papers presented at the
European UNIX® Systems
User Group Spring Meeting

1 - 3 April 1985

- Paris, France

EUUG

European uNIx?t Systems User Group

Proceedings EUUG Conference

Paris Spring 1985

Computer Aides to Rewriting & Copy Editing of

English Text CHERRY 1
Concurrent Processing in Ada* & UNIX'

HESSELINK 11
Greek Characters on UNIX? HULL 22
Addressing in MMDF II KILLE 44
ACSNET - The Australian Alternative to UUCP

DICK-LAUDER et al 60
What is an International UNIXt System?

MISSIMER & GUIST 70
System Aspects of Low-Cost Bitmapped Displays

ROSENTHAL & GOSLING 77
A Contractual Model of Software Development

STENNING 86
TeX™ must eventually replace nroff/troff

MURPHY a3
UNIX' at IRCAM GROSS 94

+tUNIX is a trademark of AT&T Bell Laboratories
*Ada is a trademark of the Ada Joint Programming Office
=PeX is a trademark of the American Mathematical Society

Copyright (c) 1985. This document may contain information
covered by one or more licences, copyrights and non-
disclosure agreements. Copying without fee is permitted
provided that copies are not made or distributed for commer-
cial advantage and credit to the source is given; abstract-
ing with credit is permitted. All other circulation or
reproduction is prohibited without the prior permission of

the EUUG.

Computer Aides to Rewriting and Copy Editing of English Text

Lorinda Cherry

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Writing is generally thought of as a three stage process; planning, producing
a first draft, and revising and editing that draft. The UNIXT WRITER'S WORK-
BENCHT7T software is a set of programs to help writers of English with the last
stage, revising and editing. It includes programs that analyze the writing style of
the text, provide the writer with other views of the text that may identify the parts
that need revision, and help in the copy editing process. In this paper 1 will
describe the programs, discuss how they have been used, and how they might be
extended to help writers who are writing in English as a second language.

February 12, 1985

+ UNIX is a Trademark of AT&T Bell Laboratories.
TTWRITER'S WORKBENCH is a Trademark of AT&T Technologies.

Computer Aides to Rewriting and Copy Editing of English Text

Lorinda Cherry

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

Introduction

One of the earliest uses of the UNIXT operating system was for document preparation. The
document preparation tools have evolved into a very sophisticated suite of programs to typeset
complicated equations| 1], tables|2], and graphics [3, 4]. Along with the programs for making the
page pretty came other tools for checking the content of the document. Among the first was
typo [5] for finding typographical errors, which was quickly followed by spell [6] for finding
spelling errors. The WRITER'S WORKBENCHTT software[7, 8, 9] represents the next step in this
evolution. It includes programs to analyze the text at the word and sentence level as well as pro-
grams to do some of the routine work of copy editing. Section 1 of this paper will describe the
higher level programs, wwb, proofr and prose. Section 2 will discuss the parts and style
programs on which many of the other programs are built. Section 3 discusses the use of WRITER'S
WORKBENCH in freshman composition courses and the results of a study on style’s and
parts’ performance on student text. Section 4 speculates on how these programs might help writ-
ers who are writing in English as their second language.

wwb = proofr + prose

The WRITER'S WORKBENCH software is organized hierarchically as shown in Appendix 1.
At the top level the wwb program runs proofr, which is the copy editing part of the system, and
prose, which is the stylistic analysis part. From a technical standpoint proofr is probably the
least interesting but the most useful part of the WRITER'S WORKBENCH software. A sample of
proofr output is shown in Appendix 2. proofr is a shell script that runs five separate pro-
grams. The first, spellwwb, is an augmented version of the UNIX system spell program that,
in addition to looking in the usual spell dictionary, also looks in the user’s private dictionary.
Words found in the user’s dictionary, usually proper names and acronyms, are not reported as
errors.

Next proofr runs the punctuation checker, punct. punct makes sure that all sentences
in the text begin with a capital letter, that quote marks and parenthesis balance, and that consecu-
tive punctuation characters occur in the correct order. This last check refers to rules like periods
and commas always go inside quote marks unless the quoted string is a single character. This rule,
incidentally, is an American English standard, not a British one. These rules are difficult to
remember and even harder to find by eye.

Perhaps the most useful of proofr’s programs is diction. diction prints all sentences
that contain frequently misused or wordy phrases found in its dictionary of approximately 450
phrases. Many of the phrases in the dictionary are correct in some context but indicate wordiness
in others. When run as part of proofr, the program also runs the suggest program, which
proposes substitutions for the phrases. Like spellwwb, the user may also have a private diction-
ary of phrases for the program to find in addition to the default dictionary or phrases to suppress
from the default dictionary. For example, terminate is often a long or pompous word for end.
However, in writing about software terminate is an accepted and specific word. Users writing

+ UNIX is a Trademark of AT&T Bell Laboratories.
TTWRITER'S WORKBENCH 1is a Trademark of AT&T Technologies.

program documentation may want to add terminate to their private dictionary as a phrase from the
default dictionary not to be flagged.

The final program run by proofr is gram, a rudimentary grammar checker. Currently
gram only checks for two kinds or grammatical errors; split infinitives and misused indefinite arti-
cles as in “‘an man’’ or *‘a honor.”

After running proofr, wwb runs prose, which compares the values from a table of statis-
tics computed about the text with a set of standards and produces a two or three page description
of the text in terms of several stylistic features. The stylistic features on which prose reports are
those that experts on writing agree lead to better prose and many are supported by psychological
research. They include readability indices, variation in sentence type, sentence length, and sen-
tence beginning, the usc of active rather than passive verbs, the use of verbs rather than nominali-
zations and limiting the use of expletives. prose composes the report from stored text, selecting
sentences and explanations based on how the user’s text statistics compare to the standards. An
example of one page of prose output is in Appendix 3. In addition to reporting on the style of
the text prose also suggests other programs that the user might run to look at it. Experienced
users can run prose with a flag to get a short form of the output rather than the long report.

parts and style

The program that is the basis of much of the WRITER'S WORKBENCH software is the
parts program for finding parts of speech or word classes in running English text. parts
began as the front end to a synthetic speech system. In such a system the parts of speech of the
words are needed to add inflection to the words in the sentences as well as to decide the stressed
syllable in words like con-trast’ (the verb) and con’trast (the noun). Several design requirements
of a speech synthesis program made parts an ideal tool for text analysis. They include:

speed — the system couldn’t spend all of its time parsing

size — the part of speech program couldn’t be too big

vocabulary — the vocabulary it would see was unknown; it had to work on any text
performance — it didn’t have to be 100% correct but it had to produce some answer

The speed requirement makes it feasible to run parts on long papers. The size, vocabulary and
performance requirement dictated that the program not be dictionary based, which led to a system
that could be run on text on any subject. Although a real parser would be more powerful for text
analysis, parsers in today’s technology have vocabulary as well as speed limitations. parts runs
at about 400 words/second on a VAX 750 with an accuracy of about 95%.

parts is really a four program pipeline. The first program, deroff, extracts the running
text from the document. To do this it removes the formatting commands, headings, tables, equa-
tions, graphics and other non-sentence features. The second program splits the text into words,
punctuation and sentences and looks each word up in a small dictionary of about 450 function
words and irregular verbs. Function words are prepositions, conjunctions, articles and auxiliary
verbs. The third program checks all words not yet assigned a word class for certain suffixes.
parts uses 51 suffixes, some of which denote a unique word class; others denote a partial or dual
word class. Of importance here is that all English suffixes that end in the letter ‘s’ are checked.
Any word ending in an *'s”’ that does not match one of the suffixes must either be a plural noun or
a singular verb and subject-verb agreement can be used by the last program to determine which.
Each suffix also has an exception dictionary that is checked before a class is assigned.

The last program does most of the work. It uses heuristics of English word order and the
assignments or partial assignments made by the other programs to assign parts of speech to all of
the words in the text. A detailed description of these heuristics can be found in [10]. Here I'll

simply step through an example sentence, found in Figure I.

Figure |
Example of parts Stages
The UNIX operating system exists for many different kinds of hardware.
art prep_adv pron_adj prep
art unk ing unk nv_pl prep_adv pron_adj unk nv_pl prep unk.
art adj adj noun verb prep adj adj noun prep noun.

The first line is the input. The second line is the output from the dictionary lookup program.
Only the, for, many, and of were in the dictionary. The third line is the output of the suffix check-
ing program. It found the ing on operating and the s on exists and kinds. The class unk was
assigned to all of the other words with no suffix match, implying that they do not end in 5. The
third line is the input to the last program and its output in the last line of the figure. This program
first checks the sentence or clause for a verb or auxiliary verb. Then it starts at the beginning of
the sentence to assign parts of speech. Here the article introduces a noun phrase and subject-verb
agreement is used to label system as a noun and exists as a verb. Other rules of word order are
used to assign parts of speech to the rest of the words.

The style program|[l1] uses the parts of speech found by parts to produce a table of
stylistic measures of the text like that shown in Figure 2.

Draft
readability grades:
(Kincaid) 9.6 (auto) 10.8 (Coleman-Liau) 10.8 (Flesch) 8.9 (61.3)
sentence info:
no. sent 110 no. wds 2143
av sent leng 19.5 av word leng 4.78
no. questions 2 no. imperatives 0
no. content wds 1268 59.2% av leng 6.18
short sent (<14) 28% (31) long sent (>29) 11% (12)
longest sent 51 wds at sent 81; shortest sent 2 wds at sent 48
sentence types:
simple 55% (60) complex 27% (30)
compound 8% (9) compound-complex 10% (11)
word usage:
verb types as % of total verbs
tobe 37% (77) aux 15% (32) inf 17% (35)
passives as % of non-inf verbs 15% (27)
types as % of total
prep 13.0% (279) conj 3.9% (83) adv 4.0% (85)
noun 29.7% (636) adj 17.7% (380) pron 3.1% (67)
nominalizations 2 % (50)
sentence beginnings:
subject opener: noun (21) pron (13) pos (0) adj (20) art (26) tot 73%
prep 13% (14) adv 0% (11)
verb 1% (1) sub_conj 3% (3) conj 0% (0)
expletives 1% (1)

Figure 2

This is the table used by prose to compare the text with the standards. Other things can be

learned about the text besides the measures used by prose already discussed in the first section of
this paper. If, for example, the number of dependent clauses, roughly the sum of the number of
complex and compound-complex sentences from the “‘sentence types’ section of the table, is close
to the number of sentences that begin with subordinate conjunctions (sub_conj), then the author
writes almost exclusively with leading dependent clauses. Since variety is so important in writing,
any strong pattern of this type may indicate monotonous or tedious prose. Another common prob-
lem, particularly in technical writing, is the overuse of adjective qualifiers. A noun-adjective ratio
near unity often indicates this problem. Other metrics from the table may also be important; their
identification and importance is an open research question.

WRITER’S WORKBENCH Software in Composition Instruction

In the school year 1981-1982 Bell Labs and Colorado State University began a research
exchange to test the WRITER'S WORKBENCH system for teaching composition[12, 13, 14, 15].
During the first semester randomly selected students in freshman composition were given access to
a computer lab and the spell, style, diction, and suggest programs to write their
essays. Pre- and post-tests of students in the experimental group showed significant improvements
in editing skills over the control group. Encouraged by these results the faculty at Colorado State
expanded their program to use the other WRITER'S WORKBENCH programs. They packaged
several of the non-standard WRITER'S WORKBENCH programs to run automatically on the student
text and added a data base of commonly confused word pairs, like affect-effect, as another file for
diction to use. Students use their lab time to type their papers and run one program to get 7 or
8 pages of comments on their papers. After reviewing the comments, they come back to the lab,
make corrections and get a final draft of their papers to turn in. Currently, more than 4000 stu-
dents in courses including freshman composition, advanced writing, business writing, and composi-
tion analysis are using the computer lab and the WRITER'S WORKBENCH programs. Professors
are delighted at being able to spend more time teaching writing and less time correcting surface
errors. They also report that the students’ papers are better.

One question remained open about the use of the WRITER'S WORKBENCH software on stu-
dent text: did the performance of parts and therefore, style degrade when run on student
text? parts was developed experimentally on grammatically correct English text. Much of stu-
dent text is far from grammatically correct and often is much less formal in style than the text used
to develop parts. An experiment[16] using 47 student essays that were assigned parts of speech
by two graduate students and the program revealed a 4% degradation in parts’ performance
from the original study on grammatically correct text. This 4%, however, only led to a 1-2%
difference in the metrics used by style and did not change the suggestions and comments made
by prose about the text. '

How might WRITER’S WORKBENCH help writers’ of English as a second language?

Writers’ of English as a second language have many of the same problems of wordy and
awkward phrasing and lack of variation as native English writers. To the extent that the problems
are the same, the programs should prove useful. However, further research on the writing habits
of speakers of different languages needs to be done. No language translates directly, word-for-
word into English. Phrase patterns differ and idioms exist that may be detectable with parts and
style. At the very least phrase dictionaries for diction could be developed that could make a
big difference in the naturalness of writing by non-native English writers.

Conclusion

This paper has been a brief introduction to the WRITER’S WORKBENCH software and the
programs on which it is based. It is a natural extension of the UNIX document preparation tools
and has proved to be useful as a teaching tool. With further reSearch it should also be useful for
writers of English as a second language.

References

1.

Kernighan, B. W., Cherry, L. L., ““A System for Typesetting Mathematics,”” Commun. of the
ACM, 18 (3), pp.151-157, 1975.

Lesk, M.E., “TBL — A Program to Format Tables,” UNIX Programmer’s Manual, Bell
Laboratories, Murray Hill, N.J. Section 10 (January, 1979).

Van Wyk, C.J., “A High-Level Language for Specifying Pictures,” ACM Trans. on Graphics
1 (2)pp.

Kernighan, B. W., “Pic — A Language for Typesetting Graphics,” Software Practice &
Experience 12, pp. 1-20, January, 1982.

Morris, R. and Cherry, L.L., “*Computer Detection of Typographical Errors,” IEEE Trans.
on Professional Comm., PC-18, pp. 54-64, March 1975.

Mcllroy, M.D., “Development of a Spelling List,”” /EEE Trans. on Comm. 30, pp. 91-99,
1982.

Macdonald, N. H., Keenan, S. A., Gingrich, P. S., Fox, M. L., Frase, L. T., and Col-
lymore, J. C., “Writer’s Workbench: Computer Aids for Writing, Release 2.0, Bell Labora-
tories, 1981.

Cherry, L. L., “Writing Tools,” IEEE Trans. on Comm. 30, pp. 100-105, 1982.

Macdonald, N. H., Frase, L. T., Gingrich, P. S., and Keenan, S. A., “Writer's Workbench:
Computer Aids Text Analysis,”” IEEE Trans. on Comm. 30, pp. 105-110, 1982.

Cherry, L. L., “PARTS — A System for Assigning Word Classes to English Text,” Comput-
ing Science Technical Report #81, 1980, Bell Laboratories, Murray Hill, NJ 07974.

Cherry, L. L. and Vesterman, W., “Writing tools — The STYLE and Diction Programs,”
Computing Science Technical Report #91, 1981, Bell Laboratories, Murray Hill, NJ 07974.

Kiefer, Kathleen E. and Smith, Charles R., “Textual Analysis with Computers: Test of Bell
Laboratories’ Computer Software,” Research in the Teaching of English, Vol. 17, 1983,
pp201-14.

Smith, Charles R. and Kiefer, Kathleen E., “Using the Writer’s Workbench Programs at
Colorada State University,” 6th International Conference on Computers and the Humanities,
Editors, Sarah K. Burton and Douglass B. Shorts, Rockville, Md., Computing Science Press,
1983, pp 672-84.

Smith, C. R. and Kiefer, K. E., “Writer’s Workbench — Computers and Writing Instruc-
tion,” Proceedings of the Future of Literacy Conference, April 1—3, 1982, Baltimore, Md.

Kiefer, K. E. and Smith, C. R, “Improving Students’ Revising and Editing: The Writer’s
Workbench System,” The Computer in Composition Instruction, ed. W. Wresch, National
Council of Teachers of English, (1984).

Cherry, L. L., ““A Study of Parts’ and Style’s Performance on Real Student Text,” Internal
memorandum, Bell Laboratories (November 1984).

Appendix 1

COMMAND-FUNCTION TABLE

Commands
acro file......iiiiiiiennnn finds acronyms
chunk file................. segments at phrase boundaries
match stylefilel 2 N...... collates statistics from different texts
org file......... ...t shows text structure
rewrite file............... first draft of document with probs. highlighted
sexist file................ finds sexist phrases and suggests changes
spelltell pattern.......... prints commonly misspelled words containing pattern
style file filel........... summarizes stylistic features
syl -n file.........coo... prints words of n syllables or longer
topic file....... o summarizes content
parts file.............. assigns grammatical parts of speech
wwb file.......civiiiiiinn runs proofreading and sytlistic analysis
proofr file............. proofreading comments
dictplus file........ finds awkward phrases, and suggests changes
diction file...... finds awkward phrases
suggest phrase....suggests substitutions for awkward phrases
double file.......... detects repeated typings of words
punct file........... corrects punctuation
spellwwb file........ checks spelling, using spelldict
gram file........ finds split infinitives and incorrect indefinite articles
parts file........ assigns grammatical parts of speech
prose file.............. extended editorial comments
style file........... summarizes stylistic features
parts file........ assigns grammatical parts of speech
wwbmail......... .. sends mail to WWB Development group
Explanations
punctrules................. explains punctuation rules
splitrules.......coviviuunn explains split infinitives
worduse word........ceeeenn a glossary of words often confused in writing
wwbhelp word............... gets information about word (e.g. spell)
wwbinfo.................... prints a copy of this table
wwbstand................... prints standards used by prose to evaluate documents

Environmental Tailoring

dictadd......... ..o adds phrases to ddict dictionary
spelladd................... adds words to spelldict dictionary
mkstand........... 000, builds standards for prose from user documents

User Specified DRictioparies
ddict........ . i iiiiiie, personal list of awkward phrases
spelldict........ccciv personal list of spellings

Note. Indented commands are automatically run by the less
indented commands that immediately precede them.

Appendix
Example Text and Proofr Output

Example Text
The large number of probrams that comprise the UNIX
operating system make it it very useful.
utilizing ‘‘sed’’, we are able to always edit very large files.
A other powerful program is *‘awk’’.
Proofr Output
Example
AR EE LSRR ERE RN R B R R R PR PR SPELLING AR R E R S 2 E S RS S R R R R S S R Y
Possible spelling errors in Example are:
probrams sed
If any of these words are spelled correctly, later type
spelladd word1 word2 ... wordn
to have them added to your spelldict file.
2 E TR RS YRR T T T R R R Ry PUNCTUATION (22222 2222 S Ry S S ST T L

For file Example:

The program next prints any sentence that it thinks is
incorrectly punctuated and follows it by its correction.

lines 3,4

OLD: utilizing ‘'‘sed’’, we are able to always edit very large files.
OLD: A other powerful program is ‘‘awk’”’.

NEW: Utilizing ‘‘sed,’’ we are able to always edit very large files.
NEW: A other powerful program is ‘‘awk.’’

For more information about punctuation rules, type:

punctrules
e X2 R R SRS R R TS X] DOUBLE WORDS LA E XTSRS E R T RR R R R B E
For file Example:

it twice line 2 file Example
operating system make it it very useful.

LEEE R LR TR T TR R R RR R R PR R WORD CHOICE LEEE R EEE TR R E R ER R R E IR I

Sentences with possibly wordy or misused phrases are listed next,
followed by suggested revisions.

beginning line 1 Example
The large *[number of)% probrams that *[comprise] the UNIX
operating system make it it *[very]+ useful.

beginning line 3 Example
[utilizing]l ‘‘sed’’, we are able to always edit
[very] large files.

file Example: number of lines 4 number of phrases found 5

Please wait for the substitution phrases.

