EurOpen & USENIX

Spring 1992 Workshop / Conference

Jersey, Channel Islands

6th — 9th April, Hotel de Frapss

Proceedings of
the Spring 1992
EurOpen/USENIX
Workshop

April 6-9, 1992
Jersey, Channel Islands

This volume is published as a collective work.
Copyright of the material in this document remains
with the individual authors or the authors’ employer.

ISBN 1 873611 03 X
Further copies of the proceedings may be obtained from:

EurOpen Secretariat
Owles Hall
Buntingford

Herts
SG9 9PL
United Kingdom

These proceedings were typeset in Times Roman and Courier on a PostScript printer driven by a sleepy
dwarf. PostScript was generated using refer, tt, pic, psfig, tbl, sed, eqn, troff, pm and psdit.

Whilst every care has been taken to ensure the accuracy of the contents of this work, no responsibility for
loss occasioned to any person acting or refraining from action as a result of any statement in it can be
accepted by the author(s) or publisher.

UNIX is a registered trademark of UNIX System Laboratories in the USA and other countries.

AIX, RT PC, RISC System/6000, SMIT, VM/CMS are trademarks of IBM Corporation.

Alto, Star are trademarks of Xerox.

Athena, Project Athena, Athena MUSE, Discuss, Hesiod, Kerberos, Moira, Zephyr are trademarks of the
Massachusetts Institute of Technology (MIT). No commercial use of these trademarks may be
made without prior written permission of MIT.

A/UX is a trademark of Apple Computer.

CHoRus is a registered trademark of Chorus systémes.

DEC, DECStation, Vax, VMS are trademarks of Digital Equlpment Corporation.

Intel 386, Intel 486 are trademarks of Intel Corp.

IRIS is a trademark of Silicon Graphics.

Macintosh is a trademark of MacIntosh Laboratories and is used by Apple with their permission.

MC68000, MC88000 are trademarks of Motorola Computer Systems.

MIPS is a trademark of MIPS, Inc.

Motif, OSF, OSF/1, DCE are trademarks of the Open Software Foundation.

MS-DOS is a registered trademark of Microsoft Corporation.

NCS is a trademark of Hewlett-Packard Corporation.

OPEN LOOK, SVID, System V are registered trademarks of AT&T.

PostScript is a trademark of Adobe, Inc.

SmallTalk is a trademark of ParcPlace Systems.

Sun, SunOS, SunView, SPARC, NeWS, NFS are trademarks of Sun Microsystems, Inc.

X Window System is a trademark of MIT.

X/Open is a registered trademark of X/Open Company, Ltd.

XENIX is a trademark of Microsoft Corporation.

Other trademarks are acknowledged.

ACKNOWLEDGEMENTS

The organisation of the first joint EurOpen USENIX workshop is now completed: the success of the event
will depend on the participants! The workshop addresses a central theme to Open System users (designers,
developers, managers, administrators and end-users): Portability. The programme covers a broad range of
topics: from standards, patents and paradigms to practical solutions.

The programme committee has done its work well: Patrick Burbaud, Barry Shein and Ralph Treitz invested
considerable time and effort not only in reading and rating submissions, but also in putting together the
programme itself. The programme is clearly the result of their efforts — we are very grateful.

Jointly organising a workshop with USENIX has been to our advantage: input from both sides of the ocean
is effective. Let’s hope more events of this type will be organised in the future. We are sincerely greatful
to

D) The EurOpen Secretariat, whom once again have shown that a distributed organisation can work.

° Neil Todd, the EurOpen tutorial executive, has managed to align tutorial topics to the conference
theme,

° The USENIX office and liason Ed Gould, for their full cooperation and support,

° Stuart McRobert and Jan-Simon Pendry have again done a wonderful job of the proceedings: their
patience is amazing.

Frances Brazier
Programme chair

David Tilbrook
Programme co-chair

These proceedings were specially produced for EurOpen at the Department of Computing, Imperial Col-
lege, London, using resources generously provided by the Computing Support Group. Danny Turner and
Philip Male of Computer Newspaper Services Ltd kindly produced the bromides.

- sm, jsp.

ii

Table of Contents

Software Pre-POTtingccccooviriiiiiiiiiiiicceererecrertceereeee et 1
Marc Poinot; SEXTANT Avionique

Porting Under UNIX — Problem Areas and a Proposed Strategyccccouu... 15
Kenneth J. Chan,; University of Liverpool

Certifying Binary AppliCationscccocceeeueveiniececieineninieneeeeeceneeeee e 25

Donald A. Lewine; Data General Corporation

Applications POSIX.1 Conformance Testingccccceeveeveeruecmmcnenenernnnnnnne 33
Derek Jones; Knowledge Software Ltd.

X is the Worst Window System — Except For All the Othersc..c..... 43
Berry Kercheval; Protocol Engines, Inc.

Against User Interface Copyrightcoooiioiiiiniiieciirerten et 51
The League for Programming Freedom;

Against Software Patentscccccccoviiiiiniiniiniiiic s 59
The League for Programming Freedom;

Practical Problems with Porting Softwarecccceeeeviiniiiiiiiciiiniiee 71
Brian O’Donovan, Digital International B.V.

A Health Information System based on Unix-Client-Server called PHOENIX 83
Dr. Reinhard Koller; Amt der O Landesregierung

The Portability of GNU SOftwareccceeeevueverenincniiinceieecencccceeenenns 89
Joseph Arceneaux; The Free Software Foundation

Portability in a Research Environmentcccccovevvviniininiiinnciiincicnene, 105
Andrew Hume; AT&T Bell Laboratories

Inter-Fashion Portabilityc..ccoccooiiieminiinnenertnie ettt 115
Barry Shein; Software Tool & Die

Camera: Cooperation in Open Distributed Environmentsccccoeiiennnne. 123
Gert Florijn; Software Engineering Research Centre — SERC

Distributed System and Security Management with Centralized Control 137
Chii-Ren Tsai; VDG, Inc.

Author Index

Joseph Arceneaux <jla@ai.mit.edu>ocoovevvviieniimiicncncnnenniiciiiiiiis 89
Kenneth J. Chan <kjc@compsci.liverpool.ac.uk>cocoeomenieencncriiiniinnns 15
Atze Dijkstra <camera-info@Sserc.nl>ocooveviniveenenenenieiiiiiiin 123
Gert Florijn <camera-info@serc.nl>cccooiiinininiinccnencnniniccisiinnenn, 123
The League for Programming Freedom <league@prep.ai.mit.edu> 51
The League for Programming Freedom <league@prep.ai.mit.edu> 59
Virgil D. Gligor <gligor@eng.umd.edu>c..c.occvueveviiininiiiniinnninininnnienns 137
D. V. Henkel-Wallace <gumby@cygnus.com>cccoueevivreeciurernsreesrcnsnnne 89
Andrew Hume <andrew@research.att.com>ocooveeiiiiiiniiiiiiiienneinnnenenn 105
David Jackson <dave@compsci.liverpool.ac.uk>ccoevvveemveeenimniiineianneen. 15
Derek Jones <derek@Knosof.co.uk>ccoouuviuiriiiiniinniiinninienirieseenneeenens 33
Berry Kercheval <berry@pei.com>coviioiinieiiiinininiicininecnn 43
Dr. Reinhard KOLIEToceeiiieiieiieceececieiiiiiciiccrsne et 83
Donald A. Lewine <lewine@cheshirecat.webo.dg.com>cccoevuuureeenn. 25
Ernst Lippe <camera-info@serc.nl>cooovivunveniencninninniiiiiiniiinnnne, 123
Brian O’Donovan <odonovan@ilo.dec.com>ccccccoeerciurcerennnececisinnennns 71
Norbert van Qosterom <camera-info@serc.nl>c...cccooeeveeicevniiiiiiiinieninnnnne 123
1Y,) (o 0 1 Vo | S OO OO OO 1
Barry Shein <bzs@world.std.com>cccoeevieieenriieninreieintcietee e 115
Doaitse Swierstra <camera-info@serc.nl>cccccevvvniievienininiiiiniinieennneens 123
Michael Tiemann <tiemann@Cygnus.COM>cccoevveruivrirersreeeraeeriieesseeaseens 89
HOWard TIICKEY ..ocvviveiiirinienieeieie ettt 105
Chii-Ren Tsai <crtsai@eng.umd.edu>cccovvuerreicnennuercnnieeiecnnrecnneeneenns 137

UNIX Conferences in Europe 1977-1992

1977 May

1977 September
1978 January
1978 September
1978 November
1979 March
1979 October
1980 March 24th
1980 March 31st
1980 September

1981 April

1981 September
1982 April

1982 September
1983 April

1983 September
1984 April

1984 September
1985 April

1985 September
1986 April

1986 September
1987 May

1987 September
1988 April

1988 October
1989 April

1989 September
1990 April

1990 October
1991 May

1991 September
1992 April

UKUUG/NLUUG meetings

Glasgow University

University of Salford

Heriot Watt University, Edinburgh

Essex University

Dutch Meeting at Vrije University, Amsterdam
University of Kent, Canterbury

University of Newcastle

Vrije University, Amsterdam

Heriot Watt University, Edinburgh

University College, London

EUUG/EurOpen Meetings

CWI, Amsterdam, The Netherlands
Nottingham University, UK

CNAM, Paris, France

University of Leeds, UK

Wissenschaft Zentrum, Bonn, Germany
Trinity College, Dublin, Eire

University of Nijmegen, The Netherlands
University of Cambridge, UK

Palais des Congres, Paris, France

Bella Center, Copenhagen, Denmark
Centro Affari/Centro Congressi, Florence, Italy
UMIST, Manchester, UK
Helsinki/Stockholm, Finland/Sweden
Trinity College, Dublin, Ireland

Queen Elizabeth II Conference Centre, London, UK
Hotel Estoril-Sol, Cascais, Portugal
Palais des Congres, Brussels, Belgium
Wirtschaftsuniversitat, Vienna, Austria
Sheraton Hotel, Munich, West Germany
Nice Acropolis, Nice, France
Kulturhuset, Tromsg, Norway

Budapest, Hungary

Jersey, Channel Islands

vi

Software Pre-Porting

Marc Poinot

SEXTANT Avionique
Velizy-Villacoublay
France

Abstract

This paper describes the three levels we have identified in a pre-porting
process. The Palas-X SDE' has been developed, ported and installed
taking into account these levels: the source code portability, the devel-
opment / porting platform portability and then the installation / execu-
tion platform portability. Our idea is that there always are software
services for which we have no or partial information, so we have to
identify these parts, encapsulate them and keep in mind that there are
potential problems in there.

1. Introduction

1 Software Development Environment.

The Palas-X SDE [Ber91a] is developed by SEXTANT Avionique for
software projects which have a lifetime of about twenty years. We
want to reduce as much as possible the porting cost, so we prepare the
software by taking into account the Open Systems standardization and
our experience in porting. This preparation affects many steps in the
development, the installation and the execution environment. We call
this process pre-porting the software.

The pre-porting idea is to identify future problems in all parts involved
of the software product. Most of the time, developers use to have one
or two system oriented modules, which are dedicated to all system
calls. But experiences show that this is not enough, porting problems
may happen in another location that in the operating system calls.

Unfortunately, problems appear in all the development platform
specific parts, that can be compiler, editor, debugger, etc. including the
shell which often is the first interface to many tools. Moreover, you
can lost many hours to modify your porting environment itself, and
then once the software is ported it may not execute.

The software pre-porting has to impact the development, the porting,
the installation and the execution platforms. Our approach is to be as
close as possible to existing or oncoming standards, i.e. POSIX [1S090a]
and PCTE [Bou88a] services. Then the standard delta, i.e. differences
comparing to the standard, are identified and gathered in specific mod-
ules, we expect that future systems will made this delta decrease to
Z€10.

EurOpen & USENIX Spring *92 - Jersey, 6-9 April 1

Software Pre-Porting

In section 2 we describe the constraints and the goals we have to reach.
Section 3, 4 and 5 cover, respectively, the software code, the develop-
ment platform and the installation and execution environment portabili-
ties.

2. Constraints

2.1. Users’ Requirements

Our SDE will progressively be used in all SEXTANT Avionique projects,
including tools such as Palas-X itself, of course. Each staff has got its
own sub-networks, with an heterogeneous set of machines, operating
systems and environment. They have habits, local tools, most of them
do not want to be aware of the UNIX platform, all they need is consis-
tent and self-sufficient software. We have to port on these platforms
but we must also try to bring the standards in such development teams.
Therefore, we cannot force them to modify their working environment,
we have to take into account all the existence constraints in the com-
pany. The present porting targets are UNIX workstations, but there
may be needs for VAX / VMS or PC / XENIX platforms.

2.2. Development Requirements

2.3. Normalization

Our SDE must be of a great maintenability as well as a high quality in
the whole development cycle (which can reach itself up to twenty years
into the maintenance status). This software will be executed on plat-
forms which have not yet been conceived. We cannot avoid this
assumption but we presume that such machines will run standardized
models’ within 5 years. This is our SDE’s maintenability insurance.
Rules have been set in order to reach a high quality level, these affect
all steps of the development cycle. This was a great opportunity for us
to put our pre-porting rules in the bag by modifying existing develop-
ment rules with normalization and portability concepts, tips and tools.

Our team, 4 / 6 people for two years, knows the UNIX development.
They are familiar with tools like C+ compilers [Lip90a, Str86a] GNU
Emacs editor, make and all what can be done with shell scripts. Devel-
opment has been done on Sun4 platforms with CH compilers and
debuggers, however these workstations are not our only future users’
one. The whole software and the internal tools are managed inside
Adele 2 from the LGI [Est90a] at the IMAG (Grenoble, France), this
provides us the software database system.

The Open Systems models and standards take place in the SEXTANT
Avionique information system policy. This involves either lower levels
of software, such as operating system or network, and upper levels
such as user interface. This task will spend years, and we think that
first of all Open Systems must be understood and initiated by tool
developers like us rather than being forced by market. We tried to fol-
low all OSF recommendations, but RPC* used for our client / server
based system. This is an important and interesting part because RPC

T A model is “something” like a set of software parts for a global information management system.

¥ Remote Procedure Call (inter-process communication through the network, based on TCP/IP)

EurOpen & USENIX Spring “92 - Jersey, 6-9 April

Software Pre-Porting

were mandatory for one external service software. This is a case where
one part of the software cannot be normalized, but anyway we are
ready to use any other service instead of the previous (such as DCE’
for example).

3. Software Development

3.1. Code Quality

The software has been coded with an object oriented language and this
leads to natural quality [Mas89a] if some rules are set. We have two
levels of rules: the first one is the source code, comments location and
formats, syntaxes and naming rules have been defined, this allows
developers to read another code without being lost. We always try to
be as close as possible to the ISO C[ISO90b] libraries and syntax sub-
set of CH. We cannot refer here to the development rules such as these
which can be found in the GNU distribution, X Window System or Ker-
beros source code, but we pick many ideas from these softwares. The
second level is development methods, we are developing with the
Adele 2 program data base which allows versioning and configuration
managing.

One of the most important object oriented programming keyword is
known to be encapsulation [Mey90a] this leads to privacy and modu-
larity. We define classes with wide semantic ranges, each of these
were involving specific parts of the software, including the external
ones. The external services are the software parts which cannot be
modified by the development staff, whatever kind of part these are.
They can be generated or bought source code, libraries or execution
time services. The main service is the operating system, we also have
the RPC [Sun90a] Motif [OSF91a] the curses lib, the shell etc. A ser-
vice offers entry points into another software, or into another source
code. One entry point is centralized in one of our modules and we pro-
hibit any access to this entry elsewhere than from this module. Further-
more, if an entry point has two semantics then we duplicate this entry.

3.2. External Services Encapsulation

We explained to our developers that the getwd (2) POSIX system call
is not the same that the getcwd(2) they usually use (which doesn’t
allocate the returned string). They replied that it is really easy to mod-
ify now with some sed filter. But

e What is the modification cost now?
e What was the adaptation cost before?
e What about this new divergent version of the code?

e What about any new machine like some NHX80302 coming
straight from the Moon with a new almost-POSIX system?

The developer must be aware of the portability problem. There is no
real difference between a call to getwd and one to PX_getwd which
is our macro for the call to getwd because most of the time this is
rearranged by the pre-processor. But when you have got 200 modules
with somewhere in there many calls to many “not-invented-here” func-

+ Distributed Computing Environment (included in the OSF model)

EurOpen & USENIX Spring “92 - Jersey, 6-9 April 3

Software Pre-Porting

3.3. Generated Code

tions we cannot insure a good portability level or a correct maintenabil-
ity of such a code. In fact, what we are doing is:

1. Redefine all external calls
2. Constraint language syntax
3. Set rules for semantics

Of course, these rules are often common sense but it is a great effort to
make it done by a staff of developers who have at least 5 years experi-
ence of C projects on UNIX.

For example, when we are encapsulating the well known strcmp C
library function. It may be called to test equality or to find out differ-
ences. There are two entries in our external “strings” services module,
ST_strcmp which returns true or false, and ST_streq which
returns differences as an integer value. Developers are forced to use
the ST_strcmp and ST_streq functions instead of the usual calls.
Then developers do not try to use an external specific behavior, i.e. a
side effect or any manufacturer’s special extension. The service inter-
face (or header) is exactly the one which is expected by the developer.
The way to obtain this service from an external mechanism is in the
implementation itself.

Part of our software code is generated. This makes no doubt that code
generation will go increasing and we prepared to that. We use UNIX
code generator such as lex and yacc (lexical analyzer generator and
compiler generator [Sch85a]). We also have a user interface generator
which is really not portable, it is completely dedicated to the X Window
System [Sch88a] through the Morif library. The generated code may
be encapsulated and seen as an external service, but there are some
cases, such as the Motif user interface generators, where our code has
to be inserted into generated code. Two policies may be followed:

1. Encapsulate the generator definition language
2. Encapsulate the generated code

In some cases we can store two kinds of information: the definition lan-
guage and one version of the generated code. The compilation / port-
ing platform has got the two versions, but recompilation of the previ-
ously generated code will be avoided when possible. The Motif user
interface generator itself is not portable, it cannot be found on all target
platforms.

We have got two problems. The first one is to port the generated code.
The second one is to insert our code, which is supposed to be portable,
inside some parts of the generated code.

The first point is to insure portability before the code generation. Such
an encapsulation is not an easy task for tools which have got a private
definition language. Moreover, some tools are managing their own
files, sometimes in their own database and it is often difficult to modify
them. Then portability is focused on generated code encapsulation.

Tools which have a public definition language are encapsulated. Their
use and the input files format are modified to be portable when this is
possible (like with yacc which as well defined rules).

For example, the

yyerror (yacc)

EurOpen & USENIX Spring “92 - Jersey, 6-9 April

H
4

Software Pre-Porting

function is used by the generated code of the yacc tool. The standard
function prototype is

int yyerror(char*)

and this function has been re-declared and encapsulated in our source
code. We wrote the body of the function and we put it into a well
defined part of the “external code”. On the Domain / OS system the
generated function prototype is

void yyerror(charx)

and perhaps it is not an up-to-date version but it is the version we actu-
ally got. This leads to a source modification in a deep way as we have
to modify the service interface (a void function instead of an int
return) and modify the code itself (no return C keyword for the
void function).

The generated code is as portable as C code can be from a system to
another. In other words that implies all basic portability problems.
The problem occurs when the generated code must be modified. The
first reflex of a portable developer (sic) is then to write a modifier
which is not generator dependent, or at least a parameterizable
modifier.

For example, we have some checkuser (3z) function which is gen-
erated by a system tool. This performs a lot of verifications on an uid
get from the getuid(2) system call. Just assume that we need to
make our checks on the effective user id, we need now to use the
geteuid(2) system call instead of the previous one. This is a gener-
ated code modification. There is certainly no answer to such a problem
but we think that if this modification occurs it must be done by another
tool, as portable as possible that is mastered by the development and
the maintenance staff. Our modification processes are done with shell
scripts.

We have noticed that new X Window System based user interface gen-
erators, which are coming up now, are more aware of such problems.
Generated widgets or files are now coming more and more modular
and portable. This is a very important point for us, certainly more
important than any new blinking gadgets.

3.4. Parallel Version vs Pre-Processing

Some services modules clearly cannot be the same on every systems,
these modules have to be modified depending on the system needs.
There are two ways for modifying a service implementation code: the
pre-processing switches and the parallel version.

The parallel version idea is to develop as many different versions of
body code as needed. Each system may have its code for one service
module. That is classical parallel version management but in many
cases the differences are so close that maintenance may be a hard job.

The pre-processing way to modify a source code is well known in the
UNIX development. This is a best way to maintain services modules,
but a worse one if you had to trace versions, or if you have to increase
large pieces of different source. Our approach was to mix both meth-
ods, and then to gather POSIX-like systems in one sole source with pre-
processing selection.

For example, all UNIX resources are gathered in the PX module. The
difference between the interface and the implementation is emphasized
with the exec call of our PX_Proc C# class. The developer needs

EurOpen & USENIX Spring “92 - Jersey, 6-9 April 5

Software Pre-Porting

int PX_Proc::exec(char* f)

if (PX_fork() == GOOD)
{
PX _exec(f); PX call(f);
}
PX_wait();
A B C
#define PX_POSIX #define PX_FUNIX | #define PX_PCTE

#ifdef PX POSIX

#define PX_fork() (fork()==0?GOOD:BAD)

#endif

#ifdef PX_FUNIX

#define PX_ fork() (fork()==PX_CHILD?GOOD:BAD)

#endif

#ifdef PX_PCTE

#define PX_call(f) call(f,PX ARG,PX ENV,PX DYN,PX STAT)
#endif

Table 1: Parallel versions and pre-processing

3.5. Some Tips

an PX_Proc: :exec' method which is doing something like “make a
sub-process, execute this file and wait for its end”. The
PX_Proc: :exec service has a little algorithm with some classical
calls such as fork / exec / wait as in the Table 1 (the first column of the
line 2). This class method is a super-service provided to the developer.
Therefore the fork, exec and wait (including wait structures)
were encapsulated by pxdefine.h header file (Table 1 line 4). On
the POSIX platform the correct flag is set (A) pxdefine.h macros
uses a simple pre-processing rewriting. On the almost-POSIX platform
(B) the use of pre-processing may be enough. On the PCTE platform
(C) the whole service has to be rewritten, and the PX_Proc module
itself gets a divergent version, as in column 2 line 2. Given one PX
body, a POSIX-like platform needs a cpp tuning and a non-POSIX plat-
form needs a new version. We use both mechanisms but POSIX calls
are first coded. Then other systems delta are pre-processed or rewritten
in parallel versions.

We avoid #if switches inside the source code body. The pre-
processing divergent versions are managed into the headers. This is
one rule that there always is one interface (i.e. header) for divergent
bodies.

The well known header key [Dar88a] has been extended, we are asking
for a whole service inside the header itself. Only a part of the header is
then pre-processed, Table 2 describes such a double header key.

For example, the PX_STDIO service must be explicitly mentioned, if
intended to be used by a developer. Services are not system declara-
tion rewriting. They can be, but most of the time they are general (such

+ The C+ language prefixes its methods (functions) with the class they belong to. In that case, the scope of the exec method is the

PX_Proc class.

EurOpen & USENIX Spring “92 - Jersey, 6-9 April

a8

Software Pre-Porting

as PX_MALLOC for all memory stuff, or PX_RPC for all RPC related
headers and rewritings).

All what can be used to make the software parameterizable must be
done. The sysconf(2) POSIX system call is used but it is not
enough. This is a run-time parameterization and this only involves the
system (which is obvious because that is POSIX.1). We need a static
way to identify the platform, a compile-time either as a run-time set of
tools and functions which allow us to tune our developments. Then all
tricks will be trashed out and we will be able to cooperate between
(Open) systems.

3.6. Maintenance Approach

Once the external services are encapsulated, we are expecting from the
developers to know what they are coding. This is not trivial. Most of
the time they include a lot of headers, with an uncomplete knowledge
of the real services of the latters. We have to identify each needed sys-
tem header, and gather them in global services (see Some Tips above).
Once the latter is encapsulated, the service is available for the develop-
€rS.

Development rules must not be lost during the maintenance, and exter-
nal services modules may be at least modified, at last rewritten and
sometimes by people who were not in the initial development staff.
The software must be set to allow such a modification. It is an evi-
dence that maintenance work must not alter the portability capabilities
of the software. Any new service extension must be done into that ser-
vice module. An interface modification, i.e. a service definition, must
be avoided.

3.7. Conformance to POSIX.1

Error cases are identified using POSIX codes. However, PCTE error
codes [CEC89a] cover a larger range and these have been taken into
account for further porting.

We had problems with C+ headers which were colliding. The OSF
and target system headers have non-empty intersection and functions
syntaxes such as pause(3) and signal(3) were defined twice
with non-compatible definitions. We choose to temporarily avoid such
includes and redefine these prototypes ourselves.

4. Compilation / Test Platform

4.1. Hacker vs Developer Porting

Some tools are known for the ability they have to be installed on any
platform, we have worldwide examples such as GNU Emacs or the X
Window System which are freeware. But one cannot say these are port-
able, these are stars and every hacker has put its stone in such software.
When you are in a ready-to-compile distribution, you have got the
source code. All is done inside this distribution in order to make you
compile it with two commands such as vi config.h and make or
some derivations from this. These kind of softwares have already
been ported. You are not really porting this software, you are switch-
ing on a platform which is already defined. Most of the time, there is
no way to port such a software if you are not a hacker yourself. Who is

EurOpen & USENIX Spring “92 - Jersey, 6-9 April 7

Software Pre-Porting

#ifndef PX_DEFINE
#define PX DEFINE

#ifdef PX_STDIO
#endif

#endif

Table 2: Specific service inclusion

really able to rewrite an alloca.c (clever memory allocation) in
assembly language for a new machine? We are not.

