| 6th — 20th September
Budapest, Hungary

AT T

Sad

r

‘

@

UNIX
Goes East

Proceedings of the
Autumn 1991 EurOpen Conference

September 16—20, 1991
Budapest, Hungary

This volume is published as a collective work.
Copyright of the material in this document remains
with the individual authors or the authors’ employer.

ISBN 1 873611 01 3
Further copies of the proceedings may be obtained from:

EurOpen Secretariat
Owles Hall
Buntingford

Herts
SG9 9PL
United Kingdom

These proceedings were typeset in Times Roman and Courier on a PostScript printer driven by a white
swan. PostScript was generated using refer, tt, pic, psfig, tbl, sed, eqn, troff, pm and psdit.

Whilst every care has been taken to ensure the accuracy of the contents of this work, no responsibility for
loss occasioned to any person acting or refraining from action as a result of any statement in it can be
accepted by the author(s) or publisher.

UNIX is a registered trademark of UNIX System Laboratories in the USA and other countries.

AIX, RT PC, RISC System/6000, VM/CMS are trademarks of IBM Corporation.

Athena, Project Athena, Athena MUSE, Discuss, Hesiod, Kerberos, Moira, Zephyr are trademarks of the
Massachusetts Institute of Technology (MIT). No commercial use of these trademarks may be
made without prior written permission of MIT.

CHoRus is a registered trademark of Chorus systemes.

CONVEX is a registered trademark of CONVEX Computer Corporation.

DEC, Vax, VMS are trademarks of Digital Equipment Corporation.

Intel 386, Intel 486 are trademarks of Intel Corp.

MC68000, MC88000 are trademarks of Motorola Computer Systems.

MIPS is a trademark of MIPS, Inc.

Motif is a trademark of the Open Software Foundation.

MS-DOS is a registered trademark of Microsoft Corporation.

OPEN LOOK, SVID, System V are registered trademarks of AT&T.

OSF, OSF/1 are trademarks of the Open Software Foundation.

PostScript is a trademark of Adobe, Inc.

Prism is a trademark of HP-Apollo.

Sequent, Symmetry are registered trademarks of Sequent Computer Systems. Inc.

Sun, SunOS, SPARC, NeWS, NFS are trademarks of Sun Microsystems, Inc.

UltraNet is a trademark of Ultra Corporation.

UTS is a trademark of Amdahl Corp.

UNICOS is a trademark of Cray Research Inc.

X Window System is a trademark of MIT.

X/Open is a registered trademark of X/Open Company, Ltd.

XENIX is a trademark of Microsoft Corporation.

Other trademarks are acknowledged.

ACKNOWLEDGEMENTS

This is the first EurOpen conference to be held in Eastern Europe. The technical programme covers a
range of topical subjects, with distributed processing and networks as the main themes.

The host organisation is EurOpen Hungary, whose members have done a great deal of work to ensure the
success of the conference. In particular, Maria Toth of the John von Neumann Society for Computing
Sciences has been EurOpen’s main point of contact and local organiser.

The programme committee, consisting of Kim Biel-Nielsen, Mike O’Dell, Johan Helsingius, Frances
Brazier, and Elod Knuth, have sifted through all the papers offered and produced the technical programme.
The final programme meeting lasted till midnight, during which time the sun did not set!

Thanks are due to the Conference Executive, Ernst Janich, for advice and timely reminders. Neil Todd has
once again produced an excellent tutorial programme, and Helen Gibbons and her team at Owles Hall have
worked hard behind the scenes to keep everything together and moving in the right direction.

Thanks also to the typesetting crew at Imperial College, who have done wonders with troff to produce the
proceedings.

I hope you enjoy the conference and find it useful.

Andrew Findlay
Programme Chairman

Output on a Linotype 60 by Phil Male and Danny
Turner, Computer Newspaper Services, Howden.

These proceedings were specially produced for EurOpen at the Department of Computing, Imperial
College, London, using resources generously provided by the Computing Support Group.

~ sm, jsp.

Table of Contents

UNIX and Virtual REalitycccooeiiiiiinininiicincnicreentcnennecsise s 1
Mike Griffin; Dept. of Cybernetics, University of Reading, UK

Interactive User Interface Design — The Teleuse Approachc.ccoevviiiiincnne. 9
Achim Brede; Bredex

The QEF/QEI Model for Software Component ConsiStencycceceevveneenne. 11
David Tilbrook; Sietec Open Systems Division

Give a Process t0 your DIivers!ccccoviiriinnvinnnncnennnccnescne s 13
Francois Armand,; Chorus systemes, France

Multimedia Synchronization and UNIX ... 29
Dick C.A. Bulterman, CWI, Amsterdam, The Netherlands

Using a Wafer-Scale Component to Create Efficient Dist. Shared Memory 47
Aarron Gull; City University, London, UK

Performance Evaluation: The SSBAS at AFUU ..ot eevvnennens 67
C. Binot; AFUU, Le Kremlin-Bicetre, France

Near Real Time Measures of Unix-like Operating Systemsccccceveevcveeruennenns 79
Mario Cambiaso; DIST — Universita di Genova, Italy

Steppingstones: Some Remarks on Measuring X11 Performance 91
Werner Kriechbaum, IBM AiX FSC, Munchen, Germany

Security and Open Working in the Networked Academic Community 101
Denis Russell; University of Newcastle upon Tyne, UK

phLOGIN, Why, What and HOW ...t 117
Alain Williams; Parliament Hill Computers Ltd, UK

MANIFCLD: A Language for Specification of IPCccocovviievinniieneninnen. 127
Farhad Arbab and Ivan Herman,
Centre for Mathematics and Computer Science, The Netherlands

A Distributed Concurrent Implementation of Standard MLcccceevennenne. 145
David C. J. Matthews, University of Edinburgh, UK

Load Balancing SUIVEYccccccociiiiiininiiniiie et tescesee st esesene e sane st asaesvsenes 157
Dejan S. Milojicic;
Institute “Mihajlo Pupin”, Beograd, Yugoslavia

A Public Access Interface to the OST DIirectorycccccveevveerieecveincinnineeecinnns 173
Paul Barker,
Dept. of Computer Science, University College, London, UK

Managing the International X.500 Directory Pilotc.ccocvvvenvinvienincceneennnen. 187
Colin J. Robbins; X-Tel Services Ltd, UK

A Design Overview of XLOOKUPcccovvniiiiiiniiniiiniinreeneeeseesceectecenesssesnesseens 199
Damanjit Mahl,
Manufacturing & Engineering Systems, Brunel University, UK

An Implementation of a Process Migration Mechanism using Minix 213
Sylvain R.Y. Louboutin, University College, Dublin, Ireland

HAWKS - A Toolkit for Interpreted Telematic Applicationsc......... 225
Carl Verhoest; Telesystemes Innovation, Paris, France

Virtual Swap Space in SunOS ...t 237
Howard Chartock,; Sun Microsystems, USA

The Art of AUOMOUNINEcoviiiiiiiiiiiieee e eee st e e ennas 249
Martien F. van Steenbergen, Sun Microsystems Nederland B.V.

Monitoring Network Performanceccocoociviiviriecreeeeeeee e 267
Martin Beer,

Dept. of Computer Science, University of Liverpool, UK

StormCast — A Distributed AppHCAIONcooiiciiviiiireeeeeeeeeeeeeeseeeeeeeeeesanas 273
Dag Johansen, University of Tromsg, Norway

Location-Independent Object Invocation in Open Distributed Systems 287
Herman Moons;

Dept. of Computer Science, Katholieke Universiteit Leuven, Belgium

Communicating Database ObJECESc.ccecveereriirerreneeieenecrese e svenenee 301
Agnes Hernadi;
Hungarian Academy of Sciences, Budapest, Hungary

Unix in Novell ENVIrONMENtccooviiiiviiiiiicccceietcsee e et ee e se s s 309
Gabriella Ivanka,
Computer Research and Innovation Centre, Hungary

An International Hotel Reservations Systemccccoecevvveviniveeeeneeeereeeeeene 311
Gary M Bilkus, BLiX Limited, UK

Author Index

Farhad Arbab <farhad@cwi.nl>ccccccccciiniiiiiniiiiiiiieeireee e
Francois Armand <francois@chorus.fr>cccceeemeniimniininniinninniesceneeee
Paul Barker <P.Barker@cs.ucl.ac.uk>cccccccovvvvimmniiiiiinnnninninienneecnnnee,
Martin Beer <mdb@compsci.liverpool.ac.uk>ccccccuveeiiinniinnnccnnncen.
Gary M. Bilkus <gary@utell UUCP>cccooiiimiieiniiniciccnci,
C. BinOt <sshba@afuufr>ccc.oeveeeieiiiiiiiiiiiieenieeeieee et
Achim Brede <achim@bredex.utucp>ceeeeriircrvviieiiinniineeeecee e,
Dick C.A. Bulterman <dcab@cwi.nl>coooceiecoiiiiiiiiiicininrcnieeenie s
Mario Cambiaso <sumar@dist.unige.it>ccccccovvvvviviciiinreenniiereeniiieenennnnes
Howard Chartock <howard@sun.com>ccccivviimniiiniiiiniiinnicnnncene,
P. Dax <SSPA@AfUULTS ..ooeveeeeeeeieeieeeeiiiiie et sae e
Susanna Delfino <sumar@dist.unige.it>c..cccccccocviiiniiiriinineiennsineenecennens
N. DoODUC <SShaA@AfUUST> ...oooneveenieniiiiieiiiiic ittt
M. Gaudet <SShaA@AUULTS ...oeeeveeeeeeriireeeiieecrieesit et
Mike Griffin <mike.griffin@cyber.reading.ac.uk>cccccevmvriininncnenncnnns
Aarron Gull <aarron@cs.city.ac.uk>cccccccoeviiviiiinniiiniiiiiiiecirneee e
Gunnar Hartvigsen <gunnar@cs.uit.no>c.cocoeeveeiieiiniiniinninninincnnenenenns
Ivan Herman <ivan@cwi.nl>cccccoeiviimiiiiniiiiiiiiin et
Agnes Hermnadi <h792her@ella.hu>coovieiiiiiniiiiiiiiiiiicenn
Shaun Hovers <shaun@ compsci.liverpool.ac.uk>cccoooeevvviiieiiiineiieeen.
Gabriella Ivankaooooiiiiiiiecccc e
Ferenc JAMIIKoooiooeiieieetecce e
GabOT JANEK ..oviiiiiieeieeeeee et
Dag Johansen <dag@cs.Uil.no>ccccccoieeeieniieninnienieieteenee s
Elod KNUN oottt
Wermner Kriechbaum <werner@ibm.de>cccccoovvvvuviviiininnniiiiiiiinnnn,
GYOIZY LEPOTISZ oottt
Sylvain R.Y. Louboutin <Louboutin@ccvax.ucd.ie>cccevevevnmnenurnnnnc.
Damanjit Mahl <Damanjir. Mahl@brunel.ac.uk>cccooveeemeiivcnnciccnnnnnn
David C.J. Matthews <dcim@lfcs.ed.ac.uk>ccceceevvuiivmeinniiieniriennnnnnn.
Dejan S. Milojicic <eimp002@yubgss21.bitnet>coccovveiiiincincniiniinnnnens
Richard Mitchell ...
Herman Moons <herman@cs.kuleuven.ac.be>cccooeveviivieniiniinancnnn,
Milan Pjevac <eimp002@yubgss21.bitnet>cocoeeierenenrenenininicnienicnens
Colin J. Robbins <C.Robbins@xtel.CO.UK> cccceeiviriiniiiiniiiienieierieenneens
Guido van ROSSUIMoivvieriieiiiicciiiieccieie st
Denis Russell <Denis.Russell@Newcastle.ac.uk>cccceeeevuniviinninninnnnn.
Peter Snyder <peter@sun.com>ooeeeeiieiiniininniinieeee e
Martien F. van Steenbergen <Martien.van.Steenbergen@ Holland.Sun.Com>

Giancarlo Succi <charmi@dist.unige.it>ccoveeeeereciiiciuiiiiniiiiieeiareeeennens
David Tilbrook <dt@snitor.uucp>ccoccovvvviniiiiniiiiiiiiiniinininireeeireeeeiee,
Dusan Velasevic <velasevicbuef78@yubgefS1.bitnet>c..coovvuvvvnrnninn.
Pierre Verbaetencccccocoeiiiiiiiiiiiiiiciienic ettt
Carl Verhoest <cave@telesys-innov.fr>ccccoooeevveircieeniiniiicinsieesneeenneeens
Alain Williams <addw@phcomp.co.uk>cceeeeiriiniiiiiiiiniiinineeeennn,
DIK WIIEL ..oeeieiiesieeieeie ettt s s st er st eas e s e snasbesnaa s

vi

127
13
173
267
311
67

29
79
237
67
79
67
67

47
273
127
301
267
309
301
301
273
301

91
309
213
199
145
157

287
157
187

29
101
237
249

79

11
157
287
225
117

29

UNIX Conferences in Europe 1977-1991

UKUUG/NLUUG meetings

1977 May Glasgow University

1977 September University of Salford

1978 January Heriot Watt University, Edinburgh

1978 September Essex University

1978 November Dutch Meeting at Vrije University, Amsterdam
1979 March University of Kent, Canterbury

1979 October University of Newcastle

1980 March 24th Vrije University, Amsterdam

1980 March 31st ~ Heriot Watt University, Edinburgh

1980 September University College, London

EUUG/EurOpen Meetings

1981 April CWI, Amsterdam, The Netherlands

1981 September Nottingham University, UK

1982 April CNAM, Paris, France

1982 September University of Leeds, UK

1983 April Wissenschaft Zentrum, Bonn, Germany
1983 September Trinity College, Dublin, Eire

1984 April University of Nijmegen, The Netherlands
1984 September University of Cambridge, UK

1985 April Palais des Congres, Paris, France

1985 September Bella Center, Copenhagen, Denmark
1986 April Centro Affari/Centro Congressi, Florence, Italy
1986 September UMIST, Manchester, UK

1987 May Helsinki/Stockholm, Finland/Sweden
1987 September Trinity College, Dublin, Ireland

1988 April Queen Elizabeth II Conference Centre, London, UK
1988 October Hotel Estoril-Sol, Cascais, Portugal

1989 April Palais des Congres, Brussels, Belgium
1989 September Wirtschaftsuniversitat, Vienna, Austria
1990 April Sheraton Hotel, Munich, West Germany
1990 October Nice Acropolis, Nice, France

1991 May Kulturhuset, Tromsg, Norway

1991 September Budapest, Hungary

UNIX and Virtual Reality

Mike Griffin Richard Mitchell

Department of Cybernetics
University of Reading, UK
mike.griffin@cyber.reading.ac.uk

Abstract

With the growth of interest in Virtual Reality systems, current imple-
mentations are based around customised, or experimental processing
platforms. This is not an ideal state of affairs, as it tends to reduce
compatibility to a bare minimum, and prevent the utilisation of cheap
mass storage and processing units.

If a Virtual Reality system is based on a UNIX platform, such that sup-
port and communication layers are used, then this tends to reduce the
cost of development of the overall system, and allow automatic compa-
tability between differing designs.

In this paper, the proposed design of a UNIX supported virtual reality
system is presented. Practical implementation details are discussed, as
well as the current research progress on this project to date.

Introduction

UNIX systems are becoming increasingly prevelant in both research
and industrial areas. As this has become the case, the cost of such sys-
tems has reduced dramatically, and the size of the software base associ-
ated has increased in proportion. It is quite clear, that with the merger
of UNIX types in the System V release, this phenomena will increase.

Virtual reality, on the other hand, is a relatively young application and
research area. Although the first systems were designed as early as
1968 [Sut68a], display and tracking technology were not sufficiently
well advanced to make such systems a suitable commercial proposi-
tion. The recent advances in liquid crystal display technology has
nullified the first of these problems, and research into magnetic tracking
systems has solved the second. Refinement is still needed, but practical
presentation hardware is now commercially available.

Aside from the technical problems of developing suitable display and
interaction interfaces for Virtual Reality systems, there is the difficulty
of making the computer platforms, software and applications packages
for these systems. Current research, both in commercial and academic
environments, is towards customised, non standard implementations.
These tend to be expensive in nature, and lack the basic support to
grow and benefit the expanding user base.

UNiX and Virtual Reality

It is quite clear that custom operating systems for this area, as well as
computing platforms and software, may not be necessary if the under-
lying basis for such systems was a standard UNIX type platform. Some
significant modifications may be necessary on higher layers to support
the requirements for Virtual Reality, but a large number of core sys-
tems would still be usable. How this may be achieved, can be seen by
the examination of an already existing Virtual Reality system.

Thus in the next section the subject of Virtual Reality will be discussed,
followed by a section on the system developed at Reading. Then the
proposed implementation using UNIX will be given.

Virtual Reality

Virtual Reality or VR is the ultimate example of man-machine interac-
tion [Fol87a]. The basic idea is to present to the user a machine gen-
erated world which appears to the user to be real, and which allows the
user to interact with that world. There are various applications where
such systems may be used, some of which are given here.

Ideally, humans should not have to enter hazardous environments, so it
is a good idea to send a machine instead which is controlled remotely.
Generating suitable control commands can be difficult, so a good sys-
tem would be one in which a model of the hazardous scene is made and
in which the human operates. The movements made by the human are
used to both control the remote machine, which thus changes the
environment, and to update the model, so that these changes are made
apparent to the user, and so provide the necessary feedback to the user
|Gri91a].

Simulators have been used to good effect in the training of pilots for
many years. VR systems are advanced examples of such systems, and
so could be used for training pilots as well as trainee drivers of cars,
etc.

Currently air traffic controllers select where planes should fly using a
two dimensional display. A much better system would provide three
dimensional information. A VR system would allow the user to appear
to be “up in the clouds”, and allow him to turn his head around and find
the three dimensional position of the planes.

VR systems could also be useful for architects. They could design a
building and the VR system would display the building and allow the
architect to walk through it.

Another obvious application is games. These could allow both single
player games and mulit-user games. For the latter other people could
appear in the virtual reality and interact suitably. Fun!

These are typical applications, but how are they achieved? As the user
perceives a world with all senses, an ideal system would present suit-
able information to all these senses. Thus a visual scene should be gen-
erated, with suitable sound, tactile sensing, appropriate smells and suit-
able forces affecting the human. Current systems do not achieve all of
these, but systems are available which generate stereo visual informa-
tion, audio, tactile and some force information, thereby generating data
for the most important senses.

In many VR systems the user wears a helmet containing two video
displays on which information is displayed for each eye. The informa-
tion on the two displays is suitably different so that the scene displayed
appears to be three dimensional. Audio information is easily provided

EurOpen A ‘91 - Budapest, 16-20 Septemb

Eg UNIX and Virtual Reality
SIMULATION USER /
USER / SIMULATION
CONVERSION CONVERSION
SIMULATION
SYSTEM

Figure 1: Virtual Reality System

using speakers for each ear. The tactile and force information is
achieved using a dataglove which the user wears on his hand, and
which allows the user to feel that he has picked up an object, for exam-
ple.

These devices allow the generation of the world, but the user must
interact with the world. Thus sensors are required to detect where the
user is looking and his position. Thus the position and orientation of
the head, and independently the position of the pupils of the eyes, are
measured. The dataglove is also used to measure the position of the
hand and the relative movements of the fingers [Bur91a].

As a result of these interactions, the user may change the world. Thus
the world model should be updated accordingly, and its appearance to
the user changed suitably. Figure | shows a block diagram of the
scheme: this contains the user and the simulated world, with suitable
interfaces between them, operating in an interacting feedback loop.

Current technology is available to provide the hardware for VR sys-
tems. What is needed now are the tools to generate the virtual realities,
including the worlds and the objects within the worlds. At Reading a
system called LOKI has been produced for this purpose [Gri91b].

The Reading “LOKI” System

This system is designed as a first generation development to test some
of the practicalities of developing small virtual reality systems. It is
based around a commonly available microcomputer system, with a cus-
tom hardware and software arrangement. Native operating system
calls are utilised as often as possible, but the basic interprocess com-
munication in the LOKI server is fundamentally semaphoring and mes-
sage passing in nature.

A Virtual Reality software package is required to satisfy a number of
specific requirements;

l. To enable the user to model an environment.

2. Torepresent this model to the user.

w

To permit the user to interact with the model.

EurOpen Autumn 91 — Budapest, 16-20 September 3

UNIX and Virtual Reality

OPERATOR

0

OPERATING
/ SYSTEM

WORKSERVER

Figure 2: Virtual Reality Computer

These requirements are met by the LOKI system in the following
manner. An initial server process is run, which acts as a central hub
called the Workserver. This server is responsible for the holding of the
model, rendering the model database, the supporting of applications,
and the running of an object oriented language system used to describe
objects in the virtual reality [Gri90a]. The applications are achieved by
a number of slave processes which are controlled by and interact with
the Workserver, and which use the facilities of the operating system of
the’ machine on which the system runs. A typical application could be
a CAD package used to generate the realities: this uses the operating
system for file storage, interaction with the user, etc., and generates a
world used by the Workserver. A block diagram of the system is
shown in Figure 2.

The workserver itself is shown in more detail in Figure 3. This con-
tains various parts. First there are standard library routines, the task
handling system and the LOKI compiler system. The rest of the work-
server contains the worlds with which the operater may interact, and
the objects which may exist in the world. Associated with these objects
are so called daemons which allow the objects to move within the
world, and the means whereby the objects may be shown to the user:
the graphical and sound blocks shown in Figure 3 are used for this pur-
pose.

Slave processes may be run from the “Workserver” hub, each process
being supplied with a communications pipe to talk to the main system.
Library routines may be accessed to perform various functions, by
passing commands to the workserver, via this pipe system. In this way,
models are defined, manipulated, and rendered without any of the
model information being held in the slave process. This means that
failure of a slave does not crash the LOKI system, and that applications
packages written tend to be small.

The slave processes work effectively on “objects” within the Work-
server system. An object is an item in the simulated world which is
implemented as a data structure which can contain references to a pro-
gram, geometrical qualities, other objects, and so forth. These objects
are contained in an object core, but are not all necessarily being used.
The system contains a list of valid worlds, each of which has a number

ijé UNIX and Virtual Reality

LIBRARIES

WORLD1

0 SOUND
TASK \/

HANDLING
SYSTEM

0
o T

INTERFACE

/

OBJECTS

S

WORLD2

GRAPHICS

WORLD3
OBJECT

DEFINITIONS DAEMONS

Figure 3: Workserver Block Diagram

of defined objects associated with it. The user is presented with just
one world at one time, but may be switched between them at will.
Objects may be referenced by more than one world, but may be called
within each environment only once (because, for example, an object
cannot be in two places at once).

It is possible to define objects as being just geometrical instances, i.e.
having a definite shape which is then displayed to the user. This does
not cover the problem of assigning behaviour to objects. There are two
methods for achieving this; firstly to use the slave processes or applica-
tions to control objects directly; or secondly to use the LOKI program-
ming language to assign objects their own programs. This is where the
compiler block in Figure 3 is used: definitions of the objects are com-
piled and stored in the objects section of the workserver. This pro-
gramming language facilitates most of the necessary behavioural con-
trol for a simple virtual reality. In use, the daemons utilise these
behaviours to move objects around within the world.

The handling of objects is achieved using an object oriented method. A
particular object, say a car, can exist in the world at a particular posi-
tion, moving at a given speed, etc. However, there may be many cars in
the world, sharing various attributes, like appearance, ways in which
they move, etc. Thus there is a separate description of these common
attributes which is inherited by each object instance, and used by the
system to determine the position of the car, its appearance, etc. Further
sophistication is allowed: suppose various cars are on a transporter
lorry: when that lorry moves, so do the cars: again the inheritance pro-
perties allow for such a case.

Slave processes and the workserver are controlled by the computer’s
own multitasking executive. The object multitasking system is facili-
tated by a separate, custom arrangement. In this a non pre-
emptive/pre-emptive strategy has been implemented. Programs run by
objects generally execute a number of instructions, followed by an
explicitly or implicitly defined “SYNC” command. This command
stops the further processing of this program, and the next object in the
environment is handled. If a task executes too many instructions, the
Workserver forces a “SYNC” to occur: this is explained below. When
all objects have been handled, then the display of the current environ-

EurOpen A ‘91 — Budapest, 16-20 Septemb 5

&

UNIX and Virtual Reality

ment is updated. This display is then presented to the user. After
display presentation, the list of valid objects is then reprocessed, and
this is then continued in a cyclical manner.

As display update for the scene should ideally occur twenty five times a
second, the above cycle needs to occur evenly, and the individual pro-
grams attached to the objects need to pass control as quickly as possi-
ble to the next object for a smooth and fast scene display. If, however,
a program has been badly written, such that control is not passed on to
the next object, then the system could “stick” on that task. To prevent
this a “SYNC” is forced after a certain number of instructions has been
issued.

In the overall system, it was decided that tight scheduling of tasks was
not necessary for the slave applications: for example, the CAD package
generating the world does not need to operate in real time. Updating
the computer graphics and the model database is however a tight
scheduling problem, in order to achieve smooth animation for scenes
for the observer. This was the reason that a separate multitasking
scheduler was developed. Input handling from the user is also pro-
cessed by this scheduling system, as smooth input sampling is also
necessary for a satisfactory system.

Disk operations, the forking of slave processes or applications, system
clean up operations and communications to other tasks on the same
computer are dealt with by the native operating system calls.

Implementing LOKI on a UNIX Platform

LOKI bears a close resemblance to most research and commercially
available Virtual Reality software in its functionality and general
implementation. It can be seen that there are elements within the
object system, as well as the graphics and user interactions, which can
be said to require regular and fast scheduling. If the size and complex-
ity of the database is to be increased and the system is to remain real
time, it will almost certainly require the use of parallel processing.
Coarse grained message passing systems have been attempted in other
systems, and this seems quite successful.

UNIX scheduling on a standard platform is ill designed for delivering
exactly even and equal time slicing to all it constituent processes
[Bac86a]: the overall performance degenerates with the platform load-
ing and specific activities like DMA, etc. Real time UNIX kernels exist,
which deliver even time slicing but these are expensive and not gen-
erally available. As specific interfaces are required for Virtual Reality
work, i.e. special graphics systems and input devices, it would seem a
good compromise to implement the object oriented program elements
on this hardware as well, and place the support elements on the UNIX
system.

In the case of the LOKI system, work is underway to implement this
method in the following manner. A parallel processing system, based
around a dedicated shared memory architecture machine is proposed.
This system processes the object oriented elements of the design.
Information is then passed first to a dedicated graphics and audio
rendering system, and then on from this to the operator. Another dedi-
cated system intercepts input from the user and then passes this to the
parallel processing schema.

Applications programs would be held on the UNIX platform, and dealt
with as standard UNIX processes. Communication with the model sys-

EurOpen Autumn ‘91 — Budapest, 16-20 September

UNIX and Virtual Reality

tem would be facilitated by the use of named pipes [Mic90a], utilising
the same form of command system as in the early version of LOKI. A
process, similar to a workserver, would exist on the platform to act as
receiver for these commands, and to pass information to and from the
dedicated hardware. The utilisation of a filing system would be per-
formed through this, as well as providing access to all the standard
UNIX resources. With reference to Figure 3, the worlds, the objects,
daemons, etc., are on the dedicated hardware, the rest is on the UNIX
platform.

This system places all the real-time dependent elements onto dedicated
hardware. This creates a system which is somewhat more expensive
than a schema just based on the UNIX platform. Unfortunately it is not
possible to use just a standard UNIX platform, for the reasons stated,
but the compromise proposed here ensures that a large proportion is
placed on a standard environment.

For a basic Virtual Reality system, the full complexities of UNIX are
not necessary. However, a full VR system and appropriate support,
having a three dimensional workstation system requiring the VR func-
tions and all the functions needed by a normal operator, is a different
proposition. Here, the highly developed electronic mail facilities,
shared filing systems and general network communications, which exist
on UNIX [Bou83a], provide exactly the type of facilities needed as part
of the complete system.

Conclusions

For Virtual Reality systems, a large amount of specialist software and
hardware is required. To date, all systems are based around either cus-
tomised or non UNIX platforms. The cost of these dedicated systems is
high, and for large scale commercial success, would need to be
reduced.

If a system similar to the LOKI schema was to be placed onto a UNIX
platform, some specialised elements would still be required, providing
the necessary interaction with the operator, and suitable real-time facil-
ities. However, many of the elements of the complete system could be
placed on the UNIX platform, thereby utilising the existing facilities
provided, and hence reducing the development time of the VR system,

References

[Bac86a] M. J. Bach, The Design Of The UNIX Operating System,
1986.

[Bou83a] S.R. Bourne, The UNIX System, Addison-Wesley (1983).

[Bur9la] Grigore Burdea, Jiachen Zhuang, Ed Roskos, Deborah
Silver, and Noshir Langrana, “Direct-drive Force Feed-
back Control for the Dataglove,” in Proceedings of Euris-
con '91, Corfu (1991).

[Fol87a] J. D. Foley, “Interfaces For Advanced Computing,”
Scientific American (1987).

[Gri90a] M. P. Griffin and R. J. Mitchell, “Surround Vision Sys-
tems: The Role of Object Orientated Programming,” in
IEE Colloguium on CYBERNETICS TODAY, Digest
1990/044, London (1990).

A

EurOpen Autumn 91 - Budap

, 16-20 Sep

UNIX and Virtual Reality

[Gri9l1a]

[Gri91b]

[Mic90a]

[Sut68a]

M. P. Griffin and R. J. Mitchell, “The Use of Simulation
Systems To Control Manually Operated Remote Manipu-
lators, With Long Pure Time Delays,” in Proceedings of
Euriscon '91, Corfu (1991).

M. P. Griffin, “A Cybernetic Perspective of Virtual Reality

and Telepresence Technology,” PhD Thesis, University of
Reading (1991).

Sun Microsystems, STREAMS Programming, Sun
Microsystems Inc (1990).

1. E. Sutherland, “A Head Mounted Three Dimensional
Display,” pp. 757-764 in Proceedings Fall Joint Comp
Conf (1968).

Interactive User Interface Design

The Teleuse Approach

Achim Brede

Bredex
achim@bredex.uucp

Abstract

Designing user interfaces for new applications is not an easy task. Not
only the complexity of software components for implementing user
interfaces (e.g. like the X Window System and OSF/Motif) have to be
considered, human factors also play an important role. Lots of work
has been done to implement tools for helping designers and developers
to implement user interfaces.

A study of modern computer software came to the result that about
60% effort is needed for the user interface part and only 40% for the
application code. This can be measured either in lines of code or time
of development.

If one looks closer into the user interface part, it can be divided into the
following three portions:

° The static part or the presentation layer

. The dynamic part or the dialog layer

. The API or the application interface layer

The paper will give examples of all three layers and discuss the benefits
of each.

The presentation layer can be built by an interface graphical editor
(WYSIWYG). The result can be written to a file by generating C code
or generating a specific user interface language.

The usage of a dialog manager for specifying the dynamic behaviour is
compared to C coding. Finally the paper looks into the application
interface. The extensibility with new objects (widgets) is also dis-
cussed.

EurOpen Autumn ‘91 - Budapest, 16-20 September 9

EurOpen Autumn ‘91 — Budapest, 16-20 September

The QEF/QEI Model for
Software Component Consistency,
Dependency Determination, and
Construction Recipe Ordering

David Tilbrook

Sietec Open Systems Division
dt@snitor.uucp

Abstract

This presentation investigates the problem of determining when and if
a process within a software construction system should be invoked.
Within the UNIX community, the best known approach to this problem
is that employed by make. make invokes a process to update a target
file when the files on which it depends exist and are themselves up to
date, and if the target file is older than any of its dependents. This
approach has the advantage of being very simple, both to implement
and to understand. But it is far from adequate, as is discussed in this
presentation.

This presentation analyses the difficulty and importance of ensuring
software component consistency and completeness. It defines the prob-
lem and discusses its relevance and implications. A model and
definition of consistency is presented. Problems with that definition are
then examined with respect to tradeoffs and complexity, the concept of
versioning, and the difficulties of strict application of the consistency
model. Suggestions for circumventing some of the problems presented
by the model, such as propagating gratuitous time stamp changes, are
presented.

Any consistency model is highly dependent on the derivation and/or
expression of the dependencies. Various approaches to both aspects
are discussed.

Given models for consistency and dependencies, the problems in deter-
mining the order of execution can be discussed.

Finally, strategies for software organization that simplify or improve
the performance of the construction process, while ensuring the
integrity of the product, are presented.

Many of the solutions and approaches presented in this presentation are
based on the author’s systems for software construction and version
management, Quod Erat Faciendum (gef) and Quod Erat Inveniendum
(gei) respectively.

EurOpen Autumn ‘91 - Budapest, 16-20 September 11

EurOpen Autumn ‘91 - Budapest, 16-20 September

Give a Process to your Drivers!

Francois Armand

Chorus systéemes, France
francois @chorus.fr

Abstract

This paper presents how the modular architecture used for the
CHORUS/MiX V.3.2 system enables system writers to encapsulate UNIX
device drivers within UNIX processes, and the possibilities offered by
this feature.

The CHORUS architecture is designed to support a new generation of
open and distributed operating systems. A microkernel provides gen-
eric services allowing servers that cooperate within subsystems to offer
standard interfaces: a UNIX SVR3.2 interface is available and a UNIX
SVR4 interface is under development. The CHORUS microkernel pro-
vides services to manipulate actors and threads (memory management,
scheduling and so on). It also offers a distributed Inter-Process Com-
munication (IPC) facility and services to dynamically connect user pro-
vided functions to hardware interrupts and traps.

CHORUS/MiX V.3.2 is implemented as a set of the following servers: a
Process Manager, a File Manager, a Terminal Manager and a Socket
Manager (to provide BSD sockets). In addition to standard UNIX ser-
vices (which have been transparently extended to distribution), one can
also use CHORUS services to take advantage of CHORUS real-time
features and multi-threaded processes.

The CHORUS/MiX V.3.2 has been experimentally enriched by the intro-
duction of a new kind of server named a “Driver Actor” (DA). A DA
allows one to encapsulate device drivers within independent actors.
This new kind of server has been (experimentally) used to separate the
disk driver from the File Manager.

As a consequence, this separation removes the constraint placed on the
File Manager to reside into the machine supervisor address space, as
privileged instructions are executed only by the driver itself. Thus, the
File Manager can run as a UNIX process either in user or supervisor
address space, communicating with the driver through CHORUS IPC
accessible at UNIX interface level. This allows one to take advantage
of standard debuggers, such as sdb and gdb, to debug the File Manager.

Using CHORUS IPC between the File Manager and the Driver Actor per-
mits them to be transparently distributed over a network of processors.
Therefore the driver may be loaded on a dedicated board while provid-
ing this driver with an environment compatible with that of a UNIX
native kernel. This kind of configuration is used within the Multi-
Works Esprit project.

EurOpen Autumn 91 — Budapest, 16-20 September 13

Give a Process to your Drivers!

In addition, the CHORUS/MiX subsystem permits one to dynamically
load processes running in the supervisor address space usually reserved
for use only by the UNIX kernel. Thus from a shell, one can dynami-
cally load, locally or remotely, UNIX drivers as if they were “common”
processes.

1. CHORUS/MiX

1.1. CHORUS Architecture

1.2. CHORUS Kernel

A CHORUS System is composed of a small-sized Nucleus and of possi-
bly several System Servers that cooperate in the context of subsys-
tems to provide a coherent set of services and user interface. A
detailed description of the CHORUS system can be found in [Roz88a].
Some other systems have adopted similar architectures: Mach
[Acc86a], V-system [Che88a] and Amoeba [Mul87a].

The CHORUS kernel provides the following basic abstractions:

. The actor defines an address space that can be either in user
space or in supervisor space. In the later case, the actor has
access to the privileged execution mode of the hardware. User
actors have a protected address space.

One or more threads (light weight processes) can run simultane-
ously within the same actor. They can communicate using the
memory of the actor if they run in the same actor.

Otherwise, they can communicate through the CHORUS IPC that
enables them to exchange messages through ports designed by
global unique identifiers.

A message is composed of a (optional) body and an (optional)
annex. Annex size is fixed (64 bytes currently). Body size is
variable.

e

Message

=<

CHORUS Kernel

CHORUS Kernel

l | Site

Figure 1: CHORUS basic abstractions

EurOpen Autumn 91 — Budapest, 16-20 Sepiember

Give a Process to your Drivers!

User Address Space

CHORUS Kernel

Figure 2: MiX subsystem structure

1.3. The MiX subsystem

MiX is a CHORUS subsystem providing a UNIX interface that is compa-
tible with UNIX SVR3.2. It is binary compatible with SCO on AT/386
machines. Herrmann’s paper provides more details on the implementa-
tion of the MiX subsystem. It is composed of the following servers:

The Process Manager (P.M.) provides the UNIX interface to
processes. It implements services for process management such
as the creation and destruction of processes or the sending of sig-
nals. It manages the system context of each process that runs on
its site. When the P.M. is not able to serve a UNIX system call by
itself, it calls other servers, as appropriate, using CHORUS IPC.

The File Manager (F.M.) performs file management services.

The Device Manager (D.M.) manages asynchronous lines, key-
boards, pseudo-ttys, etc and implements the UNIX line discip-
lines.

The Socket Manager (S.M.) implements BSD 4.3 socket ser-
vices, providing access to TCP/IP protocols.

For performance reasons and because they manage traps or interrupts
these servers run in system space.

UNIX processes are implemented by the P.M. on top of the abstractions
provided by the CHORUS kernel. Basically, a UNIX process is com-
posed of one actor within which one thread is running.

1.4. Extensions

One goal of CHORUS/MiX is to offer the user new services:

Providing multithreaded processes,

Transparently extending traditional UNIX services to distribution,
thus providing a distributed file system, remote execution of
processes and distributed signals,

Providing CHORUS IPC at the UNIX interface level,

Providing access to the priority-based preemptive scheduling,

EurOpen Autumn 91 — Budapest, 16-20 September

15

Give a Process to your Drivers!

Providing the ability to dynamically execute processes in system
space.

More details on these extensions can be found in [Arm89a] and
[Arm90a]. The later possibility is extremely important to the rest of
this paper. The system space is partitioned between the CHORUS kernel
itself and CHORUS/MiX servers. The free space is available for the
user to load processes dynamically in system space. Loading processes
into system space is desirable to achieve better performance or gain
access to the privileged mode of execution of the hardware. This abil-
ity is restricted to the UNIX super-user.

2. History and Related Works

2.1. CHORUS/MiX and the drivers

CHORUS/MiX has always tried emphasize on modularity by splitting
the main UNIX kernel functions into independent modules. In the
current CHORUS/MiX V.3.2, however, one basic service has not been
“separated” in such a way — device drivers:

° Drivers such as disks, floppies and tapes, offering a “block inter-
face” are embedded within the File Manager.

Drivers for terminals, keyboard/mouse offering only a “character
interface” are included in the Device Manager.

It was deemed more important to separate file management from pro-
cess management and, thus, to be able to distribute them over a net-
work, than to separate a disk driver from the file management as the
management of files is tightly coupled with the management of a disk.

However, CHORUS/MiX has already experimented with partial driver
separation in its previous versions:

° CHORUS V2: In version V2, UNIX servers ran as “user mode”
actors, and thus had no access to privileged hardware instruc-
tions. 1/0 operations were performed by the kernel upon recep-
tion of request messages sent by the UNIX servers. As it was a
very low-level interface, UNIX drivers had to be modified.
Moreover, this interface was too dependent on the machine on
which the system ran.

Actor
Manager

File
Manager
Terminal 9

Manager
Driver

Driver lower]
CHORUS V2 Kernel 5 layer | I

Figure 3: I/0 Management in CHORUS V2

EurOpen Autumn 91 — Budapest, 16-20 September

N
d

% Give a Process to your Drivers!
File
Process Manager
User Address Space
Supervisor Address Space Trap JAA vy Trap
Driver
Process lower
Manager layer

CHORUS V3.0 Kernel

Figure 4: Previous I/0 Management in CHORUS V3.0

° CHORUS V3.0: In the first implementation of CHORUS/MiX on
Bull SPS 7/70, the File Manager executed in user mode. The
sequences of instructions of the disk driver that contained
privileged instructions were separated in routines running in sys-
tem mode that were dynamically connected to a trap, during
driver initialization. Once again, this approach involved a
specific adaptation for each driver being ported.

None of these two attempts fit with the “natural” driver interface pro-
vided in UNIX kernels.

2.2. Related Works

° MACH: MACH 3.0 [Gol90a] also provides a UNIX implementa-
tion based on a microkernel. The UNIX emulation runs in user
mode within a “single” server communicating with the drivers
that are linked together with the microkernel. Communication is
achieved using MACH IPC. This is similar to CHORUS V2 with
the important distinction that the interface used in MACH is more
natural. However, there is no provision for the dynamic loading
and unloading of device drivers as drivers are embedded within
the microkernel.

° V System: In V [Che90a) device drivers are embedded within a
pseudo process that executes in the V kernel itself. Access to the
devices is achieved by means of a UIO (Uniform Input/Output)
interface mapped on the message based V IPC. The UIO inter-
face is generic enough to allow access to any kind of servers,
such as file servers, mail servers or device servers, in a quite uni-
form fashion. More details about the UIO mechanism can be
found in [Che84a]. An application gets access to the file server
using the UIO interface, possibly hidden within a library. In turn,
the file server accesses the device driver using the same inter-
face. However, as in MACH, it seems that there is no provision
for dynamically loading a device driver.

. SunOS: On a Sun 1386, SunOS allows one to dynamically load a
driver within the kernel using a special command “modload”.

EurOpen A ‘91 — Budapest, 16-20 Septemb 17

Give a Process to your Drivers!

But the driver’s writer needs to provide some “wrapper” code in
addition to the driver itself. To our knowledge this is the system
that achieves the functionality most similar to CHORUS/MiX.
Unfortunately, this ability is restricted to Sun i386 machines.

2.3. Why do we need Driver Actor ?

2.3.1. Powerful Device Boards: MultiWorks Example

More and more machines provide powerful boards (processor and
plenty of memory) to connect devices. The European project Multi-
Works builds such a multi-media workstation.

The station is built around an EISA bus with a Main Processing Unit,
based on a Intel CP486, and several boards, called Intelligent Peripheral
Adaptators. 1.P.A. are dedicated to device management and based on
the chip Acorn ARM3. An LP.A. board has I, 4 or 16 megabytes of
RAM memory. One of these board is used to manage a “Disk Array”
through a SCSI bus.

The CHORUS kernel runs on both the CP486 and 1.P.A. providing IPC
over the EISA bus. In addition, a full CHORUS/MiX subsystem runs on
the CP486 board. Thus, CHORUS/MiX has to manage a disk which is
connected to an IPA. One could have taken advantage of the
CHORUS/MiX modularity by running the File Manager on the LP.A.
But, this solution has a major drawback: a lot of UNIX requests that do
not require a disk access, such as operations on pipes or on cached
data, would generate undesirable accesses to the EISA bus. The addi-
tional bus references would significantly reduce the available bus
bandwidth and would negatively impact the performance of both the
system and the applications.

It seems more appropriate to execute only the disk driver on the LP.A.
and to let the File Manager and its buffer cache reside on the main pro-
Cessor.

2.3.2. Co-Existing Sub-Systems

The CHORUS kernel allows several subsystems to run simultaneously
on a same machine. In such a case, various subsystems share the
access to the processor and to the main memory, relying on the services
provided by the CHORUS kernel. Access to other physical resources,
such as devices, is not managed by the kernel, but is on the responsibil-
ity of the subsystems themselves.

Rather than partitioning the devices between the subsystems, it is more
convenient to be able to share the access of a device between multiple
subsystems. To achieve this, the device driver must be able to com-
municate with each of the subsystems. Splitting the drivers from the
UNIX servers that need them, is a first step in that direction.

2.3.3. Other Needs

The encapsulation of drivers within independent servers presents some
other interesting characteristics:

) The combination of this encapsulation with the ability to dynami-
cally load programs in system space enables us to dynamically
load drivers without stopping the system when adding a new
device type to the machine. This can also help to reduce the size
of the resident set of system servers by removing drivers that are

EurOpen Autumn 91 — Budapest, 16-20 September

Give a Process to your Drivers!

Disk Array

<EXtended UNIXInterface __............ — B G

Disk Array
Driver

Process
Manager

bus SCSI

File
Manager

Device
Manager

CHORUS Kernel CHORUS Kemel

@
CP486 bus EISA IPA

Figure 5: MultiWorks Multimedia Workstation Architecture

not frequently used from the default boot file. These drivers
being loaded and unloaded on demand either manually or
automatically.

) Servers such as the File Manager, being “cleansed” of privileged
hardware instructions can be executed in user mode with a loss
in performance the. This configuration can be used to debug the
CHORUS/MiX servers as “normal” UNIX processes, using stan-
dard debuggers such as sdb, dbx or gdb.

Object
Manager

0-0
subsystem

File Manager

MiX
subsystem

CHORUS Kernel

Figure 6: Sharing a Driver between two subsystems

EurOpen A ‘91 ~ Budapest, 16-20 Septemb 19

Give a Process to your Drivers!

3. General Structure of an Actor Driver

3.1. Exported Services

Services provided by a driver are well-defined within UNIX kernels,
although this definition may vary from one system to another.
Nevertheless, basic services remain the same, they are summarized
below.

UNIX distinguishes between drivers that offer a “block interface” and
those that offer a “character interface”.

Block Interface
Such a driver has to provide the following services:
) drvopen (device, read/write, open_type)
. drvclose (device, read/write, open_type)
. drvstrategy (buffer_header)

The most important function is the one called “strategy” which is
used to process the /O’s on the device. The communication
between the upper layers of the file system and the driver is
achieved through a “buffer header”. The useful information for
the driver is contained in the following fields of such a header:

. Device number on which the YO must be performed
Block number to be read/written
Size of the 1O
Address in memory to store/find the data

Flags to describe the I/O (read/write, synchronous /asyn-
chronous, etc)

Character Interface
Such a driver must export the following services:
drvopen (device, read/write)
drvclose (device, read/write)
drvread (device)
drvwrite (device)
drvioct! (device, cmd, arg)

The description of the /O to be performed is defined in a “uio”
structure within the system context of the process.

3.2. Imported Services

Unfortunately, no standard or guide defines the services provided by a
UNIX SVR3.2 kernel that can be used by a device driver. Thus, a driver
can potentially use all of the kernel functions and data structures.
However, in practice device drivers use a small set of services and data
structures.” It is, thus, possible to list the most common needs of a
driver:

° sleep/wakeup: wait for event, reactivate a process when the event
occurs,

spl0, spl7, splx, etc: mask/unmask interrupts,

+ UNIX SVR4 defines precisely what can be used by a device driver within a “DDI/DKI Reference Manual”.

EurOpen Autumn ‘91 — Budapest, 16-20 September

1
E Give a Process 1o your Drivers!

Communication:
Receiving requests
Replying wtih results

Unix Kernel Emulation :

bdevsw cdevsw

Drivers

Figure 7: Driver Actor Structure

) timeout, untimeout: activate a function after a delay, cancel the
activation,

. getblk, geteblk: allocate a buffer and a buffer header, etc,

° biowait, biodone: wait for the completion of an I/O, indicate the
completion of an I/O.

All these services have already been emulated within CHORUS/MiX
servers. Thus, it is straightforward to re-use such functions within a
Driver Actor.

3.3. Layout and Communication

A Driver Actor is similar to other servers in that it is a multi-threaded
server that receives requests on a port. As the real device driver is no
longer embedded within the server, it is necessary to replace it by a
“stub-driver” that conforms to the UNIX driver interface and that sets
up request messages, sends them to the appropriate Driver Actor, and
waits for the corresponding reply. This structure implies that the stub-
driver is able to retrieve the Ul of the port of the Driver Actor given a
major number.

Upon reception of a request, the Driver Actor needs to unmarshall the
message and to build a context similar to that which would have
existed within a monolithic UNIX kernel so that the appropriate driver
function can be left unmodified. Upon completion of the request, the
Driver Actor must marshall the results in a reply message that will be
interpreted by the stub-driver.

4. A Sample Case: The Disk Driver Actor

4.1. Description

This architecture has been used within CHORUS/MiX V.3.2 to separate
the disk driver from the File Manager. The current implementation
deals only with the block interface, the character interface of the disk
driver will be implemented later. The contents of the messages being
exchanged derive directly from the UNIX driver interface described
previously.

EurOpen Autumn 91 — Budapest, 16-20 September 21

Give a Process to your Drivers!

SERVER

bdevsw

E DRVopen

Stub Driver

Driver Actor

Figure 8: Communication Server <> Driver Actor

The “write” request passed to the stub-driver by the File Manager is in
fact, according to the block interface, a “strategy” request with a write
flag. The stub-driver receives a buffer header from which it extracts
the information needed by the real driver and copies it into a message
annex. Data to be written to the disk are simultaneously transmitted
within the message body.

Thus,

a synchronous write request is performed as follows:

The strategy routine of the stub-driver is invoked by the File
Manager. It receives a buffer header describing the I/0 to be per-
formed and pointing to the buffer containing the data to be writ-
ten.

The stub-strategy routine sets up a message annex with the infor-
mation contained in the buffer header. The message body is the
buffer itself. No copy of data is performed by the stub-driver.
Then, the stub driver invokes the real driver by means of the
remote procedure call offered by the CHORUS kernel.

The CHORUS IPC Manager will perform the copy of the message
body and will make the message available to the Driver Actor.

The Driver Actor receives the message and decodes the service
code found at the beginning of the annex. Its only work is to set
up a request context emulating a UNIX kernel environment, and
to set up a buffer header from the information received in the

Service: STRATEGY

Device Number

Flags (Write)

Size to be written

blok number

Message Annex

Data to be written

Message Body

Figure 9: Disk Write Message Request

22

EurOpen Autumn ‘91 — Budapest, 16-20 September

Give a Process to your Drivers!

message annex. The pointer to the buffer containing the data is
set to the body of the received message.

Then, the real strategy routine is invoked. The Driver Actor then
waits for the I/O completion, using biowait. When the VO is
completed, the real driver will wake up the request, using
biodone, permitting the Driver Actor to reply to the File
Manager.

Read requests are processed in a similar fashion.

Two important issues need more explanation:
Data Transfer

When the Driver Actor and the File Manager are on the same
site, the modularity implies that an additional copy has to be per-
formed. Of course, that copy is not necessary when the driver is
running within the File Manager. The UNIX kernel algorithms
guarantee that while an I/O is being processed, the buffer cannot
be accessed by any other process. One could take advantage of
this “property” to attribute the buffer to the driver for the dura-
tion of the I/O. Unfortunately, on AT/386 machines the page size
is 4Kbytes and System V buffers are 1Kbytes long. Thus, it
would be necessary either to place only one buffer in a page,
wasting a lot of physical memory, or to lock four buffers at a
time implying more compiex synchronization and more conten-
tion in the File Manager. With file systems using 4Kbytes
buffer, such as BSD or SVR4, this could be implemented.

Synchronous and Asynchronous Processing

In a UNIX kernel as well as in the CHORUS/MiX File Manager, an
1/0 request can be processed either synchronously or asynchro-
nously.

) Synchronous requests. These kinds of requests are started
by the invocation of the strategy routine which returns
immediately. The completion of the I/O is awaited using
the biowait function, putting the current process to sleep.
Thus the duration of the 1/0 can be used to give the main
processor to any runnable process. This behaviour is emu-
lated by releasing the processor in the File Manager when
invoking the Actor Driver. When the reply is received, the
processor is re-acquired, and the stub-driver returns from
its strategy routine. The following call to biowait that is
performed later by the File Manger will just check that the
1/0 is done without blocking the process.

. Asynchronous requests. One of the characteristics of
UNIX file systems is their use of asynchronous I/O opera-
tions such as deferred writes and read ahead to get better
performance. In such cases, the 1/0 is started as usual by
invocation of the strategy routine but as its result is not
necessary to the current process, its completion is not
awaited. The completion of the I/O is just marked within
the buffer header.

The protocol between the File Manager and the Driver
Actor described previously has been modified to satisfy
this need. Upon reception of an asynchronous request the
Driver Actor answers immediately, enabling the File
Manager to continue its work. When the I/O is done, the
Driver Actor sends an asynchronous message to the File
Manager denoting that the 1/0 has completed. In addition,

EurOpen Autumn 91 — Budapest, 16-20 September

23

Give a Process to your Drivers!

a completed read request carries the data. In essence, this
mechanism is similar to that of a software interrupt. In
order to process these asynchronous messages from the
Driver Actor, the stub-driver needs to create a thread that
will process them.

4.2. Usage: Dynamic Reconfiguration

In order to validate the above design, we have imagined and success-
fully demonstrated a scenario in which the hardware configuration
evolves. Thus, it is up to the system software to follow the evolution!

The initial configuration is composed of one autonomous machine with
a processor,some memory, a disk, some terminals and a network inter-
face. Another machine has the same configuration except that it has no
disk. The first machine runs a full CHORUS/MiX system consisting of
the Kernel, PM, FM, DM and SM. On the diskless machine a
CHORUS/MiX system without File Manager is loaded. For demonstra-
tional purposes, the two machines are COMPAQ 386; the disk of one of
them being not used. The distribution provided by CHORUS enables
one to use the diskless machine as a second processor, and thus to bal-
ance the load between the two processors. Next, the scenario script
states that as the user’s needs are increasing the diskless machine is
equipped with a local disk. One supposes the hardware ‘“‘smart”
enough to allow this addition without stopping the system. Thus, one
can remotely load a disk driver, from the first machine, within the
supervisor address space of the second machine. This allows one to
initialize the new disk and to copy on it the files needed by an auto-
nomous machine. Finally, once the new disk has been initialized, one
can remotely load on the second machine a File Manager running as a
UNIX user process. The Process Manager will recognize the existence
of a local File Manager and will start the execution of the “/etc/init”
process loaded from the new disk. The second machine will then be
completely autonomous. As the File Manager is being executed as a
“normal” UNIX process, one can use UNIX debuggers to debug it,
although some *“obvious”™ precautions must be taken. When a process

Machine 1 Machine 2

DEVICE PROCESS DEVICE PROCESS
MANAGER MANAGER MANAGER MANAGER

SOCKET SOCKET
MANAGER MANAGER

/ CHORUS Kemnel CHORUS Kernel

O

Figure 10: Using a diskless machine

EurOpen Autumn ‘91 — Budapest, 16-20 September

Give a Process to your Drivers!

Machine 1 Machine 2

DEVICE PROCESS DEVICE PROCESS
MANAGER MANAGER MANAGER MANAGER

SOCKET SOCKET
MANAGER MANAGER

/ CHORUS Kernel

CHORUS Kernel

Figure 11: Dynamically Loading a Disk Driver

"Standard” MiX | FM as a user process | FM as a supervisor process

60 creat/sec 58 creat/sec 59 creat/sec

open 443 open/sec 355 open/sec 428 open/sec

writelk 60 Kbytes/sec 43 Kbytes/sec 49 Kbytes/sec

read 1k 198 Kbytes/sec 90 Kbytes/sec 110 Kbytes/sec

Table 1: Performance figures

Machine 1

Machine 2
e
File
Manager
DEVICE PROCESS DEVICE PROCESS
MANAGER MANAGER MANAGER MANAGER
sy
SOCKET SOCKET Driver
MANAGER MANAGER Disk

> Sl
O

CHORUS Kernel

CHORUS Kemel \

a

Figure 12: Dynamically Loading a File Manager

Give a Process to your Drivers!

4.3. Performance

being debugged encounters a “breakpoint” it is stopped by the system.
When the process being stopped is the File Manager, the requests it
receives will not be processed until its execution will be resumed by
the debugger. Note that some of these requests will originate from the
debugger itself, if it is running locally. Thus, it is necessary to make
the File Manager sources available on another machine and to run the
debugger from another machine to avoid deadlock.

In order to appreciate the effect of such an architecture on the system’s
performance we have run a set of benchmarks in various
configurations:

. Standard CHORUS/MiX with the File Manager and the disk driver
linked together within one actor.

) File Manager running as UNIX process in user mode, and the
disk driver running as a UNIX process in supervisor mode (as in
the demonstration presented above).

. File Manager and driver disk both running as UNIX processes in
supervisor mode.

The benchmarks run are briefly described:
. creat: measures the time needed for the pair creat(2)/close(2).
. open: measures the time consumed by the pair open(2)/close(2).

. writelk: measures the time consumed to write 2 megabytes in a
regular file 1 kilobyte at a time.

° readlk: measures the time consumed to read 2 megabytes from a
regular file 1 kilobyte at a time.

These benchmarks have been run on a COMPAQ386 running at 20 MHz
with 5 Megabytes of main memory. The results are listed in Table I.
The case where the File Manager runs in user space is, of course,
slower because data must be copied from the benchmark process to the
File Manager, which is also a vser process. Such a copy implies a
memory context switch which is unnecessary when the copy is done
from user space to supervisor space.

The stability of the “crear” test is probably due to the fact file creation
implies synchronous writes to the disk to write the inode. Thus, this
test is mostly limited by the disk transfer rate and not by the software
algorithms.

The “open’ test consist essentially in copying a pathname between the
user process and the File Manager. The user mode FM is slower
because of the extra memory context switch. The two other
configurations where the FM executes in supervisor space achieve
similar performance. The situation where the disk driver runs outside
of the FM is penalized by the first open when it is necessary to load
blocks from the disk.

The most important differences are observed on read/write operations.
The difference between the standard MiX and the case “FM as a super-
visor process” with a separated driver disk is due to two main reasons:

) First, an extra copy is performed for all disk blocks being moved.
Future developments of the Disk Driver Actor will solve this
handicap by using the light weight remote procedure call
mechanism provided by the CHORUS kernel.

. Second, the processing of asynchronous requests is not yet fully
operational and thus has not been used. All requests are being

26

EurOpen A ‘91 - Budapest, 16-20 Septemb

Opery Give a Process to your Drivers!

processed synchronously, the performance gain from the
deferred writes and the read-ahead has been lost.

Nevertheless, these figures prove the correctness of the CHORUS
approach that consist in enabling servers to reside in supervisor space
to achieve better performance.

5. Conclusion

We have been successful in splitting the disk driver from the
CHORUS/MiX File Manager. These two servers have been encapsu-
lated within UNIX processes. The disk driver can be loaded dynami-
cally into the supervisor address space.

It has been possible to prototype all of this very quickly on top of
CHORUS/MiX due to the pre-existing modularity and to the power of
the tools provided by the CHORUS kernel.

In addition to the work in progress already mentioned, this prototype
will enable us to implement the automatic loading of a driver upon the
first open of a device, the File Manager being the parent process of the
driver. The Disk Driver Actor will also be delivered to the MultiWorks
project.

6. Acknowledgements

1 would like to thank people that have contributed to the success of this
experience: Roland Dirlewanger, Frédéric Herrmann, Denis Métral-
Charvet, Didier Poirot, Marc Rozier and Frangois Saint-Lu. 1 would
also like to thank people that helped me with much worthy advices
while writing this paper: Joélle Madec, Allan Bricker, Michel Gien and
Marc Guillemont.

References

[Acc86a] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid,
A. Tevanian, and M. Young, “Mach: A New Kernel Foun-
dation for UNIX Development,” Summer Conference
Proceedings, USENIX Association (1986).

[Arm89a] Frangois Armand, Michel Gien, Frédéric Herrmann, and
Marc Rozier, “Revolution 89, or Distributing UNIX
Brings it Back to its Original Virtues,” pp. 153-174 in
Proc. of Workshop on Experiences with Building Distri-
buted (and Multiprocessor) Systems, Ft. Lauderdale, FL
(5-6 October 1989). Chorus systemes Technical Report
CS/TR-89-36.1

[Arm90a] Francois Armand, Frédéric Herrmann, Jim Lipkis, and
Marc Rozier, “Multi-threaded Processes in Chorus/MIX,”
pp- 1-13 in Proc. of EUUG Spring’90 Conference, Mun-
ich, Germany (23-27 April 1990). Chorus systémes
Technical Report CS/TR-89-37.3

{Che88a] David Cheriton, “The V Distributed System,” Communica-
tions of the ACM 31(3), pp. 314-333, Vsyst (March 1988).

EurOpen A ‘91 - Budapest, 16-20 Septemb 27

Give a Process 1o your Drivers!

{Che84a)

[Che90a]

[Gol90a)

[Mul87a]

[Roz88a]

D. R. Cheriton, “A Uniform I/O Interface and Protocol for
Distributed Systems,” Resarch Report, Stanford U. (Dec
1984). Z/2 SYS1201

David R. Cheriton, Gregory R. Whitehead, and Edward W.
Sznyter, “Binary Emulation of UNIX using the V Kernel,”
pp. 73-86 in Proc. of Summer 1990 USENIX Conference,
USENIX, Anaheim, CA (June 11-15, 1990). CS/EX-90-
284 X90284

Davic Golub, Randall Dean, Alessandro Forin, and
Richard Rashid, “UNIX as an Application Program,” pp.
87-96 in Proc. of Summer 1990 USENIX Conference,
USENIX, Anaheim, CA (June 11-15, 1990). CS/EX-90-
285 X90285

S. J. Mullender (Editor), The Amoeba Distributed Operat-
ing System: Selected papers 1984 — 1987, CWI tract 41,
Amsterdam (1987).

Marc Rozier, Vadim Abrossimov, Francois Armand, Ivan
Boule, Michel Gien, Marc Guillemont, Frédéric
Herrmann, Claude Kaiser, Sylvain Langlois, Pierre
Léonard, and Will Neuhauser, “CHORUS Distributed
Operating Systems,” Computing Systems Journal 1(4),
pp. 305-370, The Usenix Association, Chorus systemes
Technical Report CS/TR-88-7 (December 1988).

EurOpen Autumn 91 — Budapest, 16-20 Septemb

o4

Multimedia Synchronization and UNIX
If Multimedia Support is the Problem,
Is UNIX the Solution?

Dick C.A. Bulterman
Guido van Rossum Dik Winter

CWI: Centrum voor Wiskunde en Informatica
Amsterdam, The Netherlands
dcab@cwi.nl

Abstract

This paper considers the role of UNIX in supporting multimedia appli-
cations. In particular, we consider the ability of the UNIX operating
system (in general) and the UNIX I/O system (in particular) to support
the synchronization of a number of high-bandwidth data sets that must
be combined to support generalized multimedia systems. The paper is
divided into three main sections. The first section reviews the require-
ments and characteristics that are inherent to multimedia applications.
The second section reviews the facilities provided by UNIX and the
UNIX IO model. The third section contrasts the needs of multimedia
and the abilities of UNIX to support these needs, with special attention
paid to UNIX’s problem aspects. We close by sketching an approach
we are studying to solve the multimedia processing problem: the use of
a distributed operating system to provide a separate data and processing
management layer for multimedia information.

1. Introduction

If a definition for “Multimedia” were to exist in an ultra-modern dic-
tionary of computer jargon, the entry might read as follows:

mul-ti-me-di-a <buzzword; adj.>: A property of applications
software that allows for the mixed use of several (chiefly output)
media — such as sound, video, text, image and graphic data — in a
manner that makes an unsuspecting user think that something
extraordinary is happening on an otherwise conventional com-
puting system.

Examples: multimedia mail, multimedia documents, muitimedia
research.

See also: Clothes, Emperor’s New.

While serious multimedia researchers (such as the authors) would take
exception to the tone of this definition, few would argue against the

EurOpen A ‘91 - Budapest, 16-20 Septemb 29

Multimedia Synchronization and UNIX

Figure 1: Two examples of multimedia data processing

description of multimedia systems as consisting of applications
software that uses mixed forms of media as a basis for presenting infor-
mation. Unfortunately, even this definition has a serious flaw: it places
an emphasis on applications; this obscures the crucial role that other
layers in a computing system play in providing multimedia support.

Support for multimedia data manipulation can exist at three levels: in
the applications code that allows the user to access and control the flow
of information, in the operating systems code through the use of device
drivers and scheduling software, or at the hardware controller level.
Activity at the controller level is currently constrained to providing or
accepting data under control of the other layers in the system. The par-
titioning of activities between the operating system and the applications
layer depends on the complexity of the system being supported (see
Figure 1). In simple multimedia systems (Figure la), data consists of
raw information that must be moved from one place to another at a
specified rate. This is FAX-style multimedia: the information itself is
uninterpreted, making content-based manipulation of the data impossi-
ble. In this case, the application layer may request that the operating
system start a transfer, with most subsequent device actions controlled
by a (set of) device drivers. In less simple forms of multimedia sys-
tems (Figure 1b), each of the various data paths may consist of struc-
tured information that can be manipulated individually or as a whole,
and in which the meaning of the information may influence its process-
ing. While the characteristics of multimedia systems are as different as
the number of separate applications systems, we can generally con-
clude that the more manipulation of information that is required, the
higher the degree of applications support that will be necessary in the
system. (See [Pro89a] for a discussion of muitimedia and worksta-
tions.)

At first glance, multimedia support seems to be nothing more than pro-
viding UNIX I/O drivers for a set of new device controllers for a variety
of media types. The most fundamental difference between multimedia
systems and other types of input/output transformations of data, how-
ever, is the fact that multimedia data is inherently multi-dimensional.
This means multimedia information consists of a number of related
components that must be gathered and/or scattered to/from a variety of
devices, under a set of implicit or explicit synchronization constraints.
This synchronization needs to be supported by a system layer that has
access to the underlying hardware (for integrating device 1/0) and is
accessible to the application code (which ultimately controls the logical
information flow). The synchronization also needs to be supported by
the general system-wide process scheduling mechanism to ensure that
all of the components at all levels are active at the desired times.

Multimedia Synchronization and UNIX

In this paper, we consider the role of the UNIX kernel in providing mul-
timedia support. Our purpose is to consider the needs of multimedia
systems and to contrast these against the facilities provided in UNIX to
support these needs. While several aspects of multimedia data manipu-
lation are considered, we focus primarily on the synchronization of
independent data paths (such as separate audio and image paths) within
a multimedia application. We do this because, unlike application-
specific user programs or media-specific hardware controllers, it is the
operating system that currently provides the only programmable place
for providing the efficient synchronization primitives that both the
hardware and applications software need to allow complex multimedia
data interaction.

We start our consideration of the relationship between multimedia sup-
port and operating systems by discussing two classes of multimedia
data models: multimedia data location models and multimedia data
synchronization models. We then review the location and synchroniza-
tion facilities provided by the UNIX IO model. We then compare the
needs and expressive capabilities of both UNIX and generic multimedia
systems to see if UNIX is “multimedia ready.” We conclude by offering
an alternative approach that we are studying as part of the
CWI/Multimedia project [Bul90a, Bul9la] to better support broad
classes of multimedia applications. Note that while our general obser-
vations on the utility of UNIX for long-term multimedia support are not
positive, we hope to provide more than an exercise in UNIX-bashing;
instead, we hope to highlight a set of problems that we feel will
increase in importance as the use of multimedia expands.

2. Two Classes of Models for Data Interaction in Multimedia
Systems

The broadest notion of the term multimedia is simply the use of several
different types of data formats to encode and/or present information. In
considering methods of supporting multimedia, two issues immediately
arise: first, it is important to know where the multimedia data comes
from (as well as knowing where it will need to be sent), and second, it
is important to consider which types of synchronization is required to
ensure that the multiple data streams interact in the desired manner.
The first issue deals with data location models; these models determine
the sources and destinations of data streams.” The second issue deals
with the relationships among data streams; these relationships can be
the property of an application or of the data itself. Both of these issues
are considered in the following sections.

2.1. Multimedia Data Location Models

The location of multimedia information determines the amount of
operating systems support that are required to gather scattered data for
possible processing, and to pass that data on to a set of output devices.
There are four general models that can describe the sources and desti-
nations for multimedia information. These are reviewed in Figure 2.

° Local Single Source: This location model has all data originating
at a single source. An example is a CD-ROM that contains sound,
text and picture information. Information is fetched in blocks

1 Note that streams is used here in terms of a collection of information, not in terms of a particular device driver implementation
technique.

EurOpen Autumn ‘91 — Budap 16-20 Septemb. 31

Multimedia Synchronization and UNIX

“wurkstation

(c)

(d)

Figure 2: Location of multimedia data: (a) local single source, (b) local multiple source,
(c) single distributed source, (d) multiple distributed source

from the source device and then routed (by either the device con-
troller, the operating system kernel or the application) to one or
more output devices. The primary attraction of the single source
model is that all synchronization among input media is the
responsibility of the source material designer. This media is typ-
ically interleaved into a single sequential stream that is fetched
using conventional system calls.

Local Multiple Sources: This model appears similar to that
defined above, except that source data is scattered across several
devices. (We again assume that output data goes to several dev-
ices as well.) An example of this type of interaction is combin-
ing voice annotation with images in an electronic slide-show.
The principal difference between single source and multiple
source data is the need for some sort of external synchronization
between the data streams. The location of this synchronization
(either in user code or in the kernel) will depend on the perfor-
mance needs of the application, with a general trade-off existing
between better performance (more towards the kernel) and
greater flexibility (more towards the user).

Distributed Single Source: In this model, we assume that a single
source of information exists that is located on a remote worksta-
tion. The single-source nature of data means that no multi-
stream synchronization is necessary. The difference between
local and distributed models is that some account needs to be
made for the transfer delays between source and destination.
These delays may result in portions of the composite material
arriving at non-constant rates or out of order. Control over the

EurOpen Autumn 91 — Budapest, 16-20 Septemb

n
\
d

P

Eé Multimedia Synchronization and UNIX

data is spread over at least two kernels (the sending and receiv-
ing) as well as several protocol layers and a user layer.

° Distributed Multiple Sources: This is the most general model of
data location. Information may be gathered from many sources
on many workstations, and destinations may also be spread over
several places. This model is the most interesting because it
combines aspects of synchronization problems with transfer
delays and raw information scheduling. While current network
technologies limit short-term practical applications of this model,
we expect that this model will become much more viable within
five years time.

The central problem in supporting multimedia data is, then, the degree
to which processing layers need to exist between the source of informa-
tion and its destination(s). In general, the more flexibility required
(whether in terms of number of streams or amount of post-fetch pro-
cessing) the greater the delay. For simple operating systems (such as
single-user, single CPU environments), the delays can be easily
predicted for a given application. For multi-processing workstations,
the coordination and scheduling tasks become much greater. In both
cases, the level of complexity is directly related to the amount of syn-
chronization processing required by an application.

2.2. Multimedia Data Synchronization Models

Regardless of the location of data, the data itself can contain synchroni-
zation information (that is, it can be self-synchronizing) or it may
require synchronization through an external mechanism. Synchroniza-
tion concerns cover a broad spectrum. In this section, we consider four
aspects that affect the partitioning of tasks among the application
software, the OS and the device controller(s). These are: the basic type
of relationship among data streams, the scope of synchronization infor-
mation, the determination of the controlling party in a synchronization
relationship, and issues regarding the precision of synchronization
required.

. Synchronization Classes: There are two basic classes of syn-
chronization within a multimedia framework: serial synchroniza-
tion and parallel synchronization. Serial synchronization
requirements determine the rate at which events must occur
within a single data stream; this includes the rate at which sound
information is processed, or video information is fetched, etc.
Parallel synchronization requirements determine the relative
scheduling of separate synchronization streams. In most non-
trivial multimedia applications, each stream will have a serial
synchronization requirement and a parallel relationship with
other streams. Note that a special case of serial synchronization
can be defined as composite or embedded synchronization; in
this case, each serial block of data contains information for paral-
lel output streams. In this case, the parallel synchronization
among blocks is embedded in a serial stream.

. Synchronization Scope: The second distinction is between point
and continuous synchronization. Point synchronization requires
only that a single point of one block coincides with a single point
of another. Continuous synchronization requires close synchron-
ization of two events of longer duration. In general, point syn-
chronization can be managed by the applications layer while
continuous synchronization will need to be managed by a device

EurOpen Autumn '91 - Budapest, 16-20 September 33

Multimedia Synchronization and UNIX

controller or a high-performance, low-overhead portion of the
operating system.

Synchronization Masters: The third distinction regards the con-
trolling entity in a (set of) stream(s). Sometimes we have two
channels that are equally important, but sometimes one channel
is the “master” and the other the “slave.” It is also possible that
an external clock plays the role of the master, either for all of the
streams or for a subset of time-critical ones.

Synchronization Precision: Finally, there are levels of precision.
Stereo sound channels must be synchronized very closely (within
1 to 0.1 millisecond), because perception of the stereo effect is
based on minimal phase differences. A lip-synchronous sound
track to go with a video movie requires a precision of 10 to 100
milliseconds. Subtitles only require a 0.1 to 1 second of impreci-
sion. Sometimes even longer deviations are acceptable (back-
ground music, slides). Note that in all cases the cumulative
difference between the channels is what matters, not the speed
difference.

In general, the synchronization problems make multimedia systems
difficult (and interesting). Since each type of medium has its own
characteristics, the level of support for a combination of media is a
challenging design issue. Most vendors of current commercial equip-
ment use embedded synchronization that is mapped onto a serial stream
of data. As a result, they need to consider only point-type synchroniza-
tion scope with a single master device. The precision is determined by
the characteristics of the input source and the system load; most of the
synchronization precision is supported by managing interrupt conten-
tion between the input and output devices. While this approach can
lead to dramatic results, it is not sufficient if the user is to be given
more control over the data being processed or if information needs to
be combined from several sources (either locally or from distributed
points in a network).

3. I/O Processing and the UNIX Kernel

This section will review the standard UNIX I/0O model. We start with
the layers of logical control that are possible within a UNIX environ-
ment to support processing of multiple data streams. We then describe
the interaction of these layers when supporting UNIX 1/O. Our purpose
is to consider generic UNIX facilities rather than the particulars of any
one UNIX implementation.

3.1. UNIX Processing Layers

Activity within a UNIX environment can be divided over five general
layers in a system: the thread’ layer, the process layer, the kernel top-
half layer, the kernel bottom-half (or interrupt) layer, and the device
controller layer. These layers are illustrated in Figure 3. An applica-
tions program typically runs on the thread level in user mode. Upon
issuing a system call, the processor first switches in to system (or
privileged) mode, then acts on the request and then switches back to
user mode. All of this processing typically occurs in the context of the
process active at the time of the system call. Occasionally, a device

+ Note that in systems that do not support a user threads package, a process can be considered to be an entity with a single thread of

control.

EurOpen Autumn ‘91 — Budapest, 16-20 Septemb

ai
ou

Multimedia Synchronization and UNIX

user-mode
system-mode

kernel top-half

process context
interrupt-context

: kernel bottom-half

interrupt i/f —
device controller

Figure 3: Elements of the UNIX processing hierarchy

will need to interrupt the running process (which is either in user mode
or system mode) to service some aspect of a transfer request; such a
change is know as a context switch. A typical UNIX kernel will act as
the scheduler for a series of user processes, each of which will compete
for time on the CPU. Within the process, one or more of its threads will
be selected to execute in an implementation specific manner. (Recall
that processes are entities that own resources but which do not them-
selves execute outside the context of their threads.) The kernel may
execute its top-half code in response to a system call by the active
thread. It may also execute its bottom-half code in response to an inter-
rupt from one of the external devices (such as disks, terminals or the
network) or from its system clock. Device drivers run partially as ker-
nel top-half code and partially as kernel bottom-half code. Finally, a
great deal of processing may take place within a device controller.
Such processing is initiated and ultimately controlled by kernel device
drivers, although much of the detailed processing happens in parallel to
other processing done on the system. (Note: our partitioning of layers
is based on an I/O view of UNIX processing; it is clear that other parti-
tionings are available, but the combination we have shown is most
relevant to our multimedia discussion.)

Each of the processing layers has its advantages in managing I/O
transfers. The thread level provides an application program with full
control over the processing of data. Unfortunately, threads represent
the weakest link in a processing chain, since they may be suspended at
any time when a higher-priority thread becomes available. Processing
within the kernel top-half, on the other hand, is immune from suspen-
sion unless the operation suspends itself waiting for I/O completion (or
resource availability) or unless an interrupt occurs. Of course, the ker-
nel top-half code is typically not user-modifyable, making it inflexible
for information processing (as opposed to information fetching,
dispatching or sending). Code that executes at interrupt time has the
highest probability of being allocated the CPU quickly; this can allow a
fast response to time-critical events, although the amount of processing
that can be done on data is usually limited by the need to serve other
interrupts quickly as well and a general desire not to “hog” the CPU in
interrupt mode. The best performing processing layer may well be the
device controller layer. Here, activity can take place in parallel with
other devices and the general CPU processing. The disadvantage of
controller-layer processing is the limited information that such controll-
ers have on other events taking place in the system. The consequences
of this limited information are reflected in a cyclic shifting of process-

EurOpen A ‘91 — Budapest, 16-20 Septemb 35

Multimedia Synchronization and UNIX

3.2. UNIX I/O Models

ing responsibility that has taken place between the kernel and the dev-
ice controller in recent years. SCSI disks, for example, use embedded
controllers that relieve the kernel of a great deal of overhead process-
ing. (This is usually thought of as a positive development.) Network
controllers, on the other hand, have seen a shift from on-controller pro-
cessing back to in-kernel processing. This is because of the
inflexibility of protocol versions that are “baked” into hardware and the
difficulty of routing information among different controllers without
kernel intervention.

The basic 1/O facility that UNIX offers to its users is that of a byte-
oriented transfer mechanism based on variants of the read and write
system calls. When a user issues the

read(fd, buffer, n)

system call, for example, the thread is effectively suspended until upto
n bytes of data are transferred from device fd into the buffer named (in
this case) buffer. This transfer is initiated at the thread level, then pro-
cessed by the kernel top-half code, then by the device controller, then
by the kernel interrupt code, then by the kernel top-half code and then
by the thread code. The flow of control may block within the kernel
top-half (after initiating the transfer but before the transfer is com-
pleted); at this point, the thread is descheduled pending completion of
the transfer. Once the transfer-completion interrupt is received from
the device, the thread is made reschedulable, although it does not run
again until it is the highest-priority thread in the system. If the transfer
is completed in one I/O request, the thread is usually able to continue as
soon as the kernel top-half code completes (that is, as soon as the sys-
tem call completes). If the operation is a read/write cycle, such as:

read(fd, buffer, n)
process the data here

write(fd2, buffer, m)

then the output data path is similar to that described above (except, of
course, in the other direction!).

The movement of data across the various processing layers can be
optimized by reducing the number of layers used in each transfer.
Unfortunately, if the data needs to be processed in some application
dependent way, the options available for speed-up are limited. The
general methods of controlling the flow of information within a UNIX
environment are shown in Figure 4; each of the four general models are
discussed in the following paragraphs. (Note that for purposes of
simplification, both kernel top-half and kernel bottom-half processing
are regarded as simply “kernel” processing in the following discus-
sion.)

. Controller Managed 1/0: In this class of 1/0, one controller sends
information directly to another controller. The kernel, a control-
ling thread and process data structures are typically not involved
once the transfer has started. (Internal resource contention is
typically handled by the system hardware.) Controller managed
1/0 is illustrated in Figure 4.a.

® Kernel Managed I/0: In this class, the device controllers transfer
information to the kernel, which then dispatches data to other
controllers. The controlling threads and process data structures

36

EurOpen A ‘91 - Budapest, 16-20 Septemb

Opedy Multimedia Svnchronization and UNIX

are typically not directly involved in the transfer. One example
of kernel managed 1/O is an in-kernel implementation of the IP
networking protocol: a packet may arrive from one network dev-
ice and processed by the kernel IP code, which may then route it
to a separate network device. If this is done at interrupt mode,
then the transfer can occur quite quickly. Of course, if too much
network traffic is forwarded by this kernel, then over-all perfor-
mance of the system will decrease. Kernel managed VO is illus-
trated in Figure 4.b.

) Thread Managed 1/0: In this class, a controlling thread is used to
manage the data transfer. Information is passed from a device
controller through the kernel to the thread. The kernel schedules
the incoming data as well as the thread; the thread schedules the
outgoing data. A single thread may schedule several transfers.
The principal advantage of this technique is that it allows data
that has arrived at the thread to be processed in an application-
dependent manner before it is sent out to an output device. The
disadvantage of this technique is that it may take a relatively long
amount of time before this processing is completed — with the
wait interval almost always being non-deterministic. (This, as
we will see, can have very severe consequences for synchroniza-
tion processing.) Thread managed 1/O is illustrated in Figure 4.c.

° Process Managed 1/0: Although activity in a process can only
take place in a thread, we use this class to define multi-threaded
activity. Here, UNIX synchronization (such as locking and sema-
phore activity) is used to merge several data streams. Process
managed 1/0 is illustrated in Figure 4.d.

process process

threads threads
(] [O™ L] 0] O

kernel kernel
§ devices devices
N

process process
threads hreads

I =

kernel J kernel

§ devices devices

(0

Figure 4: Interactions within UNIX for supporting l/0: (a) controller managed, (b) kernel managed,
(¢) thread managed, (d) process managed

EurOpen Autumn 91 — Budapest, 16-20 September 37

Multimedia Synchronization and UNIX

If large amounts of data need to be processed quickly, controller-
controller I/O is typically the only useful choice available to an applica-
tions programmer. If, on the other hand, two input or output streams
need to be coordinated based on their content, then thread-based (or
process-based) processing may be the only option available. This is
because controllers have only limited abilities to process data and
because the kernel is typically a black-box that cannot be changed by
the applications programmer. We consider the ramifications to mul-
timedia 1/0 of this situation in the next section.

4. The Impact of the UNIX I/O Subsystem on Multimedia

Interaction

4.1. Location Models

The previous sections have considered the needs of multimedia appli-
cations and the general types of I/O that can be supported by a UNIX
kernel. In this section, we combine these topics to consider UNIX’s
impact on multimedia (and vice-versa). We begin our discussion with
a comparison of data location models and then discuss synchronization
topics.

In Section 2.1, we defined four location models for multimedia data:
local single source (LSS), local multiple source (LMS), distributed sin-
gle source (DSS), and distributed multiple source (DMS). Given the
fact that we are considering multimedia data, we assume that the infor-
mation that is received from each source will need to be processed in
some manner, either by routing a data stream into a number of sub-
streams (one for each medium) or by moving composite data from one
location to another. Our definitions has explicitly excluded considera-
tion of output locations since the problems encountered here simply
mirror those encountered on input. We can measure the effectiveness
of the UNIX I/O system by considering the impact of the multimedia
location models for each of the types of control considered above:

] Controller Managed I/0: 1In spite of its attractive performance
characteristics, controller managed 1/0 can only play a minor role
in multimedia processing. To be sure, information can quickly
be transferred from one location to another in a system (such as
from a laser disk to video memory), but the relative lack of con-
trol given to a user for this type of transfer — which is typically
limited to start/stop/rewind/search — will ultimately limit its
appeal. In terms of our models of location, controller managed
1/0 may be useful for LSS data that is self synchronizing, but as
soon as any management of separate streams is required, the lim-
ited knowledge of the controller will restrict its usefulness.

