not correspond to the position of the

record in the file.

chain p 15 Parameter chainref does not contain a va- program

lid chainreference.

ch.ass. 9 The file and the chaln-group are not program
associated,

ch.head 18 The head of a listfile=record Is not con- file

sistent.

ch.state 16 The chain is not initialized, I.e. init- program
chain has not been called after open-cf.

ch.state 17 Last accessed record is not defined, i.e. program
the chainstate has become empty after the

last use of the chain.

ch. type 20 The chaln Is not headed, so a call of program
get~head is Impossible.

d.state 29 The daughter-zone Is In read-only-mode, program
so deletion of the mother-record and Its
daughter-chaln Is Impossible.

express.

mode p

m.state

no curr.

par.pair

prep-cf

prep-cf

prep-cf

prep-cf

prep-cf

prep i

prep |

28

<i>

25

26

32

33

CF-SYSTEM

Appendix A: cf-alarms

A return-parameter Is glven as an expres-

slon In the procedure-call.

Wrong mode~parameter In call of get-l,
Insert-1] or connect, lI.e.

mode<>1 and mode<>2 and mode<>3,

The mother-zone Is In read-only~mode, so
delete-1, Insert-1 or connect In mode 1
Cnext to mother-record) is ImpossIible.

Current record ina listfile does not

exist.

An error In the parameter-list In the call

of set-jumps~cf, get-~param-cf or set-param

-~cf. If i > 0, I shows the number of the
wrong parameterpair. [| = 0 denotes an

error. in the parameter jumpproc In call

of set-~jumps-cf.

too few segments In the document of a
listfile, I.e. segs < segs~Iin-head, or
the number of segments Is less than It
was in the last run In update-mode.

The zonebuffer is too small to open a
listfile.

Checksumerror or some other error In the

fillehead of a listflile.

The zone for a file Is not declared

with at least two shares.

Too many segments In the document of a

listfile, i.e.
Csegs - segs-in-head)//segs-per-block

> max-blocks.

Too few or too many segments In the docu-
ment of a masterfile, I.e.

segs < segs~per-buck or

segs > segs~per-buck x max-bucks.

The fllelength Is less than It was In the
last run In update-mode, or some error In

the bucket-head.

The zonebuffer Is too small to open or

initialize a masterfile.

59

program

program

program

program

program

file

program

file

program

file

file

file

program

rec.no.

z.state

19

22

<I>

CF-SYSTEM
Append!Ix A: cf-alarms

Checksumerror or some other error In the

filehead of a masterfile.

The zone for a masterfile Is not declared

with three shares.

Wrong zonestate internally

Empty masterfile

The record=number of a listflile-record Is
outside limits. This may happen explici-
tely in a call of get-numb-1 as a program-

error or implicitely In other procedures,

lf the file has been destroyed.

No listflle-record is assIgned to the
record-number. Program- or fllererror as
for alarmno. 19.

Wrong zonestate. <I> Is the actual

zonestate,.

60

file

program

cf-system

file

program
or

file

program
or

file

program

CF-SYSTEM 61
Appendix A: cf-alarms

SSD AD SS AD A AD OD CD SF MS OS GED ED GUD GUD CoD GD GMD ame ome cum eum GEA mm GD cme des am umb GOD GD Gm OUP GD Gan om OD

Alarms from external algol procedures have the followlng format:

x**X¥<proc.name> alarm:
<alarmtext> <I nteger> ext <line-Interval>
called from ...

An exception is alarms from the protectlon-system, which have the
format:

*xxxprotectcf alarm:
file <flleno> <filename> vers.In cat: <version>
<alarmtext> <Integer> ext <line-Interval>
called from ...

Here the text -file- Is replaced by the text -descr-, if the
trouble concerns the description-file.

program

xxxbuf lengthcf

xxxbuf lengthcf

xxxhead]

xxxhead 1

xxxhead |

xxxheadm

xxxheadin

xxxheadm

xxxheadm

xxxheadm

Appendix A:

text

block p

prep-cf

chalns p

loop-ch

silze-l p

chains p

recdescr

CF-SYSTEM

alarmno explanation

<I>

0

<i>

0

0

<I>

<i>

cf-alarms

The parameter blocks~-In-
core has an Illegal value.
<I> Is the erroneous value.

Some error In the fl lehead.

Chain-type or compressed-

key~size In parameter ar-
ray chalns has an Illegal
value, or If 1 = 0 then
wrong bounds of array
chains, or If 1 > number
of the last chain, then
listfile not daughter of
any chaln group.

A loop Is found In the

chain-structure given In
parameter array chalns.

One of the values given in
parameter array size-! is
lllegal.

As for procedure head-]

One of the values given In
parameter array rec-descr
Is Illegal, or If 1 > 2044
then too many keyfields.
COnly for noofkeys > 50).

Some unreasonable size

parameter,

Not room for 2 records of
maxlength In one block.

Not room for 1 block In

the first bucket.

62

caused by

program

file

program

program

program

program

program

program

program

program

xxxnewrecicf

xxxnewrecicf

xxxnewrecicf

xxxprotectcf

xxxprotectcf

xxxprotectcf

xxxprotectcf

xxxprotectcf

xxxprotectcf

xxxprotectcf

xxxprotectcf

Append! x A:

cf-error

fixed 1

z.state

change

descrrec

lookup

reserve

setdescr

updmark

updmark

version

CF-SYSTEM

<i>

<i>

<i>

<i>

<I>

<I>

cf-alarms

Trouble with iInsert-m., <I>

ts the value of result-cf.

The fille contains records
of fixed length, so It
has no meaning to use
new-reci-cf.

Wrong zonestate. <I> Is
the actual. zonestate.