Our approach was to split services into encapsulated slices which
belong to “easy-to-port” and “not-easy-to-port” classes. Easy to port
services can be ported by our developers. The not easy to port services
will be ported by specialized companies. The service is clearly defined
and the company only has to furnish one implementation of this encap-
sulated service.

4.2. Configuration Extraction

4.3. Porting Platform

The configuration selects one implementation for each needed service
interface. Needed interfaces are well defined, it depends on the porting
target. We are there selecting services for one target. Bodies may
depend on the host platform, some may not exist, other may be differ-
ent depending on the local environment. We are there selecting one,
possible, implementation.

For example, the user interface is a generic service. When the host has
X Window System and Motif libraries we are able to choose the X711
user interface. In another case the configuration takes the alpha-
numerical interface. That is two different bodies for one service which
is the (generic) user interface. Once the selection is done, we have got
the source code distribution.

There are many approaches for the porting platform. The first one is to
have one platform for one machine, may be starting from one generic
version which is modified by a developer. Another one is to have all
platforms gathered in a sole one and a set of switches to tune it. You
can also generate it, with tools such as imake or makedepend. These
ways can be seen as another level of the parallel versus pre-processing
way we already explained previously.

In fact, the problem is to lay on a portable platform and to tune it for
the target. We think that the tuning can be done when the delta’s cost
to the standards are less than one day. Else the platform may need to
be deeply modified. Our porting platform is a POSIX-like one (that is
UNIX like) and we only have to manage little deltas such as Makefile
syntax, compilers options, and identification of headers and libraries.
There are many portable systems which have got very clever Makefile
files. But most of the time a clever Makefile means a not portable one,
or a very hard to maintain one if the latter is, actually, portable. The
imake and makedepend tools are attempts to build platforms from a
portable one. Unfortunately such tools are rare and porting them

EurOpen & USENIX Spring “92 - Jersey, 6-9 April

Software Pre-Porting

4.4. Development Tools

begins to make the porting platform more and more heavy and then
hard to maintain.

Thus, we have a set of generic Makefiles and a set of associated scripts.
Scripts are making values substitutions, this makes the Makefiles more
clear and this increase portability.

Most of the time the compilation / test platform is built with a set of
manufacturers tools such as editor / compiler and debugger. These
tools often are forgotten but they are critical in the porting process.
There is no way to compile a software without a compiler, and there is
no way to find a bug without an editor (and it is easier with a debug-
ger). The compilers problems we may have are problems such as:

e Compiler specific (mandatory) option

e Compiler language version (syntactic or semantic constraints)
e Compiler (or related tools) generated files

o Compiler (or related tools) tables size

Our approach was to reduce the use of the tools to the most little usable
set. Then we have to disallow all options we are not really known on
other compilers, linkers.

For example, we cannot call our files foo.sxt_c++ and compile
them with that name, we may have size problems with switch struc-
tures. The C or C++ compiler may be more or less tolerant, some com-
pilers force an error when they reach up more than 200 warnings which
where ignored by another compiler. The development rules are then
applied to the development file structure itself: file names, sizes and
directory structure. Problems happen with hidden file names, such as a
pre-processor which will generate intermediate file name foo. i when
foo.c is the name of the the body file. This is not very funny when a
set of related data files is named foo.i and the pre-processor over-
writes it without any warning! Our naming convention uses the . ¢ and
. h extension but sometimes more than these two “no-problem” cases
are needed.

The editor problem is not a real one because there always some editor
on a “used” platform. The debugger is efficiently replaced by the edi-
tor / compiler set and the useful print£(3) function.

Our porting platform is now complete.

4.5. Conformance to Standards

We haven’t found a way to answer to the question: “Is that system
POSIX-like?”. There is no way to find out if a part of a system has
POSIX requirements, sometimes we meet a file called e.g.
posix.readme, libxpg2.a or osfcn.h which are not really
intended to be used (they are not clearly indicated). Header files are
not documented enough. Nowadays porting is a hacker job not a
developer’s one. Headers and their contents, that is services, should be
documented and clearly located in every POSIX-like system. Most of
the documentation is arranged to make the developer use manufacturer
dependent software services or tools. We try to avoid it as long as we
are aware of it and responsible for such choices.

The shell and its utilities are not yet standardized, at this time, but the
IEEE P1003.2 D11[1EE90a] seems to be clear enough to be taken into
account. The C subset of C+ compiler is very close to an ISO C one,

EurQOpen & USENIX Spring "92 - Jersey, 6-9 April 9

Software Pre-Porting

and we have three CH compilers which often react differently. Our
way to use such a compiler is very classical. The lex and yacc code
generators are quite well defined in most of the systems. Either for the
grammar definition than for the way to use them. The make utility has
been used with as less gadgets as possible.

5. Installation and Execution Environment

5.1. Identification

5.2. Script Portability

The ready-to-install distributions are software products sold on every
available platforms. The approach is then to furnish a lot of binary and
dedicated script files and then a specific license, or only a specific
binary and a script on a host. If we lay on the side of our paper the
binary code compatibility, we can note that their scripts, their execution
environment, are dedicated to a specific platform. Does it mean that
we cannot have a product for a POSIX-like platform whatever it is?

The installation / execution part is a delicate part where (in all cases)
we have to modify our system in order to make it run on an unknown
environment. The idea is to find out what kind of environment we have
got, at this time the only way to do that is with a script which looks for
specific services and asks questions to the user in charge of the installa-
tion. Such a script can be found in the Kerberos source code. This is,
one more time, a hacker trick. Who is going to maintain such a script?
When there is a delta between our platform and the host, who is
responsible for filling in the hole?

Our answer is (1) the developers have to furnish standardized inter-
faces and have to ask for standardized services to the host, (2) the hosts
have to furnish standardized services and (3) the installator staffs must
be able to find out services and tune them. Of course, form a marketing
point of view, we must provide an installation script with its manual
which reduces the “Guess where it is?” part of the installation. We
have a POSIX-like target installation platform.

A shell script contains (1) control structures, (2) builtin commands and
(3) external commands. The first two points can be reduced to the
Bourne shell [Bou82a] subset of syntax and builtin commands. The
third part is encapsulated into another shell script which insure porta-
bility, using shell variable to switch from one to another version.

For example, the way to call the sort utility has been modified in
POSIX.2 version. Portable shell scripts are calling our sh.sort script
which encapsulate the various ways to call sort depending on the target
system. Switching to the correct version is done using a shell variable
which is set during the system identification.

There is a problem of “hardware” portability. That is, there are four
user interfaces versions: the alpha-numerical one, the X Window Sys-
tem one, the batch one and an API library. We insure that whatever is
the hardware, or the way the user wants to access to the software, we
are able to port from one of these generic interfaces.

10

EurOpen & USENIX Spring 92 - Jersey, 6-9 April

T
[ae
Opery

Software Pre-Porting

5.3. Maintenance Problems

Maintenance efficiency is focused on version upgrading and this needs
a compatibility between versions. Execution problems are shell, sys-
tem or tools ones. We must have portable shell scripts but many parts
are platform dependent such as tools location, machine identification.
The system problems often are access rights issues, badly mounted file
systems or anarchic RPC setups. Tool problems we have come up
when users want special features such as security, multi window sys-
tems or all-automatic environments.

We have decided to write a simple “problem analysis” manual, but a
automatic analysis script has been rejected. Our portability work stops
here, when the whole information system management is to be adapted.
The maintenance has now to give the same software product from
delivery to delivery. The system operator has to modify our execution
environment, this is easily done because all binary files are called
through documented and parameterizable scripts. The installation plat-
form must take into account all the environment tuning. This is not
only a marketing action, this is a portability one.

5.4. Conformance to Standards

All in all, the practical effect of the POSIX.2 standard to our software is
to drive the option choice and the integration into the “UNIX way to do
things...”. We have taken into account the “utility argument syntax”
for option syntax. The tool has been designed in order to work with
pipes.

The X Window System user interface has been built on the Motif toolkit
with respect to the Motif style guide. We furnish a set of X resources
which can be loaded or not by the user.

6. Porting Experiences

6.1. Methodology

Most porting methodologies are home made, manufacturers are not
concerned with such problems and software editors probably keep their
methods secret. Only UNIX users group such as the French AFUU edit
portability guides [AFU91a] which certainly are useful for software
pre-porting. The porting methodology we use is:

Make our source code portable

Make our development platform portable

Make our installation / execution platform portable
From (1), (2) and (3) identify all external services
From (4) and using (2) build the porting platform
Identify the target platform

Extract distribution using (6) results

Tune platform (3) and (5) using (6)

Compile / test / install

A T L T o

The effort is into (4) and (6). The idea is to never trust the documenta-
tion except the ISO/IEC one which (in neither case) doesn’t refer to
any specific system. Even if this is not the most detailed, the most

EurOpen & USENIX Spring *92 - Jersey, 6-9 April 11

Software Pre-Porting
Machine (O ¢))) (3) | (3bis) | (4) | Total
HP400 Domain/OS 10.3 || 2.00 | 1.00 | 1.00 | 030 | 3.15 | 745
Sun3 Sun0S4.0.3 030 | 0.15 | 0.00 | 000 | 0.00 | 0.45
Sun4 Sun0S4.1.1 030 | 015 | 000 | 0.00 | 0.00 | 045
HP700 HP/UX 030 | 030 | 0.00 | 030 | 0.00 | 1.30

Table 3: Porting time repartition

6.2. Effective Porting

explained with examples (but it is in fact...) this always is the point we
start from.

The total porting time has been collected from several porting experi-
ences. So far we have ported on three systems, inciuded our develop-
ment platform. This last point is one of the most important, it empha-
sizes all habits which could have been problems for further porting
platforms. The time has been added for each part we are focusing on,
that is the main steps of the porting process. This process is:

1. The “discovery” of the platform, tools, headers, libs and all
specific parts of the target platform

The tuning of the Makefile depending on the previous point

3. The compile time problems: language syntax and development
rules and (3bis) the external services call

4. The installation and execution time problems

Note that the porting experience goes from the distribution tape extrac-
tion to the run of the execution script (including installation). Table 3
shows relatives times spend for each porting, time is in hours and min-
utes. The hp700 target has not been ported yet, it is an evaluation.
Porting target are sorted from the first ported to the last (future) one.

This table shows two important points. The first one is that the porting
effort is located into the platform itself, i.e. into the tools and service
identification and their calls in the Makefile. The second point is that
further porting only need tuning into the system and code services.
This emphasizes the fact that once the services are identified, we only
need to find them out in the new porting platform. So, if the service is
standardized then the effective cost of this part is (close to) zero.

Conclusion

All in all, even if we don’t port immediately the whole software and its
environment on a lot of platforms, this was a nice example of services
identification and this have improved the Palas-X robustness. The
effective cost for porting Palas-C' from Apollo / DomainOS to Sun3 /
SunOS4.xx was two man months. The same task has been done with
several source lines modified in the system module and the Makefiles,
this has been done in one day.

There is no doubt that portability is often synonym of readable and
understandable, but this is also antonym of efficiency and perhaps C
hacking? From our point of view, portability is strongly bound to (1)

+ This is the last previous version of Palas (born 1982)

12

EurOpen & USENIX Spring “92 - Jersey, 6-9 April

Software Pre-Porting

maintainability and (2) reusability. In fact, portability is another way to
have a great code quality and this leads to maintenance and reuse.
Maintenance is 75% of the software lifetime [Ram84a)] and everyone
tries to reduce its cost. During the maintenance phase, the life cycle
which goes from development (bug correction, enhancements...) to the
end user may be very short and very used. A software which has got a
high portability level, on all the steps we have described in this paper,
has reduced the cost of this cycle when an event such as a system
upgrade or a machine exchange or addition arrives. Reusability is also
an immediate application of such a modularity, encapsulation and ser-
vice identification. In fact we have redefined the nowadays system
lacks: unambiguous interfaces of well-defined services.

Our idea is that a key to a portable software is a software where every
service which isn’t yours is identified and encapsulated. We need stan-
dards, this fixes the services interfaces and then our portability.

Acknowledgements
I would like to thank Pierre Bernas for his encouragements, Laurent
Daniel and Clément Martin from Universite’de Montreal for their early
and bright advice.

References

[AFU91a] Groupe portabilité AFUU, UNIX et systémes ouverts: de la
portabilite au portage, AFNOR Technique (1991).

[Ber91a] P. Bernas, “Intégration d’outils dans un AGL,” 4th Inter-
national Conference on Software Engineering and its
Applications, Toulouse, pp. 513-526 (December 1991).

[Bou88a] G. Boudier, F. Gallo, R. Minot, and I. Thomas, “An over-
view of PCTE and PCTE+,” Proceedings of the ACM SIG-
SOFT 13(5), pp. 248-257 (November 1988).

[BouB82a] S. Bourne, The UNIX system, Addison Wesley (1982).

[CEC89a] CEC, PCTE: A basis for portable common tools environ-
ment. Functional Specification V1.5, Commission of Euro-
pean Communities (June 1989).

[Dar88a] P. A. Damell and P. E. Margolis, C a software engineering
approach, Springer Verlag (1988).

[Est90a] J. Estublier and N. Belkhatir, “Adele2: un outil pour la
gestion des logiciels,” Genie logiciel et systémes experts
21 (December 1990).

[IEE90a] IEEE, p1003.2 D11 POSIX part 2, Shell and utilities, IEEE
(March 1990).

[ISO90a] ISO/IEC, ISO/EC 9945-1 POSIX part 1, System Applica-
tion Programming Interface (C language), 1SO/IEC
(December 1990).

[ISO90b] ISO/IEC, ISO/IEC 9899 Programming Languages — C,
ISO/IEC (December 1990).

[Lip90a] S. B. Lippman, C++ primer, Addison Wesley (1990).

[Mas89a] G. Masini, A. Napoli, D. Colnet, D. Leonard, and K. Tom-
bre, Les languages d objets, Intéreditions (1989).

EurOpen & USENIX Spring 92 - Jersey, 6-9 April 13

Software Pre-Porting
[Mey90a] B. Meyer, Conception et programmation par objets,
Interéditions (1990).
[OSF91a] OSF, OSF/Motif programmer’s reference, Prentice Hall
(1991).
[Ram84a] C. V. Ramamoorthy et al, Software Engineering, problem
and perspective, COMPUTER (IEEE) (October 1984).
[Sch88a] Scheifler, Robert, Gettys, and Newman, X Window System,
DEC Press (1988).
{Sch85a] A.T. Schreiner and H. G. Friedman, Introduction to com-
piler construction with UNIX, Prentice Hall (1985).
[Strt86a] B. Stroustrup, The C++ programming language, Addison
Wesley (1986).
[Sun90a] Sun, Network Programming Guide (Part Number 800-
3850-10), Sun Microsystems (1990).
14 EurOpen & USENIX Spring *92 - Jersey, 6-9 April

Porting Under UNIX —
Problem Areas and a
Proposed Strategy

Kenneth J. Chan David Jackson

University of Liverpool
Liverpool, England
{ kjc | dave }@compsci.liverpool.ac.uk

Abstract

Much has been written on software portability and on guidelines for
writing highly portable programs. In a large number of UNIX environ-
ments — educational establishments being good exampies — the mem-
bers of software support teams know only too well that much of the
software that they have to port either does not follow such guidelines,
and, even when good programming practices have been adhered to,
packages often (by necessity) contain a substantial amount of system-
specific code. In such circumstances, the accumulated wisdom derived
from the experience of porting many items of software over many
years is drawn upon to provide the insight required to deal with a par-
ticular package. To the casual observer, the porting process can appear
largely unstructured and ad-hoc, and a generalised methodology may
seem almost impossible to define.

An initial aim of this paper, then, is to impose some sort of structure on
the list of problem areas that porting specialists encounter in their activ-
ities. This is achieved by examining the typical difficulties that arise
due to the particular “flavour” of UNIX that is being used, and also the
typical problems that are found during each of the stages of compila-
tion, linking and execution when installing a package. This broad
classification is then used as a springboard for developing a strategy for
porting software on UNIX systems. Throughout this paper, we present
various examples of packages that have caused problems when ported
to our particular departmental computer system, but other institutions
will undoubtedly have suffered analogous tribulations.

1. Introduction

On occasion, the installation of a new piece of software will go without
a hitch; that is, it will compile and link first time, and execute exactly as
the specification says it should. Software porting and maintenance staff
are kept in their jobs by the fact that things rarely run as smoothly as
this, particularly when an application is developed on a different

EurOpen & USENIX Spring *92 - Jersey, 6-9 April 15

Porting Under UNIX — Problem Areas and a Proposed Strategy

machine and under a different operating system to that of the target
environment. Porting from (say) VMS to UNIX can pose considerable
problems if the software makes heavy use of system calls that have no
direct UNIX equivalents. Even when performing UNIX-to-UNIX ports,
however, there may be differences between the two operating systems
that constitute significant obstacles to porting.

In certain instances, these variations in the source and target environ-
ments may entail a lot more than simple modifications of the source
code (assuming that it is available). If certain resources required by the
software are lacking, the effort involved in supplying them must be
weighed carefully. These resources may take the form of completely
separate packages which may themselves have to be ported. For exam-
ple, the installation of the GNU C#+ compiler (g+) necessitates the
prior installation of the GNU C compiler (gcc); similarly, the Cornell
Program Synthesizer makes use of BSD’s as-style directives (such as
those produced by the GNU gas assembler). Other resources may be
on a smaller scale, but equally as essential: inter-process communica-
tion in the application may be implemented using shared memory,
which the target operating system may not support; the application may
require a certain granularity of timer resolution (set with setitimer)
which again may be unsupported; and so on. The emulation (if this is
at all possible) of such resources can involve substantial programming,
and may be judged to be not worth the effort.

Where modification of source code becomes necessary, this task is
greatly aided if the original programmer has followed established
guidelines for writing portable code [Lap87a, Can90a, Dol90a}. How-
ever, it is not usually possible for the developer to test out the code on
anything more than a small number of machines, and it is therefore
unsurprising that any non-trivial systems software package tends to
exhibit some machine-dependent characteristics. In specific circum-
stances, documentation relating to the porting of a package, or from
one machine to another [Hew91a], can be of great heip; more gener-
ally, the knowledge and expertise of the porting specialist is indispens-
able in these situations.

To an observer, the speed and accuracy with which an experienced
member of a porting team can locate and define a malfunction caused
by system-dependency, and then to make the appropriate amendments
to get it to execute on the target machine, can be impressive to say the
least. When asked, such specialists find it difficult to describe the pre-
cise thought processes that are involved when tackling the porting of a
software package, and so a rationalisation of the vast folklore that
forms the knowledge base of the UNIX porting gurus appears to be an
insurmountable problem.

In the Computer Science Department of Liverpool University, the com-
puting facilities take the form of a network of Hewlett-Packard work-
stations, connected via Ethernet and running HP’s version of UNIX
System V (HP-UX). This is administered by a team of technical sup-
port staff, for whom much of the daily activity is concerned with port-
ing software. Importantly, a closer scrutiny of their activities reveals
that certain categories of porting-related errors occur frequently in cer-
tain contexts, and a prime aim of this paper is to identify these and
hence impose some sort of structure on at least some of the porting
specialist’s expertise. More specifically, it would seem that certain
problem areas are very much related to differences between the source
and target UNIX systems (especially between SysV and BSD), while
others are often associated with a particular phase of the compilation-

16

EurOpen & USENIX Spring *92 - Jersey, 6-9 April

Porting Under UNIX — Problem Areas and a Proposed Strategy

link-execute cycle of installation (although it may still be the case that
these errors are caused by variations in operating systems), and we cat-
egorise these accordingly. This is illustrated with examples of prob-
lems that have been encountered by our own technical staff, but which
are almost certainly not peculiar to our own particular environment.

Investigation also suggests that, despite the unstructured and ad-hoc
appearance of the porting process, support staff with extensive experi-
ence in these matters actually take a reasonably systematic approach,
precisely because they are aware of the aforementioned categories of
errors that can occur at each stage of the process. Gaining this knowl-
edge is usually less well-structured, however, and so in a subsequent
section of the paper, we attempt to establish a recommended strategy
for porting software under UNIX systems.

2. Porting Problems Due to UNIX Differences

Liverpool University’s Computer Science (LUCS) department is a
prime example of the sort of institution that is affected greatly by varia-
tions in UNIX systems. To understand this, it will be helpful to be
familiar with some of its background.

In 1988, LUCS was one of the first UK educational sites to purchase HP
UNIX systems. This procurement was typical of other educational pro-
curements of the time: emphasis was placed on acquiring as much
equipment as possible at the expense (unfortunately) of software pur-
chases. The department’s position regarding software was that public-
domain software would supplement the base-level software provided
by the vendor that was successful in the tender. HP were chosen
because they could deliver the required number of seats within budget.
This presented a problem: there was, at the time, a distinct lack of soft-
ware ported to the HP platform, since the vast majority of software had
been developed on, and written for, SUN and VAX computers running
BSD 4.2/4.3, reflecting the wider employment of these systems within
the UNIX community.

An impressive list of standards compliance is claimed for HP-UX,
including System V Interface Definition Issue II (SVID2), X/Open
Portability Guide Issue 111 (XPG3), POSIX 1003.1, and so on. This
implies that

. HP-UX conforms fully to AT&T System V (with BSD extensions),
and to the end-user this does indeed appear to be the case.
Examination of its anatomy suggests, however, that HP-UX is in
fact built on a BSD kernel made System V compliant. This gives
rise to certain peculiarities of HP-UX with regard to porting, dis-
cussed further in Section 3.2.

° HP-UX has passed some measure of portability which means that
applications should be easily portable to it. Experience has
shown that this is not always the case.

Since most public domain packages are written on BSD systems, port-
ing difficulties that arise are usually associated with a transferral from
BSD to SysV, rather than the reverse. In an attempt to circumvent these
problems, some vendors offer systems that have a foot in both UNIX
camps, in the form of either a “hybrid” system (e.g. HP-UX) or a
BSD/SysV switchable system (such as Dynix). In the following sub-
sections, we examine some of the typical problems encountered in
porting across systems.

EurOpen & USENIX Spring *92 - Jersey, 6-9 April 17

Porting Under UNIX — Problem Areas and a Proposed Strategy

2.1. Include Files

2.2. Terminal Handling

Most packages will specify the names of files that contain header infor-
mation that is necessary for the building of the application. These files
are indicated with the #include pre-processor directive. A common
problem is that the name of the file that is given in the directive may be
different on another system, or may reside in a different directory from
the one expected. For example, on BSD systems there exists a system
include file called strings.h, which contains such things as the dec-
larations of string handling and comparison functions. On System V,
the equivalent file is named string.h (i.e. singular instead of plural).
Similarly, include files that are conventionally found in the
/usr/include/sys directory on BSD systems may reside in
/usr/include on SysV.

There are essentially two approaches to dealing with these problems.
The first is to modify the source code by changing include file names to
the equivalent names on the target system. This is usually the preferred
approach, but for some packages this may mean the modification of
dozens of source code files. This brings us on to the second approach,
which is to modify the system filestore to reflect the requirements of
the application, possibly using soft-links to create pointers to equivalent
files. It goes without saying that this is a course of action that should
not be taken lightly: any changes to the directory structure do nothing
to alter the inherent portability of the current package, and may
adversely affect the porting of other packages. Additionally, it does
not help other sites to install the package unless they are informed of
the changes that have to be made to the filestore. HP-UX, with its BSD
influence, offers a partial (albeit unofficial) solution along the lines of
this latter approach: it provides a directory called /etc/conf/h
which is intended to be used in the re-building of the kernel, but which
also contains many of the files that are missing from /usr/include.

2.3. Command Output

Terminal handling is extensively used in, for example, editors, to set up
such things as single character input. The mechanisms for performing
this on BSD systems (the tty interface) are very different from those
on System V (the termio interface), and can cause major headaches
during porting. This can be true even without varying machines, a case
in point being SUN, who used to use tty and who now use termio.
To illustrate the difference, consider the setting of even parity on a ter-
minal. Using tty, this is achieved by masking an object called
sgttybsgflags with a flag called EVENP; with termio, you have
to mask a field of a structure termio.c_iflag with a constant
called INPCK, and then mask termio.c_cflag with two other con-
stants. There is clearly little similarity between the two mechanisms.

The commands that are bundled with UNIX systems may generate dif-
ferent output on different machines. Usually, these differences are
only slight, affecting (for example) the way the output is formatted. If
the command is used in isolation, this has no significant impact on the
end-user, but when the command is called by another application that
expects the output to adhere to a strict convention, the effects can be
catastrophic.

18

EurOpen & USENIX Spring “92 - Jersey, 6-9 April

Porting Under UNIX — Problem Areas and a Proposed Strategy

The Cornell Program Synthesizer generates syntax-directed editors,
according to a definition of a language grammar supplied by its user.
As part of the process of building an editor, Cornell creates an interme-
diate file containing assembler directives (pseudo-operations) in BSD
format. The version of the as assembler supplied with HP-UX (and
quite probably other systems) does not recognize the manner in which
these directives are specified. As an example, the declaration of a glo-
bal label in BSD-style assemblers is introduced using the directive
.globl, whereas the HP assembler uses global.

This proved to be more than a minor irritant — it was sufficient to pre-
vent further progress on the port without a major re-think. One possi-
bility would have been to modify the source code to produce HP-style
directives, but the sheer complexity of the package and the increased
non-portability that would have been introduced made this undesirable.
The solution adopted was to port an assembler using BSD-style direc-
tives — the GNU gas assembler. For similar reasons, the GNU version
of yacc (bison) also required porting.