. Kernel Managed 1/0: For reasons of performance, kernel
managed I/0O can potentially play a dominant role in providing
multimedia support. One example of this is the use of interrupt
context processing to provide a high-speed manner of controlling
and routing of incoming data. Another example is the use of
multiplexing device drivers to coordinate the activity of a
number of IO streams. This model is especially useful for LMS
data and (to a reasonable degree) with DSS and DMS data.
Unfortunately, kernel managed I/O has a number of severe limi-
tations, the most restrictive of which is that few application pro-

38

EurOpen A ‘91 — Budapest, 16-20 Septemb

L1
il

Op Multimedia Synchronization and UNIX

gram builders have the ability (or desire) to write new device
drivers to cope with in-kernel I/O processing. This is especially
true for applications that need to share I/O devices with other
applications; in this case, driver modules simply cannot be
unlinked and relinked efficiently enough to provide the flexibility
required by several applications.

° Thread Managed and Process Mqgnaged 1/0: Application-based
interaction in a multi-threaded model provides the most general
form of support for all types of multimedia data processing. The
application programmer can dispatch as many threads as is
necessary to handle each type of data. Unfortunately, there is a
catch to this flexibility: performance. The non-deterministic
scheduling characteristics of UNIX systems make them unreliable
at the thread level for collecting and processing information. To
understand the limitations of processing at the thread level, con-
sider that it takes about 40 microseconds for a 20 MHz processor
to switch from user-mode to kernel-mode in executing a system
call. (This is raw system call overhead; processing time is extra.)
This means that even if we provide a set of device drivers with a
great deal of memory to buffer incoming and/or outgoing data,
an application still loses nearly 100 microseconds just in chang-
ing the modes necessary to initiate a data transfer between an
input and an output device. Since each multimedia transfer will
typically cause at least three systems calls for trivial YO (one for
fetching composite data and two for writing it out to two dev-
ices), this overhead can be substantial. Add to this the perilous
scheduling situation that all threads must endure and the fact that
at the thread level only limited resource management facilities
exist in UNIX (such as memory locking or explicit control over
kernel buffer management), then the situation at the thread level
is not particularly encouraging.

The conclusion that can be drawn from this discussion is that the level
that offers the best performance in the processing hierarchy (the con-
troller level) is least useful in the general case, while the level that
offers the most flexibility may not be suitable for the high-performance
needs of multimedia applications. In reaching this conclusion, we have
concentrated on the LSS and LMS models. The situation is even worse
for the DSS and DMS models, since here multiple thread layers and
multiple kernel layers (and, of course, multiple controller layers) must
be transited by data as it moves from one machine to the other. We
return to this point in Section 5.

4.2. Synchronization Models

While the discussion above focused on the abstract gathering, process-
ing and scattering of multimedia data, in this section we focus on the
particular problems that arise in a UNIX environment for handling syn-
chronization processing. In considering the degree to which each of
the UNIX processing layers can contribute (or hinder) synchronization
of parallel multimedia streams, one immediate problem with which we
are confronted is the UNIX scheduler. The priority-based scheduling
mechanism offered by most kernel implementations is inflexible in
responding to short-term constraints that can occur while synchronizing
multiple data streams. This is a consequence of basic UNIX design
constraints; even so-called real-time scheduling classes within recent
implementations of UNIX do not provide a user with a great deal of
dynamic scheduling control to respond to transient critical conditions.

EurOpen A ‘91 - Budapest, 16-20 Septemb 39

Multimedia Synchronization and UNIX

Although the scheduler could conceivably be changed, most users will
not be able to do this easily. This means that the synchronization of,
say, lip movements to sound data will be very difficult to guarantee
unless application-specific processing is included as part of the inter-
rupt service mechanism. As was mentioned above, however, it is
unrealistic to expect that a device driver (such as, say, an audio con-
troller) will have the ability to respond to broad synchronization
requirements from a variety of applications programs. Instead, we can
expect that the audio controller will simply try to push out audio infor-
mation at a specified rate with only minimal regard for processing in
other output streams.

The problems associated with scheduling delays present themselves
most clearly when considering the synchronization problems associated
with multiple multimedia streams. The facilities provided by UNIX for
allowing the close synchronization of even two streams are limited by
the processing granularity provided to an application layer. If we
assume that a 20MHz CPU will allow approximately 25,000 system
calls per second under ideal situations, then it is clear that synchroniz-
ing two input streams and then sending them to two output devices has
a theoretical upper limit of an average of 6,250 samples per second. In
reality, there will also be controller overhead, interrupt overhead, dev-
ice driver overhead and scheduling overhead, so that the actual number
of samples will probably be considerably less. If we assume that we
wish to synchronize two high-quality audio streams with each other
(requiring no other processing than simply collecting samples and
sending them out), then the highest quality we could achieve would be
approximately 6 KHz sampling — which is less than 15% of that avail-
able with compact discs. If we wanted to do any processing in addition
to the collecting and routing of samples, the situation would only be
worse. In the case of non-local data fetches, fetch delay associated
with a network would need to be added to the processing delays that
would accumulate at each of the contributing or consuming hosts.
(This example is obviously contrived: in an actual implementation,
buffering would take place within kernel processing and actual sam-
pling would be controlled by an external clock; the purpose of the
example is to illustrate that even the theoretical limits of applications
control granularity do not offer a tremendous amount of processing
latitude to the applications designer.)

In terms of our detailed list of synchronization types, we can make the
following observations about the ability of UNIX to support multimedia
processing:

° Synchronization classes: UNIX can do reasonably well in sup-
porting serial synchronization of data if the sampling rates are
sufficiently low to not cause a burden on the system. The block-
oriented fetching of data can significantly increase the number of
samples processed by an application, although the limited
scheduling control of each thread will not ensure the constancy
required by high-bandwidth devices. For parallel synchroniza-
tion, the prospects are less promising: the sequential nature of
UNIX /O will result in either a loss of data resolution or in a limit
on the number of parallel tracks that can be processed. One rea-
son for this is the form of the generic I/O system call; all 1/O is
done on a single file descriptor at a time, with separate file
descriptors requiring separate system calls. It may be possible to
build multiplexing drivers to combine IO on a number of file
descriptors, but this will not offer a general solution to most
applications builders. Another possibility may be the develop-

EurOpen Autumn 91 — Budapest, 16-20 September

Multimedia Synchronization and UNIX

ment of multi-file IO system calls (with particular synchroniza-
tion semantics defined in the system call argument list), but even
if these were to become accepted by the growing list of standards
organizations, most languages would be unable to cope with the
notions of parallel 1/0 accesses. For the time being, the best one
can hope to do is to provide either an applications-based multi-
threaded scheduling solution to parallel stream synchronization
(with all of the performance limitations discussed above) or to
rely on smarter controllers to by-pass the CPU altogether.

Synchronization scope: Of the two types of synchronization
scope defined above, point synchronization can be relatively
well-managed by the thread level, but continuous synchroniza-
tion can only be managed if the input and output data rates are
sufficiently low. Once again, the scope of the synchronization is
not only restricted by the implementation concerns of the UNIX
1/0 system, but also by the ability of applications code to flexibly
access data at a low-enough layer in the system.

Synchronization masters: The easiest way to support synchroni-
zation within a UNIX environment is to have a master clock regu-
late the gathering of samples and the dispatching of samples to
various output devices. In order for such a clock to function, it
will need to be able to influence processing in a number of
threads in the same way that real-time clock can influence the
scheduling of various real-time processes. (The problems are, of
course, not simply similar, they are identical.) Unfortunately, the
level of real-time support in UNIX systems has never been partic-
ularly good. As for peer-level synchronization, the problems
with guaranteed scheduling time under UNIX once again limit the
amount of coordinated processing that can be realistically
accomplished.

Synchronization precision: Depending on the level of precision,
processing can be implemented at any of the five layers in the
UNIX hierarchy. If stereo channels need to be synchronized,
then it can only occur at the controller or interrupt level (unless
the data need only be resynchronized at a much lower rate). If,
on the other hand, subtitles need to be added to a running video
sequence, then this can easily be done at the thread level.

The general dilemma of processing multimedia data remains that those
applications requiring the most processing support are probably the
least likely to get it in a general UNIX environment. This is not really
surprising; manufacturers of high-performance output devices (such as
graphics controllers or even disk subsystems) have long realized that
the only way to really improve over-all system performance is to
migrate this processing out of the UNIX subsystems. Unfortunately,
doing so is difficult for multimedia applications, since the type of pro-
cessing required over a nhumber of input and output streams is usually
beyond the scope of the implementation of any one special-purpose I/0
processor. In the next section we discuss a general approach that we
are investigating for providing both good performance and reasonable
flexibility to multimedia applications.

EurOpen Autumn ‘91 — Budapest, 16-20 September

Multimedia Synchronization and UNIX ﬂ

5. Conclusions and an Alternative Approach

The discussions in the preceding sections can lead us to two general
conclusions: The fastest processing layers in the UNIX hierarchy are the
device controller and the interrupt layers; these layers enjoy high-
priority scheduling and can be invoked with relatively little overhead.
In terms of efficient multimedia processing, it can be argued that once
you reach either the kernel top-half code or the thread/process layers, it
is probably too difficult to provide efficient and deterministic mul-
timedia processing. It can be assumed that for all but the most trivial
types of fetch-and-deposit multimedia operations, it is both desirable
and necessary to provide a layer of applications support to manage the
interactions among the various incoming and outgoing data streams.
(Recall that the entire reason for having computerized multimedia sys-
tems is the measure of control a user can have over the sequencing and
presentation of pieces of data.) This type of processing is “easily”
done at the thread/process layers, it is possible (but often impractical)
at the device driver layer, it is improbable at the interrupt layer and it is
usually totally unavailable at the controller layer.

The net effect of these conclusions is that it is desirable to supply a new
programmable layer in the UNIX hierarchy that combine the perfor-
mance benefits of the existing lower layers with the flexibility of the
existing upper layers. In providing this layer, it is probably not useful
to simply steal cycles from the CPU — doing this is, in effect, only
replacing the existing UNIX scheduler with a semi-real-time one. If we
assume that all of the normal services available to a user must continue
in addition to multimedia processing, then some form of co-processing
will be required to satisfy both the UNIX user and the multimedia appli-
cation. In closing this paper, we provide a brief description of an
approach being studied at CWI for providing multimedia applications
support. This approach, which is based on a distributed 1/0 and pro-
cessing architecture, is a generalization of existing approaches for
offering high-performance graphics and computation processing on a
workstation: the special-purpose co-processor.

Figure 5 illustrates the placement of a multimedia co-processor
(MmCP) as a component of a workstation architecture. The MmCP is
assumed to be a programmable device that can be cross-loaded from
the master processor. It is assumed that the MmCP can execute arbi-
trarily complex processing sequences, and that it will have access to all

distributed O/S subsystem

(a) (b)

Figure S: The Multimedia Co-Processor (MmCP):
(a) local architecture, (b) as a distributed operating system

42 EurOpen Autumn ‘91 — Budapest, 16-20 September

ﬁ Multimedia Synchronization and UNIX

or a part of the workstation’s memory. As with arithmetic co-
processors, a simple interface should exist to control information flow
from the UNIX processor. Unlike normal co-processors, however, we
assume that the MmCP will be driven by a distributed operating system
that will provide communications support between its hosting worksta-
tion and other workstations in a network environment. This distributed
support (Figure 5b) will provide for coordination among the various
sources and destinations in the DSS and DMS models discussed above.

In the previous sections, not much direct mention has been made of the
DSS and DMS models. This is, in part, due to their relative scarcity in
current multimedia systems. It is clear to us, however, that there is a
great need for coordinated data transfer among various agents in a
networked multimedia system. This coordination may consist of
bandwidth reservation algorithms for efficient network use or intelli-
gent algorithms for information transfer. An example of the latter type
of algorithm may be a transport-style communications layer that knows
to bias its service towards one type of media — such as audio — at the
expense of others — such as video — if bandwidth become limited dur-
ing a transmission. If one were to try this in a typical UNIX kernel,
then the process and mode switching time may well be longer than the
adaptive period of transmission delay!

Our work is currently centered around evaluating the use of the
Amoeba operating system as the basis for an MmCP [Mul90a, Ren88a].
Amoeba has two main advantages in our research: first, it has excellent
communications characteristics that appear to make it suitable for
light-weight protocol development; second, it is a mature but relatively
unused system — meaning that it is still an open, experimental system
(unencumbered by hundreds of users or thousands of standardization
committee members). It should be pointed out that we are investigat-
ing basing our work on Amoeba, but that we do not intend to replace
Amoeba. Also, unlike other operating systems research projects
[Acc86a, Dal90a], we are not intending to develop a “micro-kernel” as
such (that is, a kernel with core services for use in controlling activity
on a workstation), but rather something which could be called a
“nano-kernel” i.e. a kernel that handles a particular subset of services
that can be allocated to one or more users of on a general workstation
(Figure 6). In this sense, our work is aimed at replacing the partitioned
intelligence in device controllers with a layer of shared intelligence at a
super-controller level. This has the advantages of providing a full (and

DAY, NN
I I A AR ,\, \,\, ,\,\,\,\,\,\,\,\,\,\,\,\,\, QR
R e R 5 \\\\\\\\\
PRI RRRR RN IR RARRRRARRRARAR
\/\/\’\/\’\I\i\/\’\’\/\/\’\/\,\,\/\\/\/\/\/\/\\\\/\Amoeba based MUItlmedla DlStrlbUtEd OS ik NN SRNNERRNINRRNGA)
B R R R A R R R R R R A R R R R R R R R R R R R R R R R R R RN R R RN AR REIER RARRARRALRRRERERLEARLR AR AR RERELRR,

devices devices devices

Figure 6: Multimedia support using an embedded distributed operating system

EurOpen Autumn ‘91 — Budapest, 16-20 September 43

Multimedia Synchronization and UNIX

standard) UNIX environment plus a programmable interface layer for
high-performance support.

Although we feel that a strong case can be made for the development
of the MmCP (either based on Amoeba or otherwise defined), we are
only starting a detailed investigation of the resource and functional par-
titioning requirements needed to support general multimedia systems.
This research is driven by two observations:

'Y First, it should be clear from the sections above that the general

motivation for a programmable, high-performance processing
layer exists. It may be argued that this need will reduce with fas-
ter processors, although we feel that such processors will only
stimulate the requirements for even higher processing rather than
satisfying it.
A second development that encourages our work is the rapid
development of multi-processor workstation architectures.
Although many of these systems are little more than trade-press
rumors, several systems (such as the SGI PowerSeries) already
provide moderate-cost multiprocessor workstations coupled with
a wide array of input and output subsystems. There is no
inherent reason why these systems can not simultaneously sup-
port multiple operating systems (one for the MmCP and one the
remaining processors). An initial port of Amoeba to a Silicon
Graphics platform (in our case, a 4D25) has been successfully
completed as a proof-of-concept project.

We view these reasons as providing a basis for further work at the
applications, kernel interface and architecture layers of the workstation.

6. Summary

We have attempted to argue that the conventional UNIX environment
for workstation computing — as useful as it is for many applications —
rhay not be idealy suited for high-performance multimedia computing.
Although some of the factors that constrain UNIX are technology
dependent, much of this problem lies with fundamental design issues
that were a part of the original uniprocessor, sequential serial YO model
developed for UNIX in the 1970’s. The approach of the multimedia
co-processor that we have presented here is an attempt to overcome
many of these problems without sacrificing the positive aspects of a
uniform UNIX interface.

Our work is being done as part of the CWI/Multimedia research project,
an interdisciplinary effort to study various related aspects of the mul-
timedia problem. Please note that organizations and commercial firms
mentioned in this paper have been selected as examples of architec-
tures and approaches to supporting workstation computing. No attempt
has been made to survey all relevant manufacturers of multimedia
workstations and no particular endorsement is intended or implied for
those companies referenced.

References

[Acc86a] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid,
A. Tevanian, and M. Young, “Mach: A New Kernel Foun-
dation for UNIX Development,” Proceedings of the Sum-
mer 1986 Usenix Conference, Atlanta, GA (July 1986).

Multimedia Synchronization and UNIX

{Bul90a]

(Bul91a]

[Dal90a]

[Mui90a]

[Pro89a]

[Ren88a]

D. C. A. Bulterman, “The CWI van Gogh Multimedia
Research Project: Goals and Objectives,” CST-90.1004,
CWI (1990).

D. C. A. Bulterman, G. van Rossum, and R. van Liere, “A
Structure for Transportable, Dynamic Multimedia Docu-
ments,” Proceedings of the Summer 1991 Usenix Confer-
ence, pp. 137-156 (June 1991).

P. Dale and I. Goldstein, Realizing the Full Potential of
Mach, OSF Internal Paper, Open Software Foundation,
Cambridge, Mass. (1990).

S. J. Mullender, G. van Rossum, A. S. Tanenbaum, R. van
Renesse, and J. M. van Staveren, “Amoeba: A Distributed
Operating System for the 1990s,” IEEE Computer Maga-
zine 23(5), pp. 44-53 (May 1990).

SIGGRAPH-89 Panel Proceedings, “The Multi-Media
Workstation,” Computer Graphics, Boston, Mass. 23(5),
pp. 93-109 (Dec 1989).

R. van Renesse, H. van Staveren, and A. S. Tanenbaum,
“Performance of the World’s Fastest Distributed Operating
System,” Operating Systems Review 22(4), pp. 25-34 (Oct
1988).

46

EurOpen Autumn 91 — Budapest, 16-20 September

Using a Wafer-Scale Component to
Create an Efficient Distributed
Shared Memory

Aarron Gull

City University
London, UK
aarron@cs.city.ac.uk

Abstract

Within a decade a revolution will have occurred in computing: for by
then, byte for byte, the cost of semi-conductor storage will be lower
than that of magnetic discs. When this happens, it is argued that mag-
netic storage will be totally replaced by wafer-scale integrated silicon-
based mass-storage devices.

In preparation for this day, a method of creating Dynamic Random
Access Memory (DRAM) wafers which combine shared storage and
communication properties is proposed. These can be stacked like con-
ventional disc platters to form storage devices called Wafer Discs.

This paper describes Wafer Disc and shows how it can be used to con-
struct a scalable multi-computer based on a shared optical disc cache.

1. Introduction

It is widely accepted that significant increases in computer throughput
can only be achieved through the use of multiprocessing. The principal
rule when designing multiprocessor systems is to achieve a balance
between the number of processors, the degree of communication
between them and the bandwidth of the communications medium used
to connect them. Two types of multiprocessor system are common:

Tightly-coupled multiprocessors

The processors in tightly-coupled multiprocessors systems are
typically linked by a common very high bandwidth bus to a
shared memory. However, as there is a high degree of communi-
cation between the processors, such systems are limited in size;
even the largest multiprocessor systems rarely have more than 30
processors [Sys87a].

Loosely-coupled multicomputers

The processors in loosely-coupled multicomputers are linked by
relatively low bandwidth communication channels. However,
the processors have private memories and, if there is sufficient

EurOpen Autumn "91 — Budapest, 16-20 September

Using a Wafer-Scale Component to Create an Efficient Distributed Shared Memory

locality, communicate relatively rarely. This enables such sys-
tems to be very large.

Multicomputers, although scalable, are notoriously hard to program.
Such systems typically use the message passing parallel programming
paradigm. This requires programs and data to be partitioned so that the
maximum multiprocessing can be achieved with the minimum of com-
munication. This proves to be difficult and, as a consequence, multi-
computer operating systems tend to be complex, employing many dif-
ferent mechanisms and caching policies [Win89a].

Multiprocessor systems, though limited in size, are often very easy to
program. These use the common memory to implement the shared
variable programming paradigm. There is no need to partition data in
such systems, as all of the processors have access to it. Multiprocessor
operating systems often use the shared memory to simplify many of
their mechanisms and caching policies. Mach, for example, unifies
interprocess communication, virtual memory and backing storage
[Acc86al.

A number of people, notably Li [Li86a], Delp and Farber [Del86a] and
Fleisch and Popek [Fle89al, have attempted to combine the program-
mability of multiprocessors with the scalability of multicomputers by
implementing large-grained shared memories on multicomputers. The
efficiency of these systems usually suffers, however, network and
server contention.

City University has proposed a method of combining a large scalable
shared memory and a high bandwidth communication network in a sin-
gle wafer-scale component called Wafer Disc. This paper describes
this device and suggests it could be used as a medium for the construc-
tion of efficient shared memory multicomputers.

2. Background Information

In 1990, Hennessy and Patterson [Hen90a] observed three trends in the
memory hierarchy:

° DRAM-Growth Rule: Density increases at about 60% per year,
roughly quadrupling in 3 years.

Disc-Growth Rule: Density increases at about 25% per year,
roughly doubling in 3 years.

Address-Consumption Rule: The memory needed by the average
program grows by a factor of 1.5 to 2 per year.

If the DRAM and Disc-Growth trends observed by Hennessy and
Patterson continue, one Giga-bit silicon memory devices will exist
within 9 years. As the cost of storage is typically inversely propor-
tional to its density, within a decade these will cost under $25 each.t
About this time, byte for byte, silicon memory will provide cheaper
storage than magnetic discs and will probably replace them entirely.
Non-volatile storage could be performed by cheap, but slow, archival
mediums such as CD/writable optical discs and high density tapes.

Even though silicon memory is decreasing in cost, according to Hen-
nessy and Patterson’s Address-Consumption rule, the memory require-
ments of programs are growing at about the same rate. Today the typi-
cal mini-computer has at least one Gbyte of magnetic disc storage.

t DRAM currently retails for around $6000 per Giga-bit of 80ns memory. A 760 Mbyte magnetic disc can be purchased for $2800,

around $470 per Giga-bit.

48

EurOpen A ‘91 — Budapest, 16-20 Septemb

ﬁ Using a Wafer-Scale Component to Create an Efficient Distributed Shared Memory

Assuming that magnetic memory requirements are proportional to pro-
gram sizes, in 12 years 130 Gbytes of silicon memory will be needed
simply to replace the magnetic storage in a typical system. Even using
one Gbit DRAMs this will require over one thousand chips.

Hardware reliability problems are most often caused by defective con-
nections, either in the form of the soldered joints connecting the chip
pins to the printed circuit boards (PCBs), or the bond wires inside chip
packages which connect the pins to the silicon. In effect, a system’s
mean time to failure is proportional to its number of pins. Assuming
that a 1 Gbit DRAM chip will require 24 pins, the memory alone in a
typical mini-computer will have around 25,000 pins. Consequently,
such systems will have considerable reliability problems.

Wafer-scale integration (WSI), the process by which integrated circuits
are packaged as whole wafers rather than as individual chips,. is an
appealing solution to this problem. Most of the interconnections in a
wafer are made by aluminium alloy metalisation on silicon. This is
inherently more reliable than both PCB interconnections and chip
bonds. In addition, Wafer-scale integration has the further advantages
of lower cost per function, higher performance and reduced PCB foot-
print. However, it has the disadvantage that successful WSI requires
built-in fault-tolerance as the yield of defect-free wafers is essentially
Zero.

As a storage medium, Wafer-scale silicon storage has several advan-
tages over conventional magnetic storage devices: it is faster; it can be
accessed randomly while magnetic storage only allows pseudo random
access to data; it is more reliable and, finally, it has better handling pro-
perties. It has the disadvantage, however, of being volatile.

Although Carlson and Neugebauer [Car86a) have dismissed memory as
a WSI candidate, work by Chesley [Che87a], Anamartic [Cur89a] and
Anderson et al [And89a] have shown it to have considerable promise.

) Chesley's Wafer Virtual Memory Proposal. Chesley has pro-
posed a non-redundant approach to constructing wafers of
DRAM. By not employing a redundancy scheme, Chesley uses
100% of the area of the wafer. Thus a wafer yield of around 70
per cent is obtained without incurring the penalties usually asso-
ciated with error detection and correction.

° Anamartic's Wafer Stack. One of the first commercial attempts
to provide Wafer-scale memory is the Wafer Stack device pro-
duced by Anamartic (formally Sinclair Research). This uses six
inch wafers containing 202 one-megabit DRAMs. It had two
main disadvantages:

. It was relatively expensive. This was because it did not
employ state-of-the-art memory chips.

) It was slow; it only employed a single 8 bit wide Catt
Spiral [Aub78a) data path and had a slow processor acting
as an intelligent interface. Consequently it had a latency of
around 200 ps and a peak transfer bandwidth of 800
Kbytes per second.

. City University’s Wafer Disc Proposal. City University has pro-
posed a method of creating DRAM wafers, called Wafer Discs,
which combine shared storage and communication properties.

EurOpen Autumn 91 — Budapest, 16-20 September 49

Using a Wafer-Scale Component to Create an Efficient Distributed Shared Memory

3. The Wafer Disc Proposal

The Wafer Disc proposal is based on a set of five wafer-scale integra-
tion design rules formulated at City University during the Cobweb pro-
ject [And90a]:

Successful wafer-scale integrated devices should comprise a
large number of independent payload blocks embedded in a reli-
able communications network. This will result in high fault-
tolerance.

The communication and payload circuitry should be separated so
that the communication architecture is general purpose and reus-
able. This will lead to faster product design and lower costs.

The wafer functions should be kept as simple as possible. Any
complex processing should be done off the wafer. This will
improve the yield of usable components.

To reduce production costs, the minimum amount of defect
repair should take place. Only power drains, which otherwise
would be fatal, should be patched prior to wafer packaging.

Wafer testing should be accomplished by external circuitry
which will inject test patterns into the edge of the wafer which
then percolate.

The main components envisaged in a Wafer Disc system are Wafer
Disc Platters (WDPs) and Wafer Disc Interfaces (WDIs). A system may
contain large numbers of both types of component:

Wafer Disc Platters. A Wafer Disc Platter is a wafer which con-
tains a regular mesh of Communication Elements (CEs). Each
CE is connected to its nearest neighbours by busses, forming a
four-connected communication network. Each CE is also con-
nected to a Payload Element (PE) comprising a Memory Access
Controller (MAC) and some DRAM. The Wafer Disc architecture
is illustrated in Figure 1.

At the edge of the wafer the busses are connected to pads. These
are bonded to the pins in the wafer packaging to create external
busses. The wafer contains an excess of pads to guarantee that
all of the pins can be bonded to functional CEs. Future technol-
ogy may allow high bandwidth optical connectors and fibres to
be used for external communication.

The dimensions of the components in a Wafer Disc Platter are
determined by two compromises:

. The communication bus width. The width of the communi-
cation bus is a compromise between employing wide data
paths (which provide higher communication bandwidth) or
narrow data paths (which have a higher yield, and con-
sume less of the wafer).

The main problem with wafer-scale communication is that
although a wafer’s internal bandwidth is high, it is ulti-
mately connected to the outside world which employs rela-
tively low rates. As it is pointless to provide higher inter-
nal bandwidth than can be utilised, it was decided to
employ narrow data busses comprising 32 bit data-paths
and 4 signal lines.

. The number of CEs, in a wafer is a compromise between
having few CEs (thus allowing more of the wafer area to

50

EurOpen Autumn 91 — Budapest, 16-20 Septemb

Using a Wafer-Scale Component to Create an Efficient Distributed Shared Memory

| Pads |

CE CE CE |
[MAC I—I | MAC I—l [MAC)—l
X
DRAM DRAM DRAM
e
E CE CE CE g
w wv
[MAC | MAC I MAC -
) §
DRAM DRAM DRAM
CE CE CE |
[mac I—I [MAC |—l [MAC |-]
b I L . L |
DRAM DRAM DRAM
[Pads

Figure 1: The Wafer Disc Architecture

be devoted to memory and the average communication
path length to be low) and having many CEs (resulting in
less contention in the wafer).

As the scalability of any shared memory is highly depen-
dent upon contention and the communication network is
compact and very fast, it was decided that it was appropri-
ate to employ a large number of CEs. Assuming that the
smallest amount of DRAM that is economic has dimensions
5%10°u by 1.3x10%u and CEs occupy occupy approxi-
mately 4.1x10%u? an eight inch wafer can contain about
2,800 CE and PE pairs in a 33 wide by 107 high oval.

. Wafer Disc Interfaces. Each processor in the computer system
will have a dedicated chip on its PCB called a Wafer Disc Inter-
face (WDI). A WDI is effectively a chip-mounted CE which is
responsible for interfacing between the processor and the exter-
nal busses of up to four WDPs. A WDI, however, does not neces-
sarily have to be connected to a processor; it can simply be used
to link a number of WDPs. In this way, WDIs act as “glue”,
allowing WDPs to be chained together to form potentially mas-
sive storage systems. A 2-connected system is shown in Fig-
ure 2.

3.1. The Communication Element

One of the major benefits of the Wafer Disc Architecture is that the
storage capacity of a WDP is similar to that of a wafer containing con-
ventional DRAM chips. This is because the communication network
takes up the space normally reserved for pads, test dies and scribe lines.

EurOpen Autumn 91 — Budapest, 16-20 September 51

Using a Wafer-Scale Component to Create an Efficient Distributed Shared Memory

WDIs on processor
boards

external busses

/

\\‘__,_,_.-”

Figure 2: Connecting WDP to Computers

This makes Wafer Disc an economical alternative to conventional sili-
con memory.

Circuit-switched communication appears most attractive for Wafer
Disc. (This technology was investigated by Winterbottom
[Win87a, Win88a, Win89a).) In order to reduce the routing circuitry on
the wafer, communication is always initiated by a Wafer Disc Inter-
face.

Communication occurs in three stages: circuit construction, data
transfer, and circuit collapse.

During circuit construction, an electronic circuit is established between
the WDI and the destination CE. The head of the circuit starts at the
WDI and contains routing information. This is a series of two bit pairs
which specify the course the head must take at each CE, relative to the
current direction of travel, to get to the destination. The routing
scheme is illustrated in Figure 3a.

The top two bits of the routing information are stripped off by the CE
connected to the WDI and examined. If possible, the bus in the
requested direction is allocated to the circuit and the head of the circuit
passes to the next CE in the route. This procedure is repeated until the
circuit head reaches its destination.

Up to two circuits can be routed through each CE as long as they use
different busses. Several possible combinations are shown in Figure
3b. If, at any point, a bus required by the circuit is already in use, the
circuit back to the source CE collapses immediately, thereby freeing
the allocated busses and providing freedom from deadlocks. When a
circuit collapses, the sending CE must back off and retry after waiting
some random interval.

When a circuit has been established, data transfer can take place. The
circuit appears to be an auto-simplex parallel (32 bit wide) shift regis-

EurOpen Autumn ‘91 — Budapest, 16-20 September

Op Using a Wafer-Scale Component to Create an Efficient Distributed Shared Memory

PE

1110 . /—7@‘

head 01
CE

00

- >

(a) (b)

Figure 3: Circuit-switched routing

ter. If this is clocked by the source CE at 40 MHz, a hop time of 25ns
and a raw data transfer rate of 152 Mbyte/sec will be obtained.

When the communication is complete, the source CE dissolves the con-
nection which in turn causes circuit collapse. The collapse frees the
allocated busses.

Routes are held off wafer in look-up tables in the Wafer Disc Interface.
When the system is powered-up, the Wafer Disc Interface tests the
wafer, locating the defective CEs and building routes to the working
ones around the duds.

In general, the number paths blocked by a circuit is minimised when
the head mades as few direction changes as possible. This usually
results when the head travels straight into the wafer until it is level with
the destination CE, then turns left or right as appropriate.

The advantages of this communication scheme include:

. The communication protocol has been proved to be deadlock
free by Whobrey [Who88a].

° A circuit-switched CE is much smaller than a packet switched
one. This results in an exceptional communications network
yield.

° When a circuit is established, exclusive communication with the

CE is guaranteed for its lifetime. This assures atomicity, a pro-
perty often desirable in multiprocessing systems.

° It uses well-understood technology which has already been
applied practically at City University.

The main disadvantage of this scheme is:

) Making and holding a circuit ties up a number of data paths in
the wafer. As the number of circuits increases, the probability of
being able to make an additional one drops. This is largely
offset, however, by the huge number of possible data paths in the
network.

A gate equivalence scheme has been used to compute the area of a CE
using very conservative 1.5 micron technology. The values obtained
are shown in Table 1. The majority of the wafer area is consumed by
memory and power rails.

EurOpen Autumn 91 — Budapest, 16-20 September 53

Using a Wafer-Scale Component to Create an Efficient Distributed Shared Memory

Structure | Components Area (x10%u?)

Control Logic
(= 2,000 gates)
Routing Bus 13
Power Rails 1.9

0.9

PE Memory 6.3

Table 1: Areas of the Wafer Disc Cell Components

Assuming a memory region has dimensions 5x10%u? by 1.3x10°p2,
CE and PE pairs will occupy approximately 5.8x10%u? by
1.8x10°u?, the CEs consuming 39% of the wafer and the PEs 61%.
The total CE area is 4.1x10°u?. The CE yield has been predicted as
94% by the negative binomial model, assuming logic fault rates of 0.03
defects/mm?, metal fault rates of 0.01 defects/mm? and a clustering
parameter of 0.75 to show a high degree of defect locality.

The harvest of CEs is defined as the proportion of the total CEs which
can be configured into a connected network attached to the wafer’s
pads. If a wafer has several disjoint networks, the harvest refers to the
largest. When leaving room for pads, an eight inch wafer can contain
about 2,800 CE and PE pairs in a 33 wide by 107 high oval. With this
large number of elements and the exceptional yield, Wafer Disc’s fault
tolerant architecture ensures that the harvest is very close (within a
fraction of a percent) to the communications yield. Using 1 Gbit tech-
nology, each PE will contain about 8 Mbytes of DRAM. If a harvest of
94% is achieved, the raw storage capacity of a single eight inch wafer
will be around 22 Gbytes.

It is assumed that a wafer can reasonably have 1,000 pins. Allowing
two power, four control and 32 data lines per bus, up to 25 Wafer Disc
Interfaces could be connected to each wafer.

Simulations have shown that wafers will have an average of 4,880
functional busses and the mean circuit length between the WDIs and the
PEs will be 62 hops. The mean circuit length between WDIs will also
be very similar to this. However, as a wafer is effectively oval is
shape, the mean circuit length from a WDI will be highly dependent
upon its position in the wafer’s major axis. Consequently some WDIs
will be faster at constructing circuits than others.

The implications of bus load on constructing a circuit are shown in Fig-
ure 4. If a multicomputer’s I/O subsystem is balanced so that typically
two average length circuits are active simultaneously (consuming 124
busses), there is a 20% chance of making a third. If the retry period is
equal to the average transfer time, the expected number of attempts at
making a circuit will be 5. Consequently, if each hop takes 25ns, the
expected time to make a circuit will be around 7.8 ps. Dropping a cir-
cuit takes no time.

3.2. The Payload Element

Each Wafer Disc Payload Element will contain a rectangle of DRAM
and a Memory Access Controller. It is envisaged that a single PE will
hold as small an amount of memory as economically possible. This
will minimise data contention within the wafer.

The DRAM payload blocks will be very similar in form to one of the
arrays of memory which comprise conventional DRAM chips. The

EurOpen Autumn ‘91 - Budapest, 16-20 September

Using a Wafer-Scale Component to Create an Efficient Distributed Shared Memory

Probability(making circuit)

1.00
0.95
0.90
0.85
0.80
0.75
0.70
0.65
0.60 -—
0.55
0.50
045 -
0.40
0.35
0.30
0.25
0.20
0.15
0.10 ——
0.05 —
0.00

Busses in use
0.00 200.00 300.00

Figure 4: Graph to show the probability of making a new circuit given that circuits already exist

dimensions of these are typically determined by a combination of the
length of their sense lines, the size of their sense amplifiers and the
amount of memory access logic required. An array could reasonably
measure 0.5 cm X 0.125 cm. Using 1 Gbit technology, each would
contain just over § Mbytes of memory.

Many of the DRAM blocks on a platter will contain defects. Generally,
these fall into two categories:

° Hard Defects are permanent faults caused by physical, usually
visual, anomalies in the wafer such as lithographic errors or con-
taminations. Hard defects can affect single bits, whole rows or
columns or even whole arrays of memory.

To increase the yield of usable memory, the DRAM block in each
PE can be divided into logical fragments which are accessed
independently. Each DRAM array is divided into sixteen subar-
rays, or fragments, each 1,024 by 64 bytes. On power-up, the
Wafer Disc Interface tests the memory in the wafer and locates
the defect-free fragments. Fragments which contain hard
defects, even a single bit, are not used for storage. This is illus-
trated in Figure 5.

Soft Errors. Soft defects are non-permanent transitory faults
which occur randomly due, for example, to alpha particle decay
or chip degradation. Due to their nature, soft defects tend to
affect isolated bits within the memory. As a consequence of this,
over a period of time the contents of a silicon based storage dev-

EurOpen Autumn 91 — Budapest, 16-20 Septemb

Using a Wafer-Scale Component 10 Create an Efficient Distributed Shared Memory

Segment

128 bytes

[Memory Access Controller | _

| ~

v | | | | ~

—

+] [
1024 bits ! _'_._;__.\ 512 bits
|

—
8280bytes —— 1024 bytes data +

11 bytes error correction

Defective fragments

Usable fragments

Figure 5: Increasing memory yield by fragmentation

ice will slowly degrade, in contrast with magnetic media. It is
necessary to employ a mechanism in Wafer Disc which can
correct, rather than just detect, soft errors.

The low occurrence of soft errors suggests that a light-weight
error correcting code, such as Hamming Code [Gol86a], is suit-
able for Wafer Disc. The Wafer Disc Interface applies the error
correcting code to the data written to the wafer. This introduces
redundancy which allows occasional bit errors to be corrected
when the data is read.

Each fragment row can be divided into eight 128 byte segments
which are accessed independently. To error correct a single bit
error in a segment using Hamming Code requires 11 bits, a 1%
overhead. These extra bits are incorporated into the segments,
making each fragment row 8,280 bits long; an 8 Mbyte PE
requires an additional 88 Kbytes for error correction.

The contents of a fragment are read and written as a series of
segments. When writing a row to the wafer, the WDI buffers the
data to be written until it has amassed a full 1,024 bits. It then
inserts the error correcting code and sends the 1,035 bit result to
the wafer. When reading from the wafer, the reverse happens;
the WDI buffers the data read until it has received a full 1,035
bits. It is then possible to error correct it. The error correction
circuitry contained within the WDI so as to simplify the MACs.

A WDI connected to the wafer will be assigned the task of
cycling through the segments, sequentially reading and rewriting
them. This will have the effect of repairing soft errors caused by
alpha-particle decay, thus reducing the probability that a biock
will be irreparably affected. If a segment is found to be fre-
quently in error, it is likely that it contains an intermittent fault.
The contents of the fragment containing the segment are copied
to a spare fragment in the wafer. As this processes is effectively

EurOpen A

N
2B

Using a Wafer-Scale Component to Create an Efficient Distributed Shared Memory

refreshing the memory twice, an attractive possibility would be
to place the error decoding circuitry in the MACs, allowing them
to perform “smart refresh”. This would make external error
correction circuitry unnecessary, and at the expense of storage
yield.

The Memory Access Controller (MAC) is responsible for transferring
data to and from its DRAM payload. The MAC supports the reading and
writing of complete 1,035 bit fragment segments. When a WDI initially
makes a connection with a MAC, it sends it a single 32 bit request. This
has the following format:

Request | Fragment Start Start End End Unused
Y segment row segment
(R/'W) (0-15) (0-511) (0-7) (0-511) 0-7)
1 bit 4 bits 9 bits 3 bits 9 bits 3 bits 3 bits

If the request is for segments to be read from the payload, the MAC
reads the requested data from the memory and sends them to the WDI,
where the error correction code is removed. If the request is for seg-
ments to be written to the wafer, the WDI inserts the error correcting
code into the data and sends them to the MAC, which writes them to its
payload.

When the transfer has been completed, the WDI may initiate new
transmissions by sending additional requests.

If 32 bit words are clocked across the data bus using a 25 ns clock, the
time taken to transfer a single 128 byte segment to or from the wafer
will be 800 ns. It is estimated that this could be error corrected in
around 400 ns. If 2,048 byte data blocks are employed, the overall
transfer latency will be about 19.2 ps, or a block transfer rate of 100
Mbytes/second. It is argued that the computer bus will be able to sup-
port this rate.

When the memory access controller is idle, it must refresh the DRAM,
Unfortunately, the power required to refresh a wafer is large. Conse-
quently, it is difficult to provide WDPs with the battery backup needed
to make them non-volatile.

4. Important Optical Disc Cache Design Issues

Three issues are considered important when designing the Wafer Disc
optical disc cache:

Storage Semantics

One of the features of current optical discs is that once blocks are
written they are effectively immutable. This poses a problem as
these semantics differ considerably from those of conventional
memory; an optical disc block which is modified cannot be
overwritten with its new contents.

This problem is solved by introducing a level of indirection into
the caching which maps logical optical disc block addresses on
to physical locations on the optical disc. When the contents of a
logical optical disc block are modified, the indexes are updated to
point to its new physical location on disc. This allows the
semantics of conventional memory to be emulated at the expense
of sacrificing inexpensive optical storage capacity.

EurOpen Autumn “91 — Budapest, 16-20 September 57

Using a Wafer-Scale Component to Create an Efficient Distributed Shared Memory

Cache Organisation

There are three common categories of data organisation which
are employed in caches. In order of increasing performance and
hardware cost these are: direct mapped, where a block can only
appear in one location in the cache; set associative, where a
block can appear within a restricted set of places; and fully asso-
ciative, where it can appear anywhere. In reality all three are
really set associative caches with different set sizes.

Bugge et al [Bug90a] have shown that the most important factor
effecting the performance of a set associative cache is its size.
The degree of associativity employed is of lesser importance, but
when it is high, Random block replacement schemes, which are
cheap to implement, perform as well as the more popular, but
expensive, Least Recently Used schemes. Wafer Disc allows the
creation of a Gbyte-sized cache with a high degree of set associa-
tivity and, therefore, should provide excellent performance at a
low cost.

It is suggested that each 512 Kbyte Wafer Disc fragment should
contain three cache sets, each of which would have 64 two-
Kbyte blocks.

Data Coherence

As the number of active circuits in a system at any one time
should be minimised and the majority of cache accesses will be
reads, it is suggested that processors should be allowed to cache
local copies of optical disc blocks. A mechanism is required,
therefore, which maintains the coherence of these.

It is suggested that Wafer Disc should employ a multiple reader,
single writer block coherence scheme.

Cache Size

One of the major factors in determining the performance of a
Wafer Disc cache will be the communication circuit construction
time. Due to the increased chance of collisions, the time taken to
make a circuit is exponentially proportional to its length. Con-
structing long circuits, such as those which pass from one wafer
to another, is much slower that making short ones. This suggests
that some buffering scheme could be appropriate.

The variation in the potential block access latency gives Wafer
Disc Non-Uniform Memory Access (NUMA) characteristics. To
prevent the disparity in block access latencies from becoming too
large, a hard limit must be set on the maximum circuit length in a
system. This effectively limits the number of WDPs that can be
linked together.

For example: a five wafer system, in which wafers are mutually
connected by two WDIs, would have 100 Gbytes of raw storage
and up to 60 processors. The maximum circuit length in this sys-
tem is 214 hops, the minimum is 1 and the average is 124. The
variation in block access latency this creates is not thought to be
excessive.

The relatively long block access latency is also a significant fac-
tor in determining the granularity of memory access which can
be realistically employed in Wafer Disc.

EurOpen A ‘91 — Budapest, 16-20 Septemb,

1

-

1

Using a Wafer-Scale Component to Create an Efficient Distributed Shared Memory

5. Optical Disc Cache Mechanisms

The implementation of the optical disc cache can be divided into three
distinct mechanisms: address mapping, coherence maintenance and
block caching.

5.1. Address Mapping Mechanism

Each defect-free PE fragment in the wafer acts as a cache for sets of
logical optical disc blocks. For simplicity, a modulo-based hashing
scheme is used to map logical optical disc blocks onto PE fragments
and cache sets. This scheme distributes contiguous logical optical disc
blocks widely amongst the PEs which, assuming that there is some
locality of block reference, should reduce contention.

The scheme requires each Wafer Disc Interface to have two maps,
which in a five wafer system will consume up to 128 Kbytes of storage.

Hash Map

To implement the modulo-based hashing scheme, the WDIs need
to know the number of defect-free fragments in each PE. This
information is contained in a Hash Map, an identical copy of
which is held in each WDI. Each CE is assigned an unique Logi-
cal CE Number by which it can be globally referenced. This
allows the WDIs to map logical optical disc blocks onto the logi-
cal CEs, fragments and sets which cache them.

For example: the simplified system illustrated in Figure 9 has 4
CEs, each with 6 fragments. The total number of defect-
fragments is 20. Optical disc block 115 is cached by logical CE
4 (lookup 115 modulo 20) in fragment 0 (115 modulo 20-15).
Assuming there are three coherence sets this block would be held
in set 2 (1 115 + 20 | modulo 3) with a reference tag of 1 (1 115 +
[20 x 3] 1).

In reality, a five wafer system can have up to 14,000 CEs and
224,000 fragments. Assuming each CE requires a five byte
entry, a Hash Map will be around 70 Kbytes long.

Wafer Route Map

Once the logical CE containing the fragment responsible for
caching a logical optical disc block has been determined, a WDI
must make a circuit to it. The CE’s Logical Number is used as
an index into the Wafer Route Map. This gives the route from
the WDI to the CE. The routes to the WDIs are also contained in
this map.

It is estimated that the routing information for an average 62 hop
circuit, normally requiring 124 bits of information, could be

Logical Fragment Addresses cached
CE bitmaps modulo 20
1 011111 (5) 0-4
2 111111 (6) 5-10
3 100111 (4) 11-14
4 111011 (5) 15-19

Table 2: An example Hash Map

EurOpen A ‘91 — Budapest, 16-20 Septemb

59

Using a Wafer-Scale Component 1o Create an Efficient Distributed Shared Memory

compressed to 2 bytes. When indexing information is included,
a 5 wafer system containing around 14,000 CEs will require a 55
Kbyte Wafer Route Map.

As the wafer routing scheme is relative, the Wafer Route Maps
are unique for each WDI.

5.2. Coherence Mechanism

After a Wafer Disc Interface has connected to the PE which is respon-
sible for caching a logical optical disc block it must ensure that access-
ing the block in the requested manner will not violate the coherency of
any data cached by other processors. This is accomplished by employ-
ing a coherence mechanism which only allows a logical optical disc
block to be cached read-only by multiple processors, or read-write by a
single processor.

When a processor generates a read or a write fault on a block, it may
have to invalidate the cached copies of it held by other processors:

. If the processor write faulted, its WDI must invalidate all other
cached copies of the block.

° If the processor read faulted on a block which another processor
has a read-write copy of, its WDI must restrict the other’s access
to read-only.

Once coherency has been guaranteed, the processor is allowed to make,
and work from, its own cached copy of the block until it wishes to
relinquish access, or another processor invalidates it, whereupon, if
modified, it must be written back to the wafer. A simplified (non-
optimised) version of the coherence algorithm is given in the appendix.

The data structures required to maintain coherence are stored on the
wafer along with the blocks they reference. This has several advan-
tages:

. The structures are distributed evenly over the system, thereby
allowing concurrent access and spreading load.

° Each WDI acts as its own block server, thus eliminating server
contention and making the WDIs accountable for their own
actions.

. The number of circuits that have to be constructed when access-

ing blocks is minimised.

Two types of tables are employed by the coherence mechanism: Block
Lists and Copy Lists. Both types of table are of a fixed length. This
simplifies their access at the expense of being less efficient in their
storage.

. Block Lists. Each of the three coherence sets in a fragment has a
Block List held in a well-known 128 byte segment. This list con-
tains a valid entry for each of the set’s logical blocks which is
currently cached by a processor. Each list can contain up to 64
two-byte entries, the format of which are:

Valid | Busy | Address Tag
(1 bit) | (1bit) (14 bits)

The Valid field is set when an entry holds authentic data. The
Busy field can be used to lock the entry when a WDI1 drops the
connection to it. This prevents other WDIs from interfering with

60

EurOpen Autumn ‘91 — Budapest, 16-20 September

Eé Using a Wafer-Scale Component to Create an Efficient Distributed Shared Memory

it. The Address Tag field is used to uniquely identify the block
referred to.

. Copy Lists. For each entry in a Block List there is a correspond-
ing segment which contains a Copy List. The Copy Lists iden-
tify the processors which have cached copies of this block. Each
Copy List holds 32 four-byte entries, the format of which are:

Valid | Processor’s logical WDI | Permissions
(1 bit) (30 bits) (1 bit)

The Valid field is set when an entry holds authentic data. The
Processor Address field holds the Wafer and Logical CE number
of the WDI belonging to the processor. The Permissions field
says whether it is a readable or a writable copy.

The layout of the data structures was designed so that only two seg-
ments need be read to obtain a list of the cached copies of a given
block. As a consequence, each set employs 64-way associativity and
the maximum number of copies of a block which may be cached by
processors is limited to 32.

The three sets in a fragment require 384 bytes of Block Lists and 24
Kbytes of Copy Lists. When a set runs out of free Block Lists and
Copy Sets to use, a random invalidation and replacement policy is
used.

5.3. Caching Mechanism

When a Wafer Disc Interface has been granted access to a block, it
may read or write it freely until it either gives up the right, or has it
taken away. However, even though an entry for the block will exist in
the Block Lists, it may not be held in the cache. This is because the
contents of the cache are maintained independently from the Block
Lists. This makes more efficient use of the cache memory.

The WDI examines the Cache List of the set responsible for caching the
required block. Each Cache List is held in a single 128 byte fragment
and is composed of entries with the following fields:

Valid | Busy | Address Tag
(1bit) | (1 bit) (14 bits)

The Valid field is set when an entry holds authentic data. The Busy
field can be used to lock the entry when a WDI drops the connection to
it, for instance when a block is being loaded from optical disc. This
prevents other WDIs from interfering with it. The Address Tag field is
used to uniquely identify the block referred to.

® If the required block is in the cache set, the WDI can read or
write it as required.

° If the block is not in the cache set and a write is requested, space
is located in the cache, if necessary by flushing an existing block
to optical disc using a random relacement policy, and the data is
copied into it from memory.

) If the block is not in the cache set and a read is requested, the
logical to physical optical block indexes held in the fragment are
examined to locate the current copy of the block on the optical
disc. These contain the physical optical disc addresses which
correspond to the logical blocks.

EurOpen Autumn "91 — Budapest, 16-20 September 61

Using a Wafer-Scale Component to Create an Efficient Distributed Shared Memory

The WDI transfers a block to or from optical storage by connecting to
the processor with the optical disk and requesting it to perform the
transfer. When this is completed, the processor acknowledges the fact
by reestablishing the connection to the WDI.

The optical block indexes are arranged so that only blocks with the
same hash value are referenced by a given index block. As a conse-
quence, they have to be restructured whenever the number of PEs in
the system changes, when fragments fail or wafers are added or
removed, for instance. A few fragments are left unused on each wafer
as spares. These can be reconfigured to take the place of failed cells.

The three cache sets require 384 bytes of Cache Lists and 103 Kbytes
of logical to physical optical disc block translation tables. If each opti-
cal disc block address is eight bytes long, there is enough memory to
address 12 K of optical disc blocks, or around 24 Mbytes of data.
There are sufficient bits in the Address Tags to make full use of this.

5.4. Performance Evaluation

When estimating the performance of Wafer Disc transactions, it is
necessary to specify the steps involved because of their potentially
huge differences in latencies. Ignoring processing costs, the following
times have been estimated for a five wafer system clocked at 40 MHz:

° The average time to construct a circuit between a WDI and a PE
is 11 ps.

° The time to locate and read a set’s Block List and the block’s
Copy List, assuming it already exists, is 2.4 ps. This is also the
time required to write them back.

) The time to determine whether a block exists within a cache set
is 1.2 us. This is also the time taken to perform a logical to phy-
sical optical disc block address mapping.

® The time taken to transfer a 2 Kbyte block between the Wafer
Disc and processor memory, given that no blocks need be flushed
from the cache, is 19.2 ps.

. The time taken to determine the physical location of a logical
block on the optical disc is 1.2 ps.

° The time taken to transfer a 2 Kbyte block between the Wafer
Disc and an optical disc, assuming a one Mbyte per second
transfer bandwidth and a 80 ms seek and rotational delay, is 81.9
ms.

. It is assumed that once a circuit has been constructed to a proces-
sor, block invalidations can take place in around 10 ps using cus-
tom WDI hardware.

From these, the time taken to obtain a copy of a block in the cache
which requires no invalidations is estimated as 33 ps. If the block is
not in the cache, an extra 81.9 ms are required to perform the transac-
tion required to load it from optical disc. Each invalidation will add a
further 17.8 ps to this and an extra 19.2 ps is needed if a block of data
needs to be transferred.

Assuming a 100% cache hit rate, Wafer Disc can support a peak of
30,000 transactions per second, a data transfer rate of about 58
Mbytes/second.

62

EurOpen Autumn 91 — Budapest, 16-20 September

o giss

3 YOEPY

Using a Wafer-Scale Component to Create an Efficient Distributed Shared Memory

6. Conclusion

Wafer Disc is a proposed WSI device which combines shared storage
and communication properties with high reliability. The device is well
suited for use as a shared set associative cache for optical discs. As
such it will provide high performance and scalability at a low cost. A
Wafer Disc cache, however, is limited in size and does not support
fine-grained data sharing.

Wafer Disc will be suitable for bridging the gap between multiproces-
sors and multicomputers. It will enabling the construction of medium-
scale shared memory multicomputer systems containing around 60 pro-
cessors and 100 Gbytes of wafer memory.

Acknowledgement

The author would like to thank his supervisor, Professor Peter Osmon,
for providing the basis of many of the ideas presented in this paper.

Appendix

A simplified (non-optimised) version of the coherence algorithm is
shown below:

COHERENT_LOAD(block, required access permissions)
BEGIN

make connection to PE;

read Block List:

IF an entry’s ADDRESS field = block THEN BEGIN
IF entry’'s BUSY field = true THEN
drop connection and retry later;
ELSE BEGIN
entry’s BUSY field := true;
write Block List;
read entry’s Copy List;
END
ELSE
IF all entries BUSY fields = true THEN
drop connection and retry later;
ELSE BEGIN
IF all entries’ VALID field = true THEN BEGIN
select random entry from set;
read entry’'s Copy List;
entry’s BUSY field := true;
CHANGE_ACCESS (Copy List, none);
END
entry’s ADDRESS field := block;
entry’s VALID field := true;
entry’s Copy List VALID fields := false;
END
END
IF processor already has entry in Copy List THEN
remove it from Copy List;

EurOpen Autumn 91 — Budapest, 16-20 September

Using a Wafer-Scale Component to Create an Efficient Distributed Shared Memory

IF required permissions = none THEN BEGIN
entry’s Copy List VALID field := false;
IF all VALID fields in Copy List = false THEN
entry’s VALID field in Block List := false;
ELSE BEGIN
IF required permissions = read THEN BEGIN
IF an entry’s PERMISSIONS field = write THEN
CHANGE_ACCESS (writer, read);
ELSE IF all entries’ VALID field = true in Copy List THEN
CHANGE_ACCESS (random entry, none);
END ELSE IF required permissions = write THEN
CHANGE_ACCESS (Copy List, none);
insert processor and permissions into Copy List;
END
entry’s BUSY field := false;
write Block List to wafer;
write Copy List to wafer;

CACHE_LOAD (block) ;
END

CHANGE_ACCESS (list, new permissions)
BEGIN
drop connection to PE;
for (entries in list with VALID fields = true) BEGIN
connect to processor;
IF PERMISSIONS field = write AND block dirty THEN
take copy of block;
alter processor permissions on block;
drop connection toO processor;
END
make connection to PE;
IF took copy of block THEN
write block to cache;
END

References

[Acc86a] M. Accetta et al, “MACH: A New Kernel Foundation for
UNIX Development,” pp. 64-75 in Proceedings of the
Summer USENIX Technical Conference (June 1986).

[And89a] P. Anderson et al, “Wafer Disk: A New Systems Archi-
tecture Component,” Department of Computer Science,
City University (April 1989).

[And90a] P. Anderson et al, “The Feasibility of a General-purpose
Parallel Computer using WSI,” Internal Report; Computer
Science Department; City University (1990).

[Aub78a] R. Aubusson and I. Catt, “Wafer-Scale Integration — A
Fault-Tolerant Procedure,” IEEE Journal of Solid State
Circuits SC-13 (June 1978).

[Bug90a] H. Bugge et al, “Trace-Driven Simulations for a Two-
level cache design in open bus systems,” CH2887-
8/90/0000/0250, pp. 250-259 (1990).

[Car86a] R. O. Carlson and C. A. Neugebauer, “Future Trends in
Wafer Scale Integration,” pp. 1741-1752 in Proceedings of
the IEEE (December 1986).

[Che87a] G. Chesley, ‘“Addressable WSI: A non-redundant
approach,” pp. 73-80 in Computer Architecture News
(March 1987).

64 EurOpen Autumn ‘91 — Budapest, 16-20 Septemb

n

Using a Wafer-Scale Component to Create an Efficient Distributed Shared Memory

[Cur89a]

[Del86a]

[Fle89a]

[Gol86a}

[Hen90a]

[Li86a]

[Sys87a]

[Who88a]

[Win87a}

[Wing88a]

[Win89a])

L. Curran, “Wafer-scale integration arrives in “disk”
form,” pp. 51-54 in Electronic Design (October 1989).

G. Delp and D. Farber, “MemNet: An Experiment on
High-Speed Memory Mapped Network Interface,” Techni-
cal Report; 85-11-1R University of Delaware; Computer
Science Department (1986).

B. D. Fleisch and G. J. Popek, “Mirage: A Coherent Distri-
buted Shared Memory Design,” Operating Systems Review
(December 1989).

S. W. Golomb, “Optical Disk Error Correction,” Byte
(May 1986).

J. L. Hennessy and D. A. Patterson, Computer Architec-

ture: A Quantitative Approach, Morgan Kaufmann Pub-
lishers, Inc (1990).

Kai Li, “Shared Virtual Memory on Loosely Coupled Mul-
tiprocessors,” Ph.D. Thesis; Yale University; Department
of Computer Science (1986).

Sequent Computer Systems, Symmetry Technical Sum-
mary, 1003-44447 Rev. A; Sequent Computer Systems,,
Beaverton, Oregon, 1987.

D. Whobrey, “A Communications Chip for Multiproces-
sors,” Computer Science Department; City University
(June 1988).

P. Winterbottom, “NCU: Network Control Unit. Prelim-
inary Data Sheet,” Computer Science Department; City
University (December 1987).

P. Winterbottom, “BIC: Buffer Interface Controller. Prel-
iminary Data Sheet,” Computer Science Department; City
University (February 1988).

P. Winterbottom and P. Osmon, “Topsy: An Extensible
UNIX Multicomputer,” Internal Report; Computer Science
Department; City University (1989).

EurOpen Autumn ‘91 — Bud

, 16-20 Sep

h

{

66 EurOpen A ‘91 — Budapest, 16-20 Septemb,

Performance Evaluation:
The SSBAs at AFUU

C.Binot P.Dax N.DoDuc M. Gaudet

AFUU
Le Kremlin-Bicetre, France
ssba@afuu.fr

Abstract

The SSBA, Suite Synthetique des Benchmarks de I’AFUU, is an ever
flourishing activity. The SSBA 1.21 is still widely appreciated and its
influence is increasing everyday. The SSBA 2.0, its multiprocessing
companion, is about to start its life. We present here a new status
report about Benchmarking activities at AFUU.

The sudden birth of benchmarks is clearly a reaction to the appearance
of open and standard systems, hardware and software together. Thus,
within AFUU, the SSBAs are definitely an user’s answer to the arrival of
UNIX workstations, as a mean to (help) evaluate and purchase these
machines [Bin88a].

The BENCHMARKS group of AFUU, created in March 87, then
immediately proceeded to the creation of the SSBA: version 1.21 was
“up and running” by the end of 1988, and as well with others develop-
ments of the group, its activities have been, in due time, reported here
[Bin89a].

Right now, we wish to set again another time mark and present a new
status report, which still deals with this SSBA 1.21 at its cruise speed,
but also with the SSBA 2.0 at its early take-off.

1. SSBA 1.21

1.1. The Positive Sides

The SSBA 1.21 is now seriously and widely known and appreciated
[Bin90a, Bor90a], but not thoroughly in the U.S. as we expected, or
might understand, although its existence is fully exposed in specialised
media (but perhaps not intensely enough?): comp.benchmarks,
[Uni90a, Fad91a].

Giobally, the acceptance by domestic then European users is really
positive — it seems that there was an empty space and that the SSBA
was filling it — and constitutes more than an encouragement to the work
done. These users’ comments and ratings reflect most truthfully their
reactions, including their participations and views in [Tri90a, Tri91a].

EurOpen Autumn ‘91 — Budapest, 16-20 September 67

Performance Evaluation: The SSBAs at AFUU

1.2. The Shortcomings

Among the successes of the SSBA, the most striking one is its well-
recognised status, domestically at least, as the one-and-only valuable
test for UNIX machines, whatever the size (workstation or mainframe).
More explicitly, the following argument is often put forward: a smooth
and successfull SSBA test on any machine may give some results not
only about the quantitative performance of said machine, but also about
the reliability and solidity of the operating system; on the other hand, if
the test fails, then the worse can be expected and extra attention should
be exercised toward this machine. In fact, in more than one case, nei-
ther the machine nor its operating system was at fault, but the quality of
the human support in running the test, which may shed some light
about the software maintenance and support of the vendor.

The second success is the scope of the SSBA: The SSBA 1.21 is meant
to measure a wide range of characteristics of any UNIX machine
[Wen91a}, and up to now, is apparently the only suite of its importance
and size and scope to do so if we are to exclude commercial suites
whose values are very inegal.

The third interesting point is the specific test protocol, unique to the
SSBA because of its charter. While SPEC tests are usually and normally
run within vendor labs, while PERFECT results are usually obtained on
well known systems (eg. dedicated machines well mastered by com-
puter scientists), SSBA are always run on delivery machines, with
released-version software, which is naturally the case since these runs
are usually performed in France, with a few exceptions (always indi-
cated) concerning too-new machines. However, since vendors right-
fully want the best results, they are permitted to prepare the machines
as best as they can, and stuff them with whatever software they may
have, still the value of the run comes from the fact that the run is done
in the presence of an AFUU representative who has to record eventual
modifications to the SSBA source and the result of the run. In sum-
mary, such SSBA result may not represent the best value obtained
(which is not the avowed purpose of the SSBA), but this value has been
faithfully obtained and can be trusted, at least within the SSBA’s con-
text.

However, the SSBA does have a few shortcomings.

The most benign but not necessary innocuous is the Joy Mips value
which is displayed firstly among the numerical results: when other
values between competing systems are more or less equivalent, then
this value may become- a focus of attention, and this otherwise com-
monplace non-discriminant has become a real headache for many
among us. The Joy Mips incident is only laughable if it is not a catalyst
that reveals much more important underlying problems.

This may be an illustration of the following double fact: (1) the present
display of the results, “la fiche synthetique”, is too dense with raw data
to be conveniently interpreted and easily understood; (2) no data reduc-
tion has been done (yet). While we’re very conscious of fact (1) and
on the way to solve it, we’re still looking for an acceptable solution to
fact (2). Graphic display is now a fact of life and we’ll not be exempt
of it; we're even more quite concerned that we definitely need some
new way to present our results and that we need it very quickly, given
the huge amount of pending results (we may already be too late right
now). Furthermore, data reduction, and generally speaking data pro-
cessing, is not an innocent or trusted operation [Gau90a]. SPEC results

68

EurOpen Autumn °91 - Budapest, 16-20 September

o |

Performance Evaluation: The SSBAs at AFUU

for each machine hold entirely within one page: this is a graceful situa-
tion for the SPEC 1.0 suite which focuses only on CPU performances;
however, the single value of merit, SPECmark, now become three, with
two components: SPEC integer and floating point marks. PERFECT
results now are also one full page, a-la-SPEC we may say so, but even
when the acknowledged targets are only the CPU performances, we are
presented with multiple values of merits: arithmetic, geometric, har-
monic means, megaflops, instability. It might be that since such
occurences of presentations are happening and staying, we may take
example from them as we’re not going to reinvent the wheels when the
learned and professional peoples have looked at the way and lead the
path.

Thus to summarise, we may say that up to now, too much emphasis is
put on data collection (we do have by now more than a hundred official
and published results, listed in Appendix 1) and too few attention given
to data interpretation, and this situation at present time becomes really
critic. Furthermore, while the “synthetic results” can be understood
only by sophisticated users, these results often land on some deciding
manager’s or non technical user’s desk, generating hazardous and
regretable consequences and after-effects.

Other bugs are unveiled throughout intensive runs by users and
partners. The first serious difficulty stems from the exposure of the
SSBA to POSIX-compliant systems having an ANSI/C compiler: we may
remember that, up to then, the SSBA has been (sucessfully) run in
numerous tests and can de facto claim to be SVID (and X/OPEN) com-
pliant [Dje90a], but then, a deficiency is still a bug. Another bug was
discovered only recently, about the timing and thus the validity of the
Saxer component of the SSBA, fortunately affecting only bsd-based
systems [Gau9la].

On the whole, many other minor bugs or deficiencies are uncovered,
mostly at the early stages of the SSBA (versions 1.1 then [.2), and espe-
cially concerning the shell scripts which are the added value part of the
SSBA, but which are not the easiest one to deal with. Nevertheless,
although the importance of the problems may be mitigated somehow
thanks to the fact that “we are learning by walking”, we’re not exactly
glad of that situation nor inconcious of its seriousness: we’re very con-
strained by our specific situation as will be explained some more down
here.

1.3. The Specifics

There are many elements that can probably best illustrate the funda-
mental difference between our group and most (if not all) other Bench-
marking groups.

The global and initial purpose of the SSBA is to measure the overall
performance of a “mini computer” or a personal workstation running
under an UNIX operating system. From our understanding, SPEC wants
to highlight the Risc microprocessor (CPU) performances; PERFECT
wants, initially at least, to squeeze the maximum performance out of a
couple {algorithm and hardware} for a given big scientific application,
while EUROBEN’s main target is still the benchmarking of supercom-
puters, vector and parallel ones... (However, we are pleased to recog-
nize that now that the CPU parameters are taken care, every group is
looking at I/O and others parameters...).

Next, most if not all people working at SPEC, PERFECT, EUROBEN are
dedicated and competent professionals whose main, and perhaps full

EurOpen Autumn ‘91 — Budapest, 16-20 Septemb. 69

Performance Evaluation: The SSBAs at AFUU

time, job is to understand and benchmark systems. SSBA peoples are
very few and and in a not-for-profit context, a la GNU, a very small
team of dedicated individuals, who may be (or become) competent on
the subject, but who, in no way, are allocated to even work part-time on
this subject. Parts of the SSBA shortcomings surely come from this
situation: no hardware or software, no testing procedure, no support
(documentation or technical writing), no grant..., only good will and
willingness to succeed.

All the above show that the environment within which the SSBA is
working, “la vie associative”, may be not the most efficient one.
Nevertheless, the proof is done that something can grow out of this
environment, and we’re not the only ones that judge satisfactorily of all
that has been done there.

2. The SSBA 2.0

2.1. The Creation Process

2.2. The Specifications

v

During the last 2 years we ran the SSBA 1.21, we observed two
phenomenons related with the evolution of the technology and the
UNIX Market. First, due to the phenomenal increase of power, some of
the tests of the SSBA 1.21 became more and more inaccurate on a 60
mips machine, this is the sense of the history. On the other side, the
UNIX operating systems provided by the manufacturers evolved
towards better functionnalities (OLTP, real time...), sophisticated
mechanisms (memory mapped files, disk arrays, multiprocessing...) and
standardized interfaces (POSIX.1, XPG3...). Then, the UNIX market
moved to satisfy more and more users’ needs in regard with the com-
mercial world. A new release of the SSBA had to be elaborated to take
into account all these factors, so the release 2.0 project began.

We adopted the same methodology as the previous releases: preselec-
tion of interesting benchmarks all around the world, live runs on vari-
ous machines with various configurations, presentation and discussion
of the results inside the BENCHMARKS group, enhancements of the
source codes to match the specifications of the SSBA, implementation
into the suite, live runs and huge amount of testing. In parrallel, we
conducted the task of modifying or removing inaccurate tests from the
1.21 release, with the respect of providing a smooth migration path
towards the 2.0 one, and we agreed to be more directive in the output
of the results. During one year, until today, we worked together to
achieve this goal, the result is here.

Our main concerns were to have a better 1/O performance characteriza-
tion and to take into account multiprocessor architectures which are
clearly growing in the commercial market. We wanted to provide a
more accurate tool for performance evaluation of UNIX systems and a
public domain tool created by an open process without constraint and
royalty, we are a users’ group.

We received submissions of ideas and codes from Europe and the U.S.,
from end-users, universities and manufacturers, from 25 to 7000 lines
of source.

At the end of the process our criteria to see if the SSBA 2.0 matches the
initial specifications was to run it on 3 architectures, based on the same

70

EurOpen Autumn ‘91 — Budapest, 16-20 September

Performance Evaluation: The SSBAs at AFUU

2.3. The Benchmark

CPU (80486), and coming from the same manufacturer: a
PC/Workstation, a server and the same server with 2 cpu boards. The
results we obtained encourage us to say that we succeeded.

The SSBA 2.0 was designed to be POSIX.1 compliant with XPG3 exten-
sions (like fsync() for example), the ANSI C compliance is currently not
implemented. We continue to use some BSD stuff (like gettimeofday()
for example) because there is no equivalent in the standard. As we
have run the SSBA 1.21 on about 25 flavours of UNIX, we have seen
what are the portability problems and we have fixed them in the 2.0
release.

Concerning the existing benchmarks, we move from the Dhrystone
vl.1 to the Dhrystone v2.1, we slightly change the Whetstone and Lin-
pack to give a little work to the optimizers, we added a C version of the
Whetstone to care that Whetstone is “built-in” into some Fortran com-
pilers. We increased some parameters in the Bsd, Utah and Tools stuff
(we also add a compress, tar and dd component). We now use a 32
users simulation in the Musbus, instead of 8. The Mips benchmark is
run several times during the execution of the SSBA and we calculate the
average. We suppress the Musbus disk tests and we use fsync() to
flush the buffers in the Saxer. We change the output of the results and
we improve the configuration part. This kept us a little bit busy!

The new benchmarks are the Andrew (to stress in a real situation the
filesystem), the Smith (the nasty fortran benchmark which send 200 Mb
of data in a pipe), the Bonnie I/O test (which gives accurate and stable
measure of the disk throughput), and a new Benchio developped by
ourselves. This is the status at the end of June, when this paper was
written; but the work is still in progress (in particular with the Iobench
from Prime).

There are now 2 ways of running the SSBA: in the sequential mode: all
the tests run one after another, as with the SSBA 1.21, for calibration
and comparison; or in the “parallel” mode: all the tests, except the 1/0
ones and the Musbus, run together in background. In the parallel mode
the global workload on the SSBA is distributed among the different pro-
cessors, when they are available and as managed transparently by the
operating system, and the total elapsed time gives an idea of multi-
processing capabilities of the machine.

3. What Else?

The SSBAs are of course the most prominent item of our BENCH-
MARKS group’s activities, but not the only ones. Beside the much
needed and usual household works like collecting, analysing of other
benchmarks for our library, gathering printed matters about bench-
marking for our bibliography, giving advices and helps to newcomers
(be it from small or big companies, vendors or big accounts, end-users
or marketers...), we are going forward to collaborate more closely with
our friends accross the Rhein and we hope that the result of this colla-
boration will be interesting and sucessful enough to be included in a
next status report; hopefully soon.

EurOpen Autumn “91 — Budapest, 16-20 September

Performance Evaluation: The SSBAs at AFUU

References

[Bing8a]

[Bin89a]

[Bin90a]

[Bor90a]

[Dje90a]

[Fad91a]

[Gau90a]

[Gau9la]

[Tri90a]
[Tri91a]
[Uni90a]

[Wen91a]

C. Binot, P. Dax, and N. DoDuc, “Benchmarking in the
AFUU,” EUUG Newsletter 8(1) (Spring 1988).

C. Binot, P. Dax, and N. DoDuc, “Performance Evalua-
tion: The SSBA at AFUU,” in EUUG Conference
Proceedings (Brussels) (Spring 1989).

C. Binot and Minis & Micros, Les Benchmarks: Pour
evaluer les performances des systémes informatiques, Feb
1990.
D. Borchers, “Suite in F,” iX Magazine, pp. 102-105 (Feb
1990).
C. Djebbari, “La compatibilité des standards entre-eux:
POSIX et ANSI/C versus SVID et XOPEN, un exemple la
SSBA 1.21,” Tribunix 6(33), Data General France (7-
8/90).

M. Faden, “User groups congregate under EurOpen
“umbrella”,” Unix Today!, Unix in Europe supplement
(June 1991).

M. Gaudet, “Quid de I'Indice de Performance?,” Dossier
Special: Benchmarks, Tribunix, pp. 5-6 (March 1990).

M. Gaudet, “Pan et Rataplan sur le bec,” Tribunix 7 (6-7-
8/91).

de Tribunix, Dossier Special: Benchmarks, March 1990.
de Tribunix, Dossier Special: Benchmarks, March 1991,

Unigram-X, French Bench User Group launches Bench-
marking Suite, March 1990.

M. Wenig, “‘Heilige Saeulen,” iX Magazine (April 1991).

EurOpen Autumn "91 — Budapest, 16-20 Septemb

ﬁ Performance Evaluation: The SSBAs at AFUU

4. Appendix 1: SSBA 1.21 Results

. Tribunix Dossier iX Magazine
Machine Processor .
no date Special | no date

Abacom Highspeed 386 i386 2 3-4/90
Acer 12000 1486 5 9-10/90
Alcatel APX 1000 i386 | 32 5-6/90 Mars 90
Alcatel APX 2000 i386 | 32 5-6/90 Mars 90
Alcatel APX 3000 i386 | 32 5-6/90 Mars 90
Altos 486/S1000-008 1486 S 9-10/90
Apple Macintosh Hfx M68030 6 11/90
Apricot 1486 5 9-10/90
Bull DPX 1000/30 M68020 | 27 7-8/89 Mars 90
Bull DPX 2000720 M68020 | 27 7-8/89 Mars 90
Bull DPX 2000/27 M68030 | 27 7-8/89 Mars 90
Bull DPX 5000/25 Risc6 | 27 7-8/89 Mars 90
Bull DPX/2 100 M68030 | 33 7-8/90 Mars 91
Bull DPX/2 210 M68030 | 29 11-12/89 | Mars 90
Bull DPX/2 210 M68030 | 29 11-12/89 | Mars 90
Bull DPX/2 250 M68040 | 38 6-7-8/91
Bull DPX/2 320 M68030 | 29 11-12/89 | Mars 90
Bull DPX/2 340 M68030 | 33 7-8/90 Mars 91
Bull DPX/2 360 M68040 | 38 6-7-8/91
Bull DPX/2 510 R6000 | 36 1-2/91 Mars 91 6/91
Cetia VMTV2c-25 M68030 | 36 1-2/91 Mars 91
Cetia VMTV2c-33 M68030 | 36 1-2/91 Mars 91
Cetia VMTV2d M68040 | 36 1-2/91 Mars 91
Cetia VMCB2 MS88I00 | 36 1-2/91 Mars 91
Cheetah Gold 486/25 1486 5 9-10/90
Compaq 486/25 i486 | 34 9-10/90 Mars 91
Compaq 486/33L 1486 | 34 9-10/90 Mars 91
Compaq DeskPro 386/33L 1386 | 34 9-10/90 Mars 91
Compaq DeskPro 486/33L 1486 | 34 9-10/90 Mars 91
Compagq SystemPro 486 1486 | 34 9-10/90 Mars 91
Control Data 4320 R3000 | 37 3-4-5/91 Mars 91
Control Data 4360 R3000 | 31 3-4/90 Mars 90
Control Data 4680 R6000 | 37 3-4-5/91] Mars 91 6/91
DG AV 300 M88100 | 33 7-8/90 Mars 91
DG AV 310C M88100 | 33 7-8/90 Mars 91
DG AV 500 ME88100 5 9-10/90
DG AV 5200 MS88I00 | 33 7-8/90 Mars 91
DEC DS 2100 R2000 | 35 11-12/90 | Mars 91
DEC DS 5000/200 R3000 | 33 7-8/90 Mars 91 6 11/90
DEC Vax 9000 38 6-7-8/91
Dell 433E 1486 1/91
DE SDX 500/25 1386 | 37 3-4-5/91 Mars 91

EurOpen A ‘91 — Budapest, 16-20 Septemb 73

Performance Evaluation: The SSBAs at AFUU

P

|

. Tribunix Dossier iX Magazine
Machine Processor .
no date Special no date
ESD SDX 1000 1386 30 1-2/90 Mars 90
ESD SDX 2000 386 30 1-2/90 Mars 90
ESD SDX 3000 i386 30 1-2/90 Mars 90
ESD SDX 3400 486 35 11-12/90 | Mars 91
Evans Sutherland ESV R3000 37 3-4-5/91
Goupil G50DX-33 1386 34 9-10/90 Mars 91
Goupil G60-25 1486 34 9-10/90 Mars 91
Goupil G60-33 486 37 3-4-5/91 Mars 91
HP/Apollo DN 10000 Prism 35 11-12/90 | Mars 91
HP 9000/340 M68030 3] 3-4/90 Mars 90
HP 9000/360 M68030 31 3-4/90 Mars 90
HP 9000/370 M68030 31 3-4/90 Mars 90
HP 9000/375 M68030 31 3-4/90 Mars 90
HP 9000/400-S M68030 35 11-12/90 | Mars 91
HP 9000/400-T M68030 35 11-12/90 | Mars 91
HP 9000/425-S M68040 36 1-2/91
HP 9000/425-T M68040 Mars 91
HP 9000/720 PA 1.1 37 3-4-5/91 Mars 91
HP 9000/720 PA 1.1 38 6-7-8/91
HP 9000/815 HP-PA 31 3-4/90 Mars 90
HP 9000/822 HP-PA 34 9-10/90 Mars 91
HP 9000/825 HP-PA 28 9-10/89 Mars 90
HP 9000/832 HP-PA 34 9-10/90 Mars 91
HP 9000/835 HP-PA 28 9-10/89 Mars 90
HP 9000/842 HP-PA 36 1-2/91
HP 9000/845 HP-PA 31 3-4/90 Mars 90
HP 9000/850 HP-PA 28 9-10/89 Mars 90
HP 9000/852 HP-PA 36 1-2/91
HP 9000/855 HP-PA 31 3-4/90 Mars 90
HP 9000/860 HP-PA 35 11-12/90 | Mars 91
HP 9000/870-100 HP-PA 34 9-10/90 Mars 91
HP Vectra 486-25 486 34 9-10/90 Mars 91
HP Vectra 486-33 1486 37 3-4-5/91 Mars 91
Harris NH3800 M68030 31 3-4/90 Mars 90
IBM 3090/180S 37 3-4-5/91 Mars 91
IBM 6150-125 ROMP 27 7-8/89 Mars 90
IBM 6150-135 ROMP 27 7-8/89 Mars 90
IBM 6000-320 Power 34 9-10/90 Mars 91 3 5-6/90
IBM 6000-520 Power 34 9-10/90 Mars 91
IBM 6000-530 Power 34 9-10/90 Mars 91 3 5-6/90
IBM 6000-540 Power 34 9-10/90 Mars 91
IBM 6000-930 Power 34 9-10/90 Mars 91
ICL DRS 6000 Sparc 4 7-8/90
IN2 IN6130 R2000 34 9-10/90 Mars 91
IN2 IN6230 R3000 34 9-10/90 Mars 91
IN2 IN6600 R3000 34 9-10/90 Mars 91
IQUE 486/25T 1486 5 9-10/90
Itos 3000 WS R3000 3/91

74

EurOpen Autumn 91 — Budapest, 16-20 September

Performance Evaluation: The SSBAs at AFUU

Tribunix Dossier iX Magazine
date Special no date

LERIS LRS-3025-16 R3000 9-10/90 Mars 91
MCS IQU 486/25 1486 3-4/90
Mips M120_5 R3000 11-12/89 | Mars 90
Mips M2000_8 R3000 7-8/89 Mars 90
Mips RS2030 R2000 7-8/89 Mars 90
Mips RC6280 R6000 1-2/91
Mips Magnum R3000 3-4-5/91 | Mars 91
Nixdorf 8810/90 486
Nixdorf Targon/31M15 M68030 7-8/90 Mars 91
Nixdorf Targon/31M45Mono M68030 7-8/90 Mars 91
Norsk Data Uniline 88100 1-2/91 Mars 91
Olivetti CP 486/25 486 3/91
PRIME EXL 7330 R3000 9-10/90 Mars 91
PRIME EXL 7360 R3000 9-10/90 Mars 91
RegsX 8/32 M68030
SGI 4D/25 R3000 3-4/90 Mars 90
SGI 4D/80GT R2000 7-8/89 Mars 90
SGI 4D/240 R3000 7-8/89 Mars 90
SGI 4D/260 R3000 11-12/90 | Mars 91
SGI 4D/320 R3000 11-12/90 | Mars 91
Scotty 1486
Solbourne 5/502 Sparc 3-4/90 Mars 90
Solbourne 5/600 Sparc
Sony NWS-1580 M68030 Mars 90
Sony NWS-1750 M68030 Mars 90
Sony NWS-1850 M68030 Mars 90
Sony NWS-3260 R3000 6/91
Sony NWS-3410 R3000 9-10/90
Sony NWS-3860 R3000 Mars 90
Sun 3/260 M68020 Mars 90
Sun 3/470 M68030 5-6/90 Mars 90
Sun 4/370 Sparc 5-6/90 Mars 90
Sun 4/470 Sparc 1-2/91 Mars 91
Sun 4/490 Sparc Mars 91
Sun | (4/60) Sparc 5-6/90 Mars 90
Sun 1+ (4/65) Sparc 11-12/90 | Mars 91
Sun 2 (4/75) Sparc 1-2/91 Mars 91
11-12/90
Sun SLC (4/20) Sparc 1-2/91 Mars 91
Sun IPC (4/40) Sparc :12/'921/ 0| Mars 91
Stardent 3010 R3000 3-4-5/91 Mars 91
Tektronix XD88-30 M88100 1-2/90 Mars 90
Telmat T2000/STE-30 M68020 5-6/90 Mars 90
Telmat T3000 M68020 5-6/90 Mars 90
Telmat T4000 M68020 5-6/90 Mars 90
Telmat TR5000 M88100 3-4-5/91 Mars 91
Terra 486 1486
Unisys 6000/55-B 1386 1-2/90 Mars 90

SCO, IX, AIX, ATT, Eurix 386

Machine Processor

Tribunix is AFUU’s newsletter;

Dossier Special refers to two annual Tribunix’s special issues about
Benchmarks;

iX Magazin is the leading German UNIX magazine.