The catalog entry with the
name <fillename> could not
be changed. <I> Is the re-
sult-value of the monitor-
function.

The file-description-

record In the descriptlion~

flle could not be: fetched
by get~-m. <I> Is the value
of result-cf after get-m.

The catalog entry with the
name <filename> could not

be looked up. <i> Is the

result-value of the moni-

tor-functlion,.

The fille with the name
<fllename> could not be

reserved. <I> Is the re-
sult-value of the monitor-

function.

The procedure setdescr-cf

was not called before

open-cf.

The file Is in the state

of an unterminated update.

An updatemark was expected
In the catalog entry of

the file.

The version~-number of the

fille does not correspond
to the version-number In
the description-file.
<I> Is the verslon-number

In the descr!iption-fliile.

63

cf-system

program

program

job adm

file

job adm

job adm

program

file

cf-system

job adm

2x

10

ll

12

Appendix B:

procedure names

and parameters

buf_length_cf
Cfilename, .
blocks_In_core)

extend_cf (z,
segments)

open_cf (Cz,
filename,
giveup)

set_Jjumps_cf

Cz, Jump_proc,
procno, results)

Init_chain (Cz, zl,
chalnno,
chalinref)

close_cf (Cz, rel)

get_m (zm, key)

get_1! (zl,
chalinref,
gmode)

get_head (zl,
chainref, key)

Insert_m (zm,
record)

Insert_1 (zl,
chalnref,
Icmode,
record)

Jmp

+
+

CF-SYSTEM
cf-procedures

result-cf

value and meaning

D
O

N
m

N
e

W
h
e

O
m

P
W
D

=
F
W
D

extended

ext, simple Ins.
not extended

moni tor-error

ok

ok, simple Insert

ok

ok

ok

record found

not found

» eof

record found

not found

ok

not connected

Inserted
already In file
too expensive

file full
length error
no buffer

Inserted

flll-limit exceeded

length error

no block

64

current record

meaningless

unchanged

zm:filrst; zlinone
zmifirst

unchanged

unchanged

none

the wanted

the next In file

the first - -

the wanted

gmode=2: last acc.
else: nome

unchanged

the Inserted

the one In fille

the next In flle

the Inserted

none

13

14

15

16

17

18

19

20

21

22

23

24x

25%

26x

27

CF-SYSTEM
Append!Ix B: cf-procedures

connect (zl, 1 connected
chalnrefl, 2 not connected
chainref2, Calready conn.)
I cmode)

delete_m Czm) 1 deleted
2 - » eof
3 not del. last left

delete_1 (zl, 1 deleted
chainref) 2 del, last In chain

delete chain (z, 1 deleted
chainref) 2 no chain to del.

next_m Czm) 1 found
2 not found, eof

put_cf (z) 1 ok

read_only_cf (z) 1 ok

read_upd_cf (z) 1 ok

update_all_cf (Cz) 1 ok

get_numb_1! (zl, 1 record active
recno) 2 record dead

new_recl_cf (z, 1 changed
length) 2 last rec. In file

3. too expensive
4 file full
5 length error
6 no buffer

head_m Cfilename, 1 ok
flleno, chains,
recdescr,
no_of_keys,
size_m)

head_1_ Cfilename, 1 ok
fileno, chains,
size_1)

Init_flle_m Czm, 1 ok
filename,
gl veup,

buckfactor,
blockfactor)

65

last acc.In chainl

none

the next In file

the first - -
the one

the next In chaln

none

unchanged

the next In file

the first - -

unchanged

unchanged

unchanged

unchanged

the wanted

none

same, new length
- , old length

meaningless

meaningless

none

28

29

30

31

32x

33%

34

35

36

37

Procedures marked with =x are external algol
A + In the jmp-column means,

Init _rec_m Czm,
record)

get_param_cf (z,
paramno, val)

set_param_cf (Cz,
paramno, val)

set_descr_cf
Cdescrfile)

protect cf (z,
actlon)

Init_extract (Cz,
filename,
gli veup)

Inlt_add (z,
filename,
gi veup,

buckfactor,
blockfactor)

extract_cf (Cz,
record)

add_cf (z,
record)

this procedure.

F
W
D

R
O

=

wm

F
w

bd

CF-SYSTEM
Appendix B: cf-procedures

record added
file full
length error
key error

ok

ok

unchanged

unchanged

ok

ok

ok

end of file

record added

file full
length error

key or recno.err.
no block

none

unchanged

unchanged

unchanged

unchanged

none

none

procedures.
that set-jumps-cf can be used upon

66

CF-SYSTEM 67
Appendix C: Survey of cf-states

wzonestates for masterfiles:

after-declaration

Initialize-m

read-only-m

read-update-m

update-all-m

Cvalue = 4). The zone has been declared,
but not yet opened. This is also the state
after a call of close-cf.

Cvalue = 20). During.initialization.

Cvalue = 16). During processing of the
file. Changes [In records will not be re-

flected in the file. Updating procedures
are illegal.

Cvalue = 18). During processing of the
file. A block of records Is only trans-
ferred to the file, If an updating proce-

dure has worked upon one of Its records.

(value = 19). During processing of the
file. All records willl be transferred to

the file.

Zonestates for listfiles:

after-declaration

read-only-l

read~update-]

update-all-1

Cvalue = 4). As for masterfiles.

Cvalue = 22). The analogy of read-only-m.

Cvalue = 23). The analogy of read-update-m.

Cvalue = 24). The analogy of update-all-Tex <

Zonestates for reorganization (masterfiles and listflles):

extract-cf

add-cf

Cvalue = 17). During the extraction of
records from a masterfile or a listfile.
The state Is set by procedure Init-extract.

Cvalue = 21). During the addition of re-
cords to a masterfile or a listflle. The

state Is set by procedure Inlt-add.