For Cornell, the easiest option was to port public domain packages, but
the installation of these is not always straightforward. The curious way
in which g++ (the GNU version of C++) performs part of its initialisa-
tion forms a good example. During the building of g++, a number of
object libraries are created which contain, amongst a whole host of
other things, a number of functions with names of the form
“initxxx”, where xxx is the rest of the identifier. An initialisation
routine is then generated by scanning these libraries for the names of
functions beginning with the string “init”, packaging all these names
up to form a source code routine which calls the functions, and compil-
ing the result. Now, the way in which the name scanning is done is by
running nm on the libraries, which outputs the names of all the objects
contained therein. Unfortunately, the way in which the output from nm
is formatted can vary across machines, and this can cause the scanning
of the routine names to fail.

It should be clear that the employment of such convoluted methods for
building packages can give rise to its own problems; this is further
illustrated by the TeX text-processing package. To save on execution
time, some of the data structures that TeX constructs in its initialisation
phase can be pre-fabricated by running the package until a certain point
is reached and then typing the appropriate command to make it dump
the contents of memory into a core file. A program is provided which
then converts this core file to an executable a.out file which is essen-
tially the TeX program with all its initial data structures already built.
The problem here, of course, is that different UNIX systems rely on dif-
fering formats of both core files and a.out files, so that unless you
have the conversion program that is tailored to your platform, you have
to write your own (the solution adopted at LUCS, incidentally).

2.4. Semantics of System Calls

Like UNIX commands, the semantics of system calls can vary across
systems. One of the best-known examples is the C library routine
sprintf, which on BSD systems returns a pointer to the start of the
array containing the output string, while under System V it returns an
integer indicating the number of items written out. Other examples
abound and, unless one is aware of them, they can be very hard to iden-
tify as the cause of a malfunctioning application.

EurOpen & USENIX Spring “92 - Jersey, 6-9 April 19

Porting Under UNIX — Problem Areas and a Proposed Strategy

The above examples illustrate that porting between different versions
of UNIX is problematic enough. It is our experience at LUCS that even
porting applications under what is said to be the same operating system
is often frustratingly non-trivial. HP market two distinct hardware
ranges — the Motorola 68000 (CISC) based series 300 and 400 worksta-
tions and servers, and the HP Precision Architecture (HP-PA RISC)
based series 600, 700 and 800 workstations, servers and multi-user
machines. It is claimed that the CISC and RISC versions of HP-UX
became functionally identical as of release 7.0. That release has since
been superseded, but differences still exist between the two versions
that are severe enough to complicate what should be straightforward
ports. New releases of HP-UX also create new problems, with applica-
tions that used to work now no longer functioning. It would be unfair
of the authors, however, to assume that the systems in use at LUCS are
unique in this respect.

3. Problems During the Porting Process

Most public domain packages are supplied with one or more make files
that take on much (if not all) of the burden of building the application.
Even with this automated assistance, difficulties may still arise as the
software is taken through each of the phases of compilation, linking
and execution. For each of these phases, we once again identify some
typical problem areas.

3.1. Compile-Time Problems

Even where good coding practices are followed, the differences
between compilers can greatly affect the ease of porting. More and
more programs are now being written in Ansi C or even C+, and sup-
port programmers are having to become aware of how to understand
and write code in each of these styles. Compilers often impose restric-
tions on programming constructs which they may or may not flag at
compile-time. Classic examples of unimplemented features include
enums and the passing of structures as parameters to functions; these
are irritants that can be tiresome to re-code. When porting xview, our
compiler objected to the use of an enum in the expressions tested in a
switch statement, and these had to be cast to integers. Other restric-
tions such as those on the sizes of data segments are not always so easy
to overcome.

The C compiler pre-processor cpp is a common source of complaint,
since some packages use this in isolation and expect its output to
adhere to a particular format. Using the Cornell Synthesizer as an
example yet again, this system generates intermediate text files as part
of the process of building editors, which it then runs through cpp. The
output from cpp is then used as input to a separate program. As part
of its output, cpp may generate #1ine directives; in our version of
the pre-processor, a single space was output between the “#” character
and the “line” string, which was not expected by the Cornell system
and caused it to fail. The remedy was to use another cpp. The manner
in which cpp processes directives also affected the porting of xview:
the HP-supplied pre-processor did not support the #elif statement,
and so all of these had to be converted to nested #if directives.

20

EurOpen & USENIX Spring "92 - Jersey, 6-9 April

Porting Under UNIX — Problem Areas and a Proposed Strategy

3.2. Link-Time Problems

It is quite common during porting, especially from BSD to System V, to
be presented with missing routine/function error messages. For com-
patibility, HP-UX provides libraries of BSD functions (called
1ibBSD.a and 1ibPW.a), and it is often simplest just to link to
these. In other cases, System V may provide equivalent functions with
different names; the problem here is being aware of the equivalences.
Even where function names are identical in the two systems, arguments
to the functions may differ. Consider the input/output control function,
called ioctl under both BSD and HP-UX. One of the arguments to
this routine is a command, but the constant names used to represent
these commands are completely different on each system. It is not
obvious, for example, that HP’s FTIOGSAIOOWN command is equiva-
lent to BSD’s FIOGETOWN, or that FIOSSAIOSTAT is the same as
FIOASYNC.

It has already been mentioned that HP-UX is, in fact, a hybrid of Sys-
tem V and BSD UNIX. Internally, the kernel makes extensive use of
BSD routines which are not made accessible to the user. An include
file called /usr/include/sys/syscall.h lists all the known
Chapter 2 system calls, each name being associated with an index num-
ber, so that exit is assigned the index 1, fork has index 2, and so
forth. Routine names that would normally be available under BSD, but
which are not available under System V, are commented out of the file.
The number given in the file for each system call is an index into a
table maintained by the kernel and called sysent. Each entry in the
table contains, amongst other information, the address of the function
code in the kernel; the entries for unsupported system calls contain the
address of an error routine. This means that if, during porting, it is
found that a package makes a BSD system call that System V does not
support, it is possible under HP-UX to use a debugger such as adb to
find the address of the function and patch it into the address table, so
restoring access to it. Again, this is not something that should be done
lightly, particularly in a clustered environment in which there may be
many instances of the kernel.

New releases of operating systems bring with them new run-time
libraries, and it sometimes happens that programs that ran perfectly
well with the old libraries do not behave well with the new ones. At
LUCS, the Ada compiler translates Ada source to C source, which is
then run through the standard C compiler. A recent upgrade to HP-UX
introduced shared libraries, and it was discovered that any Ada pro-
gram that employed parallel processing (tasking) would no longer work
with these libraries. A means had to be found of forcing the C com-
piler to link with the archive libraries rather than the shared libraries —
not as easy as it might sound, due to the fact that the C compilation and
linking is directed from within the Ada translator.

3.3. Run-Time Problems

This is the usually the most difficult of the three phases for the pro-
grammer doing the porting, since compile-time and link-time problems
often manifest themselves as error messages that afford some degree of
assistance. Many run-time problems arise as a result of differences in
the semantics of system calls, discussed earlier. Others are due to vari-
ations in file formats; e.g. a debugger will expect a. out files to follow
a strict format, and any programs that access device files or the kernel
memory (/dev/kmem) will expect certain conventions. Still another

EurOpen & USENIX Spring “92 - Jersey, 6-9 April 21

Porting Under UNIX — Problem Areas and a Proposed Strategy

area of system dependencies to be aware of concerns the reliance of
some packages on particular word sizes, byte orderings, alignments,
etc.

Interesting things can happen with variable argument functions (the
varargs problem). For efficiency, some applications provide their
own input and output routines such as printf; examples of programs
which do this include device-independent trof £ (ditroff) and the ded
text editor. In writing a routine like printf one doesn’t know how
many arguments to expect in advance. To work round this, the format
string forming the first argument is used to determine the other argu-
ments that are passed in the call, and these are picked off the run-time
stack as they are needed. The problem with this is that a decision has
to be made concerning the direction in which the stack grows: does it
grow towards the high end of memory or the low end? For any
machine that the program is ported to that follows the opposite conven-
tion to the one implemented, the application will fail.

4. An Approach to Porting Under UNIX

The types of frequently-occurring problems identified in the previous
sections suggest that it is possible to establish and recommend a gen-
eral set of guidelines that act as a strategy for equipping oneself with
the necessary preparedness for porting a wide range of applications.
These are stated as follows:

1. First of all, establish a good background. Make sure you know
all the ins and outs of programming in C, including Ansi C and
preferably C+. Be aware of what the majority of the C library
routines do, what commands are available, what system calls
there are, and so on. Learn the major differences between Sys-
tem V and BSD UNIX, and any peculiarities of your own host
UNIX. Make sure your shell programming is up to scratch, and
that you understand how things are done under UNIX (for exam-
ple, how do you set up sockets?).

2. Gain familiarity with the available tools. Most applications come
with make files, so understand how make works and how to
amend the files. A number of applications make use of the com-
piler generation tools Lex and Yacc, so it is useful to gain expe-
rience with these. C program checkers like 1int are good for
finding non-portable constructs. Learn how to use both a
source-level debugger and an assembly-level debugger such as
adb; remember that you will not always have access to the
source code.

3. For specific packages, be prepared to consult anyone and any-
thing. Before you do anything else, read the README files —
they can save you a lot of trouble during the port. Read any
other documentation that is provided, in order to gain some
knowledge of what the application is supposed to do; otherwise,
it is difficult to know whether the port has been done properly. If
necessary, consult other experts — they may have ported a similar
package before. Don’t be afraid to broadcast your queries on
USENET - it’s a quick and painless way of eliciting expert assis-
tance.

4. Decide whether or not to wait — a problem may no longer be a
problem in the next release of the operating system since new
releases often introduce new functionality. HP-UX 6.5 did not

22

EurOpen & USENIX Spring “92 - Jersey, 6-9 April

Porting Under UNIX — Problem Areas and a Proposed Strategy

provide SIGIO, syslogd or wait3, but these were all present
in HP-UX 7.0. Conversely, waiting may make things worse: an
example of this is the Ada problem described in Section 3.2;
other examples include changes to addresses within the kernel,
which affected a debugger, and changes to NFS, which caused
the ded editor to crash.

5. Make high-level decisions about the particular porting tactics to
be used. In the case of header files, for instance, is it easiest and
best to modify all the source code programs to refer to files avail-
able under the target UNIX, or should the source code be left well
alone and the changes made to the file structure instead?

6. The hard bit! Do the port itself, remaining aware of the problem
areas described in this paper.

7. Test the executables. Some packages, such as the Icon pro-
gramming language and the Gag compiler-compiler, provide
suites of test data and expected outputs — if these are available,
they should be used.

8. Finally, prepare a list of all the modifications that have been
made to install the application — it may well come in useful in the
future.

5. Conclusions

In this paper, we have attempted to construct a framework for cate-
gorising the types of problems that are frequently encountered during
the porting of applications. Numerous examples have been described
to illustrate this structure, but these are in no way intended to constitute
a comprehensive list — another establishment picked at random and
installing the same packages will no doubt have experienced a com-
pletely different set of problems. Although most of the examples given
in this paper are based on our own experience with HP-UX, the strategy
for porting given in Section 4 is intended to form fairly general advice,
and it is hoped that this is of use to others who, whether they wish it or
not, will spend much of their time porting applications under UNIX.

References

[Can90a] L. W. Cannon et al, Recommended C Style and Coding
Standards, USENET public domain document (June
1990).

[Dol90a] A. Dolenc, A. Lemmke, D. Keppel, and G. V. Reilly,
Notes on Writing Portable Programs in C, USENET pub-
lic domain document (November 1990).

[Hew91a] Hewlett-Packard, HP-UX Portability Guide, January 1991.

[Lap87a] J. E. Lapin, Portable C and Unix System Programming,
Prentice-Hall Inc., Englewood Cliffs, New Jersey 07632
(1987).

EurOpen & USENIX Spring *92 - Jersey, 6-9 April 23

24

EurOpen & USENIX Spring “92 - Jersey, 6-9 April

Certifying Binary Applications

Donald A. Lewine

Data General Corporation
Westboro, USA
lewine@cheshirecat.webo.dg.com

Abstract

The goal of creating a binary operating system interface standard is to
define a common configuration which enables the executable binaries
of application programs to be moved between computer systems. This
paper gives an overview of the 88open standards which allow a POSIX
or SVID conforming program to be compiled into a vendor independent
binary. The bulk of the paper is dedicated to certifying binary compati-
bility. How does one know that an application meets the standards?

This paper describes two packages for certifying binary compatibility:
ITS/88 and ACT/88. ITS/88 verifies that the Operating System supports
all of the features of the standard. ITS/88 uses conventional Software
Quality Assurance techniques. ACT/88 verifies that the application
strictly conforms to the standards. ACT/88 uses a static, lint-like, analy-
sis to look for errors in the code and dynamic run-time analysis to look
for non-portable behavior. I believe that ACT/88 is unique technology
and different from any known quality assurance tools.

1. Types of Portability

1.1. Source Portability

Before we dig into the details of certifying binary compatibility, it is
instructive to look at the types of things people want to transport from
system to system and what it takes to make those things portable.

People want to be able to move software at the source level. Programs
are written to well known Application Program Interfaces and recom-
piled on each target. The POSIX standard [IEE90a], and the SVID
[USL89a], provide for source level portability. In theory, any POSIX
application can be compiled and executed on any POSIX platform.

While source portability is excellent for the free exchange of software,
very few software vendors are willing to have their source code widely
distributed.

EurOpen & USENIX Spring “92 - Jersey, 6-9 April 25

Certifying Binary Applications E?

1.2. Object portability

Object portability allows one to move compile a module on machine A
and link it with a module compiled on machine B. Object portability
lets software vendors distribute libraries to be linked with their cus-
tomers code.

Object portability is one of the most desirable forms of portability and
also one of the most difficult to achieve because all of the following
need to be exactly specified:

° Machine instructions

) Data representation

. Register usage

. Subroutine calling conventions
° Interlanguage operability
) Object file format

° Symbol table format

° Link editor

° Libraries

. Networking

) Execution environment
° Archive format

. System commands

] Signal handling

° Header file values

) Installation

Obviously, object portability is only possible within a given computer
architecture. Even if the architecture is constant, object compatibility
requires noticeable effort. In order to enable object compatibility for
the Motorola 88000, the 88open Consortium published the Object
Compatibility Standard [88090a). The 88open OCS specifies all of the
information listed above.

1.3. Binary Portability

Binary portability lets one move compiled and fully-linked programs
from machine to machine. This is the form of portability that we see in
the personal computer area where shrink wrapped executables are pro-
vided to the end-user.

Binary portability is somewhat easier to achieve than object compati-
bility because there are so many fewer interfaces to specify. The
88open Consortium published a standard to enable binary compatibility
[88090b]. The goal of this standard was to completely specify what a
shrink wrapped application needs to do. We did not want to have a
specification by example, as in, “IBM PC or 100% compatible.”

2. Requirements for Portability

Of course, merely publishing the standards does not produce object or
binary compatibility. One needs conforming systems and applications.
Every system that claims to support conforming applications must pro-
vide all of the required interfaces with exactly the required semantics.

26 EurOpen & USENIX Spring *92 - Jersey, 6-9 April

Certifying Binary Applications

2.1. Extensions

Testing for conformance in fairly straightforward. Every conforming
application must use only the defined interfaces and it must use them
correctly.

To make matters more complicated, conforming systems may provide
extension above and beyond the standard. Conforming applications
may take advantage of these extensions, as long as they work correctly
when the extensions are not present.

For example, a system may provide an accelerator for X-window
requests. A conforming application may use the accelerator on those
systems, however, it must work correctly on systems without the accel-
erator.

This capability means that finding an undefined system call in an appli-
cation does not mean that the application is not conforming.

3. What Information Must an Application Binary Interface

Specify?

Let us take a moment and look at the information that is required to
enable binary portability.

We need to specify all of the legal data types and how those types are
stored in memory. For example, consider the structure

struct demo

{

char a;
long b;
char c;
double d;
}ox;

Every compiler must align the structure exactly the same way. The
compatibility standards specify the method used to assign offsets to
structure members.

The format of object files must be completely specified.

The application’s view of memory must be consistent on all platforms.
Different platforms may have different layouts for memory. For exam-
ple, the stack may be in a different location. Applications must tolerate
these differences.

The initial conditions and actions required by start-up code must be
specified exactly.

All of the signal handling interface must be the same from platform to
platform.

The effect of including header files must be the same from system to
system. On the other hand, the text of header files may be different.
Vendor extensions may be present under the control of a feature test
macro.

System call interfaces must be identical.

One area that people often overlook is installation. A portable binary is
distributed on some media. All of the steps required to read that media
into the target filesystem must be specified.

EurOpen & USENIX Spring “92 - Jersey, 6-9 April 27

Certifying Binary Applications

If the installation procedure has a directory tree layout that it can rely
upon, that layout must be documented. The installation procedure can-
not use any directories that are not part of the standard.

All of the other details of the execution environment must be well
specified.

4. Portability “Gremlins”

There are a few “features” that many applications seem to trip over.
One problem is inadvertently using a vendor extension. Our portability
verification tools must be able to detect this case.

Another problem is using behavior which is defined one way on one
system and another way on a different system. For example, some sys-
tems support NFS and others do not. Applications must work correctly
in either case.

There is also unspecified behavior. This is similar to Implementation-
defined, except an application may not rely on a given implementation
doing a well defined thing. For example, the initial value of the stack
pointer can change from software release to software release.

All systems provide commands (and command options) that are above
and beyond what is stated in the standard.

Even in cases where everything seems to be well specified, one pro-
grammer will read the spec one way and another will read it a different
way. Portability tests must find this type of problem. There is also an
on-going standards committee to resolve questions of interpretation.

5. Certifying the Platform

Before we can hope to support portable applications we must verify
that the target system meets all of the required standards. The software
quality assurance technology to do this verification is well known.

The 88open has developed a suite of assertion based tests to verify that
all of the platform components meet the standards.

All of the system calls are tested to make sure that they accept valid
input and generate the correct error code for each possible error condi-
tion.

The system libraries are tested to make sure that all of the required
library functions are included and that they work correctly.

The basic network system calls are tested for systems that support the
networking option.

The X11 library is tested to make sure that all of the required functions
exist and function correctly. Since X11 is very large and poorly docu-
mented, these tests are not as exhaustive as some the tests for system
calls, libraries and commands.

The required commands are tested to make sure that they function cor-
rectly.

There are tests to verify that the directory tree is in the form expected
by applications.

28

EurOpen & USENIX Spring “92 - Jersey, 6-9 April

Certifying Binary Applications

Tests are done to verify that all of the development tools work as
expected. These tools include:

® Compilers
° Linker
. Assembler

° Archiver
° cpio
° tar

) Object file format

6. Constraints Placed on Testing Process by Software Producers

The goal of the 88open compatibility certification process is a large
number of applications which are portable across many platforms. We
do not want to make the certification process complex or to require a
great deal of work on the part of a software vendor. We must accept
software in the format that a vendor wants to supply it. We must live
with a number of constraints imposed on the testing process by the
software producers.

6.1. Format of Packages

Software many be in any format. The software must be distributed on
a QIC-150 format tape in either cpio or tar format. Any installation pro-
cedure acceptable to the marketplace is acceptable for testing.

6.2. Executing Commands

Applications my execute commands either as a shell script, via the
system(), or popen() function.

The verification tools check all of the commands in installation shell
scripts or arguments to system() and popen() to make sure that
only valid (portable) commands are used.

6.3. No Access to Source

Software vendors like to keep their source code private so the 88open
verification tools use only the distributed binaries to do their work.

7. Application Conformance Testing

The interesting part of the verification process is checking to make sure
that applications follow all of the rules. There are tools to check source
code for standards compliance, however, I know of no other binary
verifiers.

The 88open Application Conformance Test (ACT/88) contains two
major tools: the Static Binary Verifier (sbv) and the Dynamic Binary
Verifier (dbv).

EurOpen & USENIX Spring “92 - Jersey, 6-9 April 29

Certifying Binary Applications

7.1. Static Binary Verifier

The Static Binary Verifier works on either object files or linked exe-
cutables. It is designed to perform a cursory test on all of the code in
the product.

7.1.1. Flow Analysis

The Static Binary Verifier steps through the application program
instruction by instruction. Each time it encounters a branch instruction
it follows both the branch taken path and the branch not taken path.

As sbv looks at each instruction it marks it as processed. When sbv
follows a transfer of control that leads to a processed instruction, the
analysis for that path can stop. In this way, sbv will examine every
possible instruction in the program.

Of course sbv can be fooled by self-modifying code. Given modern
coding practices, self-modifying code is very rare.

7.1.2. Correct Instruction Use

The Static Binary Verifier makes sure that all instructions are used
properly. Any illegal or reserved instructions are flagged.

7.1.3. Correct Calling Sequence

The Static Binary Verifier check every call for the proper use of the
88open calling standards. For libraries or modules which are going to
be linked against standard libraries, the proper calling sequence must
be used. For completely linked programs, the results of this test can be
ignored.

7.1.4. “May” Information

Because of the nature of static analysis, it is not possible to tell if a
given branch will be taken. The Static Binary Verifier detect problems
which may (or may not) show up when the program is executed. In
these cases, sbv produces an advisory message that the programmer
can choose to ignore.

7.2. Dynamic Binary Verifier

The Dynamic Binary Verifier operates on complete programs. It tests
the code under actual operating conditions. It is able to be very accu-
rate in reporting errors, however, it requires some external test harness
to make sure that the program under test is completely exercised.

The Dynamic Binary Verifier works on unstripped executables. The
verifier installs a small “verification stub” at the entry point of each
system call. The program then executes transparently.

The Dynamic Verifier verifies all system calis and optionally all stan-
dard library calls.

dbv generates coverage metrics for the program under test. Three per-
centages are reported:

° The percent of all basic blocks executed;
° The percent of all of the system calls which get executed;

° The percent of all of the user procedures which get called.

30

EurOpen & USENIX Spring “92 - Jersey, 6-9 April

Certifying Binary Applications

Start DBV validation of appl at 4/7/92 14:30
End DBV validation of appl at 4/7/92 16:30

STANDARD FEATURES USED: BCS, OCS

CALLS ERRORS

Standard Library Procedures: 295790 0
System calls: 3900 0
Syslocal calls: 0 0
Basic block coverage factor: 85.0%

System procedure coverage factor: 92.2%
User procedure coverage factor: 95.0%

Unexecuted user procedures:
err getpathpart

Figure 1: Typical dbv output

Each system or library call is checked for valid and portable arguments.
Any non-portable call is reported to the user.

The dbv output gives the exact cause of the error and the symbolic
location of the function call. In most cases, it is very easy to correct to
violation.

Figure 1 shows some typical dbv output. The coverage metrics allow
the person running the tests to improve the test harness and get the tests
coverage to approach 100 percent.

Figure 2 shows some typical dbv error messages. The first problem
was caused by

fd = open(“"test_file", O _CREAT);

The mode argument is missing. In the real world, missing arguments
are one of the most frequent problems we encounter during application
testing.

7.2.1. Command Testing

The cmdtest program is used to verify shell scripts and the argu-
ments to system() and popen().

The cmdtest program is run in a clean environment where there are
no added commands or command extensions. It checks each command
for proper syntax and then allows it to be executed. The combination
of the syntax check and the pure environment insure that the command
is portable.

open(path = 0x401FF0, oflag = 0x100, mode = O0xXxEFFFFBEO)
invalid argument to open (Undefined mode bit)
call to open at main+0x34

socket(af = 0xl, type = 0x0, protocol = 0x0)

socket type (0x0) is not in the list of valid values
call to socket at main+0x50

Figure 2: Typical error messages

EurOpen & USENIX Spring *92 - Jersey, 6-9 April 31

Certifying Binary Applications

8. Summary
Applications compatibility testing takes some time above and beyond
ordinary Software Quality Assurance. The dynamic verification tests
require a good test harness to completely exercise the product under
test. In most cases, these test suites are already produced as a part of
the normal SQA process. The amount of additional time is small and
the improvement in product quality is well worth the effort.
References
[88090a] 88open, 88open Object Compatibility Standard Release
1.1, 88open Consortium Ltd. (1990).
[88090b] 88open, 88open Binary Compatibility Standard Release
1.1, 88open Consortium Ltd. (1990).
[IEE90a] IEEE, Portable Operating System Interface (POSIX) —
Part 1: System Application Program Interface(API){C
Language], International Organization for Standards, Gen-
eve (1990).
[USL89a] USL, System V Interface Definition, Unix System Labora-
tories (1989).
32 EurOpen & USENIX Spring *92 - Jersey, 6-9 April

Applications POSIX.1
Conformance Testing

Derek Jones

Knowledge Software Ltd,
Farnborough, UK
derek@knosof.co.uk

Abstract

The Standards for POSIX and C were designed to enable the portability
of applications across platforms. A lot of work has gone into checking
compilers and environments for conformance to these Standards, but
almost nothing has been done to check applications conformance. The
incorrect assumption being made that the development compiler will
warn about any construct that needs looking at. This paper discusses a
tool that checks applications software for conformance to these Stan-
dards at compile, link and runtime as well as the library interface. Any
application that can pass through this checker without producing any
warnings is a conforming POSIX program and a strictly conforming C
program.

1. Introduction

POSIX was designed as a standard environment to enable the portability
of applications software and to some extent people. This portability of
applications software is achieved through the specification of a set of
services that every POSIX conforming application can expect to exist
on a conforming platform.

For a Standard to be of practical benefit there has to be a method of
measuring adherence to its requirements. Work on test suites to check
environments for conformance to POSIX are well advanced. There are
at least three such suites commercially available. However, the check-
ing of an applications’ conformance to POSIX has not received nearly
as much attention.

Since the basic goal of POSIX was to enable applications portability
through a Portable Operating System Interface it is about time that this
imbalance was redressed. This article is about a tool set that was
designed to check applications software for conformance to POSIX.1
(using the C bindings). What is described here could equally well
apply to the X/Open Portability Guide (XPG) or AT&T’s SVID.