Performance Evaluation: The SSBAs at AFUU

5. Appendix 2: SSBA 2.0 Sample Results

RESULTS SYNTHESIS OF THE SSBA 2.0E (06/04/91)

CONFIGURATION
Name: HP9000/825 CPU type: HP-PA FPU type: BIT
Clock rate: 12.5 Mhz Cache: 16Kb RAM: 16 Mb
Disk: 600 Mb Disk Controllers: 1 HP-IB File System: BSD
0/S: HP-UX 7.00 C compiler: standard F77 compiler: standard
SSBA 2.0E (06/04/91) run No. 1 : BEGIN at Fri Jun 14 16:34:55 METDST 1991

Command C : cc -D_XPG2 -O 1 Command Fortran : f77 -0
THE SSBA IS RUNNING IN THE SEQUENTIAL MODE
unix : hp-ux SVR3

define : -DTERMIO -DSysV

machine : HP-UX hpuxe A.B7.00 U 9000/825 16754 (uname)

whoami : root tryro0 Jun 14 16:13

value of HZ = 100 /* Ticks = 100 (times method) */ (calculation)
SIGALRM check : 12 x 5 sec delays takes 60.00 wallclock secs (error 0.00%)

number of Processes running on the system when the SSBA starts = 24

number of Processes available for the user = 205

memory available for a process = 16321 Kbytes

compile time : 1182 Seconds

executable average size : 89242.2 bytes

number of loops done during the run of the SSBA = 257

average number of logged users on the system = 1

average number of processes created by the SSBA = 27

SSBA 2.0E (06/04/91) run No. 1 : END at Fri Jun 14 21:10:45 METDST 1991

GENERAL
dhrynr (without reg,without optimisation,l1000000 iter): 11621 Dhrystones/sec
dhrynro(without reg,with optimisation,l1000000 iter): 17307 Dhrystones/sec
dhryr(with reg,without optimisation, 1000000 iter): 13635 Dhrystones/sec
dhryro(with reg,with optimisation, 1000000 iter): 17120 Dhrystones/sec
average mips : 5.1 Mips/Joy
total time for utah in seconds : real: 587 user: 269.53 syst: 83.51
total time for tools in seconds : real: 425 user: 241.16 syst: 103.22
total time for byte in seconds : real: 103 user: 6.97 syst: 68.17
disk: 10.000 Mb (512 bytes io) throughput 274.20 Kbytes/sec 36.5 seconds
the throughput mesured with a 10 Mb dd is : 151.51 Kbytes/sec
total time for testc in seconds : real: 151.00 user: 98.06 syst: 15.58
total time for memory in seconds : real: 315 user: 294.77 syst: 10.72
total time for calls in seconds : real: 111 user: 9.43 syst: 83.9
total time for pipes in seconds : real: 188 user: 1.62 syst: 108.31
total time for fork/exec in seconds : real: 799 user: 9.73 syst: 676.52
TECHNICAL

cwhetd(double precision,with optimization,100M inst): 2568 KwWwhetstones/sec
cwhets(simple precision,with optimization,100M inst): 2001 Kwhetstones/sec
whetd(double precision,with optimization,100M inst): 2744 KwWhetstones/sec
whets(simple precision,with optimization,100M inst): 3798 KWhetstones/sec
linpackrd{double precision,with optimization,rolled): 0.4769 MFLOPS
linpackrs(simple precision,with optimization,rolled): 0.6077 MFLOPS
linpackud(double precision,with optimization,unroll): 0.5068 MFLOPS
linpackus(simple precision,with optimization,unroll): 0.6603 MFLOPS
doducd : precision=50.00049685 itera=5485 (correct) time=845.62 R=57

ECH CASE ELNUM DLEN DTYPE CASETIME user syst
smith: 1.0 78 0 0 0 3.7870 2393.93 112.71

76 EurOpen Autumn *91 — Budapest, 16-20 September

E Performance Evaluation: The SSBAs at AFUU
COMMERCIAL
bytes | 100 | 1000 | 4000

BLOCKS -=--——-—— - - mmmm e m o m e e e e e m—m e mm——m——m - -
t ins | Usr | Sys | Ela | Usr | Sys | Ela | Usr | Sys | Ela
Lib Wri | 21 11.0t 35.5 | 2.1t 11.1 | 35.5¢ 2 | 11.4 |1 35.5
Worst | 24.6 | 460.4 1 520.0 | 4 [51.3 | 78.0 | 2.9 | 14.7 | 53.0
Best | 11 7.4+ 35.0 | 1 | 7.0 1 36.0 | 1.9 | 6.4 | 35.0
Sys Wri | 5 1 125.4 | 131.0 | 0.2 1 24.3 {1 36.5 | 0.1 | 13.9 I 37.5
Worst | 3.8 | 121 I 147.0 | 0.4 1 19.1 1 55.0 | 0.1 | 9.2 1 47.0
Best | 2 1 109.3 | 115.0 | 0.2 | 16.8 | 32.0 | 0.1 1 8.8 | 34.0
——————— Sequential Output-------- ---Sequential Input-- --Random--
-Per Char- --Block--- -Rewrite-- -Per Char- --Block--- --Seeks---
bonnie MB K/sec %CPU K/sec %CPU K/sec %CPU K/sec %CPU K/sec %$CPU /sec %CPU
50 264 95.1 271 30.4 124 16.3 231 94.2 326 23.0 18.2 18.5

total time for andrew in seconds : real: 3940 user: 54.36 syst: 354.41

Simulated Multi-user Workload Test

32 Concurrent Users, each with Input Keyboard Rate of 2 chars/sec

Elapsed Time: 1238.67 seconds (standard deviation 4.249 sec)

CPU Time: 1045.80 seconds [345.23u + 700.56s] (standard deviation 1.966 secc)

EurOpen A ‘91 ~ Budapest, 16-20 Septemb 77

78

EurOpen Autumn ‘91 — Budapest, 16-20 September

Near Real Time Measures of
UNIX-like Operating Systems

Mario Cambiaso Susanna Delfino
Giancarlo Succi

DIST — Universita di Genova, Italy
sumar @dist.unige.it

Abstract

UNIX was originally designed for multitasking and timesharing; how-
ever presently there is a lot of research going on trying to extend it to
real time both for handling real time situations and because real time
capabilities add robustness and reliability also to non real time applica-
tions. Several designs are proposed; this paper approaches the problem
of benchmarking them. Standard tools as well as specific real time
ones are not suitable for these systems: the former because too generic
and the latter because too specific. Therefore a new set of tests is intro-
duced and it is applied to a wide range of architectures. The results
that have been obtained are interesting and, under certain point of
views, quite surprising.

1. Introduction

UNIX was originally designed for multitasking and timesharing, there-
fore it did not have the features to meet the requirements of Real Time;
however its wide usage and the fact that real time capabilities can add
robustness, reliability and better performances also to non real time
applications have led researchers to develop a Real Time UNIX system.
Always more people are agreeing that in the long run this kind of sys-
tems will be the majority, and the one we have now just a subset of
them [Mar90a]: the MASSCOMP 53 running RTU, HP9000/720 running
HP-UX subset of them: the MASSCOMP 53 running RTU, HP9000/720
running HP-UX Version8, HP9000/350 running HP-UX Version 7, RISC
System/6000 (RS/6000) running AIX 3 as real-time machines while DEC
3100 running ULTRIX 3.2, DEC 5000 running ULTRIX 4.0, Sun 4/280
running Sun0S4.0.3 and Sparc 330 running SunOS4.1 for traditional
implementations. It tries to distinguish their features together with
their advantages and weakness mostly under the point of view of the
user rather than of the architectural designer.

Traditional UNIX benchmarks cannot be used here, since they are not
suitable for real time applications [Zed90a] nor it is feasible to use real
time benchmarks, as they are too specific. Therefore this paper designs
a set of new tests which should take into consideration both general
purpose features and real time capabilities (introduced in Section 2).

EurOpen A 91 — Bud, 16-20 Septemb

4

Near Real Time Measures of Unix-like Operating Systems

The starting point consists in defining expressive parameters for the
desired characterization: Section 3 is devoted to this task. From Sec-
tion 4 to Section 7 there is a deep description of each single test
together with the results which have been obtained on the considered
architectures and their analysis; they have been elaborated after an
analysis of the current solutions and according with POSIX [IEE88a]
rules. Section 8 discusses globally the collected results and Section 9
draws some conclusions and outlines the planned future research. The
appendix provides the results of a standard benchmark (Dhrystone).

2. Summary of Real Time Features

This section is a general and brief introduction to the features a system
must present in order to be suited to real time. Its knowledge is the
background which is assumed in order to fully understand this paper
because this work is focussed on the performances rather than on the
design strategies [Boh90a). For these reasons this section can be
skipped by those already inside this topic.

The requirements for real time operating system can be summarized as
follows [Fur91a].

° Support for scheduling of real-time processes.
° Preemptive scheduling.
. Interprocess communication and synchronization.

. High speed data acquisition.
° /O support.

° User control of system resources.

3. Near Real Time Measures

In order to understand fully the strategy which has been adopted it is
necessary to know the limitations imposed by the working framework:

) First of all the measures and the tests must be fully portable,
since it is needed that the result be significant and comparable on
any machine, no matter the presence of real time capabilities;

° The measures slots must be performed using the only means
inside the machines to provide easy and simple replications of
the tests on different sites; this limitation has a heavy impact on
the resolution.

All the primitives used in the tests refer to the POSIX 1003.4 Standard
Committee [Hae90a). The time measurements are performed using the
interval timer, and, in particular, the system calls setitimer(), getitimer()
and gettimeofday() [X/087a]. Therefore the obtained resolution is con-
nected to the system clock whose value is uniformed to 10 milliseconds
for all tested machines.

Since the resolution does not allow to directly measure the timing of
the analyzed events, like the fork() and the exec() system calls, or the
context switches, most of the commonly used benchmarks for UNIX-
like O/S take the approach of considering as atomic result the execution
time of a high number of these events. Collecting a set of this kind of
values, under certain hypotheses, it is possible to extract informations
such as average, variance and distribution of these events. In this con-
test this approach cannot be taken for two main reasons:

80 EurOpen A ‘91 — Budapest, 16-20 Septemb

Near Real Time Measures of Unix-like Operating Systems

The above mentioned hypotheses to determine the distribution
are usually not satisfied [Gla88a];

Under a real time point of view, the interest is on worst cases
rather than on the average ones.

Consequently the approach taken in these tests is to focus only on the
statistics of the measurable cases: they correspond to the worst cases.
A possible result is then the distribution of the events over a threshold
which is determined by the timer granularity.

The set of chosen measures are called near real time to distinguish
them from those already existent, stressing their peculiarity of being
able to work both on standard UNIX systems and on the real time ones.
The description of the target system examines the following topics:

1. The reliability of the signal mechanism,
The context switch latency in critical situations,
The 1/0 throughput,

The computational speed of the processor.

4. Reliability of Signals

There may be cases in which a process must handle asynchronous
events with a deterministic behavior: delays, omissions or mistakes
may result in crashing the application [Tan87a]. This is especially true
in a real time framework. Actually there are critical situations in which
it is possible that the system is not able to assure a correct behavior.
The standard POSIX interface, for instance, handles at most one signal,
while the system is already serving another one. Furthermore other
problems arise when more signals are sent to the same process inside
the same quantum or when the process is nct scheduled between two
sends.

The test, called 2KILL, is organized in the following way.

1. A C executable which sends two signals, one immediately after
the other, to the same process and counts the number of calls to
the manipulator induced by them: its result is regard as SUCCESS
if both the signals are handled, FAILURE otherwise.

A shell script which iterates n times the C executable and deter-
mines the number of FAILUREs. This operation is repeated m'
times in order to build a file containing the number of failures.

3. An awk script which produces the FAILURESs statistics.

Figure 2 can help understanding this mechanism. A process forks a son
which communicates with it using kill() and is synchronized with a
pipe. When the son has completed to set up its manipulators for the
signals with the sigaction() system call, the father sends it two SIGUSR/
and one SIGUSR2. The manipulator associated with SIGUSR/ incre-
ments an integer variable which value is printed by the one associated
with SIGUSR2. The benchmarks is executed in different conditions to
force the system to schedule the process which has to serve the signals,
such as giving the son a higher priority than the father (with the nice()
system call) or as imposing real time priorities (when allowed)
[Qua85a). The results of this test are quite interesting for some
machine: the Masscomp RTU, for instance, showed a remarkable
difference between what happens with standard priorities and with the

t The n and m value are assigned on the basis of statistic considerations.

EurOpen A

Near Real Time Measures of Unix-like Operating Systems Q

2kill.scr Failures file

First cycle of l Failures number

n executions of first cycle \

Second cyde 1 2killawk
T Tt T T ' oo TTETEE T 1
1 | ¥ Pp—) 1
| ! | 1 .
fecmccc e 1 b m e ———— 1 Failures
______________ .
! " hystogram
|]
C e e e co------- [}

nth cyde Failures number /

of n-th cycle

Figure 1: Diagram of test 2KILL

real time ones while in all the other machines the difference between
the two cases is not so evident. For some machines the values range is
more wide than other ones, showing a less uniform behavior. Further-
more in all the results got using real time priorities there are not
FAILURES.

The results are presented through the histograms that show the distribu-
tion of the failures in comparison with the number of failures.

WITH NICE

5 5
Figure 2: HP-UX V 8 failures histogram

82 EurOpen Autumn ‘91 — Budapest, 16-20 September

Hd

Near Real Time Measures of Unix-like Operating Systems

30

20

10

A
30
WITH NICE
20
10
— (L /B —
50 60 70 75 80 85 90 55 65 70 175 80 85

Figure 3: SunOS 4.0.3 failures histogram

5. Context Switch Latency

The time needed for a context switch [Zim89a] is usually lower than
the granularity of the timer, therefore its value can be measured only
under certain load conditions. One of the heaviest situations occurs
when the processes competing for the CPU must execute time consum-
ing system calls. The test calied 1CSPIPE tries to reproduce this situa-
tion: the context switch occurs between two processes, while other
processes are executing increased system calls, like the open() on a
long path. As explained before, here the interest is on worst cases: the
result is the percentage of latency time over 10 milliseconds and their
distribution.

The test is organized in two blocks: the first induces the context
switches and measures the latencies, while the second loads the system.
The first part is organized, like the tests for the signals, in 3 scripts: a C
one which computes some values, a shell one which repeats the C one
and an awk one to compute the statistics. Here the C code induces a
context switch making two processes depending one on another and

100} 1004
WITH NICE
sl _/ // >
5 100
Figure 4: MASSCOMP 53 failures histogram
EurOpen A ‘91 — Budapest, 16-20 Septemb 83

Near Real Time Measures of Unix-like Operating Systems

Machine O/S Percentage

HP

HP9000/720 | HP-UX 8 0.0 %

HP

HP9000/350 | HP-UX 7 1.5 %

Sun Micros

Sun 4/280 Sun054.0.3 24 %

IBM

RS/6000 AIX 3 2.8 %

Sun Micros

Sparc 330 Sun0S§4.1 6.5 %

Digital

DEC 3100 ULTRIX 3.2 73 %

Masscomp

MASSC.53 | RTU 17.0 %

Table 1:

forcing any of the two to be waiting for the other to write on a pipe.
The system call gettimeofday() is used to measure the timing. To store
the results of these two tests, which are repeated several times, two
arrays are used, and the arrays are written at the beginning of the test
with dummy values to prevent page faults and extra context switches.

The second part is formed by shell scripts which load a process that
opens a file on the tree, which was previously built with the depth 100,
The results are show in Table |.

To complete the description of this test the following figures in which
are showed the histograms of the worst cases. Is interesting to mark

e Sun4/280
HP 9000/350

1

2 4

Figure 5: HP 9000/350 and Sun 4/280 latency times

EurOpen Aut ‘91 — Budapest, 16-20 Septemb

Gpery Near Real Time Measures of Unix-like Operating Svstems
%)

46| ____ ,
I
E RISC 60000
N Sparc 330
E DEC 3100
|
|
|
|
|
|
|
|

12| L____ .

0.8 '

0.4 L____ [

Lot

0.1 0.2 0.3 0.4 time[sec]
Figure 6: RS/6000, Sparc 330 and DEC 3100 latency times

the HP 9000/720 results: all the latency times are smaller than the
threshold value because the time needed to the open() system call is
very short.

6. Throughput Rate

As it is mentioned, I/O may play a critical role in real time applications:
there may be the need of transferring big portions of data between pri-
mary and secondary memory in a fast and reliable way. Therefore a
measure of how well this feature can be exploited, helps understanding
the feasibility of a system for real time. The selected approach consists
of measuring the amount of data that can be transferred in a fixed
amount of time. The test is called THPUT and uses the system call
write() for asynchronous writing. It is organized in three modules:

2.5

>
0.025 0.050 time[sec]

Figure 7: MASSCOMP 53 latency time

EurOpen Autumn 91 ~ Budapest, 16-20 September 85

Near Real Time Measures of Unix-like Operating Svstems

Machine

S.0.

Throughput
Kbyte/sec

Saturation
Mbyte

MASSC. 53

RTU

260

0.15

HP9000/350

HP-UX 7

600

DEC 3100

ULTRIX 32 800

Sparc 330

Sun0S84.1 1000

Sun 4/280

Sun08§4.0.3

DEC 5000

ULTRIX 0.4

RS/6000

AIX 3 3000

HP90000/720

HP-UX 8 4500

Table 2: 1/0 Throughput

A C code having as input the length of the time interval for the
test and producing as output the throughput for that _..terval. The
writing for a fixed amount of time is performed by an infinite
loop of write()s of 1024 bytes blocks, interrupted at the end of
the interval by a signal.

A shell script iterating the previous code for a fixed interval
several times so that to reduce the effect of the 1/0 noise, since
even a low level of 1/0 noise may have a high impact.

An awk script that extracts statistics informations about the
transfer rate between RAM and disks.

The results shows the presence of saturations connected to the dimen-
sions of the buffer cache. The results are show in Table 2.

7. CPU Speed

In order to give an exhaustive paradigm of analysis to be used by any
UNIX user, some means for computing the performances of this
machines also in terms of computing speed are here introduced. For
the sake of completeness the results of the standard Dhrystone bench-
mark are presented in Appendix A. Two are the tests that are used
here. The first one CYCLE computes the time needed for a cycle (test,
decrement and jump) under different conditions, like the optimized
compilation or the usage of registers. The second test is called
MINSQUARE and gives the minimum squares estimate of the time
needed to execute a single cycle of an empty while loop, corresponding
again to a test, a decrement and a jump. MINSQUARE is performed
repeating CYCLE for many different values of decrements. The results
is placed in a (number of cycles, time) cartesian system and then the
regression line is determined using the recursive minimum squares
method: the intersection of the line with the y axis gives the estimate of
the timer overhead, since in this case nothing else is done, and the slope
of the line represent the time needed to perform a single cycle. The
algorithm for this test is organized in three phases:

EurOpen A ‘91 - Budapest, 16-20 Septemb

Near Real Time Measures of Unix-like Operating Svstems

Machine 0O/S Slopes

HP HP9000/720 | HP-UX 4.01le-8

Digital DEC 5000 ULTRIX 4.0 | 8.12¢-8

IBM RS/6000 AIX 3 1.00e-7

Sun Micros | Sun 4/280 Sun0S4.0.3 1.80e-7

Sun Micros | Sparc 330 SunOS4.1 1.20e-7

HP HPS000/350 | HP-UX 7 4.10e-7

Masscomp | MASSC.53 | RTU 5.08e-7

Table 3:

The array for containing the data is loaded into primary memory
through writing in its different block (to be sure to not have any
page fault or context switch during the test);

The CYCLE test is repeated for different values of iterations;

The collection of values obtained is given as input to the function
which computes the regression line.

The CYCLE test supply information like MINSQUARE test, then in this
paper there are only the obtained values for slopes; the timer values are
not introduced because they are not stable since too sensitive to any
perturbation. The results are show in Table 3.

The last test is performed on the whole MINSQUARES, since it is itself
a set of both floating point and integer operations, so that can give
some figures of the computational power of the systems.

8. Discussion

This tests have quite interesting results. Usually the real time systems
presents better indices than the non real time ones, but not always. For
instance the MASSCOMP 53 had excellent results in the 2KILL test with
nice(), but it behaved quite poorly in the THPUT and in the /CSPIPE one
were was outperformed by any other system. In /CSPIPE also the IBM
RS/6000 was exceeded by the Sun 4/280 which is not real time.

The HP 9000/720 performed excellently in almost all the tests, besides
in those about the computing rate (CYCLE, MINSQUARE and Dhry-
stone?).

It is interesting to observe behaviors of different versions of the same
Brand. The new HP-UX V8 has much better performances of the HU-
UX V7, however this is not always true for SunOS 4.1, which in some
cases is outperformed by SunOS 4.0.3.

9. Conclusion and Future Research

The aim of this paper was to give a paradigm for comparing real time
UNIX like operating systems and the standard ones under a user point
of view. Some tests has been introduced and their results explained.

1 Look at Appendix A.

Near Real Time Measures of Unix-like Operating Systems

The plan is now to broad further the set of machine under tests, despite
here a wide range has been considered. The next step is to take into
account also the scheduling algorithms; some work has already started
in this direction.

10. Acknowledgments

This work has been performed in the LISA* framework. The authors
thank Prof. Joy Marino for his enlightning ideas and the HP and DEC
for allowing us using their machine and IBM for providing reference
materials. An especial thanks goes to HP which allowed to test its HP
9000/720 before its market presentation.

Appendix A - Dhrystone

In this section are presented the Dhrystone benchmark results. Each
execution is a cycle of 500000 iterations and it is repeated with four
conditions:

. Using normal and optimized compilation;
) Declaring variables as normal and register.

The values showed in the following table represent this four different
execution and are expressed in dhrystone/second. Again the abbrevia-
tions “+reg” and “-reg” indicate the present or not of the variables
defined as register; “+0” and “-O” refer to the optimized compilation.

Machine S.0 +0 +reg | +O-reg | -O+reg | -O-reg
MASSC.53 | RTU 5425 5419 5280 5289
HP9000/350 | HP-UX 7 9012 9028 4617 4341
Sun 4/280 Sun084.0.3 20433 20292 12531 10475
Sparc 330 Sun0S4.1 24578 24502 16897 12649
DEC 5000 ULTRIX 0.4 46681 43940 37306 34763
RS/6000 AIX 3 54768 54871 24548 25203
HP9000/720 | HP-UX 8 91407 92764 71123 56306

References

[Boh90a] K. A. Bohrer and J. T. O’Quin, Enhancements to the AIX
Kernel for Support of Real Time Applications, Interna-
tional Business Machines Corporation (1990).

[Fur9ta] B. Furht, D. Grostick, D. Giuch, G. Rabbat, J. Parker, and
M. McRoberts, REAL-TIME UNIX SYSTEM Design and
application Guide, Kluwer Academic Publishers (1991).

[Gla88a] S. A. Glanz, Statistica per discipline bio-mediche,

+ The Laboratory for the Interoperability of Open Systems.

McGraw-Hill Libri Italia (1988).

88

EurOpen Autumn 91 — Budapest, 16-20 September

Near Real Time Measures of Unix-like Operating Systems

[Hae90a]

[IEE88a]

[Mar90a]

[QuaB5a]

[Tan87a]

[X/087a]

[Zed90a]

[Zim89a]

J. S. Haemer, “Standard Update, IEEE 1003.4: Real Time
Extention,” comp.std.unix 18(492@longway.TIC.COM)
(1990).

IEEE, IEEE Standard Portable Operating System Inter-
Jace for Computer Enviroment, The Institute of Electrical
and Electronic Engineers Inc (1988).

G. A. Marino, “Sistemi "Aperti e Tempo Reale: dale
soluzioni ad hoc agli standard,” in The Automated Factory
Show, DIST — Universita di Genova (February 1990).

J. S. Quarterman, A. Silberschatz, and J. Peterson, 4.2BSD
and 4.3BSD as Examples of the UNIX System, Departe-
ment of Computer Sciences, University of Texas (1985).

A. S. Tanenbaum, OPERATING SYSTEMS: Design and
Implementation, Prentice Hall Inc (1987).

X/OPEN, X/OPEN Portability Guide, System V
Specification, system calls and libraries, The X/OPEN
Group Members (1987).

H. Zedan, REAL-TIME System: Theory and Applications,
York University (1990).

M. Zimmerman and N. Nachiappan, “What’s Real With
Real Time UNIX System?,” The UNIX Technology Advi-
sor 1(1) (1989).

90 EurOpen Autumn 91 — Budapest, 16-20 September

Steppingstones: Some Remarks on
Measuring X11 Performance

Werner Kriechbaum

IBM AIX FSC, Munchen, Germany
werner@ibm.de

Abstract

After a short overview of xbench and x//perf this paper gives an early
report on steppingstones, an Xperformance tool under development at
IBM’s AIX FSC in Munich. Line-drawing performance is used to illus-
trate the approach to Xperformance taken by steppingstones, as well as
to illustrate some aspects of Xservers relevant to performance but
missed with other performance-measurement tools. The final sections
briefly describe multi-user extensions currently under development and
the data-reduction techniques currently in plan for further refinement of
the measured results.

1. Introduction

Performance measurements are used for a variety of goals, conflicting
at times: Developers want detailed measurements of the timing
behaviour of their code under a variety of conditions to give them hints
for further performance-tuning. End-users on the other hand tend to
focus on a single “magic number” which should sum up system perfor-
mance under all conceivable instances and should allow them to do a
realistic comparison of different platforms as well as an estimation of
the runtime requirements of their application. These trends are
reflected by two X-performance-measurement tools currently in
widespread use:

° xbench tries to sum up its results by providing Xstones as a sin-
gle magic number, which is supposed to characterize all aspects
of an X-protocol implementation in a fair and comparable way.

x1Iperf measures a variety of performance aspects of individual
X protocol requests without attempting to summarize its results
in a few performance figures and thus does not provide simple
means of comparison.

1.1. xbench

xbench performs up to 88 tests executing various Xprotoco! calls. 40
of these tests are used to compute a summary value called Xstones.
Xstones attempt to rate an Xserver relative to a SUN 3/50 running
untuned MIT release 3 code, the performance of which is set to an arbi-
trary value of 10000 Xstones, which are computed using the formula

EurOpen A ‘91 — Budapest, 16-20 Sep b

Steppingstones: Some Remarks on Measuring X11 Performance

lineStones

i —
1 2
single test performance times sun

Figure 1: lineStone Sensitivity

n
Y weight;
i=1

stones = x 10000

n sun;
Z

xXweight ;
measured ;

where i is a test-index, sun; the performance of a SUN 3/50 (e.g.
lines/sec), measured ; the performance of the tested server, and weight;
a set of weights adding up to 10000 and assigned to match the fre-
quency with which certain Xcalls are used (text-performance e.g. has a
weight of 3000 and line-performance for simple lines a weight of
1000).

Despite the arbitrary setting of weights which is unlikely to match a
variety of different applications,” the formula shows a somewhat non-
linear behaviour (¢f Figure 1). Let us assume an Xserver which has the
same or a multiple rating than a SUN 3/50 in all tests except one. In
such a case, the server receives only a very small benefit in it’s Xstone
rating when it exceeds the SUN’s performance in the differing test. But
it suffers a rather huge penalty for poorer performance.

1 To be fair it should be noted that this short-coming is already discussed in the manual accompanying xbench: “Of course, depend-
ing on your applications, the rating could differ from your personal feeling. If you are running a CAD application doing only line-
drawings, the line weight is too small compared to textbitblt rating. ... I'd better not included the weighting stuff — 1 can see the

flames on the net ...”

92

EurOpen A ‘91 - Budapest, 16-20 Septemb

N
"]

P

Steppingstones: Some Remarks on Measuring X11 Performance

Both, the arbitrary weighting scheme and the non-linear behaviour,
motivated by the performance profile of a SUN 3/50, make Xstone-
ratings difficult to interpret and allow only a limited prediction of an
application’s performance. Used as a single “magic number” by peo-
ple not aware of the intricacies of Xperformance, they may be mislead-
ing if not meaningless.

1.2. x11perf

xIIperf exercises most of the Xprotocol calls using 147 elementary
tests. Since it’s authors believe, as stated in the documentation, that
“No single number or small set of numbers are sufficient to character-
ize how an X implementation will perform ...” x//perf just reports the
results for each individual test giving performance values (e.g
lines/second and milliseconds per line) for each second and average
values for the complete run (taking 5 seconds in the default case). This
huge tabular output (almost 1000 lines using the default settings) may
be appropriate for developers, but is a little bit difficult to digest for
normal beings. Despite this excessive testing x//perf leaves some
areas crucial for an application’s performance unexplored: lines and
segments are always tested with polycalls (e.g. XDrawLines instead of
XDrawlLine) using almost always a repeat count of 1000 elements.
Using smaller repeat counts can unveal rather dramatic performance
changes, at least with some server implementations (cf Figure 5).

1.3. steppingstones

steppingstones is an X11 performance test suite — still under develop-
ment — based on x//perf and attempts not only to characterize the
server performance but to allow a more reliable assessment of an
application’s performance. The major design goals of the test-suite are

1. The tests should exercise almost all Xprotocol calls using a rea-
sonable number of parameters to collect not only isolated perfor-
mance values (like e.g. performance for segments of length 1, 10,
100 and 500) but to allow an estimate of the functional depen-
dencies between performance values and the input parameters.

Results should be provided not in a tabular form, but in a simple,
perceivable and comparable form like line-drawings or scatter-
plots

Besides a graphical representation, the data should be subjected
to a statistical analysis which reduces the large number of timing
results to a small set of numbers which characterize perfor-
mance. These techniques should not make any assumptions such
as assigning arbitrary weights to measured timing results.

Since most application programs written today don’t use native
Xprotocol calls but widget sets and toolkits like e.g. Motif, a
layer of the test-suite should exercise such X11-derived functions.

5. The tests should address the multi-user aspect of Xperformance.

At the time of this writing, the current version of steppingstones con-
sists of a set of yet-to-be integrated modules addressing above men-
tioned design goals (1), (2) and partially (3) and (5). Routines testing
the Motif-toolkit, developed by Franz Pestenhofer from our group, will
be presented at the GUUG '91. We hope that a beta-release of the
Xprotocol set will be available to the public domain either late this or
early next year.

EurOpen Autumn 91 — Budapest, 16-20 September

Steppingstones: Some Remarks on Measuring X11 Performance

The following section discusses some of the results obtained with the
test-suite so far.

2. Phenomenology of Xperformance: Characterizing Line-Segment
Performance

Lines, or to be more specific, solid line segments of linewidth 0, are
used as an example to illustrate the approach taken by steppingstones.
Lines are by no means the most important or most often used datatype
in X, but they are rather simple and should exhibit less complexity like
e.g the drawing of ellipses or display operations.

2.1. Performance Effects of the Segment Size

Figure 2 shows for 7 different server implementations the time in mil-
liseconds taken to draw lines of various length. Besides the bizarre but
reproducible behaviour of server A, all other Xservers show upto two
distinct components in their timing behaviour:

. For short lines, the time needed to draw a line is independent of
the length of the line.

Line Performance vs Lenght

L B o o e o o e o
! | !]

msec/line

ededddaa b

200 300
length

Figure 2: Line Performance vs. Length

EurOpen Autumn 91 — Budapest, 16-20 September

Steppingstones: Some Remarks on Measuring X!1 Performance

Linear spline approximation

rrrrrrr ey

S
—

msec/line

length

Figure 3: Linear Spline Approximation

Starting with a length between 1 (server E) and 150 (server D)
the time needed is linearly dependent on the length of the line-
segment.

To describe such a behaviour one needs to measure domain, slope and
intercept of two regression lines. Various methods exist to deal with
such a problem, the variant used by steppingstones, as illustrated in
Table 1, is essentially a split-and-merge algorithm: In a first step, the
data is fitted by a first order spline approximation. Such a fit results in
a set of breakpoints, called knots, describing the domain, and a set of
spline-coefficients describing the polynomials [Lan86a]. The quality of
such an approximation depends crucially on a smoothing factor, which
governs the maximal deviation of the approximation from the data. A
factor too large gives a very poor approximation (see Figure 3), a factor
too small results in an interpolation instead of an approximation. A
reasonable value can be found by decreasing the smoothing factor and
stopping the approximation as soon as the sum of the squared deviation
between approximation and data reaches a plateau [Ich76a). This
approach tends to generate more knots and therefore more piecewise
polynomials than necessary to describe the data. Therefore, in a
second step, the slopes of adjacent lines are compared and the segments
merged whenever their slope is equal. The final approximation
describes a server by two linear functions:

EurOpen Autumn ‘91 — Budapest, 16-20 September

Steppingstones: Some Remarks on Measuring X11 Performance

Original Knots Final Knots Constant Part Linear Part

5. 10, 20, 30, 40, 50, 60, 80
A1 100, 150, 200, 250, 300, 350, 400 - - 0.0806 +9.341e-2 n

5. 10, 30, 60, 80, 100, 150,
B | 50 400 450 _ — 0.0599 +8.719¢-4 n
C | 30,60, 80, 250 30 0.0472 +9.888e-5n | 0.0382 +2.853¢-4 n
D | 80,150,250 150 0.0464 + 1.022e-5n | 0.0481 + 1.696¢-4 n
E | 80, 150,200, 250, 300, 350, 400 — — 0.0708 + 1.032¢-3 n
F | 30, 60, 80, 250, 400 30 0.0518 0.0454 +2.325¢-4 n
G | 10,30, 80,250, 350, 500 10 0.0198 0.0155 + 2.339%¢-4 n

Table 1: Server performance for line-segments. Random orientation, blocking factor 1000

. A constant part which gives the server performance for those
lengths where performance is governed by Xprotocol overhead
and

° A linear part which describes the domain in which the server is
pixel-bound.

2.2. Performance Effects of the Segment Orientation

Figure 4 shows the results obtained by drawing a line segment of
length 250 pixels at varying orientations. Despite algorithms for line
drawing are such well-known, that they appear in virtually every intro-
ductory book on graphics programming, not all servers take advantage
of the possible optimizations for horizontal and vertical lines and none
seem to use an optimized method for lines at 45 degrees. Despite the
effects on performance should be rather small, they will be noticeable
in some applications relying heavily on horizontal and vertical lines,
especially when using the server which does these lines almost thrice
as fast.

2.3. Performance Effects of the Repeat Count

Polycalls like XDrawSegments send only one Xheader to transfer a list
of coordinates describing multiple drawable objects. For line-segments
x!Iperf uses a blocking-factor of 1000 segments per call. But quite a
lot of application programs, especially those drawing grids, send each
segment on it’s own. In such cases one would expect a considerable
slower line-performance due to the increased X overhead. As can be
seen from Figure 5 this is indeed the case, but one of the tested servers
offers an additional surprise: it shows marked oscillations for small
blocking-factors. A 250 pixel line takes 0.22 msec using a blocking-
factor 2, 0.317 msec using 3 and again 0.273 msec using a factor of 4.
It should be noted that this behaviour first is reproducible and secondly
not confined to lines: this server shows exactly the same pattern when
rectangles are tested.

96

EurOpen Autumn "91 — Budapest, 16-20 September

Steppingstones: Some Remarks on Measuring X11 Performance

Line Performance vs Orientation

o
()

hL N L AL L BN BN B A

msec/line

3)
J
L.JL&.I rull ENEEPEPNY P] . .

100
orientation [deg]

Figure 4: Line Performance vs. Orientation

2.4. Multi-User Performance

Even though the numbers presented above allow a rather complete
characterization of the line-drawing performance of an Xserver, they
have been measured in a so-called “controlled environment” i.e.
without any other interfering users and only the absolutely essential
system programs running on the machine. As can be seen from Figure
6 — the timing behaviour of multiple line-tests, each running in its own
window on an otherwise unloaded machine — multiple sessions not only
increase the time taken for an Xcall but in addition make its timing-
behaviour less predictable. This is mainly due to a slight but steadily
increasing desynchronization of the individual test-programs caused by
the scheduling algorithm: especially in the last third of the tests some
programs have already finished while others are still running. Of
course this could be easily overcome by introducing synchronisation
points after each subtest and discarding the last few runs of such a test.
A more realistic approach to multi-user performance, at least in our
opinion, is not to get rid of the desynchronization, but to control it by
introducing a stochastic delay after each Xcall and comparing the dis-
tribution of Xserver-times such measured against the single user case.
As soon as the mean of the probability distribution used to generate the
delay is large enough, the mean processing time for an Xcall should be
the same, but the variance should be still bigger than in the single user

EurOpen Autumn ‘91 — Budapest, 16-20 September 97

2

Steppingstones: Some Remarks on Measuring X11 Performance

(1] e SS— ety

& =

.E :

< -:

@

21 e L

g | —

-1

S - o

— 0.1: — _ S :
0'01 N v o e aaald N N SRR | . Y e

1 10 100 1000

log repeat count

Figure 5: Line Performance vs. Repeat Count

case. Any interactive user or any program which produces such or
bigger delays will — on average — not be slowed down by the other
processes using the same Xserver. The variance of Xperformance
measured at this break-even point can be used as an estimate of the
worst-case timing-behaviour of the tested Xcall. The implementation
of such a test is under way, but results are not yet available.

3. Getting Few from Many: Data Reduction Strategies

Despite data-reduction techniques like the spline-approximation
described in Section 2.1 a potential user of steppingstones has to face
an even larger amount of data than someone running x//perf. As yet,
the design goal (3) has clearly not been met, and steppingstones has to
be completed by an analysis tool reducing the measured data to a
manageable set. Depending on the results of still unfinished tests, this
will be achieved by principal component analysis and/or cluster
analysis of the timing results like suggested by Wang et al [Wan90a].

98 EurOpen Autumn ‘91 — Budapest, 16-20 Septemb

Steppingstones: Some Remarks on Measuring X11 Performance

Multi-user Line Performance (local)

msec/line

L
100

length

Figure 6: Multi-User Line Performance (local)

Acknowledgements

I would like to thank Harald Konig from TAT and Franz Pestenhofer
from our group for their willingness to discuss even the most obscure
ideas on Xperformance. In addition many thanks to all those from the
Department of Theoretical Astro-Physics (TAT) at the University of
Tibingen, those from the Department of Computer Science at the
Polytechnic Institute of Regensburg, and last but not the least, all those
from IBM EWD at Austin who made it possible to run some of the tests
on their machines.

References

[Ich76a] K. Ichida et al, “Curve fitting by a piecewise cubic poly-
nomial,” Computing 16, pp. 329-338 (1976).

[Lan86a] Peter Lancaster and Kgstutis Salkauskas, Curve and Sur-
face Fitting, Academic Press, London (1986).

[Wan90a] J. C. M. Wang and et al., “Technique to evaluate Bench-
marks:,” The International Journal of Supercomputing
Applications 4, pp. 40-55 (1990).

EurOpen Autumn 91 — Budapest, 16-20 September

EurOpen Autumn 91 — Budapest, 16-20 September

Security and Open Working in
the Networked Academic Community

Denis Russell

University of Newcastle upon Tyne
England
Denis.Russell@Newcastle.ac.uk

Abstract

Even though academics thrive on the publication of their work, there is
still a need for security services. This paper summarizes some work
that has been done in assessing the perceived threats in the UK, and
looks at possible defences against such threats. The emphasis in this
paper is upon defence against attack rather than recovery from damage
caused by a successful attack.

International standard solutions will not be available, for a long time
and may well not properly recognize the multi-protocol nature of inter-
national academic networking, and Kerberos seems to be the best avail-
able system.

Even Kerberos has its problems and limitations, and this paper
discusses some of them, including password guessing and non-Internet
protocols such as X.29.

A system such as Kerberos is just a tool to aid in the implementation of
a security policy. The role of a security policy is examined.

1. Background

The worldwide Academic Community community is experiencing
several changes which are simultaneously causing it to consider secu-
rity measures:

. The world of computers is subject to increasing instances of
“hacking” and “viruses”. Some, such as the “Internet Worm”
even reach the popular media and anti-hacking legislation is
being considered in many countries.

° The rapid standardization on a few operating systems has meant
that any security flaws quickly become widely known.

° With the benefit of perfect hindsight it can be seen that many
systems suffer from an over-relaxed attitude to security both by
the designers, developers, and operators. Amazingly some
manufacturers still ship their operating systems configured with
ridiculously lax security.

EurOpen A ‘91 — Budapest, 16-20 Septemb 101

Security and Open Working in the Networked Academic Community

1.1. The Threat

Some specifically networking issues are important:

) International networking, particularly the explosive growth of the
Internet, has enabled “hackers” to prowl the computer globe with
unprecedented ease.

There is an increasing desire to make administrative data selec-
tively available across University LANs. Some of this kind of
data is by its very nature, and because of privacy legislation,
more sensitive than much of our traditional research and teaching
work.

There has always been some “sensitive” data within our systems,
such as examination marks. However there are increasing
categories of sensitive data. Medical patient-specific data of
various sorts is one particular category.

Much LAN technology, especially Ethernet, is particularly easy
to monitor. Simple and generally available programs allow a
modest PC to watch traffic between third parties. This allows the
“capture” of data, including passwords. In addition to the ease of
monitoring, much LAN technology allows LAN stations easily to
masquerade using the network and MAC addresses of others.

It is perhaps the last point — the ease of monitoring Ethernet — that has
most concentrated the minds of the community.

In response to the issues listed above, the author conducted an investi-
gation of network security for the Joint Network Team of the UK
Academic Community [Rus9la]. The risk was assessed in several
ways, including personal contacts, mailing lists, and presentations and
discussion sessions at the annual UK Networkshop and at the first Joint
RARE-EARN Networkshop [Rus90a]. Much of this paper is based on
the findings and conclusions of that study.

The community at large seems to perceive three main kinds of threat.
The most pressing is the compromising of passwords that are still used
as almost the only form of user authentication. This threat, in its vari-
ous forms, is perceived to be by far the most important at the present
time. The second threat is that there are various forms of traffic on the
network that contain confidential data. This may be administrative
data, sensitive personal data, or even sensitive research results. Often
ignored is that one kind of very sensitive data is passwords or encryp-
tion keys — not only as they are being used in the authentication phase,
but also when they are being changed. The data in transit may be dur-
ing any kind of network interaction, whether terminal access, FTP, disc
backup, or whatever. Opinions as to the importance of this threat vary
from not at all, to being vitally important.

However, it should be noted that FTP security is often achieved in prac-
tice by encrypting a file before it is transmitted, and decrypting it after
it has been received. Typically, the “key management” is the same
user supplying the key to the encryption and decryption operations via
a remote login. It is not known how often this operation is done over
an insecure channel (see last paragraph).

The third kind of threat is manifested as a general unease concerning
the increasingly important applications of electronic mail. Mail is open
to various abuses, including forging the origin, observing the contents,
tampering, denying reception, and other kinds of attack. Some of the
threats can be countered by the same kinds of defence that we shall dis-

EurOpen Autumn "91 — Budapest, 16-20 September

Op Security and Open Working in the Networked Academic Community

cuss in the context of the first two threats, but others, such as forging
the origin of messages, and denying their reception are more charac-
teristic of mail.

The threat of password compromise is most widely feared and the
consequences are too widely known to need reiteration here. Pass-
words are compromised in two main ways. The most obvious is by the
network eavesdropper recording passwords that have been transmitted
in the clear. Less obvious, but perhaps more important is password
guessing. Though the number of possible passwords is usually so large
that password guessing would appear difficult, users have a strong ten-
dency to choose easily remembered passwords. The result is that short
names or common words are used with dismaying frequency, and a
large fraction of passwords can be guessed by trying the words a mod-
est dictionary. Methods that improve the quality of passwords chosen,
and force them to be changed periodicaily, can greatly improve system
security. However the designers of such systems often forget human
frailty and users of unmemorable passwords tend to write the pass-
words down or even attach them to their terminals.

Systems with strong authentication that allow users the freedom to
share facilities without sharing computer identities (and thus pass-
words) improve overall system security. A sharp distinction must be
made between doing this in conjunction with strong authentication and
systems that dispense with weak authentication and rely on even
weaker host authentication — resulting in a hacker’s delight.

The eavesdropping threat may be countered by suitable strong authenti-
cation methods. Such schemes protect against eavesdropping by the
use of cryptographic techniques. However, many such methods are
still ultimately based upon passwords that users must remember, and
there is still a large advantage in encouraging high quality passwords
[Lom89a, Mer90a, Hig90a].

The second threat, that of disclosure of confidential data to eaves-
droppers, is clearly important for some kinds of service. It has been
suggested that all Ethernet data should be protected from disclosure by
encryption. However, this is clearly impractical at present. Apart from
the cost of such a crash program, the standards and technology are just
not available. In addition the average editor of a FORTRAN program or
areport such as this, or the recipient of a voluminous mailing list that is
disseminated worldwide is unlikely to welcome the cost of such secu-
rity services. It is clear that selective confidentiality services are
required, but only as and when the need is perceived rather than all the
time.

In addition to access for which security is currently inadequate, there is
a large category of access, best characterized by anonymous ftp for
which no access controls are needed. On the contrary, academic life
thrives on the free and open exchange of information. In the electronic
world, this kind of free exchange is achieved by several means, includ-
ing electronic mailing lists and anonymous ftp. It is vital that any secu-
rity measures do not impede these kinds of exchange.

1.2. The Current Situation

The distinction between “hosts™ and “terminals” is now almost totally
arbitrary. Not only are micro-computers often used as terminals to
access mainframes, but they are also used in peer-to-peer situations,
particularly when transferring files or participating in so-called network
operating systems. The humblest PC can be directly connected to an

EurOpen Autumn 91 — Budapest, 16-20 September 103

Security and Open Working in the Networked Academic Community

Ethernet, and there is virtually a continuous spectrum of capability
from such a machine right up to the mainframe.

At the same time as this, the academic community also possesses a
large number of simple (sometimes called “‘dumb’) terminals in use on
PAD lines, and there is little sign that such terminals have become a
thing of the past.

The academic community contains a huge variety of systems — both
operating systems and networks. Any proposal to improve security
must take account of this. It is assumed that operating systems will
range from those (especially UNIX) in which certain security measures
will either be easy to introduce, or even to specify on procurements, to
others which are totally fixed and nothing at all can be done inside the
system itself. These latter systems include those used for finance and
administration, and so are those for which the highest levels of security
are desirable or essential. The kinds of network connection that we
envisage with such a machine is at worst a “reverse-PAD” connection,
or perhaps an X.25 connection. It is likely that the only way of improv-
ing the security of such systems is by interposing some kind of active
security box between them and the part of the network where there is
the biggest threat. However, it likely that such security boxes could be
used only to enhance the security of terminal access, and not of file ser-
vices.

We assume in this study that minimal, preferably zero, hardware
changes are desirable. Apart from the obvious desire to minimize cost,
minimal hardware changes would also expedite the implementation of
any security measures. For these and other reasons we have not seri-
ously considered such radical solutions as insisting that all access
should involve smart-cards and associated equipment. There are many
more extreme solutions that were also ignored as being inappropriate to
our community, including “scrap Ethernet and UNIX”. We also need to
remember that any academic community must remain open both
nationally and internationally. Indeed this is one of the prime motiva-
tions for networking. Security measures must not isolate academics.

2. Standards

The most desirable solution to our problems would be to appeal to
international security standards. If these could be specified in procure-
ments, would counter all the threats we perceive, be affordable, allow
open access of valid users with minimal disruption, and be available in
short order, then this would obviously be the way to go.

Unfortunately, the likely timescale for security standards that satisfy
the above criteria is very long. It seems inevitable that if security
measures are to be taken for real users in the near future, then they can-
not be international standards. (For a fuller discussion of this matter,
the reader is referred to the author’s earlier paper [Rus90al.)

In addition, the international academic networking scene is undergoing
a rapid revolution. For some time there has been a division with North
America using the TCP/IP suite of protocols, and the rest of the world,
particularly Europe, using X.25-based protocol stacks. Local campus
Ethernets in Europe have been multi-protocol — with TCP/IP and X.25
(and proprietary protocols) used side-by-side, but the wide area has
been exclusively X.25. In parallel with this so-called “protocol wars”
have raged. However, we are now seeing a very rapid adoption of
TCP/IP for wide-area communication across Europe, and indeed across

5#? Security and Open Working in the Networked Academic Community

the Worldwide academic community. It is a fact that we now live in a
multi-protocol world. This fact must be recognized by any security
measures. Just as the needs of users have swept away the artificial bar-
riers erected by pedantic adherence to incompatible standards, so they
will also force security measures to work across heterogeneous sys-
tems, networks, and protocol stacks.

3. Kerberos

The Kerberos system from MIT in the USA was produced as part of
project Athena, and is freely available within the USA. There are two
versions of Kerberos that are relevant to our discussion, versions 4 and
5. Version 4 is widely deployed in the USA. It provides strong authen-
tication in an environment of networked UNIX systems. Kerberos is
used to secure UNIX high-level networking protocols.

Kerberos uses a trusted key server, and uses a version of the Needham
and Schroeder protocol [Nee78a]. sitting on the Internet suite of proto-
cols. The protocol is weakly dependent on IP in that the IP address is
included in certain protocol exchanges in order to make the protocol
more resistant to certain forms of attack. The encryption method used
is DES. There are optional confidentiality and integrity services
defined.

Version 5 is an updated version of the protocol. There are many
detailed changes, but perhaps the most important are that the encryp-
tion method can be chosen from amongst many; the underlying net-
work may be of any suitable kind, including 1SO; inter-organizational
authentication mechanisms are more extensively developed; and
several of the limitations of version 4 have been eliminated.

As was explained at the last EurOpen meeting [Koh91a], a completely
new beta-test version of Kerberos is now available (from mid June
1991) from MIT that supports both version 4 and 5. This is by far the
most promising basis for future security work. However, the problems
related to export of cryptographic software from the USA again impede
progress in this area.

3.1. Limitations of Kerberos

Bellovin and Merrit [Mer90a] have pointed to several limitations of the
Kerberos protocols. Many of these have been eliminated in version 5,
but some remain. Perhaps the most practically important of these is the
possibility of password guessing. It would seem that this weakness
could be reduced by the use of techniques that encourage the choice of
good passwords, together with user education concerning the ways of
memorizing good passwords — see Section 8.

It is not clear just how weak the remaining holes make Kerberos.
Some of the weaknesses are not easy to exploit. However, even with
its acknowledged problems, Kerberos is much stronger than most other
existing methods. To quote Bellovin and Merrit themselves:

“We wish to stress that we are not suggesting that Ker-
beros is useless. Quite the contrary — an attacker capable
of carrying out any of the attacks listed here could
penetrate a typical network of UNIX systems far more
easily. Adding Kerberos to a network will, under virtually
all circumstances, significantly increase its security; our

EurOpen Autumn ‘91 — Budapest, 16-20 September 105

Security and Open Working in the Networked Academic Community

criticisms focus on the extent to which security is
improved.”

3.2. Application Programming Interface to Security Services

Recently two “Application Programming Interfaces” to (generic) secu-
rity services have been defined. One has been defined by the OSF as
part of its adoption of Kerberos, and the other is being developed
independently by John Lynn at Digital. The idea is to isolate any users
of the interface from the details of the underlying protocol. The MIT
release of version 5 includes an implementation of the Lynn interface.

4. The Sphinx System

Kerberos is based on private-key or symmetric encryption technology.
One of the most interesting developments in cryptology has been the
invention of public-key or asymmetric technology ([Dif76a, Dif88a,
Hem89a]). In April 1991, DEC made available an implementation of
an authentication service using asymmetric encryption — the Sphinx or
SPX system. This is similar in function, but exploits the unique charac-
teristics of asymmetric encryption.

While this is an exciting development that should be watched carefully,
it is not something that should be exploited for practical user security at
the present moment because

. The system is an early beta-test version. It has not yet been open
to public scrutiny for long enough and flaws bay yet be
discovered (this is one of the points of it being released).

The system is subject to US export restrictions that are even
more severe than those for Kerberos.

Public Key technology rests on a single algorithm — RSA. Should
this be broken, there is no alternative asymmetric algorithm.

The RSA algorithm is subject to US patents from RSA Inc. While
these do not apply outside the USA, their existence may well
impede the export of such technology from the USA just as they
are impeding the availability of public or shareware implementa-
tions within the USA. (N.B. No comment is being made here on
the rights or wrongs of such patents.)

5. The Security System of Choice

From the survey of the situation in the UK, it is clear that authentica-
tion services plus at least occasional confidentiality services are
urgently required by the UK Academic community. It seems unlikely
that the situation in other European countries is significantly different.
In the absence of standard solutions, Kerberos seems by far the best
choice to fulfill this need. Much of the rest of this paper is concerned
with what needs to be done to fill the gap between what Kerberos pro-
vides, and what the community needs.

There do remain problems in adopting Kerberos. Apart from the
export problem and protocol weaknesses mentioned above, there are
services in the community that may be difficult to cover with Kerberos.
In particular, these are dumb terminals on PADs, non-UNIX services in
general, and “turn-key” hosts in particular — especially financial and
administrative systems. There is the question of retaining access from

EurOpen A 91 — Budapest, 16-20 Sep

Security and Open Working in the Networked Academic Community

“non-Kerberized” sources without compromising security. There are
questions about the scaleability of a Kerberos system should it be
applied nationwide to the UK community, or even internationally.

In addition, there are various questions concerning the interaction of
the interim mechanisms suggested in this section with current interim
and long-term services. For example, if cryptographic tickets are to
replace passwords in file protocols, then limitations of “password”
length or content may become important. There are obvious implica-
tions concerning the different semantics of cryptographic tickets versus
passwords. Some of these questions would be answered by the provi-
sion of a suitable library of calls within each system that allowed each
service to be “ticketized” or “kerberized”. The latest version of Ker-
beros goes some way towards providing that. However, there remain
some significant areas where work needs to be done.

Again, with interactive access, such interim solutions involving the
exchange of a PAC in place of a password have protocol implications.
Neither X.29 nor VTP explicitly contain the notion of a password. In
the case of X.29 it would be possible to handle the communication of a
ticket by a negotiation mechanism at the the start the session (that is, by
the representation of the ticket exchange protocol in terms of user-level
messages that are unusual enough not to be confused with normal ter-
minal traffic). We outline one such scheme later in this paper. How-
ever, it is not clear that the spirit of ISO VTP would allow such an
interim solution, and thus it may well be that 1ISO VTP can only be
secured by the use of the secure CASE when it eventually becomes
available.

It is the task of the second stage of the study to pull these various
strands together, resolve many of the questions, and produce a practical
plan for standardization, development and implementation.

6. The Need For a Security Policy

Without a security policy, security devices are useless. It is no good
purchasing a pile of padlocks to secure a house unless there is a suit-
able policy about fitting them to doors and windows, of locking them at
appropriate times, and of allocating keys to keyholders appropriately.
General guidelines as espoused by police crime prevention officers are
very useful in improving even such an apparently simple thing as home
security.

Similarly with computer security, a body of general advice and gui-
dance needs to be developed. For example, how to make data available
for anonymous ftp without compromising other data; how to secure a
set of computers using Kerberos; how to configure systems (especially
UNIX) and networks for secure operation; how to protect confidential
data; how to evaluate and counter the threat posed by dial-in telephone
lines and incoming X.29 and Telnet; how to develop a security policy
that is suitable for a particular University and then to get everyone to
implement the policy, etc.

At least as important as any technical decisions are administrative deci-
sions concerning acceptable use policies within an institution and the
consequences for people who do not comply with such policy. For
example, at one university some years ago, the official position was
that no disciplinary action could be taken against students who were
compromising the service on the mainframe computer. As a result, the
maintenance of the system security turned into an open contest between

EurOpen A

91 - Bud

t, 16-20 Sep

A

107

<

Security and Open Working in the Networked Academic Community

hacking students and hard-pressed system staff. This both wasted staff
time and significantly degraded the service for other users. In contrast,
another site that uses technically advanced security measures also has a
very firm and well-known policy on computer misuse. The administra-
tors there know of no instance where the system security has been
compromised. They attribute this at least as much to the firm policy as
to the technical measures.

The author’s University is starting to develop a security policy that will
encompass both technical and administrative measures, and will
involve university administration at a very high level.

In addition, various national data protection legislation must be taken
into account.

Recently, the Security and User Services Areas of the Internet
Engineering Task Force have produced a draft “Security Policy Hand-
book”. This should soon appear is an Internet RFC. This is an
extremely valuable document, and should be required reading for any-
one developing a security policy.

7. Reaching Parts Kerberos Doesn’t Yet Reach

The author is strongly of the opinion that Kerberos should be used on a
wide scale to improve the network security both within campuses and
between campuses. Many forms of network access have already been
“kerberized”. However, to fully achieve improved security, some
significant extensions of the current Kerberos need to be made to cover
some common forms of network use.

7.1. Kerberizing X.29 Terminal Access

X.29 terminal access is one of the most ubiquitous forms of simple ter-
minal access. One of the biggest problems with securing X.29 in gen-
eral is the remarkable number of ways in which the terminal end is
realized [Rus91a]. The original model is of a very simple ASCII termi-
nal attached via an RS232 serial line to a PAD. This is probably the
exception now rather than the rule. The “terminal” is very likely to be
a terminal emulation program running in a micro-computer. Indeed,
often the PAD function is also located in the same PC. Perhaps the ulti-
mate example of this is the Rainbow package from the University of
Edinburgh that runs of a PC with an Ethernet interface and implements
various stacks of protocols including an X.29 “terminal” on top of an
X.25 module that operates directly across an Ethernet. The same pack-
age also includes a nice implementation of the UK NIFTP file transfer
protocol.

In [Rus91a] the present author suggests various ways in which the
Rainbow services can be “kerberized”. In general terms, these involve
the Rainbow micro computer exploiting the fact that it can be a full-
blown participant in network interactions. Thus it can make initial
calls to a Kerberos authentication server to obtain tickets, and then use
them in authentication exchanges with a host (which might be another
PC). The initial ticket request will be over an X.25 call rather than
using Internet protocols. This would be a problem with version 4
because of its weak dependance on IP. However, version 5 solves this
problem with its more general protocol formats.

Rather more interesting is the way in which the Kerberos protocols
might coexist with X.29 and the like. The Kerberos protocol involves a

EurOpen Autumn ‘91 — Budapest, 16-20 September

Security and Open Working in the Networked Academic Community

set of protocol messages or data units (PDUs) that must be exchanged
between the client and the server. With many existing protocols they
are exchanged as the initial messages on a connection. However, with
X.29, the possible format of the messages depends on just where the
messages are inserted into the stream and removed from it. X.29 con-
nections are notorious for not being fully transparent, and this is espe-
cially the case if any security features need to sit on top of an X.29
stream rather than being able to sit between the X.29 and X.25 layers. If
the protocol could sit between the two layers, then transparency could
be assured, but if it has to sit on top of X.29, then not only must many
characters be avoided (use only seven bits and avoid all control charac-
ters), but there is no record structure available. Unfortunately, the
boundary between the two layers is only easily accessible on some
machines, and it would not be wise to require such access if it can be
avoided.

Fortunately, these problems are well known, and many encoding
schemes (e.g. Kermit or BinHex) that allow the passage of arbitrary
data as is required in cryptographic authentication.

While it is easy for a fully functional Rainbow micro to interact
directly with a network authentication server, this option is not possible
for many X.29 configurations. Perhaps the micro is emulating just the
terminal, and the PAD function is performed by a physically separate
piece of equipment. Fortunately, there is an indirect way of contacting
the authentication server. Since we are defining a way of transparently
passing authentication messages on top of the X.29 connection to the
host, there is no reason why the initial dialogue between the client to
the authentication server should not also be encoded in a similar way
and passed over the X.29 connection to the host. The host can then re-
code the messages, and interact suitably with the authentication server
on behalf of the client. The assumption here is that any host that is
being accessed via X.29 will have sufficient communications capability
to be able to contact the authentication server.

At first sight, this appears to be dispensing with one of the advantages
of Kerberos — the possibility of authenticating the host to the user as
well as the user to the host. This is because the host appears to be
involved as a trusted party in this initial exchange with the authentica-
tion server. Even if this were the case, it would be no worse than the
present situation in which the host is the only trusted party. In fact the
host is not really being trusted at all in such a situation. The Kerberos
protocol protects against the majority of network attacks, including the
observation, forgery, and replay of messages. If the host is asked to
forward the initial messages between the client and the authentication
server, it is just acting as a kind of network device that gateways
between the representation on top of the X.29 connection, and the
“native” network representation. The messages themselves are crypto-
graphically protected, including from the “friendly” host.

Given this mechanism seems to be necessary for the less flexible imple-
mentations of X.29, then we see it can also be used equally well for the
fully functional Rainbow case without exploiting that extra functional-
ity. The advantage is that the one host implementation will work with a
variety of terminal configurations (providing of course that all of the
terminal configurations implement the same protocol).

At the terminal end there are two possibilities for inserting such secu-
rity facilities into the micro. One is to take the source of a terminal
emulator and extend it to provide such facilities. A practical problem
with this is that the source of the emulator must be available for such a

EurOpen Autumn 91 — Budapest, 16-20 September

5
- |

<
P

Security and Open Working in the Networked Academic Community Op

change to be made. Another is that only those emulators that have
been modified will be secure. In the way of things, this is certain to
exclude the one that is most desired for some other reason.

One way of avoiding these problems is to arrange that the security
facilities are implemented in a program that intercepts the stream of
data between the terminal and the (virtual) PAD. In this way, any
favoured terminal emulator may be used unchanged. The virtue of this
approach is that it is perhaps the most generally applicable form of
security.

7.2. Dumb Terminal X.29

At the extreme end of the X.29 spectrum is the dumb physical terminal
connected by a serial line to a PAD. In this case, there is no computing
power available between the user and the network to use for cryptogra-
phy. However, for secure authentication there is a possibility — the
“hand held authenticator”.

The hand-held authenticator is traditionally something like a pocket-
calculator. The mode of use is that instead of prompting for a pass-
word, the host presents a kind of challenge; the user reads the challenge
off his or her terminal and enters it into the keyboard of the hand held
authenticator; the response is read off the display of the hand held
authenticator, typed on the terminal and sent to the host. The relation-
ship of the challenge and the response enables the host to decide
whether the user should be allowed onto the system.

To use this in conjunction with Kerberos, the host would have to obtain
something corresponding to the encrypted ticket from Kerberos and
send it to the user as the challenge. The hand-held authenticator would
have to perform an operation on the “challenge” that corresponds to
deriving the Kerberos authenticator from the ticket, and this is the
response sent back to the host. Such an arrangement was discussed on
the Kerberos mailing list early in 1990 and is on the list of possible
future extensions to Kerberos [Koh91a].

This kind of authentication for “dumb terminals” could be implemented
in a number of ways. It might be possible to get actual hand-held dev-
ices with suitable software to perform this function, or alternatively, the
function could be programmed and made available for a range of port-
able or pocket devices. 1SO Virtual Terminal

The extent to which Kerberos security services can be exploited for 1ISO
Virtual Terminal (VT) is not at all clear. There are at least two prob-
lems.

The most serious problem is that VT contains an elaborate and tightly
defined virtual terminal model. At least one VT expert is of the opin-
ion that this rules out the pragmatic encoding of the Kerberos messages
in the data stream that we suggest above for X.29. If this really is the
case, then most of the kinds of solutions that we discussed in the sec-
tion on X.29 will not be possible. However, it may well be that further
study will revise this conclusion.

VT uses the presentation layer, and thus similar comments apply as
with ISO FTAM (see below) — i.e. that it might be possible to protect the
user data, but that protecting the structure of the data would need much
more work. However, it may be that the structure of the data with VT
is so fixed that its disclosure would not be an important breach of secu-
rity.

110 EurOpen A ‘91 — Budapest, 16-20 Septemb

5:]* Security and Open Working in the Networked Academic Community

If all else fails, then at least the hand-held authenticator together with a
challenge/response dialogue would allow for secure authentication.

7.3. Kerberizing File Transfers

For protocols such as FTP, the password field is the obvious vehicle for
security PDUs. The sequence would then be for the client to obtain a
Kerberos ticket for the FTP server, derive the authenticator, and
transmit it in the password field. The FTP server would then check the
“password” by calling the Kerberos library. To achieve such simple
one-way authentication, the process of Kerberising involves making
suitable modifications in the initiating end to obtain the authenticator,
the transmission of the authenticator in place of the password, and the
calling of the Kerberos library in place of the previous password check-
ing logic.

Of course, the password field must be suitable for such use — the
authenticator is a general bit-pattern (because of the use of encryption),
and is substantially longer than is usual for passwords. 1f mutual
authentication is required, then the server must return the extra mes-
sage to the client. If it is possible to send a password back from the
server to the client to the server, then this can be used to convey the
extra message. It is not clear whether file transfer protocols allow such
mutual exchange of authentication data, and less clear whether imple-
mentations could, in practice, be modified to do such an exchange even
if the protocol permits it. However, the protocol definition of FTAM
has recently been changed to allow the password to carry cryptographic
information precisely so that it can convey either a Kerberos authenti-
cator or similar security information.

If the file transfer is to use the integrity or confidentiality services, then
the communication must be by means of the appropriately constructed
messages. For FTAM the choice is not particularly obvious because of
the use of the presentation layer. If the contents of the file need protec-
tion, but the structure of the file does not need such protection, then the
File Access Data Units could be protected by inclusion within the Ker-
beros integrity or confidentiality messages, and these in turn transmit-
ted by the protocol. However, if the information on structure that is
represented by the presentation layer needs protection, then the presen-
tation layer in turn needs protecting by lower layer security services.
This may require a more extensive development unless the Kerberos
privacy and integrity message formats could be used by the presenta-
tion layer as its transfer syntax.

It has been pointed out that if the integrity of the PDUs that define the
operations on a file cannot be guaranteed, then an attacker could, for
example, turn a “read” operation into a “delete” operation. Thus, the
security requirements of the control parts of a FTAM session are more
critical than the data-transfer parts.

The standards community is working towards a “Security CASE” for
general use by application protocols. While this is a desirable target, it
is very much a long term process.

In summary, given a “Kerberos Infrastructure” making one-way
authentication secure for FTAM seems straightforward. Mutual authen-
tication depends on the availability of a reverse path from server to
client for the appropriate information. For either integrity or
confidentiality services to be used the communication must use the
appropriate Kerberos messages. In the case of FTAM this is compli-

EurOpen Autumn 91 — Budapest, 16-20 September 111

Security and Open Working in the Networked Academic Community

cated if the structure needs to be protected as well as the content of the
file.

7.4. General Discussion

In this section we have discussed various ways in which, given a basic
Kerberos infrastructure, the Kerberos security services — authentica-
tion, integrity, and confidentiality — could be more widely deployed.

For FTAM the provision of secure authentication would be straightfor-
ward given that the password field could be used to transmit the
appropriate Kerberos messages. Mutual authentication requires the
transmission of an extra Kerberos message. Whether this is possible
within the protocols and then within the implementations needs to be
answered by protocol experts, and by implementers.

The exploitation of the integrity and confidentiality services requires
that the transfer itself use the appropriately formatted Kerberos mes-
sages.

Given the availability of the Kerberos Infrastructure, then converting
FTP to use Kerberos authentication would be a straightforward matter
of calling a small number of subroutines to generate and process the
authentication messages and of acting on the positive or negative
results of those calls. Using the integrity or confidentiality services
would involve calling two further routines to encode data within the
Kerberos protected format before transmission and extracting data
from this format after reception.

For X.29 the process of adopting Kerberos is much more complex,
mainly because of the many different ways in which the X.29 protocol
is used in practice. However, the main work is in deciding exactly
what way the Kerberos protocol is to be combined with the use of X.29.
Once this has been decided, the process of implementing authentication
is a matter of arranging for the authentication messages to be passed to
the Kerberos library and the results of those calls to be acted upon. As
with FTP, the use of integrity and confidentiality involves arranging for
all /0 1o be coded into the appropriate message before transmission
and decoded from it after reception.

Note that with all of the proposed applications of Kerberos, the service
provided is secure authentication of existing registered users of the sys-
tem. Thus, there is no external “Access Control List” provided by such
a system. This is particularly relevant with respect to file transfer,
where it would be desirable to permit access to a file to a specific exter-
nal user without needing first to register that user as a user of the host
operating system. Kerberos does not provide such a mechanism, and
users unknown to the host of a filestore would presumably have to be
mapped onto “anonymous” or somesuch.

8. Password Guessing

The Kerberos system is subject to password guessing. If the attacker
can eavesdrop, then certain initial message exchanges can be recorded
and then (since, following Kerckhoffs, we assume the protocol is well
known) offline trials against a dictionary can be made at leisure. Given
sufficient eavesdropping, this would yield the equivalent of obtaining
much of the UNIX /etc/passwd file together with the well-known
consequences. (However, note that in the more usual plaintext pass-
word situation, such an eavesdropping attack would already have

o Security and Open Working in the Networked Academic Community

obtained the plaintext passwords with no further effort required.) If the
attacker cannot eavesdrop, she can still obtain an initial ticket merely
by asking for it. However, this method might call attention to an attack
if used extensively.

Password guessing works because users tend to choose simple short
passwords and are very unoriginal. Many systems make this situation
worse by only accepting very short passwords, or even by shortening
passwords.

One response to this is not to let users choose their own passwords, but
to allocate them, perhaps generating them pseudo-randomly. Such
passwords are difficult to guess, but they are also difficult to remember,
and users tend to write them down and even to attach them to the termi-
nal with sticky paper thus making the security even worse.

There are several fairly well-known ways of getting users to choose
good passwords which are still easy to remember [Hig90a)]. One way
is to get the user to choose a phrase rather than a word, and then take
the first letter from each word of the phrase. There are many variants
on this theme. Perhaps more effective is to allow passwords of unlim-
ited length and insist on fairly long passwords, or, preferably phrases.
Long strings may be folded into fixed length keys (of, say, the 64 (or
56) bits required for the likes of a DES key) by folding and exclusive-
ORing the segments of a long key. Since a typical phrase typically
contains only a few bits of entropy per word, a substantial phrase
(preferably not from Shakespeare!) should provide good security
against password guessing and yet be easy both to remember and to
type.

If users are educated to choose good passwords in this kind of way, and
this education is reinforced by a suitable interactive password changing
system that filters out easily guessed passwords and institutes a sensible
password ageing scheme, then password security can be made very
good and most password guessing attacks would be thwarted. Having
passwords administered centrally by a system like Kerberos should
make the implementation of such a scheme of choosing good pass-
words that much easier.

We believe that a system to improve the quality of user passwords in
this kind of way is essential, independently of whether Kerberos or
some similar system is adopted.

9. Implications for the Transition to ISO

One of the aims of the ISO transition was that complete 1SO protocol
stacks could be purchased from commercial companies and used,
unmodified. If we start to require security services before they are
commercially available, or services that are different from those that
are commercially available, then there is a real conflict with this aim.
On the other hand, the projected timescale for 1SO standard security
measures is clearly too long for the requirements of our users. There is
obviously a dilemma here.

We believe that this dilemma is best resolved by taking interim meas-
ures, and trying to ensure, by tracking and participating in the standards
process, that these measures converge with emerging standards. In
addition the use of a standard API should ease such transition problems.

The alternative of no security measures is just not acceptable for most
users.

EurOpen Autumn 91 — Budapest, 16-20 Septemb 13

Security and Open Working in the Networked Academic Community

10. Some Unanswered Questions

The problem with these solutions is not whether they are likely to
work, but rather whether they will be useful enough to justify the effort
needed to develop them. It is not at all clear just how important “dumb
terminal” access is for confidential data. Would it be acceptable if
dumb terminal access was authenticated (using a “hand-held authenti-
cator”), but could not be made confidential? The input to this study
indicates that this would be a very welcome move for many applica-
tions.

Again, would it be sufficient to produce just a hand-held authentication
program to run in a range of common micros, or would actual hand-
held devices be required? How important are dumb terminals anyway?
The range of possible requirements is vast and the whole process could
be delayed indefinitely while the possibilities were argued at length.

The answers to these detailed questions were not identified by the
study. At all stages, the most diverse opinions have been expressed on
this point, ranging from the belief in the imminent demise of X.29 in
favour of X, to the extreme importance of X.29 access using dumb ter-
minals and standard PADs. Indeed, it seems unlikely that this matter
can be resolved until at least some experience has been gained in the
practical deployment of a security service like Kerberos. The most
common reaction at present is a blank and uncomprehending demand
to secure everything against anything. With suitable experience in
developing security policies and implementing them using a core set of
security services on certain protocol stacks, the real need for further
services could be identified.

In order to make progress, the author is experimenting with a Kerberos
client that is combined with a terminal emulator as described in the sec-
tion of X.29. It is hoped that experience with this, together with a host
implementation for UNIX, will make it clearer whether such a security
mechanism will be useful. At the same time, the deployment of Ker-
beros to protect other types of network service is being pursued.

Perhaps most importantly, this is being done in close conjunction with
the development of a University security policy, and together with
other methods of securing host systems.

11. Acknowledgements

Some of the work on which this paper is based was supported by the
UK Joint Network Team under grant number JO18/500/01.

References

[Dif76a] W. Diffie and M. E. Hellman, “New Directions in Cryp-
tography,” IEEE Transactions in Information Theory 6,
pp. 644-654 (Nov 1976).

[Dif88a] W. Diffie, “The first Ten Years of Public-Key Cryptogra-
phy,” Proc IEEE T76(5) (May 1988).

[Hem89a] V. Hempel, Final Report — Protection of Logisics
Unclassified/Sensitive Systems (PLUS), Office of the
Secretary of Defense Production of Logistics, Systems
Department of Defense (1989).

114

EurOpen A ‘91 — Budapest, 16-20 Septemb

o

Security and Open Working in the Networked Academic Community

[Hig90a]

[Koh91a]

[Lom89a]

[Mer90a]

[Nee78a]

[Rus90a)

[Rus91a}

H. J. Highland, “Random Bits and Bytes — Using Good
Passwords,” Computers and Security 9 (1990).

J. T. Kohl, “The Evolution of the Kerberos Authentication
Service,” in Proceedings of the Spring 1991 EurOpen
Conference, Tromsg, Norway (Spring 1991).

T. M. A. Lomas, L. Gong, J. H. Saltzer, and R. M. Need-
ham, “Reducing Risks from Poorly Chosen Keys,” in Proc
12th ACM symposium on Operating System Principles
(Dec 1989).

M. Merritt and S. Bellovin, “Limitations of the Kerberos

Authentication System,” Computer Communications
Review 20(5), pp. 119-132 (Oct 1990).

R. M. Needham and M. D. Schroeder, “Using Encryption
for Authentication in Large Networks of Computers,”
Comm ACM 21(12) (Dec 1978).

D. M. Russell, “High-level Security Architectures and the
Kerberos System,” Computer Networks and ISDN Systems
19(3-5), pp- 201-214 (Nov 1990).

D. M. Russell, A Study of Security for Networked Interac-
tive and File Services — First report: Current Situation —
Second Report: A plan of action, available from the author
(Feb 1991). Prepared for the UK Joint Network Team.

EurOpen Autumn 91 — Budapest, 16-20 September

115

phLOGIN, Why, What and How

Alain Williams

Parliament Hill Computers Ltd, UK
addw @phcomp.co.uk

Abstract

The paper will discuss the history, aims and design philosophy for the
program. An overview of the major program features and how they are
to be used will be given.

Porting issues on a utility like this are unusual and will also be covered.
I end with an indication of where further work is needed.

This paper was first delivered at the NLUUG conference of 8 May 1991.

1. What is it all about?

phLOGIN is a set of programs which replace the UNIX login, getty, rlo-
gind and telnetd programs. phLOGIN is a product that has grown out
of a special purpose utility to meet the specific needs of a customer to a
tool of general applicability.

2. Main Aims

phLOGIN is designed to make great improvements over standard login
in three areas:

Security

PhLOGIN is the first point of contact that an intruder will have
with a system, it is important that life is made difficult for him
without hampering legitimate users.

It is also important that the System Administrator knows what is
going on. Most versions of login only record successful logins,
the failures are just as important. The ability to take immediate
action on a failure is important.

phLOGIN addresses both of these issues.
End User Functionality

Standard login is very much a 1960’s program, it makes no use
of the abilities of “smart” terminals — not even the now common
place cursor positioning sequences. It detracts from a nicely
designed menu driven system that may be started from the
current login mechanism — where it is not even obvious how to
correct a mis-typed character.

EurOpen Autumn 91 - Budapest, 16-20 September 117

phLOGIN, Why, What and How

phLOGIN lets the System Manager design a forms type login screen for
his users. This may have the date, time, and Message Of The Day
displayed, the arrow keys may be used and the function keys bound to
actions such as help and information services.

System Administrator Control

There are a variety of ways in which the System Administrator’s
life can be made easier, these range from stopping logins during
backups (and letting the user know why) to the ability to dedicate
a terminal for a specific use.

phLOGIN has been designed to integrate with extra security devices
that may exist on a particular system, e.g. it knows about /etc/shadow
or various TCBs (Trusted Computing Bases) where they exist.

phLOGIN only deals with the login step, security at other times needs to
be examined independently.

phLOGIN controls may be chosen according to the origin of the login
attempt. In the case of a direct connected terminal this is the physical
tty, and in a network login (rlogin/telnet) this is the remote machine
name/address and possibly the remote username.

phLOGIN is simple to set up and get going, if something complicated is
wanted a bit more work may be needed.

3. What does it do?

The features of phLOGIN will now be examined in more detail.”

3.1. Origin Specific Controls

This is a key concept with phLOGIN. The point is that the system
administrator needs to be able to distinguish between different termi-
nals: be they direct connected or networked.

The direct connected case is easy, one phLOGIN is run per tty from
/etc/inittab and so different options are given:

tty9:1:respawn:/etc/phlogin -f /etc/phlogin.d/cfd4 -T vtl00 tty9

With the networked case a more subtle approach is needed. The
options list is built up dynamically, a configuration file is scanned and
controls taken or ignored depending on the conditions in selectors. The
syntax will be familiar to AWK users with selectors in /. e.g.

Some users on remote machines use strange keyboards
/ v:mordor u:gollum / {

-S erase="@

- TZ=VDT10VWT
}

The assertions are:
' l:name

Assert that the current localhost (machine being called and on
which phrloginp is running) is name.

The judicious use of this allows the same control file to be used
for several machines.

t Only an outline of features is given.

118 EurOpen Autumn 91 — Budapest, 16-20 Sepiember

Eé phLOGIN, Why, What and How

[} r:name

Assert that the remote (calling entity) is name. Name may take
the form portnumbername: or just name.

. p:proto

Asserts that the connection protocol is proto. This may be used,
for instance, to distinguish between telner and riogin connec-
tions.

° u:name
Assert that the remote (calling) username is name.

In all of the above a list may be created by separating the names by
commas. The names given in such a list are taken as alternatives, if
any one matches the assertion succeeds.

The control file is compiled so that petty syntax errors do not make set
up difficult. The compiled file is a machine independent binary; e.g.
you may compile it on a MC68000 and use it on an i486, this means that
it can be shared by a network of heterogeneous machines.

3.2. Security

Security and ease of use do not, generally, go together. To make a sys-
tem more difficult to break into someone has to do some more work
and the user interface may need to be changed.

In the first instance the system administrator is going to have to spend
some time thinking about how the system is going to be used, and set-
ting the phLOGIN options to enforce this.

There are several methods by which phLOGIN helps to tighten a system
up:
) Login Restrictions — 1

Terminals are very often used by one individual or for one pur-

pose, use is only expected at certain times. This is especially
true in many commercial systems.

phLOGIN allows this to be enforced, thus the options:

-A g:accounts,t:09..1730,w:1..5
-A u:backup,t:13..14

will only Allow logins by members of the accounts group
between 9am and 5:30pm, Monday to Friday. The user backup
is also allowed to login at lunchtime, any day of the week.

This simple facility is remarkably good at enforcing a “who does
what and where” policy, and forbidding (for example) root
logins anywhere except at the terminal in the locked room.

If you don’t trust a remote machine you can lock it out com-
pletely:

/ r:rogue / { -A =0)

If you must permit a root login over a network, then at least res-
trict it to a secure terminal. If you know the port number that the
trusted terminal is connected to, you can use:

Forbid all root logins
// { -A 'u:root }

Allow root logins on port 192 of network called web
/ r:web:192 / { -A u:root,w:0..6 }

EurOpen Autumn ‘91 — Budapest, 16-20 September 119

phLOGIN, Why, What and How

Login Restrictions — 2

The above feature is a good first attempt, but it is not powerful
enough to satisfy everyone. phLOGIN can optionally run a
program/shell-script before login is completed. This can do
further checks on who is attempting to login.

Since this is supplied by the System Administrator it can check
anything that he wishes, e.g. run the diary program to see if the
user is on holiday.

Backoff/Timeout

One way of getting into a .system is to try lots of
username/password combinations. This is made easier as user-
names are often known, and people are very bad at choosing
good passwords.

It is a simple matter to connect another computer to a login line
(possibly via a network or modem) and sit back and wait.

phLOGIN provides protection against this. After an unsuccessful
login attempt phLOGIN will pause for a few seconds, throw away
pending input and allow another try. As more failures are made
the pause gets progressively longer. It can also be arranged that
the line/connection will be dropped after a specified time or
number of failures.

This makes brute force methods very slow and also increases the
likelyhood of detection.

Username Equivalences

Networking is well known to cause security problems, some of

which can be avoided quite simply. When performing an rlogin
there is the notion of equivalent machines (where a user on one
may login to the same name on the other without quoting a pass-
word), and a similar idea in users’ .rhosts files where password
free logins are granted as the user sees fit.

The first of these is under the System Manager’s control, but is
quite crude in application (all users or none at all are equivalent).
The second is under users’ control, do you trust your users?

With phLOGIN in the networked environment the System
Administrator can provide machine specific equivalence lists.
The users’ .rhosts files may be ignored or acted on as desired.
The allows (-A above) let you specify equivalenced user names,
and a password can be insisted on regardless of equivalences
(Figure 1).

The net effect of this is to put equivalence control back into the
System Administrator’s hands. This is important, it was one of
the main areas of attack of the internet worm.

Audit Trails

Standard login only records successful logins. phLOGIN also
records failures, this includes the reason why the login was
refused.

It is very important that failures are recorded, unless the System
Administrator can see that an attempt is being made to break into
his system, he can do little to act against it.

The log file is a binary file, this makes it difficult to illegally
remove entries.

EurOpen Autumn 91 — Budapest, 16-20 September

phLOGIN, Why, What and How

Ignore standard equivalences from the machine hacker
/ r:hacker / { -q =0}

Give equiv for some friends to the fileserver
/ r:friend l:fileserver / {

Take note of users .rhosts files.

-q =1

Add some of our own
-g bill,ben
-g richard -> dick

Only let people login as their equiv users
-A u:Se

But they always have to gquote a password
regardless of equivalence.
-p Yes

}

Allow a specific remote users
/ r:kremvax u:gorby,raisa / { -A u:S%u }

Figure 1:

The audit trail is used on successful login by phLOGIN to tell the
user when the last successful and unsuccessful logins were made
on the username.