CF-SYSTEM 68
Appendix C; Survey of cf-states

Chalnstatesrs

not-Init

empty

last-accessed-def

The cf-procedure Init-chaln has not” yes

been called.

There Is not defined a last-accessed record

for the chain.

There Is defined a last~accessed record in

the daughterfile of the chain.

Record-states of listfile-records:

active

dead

The record can be processed via a chain or

its recordnumber.

The record has been deleted, but Is still
member of one ore more chains. CIt. cannot

be processed).

CF-SYSTEM 69
Appendix D. Array chains

The purpose of the array Is to specify the connections between
files In the cf-system, i.e. the cha IDs.
Chains are represented by the Identifications of the motherfile
and the daughterfile and a chalnnumber. The chalnnumbers” are
Indirectly glven by the order in which the chalnspecifications

appear In the array chains, while the logical filenumbers,

which identify the files in the system, must be supplied by the
user. The user must take care that the filenumbers Identify the
files unambiguously. The array is used as parameter for the two
procedures head _m and head_]l.

Declaration of chains;

A chainspecification consists of 4 consecutive elements of the
array and the first specification must start In element no. 1.
The upper limit of the array will stop the specification. The

4 elements of a chainspecification should be Initialized as
follows:

2. daughter no, the file_no of the daughterfile.

3. chain_type, the value 1 denotes a headed chaln, the value
Ua not headed chain.

4, compressed key size Cequivalent to key_part_sIze, RCSL 55-
D99 p. 4), the quantity gives the number of bytes occupled
by a compressed key of a motherrecord. It may be calculated

: 1. mother no, the flle_no of the motherfile.

na according to the following rules:

1, if _motherfile_Is_a_masterflle
add 4 for each long- or real keyfield
add 2 for each Integer keyfield
add 2 for two successive byte keyfields

add 2 for each single byte keyfield
CA fleld containing a Ilength-specification is not

counted).

2. If _motherfile Is a listfile
/ the size Is 2.

The quantity Is a return value of the procedures head_m and

head_! for all chaingroups of which the actual fille Is the
mother, I.e. the user need not be troubled by the calculation,
If he calls the head_ procedure of a motherflle before those
of the corresponding daughterfiles.

Chalnznumbers:
The chains are numbered by the natural numbers (1, 2, ..--)
according to their appearance in the array chalns. The chaln-

number Is a call value of the procedure iInit_chain.

CF-SYSTEM 74

Append!x H. Programming example

CF-SYSTEM Programming example.

begin
comment

w
o

This Is an example of an algo! 6 program which creates 2
master files: master_1 and master_2, and one Iistfile:
list.
2 chaln groups: chaln_1 and chaln_2, are associated to
master_1 and IlIst, and to master_2 and I!st respective-
ly. ;
A rudimentary description file: descrfille, sufficient

for the check of version numbers performed by the cf
protection system Is also created.
Various functlons are performed on the flle configura-

tion.

procedure check_one;

comment gives a case alarm if result_cf <> 1;
case result_cf of begin end;

procedure printtimeCtext);
string text;
comment

prints the time consumed since last call;
begin

own boolean later_call;
own real cpubase, tlimebase;
real cpu, time;

If later_call then
begin

cpu:= systime(l, timebase, time) - cpubase;
writeCout, <:<l0>:>, text, <: In seconds, cpu::>,
<<dddd.dd>, cpu, <:, real::>, time);

end later_call

else later_call:= true;

cpubase:= systimeCl, 0, timebase);
end printtime;

1 teiten REE

"printtimeC<::>); blocks_read:= 0;

begin
comment

block for creation of fille heads;

Integer
file_no,
flxed_rec_length,

I,
max_blocks,
max_bucks,

CF-SYSTEM
75

Append!x H. Programming example

max_rec_length,

min_rec_length,

no_of keys,

segs_per_block,

segs_per_buck;

Integer array

chalns(1:C2*4)),

rec_deser(1:4, 1:2),

size_l, size_m€1:4);

comment
initialize array chains:

chaln group mother daughter chaln type compr. key

1 1 100 headed see head_m

@ 2 2 100 headed see head_m

;

——o

for 1:= 1 step 1 until 2x4 do a oe nh D (s.)

chains(1):= case | of C
ONY |

2, 100, 1, 0); A

| Row.
comment

a

the fourth fleld In each line above, (compressed keysize, IS

initialized by head_m, and used by head}. —

Cfrom the record description below It can be seen to be 8

[bytes).
—_
eg

ea
rn

er

na

te
nt

tn
vi

e

create the head of master 13

file_no:= 1;

comment

@ Initialize the record description:

keyfield type order address

1 long ascending 4

2 byte descending 11

3 word ascending 10

length fixed

we

no_of __keys:= 33

for 1:= 1 step 1 until Cno_of_keys + 1) * 2 do

rec_descer(Citl)//2, 2-1 mod 2):= case |! of C

+3, 4,

-1, ll,
+2, 10,

0, 0);

OT

CF-SYSTEM 76
Append! x H. Programming example

comment
Initialize size parameters; /

size_m(1):
size_m(2):

max_rec_length:= 120;-
mex_bucks:= 100;

w
u
n

t
size_mC3) segs_per_buck:= 40;
size_mC4):= segs_per_block:= 2;

comment
A create the fille head, the backing store area: masterl,
a. must exists = aya. a ad A

7 er ah ee wo o7
head_m(<:masterl:>, flle_no, chains, rec_descr, no_of_keys,

size_m);

comment NA)
for simplicity, the same parameters are used for master_2;

File_no:= 2;

head_mC<:master2:>, file_no, chains, rec_descr, no_of_keys,
slze_m);

t nent ncurses . _ - settee IRON EN EERE LAL DEO LE

comment
Ww create the description file head;

_ file_no:= 1000;
benky — - f

Dany r\, comment
Carew Initialize the record description according to appendix E:

keyfleld type order address | Carl. de. otal
1 long ascending 12 6 } . J
2 long ascending 16 (Udy Fy d
3 long ascending 20 3 BCR G!