——————————————————— Table of Substitutions mm e m e

PHRASE SUBSTITUTION
" comprise"

sufficient number of"
a large number of"

comprise: use "include" for
number of: use "enough" for
number of: use "many" for "
number of: use "often" for in a considerable number of cases"”

number of: use "several, many, some" for " a number of"

number of: use "some" for " in a number of cases"

number of: use "usually" for " except in a small number of cases"
utilizing: use "using" for " utilizing"

very: use " " for " very"

very: use "complete" for very complete"

very: use "doubtless, no doubt" for " there is very little doubt that"
very: use "in a sense or OMIT" for " in a very real sense"

very: use "unimportant" for " of very minor importance"

very: use "unique, uncommon" for " very unique"

* Not all the revisions will be appropriate for your document.
* When there is more than one suggestion for just one bracketed
word, you will have to choose the case that fits your use.

* Capitalized words are instructions, not suggestions.

NOTE: If you want this program to look for additional phrases
or to stop looking for some, for instance to stop
flagging "impact," .type the command dictadd.

I E RS R E RS SRS R RS R R E RS GRAMMATICAL ERRORS 2 E R SRR SRS EEEE R LR R R LR
For file Example:
Possible grammatical errors:

"

split infinitive: "to always edit after line 0 file Example
"a other" should be "an other" after line 0 file Example

For information on split infinitives type:
splitrules

10

Appendix 3
Page of Prose Output

Jan 22 12:38 1985 PROSE OUTPUT FOR Paper Page 1

NOTE: Your document is being compared against standards
derived from 30 technical memoranda, classified as good
by managers in the research area of Bell Laboratories.

READABILITY

The Kincaid readability formula predicts that your text
can be read by someone with 10 or more years of schooling,
which is a good score for documents like this.

VARIATION

Variation in sentence 1length, type, and openings
prevents monotony. More importantly, a lack of such
variation suggests that every topic and every sentence has
equal weight, which makes it difficult for the reader to
pick out the important points.

In this text 55% of the sentences are simple, 27% are
complex, giving a difference of 28. This difference should
range from -6 to 5 for good documents of this type.

Although the simple sentence is the most direct and
comprehensible form for an individual sentence, overusing
such sentences may make a document seem disjointed. Writing
instructors say that a document is better when less
important ideas are grammatically subordinated to more
important ones so that the grammatical structure emphasizes
the logical structure.

This document could be improved by combining some of
the sentences to subordinate minor ideas to major ones. To
do this, join two simple sentences by using a "that" clause
or an adverb, such as "although." Put the less important
sentence in the subordinate clause after the "that" clause
or adverb. For example, the following sentences

a. The simple sentence is the most comprehensible form
for an individual sentence.

b. Overusing such sentences may make a document seem
disjointed.

were combined in the paragraph above. The combined sentence
subordinates sentence "a" to sentence "b," thus emphasizing
that the information in sentence b is more important than
that in sentence "a."

Additionally, the longest sentence is 51 words long.
Sentences this long are frequently 1lists, which will be
easier to follow if you convert them into a list format. To
find all your sentences over 50 words, type the following
command after this program is done.

style -1 50 filename [l=lowercase L]

Concurrent processing in Ada+ and Unix++

H. W. Hesselink

Delft University of Technology, the Netherlands

ABSTRACT

over the past years interest in programming
languages supporting concurrent processing has
grown. Some of these languages are extensions of
existing ones, e.g. Concurrent Pascal, others were
designed to support concurrent processing from the
start. An interesting (if only because of its

backing ...) example of the second group is Ada
which is likely to become a major language in the
future.

At Delft University of Technology a group is
working on DAS, the Delft Ada Subset, which
implements most of Ada except for its concurrent
processing features. It therefore seemed an
interesting exercise to compare the support for
concurrent processing in Unix and Ada and to see
to what extent this part of Ada could be mapped
onto Unix. It may seem a little odd to compare a
programming language with an operating systenm,
however Unix in combination with a programming
language (especially C obviously) offers a similar
kind of programming environment to Ada. Ada has
simply integrated what in Unix are separate system
calls into itself (in the process ensuring that
such facilities are standardised). The comparison
is therefore between Ada on the one hand and Unix
plus a programming language on the other. Because
the programming language in this case was C the
combination will henceforth be referred to as
cunix. The version of Unix discussed in this
paper is Version 7 so as not to cloud the issue
with features present in some of the more current
versions but not in others. Mention is made of
the effect of some of these features on the cunix
view of concurrent processing.

FAda 1is a trademark of the Ada Joint Programming Office
++Unix is a trademark of AT&T Bell Laboratories

March 17, 1985

1

12

1l. Concurrency in Ada

In Ada a concurrent process is called a task and is
essentially just another data object. As such, tasks follow
the Ada scoping rules*: they are declared at block entry and
all tasks and possibly subtasks declared in a block must
have terminated before that block can be exited. Tasks can
be declared "anonymously", that is, the definition is also
the declaration, or task types can be defined for use in
later declarations. Arrays of tasks can be declared and one
can have pointers to tasks. This last point is extremely
important as this is the only way to dynamically allocate
tasks.

Tasks are intended to be cheap, that is, creating a
task should not involve much overhead. It is quite reasona-
ble to declare an array of thousands of tasks to implement
e.g. a finite element algorithm.

The language reference manual[l] places no restrictions
on the way tasks are mapped onto hardware: all tasks on a
single processor, each task a separate processor or anywhere
in between.

Communication between tasks is via shared data and/or
via the rendezvous. Data is shared according to the normal
scoping rules, for instance a task has access to the varia-
bles (if not locally hidden) of the task that created it. A
rendezvous can be compared to a call to a procedure in a
different task. A rendezvous occurs when one task calls an
entry in another task, which then accepts it. One of the
two tasks will reach the rendezvous point first, at which
time it will block. When the second task reaches the ren-
dezvous point parameter values may be passed from the enter-
ing to the accepting task, this task will execute any sta-
tements in the body of the accept statement, parameter
values may possibly be passed back to the entering task and
then the tasks will go their respective ways. A rendezvous
is therefore also a synchronisation point between tasks. A
rendezvous is not symmetrical: the entering task must
specify which task it wishes to connect to while the accep-
ting task simply serves all entries on a first-come first-
served basis. Multiple entries to one accept will be
queued.

A task may listen to several entry queues simul-
taneously using the select statement. A select statement
contains accepts for several types of entry, the first entry
called is accepted. Each accept statement in a select may
have a guard statement which will be evaluated at the time

* which are the '"normal" rules of block structured
languages such as algol and Pascal.

March 17, 1985

that the select statement is begun. Figure 1 shows a styl-
ised piece of Ada code which implements a bounded buffer.

loop
select
when buffer not full
accept a writer
store data in buffer
end accept
or
when buffer not empty
accept a reader
retrieve data from buffer
end accept
end select
end loop

Figure 1

Entry, accept and select statements can all limit the time
they block waiting for a rendezvous. They can choose to
execute only if a rendezvous is immediately possible or else
to terminate if a rendezvous does not occur within a speci-
fied time.

Tasks terminate either by being aborted or by executing
the terminate statement. A terminate statement may be an
alternative in a select statement, it will be chosen if the
block that created the task is at its end and all sibling
and dependent tasks have either terminated or can also
choose a terminate alternative. If this is the case all
these tasks are dormant and may be painlessly removed.

2. Concurrency in cunix

A cunix process can create a new process by executing
the fork systemcall. This results in a new process (the
child) which is an exact copy of the old process (the
parent) except for the return value from the call to fork.
This return value may be used to distinguish between the two
processes. The copy includes status information such as
signal settings and the list of open files so that, for
instance, files open in the parent at the time of the fork
are also open in the child. Each user is allowed some max-
imum number, typically 25, of simultaneous processes. Pro-
cesses cannot share data.

A cunix program can start a new program by executing
the exec systemcall. This causes the old program to be
overlayed with the new program, it does not result in a new
process. Some status information is kept across the exec so
that for instance files open in the old program will be open
in the new program (but special signal settings will not be

March 17, 1985

13

14

kept) .

A cunix program can therefore create a new program by
first forking off a copy of itself and then execing the new
program.

Communication between processes is via pipes which are
essentially anonymous FIFO buffers. By executing the pipe
systemcall a process obtains two file-descriptors to a new
pipe, one to write to the pipe and one to read from it. If
the process now forks off a child, because files remain open
across a fork, the parent and the child can communicate via
the pipe. Obviously they must be agreed on which will be
the reader and which the writer.

A pipe is simply an ordered byte stream, no format is
imposed on data passing through it. A process writing to a
pipe that is full or reading from a pipe that is empty will
block. A process reading from an empty pipe with no-one to
write to it will receive a signal.

Several processes can write to the same pipe although a
reader cannot determine where data it reads originated or
even where boundaries between data from different processes
lie. Several processes can read from the same pipe but
which process actually gets the data depends on which pro-
cess is running at the time the data becomes available.
Because a process can only read from one file-descriptor at
a time it is not possible for a process to "listen" to
several pipes and read from whichever pipe has data availa-
ble first.

A process terminates by being aborted or by executing
the exit systemcall, it can do this whenever it wishes. A
parent process can wait for one of its children to terminate
by executing the wait systemcall. This call will return
immediately if a child has already terminated (and has not
yet been waited for), else the parent is suspended until a
child terminates. The wait call returns the identity of the
child that terminated as well as its exit status.

3. Two views of concurrent processing

Lauer and Needham[2] argue that most operating systems
(the successful ones anyway ...) fall naturally into one of
two classes. These they call procedure-oriented systems and
message-oriented systems. According to Lauer and Needham a
procedure-oriented system is "characterised by a large,
rapidly changing number of processes and a process synchron-
isation mechanism based on shared data" and a message-
oriented system is "characterised by a relatively small num-
ber of processes with an explicit message system for commun-
icating between them".

March 17, 1985

A procedure-oriented system allows easy creation and
deletion of processes. These processes typically communi-
cate via shared data and cooperate using locks, semaphores
or some other similar mechanism. Each process is usually
associated with a single goal or task, processes contending
for a resource are queued on a lock associated with that
resource. Procedure-oriented systems tend to have elaborate
support for access to shared data.

A message-oriented system allows easy passing of mes-
sages between processes. The number of processes is fairly
static, process creation and deletion is usually expensive.
In these kind of systems processes are usually associated
with a particular resource. Communication between processes
is via specific paths which tend to exist for relatively
long periods and processes can choose to receive a particu-
lar kind of message or a message of any kind over these
paths. Cooperation between processes (synchronisation,
resource sharing etc.) is achieved via message passing, mes-
sages that have not yet been acted upon are queued at the
destination. Processes rarely share data.

Lauer and Needham also argue that these two classes are
duals of each other. For each model they define a small set
of primitives necessary to implement a system supporting
that model. They show that the performance of the two types
of system is the same and then show how a program written
for one type of system can be mapped into a program for the
other type of: system without changing the logic of that pro-
gram. They assume the same underlying hardware, not optim-
ised for one or the other model, or else different hardware
with a similar level of support for each model.

They conclude that the choice of model for a particular
system* will not influence the structure and performance of
applications programs that are to run on the system, nor
will it influence the complexity of the system itself (what
they term "zeroth-order" and "first-order" considerations).
only "higher-order" considerations such as the facilities
offered by the underlying hardware (and personal preferences
of the implementors ...) are relevant to the choice.

It seems reasonable to extend this classification to
cover concurrent systems in general. What conclusions can
be drawn about the support for concurrent processing in Ada
and in cunix?

If we look at Ada we see that tasks are cheap and that

* or subsystem, some systems can be viewed as a
collection of subsystems that behave according to one
or the other model and that are coupled by explicit
interface mechanisms.

March 17, 1985

15

16

they can communicate via shared data. Furthermore, a lock-
ing mechanism such as semaphores is easily implemented.

This means that Ada supports the procedure-oriented model.
However, a flexible message passing mechanism is also provi-
ded that supports all the primitives Lauer and Needham sug-
gest are necessary in a message-oriented system so that the
message-oriented model is supported too.

Processes in cunix do not have shared memory and while
processes can be easily created and destroyed this is still
a fairly expensive business, so that cunix does not support
the procedure-oriented model. While pipes support message
passing their state cannot be examined and it is not possi-
ble to listen to several pipes simultaneously. This means
that cunix also cannot be said to support the message-
oriented model.

Ada supports both models. It was argued that the
models are duals of each other so that this seems rather a
case of overkill. Cunix originally supported neither model.
Newer releases of Unix have added features which change this
situation, some mapping quite closely onto the primitives
suggested by Lauer and Needham. It is interesting to see
that Berkeley inclines to the message-oriented model (e.gq.
the select call in 4.2Bsd) while AT&T inclines to the
procedure-oriented model in the form of e.g. shared memory.

4. Mapping Ada tasking onto cunix

Without modifying the Unix kernel there are essentially
two ways to implement tasking in cunix. One method is to
combine all tasks into a single cunix process together with
some form of scheduler, the other method is to map each task
onto a separate cunix process.

The first method effectively involves building one's
own little procedure-oriented operating system into cunix.
Some advantages of this approach are:

- shared data is available for free

- because the system has to be built anyway it can be
designed to provide optimal support for tasking.

A disadvantage is that no real concurrency can be achieved
because, underneath, there is just the one cunix process.
This can lead to other problems, for instance a task blocked
on an I/0 operation causes all other tasks to be blocked
also.

The second method has the following problems:

- lack of control over processes (e.g. how to tell when a
process dies)

March 17, 1985

- pipes form a limited inter-process communication mechan-
ism

- processes cannot share data

- the limited number of processes that may be created

- mapping a task onto a process may be overkill
and is usually not even considered. It seemed interesting
however to see exactly what the limits of this approach are,
so a model of part of Ada tasking was devised and implemen-
ted in cunix*.

The model supports:

- tasks as "access types" (Ada terminology), that is, as
objects that may (only) be referenced by pointers

- the rendezvous mechanism with entry, accept and select
statements

- parameter passing at rendezvous
- guards on accept statements

- the ability to limit the time a task will wait for a
rendezvous

- the "count attribute" (Ada terminology) which allows a
task to determine how many tasks are queued on one of
its entries

Not supported are:
- shared data

- scope rules (neither the visibility of shared data nor
the lifetime of tasks)

- the terminate statement as an alternative in a select
statement

According to Lauer and Needham shared data can be mapped
onto a message passing mechanism. One of the tests of the
cunix tasking implementation was to port Habermann's[3] Ada
version of the dining philosophers problem to it. That ver-
sion uses a separate task for each philosopher and for "phi-
losopher manager" processes associated with each philoso-
pher. Shared data is used to allow philosopher processes

* purely as an academic exercise, the code was in no
way intended to be useable in the real world.

March 17, 1985

17

18

access to the philosopher manager processes of other philo-
sophers. This last aspect was simulated in the cunix
implementation using a separate task with no other function
than to accept requests to process the "shared" data.

There is no shared data so the visibility of data in
other tasks is a moot point. Because of the lack of control
over processes it is very difficult to control the lifetime
of tasks. Because tasks are access types a task can call an
entry in any task it knows the address of so that it is
impossible to control which tasks may communicate.

The terminate alternative was not implemented because
it was felt enough code had already been generated for a
mere academic exercise... It could be added provided that
blocks that create tasks are identified and indicate when
they are about to exit. This could be done as shown in
figure 2.

int block id = new_block():

creation of one or more tasks

exit block(block_id):
Figure 2

This would also allow more control over the lifetime of
tasks and over which tasks may communicate with each other.
The implementation could be made to look much cleaner (for
instance the identification of blocks could be made tran-
sparent to the user) by using a preprocessor along the lines
of Stroustrup's[4] classes program.

The implementation uses a separate task manager process
of which all tasks are direct children, a new task is
created by forking off a copy of the task manager. This
means that the semantics of fork are lost: a new task does
not inherit the environment of the creating task (e.g. the
signal settings, the open files) but that of the task
manager process. The implementation could be changed so
that a new task is actually a child of the creating task,
but the problems involved in letting the task manager talk
to an indirect child make this very inefficient.

The major problem in implementing Ada tasking in cunix
is the lack of shared data. Several versions of Unix now
provide shared data but not in a form that will support

March 17, 1985

tasking. In terms of scope a task is simply a block and it
therefore has access to the data of surrounding blocks. For
instance a new task will have access to the local variables
of the task that created it. This means that part of the
stack must be shared. The stack of a program that has
created several tasks might look like figure 3, in which
each node of the tree represents the creation of a new task
and each leaf is a task.

A

Figure 3

The line from T to B represents the private stack of task T,
the path from B to A represents parts of the stack that are
shared with other tasks. This is a so-called cactus stack,
it cannot be implemented with a shared data mechanism that
is intended to provide support for shared access to global
data.

A mechanism developed at ACE[5] allows a process to
consist of many logical segments which in turn consist of
contiguous chunks of physical memory. These segments* may
be arbitrarily shared, with independent attributes (e.q.
read/write permission, the mapping into the process' address
space) for each process. This mechanism leads to a very
natural implementation of e.g. shared memory and COFF[6] ,
it could also be used, however, to create a cactus stack.

5. Conclusions

A summary is given of the facilities for concurrent
processing in Ada and cunix. Two models of concurrent pro-
cessing are discussed and the support for these models in
Ada and cunix is considered. It is shown that Ada supports
both models while cunix supports neither.

Two methods of mapping Ada tasking onto cunix are

* not to be confused with the usual Unix segments text,
data and bss!

March 17, 1985

19

20

discussed: putting all tasks into a single cunix process;
giving each task a separate process. Although the first
method has several shortcomings it is usually chosen. To
investigate the limits of the second method a part of Ada
tasking was implemented in cunix. The implementation uses a
separate process for each task, communication between tasks
is via a message system implemented on top of pipes.

It was found that a large part of Ada tasking can be
supported in this way though not with any great efficiency.
Features added to newer versions of the Unix kernel, such as
shared data and named pipes, do not solve the shortcomings
of the first method but allow a much better implementation
of the second method.

Due to the structure of Unix certain aspects of Ada
tasking cannot be mapped using the second method. Problems
are: the limited number of Unix processes available; the
lack of an adequate shared data mechanism.

6. Acknowledgements

This work was done as a fourth-year project at the com-
puter architecture group, Delft University of Technology, my
thanks to them for their support and for the use of their
facilities. I am indebted to Hans van Someren for many edu-
cational discussions (and for assigning me the project in
the first place :-).

March 17, 1985

References

1. Reference Manual for the Ada Programming Language,
United States Department of Defense (Jul. 1982).

2. Lauer, H. C. and Needham, R. M., "On the Duality of
Operating Systems Structures," Proc. Second Interna-
tional Symposium on Operating Systems, IRIA, (Oct.
1978).

3. Habermann, A. N. and Perry, D. E., Ada for Experienced
Programmers, Addison-Wesley (1983).

4. Stroustrup, B., Classes: An Abstract Data Type Facility
for the C Language. May 20, 1981.

5. Someren, H. v., COFF Loader User Reference Manual, ACE
Associated Computer Experts (Sep 13, 1984).

6. "Common Object File Format," in Unix System V Docu-
mentation, AT&T Bell Laboratories ().