Elimination of .profile

phLOGIN can be asked to do much of what is usually done in a
.profile, e.g. setting environment variables, umask, terminal
mode, change directory, ..., and finally running an application
program. This means that a .profile is no longer needed, and that
the login shell need not be /bin/sh.

This is good news as it is possible (with determination) to break
out of a .profile and get a $ prompt. Also as it is a file in a user
writable directory, it can be easily changed. By running an
application as the login shell, the user becomes logged out as
soon as it is terminated.

Immediate Action

There are several things which may be wanted to be done
immediately a login event happens, these range from printing a
line on a hard copy terminal to disabling a line on which there
have been too many failures.

These can be arranged. For flexibility the mechanism is to make
the log file a fifo.

In addition some systems have a database in which information
such as the number of consecutive failures is recorded, phLOGIN
knows about these and will maintain as appropriate. Administra-
tive requests to lock a user or terminal out in certain conditions
will be honoured.

Login without Passwords

phLOGIN can be configured so that a user is logged in immedi-
ately — as soon as the system goes multi user or the previous
login is ended. Optionally the user may be required to press the
return key.

This is not the security loop hole that it seems. If it is also
specified that the login program is, say, an accounts package the

121

phLOGIN, Why, What and How e

system is quite safe. Most accounts packages insist on a pass-
word being entered before anything can be done.

This setup is likely where a terminal has a dedicated use, this is
quite common in turn-key systems. It eliminates the need to
“login twice”, once in to UNIX and once in to the accounts sys-
tem. It thus helps to hide more of UNIX from the end user — this
must be a good thing.

3.3. End User Functionality

phLOGIN appears very different to the end user.
° Full Screen Login

To the End User the most obvious improvement that phLOGIN
brings is that the whole screen is used, gone is the line at a time
login, here is a smart, modern start screen.

Colour may be employed if the terminal supports it.
. Date, Time and MOTD

The date and time are probably displayed on the screen, the Mes-
sage Of The Day is displayed (and updated as it changes as the
clock ticks).

° Arrow Keys

The user may use the arrow keys to edit input. Backspace and
Delete are regarded as synonymous.

Gone is the nightmare of guessing the erase key.
) Function Keys

The System Administrator may have bound functions to some of
the function keys.

phLOGIN examines the file specified when the key is pressed, if
it is executable it runs it, or if not it displayed it to the screen.
This allows both a simple help facility, and the ability to run
specified (and trusted) programs without logging in.

° Native Language

The wording on the screen and error messages may be displayed
in the user’s native language. Most computer users do not
understand English.

. Correct Clocks on Remote Login

Those who remotely login to machines in different time zones
have got used to having the time displayed wrongly (from their
point of view). This can be quite easily cured:

Get timezones right for the non UK countries.
Set this up. Note how some should be put in quotes.

/R:paris,bonn,madrid/ { -e TZ='MET-1MET’)}

/R:canberra/ { -~e TZ="EST-10" }

/R:kremvax/ { -e TZ="MCT-3MST’ } # Moscow site
/R:whsun/ { -e TZ=ESTSEDT) # White House
/R:cairo/ { ~e TZ="ET-2* }

To eliminate confusion, the concept of a system administrator’s
time zone is supported, this is the time zone which is used in
allows (-A).

Much of the description above uses “may”, this is because the form and
function of the login screen is completely definable by the System
Administrator. An example screen file is given in Figure 2. The $...$
sequences are substituted, e.g. T for the current time and $M1$ for

122 EurOpen Autumn “91 — Budapest, 16-20 September

phLOGIN, Why, What and How

Demo screen file, ADDW 20 May 1991.

#

Allow the user to get a screen full of help on how to login.
##fl=/etc/phlogin.d/lhelp

Welcome to n

Username: S$SUS
Password: $PS

Networked phLOGIN
Login from $rung

Figure 2: An example screen file

the first line of /etc/motd. The username and password are prompted
for at U and P. In all 42 different sequences are defined.

3.4. System Administrator Control

There is much that the System Administrator can do in controlling what
is to happen in individual terminals. Much of this has been discussed
above, new features are:

. Global allow/disallow of logins

If you want to do a backup it is easy to log people off the system.
phLOGIN allows a specified file to be used as BSD login uses
/etc/nologin. phLOGIN however tracks the existence and con-
tents of the file on to the screen so that the user does not need to
keep on trying to login to find out if it has been removed.

Maximum File Size

The wulimit on some systems is quite small. This frequently
causes problems with database users. As the limit can only be
increased by root 1 have occasionally found such applications
running as root.

phLOGIN allows this to be set appropriately.
Terminal Groups

Very often a whole group of terminals need to be treated in a
similar way. phLOGIN allows options to be read from a file.
This saves effort and errors.

EurOpen Autumn 91 — Budapest, 16-20 September

phLOGIN, Why, What and How

3.5. Networking

This is a recently released module and involves replacement of the rio-
gin and telnet daemons. The whole basis of the extra protection
offered is that the phLOGIN options list is built dynamically and what is
included can depend on where the remote rtogin is coming from.

This allows the System Manager to provide access in a measure com-
mensurate with the level of trust that he has in the remote system or it’s
users. As mentioned above username equivalences can also be con-
trolled.

4. Porting Issues

Most of phLOGIN can be ported to most systems with little, if any,
work being needed. For hardware with an established ABI (Applica-
tions Binary Interface), such as the i386, programs compiled elsewhere
will work properly. This is true for the small utilities that come with
phLOGIN like the log print program.

phLOGIN itself, unfortunately, works in an area where many manufac-
turers have added “security specials” to their system. Many of these
have been in an effort to attain a US DOD “Green Book” rating. These
come in several flavours:

° Audit Trails

Login success and failure records may need to be written. These
will have to be in a specific format, there may be library routines
to help with this.

° TCBs

This is a Trusted Computing Base which is generally imple-
mented as a Control Database which contains an entry for every
user who is known to the system. In addition to duplicating
some or all of the information in /etc/passwd various other items
such as recent login history and “what the user is allowed to do”
are kept here.

As these are very manufacturer specific the format and access
methods of the TCB vary widely.

° Kemel Authorisations

Before completing a login a system may demand that an authori-
sation vector is initialised. This will tell the kernel what system
calls it is to honour, and perhaps add an extra dimension to file
access control. The information for this will come from the TCB.

There are other arbitrary actions which may also need to be
taken, e.g. the serluid() system call on a SCO V.3 machine.

The main problem with all of the above is the documentation. This is
frequently sparse, occasionally inaccurate and sometimes unavailable.
With HP, for instance, the format of audit trail information is not
specified; I asked the European Support Centre for help, they did not
know and the US office refused to help them.

The problems that we have had are because we are working in an area
where the pressures of standardisation are not as great as those for
adding special features which will make a particular system ‘better
than all others”. Standards have not yet caught up here — most applica-
tions don’t need to know about them.

124

EurOpen Autumn ‘91 — Budapest, 16-20 Septemb:

phLOGIN, Why, What and How

5. Future Work

A product cannot stand still, requirements change as do users’ needs.
Much of the list below has been asked for by users:

Inactivity Timeouts

It a user walks away from a terminal that terminal should be
secured against use by others until the user returns. Some sys-
tems offer facilities whereby a daemon examines terminals for
inactivity (i.e. nothing being typed on it) and forces a logout.

This is not a good way of doing things, what if the user was
doing a long and complicated database select? A logout is the
WIONg answer.

A better solution is to grab control of the terminal, clear the
screen and insist that the login password be re-entered before the
session can continue.

System Manager Setup Tools

Currently phLOGIN setup is done by editing configuration files.
This requires a greater level of knowledge and skill than we
should assume. A menu driven setup tool is needed.

Modem Handling

phLOGIN needs to be able to talk to modems so that it can under-
stand when the baud rate is changed on call connection.

Smart Cards

The use of Swipe Cards and Smart Cards to identify individuals
is becoming increasingly popular. A hook already exists to allow
a verification program to be run, we need to use this to access the
cards.

Network Encryption

Data transferred between machines is not encrypted under
current TCP/IP protocols. It is not very difficult to plug into a
network and read the messages as they go by.

Encrypting the network traffic would raise network security.
We have recently been approached by a company that wants this.
Expert System Audit Trail Analysis

One of the problems with most security tools is that they gen-
erate large audit trails. This is the correct thing to do, the
difficulty is in analysing them.

The hundreds or thousands of audit records that will be generated
daily need inspection, but to expect a human to spot anything
other than blatant attacks is not realistic. A human inspector (i.e.
the System Administrator) also has many other jobs to do and
only works at certain times of day, but the time when (s)he next
looks might be too late.

It is easy to ring an alarm whenever there is a security violation,
but many of these will be due to genuine user errors; the attacks
need to be sorted out from the mistakes. An attack may be sub-
tle, e.g.: one may decide that two successive violations on a ter-
minal constitute an error not an attack, but a rush of “errors” on
terminals all in the same room is likely to be an attack rather than
real errors — except when people sign on in the morning.

EurOpen Autumn 91 — Budapest, 16-20 September

PphLOGIN, Why, What and How

The point is that if alarm bells are rung too often they are
ignored. If they are not rung often enough security breaches are

probable. We would like to build an expert system to help in this
area.

126

EurOpen A 91 — Budapest, 16-20 Septemb

MANIFOLD: A Language for
Specification of Inter-Process
Communication

Farhad Arbab and Ivan Herman

Centre for Mathematics and
Computer Science (CWI), The Netherlands
farhad@cwi.nl ivan@cwi.nl

Abstract

Management of the communications among a set of concurrent
processes arises in many applications and is a central concern in paral-
lel computing. In this paper, we introduce a language whose sole pur-
pose is to describe and manage complex interconnections among
independent, concurrent processes. In the underlying paradigm of this
language, ManiroLp, the primary concern is not with whar functionality
the individual processes in a parallel system provide. Instead, the
emphasis is on how these processes are inter-connected and how their
interaction patterns change during the execution life of the system.

It is interesting that the conceptual model behind the ManiroLp language
immediately leads to a very simple, but non-conventional model of
computation. Contrary to most other models, computation in ManiFoLp
is built out of communications. As such it advocates a view point rem-
iniscent of the connectionist view: that all (conventional) computation
can be expressed as interactions.

1. Introduction

Specification and management of the communications among a set of
concurrent processes is at the core of many problems of interest to a
number of contemporary research trends. Although communications
issues come up in virtually every type of computing, and have
influenced the design (or at least, a few constructs) of most program-
ming languages, not much effort has been spent on conceptual models
and languages whose sole prime focus of attention is on process
interaction. Notable exceptions include the theory of neural networks,
and to some extent, the concept of dataflow programming and the
theory of Communicating Sequential Processes.

In this paper, we introduce ManiroLp: a language whose sole purpose is
to describe and manage complex interconnections among independent,
concurrent processes. A detailed description of the ManiroLp model and
the syntax and semantics of the ManiroLp language is of course beyond
the scope of this paper. The specification of the ManiroLp model and

EurOpen Autumn "91 — Budapest, 16-20 September

MANIFOLD: A Language for Specification of IPC

system is given elsewhere [Arb91a). We summarize only enough of
the description of the Maniroo model to give an impression of its
potentials. To give a flavor of the ManiroLp language and show how it
is used in parallel computing, in this paper we explain the implementa-
tion of a parallel bucket sort algorithm in ManiroLp. More examples of
the use of the ManiFoLp language are given elsewhere [Arb90a] and a
larger example, related to computer graphics and interaction, has been
published in [Soe91a). Only enough of the syntax and semantics of the
language is discussed here to make the critical parts of the bucket sort
example program understandable.

It is interesting that the conceptual model behind the ManiroLp language
immediately leads to a very simple, but non-conventional model of
computation. The ManroLp model is conceptually as powerful as con-
ventional models, e.g., the Turing Machine. However, contrary to most
other models, computation in ManiFoup is built out of communications.

The rest of this paper is organized as follows. Section 2 presents some
of the motivation behind the design of ManiroLp. In Section 3, we
inspire an intuitive feeling for what ManiroLp programming is like by
comparing and contrasting it with a number of different styles of pro-
gramming. Section 4 contains a summary of the key concepts in the
ManroLp model. Section 5 explains the critical part of a complete Mani-
roLp program which implements a parallel bucket sort algorithm. The
complete ManiroLp program itself appears in Appendix A. A flavor of
the syntax and the semantics of the ManiFoLp language can be skimmed
from the explanation of the piece of code presented in Section 5. Sec-
tion 6 mentions some other application areas where the ManiroLp style
of programming seems to be a promising approach. Section 7 contrasts
ManiroLp With a few other systems with similar features or concerns.
Finally, Section 8 contains a few concluding remarks about ManiFoLb.

2. Motivation

One of the fundamental problems in paralle! programming is coordina-
tion and control of the communications among the sequential fragments
that comprise a parallel program. Programming of parallel systems is
often considerably more difficult than (what intuitively seems to be)
necessary. It is widely acknowledged that a major obstacle to a more
widespread use of massive parallelism is the lack of a coherent model
of how parallel systems must be organized and programmed. To com-
plicate the situation, there is an important pragmatic concern with
significant theoretical consequences on models of computation for
parallel systems. Many user communities are unwilling and/or cannot
afford to ignore their previous investment in existing algorithms and
“off-the-shelf” software and migrate to a new and bare environment.
This implies that a suitable model for parallel systems must be open in
the sense that it can accommodate components that have been
developed with little or no regards for their inclusion in an environment
where they must interact and cooperate with other modules.

Many approaches to parallel programming are based on the same com-
putation models as sequential programming, with added on features to
deal with communications and control. There is an inherent contradic-
tion in such approaches which shows up in the form of complex seman-
tics for these added on features. The fundamental assumption in
sequential programming is that there is only one active entity, the pro-
cessor, and the executing program is in control of this entity, and thus
in charge of the application environment. In parallel programming,

EurOpen Autumn 91 — Budapest, 16-20 September

E MANIFOLD: A Language for Specification of IPC

there are many active entities and a sequential fragment in a parallel
application cannot, in general, make the convenient assumption that it
can rely on its incrementally updated model of its environment.

To reconcile the “disorderly” dynamism of its environment with the
orderly progression of a sequential fragment “quite a lot of things”
need to happen at the explicit points in a sequential fragment when it
uses one of the constructs to interact with its environment. Hiding all
that needs to happen at such points in a few communication constructs
within an essentially sequential language, makes their semantics com-
plex. Inter-mixing the neat consecutive progression of a sequential
fragment, focused on a specific function, with updating of its model of
its environment and explicit communications with other such frag-
ments, makes the dynamic behavior of the components of a parallel
application program written in such languages difficult to understand.
This may be tolerable in applications that involve only small scale
parallelism, but becomes an extremely difficult problem with massive
parallelism.

Separating the communication issues from the functionality of the com-
ponent modules in a parallel system makes them more independent of
their context, and thus more reusable. It also makes it possible to delay
decisions about the interconnection patterns of these modules, which
may be changed subject to a different set of concerns.

There are even stronger reasons in distributed programming for delay-
ing the decision about the interconnections and the communication pat-
terns of modules. Some of the basic problems with the parallelism in
parallel computing become more acute in distributed computing, due to
the distribution of the application modules over loosely coupled proces-
sors, perhaps running under quite different environments in geographi-
cally different locations. The implied communications delays and
heterogeneity of the computational environment encompassing an
application, become more significant concerns than in other types of
parallel programming. This mandates, among other things, more flexi-
bility, reusability, and robustness of modules with fewer hard-wired
assumptions about their environment.

The tangible payoffs reaped from separating the communications
aspect of a multi process application from the functionality of its indi-
vidual processes include clarity, efficiency, and reusability of modules
and the communications specifications. This separation makes the
communications control of the cooperating processes in an application
more explicit, clear, and understandable at a higher level of abstraction.
It also encourages individual processes to make less severe assump-
tions about their environment. The same communications control com-
ponent can be used with various processes that perform functions simi-
lar to each other from a very high level of abstraction. Likewise, the
same processes can be used with quite different communications con-
trol components. This helps modularity, efficiency, and reusability.

3. What is it Like?

The Webster’s dictionary defines the term manifold as an adjective to
mean:

1. having many forms, parts, etc. 2. of many sorts 3.
being such in many ways 4. operating several parts of one
kind.

EurOpen A '91 - Budapest, 16-20 Septemb 129

MANIFOLD: A Language for Specification of IPC

It also defines manifold as a noun to mean:

a pipe with several outlets, as for conducting cylinder
exhaust from an engine.

ManwoLp can be viewed from several different perspectives, each
revealing similarities with the features and concerns of a different set
of models and systems. A comparison of ManiroLp and some such
models and systems is made in Section 7. However, it is useful to
establish a few approximate reference points to inspire an intuitive feel-
ing for what Maniroup is all about before encountering the details. To
that end, we mention dataflow programming, shell scripts, and event
driven programming in this section.

To the extent that the primary focus in ManiroLp is the connections
among processes, not the processes themselves, it is a conductor that
orchestrates the interactions among a set of cooperating concurrent
processes, without interfering with their internal operations. As such,
ManiFoLp programming is vaguely reminiscent of writing shell scripts in
a system like UNIX. Similar to a shell script, the concurrency and inter-
connection issues are completely outside of the processes. However,
the possibilities for defining and dynamically changing the interconnec-
tions among processes in ManwroLo go much beyond what is offered in
such simple shell scripts.

Orchestration of the interactions among a set of ‘processes in MANIFOLD
is done in an entity with multiple inlets and outlets, called a manifold.
As the conductor of such interactions, a manifold has a number of
states, each specifying a specific connection pattern. Connection pat-
terns define links between the input and output ports of various
processes, called streams, through which the information produced by
one process is made available for consumption to another.

A manifold goes through state transitions as a result of observing in its
environment the occurrences of events in which it is interested. State
transitions cause dismantling of the interconnections set up in pre-
transition states, and establish the ones defined in the post-transition
states. As such, events are the principal control mechanism in Mani.
roLp, which makes it an event driven programming system.

The streams among processes in ManiroLp form a network of links for
the flow of information that is reminiscent of dataflow networks. How-
ever, there are several major differences between ManroLp and
dataflow programming. In ManroLp the connection patterns among
processes change dynamically. Furthermore, processes are created and
deleted dynamically as well. This by itself makes the connections
graph of a ManiroLp program, which is the combined effect of all its
manifolds, very dynamic. However, there is more. The manifestation
of a single manifold is of course a single (dynamically changing) pro-
cess inter-connection graph. Since manifolds too are processes, the
combined graph of a ManroLp program is indeed not a simple graph,
but a hyper-graph, where each node in itself is a dynamically changing
graph of connections among processes.

Although conceptually, the dominant control mechanism in ManiFoLp is
event driven, the dataflow type, data driven style of control through
streams is at least equally as important. A manifold can internally raise
an event for itself, causing a state transition. This can be, for instance,
due to the arrival of a unit of information in the pre-transition state
through a certain stream, and may also depend on the contents of this
information. Thus, there is a smooth transition between the two

EurOpen Autumn ‘91 — Budapest, 16-20 Septemb

MANIFOLD: A Language for Specification of IPC

Received Events

Input Output

Incoming Streams — | Manifold Outgoing Streams

b

/

Raised Events

Figure 1: The model of a process in MaNnIFoLD

mechanisms of control in ManiroLp. The coexistence of event driven
and data driven control gives ManiroLp a unique flavor.

4. The MANIFOLD Model of Computation

The basic components in the ManiroLo model of computation are
processes, events, ports, and streams. A process is a black box with
well defined ports of connection through which it exchanges units of
information with the other processes in its environment. The internal
operation of some of these black boxes are indeed written in the Mani.
roLp language, which makes it possible to open them up, and describe
their internal behavior using the ManiroLo model. These processes are
called manifolds. In general, a process in ManiFoLp does not, and need
not, know the identity of the processes with which it exchanges infor-
mation. Figure | shows an abstract representation of a ManFoLp pro-
cess.

The interconnections between the ports of processes are made with
streams. A stream represents a flow of a sequence of units between
two ports. Streams are constructed and removed dynamically between
ports of the processes that are to exchange some information. The con-
structor of a stream need not be the sender or the receiver of the infor-
mation to be exchanged: any third party manifold process can define a
connection between the ports of a producer process and a consumer
process. Furthermore, stream definitions in ManiroLp are generally
additive. Thus a port can simultaneously be connected to many dif-
ferent ports through different streams. The flows of units of informa-
tion in streams are automatically replicated and merged at outgoing and
incoming port junctions, as necessary. The units of information
exchanged through ports and streams, are passive pieces of information
that are synchronously produced and synchronously consumed at the
two ends of a stream, with their relative order preserved.

Orthogonal to the stream mechanism, there is an event mechanism for
information exchange in ManroLp. Contrary to units in streams, events
are active pieces of information that are broadcast by their sources in
the environment. In principle, any process in the environment can pick
up such a broadcast event. In practice, usually only a few processes

EurOpen A ‘91 — Budapest, 16-20 Septemb, 131

MANIFOLD: A Language for Specification of IPC

4.1. Processes

pick up occurrences of each event, because only they are tuned in to
their sources. Occurrences of the same event from the same source can
override each other from the point of view of some observer processes,
depending on the difference between their sampling rate and the
occurrence rate of the event.

Events are generally raised synchronously by their sources and dissi-
pate through the environment. They are active pieces of information in
the sense that in general, they are observed asynchronously and once
picked up, they preemptively cause a change of state in the observer.
Events are the primary control mechanism in ManroLo. Each state in a
manifold defines a pattern of connections among the ports of some
processes. The corresponding streams implementing these connections
are created as soon as a manifold makes a state transition (caused by an
event) to a new state, and are deleted as soon as it makes a transition
from this state to another one. In general, the set of sources whose
events are honored by an observer manifold, as well as the set of
specific events which are honored, are both state dependent.

The remainder of this section contains more detailed definitions of the
basic concepts of the ManiFoLp model.

A process is an independent, autonomous, active entity that executes a
procedure. A process has its own private processor and memory.
Independence means that a process is not necessarily aware of the
number and the nature of other processes that are simultaneously active
in its environment. The environment of a process contains the set of
other processes that directly or indirectly influence the behavior of the
process or its performance.

Autonomous means that conceptually, no process exerts direct control
on any other process. The only way to influence a process is through
its input and output streams and the events to which it is sensitive. For
example, once a process is activated, it cannot be “forced” to terminate
by other processes, including its activator. However, it can be “asked”
to terminate, by placing appropriate symbols in its input streams, or by
raising an appropriate event. Similarly, there is no guarantee that a
process will indeed read from its input streams, write to its output
streams, react to some arbitrary event, or stay alive for any length of
time.

The above model of communication is powerful enough to support all
forms of interprocess communication. Therefore, in principle, there is
no need for other forms of communication among processes. In prac-
tice, however, it may be desirable to allow other forms of inter-process
communication, e.g., for convenience. For example, processes may
need to communicate and influence each other through other means for
purposes such as resource management, job control, side effects (e.g.,
files), interaction with the real world, etc., and may use mechanisms
such as message passing, shared memory, etc. While the ManiFoLp
model does not preclude such communications, it assumes that all com-
munication of interest with a process takes place through its input and
output streams and via events.

There are two kinds of processes: atomic processes and manifolds. An
atomic process is similar to a black box whose internal structure and
behavior are unknown. The set of atomic processes is application
dependent, and thus, is neither predefined nor fixed. Examples of
atomic processes include processes written in some programming

132

EurOpen A ‘91 — Budapest, 16-20 Septemb,

MANIFOLD: A Language for Specification of IPC

language other than ManiroLp, a hardware device, and a person interact-
ing with a program.

A manifold is a process whose behavior and structure are described in
the ManiFoLp language by a manifold definition. Manifolds “orches-
trate” the communication and interaction among processes (atomic
processes and other manifolds alike), and provide a dynamic means of
control over a multiprocessing environment. The processor that runs a
manifold is called the manifold processor.

4.2. Streams

A stream is a sequence of bits, grouped into (variable length) units. A
stream represents a reliable, directed flow of information in time. Reli-
able means that the bits placed into a stream are guaranteed to flow
through without loss, error, or duplication, with their order preserved.
It does not, however, imply timing constraints. Directed means that
there are always two identifiable ends in a stream, a source and a sink.

The size and the contents of the units that flow through streams are
defined by their sources. Although units are meaningful inside streams,
they imply no corresponding boundaries, types, tags, or interpretation
on their contents at their sinks. Unit boundaries are used in streams to
preserve the integrity of their information contents, and for synchroni-
zation purposes.

Conceptually, a stream in Manirop has an unspecified capacity that is
used as a FIFO queue, enabling asynchronous production and consump-
tion of units by its source and sink. Streams in ManwoLp are dynami-
cally constructed and dismantied.

The connection between streams and processes is through ports. A
port is a regulated opening at the boundary of a process, through which
the information produced (consumed) by the process is placed into
(picked up from) a stream. Regulated means that the information can
flow in only one direction through a port: it either flows into or out of
the process.

While streams are independent entities outside of processes, ports are
properties of processes and are defined and owned by them. Informa-
tion placed into one of its output ports by a process, flows out of the
port only when it is connected to a stream. This ensures that no infor-
mation is lost if a process writes to one of its output ports while it is not
connected to any stream.

4.4. Events

An event is an asynchronous, non-decomposable message, broadcast
by a process to its environment. Broadcasting such a message is called
raising the event. Events are identified by their names, and can also be
distinguished based on their sources (except, perhaps, when they are
raised by atomic processes).

Although conceptually, an event is broadcast when it is raised, only a
subset of the processes in its environment can pick up the broadcast
and react to it. A process that picks up an occurrence of an event is
called an observer (of the event and of its source). To pick up a broad-
cast event, a manifold must be in a state wherein the source of the
event is visible to the manifold. In general, a manifold reacts only to a

EurOpen Autumn ‘91 — Budapest, 16-20 Septemb 133

MANIFOLD: A Language for Specification of IPC

subset of the events it observes. These are the ones for which it has an
event handler. The other observed events are ignored. Reacting to an
event always causes a change of state in a (receiver) manifold.

Different occurrences of the same event from the same source may
override each other before some of their observers get a chance to
observe them. The overridden event occurrences are thus lost to those
observers. This means that some event occurrences may be lost to
some observers, but not to others, depending on the speed with which
they sample their environment. Occurrences of events from different
sources do not override each other. Occurrences of different events
from the same source do not override each other, either.

An observed event may cause a change of state in a manifold, or it may
decide to ignore the event. The change of state in a manifold may
affect its sensitivity and reaction to future events. In each new state, a
manifold begins to react to the observed event that caused the change
of state. An observed event may preempt a manifold’s attempt to react
to a previously observed event (from the same or a different source).

5. A Parallel Bucket Sort Example

In this section we introduce some of the key concepts of the ManFoLp
system by presenting a ManroLp program that implements a paraliel
bucket sort algorithm. The complete ManiFoLp program appears in
Appendix A. However, only the critical parts of the program are
explained in this section.

Our parallel sort algorithm is similar to the one presented by Suhler
et al [Suh90a], for a dynamic dataflow environment. The two algo-
rithms, however, are not identical. The essence of the algorithm is as
follows. There exists an atomic process (perhaps a piece of hardware)
that performs an efficient sorting of a number of input units, provided
that this number is below a fixed threshold, b. For example, if b is 2,
all that this atomic process has to do is a simple compare to decide the
proper order of its two input units. The aim is therefore to start off as
many instances of this atomic process as possible, passing up to b units
of the incoming stream to each, and then merge the sorted output
streams of the parallel sort processes into the final sorted output stream.

The core of the solution is a manifold called sort_def. This mani-
fold receives all the units on its input and produces the sorted units on
its output. It counts the number of incoming units and forwards the
first bucket of units to an instance of the atomic sorting process. The
size of a bucket, b, is the value of the variable 1imit. In case the ori-
ginal input contains more than one bucket-full of units, Sort_def
directs the output of the atomic sorter to a so called Merger manifold.
The sort_def manifold then activates a new instance of itself and
directs the rest of its incoming units to this new instance. The output of
the new instance of Sort_def is directed to the same Merger.
Finally, the output of the Merger is connected to the output of the
former instance of Sort_def.

The Merger manifold merges its two incoming streams of ordered
units into a single output stream of ordered units. We do not discuss
the details of the Merger manifold here, because explaining more
details of the syntax of the language is beyond the scope of this paper.
(The manners that appear in the Merger manifold, for example, are
dynamically nested subroutine calls.)

134

EurOpen Autumn ‘91 — Budapest, 16-20 September

Eﬂ MANIFOLD: A Language for Specification of IPC

Sort_unit

Figure 2: Terminal Case for the Recursion

Observe that the behavior of the Sort_def manifold is recursive. The
terminal case for this recursion is when the number of incoming units is
less than the bucket size. In this case the corresponding instance of
Sort_def simply connects the output of its atomic sorter to its own
output (see Figure 2). In other cases, it splits the incoming units
between an instance of the atomic sorter and another instance of itself
(see Figure 3).

We use the core of the program, the Sort_def manifold, as a refer-
ence to explain how a manifold works, and clarify its syntax. This por-
tion of the program appears below. A // symbol marks the start of a
comment that extends to the end of the line.

The header of this manifold defines its name, Sort_def, and its
parameter, limit. In its public declarations section following its
header, the input and output ports of the manifold are defined. The
declarations for input and output are indeed redundant, because
they are the same as the default definitions for all manifolds. In addi-
tion to the ports, sort_full is also declared here as an event
exchanged between this manifold and its environment.

The body of the manifold consists of the lines enclosed between the
symbols { and }. In this case, it starts with some private declara-
tions, all of which happen to define instances of various processes. For
example, the line process Sort is Sort_def. defines Sort as
an instance of the manifold Sort_def, and process Count is
countl. defines Count to be an instance of the library manifold
countl.

The bulk of the body of a manifold consists of a number of blocks,
each labeled with a list of events. In this case it so happens that each
block has only one label. The event start is raised automatically
when an instance of a manifold is activated. The block labeled start
is thus the first block that is entered in every manifold instance. In the
case, the Sort_def manifold activates an instance of an atomic sorter
process and an instance of a special manifold which is used to count
the number of incoming units. It then sets up a pipeline connecting its
own standard input to the standard input of its atomic sorter, with the
counter in between. Thus, all incoming units will be directed to the
atomic sorter. The manifold processor of this instance of the
Sort_def manifold is now waiting for the expiration of the pipeline it
Jjust set up.

The counter manifold basically passes all of its input units on to its
standard output, up to the point in time when it has passed limit
number of units. It then halts. This event is observed by the instance

EurOpen A ‘91 — Budapest, 16-20 Septemb 135

MANIFOLD: A Language for Specification of IPC

Sort_unit Sort e

Merge

Figure 3: Recursive branch

of the Sort_def manifold that activated this counter instance, and
it causes a state transition in death.Count. Reacting to this event,
the processor of the Sort_def instance leaves the start block, dis-
mantling the pipeline set up there, and finds the proper handler block
for death.count. This happens to be the last block in the
Sort_def manifold.

Since the pipeline set up in start is now broken, no more units will
flow to Sort_units. Instead, a Merge and a new instance of
Sort_def are activated and, then, a number of parallel pipelines are
set up in the block labeled death.Count. This block consists of the
two activate actions mentioned above, followed by a construct called a
group. A group is a comma-separated list of pipelines enclosed in a
pair of parentheses, and represents parallel operation of its component
pipelines. This is the situation depicted in Figure 3. From now on, all
incoming units flow to the recursively activated instance of Sort_def.

Note that a slight modification of Sort_def in this block can improve
the performance of the sort algorithm by simplifying the function of the
Merge. Sort_def can use the first incoming unit as a “pivot” and
send the first 1imit number of units that are smaller than this pivot to
the sort, and the rest to its recursive incarnation.

Note also that the part of the program which is really dependent on the
ManiroLp language gives just a skeleton for solving the whole sorting
problem; how the effective sorting is done is hidden in the two atomic
processes Sort_units_def and Compare_units_def. This also
means, however, that using the very same “skeleton” but using two dif-
ferent atomic processes it is possible to realize a parallel program for
very different purposes (for example a fast filtering program). This
shows the power offered by the modular structure of the ManroLp
language.

136

EurOpen Autumn 91 — Budapest, 16-20 September

MANIFOLD: A Language for Specification of IPC

/7
// Effective Sorter
// 1/0 ports:
// input: units to sort
// output: sorted units
// Caught events:
// sort_full: the number of incoming events have reached "limit*
//
// Makes a recursive call to itself if the number of the incoming units
// is more than the "limit"
// To count the incoming event, the manifold "countl" is used.
// Halts when all units are sorted and sent
7/
Sort_def(limit)
port in input.
port out output.
{
process Sort i Sort_def.
process Sort_units i Sort_units_def.
process Merge i Merge_def.
process Count i countl.

start:
activate Sort_units;
activate Count(limit);
input — Count — Sort_units.

disconnected.input: // There are no more units than limit!
deactivate Count;
Sort_units — output.

death.Sort_units:

death.Count:
activate Merge;
activate Sort(limit);
(Sort_units — Merge.b,
Sort — Merge.a,
input - Sort,
Merge — output).

Program 1:

6. Other Applications

The possible application areas for ManiFoLp are numerous. It is an
effective tool for describing interactions of autonomous active agents
that communicate in an environment through message passing and glo-
bal broadcast of events. For example, elaborate user interface design
means planning the cooperation of different entities (the human opera-
tor being one of them) where the event driven paradigm seems particu-
larly useful. In our view, the central issue in a user interface is the
design and implementation of the communication patterns among a set
of modules. Some of these modules are generic (application indepen-
dent) programs for acquisition and presentation of information
expressed in forms appealing to humans. Others are, ideally,
acquisition/presentation-independent modules that implement various
functional components of a specific application. Previous experience
with systems like DICE (see [Lie87a] or [Sch88a]) has shown that con-

EurOpen A ‘91 — Budapest, 16-20 Septemb 137

MANIFOLD: A Language for Specification of IPC

currency, event driven control mechanisms, and general interconnec-
tion networks' are all necessary for effective graphics user interface
systems. ManroLp supports all of that and in addition, provides a level
of dynamism that goes beyond many other user interface design tools.

Separating the specification of the dynamically changing communica-
tion patterns among the modules from the modules themselves seems to
lead to better user interface architectures. A similar approach can also
be useful in applications of real time computing where dynamic change
of interconnection patterns (e.g., between measurement and monitoring
devices and actuators) is crucial. Complex process control systems,
must orchestrate the cooperation of various programs, digital and/or
analogue hardware, electronic sensors, human operators etc. Such
interactions may be more easily expressed and managed in ManiFoLp.

Coordination of the interactions among a set of cooperating auto-
nomous intelligent experts is also relevant in Distributed Artificial
Intelligence applications, open systems, such as Computer Integrated
Manufacturing applications, and the complex control components of
systems such as Intelligent Computer Aided Design.

Recently, scientific visualization has raised similar issues as well. The
problems here typically involve a combination of massive numerical
calculations (sometimes performed on supercomputers) and very
advanced graphics. Such functionality can best be achieved through a
distributed approach, using segregated software and hardware tools.
Tool sets like the Utah Raster Toolkit [Pet86a] are already a first step in
this direction, although in case of this toolkit the individual processes
can be connected in a pipeline fashion only. More recently, software
systems like the apE system of the Ohio Supercomputer Center
[Dye90a] work on the basis of inter-connecting a whole set of different
software/hardware components in a more sophisticated communication
network. An “orchestrator” like ManiFoLp can prove to be quite valu-
able in such applications.

Advances in neuroscience have shown that to properly model the ner-
vous system requires massively parallel systems where, in contrast to
conventional neural networks, each node in the system has the compu-
tational complexity of a microcomputer (see e.g. [Mat88a] or
[Tho91a]). ManiroLp may offer an appropriate paradigm for expressing
the dynamic behavior of such complex inter-connection networks.

7. Related Work

The general concerns which led to the design of ManiFoLp are not new,
The CODE system (see [Bro89a] and also [Bro90a}) provides a means to
define dependency graphs on sequential programs. The programs can
be written in a general purpose programming language like Fortran or
Ada. The translator of the CODE system translates dependency graph
specifications into the underlying parallel computation structures. In
case of Ada, for example, these are the language constructs for rendez-
vous. In case of languages like Fortran or C, some suitable language
extensions are necessary. Just as in traditional dataflow models, the
dependency graph in the CODE system is static.

The ManiroLo streams that interconnect individual processes into a net-
work of cooperating concurrent active agents are somewhat similar to
links in dataflow networks. However, there are several important

t In case of DICE, this is actually a strict hierarchy, and has turned out to be one of its shortcomings in practice.

138

EurOpen Autumn 91 — Budapest, 16-20 September

MANIFOLD: A Language for Specification of IPC

differences between Maniroup and dataflow systems. First, dataflow
systems are usually fine-grained (see for example Veen [Vee86a] or
Herath et al [Her88a] for an overview of the traditional dataflow
models). The ManiroLp model, on the other hand, is essentially oblivi-
ous to the granularity level of the parallelism, although the ManiroLp
system is mainly intended for coarser-grained parallelism than in the
case of traditional dataflow. Thus, in contrast to most dataflow systems
where each node in the network performs roughly the equivalent of an
assembly level instruction, the computational power of a node in a Man-
woLp network is much higher: it is the equivalent of an arbitrary pro-
cess. In this respect, there is a stronger resemblance between ManiroLp
and such more advanced dataflow environments like the so called Task
Level Dataflow Language of Suhler et al [Suh90a].

Second, the dataflow like control through the flow of information in the
network of streams is not the only control mechanism in ManiFoLp.
Orthogonal to the mechanism of streams, ManiroLp is an event driven
paradigm. State transitions caused by a manifold’s observing
occurrences of events in its environment, dynamically change the net-
work of a running program. This seems to provide a very useful com-
plement to the dataflow like control mechanism inherent in ManiroLp
streams.

Third, dataflow programs usually have no means of reorganizing their
network at run time. Conceptually, the abstract dataflow machine is
fed with a given network once at the initialization time, prior to the
program execution. This network must then represent the connections
graph of the program throughout its execution life. This lack of
dynamism together with the fine granularity of the parallelism cause
serious problems when dataflow is used in realistic applications. As an
example, one of the authors of this paper participated in one of the very
rare practical projects where dataflow programming was used in a com-
puter graphics application [Hag90a). This experience shows that the
time required for effective programming of the dataflow hardware
(almost | year in this case) was not commensurate with the rather sim-
ple functionality of the implemented graphics algorithms.

The previously mentioned TDFL model [Suh90a] changes the traditional
dataflow model by adding the possibility to use high level sequential
programs as computational nodes, and also a means for dynamic
modification of the connections graph of a running program. However,
the equivalent of the event driven control mechanism of ManrroLp does
not exist in TDFL. Furthermore, the programming language available
for defining individual manifolds seems to be incomparably richer than
the possibilities offered in TDFL.

Following a very different mental path, the authors of LINDA [Car89a]
were also clearly concerned with the reusability of existing software.
LINDA uses a so called generative communication model, based on a
tuple space. The tuple space of LINDA is a centrally managed space
which contains all pieces of information that processes want to com-
municate. A process in LINDA is a black box. The tuple space exists
outside of these black boxes which, effectively, do the real computing.
LINDA processes can be written in any language. The semantics of the
tuples is independent of the underlying programming language used.
As such, LINDA supports reusability of existing software as components
in a parallel system, much like ManFoLb.

Instead of designing a separate language for defining processes, the
authors of LINDA have chosen to provide language extensions for a
number of different existing programming languages. This is neces-

139

MANIFOLD: A Language for Specification of IPC

sary in LINDA because seemingly, its model of communication (i.e., its
tuple space and the operations defined for it) is not sufficient by itself to
express computation of a general nature. The LINDA language exten-
sions on one hand place certain communication concerns inside of the
“black box” processes. On the other hand, there is no way for a pro-
cess in LINDA to influence other processes in its environment directly.
Communication is restricted to the information contained in the tuples,
synchronously and voluntarily placed in and picked from the tuple
space. We believe a mechanism for direct influence (but not neces-
sarily direct control), such as the event driven control in Mantroup, is
desirable in parallel programming.

One of the best known paradigms for organizing a set of sequential
processes into a parallel system is the Communicating Sequential
Processes model formalized by Hoare [Hoa85a]. CSP is a very general
model which has been used as the foundation of many parallel systems.
Sequential processes in CSP are abstract entities that can communicate
with each other via pipes and events as well. CSP is a powerful model
for describing concurrent systems. However, there is no way in CSP to
dynamically change the communications patterns of a running parallel
system, unless such changes are hard coded inside the communicating
processes. In contrast, ManiroLp clearly separates the functionality of a
process from the concerns about its communication with its environ-
ment, and places the latter entirely outside of the process. It then com-
pletely takes over the responsibility for establishing and managing the
interactions among processes in a parallel system.

8. Conclusion

The unique blend of event driven and data driven styles of program-
ming, together with the dynamic connection hyper-graph of ManiroLp
seems to provide a promising paradigm for parallel programming. The
emphasis of ManiroLp is on orchestration of the interactions among a set
of autonomous expert agents, each providing a well-defined segregated
piece of functionality, into an integrated parallel system for accom-
plishing a larger task.

In the ManiFoLp model, each process is responsible to protect itself from
its environment, if necessary. This shift of responsibility from the pro-
ducer side to the consumer seems to be a crucial necessity in open sys-
tems, and contributes to reusability of modules in general. This model
imposes only a “loose” connection between an individual process and
its environment: the producer of a piece of information is not con-
cerned with who its consumer is. In contrast to systems wherein most,
if not all, information exchange takes place through targeted send
operations within the producer processes, processes in ManiroLp are not
“hard-wired” to other processes in their environment. The lack of such
strong assumptions about their operating environment makes ManiFoLp
processes more reusable.

The Manirorp model of communication is conceptually powerful
enough to express general purpose computing. Therefore, although the
primary purpose of ManiFoLp i to manage communications, the same
language also expresses computation in terms of communication.
Thus, it is theoretically possible to replace every process in a MaNIFoLp
program by a manifold that expresses the same computation in terms of
interactions among a set of finer-grained processes. This refinement
can recursively be carried out all the way down to the level where each
process expresses the functionality contained in a piece of hardware.

140

EurOpen Autumn ‘91 — Budapest, 16-20 September

.

MANIFOLD: A Language for Specification of IPC

9. Acknowledgment

We wish to thank our colleagues at the Interactive Systems Department
for their direct and indirect contributions to the work reported in this
paper. In particular, Paul ten Hagen inspired the original concerns and
the motivation for ManiroLp by his earlier work on the Dialogue Cells,
and through our numerous ongoing discussions. Kees Blom helped to
refine the formal syntax for the ManroLp language and is presently
working on the ManiroLp compiler. Per Spilling and Dirk Soede’s exer-
cises in ManiroLp and their ongoing contributions to the project are also
acknowledged and much appreciated.

References

[Arb90a]

[Arb9la]

[Bro89a]

[Bro90a]

[Car89a]

(Dye90a]

[Hag90a]

[Her88a]

[Hoa85a]

[Lie87a)

[Mat88a]

[Pet86a)

F. Arbab and 1. Herman, “Examples in Manifold,” Techni-
cal Report, Centre for Mathematics and Computer Science
(CWI), No. CS-R9066, Amsterdam (1990).

F. Arbab, “Specification of Manifold,” Technical Report
(in preparation), Centre for Mathematics and Computer
Science (CWI), Amsterdam (1991).

J. C. Browne, M. Azam, and S. Sobek, “CODE: A Unified
Approach to Parallel Programming,” IEEE Software,
pp. 10-18 (July 1989).

J. C. Browne, T. Lee, and J. Werth, “Experimental Evalua-
tion of a Reusability — Oriented Parallel Programming
Environment,” /EEE Transactions on Software Engineer-
ing 16, pp. 111-120 (1990).

N. Carriero and D. Gelernter, “Linda in Context,” Com-
munication of the ACM 32, pp. 444-458 (1989).

S. Dyer, “A Dataflow Toolkit for Visualization,” /EEE
Computer Graphics & Application, pp. 60-69 (July 1990).

P. J. W. ten Hagen, 1. Herman, and J. R. G. de Vries, “A
Dataflow Graphics Workstation,” Computers and Graph-
ics 14, pp. 83-93 (1990).

J. Herath, Y. Yamaguchi, N. Saito, and T. Yuba,
“Dataflow Computing Models, Languages, and Machines
for Intelligence Computations,” IEEE Transactions on
Software Engineering 14, pp. 1805-1828 (1988).

C. A. R. Hoare, Communicating Sequential Processes,
Prentice-Hall, New Jersey (1985).

R. van Liere and P. J. W. ten Hagen, “Introduction to
Dialogue Cells,” Technical Report, Centre for Mathemat-
ics and Computer Science (CWI), No. CS-R8703,
Amsterdam (1987).

G. Matsumoto, “Neurons as Microcomputers,” Future
Generations Computer Systems 4, pp. 39-51 (1988).

J. W. Peterson, R. G. Bogart, and S. W. Thomas, “The
Utah Raster Toolkit,” in Proceedings of the Usenix
Workshop on Graphics, Monterey, California (November
1986).

EurOpen Autumn ‘91 — Budapest, 16-20 September

MANIFOLD: A Language for Specification of IPC ﬂ

[Sch88a] H. J. Schouten and P. J. W. ten Hagen, “Dialogue Cell
Resource Model and Basic Dialogue Cells,” Computer
Graphics Forum 7, pp. 311-322 (1988).

[Soe9la] D. Soede, F. Arbab, I. Herman, and P. J. W. ten Hagen,
“The GKS Input Model in Manifold,” Computer Graphics
Forum 10 (1991).

[Suh90a] P. A. Suhler, J. Bitwas, K. M. Komer, and J. C. Browne,
“TDFL: A Task-Level Dataflow Language,” Journal of
Parallel and Distributed Computing 9, pp. 103-115
(1990).

{Tho91a] S.J. Thorpe, “Image Processing by the Human Visual Sys-
tem,” in Advances in Computer Graphics VI, ed. G. Garcia
and I. Herman, Eurographic Seminar Series, Springer Ver-
lag, Berlin — Heidelberg — New York — Tokyo (1991).

[Vee86a] A. H. Veen, “Dataflow Machine Architecture,” ACM
Computing Surveys 18, pp. 365-396 (1986).

Appendix A

/7
// Compare_units_def process:
/7 I/0 ports:
/7 a: first unit to compare
// b: second unit to compare
/7 output: boolean result, true iff a <= b
Compare_units_def ()

port in a.

port in b.

port out output.
atomic.

pragma Compare_units_def internal "compare"

//
// Sort_units_def process:
// I1/0 ports:
/7 input: units to sort (up to "end of file", i.e. broken port)
// output: sorted units
Sort_units_def ()
port in input.
port out output.
atomic.

pragma Sort_units_def internal "sort"

manner next_element(smaller,smaller_data, larger, larger_data,
dest_smaller,dest_larger,other_port)
port in smaller.
port in larger.
{
event go_on.
start:
do go_on.
go_on:
smaller_data -3 passl() -3 output;
getunit(smaller) — (— dest_smaller, — smaller_data);
larger_data — passl() — dest_larger;
1f(getunit(result), do go_on, other_port).

142

EurOpen A ‘91 — Budapest, 16-20 Septemb

P

au

m MANIFOLD: A Language for Specification of IPC

disconnected.smaller:
larger_data — passl() — output;
larger — output.

disconnected. larger:
do finish.

//

// Merge manifold:

/7 I/0 ports:

// a: first list of units
/7 b: second list of units
// output: sorted & merged units
/7 result: result of comparison
//

// uses a process "Compare" (of type "Compare_units_def")
// to compare two units; the latter returns a boolean unit
// on input port "result"

//
Merge_def ()
port in a.
port in b.
port in result.
port out output.
{
process store_a is variable.
process store_b is variable.
event a_st_b.
event b_st_a.
event finish.
process Compare is Compare_units_def.
permanent Compare — result.
start: // activate registers and reads in the two first values
activate Compare;
(getunit(a) — (— Compare.a, — store_a),
getunit(b) — (— Compare.b, — store_b } };
if(getunit(result), do a_st_b, do b_st_a).
[mm e /7
a_st_b: // a <= b
next_element (a,store_a,b, store_b,Compare.a,Compare.b,do b_st_a).
b_st_a: // a > b
next_element (b,store_b, a,store_a,Compare.b,Compare.a,do a_st_b).
finish:
deactivate Compare.
}
/7
// Effective Sorter
// I/0 ports:
/7 input: units to sort
/7 output: sorted units
// Caught events:
// sort_full: the number of incoming events have reached "limit"
//

// Makes a recursive call to itself if the number of the incoming units
// is more than the "limit"

// To count the incoming event, the manifold "countl" is used.

// Halts when all units are sorted and sent

//

EurOpen Autumn 91 — Budapest, 16-20 September 143

N
d

-
.
2

MANIFOLD: A Language for Specification of IPC Op

Sort_def(limit)

port in input.

port out output.

{
process Sort is Sort_def.
process Sort_units is Sort_units_def.
process Merge is Merge_def.
process Count is countl.
start:

activate Sort_units;
activate Count{ limit);
input — Count — Sort_units.

disconnected.input: // There are no more units than limit!
deactivate Count;
Sort_units — output.

death.Sort_units:
halt.

death.Count:
activate Merge;
activate Sort(limit);
(Sort_units — Merge.b,

Sort — Merge.a,
input — Sort,
Merge — output).

144 EurOpen A ‘91 — Budapest, 16-20 Septemb

A Distributed Concurrent
Implementation of Standard ML
David C. J. Matthews

University of Edinburgh
dcym@]Ifcs.ed.ac.uk

Abstract

Standard ML is a functional programming language used extensively in
universities and increasingly in industry. This paper discusses a con-
currency mechanism which has been implemented in the Poly/ML
implementation of Standard ML and has been used on uniprocessors
and shared memory multiprocessors. It is now being implemented on a
distributed network of UNIX workstations. Each of these implementa-
tions is described.

The aim of this work is to produce a distributed system that will allow
large ML programs to be run on a network of processors. Although
eventually such a network might be a closely-coupled network of tran-
sputers, the initial design is intended for the sort of system that many
organisations have, namely personal workstations on a local network.
Making use of these out of office hours will provide a substantial
improvement in the computing power available.

1. Standard ML

The Standard ML language [Mil90a] was developed over the last few
years as an attempt to bring together a number of strands of work on
functional languages. It culminated in a language definition in which
the semantics of the language are defined formally, probably the first
formal definition of a full-scale language. Having a formal definition
gives both implementors and users a degree of certainty that is lacking
in other languages.

Standard ML has a static polymorphic type system based on type infer-
ence by unification. What this means in practice is that there is no need
to put explicit type information into the program but that the compiler
will automatically compute the most general type for each declaration.
If it cannot find a suitable type the declaration must contain type errors
and is rejected. This makes it particularly suitable for interactive pro-
gram development. For programming in the large there is a module
system that allows programs to be split up and developed and tested
separately.

Standard ML is a functional language in the sense that functions, or
more accurately closures because the environment of the function must
be treated as part of it, are first-class objects. They can be passed as

EurOpen Aut ‘91 - Budapest, 16-20 Septemb 145

A Distributed Concurrent Implementation of Standard ML

arguments to other functions or returned as results. The language
includes updatable variables or references, which can contain functions
as well as simpler values such as integers.

Standard ML is being increasingly used both in the academic commun-
ity and now for industrial purposes. There are a number of high quality
implementations, including the Poly/ML implementation used for the
work described in the rest of this paper. It is used as the initial teaching
language at a number of universities and is used as the main language
of implementation at LFCS in Edinburgh.

2. Poly/ML

Poly/ML. [Mat89a] is an implementation of Standard ML which is
currently commercially supplied and supported by Abstract Hardware
Ltd. It implements the Standard ML language as closely as possible
but also includes a number of extra features.

The Poly/ML implementation itself is beyond the scope of this paper,
but several features of it are relevant to the provision of concurrency.
As well as the concurrency primitives described in this paper and an
X-windows package built using them, there is a persistent store system.
The persistent store gives the ML program access to large amounts of
data which are brought into store as required.

Efficient management of store is important for good performance and
the design of the garbage collector can have a critical effect. All ML
objects, including stacks and executable code segments, are held in the
heap. The normal UNIX stack is used only by the run-time system,
which is written in C. This contains the garbage collector, persistent
store handler and the interface to the operating system. In all there is
about 9000 lines of C in the system.

3. Concurrency

The Standard ML language includes all the features required for
sequential programming, but one area that was not addressed in the
language definition was the provision of any mechanism for con-
currency, sometimes called parallelism.

Concurrency is needed for two quite different purposes. On the one
hand there are some applications for which the non-determinacy impli-
cit in concurrency is an integral part. A window system must be able to
respond to a user pointing anywhere on the screen and clicking the
mouse button, and one of the easiest ways of programming this is to
have separate processes manage events associated with each window.
On the other hand there has been the increasing use of multiprocessors
to speed up applications but to use this a mechanism must be provided
to enable programs to be split into parts that can be run in parallel.

So far work on concurrency in ML has focussed on the first of these
requirements. The Dialog interface to the Lambda theorem prover, for
example, has been implemented using the Poly/ML concurrency primi-
tives. This is a graphical front end which must be able to respond to
user actions while the theorem prover is still computing. Without con-
currency it would be necessary for the theorem prover to periodically
check to see if the user had typed or clicked. With concurrency the
theorem prover can be written without having to be concerned with

Opery A Distributed Concurrent Implementation of Standard ML

events, which are only of relevance to the front-end, and yet they can
all run as part of the same ML session.

The second reason for having concurrency, the speed-up to be achieved
with multiprocessors, has not had so much attention, yet this area may
in the long term prove to be the more profitable. This is the area
currently being addressed.

4. The Poly/ML Concurrency Primitives

Before describing the various implementations it is useful to summarise
the primitives themselves, and some of the reasoning behind the
choice. The choice of primitives was governed by a number of factors.
First of all was the need to avoid any change which would render exist-
ing Standard ML programs unusable. This precludes the addition of
new syntax since existing programs which might have already used the
reserved words as identifiers would no longer compile. It also requires
that the new operations not allow the type system to be broken.

The obvious way of defining the primitives was as built-in functions.
Their types have to be carefully chosen but, by using functions they are
not being given the sort of special status that, for example, Ada tasking
primitive [Bur87a] have. It is perfectly possible to experiment with
alternative sets of primitives written in terms of those provided, and
these will have the same status within the language as the built-in prim-
itives. Should a derived form prove to be generally useful it could be
built-in for efficiency. An example of this in the language already are
the array operations. Arrays are not actually defined in Standard ML
but can be declared using lists. This would be hopelessly inefficient for
many purposes so most implementations of ML contain arrays opera-
tions as built-in functions. They are however equivalent in behaviour,
though not in speed, to a reference implementation in terms of lists.

The choice was made largely on the basis of an expectation of what
would be relatively simple to provide semantics for, rather than on the
grounds of what might be efficiently implemented. Providing a seman-
tics for a language without concurrency is a major piece of work.
Adding the non-determinacy inherent in concurrency makes the task
extremely difficult. Nevertheless a semantics has been produced
[Ber91a] for a simple language using a variant of the primitives present
in Poly/ML.

Processes are created using the fork function, which takes as its argu-
ment a function and runs it as a separate process. When the function
returns the process dies. There is a related function, choice which pro-
vides mutual exclusion between a pair of processes. Of the two
processes it creates, only one is allowed to do a communication and the
other one will be killed.

The communications system chosen was essentially that of CSP
[Hoa85a]. A process sends a value on a channel to another process
which receives it. Both processes are blocked until the value is passed
which happens atomically. The processes are then allowed to proceed.
A non-blocking version of send could be implemented using the block-
ing primitives provided, by associating a buffer with a channel. In a
distributed system there might well be efficiency gains if this was built
n.

Channels are typed, that is the type system ensures that the values sent
and received on a particular channel have the same type. When a refer-
ence or a channel are passed through a channel they are shared between

EurOpen A ‘91 — Budapest, 16-20 Septemb 147

A Distributed Concurrent Implemeniation of Standard ML

the sender and the receiver. This allows, for example, a server process
to receive a request from a client which includes a channel on which to
reply. The primitive functions and their types are shown in Figure 1.

val fork: (unit -> unit) -> unit

val choice: (unit -> unit) * (unit -> unit) -> unit
type ‘a channel

val channel: unit -»> ’_a channel

val send: ‘a * ‘a channel -> unit

val receive: 'a channel -> ‘a

Figure 1: The Poly/ML Concurrency Primitives

5. The Uniprocessor Implementation

5.1. Process Creation

The first implementation of the primitives was on a Sun3 to support
multiple threaded windows. On a uniprocessor there is no advantage in
speed of using concurrency, although for illustration a few example
programs were written. The concurrency primitives in ML were
mapped directly onto calls into the run-time system, written in C.

Each process runs on a separate stack, with each stack an individual
heap object. In keeping with the idea of processes being light weight,
the stacks are initially small, but when a process overflows the end of a
stack all the stack values are copied into a new larger stack segment.
Other schemes, such as allocating individual stack frames on the heap,
were considered but put too high an overhead on the garbage collector.
Whenever a process makes a call into the run-time system, whether
concerned directly with the process mechanism or not, all the registers
are saved in the stack segment. The ML processes can be interrupted
resulting into traps into the run-time system, but the run-time system
itself cannot be interrupted.

As well as a stack segment, each process has a process base which
points to the stack segment, and is used for synchronisation. The pro-
cess bases for runnable processes are linked together in a chain, and
time slicing involves simply moving a pointer round the chain to select
the next process to run. A periodic interrupt is used to provide the
time-slicing. There is no priority scheduling, although it would be pos-
sible to use some algorithm based on, say, whether a process had used
all of its time-slice or whether it had become blocked for a communica-
tion on a channel or for external input or output.

Fork creates a new stack segment and process base for the function.
The stack is initialised to start executing the function and to call a kill-
process function in the run-time system when it returns. The kill-
process function is also called by an exception handler if an uncaught
exception is raised in the process. A newly created process base is
added on to the run queue and so will be run when its turn comes.

Choice is implemented using similar code to fork for each of two
processes, but a state variable is shared between the two processes
created. The state variable is pointed at by the process bases of the two
processes, and examined when one of the processes attemnpts to do a
communication. If the state variable is already set the communication
does not happen and the process is killed, but if the variable was clear
it is now set and the communication proceeds.

EurOpen Autumn 91 - Budapest, 16-20 September

Opery A Distributed Concurrent Implementation of Standard ML

5.2. Communication

A channel is a two word updatable object and the channel function
merely allocates store for it. Each word is used as the head of a list of
processes blocked on the channel waiting to do a send or a receive.
Normally only one of the lists will be non-empty, but it is possible for
processes to be waiting to both receive.and send on a channel if they
are alternative choices. When a process attempts to send or receive on
a channel which cannot immediately satisfy the request, its process
base is removed from the run queue and linked onto the appropriate
chain. Blocked processes use no resources other than the store
required for their process bases and stacks, and this store will be gar-
bage collected if the channel is not reachable from a runnable process
and so can never be woken up.

Transferring the value is the easiest part of the communication. Since
both processes are running within the same memory only one word
needs to be copied, and this is held in the sender’s process base until
the communication is complete.

5.3. Input/Output

External input and output, such as to files or to the console, are not
dealt with in the same way as communications on channels. The main
concern is to ensure that a read or write does not block since that
would cause the UNIX process to be suspended and so prevent any of
the ML processes from running. A process that attempts to do an
operation that will block is left on the run queue but set up so that it
retries the operation when its time slice comes round again. The alter-
native, of setting the stream to generate an interrupt had unfortunate
side-effects, and this scheme works satisfactorily provided the time-
slices are not so long that the external events are unacceptably delayed
or so short that the processor spends too much time polling devices
which are not ready.

6. A Shared Memory Multiprocessor Implementation

The process primitives and the uniprocessor implementation were
designed to support the window system so that there would be a satis-
factory interaction with the user. Some examples of other programs
were written to experiment with a process-based style of programming
and also to see how well the implementation dealt with large numbers
of processes, but the overhead of process creation meant that all these
examples ran considerably slower than the equivalent programs
without processes. On a multiprocessor it is possible to use the process
mechanism to split a computation so that it will run faster, but the
requirements on a process scheme designed for efficient execution on a
multiprocessor might well be different to that required for the window
system. The aim of the Firefly implementation was to investigate this.

The Firefly multiprocessor [Tha87a} is an experimental system
developed at DEC-SRC. Each Firefly consists of 4 Microvax processors
together with an 10 processor connected to a shared memory. The
hardware ensures that the processor caches are consistent. The
Fireflies run a kernel called Topaz which provides lightweight
processes called “threads” and multiplexes these onto the available pro-
cessors. Getting true parallelism in ML was a matter of using these
threads to run ML processes. Provided threads are not used the Firefly

EurOpen Autumn ‘91 — Budapest, 16-20 September 149

A Distributed Concurrent Implementation of Standard ML

can be run exactly like a uniprocessor Vax with Topaz providing UNIX
emulation.

Poly/ML had originally been written for the Vax processor and so port-
ing the sequential part of the system was simple, requiring only a few
hours work. The major problem was converting the run-time system to
run in a parallel environment since it was not re-entrant. In the end the
solution adopted was to treat the whole run-time system as a monitor
and use a single semaphore for the whole run-time system. A more
careful design with monitors on smaller sections of code would almost
certainly have improved performance but required considerably more
drastic changes.

The run-time system can be entered either by an explicit call, for exam-
ple to read a character from a file, or by means of a trap. Traps occur
as a result of using an object in the persistent store, resulting in an ille-
gal address trap, or as a result of a trap instruction being executed, indi-
cating that a heap or stack segment is exhausted.

6.1. Threads and Processes

6.2. Garbage Collection

The initial design used one thread for each ML process, but although
threads are intended to be lightweight the overheads of thread creation
and manipulation are still considerable. Instead the design was
changed to use only four worker threads, i.e. one per processor, each
forked at the start and merely stopped if there is nothing for it to do.
Each thread takes a process off the run-queue and runs it until either
the process blocks or its time-slice is exhausted. This is in many ways
a simple extension of the uniprocessor implementation. It is obviously
necessary to reduce the number of worker threads if there are not
enough processes to run, though this is complicated if processes need-
ing to do external input or output are left on the run queue, as in the
uniprocessor implementation.

As well as the worker threads there are two threads concerned with trap
handling. One deals with synchronous traps such as heap segments
becoming exhausted or persistent store faults, the other deals with
asynchronous traps such as console interrupts and time slicing. These
are needed because, although Topaz emulates the basic UNIX system,
once multiple threads are used there are problems with signals.

Garbage collection was implemented as a synchronous scheme in
which all the processes were stopped, the whole store was garbage col-
lected, and the processes were then allowed to continue. It is probable
that asynchronous garbage collection would have considerably
improved the performance of the system, but it would have required a
drastic redesign of the garbage collector. In any case there has been a
considerable amount of work in this area, including work on the
Fireflies themselves [El188a].

Each worker thread has its own segment of heap in which to allocate
store. This allows the threads to run independently and avoids the need
for frequent calls to a central heap allocator. When a thread exhausts
its segment it traps into the run-time system and is allocated a new seg-
ment. Only when the allocator is unable to satisfy the request must the
store be garbage collected.

Garbage collection requires all the worker threads to stop so that there
is no activity which would affect the store. When a process traps in to

A Distributed Concurrent Implementation of Standard ML

the run-time system it has to acquire the run-time monitor lock, and this
is used as a way of stopping activity. Each worker thread is persuaded
to make a run-time system call as soon as it is in a safe state, and then it
becomes blocked on the run-time system semaphore, since the sema-
phore is already held by the thread performing the garbage collection.
As soon as all the threads have become blocked the store can be gar-
bage collected. When garbage collection is completed the thread allo-
cates itself the store it needs and returns from the run-time system,
releasing the semaphore. This now allows one of the other threads to
do its run-time system call, which then gradually releases the other
threads.

7. The Development of a Distributed Implementation

Although the underlying implementation of processes on the Fireflies is
substantially different from the uniprocessor version, the semantics is
the same. It is important that any distributed implementation should
have the same semantics so that users can move their programs from a
uniprocessor to a distributed multiprocessor without seeing any differ-
ence in behaviour, except one hopes, a substantial speed-up.

The Fireflies have one serious disadvantage, namely that the individual
processors were very slow, and so there is little incentive for further
work on them when a four processor Firefly can be outperformed by a
single uniprocessor. To continue to develop multiprocessor applica-
tions it was necessary to look for a distributed implementation.

One approach would be to design for a network of transputers, but
there are a large number of personal workstations in the Laboratory
which are left idle out of office hours, and it seemed sensible to design
a system which would make use of them.

7.1. Data Transfer

The underlying problem with any multiprocessor system is data distri-
bution and consistency. If programs can be split into processes that are
truly independent then they can easily be run on separate processors. If
they use large amounts of shared data then we have the problem of
moving that data between machines. Equally if one process changes a
piece of data on one machine that change must propagate to every pro-
cess that has a copy. Even on the Firefly with a shared main memory
this problem arises since each processor has its own cache memory and
the caches have to be kept consistent by special hardware. To solve the
problem on a network of UNIX workstations we have to devise a
scheme for data transfer.

Before describing the system in detail it is first important to distinguish
two kinds of data in ML programs. The ML type system only allows
values of types ref or array to be changed, objects of all other types are
given their values when they are created and cannot afterwards be
changed. The Poly/ML run-time system distinguishes these values at
run-time. Together with the objects representing bit-maps, channels,
process bases and stacks, these are collectively known as mutable
objects. All other objects, including pieces of executable code, are
immutable.

As well as the difference with assignment, mutability also affects the
definition of equality. When two mutable objects are compared they
are considered the same if and only if they are the same object, in other

EurOpen A ‘91 ~ Budapest, 16-20 Septemb

A Distributed Concurrent Implementation of Standard ML

words they have the same address. In contrast immutable objects are
equal if their values are equal. It is not possible to find out if two
immutable objects are actually at the same address. An implementation
is therefore at liberty to merge immutable objects with the same con-
tents to reduce the storage requirements, should that be required, or to
make multiple copies of immutable objects; the programmer will not be
able to tell the difference.

Immutable objects therefore do not require any mechanism to ensure
consistency, but that still leaves mutable objects. Fortunately, mutable
objects are actually a very small proportion of the total number of
objects used by ML programs. In C, by contrast, all objects can be
changed. The data transfer mechanism for ML must be able to handle
mutable objects but must be designed to be efficient for immutable
objects.

The semantics of immutable objects allows the implementation to make
a copy of an immutable object to send to another machine, without
affecting the meaning of a program. There is however the problem of
the size of a data structure. Immutable data structures could be
transferred by walking over data structures, packaging them up, and
sending them in single packages to the destination. This is the method
used in RPC (remote procedure call) systems and is usually known as
“marshalling”. There it is assumed that the data structure will be small
and there is usually some implementation-imposed limit on the overall
size of the package. In a language like C there is a fairly clear
correspondence between data at the user-level and machine words, but
in ML that is by no means true, and a user cannot be expected to know
in advance whether a particular closure, say, will fit in a given packet
size. A mechanism for ML must be able to deal with arbitrarily sized
data structures.

7.2. The Network Address Space

To handle this we have to introduce a network-wide address space.
The address space is partitioned so that each machine has part of the
space. Suppose a process on one machine wants to send a value
through a channel to a process on another machine. If the value is a
local address it converts the address into the network form and sends
that across. The network address identifies both the machine and the
object on that machine. The other machine may pass the address on or
may at some point send back to the originator to get a copy of the
object it refers to. The originator returns a copy of the object, possibly
with more network addresses in it. If we are only concerned with
immutable objects, this copy is indistinguishable from the original. For
efficiency a number of objects are packaged together so as to minimise
the number of calls back, but this scheme allows for arbitrary amounts
of data to be sent.

This mechanism also provides several alternative ways of dealing with
mutable objects. A simple solution is to keep a reference on the
machine on which it originates and always send a network address.
The code for assignment and dereference on the receiving machine
make the appropriate calls back to do the assignment or dereference on
the originator. Alternative schemes could involve making copies of
references but remembering where they were so that any changes could
be broadcast to them [Li90a]. Given that assignments are very infre-
quent compared with other languages, the apparent inefficiencies are
not necessarily a problem. The trade-offs here depend very much on
the way in which references are used.

152

EurOpen Autumn 91 — Budapest, 16-20 September

HW
2’|

Opery A Distributed Concurrent Implementation of Standard ML

Immutable objects include segments of machine code so it is perfectly
possible for a process to send a function from one machine to another,
and indeed one would expect this in a functional language. This would
not make sense in a heterogeneous network, but if we confine ourselves
to a homogeneous network it is perfectly satisfactory.

7.3. Implementation of the Network Address Space

Perhaps the simplest way to implement the network address space
would be to include it within the virtual memory system, but one of the
overriding principles was not to make changes to the UNIX kernel.
However, there was already the basis of a suitable mechanism in
Poly/ML, the persistent store. The persistent store provides access to
workspaces for users and automatically pages data in from disc. This
is very similar to a network where objects have to be copied from one
machine to another. Persistent addresses occupy a part of the address
space which is illegal for user programs so that any attempt by the pro-
gram (o use a persistent address to access an object results in a signal,
either a bus error or a segmentation violation. The signal is handled by
a routine which brings the object in to memory, changes the persistent
address into the real address of the object, and retries the trapping
instruction.

This scheme can be used for network addresses. Part of the persistent
address space becomes the network address space, with the network
space divided between the processors. When a process on one machine
tries to use a network address to access an object, it traps; but this time
the trap handler makes a call to the machine encoded in the address and
asks for the object, retrying the object as before.

7.4. Process Creation and Communication

The eventual aim is to implement exactly the same primitives as used
on the uniprocessors and the Fireflies. However as a step in the
development a separate rfork call has been introduced which forks a
process on another processor, but is otherwise the same as fork. In the
present implementation new processes are randomly assigned to the
available processors. This apparently inefficient scheme appears to
work reasonably well, provided the number of processes is large, but
process allocation or even process migration depending on load and/or
the demands of processes on shared data structures would certainly be
worth exploring.

Process communication by channels has been implemented for the dis-
tributed system. Although channels are the means by which values are
transferred between processes it is their synchronisation function which
is by far the most important. Indeed the transfer of data is almost
incidental. They should not be thought of as “pipes”. Channel objects
are never moved from the machine on which they are created, instead
any communications through a channel are synchronised by the
machine on which the channel object resides. As in the uniprocessor
scheme a blocked process is put on a chain associated with the channel
if the process and the channel are on the same machine. If they are on
different machines a process wishing to do a communication sends a
message to the channel and receives a reply allowing it to continue or
blocking it. If it is blocked it will be sent a message in the future wak-
ing it up.

EurOpen Autumn 91 — Budapest, 16-20 September 153

A Distributed Concurrent Implementation of Standard ML

8. Development and Future Work

The basic design is intended to provide a working system on which
programmers can begin to develop distributed applications. It is not
particularly efficient but provides a starting point for an exploration of
some of the trade-offs. Inevitably the trade-offs depend on the sorts of
programs written, so it is important to encourage the use of the system
in order to have realistic benchmarks. There is some degree of circu-
larity here in that programmers will tend to use features that are already
efficiently implemented. This is one reason for providing as primitives
those functions which have well-defined semantics rather than those
which can be efficiently implemented.

There are many issues to be explored in this area. How are network
addresses garbage collected? What is the best way of dealing with
references? How much data should be sent when a large data structure
is sent to another process? When should processes be migrated and
how should the load be balanced between the machines? While these
issues have been and are being explored for other languages the special
characteristics of ML make this research a particularly interesting
topic.

9. Related Work

The relationship of functional languages and concurrency has been
explored from a number of different perspectives and is an active area
of research. PFL [Hol83a] is an extension of an earlier version of ML
with concurrency primitives and has been implemented on a uniproces-
sor. Reppy [Rep88a] has provided an alternative set of concurrency
primitives for Standard ML. Facile [Gia89a] is a small language simi-
lar to ML but with concurrency built in. This work is particularly con-
cerned with the semantics of concurrency and functional languages but
has been implemented in Standard ML.

References

[Ber9laj David Berry, Robin Milner, and David N. Turner, “A
Semantics for ML Concurrency Primitives,” In preparation
(1991).

[Bur87a] Alan Burns, Andrew M. Lister, and Andrew J. Wellings, A
Review of Ada Tasking, Springer-Verlag (1987).

[ElI88a] John R. Ellis, Kai Li, and Andrew W. Appel, “Real-time
Concurrent Collection on Stock Multiprocessors,” Techni-
cal Report 25, Dec Systems Research Center (1988).

[Gia89a] Alessandro Giacalone, Prateek Mishra, and Sanjiva
Prasad, “Facile: A Symmetric Integration of Concurrent
and Functional Programming,” International Journal of
Parallel Programming, pp. 121-160 (1989).

[Hoa85a] C.A.R. Hoare, Communicating Sequential Processes,
Prentice-Hall (1985).

[Hol83a] Sdren Holmstrom, “PFL: A Functional Language for
Parallel Programming and Its Implementation,”
Chalmers/SERC Workshop on Declarative Programming,
University College (1983).

A Distributed Concurrent Implementation of Standard ML

[Li90a]
[Mat89a]

[Mil90a}

[Rep88a]

{Tha87a]

Kai Li, Private communication, 1990.

David C.J. Matthews, “Papers on Poly/ML,” Technical
Report 161, Computer Laboratory, University of Cam-
bridge (1989).

Robin Milner, Mads Tofte, and Robert Harper, The
Definition of Standard ML, MIT Press (1990).

John Reppy, *“Synchronous Operations as First-class
Values,” in Proceedings of the SIGPLAN Conference on
Programming Language Design and Implementation
(1988).

Charles P. Thacker, Lawrence C. Stewart, and Edwin H.
Satterthwaite Jr., “Firefly: A Multiprocessor Workstation,”
Technical Report 23, Dec Systems Research Center
(1987).

EurOpen Autumn 91 — Budapest, 16-20 September

155

EurOpen A ‘91 - Budapest, 16-20 Septemb,

Load Balancing Survey

Dejan S. Milojicic
Milan Pjevac

Institute “Mihajlo Pupin”, Beograd
eimp002 @yubgss21.bitnet
Dusan Velasevic

Faculty of Electrical Engineering, Beograd
velasevic%buef78 @ yubgef51.bitnet

Abstract

The field of load balancing has been the target of many interesting
research efforts. Quite a few important theoretical conclusions and
significant implementations have been achieved. However, no
widespread used or commercially available load balancing has evolved.
In order to investigate this anomaly, the authors have surveyed four
most promising and complete load balancing implementations. Critical
hints for further research in contemporary environments are discussed.
The paper also discusses standard UNIX and its impact on future load
balancing implementations. A potential support of the state-of-the-art
distributed operating systems is presented.

1. Introduction

The paper presents a survey of load balancing implementations on
UNIX or UNIX-like platforms. The prime goal is to find out why load
balancing has never achieved widespread usage. Very interesting
results have been achieved, even particular implementations resulted.
However, neither commercial, nor wide academic acceptance resulted.
In computer industry there is a need, almost a must, for standard, open
solutions. One of the examples towards this goal are three OSF
requests for technology: OSF-1 operating system kernel, based on Mach
technology, Distributed Computer Environment (DCE) and Distributed
Management Environment (DME). Similar efforts, at more or less
commercial or academical level, are being done by other developers of
DOS, e.g. Chorus [Roz90a], Amoeba, [Mul86a], RHODOS [Ger90a]
and others.

The presented work is part of the PhD thesis, started by the first author and guided by the third one, at the Faculty of Electrical En-
gineering, Belgrade, Yugoslavia. The survey should be followed by practical LB implementation on top of the Mach, to be performed
at the University of Kaiserslautern, BRD, guided by Prof Nehmer, and supported by DAAD grant in 1991/92.

EurOpen A ‘91 — Budapest, 16-20 Septemb. 157

Load Balancing Survey

The authors suspect that new, state-of-the-art technology, computer
architectures and system software, could be a more natural environ-
ment for load balancing. In order to help these efforts, most promising
and complete load balancing implementations in the past of UNIX, or
UNIX-like world, have been surveyed. The missing elements have
been pointed out, and possible solutions on the state-of-the-art kernels
suggested. The paper presents a survey of the Nest, Ferrari and Zhou,
MOS(IX) and RHODOS implementations. Similar investigations have
been performed by other authors as well [Wan85a, Cas88a, Jac89a).
Presented work resembles the EUUG conference paper [Jac89a]. There
are, though, some essential differences. We eliminated all the work
that did not carry explicit load balancing character, i.e. we did not con-
sider work on Sprite [Ous88a], Charlotte [Art89a], V Kernel [Che86a]
and Amoeba [Tan90a] These are very successful projects, but mostly
the aspects of task migration have been treated in them. On the con-
trary, authors considered the work that treats load balancing as a whole.
That is, LB information management, scheduling and some kind of
data transfer (remote execution or task migration). Something was
essentially missing in the so far implemented load balancing projects,
since no one was widely accepted. Therefore, authors compared the
solutions with possible solutions on the state-of-the-art kernels, trying
to find the most natural synthesis.

The second section presents a short survey of compared LB implemen-
tations. Only characteristics relevant for this survey have been men-
tioned. The third section presents a survey of particular criteria
classified in four categories. UNIX and its impact on load balancing
have been surveyed in the fourth section. Presented are characteristics
that will characterise UNIX as an application on top of the DOS kernels.
The fifth section presents state-of-the-art distributed kernels and their
inherent characteristics that could be used for better LB implementa-
tion.

2. Description of the Selected Implementations

This section gives a short overview of the four LB implementations,
stating their contributions, peculiarities, etc. A broader description is
given in references and surveys. The paper considers only characteris-
tics relevant to presented survey. Nest [Ezz86a, Ezz85a, Ezz86b,
Agr85a, Agr87a] is a closed project that was conducted at the AT&T
Bell Laboratories at New Jersey. Principal investigators were Rakesh
Agrawal and Ahmed Ezzat. The environment was the network of
AT&T 3B2 computers running UNIX SystemV. Nest LB model con-
sisted of two modules: information policy and control policy. Three
fundamental components were LB mechanism, policy and cost formu-
lation. Nest was based on: imperfect knowledge; no apriori knowledge
of the new process; fully distributed LB; adaptive and stable algo-
rithms; remote execution; balancing over entire network.

Information was averaged and threshold based. Parameters like sam-
pling and transmission periods were dependent upon the communica-
tion speed and the application nature. Logical pools of processors were
introduced, compared to physical pools in Plan 9 [Pik90a] and Amoeba
[Tan90a]. Authors implemented a flexible scheme of adding and with-
drawing from the pool of LB servers. SWITCH capability directed
using either local or global files systems for performance optimization.
This is a nice example of LB relation to other resources — files in this
case.

EurOpen Autumn 91 — Budapest, 16-20 September

E?; Load Balancing Survey

Ferrari and Zhou [Zho88a, Zho87a, Fer86a] is a closed research pro-
ject that was conducted at the University of California, Berkeley. Prin-
cipal investigators were Songnian Zhou and Prof Domenico Ferrari.
The underlying environment was the network of VAXes running BSD
UNIX. Load balancing problem in FZ was studied using simulation
models driven by job traces collected from a production system. The
authors believe that this approach may show more reliable results than
analytical models or simulations driven by probability distributions.
The drawback may arise in the case of different computing environ-
ment, since this approach is biased towards measured one. The authors
investigated: the performances of load dependent against load indepen-
dent (e.g. random) decision making and centralised against distributed
and global; effects of system scale; effects of LB on individual hosts;
parameter selection and adaptive LB; avoidance of instability and
immobile jobs.

They have drawn the following conclusions. Overall improvements
has been achieved for each of algorithms. Centralised algorithms may
show up to be more appropriate than distributed ones, though costs of
up to 35% of its CPU time may be paid for LB functions. There is no
need for more information than it is considered. For example, if every
10sec there is a need for LB, and every [sec information is spread, then
90% of information is wasted. This agrees with Barak’s algorithms.
Algorithms with little or no exchanged information showed very good
performances, significantly better than those with accurate information
exchange and, in particular, distributed ones. Central algorithm with
information exchange showed the best performance. Algorithms with
little or no information exchanged showed excellent scalability. Better
predictability could also be observed. For a moderate load, the mean
response time was cut by a factor of 1.5-2, and deviation by 2-4.

Following configurable parameters have been discussed: local load
threshold, job threshold, the exchange period (periodical information
exchange) and probe limit (non-periodic policies). It was shown that
exchange period of approximately Isec was optimal. A shorter period
introduced high overhead and lower period was outdated. There was
interdependency between various factors and the load: the higher the
load - the higher the job threshold and the longer the exchange period.
Adaptability for underlying environment did not show high benefits of
switching between most promising algorithms. Non-periodic informa-
tion collection policies were less susceptible to host overloading. Host
overloading depended directly on system load and load information
exchange period.

MOS(IX) [Bar85a, Bar86a, Bar86b, Bar89a, Alo87a, Bar85b, Bar89b]
is an active projects, being taken at Hebrew University of Jerusalem,
led by Professor Amnon Barak. It is one of the longest living load
balancing project, started on PDP computers and UNIX version 7, to be
continued on VAXes and National multicomputers. The project was
based on a simple but effective and feasible scheme. It has been
improved many times since. Being one of the few fully implemented
LB projects and evolving over the years and computer architectures,
MOS(IX) is one of the key references in the field of load balancing. In
order to overcome the lack of existing distributed systems, authors
introduced some concepts that have only recently been widely intro-
duced in the state-of-the-art DOS, e.g., MOS(IX) has been split into the
high and low level parts; even the same name was coined for Distri-
buted Computing Environment as is for OSF DCE etc.

EurOpen Autumn ‘91 - Budapest, 16-20 September 159

Load Balancing Survey

MOS(X) LB consists of three algorithms: local load algorithm,
exchange algorithm and process migration algorithm. The policy is
distributed, dynamic, stable, without using apriori knowledge. It is
adaptable to changes in: the overall load of the nodes; the run-time
characteristics of processes and the number of nodes available in the
network. The algorithm for load exchange is based on a simplified
exchange of a subset of all loads in the system. The size of the kept
load vector, 1, is determined to be optimal for a given exchange time
period, T, and the alpha, the probability that the processor X does not
receive at least log2l load vectors. A measure of the local load is the
number of processes that are ready to run and waiting for CPU. This
number is correlated with the instantaneous processor utilisation. In
order to avoid fluctuations in load, after being measured, load is aver-
aged over the period of time t, which is at least of the order of time
required to migrate a process of an average size. Selected values are
t=1s (load distribution period) and g=20ms (local measurements
period). MOS(1X) supports dynamic process migration, including a pol-
icy for load balancing and a mechanism for process migration. All LB
related functions are performed by a dedicated process that considers
other processes for process migration in a round robin fashion. A pro-
cess is considered for migration only after it executes for a minimal
time on a local processor. This prevents short-lived processes from
migration.