@ length word - 2 Doar .
; Vite ge

no_of_keys:= 3;

for 1:= 1 step 1 until Cno_of_keys + 1) x 2 do
rec_descr(Cit1)//2, 2 - 1 mod 2):= case 1 ofC€

+3, 12,
+3, 16,
+3, 20,

2, 2);

CF-~SYSTEM 77

Append!x H. Programming example

comment
Initialize size. _m, the description fille Is regarded as

belng a small file;

; wre ydon 2 mec ~ Ly
size_m(€1):= max_rec. length:= 100;*~ Ure, jabed hee. t
slze_m(€2):= max_bucks: 50; dew angi dA
size_m(3):= segs_ per_ buck: = 10; ; wine

comment w hotly =
never choose a smaller value for segs_per_buck;
size_mC4):= segs_per_block:= 1;

head_m(<:deserflle:>, flle_no, chains, rec_descr, no_of_keys,
——————" 1 Ze mM);

cues EM ACRE

comment
create the listfile head:

var lable record length, minimum about 20 bytes;
arent

file_no:= 100;

size_1C€1):= flxed_rec_length:= 0;
size_1(€2):= min_rec_length: = 20;
size_1C3):= segs_per_block:= 1;
size_1C€4):= max_blocks:= 2000;

head_1(<:llst:>, fille_no, chains, size_1); a—

end block for the creation of fille heads.

printtime(<:flle heads created :>);

hf “ , b , +

b/ Anan afler ‘

me. _Lerer.
MO. £. leew’

felon let bi udltx-¢ Ce ermleell

CF=SYSTEM 78 e Appendix H. Programming example

begin

comment
\V/ block for Initialization of master flles.

: master_1, and master_2 are provided with a dummy record
Liali having all flelds equal to zero, because open_cf requlres LANL that a master fille contalns at least one record,

& the description fille Is Initlallzed with & fille deseription
REM o records; | A . 20 ne.

MA) ou | Qutel meals (Aled Zone, echa Shaver
yf ys zone , Sea
[UY warter) ~zm1 (buf length_cf (<:master1:>, >, 3, stderror),

{\ / zm2Cbuf length_cf(<:master2:>, 1), 3, stderror), LN zdescr (buf length_cf(<:deserfile:> ys 3, stderror);

bujle-ta v integer dt Antal bbobleg
@ ” "ely, hide e@ Ud 6 ire Integer fleld io, descr_length; Pacerek (Se é

long fleld
descr_key_1,
descr_key_2,
descr_key_3,
l_fild;

real array

rec(1:50);

comment

Initialize the field varlables for the description file; by descr_ length:= 23 AG. eu, Pe
SSP descr_key_1l:= 12; Laer, el aA. i. ne Ae descr_key_2:= 16; \ MPGALY As BEA. af

descr_key_3:= 20;

comment tte

: nb rte’ set all flelds of array rec to zero; p Me En
t Sy for I_fld:= 4 step 4 until 200 do rec.]_fld:= 0; ? Me (1 S05 ~toament

initialize master 1 with one record having all flelds
equal to zero; hn ee har / mar / Gut maa (em. fer ‘opén’ 5

$34 Init_file_mCzml, <:masterl:>, 0, 1, 1);
g, 38 —t inlt_rec_m(€zml, rec); Ce block Jacter
a ' checkone; | . hs bee bP

| | comment buch jactor
\ this procedure checks that result_cf was one, see the

procedure declaration at the beginning of the program;

close_cf(€zml, true);

a

Pf
ec
ar
ra
ce
ra
ne
m

% J

CF-SYSTEM 79
Append! x H. Programming example

~~ comment
the same Is done for master 2; |
Init_flle_m(€zm2, <:master2?5, 0, 1, 1);

| Init_rec_mCzm2, rec);
| checkone;

i __... Close_cf(zm2, true);

~™ comment

initialize the description flle with 4 records, describing
the files Including the description file itself; :

fo-la¢ ISEs 3 init_flle_m(zdescr, <:descrfile:>, 0, 1, 1); vp a i : tutsn Lfelge) for flle_no:= 1, 2, 100, 1000 do BSIe co 10-3 i jbegin . C4- 2)
| comment —~Lb teg

@ f the file numbers of master_l, master_ 2, list, and 7. q- ~.
| descr_file;) P "a tn PK ap mtb
' rec.descr_length:= 30 ;4— (Letuaaler. 4 autad nah, / rec.descr_key_l:= 2; mm Meroe OOPR Steer

_ WANE. hee. Luvs ti, 2 160 byes

= 25 wads

checkone;

comment
i the version numbers are zero In the description records as
| well as In the catalog entries of the corresponding files,
\ if the files were created by set In this way:
i masterl= set 120, etc. just before the call of this
| program;

, vend for file_no;

__close_cf(zdescr, true);

comment

\ “yee end block for InftTalization;

printtime(<:files initialized... :>);

aot

ic
es
ct
ar
er
am
an
ac
am
ae
cs
es
ae
n TT

eee

CF-SYSTEM 80
Appendix H. Programming example

begin
comment

block for processing of the file configuration:
200 records are Inserted In both master filles, at random
keys, and 1000 list records are connected to records
in both files via chain group 1 and chain group 2; ew

gwall
 ne;