March 17, 1985

21

22

Greek Characters on UNIX#*

Stephen Hull

Research Centre of Crete+

ABSTRACT

A case study is presented of the provision of
Greek capabilities on a 4.2 BSD UNIX system. The
problem is broken down, and the many complications
are presented, both those specific to Greek and
those generally applicable to any additional
character set. By evaluating the tradeoffs asso-
ciated with the various issues, we arrive at a set
of "best" suggestions for the task. Several com-
mercially available solutions are briefly sur-
veyed, and the issue of official standardisation
is looked at. Finally, suggestions are made for
future similar projects.

This research was partially supported by a NATO Science
for Stability grant.

1. Introduction

In order to efficiently deal with the task of providing
full Greek capabilities on a UNIX system, we must first con-
sider what we mean by the term "full capabilities". A help-
ful way of approaching the definition of this term is to
divide the user's interaction with the system into smaller
pieces. Just as we can consider the interaction of a user
as separate input and output streams connected to a tty
driver process which in turn passes data on to the proces-
sor, utilities and storage, so can we break down our problem
(figure 1).

March 17, 1985

generating

r**~"=°"""cc"s=ececcsenrm~ : """ il S il b Sl S 1
] N : :
? : : :
' N . '
] ' L}
' OUTPUT ' '
: <
; TTY — f—— ‘
]
i' """"""""""""]
. DRIVER '
X —— '
H (]
]
¢ | INnPUT ' S~
‘ ' ; ‘
¢] ' []
[} 1 N '
1) ' ' [}
g Levroavacscremnssownmans deoseocvewssons 4
entering storing manipulating

Figure 1 - Breakdown of Task
Specifically, we can identify the subtasks of

* entering,

* storing,

* manipulating and
* generating
Greek text.

Entering text involves passing data from the user to
the tty driver. Storing text concerns the passage of data
between the tty driver and the processor, utilities and
storage. Manipulating text involves using the data we have
entered. Finally, generating text concerns the passing of
data from the tty driver to the output device.

There is a further division which can help us. When
regarding the subtask of generating text, it is reasonable
to consider regular and high-quality text. The idea here is
not to limit the capabilities of regular text. Rather, both
types would allow complete Greek interaction. The dif-
ference is that we can simplify our task by taking certain
desirable but non-essential peculiarities of Greek text and
providing them only in high-quality text. They can then be
either approximated or ignored in regular text.

2. The Problem Domain

2.1. General Considerations

The desired capabilities should be provided in addition
to standard ASCII communication and all the facilities

March 17, 1985

24

normally provided by UNIX. It is therefore necessary that
our design still permit the use of UNIX and the I/O devices
in the conventional manner.

There are several ISO standards pertaining to aspects
of this task, such as encoding of 7- and 8-bit character
sets. We would like to conform to these standards if possi-
ble.

The provision of the ASCII character set on UNIX is
what we might term "homogeneous", that is, the bit strings
generated at the input device, those passed between the tty
driver and storage and sent from the driver to output are
all identical. This need not be the case. As we shall see,
there are a number of cases in our task where a difference
may be desirable (if not necessary) for an effective solu-
tion.

2.2. significant Characteristics of Greek

Unlike other European languages, where it may be neces-
sary to supplement ASCII with several extra keys for addi-
tional letters or diacritical marks, Greek requires a whole
new alphabet. As a result, our design must include a com-
plete keyboard layout.

One unlque problem of Greek concerns the letter sigma.
While there is nothing unusual about upper case sigma, lower
case sigma can be one of two symbols. "Teliko sigma" is
used when the 51gma occurs at the end of a word; the regular
sigma is used in all other cases. Although teliko sigma is
displayed differently and may be entered dlfferently, it
should be treated internally the same as a regular sigma.

Greek is perhaps unique in being a language with two
different and not wholly compatible systems of diacritical
marks. Greece in 1982 off1c1ally adopted the "monotonic"
system of diacritical marks, in which there is a single
accent as well as a diaeresis (called dhialytica). In addi-
tion, however, if we wish to provide full capabilities, we
must also support the old "polytonic" system, with three
accents, two breathlng marks, a diaeresis and an additional
mark, called ipogegrammeni or "iota subscript." A user may
wish to combine the two systems or ignore one of them. It
is also worth noting that mapping from polytonic to mono-
tonic is a trivial operation, as all accents become the
single monotonic accent and other marks are simply discar-
ded. The reverse transformation, however is not simple.

Greek has several punctuation marks not found in an
ASCII character set. These must be provided in some manner.

There are several characters in Greek not commonly or
currently used. Classical Greek has four extra letters, the

March 17, 1985

dhigamma, koppa, stigma and sampi. There is also a letter-
based numbering system similar to Roman numerals, called
Byzantine numerals, which requires three of these classical
letters and raised and lowered primes. In addition to all
this, there is an alternative way of writing beta. There is
an "initial beta" is used at the beginning of words in the
same way that the teliko sigma is used at the end.

Finally there are a number of differences in the way
upper and lower cases are dealt with. As mentioned before,
there is no teliko sigma (or, for that matter, initial beta)
in upper case: the standard capital sigma is always used.
Diacritics are only displayed in upper case in the polytonic
system, and then only if they fall on the initial letter of
a word. All other marks are ignored. Accents and breathing
marks are placed before the letter: this leads to special
treatment of upper case alphas due to the proximity of the
diacritics. The exception to all this is the diaeresis,
which is displayed regardless of the position of the letter.
However, it appears differently with upper case letters than
it does with lower case. The ipogegrammeni, or iota sub-
script, appears under a lower case letter but comes after an
upper case letter. Finally, when the letters omicron and
upsilon appear together, they can be replaced by a diphthong
denoting the two.

2.3. Hardware Characteristics

Our main interest here is terminals and the way in
which they may deal with input and output. They may be
classified as either 7-bit or 8-bit devices.

In addition to the standard ASCII table, 8-bit devices
have the capability to accept up to another 128 characters.
In practice, however, it is common to follow the guideline
of International Standard ISO 2022, where we split the ASCII
table into two sections: C0, a set of 32 control characters,
GO, a set of 94 graphic characters, and the two special
characters, SPACE and DEL. The eighth bit enables us to
specify two alternative tables, Cl and Gl. Since we want no
extra control characters, this leaves us with Gl, and we
have 94 extra positions to assign characters to (see figure
2).

March 17, 1985

25

26

N
——1
w
»
bm
(/]
~

0 LsE]| _ |

1

2

3

4

5

5 co GO G1
7

8

9

pwaws o= --4..-.-;‘. L R S N

—

-
w
o
m
[

Figure 2 - Alternate Character Set (adapted from [ISO 2022]).
In 8-bit devices, since the alternative table is indicated
by the eighth bit of the character byte, we need no special
escape sequences.

In the case of 7-bit devices, we need such escape
sequences. Not only must the input device send sequences to
indicate if GO or Gl is to be indexed by the 7-bit data, but
similar sequences must be sent to the output device to indi-
cate what is to be displayed. Note that a 7-bit terminal
which cannot switch to displaying an alternative character
set cannot display Greek in addition to ASCII. We also note
that in order not to have to switch character sets, it may
be desirable to duplicate commonly used ASCII characters in
the alternative set.

We should also consider the use of hardcopy output dev-
ices. Line printers would need a special print band and so
can be safely ignored. Dot matrix printers and laser prin-
ters are the most promising types of device. Both can take
8-bit data, and it is simply a matter of providing software
or ROMs to specify the characters corresponding to these
data. It is possible that some of our requirements might be
handled at the level of the hardcopy device, thus relieving
us of them elsewhere.

2.4. Entering Text

We must decide on the full character set we wish to be
able to enter. This set must be mapped to a standard key-
board. Finally, we must decide upon the bit sequences with
which we will encode them and send them to the tty driver.
We note that, in the case of 8-bit terminals, it may be

March 17, 1985

possible to do all necessary encoding within the terminal
and simply have the driver pass the data unaltered into
storage. This is not possible with a 7-bit terminal, and
the encoding for entering will differ somehow from the
storage and probably the generating encodings.

We should bear in mind that we may wish to provide
standard ASCII characters in the Greek keyboard layout,
especially punctuation marks common to ASCII and Greek and
the numerals.

We should also take into account the possibility that
there might be situations where the user does not want the
full Greek capabilities. Particularly, there may only be a
need for the monotonic accent system; perhaps in this case
the user should not be burdened with the polytonic as well.

2.5. Storing Text

As the data passes through the tty driver to a buffer
or file, we may wish to alter the encoding for several
reasons. We may have an ASCII character which was sent from
the Greek keyboard with a non-ASCII encoding which we should
change to ASCII. We may have a sequence of key hits which
should be stored as a single character or, conversely, a
character on the Greek keyboard which signifies more than
one character. Of particular interest here is the way in
which diacritical marks are handled. When we re-encode the
data, we should take into account the use we may make of the
text. Different applications may suggest different
encodings of characters; nevertheless, we should find one
suitable for all.

There are also several issues which must be considered
which are independent of such things as applications.

Should information about which character set is being
used be stored in each character, or should we store special
characters to indicate switching from one set to the other?
Should we keep characters one byte long, or expand them to
two bytes?

Tied in with this last point is the issue of future
expansion. We may wish to consider future polyalphabetic
systems which support a wide variety of languages. Should
we design our system to facilitate the eventual incorpora-
tion of such capabilities?

2.6. Manipulating Text

There are two areas we must consider here: existing
utilities on UNIX and the need for additional utilities.

Existing utilities, both standard UNIX ones and UNIX

March 17, 1985

27

28

based products, may or may not be able to work with full
Greek capabilities. Those that cannot may be altered if
possible, or we may wish to provide alternative utilities.

There may be a need for new utilities, either to deal
with some of the problems presented by Greek (such as facil-
ities to map between upper case and lower case or between
polytonic and monotonic systems of diacritics) or to provide
facilities for operations not encountered before, such as
transliteration of Greek text into the Latin alphabet and
back.

2.7. Generating Text

The primary decisions made here concern what encodings
must pass from the tty driver to the output device and what
they should signify. Decisions made here should reflect the
choices made with regard to entering text since, in the case
of a terminal, the user should see some sort of causal con-
nection between what is entered and what is displayed.

Of particular interest here are the use of dead keys,
that is, keys which result in the display of a character but
do not advance the cursor position. Dead keys are used for
characters which are intended to appear in the same location
as the following character. We are also interested in the
combination of characters within the output device in order
to relieve the tty driver of such concerns.

We must also decide which facilities for Greek display,
if any, should be considered high-quality text, and how they
should be provided.

3. Evaluations of Issues and Choices

3.1. The Greek Language

March 17, 1985

1. ABTAEZHOIKAMNEOIIPZTY®X¥YQabyYSelndLtuAnvEonpotvoxywd
2. 0123456789
3. [] &
4. s e e P e m oo
5. . ;o= ()
6. -—- »
7. QAS FPB , ' 2
8. BAMAAMANWTY
9. ae¢ntitevvdo
10, 4038448883088 e¢dddddddadda
d et & EREEER
ANAANAANRAAn ARG DA NBD g
VA A A A A N A R A
6666683
(ol
SLOLDLOUDBEDED
VOO LODYPPPOLOOH I PP

rb r:: o> 8‘

Figure 3 - Greek Characters

Figure 3 lists all of the characters we might want for
our full Greek solution. As can be seen they break down
into ten categories.

Category one consists of the 49 upper and lower case
letters, including the teliko sigma.

Category two is the ten numerals, already provided in
ASCII.

Category three is the set of monotonic diacritical
marks: the accent, the diaeresis and the combination of the
two.

Category four comprises the polytonic diacritics: the
accents oxeia (acute), vareia (grave) and perispomeni

March 17, 1985

29

(circumflex), the breathing marks psili (smooth) and dhaseia
(rough), the diaeresis, the iota subscript and the valid
combinations (excluding the iota subscript).

Category five is ASCII punctuation which is used in
Greek.

Category six is non-ASCII Greek punctuation: the pavla
(dash), eisagogika (quotation marks) and ano teleia (raised
dot) .

Category seven is "extra" symbols: those rarely used,
or used only in the ancient language. Here we have the
koppa, sampi, stigma, dhigamma, initial beta, raised and
lowered prime and the drachma symbol.

Category eight is special upper case combinations of
letters and diacritics.

Category nine is the set of all possible combinations
of letters and monotonic diacritics.

Finally, category ten is the set of all possible com-
binations of letters and polytonic diacritics.

Jw

.2. Hardware Characteristics

It has already been noted that for 7-bit devices it is
necessary to define escape characters to indicate which
character set is being used. 1ISO 2022 does this for us: the
"shift out" (SO - octal 016) character indicates switching
to the Gl set and the "shift in" (SI - octal 017) character
indicates switching to the GO set.

There is also the issue of putting duplicates of common
ASCII characters in our alternative set to lessen the amount
of switching between character sets on 7-bit terminals. It
should be noted that these characters would still be stored
as their correct ASCII encodings, but could then be dif-
ferently encoded for entry and display. This scheme sounds
nice until we consider that the input and display facilities
are only needed to deal with speeds a human user can operate
at. Taking this into account, it seems unnecessary to com-
plicate input and output in an attempt to shave a few minute
fractions of a second from the response time. As a result,
we can eliminate categories two and five, the ASCII numerals
and punctuation, from the set of characters we need to con-
sider.

Some of the characters described in the previous sec-
tion may be considered as being only necessary for "high
quality" text. Taking this approach, we can relegate their
production to the output device. For example, some could be
implemented in the software that drives or formats text for

March 17, 1985

a laser printer. The special positioning of diacritics with
an initial upper case alpha and the omlcron—up51lon
diphthong might be handled this way, since the diacritic
p051tlon is not critical (no pun intended) and the diphthong
is by no means mandatory. Similarly, both the initial beta
and the drachma symbol can be considered opt10nal and the
dash can be faked with two hyphens as it often is in Latin
characters. The eisagogika or Greek quotatlon marks are
often replaced by ordinary quotation marks in Greek texts
when the correct ones are not available. Finally, the upper
prime can be replaced by the ASCII apostrophe.

3.3. Storing Text

Perhaps the main question surrounding the provision of
Greek characters is the actual encoding of the characters
within the system. Because of this, and because the
decisions made here will affect all other decisions we make,
we will deal with this topic now. Note that this encoding
may be done in the tty driver or in the input device. What
is important is that this encoding is the internal represen-
tation of the characters.

We can identify seven issues which must be considered
here:

* how to store information about which character set is
being used,

* allowing for future expansion,

* contiguousness of the alphabet,

* transliteration of characters to the Latin alphabet,
* fall-back capabilities,

* the diacritic problem and

* the teliko sigma problem.

We have two locations for the character set information
to choose between: we can place it with each character,
either by setting the eighth bit or making characters two
bytes long and placing information in the top byte, or we
can store a special byte which indicates that the following
data is from a specified set until another special byte
appears, changing the set. Both this latter approach and
the two-byte character approach have the advantage that we
can expand to further character sets by simply defining new
byte-long codes to indicate each new set. However, there
are notable drawbacks as well. The two-byte character
approach would requlre rewriting virtually every text
handling utility in UNIX and would mean that all text files

March 17, 1985

31

32

were suddenly doubled in length and most of this length
would be waste space. The "special byte" approach would
effectively render the random accessing of Greek files
impossible: it would be necessary to read a file serially
from the front or back up to the nearest special byte to
determine what sort of text was being accessed.

The eight-bit character approach doesn't suffer from
these drawbacks, but it is accompanied by problems of its
own. We are limited to two character sets, though standards
exist (ISO 2022 and ISO 2375) for the establishment of
escape sequences to specify additional character sets in the
two available "positions". As a result, we are not too con-
cerned about expansion possibilities. A more significant
problem is the fact that many UNIX utilities cannot cope
with the idea of eight-bit bytes. We shall save this topic
for the section on manipulating data. Despite these prob-
lems, it seems clear to us that this approach is the least
traumatic one to take, and will therefore continue this dis-
cussion using the eight-bit character as a model.

Perhaps the thorniest issue to consider here is con-
tiguousness. The argument for contiguous lower and upper
case alphabets is simply that one of the commonest opera-
tions on a computer is sorting, and the speed of this task
is affected by whether or not a contiguous alphabet is used.
Mapping an "unsortable" encoding to one that can be sorted
and back will not affect the order of the time or space
requirements, since it adds only a linear time factor, but
the operations will definitely be slower and take more
space.

Another desirable feature which ASCII employs is that
the relative positioning of upper and lower case letters is
such that corresponding forms of a letter differ by only one
bit, simplifying operations where case is ignored or conver-
ted.

Some approaches to encoding a Greek character set
attempt to facilitate the transliteration of Greek into
Latin characters. This is done by locating the characters
in places corresponding to similar looking or sounding
characters in the ASCII table. 1Its effectiveness is limited
by the fact that a one-to-one transliteration is crude at
best (see figure 4) and that there are several currently

March 17, 1985

Figure 4 - A well-known English sentence
transliterated into Greek characters
used transliteration schemes, some of which map Greek
characters to combinations of Latin letters or letters and
accents.

When the output device is incapable of generating the
desired character, we may wish to supply a reasonable
approximation or replacement. This technique is termed
fall-back. One reason to adopt a transliteration scheme is
that it allows us to implement fall-back more easily.
However, fall-back is something which can be easily be
handled within the tty driver or the device itself. It
seems unreasonable that such concerns should affect the way
our data is stored.

The diacritic problem can be simply stated as what to
do about characters which we wish to ignore some of the
time. Diacritics are effectively meaningless in sorting,
and we wish to be able sometimes to ignore them for sear-
ching operations (e.g. they may not be provided for upper
case words). One glance at the set of characters we wish to
support makes it clear that it would be unreasonable to
store letter-diacritic combinations as single characters,
even if it were not unreasonable to have, for example,
twenty-four different ways of representing a lower case
alpha, each of which could be encoded in a different way
complete with diacritic. The question then becomes where or
how to store the diacritics.

Two possibilities are to either place them where they
occur in the word (before the letter they appear with, most
likely) or to add them to the end of the word along with
information about their placement. 1In the first case we
have an approach which is simple to implement and takes only
the minimum necessary storage. Sorting and searching,
however, may require some sort of filter to remove or
transform the diacritics. The second approach can simplify
sorting and searching operations, particularly word-based
ones. The major drawback is that this method requires more
space, due to the need to store location information for
each diacritic. As well, since the method storage is signi-
ficantly different from the appearance of the entered or
displayed text, the data must be processed between entry and
storage and between storage and display. As a result,

March 17, 1985

33

34

storing diacritics with the letter is the preferred
approach.

There are frequent instances where a letter will have
more than one diacritic. Should all diacritics be stored
separately, or should we have special characters correspon-
ding to all combinations of diacritics? It is common for
Greek typewriters to have "combination" keys. These keys
allow the typing of combinations of polytonic accents,
breathing marks and diaeresis. The keys are a convenience,
but they also allow the separate design of the diacritic
combinations for improved legibility and appearance. Com-
binations such as this can save us some storage (although an
almost negligible amount) and don't set us back noticeably
in terms of complexity or processing. On the negative side,
as soon as we allow combination characters in storage we
have more than one way of encoding the same information.

A solution is to allow combination keys for entering,
but change the data to single diacritics for storage. There
is only one monotonic combination, and there are eight pos-
sible combinations of polytonic diacritics less the iota
subscript. We leave out the iota subscript because, not
only do we not have to worry about legibility since it
appears at the bottom of characters, but the complexity of a
keyboard with 8+11=19 diacritical keys probably loses more
than it gains in terms of efficiency and ease of use.

With the teliko sigma we have a case where we wish the
character to be treated exactly like an ordinary sigma up to
the point where it is displayed. Ideally our method of
representing it will allow it to be treated as such while
not decreasing the efficiency of our manipulations. The two
concerns here are how we choose to represent the difference
between the two sigmas and how we fit them into our alpha-
bet.