The tools used in the POSIX conformance checker were all derived
from the Model Implementation C Checker. This Model Implementa-
tion was designed to check C programs for strict conformance to the C

EurOpen & USENIX Spring “92 - Jersey, 6-9 April 33

Applications POSIX.1 Conformance Testing

standard. Model Implementations have been produced for Pascal and
Ada. In March 1989 the British Standards Institution signed an agree-
ment with Knowledge Software to produce one for C. The Model
Implementation was formally validated by BSI in August 1990 (it was
the joint World first validated C compiler) and is currently being used
by the validation suite producers to check their own software.

Before describing the tools themselves this paper first discusses the
need to check applications software and what the relevant standards
have to say about what constitutes a conforming (and therefore poten-
tially portable) program.

2. Why Check?

POSIX offers the software developer the opportunity for a significant
reduction in cost and effort when porting applications to different plat-
forms. Given the benefits what stands in the way of creating POSIX
conforming applications? There are two main reasons why applica-
tions fail to conform to the requirements of POSIX. The immediate
problem is one of know how and old habits. Once these are overcome
problems are caused by human oversight and error.

Because of the broad range of services offered it can take some time
for developers to think POSIX. Old, UNIX, programmer habits and
know-how are easily transfered to a POSIX development environment.
Programmers cannot be expected to be familiar with all the intricacies
of POSIX and how it differs from what they are familiar with. Speaking
UNIX with a POSIX accent will not solve portability problems, particu-
larly to proprietary platforms that support POSIX. It is necessary to
speak POSIX as a native language and if using UNIX perhaps with a
UNIX accent. Training can go someway towards ensuring a smoother
transition to a POSIX only environment.

Experience over 40 years of software development has shown that it is
impossible to produce any significant applications that do not contain
bugs. The same principle holds true for writing POSIX conforming
applications. Mistakes will be made.

So some means of independently and accurately checking conformance
could uncover the majority of these problems and save a considerable
amount of time and money later. Studies have shown that the later a
problem is discovered the more expensive it is to fix. Thus the obvious
time to find these non conforming constructs is prior to the release of
the software.

From the marketing perspective Open Systems are being demanded by
users. Use of an independent verification tool to check conformance
will add weight to any claims of conformance to Open Systems Stan-
dards by vendors. From the users perspective demanding such
verification is a useful means of ensuring vendor compliance with any
Open Systems agreements that they may have.

For those developers considering a move to POSIX information pro-
vided by a checking tool can be used to provide an estimate of porting
costs for existing applications. By providing hard information on likely
problems time/cost estimates for porting an application are likely to be
much more accurate than uniformed estimates.

34

EurOpen & USENIX Spring “92 - Jersey, 6-9 April

Applications POSIX.1 Conformance Testing

2.1. Don’t Compilers Check?

The development compiler is only likely to check for constraint and
Syntax errors, since it is these constructs that a conforming implementa-
tion is required to detect (and must detect in order for a compiler to val-
idate).

One of the principles behind the drafting of the C standard was that
existing code should not be broken by wording in the standard. This
meant that in many cases the behaviour was left undefined or imple-
mentation defined. By not specifying what had to be done, compiler
implementors were free to make their own decisions. Thus preserving
the correctness of existing, old code. So in general compilers are silent
on those constructs whose behaviour may vary across implementations.
This freedom means that C programs can behave differently with dif-
ferent ISO validated C compilers, even on the same machine. There are
no requirements on compilers to flag occurrences of these non
constraint/syntax errors.

The C Standard committee also recognised that compiler vendors
would have to rely on existing tools to link separately compiled units
together. Since existing linkers were unlikely to check for cross mod-
ule inconsistencies in external variables and functions it was felt that
the C Standard should not mandate such checks.

Runtime checking is not considered to be in the spirit of C program-
ming. Thus compilers do not generate code to check that pointers are
within bounds, that the correct number of parameters are passed or
check that any of the runtime conditions are violated.

3. What to Check

Having shown the benefits of conforming to POSIX and that the best
way of achieving this is to use some form of checking tool we now
have to investigate what constructs ought to be flagged and why. There
are two main sources of information on constructs that ought to be
checked to achieve applications portability:

° The text of Standards documents. Here we are interested in
applications written in the C language. So the relevant standards
are the C language standard (ISO 9899) and the C language bind-
ings provided by the POSIX.1 (ISO 9945-1) standard.

. Practical experience. The sources for this information tend to be
first hand experiences and conversations with developers on
problems that they have encountered. Books on software porta-
bility are starting to appear. But on the whole these tend to give
general guidelines rather than specific cases. On problem with
specific cases is that they go out of date. As compilers and O/S’s
evolve problems disappear and new ones appear.

The core of the POSIX checker is driven by the requirements given in
the C and POSIX.1 standards. Messages are categorised in exactly the
same manner as the standards documents. Also any construct that falls
into any category (except conforming code) is flagged. Provided with
these core checking abilities the user can then provide configuration
information (done via source and target profiles, discussed later) to
switch off any messages that are not of interest.

Thus no justification, other than appearing in a standards document, is
given for flagging these core constructs. Those developers familiar

EurOpen & USENIX Spring “92 - Jersey, 6-9 April 35

Applications POSIX.1 Conformance Testing

with the standards process will know that the contents of standards are
sometimes driven by immediate political needs rather than technical
merit. Attempting to weed out the political from the technical issues
was not considered to be worthwhile. Matters are greatly simplified
(from our point of view) by simply handling all constructs.

The necessity for checks based on practical experience occurs because
we live in an imperfect world. Operating systems and compilers do not
fully conform to standards and contain bugs. In some cases these bugs
are actually features, they are there for compatibility with previous ver-
sions of the software. The justification for flagging these constructs
goes along the lines “this construct is not supported/behaves differently
on the xyz platform”. From this observation we draw the conclusion
that truly portable applications have to be written using a subset of the
facilities and services described in standards documents.

3.1. Standards Conformance

3.2. POSIX Specifics

The POSIX and C standards define two types of conformance, (1)
implementation conformance and (2) application (or source code) con-
formance. In this paper we are interested in the latter.

Application conformance is broken down into various categories. The
classification of these categories varies slightly between the two stan-
dards.

3.3. C Specifics

POSIX itself is not specific to the C language. However, it does have a
C binding (ISO 9945-1). This binding specifies an interface to the envi-
ronment, but surprisingly there are no requirements in POSIX.1 for the
C source code to conform to the C Standard. However, from the porta-
bility perspective any software that conforms to the C Standard should
be portable across C compilers running in a POSIX environment. So
here we will be considering the POSIX and C Standards as one.

A strictly conforming POSIX.1 application does not rely on any con-
struct whose behaviour is not fully defined, thus it has the greatest
portability. A conforming POSIX.1 application may only use facilities
described in the standard. However, since the behaviour of some of
those facilities may vary across implementations such an application
may need to be modified to run on different platforms.

The POSIX.1 standard also defines <National Body> conforming appli-
cations and conforming applications using extensions. It is expected
that applications conforming to these standards will have weaker porta-
bility criteria and are not considered further here.

At this moment in time there are constructs for which it is uncertain (at
least to the author) what category of behaviour they cause.

The C standard defines terms for a strictly conforming and conforming
applications. The C standard categories the behaviour of constructs as
follows:

° Constraint/Syntax errors
. Undefined behaviour
. Implementation defined behaviour

36

EurOpen & USENIX Spring 92 ~ Jersey, 6-9 April

Applications POSIX.1 Conformance Testing

) Unspecified behaviour

) Exceeding minimum limits

To be strictly conforming a program should not contain an instance of
any of these constructs. To be conforming a program should not con-
tain any constraint or syntax errors.

The C standard is all encompassing in that all constructs can be cate-
gorised. Over the last few years there has been a considerable debate
concerning the status of various C constructs. This has resulted a feel-
ing that any remaining poorly defined constructs are likely to be
obscure. There is an active program of documenting C answers to
interpretation questions raised by users of the C standard.

3.4. C/POSIX.1 Differences

The major difference between the POSIX.1 and C standards occurs at
runtime. POSIX specifies a much larger set of support functions. Basi-
cally it provides an interface to the host operating system, whereas the
C standard provides library functions independent of the host OS.

POSIX.1 specifies a set of services that must be provided at runtime.
The rules and regulations governing the creation of a runable program
are specified to be those given in the relevant language binding. In the
case of the C language binding some of the minimum limits given in
the C standard are increased, i.e. number of characters considered
significant in an external identifier.

4. When to Check

There are various stages in the application software creation process
where checks against Standards can be performed.

During development. As mentioned earlier the sooner problems are
found the cheaper it is to fix them. So a checking tool is of use to
developers.

During quality assurance. Developers will only usually run tests that
relate to their own area of interest. The Q/A department will be looking
at the application from an integrated point of view. A checking tool is
thus of use in ensuring that all of the software conforms to the relevant
company standards.

Prior to source code purchase. When OEM’s are investigating the pos-
sibility of buying in software it can be difficult to assess vendors claims
of portability and standards conformance. Some form of conformance
measuring tool would thus be of use in verifying claims of confor-
mance.

5. What is Checked (by this tool set)

Ideally it ought to be possible to check conformance by looking at the
source code. However, there are theoretical as well as practical limita-
tions to this approach. The solution adopted in the checking tools
described here is to mirror the compile/link/execute method of creating
an application, but with a different emphasis. We are primarily inter-
ested in checking as part of quality assurance testing, not running the
application in a commercial environment.

EurOpen & USENIX Spring “92 - Jersey, 6-9 April 37

Applications POSIX.1 Conformance Testing

The POSIX checker was designed to detect and flag all undefined,
implementation defined and unspecified constructs as well as all con-
straint errors, syntax errors and exceeding minimum limits; both at
compile, link and runtime.

The phases of conformance checking:

) Check that the source code conforms to the ISO C Standard. This
tool is also capable of generating symbolic information for cross
module checking and intermediate code that can be interpreted.

° The next phase is the build process (linking the separately com-
piled translation units together). Again the ISO C Standard
specifies behaviour that should be followed, while POSIX goes
one stage further and gives extra functionality that must be sup-
ported. This tool can also merge the intermediate code files, gen-
erated by the previous phase, into a form suitable for execution
by the next phase.

° Finally the software is executed. This is where the POSIX inter-
face checking is performed. The POSIX applications confor-
mance tool checks that all calls to POSIX functions are within the
bounds specified by the 1003.1 Standard. It also ensures that no
library functions outside of POSIX and the C Standard are called
and performs pointer checking.

The constructs checked varies between the phases of the checking pro-
cess.

The first two phases (static analysis) basically check that the source
code conforms to the 1SO C Standard. There are also a few extra fea-
tures that POSIX mandates at these stages, such as restrictions on what
can be assigned to errno and there are additional header files.

The compile time checks are likely to flag significantly more constructs
than the development compiler. Since compile time checking is the
easiest to do (from the users point of view) and are the easiest to relate
to every attempt has been made to flag constructs in this phase, if possi-
ble.

The linker in the POSIX checker was specifically written for handling
C. When separately compiled modules are joined together (the link
stage) checks are made to ensure that the types of external objects and
functions agree. This checking is something that very few linkers per-
form.

The third phase (dynamic analysis) does runtime checking. This con-
sists of, amongst other things:

) The parameters of calls to POSIX libraries are within the
specified bounds.

° Pointers don’t reference storage outside of objects.

° Accesses to pointed to objects are refering to initialised values
(use of uninitialised local objects is flagged at compile time).

. Casts are within range.
° No minimum runtime limits are exceeded.

This checking is performed by actually executing the applications pro-
gram.

38

EurOpen & USENIX Spring 92 ~ Jersey, 6-9 April

Hid

Applications POSIX.1 Conformance Testing

6. Background of the Tools

All of the tools for manipulating C source code produced by Knowl-
edge Software are based on the same source code. This source started
life six years ago and has been through several rewrites since then.
Existing products include a C compiler front end, C to other language
translators, a C quality assurance tool kit and most recently the POSIX
applications checker.

6.1. General Design Aims

It was recognised at an early stage that most existing C programs are a
long way from being strictly conforming. The user interface to the
POSIX checker was designed to smooth the transition from common
usage C to conforming Standard C. Not only is it possible to tailor the
severity of every error message but implementation defined features are
user selectable.

This tailoring enables users to convert their code in an incremental
fashion. Thus the work load can be spread over a period of time. It is
also possible to achieve results quickly, rather than having to wait until
all of the work is complete.

Although its function is to check applications this was not seen as an
excuse to execute slowly. Developers do not like to use tools that are
slow and cumbersome. Therefore every attempt was made to ensure
that the POSIX checker ran at a reasonable rate.

6.2. Support for Multiple Architectures

As a provider of services POSIX does not concern itself with the under-
lying computer architecture. On the other hand the C Standard recog-
nises that at their lowest level computers do vary in their implementa-
tion. Because it has to execute user programs the POSIX checker has to
be able to handle different computer architectures. For this reason the
overall design of the tools was not tied to any computer architecture.
They can be configured to emulate various architectures. The user can
configure the compiler and runtime system to match:

) The development compiler
° A variety of hosts
° The intersection of various host processors

All that is required is information on the target platform to be fed into
the platform profiles used by the checker. These platform profiles are
subdivided into cpu, compiler and OS profiles. Profiles also exist for
individual standards. Information on the most common processors is
supplied with the package.

6.3. The Source Code Checker

This is a “traditional” compiler front end. It differs from most front
ends in that many of its settings are soft. They are read from
configuration files at compile time. A significant amount of effort has
gone into showing the correctness of this tool. This correctness has
involved showing that all of the requirements of the ISO C Standard are
implemented and aiso that the code generated is correct.

EurOpen & USENIX Spring “92 — Jersey, 6-9 April 39

Applications POSIX.1 Conformance Testing

Profiling work done on this tool has been used by BSI and NIST to mea-
sure coverage of their respective validation suites to the C Standard.

6.4. The Interface Checker

6.5. The Library

This checker is essentially a linker that was tailor written for handling
C programs. Most linkers perform very little interface checking across
translation units. They are usually restricted to complaining about
missing symbols. The POSIX checker linker performs full type check-
ing across C translation units, i.e. it checks that the same identifier is
declared with compatible type in every file in which it is used. It also
merges its input into a form suitable for interpretation by the runtime
checker.

It was recognised that developers often require the services of libraries
not provided as part of POSIX, i.e. X windows. The POSIX checker was
thus designed to be user extensible. It is possible to refer to non POSIX
library functions, have the interface checked and call them at runtime.
There is also a method of specifying what runtime interface checking
needs to be performed. It is the interface checkers job to build a run-
time system capable of executing the users program, including the
required interfaces.

The POSIX checker library provides the functionality required by the
POSIX.1 and C standard. The majority of the POSIX functionality is
achieved through linking in the POSIX library on the host computer.
For the C library functions there is the option of using the host libraries
or internally written functions. Following the design aims of the other
tools it also gives warnings on the use of any features that may not be
supported in other libraries and checks that the parameters to functions
are within bounds. This checking is independent of whether the library
is implemented internally or through an interface to the host.

6.6. The Runtime Checker

This interpretes the intermediate code generated by the source code
checker. This tool acts as a runtime interface between the users appli-
cation and the POSIX environment. As well as checking the runtime
requirements given in the C Standard it also checks the calls to POSIX
services.

This interpreter has benefited from the considerable experience gained
in tuning and porting interpreters for other products. The requirement
that the software should execute quickly has influenced the design of
the C abstract machine that exists at runtime.

6.7. Checking the Checker

A significant amount of work went into the checking and verification of
the Model Implementation C Checker, on which the POSIX checker is
based. This included producing tests that caused 99.6% of all basic
blocks in the code to be executed, cross referencing the source code to
the C standard and passing both the BSI and NIST C validation suites.

The latest version of the software is over 100,000 lines of C. It has
been ported to Sparc, MC68000 and 80386 (DOS and UNIX) platforms.
Source code licensees have also ported to i860, MIPS, RS/6000 and
VAX.

40

EurOpen & USENIX Spring °92 - Jersey, 6-9 April

Applications POSIX.1 Conformance Testing

7. Practical Experiences

Developers tend to have a narrow view of standards. It is coloured by
what they know and the tools they use. Unless faced will “real life”
situations developers are often loath to modify code or their work prac-
tices. Flagging constructs based on requirements in standards docu-
ments and giving references to those requirements would appear to sat-
isfy developers needs for justification.

A portability tool that simply flagged constructs because they occured
in standards documents would only be doing part of the job. It is nec-
essary to flag perfectly conforming constructs simply because some
implementations will process them incorrectly. Although these cases
do apply to real world situations, some developers believe that these
problems will be fixed eventually and need not affect them.

It is rare to find a developer willing to follow the strict letter of any
standard. So the ability to switch off some messages is essential.

7.1. So What Does the Checker Achieve?

7.2. Static Checking

Any program that can go through all stages of the checking process
without any errors or warnings being flagged is a strictly conforming
POSIX.1 application and a strictly conforming C program. Thus it
should be portable with regard to these Standards. Any porting prob-
lem is likely to be as a result of problems in the host environment
rather than the application.

7.3. Dynamic Checking

The C Standard was written to cater for a wide spectrum of platforms,
from Coffee machines to Super computers and from 30 year old
machines to the latest RISC technology. Experience has shown that
constructs considered to be an area of concern to one group of users are
of little interest to those working on other platforms. A tool that flags
all constructs that lie outside of strictly conforming Standard C is seen
as being very verbose. So verbose, in fact, that at times users ignore its
output completely.

In order to reduce the number of “uninteresting” message generated,
the concept of source and target platform was introduced. By telling
the tools which platform should act as a reference environment and
knowing the target platform it is possible to filter out those features that
are common to both platforms (the idea being that if a program con-
taining such a construct worked on the source platform then it will
work on the target). This platform profile contains information on cpu
characteristics, the OS and C compiler behaviour. Profiles for the
“unknown”, C abstract machine and POSIX.1 platform are available for
those users who want the create maximally portable applications.

The two main types of warnings generated at runtime relate to pointer
problems and the POSIX library interface. Problems with pointers are
usually seen as program bugs rather than as a portability problem. In
order to fit in with this view of the world and speed up other checks it
is possible to switch off the pointer checking.

EurOpen & USENIX Spring “92 - Jersey, 6-9 April 41

Applications POSIX.1 Conformance Testing

To date little experience has been gained with dynamic checking.
Apart from what every developer already suspects, that pointers don’t
always point where they are supposed, little hard information is avail-
able. One issue that has been highlighted however, is that although
pointers may have well defined values some of the objects that they
point at might themselves be uninitialised.

8. Conclusion

Applications conforming to the C and POSIX.1 standards offer a reduc-
tion in porting costs. The only reliable method of verifying that appli-
cations software conforms to the POSIX specification is to use some
form of verification tool at all stages of the development and testing of
the program. The benefits of such verification include confidence that
the software is conforming and will port to other environments and
marketing advantages in being able to backup claims of Open Systems
conformance.

42

EurOpen & USENIX Spring “92 - Jersey, 6-9 April

X is the

Worst Window System —
Except For All the Others

Berry Kercheval

Protocol Engines, Inc.
Mountain View, California, USA
berry@pei.com

Abstract

The current state of the art in window systems is reviewed. Some sur-
vey of the field is mixed with the author’s personal experiences.

1. Introduction

1 “Bad money drives out good.”

Today’s workstations are getting more and more powerful. The old-
fashioned glass-teletype interface to computer systems has become
inadequate to harness that power to the service of the user, particularly
when multitasking is involved. You don’t want to have to wait for a
compilation to finish before reading your mail, yet if you put the com-
pilation in background you cannot easily check on its progress.

“Window systems” have evolved over the last few years to fill this
need [Meh88a].

What exactly is a window system anyway? I use the term to mean a
software package for interfacing multiple processes to a user on a bit-
mapped graphics display. Regions of the display can be used as “vir-
tual displays” for individual processes.

Thus, window systems serve as a multiplexor to allow users to easily
switch from task to task. Most of them allow graphics as well as text,
so that some impressive (and not-so-impressive) user interfaces can be
built. In fact, one could argue that the entire field of “scientific visual-
ization” was only made possible by the combination of increasing sys-
tem performance and the multiplexing and user interface capabilities of
window systems.

Quite a few window systems have evolved over the last few years.
Most either remain laboratory curiosities or fall by the wayside. In the
battle for acceptance, X seems to have won, like it or not. Sadly, quite
a few very interesting systems have been passed over in a kind of
graphical Gresham’s Law." This paper will investigate some of the fac-
tors that influenced this “victory”.

EurOpen & USENIX Spring *92 - Jersey, 6-9 April 43

X is the Worst Window System — Except For All the Others

2. A Bit of History

Window systems can be traced back to the Xerox Alto and Star
[Lip82a, Joh89a] which were greatly influenced by Sutherland’s semi-
nal Sketchpad system [Sut63a].

Smalltalk [Gol83a] also came out of Xerox, and is an interesting exam-
ple of a unified window system and programming language. Smalltalk
was also one of the earliest object oriented languages.

Macintosh, a direct descendent of the Star has done a great deal to
make people “window aware”, and has demonstrated the importance of
a uniform user interface.

MIT’s Project Athena has given birth to the X Window System
[Sch86a], and Carnegie-Mellon University’s Andrew Project [Ros86a]
produced an interesting tiled window system."

3. A Quick Survey of Window systems for UNIX Workstations

3.1. SunView

This section concentrates on window systems that are currently avail-
able on UNIX or UNIX-like workstations.

SunView was the original window system for Suns. Each process that
wished to “do windows” accessed the frame buffer directly, through
the pixrect interface and /dev/win*. There were three layers to the
SunView interface

1. The pixrect layer supplied basic raster and bit-blit operations.

2 The sunwindow layer implemented windows, clipping of over-
lapping windows and user input multiplexing.

3 The suntools layer provided user interface objects such as
tool frames, scrollbars and menus, the standard event loop and
selection management.

Every process that needed code to do menus, scrollbars, buttons and
the like had to link a copy of it in, leading to bloated binaries in the
days before shared libraries.

In fact, for a while all the standard SunView tools (shelltool,
cmdtool, mailtool) were in fact a single binary with multiple
links. The main routine checked the name it was invoked under
(argv([0]) and called the appropriate sub-main. The code that actu-
ally implemented the individual tools was so much smaller than the
user interface code that this technique* produced a net gain in disk
space (and with shared text images, a gain in swap space as well).

It gained wide and early popularity because it came with the machine
and was essentially “free”. Quite a lot of commercial software was
written for it, and given enough memory it worked quite well. How-
ever, it ran strictly on a single machine and was completely unaware of
the network.

+ But the Andrew tools have since migrated to X.

i Dare we say “Hack”?

44

EurOpen & USENIX Spring “92 - Jersey, 6-9 April

X is the Worst Window System — Except For All the Others

3.2. The X Window System

3.3. NeWS

X came out of MIT’s Project Athena and had a distinctly different phi-
losophy. A “server” process was the sole owner of the framebuffer and
input devices, and fielded requests from “client” processes. The
client/server communication protocol was deliberately made simple, as
it was felt that the window server should not enforce user interface pol-
icy on clients (and users). The developers consciously chose not to
implement features that were either of dubious benefit or about whose
implementation there was controversy. These aspects of X led to some
good things and some bad things: On the good side, the servers and
clients are largely machine independent and portable; clients and
servers need not reside on the same machine. On the bad side, multiple
copies of code for menus, buttons and so on must be linked into client
programs; some styles of interaction (such as “rubber-band” drawing)
are network intensive; and programming is difficult.

3.4. MGR

NeWS is a PostScript-based window system originally called SunDew,
and developed by Jim Gosling and David Rosenthal at Sun, and also
follows the client/server model. The idea that the window server was a
PostScript interpreter led to the immediate idea that you could down-
load PostScript code to it to handle interaction [Gos88a].

With the addition of lightweight processes to PostScript (which
allowed a much simpler programming model than the X event loop),
NeWS became an elegant, streamlined system that reduced client size
dramatically.

Both Sun and Silicon Graphics shipped systems with NeWS, but only
SGI chose it as the standard window system. (Interestingly, as X
became popular and more customers demanded it, SGI grafted X onto
the side of NeWS. The latest release of SGI system software, however,
has Display Postscript grafted onto the side of X.)

3.5. MEX

MGR (short for window ManaGeR) is a “lean, mean” window system
written by Steve Uhler at Bellcore. It’s fast, portable and free. It’s also
almost unknown.

Client processes communicate with the MGR server via pseudo-
terminals over any reliable byte stream. MGR provides graphics primi-
tives, bitmap and font manipulation, window manipulation, menus and
message passing. Clients can register interest in events such as mouse
motion or button presses, and then receive messages from the server as
an ASCII string specified by the client.

MGR was originally written for Sun Workstations, but has been ported
to the 3B1, Atari ST, IBM-PC (under Xenix or Minix), Macintosh and
the DECstation 3100.

MEX, short for “Multiple EXposure”, was a window system developed
at Silicon Graphics for their IRIS workstations [Rho85a]. Another
client/server system, it used shared memory for rapid communication
between clients and the server. This meant that network transparency
was not practical.

EurOpen & USENIX Spring *92 - Jersey, 6-9 April 45

X is the Worst Window System — Except For All the Others

An interesting aspect of MEX derives from the IRIS graphics architec-
ture. Unlike raster-graphics systems, the IRIS hardware allows opera-
tions in object-space coordinates and renders them with proprietary
pipelined “Geometry Engines”. The pipeline makes synchronization
between graphics requests from asynchronous processes difficult.