€ zone ' : t, To

zmlCbuf length_cfC<:masterl:>, 2) +°10*12//4,>53, stderror),
zm2Cbuf length_cfC<:master2:>, 2) +.10*x12//4,°3, stderror),
ziCbuf length_cfC<:list:>, 3) + 100//8,-4, stderror);

comment , 3
the addition to buflength_cf provides for extra bufferlength

for extensions of the files during the processing: 10 extra

buckets for the master files, and 100 extra blocks for the
listfile. —_ L. — Seay atin Fk. & ~

the factor 12 In the expression for the master zone buffer
length Is equal to compressed_keys!ize + 4, see appendix G;

Integer

1,
Ic_mode;

Integer field
length, —
m_key_3;

long field
l_fild;

real
chaln_ref_1l,
chaln_ref_2;

real array , ; ushen ar fj
m_rec, lI_rec(€1:50); | Bu RA CUM = CH Lan

. N)

procedure create_key;

comment

this procedure generates a pseudo random master key

In array m_rec;
begin

own Integer ps_random;
randomCps_random) ;
m_rec.m_key_3)= ps_random mod 10000;

end create key;

a 4,
t Le Ee ae)

oe

CF-SYSTEM 81 Append!x H, Programming example

comment
Initlaltze the fleld varlables;

length:= 2; comment the length fleld of list .records; m_key_3:= 10} comment see the file head creation;
“—~ ee PAMPY VEAL ya 4, Ange, (L ke re LA a ai, ! oT ?

f set_descr_cf(<:deserfile:>); 1.

| comment Ra. 5 (8
| this call provides the cf-system with the name of the ' description file;
bo . RIMES

_ - open_cfCzml, <:masterl:>, 0);
¢) Pen checkone; |

open_cfCzm2, <:master2:>, 0);
@ checkone;

_ open_cfCz1, <:list:>, 0);
/ comment

the verston numbers and the update marks have been checked, Lm and the zone states are read_only; ,

read_upd_cf(zml);
read_upd_cf(Czm2);
read_upd_cf(z1);

comment
now the zone states are read_update, Insertions are al lowed, and the update marks ane set Tn the catalog entries; Sud £8 > dea ete ene POHL. BOA ORE

tou t. latter 2 Init _chatnCzml, z1,. 1. Chatn_ref_1); Clataa,. wel lerutue tel Init_chalnCzm2, 21, 2, chaln_ref_2); & “ comment AL. llmey pe keode. < Grr. chains
the 2 chaln groups are ready for processing, the chaftn_ are used to reference them; —

@ for I_fld:= 4 step 4 until 200 do
mirec.l_fld:= l_rec.l_fld:= 0;

CF-SYSTEM B2

Appendix H, Programming example

2GO He LONE: y LM LAWN 4.

“for 1t= 1 step 1 until 200 do

begin
comment

insert 200 master records In master_l, with random values

of keyfleld 3, and the other fields equal to zero;

make_a_key: AY fb: , . en

Create_key; => lel fee ihioy Mbate 1 Mrn hl» Mint ©

Insert_m_rec:
Insert_mCzml, m_rec);

case result cf of
begin
comment 1, ok, do nothing;

3?

comment 2, record exists already, try another key;

goto make_a_key;

comment 3, not Inserted, too expensive.

this Is not possible when param_cf has not been used

to change the Insertion parameters;

checkone;

-comment 4, the file Is full, extend the file with one

bucket = 40 segments; “\, - ;

jLuu> extend_cfCzml, 40);
Le

checkone;

goto Insert_m_rec;

iL. end 4;

comment 5, length error, not possible with fixed length;

checkone;

comment 6, no buffer, not possible because result_cf has

been checked after open_cf and extend_cf;

checkone

end case result cf;

end Insertion of 200 records in master_1;

\

' eee
LN

CF-SYSTEM 83

Append! H. Programming example

Zé 42 ve € oS l PAL bee, £ y,

Heese rsNON ORTH en

printtime(<:master recs Inserted:>);

comment

Insert 200 records In master_2 In a more crude way;

for 1:= 1 step 1 until 200 do
begin

create_key;

Insert_mCzm2, m_rec);
case result_cf of
begin
comment 1, ok;

?

comment 2, exists already, repeat;

t:= f - 1
end case result_cf;

comment
other results will give a case alarm;

end Insertion of 200 records In master_2;

L UA by ¢

1000
w t

for t:= 1 step 1 until 1000 do

begin

comment
Insert 1000 lIst records connected to random master

records. ,

the list records are clustered in chaln group 1, f.e.,

insert_1 works upon chaln_ref_1;

create_key; sel. tw ate. bated
te 6 22s lund _ alelee Ov |

get_m(zml, m_rec); -S@ES%. ‘adele , deh deur nase Auch fbi
comment Cthere A

the result Is Ignored, there wil) sways be a current’ “76 “8

record In a master file;

comment
Insert a Ifst record as the last In the chain_1 depar-

ting from the current master_1 record.

Insertion as the first In chain Is faster, but

it does not demonstrate the use of get_1;

get_1C€z1l, chain _ref_1l, peers din, forshe et

comment

read the first record In this chain, If any; 4

Ate. kuadet m “‘Uelee fev oft :

ic_mode:= If, result_ cf = ljthen 2 else 1; “

comment

Insert mode Is next to last accessed, if there Is any

record In the chain, else next to mother;

CF-SYSTEM

e Appendix H. Programming example

for {i= 1 while result_cf = 1 do get_1(zl, chatn_ref_1l, 2);
comment ;

read all records In the chaln, last accessed In chain
\ group 1 Is now the last In chain, If any; —_ |

Hes l_rec.length:= 30; Aeekbey Abr.