We can simply have two encodings and deal with data
manipulation problems as they arise. However, there are
other approaches we can take as well. We can represent all
lower case sigmas with the same encoding and leave it to the
logic of the output device to display the proper character,
depending on whether or not the following character is
alphabetic. This is a pleasing approach, as the situation
is handled in a manner reflecting the situation the charac-
ters are identical except for their appearance. Problems
arise, however, when we wish to display either sigma out of
context. We could have three sigmas, the regular "smart"
sigma and two non-varying ones, or we could select two sym-
bols never used with sigma, such as the acute and grave
accents, and use them to indicate one or the other sigma.
This seems rather unnatural, but we can be reasonably sure
that any sigma specified in that manner will be an unlikely
candidate for sorting or searching.

March 17, 1985

Our preferred approach to this problem is to select a
single character such as an accent to indicate that the fol-
lowing sigma should be treated as a teliko sigma, and use
this whenever one is called for. This effectively reduces
the problem to the diacritic problem, the only difference
being that the "diacritic" is not displayed.

In all cases, we benefit from the fact that the special
character comes at the end of words. This means that its
importance in sorting will be almost negligible. For this
reason as well it seems very unnecessary to disturb the con-
tiguousness of the alphabet by insertion of the teliko sigma
when it can follow omega with little effect.

There are several documents about encoding Greek
characters which are of particular interest. The first is
ISO 5428, "Greek alphabet coded character set for bibliogra-
phic information interchange." It specifies an encoding for
the basic alphabet plus the polytonic diacritics, a number
of Greek punctuation marks and the four classical Greek let-
ters in both cases (curious, since they are caseless), as
well as the initial beta. The classical letters occur in
their original positions and the special beta and teliko
sigma are located after the regular beta and sigma. As a
result, the modern Greek alphabet is far from contigquous.

In addition, there is no monotonic accent system and no
diacritic combinations are provided. We feel that there are
too many shortcomings in this system for it to be adopted as
is, but it is nonetheless interesting to see how some of the
issues were addressed. We note that diacritics, that is,
characters used in conjunction with another character, are
kept distinct from symbols: non-alphanumeric characters
which stand on their own.

The other document of particular interest to us is the
CEC Liaison Report to ISO/TC97/SC2. It is a brief look at
possible data exchange standards for Greek. ISO 5428 is
mentioned and considered "not obviously compatible."
Reference is also made to two transliteration schemes. The
first is an informal one-to-one matching of Greek and Latin
characters, evolved from use of Latin-based Telex machines.
It corresponds to the standard layout of characters on a
Greek keyboard. The second is ISO 843, which differs from
the informal scheme in that two Greek characters are mapped
to pairs of Latin letters and two further ones are mapped to
accented Latin letters. The report goes on to suggest that
contiguity of the alphabet be sacrificed in favour of the
informal transliteration scheme. The advantage is seen to
be the ability to enter and display a legible approximation
to Greek on terminals having no Greek capability. At the
same time, the paper notes that such capabilities offer no
advantage within Greece. The report notes that a proper
transliteration scheme, such as that of ISO 843, could be
implemented on most systems quite easily, but that it is

March 17, 1985

35

unlikely that this would be found outside of Greece. It
also suggests that contiguity is probably not as necessary a
quality as in times past, simply because operations which
benefit from it are so much faster nowadays that the saving
in time is negligible.

The sentences of figure 4 were transliterated using
this scheme. Given the crudeness of this scheme and the
simplicity with which a proper transliteration could be pro-
vided, we suggest that more is to be gained by preserving
the contiguous alphabet.

3.4. Entering Text

Having looked at ways the information might be stored
in the computer, we can now consider the other aspects of
the task and how they connect with storage.

Since the encoding sent from the terminal to the tty
driver does not necessarily have to correspond to the stored
encoding, we have considerable freedom to design the data
entry. Nevertheless, if our terminal equipment is smart
enough to process the information, we may be able to minim-
ise changes to UNIX. The exception to this is when we use
7-bit terminals. Here the driver must keep track of which
set is being used and translate the data properly.

The physical layout of the keyboard is quite straight-
forward. There is a generally accepted layout for Greek
letters, corresponding to the crude transliteration scheme
mentioned in the last section. This includes a position for
the teliko sigma. Regardless of how we represent this
character in storage, it seems best to follow conventional
Greek typing practice and have the user explicitly choose
which sigma to employ. As regards punctuation, we note that
there is no standard layout for punctuation on Latin key-
boards, although the IS0 has published guidelines (ISO
3243). Although this standard is intended to guide the
extension of Latin keyboards, we can base a Greek layout on
it as well (see figure 5).

March 17, 1985

Illustrationnot provided

Figure 5 - Towards a Greek keyboard (after ISO 3243)

Using this standard, we have a minimum of 21 free posi-
tions on a standard 44-key keyboard. As well, there are
five optional keys and four others which, though required
for a Latin keyboard, are of little or no use in Greek, for
a total possible of 30 key positions. Note that with this
method we are keeping characters common to ASCII and Greek
on the keyboard.

We have a possible 25 characters or character combina-
tions we may wish to assign (see figure 6), but this number
can be reduced.

Illustration not provided

Figure 6 - Characters to Assign
While the combination diacritic keys are useful ones to
have, the three grave accent combinations are extremely
rare, and we can simply require the user to enter the
separate marks one at a time.

As far as the positioning of the specific characters,
we can give a few reasonable guidelines. The commonest
characters should occur in unshifted positions. These are
without a doubt the single and combination monotonic diacri-
tics. The quotation marks could be placed in the same shift

March 17, 1985

37

38

position on adjacent keys. The four seldom used classical
letters might be relegated to a distant corner of the key-
board. However we might bear in mind the ISO guideline
which suggests that the top right key be used for diacriti-
cal marks.

Accepted practice for entering diacritics on typewrl-
ters is that they be implemented as "dead" keys, that is,
keys which, when depressed, produce a character but do not
advance the cursor. It makes sense to keep this feature.

There are restrictions in Greek on which marks can be
used with which letters, and it is simple to incorporate
these into our system. Intentionally incorrect diacritics
can still be faked using backspace characters if they are
needed. For example, the diaeresis only occurs with iota
and upsilon. When a disallowed key follows the diaeresis,
one of four things could happen. We could have the charac-
ter placed under the mark. We could have no response no
change would occur until either an allowed letter or the
erase key was typed. Typing the key could result in the
erasure of the diacritic. Finally, the result could be the
erasure of the diacritic and the entry of the chosen charac-
ter.

The first two methods are probably the least desirable,
the first because it allows the user to enter incorrect com-
binations, and the second because it involves extra keys-
trokes and would probably cause high user frustration. The
remaining two approaches both have things to recommend them.
Erasure and character entry means that if the user enters a
faulty diacritic, no correction is necessary provided the
letter needs no other diacritic. If the character is
faulty, on the other hand, not only must it be erased, but
the diacritic must be re-entered. Just erasing the diacri-
tic would place the user in "starting p051t10n" for that
letter again. This means that recovery is equally simple if
the mistake was in the letter or in the diacritic. As well,
simple erasure acts as a more noticeable sign that an error
has occurred, so the less observant typist has a better
chance of seeing the error. For these reasons we suggest
erasure only as the preferred method of dealing with
incorrect diacritic-letter combinations.

3.5. Manipulating Text

We can divide UNIX utilities into three groups: those
which cannot deal with 8-bit data, those which can deal with
it but cannot distinguish it from 7-bit (and thus operate
less effectively than possible) and those which can deal
with both types equally well.

The first type include utilities such as cc, the C com-
piler, which do not need the capability anyway (except for

March 17, 1985

commenting, and this can be accomplished relatively easily),
but there are others, most notably vi, the screen editor.
Vi uses the top bit to store information about the text
being edited, so it is unlikely that it could ever be modi-
fied. Fortunately, we know of at least one commercially
available UNIX visual editor which seems capable of doing
the task, Human Computing Resources's HCR/EDIT.

The second group of utilities include such facilities
as diff and file, the tools used respectively to find dif-
ferences between two files and to determine what a file is
data, text, binary, etc. These run fine on 8-bit files.

The problem is that they don't correctly interpret them.
File, for example, thinks that all such files are data, and
diff successfully detects differences, but assumes that the
file is a binary, and so does not specify what the differen-
ces are. We feel that this group of utilities can be fixed
without too much problem.

The last group of utilities handles 8-bit files with no
problem, generally because they do not need to interpret
what the file's contents are. A good example here is tar,
which archives to files, tape or standard input and output
with no ill effects.

We should also consider here new utilities which Greek
characters may require to be used effectively. Translitera-
tion has already been mentioned. It is a fairly simple pro-
cess to transliterate from Greek to Latin using any of a
number of schemes, but the reverse is not necessarily the
case. Similarly, we have no problem switching text from the
polytonic to the monotonic system of diacritics, but the
reverse is a tremendous task. The ease with which we can
change case depends on whether or not we store accents with
upper case words. Since the accents are only displayed with
the first letter of a word, there is no need to specify
them. But unless we do, we have insufficient information to
produce a lower case version of the text. The opposite is,
of course, not true. Furthermore, if a program converting
lower to upper case preserves even those accents which are
unseen, the reverse conversion can take place quite easily.

3.6. Generating Text

An initial note should be made here about the current
state of Greek fonts on computers. Many facilities provide
some sort of Greek capability for mathematical purposes.
Often this takes the form of the set of letters which cannot
be duplicated from an ASCII font. In such a scheme, letters
such as upper case alpha, beta and eta must be replaced by
A, B, H and so on. Such facilities never provide accents,
but there is a more important shortcoming. This is that
these fonts are not designed for text, but for symbols. As
a result, there are many small details about the relative

March 17, 1985

39

40

weight of the characters, the way they fill the space
(especially in a fixed-space font such as is found on a CRT)
and the subjective p051tlon they have in a line of text that
add up to make Greek text in these fonts at best crude-
looking and at worst a headache to read. Although not a
technical necessity, it is nonetheless important that good
fonts be developed for the various output devices that may
be used.

We can divide the remaining tasks here into two major
areas: providing expected response to the user's input and
high-quality text details.

All of the complications in providing expected response
concern diacritical marks and involve the use of dead keys,
overstriking and character replacement.

The dead key is a simple thing to provide. Displaying
a diacritical mark and either not advancing the cursor or
immediately backspacing is a straightforward operation.
However, the next step, the p1ac1ng of the letter under the
diacritic can be accomplished in two very different manners.
The first is to allow overstriking. This has the advantage
of performing the exact actions the user enters, but can
have problems, most notably on a CRT display. When the
characters are formed by means of some sort of low-
resolution matrix, such as in a dot-matrix printer or CRT,
de51gn1ng legible letters and accents which can be comblned
is a difficult task. 1In particular, a letter which looks
good on its own may be awful with an accent, and a letter
which can accommodate an accent may look out of place on its
own. For this reason it may be advisable to use character
replacement instead of overstriking.

In this situation the user may type in a diacritic
which is again a dead key. However, when the letter to
accompany the diacritic is typed, we do not have an over-
strike. Instead, the diacritic is erased and a combination
character put in its place. The advantage is obvious, but
there are two possible drawbacks. First, the fact that the
display does something far different from the user action
could be disorienting to the user, particularly in situa-
tions where system response is slow. Second, each combina-
tion character is an additional character in our output
character set, and the total number of possible combinations
is quite large. 1In the monotonic system there are eleven
possible combinations of accent, diacritic and lower case
letter, and far more for the polytonic system 79 not coun-
ting the iota subscript and 118 with it. We are fortunate
with the Greek alphabet in that, of all the letters which
can take diacritical marks, only the rho has a descending
part or descender and the rho is never used with the iota
subscript and only the upper case alpha, eta and omega have
ascenders and for these letters we must worry only about

March 17, 1985

the iota subscript. As a result, it is quite likely that we
may not suffer the problems we have just described. If we
do, there is a possible compromise solution which may com-
bine the best of both approaches. This is to have different
versions of the letters in question which are designed to
take any diacritic. This would mean only eleven extra
characters, but the result is that the regular characters
would not have to be compromised to make room for extra
marks.

High quality text issues have been briefly covered
before. These include such things as correct location of
diacritics with upper case letters and the omicron-upsilon
diphthong. The idea here is to take various special cases
or rarely used parts of Greek text and incorporate them into
formatting facilities for a high quality output device such
as a laser printer.

4. The Real World

Several manufacturers have developed Greek solutions of
varying completeness. We will give a brief survey of them
along with a short evaluation of each.

IBM has developed a ROM for the PC which contains a
monotonic Greek character set. They leave implementation of
the actual facilities to the OEM or ambitious user. Their
specification makes teliko sigma a separate character; as
well, the accent and diaeresis must be entered separately
when they occur together. The layout of characters is
frankly odd, and we suggest that it would create problems
for applications using Greek.

Pronet Micro Systems of Toronto have developed a Greek
system for the PC. Their implementation is very thorough,
and is distinguished by their choice of two-byte characters.
As a result, their possibilities for expansion are large,
and they are in fact working on an Arabic character set at
this time.

The University of Toronto has also developed a simple
system to support the ATHENIANS project, a census of ancient
Athens. It supports classical Greek, but does not allow
mixing of Greek and ASCII characters.

Logoi Systems of New Hampshire(?) does Greek typeset-
ting on microcomputer. Their system has full polytonic
capabilities and produces quite attractive output. Of par-
ticular interest is their approach to sorting. Although
diacritics are stored where they occur in words, a filter
encodes them into a suffix for each word prior to a sort
operation. The words are then converted back afterwards.

Perhaps the most impressive system we have seen is that

March 17, 1985

4

42

by Datapac SA of Thessaloniki, Greece. Datapac has provided
a polytonic and monotonic solution integrated into System
III UNIX. The system can support both 7- and 8-bit ter-
minals and includes utilities redesigned to handle Greek.
They cannot perform any high quality text functions, and do
not provide any of the rare characters we have mentioned.
Nevertheless, the facilities provided are done so in a
clear, intuitive manner. Polytonic or monotonic can be
selected, and the keyboard behaves appropriately for each
system, including forbidding incorrect letter-diacritic com-
binations.

5. Footnote: Standardisation

One goal in the development of a character set is stan-
dardisation. This is desirable not only to establish the
design and increase its credibility, but to promote adoption
of similar schemes in the hopes of eliminating unnecessary
future complications. The task of standardisation is itself
complex, however. We now give a brief look at what stan-
dards exist and what bodies exist to manage these standards,
in the hopes of clarifying some of the procedures called
for.

There are two types of standards that concern us: those
regarding character sets in general and those concerned
specifically with Greek. Several of these we have already
mentioned. ISO 3243 sets guidelines for Latin alphabet key-
boards, but can serve as a useful guide for a Greek key-
board. 1ISO 646 and ISO 4873 are the standards for 7- and
8-bit character sets, respectively, and ISO 6429 concerns
additional graphical control sequences. An organised pro-
cedure for extending these character sets through the use of
escape sequences is presented in ISO 2022, and the procedure
for registration of these sequences is to be found in ISO
2375. 1ISO 6937 is a general standard for character sets
bringing together the ideas of most of these other stan-
dards.

Several documents exist which touch upon Greek charac-
ters specifically. We have mentioned ISO 5428, which speci-
fies a Greek character set for bibliographic use, and the
CEC Liaison Report. The European Community has published a
document outlining what is known as the "EC-REPERTOIRE."
This is a character repertoire proposed for exchanges
between the member states of the EC. It includes EC-32, a
Greek-oriented sub-repertoire which contains a full mono-
tonic Greek alphabet, including combination characters.
Finally there is a document produced by the Greek standards
association with, we believe, the intention of being
registered as a character set as per ISO 2375. It is called
simply "Proposal 88," and consists of a set of 94 graphic
characters. The authors seem to have attempted a compromise
between a full transliteration scheme and a contiguous

March 17, 1985

alphabet, with the result that neither goal has been
achieved.

In addition, any attempt to develop a standard must
deal with several organisations. The most obvious is the
International Standards Organisation. There is also a Euro-
pean standards organisation as well, known as SEN. The
European Computer Manufacturers' A55001at10n should also be
contacted. Any country will have its own national standards
organisation, such as Greece's ELOT. Finally, there may be
additional national organisations or government bodies con-
cerned with science and technology. All of these organisa-
tions will be concerned with any attempt to develop a stan-
dard.

6. Conclusions and Recommendations

There are several points made in this paper which we
feel may be usefully applied in future projects of this
nature. The first is our approach of breaking down the
requ1rements into entry, storage, manipulation and display.
This recognises that, although entry, storage and dlsplay
are linked in the user's perceptions, they are all, in fact,
separate operations. We have seen that this separateness
can be exploited to our benefit, yet we can retain the atom-
icity of the three operations which the user perceives.

Something which results directly from this approach is
the realisation that the entry, storage and display
encodings of the characters need not be the same. In an
unaccented language it is p0551b1e to define an encoding
which pays attention to storage issues and disregard
requirements of the other operations with little problem:
this is the genesis of ASCII. However, as Greek reveals
partlcularly well, the different tasks have different needs,
and there is llttle reason why we cannot develop encodings
to satisfy each of these needs.

The ordering of diacritics in storage which we have
suggested exempllfles this attitude. Keeping the marks
1ntegrated in the word makes sense from the user's point of
view, but is a decided disadvantage in storage. So why
store them in that manner? There is no reason. Our sug-
gested method recognises this.

One last facet of our approach bears restating, and
that is the discrimination between regular and high-quality
text. We recognise the limitations of conventional 24x80
displays and 51mp11fy our task considerably. At the same
time we place only minor limitations on the user, and pass
the task of generating rare characters onto the devices
which have the ability to do so.

March 17, 1985

43

44

Addressing in MMDF II

Steve Kille
<Steve@CS.UCL.AC.UK>

Department of Computer Science
University College London

ABSTRACT

The Multi-channel Memorandum Distribution
Facility (MMDF) is a powerful and flexible Message
Handling System for the UNIX* operating system.

It is a message transport system designed to
handle large numbers of messages in a robust and
efficient manner. MMDF's modular design allows
flexible choice of User Interfaces, and direct
connection to several different message transfer
protocols.

This paper is intended as a sequel to the
paper presented by Doug Kingston at the 1984
Usenix meeting in Salt Lake City [Kingston84)]. A
brief technical overview of MMDF is given, and
then two aspects are considered in more detail.
First, the table-driven approach taken by MMDF to
handling a structured address space is described,
and then the extension of this approach to use
with distributed nameservers is considered.
Several distributed message systems using similar,
but distinct, message and address formats have
emerged. The message reformatting approach taken
by MMDF to allow interworking is described.
Finally, a comparison with other systems is made.

Introduction

The Multi-channel Memorandum Distribution Facility
(MMDF) is a powerful and flexible Message Handling System
for the UNIX operating system [Crocker79,Kingston84]. It
was originally developed for use on Csnet [Comer83)], to pro-
vide message relaying services. A version of MMDF stabil-
ised in 1982 is the production system used by most Csnet

FUNIX is a Trademark of Bell Laboratories.

March 17, 1985

sites. MMDF II, which is described here, has many changes
relative to the earlier system. MMDF II is on beta test at
several sites both in Europe and the US, and is expected to
be fully available before this paper is presented. Although
it is not currently a production system, it has been used to
provide message relaying services for about two years at the
Ballistic Research Laboratories, Maryland and at University
College London, and more recently on the Csnet hub machine.
Each of these sites has a variety of particularly demanding
requirements, and are regarded as good testbeds.

The main requirements and features of MMDF II are as
follows:

(1) Robust, reliable, and efficient message relaying. Par-
ticular emphasis is placed on reducing message loss to
an absolute minimum. A two phase warning is used to
handle message transfer delays.