3.6. 85

8.5 [Pik91a] is Rob Pike’s window system for Plan 9. It draws on
Pike’s experience with a concurrent window system [Pik89a} based on
the idea that it need not be complicated. The system is very compact
and supplies most of what users need, apart from color. 8'% relies on
Plan 9 filesystem semantics, especially the use of mount to multiplex
the keyboard, mouse and screen. Unfortunately, while this multiplex-
ing technique gives 82 much of its elegance, it also renders it
unportable to UNIX without serious kernel modifications.

4. What Made X Succeed?

Why did X “succeed” and the others “fail”? Several factors affect the
choice of a window system.

. Cost

° Ease of Installation
° Support

° Portability

) Marketing

4.1. Cost

X was “free”, but so was SunView and MGR. NeWS cost money, but a
binary license could be had for a token sum. The cost for any of them
was not more than a few hundred dollars for tapes, or zero if you could
ftp the sources from an archive site (or get a friend to do so).

In some environments, however, getting even a trivial amount of
money for a new software product is unbelievably complicated, involv-
ing letters of justification, multiple signatures and purchase orders, and
generally a lot more hassle than it’s worth. One could just FTP X and
install it without any approvals, but getting the NeWS distribution
could be near impossible.

So cost seems not to have been a major factor in X’s success.

4.2. Installation

Sunview was automatically installed with SunOS, and was thus the
default choice of many users.

X is fairly painless for a big package — imake helps a lot and a lot of
effort went into portability. For most supported configurations, instal-
lation is a simple matter of going to the top of the source tree and typ-
ing make.

Other window systems vary in the amount of work it takes to install
them, but most are pretty simple if your configuration is supported.

So, since installing most window systems is not a lot harder than any
other large software package, ease of installation was not a factor in
X’s success.

46 EurOpen & USENIX Spring “92 - Jersey, 6-9 April

-

._{
T

X is the Worst Window System — Except For All the Others

4.3. Support

4.4. Speed

X is unsupported — by MIT. But some versions, DecWindows for
instance, have vendor support, and there is the xperts mailing list for
direct access to the designers. There is also a growing community of
consultants and contract programmers skilled in X

By now the X Toolkits are stable and allow application programmers to
build X applications quickly and easily, at least compared to coding
with just Xlib, which makes the “Hello World” program remarkably

. difficult [Ros88a].

NeWS and Sunview Were supported by Sun, and MGR was basically
“Here’s mgr.tar.Zz, love Steve”. MEX was supported by SGI, but
dropped in favor of NeWS later.

Support seems to favor NeWS, or SunView, with vendor support, but
actually getting fixes out of Sun is not always easy. Many X problems
can be solved quickly — a note to xperts brings a flood of helpful
suggestions, and often source patches.

4.5. Portability

MGR is very fast — the V6 of window systems. 82 is also quick,
because of it’s spare, elegant design. NeWS seems fast because the
interaction can be local to the server. X’s speed is highly dependent on
network throughput; but if you can spin around the interaction/network
loop in less than a monitor refresh time it’s probably fast enough. Net-
work delays or machine load can slow this down, though.

So speed seems not to be the reason X is ubiquitous.

The portability of SunView was largely irrelevant. The code was
unavailable anyway," and you couldn’t run it on anything but Suns any-
way. It relied on special features in the SunOs kernel (/dev/win*,
/dev/mouse, etc.) which reduced portability.

NeWS is pretty portable. It has run on Suns, SGI Iris’s and Macintosh
(under A/UX). It’s not trivial to do though. Implementing a PostScript
interpreter and the lightweight processes requires a good team or a
blend of graphics and operating systems skill.

X is quite portable (but again non-trivial). In the server, the parts most
likely to need work, such as the OS-dependent and graphics parts, are
isolated into modules. Treated this way, to port the server to a UNIX
system with a “reasonable” frame buffer is quite straightforward.
Chances are the OS part has been done already (since these days the
choices are either BSD or System V) and to get graphics running one
need only examine the “spans” routines and write some for the new
frame buffer. A high performance server is more work though, and
some quite interesting approaches have been taken [McC91a].

Porting X to a non-UNIX environment is much more difficult. One of
the hardest parts of dealing with the MIT code is the search-and-destroy
mission to find and expunge all places where it is assumed that
sizeof (int)==sizeof(long). When one function pushes six
2-byte ints on the stack and another pops off six 4-byte ints, the results
are not pretty.

T At least not without paying a large fee for a Sun source license, which also required an AT&T source license

EurQOpen & USENIX Spring 92 - Jersey, 6-9 April 47

X is the Worst Window System — Except For All the Others

Lint is not as helpful as you might think, since many of these places are
in the arguments of functions only called through function pointers.
Fully prototyping all the structures and routines in the server helps a lot
here.’

4.6. Marketing

Here’s where the real meat lies. I feel that the “success” of X can be
laid to a combination of marketing and NIH.

) SunView and NeWS were Sun products, and DEC and IBM, for
instance didn’t want to appear to be kow-towing to that upstart
youngster.

) SGI’s MEX ran only on Iris machines, and customers demanded
an “industry standard” window system, so SGI switched to
NeWS and then X.

° MGR was never aggressively pushed at all; a small fraternity of
discriminating “wizards™ have adopted it, but wide use is rare.

° X on the other hand, was not a product of any one company but
of MIT, even though DEC and IBM (and others) contributed to its
development.

Thus, for all its technical warts, X was a politically acceptable choice
for many companies casting about for a standard, portable window sys-
tem.

References

[Gol83a] Adele Goldberg and David Robson, Smalltalk-80: The
Language and Its Implementation, Addison Wesley (May
1983).

[Gos88a] James Gosling, Tony Hoeber, and David Rosenthal, “Pro-
gramming with NeWS,” SunTechnology, pp. 54-59 (Win-
ter 1988).

[Joh89a] Jeff Johnson, Teresa Roberts, William Verplank, David C
Smith, Charles H Irby, Marian Beard, and Kevin Mackey,
“The Xerox Star: A Retrospective,” Computer 22(9),
pp- 11-30 (September 1989).

[Lip82a] Daniel E. Lipkie, Steven R. Evans, Jown K. Newlin, and
Robert L. Weissman, “Star Graphics: An Object Oriented
Implementation,” Computer Graphics 16(3) (July 1982).

[McC91a] Joel McCormack, “Writing Fast X Servers for Dumb
Color Frame Buffers,” DEC Western Research Laboratory
Research Report 91/1 (February 1991).

[Meh88a] Sunil Mehta, “A Clear Need for Windows,” UNIX World
V(3), pp. 58-66 (March 1988).

[Pik89a] Rob Pike, “A Concurrent Window System,” Computing
Systems 2(2), pp- 133-153 (Spring 1989).

[Pik91a] Rob Pike, “8Y4: the Plan 9 Window System,” Usenix 1991
Summer Conference Proceedings (1991).

+ 1 almost called this paper “int considered harmful”. If everyone just used short and long and never ever used int at all this
wouldn’t happen. But 1 digress.

48 EurOpen & USENIX Spring *92 - Jersey, 6-9 April

X is the Worst Window System — Except For All the Others

[Rho85a]

[Ros86a]

[Ros88a]

[SchB6a]

[Sut63a]

Rocky Rhodes, Paul Haeberli, and Kipp Hickman, “Mex —
A Window Manager for the IRIS,” Usenix 1985 Summer
Conference Proceedings, pp. 381-92 (1985).

David Rosenthal and James Gosling, “A Window Manager
for Bitmapped Displays and Unix,” in Methodology of
Window Managers, Springer-Verlag, New York (1986).

David Rosenthal, “A Simple X11 Client Program -or-
How hard can it really be to write “Hello, World”?,”
Usenix 1988 Winter Conference Proceedings, pp. 229-242
(1988).

Robert W. Scheifler and James Gettys, “The X Window
System,” ACM Transactions on Graphics 5(2), pp. 79-109
(April 1986).

Ivan E. Sutherland, “Sketchpad: A Man-Machine Graphi-
cal Communication System,” Conference Proceedings,
Spring Joint Computer Conference (1963).

EurOpen & USENIX Spring “92 — Jersey, 6-9 April

49

50

EurOpen & USENIX Spring “92 - Jersey, 6-9 April

Against User Interface Copyright

(October 20, 1991)

The League for Programming Freedom
league@prep.ai.mit.edu

Abstract

This paper describes how the copyrighting of software interfaces
threatens programmers’ freedom to write software. It also shows how
interface copyright obstructs progress even as it denies users the benefit
of competition. In addition, interface copyright benefits mainly those
who have already been so successful as to set a de-facto standard — pri-
marily large companies. Conclusion: interface copyright is unsound
public policy.

Introduction

In June 1990, Lotus won a copyright infringement suit against Paper-
back Software, a small company that implemented a spreadsheet that
obeys the same keystroke commands used in Lotus 1-2-3. Paperback
was not accused of copying code from 1-2-3 — only of supporting com-
patible user commands. Such imitation was common practice until
unexpected court decisions in recent years extended the scope of copy-
right law.

Within a week, Lotus went on to sue Borland over Quattro, a spread-
sheet whose usual command language has only a few similarities to 1-
2-3. Lotus claims that these similarities in keystroke sequences and/or
the ability to customize the interface to emulate 1-2-3 are enough to
infringe.

More ominously, Apple Computer has sued Microsoft and Hewlett
Packard for implementing a window system whose displays partially
resemble those of the Macintosh system. Subsequently Xerox sued
Apple for implementing the Macintosh system, which derives some
general concepts from the earlier Xerox Star system. These suits try to
broaden the Lotus decision and establish copyright on a large class of
user interfaces. The Xerox lawsuit was dismissed because of a techni-
cality; but if it had succeeded, it would probably have created an even
broader monopoly than the Apple lawsuit may.

And Ashton-Tate has sued Fox Software for implementing a database
program that accepts the same programming language used in dBase.
This particular lawsuit was dropped by Borland, which bought
Ashton-Tate in 1991, but the possibility of copyrighted programming
languages remains. Adobe claims that the Postscript language is copy-
righted, though it has not sued those who reject this claim. Wolfram

EurOpen & USENIX Spring ‘92 - Jersey, 6-9 April 51

Against User Interface Copyright

Reasearch claims that the language of Mathematica is copyrighted and
has threatened to sue the University of California. If a programming
language becomes copyrighted, the impact on users who have spent
years writing programs in the language would be devastating.

While this paper addresses primarily the issue of copyright on specific
user interfaces, most of the arguments apply with added force to any
broader monopoly.

What Is a User Interface?

A user interface is what you have to learn to operate a machine; in
other words, it is the language you use to communicate with the
machine. The user interface of a typewriter is the layout of the keys.
The user interface of a car includes a steering wheel for turning, pedals
to speed up and slow down, a lever to signal turns, etc.

When the machine is a computer program, the interface includes that of
the computer — its keyboard, screen and mouse — plus those aspects
specific to the program. These typically include the commands, menus,
programming languages, and the way data is presented on the screen.

A copyright on a user interface means a government-imposed mono-
poly on its use. In the example of the typewriter, this would mean that
each manufacturer would be forced to arrange the keys in a different
layout.

The Purpose of Copyright

In the United States, the Constitution says that the purpose of copyright
is to “promote the progress of science and the useful arts.” Conspicu-
ously absent is any hint of intention to enrich copyright holders to the
detriment of the users of copyrighted works.

The Supreme Court made the reason for this absence explicit, stating in
Fox Film vs. Doyal that “The sole interest of the United States and the
primary object in conferring the [copyright] monopoly lie in the gen-
eral benefits derived by the public from the labors of authors.”

In other words, since copyright is a government-imposed monopoly,
which interferes with the freedom of the public in a significant way, it
is justified only if the benefit to the public exceeds the cost to the pub-
lic.

The spirit of individual freedom must, if anything, incline us against
monopoly. Following either the Supreme Court or the principle of
freedom, the fundamental question is: what value does user interface
copyright offer the public — and what price would we have to pay for
it?

Reason #1: More Incentive Is Not Needed

The developers of the Star, the Macintosh system, 1-2-3 and dBase
claim that without interface copyright there would be insufficient
incentive to develop such products. This is disproved by their own
actions.

Until 1986, user interface copyright was unheard of. The computer
industry developed under a system where imitating a user interface was
both standard practice and lawful. Under this system, today’s plaintiffs

52

EurOpen & USENIX Spring “92 - Jersey, 6-9 April

Against User Interface Copyright

made their decisions to develop their products. When faced with the
choice in actuality, they decided that they did, indeed, have “enough
incentive”.

Even though competitors were free to imitate these interfaces, this did
not prevent most of the original products from being successful and
producing a large return on the investment. In fact, they were so suc-
cessful that they became de facto standards. (The Xerox Star was a
failure due to poor marketing even though nothing similar existed.)

Even if interface copyright would increase the existing incentive, addi-
tional improvements in user interfaces would not necessarily result.
Once you suck a bottle dry, more suction won’t get more out of it. The
existing incentive is so great that it may well suffice to motivate every-
one who has an idea worth developing. Extra incentive, at the public’s
expense, will only increase the price of these developments.

Reason #2: “Look and Feel” Will Not Protect Small Companies

The proponents of user interface copyright claim that it would protect
small companies from being wiped out by large competitors. Yet look
around: today’s interface copyright plaintiffs are large, established
companies. User interface copyright is crushing when the interface is
an effective standard. However, a small company is vulnerable when
its product is little used, and its interface is little known. In this situa-
tion, user interface copyright won’t help the small company much.

Imagine a small company with 10,000 customers: a large company may
believe there is a potential market of a million users, not reached by the
small company, for a similar product. The large company will try to
use its marketing might to reach them before the small company can.

User interface copyright won’t change this outcome. Forcing the large
company to develop an incompatible interface will have little effect on
the majority of potential customers — those who have not learned the
other interface. They will buy from the large company anyway.

What’s more, interface copyright will work against the small company
if the large company’s product becomes an effective standard. Then
new customers will have an additional reason to prefer the large com-
pany. To survive, the small company will need to offer compatibility
with this standard — but, due to user interface copyright, it will not be
allowed to do so.

Instead of relying upon monopolistic measures, small companies are
most successful when they rely on their own inherent advantages: agil-
ity, low overhead, and willingness to take risks.

Reason #3: Diversity in Interfaces Is Not Desirable

The copyright system was designed to encourage diversity; its details
work toward this end. Diversity is the primary goal when it comes to
novels, songs, and the other traditional domains of copyright. Readers
want to read novels they have not yet read.

But diversity is not the goal of interface design. Users of any kind of
machinery want consistency in interfaces because this promotes ease of
use. Thus, by standardizing symbols on automobile dashboards, we
have made it possible for any licensed driver to operate any car without
additional instruction. Incompatibility in interfaces is a price to be paid
when worthwhile, not a benefit.

EurOpen & USENIX Spring “92 - Jersey, 6-9 April 53

Against User Interface Copyright . Q

Significantly better interfaces may be hard to think of, but it is easy to
invent interfaces which are merely different. Interface copyright will
surely succeed in encouraging this sort of “interface development”.
The result will be gratuitous incompatibility.

Reason #4: Meaningful Competition Is Reduced

Under the regime of interface copyright, there will be no compatible
competition for established products. For a user to switch to a different
brand will require retraining.

But users don’t like to retrain, not even for a significant improvement.
For example, the Dvorak keyboard layout, invented several decades
ago, enables a typist to type faster and more accurately than is possible
with the standard “QWERTY” layout. Nonetheless, few people use it.
Even new typists don’t learn Dvorak, because they want to learn the
layout used on most typewriters.

Alternative products that require such an effort by the consumer are not
effective competition. The monopoly on the established interface will
yield in practice a monopoly on the functionality accessed by it. This
will cause higher prices and less technological advancement — a wind-
fall for lucky businesses, but bad for the public at large.

Reason #5: Incompatibility Does Not Go Away

If there had been a 50-year interface copyright for the steering wheel, it
would have expired not long ago. During the span of the copyright, we
would have got cars steered with joysticks, cars steered with levers,
and cars steered with pedals. Each car user would have had to choose a
brand of car to learn to drive, and it would not be easy to switch.

The expiration of the copyright would have freed manufacturers to
switch to the best of the known interfaces. But if Ford cars were
steered with wheels and General Motors were steered with pedals, nei-
ther company could change interface without abandoning their old cus-
tomers. It would take decades to converge on a single interface.

Reason #6: Users Invest More Than Developers

The plaintiffs like to claim that user interfaces represent large invest-
ments on their part.

In fact, the effort spent designing the user interface of a computer pro-
gram is usually small compared to the cost of developing the program
itself. The people who make a large investment in the user interface
are the users who train to use it. Users have spent much more time and
money learning to use 1-2-3 than Lotus spent developing the entire pro-
gram, let alone what Lotus spent develop the program’s interface per
se.

Thus, if investment justifies ownership, it is the users who should be
the owners. The users should be allowed to decide — in the market-
place — who may use it. According to Infoworld (mid January 1989),
computer users in general expect user interface copyright to be harm-
ful.

54 EurOpen & USENIX Spring *92 - Jersey, 6-9 April

T
b4

Against User Interface Copyright

Reason #7: Discrimination Against Software Sharing

User interface copyright discriminates against freely redistributable
software, such as freeware, shareware and public domain software.

Although it may be possible to license an interface for a proprietary
program, if the owner is willing, these licenses require payment, usu-
ally per copy. There is no way to collect this payment for a freely
redistributable program. The result will be a growing body of inter-
faces that are barred to non-proprietary software.

Authors of these programs donate to the public the right to share them,
and sometimes also to study and change their workings. This is a pub-
lic service, and one less common than innovation. It does not make
sense to encourage innovation of one sort with means that bar donation
of another sort.

Reason #8: Copyright Will Be a Tool For Extortion

The scope of interface copyright is so vague and potentially wide that it
will be difficult for any programmer to be sure of being safe from law-
suits. Most programs need an interface, and there is usually no way to
design an interface except based on the ideas you have seen used else-
where. Only a great genius would be likely to envision a usable inter-
face without a deep resemblance to current practice. It follows that
most programming projects will risk an interface infringement suit.

The spirit of “Millions for defense, but not a cent for tribute” is little
honored in business today. Customers and investors often avoid com-
panies that are targets of suits; an eventual victory may come years too
late to prevent great loss or even bankruptcy. Therefore, when offered
a choice between paying royalties and being sued, most businesses pay,
even if they would probably win a suit.

Since this tendency is well known, companies often take advantage of
it by filing or threatening suits they are unlikely to win. As long as any
interface copyright exists, this form of extortion will broaden its effec-
tive scope.

Reason #9: Useful Innovation Is Inhibited

Due to the evolutionary nature of interface development, interface
copyright will actually retard progress.

Fully fleshed-out interfaces don’t often arise as tours de force from the
minds of isolated masters. They result from repeated implementations,
by different groups, each learning from the results of previous attempts.
For example, the Macintosh interface was based on ideas tried previ-
ously by Xerox and SRI, and before that by the Stanford Artificial Intel-
ligence Laboratory. The Xerox Star also drew on the interface ideas
that came from SRI and SAIL. 1-2-3 adapted the interface ideas of
Visicalc and other spreadsheets. dBase drew on a program developed
at the Jet Propulsion Laboratory.

This evolutionary process resembles the creation of folk art rather than
the way symphonies, novels or films are made. The advances that we
ought to encourage are most often small, localized changes to what
someone else has done. If each interface has an owner, it will be
difficult to implement such ideas. Even assuming the owner will
license the interface that is to be improved, the inconvenience and
expense would discourage all but the most determined.

EurOpen & USENIX Spring “92 - Jersey, 6-9 April 55

Against User Interface Copyright

Users often appreciate small, incremental changes that make programs
easier or faster to use. This means changes that are upwards compati-
ble, or affect only part of a well-known interface. Thus, on computer
keyboards, we now have function keys, arrow keys, a delete key and a
control key, which typewriters did not have. But the layout of the let-
ters is unchanged.

However, such partial changes as this are not permitted by copyright
law. If any significant portion of the new interface is the same as a
copyrighted interface, the new interface is illegal.

Reason #10: Interface Developers Don’t Want Iﬁterface Copyright

At the 1989 ACM Conference on Computer-Human Interaction, Profes-
sor Samuelson of the Emory School of Law presented a “mock trial”
with legal arguments for and against user interface copyright, and then
asked the attendees — researchers and developers of user interfaces — to
fill out a survey of their opinion on the subject.

The respondents overwhelmingly opposed all aspects of user interface
copyright, by as much as 4 to 1 for some aspects. When they were
asked whether user interface copyright would harm or help the field, on
a scale from 1 (harm) to 5 (help), the average answer was 1.6.7

The advocates of user interface copyright say that it would provide bet-
ter security and income for user interface designers. However, the sur-
vey shows that these supposed beneficiaries would prefer to be let
alone.

Do You Really Want a User Interface Copyright?

For a business, “locking in” customers may be profitable for a time.
But, as the vendors of proprietary operating systems have found out,
this generates resentment and eventually drives customers to try to
escape. In the long run, this leads to failure.

Therefore, by permitting user interface copyright, society encourages
counterproductive thinking in its businesses. Not all businesses can
resist this temptation; let us not tempt them.

Conclusion

Monopolies on user interfaces do not serve the users and do not “pro-
mote the progress of science and the useful arts.” User interfaces ought
to be the common property of all, as they undisputedly were until a few
years ago.

What You Can Do

. Don’t do business as usual with the plaintiffs, Xerox, Lotus, and
Apple. Buy from their competitors instead; sell their stock;
develop new software for other computer systems rather than
theirs, and port existing applications away from their systems.

° Don’t work for the “look and feel” plaintiffs or accept contracts
from them.

+ See the May 1990 issue of the Communications of the ACM, for the full results.

56

EurOpen & USENIX Spring 92 - Jersey, 6-9 April

Against User Interface Copyright

Join the League for Programming Freedom — a grass-roots orga-
nization of programmers and users opposing software patents
and interface copyrights. (The League is not opposed to copy-
right on individual programs.) Annual dues are $42 for employed
professionals, $10.50 for students, and $21 for others. We appre-
ciate activists, but members who cannot contribute their time are
also welcome.

Phone us at (617) 243-4091, send Internet mail to the address
league@prep.ai.mit.edu, or write to:

League for Programming Freedom
1 Kendall Square #143

P.O.Box 9171

Cambridge, MA 02139

Give copies of this paper to your friends, colleagues and cus-
tomers.

In the United States, write to your representatives and to these
Congressional subcommittees:

House Subcommittee on Intellectual Property
2137 Rayburn Bldg
Washington, DC 20515

Senate Subcommittee on Patents,
Trademarks and Copyrights
United States Senate
Washington, DC 20510

The European Community has adopted a directive whose most
natural interpretation imposes copyright on all kinds of inter-
faces, even on programming languages. Since the other coun-
tries of Europe are considering joining the EC, they also are in
danger of being covered by the directive.

Other, benign interpretations of the directive are also possible,
but they are unlikely to be chosen by judges unless the govern-
ments of the individual EC countries explicitly mandate them.
Convincing the governments requires political pressure from the
programmers and users of Europe.

Lobbyists working on this issue say that most legislators are
unfamiliar with computers and do not understand how harmful
interface copyright could be. Thus, what programmers need to
do is to educate their legislators.

One idea is to start teaching your representative the basics of
using 1-2-3. Once the representative sees how much work is
involved in learning to use a command language, explain that
you have only taught one tenth of the subject. This should drive
the point home.

Political effectiveness requires organization. Leagues for Pro-
gramming Freedom now exist in Finland, Germany, the United
Kingdom, the Netherlands, Norway, and Switzerland. (In the
UK, the Edinburgh Computing and Social Responsibility organi-
zation also deals with this issue.) Ask the League in the US for
the address of your nation’s League — or for advice and assis-
tance in forming one.

EurOpen & USENIX Spring “92 - Jersey, 6-9 April

57

58

EurOpen & USENIX Spring “92 - Jersey, 6-9 April

Against Software Patents

(February 28, 1991)

The League for Programming Freedom
league(@prep.ai.mit.edu

Abstract

This paper describes how the extension of patents to cover software
techniques, algorithms and features threatens programmers’ freedom to
write software. It explains why patents in the software field yield com-
paritively little benefit in the form of additional published techniques,
algorithms and features, while greatly hindering the persuit of software
development; and, in addition, how they favor the largest companies
against all others. Conclusion: the application of patent law to software
is unsound public policy.

Introduction

Software patents threaten to devastate America’s computer industry.
Patents granted in the past decade are now being used to attack compa-
nies such as the Lotus Development Corporation for selling programs
that they have independently developed. Soon new companies will
often be barred from the software arena — most major programs will
require licenses for dozens of patents, and this will make them infeasi-
ble. This problem has only one solution: software patents must be
eliminated.

The Patent System and Computer Programs

The framers of the United States Constitution established the patent
system so that inventors would have an incentive to share their inven-
tions with the general public. In exchange for divulging an invention,
the patent grants the inventor a 17 year monopoly on its use. The
patent holder can license others to use the invention, but may also
refuse to do so. Independent reinvention of the same technique by oth-
ers does not give them the right to use it.

Patents do not cover specific systems: instead, they cover particular
techniques that can be used to build systems, or particular features that
systems can offer. Once a technique or feature is patented, it may not
be used in a system without the permission of the patent-holder — even
if it is implemented in a different way. Since a computer program typi-
cally uses many techniques and provides many features, it can infringe
many patents at once.

EurOpen & USENIX Spring “92 - Jersey, 6-9 April 59

Against Software Patents

Until recently, patents were not used in the software field. Software
developers copyrighted individual programs or made them trade
secrets. Copyright was traditionally understood to cover the implemen-
tation details of a particular program; it did not cover the features of the
program, or the general methods used. And trade secrecy, by
definition, could not prohibit any development work by someone who
did not know the secret.

On this basis, software development was extremely profitable, and
received considerable investment, without any prohibition on indepen-
dent software development. But this scheme of things is no more. A
change in U.S. government policy in the early 1980’s stimulated a flood
of applications. Now many have been approved, and the rate is accel-
erating.