“Ree (68
Insert_l_rec:

+ Insert_1Cz1, chaln_ref_1, Heamedes 1

(case result_cf of —
| begin

comment 1, ok, do nothing;

,

comment 2, fill limit exceeded, extend the file with
20 blocks = 20 segments;

@ i begin
| extend_the_file:

i extend_cf(zl, 20);
| checkone;
{ goto Insert_l_rec;
\ end 2;
\ comment 3, length error;
\ checkone;

\ comment 4, no block can take this record;
\ goto extend_the_file
\--.. end «= case result_cf;
nae MO

ys Y comment
. Loloa connect the]Ist record to a random master_2 record, as
NOOD first In chain;

ssi e' VEL S create_key;
get_m(zm2,

m_rec);

Ic_mode:= 1; comment connect next to mother;

—p connect(z1, chaln_ref_1, chaln_ref_2, I!c_mode); . Lo ‘’.
checkone; Yo led ap duchgeed Lge ofte.

___ end Insert 1000 list records; Mole Mar .

comment soshnunaaeoane

master_1 Is not updated any more;

read_only_cfCzml);
4

\ \

printtime(<:list recs Inserted :>); \

\

T, } fie f; 4 4, 4 4
kh BA BAAbAkbe HAT &

ava an fi & ' ke y)

NLCOLR g KMRL.

- i ; a Cr A he ¥ hig HAs a {

CF-SYSTEM 85

Append!x H. Programming example

comment
go through all chains of chain group 2, at the same time

look up the master_1 record belng the mother of the chain

1 passing through each list record, and at last delete the

list record,

the llst records are counted, to check that all 1000 have

been deleted;

y ff
tuusmke ycomment

, master_2 Is read by means of next_m, starting at the dummy

of . record created by Init_rec_m;
No ate. Sn Gn

MAL C? m_rec.m_key_3:= 03) j
get_m(zm2, m_rec);, ™
checkone; °

@ 1r= 0;
for 1:= 1 while result cf = 1 do 5

pobegin ‘

/ comment })
{ read the first record In the chaln_¥ departing from the

| current record of master_2;

get_1(zl, chain _ref_2, 1);

for tt= 1 while result_cf = 1 do

~begin

aaa get_head(z1l, chain_ref_l, m rec);
| “ checkone;

comment

now m_rec contains the key of the record, which Is the

mother of the chaln_1 passing through the current list

record;

| —pget_mCzml, m_rec);
@ checkone;

comment
the calls of get_head and get_m above are performed

as a demonstration of how each list record acts as a

link between a record In master_2 and a record In mas-~

ter_1l;

*>delete_1C€z1, chaln_ref_2);
| f:= 1 + 1;
i comment
\ delete and count the list file record, delete will

\ access the next record In chain_2, If anys —-

_(e-end reading and deleting of one chaln;

1b next_mCzm2);
\ Comment

a

\
atauls ele

{ read the next master_2 record; repult.el< 2

Lend reading of master_2;

CF-SYSTEM
Append!Ix H. Programming example

tf 1 <> 1000 then
writeCout, <:<10>xxxerror In count 27>, 1)

close_cfCzml, true);
close_cfCzm2, true);
close_cf(€zl, true);

end block for processing of fille configuration;

printtime(<:list records deleted:>);

writeCout, <:<10>blocks read: :>, blocks_read);
end program

°
?

86

CF-SYSTEM 87
Append!tx H. Programming example

A run of the programming example,

The filles were dimenstoned to be fllled up to about
70 percent.

Master_1l and _2 were situated on disc_l and the listfile
on disc_2 Csee lookup cat.yes In the output).

The disc stores were of type RC 433,

The cpu and the disc stores were slightly loaded by other

processes,

Note that the verston numbers In the catalog entries of
the 3 filles have been fncreased to 1 during the run,

Output from the run.

xmasterl=set 80
xmaster2=set 80
xlist=set 140

xdescrfille=set 10

xcfex

file heads created In seconds, cpu: 0.82, real: 2.47
flles Initlaltzed In seconds, cpu: 0.16, real: 1,32
master recs Inserted In seconds, cpu: 9.23, real: 214.16
list recs Inserted In. seconds, cpu: 26,26, real: 510.76
list records deleted In seconds, cpu: 10.22, real: 178.85
blocks read: 103
end
xlookup cat.yes masterl master2 list descrfile

masterl 15 0 27 1634
80010000

master2 17 0 27 3842
80 010000

list 3 0 27 3.872
140010000

descrflle 22 0 27 820
10000000

CF-SYSTEM 88
Appendix J. How to dimension the filles.

This appendix contains some rules for the cholce of the size

parameters for the two procedures head_m and head_}.
The rules are based on one years experience with file

configurations for administrative data processing.

The size_m parameters of head_m,.

The 4 parameters are described In the order of occurrence In
array size_m, a more natural order of specification Is:
max_rec_length, segs_per_block, segs_per_buck and max_bucks.

max_rec_length

The maximum length In bytes of the user part of a

record,

The sum of max_rec_length and the size of the chain
part must not exceed 512 x segs_per_block//2, i.e. half
the block size.

The size of the chain part is 2 * number_of-
_associated_chaln_groups, see appendix F., format of

extracted records.

Note that both max_rec_length, chaln_part_size, and
the actual record lengths are rounded up to a multiplum
of 4& In case of variable record length.

_ In the case of fixed record length, max_rec_length
and chaln_part_size are rounded [If the sum max_rec_
length + chaln_part_size Is not a multiplum of 4&.

In case of varftable record length the value of
max_rec_length should not be specified much greater

than the actual maximum record length, because that
tends to decrease the efficiency of Insertions.

max_bucks

The maximum number of buckets the fille will ever hold.