(2) Support for multiple Message Transfer Protocols, and
general interworking between them. Currently supported
are: Phonenet [Crocker79], the Arpanet Simple Mail
Transfer Protocol (SMTP) [Postel82], the UK JNT Mail
Protocol (Grey Book) [Kille84)], UUCP Mail [Nowitz78],
and indirectly CCITT X.400 protocols by use of the EAN
system developed at University of British Columbia
[CCITT83,Neufeld83].

(3) Support for a wide range of User Interfaces. At
present, vémail, Shoens Mail, msg/send [Vittal8l], and
MH [Borden79], can all be used with MMDF II.

(4) Authentication that is submission time verification
that a message conforms to RFC 822 (the standard on
which the generic message format for all MMDF II mes-
sages is based) [Crocker82], and that the source is
correctly specified.

(5) Authorisation that is the restriction of message flow
for policy reasons, or assigning responsibility for a
given message transfer (possibly for billing purposes)
on the basis of the networks, users, and hosts invol-
ved. This is discussed more fully in [Brink85].

(6) Submission time address checking. This allows for max-
imum address checking within the User Interface, and
for more efficient network use by protocols such as
SMTP and Phonenet.

(7) Flexible handling of local addresses, including
aliasing, delivery to pipes and files, and enhanced
support for distribution lists by use of a list chan-
nel. This is described in [Kingston84].

March 17, 1985

45

(8) User configurable delivery time options. This allows
messages to be sorted according to destination and mes-
sage header, and then processed accordingly. Proces-
sing can include: filing; redistribution; standard
delivery; delivery to a pipe; user notification; des-
truction. This is described in more detail in
[Kingston84].

(9) Straightforward runtime configuration (by use of a
tailor file).

(10) Flexible handling of remote addresses.
(11) Message reformatting to support several environments

using protocols similar to, but different from, RFC
822.

These last two points are the main subject of this
paper.

MMDF System Structure

To describe the address handling, it is first necessary
to understand the basic system structure.

March 17,. 1985

| Protocol |

| Interface| | Server |

| /

I /
: \ I /
| | Submit |
I I |
e e Pt Lt N
I . Message
| .
| . Queues
! memcmecaaea <=
| | Deliver |
| I I
| ___________
I / I \
I / I \
I / I \
| | List | | Local | | Protocol |
| | Channel | | Channel | | Channel |

MMDF Process Structure

The key to the operation of MMDF II is the process sub-
mit. Submit accepts messages in one of two modes:

(i) 'Message' mode, where a message is accepted on the
standard input and addresses extracted from specified
message header fields.

(ii) 'Protocol' mode, where addresses are first checked in
an SMTP like negotiation [Postel82], and then the mes-
sage is accepted. This mode is usually invoked by
another process }nteracting with submit by use of a
pair of pipes. .ps +2

Submit is invoked both by User Interface processes to
send local messages, and by Messagg Transfer Protocol ser-
vers (e.g. an SMTP server, rmail, “.ps +2 or a JNT Mail Pro-
tocol server). Submit verifies the addresses, and then

See pipe(2) in any UNIX reference manual.
rmail is the process invoked by UUCP to transfer mail.

March 17, 1985

47

48

checks conformance to authorisation policies. It also
authenticates the source and format of the message. The
most important part of this authentication is that locally
generated messages have a correct originator specification
(i.e. that of the invoker of submit), and that messages ori-
ginated remotely are only submitted by a process with the
appropriate privileges. Finally, the message is queued,
with the text of the message (both body and header) in one
file, and the associated addresses and control information
in another file. Each address is associated with a channel,
and each channel has an associated queue, managed indepen-
dently as a directory containing files which are links to
the appropriate address file. The address to channel bin-
ding is discussed later.

Each channel has a process for delivering messages
associated with it. More than one channel may use the same
channel process (and thus protocol), as channels may have:
different (sets of) hosts associated with them; different
routes to the same hgsts; or a different quality of service
to the same hosts. .ps +2 There are two special channels:

(1) Local channel. This delivers messages to local mail-
boxes, including any user specified processing.

(2) List channel. This allows a list to be expanded in two
phases, by passing the message back to submit with a
modified return address. This approach gives several
advantages, particularly when handling large lists.

Both of these channels are discussed in more detail in
[Kingston84]. Deliver is a process which reads the queue
associated with one or more channels, and invokes a channel
process with which it interacts through a pair of pipes.
Deliver will read addresses from the queue, and pass them in
turn to the channel process. When an address is fully pro-
cessed (which may not be immediately if multiple addresses
are being sent to a given host before any text is transfer-
red) this information is passed back to deliver. Deliver
then sends any necessary error messages, and the queue is
adjusted accordingly. Caching and time control parameters
allow for a variety of backoff strategies to handle hosts
which do not respond. Deliver may also be invoked in pickup
mode to allow messages to be pulled as well as pushed, which
is particularly important for dialup links. This is dis-
cussed in [Crocker79].

This flexible mapping becomes particularly important
when applying authorisation on the basis of multiple
criteria. A fuller discussion is given in [Brink85].

March 17, 1985

Address handling

The mechanism for verifying addresses is now con-
sidered. First, some terminology is defined:

AddressAddress is used to mean the text that the user sup-
plies to a typical message sending interface in order
to direct a message to a desired destination. This
loose usage has been selected, because it is familiar
to most message system users.

Domain
The DARPA domain scheme [Mockapetris84], and the UK
Name Registration Scheme (NRS) [Larmouth83], allow an

untyped global namespace to be allocated in an hierar-

chical fashion. Examples of domains are: UK,
Salford.AC.UK, CompSci.Salford.AC.UK, USC-ISID.ARPA

ARPA, UUCP. If a domain is sufficiently specified ".ps
+2 it is possible to identify a direct connection to a

Host, which may be associated with the domain or be a
relay to the domain.

MailboxA mailbox (User Agent) is the source or destination
of a message, often associated with a human user. A

mailbox can be globally specified in RFC 822 as local-

part@domain.

Host A host is a computer connected to directly by the local
computer. A domain associated with a host not directly

connected to by the local computer should be regarded
only as a domain: the domain to host binding is imma-
terial if there is no direct connection.

Route
Routes are considered to be implicitly at the message

level. A Route is an explicit sequence of domains over

which a message should traverse. Two types of route
are considered:

(1) A Formal Route consists of a sequence of globally
valid domains, recognised as a source route by the
originating system. In RFC 822, this is specified
by a syntax of the style <@domainl:local-
part@domain2>. A Formal Route is used to reach

domains which cannot be accessed directly, or where

indirect access is preferred.

To identify a specific service in the context of domain
UK is unlikely to make sense, whereas it might for
Salford.AC.UK.

March 17, 1985

49

50

(ii) An Informal Route is one that is not recognised as a
route by the sending system, but is interpreted as
such by a receiving system. 1In the RFC 822 world, a
common Informal Route syntax, making use of a
special form of local-part is: user%domain2@domainl.
Interestingly, this syntax is a Formal Route in the
JNT Mail world. An Informal Route is used when dif-
ferent domains have a different interpretation of
the global namespace (e.g. user%¥domain2@domainl is
used where the message originator's local system
does not interpet domain2 as intended, but domainl
does) .

A number of domain specifications have been adopted
informally by different groups (e.g. .ARPA .AC.UK .MAILNET
.UUCP .CSNET .CDN .EDU), and it seems likely that many
networks will be able to agree on a global namespace. All
Message Routing in MMDF II is currently controlled by
tables. This is likely to continue for hosts where all
external communication is by use of dialup links, and the
NRS (at least) will distribute information as tables. The
approach taken by MMDF II to table based domain handling is
now described.

The MMDF II process submit performs the address check-
ing function. There are two orthogonal operations. The
first is to parse the address, to extract a Formal Route.
The second phase is to interpret the 'end' domain of the
route. If the domain being verified is identified as the
local domain, the next domain component is considered. If
the local-part is reached, it is then interpreted as an
Informal Route. MMDF II supports a number of Informal Route
specifications, including the UUCP "!" syntax. If the
local-part under consideration is not an Informal Route, it
is looked up as an alias. If it is identified as an alias,
the alias value is then parsed as a sequence of addresses,
and the whole procedure recurses. Finally, if it is not an
alias, it will be checked as a local account and, if valid,
queued for delivery by the local channel.

Each channel is associated with a set of_hosts, which
are directly connected to the local systenm. .ps +2 A host
may be associated wigh more than one channel. Each channel
has a channel table “.ps +2 which maps its associated hosts
onto the necessary connection information (e.g. transport

The directness 1is conceptual rather than physical.
This is illustrated later.

Tables are considered here as if they were physical
files. In practice, they are implemented by hashed
database lookup. Many of the operations described are
optimised further by taking advantage of the structure
of this database.

March 17, 1985

addresses). The host namespace is arbitrary, but given that
all hostnames must be unique (to allow for host to channel
binding), the convention that the hostname is that of the
associated domain is convenient. A reason for sometimes
violating this convention is discussed later.

Domains are handled in a two level manner. The top
part of the domain is specified in the tailor file, and
indicates an associated table. This top part is referred to
as the domain table specification The rest of the domain is
specified as the LHS of the table, with the RHS of the table
specifying the host associated with the domain. The split
can occur in more than one way. For example,
CS.SALFORD.AC.UK could be split as:

domain table specification table entry
SALFORD.AC.UK CSs

AC.UK SALFORD.CS
UK CS.SALFORD.AC

nn CS.SALFORD.AC.UK

The last case has a null domain table specification, known
informally as the 'top' table.

The method of domain interpretation is now considered.
When a potential domain is examined by submi;, it is first
assumed to be a full domain specification. .ps +2 Com-
ponents are repeatedly stripped from the LHS and matched
against the list of domain table specifications. Thus, if
TREES.BIO.STANFORD.EDU is considered, domain table specifi-
cations are searched for in the order: BIO.STANFORD.EDU,
STANFORD.EDU, EDU, "". For each match, the remainder is
looked up in the associated domain table. If a domain is
identified, it is then mapped into its official value by
looking for the first component in the table with the same
RHS. This allows for domain aliases. The RHS (host name)
is then looked up in the channel tables, and the address is
bound to the first channel satisfying management
requirements. Some extensions to this basic procedure are
now described.

Source RoutesAn alternative specification for the RHS of a
domain table is as a series of components; the first
being the host directly connected to, and the rest
being a sequence of domains traversed in order. These
domains will be added to the source route passed to the
channel (message transport protocol). This source

The procedure is substantially optimised for domains in
this form, as this is the most common case.

March 17, 1985

51

route information can be added in an ad hoc manner, or
can be systematically obtained (e.g. from the NRS).

SubdomainsIf CS.SALFORD.AC.UK is specified, and has no
corresponding domain table entries, but there is one
for SALFORD.AC.UK, CS.SALFORD.AC.UK is accessed as a
source route through SALFORD.AC.UK. This approach
means that not all leaves of the tree need be stored.
In particular, the 'top' table (i.e. the one with null
domain table specification) may have entries such as:

CSNET:CSNET-RELAY.ARPA
CA.UUCP:UCB~VAX.ARPA

This would route all subdomains of CSNET (e.q.
UPENN.CSNET) through CSNET-RELAY.ARPA, and all sub-
domains of CA.UUCP through UCB-VAX.ARPA. This is
useful in (the currently common) cases where the logi-
cal domain structure has a physical mapping.

Partially specified domainsWhen all these checks have been
made on the assumption of fully specified domains,
these checks are repeated in each domain table on the
assumption that the domain table specification was
omitted. For example, if there is a table ARPA, and
BRL is being tested, BRL will be looked up in table
ARPA (and matched) on the assumption that BRL.ARPA was
intended.

NRS domain orderingIt has been assumed until now that the UK
NRS (Name Registration Scheme) and DARPA Domain scheme
specify domains in the same manner. An unfortunate
difference is, that although the semantics are similar
and syntax the same, the ordering of the hierarchy is
reversed. Thus, SALFORD.AC.UK in the DARPA form is
UK.AC.SALFORD in NRS form. This difference has caused
much confusion to (UK) users communicating with systems
using both of these schemes, and so it is not very
satisfactory to assume consistent specification (within
the UK). Therefore, MMDF II may be configured to check
for domains in either order. It does this in an inter-
leaved fashion (i.e. for each check done performing it
first in one order, and then the other). This minim-
ises the weight given to the order a domain happens to
be specified in, and maximises weight on the degree of
specification (e.g. preferring to interpret
"UK..AC.AVON.MULTICS" as MULTICS.AVON.AC.UK rather
than UK.AC.AVON.MIT-MULTICS.ARPA). In practice, the
few problems which have occurred, have been caused by
palindromic partial domain specifications. Except
where explicitly noted otherwise, this paper assumes
DARPA ordering, as NRS ordering is mostly confined to

March 17, 1985

the UK Academic Community.

Routing by the channelThere are currently two cases of
routing by channel. In the first case, which can be
used for any channel, the channel connects only to one
host acting as relay for all the hosts in the channel
table. The second is the UUCP channel. Here, hosts
are considered to be any UUCP host reachable through
UUCP, and the RHS of the channel table is the UUCP
route (expressed in the form host!host!host!%s). Use
of this style of channel routing should be minimised,
as it is preferable both to route incrementally and to
bind addresses to channels as late as possible.

Support for multiple machinesIt is common for UNIX sites to
have many machines, and to have an allocation of users
between machines with no clear meaning external to the
site. If the machine name must be specified to send
mail to a user, this leads to names which are hard to
memorise/guess, and makes the movement of mailboxes
between machines visible external to the site. MMDF II
allows for multiple machines to share a common
namespace, common binaries and common tables, and for
each user to have a default machine for mail delivery.
Further, many machines can appear externally to be the
same domain. This is achieved by treating each machine
as a (different) subdomain of the visible domain (e.q.
a message apparently from Steve@CS.UCL.AC.UK might be
originated on machine VAX2.CS.UCL.AC.UK). This
approach is clearly more user-friendly. In some cir-
cunstances it will be more efficient, and in others,
less.

It is interesting to note how the MMDF II addressing
approach fits into the transition of various networks to a
domain based addressing scheme. There is currently a draft
proposal for the UUCP transition [Horton85]. The author's
interpretation of this suggests, assuming that this proposal
is followed, that MMDF II will provides all of the needed
functionality for users to get the full advantage of a
domain based scheme. In the UK, the information supplied by
the NRS can be used in a straightforward fashion.

Perhaps the most interesting case is the DARPA Domain
Nameserver scheme [Mockapetris84]. In general, domain
information will not be available in table form, but is
obtained dynamically by querying a sequence of nameservers.
MMDF II will be extended to support this within the times-
cale of the DARPA transition. A brief description of a pos-
sible approach is described, the aim being to illustrate
that the DARPA scheme can be integrated, rather than to
describe how it will be integrated. 1In general, a final
solution will have a mixture of table and nameserver deter-
mined bindings. It seems likely that the domain namespaces

March 17, 1985

53

54

controlled by tables and nameservers will overlap substan-
tially in many cases. A channel will be either table driven
(as at present), or nameserver driven. A nameserver channel
will be given a domain, which will be mapped into a connec-
tion (and possibly a route) when the domain in question is
processed. At message submission time, the domain namespace
would first be checked for fully specified domains contajned
in domain tables, which would be dealt with as before. .ps
+2 A table (most likely the 'top' table) could specify a
domain as being associated with one or more (nameserver)
channels (e.g. ARPA maps to the SMTP channel). This domain
would then be bound to one of those channels on the basis of
management considerations. This gives submission time
checking of only the higher level domains, with the full
nameserver checking occurring in background when the channel
is invoked. Alternatively, the domain could simply indicate
use of a nameserver. In this case, Bhe domain being checked
would be passed to the nameserver. .ps +2 If matched, any
specification of a 'Mail Forwarder' could be used to specify
a source route. The 'class' of address returned would be
looked up (in a table) to determine a set of channels. This
fuller submission time checking is desirable, but would only
be acceptable if the mean nameserver response time was not
too large. Then, table checks for partial domains would be
made. Assuming that completion services are provided by a
local nameserver, the potential partial domain could be
checked by the nameserver, if desired. This scheme would
extend naturally if there was a need to use either different
types of nameserver, or disjoint systems of the same type of
nameserver. This is however, only one of several potential
approaches.

Message Reformatting

The need to reformat messages is an unfortunate real-
ity. It is caused by the requirement of interworking
between functionally similar, but differently encoded, end
to end message protocols. MMDF II provides two basic types
of message reformatting: the first, applicable to all mes-
sage transfer protocols; and the second protocol specific.
MMDF II messages are expected (by submit) to be in a generic
format, and are queued directly. This format is flexible,
so that User Interface Processes do not need to have overly
stringent requirements in order to generate legal format

Note that a domain determined from a table could be
bound to a nameserver channel. In general, this would
be undesirable.

Detailed interaction with a DARPA nameserver will be
provided by a resolver interface, which is likely to be
implemented as a library of functions on UNIX. This is
certainly the case for two implementations currently in
progress [Karp84,Terry84].

March 17, 1985

messages. In particular, the following aspects are flexi-
ble:

- Formal Routes may be specified either in RFC 822 format

or as 'local-part@domain@domain'.

- Domains do not have to be normalised, that is to say
they may be partially specified or fully specified
aliases (e.g. ISID, USC-ISID, ISID.ARPA, USC-ISID.ARPA
are all acceptable).

- Local domain specifications may be omitted.

In a system configured for the UK Academic Community,
the following are also flexible:

- Formal routes may also be specified in 'local-
part%¥domain@domain' form, as used by the INT Mail Pro-
tocol.

- Domains may be specified in either NRS or DARPA order.

The general reformatting provided by MMDF II may be
selected optionally on a per channel basis. This reformat-
ting should be regarded conceptually, as being provided by
deliver. It is really performed within the standard
routines for interaction with deliver, called by each chan-
nel. If reformatting is selected, before each message is
processed, a reformatted header will be generated into a
temporary file. This is then used (transparently) by the
channel instead of the real message header. The reformat-
ting functions provided are now described. It is interes-
ting that they all relate to address format, which in prac-
tice is the only interesting message transfer protocol

independent form of reformatting. If reformatting is selec-

ted for a given channel, an alternative for each of the
functions must be specified.

(1) Domain normalisation (the conversion of all domain

specifications to fully qualified preferred forms) is a
basic function of message reformatting. An alternative

form of normalisation makes use of the host namespace

maintained by MMDF II and, in cases where a domain has
an associated host, normalises to the hot name. This

is useful when connected to two worlds with differing

views of the global namespace, or in transition situa-
tions. A common host specification is the leftmost

component of the domain (e.g. UPENN is the host associ-

ated with UPENN.CSNET).

(2) Formal Route specifications may be reformatted to

either RFC 822 form (@domainl:local-part@domain2) or to

percent form (user%domain2@domainl). This-is useful
for mapping between JNT Mail formal source routes and

March 17, 1985

55

56

(3)

(4)

(5)

RFC 822 formal source routes. It is also useful where
domains are used internally, and are not known glo-
bally. This mechanism allows formal routes to be map-
ped into informal routes, thus making the domain inter-
pretation private.

Domain/Host specifications may be output in either
DARPA or NRS ordering. This is protocol independent,
as the NRS ordering is associated with the UK Academic
Community and not with any specific message transfer
protocol.

The local domain may be mapped into another specified
form. This is used when one system has a different
name in different environments.

A treatment known as 'exorcising' against a table of
domains. It is assumed that only the domains specified
are known by domains accessed through the channel, and
addresses relative to all other domains will be mapped
to an informal source route behind the local system.