The following considerations are made in regards to process migration:
processors’ load considerations (self explanatory); communication
overhead: each process tracks its communication, migration is done
onto the machine where most of the communication has been per-
formed to, in the case of local communication, an estimate of potential
overhead, due to the communication is taken into account; processes
that execute fork are considered more favourably since they are poten-
tial load; in the case that system table is full, local processes are sup-
posed to migrate and local load is increased in order to prevent migra-
tions to this machine. Process migration is based on the following
actions: locally available loads are considered first; then they are
modified due to communications needs and weighted; a stability value
is added, proportional to the process size.

RHODOS [Gos90a, Zhu90a, Zhu90b, Zhu90c, Gos90b, Ger90a] is a
recently started project at the University College, The University of
New South Wales, Australia. The whole project is dedicated to the
Distributed Operating Systems research. LB part of RHODOS project is
led by W. Zhu and Prof Andrzej Goscinski. The underlying environ-
ment is a network of workstations running RHODOS.

The following issues are targeted for research: load estimation tech-
niques — efficiency and feasibility; information exchange — the amount
of information, the timeliness of the information and the pattern of
information exchange; decision basis for migrating processes; the
amount of knowledge about a migrating process; stability;

The following goals have been set: to evaluate a wide range of algo-
rithms, provide for easy replacement of algorithms, easy tuning of sys-
tem parameters (time interval for parameter collection, interval for
information exchange, thresholds as the number of processes for lightly
and overloaded computers etc.), provide for statistics gathering.

The authors propose two levels of resource allocation (including LB),
distributed for local distributed systems and centralised for higher level
of DS models (e.g. inter clusters of distributively organised systems).
Load balancing policy answers the following questions: when to move

160

EurOpen Autumn ‘91 — Budapest, 16-20 Septemb

H

w Load Balancing Survey

User space

Servers:
LB, Name, file/object

kernel managers:
IPC, memory, process, migration, various drivers

Nucleus:
trap, intr, cntxt swtch, local msg, load collector

Figure 1: Simplified RHODOS Architecture

which process where. Parameters representing workload are divided
into four groups: process- (number of ready and blocked procésses),
processor- (type of processor, memory size and devices), environment-
(available memory, average CPU and network load etc.), and per-
process-oriented (CPU time of process, waiting time, number of
exchanged messages, 10 number, resource demand etc.).

LB implementation makes use of underlying RHODOS architecture. Tt
is implemented through LB server — residing in server (user) space,
migration manager — residing in kernel space and information collector
— residing in nucleus space. Figure | presents a simplified RHODOS
architecture.

3. Summarised Characteristics of Four LB Implementations

This section presents a comparison between four different LB imple-
mentations. The comparison is summarised in tables. Each table is
preceded by criteria explanation and followed by a summary. Criteria
have been classified in the following categories: The General Category,
Load Balancing Information Management (LBIM), Load Balancing
Scheduling (LBS) and Load Balancing Data Transfer (LBDT). The
general category reflects the global characteristics of load balancing,
common for each category. LBIM consists of information collection,
advertising and negotiation components. Having more or less informa-
tion on load, LBS module can make particular decisions. Once a deci-
sion is made, LBDT performs actual transfer — balancing of the load.
Each category is described with particular characteristics, further
presented in the following subsections. The authors assume this
classification natural, since it reflects the functional characteristics of
load balancing.

3.1. General Characteristics Category

This section summarises characteristics that are common to all parts of
LB implementation. The following characteristics have been selected:

Distributed vs centralised authority has been used so far in either-or
sense. [Gos90a] suggests the concept of simultaneous support of both
authorities: distributed — better suited for small scale distributed sys-
tems and centralised — better suited to higher levels, large distributed
systems. Each type of the authority has particular advantages and
drawbacks. However, if applied at an appropriate level, it is possible to
N take advantage of both authorities, while avoiding their drawbacks.
This is in particular important for new distributed system models, like
Plan 9 [Pik90a], where centralised authority may be more appropriate.

EurOpen Aut ‘91 — Budapest, 16-20 Septemb 161

Load Balancing Survey

General Category

Nest

Ferrari/Zhou

MOS(IX)

RHODOS

Distributed vs
centralised authority

distributed

distributed

distributed &
centralised

distributed &
centralised

Degree of usage
transparency

modified cmd
syntax

transparent &
user directed

transparent &
user directed

transparent &
user directed

Operat System
modification

kernel &
command

little to kernel
and shell

embedded in
MOS(IX)

embedded in
RHODOS

Fault tolerance

considered

no

no

no

LB level task job

Table 1: General Characteristics

Usage transparency characterises particular syntax for using LB facil-
ities. Transparency is appreciated, but allowing user to help making
decisions if he wishes so, may be of particular concern.

Operating system modification is an undesirable, but usually una-
voidable issue. It contradicts portability and transportability issues and
should be kept to the lowest possible level. The usual modifications are
regarding LB information collection, which is performed in the kernel,
and particular commands that request LB algorithms execution.

Support for fault tolerance is an inherent characteristic of LB imple-
mentation. Systems support it at different levels. It is question per se,
but considering it in early design phases and treating it appropriately
could improve fault tolerant characteristics significantly.

Load Balancing Level is the choice of the granularity of the operating
system paradigms that are being balanced. It could be job, task or
thread level.

Summary. Distributed and centralised authority should be supported.
Depending on the particular level of the authority and desired type of
LB, centralised or distributed could be dynamically configured. If
these two modules could be used transparently, it would ease the
overall LB implementation and allow unique solution. Any user hints
regarding LB should be accepted. New DOS paradigms support should
be treated properly and incorporated into LB modules. There is much
less need to modify or extend DOS in order to have necessary func-
tionality supported. Standard microkernels support all basic para-
digms, and other modules are implemented in the user space, in a much
easier way. There is need for fault tolerance incorporation into the LB,
aside of its inherent virtue. Appropriate levels of LB should be used
for various application granularities.

3.2. Load Balancing Information Management Characteristics (LBIM)

LBIM characteristics describe the issues involved in the first phase of
LB. They define the kind of LB information that is collected, how, in
what time frames, the amount, the way and how much it is distributed
etc. LBIM characteristics are further classified into the following ele-
ments:

Local LBIM parameters. In order to be able to do load balancing, it
is necessary to find out the actual load. Therefore, some metrics need
to be introduced. There is a variety of parameters that have been used

EurOpen Awtumn 91 — Budapest, 16-20 September

ﬁ Load Balancing Survey

for load measurement so far. Most of them are regarding the number
of processes, represented through process queues, process execution
thresholds, times consumed for particular processes; statical and
dynamical characteristics of the computer, like total and available
memory, processor speed; i/o characteristics of both machine and of
particular tasks that may be candidates for balancing etc. [Zhu90c,
Fer86a] present a good example for surveyed load balancing parame-
ters.

Passed LBIM parameters. Collecting all information does not mean
that everything is passed to other computers in the system. Most of the
parameters regarding task characteristics are used for local scheduling
and are not passed further, except, maybe, during negotiation phase.
Parameters that can be passed are mostly those parameters that charac-
terise a particular computer as a whole: number of processes and avail-
able resources. Static parameters need not be retransmitted.

Negotiation LBIM parameters. Once that a machine is selected as a
target and a task as moving candidate, it may be appropriate to contact
the machine and negotiate about the actual load balancing. Parameters
that are considered in negotiation phase describe the particular load that
is distributed — command type for remote execution and task for task
migration.

Degree of information distribution. Information need not be distri-
buted to all computers in the DOS. It was shown through few practical
implementations [Bar85a, Bry8la] that even a small number of
informed machines could lead to a drastical improvement. Of course,
globally informed computers in network could cause no harm and are
appreciated, however, a large amount of information spreading causes
a bottleneck. Algorithms that use excessive information could easily
become intractable.

Amount of kept information. Not all information should be kept, par-
ticularly in the large distributed systems, it is impossible to keep track
of all the information, therefore, only its subset is kept.

Local information collection. Local information could be collected
periodically or event driven, after the creation or deletion of the task.
If collected periodically, it has a higher frequency than the advertise-
ment, for the sake of stability.

Information advertisement. It was shown [Eag86a] that even infre-
quent information advertisement could yield a dramatical improve-
ment. Therefore, it is not necessary promptly to distribute information.
It is also possible to transmit only when there is a significant change in
information.

Communication paths. In order to provide information to other parti-
cipants in the network one may use one-to-one or one-to-many com-
munication, depending on the desired sophistication level and actual
algorithm. There is a variety of possibilities logically to connect
machines in order to provide information. It may be either through
simple messages, RPCs, through IPC capabilities, through a sophisti-
cated mechanism supported by NCS, or languages providing similar
capabilities (MatchMaker).

Relationship to other resources. Load balancing is a particular case
of a broader problem of the resource allocation, where CPU power is a
particular resource. However, even in the case of load balancing, some
clients may request other resources, apart from the CPU. Also, algo-
rithms may perform much better if they pay more attention to other

EurOpen Autumn 91 — Budapest, 16-20 September 163

Load Balancing Survey

LBIM

Nest

Ferrari/Zhou

MOS(IX)

RHODOS

Local parameters

UNIX accounting

linear combination
of queue lengths, ..

avrg number
of ready proces

proc.,per proc.
& environment

Passed parameters

averaged load

same

same

process,pro-
cessor&env.

Negotiation
parameters

avrg sys load
and local load

no negotiation

rec. proc may
refuse incom. proc

per proc

Information
distribution degree

partial (to
client subset)

partial
or full

partial, to
subset

algorithm
dependent

Amount of kept
Information

partial,server
subset

all (distrib.)
no (centr.)

part., random
subset

algorithm
dependent

Param. collection
periodic, frequency
Event driv, event

periodical

Is

periodical

periodical

periodical,
event driven
or on request

Advertising 1-60s
periodic, frequency

Event driv, event

periodical periodical
3 not if across “worm” like
' threshold !

periodical
low and high
thresholds

one to on¢g or
one to many

algorithm

Communication
dependent

one to many one to many

Relation to

‘ files etc.
other resources

files no

Receiver knowledge

. . considered
of incoming task

Table 2: LBIM Summarised Characteristics

process requirements, e.g. files, FPU etc., and optimise decisions
according to these requirements.

Receiver knowledge of incoming task. If the receiving machine
“knows” characteristics of the incoming task, load balancing may be
more up-to-date and algorithm could perform better.

Summary. The following issues are still open question in LDIM part
of LB. Tradeoff between costs and simplicity. The amount of informa-
tion that is collected, passed and negotiated. The way LBIM parameters
are advertised: periodically, event driven etc. The choice of communi-
cation paradigms. The relation to other resources, in particular to the
support of other system modules (servers) that also take care of this
goal (DCE, DCM etc). Using more knowledge when and if appropriate,
without paying high penalties for communication and computing costs.

3.3. Load Balancing Scheduling (LBS)

LBS characterises actual algorithms that are used. This subsection will
present more precisely algorithm class, type, various tradeoffs that had
to be resolved in the algorithm design and particular implementation.

Algorithm class. Algorithms could be (non)cooperative, approximate
vs. heuristic and (non)adaptive. Cited characteristics are due to
Casavant-Kuhl taxonomy [Cas88a]. The principal reason why the

EurOpen Autumn 91 — Budapest, 16-20 September

Load Balancing Survey

LBS

Nest

Ferrari/Zhou

MOS(IX)

RHODOS

Algorithm class

adapt. coop.
approximate

cooperative
approximate

cooperative
approximate

various

Considered info

all

algorithm depend.

all available

algorithm depend.

Considered costs

no

CPU overhead

CPU & comm

CPU & communication

Source of LB
request

threshold cross
or usr directed

algorithm
dependent

threshold cross
+ difference

various

A priori
knowledge

defined severs
and clients

stat. defined
elig. commands

random choice of
servers&tasks

considered

Overcoming
uncertainty

moving window
size

lowering stand
deviation

aging ld vector,
task residency

through
negotiation

Stability

biasing

non periodic in-
formation policies
and high threshold

weighted by the
value proportional
to process size

considered
in design of
TM, servers

Table 3: LBS Summarised Characteristics

authors did not pay more attention to this taxonomy is the fact that
most contemporary algorithms must show a degree of cooperative,
adaptive and heuristic or approximate behaviour. Still, for historical
reasons, this classification of algorithms is preserved.

Amount of information that is considered in scheduling. A lot of
information could be collected during the LBIM phase of LB. Not all of
it is necessary for scheduling algorithm. It is the open question, how
much information algorithm should be based on.

Considered costs. LB costs stem from CPU and communication, while
performing each of the steps in LB (LBIM, LBS and LBDT). It is also
important to note side effects of the later IPC which could overweight
all the benefits of LB. Therefore, various costs should be considered
while making LB decisions.

Source of LB request. Scheduling has to be triggered to make load
balancing decisions. Triggering could be either event driven or
periodic. Events could be, for example, arrival of new task on a client
or departure of a task on a server.

Existence of a priori knowledge. Having some amount of knowledge
about either the system or future load behaviour could significantly
help in making decisions. User directed LB is an example of this
benefice.

Overcoming uncertainty and unknown future behaviour. The best
results could be achieved if the behaviour of all processes is predicted.
However, this is almost impossible to achieve. Therefore, it is impor-
tant to allow for possible corrections and biasing decisions. Algorithms
must react appropriately in order to adapt to possible future anomalies.
They must dump all unpredictable disturbances.

The way stability is achieved. One of the characteristics that LB
implementation should satisfy is response to unpredictable input, in
particular to the bursts of incoming load. The algorithm should react
appropriately under most conditions, i.e. lead to the evening of the load
across the machines. This goal is hard to achieve under stringent con-
ditions [Cas88b].

Load Balancing Survey

Summary. Only Nest has adaptive algorithm. Other LB implementa-
tions consider adaptive characteristics in its research, but neither had
actually implemented it. New DOS architectures allow for easier
design of adaptive algorithms. There should be distinction between
desired goals, and according to it particular action supported, e.g. either
better mean response time, standard deviation or throughput. For
example, various servers that support different LBIM or LBS could be
dynamically activated. There has been very little apriori knowledge.
Stability has been considered and investigated only after the design and
implementation. A lot of research has been conducted in the area of
LB scheduling [Sta84a, Chu80a, Lo84a, Hac8%a], etc. In the practice,
however, only the simplest models have been used. New architectures
should offer more opportunities for exploring appropriateness of partic-
ular algorithms. For example, in overcoming uncertainty, applying Al
techniques or in achieving better stability, applying control theory etc.

3.4. Load Balancing Data Transfer (LBDT)

This category summarises tradeoffs and issues in transferring the actual
load from one machine to another. LBDT consists of the transfer of:
command (remote execution) or task (task migration); messages, after
the LBDT has been performed; results, back to the originating machine.
This category could be further partitioned into the following issues:

Remote execution vs task migration is the major classification in
LBDT. Both cases could be very useful in particular applications.
There is no need to perform migration if a command exists on both
client and server machines. However, not only commands are distri-
buted in DS, but also user tasks. This raises the question of the task
migration. Both facilities should be supported and exploited appropri-
ately.

Transparency, in relation to the LBDT, assumes location and name
transparency. Transparency is supported in most LB implementations,
at more or less elegant and flexible level. It impacts message transfer,
residual effects etc.

Preemptiveness is an open question of the appropriateness of active
tasks migration [Eag88a, Cha86a]. In some cases it is unavoidable.
This capability raises a lot of questions and tradeoffs.

Residual dependency is one of the consequences of the task migration.
When a task leaves a machine, new arriving messages should be han-
dled appropriately. If there is leftover information about the migrated
task in the machine that the task migrated from, there should be some
mechanisms for message forwarding, failures should be accounted for
etc.

Operating system support could largely improve performance and
functionality. It is much easier to rely on the basic support than
artificially to implement modules in higher levels. Most state-of-the-art
operating system kernels inherently support task migration through
their basic primitives. LBDT is related to operating system paradigms,
e.g., in Mach, task migration is related to VMM and IPC [You87a].

Summary. Task migration has been the focus of many interesting
researches lately. However, no LB work has been related to these
researches. Therefore, it would be necessary to reevaluate TM efforts
from the LB point of view. Extensive surveys of the field of task
migration could be found in [Zhu90b] and [Smi87a].

166

EurOpen Autumn 91 — Budapest, 16-20 September

i

3

Load Balancing Survey

LBDT Nest Ferrari/Zhou MOSIX) RHODOS

Remote execution

Lo Remote execution | Remote execution task migration task migration
vs task migration

Transparency location & name yes yes location & name

Preemptiveness no no yes yes

Residual dependency no no home dependent | home dependent

Operating system

no, extension no, extension yes yes
support

Table 4: LBDT Summarised Characteristics

4. UNIX and its Impact on Load Balancing

UNIX has been a dominating operating system for many years. How-
ever, technology is going ahead. New distributed operating systems
that have been recently designed, match new architectures more natur-
ally. UNIX was originally designed for a minicomputer. There are
multiprocessor implementations, and UNIX was expanded across the
network. However, in its essence, UNIX still lacks support for parallel
and distributed architectures. Therefore, UNIX is retained as a genius
developing environment, and the never ending race with technology
should be yielded to the state-of-the-art operating systems. UNIX
environment will continue to dominate as an application on the state-
of-the-art distributed operating systems. UNIX BSD 4.3 has been ported
as a server on top of the microkernels like Mach and Chorus. Other
kernels will also have ports, or a similar way of UNIX compatibility.

One of the examples of UNIX inappropriateness for distributed imple-
mentations is load balancing. Despite the huge efforts to introduce LB
to computer arena, it never really left research laboratories and univer-
sities. One of the reasons is the lack of widespread distributed operat-
ing systems as well, but this also accounts to UNIX inertia for distri-
buted solutions. UNIX has been a base for most research in the field of
computer science. UNIX will remain in computer science world as an
excellent environment, and will become oftenly used application. A lot
of issues, like user interface, transparency, task characteristics, will
remain valid. Therefore a lot of achieved results for UNIX environment
like [Cab87a] will continue to characterise UNIX applications for load
balancing.

5. State-of-the-art Distributed Operating Systems and their
Support for LB

The field of distributed systems is growing each day. New experiences
in this field help in better understanding of the needs and characteristics
of load balancing. While first LB implementations have been done on
the raw or modified UNIX, recent LB research is implemented on the
state-of-the-art distributed kernels. The following paragraphs summar-
ise some of the characteristics of contemporary distributed operating
systems that could contribute to LB design and implementation.

State-of-the-art distributed operating systems incorporate standard
features like distributed file systems, resource allocation etc, as natural

Load Balancing Survey

features. This obliviates LB treatment of these features separately, LB
mechanisms can rather rely on existing support, and make better use of
it.

Contemporary DOS are built as microkernels, performing a lot of
features as standard servers in the user space. This leads to better
modularity allowing clean and natural design of particular components,
representing functional units. Similar is valid for LB design. Imple-
menting servers in the user space makes LB design significantly
simpler and easier for development and use. It is possible to dynami-
cally use various servers for collecting and advertising load indices.

Exchangeable scheduling policies [Bla90a, Bla88a] provide for adapta-
bility by exchanging various scheduling algorithms, a feature that was
not provided in old operating systems, where scheduler policies were
embedded in the kernel.

New distributed system architectures, like Plan 9 and Amoeba, intro-
duce new DS models, based on CPU servers. This model favours cen-
tralised LB design.

State-of-the-art microkernels support some LB functions, e.g. task
migration through VMM and IPC paradigms. While for previous LB
implementations it was necessary to design task migration, today it is
the task to incorporate existing TM mechanisms with overall LB
scheme.

There are few levels of possible balancing — job, task and thread, pro-
viding for various levels of balancing granularity: thread balancing on
parallel architectures and task and job on distributed. Growing experi-
ence in parallel and distributed computing opens new approaches for
advances in LB. There is also RPC level of possible load balancing.

Communication paradigms and techniques have been developed that
ease LBIM: MatchMaker [Jon86a], NCS [Kon90a] contemporary ver-
sions of RPC etc.

Fault tolerance can be treated on various system levels, leading to
cleaner design.

Type of LBDT is related to different models of DS. There are clustered
and loosely coupled distributed systems. This raises the issue of
heterogeneity. Task migration is temporarily related only to clustered
DS, and remote execution to loosely coupled ones

Examples of the contemporary DOS kernels are Mach [Ras88a], Chorus
[Arm90a, Roz90a), Sprite [Ous88a], V Kernel, [Che86a), RHODOS
[Ger90a], etc. An example of possible LB implementation on Mach
kernel (OSF/1) has been discussed in {Mil90a).

Emerging industry standards are OSF/I, Distributed Computing
Environment (DCE) and Distributed Management Environment (DME).
The process of implementing LB under these three software packages
is underway. OSF/1, Mach based microkernel provides basic DOS sup-
port. DCE provides higher level LB implementation, and DME provides
management part of it. LB implementation in these products has only
been started, but a systematic approach and correct distribution of func-
tionality and design among vertically and horizontally integrated OSF/1,
DCE and DME promises a lot. Figure 2 presents possible LB design:
Similar action is undertaken by another industry consortium — UI,
regarding UNIX V 4,

168

EurOpen A ‘91 — Budapest, 16-20 Septemb

|

L

HN
M

L per Load Balancing Survey

User space

DCE, DME:
LDIM database, LDS policies

Servers:
BSD UNIX, other servers, LDIM, LDS, LDDT mechanisms

MACH:
basic support, LDIM collection, LDDT (TM) basic support

Figure 2: Possible LB design on top of the Mach

6. Conclusion

Distributed systems are continuously advancing and emerging as stan-
dards. In order to avoid later modifications and adaptation, it is neces-
sary to predict load balancing requirements and consider them. There-
fore, authors have chosen a few of the most important and complete
implementations of load balancing and did a survey of the particular
characteristics that could be important for the further research. Four
implementations have been analysed according to selected criteria and
summaries have been made. Characteristics of UNIX and its impact on
future LB implementations have been discussed, as well as the oppor-
tunities that contemporary kernels provide. State-of-the-art distributed
operating systems could not overcome all the drawbacks that LB has.
There are some intrinsic characteristics that have prevented LB from
becoming a standard and everyday tool in distributed environments.
However, contemporary DOS could help in implementing LB that is
modular, much easier to develop, use and administrate. Therefore, it
should indirectly help to get a broader insight into the field of LB and
reevaluate its tradeoffs and unknowns. It could help in applying tech-
niques from other fields, e.g. Al, or control theory, it could contribute
to improving fault tolerance, more up-to-date and broader information
spreading etc.

Acknowledgements are due to the following scientists, in alphabetic
order: Prof Hassan AlKhatib, Prof Amnon Barak, Prof Thomas Casa-
vant, Ahmed Ezzat, Prof Domenico Ferrari, Prof Andzej Goscinski, C.
Jacgmot and Prof John Stankovic. Through the various stages of the
work, they have given us advices, sent their own references,
encouraged us for further work. Their help will be even more appreci-
ated in the following stages of research, in never ending struggle with
mysterious load balancing. Always attractive, so much explored and
yet — so little used.

References

[Agr85a] R. Agrawal and A. Ezzat, “Processor Sharing in NEST: A
Network of Computer Workstations,” /st Intl Conf on
Computer Workstations (Nov 1985).

[Agr87a] R. Agrawal and A. Ezzat, “Location Independent Remote
Execution in NEST,” Transaction on Software Eng 13(8),
IEEE (Aug 1987).

[Alo87a] N. Alon, A. Barak, and U. Manber, “On Disseminating
Information Reliably without Broadcasting,” Proc. 7th

EurOpen A ‘91 — Budapest, 16-20 Septemb 169

Load Balancing Survey

[Arm90a}

[Art89a]

[Bar85b]

[Bar89a)

[Bar89b]

[Bar85a]

[Bar86a]

[Bar86b]

(Bla88a]

[Bla90a)

[Bry8la]

[Cab87a]

[Cas88b]

[Cas88a]

[ChaB6a]

[Che86a]

[Chu80a]

Intl. Conf Dist Comp. Systems, pp.14-81, 1IEEE (Sep.
1987).

F. Armand, F. Herrmann, and J. Lipkis, “Multi-threaded
Process in Chorus/MIX,” Proceedings of the EUUG
Spring Conference, Munich, Germany, pp. 1-13 (23-27
April 1990).

Y. Artsy and R. Finkel, “Designing a Process Migration
Facility The Charlotte Experience,” Computer, pp. 47-56,
IEEE (Sep 1989).

Amnon Barak and A. Litman, “MOS: A Multicomputer
Distributed Operating System,” Software-Practice and
Experience 15(8), pp. 725-737 (Aug 1985).

Amnon Barak, A. Shiloh, and R. Wheeler, “Flood Preven-
tion in the MOSIX Load Balancing-Scheme,” TCOS
Newsletter 3(1), pp. 24-27 (1989).

Amnon Barak, “The Evolution of the MOSIX Multicom-
puter UNIX System,” 89-17 (Sep 1989).

A. Barak and A. Shiloh, “A Distributed Load-Balancing
Policy for a Multicomputer,” Software-Practice and
Experience 15(9), pp. 901-913 (Sep 1985).

A. Barak and O. Paradise, “MOS — A Load-Balancing
UNIX,” Proc of the EUUG Autumn Conf, Manchester,
pp- 273-280 (Sep 1986).

A. Barak and O. Paradise, “MOS - Scaling Up UNIX,”
Proc of the USENIX Summer Conference, pp.414-418
(1986).

D. Black, “Mach Processor Allocation Interface Draft of
13, CMU (Aug 1988).

D. Black, “Scheduling Support for Concurrency and Paral-
lelism in the Mach Operating System,” Computer 23,
pp. 35-43, IEEE (May 1990).

R. M. Bryant and R. A. Finkel, “A Stable Distributed
Scheduling Algorithm,” Proc Second Intl Conf on Distri-
buted Computing Systems, pp.314-323, IEEE (April
1981).

L. Cabrera, “The Influence of Workload on Load Balanc-
ing Strategies,” Winter USENIX Conf (1987).

Thomas Casavant and J. Kuhl, “Effects of Response and
Stability on Scheduling in Distributed Computing Sys-
tems,” Trans on Soft Eng SE-14(11), pp. 1578-1588, IEEE
(Nov 1988).

Thomas Casavant and J. Kuhl, “A Taxonomy of Schedul-
ing in General-Purpose Distributed Computing Systems,”
Trans on Soft Eng SE-14(2), pp. 141-152, IEEE (Feb
1988).

H. Chang and M. Livny, “Distributed Scheduling under
Deadline Constraints: a Comparison of Sender-Initiated
and Receiver-Initiated Approaches,” Communications of
the ACM 31(3), ACM (Mar 1986).

D. R. Cheriton, “The V Distributed System,” Communica-
tions of the ACM 31(3), ACM (March 1986).

W. Chu et al, “Task Allocation in Distributed Data Pro-
cessing,” Computer 13(11), pp. 57-69, IEEE (Nov 1980).

170

EurOpen Autumn "91 — Budapest, 16-20 September

[|
L \
Imoni
o

};
t+id

Load Balancing Survey

[Eag86a}

[Eag88a])

[Ezz85a]

[Ezz86a]

[Ezz86b]

[Fer86a]

[Ger90a]

{Gos90a]

[Gos90b]

[Hac89a]

[Jac89a]

[Jon86a]

[Kon90a]

[Lo84a]

[Mil90a}

[Mul86a]

D. Eager, E. Lazowska, and J. Zahorjan, “Dynamic Load
Sharing in Homogeneous Distributed Systems,” Trans on
Soft Eng SE-12(5), pp. 662-675, IEEE (May 1986).

D. Eager, E. Lazowska, and J. Zahorjan, “The Limited
Performance Benefits of Migrating Active Processes for
Load Sharing,” Perfomance Evaluation 6(1), pp. 63-72
(1988).

A. Ezzat and R. Agrawal, “Making Oneself known in a
Distributed World,” 6th Intl Conf on Parallel Processing,
IEEE (Aug 1985).

A. Ezzat, “Load Balancing in NEST: A Network of
Workstations,” Proc of the ACM IFOMART Dallas TX,
pp. 1138-1149, ACM (Nov 1986).

A. Ezzat, D. Bergeron, and J. Pokoski, “Task Allocation
Heuristics for Distributed Computing Systems,” 6th Int!
Conf on Distributed Computing Systems, 1EEE (May
1986).

D. Ferrari, “A Study of Load Indices for Load Balancing
Schemes,” UCB/CSD 86/262 (1986).

G. W. Gerrity et al, “The RHODOS Distributed Operat-
ing System,” CS90/4, University College, The University
of New South Wales (6/2/90).

A. Goscinski and M. Bearman, “Resource Management in
Large Distributed Systems,” Operating Systems Review
24(4), pp. 7-25, ACM (Oct 1990).

A. Goscinski, “Resource Export and Allocation in Distri-
buted Operating Systems,” CS90/31, University College,
The University of New South Wales (July 1990).

A. Hac, “A Distributed Algorithm for Performance
Improvement Through File Replication File Migration and
Process Migration,” Trans on Soft Eng SE-15(11),
pp. 1459-1470, IEEE (Nov 1989).

C. Jacgmot, E. Milgrom, W. Joosen, and Y. Berbers,
“UNIX and Load Balancing: a Survey,” Proc EUUG
Spring 1989 Conf, pp. 1-14 (Apr 1989).

M. B. Jones and R. Rashid, “Mach and Matchmaker: Ker-
nel and Language Support for Object-Oriented Distributed
Systems,” CMU-CS-97-150 (September 1986).

M. Kong et al, Network Computing System Reference
Manual, Prentice-Hall, Englewood Cliffs, New Jeresy
(1987, 1990).

V. Lo, “Heuristic Algorithms for Task Assignments in
Distributed Systems,” Proc 4th Intl Conf Dist Comp Sys-
tems, pp. 30-39, IEEE (May 1984),

Dejan S. Milojicic and Dusan Velasevic, “Load Distribu-
tion — Application on top of the Mach Microkernel,” OSF
Workshop: Applications on top of the Mach Microkernel
(November 1990).

S. J. Mullender and A. S. Tanenbaum, “The Design of a
Capability-Based Distributed Operating System,” The
Computer Journal 29(4), pp. 289-299 (November 1986).

EurOpen Autumn 91 — Budapest, 16-20 September

171

Load Balancing Survey

[Ous88a]

[Pik90a]

[Ras88a]

[Roz90a]

[Smi87a]

[Sta84a]

[Tan90a}

[Wan85a)

[You87a]

[Zho87a]

[Zho88a]

[Zhu90a]

[Zhu90b]

[Zhu90c]

J. K. Ousterhout, A. R. Cherenson, F. Douglis, M. Nelson,
and B. Welch, “The Sprite Network Operating System,”
Computer Magazine, IEEE (Feb 1988).

R. Pike, D. Presotto, K. Thompson, and H. Trickey,
“Plan9 from Bell Labs,” Proc UKUUG Summer 1990
Conf, pp. 1-9 (July 1990).

R. Rashid et al, “Machine-Independent Virtual Memory
Management for Paged Uniprocessor and Multiprocessor
Architectures,” Tran on Comp C-37(8), pp. 896-908, IEEE
(Aug 1988).

M. Rozier et al, “Overview of the Chorus Distributed
Operating System,” CS/TR-90-25 (April 1990).

J. Smith, “A Survey of Process Migration Mechanisms,”
Proc. 11th ACM Symposium on OS Principles, pp. 28-40,
ACM (Nov 1987).

J. Stankovic, “Simulation of the three Adaptive Decentral-
ized Controlied Job Scheduling Algorithms,” Computer
Networks, pp. 199-217 (1984).

A. Tanenbaum, “Beyond UNIX — A True Distributed Sys-
tem for the 1990s,” Proc UKUUG Summer 1990 Conf,
pp. 251-259 (July 1990).

Y Wang and R. Morris, “Load Sharing in Distributed Sys-
tems,” Trans on Computers c-34(3), pp. 204-217, IEEE
(Mar 1985).

M. Young et al, “The Duality of Memory and Communi-
cation in the Implementation of Multiprocessor Operating
System,” Proc of Symposium on Operating System Princi-
ples (Nov 1987).

S. Zhou and D. Ferrari, “An Experimental Study of Load
Balancing Perfomance,” Report UCB/CSD 87/336 (1987).

S. Zhou and D. Ferrari, “A Trace-Driven Simulation Study
of Dynamic Load Balancing,” Trans on Software Eng
14(9), pp. 1327-1341, IEEE (Sep 1988).

W. Zhu and A. Goscinski, “Load Balancing in RHODOS,”
CS90/8, University College, The University of New South
Wales Technical Report (March 1990).

W. Zhu, A. Goscinski, and G. W. Gerrity, “Process Migra-
tion in RHODOS,” CS90/9, University College, The
University of New South Wales (March 1990).

W. Zhu and A. Goscinski, “The Development of the Load
Balancing Server and Process Migration Manager for
RHODOS,” CS 90/47, University College, The University
of New South Wales (May 1990).

172

EurOpen Autumn ‘91 — Budapest, 16-20 September

A Public Access Interface to the
OSI Directory

Paul Barker

Department of Computer Science
University College London
P.Barker@cs.ucl.ac.uk

Abstract

This paper describes a user interface to the OSI Directory. Although
there are a considerable number of user interfaces already available,
system administrators have complained that none of these interfaces is
specifically intended for use as a “public access” interface. Such an
interface must be very simple to use. This requirement leads to a set of
key design goals: when there is a conflict of aims, simplicity must be
favoured over functionality; ergonomic issues are of vital importance;
the on-line help system must be simple but comprehensive.

The search strategy employed by the interface is also discussed in some
detail. The way that the strings provided by the user are mapped onto
sets of X.500 operations and matched with Directory entries is
described.

The development of this interface has been funded by the PARADISE
project, which in turn is funded by COSINE. PARADISE has a number
of goals, including the coordination of directory service pilots. In addi-
tion, PARADISE is providing a number of central services, one of which
is a public access interface to the Directory.

1. Introduction

A considerable range of OSI Directory [ISO88a] user interfaces have
been produced over the last two years during the life of the directory
pilot. It seems reasonable to ask the question: do we really need yet
another directory user interface? This paper attempts to convince the
reader that there is a requirement for a user interface designed
specifically for use as a public access interface. It is suggested that
such an interface should possess a certain set of characteristics not
found in many of the existing interfaces. A low level of users’ com-
puter literacy must be assumed, as must total unfamiliarity with the
Directory. No assumptions should be made about the sophistication of
the user’s terminal, or indeed about the user’s ability to be able to make
use of its facilities. The interface should be geared to answering com-
mon queries, such as finding someone’s telephone number or email
address, rather than satisfying arcane requests.

EurOpen Autumn ‘91 — Budapest, 16-20 September 173

A Public Access Interface to the OSI Directory

This paper describes an interface which is intended to fill this niche.
The interface will henceforth be referred to as de, which stands for
Directory Enquiries. First, the main goals of the interface’s design are
established and then discussed in detail. Particular emphasis is given to
the key area of ergonomic issues, where the design is a combination of
the author’s prejudices, improvements suggested by an HCI expert, and
response to the advice and suggestions given by a number of guinea-
pigs during the course of testing.

Another area that is also considered in some detail is the mapping of
the strings that the user types onto X.500 operations. An approach
where a single query can lead to a number of successive searches of
increasing “fuzziness” is described at some length.

The development of the interface described herein has been under the
aegis of the PARADISE project [Goo91a] funded by the EEC’s COSINE
program. This project has a commitment to provide a mode of access
to the OSI Directory to users in the research community who do not
otherwise have directory software available.

2. Do we need yet Another Interface?

At the time of writing, there are at least 15 directory user interfaces (to
the Quipu system alone) known to the author, and possibly more than
double that in existence. Is it really possible to justify yet another
interface? Some have argued that the plethora of interfaces presents an
unconvincing picture to those new to directory services, indicating that
the service providers don’t seem sure themselves of the best tools for
accessing the directory. However, there are a number of arguments in
favour of having a variety of interfaces available.

First, there is the perennial trade-off between simplicity and complex-
ity. Interfaces which offer complex facilities and a large measure of
control over directory operations will inevitably be more demanding to
use than interfaces which offer less control.

Second, the Directory is intended to support a wide range of queries.
Following the principle of locality, a large number of queries will be
for information about the local environment, which may be the organi-
sation where the user works, or even the department in which the user
works. Given that this type of query will predominate, it seems logical
to offer users, inter alia, an interface which is tailored for these local
queries.

Third, the computing environments in which people work vary greatly.
Some directory users will have work-stations with bit-mapped screens,
and run a windowing system with graphical user interfaces. These
users may have a Directory System Agent (DSA) on their local area
network. Other users may have personal computers, offering a sophis-
ticated range of packages, but having rather restricted access to net-
works. A large group of users still only use character-mode terminals,
and will have access to network services by use of a PAD or modem
connection.

It is worth briefly considering some of the interfaces that are currently
available. These interfaces are all available with the Quipu software
[Kil88a], which is distributed as part of the ISODE package [Ros90a].
Almost all current directory piloting is based on the Quipu software.

dish This interface offers access to all aspects of the Directory
Access Protocol. The interface is immensely versatile and
can, in the style of the MH mail user interface, be used as a set

174

EurOpen Autumn 91 — Budapest, 16-20 September

A Public Access Interface to the OSI Directory

of individual programs. This allows dish to be used to build
other user interfaces using UNIX shell scripts. The interface
supports modification of the DIT as well as querying. This is
not an interface for the novice user!

This interface is designed for character addressable terminals.
The interface is essentially navigational, and a user will prob-
ably use the interface more succéssfully if they grasp the con-
cept that the data is hierarchically structured. This interface
has been used with some success as a public access interface,
but is not simple enough for the ultra-naive user.

This interface [Fin90a] makes use of the X window system to
handle the display. The interface is also navigational. Pod
supports modification of entries. The use of X restricts this
interface to workstation users, and those who run X on-other
personal computers

Ufn [Kil91a] stands for user friendly naming, and is a style of
directory querying and query resolution, rather than an inter-
face per se. Several interfaces have this style of querying
built-in. This style of querying is strongly favoured by many
of those well-acquainted with the Directory. It requires
knowledge of an input syntax, although this is very simple.
This style of querying may well prevail as more and more
users become aware of the Directory.

This interface is intended to be similar in style to the whois
program, familiar to users of the Internet. This is an advan-
tage and a disadvantage, depending on whether one has used
the whois program before! Fred supports user-friendly nam-

ing.

Osiwotsits are a collection of very simple programs which are
intended primarily for use for lookups within an organisation.
The amount of typing required is minimal for simple, local
queries, but the interface is more cumbersome for remote
queries.

While some of the above interfaces could be used by novice users,
none of them are specifically geared to the less sophisticated user of the
Directory. This user may not be cognisant of the hierarchical nature of
the Directory Information Tree (DIT); (s)he may be accessing the
Directory remotely and not have access to on-line manual pages or
other help with using the Directory; the user will probably be using a
character mode terminal.

De has been designed principally as a public access user interface, to
be used by those otherwise lacking a local access point to the directory.
The interface could be configured for use in other circumstances, as it
may be that some users prefer the style of querying and copious on-line
help. At the time of writing it is too early too report on the success
authoritatively as to the success of the design, and its suitability to the
range of operational environments, although the initial feedback has
been encouraging.

It is freely acknowledged that de has its limitations: it cannot, for
example, be used for entry modification. However, it is hoped that
some of de’s strength is derived directly from its focussed approach.
The intention, nevertheless, is that de will suffice for the vast majority
of directory enquiries about people and the organisations they work for.
If it transpires that de fails in this regard, it will be modified!

EurOpen A

A Public Access Interface to the OSI Directory

The author also regards de as being an “interface for the moment”, in
that it is aimed at solving today’s problems. Following from this, de
may well have a limited life. There are least three reasons for this.
First, de is seen in part as an interface suitable for introducing new
users to the OSI Directory. As users become familiar with the services
provided and the potential of the Directory, it seems likely that some
users will migrate to more powerful user interfaces which allow more
control over access to the Directory. Second, as more and more com-
puter users have bit-mapped screens on their desks, the arguments for
avoiding designs which rely on these capabilities will diminish. Third,
de makes some assumptions about the hierarchy of the DIT. As the
Directory grows, the DIT will almost certainly deepen, although to what
extent it is not possible to predict at this moment.

To conclude this justification for another interface, it is worth setting
out the main design goals of de, and attributing emphasis between
goals as and where they conflict. The goals are as follows:

) Ease of use. This is best summarised by what amounts to a
definition: the interface must be sufficiently easy to use for the
first time user, that they are not deterred from trying to use the
Directory again. This is the principal goal.

. Useful for most queries. 1t is assumed here that the predominant
query will be for communications information — telephone and
facsimile numbers, electronic and paper mail addresses — for
people working in organisations. The interface will offer some
tailoring, but will be fundamentally geared towards queries about
people.

° Terminal independence. The interface should work with full
functionality from the lowest common denominator (virtual) ter-
minal. It should also work with barely reduced functionality
even when the user is unable to provide a terminal type, or the
user’s terminal type is not recognised.

° Good performance. The interface must be able to deliver results
reasonably quickly. Design decisions which prove to comprom-
ise responsiveness will be re-considered.

3. Design Characteristics of the Interface

3.1. Screen Mode

This section considers the design of the interface. There is an underly-
ing theme of ergonomics running through most of this section: the
interface has to be simple to use. There is also a substantial discussion
on de’s query engine, or how de makes use of X.500 services to provide
the results the user requires.

A fundamental goal of this design is that de should be runnable from
any type of terminal: it should even be runnable from a teletype! This
clearly precludes the use of windowing interfaces. Full-screen designs
are also considered inappropriate — experience has shown that a consid-
erable number of users of an earlier public access service run at
University College London (UCL) either found that their terminal type
was not supported, or that the terminal emulation did not work
correctly. One service provider told the author that many users are
unfamiliar with the notion of a terminal type and, if asked to provide
one, often type the name of the manufacturer of their monitor or key-

176

EurOpen Autumn '91 — Budapest, 16-20 September

N
ap|

143

Openy A Public Access Interface to the OSI Directory

board. De tries to make it clear to such users that the service is per-
fectly usable even if this terminal information cannot be supplied. The
more sophisticated network user, on the other hand, is often aware that
they can use a variety of flavours of terminal emulation, but cannot find
a type that the system they are connected to knows about. For such
users, de provides the facility to list the supported types. Since so
many terminal types are often supported (almost 400 under SUNOS, for
example), a few well known ones are brought to the head of the list —
many of the most familiar ones, such as vt100, come near the end of an
alphabetically sorted list!

Given the requirement that de should function adequately without ter-
minal type information, the design is for a scrolling interface, for both
input and output. The basic style of querying is that the user is
prompted for input by being asked a short series of questions. The
prompts are verbose, so that it should be possible for the first timer user
to query the Directory successfully. Results of queries are presented to
the user a screen at a time. In the absence of any information about a
user’s terminal type, a terminal size of 24 rows of 80 columns is
assumed. A special purpose pager has been written which supports a
minimal set of commands. The pager’s prompt includes information
about how to get the next screen of information and how to exit the
pager.

Apart from knowledge of screen dimensions, the only use which is
currently made of the terminal type information is to allow the use of
inverse video for prompts. It is noted that this feature has its supporters
and its detractors: accordingly the use of inverse video is tailorable.

While the initial version of the interface is purely a scrolling, line-mode
interface, it would be possible to produce a full-screen, character-mode
interface or even a command line interface with many of de’s charac-
teristics. This is not regarded as a priority at the time of writing, but if
a significant number of people request either of these styles, versions in
these styles could be produced moderately quickly.

3.2. Specifying a Query

A user will specify a query by answering a short series of questions in
response to some rather verbose prompts. As stated earlier the focus of
the interface is on finding information about people. The user is asked
to supply the following details:

I. The name of the person sought
2 Department name

3. Organisation name

4. Country name

The questions are asked in paper envelope order as this seems most
natural to the author. Considerable use is made of default values: the
default value is displayed as part of the prompt and accepted by enter-
ing <CR> at the prompt. Defaults help in two ways.

First, many queries made to an organisation’s public access interface
will be about people in the same organisation. It will thus be prudent
for the system administrator to configure local values as defaults for the
organisation and country names.

Second, while it is imagined that typical use of the directory will be to
look up information about a single person or organisation, some sup-
port for extended querying is provided by retaining defaults from one
query to the next. It should be noted that this feature is not always

EurOpen A ‘91 — Budapest, 16-20 Septemb 177

.|
”

A Public Access Interface to the OSI Directory .

2

helpful. It is of benefit if a user wishes to make repeated queries within
various departments of a single organisation. However, if people wish
to query somewhere entirely different, the defaults can get in the way.
This happens in two ways. It has been observed that users tend to get
“default-happy”, and press <CR> to accept defaults even when they
don’t wish to retain existing values! Another problem is that if a subse-
quent query requires a null entry for a particular field (we will see cases
like this shortly), where a previous query had a value entered, syntax is
required to allow the elimination of the previous value. de uses the ‘-’
character to achieve this, and informs the user within the prompt of
how to clear the field. However it is arguable that <CR> may be a
more natural way of clearing a field. One possible solution which has
been considered is to give the user the ability to destroy all the defaults
with a simple instruction, but this requires more knowledge of syntax.
Feedback from users is eagerly awaited on this issue of defaulting!

A couple of examples should demonstrate the style of the interface.
The reader should note the different use of defaults in the two exam-
ples. The following input should suffice for a query about the author, if
using de as configured at the author’s organisation:

Person’s name, q to quit, * to list people, ? for help

: - barker

Dept name, * to list depts, <CR> to search all depts, ? for help

- cB

Organisation name, <CR> to search ‘ucl’, * to list orgs, ? for help
:- <CR>

Country name, <CR> to search ‘gb’, * to list countries, ? for help
: - <CR>

The principal author of the Quipu software may be found by:

Person‘’s name, g te guit, * to list people, ? for help

: - robbins

Dept name, * to list depts, <CR> to search all depts, ? for help

:- <CR>

Organisation name, <CR> to search ‘ucl’, * to list orgs, ? for help
- xtel

Country name, <CR> to search ‘gb’, * to list countries, ? for help
:- <CR>

The prompting for input is seen as central to the design. The prompts
are verbose to the point that users should be in little doubt about what
sort of information they should be entering: this comment is subject to
the proviso that the prompt is actually readable. The prompt includes
as much guidance as possible about how to use the interface. The
prompts may appeared somewhat cluttered for the experienced user
but, as de is not aimed at such users, this is a criticism which the author
is prepared to live with. Apart from information on how to search for
or list information in the Directory, two other key pieces of information
are provided: how to quit the interface, and how to get help. De’s help
system is discussed in more detail later: for the moment it should be
noted that the on-line help system should be sufficient to obviate
manual pages and make the interface readily usable by first time
queriers.

It is also possible to search for information about organisations or their
departments with the same set of questions. This is achieved by the
(what it is hoped is intuitive) device of the user omitting to provide
input for the questions for which (s)he is not expecting an answer. An
example should show that this is not as complicated as it sounds! The
following query will return information about the author’s department
at UCL.

178 EurOpen Autumn "91 — Budapest, 16-20 September

A Public Access Interface to the OSI Directory

Person’s name, g to quit, * to list people, ? for help

:- <CR>

Dept name, * to list depts, ? for help

:- computer science

Organisation name, <CR» to search ‘ucl’, * to list orgs, ? for help
:- <CR>

Country name, <CR> to search ‘gb’, * to list countries, ? for help
:- <CR>»

Note above that the first <CR> is interpreted as null input, there being
no default offered, whereas the latter two <CR>s accept the defaults
indicated.

. Search Strategy

This section considers the search strategy adopted by de to resolve a
query. We will see that even simple queries may often map onto a
complex set of X.500 search operations. This should not be surprising.
The user will typically not provide strings which are exactly equivalent
to the names in the Directory, but will often provide enough informa-
tion that a unique match may be found given an intelligent search stra-
tegy. This strategy is now described.

A number of cases have to be considered: when there is a single match;
when there are multiple matches; when there are no matches. For the
moment we need not concern ourselves with what constitutes a match:
this is discussed in the next section.

When searching for a person, the search algorithm is broadly as below:

for (list of countries maiching $co)
for (list of organisations matching $org)
for (list of departments matching Sou)
search $name

Given the hierarchical nature of the DIT, the searching is of necessity
for countries first, then for organisations within countries, and so on. If
there is a single country which matches the entered country input, a
single organisation matching the country input, etc, then the behaviour
of the interface requires no explanation.

If there is more than a single match for any field other than the person’s
name, the user is presented with a list of matches and is invited to
select one from the list. The matches are numbered so the user can
select an entry with very little effort. The search then continues below
the selected entry. The procedure is repeated if more multiple matches
are discovered, except that the user is not forced to select a single
person’s entry and may be showed the details for a number of entries
(up to a configurable limit). There are two key features of this
approach. First, a query is progressed until no match can be found for
a particular category of input. The user is then asked to re-enter a
name only where no match was found: on input of a new name, the
query continues. Second, the user is shown the progress of the search
as the query is resolved. This feedback both provides some assurance
that the system is working, and also provides a user with the opportun-
ity to abandon an operation, if it is clear that an unanticipated and unin-
tended subtree is being searched. The control that the user can exercise
to interrupt operations is discussed later.

If no matches are found for a particular type of input, the user is
informed that no matches can be found, and the user is prompted for
further input. The user’s failure to find an entry may mean one of three
things. First, the user has simply mistyped the name and retyping will
result in the appropriate entry being found. Second, the user may be

EurOpen Autumn 91 — Budapest, 16-20 September 179

A Public Access Interface to the OSI Directory

3.4. Name Matching

specifying a name for an entry which exists in the DIT, but which does
not have a name which can be matched with the name typed by the
user. Third, the DIT is only sparsely populated at present, and it is
quite likely that users will try to search for entries which are not yet in
the Directory. For the last two reasons, it has been decided to give the
user a “listing” option, to allow him/her to browse through some of the
entries in the Directory. This option is invoked by typing a ‘*’ charac-
ter: it is hoped this choice is intuitive to most users, as ‘*’ is widely
used in command line shells to mean “all”. It should be noted that a
general listing capability will only be practicable while the DIT remains
quite small. In particular, the ability to list all organisations in each
country is not likely to be feasible, or even possible, for much longer.
However it is felt that some sort of “listing” function will continue to
be useful to allow users to examine the nature of the information in the
DIT: this in itself may help users to specify their queries successfully.
A few points should be noted:

° There is a fundamental assumption about the shape of the DIT.
This assumption is in keeping with what currently prevails in the
pilot. If practice changes, the design will need some enhance-
ment. In particular, it is likely that an extra question asking for
locality information will have to be asked before long.

. All references to listing above are in fact implemented by search
operations for entries of the appropriate object class.

. Searching for a country will employ a single level search at the
root of the DIT. Localities such as Europe and North America
may also be searched for under the root. Searching for organisa-
tions will be by a single level search under country or locality
entries. Searching for departments is initially by single level
search underneath organisation entries. If single level searches
fail, subtree searches are then attempted.” Searching for people
uses subtree searches.

Given the design, there is no prima facie reason why the user should be
restricted to searching within a single department within a single organ-
isation within a single country. Indeed an early version of the interface
offered this facility. However it has been excluded for two reasons.
The first reason is technical. A search of this generality may well con-
sume a vast amount of resources, and some sorts of limits will inevit-
ably have to be imposed.

The second reason is political. The anxiety that many organisations
and users have about making their data available will be heightened by
interfaces which are able to trawl the global Directory. Since this inter-
face is offered as the public face of the Directory, it has been decided
initially at least to limit the scope of searching.

If users clamour for more powerful searching facilities, these can
readily be provided by de.

The X.500 search operation allows complex searches to be specified by
combining filters using exact, substring, approximate and other types of
matching with Boolean ands, ors and nots. The following is typical of
the sort of filter that has been employed by user interfaces to find
entries in the Directory. The filter is expressed in the syntax used by
the Quipu system’s dish interface.

t The ability to specify an n-level secarch would help greatly here, and its omission from the X.500 standard is regrettable.

180

EurOpen Autumn “91 — Budapest, 16-20 September

A Public Access Interface to the OSI Directory

objectclass=person & (surname=S$name | cn=*S$name* | cn”-S$name | userid=S$name)

This can be expressed in english as “find all the people where one of
the following conditions is met: the named entered exactly matches the
surname, is a substring of a common name, approximately equals a
common name, or exactly equals the login name attribute of a Direc-
tory entry”.

However, the use of very complicated filters is not always helpful. In
the above example search filter, exact matches will be returned mixed
in with any substring and approximate matches. The failure to give
preference to *“good” matches over “looser” matches is counter-
intuitive to most users. One user, mystified by the behaviour of an
early interface, asked:

when searching for muller, why do I get 16 millers first?

typing “search tuck” produced 12 names in list before his. Not
very precise. None of them were tucks!

There are several aspects to name matching which must be considered
to make it more intuitive to the user. People will not usually type in
strings of characters which exactly match names in the Directory. The
interface must offer some sort of name matching support, and this must
be available as a default. Most users will not be computer experts, dee-
ply versed in the arcana of regular expressions, although many will
know something of the use of wild-cards.

De offers both implicit and explicit wild-card support, although it is
anticipated that explicit wild-carding will only be used by more expert
users, and then only very occasionally.

Implicit wild-carding is provided using the following method. Rather
than concocting complex search filters including various degrees of
matching, de tries a sequence of searches with simpler filters. The ini-
tial searches specify exact, or very close, matching on the string
entered, while subsequent searches specify increasingly looser match-
ing. The looser matches are only tried if the closer matches fail to
deliver any results. The proposed approach can entail up to four
searches, although well specified searches will usually require less.
This method of matching seems to provide the results expected, and
reasonably quickly. An initial fear that this style of searching might be
too slow has not been borne out by experience: if an initial search fails,
subsequent searches of a DSA tend to be fairly fast as the DSA process
and its database are paged into primary memory — this is particularly a
feature of Quipu DSAs but other DSAs will probably share this charac-
teristic to some extent.

One potential problem with this approach should be noted, although
again experience has not as yet suggested that it is a practical problem.
As a search is curtailed as soon as any matches are found, an unwanted
exact match inhibits the search for less good matches, which might
result in the required entry being found. This design decision will be
reviewed in time, although it is difficult to see how to provide the user
with more control over the searching in a comprehensible fashion.

An example of the search filters used by de should clarify the strategy
used. First, let us consider the relatively simple filters used when
searching for an organisation’s entry. A sequence of up to four filters
are tried in turn until some results are found.

EurOpen Autumn ‘91 —~ Budapest, 16-20 September

A Public Access Interface to the OSI Directory

objectclass=organization & organizationName=S$org

objectclass=organization & organizationName=$Sorg*
objectclass=-organization & organizationName=*S$Sorg*
&

objectclass=organization organizationName™=S$org

An exact match on the organisation’s name is preferred over a leading
substring match, is preferred over an any substring match, is preferred
over an approximate match.

A more complicated example sequence of filters is used by de to locate
entries for people. The format of people’s common names in the
Directory varies considerably: some have one or more forenames and
surname; others as little as a single initial and surname. To cope with
this de examines the format of the name entered. If the name contains
one or more spaces, the concept of exact match is extended. De
deduces that the first letter in the string entered is the first initial and
that the last part of the name is a surname. Using this technique “p
barker” is considered to exactly match against an entry with a name of
“paul barker”, and an entry of “paul barker” is considered to exactly
match “p barker” or “paul fred barker”. This technique could be built
upon substantially if required. It has been suggested that the current
approach is not as helpful with chinese names as with western names.
Enhancements to the matching algorithms will be incorporated provid-
ing that there is no significant impact on search speed in the general
case.

Explicit wild-card support is also offered as this allows the slightly
more sophisticated user more control over the matching that de
attempts. If explicit wild-carding is specified, only a single search is
attempted in accordance with the given filter — there is no recourse to
approximate matching, This explicit wild-carding is, of necessity, rela-
tively simple because of difficulties mapping such requests onto search
filters. It is not possible to map regular expressions onto the filters pro-
vided by X.500. The following forms are supported: *xxx*, xxx*, *xxx
and xx*xx.

3.5. Presentation of Results

A key decision on presenting results is to display results to the user as
the query progresses. Queries are resolved by first attempting to find a
country with a name that matches the country name entered, then a
matching organisation, etc. Queries will usually be typed as a set of
strings which seem logical and convenient to the user, rather than as a
set of relative distinguished names (RDNs). However, the user is
shown the matched relative distinguished name. The following exam-
ple (Figure 1) shows what a user might reasonably type to find the
author’s entry, and the layout of the results.

Some points are worth noting. The name of the country is not the RDN
of the country entry. Country entry RDN’s are the somewhat cryptic
country codes specified in 1SO 3166 [ISO81a]. The directory pilot pro-
vides an attribute “friendlyCountryName” which can be used for
matching against user supplied names, but cannot be used meaningfully
for display, as these names are often a set of multi-lingual alternatives.
There is currently no way of selecting a name from this set of
“friendly” names which can be guaranteed to be in the user’s native
tongue: some sort of language tagging is required. De’s solution is to
allow for a tailorable set of mappings between the 2-letter codes, and
longer names meaningful for local users.

As stated above, names are shown to the user as the query is resolved.
As soon as a match for “uk” is found, the string “United Kingdom” is

182

EurOpen Autumn 91 — Budapest, 16-20 September

. |
il

A Public Access Interface to the OSI Directory

Person’s name, g to quit
:- barker

, * to list people, ? for help

Dept name, * to list depts, <CR>» to search all depts, ? for help

:- c8
Organisation name, * to
:- ucl

list orgs, ? for help

Country name, * to list countries, ? for help

- uk
United Kingdom

University College London

Computer Science
Adrian Barker
electronic mail
Paul Barker
telephoneNumber
electronic mail
favouriteDrink

roomNumber

A.Barker@uk.ac.ucl.cs

071-380-7366
P.Barker@uk.ac.ucl.cs
16 ycar old lagavulin
guinness

G21

Figure 1:

3.6. The Help System

displayed, and so on. It is hoped that the indentation makes the results
easy to interpret. It is important to realise that the names presented do
not necessarily constitute all the RDN parts of the entry sought, but
merely the matches on the entered strings.

The attributes shown to the user are configurable, according to the
object class of the entry. There is no option to return all attributes.
This is deliberate as it prevents the returning of audio and photo attri-
butes, which are inappropriate for this type of interface and have a
severe impact on performance given limited network bandwidth. The
attribute keywords are configurable, and so can be made comprehensi-
ble for humans, and even language independent. Some attributes are
handled specially: for example, electronic mail addresses can be
displayed according to local conventions; telephone numbers can be
displayed according to a local format.

If a search results in a large number of entries being found, a restricted
subset of attributes is shown in the following format (Figure 2).

Since it is anticipated that users of de will often not have recourse to
manual pages, either on-line or on paper, the help system is critical.
Approximately 15 help screens have been provided at the time of writ-
ing, and can be enhanced and added to freely with no need to recom-
pile the system. A user is initially shown a brief “welcome” screen
which informs the user the questions which will be asked, how to get
more help, and how to get out of the interface.

United Kingdom

University College London

Computer Science

Got the following approx

imate matches. Please select one from the list

by typing the number corresponding to the entry you want.

1 Geraint Jones
2 Hefin Jones
3 Mark Jones

G.Jones@uk.ac.ucl.cs
H.Jones@uk.ac.ucl.cs
071-387-7050 %3673 M.Jones@uk.ac.ucl.cs

Figure 2:

EurOpen A ‘91 — Bud,

183

, 16-20 Septemb

o

A Public Access Interface to the OSI Directory

Requests for help are made by typing an initial ‘?" character in
response to any of the prompts, optionally followed by a keyword indi-
cating a help topic. If a single ‘?’ is typed, the help is context sensitive:
e.g. if the ‘?” was typed at the prompt for a person’s name, help on
entering a person’s name is given. “??” gives “help about help”, and
lists all the help screens available. *“?wildcards”, or even “?wi”, gives
help on the use of wildcards in searches. Every help screen includes
information on how to get further help.

Since learning by example is often an efficient way of getting started,
some example queries are given and described in detail.

A convention is used throughout the help screens whereby any word
which has an associated help screen appears in CAPITALS.

3.7. Resetting and Escaping the Interface

3.8. Miscellany

For a user to feel confident with an interface, it is essential that a
number of important criteria are addressed. The following points were
design goals for de.

° A user must be able to escape from de easily, at whatever point
the user is currently at in the interface.

. It shouldn’t be 100 easy to accidentally escape from the interface.

. A user shouldn’t be faced with a plethora of questions of the sort
“Are you sure that you wantto ...?”

° A user must be able to correct erroneous input.

. A user must be able to abandon a query which has been initiated,

but which has not yet returned results.

The above goals are achieved by a simple two-phase escape mechan-
ism.

Phase one: Control C resets the interface such that it redisplays
the first prompt and waits for input for a person’s name. If a
search is in progress, the search is abandoned. If the user is part
way through specifying a query, that input is abandoned and the
prompt for a person’s name is displayed.

Phase two: A second interrupt character typed when awaiting the
input of a person’s name will cause the interface to exit. ‘q’
typed at this point will also cause de to exit.

Note that if the interface is awaiting the input of a person’s name, then
only a single interrupt character is required to cause the interface to
exit.

This section discusses a number of other design issues which are con-
sidered important.

Experience has shown that the initial connection to the Directory can
be rather siow relative to the time taken to perform actual operations.
The paging in of processes (OS] processes can be quite large) and set-
ting up of connections at all layers of the protocol stack can be slug-
gish. To circumvent this as much as possible, de binds asynchronously
to the Directory, such that the binding is interleaved with the entering
of the initial query. The approach seems helpful, although it seems that
there is no substitute for keeping DUA and DSA processes paged into
primary memory to obtain good performance.

184

EurOpen A ‘91 — Budapest, 16-20 Septemb:

¥

p- |

A Public Access Interface to the OSI Directory

However, the rest of de’s operations are performed synchronously.
There are two reasons for this. First, the synchronous model is easier
to code! Second, it is not clear to the author what benefits are derived
from asynchronous behaviour in most cases. If an exact match search,
a substring search and an approximate match search are sent to a DSA
“in parallel”, the DSA has more scheduling to do, and may do much
unnecessary work if a good match can be found. A measure of asyn-
chrony may be provided by the DSA anyway as queries are passed on
to other DSAs. It would certainly be useful and interesting though to
thoroughly evaluate the possibilities in this area.

De does not set X.500 time or size limits. Past experience has shown
that users are often frustrated by the intervention of limits. Administra-
tive size limits imposed by DSA managers cannot, of course, be circum-
vented. If an administrative size limit is reached, the user is informed
that there is more data than they have been shown, and told that this is
a policy decision by a data administrator rather than a technical limita-
tion. “List” operations will often be constrained in this way: the user is
then invited to try and guess the name of the entry they want.

The absence of a time limit means that an operation may “hang” for
some time, if a remote part of the network is unavailable. De allows
the configuration of alarm times which trigger the display of a message
informing the user that an operation is taking longer than expected.
The user is told how to abandon the operation if they do not want to
wait any longer. The delay before this warning message is shown to
the user is configurable for local and remote queries.

4. Future Work

While it is tempting to add more and more features to de, the principal
goal of simplicity must remain. However, it will probably be possible
to add in some additional features without complicating the model.
The intention is that future work will primarily be guided by user feed-
back. However, some areas which are already under active considera-
tion include:

) Incorporation of user-friendly naming ~ de could recognise the
syntax and resolve one-line queries using the ufn algorithms,

Display more information on the progress of a query. This is
desirable, but it is difficult to achieve this without affecting the
display of the results.

Sets of results are presented to the user in the order they are
received from the DSA. Quipu DSAs return results lexically
ordered, although results are inherently sets of data and so can
sequencing can be assumed. A more sophisticated approach than
that used by de is probably desirable: for example, names of peo-
ple would be best presented in surname order.

Approximate matching can sometimes deliver results which mys-
tify users. A possible solution is to indicate to the user if the
results are derived from “fuzzy” matching.

De doesn’t search for localities beneath country entries in the
DIT. Currently this is only a problem with a small amount of US
data, but this will not remain the case for long. However, at the
moment it is not clear what sort of objects will be localities in the
DIT. The situation is under review!

EurOpen A

N
Hd

A Public Access Interface to the OSI Directory Opery

5. Software Availability

The software is available as part of the PARADISE package. Informa-
tion on this package can be obtained from:

helpdesk @paradise.ulcc.ac.uk
De is also available as part of the ISODE software.

6. Acknowledgements

The author would like to thank Angela Sasse of the Computer Science
department at University College London for her assistance with HCI
aspects. In addition, Angela’s early testing of the interface led to sub-
stantial and beneficial modifications of the design. She also made a
valuable contribution to the structure of the help system.

Thanks are also due to Caroline Leary of the University of Sussex
whose comments on de have led to changes whereby de is now more
usable by ordinary mortals.

References

[Fin90a] Andrew Findlay, Damanjit Mahl, and Stefan Nahajski,
Designing an X.500 User Interface: One Year In,
UKUUG, Cambridge, 1990.

[Goo91a]l D. Goodman, PARADISE International Report, University
College London (May 1991).

[ISO81a] ISO, “Codes for the representation of names of countries,”
ISO 3166 (1981).

[ISO88a] ISO, The Directory — Overview of Concepts, Models, and
Service, International Standard 9594-1, December 1988.

[Kil88a] S. E. Kille, “The QUIPU Directory Service,” IFIP WG 6.5
Conference on Message Handling Systems and Distributed
Applications, pp. 173-186, North Holland (October 1988).

[Kil91a) S. E. Kille, Using the OSI Directory to achieve User
Friendly Naming, University College London (March
1991).

[Ros90a] M. T. Rose, The ISO Development Environment: User's
Manual (version 6.0), Jan 1990.

186 EurOpen A ‘91 - Budapest, 16-20 Septemb

Managing the International
X.500 Directory Pilot
Colin J. Robbins

X-Tel Services Ltd
C.Robbins@xtel.co.uk

Abstract

For over two years now there has been an X.500 Pilot Directory Service
spanning many countries. The operational management of the pilot
service has been ad-hoc, coordinated by the author. In March this year
the PARADISE project, which is part of the European COSINE initiative,
started to manage the top level country data for the participating
COSINE countries, and to coordinate with the North American and Aus-
tralian pilots. This paper discusses the problems with the service
before the PARADISE project, the steps that have already been taken by
PARADISE t0 manage the top level DSAs and the work that will be
needed in the future to manage the expanding X.500 pilot project.
Extensions to X.500 needed to keep the pilot running reliably are dis-
cussed.

1. Introduction

X.500 is the joint ISO/CCITT OSI distributed Directory service
[1SO88a, CCI88a]. In the current pilot the Directory is mainly used for
storage and retrieval of information about people, such as telephone
numbers, email addresses and photographs. The data is hierarchally
structured in a Directory Information Tree (DIT) with people typically
belonging to organisational units (departments), which are represented
below organisations, which are in turn found below countries. Coun-
tries are at the root level. The more advanced pilot sites are also stor-
ing application entity information in the Directory.

The data is distributed amongst a number of directory system agents
(DSAs), typically one DSA per organisation. A DSA holds all the local
data for that organisation and knowledge of how to contact some or all
of the other DSAs that make up the directory information base. At the
higher levels of the DIT, data about all the organisations in a country
and knowledge of the DSAs representing these organisations (level-1
data), is typically held by one DSA.' The data is highly replicated and
most organisational DSAs will take a copy. At the root level (level-0)
there is a similar DSA which holds all the data about the root level, such
as data representing the countries and which DSAs to contact regarding
these countries.

1 It does not have to be a single DSA but the technology is made significantly easier if this one simplifying assumption is used.

EurOpen Autumn “91 - Budapest, 16-20 September 187

Managing the International X.500 Directory Pilot

1.1. The Pilot

To query the Directory, a directory user agent (DUA) uses the directory
access protocol (DAP) to connect to a (usually local) DSA. DSAs inter-
communicate using the directory system protocol (DSP).

Apart from the extremely brief description above, this paper assumes
the reader is familiar with the basic concepts of the Directory and
makes no attempt to describe X.500 itself. For the uninitiated [Ros91a]
is an excellent book covering all aspects of X.500.

The International Pilot first started to take shape in 1988, when the first
public demonstration of distributed X.500 was made at ESPRIT com-
munications week using the QUIPU implementation [Kil88a, Kil91a].
QUIPU was developed at University College London under the ESPRIT
project INCA with continued funding from the Joint Network Team. Tt
is openly available as part of the ISODE package and is designed to run
a wide range of UNIX systems.

In the early stages of the pilot, little management as such was needed.
It was very much an experimental system. As the pilot grew, the qual-
ity of service expected grew, and in turn meant more management was
required. In the early days this meant monitoring the pilot looking for
problems (such as unavailable DSAs) and informing the managers,
managing the higher level DSAs, and producing statistics on the use of
the service.

In November 1990, the PARADISE project under the European COSINE
initiative started. The major goals of the project include: provision of
the infrastructure necessary to bind the European and other interna-
tional pilots, such as the US white pages project, together; firmly estab-
lishing the pilot across Europe; and investigating the transition from a
pilot to a full service. This paper looks as some aspects of X.500 that
need extending, and some management tools that are needed to be able
to run the pilot as a reliable service.

2. Central DSA

The first phase of the PARADISE project was to take over the running of
the root DSA. Previously, this DSA had been run by the Computer Sci-
ence department at University College London (UCL). This initial
arrangement had become inappropriate as the pilot had expanded in
scale, and the DSA was moved to the PARADISE machine’ running at
the University of London Computer Centre (ULCC). The QUIPU
implementation was chosen as it was the only DSA available at the time
that had been sufficiently proven in the pilot. As the old root DSA was
seeing a reasonable level of use and was a critical part of the pilot, it
had to be moved with care so as not to break the service. This was
achieved by use of replication and careful knowledge management.
The PARADISE service started to run in March this year with the 6.8
version of QUIPU. The UCL DSA is still running as a complete replica
of the PARADISE DSA, and is used to provide DSAs with out of date
knowledge with a reference to the new DSA.

The PARADISE DSA is now providing four basic services. As the use of
these services increases it will become necessary to split this DSA into
a numbers of DSAs to spread the load. Splitting the DSA into four

2 A Sun 4/330 with 32MByte main memory, 60MByte swap space and 600Mbyte disk. It has direct Internet, Janet, 1XI and Interna-

tional X.25 access.

188

EurOpen Autumn ‘91 — Budapest, 16-20 Sepiember

HN
mp

Managing the International X.500 Directory Pilot

separate DSA, one for each service, is one way of doing this. Such a
split can be achieved by careful management of knowledge references.
These four basic services are now considered.

2.1. Data and Knowledge Management

Knowledge

Perhaps the most important service, is the management of the top level
data.

Countries not involved in the pilot will want to be added to the root
node and some international organisations will want to be added. One
of the potential problems is to decide which organisations should be
added at the root and which should be added below country nodes.

It is a fundamental requirement of X.500, that names at any one level of
the DIT are unique, thus organisations named at the root must have
unique names. At the pilot stage we can continue in an ad-hoc fashion,
adding organisations with the names they wish to use, resolving any
name clashes when they happen: some useful suggestions on naming
are given in [Bar91a]. However, a registration authority will be needed
to decide which organisations can use which name at the root level.
(Adding countries is not a problem as country entries must be named
using the names specified in 1SO 3166.) There is a similar problem at
the country level, although most countries have a single corporate
registration authority used to assigning companies unique “official”
names. These can be used as the basis for a directory name. If such a
body does not exist then the situation becomes more complex: for
example consider the approach described in NADF-123 (North Ameri-
can Directory Forum) which describes a possible naming policy for the
United States.

2.2. Parent DSA

As well as adding the data for the entries themselves, DSA knowledge,
such as the OSI address of the DSAs holding data further down the DIT,
needs to be stored by the DSAs. The 1988 version of the standard did
not fully define how these knowledge references should be stored, so
QUIPU uses the mechanism described in [Kil88b] which uses the
Directory itself to store the references. This has two advantages:
firstly, no new database is needed to store the references; secondly, the
standard X.500 operations can be used to access and update the
knowledge references. DSAs will move from time to time, and so being
able to have easy access to the references is vital to keep them up to
date.

The alternative is to store the knowledge in local configuration files.
Such an approach was used by the Thorn system [Kil86a], which used
the ECMA TR/32 protocol [ECM85a], a forerunner of X.500, in the
“Large Scale Pilot Exercise” [Kil88c]. This proved to be difficult to
manage and maintain consistency.

In summary, storing the references in the Directory were they can be
seen by DSA managers offers many benefits.

The root DSA acts as the “parent” DSA of the whole Directory. When a
DSA does not know which DSA to contact to access a particular entry it
should use a superior reference: that is, it should pass the query onto a
DSA that is one step closer to the root of the tree — this is called the

189

Managing the International X.500 Directory Pilot

2.3. Replication

parent DSA. Potentially the operation can end up at the root DSA. Due
to replication, this situation rarely actually occurs. If it does, it is often
because the root DSA itself is needed, for example to perform a
modification request on the root node.

2.4. Relaying

Replication is vital to the pilot. Without replication the root and coun-
try level DSAs would soon become overloaded. It is unfortunate that
replication is not defined by the 1988 version of X.500 but it is being
addressed by the 1992 standards work [1SO90a].

Until the standards work is complete and the new replication mechan-
ism is implemented, the pilot is using an interim replication protocol
[Kil91b]. Any implementation joining the pilot should consider using
the interim protocol. This defines how copies of all the entries at a sin-
gle level of the DIT are passed between DSAs. Each DSA with a copy
of an entry can answer queries authoritatively about the copied entry,
and thus perform operations such as read and list. The root DSA has
three roles to play in replication, which can all be split into different
DSAs if the need arises:

L. Distribute copies of the level-0 data it holds a master copy of.

2. Collect copies of all the level-1 data from the country DSAs both
to act as a replica and to re-distribute.

3. Distribute copies of the level-1 data to sites that can not access
the country DSA directly (for example, because they are on a dif-
ferent networks).

A DSA relay (described fully in [Bar89a]) is a DSA connected to two or
more network services and is prepared to chain requests for a DSA on
one network service to a DSA on a different network service to allow
the operation to continue.

In a pure OSI environment, such a concept is not needed as there is only
one global network service, but such a network is not yet available and
the pilot is using both the Internet and International X.25.

A large number of the operations handled by the root DSA would
appear to be caused by relay operations (it is difficult to tell exactly
why the DSA is asked to perform the chain operation, but relaying
would seem to be the only logical reason for doing so). Therefore, this
function is a good candidate for being split off into a separate DSA, and
even a set of DSAs should the need arise.

A QUIPU DSA currently stores a reference, in its own entry in the DIT,
to a single relay DSA. If the use of relay services increases, a more
flexible approach will be needed. This could enable a DSA to make a
better choice of which relay DSA to use, therefore putting less load on
the central relay DSA currently being used.

3. Statistics of Directory Use

An important management role is to produce statistics of what a DSA is
doing, and on behalf of whom. Using QUIPU, such information can be
recovered from logging files produced by the DSA.

190

EurOpen Autumn 91 — Budapest, 16-20 September

HW

Managing the International X.500 Directory Pilot

The statistics can be used for several different purposes including:

® Identifying nodes frequently accessed, replication of these nodes
can then be considered.

Identify areas of the Directory tree that are often unavailable.

Analysing patterns of use to enable better system design in the
future.

Already on the PARADISE DSA, log file analysis has shown how the
DSA is being used and which services are in need of splitting into a
separate DSA. The DSA was seeing a large number of unauthenticated
DSA bind attempts. Supporting this sort of DAP access is not really the
role of this DSA (it is probably being used because it is a “well known”
DSA listening on a “well known” address). DAP connections should be
directed at a local DSA which will then navigate the DIT as required.
The QUIPU software has now been modified to give the ability to disal-
low such bind connections and insist that a DUA authenticates itself,
and allow a DSA manager to determine who is accessing the DSA.

This is a simple form of authentication policy. A more complex system
to allow/disallow particular groups of users access to different services
will be needed. Access to services, such as replication and relaying,
will need careful control.

4. DSA Availability

If the Directory is going to be successful, clearly it must be available to
DUAs whenever a request is made. Using the standard X.500 model
this means every DSA must be available at all times. If any DSA is
unavailable, this would mean a part of the Directory is unavailable.
For every DSA to be available all the time is a little hopeful. In practice
there will always be some temporary network, hardware, software or
database errors to contend with.

The replication requirement described in Section 2.3 will go a long way
to improving this. Each individual DSA is not such a vital part of the
overall Directory if all its data is replicated in another DSA and the DSA
knowledge is sufficient to allow a set of DSAs to be referenced. There
is a problem here as the 1988 standard does not fully recognise the use
of replicated data, so only a single reference should be passed between
DSAs. A simple misuse of the reference mechanism as defined in
[Kil88b] allows multiple references to be passed using a standard
subordinate reference. In this section we are concerned with DSA avai-
lability and not data availability, so the effects of replication are not
considered any further.

Early experience from the UK pilot showed that DSAs were set up, and
then left by DSA managers. If the service failed it went unnoticed. As
the use of X.500 increases, DSA failures will become more noticeable to
users and they will hopefully alert the system managers. What is more,
systems such as X.400 mail may begin to use and rely on X.500, so the
system must be available. Thus, system administrators will need to
know as soon as possible when a DSA fails to be able to correct the
fault quickly. One way of being alerted is by use of a probe.

EurOpen Autumn "91 — Budapest, 16-20 September

N
d

Managing the International X.500 Directory Pilot o

i

4.1. A Probe DUA

A probe DUA is a specialised DUA that closely watches a set of DSAs:
for example, this might be the set of DSAs which are needed to main-
tain the country level service.

For each DSA being monitored, the probe will periodically make a con-
nection attempt, and monitor whether the attempt was successful. If
the “connection” fails a manager can be alerted. Periodically the
results of a set of probe results from different probe sites can be col-
lected and analysed, to give a view of how well the overall system is
performing and used to identify problem areas.

What does “connect” mean in this sense? Clearly the X.500 DAP proto-
col must be used, as this is the service we are interested in, and so ini-
tially must involve a DAP bind operation. There are two main parame-
ters in the bind operation. Both should be chosen with care:

1. Access point. To be able to probe a DSA you need to know its
access point and in particular its presentation address. The
presentation address can contain many alternative network
(NSAP) addresses. It is possible that a network fault will cause a
DSA to be available on one NSAP but not on another, so each
NSAP must be probed.

We do not yet live in the prefect OS1 world of one totally con-
nected network. Using the “interim approach to Network
Addresses” [Kil91c], an OSI presentation address can be used to
hold addresses representing more than one network service, for
example, an Internet address or a private X.25 network. The
QUIPU DSAs 1n the pilot store presentation addresses using this
interim approach to allow multiple networks services to be used
in the pilot.

It is often the case that the host running the probe does not have
access to all the same network services as the DSA being tested.
The probe needs to be aware of this and not probe (thus not
report failures for) networks it is not connected to. Using the
interim approach it is possible for a probe to determine which
network services it is connected to, which network services the
remote DSA is connected to, and hence determine which network
services to attempt to probe.

2. Authentication. The probe will need to authenticate itself to the
DSA. It could use anonymous simple authentication. This would
establish that DAP links between the Probe and DSA work.
Alternatively, a distinguished name (DN) and no password could
be supplied. This is preferable as the remote DSA, by recognis-
ing the DN of various probes, can establish whether it is being
probed, and thus exclude such count the binds from statistics on
the real use of the DSA.

Finally, simple authentication with username and password could
be used and is the preferred mode for use in the pilot.3 This has a
dual purpose. The remote DSA should check the password is
valid before accepting the association. If the entry representing
the DN is not held by the DSA being probed, it will need to issue
a DSP compare operation to check the password. Indirectly this
has checked that the probed DSA is able to “get out” into other
parts of the Directory as well as check the availability of the DSA
itself, so may be considered a better test.

3 Strong authentication is not widely available in the pilot and so is not considered in the case of a probe.

192 EurOpen A ‘91 - Budapest, 16-20 Septemb

M Managing the International X.500 Directory Pilot

If a probe attempt fails, it is important to establish the reason for
failure. It would be unpopular to alert a set of DSA managers that their
DSAs are not working, when in fact it is your local network connection
that has failed. There are four main categories of failure® that can be
detected, each possibly requiring a different manager to be informed:

1. Network failure.
2. Host failure. The network is fine, but the host is unavailable

DSA failure. The host is contactable via the network, but the
DSA application process is not.

4. Authentication failure. The probed DSA has accepted the DAP
bind operation but is either unable to authenticate the probe (the
DSA is there and working, but may not be fully connected to the
DIT), or the authentication fails (a probe error!).

4.2. More than Simply Connecting

Is using the DAP bind operation sufficient? As pointed out in [Ros91b]
when discussing the Internet ping program

“Of course, ping is useful only for testing the connectivity
from the local network device to a remote one... However
ping cannot report on the general health of an Internet.”

Similarly, the DAP bind essentially shows that a protocol connection
between the probe DUA and DSA is possible. One simple additional
test is to monitor the time taken to achieve the bind, and to consider
times beyond a certain threshold as indicating that something was *“bro-

’

ken”.

Any real use of the Directory will involve keeping a connection open
for a reasonable period of time and transferring some data. Some early
experience with the probe in the X.500 pilot, has shown that a DSA
which may be considered available by the “bind test”, often fails (usu-
ally due to a timeout) when a read operation is attempted. It is sug-
gested a probe might occasionally try a set of DAP operations, such as
reading an entry on the probed DSA, to make sure the connection is
able to pass sufficient data rapidly enough to be considered a service.
However doing this on every invocation of the probe would probably
create too much of an overhead on the system.

Other factors to consider when probing include:

. The probe needs to be run from a number of different sites, so
that “network islands” can be identified.

. Probing too often will cause the DSA network to become over-
loaded with probe traffic, but not often enough may miss vital
DSA absences. To cut down on some of the probe traffic, use of
passive probing could be considered. If the probe worked in
conjunction with a DSA, the probe would not have to test a con-
nection the DSA knows to be working as it has recently used it.
This also has the advantage of being more than a mere bind test.
In fact a QUIPU DSA keeps a record of such information for
internal use. See [Bar89a] for details.

) Probing should not be done at fixed times. A probe being used
by various sites in the PARADISE pilot [Tit91a] comes with an
example UNIX cron script. This arranges for a probe to be run
on the hour, every other hour throughout the day. Thus DSAs

4 1Itis possible for there to be a failure at other levels such a session or presentation but the author believes these are much more rare
that the other categories given, and will in the most part be caused by protocol errors which would not occur in a service environment.

EurOpen Autumn ‘91 — Budapest, 16-20 September 193

Managing the International X.500 Directory Pilot

being probed from many sites suddenly see a mass of connec-
tions coming in. Most DSAs will have a limited number of con-
nections they can accept at any one time, and so some probe calls
will be rejected — the probe could effectively be causing denial of
the service it is trying to help keep available!

5. DIT Counting

5.1. Counting by Subtree

How big is the DIT? This is one of the questions frequently asked
when discussing the pilot. Because of the distributed nature of the
Directory, this is not easy to answer. The first real question that needs
to be answered is: what do we mean by the DIT size?

° Is it the total number of entries held anywhere in the DIT?
. Is it the total number of entries visible to a user at a given time?