This quantity should be chosen high Cf.ex. 8000
//segs_per_buck = max_bucks for a whole RC 433 disc
store). The only cost Is max_bucks =x Ccompressed_key_
size + 4) bytes of backing storage for the bucket
table. CNormally only a few segments in the head of the
file).

The amount of core store used for the bucket table
In the zone buffer depends only on the actual size of

the file.
For compressed_key_size see appendix D., format of

array chalns.

CF-SYSTEM 89
Appendix uJ. How to dimension the files.

segs_per_buck

The number of segments In one bucket,

The quantity segs_per_block should be selected before

segs_per_buck,

Segs_per_buck should not be chosen too small, espe-
clally not so small that only one block Is left In the
first bucket, because this will disturb the Insertion

of new records seriously.

A magic number concerning segs_per_buck Is 40, the
number of segments of one cylinder of the RC 433 disc

store. .

With each bucket equal to a cylinder of the disc

store, the maximum number of cylinder shifts required
for a call of get_m Is one, against two [In the general

case.
On the other hand It ts not quite simple to = syn-

chronize buckets and cylinders [fn practice.

In the following segs_per_buck Is selected as to

economize the use of core storage and backing = storage

for bucket table and block tables.
The block table always needs an Integral number of

segments both In the fille and tn the zone buffer,
whereas the bucket table In the zone buffer just
demands room corresponding to the actual number of

buckets.
This suggests a bucket size which Is so great that.

the entries In the block table utIl{izes an area which
is Just below or equal to an fntegral number of

segments.
If the size of the block table fs called segs_per_

block_table, then segs_per_buck can be calculated thus:

segs_per_buck =

Csegs_per_block_table =x 512//
Ccompressed_key_size + 4))

x segs_per_block + segs_per_block_table

The compressed_key_size Is the total size In bytes of
all keyfields of a record, see appendix D., format of
array chalns.

Normally segs_per_block_table can be set to 1, but In
case of a great value of compressed_key_size or If the
flle Is very great this may give rise to too small
buckets and a bucket table of excessive size.

Balance between bucket table and block table Is
achleved if the value of segs_per_buck Is not far from:

CF-SYSTEM 90
Appendix JU. How to dimension the files.

square_root(max_segs_In_file =< segs_per_block)

I.e. the mean proportional of the file size and the

block sfze.

But, segs_per_buck should not be selected too small,
as a small bucket size will decrease the Insertion

efficiency, and It should In any case not be less’ than

the value which makes the first bucket contain 2

blocks:

segs_per_buck >=
3
+ CCcompressed_key_size + 4) =* max_bucks

+ 9)//512
+ segs_per_block_table
+ 2 * segs_per_block

If the value of segs_per_buck Is not set below 40
segments this problem Is unlikely to occur, and on the
other hand there [s no reason [nm normal cases to go

below the 40 segments.

segs_per_block

The number of segments In one block.

A reasonable. number of records should fit Into one

block, say 5 or more. This minimizes the loss of
backing storage and [Increases the speed of a sequential

reading.

On the other hand room Is reserved In core for up to

2 blocks during the processing, so In case of great
record lengths [It might be better to use a shorter

blocklength.

The balance between the core store demands of bucket

table, block table, and block should also be taken Into
consideration, especially In connection with greater

files.

The two aspects are Included [In the following formu-

la:

segs_per_block = maximum_of
C5 x Cmax_rec_length + chaln_part_size) // 512 + 1)

and
cube_root(max_segs_In_file ~

CCcompressed_key_size + 4)/256)*x2))

The first expression will let a block contain a

Example

CF-SYSTEM 91
Appendix uJ. How to dimension the filles.

reasonable number of records.
The second one will tet the block table and the

bucket table together use about as much room as one
block, If the value of segs_per_buck Is _ selected

according to the rules [n this append!Ix.
The quantity max_segs_In_file can be estimated as the

the maxftmum volume of records plus 20 to 30 percent
extra for administrative tables. and spare room,

of a great master file.

max_rec_length = 150 bytes
chaln_part_size = 10 bytes C5 chaln groups)
compressed_key_size = 8 bytes (2 long keyfields)
max_segs_In_file = 8000 segments Cone RC 433)

The first quantity to calculate Is segs_per_block:

segs_per_block = maximum_of
C5 « €150 + 10) // 512 + 1) = 2

and
cube_root(8000 <x CC8 + 4)/256)*x2)) =
cube_root(17.6) = 3 Cthe rounded value)

The last expression [fs decisive, we choose: segs_per_
block = 3.

The next quantity [Is segs_per_buck., For segs_per_

block_table equal to 1 and 2 we get respectively:

C1 x 512 // (8 + 49) x 3 + 1
127

segs_per_buck

and
segs_per_buck = €2 x 512 // (8 + 49) x 3 + 2

257

These values are compared with the expression:

square_root(max_segs_In_file x segs_per_block)
= square_root(8000 x 3) = 155

The choice of segs_per_block_table = 1 gives the best
fitting to this value, so the conclusion Is: segs_per_
buck = 127.

Max_bucks Is Just set to 8000//127 = 63.

«

CF-SYSTEM 92
Appendix uJ. How to dimension the files.

The size_! parameters of head_l.

The 4 parameters are described itn the order of occurrence In
array size_1!, which Is also a reasonable order of specifica-
tion.

fixed _rec_length

The fixed record length If the value Is positive. If
It Is zero, variable record length Is specified.

It Is emphasized that fixed record length gives
advantages concerning reorganization,

The value of this parameter depends entirely on the
format of the users records. Fixed _rec_length Is roun-
ded up to a multiplum of 2, not 4 Csee max_rec_length
for master files).

min _rec_length

In case of varlable record length this parameter
specifies the minimum length of records which should be
able to flll a block entirely.