Message reformatting is also applied on a protocol

specific basis. This occurs in two places.

Channel ReformattingChannels may perform reformatting in

addition to that provided as standard. The JNT Mail
channel performs some simple reformatting, to ensure
that the return path, calculated according to the pro-
tocol, is correct. MMDF II currently supports two UUCP
channels. The first assumes that the remote site is
'‘modern' and does no reformatting on the basis that the
remote site expects a standard RFC 822 message. The
second UUCP channel assumes that the remote site is
'0ld fashioned', and maps all addresses into UUCP route
syntax (e.g. user@CS.UCL.AC.UK is changed to ucl-
cs!user). Both channels may be used simultaneously by
one system.

Server ReformattingWhere an incoming message does not con-

form to the generic MMDF II format, the protocol server
must perform reformatting. In practice, this is only
done for UUCP and EAN X.400. The protocol server for
UUCP (the rmail process), will map incoming addresses,
which (by their syntax) appear to be from 'old
fashioned' systems into RFC 822 format addresses.

Where possible, UUCP routes are shortened. This refor-
matting will not change the message format if the
remote UUCP site is 'modern'.

Comparison with other Systems

The only system considered in comparison is Sendmail

[Allman83]. A comparison with various non-UNIX systems

March 17, 1985

would be interesting, but not appropriate here. No other
UNIX systems with comparable functionality are known to the
author. Only addressing and message reformatting aspects
are considered here.

Sendmail's address parsing and message reformatting is
controlled by a configuration file. Sendmail mailers are
analogous to MMDF II channels, but are less tightly coupled.
Sendmail's address parsing and domain interpretation are
controlled by the configuration file, and are not specifi-
cally decoupled. Whilst allowing for an amazingly general
syntax, it can leadlﬁo cases where domain interpretation is
syntax dependent. .ps +2 The decoupling of address par-
sing and domain interpretation, as provided by MMDF II, is
seen as both correct and desirable.

Current domain handling by Sendmail uses explicit
recognition of domains listed in the configuration file to
bind to a given mailer. After this partial address check-
ing, the message is then queued for a specific mailer, where
further checking is done. If configuration files are kept
to a reasonable size, this approach must rely on the fact
that the higher level domains can be used to determine the
message transfer protocol in most cases. The MMDF II
approach of maximising address checking at submission time
is seen as desirable in view of the trend towards logical
domain specifications which do not imply specific message
transfer protocols. A domain handling package is expected
to be added to Sendmail in the near future, and this may
well allow for a more flexible approach.

Sendmail reformatting, is highly general and flexible,
and has been used to deal with a variety of unusual formats.
Some difficulty has been encountered when trying to handle
NRS domain ordering, but this is probably not insuperable.
MMDF II's more basic facilities cover a wide range of com-
monly used formats and, where appropriate, are more
straightforward to configure. It seems likely that more
systems will be moving to standard formats. The simpler
approach also tends towards greater robustness, and protects
against protocol violations.

Afterword

MMDF II is expected to be available as a production
system by the time this paper is presented. It is available
in the US through University of Delaware, and in the UK
through University College London. There is a (currently

Careful design of Sendmail configuration files should
minimise this dependency, although generation of
configuration files to handle complex cases is not
straightforward.

March 17, 1985

57

58

nominal) licence fee for commercial sites, and a tape
handling charge.

References

Allman83. E. Allman, "SENDMAIL - An Internetwork Mail
Router," Paper (1983).

Borden79. B.S. Borden and others, "The MH Message Handling
System," Project Airforce document, obtainable from
RAND, Santa Monica, Ca 90406, (November 1979).

Brink85. D. Brink and S.E. Kille, "Authorisation and Accoun-
ting in Store and Forward Messaging systems," Submitted
to Networks 85, Wembley, (June 1985).

CCITT83. , "Recommendations X.400," Message Handling Sys-
tems: System Model - Service Elements (November 1983).

Comer83. D.A. Comer, "A Computer Science Research Network:
CSNET," Communications of the ACM Vol. 26(10) pp. 747-
753 (October 1983).

Crocker79. D. Crocker, E. Szwkowski, and D. Farber, "An
Internetwork Memo Distribution Capability - MMDF,"
Proc. 6th. Data Comm Symp, IEEE/ACM, (November 1979).

Crocker82. D.H. Crocker, "Standard of the Format of ARPA
Internet Text Messages," RFC 822 (August 1982).

Horton85. M.R. Horton, "UUCP Mail Transmission Format Stan-
dard," Draft received as message (January 1985).

Karp84. P.D. Karp, "DRUID: A Distributed Name Server," Stan-
ford Internal Report (June 1984).

Kille84. S.E. Kille, (editor), JNT Mail Protocol (revision
1.0), Joint Network Team, Rutherford Appleton Labora-
tory (March 1984).

Kingston84. D.P. Kingston, "MMDFII: A Technical Review,"
Usenix Conference, (August 1984).

Larmouth83. J. Larmouth, "JNT Name Registration Technical
Guide," Salford University Computer Centre, (April
1983).

Mockapetris84. P.V. Mockapetris, "A Domain Nameserver
Scheme," IFIP WG 6.5 Conference, Nottingham, (May
1984).

March 17, 1985

Neufeld83. G.W. Neufeld, "EAN: A distributed message sys-
tem," Proceedings CIPS National Meeting, Ottowa, pp.
144-149 (May 1983).

Nowitz78. D.A. Nowitz and M.E. Lesk, "A Dial-up Network of
UNIX systems," UNIX Programmer's Manual, 7th edition,
Bell Labs. (August 1978).

Postel82. J.B. Postel, "SIMPLE MAIL TRANSFER PROTOCOL," RFC
821 (August 1982).

Terry84. D.B. Terry and others, "The Berkeley Internet Name
Domain Server," Usenix, Salt Lake City, (August 1984).

vittal8l. J. Vittal, "MSG: A simple message system," Proc.
Int. Symp. Computer Message Systems, Ottowa, North Hol-
land, (April 1981).

RFC indicates a DARPA Request For Comments, which may be
obtained from: USC Information Sciences Institute, Marina
del Rey, Ca. USA.

Acknowledgements

Many people have worked on MMDF II, including Phil
Cockroft, Bernie Cossell, Dave Farber, Dan Long, Lee
McLoughlin, Mike Muus, Julian Onions, Brendan Reilly, Denis
Rockwell, and Marshall Rose. Particular credit to Dave
Crocker who designed the bulk of MMDF II, and to Doug
Kingston who bore the brunt of making it work as a produc-
tion system.

March 17, -1985

59

60

ACSNET - The Australian Alternative to UUCP

Piers Dick-Lauder

Basser Dept of Computer Science
University of Sydney

R.J. Kummerfeld

Basser Dept of Computer Science
University of Sydney

Robert Elz

Dept of Computer Science
University of Melbourne

ABSTRACT

ACSNET is a network with goals to serve a
function similar to that currently served by the
UUCP network. Routing is implicit, and addressing
absolute, with domains. The network daemons
attempt to make use of full available bandwidth on
whatever communication medium is used for the
connection. Messageé consist merely of binary
information to be transmitted to a handler at the
remote site. That handler then treats the message
as mail, news, files, or anything else.
Intermediate nodes need not consider the type of

the message, nor its contents.

1. Introduction

ACSNET is a loosely coupled network of heterogeneous
machines, and has a purpose and function similar to that
provided by the UUCP network in wide use in most of the
UNIX* world.

Before continuing we must make two points. First the
matter of naming. Perhaps ACSNET's biggest problem is the
lack of a suitable name. The developers (PD-L and RJK) call
the software 'The Sydney Unix Network' or SUN for short,
while the network built using SUN is called ACSNET. Unfor-
tunately, 'SUN' may be confused with a Unix based worksta-
tion of the same name and 'ACSNET' suggests some rela-
tionship, or at least similarity with the U.S. CSNET
network. No other label has gained sufficient approval to
catch hold, so ACSNET serves for the time being.

Second, a note on our use of UUCP for comparisons with
ACSNET in this paper. The authors have no intention to
discredit UUCP, or to belittle its achievement in linking
the world's UNIX systems in a manner never before attempted.
However, its presence as a current de-facto standard for
UNIX to UNIX communications places it in a position where we
cannot avoid making comparisons in order to illustrate cer-
tain points with far greater economy of words than would
otherwise be possible.

2. Overview

ACSNET provides a message passing service, from une host to
another, possibly utilising intermediate hosts in a store

and forward manner. Messages may be mail, files, printjobs,
news, or almost anything that can be transferred in a string

of bytes.

*UNIX is a Trademark of Bell Laboratories.

61

62

Routing in ACSNET is implicit, users need only be con-
cerned about the name of the host at which the message is to
be delivered. They need not be concerned about which hosts
the message might visit on its journey to its final destina-
tion. If, for some reason, a message is undeliverable, the
network will make every attempt to return the message to its
original sender.

Messages can be transported over any medium capable of
supporting a connection between two hosts. This may be
phone lines, ethernet, X.25, twisted pairs, etc. Prefera-
bly, the 1link should provide a transparent 8 bit data 1link,
but links with only 7 useful data bits can be accommodated
(at a slight loss in throughput). The network daemons make
good use of full duplex communication channels, transferring
messages in both directions simultaneously, providing, in
ideal conditions, effective throughputs up to twice that
attainable with UUCP.

3. Messages and Handlers

A message is a string of bytes addressed to a handler at one
or more hosts. A handler is a process that will receive the
messages at the final destination. Typically the handler
will impose some further protocol, often recognising a user
name (in some form of representation) that the message is
directed to. A message, of itself, is addressed merely to a

host and a handler.

The notion of messages addressed to handlers is one of
the primary differences between ACSNET and UUCP. UUCP func-
tions as a remote command execution system built upon a file
transfer protocol. Mail, news, etc. are transmitted by sen-
ding the content of the item to the remote system as a file,
then sending a request to execute the remote mail, or news,
receiver with the file as standard input. ACSNET simply

transfers a message addressed to the mail handler on the

remote system.

ACSNET uses trailer protocols, where the header follows
the message. This allows file copying to be avoided on
intermediate hosts when routing statistics are updated.
ACSNET only ever performs disk to disk copying of a message
when it is being copied to its final destination, and
optionally, when queueing the message in the first instance.

Currently handlers exist for mail, news, file transfer,
and remote printing. A remote command execution handler
could be added if the security issues could be adequately
solved. Any other handler could be created just as easily,
for any purpose that the sending and receiving hosts agree

upon.

Unlike UUCP, it is not necessary for intermediate hosts to
know of the new handler for correct functioning.

4. Addressing

All messages carry a destination host address. This is the
ASCII name of the destination host. Messages also contain a
source host address, and may contain a user address. This

last item may be anything that the handler requires for its

functioning.

Messages may be addressed to more than one host. A
copy of the message will be sent to each host addressed, and
that will be done with the minimum possible message traffic
(or something approaching it). A message may also be broad-
cast to all hosts. This is most often used for network
management messages, such as new hosts connecting, and simi-

lar events.

Users also have the option to guide their message
through a specific set of hosts. Primarily this is used for

64

network testing, loopback messages would otherwise be impos-
sible to create.

Such a route is expressed in a notation borrowed from

UUCP as
host-1!host-2!host-3 ...

However, note that there is a fundamental difference between
this form of addressing and UUCP addressing. Each host-N is
the absolute address of some site. The ! does not imply a
link between two adjacent hosts. 1In the above example, the
message will visit, in order, host-1, host-2, and host-3.
But the route taken to travel from host-2 to host-3 is not
specified, and in fact, given a suitable topology, the mes-
sage might travel that route via host-1!

Strictly, in all the above, the term 'host name' should
be replaced by 'domain specification', but that is harder to
type, read, say, and think about. Any of the places where a
host name was specified, ACSNET would really expect a domain
specification. Domains might simply be host names, or they
might specify local sub-domains, or perhaps a domain that is
not within the ACSNET network, in which case the message
will be sent to an appropriate gateway.

Note, nowhere here has it been specified what syntax
should be used by users in communicating with user agent
programs. It is to be expected that

user@domain
will be the most common format, though the older Aus%ralian
net syntax of
user:host
will be supported into the distant future. Almost none of
the ACSNET code either knows or cares what syntax users will
use to send messages.

5. Routing

Each host maintains two tablest+ to contain network informa-
tion. The first of these is the network state file, and
contains for each known host, a list of the domains to which
it belongs, a list of the hosts to which it is directly
linked, and the cost and current status of each of those
links. One of the domains is special, and is considered to
be the primary domain of the host.

The table can also contain various other information,
such as a human understandable description of each host, and
statistics on messages and bytes sent, received, and passed
through. This information is optional, and probably would
be deleted on a small host.

The state table is considered public information, and
is sent to any host that requests it. It is broadcast to
all hosts whenever a new link is added.

The second table is the routing table. This table
indicates which link should be used to transmit a message
bound for any host or domain on the net. It is built from
the state table, usually whenever that is altered. As each
message arrives on a link it is passed to a routing process.
That process passes it to its appropriate handler if this is
(one of) its final destination(s), and queues it to be
transmitted on the next link if the message has further to
go. The routing table is used to make this decision.

Information on which links to transmit a broadcast
packet that originated at any particular host is also
retained here. This is arranged so that broadcast packets
travel over a minimum traversal of the graph, and implements
Dalal and MetCalfe's extended reverse path forwarding algor-
ithm.

+ For 'table' read 'file'.
Y. K. Dalal and R. M. MetCalfe, CACM, Dec. 1978.

65

66

This table also contains miscellaneous information,
such as local aliases for hosts on the network. It is
private information, and is not exported to other hosts.

Routing messages are broadcast to all hosts in the
sender's primary domain whenever a link changes status (goes
up or down). These are brief messages, indicating the
nature of the change, and carry a timeout age, after which
they are deleted wherever found. This works well, as typi-
cally, distant parts of the net are not interested in local
changes, which often might have become outdated before the
message reached the host. Rerouting to avoid links that are
down can usually be handled by nodes relatively close to the
broken link.

6. Gateways

The routing table for any local link can indicate that a
non-standard spooling program should be used to send a mes-
sage over a designated link, or to deliver a message to a
particular domain. This can be used to build interfaces to
newer, or older, versions of the network software, or to
implement a gateway to a foreign network. The spooling pro-
gram is responsible for performing any transformations
required of the message to meet the standards required by
messages entering the new network.

This performs admirably when interfacing to a network
with similar capabilities, but is less of a success connec-
ting to UUCP for anything but mail, as there is no standard
way of performing possibly multi-hop file or news transfers.

7. Calls and Daemons

ACSNET uses node to node daemons to transfer messages from
one host to another. Unlike the UUCP uucico process, ACSNET
daemons have no knowledge of how, or when, to connect to a
remote host, except in the trivial case where that is

accomplished by opening a tty compatible special file. To
handle other cases, the routing table may contain the name
of a process to run to establish a connection to another
host. That process is expected to make the connection, then
exec the daemon with standard output open (read-write) to
the remote host. This permits easy expansion to a wide
variety of possible connection types.

A pair of daemons transfer data between themselves over
three channels in each direction simultaneously. This
allows up to 6 messages to be in flight between any pair of
nodes at any one instant. Messages are assigned to one of
the three channels based upon their size. This allows small
messages to overtake larger ones on another channel, and
prevents those extraordinary delays that can occur when a
particularly huge message is being transferred.

The daemons also keep track of the current position in
each message in transit. This allows messages to be restar-
ted without transmitting data that had been received
correctly at its destination, should a link die prematurely,

or a system crash.

Messages on each channel are sent via a windowed packet
scheme, similar to that used by HDLC (and UUCP, and X.25),
and are checksummed using the standard CCITT CRC-16 algor-
ithm. This checksumming can be disabled for a link if it is
known to be reliable, typically if ACSNET is used over
another protocol. Messages can also contain end to end
checksums, to guard against corruption while waiting at an
intermediate node.

8. Status

ACSNET is currently being used on VAX 11/780 and 11/750 pro-
cessors, PDP-11/34's, Sun Workstations, Perkin-Elmer, Plexus
(P60), ELXSI 6400, Gould, IBM PC, and other less widely

known machines. These processors are variously operating

67

under V7, 4.*BSD, Systems III and V, and Venix/86. A VMS
version has been suggested, but at this stage, not attemp-
ted.

There are about 200 hosts on the Australian network,
and though a few of these currently use the previous
software, the remainder will probably convert in the near
future.

9. Todo

There will be a message disassembly, reassembly facility, to
permit huge messages to be transmitted without overloading
intermediate nodes.

A UUCP gateway is needed. This is hard because of problems
with multi-hop file transfers.

Some tuning remains to be done. One possible improvement on
System III and V systems, and 4.2BSD, would be to use the
available interprocess communication mechanisms (named
pipes, sockets) to allow the routing process and handlers to
become daemons, and be created just once, rather than once
per message.

0. Availability

The source code is available under license. Anyone
interested should apply to Bob Kummerfeld at the address
above.