Many programmers are unaware of the change and do not appreciate
the magnitude of its effects. Today the lawsuits are just beginning.

Absurd Patents

The Patent Office and the courts have had a difficult time with com-
puter software. The Patent Office refused until recently to hire Com-
puter Science graduates as examiners, and in any case does not offer
competitive salaries for the field. Patent examiners are often ill-
prepared to evaluate software patent applications to determine if they
represent techniques that are widely known or obvious — both of which
are grounds for rejection.

Their task is made more difficult because many commonly-used soft-
ware techniques do not appear in the scientific literature of computer
science. Some seemed too obvious to publish while others seemed
insufficiently general; some were open secrets.

Computer scientists know many techniques that can be generalized to
widely varying circumstances. But the Patent Office seems to believe
that each separate use of a technique is a candidate for a new patent.
For example, Apple was sued because the Hypercard program
allegedly violates patent number 4,736,308, a patent that covers dis-
playing portions of two or more strings together on the screen — effec-
tively, scrolling with multiple subwindows. Scrolling and subwindows
are well-known techniques, but combining them is now apparently ille-
gal.

The granting of a patent by the Patent Office carries a presumption in
law that the patent is valid. Patents for well-known techniques that
were in use many years before the patent application have been upheld
by federal courts. It can be hard to prove a technique was well known
at the time in question.

For example, the technique of using exclusive-or to write a cursor onto
a screen is both well known and obvious. (Its advantage is that another
identical exclusive-or operation can be used to erase the cursor without
damaging the other data on the screen.) This technique can be imple-
mented in a few lines of a program, and a clever high school student
might well reinvent it. But it is covered by patent number 4,197,590,
which has been upheld twice in court even though the technique was
used at least five years before the patent application. Cadtrak, the com-
pany that owns this patent, collects millions of dollars from large com-
puter manufacturers.

English patents covering customary graphics techniques, including air-
brushing, stenciling, and combination of two images under control of a

60

EurOpen & USENIX Spring *92 - Jersey, 6-9 April

Against Software Patents

third one, were recently upheld in court, despite the testimony of the
pioneers of the field that they had developed these techniques years
before. (The corresponding United States patents, including 4,633,416
and 4,602,286, have not yet been tested in court, but they probably will
be soon.)

All the major developers of spreadsheet programs have been threatened
on the basis of patent 4,398,249, covering “natural order recalc” — the
recalculation of all the spreadsheet entries that are affected by the
changes the user makes, rather than recalculation in a fixed order. Cur-
rently Lotus alone is being sued, but a victory for the plaintiff in this
case would leave the other developers little hope. The League has
found prior art that may defeat this patent, but this is not assured.

Nothing protects programmers from accidentally using a technique that
is patented, and then being sued for it. Taking an existing program and
making it run faster may also make it violate half a dozen patents that
have been granted, or are about to be granted.

Even if the Patent Office learns to understand software better, the mis-
takes it is making now will follow us into the next century, unless
Congress or the Supreme Court intervenes to declare these patents
void.

However, this is not the whole of the problem. Computer program-
ming is fundamentally different from the other fields that the patent
system previously covered. Even if the patent system were to operate
“as intended” for software, it would still obstruct the industry it is sup-
posed to promote.

What Is “Obvious”?

The patent system will not grant or uphold patents that are judged to be
obvious. However, the system interprets the word “obvious” in a way
that might surprise computer programmers. The standard of obvious-
ness developed in other fields is inappropriate for software.

Patent examiners and judges are accustomed to considering even small,
incremental changes as deserving new patents. For example, the
famous Polaroid vs. Kodak case hinged on differences in the number
and order of layers of chemicals in a film — differences between the
technique Kodak was using and those described by previous, expired
patents. The court ruled that these differences were unobvious.

Computer scientists solve problems quickly because the medium of
programming is tractable. They are trained to generalize solution prin-
ciples from one problem to another. One such generalization is that a
procedure can be repeated or subdivided. Programmers consider this
obvious — but the Patent Office did not think that it was obvious when it
granted the patent on scrolling multiple strings, described above.

Cases such as this cannot be considered errors. The patent system is
functioning as it was designed to do — but with software, it produces
outrageous results.

Patenting What Is Too Obvious to Publish

Sometimes it is possible to patent a technique that is not new precisely
because it is obvious — so obvious that no one would have published a
paper about it.

EurOpen & USENIX Spring *92 - Jersey, 6-9 April 61

Against Software Patents

For example, computer companies distributing the free X Window Sys-
tem developed by MIT are now being threatened with lawsuits by
AT&T over patent number 4,555,775, covering the use of “backing
store” in a window system that lets multiple programs have windows.
Backing store means that the contents of a window that is temporarily
partly hidden are saved in off-screen memory, so they can be restored
quickly if the obscuring window disappears.

Early window systems were developed on computers that could not run
two programs at once. These computers had small memories, so saving
window contents was obviously a waste of scarce memory space.
Later, larger multiprocessing computers led to the use of backing store,
and to permitting each program to have its own windows. The combi-
nation was inevitable.

The technique of backing store was used at MIT in the Lisp Machine
System before AT&T applied for a patent. (By coincidence, the Lisp
Machine also supported multiprocessing.) The Lisp Machine develop-
ers published nothing about backing store at the time, considering it too
obvious. It was mentioned when a programmers’ manual explained
how to turn it on and off.

But this manual was published one week after the AT&T patent appli-
cation — too late to count as prior art to defeat the patent. So the AT&T
patent may stand, and MIT may be forbidden to continue using a
method that MIT used before AT&T.

The result is that the dozens of companies and hundreds of thousands
of users who accepted the software from MIT on the understanding that
it was free are now faced with possible lawsuits. (They are also being
threatened with Cadtrak’s exclusive-or patent.) The X Window System
project was intended to develop a window system that all developers
could use freely. This public service goal seems to have been thwarted
by patents.

Why Software Is Different

Software systems are much easier to design than hardware systems of
the same number of components. For example, a program of 100,000
components might be 50,000 lines long and could be written by two
good programmers in a year. The equipment needed for this costs less
than $10,000; the only other cost would be the programmers’ own liv-
ing expenses while doing the job. The total investment would be less
than a $100,000. If done commercially in a large company, it might
cost twice that. By contrast, an automobile typically contains under
100,000 components; it requires a large team and costs tens of millions
of dollars to design.

And software is also much cheaper to manufacture: copies can be made
easily on an ordinary workstation costing under ten thousand dollars.
To produce a complex hardware system often requires a factory costing
tens of millions of dollars.

Why is this? A hardware system has to be designed using real compo-
nents. They have varying costs; they have limits of operation; they
may be sensitive to temperature, vibration or humidity; they may gen-
erate noise; they drain power; they may fail either momentarily or per-
manently. They must be physically assembled in their proper places,
and they must be accessible for replacement in case they fail.

Moreover, each of the components in a hardware design is likely to
affect the behavior of many others. This greatly complicates the task

62

EurOpen & USENIX Spring 92 - Jersey, 6-9 April

I_H'

Against Software Patents

of determining what a hardware design will do: mathematical modeling
may prove wrong when the design is built.

By contrast, a computer program is built out of ideal mathematical
objects whose behavior is defined, not modeled approximately, by
abstract rules. When an if-statement follows a while-statement, there is
no need to study whether the if-statement will draw power from the
while-statement and thereby distort its output, nor whether it could
overstress the while-statement and make it fail.

Despite being built from simple parts, computer programs are incredi-
bly complex. The program with 100,000 parts is as complex as an
automobile, though far easier to design.

While programs cost substantially less to write, market and sell than
automobiles, the cost of dealing with the patent system will not be less.
The same number of components will, on the average, involve the
same number techniques that might be patented.

The Danger of a Lawsuit

Under the current patent system, a software developer who wishes to
follow the law must determine which patents a program violates and
negotiate with each patent holder a license to use that patent. Licens-
ing may be prohibitively expensive, or even unavailable if the patent is
held by a competitor. Even “reasonabie” license fees for several
patents can add up to make a project infeasible. Alternatively, the
developer may wish to avoid using the patent altogether; but there may
be no way around it.

The worst danger of the patent system is that a developer might find,
after releasing a product, that it infringes one or many patents. The
resulting lawsuit and legal fees could force even a medium-size com-
pany out of business.

Worst of all, there is no practical way for a software developer to avoid
this danger — there is no effective way to find out what patents a system
will infringe. There is a way to try to find out — a patent search — but
searches are unreliable and in any case too expensive to use for soft-
ware projects.

Patent Searches Are Prohibitively Expensive

A system with a hundred thousand components can use hundreds of
techniques that might already be patented. Since each patent search
costs thousands of dollars, searching for all the possible points of dan-
ger could easily cost over a million. This is far more than the cost of
writing the program.

The costs don’t stop there. Patent applications are written by lawyers
for lawyers. A programmer reading a patent may not believe that his
program violates the patent, but a federal court may rule otherwise. It
is thus now necessary to involve patent attorneys at every phase of pro-
gram development.

Yet this only reduces the risk of being sued later — it does not eliminate
the risk. So it is necessary to have a reserve of cash for the eventuality
of a lawsuit.

When a company spends millions to design a hardware system, and
plans to invest tens of millions to manufacture it, an extra million or

EurOpen & USENIX Spring “92 - Jersey, 6-9 April 63

Against Software Patents

| 1
Hid

two to pay for dealing with the patent system might be bearable. How-
ever, for the inexpensive programming project, the same extra cost is
prohibitive. Individuals and small companies especially cannot afford
these costs. Software patents will put an end to software entrepreneurs.

Patent Searches Are Unreliable

Even if developers could afford patent searches, these are not a reliable
method of avoiding the use of patented techniques. This is because
patent searches do not reveal pending patent applications (which are
kept confidential by the Patent Office). Since it takes several years on
the average for a software patent to be granted, this is a serious prob-
lem: a developer could begin designing a large program after a patent
has been applied for, and release the program before the patent is
approved. Only later will the developer learn that distribution of the
program is prohibited.

For example, the implementors of the widely-used public domain data
compression program compress followed an algorithm obtained
from the journal IEEE Computer. (This algorithm is also used in sev-
eral popular programs for microcomputers, including PKZIP.) They
and the user community were surprised to learn later that patent num-
ber 4,558,302 had been issued to one of the authors of the article. Now
Unisys is demanding royalties for using this algorithm. Although the
program compress is still in the public domain, using it means risk-
ing a lawsuit.

The Patent Office does not have a workable scheme for classifying
software patents. Patents are most frequently classified by end results,
such as “converting iron to steel;” but many patents cover algorithms
whose use in a program is entirely independent of the purpose of the
program. For example, a program to analyze human speech might
infringe the patent on a speedup in the Fast Fourier Transform; so
might a program to petform symbolic algebra (in multiplying large
numbers); but the category to search for such a patent would be hard to
predict.

You might think it would be easy to keep a list of the patented software
techniques, or even simply remember them. However, managing such
a list is nearly impossible. A list compiled in 1989 by lawyers special-
izing in the field omitted some of the patents mentioned in this paper.

Obscure Patents

When you imagine an invention, you probably think of something that
could be described in a few words, such as “a flying machine with
fixed, curved wings” or “an electrical communicator with a microphone
and a speaker”. But most patents cover complex detailed processes
that have no simple descriptions — often they are speedups or variants
of well-known processes that are themselves complex.

Most of these patents are neither obvious nor brilliant; they are
obscure. A capable software designer will “invent” several such
improvements in the course of a project. However, there are many
avenues for improving a technique, so no single project is likely to find
any given one.

For example, IBM has several patents (including patent number
4,656,583) on workmanlike, albeit complex, speedups for well-known

64

EurOpen & USENIX Spring 92 - Jersey, 6-9 April

Against Software Patents

computations performed by optimizing compilers, such as register col-
oring and computing the available expressions.

Patents are also granted on combinations of techniques that are already
widely used. One example is IBM patent 4,742,450, which covers
“shared copy-on-write segments.” This technique allows several pro-
grams to share the same piece of memory that represents information in
a file; if any program writes a page in the file, that page is replaced by a
copy in all of the programs, which continue to share that page with
each other but no longer share with the file.

Shared segments and copy-on-write have been used since the 1960’s;
this particular combination may be new as a specific feature, but is
hardly an invention. Nevertheless, the Patent Office thought that it
merited a patent, which must now be taken into account by the devel-
oper of any new operating system.

Obscure patents are like land mines: other developers are more likely
to reinvent these techniques than to find out about the patents, and then
they will be sued. The chance of running into any one of these patents
is small, but they are so numerous that you cannot go far without hit-
ting one. Every basic technique has many variations, and a small set of
basic techniques can be combined in many ways. The patent office has
now granted at least 2000 software patents — no less than 700 in 1989
alone, according to a list compiled by EDS. We can expect the pace to
accelerate. In ten years, programmers will have no choice but to march
on blindly and hope they are lucky.

Patent Licensing Has Problems, Too

Most large software companies are trying to solve the problem of
patents by getting patents of their own. Then they hope to cross-license
with the other large companies that own most of the patents, so they
will be free to go on as before.

While this approach will allow companies like Microsoft, Apple and
IBM to continue in business, it will shut new companies out of the field.
A future start-up, with no patents of its own, will be forced to pay
whatever price the giants choose to impose. That price might be high:
established companies have an interest in excluding future competitors.
The recent Lotus lawsuits against Borland and the Santa Cruz Opera-
tion (although involving an extended idea of copyright rather than
patents) show how this can work.

Even the giants cannot protect themselves with cross-licensing from
companies whose only business is to obtain exclusive rights to patents
and then threaten to sue. For example, consider the New York-based
Refac Technology Development Corporation, representing the owner
of the “natural order recalc” patent. Contrary to its name, Refac does
not develop anything except lawsuits — it has no business reason to join
a cross-licensing compact. Cadtrak, the owner of the exclusive-or
patent, is also a litigation company.

Refac is demanding five percent of sales of all major spread-sheet pro-
grams. If a future program infringes on twenty such patents — and this
is not unlikely, given the complexity of computer programs and the
broad applicability of many patents — the combined royalties could
exceed 100% of the sales price. (In practice, just a few patents can
make a program unprofitable.)

EurOpen & USENIX Spring *92 - Jersey, 6-9 April 65

Against Software Patents

The Fundamental Question

According to the Constitution of the United States, the purpose of
patents is to “promote the progress of science and the useful arts.”
Thus, the basic question at issue is whether software patents, suppos-
edly a method of encouraging software progress, will truly do so, or
will retard progress instead.

So far we have explained the ways in which patents will make ordinary
software development difficult. But what of the intended benefits of
patents: more invention, and more public disclosure of inventions? To
what extent will these actually occur in the field of software?

There will be little benefit to society from software patents because
invention in software was already flourishing before software patents,
and inventions were normally published in journals for everyone to use.
Invention flourished so strongly, in fact, that the same inventions were
often found again and again.

In Software, Independent Reinvention Is Commonplace

A patent is an absolute monopoly; everyone is forbidden to use the
patented process, even those who reinvent it independently. This pol-
icy implicitly assumes that inventions are rare and precious, since only
in those circumstances is it beneficial.

The field of software is one of constant reinvention; as some people
say, programmers throw away more “inventions” each week than other
people develop in a year. And the comparative ease of designing large
software systems makes it easy for many people to do work in the field.
A programmer solves many problems in developing each program.
These solutions are likely to be reinvented frequently as other program-
mers tackle similar problems.

The prevalence of independent reinvention negates the usual purpose
of patents. Patents are intended to encourage inventions and, above all,
the disclosure of inventions. If a technique will be reinvented fre-
quently, there is no need to encourage more people to invent it; since
some of the developers will choose to publish it (if publication is mer-
ited), there is no point in encouraging a particular inventor to publish it
— not at the cost of inhibiting use of the technique.

Overemphasis of Inventions

Many analysts of American and Japanese industry have attributed
Japanese success at producing quality products to the fact that they
emphasize incremental improvements, convenient features and quality
rather than noteworthy inventions.

It is especially true in software that success depends primarily on get-
ting the details right. And that is most of the work in developing any
useful software system. Inventions are a comparatively unimportant
part of the job.

The idea of software patents is thus an example of the mistaken Ameri-
can preoccupation with inventions rather than products. And patents
will encourage this mistaken focus, even as they impede the develop-
ment work that actually produces better software.

66

EurOpen & USENIX Spring “92 - Jersey, 6-9 April

Against Software Patents

Impeding Innovation

By reducing the number of programmers engaged in software develop-
ment, software patents will actually impede innovation. Much software
innovation comes from programmers solving problems while develop-
ing software, not from projects whose specific purpose is to make
inventions and obtain patents. In other words, these innovations are
byproducts of software development.

When patents make development more difficult, and cut down on
development projects, they will also cut down on the byproducts of
development — new techniques.

Could Patents Ever Be Beneficial?

Although software patents in general are harmful to society as a whole,
we do not claim that every single software patent is necessarily harm-
ful. Careful study might show that under certain specific and narrow
conditions (necessarily excluding the vast majority of cases) it is
beneficial to grant software patents.

Nonetheless, the right thing to do now is to eliminate all software
patents as soon as possible, before more damage is done. The careful
study can come afterward.

Clearly software patents are not urgently needed by anyone except
patent lawyers. The pre-patent software industry had no problem that
was solved by patents; there was no shortage of invention, and no
shortage of investment.

Complete elimination of software patents may not be the ideal solution,
but it is close, and is a great improvement. Its very simplicity helps
avoid a long delay while people argue about details.

If it is ever shown that software patents are beneficial in certain excep-
tional cases, the law can be changed again at that time — if it is impor-
tant enough. There is no reason to continue the present catastrophic
situation until that day.

Software Patents Are Legally Questionable

T See “Legally Speaking” in Communications of the ACM, August 1990.

It may come as a surprise that the extension of patent law to software is
still legally questionable. It rests on an extreme interpretation of a par-
ticular 1981 Supreme Court decision, Diamond vs. Deihr.}

Traditionally, the only kinds of processes that could be patented were
those for transforming matter (such as, for transforming iron into steel).
Many other activities which we would consider processes were entirely
excluded from patents, including business methods, data analysis, and
“mental steps.” This was called the “subject matter” doctrine.

Diamond vs. Deihr has been interpreted by the Patent Office as a rever-
sal of this doctrine, but the court did not explicitly reject it. The case
concerned a process for curing rubber — a transformation of matter.
The issue at hand was whether the use of a computer program in the
process was enough to render it unpatentable, and the court ruled that it
was not. The Patent Office took this narrow decision as a green light

EurOpen & USENIX Spring *92 - Jersey, 6-9 April

Against Software Patents

for unlimited patenting of software techniques, and even for the use of
software to perform specific well-known and customary activities.

Most patent lawyers have embraced the change, saying that the new
boundaries of patents should be defined over decades by a series of
expensive court cases. Such a course of action will certainly be good
for patent lawyers, but it is unlikely to be good for software developers
and users.

One Way to Eliminate Software Patents

We recommend the passage of a law to exclude software from the
domain of patents. That is to say that, no matter what patents might
exist, they would not cover implementations in software; only imple-
mentations in the form of hard-to-design hardware would be covered.
An advantage of this method is that it would not be necessary to clas-
sify patent applications into hardware and software when examining
them.

Many have asked how to define software for this purpose — where the
line should be drawn. For the purpose of this legislation, software
should be defined by the characteristics that make software patents
especially harmful:

° Software is built from ideal infallible mathematical components,
whose outputs are not affected by the components they feed into.

Ideal mathematical components are defined by abstract rules, so
that failure of a component is by definition impossible. The
behavior of any system built of these components is likewise
defined by the consequences of applying the rules step by step to
the components.

° Software can be easily and cheaply copied.

Following this criterion, a program to compute prime numbers is a
piece of software. A mechanical device designed specifically to per-
form the same computation is not software, since mechanical compo-
nents have friction, can interfere with each other’s motion, can fail, and
must be assembled physically to form a working machine.

Any piece of software needs a hardware platform in order to run. The
software operates the features of the hardware in some combination,
under a plan. Our proposal is that combining the features in this way
can never create infringement. If the hardware alone does not infringe
a patent, then using it in a particular fashion under control of a program
should not infringe either. In effect, a program is an extension of the
programmer’s mind, acting as a proxy for the programmer to control
the hardware.

Usually the hardware is a general purpose computer, which implies no
particular application. Such hardware cannot infringe any patents
except those covering the construction of computers. Our proposal
means that, when a user runs such a program on a general purpose
computer, no patents other than those should apply.

The traditional distinction between hardware and software involves a
complex of characteristics that used to go hand in hand. Some newer
technologies, such as gate arrays and silicon compilers, blur the distinc-
tion because they combine characteristics associated with hardware
with others associated with software. However, most of these tech-
nologies can be classified unambiguously for patent purposes, either as
software or as hardware, using the criteria above. A few gray areas

68

EurOpen & USENIX Spring *92 - Jersey, 6-9 April

Against Software Patents

may remain, but these are comparatively small, and need not be an
obstacle to solving the problems patents pose for ordinary software
development. They will eventually be treated as hardware, as software,
or as something in between.

What You Can Do

One way to help eliminate software patents is to join the League for
Programming Freedom. The League is a grass-roots organization of
programmers and users opposing software patents and interface copy-
rights. (The League is not opposed to copyright on individual pro-
grams.) Annual dues for individual members are $42 for employed pro-
fessionals, $10.50 for students, and $21 for others. We appreciate
activists, but members who cannot contribute their time are also wel-
come.

To contact the League, phone (617) 243-4091, send Internet mail to the
address league@prep.ai.mit.edu, or write to:

League for Programming Freedom
1 Kendall Square #143

PO Box 9171

Cambridge, MA 02139

In the United States, another way to help is to write to Congress. You
can write to your own representatives, but it may be even more effec-
tive to write to the subcommittees that consider such issues:

House Subcommittee on Intellectual Property
2137 Rayburn Bldg
Washington, DC 20515

Senate Subcommittee on Patents,
Trademarks and Copyrights
United States Senate
Washington, DC 20510

You can phone your representatives at (202) 225-3121, or write to
them using the following addresses:

Senator So and So
United States Senate
Washington, DC 20510

Representative Such and Such
House of Representatives
Washington, DC 20515

Fighting Patents One by One

Until we succeed in eliminating all patenting of software, we must try
to overturn individual software patents. This is very expensive and can
solve only a small part of the problem, but that is better than nothing.

Overturning patents in court requires prior art, which may not be easy
to find. The League for Programming Freedom will try to serve as a
clearing house for this information, to assist the defendants in software
patent suits. This depends on your help. If you know about prior art
for any software patent, please send the information to the League at
the address given above.

EurOpen & USENIX Spring “92 - Jersey, 6-9 April 69

Against Software Patents

If you work on software, you can personally help prevent software
patents by refusing to cooperate in applying for them. The details of
this may depend on the situation.

Conclusion

Exempting software from the scope of patents will protect software
developers from the insupportable cost of patent searches, the wasteful
struggle to find a way clear of known patents, and the unavoidable dan-
ger of lawsuits.

If nothing is changed, what is now an efficient creative activity will
become prohibitively expensive. To picture the effects, imagine if each
square of pavement on the sidewalk had an owner, and pedestrians
required a license to step on it. Imagine the negotiations necessary to
walk an entire block under this system. That is what writing a program
will be like if software patents continue. The sparks of creativity and
individualism that have driven the computer revolution will be snuffed
out.

70

EurOpen & USENIX Spring “92 - Jersey, 6-9 April

HF
Hid

Practical Problems with
Porting Software

Brian O’Donovan

Digital International B.V.
Galway
Republic of Ireland
odonovan@ilo.dec.com

Abstract

This paper describes some of the problems that are encountered when
porting software between truly heterogeneous systems. As a practical
example it describes the problems that were encountered when porting
a large software system from VMS to ULTRIX.

1. Introduction

Many papers which describe the development of portable software con-
centrate entirely on issues relating to coding style. However, there are
many additional issues to be faced when porting software between het-
erogeneous systems. For example, it is relatively difficult to set up a
development environment which facilitates multi-platform develop-
ment.

This paper attempts to describe some of the more practical problems
which must be overcome when developing software which must work
on heterogeneous operating systems. As an example, the paper will
describe the problems which we had to overcome during the develop-
ment of an application which was originally written to run on VMS and
then later ported to two flavors of ULTRIX (Digital’s UNIX based oper-
ating system).

The paper will not describe the application in detail. Instead, it concen-
trates on the problems which were encountered when porting it
between VMS and ULTRIX and how these problems were overcome. It
was relatively simple to make the tool portable between the VAX based
and MIPS based versions of ULTRIX; therefore the paper will not place
much empbhasis on this aspect of the development.

2. The Application

Our application is a menu based system to simplify the installation and
licensing of software products. Typically a customer would be pro-
vided with one or more CDROMs containing software products and a

EurOpen & USENIX Spring *92 - Jersey, 6-9 April 71

Practical Problems with Porting Software

file containing Product Authorization Keys (PAKs) for these products.
When using our system the user will be presented with a menu of all
available products. The user can then select which products he/she
wants to license and/or install. When the user has selected all the
desired products to license and/or install, the system will carry out
these actions automatically in batch mode.

If the user was not using our application, he/she would have to manu-
ally type the contents of the PAK into the license database. If a large
number of PAKs are being registered, this can become a very tedious
and time consuming task. Our system can save the system managers’
valuable time by automatically transferring the appropriate PAKs from
the file to the license database.

The user of our application can also save some time by eliminating the
need for someone to manually answer all of the questions that might
arise when doing an product installation. This is done by storing the
answers to any of the possible installation questions in an answer file.
Our system will answer any questions that arise during the installation
of a product by searching for an answer in the answer file. Customers
are normally supplied with at least one answer file per product contain-
ing the most commonly used defaults. However, customers can create
their own default options by editing these answer files and inserting dif-
ferent answers to the installation questions.