It should not be chosen too great because [t can be
necessary to Increase [ts value {fn connection with

reorganization.
The waist of backing storage depending on mlin_rec_

length Is given by this formula:

100/Cmin_rec_length + chain_part_size + 1) percent.

segs_per_block

The number of segments in a block.

The block length should be so great that a reasonable
number of records can go fnto one block. This number
should not be less than 5 and not less than the average
number of records [na clustered chain,

It Is also of importance that each block demands half

a byte of core store for a block table entry, If.e. a
file of 1000 blocks demands about one segment of core
for the block table.

If the block table shall not take up more room. than
half a block the following formula arises:

CFe-SYSTEM
Appendix J. How to dimension the files.

e
e

6

segs_per_block = maximum_of
CC5 or number_of_recs_in_clustered_chain)

x Cmax _record_length + chaln_part_size)
//512 + 1)

and

square_root(max_segs_In_file/512)

For chaln_part_slze see appendix F., format of ex-
tracted records,

This means, Cthe last term), that a file of more than
500 segments should have segs_per_block >= 2, and that
a fille of more than 2000 segments should have segs_
per_block >= 3. ;

max_blocks

The maximum number of blocks the fille will ever hold.

This quantity should be chosen high Cf.ex. 8000
//segs_per_block = max_blocks for a whole RC 433 disc
store). The cost Is only max_blocks//2 bytes of backing
storage [In the block table. (Normally only a few
segments In the head of the fille).

The amount of core store used for the block table In
the zone buffer depends only on the actual size of the

file.

93

assoclated

chalns

buckets

cf_proc_no

‘chain

chainfleld

chalngroup

chatnno

chatnref.

chalnstate

current

record

daughterflle

fl lename

file no

CF-SYSTEM 94

Appendix Z. Keywords

Untntelligent use of the cf-system will terminate
the run with an algol] runtime alarm, The alarm Is
Identified by a short alarmtext, see the survey
of these In app. A,

A term used In procedure descriptions for the
chalngroups, that are defined for a_e specific

fille, .

See RCSL 55-D99, filet.

An tnteger call value to the users Jump procedure

Every cf-procedure has a procedure number which
may may be found fn the head line of the
procedure description, The number Is also used In
calls of set_Jumps_cf to specify when the Jump

procedure should be called.

A term for lIstrecords with common head.

A fleld In the protected part of a record used
for linking. The format of the field depends on
the type of the chain.

All the chaltns connecting two specific filles by
means of one set of chain flelds.

A number of a chain-group. (See the procedure

description of init _chain, and the description of
array chains, app. D).

The reference for a specific connection between

two files. This reference is created by the
procedure [nit_chaln, and is used as parameter in
several procedures. . (See the procedure descrip-

tlons).

Some of the cf-procedures are dependent on the
latest use of a specified chain. The chalinstate

keeps track of that. See the possibilities In the
survey of the cf-states, app. C.

A term for the last processed record in a file.
Current record ts the same as the zonerecord.

The subordinate file of a chain, t.e. the file
that contatns the elements of a chafn. Calways a

listfile).

The name of a backing store area.

The logical number of ae file used [n chain

head

key

Jump_proc

last_accessed
record

listfile

list _record
_State

masterflle

max_rec
_length

min rec
_length

motherflile

orlgtinating
In

proc.no.

CF-SYSTEM 95
Appendix Z. Keywords

specifications. (See the description of array
chains, app. D).

A term for a record !n a motherfile containing

the record number of the first record [na chain.

Chatns are sald to be headed if all records In

a chaln contain the reference to the head.

A group of fields In a masterfile record used for
Identification and organization, When used as a
parameter of a procedure, a real array with the

same format as a record (see record) long enough
to hold all keyflelds.

An exit procedure specified by the user. See app.

A CErrors during processing, -Unnormal = situa-
tions), and the procedure description of set_
Jumps_cf.

The record number of a daughterfile record, which
has been last accessed via a specific chain-
group.

ts elther a daughterflle or a daughterfile and a
motherflle. Records are referred to by a record-

number Csee recordno.). Characteristics of list-
flles are that they are badly accessed sequen-
tlally, and that [Insertion of records Is done
according to a strategy, so that the user cannot

determine the physical address or record number

of the new record.

Every record Ina listfile has an [Indication of

Its -state-. See the possibilities In the survey
of the cf-states, app. C.

1s always a motherflle. Records are referred to

and tfdentifled by a key, and the organization Is
Indexed sequential. See RCSL 55-D99.

Is for a masterflle less than segs_per_block *
256. For a Iltstflle see the calculation In
procedure description for procedure head_!.

Is the length of a record, which can hold the
whole key and lengthfleld,

A term for a file that contains the head-records
of a chain-group. May be a masterfile ora
listfile,.

I.e. rooted In. A term used only In the procedure
descriptions of the delete-procedures,

See cf_proc_no.

result cf

rec_no_cf

record

recordlength

recordno.

zonestate

CF=-SYSTEM 96

Append!Ix Z. Keywords

A standard Integer varlable used to designate the

result of a call of a cf=procedure,

A standard Integer vartable holding the tIlast

delivered rec_no In listfliles.

A number of consecutive bytes. When used as a

parameter of a procedure the elements must. be

stored fn the lexficographical first elements of

an arbitrary array. The record may hold a_ length

specification.

A cf-file may consist of either variable length
or fixed length records, If fixed length Is
chosen, all records are of max_rec_length. Re-
cordlength Is always given as the number of bytes
of the users part of the record.

Cshort: rec-ng). Records in listfiles are Identi-
fled and referred to by record numbers, which are
allocated by the cf-system during the’ Insertion.

The cf-procedures are dependent on the latest use

of the zone. The zonestate keeps track of that.
See the possible zonestates In the survey of
cf=-states, app. C.