1. Conclusions

ACSNET is a suitable network system for connecting compara-
tively large networks, of a size comparable to the UUCP
network, that may operate in a relatively unmanaged environ-
ment. Its implicit routing makes it considerably easier to
use than standard UUCP, and more accurate and adaptable than

69

*donn 103 juswaoerdsa
Texsuab e se aTqelxTns 9q pInNoM LIANSOV 3Ieyl T[99 oM

*a1q
-eTTRAR HUTWOOSQ MOU SwWY3lTIOoHTe HUTINOI dOoAN OTISTANSY 8yl

G86T ‘LT YoI®eH

e 03 3T PUSS PUR WOJISNO YSTPOIMS 03 Dburipaoooe 3STT but
-ITew STY 3IO0S 03 d¥Tqe 9 PINOYsS IsYdIeasax ® eyl os ‘IIIM
Je 8Tqeyol3TMsS aq pTnoys A3T3uspl OTISTNHUTT STUL ‘YsSTTbud
UT I8@sn TeutrbTIo ay3z 03 S[geITeA® SISTITITORI JO T9a9T
1IN 9yl wry burtasyjyo SITYM ‘xssn ayl Jo eyl ueyl Isylo
A3T3uspT TeuoTrizeu ou sjxed s3T TIe UT s3sabbns yotym wel
-sks © sbenbuel Aue jo zaxeads Aue 103 apraoxd 03 ag pTnoys
Teob ajewr3In 9yl ‘ybnous jou ST Ing ‘HUTISFIO SPTMPTIOM
Aue 03 TeTonado sT Hburssaooad paom TenburTTITNH *ar1doad
JOo A3aTaeA opTM B JOo sjuswaarnbax or3sTnburl °ay3z o3 pazdepe
ws3sAs aThurs e ajzesxd 03 ST ‘usylz ‘sbHusTTeyYD BYL ‘a8OURUD]
-uTew pue 3JUsWAOTPA3P B8IBMIJOS JO SWISJ UT 3sod arqezdaodoeun
ue jussaxdax X 10 X sbenbuel 103 suoriejzdepe pazryreroads
‘sebenbuel Jo A3@TIeA ® SSoxDR JUBUUOCATAUS JusawdoTaAdP
UoTx STUl 3o aToym ay3l 3xoddns 03 SpPUsS3UT YO ITyMm UuoTl
-ezZTURbIO U I0J 3Ing ‘sposu [eOOT I0J Wyl AJTpouw pue walsks
B Jo si3xed juejgodwT 3sow syjl JO swos axye3l o3 uoTrjzejdusy
Jeaxb e ST 3T ‘3oyIew Teuxajul abie] e pue speau bursssooad
paziTeToads AI9A Y3TM AI3Uunod aTHUTIS © SPUTF 2UO UBYUM

K3tTexousb °sA uorjezireroads

*@benbuel umo STY UT I3sn ayl o3 XTe3

03 poau 8yl 3xoddns o3 psjzdepe JUSWUOITAUS XINA © SOQTIOSIP

[z] xeded s,123uTl pue ‘[glsxsjoexeyos sssueder jo Hursseooad

I03 pojdepe XINN JO SUOTSISA DUuTILIJO aIe saopuaa ossuedep

Apeaaly -pesu sassn 3jeyl bursseooad jo 310 8yl SpPTA

-oxd o3 3no paddrx oq 03 2ARY [ITM 9IBMIJOS [SA3T-AOSN U3l

JO yonw os Oo3UT 3ITTNQ dbesn ueoTasuy-03diao ayz ATTenijusaAzm

*ISSOTO pue ISSOTO S3wod Hutuoyoax Jo Aep ayjz ‘sSuoT3in3zT3sur

OTwspedoe pue YoIessal JO JUSWUOCITAUS JueIa[ol-ysiTbum ay3
JO 3no saaouw axaymasTs pue adoand ur ssn (w3)XINN SY

©TqeR3ITASUT ST UOTINTOAD DWOS

*sbuoTaq 3T
9I9UyMm wa3sids aTTF 8Y3 O3UT pUB SpPOD 8DINOS 3aY3z JO 3INO UoTIeu
-I03uT juspuadep-wo3lsnd I0 -sbenbuel HButaow Aq XINN TeuoTieu

-I93UT ue ubTssp 03 pasn aq ued s3daouUOd 9SIY3 MOY MOUS pue
- uoTjezTTeooT pue ‘(STIN) 3xoddns abenbuel sAT3eU -~ SWISZ
OM]} SUTJSP 8M °JUSBWUOITAUS YoIeasax burieads-ysiTbhuz @2y3 Jo
9pPTS3INO 8sn I0J |TqelTnsun ST XINN BTTTURA YOTYMm utl siem ayj
JO SwWOosS aUTT3INO 03 BsSN 8aM YOTYM ‘sxem3ijos juapuadspul-wolsnod
pue -abenbuel 03 T1opouw e sjusssaad asded STYL ‘SBUTI
unI je A3T3uspT OTISTNHOUTT SUO URY] SJI0W IUNSSe Ued YOTUM
wa3sAs XINA TeuoTriouny ATTnI ‘TeuoTleuxsjul ATInI ® o3e8Id
03 aTqrssod ST 3T 3eY} 2AdT[8q sIoyine ayl - LOVILSEY

¥10S6 ¥O ‘our3aadnd
peod ®JTOM 000TT
paeyded-33aTMaH
ueounp jepdyjXeaqon - ISWISSTIW ueosung
bl iepdyjxeagon - 3sTtno Apnp
dwa3siks XINN TeUOT3IBUISJUT Ue ST jJeyM

(072

colleague in Sweden, and then sort it according to Spanish
usage for transmission to Madrid. Meanwhile, on another
terminal on the same system, another user runs a spelling
checker for yet a third language.

What will have to change?

At the risk of sounding presumptuous (or tedious) we

review below some of the major parameters which for our pur-
poses will characterize a language.

character size - Since 7-bit ASCII doesn't contain the
characters needed to support most of the world's langu-
ages, it will be necessary support a variety of 8- and
16-bit character sets. Software that edits strings,
for example, must know whether to delete one or two
bytes per character, and must not assume that the 8th
bit is available for use as a flag. It is well known
that some of the most important programs (sh, csh, the
editors) assume 7-bit objects and use the 8th bit
freely.

shifting - Some languages discard accents on upshifting
while others do not. Some languages do not even need
the notion of "case" at all. Current library routines
support only USASCII.

collation - Sorting is provided by the routines
stremp(3), sort(l), gsort(3). This sorting is based on
machine collation of ASCII characters and is not even
adequate for American "dictionary" usage, much less a
language like Spanish which treats "ch" and "11l" as
single characters. Collation needs to vary according
to the language used, as well as the character set.
For East Asian languages with large character sets
several collation sequences are typically needed, one
based on sound, one based on number of strokes, one
based on radicals, and so forth.

directionality - The assumption that displayed text
goes from left to right does not hold for languages
such as Arabic or Hebrew. In some cases the East Asian
languages may be written vertically. Needless to say,
none of the standard software addresses this problem.

classification - Classification of characters on the
basis of the coded value will change from character set
to character set, and can no longer be hard coded.
Although most of the 8-bit character sets we support
preserve the ASCII codes for the bytes 0-127, 16-bit
character sets may use these byte values in 2-byte
characters. Software which assigns special meaning to
bytes ("metacharacters") in this range will have to
take care to distinguish 1-byte from 2-byte characters.

March 17, 1985

n

- escape sequences - In multilingual environments stan-
dard escape sequences will most likely be used to indi-
cate a change of character set. Most of these are based
on ISO 2022. An example is the Japanese Industrial
Standard sequences used to switch back and forth
between an 8-bit character set based on ASCII and a
full 16-bit ideographic character set. Software that
processes characters may have to change its assumptions
about the current state of any of the aspects discussed
above, e.g. directionality, character size, when such
sequences are encountered. Because of the amount of
work involved, Japanese manufacturers have typically
modified software to provide reduced functionality in
some commands (vi, nroff) in order to support a mixture
of two known character sets. The problem is not
trivial.

- hyphenation and spelling (current "spell" and nroff
hyphenation support English only)

- computation and display of date and time (some of the
stickier problems here will be solar time in Saudi Ara-
bia and emperor dates in Japan)

- names of days of the week and months

- names of currency units, ways of subdividing currency
units

- representation of numbers - variations in the symbol
used for the radix character - variation in the symbol
used for grouping digits, as well as the number of
digits grouped.

- Error messages, prompts and the responses to prompts,
and mnemonic command names should all be based on the
user's language. (Discussed by Tintel)

- If messages are built up in chunks (e.g. by printf())
it should be kept in mind that the syntax of another
language may force a change in the order of the sen-
tence fragments.

- Languages with complicated writing systems will have
special input and display requirements of the sort dis-
cussed by Becker.

Given this tremendous list of points of divergence and
our goal of supporting equitably a variety of languages over
the range of standard UNIX software, where do we begin and
how do we do it? First, how do we identify to the program
what sort of language will be governing its behavior? For-
tunately, we have here a good precedent, an area where a
single program has been expected to support a wide range of

March 17, 1985

72

inconsistent user interfaces - terminals. Just as the
environment variable "TERM" is passed in to allow a program
to access the "termcap" data base, a language name can be
passed in to identify the messages to be used for communica-
ting with the user, the character set he will be using, his
preferred rules for collation, etc. Such a mechanism would
already allow a single user to change his linguistic iden-
tity at will.

Since the problems of local user messages and multil-
ingual word processing have been discussed elsewhere [2, 1],
this paper will focus on the remaining issues. Although
some of them may seem trivial, these issues do stand in the
way of using UNIX for any sort of business processing.

Several routines in the standard UNIX product represent
an encapsulation of functions which are language sensitive.
Examples are those described in the manual pages for
ctime(3c), conv(3c), ctype(3c), and the sorting routines
mentioned earlier. It is possible to parameterize these
routines, either explicitly or implicitly, so that they no
longer depend on ASCII-based tables compiled into the code,
but rather combine a sufficiently general algorithm with
data retrieved from the file system. If enough study is
done ahead of time, addition of support for a new language
will just involve the addition of data. Just as the inven-
tion of a new terminal model does not require recompilation
of every program that uses the terminal data base, adding
the capability to sort Arabic or Korean should not require
algorithm changes to any existing software.

About time for an example

The following excerpt is ctime(3), taken from the
Berkeley 4.2 distribution.

March 17, 1985

73

74

static struct dstab usdaytab[] = {

1974,5,333,/* 1974: Jan 6 - last Sun. in Nov */
1975,58,303,/* 1975: Last Sun. in Feb - last Sun in Oct */
0,119,303,/* all other years: end Apr - end Oct */

}i

static struct dstab ausdaytab{] = {

1970,400,0,/* 1970: no daylight saving at all */
1971,303,0,/* 1971: daylight saving from Oct 31 */
1972,303,58,/*% 1972: Jan 1 -> Feb 27 & Oct 31 -> dec 31 */
0,303,65,/* others: => Mar 7, Oct 31 =-> */

}:

/*

* The European tables ... based on hearsay
(omitted)
static struct dayrules {

intdst_type:;/* number obtained from system */
intdst hrs;/* hours to add when dst on */
structdstab *dst_rules;/* one of the above */
enum {STH,NTH}dst hemi;/* southern, northern hemisphere */
} dayrules [] = {

(omitted)

struct tm *

localtime(tim)
unsigned long *tim;

{

(omitted)

for (dr = dayrules; dr->dst_type >= 0; dr++)
if (dr->dst type == zone.tz dsttime)
break;

if (dr->dst_type >= 0) {

year = ct->tm_year + 1900;

for (ds = dr->dst_rules; ds->dayyr; ds++)
if (ds->dayyr == year)

break;

(omitted)

switch (dr->dst_hemi) ({

case NTH:

(omitted)

March 17, 1985

This represents the "quick hack" approach to international-
izing UNIX software and it suffers from the following limi-
tations

It is brittle - one political change and the code is
invalid.

It is closed - anybody who wants more or less than what
is offered here is out of luck.

Somebody has to maintain a list of timezone numbers and
make sure they match what comes from the kernel.

What is really needed is a "TIMECAP" environment varia-
ble which contains a string describing the relation between
GMT and local time - certainly nothing as difficult as
describing the behavior of a terminal. With a little legwork
ahead of time it would be possible map solar and lunar
calendars and any sort of scheme for starting and ending
summer time. The result would be a scheme that needs no code
changes to "boldly go where no software has gone before" and
have a good change of working correctly when it gets there.

Some terminology

In our project we have used two terms to draw a dis-
tinction between generalizing the code and the actual
creation and installation of data to support a particular
language. We refer to the modification of code (which is
really the removal of language dependencies) as "native
language support". If we have done this work right all that
is necessary to actually support a new language, set of cus-
toms, or geographic location is to add files characterizing
that environment, a process we call "localization", and
which should be thought of as being analogous to writing a
new "termcap" entry.

Character set support

Extending this idea to the areas of character handling,
we can read in dynamically tables to be indexed for clas-
sifying or shifting characters. Collation involves a lot
more work to establish ahead of time a scheme powerful
enough to meet the needs of all languages to be supported,
but in our case we were fortunate enough to be able to
import directly the work done for a business-oriented system
at another division of our company. We have found, by the
way, that the mapping algorithms used to accommodate German
and Spanish have shown themselves adequate to support Arabic
without any modifications to the code. Again we emphasize
that by pushing language-specific knowledge out of the code
we managed to save ourselves a good amount of engineering
and support work.

March 17, 1985

75

76

Summary

Our conclusion has been that the problem of supporting
processing needs for a variety of languages is best solved
by borrowing the approach used to support terminals. The
software itself is extended to support a more general model
of processing ("language support") but the actual informa-
tion used to support a particular language is moved out of
the code and into the file system where it can be added
("localization") or removed at will. We would like to add a
special plea for standards. The area we are talking about
is uncharted, but the sooner we can agree on a solution, the
sooner this world can be enjoyed by a much wider audience.

Bibliography

[1] Becker, J. "Multilingual Word Processing" Scienti-
fic American July 1984 pp. 96-107

[2] Tintel, P. "EURIX - a UNIX based system using
European natural languages" EUUG 1984

[3] (no author listed) "Nihongo, realtime, network nado
kino'o kakucho'o ga susumu UNIX" Nikkei Electronics 22
October 1984 pp. 171-208

UNIX is a trademark of ATT Bell Laboratories

March 17, 1985

System Aspects of Low-Cost Bitmapped Displays

David S. H. Rosenthal
James A. Gosling

Information Technology center”
Carnegie-Mellon University
Schenley Park
Pittsburgh PA 15213

ABSTRACT

The design of low-cost bitmapped displays is
reviewed from the perspective of the implementors
of a window manager for UNIX.* The interactions
between RasterOp hardware, the multi-process
structure of UNIX, and the functions of the window
manager are discussed in the form of a check-list
of features for hardware designers.

1. Introduction

Chip manufacturers are announcing products designed to
improve the performance and reduce the cost of bitmapped
displays. Workstation manufacturers are marketing systems
featuring UNIX and a window manager on such displays. The
window manager has an overwhelming effect on the perceived
performance of the workstation it is running on.

We have recently designed and implemented a window
manager for 4.2BSD UNIX. It is intended to be easy to port
between displays. It runs on the Sun workstation, and
throughout its development we have been reviewing designs
for other displays that are to be used in the future. 1In
attempting to obtain the best performance from the Sun
displays and remain portable to these others, we have
encountered many interactions between display hardware
features and window manager software; what follows is a

*UNIX is a Trademark of Bell Laboratories.
*The Information Technology Center is funded by IBM.

James Gosling's present address 1is Sun Microsystems
Inc., 2550 Garcia Ave., Mountain View, CA 94043

March 17, 1985

77

78

compilation of our experiences.

2. Models

To provide a context for the discussion of these
interactions, we set out the range of hardware and software
we are concerned with.

2.1. Hardware

Workstation hardware typically consists of a processor,
memory management hardware, memory, and I/O devices inclu-
ding a mouse, keyboard, and monochrome display. The display
may have either:

* pixels visible in the CPU's address space, with
RasterOps performed by the CPU (possibly with special
hardware assistance).

* pixels not addressable by the CPU, but manipulated by
an autonomous RasterOp processor. Communication with
this processor is via registers or command queues in
the CPU's address space.

2.2. Software

This hardware typically runs a form of the UNIX opera-
ting system, whose importance for this discussion is that it
supports multi-process interaction. When multiple interac-
tive processes compete for a finite real screen resource,
arbitration is undertaken by some form of window manager,
either:

* a part of the UNIX kernel, accessed via special system
calls, or

* a special user-level process, accessed via interprocess
communication channels.

The RasterOps affecting the parts of the screen
resource allocated to each client may be performed by:

* = The kernel, when the client requests them using system
calls.
* The user-level window manager process, when the client

requests them using remote procedure calls.

* The client directly, if it has the pixels or RasterOp
processor control registers mapped into its address
space.

The goal in all cases is to provide clients with a pro-
tected RasterOp, one that can affect only those pixels

March 17, 1985

allocated to the client.

3. Check-List

After providing memory to store the pixels, and a
mechanism to generate the video output, the designer of a
low-cost bitmap display is faced with the question of how
much RasterOp support is required. With careful design, at
least for the MC68000 (which can exploit auto-increment
addressing), many cases of monochrome RasterOp are close to
the limit set by display memory bandwidth even if they are
done entirely in software. Next generation microprocessors
typically have barrel shifters, making the alignment shifts
of software RasterOps much faster. If special RasterOp
hardware is to be cost-effective compared to a software
solution, the following points should be considered:

1. Can user processes operate on the bitmap without system
call overhead?

2. If special RasterOp hardware is provided, can a client
access the bitmap without using it?

3. Can a client given access to the bitmap be prevented
from accessing other IO devices?

4. If special RasterOp hardware is provided, can multiple
user processes access it?

5. If the RasterOp hardware is an autonomous processor,
does it support one or many command queues?

6. Can the RasterOp hardware be used off-screen?
7. Does the RasterOp processor implement clipping?
8. If the display has a color map, can it be shared

between multiple windows?
9. Does the display support a cursor?
10. Can the display track the mouse autonomously?
11. Does the hardware allow non-rectangular RasterOps?
12. Can the display draw characters fast?

4. Discussion

Can user processes operate on the bitmap without system call
overhead?

March 17, 1985

79

Either the bitmap itself, or the registers and command
queues controlling the RasterOp processor, or both must
be capable of appearing in the address space of one or
more user processes. In this way the process can do
RasterOps directly; the cost of a system call (perhaps
0.3ms) per RasterOp is prohibitive.

If special RasterOp hardware is provided, can a client
access the bitmap without using it?

*

The presence of RasterOp hardware does not eliminate
the need for the CPU to access the pixels directly.
Unless the function set of the RasterOp processor
matches the application requirements exactly, some
display operations will need to be implemented in
software. Inappropriate support that cannot be pro-
grammed around is worse than none.

Can a client given access to the bitmap be prevented from

accessing other I0 devices?

*

A corollary of the need for user processes to address
the bitmap is that the system's memory management and
protection unit must be capable of controlling access
to the I/O space at a relatively fine grain. It should
not be necessary to trust a graphics process with
access to the disk controller hardware.

If special RasterOp hardware is provided, can multiple user
processes access it?

*

If user processes can access the RasterOp hardware
directly, its internal state such as source and des-
tination coordinates, function codes, mask bits, and so
on must be regarded as part of a process' state. They
must in general be saved and restored across context
switches; the performance impact of doing so can be
severe (even if the hardware permits it).

The overall impact of saving and restoring the RasterOp
processor's state can be reduced if processes using it
can be identified. The analogous problem for
floating-point processors has traditionally been solved
by initializing them to a state in which an attempt by
the processor to use them will cause an interrupt. At
that point the process is known to use the processor,
and can be marked as needing the extra context. Thus,
if the processor has any context to save, either the
memory management unit or the processor itself should
be capable of generating an interrupt on all access

March 17, 1985

attempts.

If the RasterOp hardware is an autonomous processor, does it

support one or many command queues?

*

Designs with autonomous RasterOp processors can reduce
the need to save and restore RasterOp context by
implementing several independent command queues and
multiplexing these queues together. The window manager
can then assign a queue to each window and treat them
as if they had independent processors. A means to
drain the queues before changing the shape or position
of a window will be needed.

Can the RasterOp hardware be used off-screen?

*

Does

Many window managers require RasterOps that operate
uniformly on rasters both on and off the screen. Off-
screen rasters are typically in process virtual address
space. If the RasterOp support cannot be applied to
these rasters, the window manager will have to
implement a software RasterOp even if it is not used
on-screen.

the RasterOp processor implement clipping?

A major role of a window manager is providing client
processes with a protected RasterOp, that is in
ensuring that a client can draw only within its assig-
ned area of the screen. Thus, much of the window
manager's processing is devoted to clipping. The win-
dow manager must apply a clipping rectangle to all
client output, though within these limits the client
may wish to impose a smaller clipping rectangle.
Hardware support for clipping is useful, but it would
be much more useful if it provided both a ''system'!
clip rectangle that could not be changed from user
mode, and also a ''user'' clip rectangle. Output would
be clipped to the intersection of the two. The window
manager would set the system rectangle to the window,
and the client would set the user rectangle as desired.
Even better would be clipping to the union of a set of
rectangles for each mode, to permit clipping to par-
tially overlapped windows.

If the display has a color map, can it be shared between

multiple windows?

*

Just as the pixels are a real resource to be shared
among competing clients, so also are the entries in the
color map. Clients should be able to use a number of
different pixel values and corresponding color map
entries without being aware that other windows are also
using the color map. For example, all windows should

March 17, 1985

81

82

Does

be able to use pixel values from 0 to some limit.

Hardware assistance for this sharing would be useful.
The window manager should be able to specify a number
of rectangles, in each of which the relationship
between the pixel value and the color map entry it
selected would be different. These rectangles might
select from a number of independent full-size color
maps, or provide a base register to be added to the
pixel value before the color lookup (and perhaps a
limit register to truncate the range).

the display support a cursor?

An essential feature of a window system is a cursor,
tracking a pointing device around the screen. The cur-
sor can be displayed either:

a) by temporarily changing some pixels in the bitmap
from which the screen is refreshed, or

b) by mixing the video from two separate bitmaps, one
for the screen image and one for the cursor.