. Are entries that can not be accessed due to the access control
policy of the directory management domain (DMD) counted?

° Do you count entries that are held in a DSA that has been una-
vailable for an extended period?

The answers to these question are implicit in the counting mechanism
used, so need to be considered when deciding how the Directory is to
be counted. Unavailable data can not be counted by a mechanism that
relies on accessing it.

There may be many different reasons for representing an entry in the
DIT. Some entries may be provided as service for users, but others
may be experimental. The paper [Kil91d] defines a set of attributes
that can be used to define the level of service a subtree in the DIT is
providing and can be used as a basis for deciding whether to count the
subtree. When analysing the results of probing or DIT counting it may
be appropriate to only analyse the “service” DIT.

There are two basic methods that can be used for counting. First, for
any particular node, each subtree of the node can be counted
(somehow), and added together with the number of leaf entries, to pro-
vide a subtree total for the node itself. Secondly, the number of entries
held by each DSA can be counted (somehow) and (somehow) merged
to establish a subtree or DIT total.

To count a subtree, all you need to do is recursively add up the subtree
size of the subtree(s) referenced by the sibling nodes, a leaf node has a
subtree size of one. A specialised DUA could attempt to walk the DIT
recursing down each subtree, counting each node as it is passed. How-
ever, it is very likely that such a DUA would be unable to access every
node in some subtrees as the DMDs may impose some administrative
limits of the number of entries returned by search or list operalions.5 In
any case, such a DUA would not scale beyond the DIT piloting stage.
However, this approach does have the advantage of counting the *“visi-
ble” DIT.

The real problem is trying to do the count of the DIT, all in one go,
from one place. If the problem could be spilt into smaller components
it may well be possible.

5 An aggressive DUA might try to get around this by repeatedly refining the search criteria to get around the limits, but such a DUA is
not seriously considered as the attempt to break the limit it is likely to be detected and rejected by an “advanced” DSA.

194

EurOpen A ‘91 — Budapest, 16-20 Septemb

P

pey Managing the International X.500 Directory Pilot

Subtree Totaling

One such method would involve adding special “subtreeSize” attri-
butes® to all non-leaf entries. This would indicate the number of entries
held in the subtree. The counting DUA would trust this value and then
use it instead of proceeding down the DIT. This value could be main-
tained either directly by the DSA, or by the DMD manager, (although
there is the possibility of a subtree faking its size). If a DSA knew
about these attributes for each level of the DIT it held, it could add up
the sizes of all the sibling subtrees (by looking at the attributes) and
calculate a size for the subtree it holds. This could then be propagated
up the DIT automatically (the mechanisms to do this are not necessarily
easy, as the DSA may not hold the entry for the subtree itself!). A
totally automatic system would be desirable, so that a DAP read of the
“subtreeSize” attribute or the “root” node would give the DIT size!

Any subtrees that do not contain these attributes could be ignored and
counted as zero.

5.2. Counting by DSA

There are two main pieces of information needed for this approach:
how many entries does a DSA hold; and which subtree(s) are held?

If a QUIPU DSA receives a DAP read of a specific attribute, with a
specific setting of the X.500 service controls (as defined in [Kil89a)),
then the DSA will return a single attribute, with a string value describ-
ing the number of entries it holds. If a DSA does not support such a
feature, then the figure could, for example, be placed in the DSAs entry
in the DIT by the DSA manager and then read by a DAP read operation.

To work out which subtree(s) the DSA holds is more complex. Again
this can potentially be done by looking at the DSA entry in the DIT. An
alternative is to understand how the knowledge references of the DSAs
are managed and to work out which subtrees a DSA is supposed to
manage. Unfortunately storage of knowledge references in the Direc-
tory were not fully standardised in the 1988 standards work, so each
implementation might (and probably will) represent them differently.
In QUIPU each non-leaf node in the DIT has a knowledge reference in
its own entry, so you can establish which DSA is responsible for the
next level in the DIT (The procedure for doing this is defined fully in
[KiI88b]).

Of course this counting mechanism does not always work correctly.
The DIT and DSAs used to hold it are not always structured in such a
neat and tidy way. Suppose you wish to count the size of the “X-Tel”
subtree below GB. You may find two DSAs in the knowledge, and thus
you count the entries in these two DSAs: let’s say this gives a total of n.
However, one of these DSAs also holds data on the locality of “Notting-
ham” below GB. So the best you can do is say is:

The subtrees of X-Tel and Nottingham contain n entries between
them.

This is a simple case. In the real DIT there are some much more com-
plex examples. This is the major failing of this counting approach.

6 In reality such an attribute might contain more information than just an integer size, such as the type of information held.

EurOpen A ‘91 - Budapest, 16-20 Septemb 195

Managing the International X.500 Directory Pilot

5.3. What is Needed?

As we have seen neither of the two approaches are easy. Both need the
full cooperation of all (or at the very least a significant number of)
DSAs or DMDs involved in the subtree.

Until this is achieved with some official mandate, counting will have to
continue with an ad-hoc method such as that used to produce [Goo91a].
This was based on the DSA counting method discussed, as it is the only
way possible with the current software in use in the pilot. As the
number of implementations involved in the pilot grows, this will
become much harder to achieve.

There is one final problem! An organisation may consider that the
number of entries held in its database to be sensitive data (as it may
reveal the number of employees for example) and may not be prepared
to allow the DSA to reveal such information, so it can not be counted.

As the DIT (dynamically) grows, it is quite possible that a true count is
not possible, and only an estimate can be achieved. Perhaps the best
you can realistically aim for is a count of the number of organisations
or other higher level entities (such as localities) represented in the DIT.

6. Only the Beginning...

The mechanisms described in this paper so far are only the beginning.
Up until recently, effort has been on getting the services running and
the protocols in place and sufficiently robust. As the pilot grows and
the number of different implementations involved increase, there will
become more to manage. It is important to get the mechanisms in
place now. Some such mechanisms have been discussed here. As time
goes on, it may be necessary to remove the “one master DSA per level”
simplification being used in the pilot and by the QUIPU implementa-
tion. When this happens, issues such as counting and effective
knowledge management will become very much more complex. There
is plenty more work to do!

7. References

[Bar89a] P. Barker and C. J. Robbins, “Directory Navigation in the
QUIPU X.500 System,” pp. 235-244 in UNIX & Connec-
tivity, National UNIX Systems User Group, The Nether-
lands (November 1989).

[Bar91a] P. Barker and S. E. Kille, “Naming Guidelines for Direc-
tory Pilots,” INTERNET-DRAFT: draft-ietf-osids-
dirpilots-00, University College, London (February 1991).

[CCI88a] CCITT, The Directory — Overview of Concepts, Models,
and Service, Recommendation X.500, December 1988.

[ECM85a] ECMA, “OSI Directory Access Service and Protocol,”
ECMA TR/32, ECMA TC 23 (December 1985).

{Goo9la] D. Goodman, PARADISE International Report, University
College, London (May 1991).

[ISO88a) ISO, The Directory — Overview of Concepts, Models, and
Service, International Standard 9594-1, December 1988.

196

EurOpen A ‘91 — Budapest, 16-20 Septemb

H3d

-

Managing the International X.500 Directory Pilot

[ISO90a]

[Kil86a]

[Kil88c]

[Kil88a]

[Kil88b]

{Kil89a]

[Kil91b]

[Kil9lc]

[Kil91d]

[Kil91a]

[Ros91b]

[Ros9la]

[Tit91a]

ISO, The Directory — Part 2: Information Framework —
Addendum 3: Replication, 1SO 9594-2 PDAM 3,
December 1990.

S. E. Kille, “THORN (The Obviously Required
Nameserver),” IES News(5.), pp. 11-14, Esprit (August
1986).

S. E. Kille, “The THORN Large Scale Pilot Exercise,”
Computer Networks and ISDN Systems 16(1), pp. 143-145,
North Holland (September 1988).

S. E. Kille, “The QUIPU Directory Service,” IFIP WG 6.5
Conference on Message Handling Systems and Distributed
Applications, pp. 173-186, North Holland (October 1988).

S. E. Kille and C. J. Robbins, “Distributed Operations in
QUIPU,” Esprit Communications Week (November 1988).

S. E. Kille, C. J. Robbins, and A. Turland, The ISO
Development Environment: User's Manual, Volume 5:
QUIPU, April 1989.

S. E. Kille, “Piloting Directory Services: A transition to
full service,” The Electronic Directories Conference,
Online (April 1991).

S. E. Kille, “An Interim Approach to use of Network
Addresses,” University College, London. Research Note
RN/89/13 (January 1991).

S. E. Kille, “Handling QOS (Quality of service) in the
Directory,” INTERNET-DRAFT: draft-ietf-osids-qos-00,
University College, London (February 1991).

S. E. Kille, Implementing X.400 and X.500: The PP and
QUIPU Systems, Artech House (1991). ISBN
0-89006-564-0

Marshall T. Rose, The Simple Book: An introduction to

Management of TCP/IP-based internets, Prentice-Hall
(1991). ISBN 0-13-812611-9

Marshall T. Rose, The Little Black Book: Mail Bonding
with OSI Directory Services, Prentice-Hall (1991). 1SBN
0-13-683210-5

Steve Titcombe, DSA Monitoring, University College,
London (May 1991).

Appendix

For more information on the PARADISE project and obtaining the
QUIPU software (which is part of the openly available ISODE package
— commercially supported by X—Tel) used throughout the pilot contact:

helpdesk@paradise.ulcc.ac.uk
or X-Tel Services Lid.

A Design Overview of XLookUp

Damanjit Mahl

Manufacturing & Engineering Systems,
Brunel University, UK
Damanjit. Mahl@brunel.ac.uk

Abstract

XLookUp is an interface to the X.500 directory service which runs
under X Windows. XLookUp is intended to cater for many modes of
directory usage: casual look up of addresses, administration of local
data, as a public access service. Thus the interface needs to combine a
high level of functionality with simplicity and user friendliness. It is
still under development at the present time (June 1991), although a
release is expected before August 1991. This paper offers an overview
of the current design and presents some examples which give an idea of
the appearance of the interface.

1. Background

User interfaces to the OSI Directory are many and varied. Those pro-
vided with ISODE (including some written by the author) do not pos-
sess the user friendliness or functionality required to convince users
that the Directory is a worthwhile service. These interfaces represent
early efforts, and suffer from a number of problems:

o Do little to hide the hierarchical structure of the Directory Infor-
mation Tree (DIT) from the user.

° Require too much user participation in the search process

. Do not provide adequate and friendly facilities to update Direc-
tory information.

Many of these problems were caused by a lack of asynchronous access
to the directory, thus preventing complex queries to be made without
being overly time consuming, and by a lack of experience in presenting
X.500 to the user. Asynchronous DUA access has recently become a
reality in ISODE, experience has been gained from earlier efforts.
Added to the increasing amount of data being made available in current
pilot schemes and continuing improvements in reliability, this means
that DUAs presenting usable and worthwhile services should start to
appear.

XLookUp is the fourth in an evolutionary series of X based DUAs.
Two of the preceding three were released as part of ISODE. One of

these prototypes is still in wide use and both have resulted in ongoing
feedback on DUA interface structure and functionality. This feedback

EurOpen Autumn 91 — Budapest, 16-20 September 199

A Design Overview of XLookUp

User Interface

Query Engine

Directory Access Protocol

ISO Stack....

Figure 1: XLookUp internal structure

has been incorporated into all aspects of the current design, along with
the ability to perform directory queries on an asynchronous basis.

This paper gives an overview of XLookUp, focusing on two major
aspects of the design:

° The directory query formulator (referred to as the query engine)

° Configurability of the user interface

2. The Query Engine

Figure 1 shows the internal structure of XLookUp. The query engine
provides directory services at a layer above the Directory Access Pro-
tocol (DAP) layer.

The services provided by the query engine are:
. Two distinct search strategies
. Read entry

° Complete information updating facilities, i.e. modify name,
modify entry, add and delete entry.

At present browsing is discouraged, and hence no interface to the X.500
list operation is provided, though this may change given significant
negative feedback. The idea being that a user must know what she or
he is looking for, and has some idea of where the required information
might be.

The most important of the services described are the search facilities.
These attempt to find an entry given some set or sequence of values
supplied by the user. The queries formulated often require many indi-
vidual X.500 requests to be made. The new aynchronous approach
allows such queries to be speeded up, because muitiple requests can be
made simultaneously, and allows the user to continue with other work
in the application which is not held up whilst the query is being per-
formed. This makes the strategies employed feasible, where they
weren’t in the earlier synchronous mode of usage.

This section is devoted to the directory search strategies employed by
the query engine: user friendly naming (UFN), and form based search-

ing.

200

EurOpen A ‘91 - Bud

o

, 16-20 Septemb

S]
Hd

Opeq) A Design Overview of XLookUp

@@

Figure 2: Assumed DIT type hierarchy

2.1. User Friendly Naming

This is derived from the user friendly naming scheme proposed by
Kille [Kil91a]. This method can be classified as an untyped and
ordered naming scheme, as defined in a UK Proposal to the ISO/CCITT
Directory Group on “New Name Forms” [Kil89a]. This means that the
naming information comprises an ordered sequence of name com-
ponents each of which is some value which matches an attribute in the
named entry.

The ordering in this case is based on the reverse of the Relative Dis-
tinguished Name (RDN) sequence in the DN of an entry. For example
the UFN “damanjit mahl, manufacturing & engineering systems, brunel,
gb” resolves to the author’s DN

gc=GB@o=Brunel University@ou=Manufacturing &
Engineering Systems@cn=Mr D S Mahl

A DIT hierarchy, shown in Figure 2, is assumed in order to resolve the
types of name components.

As well as catering for the exact case, as illustrated in the example
showing the author’s directory name, UFN also attempts to resolve par-
tial, inexact or ambiguous names. These are referred to as purported
names.

Purported names can vary from the exact case in a number of ways:

. Abbreviation The most significant name components can be
excluded, e.g. “Steve Kille, Computer Science” is missing com-
ponents “University College London, GB”.

EurOpen Autumn 91 — Budapest, 16-20 September 201

A Design Overview of XLookUp

UFN Environment

| Name Component

Manufacturing & Engineering Systems, Brunel University, GB
Brunel University, GB

GB
(root)

2 Name Components

GB

Brunel University, GB

(root)

3+ Name Components

(root)
GB

Brunel University, GB

Table 1: UFN environment for a personal DUA

° Component Omission An intermediate name component may be
omitted, e.g. “Steve Kille, University College London, GB”
where the component “Computer Science” has been omitted.

o Approximation Approximate values of name components can
be supplied, e.g. “a findl” matches “Andrew Findlay”.

The following sections describe elements of the UFN algorithm which
are used to resolve purported names.

2.1.1. Environment

UFN employs a set of lists of directory names which form a local
environment. The environment is defined in terms of the number of
name components in a given purported name. The number of com-
ponents then corresponds to an appropriate list of directory names
which can be used as a starting point for name resolution. For example
the local environment for a purported name with one component might
initially consist of a department, i.e. the given name is at first assumed
to be a user in a department, if this fails the next element of the
environment would be tried, and so and so forth. Table | shows an
example environment specification, in this case the environment used
by the author.

2.1.2. Name Resolution

Name components are matched sequentially. If a single DN is matched
against an intermediate or initial name component the name resolution
continues as if a full DN had been supplied. If one or more DNs are
matched against an intermediate name component these are all
explored in order to attempt to resolve the ambiguity.

2.1.3. Use of Subtree Searching

In the general case X.500 searches are performed as single level DIT
operations. When a match fails, if the previous name component has
matched against an entry of type organization then a subtree search is

202

EurOpen Autumn 91 — Budapest, 16-20 September

Opery A Design Overview of XLookUp

attempted. This is reasonable in most cases, but may fail when
attempted in larger organizations.

2.2. Form Based Searching

This, in contrast to UFN, is a typed and unordered approach to search-
ing. Here values are supplied in association with specified entry types.
Ordering is resolved by assuming a DIT hierarchy (a typical hierarchy
is shown in Figure 2). The user is asked to fill in a form showing a list
of context types and a target type. Some fields may be omitted, though
this is constrained. Situation where value omission is not reasonable
are:

) Intermediate types Although ordering is not apparent to the user
it is an inherent part of DIT structure. Thus the search fails when,
for example, country, department and person values are supplied,
and a value for organization is omitted. As an alternative this
particular set of values may be regarded as something that
amounts to a browsing request, i.e. list matching persons in said
departments in an arbitrary list of organizations which are
present in the said country. It is not clear whether this kind of
browsing should be allowed. The author’s feeling is that it
shouldn’t as it represents a rather dubious method of looking up
information together with being an unnecessary load on directory
services.

. Target type A missing target value means that a search cannot
be completed! An identified target type is necessary as the entry
types are unordered, thus making it difficult to choose a particu-
lar value as the objective. The current on screen representation
of this is shown in Figure 3.

2.2.1. Environment

Inexact information is handled similarly to UFN, the main difference
being the way in which the local environment is handled. Here
defaults are associated with nodes in the assumed DIT type hierarchy.
A typical set of defaults is shown in Figure 4.

A particular set of defaults may in some cases be given precedence
over others. This is denoted by thicker lines in Figure 4, hence, given
the target type organizationalUnit, when no values for country, organi-
zation or locality are given, the algorithm chooses the defaults associ-

xxdir H]

(Search for..) [Person I

|z person |

[Department] |]

[organization] [a college |

[Piace] [somewhere 1

[country] [cloudcuckooland |

Figure 3: Form based searching

EurOpen Auwtumn "91 — Budapest, 16-20 September 203

A Design Overview of XLookUp

| country=GB |

country=US |

!
Lo - - J

c=gb@o=brunel university

|

! | . . .
c=gb@o=university college london | ! ...@ou=manufacturing & engineering systems ,
Vo ...@ou=computing and media services '
! I

|

c=gb@o=edinburgh university

Figure 4: Defaults for form based search

ated with the organization type because the path from country to organ-
ization is given precedence over the path going via locality.

Notice that defaults attached to a particular node do not have to be of
the same type as the node itself; the defaults are just a way of inform-
ing a DUA of the best place(s) to start a search from.

3. Configurability of the User Interface

The X.500 Directory is a large and rich store of information; there are
many types of directory entities e.g. people, applications, mailing lists
etc., each entry can contain a potentially large number of information
types (attributes of the entry) e.g. names, e-mail addresses, machine
addresses, phone numbers, document types etc.. Many different kinds
of information imply many different usages of the directory. This
begins at low end usage, such as casual address look up, and ends at the
more complex needs of a site administrator. This presents a problem
when also considering that user friendliness is of great importance.

The solution taken in XLookUp is to make the front end and associated
functionality as configurable as possible. The content, functional and
visual, of any XLookUp window is definable. This has the advantage
of allowing the interface to be tailored to personal tastes. More impor-
tantly, this renders means of allowing DUAS to be built that are tailored
to specific tasks or needs and have the minimum of functional redun-
dancy apparent in the on screen interface.

204 EurOpen A ‘91 — Budapest, 16-20 Septemb.

A Design Overview of XLookUp

3.1. The Kit of Parts

The approach taken allows windows within the interface to be con-
structed as groups of defined window objects (referred to as primitives
from now on). This forms a kit of parts from which interfaces can be
built.

The current list of defined primitives is:
° Status Bar — Current status and or error display

° Title Bar — Contains an arbitrary label, usually the title of a win-
dow

Read Display — Display for directory entry information
Lookup - Form based search dialogue

Moveto — Directory entry naming dialogue

Entry List — List box containing lists of entries

Help — Window displaying selected help texts

Modify Entry — Form based entry modification dialogue
Add Entry — Form based entry addition dialogue
Rename Entry — Entry renaming dialogue

Button - Button attached to a defined command

Error Display — A viewer for errors resulting from directory
operations

Each primitive may have one or many attached actions, e.g. the action
attached to the Moveto primitive is the Query Engine operation which
performs a UFN match. Each primitive also has a number of associated
resources: height, width, bitmap (in the case of buttons and title bars
only), initial sensitivity to user events, information used when a win-
dow is resized and a name used to identify particular instantiations of a
primitive. This is additional to the standard application resources used
by the X Toolkit

3.2. Constructing Windows

Windows can be constructed as nested groups of horizontally or verti-
cally arranged sequences of primitives. The sample configuration in
Program Listing | defines a window called startup shown in Fig-
ure S.

The “P.” (as in P. Button) convention is used to distinguish primitive
types from named instances. The resources set here are the visible
labels, dimensions, primitive instance name, and interface commands
(these are explained in the following section). Note that labels,
amongst other resources, can be set in the XLookUp configuration file
or in a standard X resource file by using configured instance names.

3.3. Defining Command Structure

Any primitive that can be activated by the user, e.g. a button, can have
a user defined command associated with them. Each command is com-
posed of a sequence of atomic operations. These are:

° Quit Application — Quit from the application

Make Sensitive — Make a named primitive or primitive type sen-
sitive to user events

EurOpen Autumn ‘91 — Budapest, 16-20 September

A Design Overview of XLookUp

LAYOUT : startup : VERTICAL
{
P.TitleBar ((LABEL "XLookUp - Directory User Agent")
(WIDTH 350))

LAYOUT :

{

start_buttons

P.Button

P.Button

P.Button

P.Button

start_buttons : HORIZONTAL

((LABEL "Quit")
(COMMAND quit_command)
(NAME quit))

{ (LABEL "Look Up An Entry")
{COMMAND raise_lookup)
{NAME look))

((LABEL "Find A Named Entry")
(COMMAND raise_moveto)
(NAME moveto))

((LABEL "Help")

(COMMAND raise_help)
(NAME help))

Program 1: Definition of window startup

) Make Insensitive — Make a named primitive or primitive type
insensitive to user events

. Raise Window — Raise or create a named window object
° Close Window — Close a window

. Keep Window — Pin a window to the desktop

° Abort Directory Operation — Abort a directory request

° Activate Named Primitive — Activate the command associated
with a particular primitive

A brief description of these follows.

3.3.1. Raise, Close and Keep Window

These operations allow the user to manage the creation and updating of
application windows. The keep operation pins a window to the desktop
and prevents it’s contents from being overwritten, i.e. to maintain
some particular piece of information. Close pops down a window,
whether it has been pinned down with a keep operation or not. The
raise operation causes a specified window to be either created or raised
to the top of the window stack. This can be performed in a way that
obeys one of four rules:

xxdir

2l

XLookUp - Directory User Agent

(Quit) (Look Up An Entry) (Find A Named Entry) (Help)

Figure 5: Appearance of window startup

206

EurOpen A ‘91 — Budapest, 16-20 Septemb

n
._4>_<I

P

A Design Overview of XLookUp

Globally Managed — A window is created if there are no other
windows of the same type currently popped up and none of these
have been kept, otherwise raise the first window of the same type
found.

Locally Managed — As previous rule except applied only to chil-
dren of a particular window

Global New Always — Always create a new window

Local New Always — As previous rule except applied only to
children of a particular window

Global New When None — A window is created if none of the
same type currently exist

Local New When None — As previous rule except applied only
to children of a particular window

3.3.2. Activate Named Primitive

This operation initiates the action of a named primitive and tells the
primitive where the results of the action must be sent. Program Listing
2 defines the activation of action lookup (a directory look up) in a
primitive of type P.Lookup and directs output to a read window if
one match is made, or to a 1ist window if more than one maich is
made. The final parameter shown in the fragment declares the rule to
use when choosing which particular window instantiation to send the
results of the operation to, as there may be several or no potential out-
put windows already in existence. The parameter list is defined by the
type of action being initiated, for example the action
read_dn_attribute reads the entry pointed to by a DN attribute
within an entry, e.g. a secretary attribute. and can only send output to
one type of window as there is only one possible result to a successful
action, the contents of an entry.

3.3.3. Make Insensitive and Make Sensitive

Given certain states in a user interface, some primitives may need to be
inactive. These operations permit named primitives to be made active
or inactive under certain conditions or during the course of a user
defined command. An example of this can be seen in Figure 6, where a
directory look up is being performed. Here all active areas except the
Abort Lookup button have been made insensitive.

The configuration text which defines this is shown in Program Listing
3. This shows how the defined command lookup_command is
attached to the button labelled StartLookup. In this command all
buttons are made insensitive, then instances named abort are made
sensitive. The inverse is performed when the activated action 1ookup
has completed.

A.Actlivate
(P.Lookup, Primitive type
lookup, Name of action to initiate
read, Send output to if one match made
list, Send output to if many matches made
GlobalManaged) Window management rule

Program 2: Startup Window Definition

i

A Design Overview of XLookUp

3.3.4. Abort Directory Operation

This will abort the last directory query issued from the originating win-
dow, i.e. the window which issues the abort request. The configuration
regime does permit windows to have muitiple outstanding requests to
the Query Engine, although this behaviour is deprecated as the abort
operation will only abort the last query issued from a window. In the
standard configuration files requests are limited to one outstanding per
window by making activatable primitives insensitive during the course
of a request, as shown in the previous section.

X lookup 2l

Look Up

3 (St Lookags (Abort Lookup) iz

ip barker]

icomputer science

iucl

A

Searching. Please Wait.

Figure 6: Controlled sensitivity

P.Button { (LABEL "Start Lookup")
(COMMAND lookup_command))

COMMAND: lookup_command: (A.MakeInsensitive(P.Button),
A.MakeSensitive (abort),

A.Activate
(P.MoveToEntry,
lookup,

read,

list,
GlobalManaged) ,

A.MakeSensitive(P.Button),
A.MakelInsensitive(abort))

Program 3: Controlling sensitivity

208 EurOpen Autumn ‘91 — Budapest, 16-20 September

A Design Overview of XLookUp

3.4. Handling Directory Output

Program Listing 2 shows how data created as the result of directory
operation can be redirected to specific application windows. In an
extension to this, data, which may be entry names or the contents of an
entry, may be redirected to other kinds of output receptors. At present
the design caters for three types of receptor:

. X selections — This enables interaction between the directory and
other information handling agents, e.g. mail user agents, local
databases etc. This is planned to integrate with the XUA X.400
mail user agent implemented at Nottingham University.

External filter processes — An example of this might be a direc-
tory entry to business card convertor.

Address Book — Output to a local address book.

lookup

I Ay Y Nissros A% «;;/7:5

XLookUp - Directary

Move To landrew f, manuf,

Dr 4 J Findlay, Computing and Media Services, Brunel University, GB
Mr A S Farrow, Manufacturing and Engineering Systems, Brunel Univ

I ERSVAERREI S S N R EEY
Title:
ame:

N

Mail Address:
Room Number:
Post Code:
Telephone Number:
fax Number:
Description:

Favourite Drink:

Head of Networking and Systems

Andrew Findlay

Andrew.Findlay@brunel.ac.uk

Mozt

B8 3PH
+44 885 74000 x2512
+44 835 32806

1.95m 85kg, dark-haired-balding, glasses, no tie

Istay Malts, particularly Lagavulin

Head of Networking and Systems, Computing and Media Services, Brunet University, GB

Figure 7: XLookUp configured as a single window application

A Design Overview of XLookUp

From a configuration point of view this can be handled in the same way
as output redirect to a window object. Thus the configuration text
shown in Program Listing 4 specifies the sending of a search result into
an X selection referred to for configuration purposes as C.Names.
The final parameter shown in the A.Activate operation is in this
case unnecessary and is thus ignored.

5.? read

Entry Display

(Close window) (Keep window) (Modify) (View Errors) (Rename)

Mr D Mahl, Manufacturing and Engineering Systems, Brunel University, GB
Title: Staff

lookup ET]| Damaniit Maht

DamanjitMahi@brunel.ac.uk

Look Up
10 yeltow brick road
never never tand

L (View Errors) (Help) Ciebd
modify

(Close window) (Start Lookup) 14:

I

Modify Entry
person) [dsa manager (Close window) (Submit modifications) (View Ervors)
Department
(D I (attribute Fietds) (Entry Classes) [Person, Base
[Organizatioi] Iwarwicbg
0] Fourcs: STAFF-from—-admin]
Piace] [
) @
Country
0] Fource: PHONES—from—admin]
@

Search Failed! : Hand-edit
2 Errors Occurred { il

(Room Rumber) @ TA 102

Figure 8: XLookUp configured to multiple windows

A.Activate
(P.MoveToEntry,
lookup,
C.Names,
C.Names,
GlobalManaged)

Program 4: Sending output to a cut buffer

210 EurOpen Autumn ‘91 — Budapest, 16-20 September

|

i

A Design Overview of XLookUp

External output processes can be defined with the OUTPUT
configuration option.

OUTPUT :
business_card : # name of output type
card : # name of output process
commonName, # selected attributes of entry
textEncodedORAddress,
photo,
DN

Here the second field is the name tag to be used in the configuration
file, the third is the name of the output process itself and the final field
contains a filter for the data required by the output process.

At time of publishing this idea has not yet been implemented, though it
is expected to be ready in time for inclusion in the initial reiease.

3.5. Example Setups

Figures 7 and 8 show two application shots, each using a different
configuration. One shows an all-in-one approach to life, the other
makes use of multiple windows. These are not standard configurations,
they only serve to illustrate the flexibility outlined in this paper.

4. Implementation status

The implementation is now near completion. Beta tests are currently
scheduled for late July 1991 (as of June 1991). The initial version uses
the Athena widget set. A further implementation will be made using
the Motif widget set, though this is not expected until early 1992.
Further information can be obtained from the address:

x500@brunel.ac.uk

References

[Kil89a] Stephen Kille, New Name Forms, ISOAEC/ATC
21/WG4/N797 UK National Contribution to the Oslo
Directory Meeting, May 1989.

[Kil91a] Stephen Kille, Using the OSI Directory to achieve User
Friendly Naming, UCL, London (January 1991).
Internet-Draft

EurOpen A ‘91 — Budapest, 16-20 Septemb 211

212 EurOpen Autumn 91 — Budapesy, 16-20 September

An Implementation of a
Process Migration Mechanism
using Minix

Sylvain R.Y. Louboutin

University College, Dublin, Ireland
Louboutin@ccvax.ucd.ie

Abstract

This paper describes an implementation of a process migration
mechanism realised on a network of PCs running under Minix.

The design of Minix incorporates modern operating system design con-
cepts (micro kernel, message passing, client-server model) and insures
a good process encapsulation which is necessary for such a realisation.

Remote execution is achieved by using surrogates or stub processes so
that the lack of integration of the platform can be overcome. Despite
the drawback of leaving a residual dependency on the node where the
migrating process has been created it appears to be an appealing
approach particularly suitable to this system. The isomorphism
between the built-in message passing mechanism and the add-on
Amoeba communication protocol implementing RPC has been exten-
sively used to this purpose.

Minix, even enhanced with the Amoeba network communication facil-
ity is certainly not a distributed system. However, it features some of
the properties which makes feasible the realisation of a process migra-
tion facility. Furthermore, Minix does not require an actual network to
develop and test networking software which can be done on a stan-
dalone system. It therefore is a suitable and inexpensive platform to
conduct such experiments.

1. Background

A system made of independently owned workstations connected by a
fast local area network provides a large potential computing power
which is frequently under-utilized [Liv82a, Wan85a, Nic87a, Cov88a,
Lit88a, The88a]; some workstations are overloaded while other are
idle. This makes it highly desirable to share the work load among the
different stations.

The distribution of the work load may be simply achieved by automati-
cally initiating any new process on an idle host where it executes until
completion. It has been shown [Eag86a] that even a trivial adaptive
load sharing policy yields dramatic performance improvements by
using the otherwise wasted computing power.

EurOpen Autumn ‘91 — Budapest, 16-20 September

An Implementation of a Process Migration Mechanism using Minix

Krueger and Livny [Kru88a] have further shown that the introduction
of a pre-emptive process migration mechanism significantly improves
the performance of a system already capable of non-pre-emptive place-
ment of processes. A process migration mechanism makes possible the
implementation of receiver initiated strategies [Eag86b], and multiple
relocations which reduces the granularity of the distribution.

Process migration could also be used as a tool to achieve fault tolerance
(variation on check-pointing techniques), or more generally as a way to
deal with a lack of locally available resources i.e. not only CPU. But
this work focuses specifically on the use of a process migration
mechanism as a tool to implement a load distribution policy.

2. Introduction

A prototype has been implemented on a network of PCs running under
Minix (version 1.3) and communicating over Ethernet. This paper
shows than even if Minix is far from being a genuine distributed
operating systems [Tan85a], or may even be considered as a toy
operating system (dixit Tanenbaum author of Minix), it still exhibits
the qualities which makes feasible the implementation of a process
migration mechanism. Therefore Minix provides an inexpensive and
suitable platform for such experiments.

3. Process Migration

A process is basically a program in execution [Tan87a]. A process
migration mechanism makes it possible to transfer a process from one
machine to another one at any time during its life time. This entails a
pre-emptive extraction of a process from its original host and its re-
installation into another one where its execution must resume. The
amount of information which actually has to be transferred, is called
the process state.

If the migration is performed before any computation has started, i.e. in
the special case of a process placement, the process state consists of
just the code of the program executed. Otherwise the process state is
made of the whole address space of the process (code, heap and stack),
and of some information maintained by the operating system. These
two parts of the process state are sometime named respectively swap-
pable and non-swappable parts in analogy with operating systems
featuring process swapping. This naming convention will be used in
this paper despite the fact that Minix does not provide process swap-
ping.

Furthermore, the execution environment must provide a mechanism
whereby processes may transparently keep on accessing their resources
while executing remotely. Ideally, in a truly integrated distributed
operating system, resources would be accessible regardless of their
actual location in the network. A system made of stations running
Minix lacks this level of integration and a way to achieve transparent
remote execution must be provided.

Process migration has been implemented on a number of experimental
systems [Pow83a, Art86a, The86a, Zay87a, Smi88a, Dou87a] with
sometimes different goals and using different approaches. But systems
where it has been successfully implemented exhibit two main charac-
teristics which are:

214

EurOpen Autumn ‘91 ~ Budapest, 16-20 September

An Implementation of a Process Migration Mechanism using Minix

Process encapsulation. Interactions between a process and its
environment are performed via a message passing mechanism.
Systems which feature light weight processes restrict the granu-
larity of migration (e.g. in V-System where light weight
processes share the address space of one logical host the logical
host constitutes the unit or grain of the migration.)

Indirection between physical and logical addresses. Messages
are sent to location independent logical addresses but not to phy-
sical addresses. The mapping between the latter and the former
is handled by the operating system so that the references a pro-
cess has to its environment may be transparently rebound after its
migration. For instance messages are addressed to logical hosts
or a logical process group in V-System, through links in
DEMOS/MP or Charlotte or to ports in Accent. Sockets for exam-
ple (BSD UNIX) would not be suitable because they are bound to
location dependent addresses.

4. Minix

This chapter provides a brief description of Minix. It emphases the
similarities of form between its built-in message passing mechanism
and its add-on Amoeba like communication facilities which have been
used as the basis for the realisation of the remote execution facility.

The different components of Minix act as independent processes com-
municating via a message passing mechanism adopting a blocking
unbuffered rendez-vous like semantic. Minix uses the client-server
model and is made of a hierarchy of four layers of processes with the
user processes on the top. Processes may use the services provided by
processes belonging to the same layer or to the layer immediately
below.

The Minix built-in message passing facility appears to user processes
as three primitives which are:

send(dest, &message);

to send a message to the process dest identified by its slot number in the
kernel process table.

receive(source, &message);

to receive a message from a specific process source or from any pro-
cess.

send_rec(src_dst, &message);

to send a message and wait for a reply.

Services usually performed by the kernel in other monolithic systems,
are provided to user processes by two server processes which are the
Memory Manager (MM) and the File System (FS), both executing out-
side the kernel. The kernel itself is made of a set of (uninterruptible)
tasks which are the device drivers.

Technically, Minix has only one system cail (implementing the three
primitives described above), used by user processes to send or receive
messages to or from one of the two servers MM or FS. A procedural
interface is provided by the standard library to ensure the compatibility
with UNIX V7. It is important to stress that all interactions between a
process and its environment i.e. outside its address space goes through
this unique mechanism.

An Implementation of a Process Migration Mechanism using Minix

/* A Minix server providing three services arbitrarily named FIRST, SECOND

and THIRD */
message m;
int status;

while (TRUE) {

receive (ANY, &m);
switch (m.m_type)

}
m.m_type
send(m.m

{

case FIRST: status = do_first(<some-arguments>; break;
case SECOND: status = do_second(<some-arguments>); break;
case THIRD: status = do_third(<some-arguments>) ; break;
default: status = ERROR;

= status;
_source, &m);

/* the field m_source designates the client and is automatically

updated */
}

/* A client requesting the SECOND service. */

message mess;

mess.m_type = S
mess.<some-fiel
sendrec (SERVER,

ECOND;

d> = <some-values>;

&mess) ;

<some computation using the results>

Figure 1: A typical Minix-server and a client

MM and FS are not stateless servers. They both maintain information
about their clients. The Kernel in charge of message passing and con-
text switching must also maintain its own information about processes.
In Minix a process state is fully defined by the address space of the pro-
cess, which is made of three parts: the text, data and stack segments;
and by the content of three tables maintained separately by MM, FS
and the Kernel (the information held by MM and FS in their respective
tables correspond roughly to the u-area in other UNIX systems.)

Minix uses an adaptation of the connectionless network communication
protocol initially developed for the Amoeba distributed operating sys-
tem. This protocol implements Remote Procedure Calls (RPC) and is
based on a four layer model (instead of the seven layers of the ISO OSI
model) the physical layer being the Ethernet.

A Port uniquely identifies a server process and provides a logical
address to which all messages are sent. The location of a service i.e.
the mapping between a port and the actual location of the server pro-
cess listening to it is handled by the port layer. This is implemented in
Minix by the kernel which maintains a table of hints which is eventu-
ally updated by broadcasting a location request to other kernels. The
port layer provides a datagram service that is the delivery of 32 kilo-
bytes datagrams but with no guarantee on delivery.

The actual message service i.e. the reliable transport of bounded 32
kilobytes requests and replies is handled by the next layer named the
transaction layer. The interface of this third layer (partly handled by
MM) to applications is a set of four primitives which are:

getreq(hdr, buffer, size);
used by a server to accept a request.
putrep{hdr, buffer, size);

used by a server to send back a reply.

216

EurOpen Autumn ‘91 — Budapest, 16-20 September

H
M An Implementation of a Process Migration Mechanism using Minix

/t
An Amoeba server providing three services arbitrarily named FIRST, SECOND and THIRD.
This server listens to the port named &RMyServé&sS.

*/

header hdr;

char buffer [BUFSIZE], reply[BUF2SIZE], *strncpy();
unshort size, replysize, status, getreq(), putrep();

signal (SIGAMOEBA, SIG_IGN);
while (TRUE) ({
strncpy(&hdr.h_port, &RMyServ&S, HEADERSIZE);
size = getreq(&hdr, Dbuffer, BUFSIZE);
if ((short) size < 0) {
handle_error();
continue;
}
switch (hdr.h_command) {

case FIRST: status = do_first(<some-arguments>); break;
case SECOND: status = do_second (<some-arguments>) ; break;
case THIRD: status = do_third(<some-argumentsx>) ; break;
default: status = ERROR;

}

hdr.h_status = status;

putrep(&hdr, reply, replysize);

/* A client requesting the SECOND service */
header hdr;

char buffer [BUFSIZE], *strncpy () ;

short size;

unshort trams();

strncpy (&hdr.h_port, &RMyServ&S, HEADERSIZE);
hdr.h_command = SECOND;

timeout (100); /* the transaction will fail if the service is not
* located within 10 seconds */
size = (short) trams(&hdr, buffer, BUFSIZE, &hdr, buffer, BUFSIZE);

1f (size < 0)

printf (&RTransaction failed (%d)0S, size);
else if (hdr.h_status == ERROR) <deal with error>;
<some computation using the results>;

}

Figure 2: Typical Amoeba-server and a client

trans(hdrl, bufferl, sizel, hdr2, buffer2, size2);

used by a client to perform a transaction i.e. send a request and wait for
areply.

timeout (time) ;

used by a client to set a timeout to the transaction (time to locate the
service and not to perform the request.)

The last layer or service layer defines the actual semantic of the service
provided by a server process. In the example (Figure 2) three services
are provided namely FIRST, SECOND and THIRD.

Two different message passing mechanisms coexist within the same
system i.e. the built-in Minix one and the Amoeba add-on one. Mes-
sages exchanged using the former will be named Minix-messages
whilst messages exchanged via the latter are Amoeba-messages.
Accordingly, a server process using such a mechanism will be called
either Minix-server or Amoeba-server. The similarities between both
message passing mechanisms will be taken advantage of in the realisa-
tion of the remote execution facility.

EurOpen A ‘91 — Budapest, 16-20 Septemb 217

An Implementation of a Process Migration Mechanism using Minix Openy

5. Implementation

The implementation will be described by first introducing the naming
convention used throughout the rest of this paper and by giving an
overview of the sequence of events (or scenario) involved in a migra-
tion.

The places where the action takes place are:

° The original node (or host) is the birth place of the migrating

process.
° The source node is the place where a migration is initiated.
. The destination node is the place where the migrating process

will eventually resume execution.
The cast of characters are:

° The old incarnation of the migrating process. The old incarna-
tion on the original host becomes the surrogate.

. A target process on the destination host which will be possessed
to become the new incarnation of the migrating process. It is
usually forked off by the migration daemon on the destination
host.

° The migration daemon on the destination host is in charge of re-
installing the new incarnation of the migrating process. It is an
Amoeba-server acting on the behalf of the triggering process.

° The triggering process initiates the migration and is in charge of
the extraction of the migrating process. It resides on the source
node and is a client of the migration daemon.

The scenario is (events are numbered chronologically, number 4 and 4’
may take place simultaneously):

1. The triggering process on the source node initiates the migration
by extracting the non-swappable part of the migrating process
and then requesting the migration daemon to install it on the des-
tination node.

2. The migration daemon forks off a new target process and
possesses it using the non-swappable part of the migrating pro-
cess it received from the triggering process. The target process
becomes a ghost.

3. The triggering process and the migration daemon then cooperate
to ship the address space of the migrating process.

4. The triggering process sends the SIGMIG signal to the old incar-
nation which then executes the surrogate program (if appropriate
i.e. if the source node is the original node.) The surrogate listens
to its private port waiting for the new incarnation requests.

4’. The migration daemon sends the SIGMIG signal to the new incar-
nation which resumes execution in remote execution phase.
The action is made of two phases:

° The transfer phase starts when the triggering process initiates the
migration. During that phase the migrating process is frozen and
its state is shipped across the network.

. The remote execution phase starts when the new incarnation
resumes execution (starting after 4 and 4°.)

These two phases could be addressed independently but the strategy
adopted for remote execution dictates what actually needs to be

218 EurOpen A ‘91 - Budapest, 16-20 Septemb

p |

An Implementation of a Process Migration Mechanism using Minix

5.1. Remote execution

transferred from the process state. Remote execution is thus described
first.

From a user process point of view, a UNIX-like system provides only
two abstractions which are the processes and the files. Processes are
organized in a tree like hierarchy with “Init” as the root; files are them-
selves organized in another tree like hierarchy with */* as the root (I/O
devices, directories or pipes which appear as special kind of files do not
constitute a separate abstraction.) This concept appears in the design of
Minix which clearly separates the roles within the operating system
between MM (in charge of processes) and FS (in charge of files.)

The lack of integration of a system made of UNIX-like workstations
partly comes from the fact that each node has its own processes-tree
and its own files-tree. Systems like NFS or Newcastle Connection
[CouB8a] partly overcome this by providing ways to unify, or at least
connect, the different file trees; a system like Chorus/MIX |Arm89a]
allows the different process trees to span over the network.

Migrating a process will involve pruning and grafting. The view a pro-
cess has of its environment (as well as the view the environment has of
the process) depends heavily on its relative position in the process
hierarchy. Therefore to execute transparently on a remote node, a pro-
cess has to maintain its position in its original hierarchy.

In the proposed prototype a migrating process is replaced in its
processes hierarchy by a surrogate. A surrogate acts as a private
Amoeba-server for the migrating process and performs system calls on
its behalf. This has already been adopted by systems such as Sprite. It
imposes a residual dependency on the original host, but there only. It
does not leave dependencies on any of the nodes a migrating process
may have successively visited as in DEMOS/MP where a process leaves
behind a trail of forwarding addresses.

A process executing remotely forwards system calls by embedding the
content of the Minix-messages which would have otherwise been
delivered locally to either MM or FS within a Amoeba-message which
is sent across the network to its surrogate. The surrogate passes it on to
the local appropriate Minix-server. The surrogate is thus mostly a
straight forward Amoeba-server. A process likely to be migrated must
be linked with a modified version of the standard library where the pro-
cedural interfaces to each of the system calls are provided.

Three difficulties remain and must be addressed:

1. Minix indulges itself into passing large arguments by reference.
In that case (for instance for read() or write() system calls,) the
content of the buffer must be sent along with the message (sim-
ple marshalling/unmarshalling.)

2. A process executing remotely must receive signals which may
have been sent to it on its original host. To achieve this, the sur-
rogates provides a handler for all signals and maintains a bitfield
with one bit for each signal received since the last system call.
This bitfield is sent along with the reply to the next system call
the remote process will eventually perform. The remote process
may then act accordingly.

3. When a process executing remotely forks, its state is copied back
to its original node. The surrogate may then creates a child
identical to the migrating process. The processes-tree on the ori-

EurOpen A

h

219

‘91 — Budap

t, 16-20 Sep

An Implementation of a Process Migration Mechanism using Minix Opedy

int migrate(process, buffer, map)

/* returns the actual size of the buffer */

int process; /* pid of the target process */

char *buffer; /* buffer for non-swappable part of the process state */
struct mem_map *map; /* memory map */

Figure 3: Declaration of migrate()

ginal node evolves as if no migration has occurred. It is assumed
that the migrating process is aware of the fact that it is executing
remotely and that is has been provided with the name of the
private port of its surrogate (see transfer.)

5.2. Transfer

As a consequence of the method adopted to achieve remote execution,
only the content of the tables of MM and Kernel needs to be respec-
tively extracted from the original node and re-installed into the remote
destination.

The modification of Minix consists of three new system calls and a new
signal. This new system calls are provided by MM and require two
new services from the Kernel freeze and resume. Migrate() takes care
of the extraction and metaexec() of the re-installation. Getorg() is used
by the migrating process itself and a new signal SIGMIG is used for the
resumption of both incarnations. Next we describe these new tools in
the sequence in which they are used.

5.2.1. Migrate()

This system call is used on the original host by the triggering process,
typically a command activated by the shell, to extract the migrating
process.

It accepts as argument the pid of the migrating process. It returns the
portion of the non-swappable part of the process state belonging to MM
and the Kernel along with the memory map of the process (data struc-
ture describing the memory layout of the process.) This system call
freezes the migrating process.

5.2.2. Metaexec()

This system call is used on the destination host by the migration dae-
mon to install the new incarnation of a migrating process.

It accepts the pid of the target process, the non-swappable part of the
process state and the memory map of the migrating process. This sys-
tem call does not create a new process but requires a target process
which becomes possessed by the new incarnation of the migrating pro-
cess. The memory layout of the target process is modified to match the
memory requirements of the new incarnation.

int metaexec(process, buffer, size, map)
/* returns the actual size of the buffer */

int process; /* pid of the target process */
char *buffer; /* buffer for non-swappable part of the process state */
int size; /* actual size of the buffer */

struct mem_map *map;/* memory map */

Figure 4: Declaration of metaexec()

220 EurOpen A ‘91 - Budapest, 16-20 Septemb

An Implementation of a Process Migration Mechanism using Minix

Private Port Tag Mode of Execution

<none> LOCAL L. Default for any process
<none> REMOTE 1L What’s left after an in-
termediate migration
<PORTNAME> LOCAL HI. This is a surrogate
<PORTNAME> REMOTE 1V. Thisis a new incarnation

Figure 5: Different modes of execution

As the content of the address space has yet to be transferred, the new
incarnation remains frozen in a special state called ghost. Metaexec()
returns the updated memory map of the actual memory layout of the
ghost, the physical addresses of the different segments being changed
to match the new location. That way the migration daemon then knows
where to install the address space of the migrating process.

Two new fields are added to the information held by MM about each
process. The first one is the name of a private port eventually used by a
process executing remotely to communicate with its surrogate; the
second one is a tag indicating whether the process is executing locally
or remotely. Both fields are updated by the migrate() and metaexec()
system calls depending on their previous value. The combinations of
possible values of this two fields define the mode of execution.

When migrate() is called upon a process in mode I., a unique private
port is created for it. The process is tagged as being LOCAL and is then
changed to mode HI. Migrate() fails if it is called upon a process in
mode 111 because a surrogate must not be migrated. The mode of exe-
cution is not affected by the execve() system call and remains
unchanged.

On the destination host, when the target process is possessed by the
new incarnation of a migrating process (with a call of metaexec()), it is
tagged as being REMOTE. As it inherited the private port from the
migrating process it is in mode 1V. If migrate() is called upon a process
in mode 1V i.e. for a subsequent relocation, the field containing the
private port name is cleared. The process is then in mode II.

It is possible to restore a process in its previous state using metaexec()
with a special set of parameters. This is necessary to recover from a
migration failure or when migrate() and metaexec() are used to perform
a remote fork() (typically to move from mode II back to mode IV.)

A migration daemon (an Amoeba-server) resides on each node willing
to accept incoming migrating processes. It is in charge of installing a
migrating process and transferring the address space. The address
space of a migrating process is shipped in chunks which must be
smaller than 30,000 bytes (to fit in an Amoeba-message). Once the
whole process state has been transferred, SIGMIG is sent to both incar-
nations.

5.2.3. SIGMIG

SIGMIG cannot be ignored. If not caught, the receiving process is
killed. Sending SIGMIG is the only way to unfreeze both incarnations
of a migrating process. A process expecting to migrate must then pro-
vide a signal handler for SIGMIG. The signal handler uses getorg() sys-
tem call to determine what its mode of execution is (see Figure 5).

In mode L., the handler returns without any further action (the signal
may have been sent to recover from a failed migration or after a remote

EurOpen Autumn ‘91 — Budapest, 16-20 September

An Implementation of a Process Migration Mechanism using Minix Opery

int getorg(org)
/* returns either LOCAL or REMOTE */
port *org; /* private port of the surrogate */

Figure 6: Declaration of getorg()

fork()). In mode II, the process must terminate to avoid leaving any
residual dependency on a node visited en route. In mode 111, it executes
the surrogate program. In mode IV, it just resumes execution in remote
execution phase.

5.2.4. Getorg()

This system call is used by the signal handler that the migrating process
must provide for SIGMIG. It returns both the value of the tag and the
private port of the calling process. The migrating process is then able
to determine what is its mode of execution and what is the port name of
its surrogate.

6. Discussion

The proposed mechanism lacks the transparency claimed by other
implementations. The process candidate for migration must have been
linked with a special library and more importantly must provide a
handler for the new SIGMIG signal.

Remote execution is accomplished using a surrogate with the drawback
of leaving a residual dependency on the original host.

The semantics of signaling is slightly altered when the process executes
remotely. A process should receive a signal in two cases [Bac86a]:
when it returns from a system call or when re-scheduled after having
been pre-empted by the scheduler. A process executing remotely can
receive a signal only in the former case.

A migrating process has full access to all its environment regardless of
its location and there is actually no restriction on which kind of pro-
grams may be executed (it might not be a very palatable for highly
interactive programs such as an editor, but it would work.)

The modification of the operating system is minimal and most of the
transfer is actually handled by user processes (the triggering process
and the migration daemon.) The content of the table maintained by FS
does not need to be either extracted or replaced. Whilst all the mes-
sages addressed to FS must be forwarded to the surrogate, only a few
of the messages addressed to MM (e.g. the special case of exit() which
has to be executed both locally by the terminating process and by its
surrogate) need to be.

This mechanism should be suitable for different kinds of load distribu-
tion policies. The replacement of a CPU bound process (typical candi-
date for migration) by a surrogate program which has an 1/0 bound
behaviour should remove a significant load from the original node (no
experiment of load distribution policy using this mechanism has been
conducted yet.) Any node on the network may become a satellite or
processing server of any other one. The mechanism is sufficiently
flexible to allow each node to adopt its own policy (basically by cus-
tomizing the triggering process and migration daemon.)

222 EurOpen A ‘91 — Budapest, 16-20 Septemb

An Implementation of a Process Migration Mechanism using Minix

7. Conclusion

The design of Minix provides a good process encapsulation and clearly
separates the roles between the management of processes (via MM)
and files (via FS.) The network communication protocol borrowed from
Amoeba clearly separates the notion of logical addresses (ports) from
actual location. These properties made possible the implementation of
a process migration mechanism.

The isomorphism between both the message passing mechanism used
internally in Minix and the message passing mechanism used for com-
munication over the network has been extensively used for the remote
execution facility. But this isomorphism is not sufficient and the mere
fact that two distinct message passing mechanisms coexist is itself an
obstacle to a true integration which had to be overcome by using surro-
gates.

Nevertheless, Minix provides a suitable and inexpensive platform to
conduct experiments involving non trivial issues of distributed operat-
ing systems.

Acknowledgement

Thanks to Gabriel McDermott (UCD) for his valuable help and advice
in the writing of this paper.

References

[Arm89a] Francois Armand, “Revolution 89 or Distributed UNIX
Brings it Back to its Original Virtues,” in Proceedings of
the '90 Ft Lauderdale workshop on distributed and mul-
tiprocessor systems (1989).

[Art86a] Yeshayahu Artsy, Hung-Yang Chang, and Raphael Finkel,
“Processes Migrate in Charlotte,” Report No 655 (August
1986).

[Bac86a] Maurice J. Bach, The Design of the UNIX Operating Sys-
tem, Prenctice-Hall (ISBN 0-13-201799-7 025) (1986).

[Cou88a] George F. Coulouris and Jean Dollimore, Distributed Sys-
tems — Concepts and Design, Addison-Wesley Publishing
Company (ISBN 0-201-18059) (1988).

[Cov88a] Luis L. Cova and Rafael Alonso, “Distributing workload
among independently owned processors,” Technical
Report No. CS-TR-200-88 (December 1988).

[Dou87a] Alfred Douglis and John Ousterhout, *“Process Migration
in the Sprite Operating System,” University of California
at Berkeley, Technical Report No UCB/CSD 87/343
(February 1987).

[Eag86b] D. Eager, E. Lazowska, and J. Zahorjan, “A Comparison
of Receiver-Initiated and Server-Initiated Dynamic Load
Sharing,” Performance Evaluation 6(1), pp. 53-68 (April
1986).

[Eag86a] Derek L. Eager, Edward D. Lazowska, and John Zahorjan,
“Adaptative load sharing in homogeneous distributed sys-

EurOpen Autumn 91 — Budapest, 16-20 September 223

An Implementation of a Process Migration Mechanism using Minix

[Kru88a]

[Lit88a]

[Liv82a]

[Nic87a]

[Pow83a]

[Smi88a]

[Tan85a])

[Tan87a]

[The86a]

[The88a]

[Wan85a]

[Zay87al]

tems,” IEEE Transactions on Software Engineering 12(5),
pp. 662-675 (May 1986).

Phillip Krueger and Miron Livny, “A Comparison of
Preemptive and Non-Preemptive Load Distributing,” in
Systems, San Jose, California (June 1988).

Michael J. Litzkow, Miron Livny, and Matt W. Mutka,
“CONDOR - A Hunter of Idle Workstations,” pp. 104-111
in Systems, San Jose, California (June 1988).

M. Livny and M. Melman, “Load Balancing in Homo-
geneous Broadcast Distributed Systems,” in Sigmetrics
(April 1982).

D. Nichols, “Using Idle Workstations in a Shared Comput-
ing Environment,” in Proceedings of the 11th ACM Svm-
posium on Operating Systems Principles, Austin, Texas
(November 1987).

Michael L. Powell and Barton P. Miller, “Process Migra-
tion in DEMOS/MP,” in Proceedings of the 9th ACM Sym-
posium on Operating Systems Principles (1983).

Jonathan M. Smith, “A Survey of Process Migration
Mechanisms,” ACM Operating Systems Review 22(3) (July
1988).

Andrew S. Tanenbaum and Robbert van Renesse, “Distri-
buted Operating Systems,” ACM Computing Surveys 17(4)
(December 1985).

Andrew S. Tanenbaum, Operating Systems — Design and
Implementation, Prenctice-Hall International Editions
(ISBN 0-13-637331-3) (1987).

Marvin M. Theimer, “Preemptable Remote Execution
Facilities for Loosely-Coupled Distributed Systems,”
Technical Report (PhD thesis) No STAN-CS-86-1128
(CSL-86-302) (June 1986).

Marvin M. Theimer and Keith A. Lantz, “Finding Idle
machines in a Workstation-Based Distributed System,” in
Proceedings of the 8th International Conference on Distri-
buted Computing Systems, San Jose, California (June
1988).

Y. Wang and R. J. T. Morris, “Load sharing in distributed
systems,” [EEE Transactions on Computers 34(3),
pp. 204-217 (March 1985).

Edward R. Zayas, “Attacking the Process Migration
Bottleneck,” pp. 13-24 in Proceedings of the 11th ACM
Symposium on Operating Systems Principles, Austin,
Texas (November 1987).

224

EurOpen A ‘91 - Budapest, 16-20 Septemb

N
4

HAWKS - A Toolkit for Interpreted
Telematic Applications

Carl Verhoest

Telesystemes Innovation, Paris, France
cave@telesys-innov.fr

Abstract

On-line information retrieval systems offer a wide range of informa-
tion. Many companies relay on these informations for their strategy
planning. Since most of these systems differ in their structure and
interface, their use is not as trivial as wished. The workstation
HAWKS, presented in this paper, offers a unique interface for informa-
tion retrieval on a large selection of services. This interface can be
used directly by end-users in a fully graphical supported environment.
At the same time, HAWKS offers an environment which enables the
rapid development of interpreted applications in the domain of on-line
information retrieval, without the need to know the targeted service in
detail. At the basis of both environments are the HAWKS Access
Language and the Global Dictionary. In this Global Dictionary all the
On-line services are modelled according to a conceptual model, and
implemented in a C+ objects persistent environment.

1. Introduction

More and more, now a days, companies relay their strategy on a con-
stant information flow. Not only the information about the companies
internal state is concerning, but information about concurrents, con-
current products, and marketing aspects is used. These latter informa-
tions change on a regular (daily, weekly ...) basis, and therefor require
a constant following from the companies concerning. Uptodate infor-
mation has become a major key in company policies, implying a huge
information need.

To be able to meet this information need, companies have numerous
media at their disposal: printed matter (newspapers, domain oriented
magazines etc.), information brokers (consultants, marketing specialists
etc.), local database- and information- systems, and On-line Informa-
tion Retrieval Systems (OIRS). Local database/information systems
and OIRS often have the advantage of providing the information seek-
ers (end-users) with some information selection mechanism; instead of
having to go through all the available information, the wanted informa-
tion can be directly selected. This is normally done by means of query
formulations, resulting in quicker, and therefor more cost effective,
information retrieval. As stated above, one major concern is the time-
relevance of the information. It is clear that OIRS have a better chance

EurOpen Autumn 91 — Budapest, 16-20 September

HAWKS - A Toolkit for Interpreted Telematic Applications

to be more up to date than local systems, as far as it concerns informa-
tion from outside the company.

In this article we are concerned about the usage of OIRS systems; the
way of selecting the right service, finding the right information and
reusing the found information.

In the next sections we will state the general problems one encounters
using OIRS, provide a global solution at the end-user level and present
one practical implementation, in a UNIX environment, of this solution:
HAWKS (the Homogeneous Access WorKStation). The conclusions
will be followed by a set of objectives for the near future of this pro-
ject.

2. OIRS Troubleshooting

Considering that OIRS exist since the sixties, and the great variety of
services potentially available to the end-user, the actual use of these
systems has been much lower than expected. The following reasons
can be identified:

° There is no comprehensive global picture of the services being
provided (a global directory), therefor the user has no easy
means of identifying which service could provide the sought
information, how to log-on to it, how to use it, etc.;

'y Each service has its own data structure and its own access
language; therefore the end-user has to master a new set of rules,
for each service he wants to access;

) The Access Language provided by these services (besides being
different from service to service) are usually very cumbersome,
slow and unfriendly. It is usually keyword oriented and makes
little use of modern techniques, such as those which are available
in graphic interactive interfaces;

. The services have been conceived for access by simple devices
(dumb terminals). Information is therefore usually sent as a
stream of characters. Modern business applications require,
instead, the possibility of organizing this information using popu-
lar application packages (spreadsheets, databases, word proces-
sors etc.) or the possibility of reusing the data retrieved from the
remote service in local applications, developed with conventional
programming languages;

. There is a growing need to provide, in conjunction with the
requested information, additional information, very often of a
sophisticated graphic nature.

3. TOOTSI

On-line services are to be accessed by dumb terminals or pc’s running
some communication software and a terminal emulation. It is clear that
the locally available hardware can be exploited at a much further extent
than it is done actually.

The Esprit 2 project 2109 TOOTSI (Telematic Object Oriented Toolkit
for System Interfaces) has for aim to provide a toolkit enabling rapid
application development in the domain of On-line services. Such
applications should run on the locally available hardware, and fill the
gap between the end-user and the OIRS. These applications should also

226

EurOpen Autumn 91 — Budap 16-20 Septemb.

H
4

HAWKS — A Toolkit for Interpreted Telematic Applications

provide an added value to the basic work of information retrieval such
as integration with existing software on the workstation.

One first condition [TOO89a] for this toolkit is that it provides an appli-
cation developer with a uniform view of all targeted On-line services.
This uniform view has to include features as: communications, query
languages and information restructuring.

A second condition is derived directly from the On-line service
environment: since the On-line services are known to change fre-
quently their interfaces, query languages etc. it is clear that the applica-
tion, build with the toolkit, is to be adaptable to these new changes
without recompiling.

The toolkit will support the development of applications at two levels;
1. Compiled applications

Here the applications are developed by a so called TOOTSI appli-
cation programmer. The toolkit presents itself as a library of
classes, providing a unique, object oriented, view of the On-line
services, as well as a set of graphical objects to construct the
User Interface (OSF/MOTIF) for the application. The latter assur-
ing all TOOTSI applications to have the same “look and feel”.
The application is developed using these classes in a C+
environment. The resulting product will apply to a specific
domain of interest; some flexibility of the existing On-line
service(s) will be exchanged for the ease of use by the end-user.
The application programmer in this case is a programmer
knowledgable in object oriented programming, and the end-
user’s need.

2. Interpreted applications
There are two main reasons for enabling interpreted applications:

a) In a compiled application all the user steps are foreseen
and limited to the specifications of the application. Hence,
only a subset of functionalities of the remote service are
available and they are ordered in some scenario. Foresee-
ing all the possible end-user wishes in a compiled environ-
ment asks for elaborate context checking by the applica-
tion programmer. In an interpreted solution some of this
context checking will be relayed upon the end-user.

b) Compiled applications are fast and easy to use, but they
foresee no eventual change in information needs. A
change of an information need may result in redesigning
the application, and therefor the intervention of an (exter-
nal) application programmer.

4. HAWKS

4.1. Objectives

The, above mentioned, two considerations (lack of flexibility for the
end-user, and lack of adaptability of the application) converge to the
need of an interpreted toolkit. This toolkit will present itself as a
workstation providing two main features:

a) A unique access language to interrogate the On-line services; this
interpreted language can be used directly by the end-user, and

EurOpen Autumn 91 — Budapest, 16-20 September 227

HAWKS — A Toolkit for Interpreted Telematic Applications

will be mapped onto the native language of the connected ser-
vice, according to the context.

b) An application development environment, enabling the construc-
tion and checking of interpreted applications.

In this paper we will present such a toolkit for interpreted applications:
HAWKS.

4.2. Software Functionalities

4.2.1. Multiple Database Connections

Now a days, an end-user is always limited to access one database at a
time within one communication program. HAWKS provides multiple,
simultaneous, connections to different services. Each connection is
being considered as a session. Within HAWKS there is the possibility
of data exchange between sessions. Not only does it facilitate cross-
database searching, but cross-service searching becomes a trivial
operation. The number of simultaneous sessions possible, depends on
the available communication hardware.

Since several communication events can occur at the same time, on dif-
ferent lines, the communication layers are implemented using an
event-driven approach. The X11-server events are used to inform the
application about incoming data, line errors etc. This implementation
has the advantage that it permits the communication layers to reside on
a different machine in a network.

4.2.2. The Global Dictionary

As stated before, one of the main requirements for HAWKS was the
flexibility vis-a-vis the changing of On-line services or the changing of
the application requirements in terms of targeted services; if an On-line
service changes its interface, or the application wants to access a ser-
vice which was not foreseen, the workstation is to adapt to this new
situation in a quasi automatic way. This means that all the information
describing an On-line service is to be retrieved from a support, dif-
ferent from the compiled core. The solution proposed by TOOTSI, and
used in HAWKS, consists in creating a so called GLOBAL DICTIONARY
(GD) [TOO90a].

The GD contents can differ for every installed HAWKS, enabling a
client specific configuration. The following types of information are
typically stored in the GD:

. What On-line services can be accessed by this workstation
° For each accessible On-line service:

. How to access it (automatic connection parameters)

° Description of the native language of the service

° What residing databases on the service can be accessed

° Information about the databases domain

. Description of the structures of the databases (formats, indexes
etc.)

° What applications are available

° Which users are known to HAWKS and what are their rights in
terms of connections and applications

228

EurOpen Autumn 91 — Budapest, 16-20 September

HAWKS — A Toolkit for Interpreted Telematic Applications

What are the local hardware constraints (especially for commun-
ications)

It is clear that these informations have a strong semantic correlation
among them: not all the users may access all the On-line services, the
native language contains functionalities which will not be applicable to
all the databases, some databases can be found on different servers,
applications can be restricted to one or more users, databases or
servers, etc. In order to control the consistency, and to avoid redun-
dancy the information is modelled by using a conceptual tool. The
model is an extension of the Entity-Relation model [Col88al].

After the design phase of the contents of the GD, by means of the con-
ceptual model, the model is mapped onto a C+ objects environment.

What information is needed by HAWKS depends on the context of the
workstation; this context may, and will, change at run-time. In order to
avoid a congestion of the local hardware the GD is implemented on a
CH objects persistent environment; objects are loaded into main
memory when needed and restored, if modified, on a physical support.
For workstations having limited hardware resources, a GD server
working in a LAN environment, and a GD in a TOOTSI Gateway
(WAN) are envisaged.

For minor changes to the GD (changes not interfering with the struc-
ture of the implemented conceptual model) a so called GLOBAL DIC-
TIONARY ADMINISTRATION MANAGER (GDAM) is resident in the
toolkit. The access to this GDAM is reserved for people having a pro-
found knowledge of the conceptual model used, and of the targeted
On-line service.

4.2.3. The Access Language

Probably, one of the main barriers for an end-user accessing an OIRS, is
the systems access language. Some systems provide a menu driven
interface to ease its use, but mostly some procedural language is pro-
posed [UKO89a]. To know the access language is one thing, but to use
it in a sophisticated way is another: it requires a profound knowledge of
the databases structures.

Manipulating a procedural language and knowing the structure of the
database are inherent to the use of OIRS. HAWKS does not alter that
situation, however, it provides the user with ONE procedural language
and ONE general database structure to access a wide range of On-line
services.

The HAWKS Access Language (HAL), is a procedural language con-
sisting of four major groups of commands:

. Common Command Language (CCL)

The CCL was defined by the International Standardization Organ-
ization (ISO) in 1988 It was conceived as a standard interface for
OIRS, and adopted by On-line services such as ESA-IRS and
EURONET-DIANE. It provides the end-user with one structure
for all the databases and a procedural language (CCL) to interro-
gate these databases. The CCL and the database structure are
adopted in HAL. The main features found in the database struc-
ture are the following:

. FILES; databases consisting of

° RECORDS; a group of data usually treated as a unit, con-
sisting of

HAWKS — A Toolkit for Interpreted Telematic Applications

INDEXES; fields in a record, a specific area used to store
specific information. The main functionalities found in the
CCL are:

Connection to a database, and information about this data-
base

A browsing of existing indexes for the selected database
A browsing of possible search terms for each index

A query statement allowing the following operators:

¢ BOOLEAN operators

. TRUNCATION operators (left-handed, embedded,
right-handed, limited and unlimited number of char-
acters)

. PROXIMITY operators (limited and unlimited
number of words, specified and unspecified
sequence)

. SUFFIX limited search (general purpose index
specified)

. PREFIX limited search (numeric index specified)

A Selective Dissemination of Information (SDI) func-
tionality

An On-line browsing of records found, in some format

An off-line print on the OIRS of the records found, in some
format

A history of the search strategy and results

A thesaurus with the operators NARROWING and
BROADENING

As stated in the definition of the CCL [1SO88a], these functionalities
represent not all the possibilities on each particular service; it is merely
a subset. On the other hand, the CCL does not guarantee all its func-
tionalities to be applicable to all On-line services and their databases.
HAWKS provides an end-user with two possible ways of using the CCL

part of HAL:

a)

b)

A textual mode:

The end-user is to type all CCL commands. This is like
being connected to the On-line service by means of a
dumb terminal. Before translating the command into
native language and sending it to the service, HAWKS will
check the use of functionalities according to the current
context, and signal the end-user any errors resulting from
using a CCL functionality which is not applicable to the
current service and/or database.

A graphical mode:

End-users not familiar with the CCL language are guided,
according to the current context, wile constructing their
commands. Not only does this mode prevent errors as sig-
naled in the textual mode, but also it provides the user with
knowledge about the current database structure, such as
possible indexes or possible print formats. Once the end-
user validates his command, the system will generate the
appropriate CCL command, and provide it in textual mode,
hence having an educational aspect.

230

EurOpen A ‘91 — Budapest, 16-20 Sey b

L

HAWKS — A Toolkit for Interpreted Telematic Applications

Both modes can be used at any time during an end-user session. The
control on functionality constraints is done using the GD model.

. The Interpreted Applications

Any application build with HAWKS will present itself as being a
command of HAL. This means that end-users do not have to
realize the fact that they are calling an application, but can con-
sider the command as being alike to all the primitive commands.
These commands can be issued in both textual and graphical
mode, and take parameters. We will go deeper into the use of
parameters below. These applications can be context dependant,
i.e. they will generate a local error in textual mode, or not present
themselves in graphical mode, whenever the current context is
not justified. Take for example an application which calls for a
sophisticated sorting of records on the on-line service; it will
only be applicable on the services providing this functionality.

° Locally executed commands
These commands can be divided into two subgroups:
a) End-user commands:

These are the commands that are not trivial for On-line
database searching, but aid the end-user in his work. We
state some of them:

° Saving of received data on the workstation in some
specific format

' Automatic recording of scenarios, which can be
“replayed” at some other time

° Cut and past facilities with other applications
b) Application developer commands:

Commands available for application development. A
priori they are not available to the end-user. We will
categorize these commands in detail in Section 4.2.4.

° Native language commands

The CCL language does not provide all existing functionalities on
On-line services; this being a direct result from the fact that it
should be applicable to a wide range of services and therefor is a
subset of functionalities. Apart from the available databases on a
service, these On-line service specific functionalities distinct one
service from an other. If HAWKS was to offer only the above
mentioned groups of commands, some existing, sometimes really
powerful, functionalities on OIRS would be no longer employ-
able by the end-user. Thence, the use of the service's native
language can be mixed at any time with the above defined com-
mands. The native language is recognized by HAWKS and
checked with the current context. Syntax checking, a lex and
yacc implementation, is performed locally in order to prevent
the, often so cumbersome, errors generated by the On-line ser-
VicCe.

4.2.4. The Application Development Environment

So far, only the end-user point of view has been presented. In this sec-
tion we will look at the toolkit for the development of interpreted appli-
cations.

For the application developer an application presents_itself as a
MACRO. A macro is a sequence of commands which are interpreted by

EurOpen A ‘91 - Budapest, 16-20 Septemb 231

HAWKS — A Toolkit for Interpreted Telematic Applications

HAWKS. All the commands from HAL can be used to build a macro.
The following example is a macro which connects to the wanted data-
base, searches for all records about cardiovascular agents, and down-
loads the first 10 records:

connect Questel

base wpil

search cardiov! adj agent
show 1-10

disconnect

The fact that an existing macro presents itself as a HAL command,
implies that a macro can call another, existing, macro and pass parame-
ters to it (recursion is prohibited and tested for). In this way, an appli-
cation programmer is able to layer his macros, and build its own
libraries. Inside macros, variables can be used. These variables can be
given an initial value by assigning them or by passing parameters to the
macro. If a variable is referenced by the interpreter, and its value is not
yet known, the end-user will be prompted to provide a value. Variables
are all of type string, but interpreted, there where possible, as numbers
(real or integer).

In 4.2.3 we already made reference to the locally executed commands
for the purpose of macro building. They can be distinguished in the
following groups:

. Variable affecting
° Control structures:

These are the standard control structures found in any interpreted
language: WHILE, IF-THEN-ELSE and GOTO

. Data selection and extraction:

If one wants to build powerful macros, one can not rely on the
consecutive execution of HAL commands only. At some stage it
should be possible to look at the received data and act upon
accordingly. One might even think that the macro is to continue
while using earlier found data (i.e. cross-searching). HAL pro-
vides an application programmer with primitives to search and
retrieve specific data in the received information, and affect this
data to variables. In this way this data can be used later in the
macro.

The following example prompts the end-user for a search term and
downloads all records if there are less than 20 answers. If more, the
end-user will be prompted to indicate the number of records he wants.

search $search_term$

cut("items retrieved:",S$records$)
if Srecords$ > 20

then show 1-how_many

else show 1-Srecordss$

Applications can be context dependant, according to the application
programmers intentions. The appropriate context is a result of the used
language inside a macro: the use of native language binds the macro to
a specific On-line service, the use of some operators can bind the
macro to a specific database, whilst the use of the data selection primi-
tives refers to a specific database structure. Generally speaking, a con-
text independent macro uses no more than the CCL-, variables
affection- and control structure commands. It is the programmers
responsibility to type his application for the proper context. Once
typed, an application will be stored and handled by the GD.

232

EurOpen Autumn 91 — Budapest, 16-20 September

| .4
T
]

ol

P

HAWKS — A Toolkit for Interpreted Telematic Applications

[User Interface

2

Exp

D Int

A v

-)[Communications}

J

Figure 1: HAWKS global architecture

The application programmer has the following tools to builds his appli-
cation:

° A dedicated macro editor accessible through HAWKS
. A syntax checker:

The integrity of the macro vis-a-vis the associated context is
checked as well as the syntax of the used commands without run-
ning the macro.

A debugger:

The debugger enables the programmer to execute his macro step
by step, debug called macros, see the contents of the variables,
insert additional commands, jump to another command of the
macro etc.

4.3. The Architecture

In Figure | the global software architecture of HAWKS is depicted.
6 main modules have been conceived:
I. The User Interface

It does what its name suggests: interface HAWKS with the end-
user and the application programmer. The interface was con-
ceived according to OSF/MOTIF.

The Expander

Before a macro is executed, all the internal macro calls are
resolved and expanded. A variable environment is created and
all the commands are tested against the current context.

The Interpreter

Each command is interpreted in sequence. If it concerns a com-
mand issuing a communication, the next command will be exe-
cuted only after the reception of the On-line service’s response.

The Dataformatter

This module handles the received information. It searches for
specific situations in the information, and is capable of indicating

EurOpen Autumn ‘91 — Budapest, 16-20 September 233

HAWKS — A Toolkit for Interpreted Telematic Applications

what actions are to be taken in what situation. These actions are
so called “system macros” and are interpreted by the interpreter.
Before doing so, the interpreter, puts his actual environment on a
stack and pops it when finished. All this is done transparent for
the end-user. The Dataformatter is aware of the functionality
asked to the OIRS, and will restructure the incoming information
according to the GD contents. In this way each HAL command
has a unique return value, independent of the connected service.
Containing all the search mechanisms on the received informa-
tion, the Dataformatter is the module responsible for the data
selection primitives used in macros.

5. The Communications

This module provides a transparent access to a service up to the
data transfer level. The underlaying protocols may be: asynchro-
nous, X25 or ISDN.

6. The Global Dictionary

This module has links with all (except the Interpreter) other
modules. It is according to the current context constraints that
the modules perceive the information needed. Its link with the
Userinterface is to enable the context dependant menus, with the
Expander to verify the use of commands (macros), with the
Dataformatter to be able to recognize the proper situations in the
received data, and with the communications to indicate the type
of connection needed and the associated parameters.

4.4, Hardware Requirements

HAWKS (Homogeneous Access WorKStation) is being developed, at
the TELESYSTEMES’ department INNOVATION in Paris. The main tar-
get environment is a 386/486 machine under SCO SYSTEM V, and run-
ning the X11.3 server. HAWKS will be able to connect to the On-line
services, through divers communication mechanisms: asynchronous
communication using a HAYES compatible modem or ISDN board, and
by 1992, X25 using a direct access on the national PSDN (Packet
Switched Data Network), and X25 on ISDN.

5. Conclusions

From the start of the project, it was clear that the context dependency
of certain commands and operators was of great importance. By means
of the Global Dictionary, with its conceptual model and its persistent
environment, we have created a tool which enabled the handling of
such contexts. With the aid of the CCL, a unique interface to a large
category of OIRS is constructed. With HAWKS, interpreted applica-
tions, can be build without having to consult (external) programmers.

6. Future Objectives

The Global Dictionary will become available as a LAN server based
upon TCP/IP. The restructuration of the documents actually found on
the OIRS and downloaded in HAWKS will be done according to the
DAP Q112 of the ODA standard. This will enable the retrieval of Group
4 scanned images on certain services.

234

EurOpen A ‘91 — Budapest, 16-20 Septemb

F__

il

Hi

HAWKS — A Toolkit for Interpreted Telematic Applications

References

[Col88a]

[ISO88a]

[TOO89a]

[TOO90a]

N. Collart and M. Joris, Etude et pratique d’extensions du
model Entité-Association, Institut d’Informatique -
Facultés Universitaire Notre-Dame de la Paix, Namur
(1988).

ISO, Draft International Standard 1SO/DIS 8777, Interna-
tional Organization for Standardization (1988).

TOOTSI, “Application requirements,” Deliverable
T.R.SA.12.1, ESPRIT Project 2109, TOOTSI (1989).

TOOTSI, “The Global Frame Definition of the Global Dic-
tionary,” Deliverable T.R.SA.18.1, ESPRIT Project 2109,
TOOTSI (1990).

[UKO89a] UKOLOG, Quick Guide to On-Line Commands, 1989.

EurOpen Autumn ‘91 — Budapest, 16-20 September

236 EurOpen Autumn ‘91 — Budapest, 16-20 September

Virtual Swap Space in SunOS

Howard Chartock Peter Snyder

Sun Microsystems, USA.
howard@sun.com peter@sun.com

Abstract

The concept of swap space in SunOS has been extended by the abstrac-
tion of a “virtual swap file system”, which allows the system to treat
main memory as if it were backing store. Further, this abstraction
allows for more intelligent choices to be made about swap space allo-
cation than in the current system. This paper contrasts the existing
mechanisms and their limitations with the modifications made to imple-
ment virtual swap space.

1. Introduction

SunOS provides a unified set of abstractions and interfaces for interact-
ing with virtual memory (VM) facilities both from user programs and
from within the kernel. One of the major features of this architecture is
that address spaces are constructed out of mappings to virtual memory
objects. These mappings cause main memory pages to cache the con-
tents of the virtual memory objects and each physical page is named by
the VM object that backs it [Gin87a].

One common type of virtual memory object is an ordinary file. Estab-
lishing a mapping to a file makes its contents directly accessible at the
address of the mapping. For example, the kernel creates a mapping to
an executable file in order to execute it; mappings are also used by
applications to access file contents without the copy overhead inherent
in the read and write system calls.

A second commonly mapped VM object is known as anonymous
memory. This term is used because, unlike file mappings, the names of
the backing objects are unknown to the client. Anonymous memory
mappings are backed by swap space; each physical page in the map-
ping is randomly assigned a name from the system’s pool of available
swap space at the time the page first comes into existence. The system
uses anonymous memory for several purposes: for private copies of
data created during copy-on-write faults, for process data and stack
segments, and as a storage resource for the rmpfs file system [Sny90a].

Although the existing anonymous memory scheme provides a service
that is both powerful and flexible, it has some significant limitations.
One is that physical backing store must always be reserved for
anonymous memory mappings, even if the client’s environment or
application doesn’t use it. The system requires backing store for
anonymous memory so that page frames can be written out and reused

ber 237

EurOpen A ‘91 — Budap

Virtual Swap Space in SunOS

i

when memory contention increases. Thus, for example, to run an
application with a large data segment the system must be configured
with lots of swap space, even if pages of the segment will seldom need
to be written out to backing store.

A second limitation is that the algorithm for associating backing store
with an anonymous memory page is, while very simple, limited and
inflexible. The backing store for an anonymous page is chosen at ran-
dom from the pool of available store when the page is first accessed,
and can never be changed afterwards. If the backing store could be
chosen later or dynamically moved to different locations, a more intel-
ligent method could be used to make allocation decisions. Such deci-
sions could, for example, employ information about page usage pat-
terns to choose backing store locations that would increase 1/0 perfor-
mance during paging and swapping.

To address these issues, the concept of virtual swap space was intro-
duced into SunOS. Virtual swap space provides a layer of abstraction
between anonymous memory pages and the physical store that may
back those pages. The system’s virtual swap space is equal to the sum
of all its physical (i.e. disk-backed) swap space plus a portion of the
currently available main memory. Because virtual swap space does not
necessarily correspond to physical storage, the need to configure a sys-
tem with large amounts of physical swap space can be significantly
reduced. Also, because virtual swap space sits “in between”
anonymous memory pages and physical swap space, the virtual swap
space object can make more flexible and dynamic decisions than in the
current system, about what physical backing store to allocate for a

page.

To implement the concept of virtual swap space, a new pseudo-
filesystem type called swapfs was added to the system. Swapfs is a
pseudo-filesystem because it does not actually control any physical
storage. Rather, its purpose is to provide names for anonymous
memory pages. Whenever a part of the system, for example the
pageout daemon, invokes a file system operation on a page named by
swapfs, it gains control of the page. This gives swapfs great flexibility
in deciding the page’s fate; for example, at this time it may, if it
chooses, change the name of the page so that it is backed by real physi-
cal store.

This paper describes the existing anonymous memory mechanisms in
SunOS and the modifications that were made to them to implement the
virtual swap space abstraction.

2. The Existing Implementation

2.1. Vnodes and Pages

The current anonymous memory mechanisms consist of an anon layer,
which provides anonymous memory services to the rest of the kernel,
and a swap layer, which provides backing store services to the anon
layer. These layers interact heavily with file system objects, the page
layer, and with mapping objects that employ their services.

In SunQOS, the vnode[KleS86a] is the fundamental structure used to
name file system objects. Vnodes provide a file system independent
abstraction that allows access to the data comprising a file object. The

238

EurOpen A ‘91 - Budapest, 16-20 Septemb

g

Eé Virtual Swap Space in SunOS

vnode object provides a variety of methods for manipulating file
objects, some of which are used to interact with the VM subsystem.