Our application will record a central history of all the products it has
licensed and/or installed. This is done by sending messages across the
network to a central history server. It also contains a utility for detect-
ing products which were licensed and/or installed manually (i.e., with-
out using our system). Therefore our system can be used to maintain a
database of exactly what products are installed and licensed on each
node in the network. The information in this central node can be con-
verted into an itimised bill for the customer’s software usage.

Our system is quite a large and complex piece of software. It com-
prises approximately 85 thousand lines of code in 66 different source
files.! There were as many as 8 different developers working simulta-
neously on the system. This meant that it was necessary to adopt well
defined work practices in order to avoid any conflicts between changes
made by each of the developers. The possibility for conflicts was exac-
erbated by the fact that developers would make a change on one oper-
ating system without necessarily giving full consideration to the effect
that this change would have on the operation of the system on the other
operating system(s).

Luckily, both VMS and ULTRIX support the LMF license management
system. Hence the code to license products could be reasonably similar
on both operating systems since the same license manager was being
used. However, VMS and ULTRIX have totally different systems for
installing software (VMS uses vmsinstall while ULTRIX uses
setld). Therefore, the installation code had to be significantly differ-
ent on each system.

Our application will probably be further expanded to support other
operating systems, (e.g. MS-DOS, Apple Macintosh, Solaris and HP-
UX) installation systems (e.g. OSF’s ANDF) [OSF91a] and license man-
agers (e.g. HP’s NetLS). However, the schedule for the order in which
these are supported depends entirely upon customer demand.

+ Comment lines are included in the “lines of code” measurement because it is easier to calculate. However, header files were not in-
cluded. There are an additional 70 header files.

=~
[

EurOpen & USENIX Spring “92 - Jersey, 6-9 April

Practical Problems with Porting Software

3. Providing Access to the Sources

When you are porting software between heterogeneous operating sys-
tems you do not want to end up developing several different pieces of
software (one for each of the operating systems). If you have several
different pieces of software, you will have a maintenance problem
whereby you will need to apply software patches to each variant of the
software separately. To avoid this problem, it is important to ensure
that (whenever it is practical) you use the same source files for each
variant of the software.

On our project all C source files were shared between the ULTRIX and
VMS variants of the system except for one module which accomplishes
the interface to the operating system. It was not practical, however, to
use the same makefile, install procedure, or help files. Although the
message cataloging systems on VMS and ULTRIX require that the mes-
sage source files should be in different formats, we found that it was
quite simple to write a utility that converted the message source file
from one format to another. Hence we ware able to share the same
message source file for both VMS and ULTRIX.

Most projects use a version control system to store and manage the
source files. Conflicting updates to the source files are avoided by forc-
ing developers to acquire an exclusive lock on a source file before
making any changes to it. In order to ensure that the developers work-
ing on ULTRIX did not make any changes that conflicted with the
changes made by developers working on VMS, it was essential that
they used the same version control library to store the source files.

The project team originally decided to use DEC/CMS [DECB87a] to store
and manage the various source files for the VMS version. Unfortu-
nately DEC/CMS is not available for ULTRIX; likewise, neither of the
ULTRIX version control tools (RCS and SCCS) are available on VMS.
We decided that we should continue to use DEC/CMS to store and man-
age the source files for the portable version of our system, because
there was no better alternative available. This meant that we had to
build our own interface to allow the ULTRIX based developers to
access the DEC/CMS library which is stored on VMS.

We combined use of both the “VMS/ULTRIX Connection” (UCX) prod-
uct [DEC90a] and the DECNET communications package to to build our
ULTRIX interface to CMS.

The UCX product allows VMS directories to be NFS exported to
ULTRIX systems. We used this product to allow the ULTRIX
systems access the source files which are stored on VMS.

DECNET is a communications protocol which is the primary
mode of communications for VMS systems. DECNET is also
available for ULTRIX systems. We used DECNET for some of
the communications between the ULTRIX systems and the VMS
systems. In particular we used the dcp -S command which
allows you to remotely submit a DCL command procedure’ for
execution on a VMS system.

The ULTRIX to CMS interface was implemented in a makefile. It was
decided to do it this way so that the commands to manage the source
files would be integrated with the commands to build the executables.
In retrospect, however, this was a bad decision because the makefile
grew extremely complex (in excess of 600 lines). It would perhaps

t A DCL command procedure is to VMS what a shell script is to UNIX.

EurOpen & USENIX Spring *92 - Jersey, 6-9 April 73

Practical Problems with Porting Software

have been better to implement the interface in a shell script and then
put simple rules into the makefile to call the shell script.

The makefile had three targets for accessing the CMS library.

fetch = retrieve a read only copy of the current versions of all
source files.

reserve = retrieve a writable copy of the specified source files.

replace => return the modified source files into the CMS library
(as new versions).

When building the retrieve and replace targets the user must supply
values for the macro FILES (the files to retrieve/replace) and the
macro MSG (the log message to record in CMS). For example the fol-
lowing command will retrieve writable copies of the source files
source_file.c and source_file.h. It will also store the log
message “changing the parameters to the send_packet routine” in the
CMS library as the reason for locking the files.

% make reserve FILES="source_file.c source_file.h" \
MSG="changing the parameters to the send_packet routine"

This command will cause the following steps to be executed:

. A DCL command procedure will be generated to reserve the files
from the CMS library into a spool directory on the VMS system.
Although this command procedure will be run on VMS, it is actu-
ally generated by the ULTRIX system.

) The command procedure will be submitted for execution on the
VMS node by using the dcp -S command.

) When the DCL command procedure completes it will create a file
named done.tmp in the spool directory if no errors were
encountered. If errors were encountered a file named
error . tmp will be created.

° The ULTRIX system has mounted the VMS spool directory via
UCX, hence it can see when the done.tmp or error.tmp file
is created. If the error. tmp file is created, an error message is
returned to the user. If the done.tmp file is created, the
reserved files are copied from the spool directory into the
developer’s personal source directory.

A similar procedure is followed for both the fetch and replace tar-
gets.

Our mechanisms for sharing files between VMS and ULTRIX work sat-
isfactorily. However, they still have a number of significant problems.

° It is not possible to reserve or replace files from the project
library when either the central VMS system is down or when the
UCX software is not running.

° Accessing the project library from ULTRIX is very slow because
of the multi-step procedure involved.

° The error handling is very crude. When errors occur on the VMS
side it is not possible to determine the cause of the problem with-
out logging into the VMS system and examining various log files.

° The interface only allows access to the default version of the
source files. If an ULTRIX based developer wants any other ver-
sion of the source files they must log into the VMS system and
retrieve the file themselves

° CMS has a feature whereby a copy of all newly created versions
of the source files are automatically placed in what is called the

74

EurOpen & USENIX Spring 92 ~ Jersey, 6-9 April

HT
1
Hh

E

Practical Problems with Porting Software

reference directory. VMS based developers can ensure that they
are using the latest version of the sources by simply including the
reference directory in their search path. Unfortunately, this fea-
ture does not work for ULTRIX. Hence it is necessary for the
ULTRIX based developers to periodically fetch a new copy of
each source files in order to ensure that they are using the most
recent version available.

The only true way to solve all of these problems would be to have a
distributed version control system which is accessible from either VMS
based systems or UNIX based systems. As far as we know no such tool
exists today. There is a possibility that DRCS [0’D90a, 0’D90b] may be
ported to VMS. If this is done it should provide an ideal solution to the
problems inherent in sharing source code between VMS based systems
and UNIX based systems.

4. Coding Techniques

We said earlier that you should aim to use the same source code on all
platforms. Unfortunately, it is inevitable that sometimes the code must
perform slightly differently on each platform. The way to get the same
source file to compile differently on each platform is by using the pre-
processor’s #ifdef construct.

Each compiler will pre-define certain pre-processor macros. For exam-
ple the VMS C compiler will pre-define the macro VMS, all VAX type
systems will pre-define the VAX macro, all systems derived from the
Berkeley variant of UNIX will pre-define the BSD macro, etc.. The fol-
lowing code fragment shows how these pre-defined macros can be used
to assign a different value to a variable depending upon which system
the code is compiled on.

#ifdef VMS

op _sys_type = 'A‘; /* VAX/VMS */
#else /» #ifdef VMS */
#ifdef VAX

op_sys_type = 'B’; /* VAX ULTRIX */
#else /* #ifdef VAX */

op_sys_type = 'C’; /* RISC ULTRIX */

#endif /* #ifdef VAX */
#endif /* #ifdef VMS */

You will notice that the following simple coding conventions were fol-
lowed in the previous example:

o There was at least one blank line separating the pre-processor
directives from any surrounding C code.

) The #else and #endif directives were accompanied by a
comment which specified which #ifdef directive they are
associated with.

o The code inside of each pre-processor block is a self contained
unit.
. Each pre-processor block of code contains a comment indicating

which systems this block of code is used on.

EurOpen & USENIX Spring “92 - Jersey, 6-9 April 75

Practical Problems with Porting Software

The need for these coding conventions can easily be seen by looking at
the following code fragment which does not follow the rules.

if (i>10)
{
#ifdef VMS
i += 2;
}
else
{
i+=1;
#else
i+=1;
#ifdef VAX
k = 0;
#else
k =1;
#endif
u++;
#endif
j=2;

}

In this example it is very difficult to follow the flow of control. This is
because statements which affect how the CPU will execute the program
are interspersed with statements which affect how the compiler will
compile the code. In addition it is not very easy to see exactly which C
statements will execute on each operating system because it is not
immediately obvious which #ifdef directives are associated with
which #else and #endif directives.

Program listing 1 shows how the code could be re-written in a manner
which makes it much easier to understand.

Even when the code is written to our coding standards, an excessive
use of the #ifdef directive can make the code difficult to understand.
This is because it is difficult to follow two simultaneous flows of con-
trol. When you are reading code which contains many #ifdef state-
ments, you must first try and figure out which C statements apply to the
operating system on which you are trying to debug, then you must also
try to understand the effect of the C statements themselves. For this
reason, we adopted an informal guideline that a single C function
should never contain more than three #1fdef directives. If a function
requires more than three #ifdef directives, then different versions of
the function should be written and the entire functions should be
enclosed inside of #ifdef directives.

We find it very useful to use what we call virtual functions when we
are trying to reduce the number of #ifdef directives in our code.
Virtual function calls are so called because look like ordinary function
calls in the body of the code, but they actually call a different function
on each operating system. The use of virtual functions is easiest under-
stood by looking at an example.

Our application frequently needs to search to see if a file exists that
matches a particular template (e.g. to find out there any files ending in
.install guide in the directory containing the kit). As a result
we developed a function called find_file() to accomplish this
task. The VMS operating system comes with a system supplied routine
called 1ib$find file which does most of the work required by the
find_file() routine. Unfortunately the ULTRIX operating system
does not come with any equivalent routine and hence the VMS and
ULTRIX implementations of this function are significantly different.

76

EurOpen & USENIX Spring “92 - Jersey, 6-9 April

Practical Problems with Porting Software

#ifdef VMS
/%
* Start of VMS Code
*/
if (i>10)
{
i += 2;
}
else
{
i+=1;
1=2;
}
#else /* #ifdef VMS */
/*
* Start of ULTRIX Code
*/
if (i>10)
{
i+=1;
#ifdef VAX

k = 0; /* VAX ULTRIX */
#else /* #ifdef VAX */

k =1; /* RISC ULTRIX */
#endif /* #ifdef VAX */

ut+;

j=2;
}

#endif /* #ifdef VMS */

Program 1: Code re-written to be easier to understand

According to our function naming conventions we named the two ver-
sions of the routine vms_find_file() and ult_find_file().
Because these routines are needed frequently throughout the our sys-
tem, we could easily find the following code fragment being repeated
several times in each of the source files:

#ifdef VMS

status = vms_find file (...); /* VAX/VMS code */
#else /* #ifdef VMS */

status = ult_find file (...); /* ULTRIX code */
#endif /> #ifdef VMS */
The need for these repeated #ifdef directives can easily be elimi-
nated by defining a virtual function FIND_FILE() to evaluate to
either vims_find file() orult_find_file() depending upon

the operating system for which we are compiling. A header file is cre-
ated with the following lines:

EurOpen & USENIX Spring “92 - Jersey, 6-9 April 77

Practical Problems with Porting Software

#ifdef VMs

/*

* yMS function definitions

*/

#define FIND_FILE vms_find_filef
#define GET _TIME vms_get_time

v

P ¢
#else /* #ifdef VMS */

/*

* ULTRIX function definitions

*/

#define FIND FILE ult_find file}
#define GET_TIME ult_get_time

R
#endif /> #ifdef VMS */

When this header file is included, the code fragment containing the
#ifdef directive shown earlier can be replaced by the following sim-
ple line:

status = FIND FILE (...);

5. Compiler Problems

For our example project we had to use three different C compilers. The
system was initially developed on VAX/VMS using the VAX C com-
piler. An ULTRIX version of the VAX C compiler was used for the
development of the ULTRIX VAX version. Since VAX C is not avail-
able for ULTRIX RISC, we had to use the MIPs C compiler for the
ULTRIX RISC version of our system.

Luckily, we ran into relatively few problems caused by differences in
the compilers. However, we had to limit ourselves to only use the sim-
ple features of the C language (which were the same across all three
compilers). The following is a list of the compiler related problems we
encountered and how we overcame these problems.

) All three compilers we use support function calls with variable
length argument lists. However, there are differences between
the compilers with regard to how these functions should be pro-
totyped. In order to avoid compatibility problems, we did not
include function prototypes for functions with variable length
argument lists.

o According to the ANSI C standard function prototypes are
optional. However, each different C compiler has a different
way of handling functions which are not prototyped. In order to
avoid any potential problems, we insisted that all functions
(except for functions with variable length argument lists) should
be prototyped in advance of being used.

. There are certain situations when you might want to pass the
address of a pointer as a parameter to a function. However,
some compilers will sometimes assume that the ‘&’ character

+ These dotted lines are to indicate that we defined several other virtual functions as well as just FIND_FILE.

+ You will notice that we adopt the convention that virtual functions have names which are all in uppercase. This distinguishes then
from normal function names which are in lowercase.

78 EurOpen & USENIX Spring “92 - Jersey, 6-9 April

Practical Problems with Porting Software

before the pointer variable was placed there in error and will
issue a warning message that the ‘&’ character is being ignored
(it is a common programming mistake to place an ‘&’ character
before a pointer variable). In order to ensure that the compiler
does not make this assumption it is necessary to explicitly
declare a variable which is a pointer to a pointer; this variable
can then be set to point to the desired pointer.

) There is a feature of the MIPS C compiler which causes it to
sometimes “forget” the data type of some function call parame-
ters. This bug occurs predominately in long source files. To
overcome this bug, we had to place explicit type casts on the
variables in question. This has no effect upon the compilation of
the code with other compilers because we are explicitly casting
the variables to the same type as they already are.

. The VAX C compiler supports a globaldef data type. Vari-
ables which are declared with the globaldef type are similar
to normal C global variables. However, with the globaldef
type, you can control where in the executable image the space is
allocated for the variable. Unfortunately, the globaldef type
is not supported by any other compiler. Although the original
code contained several variables which were declared to be
globaldef type variables, we found that they could all be
replaced with normatl global variables.

We initially planned to use the 1int tool to check for potential porta-
bility problems in the source code. However, when we ran lint on
the original source code we got such a huge amount of output that it
was almost impossible to decipher. The use of 1int could possibly
have identified some problems with the code, however, the genuine
portability warnings would have been difficult to find in the middle of
pages of spurious warnings.

The VAX C compiler has a portability warning feature, when this fea-
ture is enabled the compiler will issue additional warning messages
about potential portability problems in the source code. We found that
enabling this feature enabled us to highlight many potential portability
problems. The MIPS C compiler also enforces very strict type check-
ing. In fact, we found several situations where some of our code would
produce warnings when compiled with the MIPS C compiler but would
pass through the 1int checker without any errors.

Because of the fact that the compilers themselves were capable of
detecting most of the potential portability problems, we decided not to
use the 1int checker.

6. Standards

Both of the operating systems on which we implemented our installa-
tion / licensing tool claim to implement open systems standards. How-
ever, this did not make it a trivial task to port our software from one
system to the other. It is interesting to look at why it is such a major
piece of work to port a software package from one standards compliant
system to another.

The VMS system is capable of emulating most of the UNIX type system
interfaces. In fact, there is now a package available which will provide
an almost complete implementation of the POSIX [IEE88a] system
interface standard running on the VMS operating system. Likewise the
ULTRIX operating system is also capable of providing an almost per-

EurOpen & USENIX Spring “92 - Jersey, 6-9 April 79

Practical Problems with Porting Software

fect implementation of the POSIX system interface. If the developers
of the initial system had restricted themselves to only using POSIX type
system calls, the task of porting the software from one system to the
other would have been relatively simple.

However, the developers of the original VMS version of the software,
chose to use the native VMS operating system interface in preference to
the POSIX interface for many functions. This choice was a fairly logi-
cal one because the VMS operating system interface offers many useful
functions which are not part of the POSIX specification.

It was probably even more significant that the developers of the VMS
version chose to use some tools which are not available on UNIX. For
example, the VMS version uses the SMG (Screen Management Graph-
ics) package and the VMS message compiler because both of these
packages are available with VMS and perform a useful function. Since
these packages are not available on ULTRIX, we chose to replace these
in the ULTRIX version with the Curses screen management package
and the message retrieval system provided as part of the ULTRIX inter-
nationalisation tools. The code which interfaced to these packages had
to be completely re-written in order to be able to work with the differ-
ent tools on ULTRIX.

In summary we found that while standard interfaces do provide some
help when porting between some systems they are not much use unless
the standard interfaces are also the preferred interfaces to each system.
The standards would also be much more useful if they specified the
interfaces to some of the tools which a programmer is likely to use (e.g.
a screen management package) as well as the interface to the operating
system itself.

We are aware that the POSIX working group is extending its scope
quite considerably. However, even if all of the interfaces proposed by
the POSIX group were available on both systems, there could still be
significant differences between the two environments.

There are several efforts underway to come up with a much wider set
of standard interfaces. Digital’s Network Architecture Standard (NAS)
[DEC90b], HP’s New Wave and OSF’s Distributed Computing Environ-
ment (DCE) / Distributed Managemeent Environment (DME) [OSF90a,
OSF91b] are all examples of the work that is being done. However,
none of these has yet to gain the widespread acceptance and/or imple-
mentation which would make them de facto standards. Unfortunately,
it seems that the task of porting between heterogeneous operating sys-
tems will remain difficult for the near future.

7. Future

7.1. Other Systems

VMS and ULTRIX are two significantly different operating systems.
Therefore, the problems that we encountered in getting our software to
work on both ULTRIX and VMS type systems are illustrative of the type
of problems that would be encountered in developing software for any
set of truly heterogeneous operating systems.

However, VMS and ULTRIX are much more similar to each other than
they are to systems such as MS-DOS. For example, MS-DOS does not
support multiple processes or virtual memory. Hence, it will probably

80

EurOpen & USENIX Spring “92 - Jersey, 6-9 April

1
% Practical Problems with Porting Software

be much more difficult for us to port our application to a single-user
system such as MS-DOS.

7.2. Tools

It is obviously desirable that all of the development tools you use
should be available on all the platforms you develop on. However, we
found that it is absolutely essential that the central code library should
be accessible from all of the platforms that are used for development.
In our project we had to use our own home grown solution. Hopefully
a production quality distributed / heterogeneous version management
system will become available soon.

8. Lessons

The following is a list of the main lessons that we learned from porting
our software from VMS to ULTRIX:

) It is relatively easy to write code that does the same thing on dif-
ferent systems; the problem is that in many cases you only
achieve the same higher level function by doing very different
things on each operating system. The challenge is to write one
piece of code that achieves a different implementation depending
upon the platform.

° The #ifdef statement is very useful. However, you must be
very careful about when and how you use the #ifdef state-
ment, because it can easily destroy the understandability of the
source code.

. Although standards help make porting a little easier, they should
be enhanced so that many more features are standardized. It is
common for compilers and other tools to offer additional features
which are not defined by the standards. However, if you are
developing software on more than one platform you will proba-
bly not be able to use these additional features because they wont
be available on all platforms.

. When you are developing software for more than one platform,
you should try to use tools that are available on both platforms.
This is because developers involved in porting work have to be
familiar with the development tools on all of the development
platforms. A significant overhead was placed on our project by
the fact that, many of the development tools we use are not avail-
able on both systems and hence the developers had top learn how
to use both sets of tools.

) As well as the problems of initially porting the code, we also face
the problem that portable code is more difficult to maintain than
code than code that only runs on one platform. This is because
any change to the portable code must also be tested on each plat-
form.

9. Acknowledgments

I would like to acknowledge the assistance of Jim Hutton who
reviewed a preliminary draft of this paper and provided some useful
feedback.

EurOpen & USENIX Spring 92 - Jersey, 6-9 April 81

Practical Problems with Porting Software

References

[DEC87a)
[DEC90a)

{DEC90b]

[IEE88a]

[0’D90a]

[0’D90b]

[OSF90a]
[OSF91a]

[OSF91b)

DEC, Guide to the VAX DEC/Code Management System,
Digital Equipment Corporation (April 1987).

DEC, VMS/Ultrix Connection User’s Guide, Digital
Equipment Corporation (September 1990).

DEC, NAS Handbook: Developing Applications in a Multi-
vendor Environment, Digital Equipment Corporation
(1990).

IEEE, IEEE Std 1003.1-1988: Portable Operating System
Interface for Computer Environments (POSIX), Institute of
Electrical and Electronic Engineers (1988).

B. O’Donovan and J. Grimson, “Development of a Dis-
tributed Revision Control System,” pp. 207-214 in Proc. of
the Summer 1990 UKUUG Conference, London (July
1990).

B. O’Donovan and J. Grimson, “A Distributed Version
Controld System for Wide Area Networks,” Software
Engineering Journal 5(5), pp. 255-262 (September 1990).
OSF, OSF Distributed Computing Environment Rationale,
Open Software Foundataion (1990).

OSF, OSF Architecture-Neutral Distribution Format
Rationale, Open Software Foundation (June 1991).

OSF, OSF Distributed Management Environment Ratio-
nale, Open Software Foundataion (September 1991).

82

EurOpen & USENIX Spring “92 - Jersey, 6-9 April

HT

A Health Information System based
on UNIX—Client-Server called PHOENIX

Dr. Reinhard Koller

Amt der O Landesregierung
Austria

Abstract

PHOENIX stands for Project HOspital Environment UNIX and is the
logo for a project organized by the Government of Upper Austria for
16 hospitals. The project started at the beginning of 1990 and phase |
will take 3 years. Phase II will start in 1993.

The project is completely based on the requirements for portability,
4GL Tools, relational databases and standards.

So the system environment consists of:

° Motorola’s 88100 Dual RISC Server
. UNIX System V.3

° TCP/IP and NFS

. Informix-Database, Informix-4GL
. Uniplex 7

At the moment the application software includes a patient care system
(evidence and administration of patients), office automation, a staff
information system, a laboratory and a pathology information system.

In this paper I will tell you about our relevant criterions we have con-
sidered in building these complex and large (three of our systems will
consist of about 200 terminals each) information systems. I will show
which strategic requirements and measures are necessary so that based
on this concept the information systems can be enlarged and extended
for further applications and necessities and the costs can be reduced by
“downsizing” and using client-server models.

This is especially considered under the aspect of the importance and
influence of standards, connectivity and multivendorship.

I will finish by giving you an outlook of our plannings for phase Il
starting in the Spring of 1993.

1. Start of the Project

The project “PHOENIX” started at the beginning of 1990 and phase I
will take 3 years. The project is organized by the “Government of
Upper Austria” and concerns 16 hospitals. The largest of these hospi-
tals will have about 200 terminals each.

EurOpen & USENIX Spring *92 - Jersey, 6-9 April 83

A Health Information System based on Unix-Client-Server called PHOENIX

The project was completely based on the requirements for portability,
4GL Tools, relational databases and standards.

Not only lower costs but also a lot of strategic aims — as described
below — led to the decision for “Open Systems”. The first time we had
a lot of problems, especially in establishing and configuring our first
servers (some system software products had too many bugs for work-
ing, there was no correct spooling for printing available, the first
servers based on Motorola’s 68030 processors became very slow
although there were only 10 people working on 10 terminals).

But as our team became more experienced and had practise in UNIX
and the products we are working with, most of our problems faded and
as we were convinced to be on the right way we took a lot of efforts to
solve all our troubles and problems.

In Summer 1991 we revised our concept in favour of RISC processors
and some new system software products which have a better connectiv-
ity and better performance in OLTP.