The first is often preferred for low-cost systems; it
requires little or no extra hardware but can impose
significant performance loss. The problem is that if
the cursor affects pixels in the screen bitmap, it must
be absent during any RasterOp that affects those pix-
els. There are two approaches to ensuring that the
cursor gets removed:

* The process performing the RasterOp can handshake
with the process maintaining the cursor before
every RasterOp'. The cost of the necessary systenm
call on every RasterOp, or at least on every
RasterOp when the cursor is displayed, is very
significant, and the cursor will flicker badly.

This problem recurs in a milder form even if the
process performing the RasterOps is also the pro-
cess maintaining the cursor. The synchronization
cost is less, but the cursor flicker is still
present. It is particularly offensive because the
cursor is typically the focus of the user's atten-
tion.

+ Ideally, it would do so only when the source or
destination rectangles overlapped the cursor, but this
is normally impracticable.

March 17, 1985

* If the video refresh controller is capable of
interrupting when a specified scan line is
reached, the interrupt routine can arrange for
this to happen shortly before the first scan line
containing the cursor. It can then put the cursor
into the bitmap, wait at interrupt level until the
refresh has passed the cursor, and then remove it.
No user RasterOps can occur while the cursor is in
the bitmap, and the cursor will not flicker, but
the cost is the fraction of the CPU corresponding
to the ratio of the cursor height to the screen
height.

Video-mixed cursors are normally regarded as too expen-
sive for low-cost displays, because they require either
a complete second bitmap, or a smaller bitmap plus
extra logic to position the cursor. But their effect
on overall performance is so great that this may be a
mistake. They should be considered in the design of
advanced video-generator and controller chips.

Can the display track the mouse autonomously?

*

Does

Another major load on the system is tracking the mouse.
Autonomous display hardware sufficiently intelligent to
monitor locations in main memory for the mouse coordi-
nates, and to position the cursor to correspond, would
off-load significant processing. The off-load would be
greater if it supported a ''clip'' rectangle for the
cursor, and could interrupt if the cursor tracked
across the boundary. Many window systems wish to
change the cursor shape as it tracks across windows, or
even regions within windows.

the hardware allow non-rectangular RasterOps?

Non-rectangular RasterOps such as ''fill trapezoid''
can significantly improve the performance of applica-
tions using polygonal graphics, but need careful
implementation. In particular, if they are to abut
correctly it must be possible to save and restore the
error parameters of the Bresenham or other algorithms
tracing their edges. This is an example of the need
for sub-pixel addressing, which also occurs in grey-
scale and other anti-aliased applications.

Can the display draw characters fast?

*

The overwhelming majority of all RasterOps will paint a
character. The cost of these will be dominated by
setup time unless the font contains very large charac-
ters, or the client sends long strings of contiguous
characters. Note that single character RasterOps are
important as echos of user type-ins. What-you-see-is-

March 17, 1985

83

what-you-get editors are major applications for this
class of display, and their performance is dominated by
re-painting characters as the user types.

Thus, the design of RasterOp engines should consider
making character-drawing a special case, so that the
hardware understands the font tables, knows the amount
of shim space to add between printing and space charac-
ters, and so on. This spreads the setup time across as
many characters as possible.

* Typical windows may contain characters from a large
number of fonts; twelve per window is not uncommon.
The stored fonts from which characters are drawn are
frequently stored in the 224 by 1024 pixel off-screen
area of an 800 by 1024 pixel display. Thus, special-
ized RasterOp hardware can be used to paint characters
even if it can access only the bits in the hardware
bitmap.

Unfortunately, Parkinson's Law shows that this space is
insufficient to store all the required fonts, so that
the off-screen space can at best be a cache for active
fonts, and cache misses will occur. The code to manage
free space in the font cache, to gather usage informa-
tion, and to perform cache reloads on misses is diffi-
cult to write, and imposes disturbing performance irre-
gularities. Font definitions, and the individual
glyphs, are variable size, adding to the normal prob-
lems of writing a pager.

If the RasterOp hardware is not restricted to accessing
the pixels in the hardware bitmap, but can access the
whole of physical memory (even at reduced bandwidth),
the problem is easier. The font cache can now be lar-
ger, stored in wired-down pages of system physical
memory. But it is still only a cache.

If, however, the hardware support for RasterOp is
applicable even in process virtual address space the
fonts can be stored in virtual memory, and the system's
pager can deal with the problem of ensuring that the
fonts in use are readily accessible. Virtual memory
RasterOps are normally available only if the RasterOp
is implemented by the CPU, either in software, micro-
code, or as a processor extension chip.

5. Conclusion

We have set out a number of points worthy of considera-
tion in the design of low-cost bitmap displays intended to
support multi-process interaction. Although RasterOp
hardware may appear attractive, it needs careful design if
its potential is to be fully realised, particularly for

March 17, 1985

drawing characters. Assistance with cursor drawing and
sharing of the color map may be more cost~-effective uses for
limited hardware resources.

Acknowledgements

This work originates from insightful critiques of some
proposed hardware designs given by Bob Sproull. Bob Side-
botham, Andy Palay, Fred Hansen and Bruce Lucas helped
implement the ITC's window manager.

Anyone attempting to design bitmap displays should read
Hardware/Software Tradeoffs for Bitmap Graphics on the Blit
by Pike, Locanthi, and Reiser in Software Practice &
Experience January, 1985.

March 17, 1985

85

A CONTRACTUAL MODEL OF SOFTWARE DEVELOPMENT

Vic Stenning

Imperial Software Technology,
London.

ABSTRACT

The technical process of software development
- and, indeed, development of any complex man-made
system - can be viewed as repeated application of
a single step. Each individual step takes some
existing representation (or mathematical model) of
the desired system and transforms it into some
more 'concrete' representation. This results in a
sequence of representations leading from some very
abstract model of the desired system to an actual
implementation (i.e. a representation that is usa-
ble for the real-world application).

Any practical approach to system development
must address not only the technical issues, but
also issues of project management and data
management. Thus the technical process outlined
above must be incorporated into some broader pro-
ject organisation. One possible approach is to
employ a so-called 'contractual' model of develop-
ment, whereby contracts are let internally within
the project for the performance of the individual
transformation steps and any other work that needs
to be done.

Individual contracts can be fulfilled by the
use of appropriate technical development and pro-
ject management methods. Data management methods
must be employed both within individual contracts
and at the level of the contract hierarchy for a
complete project. An integrated project support
environment can support the chosen methods within
the framework of the contractual model.

Introduction

Concern here is with systems that typically have the
following characteristics:

March 17, 1985

- they are large
- the requirements are externally imposed
- the development timescale is externally constrained

- development therefore involves a team rather than a
single individual

This should be contrasted with the situation of an
individual programmer producing a small program to meet some
personal need. The scenario outlined above is not just
quantitatively different, it is also qualitatively dif-
ferent. Not only are the problems larger, but also there
are entirely new problems. These problems include:

- the determination, from external sources, of exactly
what the system has to do. (Typically these sources
will provide information that is inconsistent, ambi-
guous and incomplete)

- the achievement of effective communication and coopera-
tion between the various members of the project team

- the achievement of effective interaction and coopera-
tion between distinct components of the complete system

Further, it should be recognised that any complex sys-
tem must evolve if it is to continue to operate effectlvely
in a world that is constantly changing, and that provision
must be made for supportlng this evolution. This need to be
able to change existing systems leads to a number of well-
known problems that are often referred to euphemistically
(and incorrectly) as 'maintenance' problems.

In addressing these problems there are fundamental
principles. These principles are just common sense, but
unfortunately they are applied all too rarely in practical
projects - partly because "there's nowt as uncommon as com-
mon sense'", and partly because the proper application of
these principles raises difficult technical and logistical
problems. The common sense principles are:

(i) to take small manageable steps, checking carefully
at each step, rather than attempting some great leap
into the unknown;

(ii) to be explicit and precise on every aspect of
development, rather than relying on implicit or
ambiguous assumptions;

(iii) to maintain full records of all aspects of the

development, to be consulted (and of course sup-
plemented) when making subsequent changes.

March 17, 1985

87

88

These principles underlie the process and contractual
models that are described in subsequent sections.

The Process Model

The process model reflects a particular view of the
nature of the software development process and the needs of
that process. (The term 'development' is used consistently
to encompass not only initial development prior to product
release but also subsequent 'maintenance' during the opera-
tional life of the product).

The model recognises that the distance between the ori-
ginal concept of some desired system and the eventual
implementation of that system is too large to be bridged in
a single step. Therefore a sequence of intermediate
representations is employed. Each of these representations
is the result of a single step from its predecessor
representation towards the final implementation; the indivi-
dual steps are sufficiently small to be performed with some
confidence. Each representation is expressed using nota-
tions and abstractions that are appropriate to its position
in the sequence. Thus the early representations will use
the terms of the application domain and will be expressed in
a language suitable for modelling of that domain. By con-
trast, the later representations will use the terms and
notations of computer systems implementation languages.

Each representation is derived from its predecessor by
means of transformation. As each new representation is pro-
duced, it must first be shown that the representation is
internally consistent. Following this, there are two quite
distinct concerns. First, is the new representation correct
with respect to its predecessor(s)? Second, has real pro-
gress been made towards the goal of an implementation that
meets the needs of its users? These two concerns are
addressed by verification and validation respectively. By
‘verify' we simply mean 'increase confidence in the
correctness of'; any appropriate technique may be employed,
with formal (mathematical) verification neither being expli-
citly required nor explicitly excluded. By 'validate' we
mean 'increase confidence in the appropriateness of';
relevant techniques include inspection, reviews, animation
and prototyping. Note that verification must always be with
respect to an earlier representation - it cannot be perfor-
med in isolation - and is therefore essentially 'backward
looking'. By contrast, validation can be performed in iso-
lation, and is essentially forward looking.

Despite the verification at every step, errors can
still be made. Similarly, it is possible to follow an ill-
advised design path, even though every representation is
validated before proceeding. Whenever such problems are
discovered, while working on some later representation, it

March 17, 1985

is not sufficient just to make appropriate changes to that
later representation in order to correct the error. Rather,
the designer must backtrack to the representation at which
the error was introduced (which may be the very first one in
the sequence) and make appropriate changes to that represen-
tation in order to correct the error. These changes must
then be propagated through all subsequent representations,
again with verification and validation at every step. Thus
the entire process is iterative.

Of course, changes in the system requirements are inev-
itable, both during initial development and during the
operational life of the product. Such changes in
requirement are handled in the same way as errors, that is
by backtracking to the appropriate representation followed
by change propagation.

Scope of the Process Model

The process model provides a framework that directly
addresses some of the concerns of the introductory section.
In particular, it provides a basis for systematic initial
development, with small steps and incremental checking, and
it suggests that 'maintenance' activities during the opera-
tiornial life of the system are no different from initial
development activities. Indeed, with this model the activi-
ties of backtracking, introducing a change and propagating
that change are in a sense the norm, with original creation
of some new representation being a rather special case.

Besides providing a useful framework for technical
development activities, the process model also gives some
indication of the data management needs of a project. Con-
sider, for example, the relationship between successive
representations, and the impact of backtracking and change
propagation (which of course creates new ‘versions' of the
affected representations). However, the simple process
model by no means addresses all aspects of data management -
for example, there is no basis for considering the internal
structure of an individual representation - and in no way
addresses project management. Thus there is a need for a
broader model, compatible with the process model, that
allows the three key issues of technical development, pro-
ject management and data management to be addressed in a
consistent fashion. This is the purpose of the contractual
model of development.

The Contractual Model of Development

As the name suggests, the contractual model is based
upon the notion of identifiable contracts. (It should be
noted that the term 'contract' is not used here in any legal
sense; it simply means a documented agreement between two
parties, typically within the same project team). The

March 17, 1985

89

essence of any contract is a precise specification. Within
the model this specification is recognised as having three
major components: a technical specification, a set of
management constraints, and acceptance criteria. The tech-
nical specification serves to precisely define the required
deliverable from the contract. The management constraints
define the bounds within which the deliverable is to be pro-
duced - costs, timescales, standards, and so on - and also
define the obligations for reporting from the contractor to
the client. Finally, the acceptance criteria define objec-
tive measures which can be used to judge successful com-
pletion of the contract.

Upon completion (i.e. when the acceptance criteria have
been satisfied) the contract returns a deliverable that
meets the specification. However, during the course of the
contract a variety of reports - progress, problems, queries,
and so on - will flow between contractor and client. Thus
the full contractual interface recognises three main
elements: a specification, a deliverable, and a set of
reports.

The power of the contractual model lies in the fact
that it is recursive. Suppose that the task to be performed
on a contract is dependent upon various major sub-tasks, and
that each of these sub-tasks can be precisely defined. It
is then possible to let sub-contracts for the completion of
these sub-tasks, the sub-contracts may themselves let
further sub-contracts, and so on. Thus, within a single
project, which is itself treated as a single contract, there
may be an extensive contract hierarchy formed on the rela-
tionship 'is a sub-contract of'.

(It should perhaps be emphasised that the contract
hierarchy within a project does not simply reflect some
hierarchical decomposition of the final product. Recalling
the process model, contracts may be let for the production
of a statement of requirements or a system specification.
These may lead to sub-contracts for feasibility studies,
production of a prototype, independent review, or whatever.
Oonly in the later stages of a project would contracts call
for the production of components of the final product, and
even then there need be no direct correspondence between the
contract hierarchy and any product decomposition hierarchy.
Thus, while the contract hierarchy can readily accommodate
product decomposition, it has a far wider scope and pur-
pose].

Use of the Contractual Model

Properly employed, the contractual model provides a
basis for addressing the three key concerns of technical
development, project management and data management.

March 17, 1985

For technical development purposes, the contractual
model is entirely compatible with the process model. Indi-
vidual contracts can be let for the production of each
representation in a sequence, with the relationships between
these representations being maintained within the client
contract. Sub-contracts may be let as appropriate for car-
rying out feasibility investigations, verification, valida-
tion and so on. Within the contractual structure a wide
variety of specific technical methods could be employed,
ranging from the formal to the structured (Of course, the
nature and notations of the specification and verification
criteria for a contract must be compatible with the methods
employed) .

The contractual hierarchy provides the coarse structure
for management of the project, and the contractual interface
shows the nature of management at this coarse level. A
sub-contract is specified precisely both in terms of the
technical task to be performed and the management con-
straints and reporting obligations that apply. Within the
limits imposed by the specification, the sub-contractor is
free to organise and partition the work in any manner that
seems appropriate. Again, within an individual contract a
variety of specific management methods could be employed.
Progress, and any problems that may jeopardise fulfillment
of the contract, must be reported back to the client.
Responsibility for determining the strategy for dealing with
such problems rests with the client, not the contractor.

Similarly, the model provides a basis for overall data
management, in that the main data units to be managed are
precisely those that form the specifications and delivera-
bles for individual contracts. There may also be finer-
grained data management concerns, but with the contractual
model the control of specifications and deliverables is of
primary importance.

An Integrated Project Support Environment

In conjunction with British Telecom, Imperial Software
Technology is currently developing an integrated project
support environment based directly upon the contractual
model. This environment is designed to operate on a distri-
buted network of computers of various sizes, including per-
sonal workstations.

The environment consists of a 'framework' that provides

a database system, a user interface and tool integration
facilities, plus an extensible set of tools. The initial
toolset is sub-divided into four classes, namely office
automation, project management, technical development and
data management. The office automation tools provide the
normal facilities - text processing, mail, bulletin boards,
diaries and so on. The project management tools provide a

March 17, 1985

91

92

conventional set of co-ordination, planning and monitoring
tools directly related to the contract model. The technical
development tools support certain established methods - CORE
for requirements analysis, an SDL-based method for specifi-
cation of concurrent systems, VDM for the specification and
refinement of abstract data types - within the contractual
structure. Finally, the data management tools support
integration and build, library control and version
management.

It is the contractual model that integrates this
environment, thus justifying the 'I' in 'IPSE'. Different
users of the environment could easily adopt their own pre-
ferred methods for project management, technical development
or data management, and introduce new tools to support these
methods, without invalidating existing tools or compromising
the overall structure for the IPSE. Further, new technical
development tools can be employed with existing management
tools, and vice versa. Thus the use of the contractual
model as the basis for the IPSE would seem to provide a
desirable combination of stability and flexibility.

March 17, 1985

TeX+ must eventually replace nroff/troff

Timothy Murphy

School of Mathematics
Trinity College Dublin

as the standard UNIX* text-formatter. For the output of TeX
is an order of magnitude superior to that of troff. Thus

(1)

(2)

(3)

(4)

TeX reads a whole paragraph before deciding where to
break the lines.

In TeX the space between 2 letters depends on both, in
troff only on the first;

The spacing around mathematical symbols in TeX depends
on the "function" of that symbol: binary operator,
relation, left parenthesis, etc:;

The size of matching parentheses in a mathematical
formula is automatically adjusted in TeX to the height
of the expression they enclose.

But if TeX is to be integrated into UNIX, it must undergo
major surgery:

(A)

(B)

(C)

(D)

(E)

TeX must be re-written in C, to allow reasonable
interaction with the environment.

TeX should be "modularised", so that eg the hyphenation
module can easily be replaced for non-English input.

There are 5 phases in TeX: syntactic analysis, semantic
analysis, paragraph building, page building, and output
driver. These could run as different processes, or
else be overlaid.

An option should allow TeX to use temporary files
whenever possible, eg for storing rare macros.

An interactive option could show input and output on
different screens, or windows. As soon as a paragraph
(or displayed formula) had been typed in, it would be
processed and output. But the input would be held in a
buffer, so that if modification were desired the
paragraph could be edited and re-processed; and only
when the user was satisfied wculd the input be entered,
and the next paragraph begun.

+TeX

is a Trademark of the American Mathematical

Society.
*UNIX is a Trademark of Bell Laboratories.

March 17, 1985

93

94

UNIX at IRCAM

Robert Gross, Michele Dell-Prane, Dan Timis, and David Wessel

Since 1976 IRCAM*, has supported research on fast real-time digital signal
processing, room and instrurnent acoustics, psycho-acoustics, compositional
algorithms, as well as different methods of sound synthesis including the singing
voice and physical modeling. The results of this research have been applied by
invited composers in many contemporary music pieces with reai-time digital
electronics and computer generated tapes.

IRCAM has developed a series of high speed digital signal processors cul-
minating with the 4X machine recently used by Pierre Boulez in his work
'Repons’. General purpose computing and program development is done on a
group of VAX, SUN, Plessey, and Valid computers networked together. Work with
artificial intelligence and expert systems has affected a majority of the current
research projects.

Two years ago UNIX became the underlying foundation fer ali the research
and musical production at IRCAM. UNIX must not only drive the 4X and support
standard program development including numerical computation, and compiler
design but also must do musical sample computation, storage, and real-time
playback or record operations. This latter problem is not ecasy to deal with in
UNIX and has been solved by using the advantages of UNIX files to simulate a
hierarchical sound-file system based on the UNIX model. We are currently using
the CARL** sound-file system developed at UCSD.

This talk will explore some of the current development projects at TRCAM
including the 4X software design, Acoustical research, Chant/Formes project,
applications on the array processor, and the development of music oriented
software for the Apple Macintosh using the SUMACC's*** environment. We will
also discuss our experience with the CARL software and our atlempts to utilize
the 4.2 BSD file system to support the 1/0 throughput required by the DA/AD
conversion.

*Institut de Recherche et Coordination Acoustique /Musique
**Computer Audio Research Laboratory
s*+Stanford University

Published by the European UNIX® Systems User Group,
Owles Hall, Buntingford, Herts SG9 9P ..
Tel: Royston (0763) 73039.