SunOS partitions main memory into a number of page frames, each of
which has a corresponding page structure which describes the page
frame. Each main memory page in the system is named by the backing
store for that page. The name of the page, as stored in its associated
page structure, is a (vnode, offset) pair; this name describes the loca-
tion of the page’s backing store.

SunOS uses main memory as a cache of file system objects. The vnode
object provides the principal mechanism for manipulating this cache.
The VM subsystem performs file system-related operations on a page
using the putpage() and getpage() methods of the vnode which names
the page. The putpage() operation causes a specified page to be written
to backing store. The getpage() operation returns a page with a
specified name; this may entail allocating a page frame or reading the
page data off disk.

2.2. Mappings

A process’s address space is composed of a number of mappings to vir-
tual memory objects. Each mapping is represented by an object
referred to as a segment. The most important service a segment pro-
vides is the handling of faults on an address within the segment. The
segment is responsible for resolving a fault, if necessary, by filling a
physical page from the backing store that the segment maps.

Several different types of segment objects exist in the current system.
Perhaps the most heavily used is the vnode segment type (segvn),
which provides both shared and private mapping to files [Mor88a). A
shared mapping always writes the current data of its mapped object.
The same is true for a private mapping except that when it is first writ-
ten, the VM system’s anonymous memory facilities are used to create a
private copy of its backing object. Finally, the vnode segment type
may be used solely to map anonymous memory; for example, the
exec() system call creates a vnode segment in this manner to provide a
stack segment for a process.

2.3. Anon Layer

The system provides anonymous memory services through the anon
layer. The anon layer provides operations that allow the client to
reserve and unreserve anonymous backing store, to allocate or release a
page of anonymous memory, and to create and fill a page backed by
anonymous storage.

The system enforces the policy that clients must reserve anonymous
backing store up front and only thereafter can allocations for individual
pages be made against this reservation. The reservation policy guaran-
tees that, in the face of insufficient anonymous memory, a process will
fail synchronously (on return from a system call such as exec() or
mmap()), rather than asynchronously (on a failure to resolve a fault due
to a lack of backing store). Reservations are made against the total
pool of physical backing store that has been added to the system as
swap space.

A segment typically allocates backing store the first time a fault occurs
on a page within the segment. The segment calls the anon layer to
request a single page-sized unit of backing store from the pool of phy-

EurOpen Autumn 91 - Budapest, 16-20 Septemb 239

Virtual Swap Space in SunOS

2.4. Swap Layer

sical swap space and obtains an opaque handle for the allocation, an
anon slot.

The anon slot contains the name of the backing store which will
become the name of the associated anonymous page. In the current
system, the name is implied by the memory address of the anon slot
data structure. This tight binding makes it quite difficult to change the
backing store for a particular anonymous page while that page and its
associated anon slot are in use.

An anonymous memory client often wishes to use several anonymous
pages. Typically the client stores the anon slots for these pages in an
anonmap structure which contains an array of slot pointers.

The client passes an anon slot to the anon layer to perform subsequent
operations on its associated anonymous page. For example, to get the
main memory page associated with an anon slot, the client invokes the
anon layer’s getpage() operator using the anon slot as an argument.
This getpage() operator, similar to that provided by vnode objects, first
translates the anon slot into the name for the backing store. With this
name in hand, the anon layer calls the underlying vnode getpage()
operator to acquire the page.

2.5. Summary

The swap layer manages pools of physical swap space and allocates
and de-allocates page-sized units of space on demand from the anon
layer. Swap devices can be added to the pool of available swap space
using a system call interface. When a device is added to the pool, the
total amount of swap space available for reservation is increased by the
size of the device. At this time the swap layer also creates an adminis-
trative data structure for the swap device, called a swapinfo structure,
which includes an array of anon slots. When the anon layer requests a
new unit of backing store, the swap layer consults the swapinfo struc-
tures for the configured swap devices and returns an free anon slot.
The position of the anon slot in the swapinfo array matches its offset
into the swap device.

To summarise the above discussion consider the example in Figure 1 in
which a process is executing and accesses a byte in the second page of
its data segment.

When the process issues an exec() system call, the system creates a
vnode segment backed by anonymous memory (the “anon client” in the
figure) for its data segment and reserves an amount of anonymous
memory equal to the size of the segment. A fault occurs when the pro-
cess touches a byte in the second page for the first time. The page fault
handling code directs the fault to the appropriate segment, in this case a
vnode segment, which then calls the anon layer to allocate a page of
backing store. The anon layer in turn calls the swap layer, which allo-
cates the store (in this case from the swap device named by vnode
“swapvp”) and returns an anon slot for it, corresponding to offset off2
on the device. The anon layer translates the anon slot to the name of its
backing store, creates a page with this name, and zeroes the page
before returning it to the segment. The segment stores the returned
anon slot in its anonmap for future use. At some later time the system
may call the swapvp putpage() operator to push the contents of the

240

EurOpen Autumn “91 — Budapest, 16-20 September

Virtual Swap Space in SunOS

swapinfo

anon client swapvp

\

anon slots
LI) . ()‘ﬁz

N

TN
NSWapvp_A

swapvp

off2 I"“l

| |
B S

anonmap /—\/

physical
swap device

physical
memory

Figure 1: Existing swap/anon layers

page out to its backing store on the physical swap device associated
with swapvp.

3. The New Implementation: Virtual Swap Space

To address the limitations of the current anonymous memory scheme
discussed in the introduction, the concept of virtual swap space was
developed. Virtual swap space is an abstraction presented by the swap
and anon layers to clients of anonymous memory. This abstraction
causes anonymous memory pages to appear to the rest of the system as
though they are backed by real swap space when in fact they are not.

As discussed above, vnode objects are used to name pages and associ-
ate them with backing store. Thus, to implement the notion of virtual
backing store, a new vnode type, swapfs, was created to present virtual
backing store to clients of the anon layer. Swapfs can hand out names
for pages just as can any other file system type. However, unlike those
of other file systems, these names do not correspond to real physical
storage. Instead, they allow swapfs to gain control over the fate of the
page when other parts of the system invoke file system operations on it.
At such times swapfs can make decisions about renaming the page to
be backed by real physical store.

The following discussion explains the changes in structure and
mechanism used to implement the abstraction of virtual swap space.

3.1. Anonymous Memory Reservation

In the current system, a client of anonymous memory must reserve
backing store up front before it attempts any allocations. The presence
of swapfs in the system does not remove this requirement. However,
swapfs does expand the pool of reservable swap space to include not
just physical devices, but available main memory as well.

With swapfs, the total amount of reservable swap space becomes equal
to the sum of all the space on the physical devices in the swap pool plus

EurOpen Autumn 91 — Budapest, 16-20 September

Virtual Swap Space in SunOS

the amount of currently available main memory minus a safety factor.
The ability to use main memory as allocatable swap space in conjunc-
tion with swapfs’s ability to dynamically rename anonymous pages,
allows users to run with reduced physical swap space and yet still have
pages written out when needed.

The amount of available memory in the system is all that is not con-
sidered “wired down”." Wired down memory includes space that the
kernel has dynamically allocated for internal data structures as well as
pages a user process has locked via the mlock() interface. Similarly,
when swap space is reserved against main memory, this memory is also
wired down, as the pages cannot be paged out.

The new reservation algorithm always reserves against physical swap
space first. Only when this has been completely exhausted is the avail-
able main memory used. Regardless of how much main memory is
available, the anon layer is never allowed to reserve a certain quantity
(computed as a fixed fraction of the total main memory) for swap
space. This policy insures that there will always be adequate memory
for kernel data structure allocation. Once the anon layer begins to
reserve against main memory, anonymous pages may be created in the
system for which no physical backing store is available; these pages
will be named by swapfs. If swapfs is unable to find physical store for
such pages, they will effectively be unpageable; i.e., this memory will
be unavailable to the rest of the system, until physical store is freed up.

When a swap space reservation is released, any main memory reserved
by the anon layer is released first, and only when all main memory so
held has been released, does the algorithm begin to release physical
swap space. The algorithm works this way on the assumption that it is
desirable to take main memory away from the system only as a last
resort and to give it back at the earliest opportunity. Note that a reser-
vation does not reserve a particular chunk of swap space, it simply
guarantees that some is available somewhere in the total pool.

3.2. Allocating Backing Store

As discussed above, a client that has reserved swap space calls the
anon layer to allocate a page-sized unit of backing store, and the name
of that storage is returned to the client in the anon slot. In the current
system, this allocation was made at random from the pool of available
physical space, but in the new allocation scheme, it is always returned
from swapfs, giving swapfs initial control over all anonymous pages in
the system.

Thus, all clients of the anon layer receive backing store names from
swapfs. Only swapfs itself requests real physical backing store from
the swap layer, which it does when it wants to rename an anonymous
page to physical store.

In the current system, the anon slot is returned by the swap layer with
the name of the backing store implied in the memory address of the slot
data structure. However, binding the name to the memory address of
the data structure makes it quite difficult to change the name while the
anon slot is in use. The anon slot is held by a client as long as the
client makes use of the associated anonymous page; thus, if swapfs is
to change the backing store while the page is in use, it must also change
the name to which the anon slot refers.

1 Physical memory that is “wired down™ is not pagcable, and hence not available for use by the rest of the system.

242

EurOpen Autumn "91 — Budapest, 16-20 September

Virtual Swap Space in SunOS

To facilitate renaming, a level of indirection was added to the anon
slot. The name of the backing store associated with the slot is now
stored as vnode and offset fields in the slot data structure, allowing the
values of these fields to be changed while the slot is in use. The swap
layer no longer hands out anon slot data structures from per-swapinfo
arrays; instead, the anon layer creates them on demand. The swap
layer also no longer uses anon slots to track allocations; instead, it
employs a bitmap of free slots for each swap device. The use of this
bitmap solves a problem with current versions of SunOS, which keep
unused slots on a freelist for later reuse. The algorithm for ordering
this list can sometimes lead to poorly ordered swap allocations, which
in turn cause poor paging performance.

3.3. Swapfs

The virtual swap space abstraction is implemented by the swapfs
pseudo-filesystem type. Pseudo-filesystems have been used before to
layer a new abstraction on top of what appears to the rest of the system
as a file system [Ros90a]. For example, tmpfs layers a filesystem on
top of anonymous memory.

As is true for any other file system object, swapfs presents a set of
methods for manipulating its objects. In constructing this new file sys-
tem type, we were concerned only with its use within the kernel by the
VM system. Thus, we did not build a full set of file operations which
would, for example, allow a user to mount a swapfs file system, or give
names to swapfs files. In fact, swapfs provides only three significant
operations: swapvp(), which returns a vnode to the swap layer for use
as a swap device; getpage(), which returns a page to the system backed
by swapfs; and most importantly putpage(), which “pushes""k out an
anonymous page backed by swapfs.

3.3.1. Swap Layer Modifications

Swapfs provides only one vnode to the system which is made available
to the swap layer through the swapvp() operation when the system
boots. For the most part, the swap layer treats swapfs as it does any
other swap device. It is added to the list of swap devices managed by
the swap layer and an administrative data structure, including an allo-
cation bitmap, is created for the vnode.

Special-case modifications to some swap routines were needed to
reflect some of the differences between swapfs and other swap file sys-
tem types. For example, the interface routine called to allocate swap
backing store, has been modified to take flags specifying where the
backing store is to come from. As discussed above, all external clients
of anonymous memory allocate backing store via the anon layer, which
always requests this store from swapfs. Only swapfs itself makes allo-
cation requests for physical swap space, when it wants to change the
backing store for a given page.

3.3.2. getpage()

When a process faults on an anonymous page, the fault is directed to
the segment that maps the address. On the first fault, the page may not
exist, and there may be no backing store. In such a case, the segment
calls the anon layer to allocate backing store. The backing store’s

t For most file system types. “pushing”™ out a page typically entails writing it out to its backing store, marking it as “clean” (i.e.
unmodified) and adding it to the free list of pages for re-use.

EurOpen A ‘91 - Budapest, 16-20 Septemb

Virtual Swap Space in SunOS

name is extracted from the returned anon slot. The getpage() operator
on this vnode is then called to create the page. Because client alloca-
tions of anonymous backing store are always satisfied by swapfs, this
will result in a call to the swapfs getpage() operator. Swapfs satisfies
this request by simplying creating a page with the requested name and
handing it back to the segment. Unlike some other vnode objects,
swapfs has no need to perform additional functions at this point, such
as allocating physical disk space.

When a subsequent fault occurs on the same address, the fault will find
its way to the same segment, which will again use the name in the anon
slot to call the getpage() operator to retrieve the page. Most vnode get-
page() operators have to be prepared to deal with the fact that the page
may no longer be in memory. In this case they must create a new page
and do 1/0 to fill it. Swapfs pages, however, once modified by the
client, remain in memory unless renamed and paged out.

When a page has been modified, the system marks it “dirty”. The sys-
tem will not attempt to reuse the page until it has been marked “clean”,
and this is completely under the control of the vnode that owns the
page. Typically a vhode marks a page clean in its putpage() operator
when it pushes the page out to backing store. However, because
swapfs represents virtual swap space, it does not page out pages itself
and hence never marks them clean. Swapfs pages out pages by renam-
ing them to be backed by real physical store, and the vnode to which
the page is renamed then becomes responsible for cleaning the page.

Modified pages will never be reused by the system as long as they are
named by swapfs. Because of this, when the swapfs getpage() operator
is called, it knows that if a page has been modified it will be able to find
it in the page cache. If the page has never been modified, then it may
have been reused, but in such a case the client cannot possibly care
about its contents, so swapfs simply creates a new one and returns it.

3.3.3. putpage()

At certain times the system will push pages to their backing store. This
may happen, for example, when the pageout daemon pushes pages out
to try to accommodate memory demands on the system, or it may hap-
pen when the scheduler decides to swap out a process. The pageout
function entails getting the name of the page and calling the putpage()
operator of the associated vnode. For swapfs, this operator does some
very unusual things. Swapfs makes a call to the swap layer and asks it
to allocate a page of physical backing store. If this request fails, noth-
ing further is done with the page; it remains modified and simply stays
in memory. However, if the swap allocation succeeds, swapfs renames
the page to the new backing store and then calls the putpage() operator
associated with the new store to actually push the page to disk.

This operation must be performed with great care, because during the
rename other parts of the system may be accessing or trying to access
the page. It is perfectly legitimate for a process to be reading or writ-
ing the page during the rename. For example, the existing system
already allows a user to access a page while the page is being written
out. However, changing the name of the page or its corresponding
anon slot is not allowed while 1/0 is in progress or while clients are
using the old name to try to find the page. The page layer provides
locks to protect against this happening to the page, however, the name
of the page is stored in the anon slot as well. Thus both the anon slot
and the page must be renamed atomically to insure that a client will not
use the wrong name to get to the page while the rename is in progress.

244

EurOpen Autumn ‘91 — Budapest, 16-20 Septemb

4

H

P’

E

Virtual Swap Space in SunOS

anon client

anonmap

anon slot physical

memory

swapfs_vp
swapfs_off N

/

swapfs_vp physical
swapfs_off swap device

pswap_vp
pswap_off!

pswap_vp

pswap_off!

pswap_vp

pswap_off? pswap_vp

Figure 2: Swap renaming

3.4, Summary

The anon slot contains a lock that protects its backing store name fields,
among other things. To guarantee atomicity, both the anon slot and the
page are locked, both are renamed, and then the locks are released.
Any process trying to manipulate the page in the kernel will acquire
one or both of these locks first and will thus be guaranteed a consistent
view of the name of the page and its associated anon slot.

To summarise the interaction of swapfs with the rest of the VM system,
consider Figure 2 which shows some different states of anonymous
memory. The first page in the figure (named swapfs_vp, swapfs_off)
has been allocated and named by swapfs. Note that because it is named
by swapfs it is memory resident and has no physical backing store.

The second page in the figure (named pswap_vp, pswap_off!) shows
an anonymous page that has been renamed to a physical backing store
location. This page was originally named by swapfs, until the pur-
page() operator was called to push out the page. At this time swapfs
called the swap layer, which allocated a page with backing store on
swap device pswap_vp, at offset pswap_offl This new name was
returned to swapfs, which renamed the anonymous page and the slot to
(pswap_vp, pswap_offl) and then called the putpage() operator of
pswap_vp to write the page to disk.

The third page (named pswap_vp, pswap_off2) has also been renamed
to physical backing store and the corresponding main memory page has
been freed for another use in the system. The data for that anonymous
page may be retrieved via the getpage() operator for the physical swap
device.

Note that in contrast to Figure 1, anon slots are no longer explicitly tied
to a particular swap device and that the name of the backing store is
now stored explicitly in the slot.

EurOpen A

o
2 “Sap”]

Virtual Swap Space in SunOS

4. Performance Discussion

The initial performance goal for this project was that swapfs not
degrade overall system performance. In particular we required a sys-
tem running swapfs with as much physical swap space as the current
SunOS default to perform as well as the existing SunOS implementa-
tion. Another concern was that configuring a system with small
amounts of physical swap relative to the amount of main memory
might degrade overall performance as memory became clogged with
anonymous pages that could not be freed for reuse. However, it was a
pleasant surprise to find that, even with a small percentage of physical
swap relative to main memory (as little as 20%), there is very little
degradation in system performance on standard benchmarks. This may
be explained by the observation that, for a variety of workloads, the
system tends to allocate only about 2/3 of the swap space it reserves;
thus, even if all of this space is allocated from main memory, a substan-
tial remainder is available to the rest of the system.

5. Future Work

Adding swapfs to the system opens the way to some interesting
enhancements. For example, the current pageout daemon pushes out
pages one at a time, and many of these pages are backed by swapfs.
Slight modifications to the swapfs rename mechanism would provide
the capability to rename a batch of pages to a continuous stretch of
physical backing store; then all the pages in the batch could be pushed
out in a single I/0.

Another interesting enhancement involves the notion of multiple swap
vnodes. Although swapfs currently provides anonymous memory
names from only one swap vnode, simple modifications to the existing
interface could allow each client (e.g., a process) of the anon layer to
have its own unique swapfs vnode; backing store allocation requests
from a particular client could then always be satisfied from the swapfs
vnode belonging to that client. This, in turn, could provide a basis for
client-oriented clustering of anonymous pages on physical backing
store.

6. Conclusions

Swapfs is a virtual swap file system that can, on demand, dynamically
rename anonymous pages and push them out to physical backing store.
This capability allows the system to treat main memory as swap space,
but also allows it to reclaim this memory by pushing pages to available
physical swap space when contention for memory increases.

7. Acknowledgements

We would especially like to acknowledge Bill Shannon who contri-
buted many of the ideas that are central to this work. He and other
members of the Systems Group at Sun including Glenn Skinner, Anil
Shivalingiah, and Dock Williams, also provided many helpful sugges-
tions.

246 EurOpen Autumn 91 — Budapest, 16-20 September

-l

Virtual Swap Space in SunOS

References

[Gin87a]

[Kle86a]

[Mor88a]

[Ros90a]

{Sny90a]

Robert A. Gingell, Joseph P. Moran, and William A. Shan-
non, “Virtual Memory Architecture in SunOS,” Proceed-
ings of the Summer 1987 Usenix Technical Conference,
Phoenix Arizona, USA, pp. 81-94, USENIX Association
(June 1987).

Steven R. Kleiman, “Vnodes: An Architecture for Multiple
File Systems Types in Sun UNIX,” Proceedings of the
Summer 1986 Usenix Technical Conference, Atlanta Geor-
gia, USA, pp. 238-241, USENIX Association (June 1986).

Joseph P. Moran, “SunOS Virtual Memory Implementa-
tion,” Proceedings of the Spring 1988 EUUG Conference,
London, England, EUUG (Spring 1988).

Davis S. H. Rosenthal, “Evolving the Vnode Interface,”
Proceedings of the Summer 1990 USENIX Conference,
Anaheim, California USA, pp. 107-117, USENIX Associa-
tion (June 1990).

Peter Snyder, “tmpfs: A Virtual Memory File System,”
Proceedings of the Autumn 1990 EUUG Conference, Nice,
France, pp. 241-248, EUUG (October 1990).

EurOpen Autumn 91 — Budap

16-20 Sep

b,

247

248 EurOpen Autumn ‘91 — Budapest, 16-20 September

The Art of Automounting

Martien F. van Steenbergen

Sun Microsystems Nederland B.V.
Amersfoort, The Netherlands
Martien.van.Steenbergen @Holland.Sun.Com

Abstract

Who isn’t familiar with the problem of installation and management of
application software, users, home directories, etc. The strive for a con-
sistent, scalable, efficient and simple working environment has our con-
tivous attention.

Problems are known to be caused by architecture dependencies, no dis-
tinction between various classes of data, disk partitions that fill up and
disk fragmentation. Furthermore, various variants and versions of the
same application software, different locations of data also cause
headaches sometimes.

All this and more is covered in this paper, leading to a “Plug and Play”
computing environment that leaves system and network administrators
time to do more important things.

1. Introduction

Wouldn’t it be nice if, when working with computers on a day to day
basis, we had a general, uniform and consistent computing environ-
ment, especially with respect to the file system layout. Furthermore,
we would also like this environment to be scalable from stand-alone
systems to large heterogeneous environments.

Besides that, one would also like to be able to use the available disk
space in the network as efficient as possible, avoiding fragmentation of
this valuable resource. It is very frustrating to discover that you cannot
save your file because a file system is filled up, while on other places in
the network more than | GB appears to be available!

Also, being able to find what you are looking for in the file system on
an intuitive fashion would reduce confusion in your user community.
Separating the various classes of data available on the network and pro-
viding this data in a logical and consistent way reduces confusion and
requires less help from the system administration department. A com-
plete separation between private data (stored in home directories) and
more project related data would reduce the need to snoop around in
someone else’s home directory. After all, most of us also don’t like
others to peek and poke in our private drawers, let alone suitcases.

The frustration of having to change your command search path every
time a new (version of a) software application is installed, is causing

EurOpen Autumn “91 - Budapest, 16-20 September 249

The Art of Automounting

headaches sometimes. Or, even worse, the search path depends on the
underlying hardware architecture, e.g. Sun-3, Sun-4 and Sun386i.

All this and more is covered in this paper. Just by setting up some con-
ventions and guidelines about where to put what and why is 90% of the
job. And please note that setting up the system described here does not
require any additional software to be bought or installed. You can just
use the tools and technologies available at your fingertips right now.

Three main objectives that have been the most important during the
definition of the guidelines are the same as those used for the design of
the OPEN LOOK GUI: simplicity, consistency and efficiency.

. Simplicity

Conventions and guidelines must be simple to understand and
implement. Applying those guidelines must also be very simple.
So simple, that even non-administrators have a clear picture of
what is going on. So simple, that even non-administrators can
execute the steps required to perform a certain operation with
success.

° Consistency

Having a consistent environment for both end-users and system
administrators will alleviate their work. If the same concepts
apply in all circumstances, this will greatly enhance the overall
quality and understanding of the environment, and concepts once
learned can be applied everywhere.

. Efficiency

Besides being simple and consistent, the system must also be
efficient to use and apply. The overall performance and usability
of the system is not allowed to suffer too much from the first two
objectives. This means that in some cases exceptions have to be
applied in order to ensure better performance.

Initially, the first two goals mentioned above are the most important
and this paper will focus on those. However, research has shown that
if these rules are strictly applied, performance loss may result. In gen-
eral you could say that in order to improve performance, you should try
to minimize the number of symbolic links that you use.

Besides the general concepts and guidelines explained in this chapter, it
will go into some specific requirements that apply when installing or
building applications that nicely fit in the frame work. It details about
resolving architecture dependencies, different versions and variants of
the same application etc.

A more complete publication called “The Art of Automounting” is also
available from the author. This publication also contains step by step
procedures that you need to perform in order to implement the concepts
described in this paper. As an example, the complete and detailed
building and installation of GNU Emacs is described. Furthermore, a
section on “Choosing a name for your computer” helps you picking the
right names. And, finally, it includes a section that serves as a primer
on how to “Treat system management as a real project™.

In order to obtain a PostScript version of this document, simply send
your request via email to Martien.van.Steenbergen @Holland.Sun.COM.

For more information on performance issues, please refer to the article
“NFS Client Server Performance” by Jos van der Meer, Frans Wessels
and Maarten Westenberg from Sun Microsystems Nederland B.V.

250

EurOpen Autumn 91 — Budapest, 16-20 September

3

The Art of Automounting

Who Should Read this Document?

This document is written for both novice and experienced system
administrators. It is assumed that you are familiar with UNIX and
SunOS in general, the Network File System (NFS) and the Network
Information Services (NIS).

These tools and technologies will not be explained in this paper. For
more information about SunOS, NFS and NIS, please refer to “System
& Network Administration”.

2. The Art of Automounting

Organizing your file system so that you always know what is stored
where on your disks and why, could be considered as an art. However,
once you have done that, you cannot live without it anymore.

This chapter contains the guidelines and procedures that help you set
up and structure the data that you have to maintain for your customers
— the end users (note that you yourself are also an end user).

A golden rule for successful system management is: document the con-
ventions that you use and the things you change and the reasons why.

The Sample Configuration

The sections below are based on the following configuration of com-
puter systems interconnected by Ethernet (Table 1).

Host name:

bach

Host name: chopin

Usage:
Type:

Main application server
SPARCserver 2

Usage:
Type:

Mirror application server
SPARCserver 2

Partition:
Usage:

/xenon
Third party and unbun-
dled software

Partition:
Usage:

/neon
Redundant copy of
bach:/xenon

Partition:
Usage:

/argon
Free and locally built
software

Partition:
Usage:

/fluor

Redundant copy of
bach:/argon, beta
software and older ver-
sions of software for
compatibility

Host name:
Usage:
Type:

mozart
Production data server
SPARCserver 490

Host name:
Usage:
Type:

liszt
Your workstation
SPARCstation 2 GX

Partition:
Usage:

/krypton
Home and project
directories

Partition:
Usage:

/gold
Very old software and
private data

Table 1: Computer Configurations

EurOpen Autumn 91 — Budapest, 16-20 September

The Art of Automounting

2.1. The Problem Defined

First of all, what are your most important problems right now?

/krypton: file system full

Probably you run out of disk space somewhere in your network almost
every day. Besides that, you know that there is a lot of unused disk
space available in the network on the various drives local to worksta-
tions that you would like to use.

You will probably also need to change the user’s command search path
once in a while, in order to make a new application available to them.
With tens or even hundreds of users and without some organization,
this might become a nightmare.

Looking for the files you need all over the place, and not being able to
find them is a major frustration. Even worse, if you have to peek in
your colleague’s private directories — because you know that he or she
stores things there instead of a project or workgroup directory — you
might feel uncomfortable and hope that you will not be caught snoop-

ing.

Plug & Play

Also, installing (and uninstalling and moving them around) applica-
tions, users, systems and other entities on your network is sometimes a
hassle. You would probably like to plug and play, meaning that you
unpack your new hot box, plug it into the mains and into the network
and run! The setup should be so, that users and applications do not
suffer from the various underlying hardware platforms and operating
systems, users should be able to use them transparently.

2.2. Data Classes and Instances

Most of the problems are caused by the various classes, versions and
variants and locations of data. Below, you will find a few examples of
data classes and some considerations about how to use them.

Home Directories: /home/user

To start with, home directories are a good example of a distinct data
class. Preferably, a home directory looks something like /home/mary.
This is easy to remember, refers to a real person and does not have any
“foreign” data clobbering it.

For instance, in the conventional Sun file system set up, you use home
directories of the form /home/mozart/mary where mozart is the name
of the NFS server of the home directory. However, you will have to do
a lot of work if you decide to move Mary’s home directory to another
NFS server. So why don’t you leave out this sensitive information in
the first place?

This means that in general, home directories have the form /home/user,
where user is replaced with the login name of that user.

Note that if you are planning to implement this concept, you will have
to be careful not overmounting the conventional /home directory,
which is normally used as mount point for the home partition, e.g.
sdOh.

252

EurOpen A ‘91 — Budapest, 16-20 Sepiemb

e |
Hd

Op The Art of Automounting

Project Directories: /project/project

Another specific data class could be the various projects that are being
done in your environment. You should apply the term “project” for a
wide scope of activities, not just software engineering projects.

For example, a project that studies NFS performance could be called
nfstune. Another project that deals with personnel administration
could be called humadm. Yet another project is responsible for sys-
tem administration (yes, that’s you), let’s call it sysadm.

Having these examples, it would be no more than logical (and intuitive)
to use separate project directories for them, and their corresponding
names then would be /project/nfstune, /project/humadm and
/project/sysadm.

In general you will have /project/project.

Applications, Tools, Utilities — Read-mostly Data: /vol/volume

As a third example, consider the various applications, tools and utilities
that you make available for your users. In general, these “things” are
used in a read-only fashion. For example, you could support tools like
FrameMaker, GNU Emacs, Console Tool, Rolo Tool and Catcher on
your network. Also, you want these tools to be available for everyone
on the network.

These applications are normally made available through a path name
that contains the application’s base name as last part. FrameMaker is
then called frame, GNU Emacs is called emacs, and the others contool,
rolotool and catcher respectively.

Following the trend set in the first two examples, you could consider
providing these applications through, say, /applic, /tool and /util.
However, most of these applications are used in more or less the same
way and perhaps even some other data (i.e. non-applications, like
include files, icons, FrameMaker document templates) are used in the
same read-only fashion. So why not just keep it simple and make them
available as volumes through /vel: a clod of data that can be treated as
one single unit.

To complete our example, you would have directories like /vol/frame,
/vol/emacs, /vol/contool, /vol/rolotool and /vol/catcher respectively.

In general you would have /vol/volume.

A major advantage of the single unit approach is that you can move
these units around on the network to the most convenient location very
easily, while still maintaining the same logical access path. (If you are
wondering how? Read on.) Besides that, treating applications and the
like as units, means that they do not “infect” your file system on other
places than just the installation directory. This means that uninstalla-
tion becomes a piece of cake: just remove the installation directory and
any references to it. You don’t have to track down any other places in
your file system that may have been touched during the initial installa-
tion of the application.

Software Distributions: /distrib/distribution

Suppose your business includes distributing software. For instance,
you deal in FrameMaker, you have your own developed software that
you want to cut tapes from, you support a few distributions for friends,
etc. Consider making these things available through
/distrib/distribution. For instance /distrib/frame (note the difference

EurOpen A ‘91 — Budapest, 16-20 Septemb 253

The Art of Automounting

between this version and /vol/frame), /distrib/nfstune (the product
that results from the corresponding project discussed above),
/distrib/xview (the XView source code that you want to be able to give
your friends).

Again, these distributions are used in a read-only fashion and they can
be treated as units. You could develop scripts that follow this conven-
tion in order to create tapes or floppies ready for distribution. You
could also consider putting less frequently used distributions on parti-
tions that are normally not used to store production data. For instance,
you could use the partitions local to workstations and that are normally
not used for other purposes.

And more: /source, /beta...

Using the same concept, you could go on. Supporting /source for
building and installing public domain and free software, /beta if you
want to distinguish between general (or “production”) applications and
beta releases of software that you want to make available.

In general: /classlinstance

In general, you will have /class/instance as a path name to get to a
specific instance of data in your network. Note that it is only two levels
deep! This is easy to remember, especially if you use the right names
and set it up consistently.

You can promote data at the instance level to class level if the need is
there. For example, you start out with supporting /vol/distrib for
software distributions. But after a while, this directory becomes so
large and unmanageable that you decide to split it up into separate dis-
tributions. This is the moment that you promote /vol/distrib to /dis-
trib. Of course, the other way around is also possible.

2.2.1. Versions and Variants

Other major problems are the various versions and variants of applica-
tions.

For example, at a certain point in time you must support FrameMaker
1.3b SunView (because there are still users that did not have the
upgrade training to 2.0), FrameMaker 2.1 SunView (because there are
still users who are not running OpenWindows) and FrameMaker 2.1
for the X Windows System, the default.

At the same time, OpenWindows 2.0 is the default windowing environ-
ment and OpenWindows 3.0 beta is available for those who cannot
wait.

Besides that, you need to support a few free software tools — like GNU
Emacs — on multiple architectures, Sun-4, Sun-3 and Sun386i, say.

All of these instances are variations of a functional equal application.
How do you organize these things? A very simple approach would be
to always let /classlinstance be the default or current version of a data
instance. For example, /vol/frame corresponds with the FrameMaker
2.1 X Window System version, /vol/openwin corresponds with
OpenWindows version 2.0 and /distrib/xview corresponds with the
XView 2.0 source code contribution of Sun to the MIT X Windows
System distribution.

Now, if you also want to make non-default versions available and still
be able to distinguish between them, add the version number to the
default name, separated by a hyphen. So, FrameMaker 1.3b (the Sun-

254

EurOpen Autumn ‘91 — Budapest, 16-20 September

n
d

P

pedy The Art of Automounting

View version) would then be available via /vol/frame-1.3b and
/vol/openwin-3.0-beta is the beta release of OpenWindows version
3.0.

The hyphen that separates the base name from the version number
helps you distinguish between the two, e.g. consider using Lotus 1-2-3
version 1.0: /vol/lotus1231.0 versus /vol/lotus123-1.0.

In order to maintain consistency, you should also support explicit ver-
sion numbering for the default version. This means that in the example
above, you would have both /vol/frame and /vol/frame-2.1 available
(which of course both refer to the same installation).

2.2.2. Putting it All Together

The conventions described in the previous section can be realized by
using techniques and tools available in SunOS, NFS and NIS. To be
specific, it requires both servers and clients to be able to use NFS and
NIS and the program that glues them together and exploits their capa-
bilities: automount(8). The automount process, once started from
/etc/redocal during boot time, acts like a name to location server. lts
behavior can be almost completely controlled by the contents of some
specific NIS maps. The next section, “How to set up your system”
shows you the details on how to do this.

2.3. How to Set Up Your System

This section gives you a look under the hood. It details on how to par-
tition your disk, exporting and importing data and how to glue it all
together using the automounter, NFS and NIS.

This section applies to the general case and does not describe on how
to organize your own applications or public domain or free software.
For more information on the latter topic, please refer to “Application
management”.

2.3.1. Partitioning Disks

When partitioning your disks, you should consider wether or not the
data that you are going to store in that partition is going to be used in a
read-write or read-only fashion. If it is going to be used as read-only in
most of the cases, then you will never have to include that partition in
you backup scheme. You only need to archive the data once, so that
you can recover from loss of data.

Note that installed third party applications and public domain and free
software, as well as software distributions, local include files, etc., are
used read-only most of the time. Besides that, these installations can
total up to tens, even hundreds of megabytes. Megabytes that you do
not have to backup! You only have to backup “production” data like
home and project directories and perhaps databases.

Another point of consideration is separating your data from third party
data. Third party data is data that you get from some other party, for
example a new version of the operating system, or a new version of
your publishing software, but also a new version of a locally built tool,
After having installed third party software, you often have to customize
it in order to match your local needs. If you need to customize it, try to
avoid changing files in the installation directory, or keep the required
changes to a minimum. Every time that you re-install the software you
have to re-apply the changes. Instead, try storing those changes in a
directory separate from the installation directory and tell the third party

EurOpen Autumn ‘91 — Budapest, 16-20 Septemb 255

The Art of Automounting

software to look there for specific files, e.g. by setting the appropriate
environment variables or by creating the appropriate symbolic links in
the installation directory.

As an example, consider the customization of FrameMaker with
respect to the use of locally developed document templates.
FrameMaker normally looks for document templates in its own instal-
lation directory. If you replace the directory that FrameMaker looks in
by a symbolic link to a place that you maintain, FrameMaker will use
the contents of that location instead. In order to be compatible with the
document templates that FrameMaker supplies, you could create a
symbolic link back to the, now renamed, original template directory.
Although you create two extra symbolic links, you have the advantage
that the next time you install FrameMaker, you only have to create one
symbolic link, and everything works as before. You don’t have to
worry about saving your templates before removing the old installation
of FrameMaker.

2.3.2. Mounting Local File Systems

After having partitioned your disks and having created file systems in
the appropriate partitions, you have to mount them at boot time to make
them available to you local system. This is done by means of the file
letc/fstab.

By convention, the mount points that are used in this paper use element
names from the periodic table, like krypton, xenon and helium. The
advantage of choosing real names that are unique within your domain
or network is that you can uniquely identify a partition (or file system)
in the network. There is never any doubt about which partition you
mean when you talk about the fact that, say, /krypton is full again.
The use of the name class of elements from the periodic system should
provide for enough distinct names in your network, it contains well
over 100 element names.

The generic name /element always denotes one single physical file >ys-
tem. Mapping this physical name to a more logical name is done dur-
ing the export and import of (parts of) the file system by the auto-
mounter.

2.3.3. Subdividing Partitions

Within the local file systems, you can create the subdirectories for the
data classes that you want to store on these partitions. For example, if
you want to support your applications and other read-only data on
/xenon, then you should create the directory /xenon/vol. And if you
want to support home and project directories on a partition called
/krypton, then you should create the directories /krypton/home and
/krypton/project.

2.3.4. Exporting Data

If you have created directories and installed software, users and pro-
jects, and you want to make this data available to the network, you
have to export them. If you do not export this data, others cannot
import it.

Exporting data can be done at three levels: at the partition level, at the
class level and at the instance level. For example, you could export the
complete /gold partition. You could also export home directories at the
class level by exporting /krypton/home, for example. Finally, you

256

EurOpen Autumn ‘91 — Budapest, 16-20 September

The Art of Automounting

could export volumes (applications, etc.) at the instance level:
/xenon/vol/openwin-2.0.

The level at which you export data depends on the granularity of con-
trol you want to have on your data. The lower the level, the more con-
trol you have. For instance, if you export volumes at the instance level,
then you can specify the export options on the finest level. In this case
you can specify for each instance if it is exported read-only, read-
mostly, with root access, which clients can access it, and so forth. Root
file systems and swap files for diskless clients, for instance, are
exported at the finest level. You could also use it in combination with
netgroup(5) in order to allow or disallow certain groups of machines or
users access to specific data.

2.3.5. Importing Data

If you are a client of data provided by file servers on the network, you
should follow the conventions defined in the previous sections. This
means that if, for example, you need FrameMaker to be available on
your system, you have to import that volume from the server. This
importing is done by issuing the mount(8) command or by specifying
the appropriate entries in /etc/fstab. A sample command to import
FrameMaker would look like:

mount bach:/xenon/vol/frame-2.1 /vol/frame

assumed that FrameMaker is installed on the NFS server bach on a par-
tition that is mounted on /xenon and that the local directory /vol/frame
exists. In general you would use:

mount server:/partition/class/instance /class/instance

Instead of doing these mounts manually or during boot time, you can
exploit the automounter’s capabilities to automate this process. How to
do this is covered in the following sections.

Please note that NFS servers can be NFS clients at the same time, even
of them selves. In order to maintain consistency and simplicity, you
should set up your system so, that NFS servers are treated the same way
NFS clients are. There should be no difference, except for the fact that
servers serve files.

Using the Automounter

Instead of importing or mounting NFS directory hierarchies manually
or during boot time, you can use the automounter to automate this pro-
cess. For a description of how the automounter works, please refer to
the manual page: automount(8).

By default, the automounter looks for a map with the name
auto.master in the current NIS domain. If this map exists, it will con-
sult this map and use this map as a list of initial automount maps (con-
sider it a meta map). The layout of the auto.master map is as follows:

/mountpoint mapname [mount options]

By convention, all the maps that are specific for the automounter have
auto. as a common prefix.

For instance, to follow the examples used in the previous section, our
auto.master could look like this:

EurOpen Autumn ‘91 — Budapest, 16-20 September

The Art of Awtomounting

/vol auto.vol -ro,soft,nosuid
/project auto.project -rw,hard,nosuid
/home auto.home -rw, hard, nosuid
/distrib auto.distrib -ro,soft,nosuid
/net -hosts -ro,soft,nosuid
/- auto.direct -ro, soft,nosuid

As you will notice, most of the imports are done read-only, soft and
without set UID on execution by default. Importing data read-only is
cheaper than importing it read-write, and importing data without the set
UID on execution semantics avoids one of the security violations that
Trojan horse attacks like to use.

As we will see in later examples, you can override this default on spe-
cial cases in the appropriate maps.

All of the maps used in the above example will be explained below.

To start with, the contents of the auto.vol map couid look like this:

emacs bach:/argon/vol/emacs-18.55\
chopin:/neon/vol/emacs-18.55

frame bach:/xenon/vol/frame-2.1\
chopin:/neon/vol/frame-2.1

bin bach:/argon/vol/${ARCH} /bin\

chopin: /neon/vol/${ARCH}/bin
bach:/argon/vol/man\
chopin:/neon/vol/man
openwin -suld bach:/xenon/vol/openwin-2.0\
chopin:/neon/vol/openwin-2.0
bach:/argon/vol/emacs-18.55\
chopin: /neon/vol/emacs-18.55
bach:/xenon/vol/frame-2.1\
chopin:/neon/vol/frame-2.1
frame-1.3b chopin:/fluor/vol/frame-1.3b
openwin-2.0 -suid bach:/xenon/vol/openwin-2.0\
chopin:/neon/vol/openwin-2.0
openwin-3.0-beta -suid chopin:/fluor/vol/openwin-3.0-beta

man -rw

emacs-18.55

frame-2.1

Taking the first entry, emacs, as an example, here is how the auto-
mounter works. The automounter acts like a NFS file server. In this
example, it intercepts any reference to /vol. As soon as a process refers
to something (emacs) under this directory, the automounter searches
the corresponding map, auto.vol in this case. When found, it will
import the directory hierarchy from the location(s) specified in the last
column. What it will do exactly in this example is shown in the follow-
ing commands (assuming the reply to the import request is received
from bach first):

mount -o ro,soft,nosuid bach:/argon/vol/emacs-18.55 \
/tmp_mnt /vel /emacs
In -s /tmp_mnt/vol/emacs /vol/emacs

The bin entry will be explained in the section “Application manage-
ment”. Note that the man entry will be mounted read-write in order to
be able to store formatted pages in the corresponding cat directories if
necessary. Also note that openwin is mounted with the set UID on exe-
cution option turned on in order to support the “MIT-MAGIC-COOKIE”
security.

The map used in this example also provides redundant locations for
most of the volumes. In this case, they can both be imported from
either bach or chopin. This redundancy can lead to a more reliable
and robust environment. This kind of redundancy is of course only
useful for read-mostly data.

Finally, note that besides the default version, also the explicit versions
are provided for those who need them.

258

EurOpen Autumn 91 — Budapest, 16-20 September

)|
o] |

The Art of Automounting

The exceptions to the rules set in the auto.master map stand out
against the other entries. This gives you an instant overview of those
parts that may require special considerations during the installation
phase.

The auto.project map looks like:

rnfstune mozart:/krypton/project/nfstune
humadm mozart:/krypton/project /humadm
sysadm mozart:/krypton/project/sysadm

Nothing special about this one, except that all projects appear to be
served by host mozart.

The auto.home map looks like:

john mozart:/krypton/home/john
mary mozart:/kKrypton/home/mary
gralg mozart:/krypton/home/graig

Et cetera. You could also consider importing home directories one
level higher. This reduces the number of mounts necessary to import
more than one home directory from the same base location more than
once. The appropriate map then looks like this:

john mozart:/krypton/home: john
mary mozart:/krypton/home:mary
graig mozart:/krypton/home:graig

In this case, when John logs in, /krypton/home will be imported from
mozart. Then, when Mary logs in, only the appropriate symbolic link
will have to be created by the automounter, since Mary’s directory is
already available on the system.

The auto.distrib map looks like this:

Xview bach:/xenon/distrib/xview-2.0
emacs bach:/argon/distrib/emacs-18.55
xview-1.0 liszt:/gold/distrib/xview-1.0
xview-2.0 bach:/helium/distrib/xview-2.0

In this case, the XView version 1.0 distribution is also supported.
However, it could be that this instance is stored on a file server that is
normally not used for intensive file server operations. Perhaps it is
stored on a disk local to a workstation somewhere in the network, just
for convenience and without the need to make backups at the appropri-
ate times (in this case liszt, your workstation).

The entry that specifies /net —hosts is special. It causes a reference to
/met/host to mount all directory hierarchies exported by that host.
Please note this can lead to a high system and network load and can
take a long time if the host specified exports many directory hierar-
chies.

The automounter consults the NIS map hosts.byname for the host
specified on the command line.

Finally, the auto.direct map is used to make single directories avail-
able in between existing ones. As an example, consider a direct mount
of /var/spool/mail and /var/spool/calendar from a central file server
that serves your mailbox and network agenda. The entries in the
auto.direct map would look like this:

/var/spool/mail mailhost:/var/spool/mail
/var/spool/calendar calendarhost:/var/spool/calendar

References to either directory by Mail Tool and Calendar Manager
respectively, would cause the appropriate directory to be imported from
the server.

The Art of Automounting

As another example, consider a transition phase: your are in the process
of switching from the old file system organization to the new one. In
the old case, you supported a project that had its directory under
fusr3/zis. In the new set up you are going to make this project direc-
tory available under /project/zis. What you can do is support both
access paths during the transition phase so that the engineers can adapt
their scripts and Makefiles to the new set up.

In order to do so, include the following line in auto.project:
zis mozart:/krypton/project/zis
and include the following line in auto.direct:
/usr3/zis mozart:/krypton/project/zis

As you can see, both locations refer to the same project directory.

Another conveniency of the automounter is that it will create all direc-
tories needed for you. It will also remove them (and the corresponding
links) automagically after a certain period of inactivity or when the sys-
tem is shut down. You do not have to do a thing.

Automount Inconveniences

There are a few inconveniences when using the automounter that must
be mentioned.

First of all, the automounter mounts all directory hierarchies under
/tmp_mnt, and creates a symbolic link to that location. This means to
you will often see paths that start with the unaesthetic /tmp_mnt. Try
the command pwd(1) for example.

Second, the locations that the automounter watches are initially empty.
Only on reference, entries are created. This means that if you type,
say,

1s /vol
you will not see anything the first time. As another result, file name
completion supported by some utilities (C and Korn shell and Emacs

for example) does not work in these directories initially. You must
explicitly type in the full name that you need.

Last, since the logical location contains nothing but symbolic links to
the actual mount point, commands like

cd /home/mary/../john

are likely to fail. Remedy: always use full path names in this case.

2.4. Application Management

If you need to support software for more than one hardware platform —
which is normally the case in a heterogeneous environment — a well
designed directory structure is what you need.

This section discusses a model that allows you to do so.

First of all, remember that applications are made available as volumes
in the network. The first part of this section describes how to organize
such a volume.

The second part of this section describes a way to make the commands
available to end-users in such a way that the end-user does not have to
be bothered with the underlying hardware and operating system plat-
form. It is completely transparent to him or her. Furthermore, the

260

EurOpen Autumn 91 — Budapest, 16-20 September

T
8

2

P’

(1]

Op The Art of Automounting

second part will discuss a concept that avoids the need to change the
shell’s search path for every command that you want to make available.

2.4.1. Application Directory Organization

This section describes the preferred directory structure for applications.

In general, applications normally have architecture dependent and
shareable, architecture independent data. Furthermore, it is considered
good behavior if the application does not require to be able to write in
its own installation directory during normal operation.

The directory structure described below results in a complete separa-
tion between shareable and architecture dependent data. The directory
structure is as follows:

bin.arch Architecture dependent directory containing execut-
able end-user programs for that architecture. Con-
tains symbolic links to end-user commands stored in
.Jscript. You could also consider using hard links
or real copies for that matter. Hard links are cheaper
than soft links and are okay to use in this case, since
you remain within the same file system. Real copies
create unnecessary redundancy and should probably
be avoided for the sake of consistency.

script Directory containing scripts (shell, awk and others)
that can be shared across architectures. These
scripts are also part of the end-user commands.

etc.arch Architecture dependent directory containing execut-
able programs for that architecture. These programs
are normally not used by end-users directly, but
rather by the application itself or by an application
administrator.

lib. arch Architecture dependent libraries and other resource
files that could be used by the application itself or
perhaps by software developers.

Besides these general directories, you could of course support direc-
tories for help texts, fonts, lisp sources, etc. For more information,
please refer to the complete paper on “The Art of Automounting”.

Having this application directory structure, it can be made available as
a volume. GNU Emacs for example, would become available as
/vol/emacs and it would support the directories /vol/emacs/bin.sun4
/vol/emacs/etc.sund, /vol/emacs/lisp and /vol/emacs/info, say.

If the application itself needs to access its own files during operation, it
must be built so that it refers to its installation directory, and not to
some other place in the file system. For instance, GNU Emacs refers to
its own Lisp files during execution, and it should use the path
/vol/emacs/lisp to access them. Not something like
/usr/local/emacs/lisp.

2.4.2. Making the Application’s Commands Available

In general, applications, tools and utilities exist of one or more end-user
commands. These commands can be typed at the shell prompt, and the
shell will try to execute that command. The shell searches for com-
mands in the directories specified in the PATH environment variable.

This means that one way to tell the shell that you have added a set of
new commands is to add an entry to its search path. For example, if

EurOpen Autumn ‘91 — Budapest, 16-20 September 261

The Art of Automounting

you have added GNU Emacs as a volume, you could make the com-
mands available by executing the following commands:

PATH="S${PATH}:/vol/emacs/bin. 'arch’"
export PATH

However, this has major disadvantages.

First of all, you need to do this for all the users and all the shells
(Bourne, C and Korn) that want to have the Emacs commands avail-
able. This can be quite a hassle and is hard to maintain.

Second, the search path gets larger and larger on every such occasion,
finally resulting in a twisty little maze containing dead ends as well.

And last but not least, the search path contains architecture dependent
parts. This is no real problem, but it is somewhat unaesthetic and it can
be avoided as you will see below.

In order to solve the problems mentioned above, you can create a “con-
venience” bin directory that only contains symbolic links to the actual
commands. To resolve the architecture dependency, you can create
such a directory for every architecture that you need to support. This
directory is also made available as a volume and users only need to
incorporate this directory in their search paths.

Suppose you want to support the emacs command. Then, what you
should have is the following symbolic link:

/vol/bin/emacs — /vol/emacs/bin.arch/emacs

Here, arch should be replaced with sun3, sun4 or sun386, whichever is
appropriate. The shell’s search path must of course include /vol/bin in
order for the shell to find the command.

Note that both /vol/bin and /vol/emacs are made available through the
automounter.

The specific steps required to create this behavior in this example are

described below. But please note that more general procedures are’

described in “General procedures” in the complete paper on “The Art
of Automounting”.

For example, suppose you want to add the Emacs commands for Sun-3,
Sun-4 and Sun386i architectures to the environment.

First, you have to build GNU Emacs and it should have the directory
structure described in the previous section. You make this instance of
Emacs available as a volume on a file server:

mkdir -p /partition/vol/emacs-18.55

Then export this volume by adding the appropriate line to /etc/exports
and running exportfs(1). Finally, add the following lines to the
auto.vol map and propagate the changes on the network:

emacs server:/partition/vol/emacs-18.55
emacs-18.55 server:/partition/vol/emacs-18.55

Conclude this step with installing the previously built Emacs in this
directory on the file server.

Next, what you do is create a volume for the architecture dependent bin
directory on a file server if it does not already exist:

mkdir -p /partition/vol/arch/bin

Note that the architecture dependencies are reversed, or turned inside
out, in this occasion. That is, the arch directory is located one direc-
tory lever higher than the bin directory. This concentrates all architec-
ture dependent parts under one single exported directory. If you need

262

EurOpen A ‘91 — Budapest, 16-20 Septemb

a

P’

—HX

L

2

The Art of Automounting

to, you can import this single directory later on /usr/local. If you also
support lib and etc directories, /usr/local becomes what you were used
to until now.

As with the Emacs volume, export it and make it available to file
clients by modifying and propagating the auto.vol map. The trick to
resolve architecture dependencies is in this map! You should add the
following entry:

bin server:/partition/vol/${ARCH}/bin

The variable ARCH is set by the automount process at start up (so, dur-
ing boot time). It’s value reflects the application architecture. For
example, for a Sun-3 it will equal sun3 and for a Sun-4 it will equal
sund.

This means that the directory imported depends on the architecture of
the file client.

Finally, create the appropriate symbolic links in the bin directories:

cd /partition/vol/arch/bin
In -s /vol/emacs/bin.arch/*

Repeat these command for all the architectures that you support and
you’re done!

Please note the final dot at the end of the second command. It is essen-
tial that you specify it in order to create all the appropriate symbolic
links in one step.

What Happens When you Invoke a Command?

Suppose you invoke the command:

emacs

The following things will happen. The shell searches through its path
and will find /vol/bin/emacs. Since /vol/bin is handled by the auto-
mounter, it will be imported from the appropriate file server on first
reference. Remember that /vol/bin is architecture dependent. That is,
it will come from the location server:/partition/vol/arch/bin.

Because
/vol/bin/emacs
is a symbolic link to

/vol/emacs/bin.arch/emacs
/vol/emacs will also be imported by the automounter and the shell
will finally execute the correct architecture dependent command.

The Emacs process itself will reference its private files also through
/vol/emacs.

2.4.3. Volumes for Other Purposes

Besides using volumes for applications, you can also use them for other
things like an architecture dependent bin directory (as described in the
previous section), a network wide tmp directory, network wide user ini-
tialization and prototype files, include files, manual pages, etc.

This section discusses some of these topics.

EurOpen Autumn 91 — Budapest, 16-20 September

The Art of Automounting

A Network Wide tmp Directory

It is very convenient to have a network wide tmp directory available. It
provides an easy way to transfer files between colleagues without hav-
ing to use each other’s home directories. Name this directory /vol/tmp
and set the access permission to rwxrwsrwt. The physical location of
this directory could be anywhere on the network and you never have to
back it up. Consider putting it somewhere in a partition also containing
swap files for diskless clients.

Make sure you remove stale files once in a while to avoid filling up the
file system.

User Initialization and Prototype Files

Consider supporting a directory /vol/default with the subdirectories
init and proto. You could put .login, .cshre, .profile, .openwin-menu
and a bunch of other files in the init directory that users source during
their login sequence. You could install prototypes of these files in the
proto directory that are used for new accounts added to your system.
Et cetera.

Network Wide Shell Scripts

Consider supporting /vol/script for network wide shell, awk, sed, perl
and other scripts.

Local Manual Pages

Consider supporting /vol/man with the same structure as
/usr/share/man (or /usr/man). Create symbolic links to the appropri-
ate places from other volumes that you support, e.g.

cd /partition/vol/man/manl
ln -s /vol/emacs/manl/* .

To let the man(1) command find these manual pages, set your manual
search path accordingly:

MANPATH="/vol/man: /usr/share/man"
export MANPATH

Include Files, Icons and Others

Make your favorite local include files and icons available in
/volfinclude and /vol/icon respectively. Create support for /vol/frame
(FrameMaker), /vol/fmtemplates (your local FrameMaker document
templates), /vol/wp (WordPerfect), /vol/guide (Devguide), et cetera!

It’s up to you. Feel free to exploit /vol! Use your imagination.

3. Summary

To summarize, the following table shows you the essence of this docu-
ment.

Location Path

logical /class/instance
physical /partition/class/instance

264

EurOpen Autumn ‘91 — Budapest, 16-20 Septemb.

Ha

The Art of Automounting

“For instances”

For applications you need something extra:

Applications Path

logical Ivol/applic-version and
Ivolapplic for the default version

physical Ipartitionivolapplic-version

Commands and architecture dependencies are handled as follows:

Command Path

logical Ivolbin/command
physical Ipartition/volarchibin/command

And the corresponding maps for the automounter look like:

Map name Contents

auto.master Iclass auto.class |options)
/- auto.direct loptions)
/net ~hosts foptions]

auto.class instance [options] server:ipartition/classlinstance

And to resolve architecture dependencies, versions and variants use:

Map name Contents Location

auto.vol bin server:partition/vol/${ ARCH}/bin
lib server:partition/vol/${ARCH}/lib
etc serverdpartition/voV/${ARCH J/etc
app server:partitionivolapplication-version
app-vers serversipartition/volapplication-version

auto.direct /usrNlocal serveripartition/vol/${ARCH}

Easy, consistent and efficient.

4. Conclusion

With the concepts laid out in this paper, plug and play is the way to go.
Especially with SunOS 4.1.1 Revision B, life becomes easy. The only
thing users have to do, is to get the Ethernet address of their new hot
box — which is available from the customer information sheet in the
plastic bag attached to the system unit carton — and give this to the sys-
tem administrator. The administrator then uses this information to set
up the NIS hosts and ethers maps accordingly. That’s all. The user can
then turn on the power switch and play! All the relevant files are
automagically available from the first moment the system is switched
on.

How’s that for a change?

EurOpen Autumn 91 — Budapest, 16-20 September

266 EurOpen Autumn ‘91 — Budapest, 16-20 September

Monitoring Network Performance in
a Heterogeneous Environment

Martin Beer Shaun Hovers

Department of Computer Science,
University of Liverpool, UK
{ mdblshaun } @compsci.liverpool.ac.uk

Abstract

The widespread adoption of Local Area Networks has meant that net-
work performance measurement, which was previously the sole
preserve of large installations with expensive monitoring equipment,
must now be performed by many more computer installations without
such equipment and expertise, if acceptable levels of performance are
to be consistently achieved. This paper will discuss the design and use
of a monitoring and management system which by analysing the actual
network stations to collect data on the current status of network traffic,
uses the real data collected to provide a full description of current net-
work performance. In addition, allows changes in both the physical
network configuration and traffic densities can be simulated, by provid-
ing suitable additional data.

A suite of software to perform these functions is currently being
developed in the Department of Computer Science, at the University of
Liverpool. By providing much more accurate information about the
present and anticipated future performance of the network, the
approach discussed in this paper will considerably improve the quality
of management decision making.

1. Introduction

There has been a dramatic increase in both the usage and size of Local
Area Networks in recent years. Whereas previously, networks were
either confined to large sites with the full technical resources necessary
to fully manage them, or limited to a very small number of compatible
machines, connected to share some expensive physical resource, such
as a printer, or communication device, using only a small proportion of
the available transmission capacity, the local area networks currently
being installed, are often intended to provide a fully integrated working
environment. This makes them central to the operational activities of
that organisation. Not only are a number of independent resources
shared between members of a working group, but important communi-
cation channels are also provided (either by use of electronic mail or
some other communication facility, such as telex or fax), the use of
which considerably enhances the efficiency of the members of the

EurOpen Autumn 91 — Budapest, 16-20 September

Monitoring Network Performance

organisation concerned. This means that the management of the Net-
work is much more important to the smooth running of the organisa-
tion.

The growth of size and complexity of the network has meant that much
more care must be taken in the configuration and layout of the network
if adequate performance is to be achieved under all circumstances.
This leads to the need to provide an adequate set of tools, which will
allow the user to monitor the actual and predicted performance of their
network, so that appropriate management action can be taken at an
early stage. This paper discusses the design and implementation of
such a set of tools.

The increased use of networks has not however led to a corresponding
increase in skilled network management operatives. This has led to the
situation where many installations using LAN’s have them maintained
by normal system operators who may not be able to spot faults in the
network because of their lack of specific knowledge. Configuration
and performance measurement must also be undertaken by normal sys-
tems personnel, rather than the networking specialists who have tradi-
tionally undertaken this role.

It is clear, therefore that appropriate tools are required, to assist both
the operators and the system managers to:

° Initially configure the network, so that the specified performance
targets can be achieved,

° Monitor the actual performance in service, so that proper
management and control decisions can be made to achieve these
performance targets, and

. Simulate the effects of proposed changes either in operating
parameters, or in configuration, so that investment in both money
and effort can be directed in such a way that it stands the best
chance of achieving the objectives laid down...

if full and effective use of the network is to be achieved. Otherwise the
design, configuration and management of effective networked systems
will remain in the realms of guesswork and chance. Fortunately the
need for additional information has already been recognised, and
appropriate standards are currently being developed. These include
SNMP [Ros88a, Ros88b, Cas88a] in the Internet community. Since
these standards will shortly be available on a wide range of different
manufacturers’ equipment, the management of a heterogeneous
environment will be considerably eased.

2. Management Requirements in a Heterogeneous Environment

The need to provide effective monitoring and management services
across a heterogeneous network requires a coordinated approach,
which effectively monitors all network services provided, indepen-
dently of their origin or destination. This allows the network manager
to obtain a clear picture of the actual activity taking place, rather than
having to rely on experience and indirect evidence, as is usually the
case. A set of three basic tools were therefore defined to provide the
information necessary:

° A facility to monitor the network by inserting “probes” at various
points. These probes can then be used to develop an effective
coordinated model of total network activity.

268

EurOpen Autumn "91 — Budapest, 16-20 September

P

o] |

3

Monitoring Network Performance

A mechanism by which the data collected by the various
“probes” is collected, and analysed, so that an effective model of
current network activity and performance can be derived.

A simulator, which can take the data collected by the monitor,
and allow the network manager to asses the effects of proposed
changes in the network, with respect to the known performance
requirements.

In addition, if the information provided is to be of use to a non-network
management expert:

° It must be provided in a format that can be understood readily.

) It should give an accurate representation of the network activity
at any given instance of time, that is it should give a real-time
network view.

It should ease the making of management decisions by providing
some way of testing new policies before actually implementing
them.

From these operating requirements it can be seen that what is required
is a monitoring and management system which:

° Uses the actual network nodes themselves to collect and collate
data on the traffic being routed through the network with various
points on the network reporting regularly thus giving a constantly
updated picture.

Presents this data in the form of graphical output such as in the
form of a network map, giving traffic densities and clearly
reporting any faults.

Maintains a full database of monitoring sessions, allowing for
analysis of network changes and identification of any trends in
activity.

Allows simulation of alteration in both the physical network
configuration and of traffic densities so that the consequences of
these changes can be assessed before actually making them.

A monitor following these requirements would allow for full analysis
of the consequences of such changes on the individual services pro-
vided by the network to be assessed at every stage and for management
and investment decisions to be made with a proper understanding of the
current service requirements, and future trends. In particular it would
be possible by analysing the the changes in activity, as they occurred,
to identify adverse trends in both traffic densities, and the performance
of individual services before they became so significant that they would
adversely affect total network performance. It would also be possible
to investigate alternative configuration strategies without actually phy-
sically altering the actual network.

The management problems do not disappear once the network has been
installed. The model of the User Service on which installation was
based, has to be maintained and indeed extended as:

. Software and hardware upgrades are installed,

° New services are provided, either by mounting additional
software, or by adding further hardware, or some combination of
the two, or

Support for additional users is provided by adding workstations
and server capacity.

Even when the network environment as apparently constrained as that
found in undergraduate laboratories, changes in usage in apparently

EurOpen Autumn ‘91 — Budapest, 16-20 September 269

Monitoring Network Performance

distant areas can have significant effects on the user’s view of the ser-
vice provided. For instance, a large class using a complex windowing
package, such as a Software Engineering Design toolkit, causes a
significant degradation in the overall service provided on staff worksta-
tions, even though there is apparently no sharing of resources between
them. This situation is of course unsatisfactory, as it implies that
difficulties caused by service overload in one part of the network are
being propagated widely, even when only a small number of resources
are directly effected. It is expected that the development of a proper
functionally-oriented model will identify the causes of such behaviour,
which can then be dealt with in an appropriate manner.

3. The Design of the Network Management Tools

A variety of network monitors have been available for a number of
years. These include:

° Hardware monitors of various types, some including remote
probes so that monitoring can take place at various points in the
network, away from the central monitoring station,

° Software programs that run on individual workstations, monitor-
ing both incoming and outgoing traffic at that point, and

o Software programs that attempt to analyse throughput, by read-
ing information from specially placed monitors.

The information gathered is often presented in a form that is extremely
unclear, to all but the most experienced expert, also rely heavily on the
principle that all traffic is equally important, something which is in
practice not always the case. For instance, it is often necessary to
guarantee the service for one type of traffic, whereas a similar service
level is unnecessary for others that use the same links in the network.

Other problems that do occur include:

. Additional connections must be made to place a hardware moni-
tor, changing the configuration of the network, unless the moni-
tor remains permanently attached.

. Hardware monitors only look at a single point in the network at
any one time (unless multiple monitors are available) so a com-
plete picture cannot be developed, since moving the monitor can
significantly change the performance of the network.

) The output provided by most monitors tends to be specialised,
making interpretation a job for a specialised network expert,
rather than a normal system operator.

° Where remote probes are used or coordinated readings are taken,
the actual act of monitoring the network introduces additional
network traffic, which is often significant enough to change the
performance of the network, as perceived by the normal user.

) Many monitor programs completely omit certain types of net-
work traffic, which may have a significant effect on overall per-
formance.

The lack of a complete picture also means that it is impossible to build
an effective simulation model, so that the monitor can only be used to
measure changes in network operation when the physical or organisa-
tional change has actually been made. So costly and/or time consum-
ing network changes may be made only to discover either no improve-

270

EurOpen Autumn 91 — Budapest, 16-20 Septemb

Monitoring Network Performance

ment has taken place, or even worse, that network performance has in
fact been reduced.

Hardware monitors are very expensive which means that it is difficult
for small network users to justify the purchase of one, in the light of the
likely savings that the improved monitoring that the use of such an
instrument is likely to achieve. The constraints on most organisations
budgets make it much more likely that any additional investment will
be channelled into additional workstations, which are likely to cause
overload problems on the network, rather than in the “non-productive”
investment that the provision of such instrumentation. Only when per-
formance deteriorates to such a level that it seriously effects the
organisation’s ability to function, does the proper management of the
network become a priority issue.

In the Department of Computer Science at the University of Liverpool,
work is currently underway to create a suite of software to perform the
required monitoring functions [Hov9la]. Considerable attention is
being given to making the system usable by system managers so it is
not necessary to rely on networking specialists, who would not be
available on many real sites. This software is designed to fulfill the
requirements by:

° Incorporating the monitor probe into particular network nodes as
a daemon process. These daemons are placed at strategic points
around the network, so that the traffic types and densities can be
monitored in a coherent manner.

. Recording the traffic passing into and through that particular
node of the network, by means of that process. Rather than con-
tinuously passing information, as it is collected, the monitor
probe collects data over a short, predetermined period, and then
passes the results back to the collecting point at an appropriate
later time.

One node (usually a workstation) is designated the collecting node and
is used to collect the information supplied by all the individual daemon
processes. The information is then collated and graphically displayed
on a single display using an X-windows [Mor86a] system. The display
would then give an accurate display of the current network situation
including traffic densities and any faults or breaks which occur in the
network.

Included in the information provided by the daemons are the source,
destination, and type of each packet, together with the type of service
required. This information, as well as being used to provide the active
network view, is also kept to allow an accurate network model to be
created. With the information the model can provide a method of test-
ing out new configurations of the existing network and also of new
additions to network hardware. In fact this information allows:

) Trends in network usage to be identified and assessed before they
adversely affect network performance.

° The effect of changes in operating and other software to be prop-
erly analysed, by upgrading a limited number of machines at
first, such that performance problems can be identified and
remedied before finally committing the whole network.

) The effects of configuration changes to be properly assessed
before any final decisions are made.

These advantages allow the network manager to properly assess the
effects on both functionality and performance of changes in the work-

b 271

Hid

Monitoring Network Performance Opedy

ing environment before before they become apparent to the normal
user.

4. Conclusions

The tools discussed in this paper are designed to assist the network
manager in providing a coherent and efficient working environment for
all users of the target network. To this end the following design con-
siderations have been used:

. Clear and simple monitoring facilities allow systems managers to
make accurate operational decisions, without unnecessarily
effecting other parts of the service.

. It is better to discover potential problems in capacity and perfor-
mance before resources are finally committed, rather than after
changes have been made. This is because it is often extremely
difficult to downgrade a system when problems are discovered
some time after the upgrade.

° The network is a system resource, like any other, and must be
managed effectively if the maximum organisational benefits are
to be achieved.

The set of programs described in this paper is an attempt to provide the
necessary tools for the network manager to deal with these problems
before they become plainly apparent because of their devastating
effects on the normal user service.

References

[Cas88a] J. Case, M. Fedor, M. Schoffstall, and J. Davin, “A Simple
Network Management Protocol,” RFC 1067, TWG
(August 1988).

[Hov9la] S. Hovers and M. Beer, “Monitoring Network Perfor-
mance in a Heterogeneous Environment,” Networks:
Design, Planning and Standards, Proceedings of the Net-
works’9] Conference, Blenheim-Online, London, UK,
pp- 373-379 (1991).

[Mor86a] J. Morris, M. Satyanarayanan, M. Conner, J. Howard, D.
Rosenthal, and F. Donelson Smith, “Andrew: A Distri-
buted Personal Computing Environment,” CACM 26(3),
pp. 184-201 (1986).

[Ros88a] M. Rose and K. McCloghrie, “Structure and Identification
of Management Information for TCP/IP-based Internets,”
RFC 1065, TWG (August 1988).

[Ros88b] M. Rose and K. McCloghrie, “Management Information
Base for Network Management of TCP/IP-based Inter-
nets,” RFC 1066, TWG (August 1988).

272 EurOpen A ‘91 - Budapest, 16-20 Septemb

StormCast — A Distributed Application

Dag Johansen Gunnar Hartvigsen

University of Tromsp, Norway
{ dag | gunnar } @cs.uit.no

Abstract

The objective of this paper is to present the architecture of the distri-
buted application StormCast. StormCast has been designed and imple-
mented to enable an evaluation of the proposed architecture as well as
the underlying operating system mechanisms. StormCast consists of a
set of modules monitoring weather data and a set of sub-applications
using this data. StormCast is running in both local area and wide area
networking environments.

1. Introduction

The last ten years have seen an increased interest in and evolution of
distributed systems with a distributed system defined as a distributed
operating system consisting of a replicated set of microkernels and a
set of operating system services typically implemented as a set of
servers outside the microkernels. This includes distributed systems as
Amoeba [Mul86a], Chorus [Roz88a], Mach [Acc86a], Sprite [Ous88a],
V [Che88a] and the x-kernel [Pet90a). However, we do not face simi-
lar innovative changes in user applications resulted from enhancements
to the operating system technology. Consequently, applications are
still often constructed based on a monolithic approach not taking
advantage of the distributed nature of the underlying distributed sys-
tem. A common approach is basically to run traditional sequential
applications on distributed systems to achieve objectives as increased
performance at a lower price, utilization of present resources or
increased fault-tolerance.

A distributed application is defined as a set of separate modules or
processes cooperating to meet an overall application goal. We argue
for an increased interest in distributed applications based on the
assumption that several sectors exist lending themselves naturally to
distributed computing. The reason for the lack of distributed applica-
tions is not of a technical art as long as current distributed and network-
ing systems seem to provide a means of running distributed applica-
tions. The problem is more that application engineers still consider
applications in the term of monolithic structures.

This paper describes the architecture of the StormCast distributed
application, an application in the weather and environment sector. Our
methodology is to design and implement a realistic distributed applica-

EurOpen Autumn ‘91 — Budapest, 16-20 September 273

StormCast ~ A Distributed Application

tion in full scale and run and validate it on different network based
platforms.

The rest of this paper is organized as follows: Chapter 2 argues for the
application sector chosen for distributed processing. Chapter 3
describes the architecture of StormCast. Chapter 4 discuss aspects of
the architecture while chapter 5 concludes the paper.

2. The Weather Domain

Several distributed applications have been implemented, Grapevine
[Bir82a] to mention one. Typically, a distributed system itself also
contains a set of distributed applications as a distributed name server, a
distributed file server or a disiributed authentication server. This can
also include monitoring mechanisms to capture the behaviour of distri-
buted systems as [Hol90a].

The sector we have chosen for distributed processing purposes is out-
side the typical operating system sector, and it is based on the recogni-
tion that real-life monitoring is distributed in its nature. This includes
monitoring for industrial purposes as a factory automation application
monitoring the different stages in a production line or a defence appli-
cation monitoring specific events occurring in a geographical area of
interest.

We have investigated the weather and environment sector. As argued
in [Joh88a], the weather sector is a proper candidate lending itself
naturally to distributed computing. The reason for the choice of this
sector includes the following:

1. Monitoring of weather data is distributed in its nature. Weather
data is either monitored from different points on the ground or at
upper air installations as weather balloons or satellites. Typi-
cally, this involves sensors measuring data as temperature, wind
speed and wind directions, humidity, cloudiness, precipitation,
brightness and visibility. We intend to investigate if both moni-
toring and transmission of weather data can be fully automated.
Due to practical limitations, Version 1.8 of StormCast is based
on ground sensors exclusively assuming that this type of equip-
ment can be used to obtain sufficient weather data for a practical
distributed application.

2. Usage of weather data is already heavily based on computers
where monitored weather data are input to complex numerical
computations. This involves heavy computations requiring hours
of mainframe cpu time. We intend to investigate if numerical
weather models can take advantage of the parallel processing
potential in distributed systems. We also intend to investigate if
alternative computational models can add to the process of
predicting weather, either exclusively as separate computational
models or together with existing numerical models.

3. The geographical area to monitor span areas so large that wide
area networking is commonplace. Consequently, the distributed
application must operate in local area networking environments
as well as in wide area networking environments including
mobile networks and satellites for communication. Research on
distributed systems and distributed applications in this type of
environment is rare. We intend to add to the knowledge in this
particular field.

274

EurOpen Autumn ‘91 — Budapest, 16-20 September

L
H

StormCast — A Distributed Application

We assume that monitoring of data related to weather data can be
done by small enhancements to a distributed application
designed and implemented for monitoring of weather data. This
will include monitoring of environmental changes as pollution by
reuse of existing hardware and software built for the weather
data monitoring.

Last, but not least is that there is a local interest in the weather
domain facing the fact that StormCast is intended to operate in
the Arctic regions of the world. This is a geographical location
where human activity might depend heavily on the current and
future weather conditions.

To summarize, we assume that the weather sector is a proper candidate
for the construction of a realistic distributed application. The Storm-
Cast distributed application has been designed and implemented, and
its architecture will be presented in the succeeding chapter.

3. The StormCast Architecture

The StormCast architecture basically consists of two functional layers,
the data collection layer and the weather application layer. In short, the
data collection layer obtains the weather data needed by the weather
application layer.

3.1. The Hardware and Software Platform

Several StormCast versions have been developed based on different
hardware and software platforms. Version 1.8 of StormCast is based
on an initial design and implementation [Joh88a] running on the distri-
buted system Amoeba [Mul86a] in a wide area networking environ-
ment [Ren88a]. A change in development platform has mainly been
motivated by pragmatic concerns. As long as earlier Amoeba versions
were not used as our production system and as long as few sites were
running Amoeba, we decided to use a more common platform. Our
current UNIX platform has shown to be more convenient when building
a large distributed application as StormCast since this has enabled a
speedier application development. Nevertheless, we have lost func-
tionality that a distributed system normally provides.

StormCast is mainly running on 50 MHz Motorola 68030 workstations
(Hewlett-Packard 9000/4xy s/t) connected through a 10 Mbit/s Ether-
net. StormCast consists of a set of processes written in the program-
ming language C augmented with library calls for inter process com-
munication. Each module in StormCast is running as a UNIX' process
using TCP/IP (Transmission Control Protocol/Internet Protocol) and the
X Window System. X.25 and cisco Systems AGS Gateway servers are
used for communication over wide area networks. Modems are also
used for transmission over existing telephone lines.

3.2. The Data Collection Layer

1 HP-UX Release 7.03.

The data collection layer is responsible for monitoring and transmission
of weather data. The geographical area monitored are separated in dif-
ferent areas or domains, where each domain contains one synthesizing
module and a set of monitoring modules. Figure 1 illustrates monitor-
ing of a geographical domain containing a synthesizing module and

StormCast — A Distributed Application

Other

Higher layer module Other

synthesizing agf— A — synthesizing

modules

—» modules

Gl Gl eT=] =]
Physical communication ports

\/d

Control |egg

function —

Cache™

QD =N—=p O T~Teln
o—cao3

]] e e]]

Physical communication ports

Figure 1: The data collection layer

two logical monitoring modules [Har90a). The interaction schema is
mainly based on a pure client-server model.

The synthesizing module is responsible for the collection of data in its
domain by replying on requests from the weather application layer or
from other synthesizing modules. A synthesizing module issues
requests to other synthesizing modules on behalf of a module in the
weather application layer. A reply is either based on timestamped
weather data cached locally in each synthesizing module or based on
nested requests to the monitoring modules in each domain. The default
is to return current data involving the monitoring modules. Each logi-
cal monitoring module contains one or several physical modules and a
voting function. The voting function manages the different replicas of
the physical monitoring modules with replication completely hidden for
modules outside the logical monitoring module. The voting function
multicasts the same request to all physical modules in the same logical
monitoring module, get replies from each of them, validates the
received data by a voting function and returns the majority vote to the
synthesizing module.

The amount of data transmitted between a monitoring module and a
synthesizing module is about 40 byte, and the data is timestamped with
the local time in the voting function. The amount of data returned from
a synthesizing module is in the order of 40 byte * n where n < the
amount of logical monitoring modules in the domain(s) of interest.

Figure 2 illustrates a typical sequence of data transmitted. For mobile
monitoring modules, we also add location data. Such modules will typ-
ically be located on board on trawlers in the Barents Sea.

276

EurOpen Autumn ‘91 — Budap 16-20 Septemb

E@ StormCast — A Distributed Application

typedef struct {
SOURCE Source;
time_t ObservationTime;

int BarometricPressure; /* 955 - 1075 */

int Temperature; /* -60 - +40 degrees C */
int WindSpeed; /* 0 - 100 m/s */

int WindDirection; /* 0 - 360 degrees */

int DewPoint /* 0 - 100 % */

int Clouds; /* 0 - 8 n/8 */

} WEATHERINFORMATION;

Figure 2: Weather data transmitted

The data collection layer is used by several applications found in the
weather application layer. Figure 3 illustrates three geographical
domains being monitored and two workstations running weather appli-
cations. The next subsection describes the functionality of the present
weather application layer.

3.3. The Weather Application Layer .

The weather application layer contains a set of applications providing
functions as weather maps, weather statistics, severe storm predictions
and pollution monitoring and warning. Each application is based on
data obtained from the same data collection layer.

3.3.1. Weather Map

A weather map was the first application built in the weather application
layer [Joh88a]. The weather map shows the current weather situation

~
="~ Ll
Sl kN
\ 7 11 N\
\ / \
\ / \
| / \
[/ \
/ I \
/ | |
/ \ |
\ l
-—=~~L \ Domain B /
™S ~ s
e \\ S’
\
\

\N_ DomaincCc _~

~ -
\M-—’

Figure 3: A small configuration of StormCast

EurOpen Autumn ‘91 — Budapest, 16-20 Septemb 277

StormCast - A Distributed Application %

Figure 4: Weather maps displaying the current weather in two domains

in one or several domains based on data obtained directly or indirectly
from a nearby synthesizing module. Each weather map module
interacts with the same synthesizing module each time. This synthesiz-
ing module returns weather data locally cached or obtained from the
logical monitoring modules in its domain. Alternatively, other syn-
thesizing modules are requested similarly through this synthesizing
module to obtain data from other domains. Figure 4 illustrates two
weather maps displaying data from two domains. The weather map on
the left covers a part of Norway based on data from the leftmost syn-
thesizing module. The weather map on the right displays the whole
Norway by data obtained from the entire set of synthesizing modules.

Based on X Windows, a weather map module accounts for almost a
Megabyte of code. Typically, a request for 1 Kbyte cached data in.a
synthesizing module located on another node in a local area network
takes about 30 milliseconds. A request for weather data located in
another part of Norway involving X.25 traffic is in the range of one
second. Similar transatlantic requests between two modules take 2.5
seconds on the average to carry out. Communication accounts for most
of these figures, especially in a wide area network environment.

3.3.2. Weather Statistics

A second application in StormCast is a statistics application providing
weather statistics for a user. Such a user also includes weather applica-
tions predicting weather forecasts. In functionality, the statistics appli-
cation issues requests to the data collection layer on a regular basis
storing the data. On demand, different weather statistics can be pro-
vided based on the stored data. Typically, this is average figures for a
specific interval as average temperatures the last month.

We have used two different approaches, the first uses indexed UNIX
files as a storage medium while the second approach uses a SQL based
database. This is illustrated in Figure 5. Clearly, we prefer the first
approach due to performance benefits and little loss in functionality.

3.3.3. Weather Predictions by Computers

A third application developed using the same data collection layer is
motivated by the fact that weather forecasters already base much of
their work on output from computerized weather models. This is often

278 EurOpen Autumn ‘91 — Budapest, 16-20 September

v |

ﬁ.é StormCast — A Distributed Application

Ingres
UNIX files

Figure 5: The statistics application

complex numerical models running as monolithic processes on main-
frames.

We have taken two different approaches when building a weather pred-
iction application as well. The first approach is to use a traditional
numerical model and investigate if this can take advantage of a distri-
buted system compared to the centralized approach running the appli-
cation on a mainframe. This is illustrated in Figure 6, where a set of
nodes is running the computational model in parallel.

Figure 6: Running numerical computations in parallel

EurOpen Autumn ‘91 — Budapest, 16-20 September 279

StormCast — A Distributed Application

Figure 7: A set of expert systems predicting severe storms

A classical numerical model divides the atmosphere into six layers
which is analysed and projected separately. The final output combines
the output from the six layers. This might illustrate the potential for
parallel processing in this particular application sector.

A second approach we have taken is to investigate if alternative com-
putational models can be used in the process of predicting severe
storms. Consequently, we have built an application consisting of a set
of expert systems predicting severe storm forecasts [Har88a, Har90a].
To simplify the actual weather forecasting problem, we restrict the
weather forecasting process to severe storm forecasting. We also see
the practical expert system approach as a supplement to traditional
numerical model based forecasts. This means that StormCast is
intended to come with microforecasts, that is highly detailed forecasts
of conditions over relatively limited areas. This is motivated by the
fact that very local storms might appear in the Arctic within very short
time intervals. Figure 7 illustrates the design of this application with a
set of expert systems predicting microforecasts for the domain they
receive weather data from. Implicit in this structure is communication
of information, which is handled by a set of blackboards also located in
the weather application layer. Typically, this communication requires
wide area networks. We intend to use this StormCast application on a
set of trawlers communicating through the Inmarsat.c satellite running
X.25. Each trawler constitutes a weather domain with an expert system
module, a blackboard module, a synthesizing module, and at least one
logical monitoring module.

In functionality, the expert system in each domain predicts storm fore-
casts regularly based on locally monitored data. However, storm fore-
casts are multicasted to neighbouring domains aiding in the prediction
process in the other domains. To illustrate the usage of this multicasted
information, consider two domains North and South. The South
domain might have a storm prediction indicating that the probability of
a storm in this region is 0.2. However, if an upcoming storm centre is
located in domain North heading south, the local storm prediction in
domain North might be 0.9. By multicasting this prediction to its neigh-

280

EurOpen Autumn 91 — Budapest, 16-20 September

e

StormCast — A Distributed Application

Figure 8: The propagation effect of a serious accident

bours including domain South, domain South can use this information
to give a more accurate microforecast for itself.

3.3.4. Pollution Monitoring

A full implementation of StormCast might have a configuration where
the data collection layer covers a wide geographical area as the Nordic
Countries. This involves a large set of black boxes monitoring weather
data replaying on requests from synthesizing modules, which again
serve requests from the weather application layer including for instance
the weather map and the expert systems predicting severe storms. Our
objective is to add minimal software and hardware to this configuration
achieving much more in functionality.

This extra functionality added is an application monitoring environ-
mental changes. This is basically monitoring of pollution changes by
adding some extra sensors to the black boxes already monitoring the
weather. The software changes are minor; hardware changes is basi-
cally to add some extra sensors. Reuse of the rest of the software and
hardware is then achieved.

Another interesting aspect by integrating weather and pollution moni-
toring is the possibility to predict how the consequences of an unfor-
tunate accident are gradually felt further and further afield. Consider a
scenario with an accident in a nuclear plant in a neighbouring country
east of Norway. Figure 8 illustrates how pollution from such an
accident might disperse based on the wind direction monitored.

Today, it might take less than an hour from an accident occurs in the
nearest located power plant until the first Norwegian population is
reached. However, the current warning system operates with a warn-
ing period of 24 hours. In our part of Norway, this is basically based
on data from one monitoring module. We intend to show that this can
be dramatically improved by use of StormCast.

EurOpen Autumn 91 — Budapest, 16-20 Sept

b

StormCast — A Distributed Application

Figure 9 illustrates the architecture of this application. The boxes
between the interface modules and the data collection layer are warn-
ing modules multicasting pollution warnings.

4. Discussion

Few distributed applications exist in the weather domain, the existing
ones either monitor data automatically or predict forecasts by expert
systems or numerical computations. To our knowledge, no weather
applications fully automate the tasks as described in the previous sec-
tion. StormCast is also based on distributed problem solving by a set of
expert systems, each expert system responsible for a small domain.
Alternatives found in the weather domain are all based on monolithic
structures.

The layering in StormCast has enabled software reuse since the bottom
layer monitors and transmits raw data while the upper layer handles the
more application specific aspects. The approach we have taken in
StormCast is important to meet the software crisis generated by the
problem of developing the same software over and over again. We
have shown that different applications can be built by reuse of the same
mechanisms, in StormCast this mechanism is a separate layer providing
raw weather data. Maybe similar mechanism layers can be found in
other application domains as well.

StormCast consists of a set of modules who communicate with each
other through a well defined interface. This has the advantage that
modifying one component does not require changing or recompilation
of another. Reuse of software is also supported since it is easier to
reuse specialized modules in stead of a large, monolithic application.
Our separation of cpu intensive modules from /O modules also eases
process migration, a functionality we find important to guarantee avai-
lability of long lived processes in StormCast. Replication is also sup-
ported by the modularization we suggest. We replicate the modules
acting as bottlenecks, which provides a service who should be made
more fault-tolerant or which must meet functional requirements. An

Figure 9: Pollution monitoring and warning in StormCast

282

EurOpen Autumn 91 - Budapest, 16-20 September

Eg StormCast — A Distributed Application

example of this is adding a new user to StormCast where a customized
interface module is all code that is added. Our experience is also that
scaling is supported by a decomposition as shown in StormCast. We
simply scale the part of the application which is necessary, for instance
the interface modules when new users are added or a synthesizing
module is added in a domain if this is heavily loaded by requests.

StormCast has been configured differently involving over 100 nodes
both in local area and wide area networking environments. One
extreme was to centralize as many modules as possible on one node,
the other extreme was to allow only one module of Stormcast on each
node. The first alternative had its drawbacks related to hardware fault-
tolerance aspects, the distributed nature of the application as well as
scaling problems.

The other extreme was more attractive since it meets fault-tolerance
requirements. A distribution of modules also meets the functional
requirements of StormCast where at least the monitoring modules must
be distributed. The configuration we favour is to distribute the physical
monitoring modules to the geographical area to monitor. The voting
function and the synthesizing module are located on the same local
area network as the interface modules. Especially in a wide area net-
working environment, we found it appropriate to have the synthesizing
modules as close to the user as possible to ensure availability of cached
data in case of network partitioning.

In StormCast, we are interested in a failure model where software
failures are better dealt with. This is motivated by the recognition that
software failures are difficult to discover during the construction pro-
cess of an application. Even though formal methods and thorough test-
ing are applied, several software failures are first discovered when the
application is in operation. Application uscrs in for instance the finan-
cial, medical or defence sectors might consider run time failures as
something that should be avoided at almost any cost, even if the cost of
redundancy techniques is generally higher since it entails extra process-
ing and network traffic. Hence, the methodology we use in StormCast
is labour intensive, but reduces the probability of run time errors.

This means that the replication in StormCast intends to cope with a
failure model where logical faults might occur. This is done by involv-
ing n different programmers as well, each one responsible for one of
the n replicas. Each replica implemented has a well-defined interface
and some functional requirements to met. The internal design and
implementation depends entirely on the different programmers. The n
different replicas are then run in parallel as we do with the monitoring
modules in StormCast. We consider this a convenient methodology to
reduce traditional software errors, even if it is labour intensive.

To improve availability, replication of monitoring modules ensure that
data is delivered from a domain even if one replica breaks down.
Caching of data in the synthesizing modules also ensures availability.
If a network partition occurs or all monitoring modules fails, cached
timestamped data might still be useful for the client requesting the data.

The n-replication schema in StormCast includes configurations with
n = 1. The idea is that redundancy is specified when configuring the
application. Then, trade-offs between redundancy and added func-
tionality must be done. Not all domains might need the same reliable
data, it is for instance domains close to a potential pollution area who
should be made more fault-tolerant. It is also convenient that a module
issuing a pollution warning base this on very reliable data. No redun-

EurOpen A ‘91 — Budapest, 16-20 Septemb 283

StormCast — A Distributed Application

dancy in the pollution monitoring process means that somebody can
hamper with the single monitoring module.

To summarize, we consider fault-tolerance as one of the most impor-
tant objectives of StormCast. For a user of a distributed system, failure
transparency [ANS87a] should be guaranteed as a rule. The exception
here might be as exemplified in StormCast where timestamped data
cached in the synthesizing modules are returned when the monitoring
modules are unavailable. Then, the user must be notified that current
weather data can not be obtained. However, sometimes it is better with
old data than no data at all.

If software failures shall be masked as we do in StormCast, failure
transparency can not be guaranteed at the implementation level. The
programmer of the different replicas do not have to know about the
other n — | programmers, but the implementor of a voting function as in
StormCast must deal with this replication. Hence, we consider fault-
tolerance as a task where both the distributed system and the applica-
tion programmer must contribute. The distributed system might then
be responsible for the distribution of modules which is replicated by the
different programmers.

5. Conclusion

StormCast has been designed and implemented to obtain experience
with distributed computing. In the light of this objective, StormCast
meets its goal. StormCast has been running on Amoeba, it is running
on several UNIX platforms and currently on Mach as well. We also
intend to use it on distributed systems being developed in the depart-
ment.

The objective of this paper has been to show the potential for distri-
buted computing in one application domain. StormCast is now imple-
mented in larger scale by Norwegian industry. This means that Storm-
Cast is developed to run in full scale both on- and offshore in the Arctic
part of Norway.

In addition, tailorware based on StormCast is being developed. This
involves StormCast versions monitoring weather conditions at a small
domain as an airport to predict potential dramatic weather situations.
Located near to the North Pole, small airports in the northern part of
Norway might have turbulent weather conditions during the winter.
Another tailorware is weather monitoring for cross country skiers.
This involves a set of sensors located around the track providing
weather data for the skiers in the start area.

Many distributed systems exist today, some of them intended to be the
new virtual machine for user applications. A common problem is as
always to convince end users of potential benefits of this new concept.
Benefits like fault-tolerant computing, improved resource sharing or a
better price/performance ratio are arguments used for distributed com-
puting. However, an argument often omitted is the potential of running
distributed applications on top of this virtual machine.

Consequently, distributed applications are more the exception rather
than the rule in many application sectors. We have intended to contri-
bute to the fundamental question of what to use distributed systems for.
Our approach has been to show that the weather sector lends itself to
distributed computing. As a result, StormCast has been designed,
implemented and evaluated. StormCast might already foster develop-
ment of industrial distributed applications which means that one of our

284

EurOpen A ‘91 - Budapest, 16-20 Sepiemb

i

StormCast — A Distributed Application

objectives has been met. We have shown that there are at least one
application sector born for distributed computing.

The next fundamental question is whether a distributed system is
necessary for distributed computing. We have run StormCast on both
the distributed system Amoeba and on alternative virtual machine plat-
forms including standards such as UNIX, TCP/IP and X Windows.
Clearly, we experience the benefits of the first approach. This includes
the ability to access local and remote operations transparently without
explicit location knowledge, this includes the ability to improve fault-
tolerance, this includes the ability to migrate processes when dynami-
cally configuring the distributed system and this includes the ability to
monitor and control the dynamic behaviour of distributed applications.

There is at least two approaches when building a virtual machine for
distributed computing. One can either build a distributed system from
scratch or one can build ad hoc mechanisms on top of existing virtual
machines as UNIX filling the functional gap between them. For
instance, we have used ISIS [Bir85a] as a means of filling this gap. We
argue for the first approach as long as common virtual machines as
UNIX were not at all designed for distributed computing. The distri-
buted system might end up with the same functional interface as
current virtual machines due to pragmatic decisions. However, we also
end up with a virtual machine properly designed for the distributed
environment to operate in.

6. Acknowledgements

The StormCast project has involved more than 50 students and staff
from several departments at the university. Listing all contributors is
not feasible. However, Arne Helme and Roar Steen have made invalu-
able contributions to the project. Discussion with Otto J. Anshus, Tore
Larsen, Robbert van Renesse, Kenneth P. Birman and Michael D.
Schroeder have been valuable.

References

[Acc86a] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid,
A. Tevanian, and M. Young, “Mach: A new kernel foun-
dation for Unix development,” pp. 93-113 in Proceedings
of the Summer Usenix Conference, Atlanta, GA (July
1986).

[ANS87a] ANSA, ANSA Reference Manual, Release 00.03., 1987.

[Bir85a] K. P. Birmann, “Replication and Fault-Tolerance in the
ISIS System,” Operating Systems Review 19(5), pp. 79-86
(December 1985).

[Bir82a] A. D. Birrell, R. Levin, R. M. Needham, and M. D.
Schroeder, “Grapevine: an exercise in distributed comput-
ing,” Comm. of the ACM 25(4), pp. 260-273 (April 1982).

[Che88a] D. R. Cheriton, “The V distributed system,” Comm. of the
ACM 31(3), pp. 314-333 (March 1988).

[Har88a] G. Hartvigsen and D. Johansen, “StormCast — A distri-
buted artificial intelligence application for severe storm
forecasting,” pp. 99-102 in M. G. Rodd and T. L. d’Epinay
(Eds.), Distributed Computer Control Systems 1988,

. EurOpen A ‘91 - Budapest, 16-20 Septemb, 285

StormCast — A Distributed Application

[Har90a])

[Hol90a)

[Joh88a]

[Mul86a)

[Ous88a]

[Pet90a]

[Ren88a]

[Roz88a]

Proceedings of the Eight IFAC Workshop, Pergamon
Press, Oxford, England, 1989, Vitznau, Switzerland (13-15
September 1988).

G. Hartvigsen and D. Johansen, “Cooperation in a Distri-
buted Artificial Intelligence Environment the StormCast
Application,” Engineering Applications of Artificial Intelli-
gence 3(3), pp. 229-237 (September 1990).

D. B. Holden, O. J. Anshus, T. Fallmyr, D. Johansen, P.
Noordzij, H van Staveren, and J. Hall, “A Study on Con-
trol in the Distributed Systems Environment,” in IFIP TC6
WG6.4a Int. Symp. on Local Communications Systems
Management (invited paper), North-Holland (To be pub-
lished), Kent, UK (18-19 september, 1990).

D. Johansen, “Weather forecasting — distributed in nature,”
pp. 197-203 in Network Information Processing Systems,
Proceedings of the IFIP TC6/TC8 Open Symposium,
North-Holland, Amsterdam, Sofia, Bulgaria (9-13 May
1988).

S. Mullender and A. S. Tanenbaum, “The Design of a
Capability-Based Distributed Operating System,” Com-
puter Journal 29, pp. 289-300 (March 1986).

J. K. Ousterhout, A. R. Cherenson, F. Douglis, M. N. Nel-
son, and B. B. Welch, “The Sprite Network Operating Sys-
tem,” IEEE Computer 21, pp. 23-36 (February 1988).

L. Peterson, N. Hutchinson, S. O’Malley, and H. Rao,
“The x-kernel: A Platform for Accessing Internet
Resources,” IEEE Computer 23(5), pp. 23-33 (May 1990).

R. van Renesse, H. van Staveren, J. Hall, M. Turnbull, B.
Jansen, J. Jansen, S. Mullender, D. Holden, A. Bastable, T.
Fallmyr, D. Johansen, Sj. Mullender, and W. Zimmer,
“MANDIS/Amoeba: A widely dispersed object-oriented
operating system,” pp. 823-831 in R. Speth (Ed.), Research
into Networks and Distributed Applications, Elsevier,
Amsterdam (1988).

M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien,
M. Guillemont, F. Hermann, C. Kaiser, S. Langlois, P.
Leonard, and W. Neuhauser, “CHORUS distributed
operating system,” Computer Systems 1, pp. 299-328 (Fall
1988).

286

EurOpen A ‘91 — Budapest, 16-20 Septemb,

Location-Independent Object Invocation
in Open Distributed Systems

Herman Moons Pierre Verbaeten

Dept. of Computer Science,
Katholieke Universiteit Leuven, Belgium.
herman @cs.kuleuven.ac.be

Abstract

Open distributed computing in an internetwork environment has gained
considerable attention in the past few years. This paper presents
COMET, a Common Object Management EnvironmenT, that serves as a
testbed for investigating basic problems associated with open distri-
buted computing in an internet environment with mobile objects.

Object naming and location schemes are of vital importance in an open
distributed system, since they provide the basis for all interactions
between objects in distributed applications. In this paper we present
the COMET naming scheme, which is tailored to an open environment.
This naming scheme is complemented by a location scheme, that
ensures efficient mapping of location-independent names on object
addresses.

Special care is taken to provide open-ended solutions. This permits a
seamless integration of application specific naming and location stra-
tegies within a general framework.

1. Introduction

In the past few years world-wide connectivity of computing equipment
has become a reality. Local computing facilities are being integrated
with one another, providing users with access to computing services
scattered throughout the world. Attention is now shifting to the issues
of Open Distributed Computing (ODC). The goal of ODC is to support
transparent distributed computing in an internet environment. Building
such an Open Distributed System is a difficult task, due to the very
heterogeneous nature of the underlying architecture.

The object-oriented approach holds much promise as a base for an
Open Distributed System. Objects provide good data abstraction facili-
ties. Furthermore, when objects are mobile, significant advantages can
be realised {Bla90a]:

) Ability to share load between nodes
° Reduced communication cost

. Increased availability

EurOpen Autumn "91 — Budapest, 16-20 September

Location-Independent Object Invocation in Open Distributed Systems

Global Object Space

r=>=—--=-=-="====-=-- A r—-—="====="===-- |
| [} I
I | | |
OO0 ~ O
! | I I
- O O '
i I
| | | |
| } 1 |
Object Management Object Management
COMET kernel
Generic Transport Generic Transport
Kemel Kemel Kemel Kernel
Guest OS Guest OS
Logical Node Logical Node

Physical Networks

Figure 1: COMET System Architecture

° Reconfigurability

° Taking advantage of special hardware

This paper presents COMET, a Common Object Management Environ-
menT. COMET serves as a testbed for investigating basic problems
associated with open distributed computing in an internet environment
with mobile objects.

The paper starts with an overview of the COMET architecture. Section
3 presents the naming scheme used to identify objects in an open distri-
buted environment. The following section shows how named objects
can be located. Naming and location schemes are then brought
together to realise location-independent object invocation. A final sec-
tion discusses name space management issues.

2. COMET System Architecture

The target environment we envision consists of hosts with widely
differing hardware architectures, and networks based on different com-
munication technologies. The hosts typically run different operating
systems, and communication over networks uses a variety of communi-
cation protocols.

COMET imposes a logical node structure on this environment. Logical
nodes are abstractions of physical machines. A COMET kernel on each
logical node provides the necessary support for object management and
interaction.

The COMET kernel consists of three major components:
. Generic Kernel Layer

This layer provides a uniform set of operating system services
[Mo0090a). Its main purpose is to hide the idiosyncrasies of the
underlying guest operating system. The Generic Kernel imple-
ments activities (light-weight processes), efficient inter-activity

288

EurOpen A ‘91 — Budapest, 16-20 Septemb

Location-Independent Object Invocation in Open Distributed Systems

communication, timer support and synchronisation primitives.
Where possible, the mechanisms offered by the guest operating
system are used.

° Generic Transport Layer

This layer attaches to the underlying networking facilities. It
offers a uniform set of communication primitives for interaction
between application components on different logical nodes in the
network. The main function of this layer is to provide the illu-
sion of a fully connected network of logical nodes. The Tran-
sport Kernel uses whatever networking facilities are available to
implement its communication service (TCP/IP, SNA, OSI).

° Object Management Layer

This layer implements the concept of a COMET object. It offers
primitives for object creation/destruction, object migrdtion and
location-independent object invocation.

The COMET kernels on different logical nodes cooperate to implement
the notion of a global object space. Within this object space, COMET
objects can interact with each other regardless of their physical loca-
tion. The following sections investigate how objects interact. More
particularly we examine how objects are identified, located and
invoked.

3. A Naming Scheme for Open Distributed Systems

In order to invoke an object, we need a way to identify it. When
objects would remain at the node where they are created, the node’s
transport address would be sufficient for purposes of naming and locat-
ing the object. When objects are mobile, i.e. they can move from node
to node during their existence, we need a way to uniquely identify them
independent of their physical location. This is realised by giving
names to objects, in such a way that the name unambiguously identifies
the object in question. A naming scheme describes the set of rules used
to construct an object name.

3.1. Classification of Naming Schemes

Naming schemes can be classified according to location content, struc-
ture and range.

. Location Content

Some naming schemes embed location specific information in
object names. The intent is to use this information to speed up
the process of locating the object. We therefore distinguish
between location-sensitive and location-insensitive names.

Locus [Pop85a] and Cronus [Gur86a, Sch86a] are examples of
systems that use location-sensitive names. Most other systems
use location-insensitive names [Sin89a, Mul85a, Das88a].

. Structure

Some naming schemes define a hierarchy, where an object name
designates a path through the name tree. With such a scheme,
names have a hierarchical structure. Other systems assign
unique names with flat structure.

Galaxy [Sin89a] and the Domain Naming System [Moc81a] are
examples of systems using hierarchical names. Flat names are

EurOpen A

’ 289

‘91 ~ Budap

4, 16-20 Sep

Location-Independent Object Invocation in Open Distributed Systems

used in Amoeba [Mul85a, Mul86a], Clouds [Das88a] and Cronus
[Sch86a].

° Range

Object names can be globally unique throughout the distributed
system (global), or they can be specified according to some
reference point (relative). In the first case identical names
always refer to the same object, whereas in the second case the
same name can refer to different objects, depending on the refer-
ence point.

Clouds, Cronus and Amoeba use global names to identify
objects. An example of relative names can be found in the UNIX
system, where filenames can be specified relative to the current
directory of the process using them.

3.2. COMET Naming Scheme

Object naming in an open distributed system poses a number of prob-
lems, that are a direct consequence of the characteristics of an open
environment. First of all, open environments are of a dynamic nature.
As new users attach to the system, they want to combine their own
namespace with the system’s existing namespace. Furthermore, users
want to assign meaningful names to objects, and need a way to express
the relations between objects.

As a result not all naming schemes are suitable in an open environ-
ment:

. Location sensitive names are of little use in an environment with
mobile objects. When an object moves, it has to leave an indica-
tion of its new location at the node referred to by the physical
component of its name. When this node becomes unreachable
(e.g. because of a node crash), the object can no longer be
located using the location-sensitive part of its name. We will
therefore focus on locaticn-insensitive names, which are more
suitable in an environment that supports object mobility.

° Global names introduce a number of complications. First of all,
one must devise a mechanism that ensures the system-wide
uniqueness of names. A more severe problem occurs when we
want to merge name spaces. In that case we must guarantee that
all names used in the merged system are unique. This is a com-
plex task, that often requires name translations when crossing the
boundary between the old name spaces.

) Flat names are very low-level, and require a higher-level naming
scheme to make them more meaningful to applications. It seems
therefore appropriate to immediately support names that are of
direct use to the application.

The COMET system uses a location-insensitive, relative and hierarchical
naming scheme. In this scheme, each object has a unique primitive
name within a specific naming context. Naming contexts themselves
are assigned primitive names within their enclosing context. An object
name specifies both the primitive name of the object, and a hierarchy of
naming contexts.

When an object is created, it is assigned a unique primitive name in
some naming context. The context where the object is created will be
referred to as its home context (designated with an @-sign). Initially,
the object’s home context is also its current context (designated with a
dot). References to other objects are interpreted relative to the object’s

290 EurOpen A ‘91 — Budapest, 16-20 Septemb

]
d

P

i

Opery Location-Independent Object Invocation in Open Distributed Svstems

kul
. —> Cs ee
@ ——s-hermix lila X y z

N

X y z X

Figure 2: Example of Comet Name Space

current context, or relative to its home context (when starting with @/).
An object may change its current context.

Figure 2 illustrates the name tree of a university, as seen by object x
with home context hermix, and current context cs. Object x refers to
object z within context lila with the names lila/z or @/../lila/z. Note the
use of UNIX-like pathnames to traverse the namespace. Relative
hierarchical names are well-suited to identify objects in an open distri-
buted system:

. Hierarchical names directly reflect the relations between the
objects in the distributed system, and introduce structure to the
namespace. This makes them immediately useful to applica-
tions.

° Relative names have no need for a global reference point in the
hierarchy (no root context). The hierarchy of naming contexts is
always interpreted relative to a per-object reference point. The
absence of a root context makes it easy to extend the name space,
which is important in a dynamic environment like an internet.

3.3. Name Transformations

Because names are relative to the home or current context of the object
that uses them, it makes no sense to pass them as is to other objects.
When passing names between objects, the COMET system therefore
transforms the names so that they are again relative to the object that
receives them.

Name transformations are carried out as follows. All names used by
the sender object (S) are made relative to the sender’s home context.
When passing them to the receiving object (R), they are transformed to
make them relative to the receiver’s home context. This transformation
is performed by the COMET system with the help of the Agg—path,
which is the path through the name tree from the receiver’s home con-
text to the sender’s home context. The Agg—path is obtained when
locating the receiver object.

Figure 3 illustrates the name transformation process. The name
@/../lila/z, as used by object x, is transformed to make it relative to the
home context of object z within context ee. The transformed name is
obtained through concatenation of the A, —path with the name origi-
nally used by object x. The concatenated name is furthermore reduced
to eliminate redundant components in the context path. Object z thus
receives the name

EurOpen Autumn “91 — Budapest, 16-20 September 291

Location-Independent Object Invocation in Open Distributed Systems

kul

SN

Ccs ee

SN
A

hermix

X

X

Figure 3: Name Transformation Mechanism

reduce (concat (A,, @/../lila/z))

reduce (concat (@/../cs/hermix, @/../lila/z))
reduce (@/../cs/hermix/../lila/z)
@/../cs/lila/z

4. Locating COMET Objects

When we want to invoke an object, we need a mechanism to map the
object’s name to its current address.” Mapping object names to
addresses is complicated by the fact that objects are mobile, i.e. object
addresses can change during the location process. A location scheme
describes how the mapping of names to addresses is performed.

4.1. Classification of Location Schemes

Location schemes can be classified according to the basic algorithm
used to map object names into addresses. The following basic mechan-
isms can be distinguished:

Direct Mapping

This is the case where the object name fully specifies the actual
address of the object referred to, i.e. we have a location-sensitive
name. This scheme only makes sense in environments with
immobile objects.

Table-based Mapping

Every object in the distributed system maintains a table with
correct <name, address> bindings for every referenced object.
Locating an object consists of a simple lookup operation in this
table. When an object moves to a new location, all tables have to
be updated to reflect the address change.

Chaining

Every object in the system maintains a table with
<name, address> bindings for every referenced object. When an
object migrates to another node, it leaves a forwarding address at
the source node, specifying the object’s new address. Locating
an object starts at the initial address specified in the table, and
follows the chain of forwarding addresses, until the object has
been found. A drawback of this scheme is its vulnerability to

1 An object address is a <node, objectid> pair, that specifies the node’s transport address and an identifier that specifies the object on

that node.

292

EurOpen Autumn 91 — Budapest, 16-20 September

Location-Independent Object Invocation in Open Distributed Systems

node crashes, which may break the chain of forwarding
addresses.

Broadcasting

This location scheme broadcasts the object name to all nodes in
the system. The node that contains the object responds to the
broadcast, and provides the object’s current address. This tech-
nique works well for small local area networks, but has serious
scaling problems in large-scale environments.

Name Server

All <name, address> bindings are stored in a name server that
resides at a well-known address. Locating an object now means
querying the name server for the object’s address. This location
scheme depends on high availability of the name server.

Each basic location strategy has advantages and drawbacks, but none
of them is suitable (in its pure form) in an open distributed environ-
ment. Therefore actual location schemes use hybrid techniques, that
try to combine the advantages of several approaches.

4.2. The COMET Location Algorithm

4.2.1. Basic Algorithm

In COMET we associate a Context Manager with each naming context.
A context manager is an object that maintains <name, address> map-
pings for all objects with a primitive name in this context. The entire
set of context managers in the distributed system functions as a distri-
buted name server. They are the glue that keeps the name space
together. Every object in the distributed system knows the address of
its home and current context managers.

When an object wants to resolve a name, it passes the name to the loca-
tion manager component of the local COMET kernel. The location
manager contacts the object’s home or current context manager to
obtain the address corresponding to this name. If the name is a primi-
tive name in this context, the object’s address can be immediately
obtained. Otherwise the request is passed to a neighbouring context
manager for further resolution.

The major advantage of this approach is that it scales well. For most
mappings only a few context managers need to be contacted, even if
the name space becomes very large. This is due to the fact that we use
relative names (relative to an object’s current or home context). Since
most computations are clustered (i.e. the interacting objects are located
in neighbouring contexts), relative names will generally be short, and
few context managers are involved in the location phase.

The basic location algorithm finds the requested mapping as long as the
involved context managers are available. High availability of context
managers is thus essential. This is realised by replicating the context
managers. Replicas are updated using a lazy updating scheme, i.e.
their information may be temporarily inconsistent, but will evolve to a
consistent state.

4.2.2. Optimising the Location Algorithm

The basic location scheme provides us with a correct <name, address>
mapping, but at a considerable cost. Contacting context managers on
every object reference is an expensive operation, especially in an inter-

EurOpen Autumn ‘91 — Budapest, 16-20 September 293

Location-Independent Object Invocation in Open Distributed Systems

net environment. To make things even worse, there is no guarantee
that the obtained address remains correct when we finally use it. If the
involved object migrates the address used will be invalid, and invoca-
tion will fail. In that case the basic algorithm must be applied again to
obtain a new <name, address> mapping. For frequently moving objects
this means that several cycles through the basic algorithm may be
needed before invocation finally succeeds.

We therefore need additional mechanisms to speed up the basic algo-
rithm, starting from the following observations:

. Object are referenced more often than they move,
° Context managers move infrequently.

We distinguish between mechanisms that optimise the localisation
phase, and those that speed up the actual invocation process.

. Name caches in location manager

The first observation immediately leads to the following optimi-
sation technique: once an object has been located, use the
obtained address directly for future references (name cache).
Since objects are referenced more often than they move, the
address obtained through name resolution will remain valid for
some time. When referencing an object, the name cache is now
used to obtain the requested binding directly. When the obtained
address turns out to be incorrect, the basic algorithm is used to
obtain a new mapping, that is used to update the cache informa-
tion.

° Prefix tables in context manager

The second observation means that it is possible to introduce
shortcuts in the basic location algorithm. Context managers
could optimise the name resolution scheme by directing locate
requests to managers that are not their immediate neighbours.
Context managers therefore maintain prefix tables, containing
mappings from context path to corresponding manager address.
When the basic strategy is used to locate an object, a context
manager first checks whether a prefix of the object name matches
an entry in its prefix table. When such an entry is present, name
resolution continues at the context manager specified in the
prefix table, skipping any intermediary context managers. Prefix
tables are updated during name resolution.

° Invocation speedup

Whenever an object migrates, the information in the name caches
becomes invalid. This is only detected during invocation. To
avoid the overhead of reverting to the basic algorithm to obtain a
new valid address, we can introduce the following optimisation.
Whenever an object moves to a new location, we keep a for-
warding address at the old node. The chain of forwarding
addresses is traversed during invocation when the name cache
refers to an out-of-date address. Note that the use of forwarding
addresses introduces residual dependencies. When the chain is
broken, we have no alternative but to revert to the basic location
algorithm. The impact of residual dependencies can be reduced
by updating the name cache when a more recent address is
obtained.

+ To determine whether one address is more recent than another, additional information is needed. We therefore extend the address
format with a migration stamp, that is incremented each time the object migrates.

294 EurOpen Autumn 91 — Budapest, 16-20 September

Location-independent Object Invocation in Open Distributed Systems

The above-mentioned optimisations ensure that the basic location algo-
rithm (which is expensive) is rarely used. In the majority of cases the
optimisations result in inexpensive object localisation and invocation.

4.3. Organisation of the Location Manager

The location manager is responsible for resolving object names to
addresses, possibly with the help of context managers. It maintains the
name cache and forwarding address chain to speed up handling of
locate requests and invocations. Internally, the location manager uses
two types of tables to maintain its information base: per-object name
tables and a node-wide address table.

° Address Table

The address table maintains the location of objects local to this
node, or that once resided at this node, but have now migrated
(forwarding chain). Furthermore it maintains the cache entries
for objects referenced from this node. Entries in the address
table are indexed by an object identifier, that is part of each
object’s address. For local objects, the stored location is a
pointer to an object descriptor. For migrated and cached objects,
their remote address is maintained.

Each entry in the address table contains the following informa-
tion:

¢ Object identifier,

. Object name, relative to the node context,’

. A pg —path from object’s home context to node context,

. Object location.

The address table thus contains the <name, address> bindings for

all objects known at the node, with names relative to the node’s
context.

Name Table

Every object on a node has its own name table, which maintains
information about all referenced objects.

When an object is first invoked, the location manager searches
the node’s address table to see whether an entry for this object is
present. If so, the referenced object’s address is immediately
available. Otherwise, the object’s home or current context
manager is contacted to obtain the requested <name, address>
binding. The obtained information is entered into the address
table and the object’s name table.

Name table entries maintain the following information:

) Referenced object name, relative to the invoking object’s
home context,

Ags—path from referenced object’s home context to
invoking object’s home context,

Index to corresponding entry in the node-wide address
table.

The use of separate name and address tables serves two purposes.
First, when one object on the node obtains a <name, address> binding,
the information is entered into the address table. This makes the bind-

T Associated with every node is a node context, that appears in the name space. This makes it possible to refer to nodes with a logi-
cal name (see section 5).

Location-Independent Object Invocation in Open Distributed Systems

ing immediately available to all other objects on that node. Second, the
name table makes it easy to determine which references are used by a
particular object on the node. When migrating the object, we can use
this information to update the address table on the destination node.

4.4, Customising Context Managers

Context managers are ordinary objects that implement the name resolu-
tion protocol. Users can thus implement their own context managers,
and adapt them to their needs. The only requirement imposed is that
these user-defined context managers implement the name resolution
protocol. A similar technique is used in the V-system [Che84a].

Customised context managers can be very useful to realise naming
gateways and object clusters.

) A naming gateway functions as an entry point into a different
namespace. A good example is the interaction with a mail sys-
temn, that uses its own naming conventions. In that case the nam-
ing gateway will manage that part of the object name that
corresponds to the foreign naming conventions.

When locating such a hybrid name, the naming gateway will pro-
vide its own address. Subsequent invocations will thus arrive at
the naming gateway, which can pass them on to the mailing sys-
tem.

) Object clusters can be used to implement very small objects,
without the overhead associated with normal COMET objects. An
object cluster is essentially a group of objects that is considered
as an indivisible entity by the general mechanisms. The object
cluster functions as a context manager for all its members, and
provides its own address when members are located. Invocations
directed to a cluster member will thus arrive at the object cluster,
which can then pass them on to the corresponding member, using
internal invocation mechanisms.

Since the address obtained through name resolution now refers to the
naming gateway or object cluster, the address does not suffice to iden-
tify the ultimate destination. The solution used in the COMET system is
to extend the object address format with an opaque field. This opaque
field can be set by the naming gateway or object cluster. When an
invocation arrives, the naming gateway or object cluster uses the infor-
mation in the opaque field to identify the ultimate destination.

5. Location Independent Object Invocation

When a source object invokes an operation of a destination object, it
uses the services of the invocation subsystem of the local COMET ker-
nel. The invocation subsystem is responsible for delivering the opera-
tion parameters to the destination object, and for returning the results of
the operation to the source object. This is realised by invocation
managers that reside on every node in the distributed system.

The invocation manager interacts with the location manager to obtain
the address of the destination object. There are two cases to consider:

° Local invocation

The situation where both source and destination object reside at
the same node poses no problems. The invocation manager
obtains a reference to the destination object from the location

296

EurOpen A ‘91 - Budapest, 16-20 Septemb

Location-Independent Object Invocation in Open Distributed Svstems

initiate invocation

invoking invoked
object object

get address of invoked object

pass parameters to invoked object

operation completed

get address of invoking object

pass results to invoking object 5

Invocation

Manager

Location

Manager

Figure 4: Local Invocation

manager. This reference is used to directly deliver the operation
parameters to the invoked object.

When the operation has been carried out, the invoked object returns its
results to the invocation manager. The latter again uses the location
manager, this time to obtain a reference to the source object. Finally
the results are delivered to the invoking object.

The invocation manager’s use of the location subsystem during both
phases reflects the possibility of an object migrating to another node
while an invocation is in progress.

° Remote invocation

When the destination is remote, the request is forwarded to the
invocation manager on the remote node. This process continues
until the request reaches the node where the destination object
resides. Here the invocation manager performs a local invoca-
tion of the destination object.

The results of the invoked operation are transferred directly to the
source invocation manager, which will pass them to the source object.
The invocation scenario is illustrated in Figure 5.

6. Name Space Management

6.1. Node Creation

The previous sections discussed how objects are named, located and
invoked within an operational open distributed system. This section
provides more detailed information about the management of name
spaces. It discusses the following points:

° Integration of new nodes into a working system,

Combination of name spaces.

The exact mechanism of starting a new node depends on the underlying
guest operating system. In a UNIX environment, we implement a node
as a normal process, linked with the COMET library. Starting a new
node is then equivalent with starting the UNIX process.

EurOpen Autumn “9! — Budapest, 16-20 September

Location-Independent Object Invocation in Open Distributed Systems

Every node contains a boot manager that is activated when execution
starts in that node. The boot manager is responsible for node initialisa-
tion. The first step is to initialise the COMET kernel data structures.
Next the boot manager sets up a name space for the new node. The ini-
tial name space contains three objects:

Node context manager

The boot manager creates a context manager on the node with
the node’s name. The node name is obtained from the boot
parameters, which are typically available in a file on the underly-
ing guest system.

Kernel object

Within the node context, the boot manager creates a kernel
object. This object represents the node’s kernel. The kernel
object provides operations to interact with the COMET kernel
(e.g. to obtain information on available resources).

Init object

Finally the boot manager creates the init object within the node
context. This object is responsible for finalising the initialisation
phase. It’s executable image is part of the boot parameters.

The kernel and init objects are created with home and current context
set to the node context. Once the init object is activated, the new node
is up and running. The init object will then typically perform the fol-
lowing actions:

Merge this node’s name space with the name space of the open
distributed system,

Create other objects, s.a. a shell to interact with the user.

r—-—-=-=-==-=-"=-==-=-=-- ml A
I I |
[} | [}
1 . I 1
X Invoking . Invoked ,
: Object : Object :
1 1 1
| i I
I _/ | |
|
Lo noo |
9
Invocation < Invocation ™ Invocation
Manager Manager 5 Manager
2 10 4 6
Location Location Location
Manager Manager Manager
COMET kemel COMET kemnel

1 initiate invocation 8 operation completed

2,4,6 getaddress of invoked object 9 pass results to source invocation manager

3,5 forward request 10 update name cache

7 pass parameters to invoked object I pass results to invoking object

Figure 5: Remote Invocation

298

EurOpen Autumn 91 — Budapest, 16-20 Septemb.

Location-Independent Object Invocation in Open Distributed Systems

6.2. Merging and Splitting of Name Spaces

Name space merging combines disjoint name spaces into one naming
hierarchy. A typical example is the integration of a new node into the
open distributed system. Another example is the merging of the name
spaces of two different organisations. Name space merging is accom-
plished by attaching a context as a sub-context of some other context.

Name space splitting partitions the name space into two disjoint name
spaces. It is accomplished by breaking the connection between a sub-
context and its enclosing context.

Context managers provide the following operations to support name
space merging/splitting:

° The create-binding operation takes a primitive name and address
as parameters. It adds the <name, address> binding to the con-
text manager. Name space merging is accomplished by binding
the name "." in the sub-context manager to the address of the
enclosing context manager, and by adding the <name, address>
binding for the sub-context manager in the enclosing context

manager.

The delete-binding operation takes a name as a parameter. It
removes the binding for the specified name from the context
manager. Name space splitting is accomplished by removing the

binding for ".” in the sub-context manager, and the binding for
the sub-context in the enclosing context manager.

When performing name space merging, the create-binding operation is
invoked using location-dependent invocation. This is necessary since
the context managers themselves are needed to implement location-
independent invocation.

7. Conclusion

Object naming and location schemes are of vital importance in an Open
Distributed System with mobile objects. They form the basis for all
interactions between objects in distributed applications.

COMET’s hierarchical naming scheme reflects the hierarchical structure
of the real world. It provides names that are meaningful to applica-
tions. The absence of a root context makes it easy to dynamically
adjust the name space. Merging or splitting of namespaces poses no
problems.

The associated location scheme reflects the fact that communication
overhead is a dominant factor in an internet environment. It is based
on a distributed <name, address> database, enhanced with alternative
strategies, thus providing very efficient name resolution in a majority of
cases. The proposed location scheme scales very well, because we use
relative names. Since most computations are clustered, these names
will generally be short, and few context managers will be involved.

The COMET naming scheme is designed to be open. Customised con-
text managers can be added that implement different naming conven-
tions, or alternative location strategies.

The COMET naming and location schemes are specifically designed for
use in a large-scale internet environment. As such, they are well-suited
to support the multitude of objects that appear in open distributed appli-
cations.

EurOpen Autumn ‘91 — Budapest, 16-20 September

Location-Independent Object Invocation in Open Distributed Systems

References

[Bla90a]

[Che84a]

[Das88a]

[Gur86a]

[Moc81a]

[Mo090a]

[Mul85a]

[Mul86a)

[Pop85a)

[Sch86a]

[Sin89a]

A. P. Black and Y. Artsy, “Implementing Location
Independent Invocation,” IEEE Transactions on Parallel
and Distributed Systems 1(1), pp. 107-119 (January 1990).

David R. Cheriton and Timothy P. Mann, “Uniform
Access to Distributed Name Interpretation in the V-
System,” Research Report 4/045, Computer Science
Department, Stanford University (December, 1984).

Partha Dasgupta, Richard J. LeBlanc Jr., and William F.
Appelbe, “The Clouds Distributed Operating System,”
Proceedings 8th International Conference on Distributed
Computing Systems, San Jose, California, pp.2-9 (June
13-17, 1988).

Robert F. Gurwitz, Michael A. Dean, and Richard E.
Schantz, “Programming Support in the Cronus Distributed
Operating System,” Proceedings 6th International Confer-
ence on Distributed Computing Systems, Cambridge, Mas-
sachusetts, pp. 486-493 (May 19-23, 1986).

P. Mockapetris, “The Domain Name System,” Proceed-
ings IFIP 6.5 International Symposium on Computer Mes-
saging, Paris, France, pp. 31-40 (April 1981).

H. Moons and P. Verbaeten, “A Portability Environment
for Distributed Application Programming,” ISMM Interna-
tional Symposium on Mini- and Microcomputers and their
Applications, Lugano, Switzerland (June 19-21, 1990).

S. Mullender, “Principles of Distributed Operating System
Design,” PhD Thesis, CWI, Amsterdam (October 1985).

S. J. Mullender and A. S. Tanenbaum, “The Design of a
Capability Based Distributed Operating System,” The
Computer Journal 29(4), pp. 289-299 (August 1986).

G. J. Popek and J. W. Walker, “The Locus Distributed
System Architecture,” in The M.I.T. Press (1985).

Richard E. Schantz, Robert H. Thomas, and Girome Bono,
“The Architecture of the Cronus Distributed Operating
System,” Proceedings 6th International Conference on
Distributed Computing Systems, Cambridge, Mas-
sachusetts, pp. 250-259 (May 19-23, 1986).

Pradeep K. Sinha, Kentaro Shimizu, Naoki Utsunomiya,
Hirohiko Nakano, and Mamoru Maekawa, “Network-
Transparent Naming and Locating in Distributed Operat-
ing Systems,” Technical Report 89-033, Department of
Information Science, University of Tokyo (November
1989).

300

EurOpen Autumn 91 — Budapest, 16-20 September

L
Ha

Communicating Database Objects

Agnes Hernadi Elod Knuth
Ferenc Jamrik Gabor Janek

Computer and Automation Institute
Hungarian Academy of Sciences,
Budapest
h792her@ella.hu

Abstract

We address the problem of establishing communication between data-
bases created independently with no preliminary agreement concerning
the adaption to an appropriate convention. An interactive algorithm is
provided for databases with a simple data scheme in aid of accomplish-
ing a partial mapping and based on this, data communication protocols
automatically.

1. Introduction

In reality databases are mostly created independently of each other.
Usually it turns out only afterwards that they contain information
which is of value for some other databases even though those (may)
use different concepts for the same thing.

Using a simplified data model we found it was possible to provide an
interactive algorithm for the transparent use of such databases by a
later mapping. We connected databases created by our experimental
database system called Data Gallery [Her89a, Knua] to solve the prob-
lem addressed above.

By nature Data Gallery is an unusual, non-language-oriented approach
to manage loosely structured ad hoc information like personal, office or
management data usig visual aids. Unlike other approaches of the
same kind interacting with databases [Shia, Kan88a, Rus88a, Roh88a]
and [Rog88a, Dud89a, Ang89a, TsuB9a, Cze89a)], Data Gallery intro-
duces a single new concept called Data Picture to cover all the tradi-
tional database functions and as we shall conclude in the paper it turned
out that the same concept is rather suitable to be a communication
media between independent databases. What is more, in case of an
environment supporting distributed object management [Rym90a], the
Data Pictures could serve as media in sessions ensuring shared access.

EurOpen A ‘91 - Budapest, 16-20 Septemb 301

C icating Database Objects

2. Database objects

2.1. The basic data model

2.2. Data Pictures

Since cognitive research did not draw strong conclusions that inexperi-
enced users can analogically import the understanding of formal
models being fairly complex in nature [Pol84a] we intentionally limited
the model underlying the experimental system implemented.

A version of the binary-relationship model was chosen for our experi-
ments consisting of a set of atoms and binary connections over them.
An atom is considered a type-value pair while a connection a relation
name and an unordered pair of atoms. All the objects mentioned
(types, values and relation names) are strings.

Data Pictures serve as the basic unifying objects of interaction. They
give a relatively simple general framework capable of

° Performing all traditional database functions formerly associated
with particular forms separately (like entry forms, query
specifications, reports, pieces of the schema etc.); and

° Learning the schema from examples.

As all user actions are associated with Data Pictures exclusively this
approach results in a kind of a multifunction database editor still pos-
sessing all conventional database functions, though in a different
manner. The introduction of editing functions adds some unusual
features to the conventional spectrum for instance moving, copying,
composing and decomposing. These prove especially useful when
manipulating individual data objects.

During dialogues arbitrary number of Data Pictures — each presenting a
self-contained interactive working context — may simultaneously be
present on the screen. As Data Pictures are sensible to changes of the
database caused by operations performed on another Data Picture we
are able to observe the effects of those operations from various inverted
viewpoints.

Technically Data Pictures show textual information in a hierarchic
arrangement of data lines. Semantically they can represent entry
forms, query specifications, reports, pieces of the schema etc.

To each Data Picture three partly independent properties can be
assigned. These are called as Valid, Filled and Saturated. Validity
expresses that the Data Picture is in all respect consistent with the
actual database contents. The other two properties express complete-
ness marks on data and scheme level, respectively.

The Picture Mode is perhaps the most important concept our approach
suggests. It could also be considered a far more general idea when
models and viewpoints, facts and reflections are distinguished in any
area of interactive computer applications. Any Data Picture can be put
in each of the following three modes determining its way of interaction
with the database. In the Free Mode a Data Picture can be freely
transformed without any consequence. It may lose even its validity.
When manipulating a Data Picture in the Check Mode any modifying
action which contradicts its validity is refused. The Force Mode also

302

EurOpen Autumn 91 — Budapest, 16-20 Septemb

Eé Co icating Database Objects

preserves the actual Data Picture’s validity but by enforcing a database
update whenever any action in it contradicts the Picture’s validity.

2.3. Operations on Data Pictures

As Data Pictures are hierarchies of data lines three classes of opera-
tions are provided, namely:

. Token Operations acting on elements of individual data lines;
o Line Operations acting on a whole data line;

° Picture Operations acting on arbitrary subhierarchy of the one
constituting that Data Picture.

Individual operations can be found in [Her89a]. However, we cannot
avoid mentioning the following operations:

) Unfold: expounds the interconnections of an individual object at
a given point of the hierarchy one more level of detail and helps
to learn for possible orientations to be followed. This is espe-
cially useful on browsing.

° Cut/Copy/Paste: using these operations Data Pictures can be
composed and decomposed.

° Evaluate: considers the Data Picture a query specification and
fills it recursively in all possible valid ways.

An operation always acts according to the Picture Mode selected.
Invocation of an operation should always be preceded by a selection.

2.4. The Data Gallery

As it was hinted at, the information base splits into two parts: the data-
base, the conventional part, and the repository of Data Pictures called
the Data Gallery.

The Data Gallery is divided into two regions namely the so-called
Exhibition where all Data Pictures are maintained on all changes of the
information base, and the Archive storing Data Pictures which are still
valuable in a sense but which are not maintained regularly any longer.

In the Exhibition you can find at least two unremovable read-only Data
Pictures. The Data Picture named Types contains all the existing types
while the Data Picture named Schema contains all the existing relation-
ships. These Data Pictures or any of their parts can be freely copied
however.

For a particular database any number of Data Galleries can be created.
(People may use their own Data Pictures to handle the same data.)
Moving and copying Data Pictures between the regions of different
Galleries associated with the same database should fulfil the same
requirements as within a Gallery, concerning the validity of a Data Pic-
ture. Although Data Pictures can be moved and copied between the
Data Galleries of different databases, the transferred Data Picture is
usually invalid and it is left to the user’s discretion how to exploit the
contents of such a Data Picture.

EurOpen A ‘91 — Budapest, 16-20 Septemb, 303

Communicating Database Objects

3. Communicating Data Galleries

3.1. Data Channel

The concepts introduced, however, afford us an opportunity to post-
link independent databases in a virtual manner and to use them in a
transparent way. The communication of databases created indepen-
dently with no preliminary agreement concerning the adaption to an
appropriate convention can be realized by so-termed Data Channels.

The interactive algorithm described later takes two database schemas
and results in a partial mapping between them. This mapping is con-
verted then to a data communication protocol called Data Channel con-
necting the two databases through any of their Data Galleries. Two
databases can be connected by any number of Data Channels.

A Data Channel can be used in the following two ways:

] Sending/Receiving Data Pictures. This works like an ordinary
electronic mail system with the exception that Data Pictures are
not simply sent to the Exhibition region of the receiver Gallery
but even converted into the terms of the receiver database. This
conversion is carried out according to the mapping defined on
creating that Data Channel.

) Augmenting the scope. Using a Data Channel one can directly
access another database (if permission is granted by the permis-
sion system). In this case the scope of data access is extended to
the other database in a transparent way.

3.2. Building a Data Channel

The location where the Data Channel object is to be created can be
identified in the usual way.

A menu helps to select the databases to be connected. Let A and B
denote these databases, while ATypes and BTypes denote the Data Pic-
tures containing all the types defined in A and B respectively. (These
Data Pictures are exhibited in each Gallery of the corresponding data-
base under the name Types.)

3.2.1. Mapping algorithm

Initialization

ATypes and BTypes are opened simultaneously and assigned to
be source objects to the algorithm.

Initial Designation (user action)

Select one of the types in both Data Pictures to be mapped to
each other.

Initial Reorganization (system response)

Those types not mapped disappear from the Data Pictures. The
ones mapped are marked (appear in a distinguished way) and are
Unfolded. (The Unfold operation in this case displays all the
relations interpreted on the selected type as a subhierarchy of the
latter.)

304

EurOpen A ‘91 — Budapest, 16-20 Septemb,

Oped] Communicating Database Objects

General Designation (user action)

Select a pair of the types (one in both Data Pictures) from the
subhierarchy to be mapped to each other. By this a pair of rela-
tions to be mapped to each other is selected as well.

Constraints:

° If the pair of types has already been mapped to each other,
the selection will be accepted;

. If neither of them have been mapped to any other type, the
selection will be accepted;

. Otherwise the selection will be refused.
General Reorganization (system response)

The order in the subhierarchy changes: the designated types
appear marked on the top (placed under the last selected).

Cycle

Repeat General Designation/General Reorganization until “End
Cycle” is chosen to indicate that no further types are intended to
be mapped at the given level of hierarchy.

Reorganization after End Cycle (system response)

Types not mapped at the given level of hierarchy disappear. The
first pair of corresponding types will be Unfolded in a somewhat
modified way: relations already mapped are not displayed.

Do Cycle for each node.

It may happen that in one of the Data Pictures this modified ver-
sion of Unfold results in no change. In this case the result of the
operation is cancelled and the next line f the same level should
be Unfolded. If there is no such line, the algorithm returns to the
next lower level to Unfold the next corresponding pair of types at
that level.

3.2.2. Characteristic Data Pictures

The above algorithm always results in a pair of Data Pictures
corresponding to each other line-by-line. If these isomorphic Data Pic-
tures are not empty, the algorithm is considered to be successful and
the Data Channel is created and stored for later use.

So we can say that a Data Channel is defined by a pair of isomorphic
Data Pictures each belonging to the different databases to be post-
linked virtually. This pair of Data Pictures, called Characteristic Pic-
tures, appoints at once both the database subschema of the database to
which they belong separately, and a one-to-one correspondence
between the elements of these subschemas. As a result, on “peering
through” the Data Channel from one of the databases into the other, we
get a partial view of the latter. In this manner we can look at a part of a
database implemented in a different database by defining an appropri-
ate Data Channel, or rather a pair of Characteristic Pictures. (The other
part of that database not mapped by the Data Channel remains, of
course, invisible on peering through the Data Channel.)

Creating the Characteristic Pictures is a computer-aided interactive
activity, intentionally not completely automated.

EurOpen Autumn 91 — Budapest, 16-20 September 305

C icating Database Objects Eé

4. Conclusion

Connecting independent databases is a widely examined problem
nowadays. Most of the solutions available restrict themselves to map-
ping various heterogeneous database schemas to each other. However,
there is another problem in practice, namely providing semantic map-
ping between the meaning of the concepts represented in the databases
physically connected.

Our project addressed the latter problem area. In nature, creation of a
semantic mapping cannot be fully automated. This is why our funda-
mental algorithm is an interactive one.

Naturally, the algorithm and the prototype system we built is limited by
the data model used. The principle, however, can be easily generalized
for the data models of most of the available commercial databases,
though they would result in much more complicated interfaces. Our
subsequent work is to extend the communication capabilities of our
experimental system towards popular database management systems.

The project reported here has been implemented in UNIX System V
environment under the UA window manager on interconnected
MC68010 based computers.

References

[Ang89a] M. Angelaccio, T. Catarci, and G. Santucci, “QDB: A
Fully Visual System for E-R Oriented Databases,” pp.
56-61 in Proceedings of 1989 IEEE Workshop on Visual
Languages, Rome, Italy (October 4-6, 1989).

[Cze89a] Bogdan Czejdo, David Embley, and Venugopal Reddy, “A
Visual Query Language for an E-R Data Model,” pp.
165-170 in Proceedings of 1989 IEEE Workshop on Visual
Languages, Rome, Italy (October 4-6, 1989).

[Dud89a] Tim Dudly, “A Visual Interface to a Conceptual Data
Modelling Tool,” pp. 30-37 in Proceedings of 1989 IEEE
Workshop on Visual Languages, Rome, Italy (October 4-6,
1989).

[Her89a] Agnes Hernadi, Zalan Bodo, and Elod Knuth, “Context-
Reflecting Pictures of a Database,” pp. 273-282 in
Proceedings of the EUUG Spring 1989 Conference,
Brussels (April 1989).

[Kan88a] Hannu Kangassalo, “Concept D: A Graphical Language
for Conceptual Modelling and Data Base Use,” pp. 2-11 in
Proceedings of 1988 IEEE Workshop on Visual
Languages, Pittsburgh, Pennsylvania, USA (October 10-
12, 1988).

[Knua] Elod Knuth, Agnes Hernadi, and Zalan Bodo, “Pictures at
a Data Exhibition,” pp. 303-315 in Visual Languages and
Visual Programming, Shi-Kuo Chang, Ed., Plenum Press,
New York, 1990.

[Pol84a] P. G. Polson and D. E. Kieras, “A Formal Description of
Users’ Knowledge of How to Operate a Device and User
Complexity,” pp. 249-255 in Behav. Res. Methods
Instrum. (USA) (1984).

306 EurOpen A ‘91 — Budapest, 16-20 Septemb.

Communicating Database Objects

[Rog88a]

[Roh88a)

[Rus88a]

[Rym90a]

[Shia}

[Tsu89a)

Greg Rogers, “Visual Programming with Objects and
Relations,” pp. 29-36 in Proceedings of 1988 IEEE
Workshop on Visual Languages, Pittsburgh, Pennsylvania,
USA (October 10-12, 1988).

Gabriele Rohr, “Graphical User Languages for Querying
Information: Where to Look for Criteria?,” pp. 21-28 in
Proceedings of 1988 IEEE Workshop on Visual
Languages, Pittsburgh, Pennsylvania, USA (October 10-
12, 1988).

Bogdan Czejdo, Venugopal Reddy, Marek Rusinkiewicz,
“Design and Implementation of an Interactive Graphical
Query Interface for a Relational Database Management
System,” pp. 14-20 in Proceedings of 1988 IEEE
Workshop on Visual Languages, Pittsburgh, Pennsylvania,
USA (October 10-12, 1988).

John R. Rymer et al, “PANEL: OOPSLA Distributed
Object Management,” pp. 331-345 in Proceedings of
ECOOP/OOPSLA 90 (October 21-25, 1990).

Yukari Shirota, Yasuto Shirai, and Tosiyasu L. Kunii,
“Sophisticated Form-Oriented Database Interface for
Non-Programmers,” pp. 127-155 in Visual Database Sys-
tems, T. L. Kunii, Ed., North-Holland, Amsterdam — New
York — Oxford — Tokyo, 1989.

Kazuyuki Tsuda, Masahito Hirakawa, Minoru Tanaka, and
Tadao Ichikawa, “Iconic Browser: An Iconic Retrival Sys-
tem for Object-Oriented Databases,” pp. 130-137 in
Proceedings of 1989 IEEE Workshop on Visual
Languages, Rome, Italy (October 4-6, 1989).

EurOpen Autumn ‘91 — Budapest, 16-20 September

EurOpen Autumn 91 — Budapest, 16-20 September

UNIX in Novell Environment

Gabriella Ivanka Gyorgy Leporisz

Computer Research and Innovation Centre
Hungary

Abstract

Through the new concept of their Open Network Architecture with
NetWare 386 as well as the agreement made with IBM to make a closer
communication between SNA, 0S/2, UNIX and the NetWare, Novell
netware operating systems go on strengthening their leading position
on the world market.

The lecture intends to present the transparent integration facilities of
the NetWare and UNIX systems (through NetWare 3.11 and NetWare
NFS) and will also outline the declared plans of Novell to deepen the
communication between the two systems.

EurOpen Autumn ‘91 — Budapest, 16-20 September

310 EurOpen Autumn “91 — Budapest, 16-20 September

An International Hotel
Reservations System Using
Loosely Coupled UNIX Systems

Gary M Bilkus

BLiX Limited
gary @utell. UUCP

Abstract

This paper describes the design and implementation of the latest ver-
sion of an international hotel reservations system.

The system allows reservations staff in offices around the world to
make reservations as though they were permanently on-line to a central
information database, with up-to-date information. In fact, each office
runs independently, and the International Packet Switching Service is
used to communicate with other locations on a batched up basis.

After a brief discussion of the business needs and the hardware
environment, we will look at the resulting data and transactional
requirements. This leads to a discussion of the in-house infrastructure,
written in C+ under UNIX. Finally, an analysis of performance will be
given.

1. Introduction

This paper describes the implementation of a new computer system for
a large independent Hotel Representation company. Travel Agents or
members of the public can call its offices around the world to make
immediately confirmed hotel reservations at almost 10,000 properties.
In addition, the company operates a sophisticated prepayment scheme
which allows payment in local currency by the client, and offers
immediate commission payment to the travel agent.

As well as handling telephone bookings, the system is connected to
most of the world’s major electronic booking systems, including all of
the world’s largest airline reservations systems, Prestel in the UK, and
similar systems elsewhere. Indeed, anyone who books a hotel through
a travel agent with airline connections may well have been a customer
without knowing it.

Before 1983, the company used the GEISCO timesharing service to
handle its DP requirements. Information about hotels was dissem-
inated to offices on a weekly basis in the form of a manually produced
microfiche. Staff would use the fiche to check hotel information, avai-
lability etc, and fill in manual forms which were batched, and pro-
cessed overnight by GEISCO. Confirmations for hotels were printed in

311

An International Hotel Reservations System Using Loosely Coupled UNIX Systems

the office nearest the hotel, and the head office in London obtained
daily and monthly accounting and management reports.

In 1983, development began of a fully computerised system. The first
stage was to automate the microfiche production and the management
and accounting functions. Then, a reservations program was written to
allow the automation of the hotel selection and booking functions. The
entire system was written in C on PDP11s running UNIX System Iil and
later System V.0

Offices around the world ran independently of each others, but once a
day each office would perform a file transfer to the London head office.
At that time, London would receive all bookings made, and would send
all updates to hotel information. This of course meant that bookings
were made on the basis of information which was up to 2 days out of
date, and it could be even longer before the hotel knew of the booking.
Nevertheless, it was a considerable improvement over the weekly fiche,
and compared favourably with the alternatives available from competi-
tors.

During the course of the next few years, the market became much more
sophisticated. Major airlines started offering hotel reservations ser-
vices to their on-line agents, and there was pressure to improve the fre-
quency of updates and the amount of data available. The existing sys-
tem was modified, adapted, and hard-coded, but it became clear that it
was only a matter of time before it ceased to be viable, and in late 1988
the decision was made to re-implement it. The result of that reimple-
mentation is the subject of the rest of this paper.

2. The Business Needs for which the System was Designed

A small (3 person) design team, headed by the author, spent 3 months
devising a strategy for the new system. The new system had to remain
broadly upward compatible with the existing system described above.
In addition, it needed to satisfy a number of other requirements.

) The system must be able to run essentially stand-alone on
cheap hardware in isolated or badly served areas.

One of the features which distinguishes the company from its
competitors is its ability to offer its services in small markets and
in developing countries. This put a great strain on the design. It
must be possible to obtain the necessary equipment in places like
Bombay, Sao Paulo, and indeed Eastern Europe while remaining
cost effective in small markets like New Zealand. This require-
ment alone ruled out any possibility of a mainframe and leased
lines.

o No pre-set limit on the amount of information held about a
hotel.

The old system had fixed length limits on the amount and format
of the information held about hotels. Only full-price rooms were
available, and no more than six categories of accommodation
could be offered. These limits originated from what could be put
on a microfiche frame, and were hopelessly out of date. We felt
that simply to increase those limits to a higher number was ask-
ing for trouble in the future, and instead we decided to allow
arbitrary amounts of all types of data per hotel. This decision
probably had a greater effect on the design of the user interface
than any other, since it meant that The application had to support
displays of potentially huge lists in a sensible way.

312

EurOpen Autumn ‘91 — Budapest, 16-20 September

M An International Hotel Reservations System Using Loosely Coupled UNIX Systems

o Operational flexibility in controlling the frequency of update
to remote offices.

Ideally, any change of rates, availability or whatever notified to
the company should take immediate effect in all offices around
the world. However, in practice it is still not necessary to be
quite that efficient, especially when the destination office is
small. It it vital to be able to control costs by batching up several
changes and sending them all at once. On the other hand, the
traffic in some areas may justify a dedicated line, in which case
data should be transferred immediately.

° Offices should not be dependent on working comms to func-
tion.

This requirement relates to the earlier one of being able to func-
tion in difficult locations. The company needs to continue to be
able to take bookings even if all communications failed for an
extended period. Also, each location needs to be able to restore
itself to full working order after a hardware failure without other
systems being involved.

° Except in major offices, no computer literate operations staff
should be required.

This requirement had a significant effect on a number of areas.
The old system had reached the point at which it was often
necessary to have operators in London or Omaha connect to
other office machines in order to solve local problems. Often,
the integrity of the system itself was at risk. Our new design was
required to be able to function reliably, even after hardware
problems, with minimal danger of unskilled operators causing
irremediable damage.

Other Factors

In addition to the above, there were a number of other important factors
we wanted to take into account. Wherever possible, we wanted to be
able to use existing hardware, and we certainly wanted to preserve our
hard-won expertise in running UNIX based systems. At the time,
almost all of the offices were running Motorola Delta series systems
and UNIX System V.2 or V.3. However, the largest locations — London
and Omaha Nebraska had recently moved to Sequent Symmetry run-
ning Dynix. The Sequents are really BSD machines, so it was impor-
tant that our software should run properly under BSD and System V
kernels. Furthermore, we were keen to assure ourselves that our even-
tual implementation would not seriously restrict our choice of UNIX
hardware, which needed to be cost effective in locations ranging from
the one-person Zurich office, to the 200 person Omaha office.

From a software development point of view, we were keen to ensure
that our approach was easy for new recruits to learn, so that they could
be productive quickly. One major problem with the existing system
was that it was almost impossible to obtain a reasonable idea of how it
worked without spending months learning by osmosis.

In particular, we had become increasingly disillusioned with C as a
programming language for our purposes. The limitations of C as an
application development langage are well known, and need not be
addressed here. Suffice it to say that we felt that it was appropriate, at
the very least, to examine alternatives to the continued use of C as a
sole development language.

EurOpen Autumn ‘91 — Budapest, 16-20 September 313

An International Hotel Reservations System Using Loosely Coupled UNIX Systems

3. Third Party Package Evaluation, and its Conclusions

By this time, our outline specification, in the form of a user document,
had been discussed and approved by the company, and we had a few
more months to finalise our software development strategy. We
decided to approach various vendors of database and/or communica-
tions software to see whether we could use their products effectively.

It became clear quickly that one particular area was going to cause
major problems. For every hotel, and every valid room/rate combina-
tion in that hotel, it is necessary to store the availability of the accom-
modation for every date from now, typically up to a year in the future.
Availability is usually either open (yes) or closed (no), but sometimes
other values are required — there are about 10 possibilities in all. In
addition it is necessary to distinguish dates which are known to be open
from dates for which no information is yet available.

To store that information in a relational table would therefore require
typically records of length 10 + bytes (4 for the hotel, 2 for the room, 2
for the date and 1 for the availability itself) allowing | overhead. The
number of records would be 365 for a year * 10 roomtypes per hotel *
10,000 hotels. Thus, the storage requirement for this table alone would
be at least 365*10*10000*10 or about 400 megabytes. Allowing for
indexes, and other bookkeeping and we were looking at about 1GB for
this table alone. Furthermore, that table is the most volatile in the sys-
tem, and would require frequent backing-up.

Against that number, we knew that if we stored the availability in a
packed binary record, using sensible compression techniques, the same
information per room would occupy about 50 bytes for a year, resulting
in a total table size of 50*10000*10 or SMB — say 20MB including
indexes etc. Furthermore, our knowledge of the requirements of the
application made it certain that availability would need to be accessed
only within the context of a preselected hotel record. Other parts of the
system would have been subject to similar overheads although not
quite as dramatically.

When we broached this problem with the vendors, we were offered the
chance of storing the information as a BLOB of binary data, and
packing/unpacking it ourselves. This seemed like a viable solution, but
it would have meant losing the ability to write our code in their data-
base access languages, SQL or whatever, and would force us to revert
to C for what was likely to be a large part of the code.

Another problem was that of the distributed nature of our application.
It was already clear that none of the database vendors could offer us a
means of allowing distributed transactions where most of the systems
were not permanently on-line or available in real-time. Fortunately, as
described later, we had identified a way in which individual transac-
tions could be safely processed on one machine and transmitted subse-
quently to others without compromising the integrity of the system as a
whole. This would allow us to use a standalone database package on
each machine, with well defined hooks for distributing needed data to
other machines. We hoped to find a system which would integrate with
our chosen database to allow reliable message passing between systems
which were not permanently on-line to each other.

Despite going as far as advertising our requirements, we were unable to
find what we wanted in that area. There were a number of packages
available which offered what amounted to sophisticated mail and
which could perhaps have been kludged into shape. Indeed, we pur-

314

EurOpen Autumn 91 - Budapest, 16-20 September

. |
L_._I

An International Hotel Reservations System Using Loosely Coupled UNIX Systems

chased evaluation copies in one case to see what we could do. How-
ever, none of the available alternatives offered us much over what we
felt we could do ourselves, and all were rather pricy.

It had become clear that what we really wanted wasn’t available from
anybody yet, and the cost of licenses for what we could get would be
hard to justify in terms of reduced development time or better running.
In the meantime, we had become very interested in the possibility that
C++, now at last becoming widely available, might allow us to escape
the worst problems of C, while maintaining the degree of control we
required. After much discussion it was decided to adopt C+ as a base
and to develop in-house an infrastructure on top of which the applica-
tion could be built. Accordingly, the project team split for a while into
two groups. The author headed an infrastructure team, while a col-
league headed an application design team. Communications between
the two teams was maintained by all members of both teams sharing an
open-plan office.

4. The Methodology

At the same time as we decided to adopt CH and our own infrastruc-
ture, we had finalised the details of our methodology for the application
development. Each member of the team would be involved in several
stages of the process — nobody would be programming exclusively, but
everybody would do some coding. Following a successful in-house
course on structured analysis and design, we began the process of turn-
ing our requirements into entity-relationship diagrams for the data, and
higher-level datafiow diagrams for the processing. The eventual result
of these was a set of tables (about 200 in all) and a set of program
module outline specifications.

Meanwhile, the infrastructure development had resulted in a series of
class libraries, and proforma examples of how to use them to imple-
ment each of the different categories of program module which the
applications team had identified. In many cases, it turned out that the
entire module could be specified as a simple parametrized form, which
could then be coded by rote, resulting in a lot of boring but very pro-
ductive work. In other cases, the module coding was more compli-
cated, but was seldom more than a day or so’s work.

It would be nice to claim that this hybrid approach had been fully
worked out in advance, but it was not the case. During the year which
the design process took, there was a constant to and fro between the
application and infrastructure teams trying to delineate the exact boun-
daries. Little was specified in advance, and there were a few awkward
problems when important areas were in danger of slipping through the
gaps.

Nevertheless, the combination of bottom-up infrastructure and top-
down design worked well in practice, and probably resulted in a better
eventual interface boundary than could have been planned in advance.

5. The Way Data is Distributed

The data tables which resulted from our analysis fall into several
categories, depending on how they are distributed among the various
machines worldwide. We have:

An International Hotel Reservations System Using Loosely Coupled UNIX Systems

“Static” global tables: e.g. lists of currencies, countries etc
Hotel related tables

Reservation related tables

Local administration tables (passwords)

Internal control tables (routing, machine PSS addresses etc)

Temporary tables (pending reports)

Copies of the static global tables are held on each machine. These
tables are updated only rarely, and updates almost always consist of
additions rather than changes.

Copies of the hotel related tables are kept on each machine too. Every
record in these tables relates to a specific single hotel, and only those
machines in offices which have booking agreements with that hotel
keep that information.

The reservation related tables on each machine similarly only contain
the reservations relevant to that office. However, the London office has
a master machine which contains a copy of every reservation made,
and uses this for management reporting etc.

Local administration tables are used by each office to set up their
configuration. These tables are not visible from elsewhere.

Internal control tables are used by the parts of the infrastructure respon-
sible for sending data to/from machines. They are like static global
tables in that they are held everywhere, but they require special care
when updating.

Finally, each machine will have temporary tables, containing, for
example lists of telex messages which have been generated but not yet
sent.

6. Transactions

All updates to the tables above are defined in terms of transactions.

One of the most important factors about our application was that it did
not require multi-system access in order to guarantee the correctness of
transactions. Since this is a key feature of the system, it is worth
describing in more detail.

In the general case, a distributed database may require access to some
or all of the systems over which it is distributed before a transaction
can be checked for validity and allowed. This requirement places a
heavy burden on the level of connectivity between systems, and if it
applied to us would have made it impossible to operate quasi-
independent systems.

Fortunately, we were able to find a way of ensuring that a transaction
would be valid without access to more than one machine, by restricting
the possible transactions. The idea we adopted was that of ownership.
Almost all transactions on the system fall into one of two categories —
hotel update or reservation. By designating a single system as the
“owner” of each hotel, or reservation, we insist that all updates to that
entity must be processed first on the owning machine, and only then
can subsequently be sent to any other machines which need to know
about the transaction.

Of course, some transactions cannot be treated in the above way.
Changes to certain global tables, changes of ownership, or transactions
whose legitimate originator does not own the data etc, need to be han-

316

EurOpen A ‘91 — Budapest, 16-20 Septemb

An International Hotel Reservations System Using Loosely Coupled UNIX Svstems

dled more carefully. However, these exceptional transactions are rare,
and seldom urgent, and a clumsy but workable solution was found in
the form of a several stage process, which mimics two-phase commit.

One factor which simplified a lot of the analysis of transactions was the
decision to handle consistency problems by using a singly-threaded
transaction process. One of the consequences of not buying into a
proprietary DBMS was that we lost those systems’ sophisticated
locking/rollback mechanisms. Instead, we created several server
processes, each handling certain category of transaction which were
always mutually compatible, and each processing one transaction at a
time.

As part of its processing cycle, a transaction server may decide that one
or more remote machines must receive transactions (either a direct
copy of the current one or one or more different ones). The transaction
server will generate these remote transactions, and send them via the
infrastructure to the destination machine. The comms-in-out feature of
the infrastructure acknowledges transactions as soon as they are
queued, and guarantees that all transactions sent between any given
pair of machines will be processed in the same order as they were gen-
erated. Thus, two hotel updates generated on a single machine for the
same hotel, in which the second partially contradicts the first, will be
transmitted in the correct order to all interested other machines.

The exact time taken for those transactions to reach each other machine
depends on the frequency of communication between those machines,
and on the load at the destination.

7. Audit and Backup

In any system it is important to have a properly thought-out strategy for
backup of data, and for the provision of an audit record which can be
used to investigate any mysterious events. Our single-threaded transac-
tion server on each machine made it easy to incorporate a simple tran-
saction logging feature. Every transaction is logged to a separate dev-
ice (in some cases to optical disk). The transaction log also notes the
times and media on which full backups are done. A special option to
the transaction processor allows a transaction log to roll forward from
the last available backup.

The same strategy is used to log data as it is sent from or received by
the machine by the comms-in-out system described below. Care is
taken to ensure that when a transaction is passed from one part to
another that agreement exists about what has happened.

The most important consequence of this way of working is that an
office which breaks down does not need its comms to be up in order to
restore its state. This contrasts with the old system, where a lot of
information could only be restored from London if a local office had
problems.

8. The Infrastructure

We are now ready to describe the infrastructure from the point of view
of what it offers the programmer. Unfortunately, space does not permit
a full discussion of the internals.

The infrastructure can be divided into several distinct areas.

An International Hotel Reservations System Using Loosely Coupled UNIX Systems

° The uimake program

. The types system and tycpp
° The file access method

) The message protocol

. The transaction processor

. Comms in and out

° Windows

The Uimake Program

The first problem we faced when moving to C+ was that C+ imposes
a much more rigid requirement than C on such things as declaring
functions before use and including class definitions in the right order.
It became clear that the traditional include file and makefile approach
was going to cause problems, and we therefore wrote a program called
uimake. uimake brings to CH something similar to the Pascal UNIT
concept. Every module contains a program file and a header file,
together with a unit file ending in .u . The unit file specifies which
other modules are required by the current one, and whether the current
module is a main program. Once modules are set up, a call of

uimake modulename

will make the module, including all necessary headers in the right
order, and if appropriate linking the objects to form an executable.
While not perfect, uimake has proved invaluable in keeping track of the
interrelationships between the different code elements.

Another benefit of uimake is that it guarantees that modules are loaded
into a final executable in a consistent order vis-a-vis their relative
dependencies. This allows safely the automatic calling of static con-
structors in the correct order.

The Types System and tycpp

One of the major objectives of the infrastructure was to allow the
storage of complex data structures as records in tables, and to allow
general purpose access programs to understand those structures and
display them. Unfortunately, C+ provides no way of interrogating the
compiler to find out the internal structure of objects. We got round this
problem by introducing a class called type, which describes a type in
an accessible way. In order to generate the correct type information for
the structures we were using, we wrote a simple preprocessor, tycpp,
which accepts definitions of a large subset of C+ structures, and gen-
erates a module which defines the structure and a type describing it.

We also defined a class object, which consists of an arbitrary data value
and a type, and wrote routines to convert objects into binary and ascii
representations of their values.

The File Access Method

Built on top of the types system, we introduced a generic class called
table. A table(type) inherits a value of that type together with tradi-
tional imperative style functions for updating and fetching the value
from an underlying table of that value. By default, tables are held
entirely in memory, but a derived class reltable allows them to be asso-
ciated with disk files. The tycpp facility was upgraded to allow easy
creation and definition of these tables. At this point it may help to look

318

EurOpen A ‘91 — Budapest, 16-20 Sep b

Opery

An International Hotel Reservations System Using Loosely Coupled UNIX Systems

#include "example.x"
// This file is created by uimake with all needed headers
#definitions
// This section is interpreted by tycpp
STRUCTURE hotel
int code;
string name 30;
ENDSTRUCTURE
KEYINFO hotel_keys;
KEY 1:
code;
KEY 2:
name;
ENDKEYINFO;
TABLE hotel USING hotel_keys;
#enddefinitions
/* the rest of the file is passed unchanged to C++ */

declare(reltable, hotel);

main{()
{
reltable_create("hotel.dbf", hotel_type,hotel_keys);
/* hotel_type is created automatically by tycpp */
/* This has created an empty table */
myhot .open{"hotel.dbf"};
/* myhot is now associated with the empty table file */
myhot.code = 23;
myhot .name = "TWENTY THIRD HOTEL"
if (myhot.insert() != TRUE) cerr << "Error inserting hotel 0;

myhot .close () ;
return(0);
}

Program 1: Example table program

at Program 1. Obviously, the system does not provide a full set of
relational-style features, but in practice this was not a problem. The
programming side seemed to be well served by an “old-fashioned” way
of getting at the data, and the transaction server handled both con-
currency control and distribution in a comprehensible way.

The fundamental benefit of what we did is that we allow fields of a
table structure to themselves be tables and so on.

Thus, if the type hotel_tab has a field rate of type table(rate_tab) and h
is a table(hotel_tab), h.rate is a fully fledged table, which can be used
just as though it were standalone. The way in which such a subtable is
stored within its parent record can be easily customised to allow end-
user invisible storage optimisation. This is of course how we solved
our problem with the storage of availability.

The Message Protocol

One of the most annoying “features” of UNIX is that it provides many
different ways for processes to communicate, but no standardised,
efficient, reliable message passing scheme. Shared memory, sema-
phores, message queues, pipes, streams drivers, and sockets are all con-
tenders, but none of these is universally available. Accordingly, we
built a layer in the form of a reliable message class, which allows
processes to communicate directly and reliably with each other. The
underlying implementation has been coded in several ways.

There are three classes of rmp message: immediate, reply, and mail.
All three are ways of sending arbitrarily long data from one process to

EurOpen Autumn ‘91 — Budapest, 16-20 September 319

An International Hotel Reservations System Using Loosely Coupled UNIX Systems

#include "rmptest.x"

// as before, this file is created by uimake

main()
{
rmp_out myrmp(rmp_reply)

'

myrmp.sendto("dev", "servicel");
/* names looked up as machine and service */

myrmp.start();

/* at this point myrmp is a c++ ostream, logically connected

to the other side */

myrmp << "This is a request";

myrmp.end() ;

int i; /* We assume the reply is an integer */

myrmp.reply () >> i;
myrmp.reply () .end();
cout << "The reply was "
return(0);

}

<< 1 << "0;

Program 2: rmp example program

another. The differences are that immediate messages must be destined
for a process on the same machine and are unidirectional, while reply
messages allow the receipt of a reply from the destination process.
Mail messages may be destined for a process on any other known
machine. They are acknowledged by the comms-in-out system
described below, and delivery is guaranteed provided that the destina-
tion machine knows about the destination process. Undelivered mail
mounts up at the destination, and eventually triggers operator interven-
tion. Mail messages also guarantee that they will arrive in order
between given source and destination processes.

The message protocol is used extensively in the transaction server. The
server waits for a message which may either be a local reply message
or a remote mail message. It processes that message, possibly sending
other messages as it does so. Finally, if the inbound message was a
reply message, the success or failure is reported back. Since it is a seri-
ous error for a remote mail message to fail, no reply need be sent back.

As an example of the user interface, a code fragment (Program 2) may
be of interest.

Comms-in-out

This feature of the infrastructure allows messages to be sent between
processes on different machines, without a permanent connection
between those machines. The user interface has already been
described, being the mail option to the message protocol. What actu-
ally happens is that each message is sent as a local message with reply
to a transaction server for the comms-in-out system. This server puts
the message into a local data file of outgoing messages. Under user
selectable conditions, all messages destined for any particular system
are batched up, converted into a file, and transmitted via any suitable
file transfer program.

Received messages are put into an inbound message file, and are for-
warded to the ultimate destination program by a forwarding daemon.
The system includes logic to allow delivered messages to be purged
from the originating system, and copes with the file transfer method not
preserving the order of files transferred, or losing the occasional file.

The actual program used to transfer the files is called ftasync. It was
written to allow uucp style operation with a protocol which is optim-
ised for X.25 environments where a PAD is involved at one or both

320

EurOpen Autumn 91 — Budapest, 16-20 September

T

—

bl

An International Hotel Reservations System Using Loosely Coupled UNIX Systems

ends. Top level acknowledgements are minimised, but total reliability
is not assumed, and partially complete transfers can be restarted
without loss.

Windows

Finally, it is worth mentioning the windowing software we have writ-
ten. Although it doesn’t directly relate to the distributed application, it
is the basis of what the user of the system actually sees.

The software provides text based windows on which forms, including
scrolling areas, can be defined, and a fairly nice way of associating a
scrolling area with a table. The usual ability to define specific actions
on key or field events is provided as well. To date, no attempt has been
made to provide a graphical front end for code generation.

9. Performance

The performance of a complex software system is always hard to
judge, except in the sense that it is or is not good enough given the
available hardware. What seems clear so far is that we have achieved
our basic objective of gaining acceptable performance without
sacrificing good structure. The disk space required to store tables com-
pares extremely favourably with other schemes, and in fact on expected
volumes the space required will actually be less than in the former sys-
tem. Also, the CPU load on the system is fairly low, mainly because
knowledge of the data has allowed sensibly defined access paths for
data to be implemented explicitly.

On the other side of the coin, the performance of the message passing
system is not as great as might be hoped, and in particular, the common
problems of excessive context switching might come to the fore as the
system is extended. Probably the most serious difficulty is that the
applications are extremely memory hungry. This is primarily due to
the sheer number of screens coded into certain key programs, and the
total number of tables. As a result it does not seem reasonable to run
the full system on a machine with less than 8MB of memory, which is a
problem because the existing Motorola kit has only 4MB and no room
for expansion. On the other hand, the application fits happily onto a
386 PC.

10. Conclusion

Anyone who choses to implement facilities at the level we did must be
prepared to defend themselves from a charge of suftering from the NIH
(not invented here) syndrome. It is quite likely that before too long,
well written products will be available which would have made our
own development unnecessary. However, the total cost of the infras-
tructure development has amounted to less per machine than a basic
proprietary database system license would have been. Furthermore, we
now have a well-understood basis from which we can develop and
enhance the application, without fear of falling foul of the limitations
of a proprietary package. If there is any lesson here, it is that extensi-
bility is more important than a fixed set of features, however rich.

As telecommunications costs fall, there may come a time when com-
mercial organisations no longer need to worry about the costs of
remaining permanently connected across international distances. Until

EurOpen Autumn 91 — Budapest, 16-20 September

An International Hotel Reservations System Using Loosely Coupled UNIX Systems

then, there will always be a desire to reduce connectivity without
sacrificing functionality.

In this paper, we have shown how it is possible to distribute a suitable
application over multiple locations in a way which allows independent
operation of each location, but which still allows the system to function
as a coherent whole.

Bibliography

Ellis & Stroustrup, The Annotated C++ Reference Manual, Addison-
Wesley, 1990. ISBN 0-201-51459-1

J. Ullman, Principles of Database Systems, second edition, Computer
Science Press, 1989. ISBN 0-273-085948

D. Knuth, The Art of Computer Programming volume 3 — sorting and
searching , Addison-Wesley, 1973. ISBN 0-201-03803-X

R. Rock-Evans, Analysis within the Systems Development Life-Cycle,
Pergamon Press. 1SBN 0-08-034100-4

322

EurOpen Autumn 91 — Budapest, 16-20 September

N

T T————

‘4===~‘ European Forum for Open Systems
IdoNE :
YRRy The Secretariat

A | [4 Owles Hall

~ EurOpen Buntingford
[Hertfordshire SG9 9PL

I/ United Kingdom

‘ Telephone +44 763 73039
| Facsimile +44 763 73255

[Email europen@EU.net

| Patria Nyomda

/

ISBN | 87361101 3