2. System Environment

2.1. Hardware

2.2. System Software

. Motorola’s 88100 Dual RISC CPU with 64 to 256 MB memory
per server. Up to 3 servers per system (one database server and
application servers)

. Disks: from 2.0 GB up to as many as necessary

° ExaTape (2.3 GB) for data backup plus Streamer (150 MB) for
“lﬁgging”

. Modems. “Schoelier Octocam” for remote support (one modem

for each server), plus

“Trailblazer” for fast connections to other systems (19200 Bd)
supporting the MNP-5 protocol (one modem for each system)

° Spider Systems, Spider Ports, Spider Router, supporting both
TCP/IP and OSI

2.2.1. Operating System

° UNIX System V.3 (based on Standard AT&T UNIX)
. NFS from SUN
° NSE (Network Services Extensions) as additional tools

) TCP/IP as network protocol (but most of our LAN products not
only support TCP/IP but also OSI)

2.2.2. Programming Equipment

. INFORMIX-4GL RDS as front end
° C (based on ANSII X3J11) in special cases
° INFORMIX-ONLINE 4.1 as backend supporting BLOBS

84

EurOpen & USENIX Spring “92 - Jersey, 6-9 April

i

A Health Information System based on Unix-Client-Server called PHOENIX

2.2.3. Database

INFORMIX-ONLINE 4.1
INFORMIX-SQL based on ANSI-SQL
DATA LINK as connection to UNIPLEX and in future to WINGZ

INFORMIX-STAR and INFORMIX-NET supporting distributed
databases (patient database, laboratory database, patho database)

2.2.4. Office Automation

. UNIPLEX 7 supporting both ASCII and X-Terminals (word pro-
cessing, mailing, spreadsheet, graphics)

] (WINGZ) probably in future for calculating and graphics, as
WINGZ supports DATALINK for direct access to INFORMIX and
UNIPLEX data

. FRAMEMAKER for designing documents, manuscripts and over-
heads

2.2.5. Tools

. REFLECTION for VT-220 emulation and file transfer as frontend
product

° SMB-SERVER as backend product which also offers the possibil-

ity of local printing
SOFT-PC for running DOS and MAC applications under UNIX
without having PCs

OSF/MOTIF as Graphical User Interface (GUI) running
FRAMEMAKER, SOFT-PC and WINGZ

3. Application Software

At the moment the application software consists of the following parts:

Patient Information System

o Evidence of patients

o Accounting

o Registration of medical services
Administration System

o Bookkeeping

o Purchasing

o Cost accounting

o Management information system

Staff Information System

Office Automation
o Integrated text processing (medical letters)
o Controlling

o Individual reports and graphics

Laboratory System (Technical and administrative support)

Supporting both mono and bidirectional laboratory equipment
and having a direct connection to the Patient Information System
with the help of INFORMIX-STAR

EurOpen & USENIX Spring “92 - Jersey, 6-9 April

85

A Health Information System based on Unix-Client-Server called PHOENIX

4. Strategic Aims

4.1. Portability of Applications

The whole application software is designed with the CASE Tool “MAE-
STRO II” by considering the specifications of the X/Open Portability
Guide (issue 3). All parts that aren’t defined by the XPG yet are iso-
lated and enclosed in functions so that they can be replaced by stan-
dardized functions as soon as these parts are considered in a further
issue of the XPG.

The complete software is written under UNIX System V.3 in INFORMIX
4GL and C according to ANSI X3J11. But only the pathology informa-
tion system and some technical parts of the laboratory information sys-
tem are written in C. The data is stored in the relational database of
INFORMIX including the standardized interface of ANSI-SQL. The
backend tool on the database server is INFORMIX-ONLINE.

The multivendor office automation software UNIPLEX 7 has a direct
connection to INFORMIX-SQL, so that data can easily be transferred
from 4GL applications to text processing.

4.2. Openness of the Information System

By considering system independent standards (OSI as far as available,
TCP/IP, ANSI, X/Open’s XPG, SQL, UNIX System V.3) we provide the
basis for enlargening and extending the hospital information system for
further applications. This is especially necessary in the fields of medi-
cal applications, where we have started with the laboratory and pathol-
ogy information system by now.

But enormous demands are coming from the fields of radiology, where
pictures should be administrated, transferred and stored. Moreover,
using INFORMIX-ONLINE we have the possibilities of using new types
of interfaces (the so called BLOBs) — voice, video and special graphics
in databases — that users are demanding more and more.

Beyond that we are looking at the possibility of connecting our sixteen
systems to one wide area network using X.25 so we can transfer data
about our patients from one hospital to another if necessary. This is
very interesting for certain medical checkups being made in some spe-
cial hospital.

4.3. Homogeneous “Look and Feel” of all Applications

We made our decision in favor of INFORMIX and UNIPLEX because of
the following reasons:

. Both INFORMIX and UNIPLEX are well known and widespread
products in the world of UNIX; so support and further innova-
tions are quite good

° The communication between INFORMIX and UNIPLEX is very
good done by INFORMIX-NET and UNIPLEX DATA LINK sup-
porting ASCII text files and SQL

° Both products are available under UNIX and DOS using the same
user interface under UNIX and DOS; by now we are using the
character based interface with the exception of graphics on some
X-terminals

86

EurOpen & USENIX Spring “92 - Jersey, 6-9 April

a5

L1

E

A Health Information System based on Unix-Client-Server called PHOENIX

] This homogeneous “look and feel” increases productivity and

decreases the nontechnical user’s fear of the computer because
the user has to learn only “one system”

° There is no difference for the user whether she/he is working on

the personal computer or as a UNIX terminal

4.4. Reducing the Costs by “Downsizing”

In our largest hospitals in Linz and Steyr we would have to install a
mainframe (for about 200 to 300 terminals in each system).

Instead of this we are using a so called UNIX-UNIX Client-Server con-
cept, installing one UNIX database server (192 MB of memory) running
INFORMIX-ONLINE and INFORMIX-STAR and two UNIX application
servers (128 MB of memory each server) running INFORMIX-SQL,
INFORMIX-4GL, INFORMIX-NET and UNIPLEX 7.

Looking at the costs of hardware and licences this is far cheaper than
having one large mainframe. Furthermore, expansion of the system
can be done by installing a third or if necessary a fourth UNIX applica-
tion server in the network. So ail previously installed hardware (data-
base server and application servers) can be used in future.

Using personal computers or rather X-terminals in the fields of office
automation (e.g. for text processing, calculating and graphics) a lot of
work is being transferred from the X-servers to the personal computers.

5. Most Important Experiences

e Necessity of gaining own know how in UNIX, INFORMIX and
UNIPLEX

. Revising one year old concepts because of the great innovation
in the field of Open Systems

) Spending a lot of time in order to get familiar with the enormous
possibilities and parameters of INFORMIX and UNIPLEX

Otherwise you will only use a small part of the product and you
will have a lot of problems with the performance of your data-
base if you haven’t studied the TB-monitor carefully.

) Having more confidence in Open Systems and especially in
UNIX, because they are much better than their reputation (in
commercial projects)

And by now there are almost as many standard applications
available for UNIX as for DOS and the prizing is quite good.

6. Outlook

6.1. Radiology System

At the moment a concept is being made for a so called PACS (Picture
Archiving and Communication System) and a RIS (Radiology Informa-
tion System) based on FDDI.

EurOpen & USENIX Spring “92 - Jersey, 6-9 April 87

L
e
A Health Information System based on Unix-Client-Server called PHOENIX Oped

Hg

6.2. Multi-Media

Both the PACS and the RIS require the new picture data types supported
by INFORMIX-ONLINE, the so called BLOBS. With the help of this
data type we hope that “pictures” not only can be stored in the database
but also the communication between the technical and the administra-
tive part of this application can be handled.

88

EurOpen & USENIX Spring 92 - Jersey, 6-9 April

The Portability of GNU Software

Joseph Arceneaux

The Free Software Foundation
San Francisco, CA, USA
jla@ai.mit.edu

Michael Tiemann D. V. Henkel-Wallace

Cygnus Support
Palo Alto, CA, USA
{ tiemann | gumby }@cygnus.com

Abstract

In June of 1987, GNU C version 1.0 was released by the Free Software
Foundation. Since that time, it has been ported to about 50 host envi-
ronments and generates code for about 20 machine architectures. In
many cases, GNU C was ported to new platforms by volunteers, work-
ing with incomplete information, more rapidly than vendor-sponsored
ports of AT&T’s “portable C compiler”.

This talk will describe 4 portability case studies based on well-known
GNU software packages: Emacs, GDB, GCC, and BFD. The case studies
will present the initial design specifications, the evolution of the design
over time, factors that influenced (or mandated) changes to the pack-
age, and experience in applying the lessons learned in the design of
subsequent programs.

Introduction

Why is GNU software so portable? The answer is because it’s free
software.

The current official distribution of GNU Emacs, version 18.58, runs on
60 different architectures and 26 different systems, including many
types of UNIX as well as VMS and MS-DOS. The GNU C compiler has
been ported to everything from a 1-bit DSP to 64-bit super-scalar pro-
cessors. The GNU debugger works in an enormous number of environ-

Copyright © 1992, Free Software Foundation, Inc.
Permission is granted to make and distribute verbatim copies of this paper provided the copyright notice and this permission notice are

preserved on all copies.

Permission is granted to make and distribute modified copies of this paper provided that the modified copies are distributed under the
terms of the GNU General Public License, a copy of which may be obtained from the authors.

Permission is granted to copy and distribute translations of this paper into another language, provided that the copyright notice and this
permission are also included in a translation approved by the authors.

EurOpen & USENIX Spring “92 - Jersey, 6-9 April 89

The Portability of GNU Software

ments, both natively and in cross-debugging modes that go “down to
the bare iron.” Many other GNU programs run not only under these sys-
tems, but on the Atari Amiga systems, and even IBM MVS and DOS.

Achieving this versatility required a large amount of expertise and cost:
knowledge of many systems was necessary, and hundreds of thousands
of dollars worth of hardware was needed to test these ports. However,
the GNU project, a relatively small team, has been able to do this work
with significantly smaller resources, and with much greater success
than most corporations achieve. This paper explains how.

It is important to understand that the primary reason for the technical
success of GNU software is its copy-able status. It’s not good software
that happens to be free; it’s good software because it’s free software.

Free Software’s Special Advantages

The free status has given us two levers on the portability of the code.
First, since the code is freely redistributable, enormous numbers of
people have worked on the code, fixing bugs, adding features, and port-
ing it. Second, because it’s intended for frequent reuse, the software
has been designed from the ground up for portability.

GNU’s “parallel processing” approach is superior to traditional, propri-
etary models. The people who port GNU to new platforms are highly
motivated to have high-quality, useful tools, since they themselves
become the users. In addition, there has been a much tighter fit
between tool and marketplace: nobody has spent effort porting to a
platform on which the tool was unwanted.

This structure has also kept the tools resilient. Each tool has a single
maintainer, who is the arbiter of changes. This forces style consistency
and reliability (de-stabilizing changes don’t go into the tool). On the
other hand, although this arbiter is frequently a developer, maintainers
also receive changes from others, changes which have already proven
successful.

Alone, this sounds just like any other development plan. However, the
arbiter is not restricted by any GNU policy; essentially she operates by
consensus. When necessary, other foci of development may appear,
and later disappear. For instance, when our compiler was ported to run
under MS-DOS, it was maintained separately from the “mainline”
sources until it was stable. In that time many people used and con-
tributed to that “tributary” of the tool. After it had been in regular use
for some time, the two groups decided that the DOS port had sufficient
stability and sufficiently widespread usage to warrant convergence.
This method allowed both groups to move forward at their own pace,
neither pulling the other back, and yet eventually allowed each to take
advantage of the other’s work.

The rest of this paper discusses approaches used within Project GNU to
produce portable software. We identify several important issues in this
process, including deciding what to port, writing portable code, making
installation a portable process, and achieving retargetability.

As examples, we will look at four components which demonstrate the
breadth of approaches used by the GNU Project: the GNU Emacs text
editor (emacs), the GNU Debugger (gdb), the GNU C compiler (gcc),
and the Binary File Descriptor library (bfd). These programs have
been chosen to illustrate the portability of GNU software because:

90

EurOpen & USENIX Spring “92 - Jersey, 6-9 April

The Portability of GNU Software

. Each has been ported to more than a dozen platforms.
) Each involved a non-trivial amount of development.
) Each shows innovation in its approach to portability.

° Each continues to be ported to new platforms.

A Few Explanations

We will begin by explaining a few terms. When we say free software,
we are referring to the the freedom of any user to copy, to give away,
to learn from, and to modify or improve the software. This freedom is
a primary reason for the wide distribution of GNU software.

Portability of software is impeded by the differences in the hardware
and software of different systems: CPUs, memory organization, operat-
ing systems, signals provided by an OS, libraries provided, filesystem
organization, the terminal interface, etc. When we say that two particu-
lar platforms are different, we mean that the two systems differ in one
or more of these respects.

An ideal in portability might be a universal host, able to dynamically
emulate various machines and thus run many different binaries simulta-
neously. Although the BFD library moves in that direction, we will say
that portable software means software which requires little or no
modification to run on heterogeneous platforms with no meaningful
differences in behavior.

Deciding What to Port

The modus operandi of Project GNU involves extensive participation
by the user community. Many tasks normally associated with a tradi-
tional software vendor are performed by enthusiastic users of GNU
software, including hand-holding and bug fixes. This cooperative
effort includes contributions of ports to various machines as well as
development and maintenance of entire programs. For example, the
vast majority of Emacs ports were done by users.

An important part of keeping our software portable is deciding which
ports to integrate into a distribution. Adding any significant amount of
code will add to the complexity of the software. Therefore, an impor-
tant criterion for this decision is the extent to which the port will benefit
users. If the port is only for a very little-used system, then it may not
be worth the trouble and increased code to implement. In such cases
the authors of the port frequently distribute their code themselves
through networks, floppies, BBSs, tapes, etc., to interested users who
may then further redistribute it.

The other major factor affecting the decision of whether to integrate a
port is the impact the integration will have on the code. If the contribu-
tion is too poorly coded, or is for a bizarre system which would require
significant warping of the existing program structure, then it may not
be worth it. The effect of such code is not merely immediate, but may
also add subtle bugs which only surface later. Furthermore, useful free
software will spend most of its life in maintenance mode, and many
programmers may work on it. This makes the clarity of the code very
important.

Sometimes it becomes apparent that adding code for many ports is not
consistent with the design of a program, and that it may be better to

EurOpen & USENIX Spring *92 - Jersey, 6-9 April 91

The Portability of GNU Software

rewrite some aspects of the program. An example is the rewrite of
GDB and other binary tools which enabled them to use the new BFD
interface. However, it is preferable to avoid such situations and, if pos-
sible, design the software to be portable from the beginning. GCC, for
example, was designed to use an abstract CPU model.

Another way of making programs very portable is to first implement a
machine-independent language, then write most of the system in it.
This can also make it easier to extend or customize the program.
Emacs Lisp is an example of this technique.

Writing Portable Code

GNU is coded mostly in C, with the exception of various extension lan-
guages such as Emacs Lisp or GCC’s language for target machine
descriptions. C was chosen for several reasons:

. C is a powerful language which provides support for systems
programming.

° C is easily implemented across a diversity of architectures and
operating systems.

° C is the system language of almost all varieties of UNIX. Coding
in C meant that users could immediately use GNU programs.

) Many user programs not distributed as part of GNU would still
run under GNU with little or no modification. Local user mod-
ifications would be much easier to install under GNU.

In general, using C minimized the difficulties in moving from propri-
etary versions of UNIX to GNU. Similarly, we chose to emulate the
Bourne shell (/bin/sh) with BASH (the Bourne Again SHell), despite
considerations of designing a better shell language.

Having chosen C, we sought to avoid some of the pitfalls associated
with traditional UNIX programming. One of the most widely quoted
rules of our programming standards is no arbitrary limits. This means
no static tables or fixed size strings. From [Fou92a]:

Avoid arbitrary limits on the length or number of any data
structure, including filenames, lines, files, and symbols, by
allocating all data structures dynamically. In most UNIX
utilities, “long lines are silently truncated”. This is not
acceptable in a GNU utility.

Applying this principle makes for more robust and much friendlier pro-
grams.

One problem occasionally encountered by GNU programmers is the
temptation to use GNU extensions to the C language. This frequently
makes the code much cleaner, and in some cases, such as the GNU
extended asm facility, these extensions can actually make a program
more portable. For systems not using GCC it means the program won’t
run unless someone modifies it. It is often easier, however, to port GCC
than to modify the precocious program.

Sometimes it is possible to code in such a way that an extension is con-
ditionally used, depending on the compiler, without breaking anything.
The GNU obstack facility is coded in this way. In general, however,
our policy is to avoid such extensions in large, established programs
like Emacs, which run on a great variety of systems, and in GCC,
because as part of its bootstrap process it must be compiled with other

92

EurOpen & USENIX Spring “92 - Jersey, 6-9 April

The Portability of GNU Software

compilers. Making GCC easy to port makes the rest of GNU, exten-
sions and all, easy to port.

Another principle we employ is to avoid using low-level interfaces to
possibly system-dependent data structures or functions. In general, it is
much better to use a high-level abstraction (writing one if it doesn’t
already exist) and encode the low-level details in libraries or condition-
ally compiled files.

In general, we attempt to make our code upwardly compatible with
Berkeley UNIX. If ANSI C specifies certain behavior, we try to be
upwardly compatible with it, and likewise with POSIX. When stan-
dards conflict, we attempt to offer compatibility modes for each.

This guideline does not restrict us from implementing extensions pro-
hibited by ANSI or POSIX if we feel they are superior (for example, our
C extensions). In this case we provide a -ansi or -compatibility
option to turn them off. We do however, avoid extensions which
would break any existing programs or scripts.

Architectural Impediments to Portability

The two main hardware features impacting portability are the processor
type and the memory organization. For most GNU programs, the first is
dealt with by re-compilation, but there are exceptions. Some GNU pro-
grams, such as Emacs and GCC, contain assembly code. Although ver-
sions (or substitutes) of such code are provided for supported proces-
sors, there can be problems like that of alloca () for 68K machines:
this function, which increments the stack pointer to acquire space,
failed on systems whose compilers accessed the stack through sp
rather than fp.

Memory organization can have a devastating effect on the portability of
software. GNU is not intended to support 16 bit machines (although
many of our smaller programs do run on 16 bit PCs), but with the
growing number of 64 bit machines available, differing sizes of data
remain a major source of portability bugs. Thus, the GNU program-
ming principle of “no arbitrary limits” applies to pointer size as well as
to array and string sizes.

Another problem presented by differing memory organizations is illus-
trated by the following code fragment:

int c;

while ((c = getchar ()) != EOF)
write (file_descriptor, &c, 1);

It is very important to remember that some machines (for example, the
68K) are big-endian and thus this code will not work (although it will
work on little-endian machines). Programs which do things like use
bit-fields overlayed on signed numbers must allow for both types of
memory. This can be cleanly handled with conditionally defined mac-
ros, like those used in Emacs.

Working Around Operating Systems

The greatest amount of diversity to be dealt with in making software
portable is that found in operating systems. However, even completely
different systems can be dealt with, especially if the software is
designed portably from the beginning.

EurOpen & USENIX Spring “92 - Jersey, 6-9 April 93

The Portability of GNU Software

Large divergences between systems may dictate that certain functional-
ity must be optional, dependent upon the system (for example, the sub-
process functions of Emacs are not available under VMS), but that need
not hinder the main purpose of the program. As long as the upper lev-
els are designed with a sufficiently abstract interface to the parts below,
moving code between systems need not be excessively difficult.

Designing for generality can also yield much simpler and more under-
standable code. For example, designing a simple 1/O model, rather than
depending on particular system calls, may yield a cleaner structure. It
is very difficult, using #ifdef, to properly structure the multitude of
ioctl and fentl calls available on various systems. Also, various
functions are frequently present on one system and absent on others.
Supplying such functions along with the program ensure that they will
never be missing (such functions supplied with GNU programs are fre-
quently superior to those of the system).

Some of the dramatically varying aspects of operating systems that
have given us difficulty are:

. Different executable file formats.

° Collisions between header files.
° Different styles of signal handling, and signal semantics.
. Differing filename conventions for different systems.

) Different bugs in different versions of the same system.

° Gratuitous extensions to “standard” features.
) Different window systems.
) Poor or absent documentation for obscure but important details

of the system.

While many of these problems can be eliminated with techniques
described thus far, we have made other choices in some cases. While
we believe it is possible to design an abstract interface to window sys-
tems, we have adopted the X window system because it is free and an
ad-hoc standard which can be assumed to run a most systems. Using X
also means we don’t have to build our own window system. Thus, new
versions of Emacs, for example, can be expected to provide increased
support for X.

Building and Installing Portably

As well as being portable, software ought to install easily, with only
minor modifications needed to handle the differences between sites.
Over the years, several strategies have been used to approach this prob-
lem. One of the most entertaining (configure, part of the rn news
reader) was frequently referred to as “the Larry Wall show,” since the
script printed interesting messages while it explored the system, trying
to determine its persuasion.

GNU software has used a variety of approaches to this problem. BASH
depends on the C preprocessor to define the system and architecture,
and then configures its Makefile from there. This is a clean
approach which usually works well, but which fails when cpp doesn’t
define enough symbols to uniquely identify the system. So BASH now
uses a shell script in combination with the C preprocessor to determine
the system type.

Some GNU programs have recently begun to use configure, a sys-
tem of shell scripts which includes all CPU and system types recog-

94

EurOpen & USENIX Spring 92 - Jersey, 6-9 April

LN

mp |

N
1
28]

The Portability of GNU Software

nized by GNU software. This system will automatically build a Make-
file and/or C header files tailored to a variety of specifications,
including cross environments. For example, the following command:

configure sun4 +target=a29k

will configure the program such that, when built in a Sun 4 environ-
ment, it will produce tools intended for an a29k. Here is another
example:

configure sun4 +ansi +destdir=/usr/local/bin +target=sun3

This configures a software package for building under a Sun 4 environ-
ment, to be installed in /usr/local/bin, and executable on a Sun 3.
Furthermore, the executable will expect conforming ANSI C source.

We plan to eventually use configure with all of our software.

Case Studies

GNU Emacs

GNU Emacs may be the most portable large system of Project GNU
because it runs on more platforms than any other. However, the impact
of making it so portable has not had a uniformly desirable impact on
the code; Emacs embodies both the best and the worst of portability.
We will concentrate on the positive aspects.

How Portable Is It?

GNU Emacs provides one of the most consistent programming environ-
ments available on today’s computers. A user can leave an Emacs ses-
sion on a Sun workstation, walk across the hall to a VAX running VMS,
and encounter almost no difference running Emacs there. The screens
look the same and the commands work the same way. (With the
exception, under VMS, of filenames. Strictly speaking, this is also true
of UNIX since some older versions don’t support long filenames). Per-
sonal extensions written by the user also look the same, and further-
more, work without modification on any other platform running GNU
Emacs. Users can also expect Emacs to appear similar, if not exactly
the same, on a plethora of terminals.

How This Happened

A major force behind this consistency was the early design choice of
providing Lisp for the development of editor functionality. Thus, most
of the C code for Emacs is concerned with supporting the Lisp world,
including defining primitive Lisp functions. This means that the vast
majority of extensions to the editor can be written without fear of the
dialectal terrors of the local C compiler. Emacs users routinely write
vast amounts of sophisticated editing code which works perfectly, with
no modification, on wildly different platforms.

While all Lisp code related exclusively to editing is system indepen-
dent, a few functions are defined differently, depending on the host
operating system. Here is an example from Emacs’ directory editor
dired:

EurOpen & USENIX Spring 92 - Jersey, 6-9 April 95

The Portability of GNU Software

(if (eqg system-type ’‘vax-vms)
(vms-read-directory dirname dired-listing-switches buffer)
(if (file-directory-p dirname)
(call-process "1s" nil buffer nil
dired-listing-switches dirname)

see

On UNIX systems, vms-read-directory is an unbound Lisp
symbol because it is defined in a file which is only compiled under
VMS. Such conditional compilation also applies to various functions
not available on all versions of UNIX.

Emacs also looks either similar or exactly the same on many different
terminals, regardless of platform. This is achieved by providing an
abstract interface to the display code. Thus the terminal driver can call
the function delete_chars (n) and expect that, whether or not
the terminal supports multi-character deletion, the right thing will hap-
pen. Likewise, it matters not to Emacs if the operating system wor-
ships termcap or terminfo; both religions are supported.

To be efficient, Emacs’ redisplay must take into consideration the dif-
ferent capabilities and performance of various terminals. This is done
by encoding these parameters into a single set of tables which is used
by redisplay. Thus, the display algorithms make reference only to
these cost tables, and do not refer to specific terminals.

While this level of Emacs is thus fairly system independent, the many
differences among systems must appear somewhere, and most are in a
file called sysdep.c. Here the age and impact of Emacs’ multitude of
ports can be seen — this file seems to contain almost as many preproces-
sor directives as C statements. While it may have been much cleaner to
separate various sections into different files supporting a few highly
varying models, contributors provide diff listings; it takes the main-
tainers much less time to simply to merge those in. Eventually we
would like to re-do this, possibly after the first release of our kernel.

More Internal Matters

Early versions of Emacs supported two implementations of Lisp
objects: one using a struct, and another using an int. For the for-
mer it was important to know the endianness of the machine so that the
pointer and type parts of the structure could be properly laid out in
memory. For the integer implementation this is irrelevant, as the com-
piler handles this machine dependency; macros for extraction of the
pointer or type merely specify mask and shift operations.

Regardiess of the implementation used, all accesses are done with mac-
ros so that the following sorts of comparisons may be performed:

/* From definition of window-p */
return XTYPE (obj) == Lisp_Window ? Qt : Qnil;

Such an implementation has proved quite portable across a broad spec-
trum of machines. There are a few machines, such as the IBM PC-RT,
which require minor adjustments to these macros, but this is rare.
While the decision to use Lisp greatly extended the power and flexibil-
ity of Emacs, UNIX poses a problem to such implementations. The
problem is that all the Lisp code must go into the data segment, and
thus is not sharable (on systems which support shared text segments).
The solution adopted was to re-map this data into the read-only text
segment. Getting this to work can be the most difficult part of an
Emacs port. Nevertheless, Emacs does indeed achieve this on most
systems which support such an operation, and making this happen on a
new system is generally a matter of getting the #define’s right.

96

EurOpen & USENIX Spring “92 - Jersey, 6-9 April

The Portability of GNU Software

The GNU Debugger

All such definitions and macros used by Emacs can generally be
divided into those determined by hardware (for example, whether inte-
gers must be sign extended or not) and those specified by the operating
system (such as the provision of sockets, or whether subprocesses are
supported). Thus they are divided into two files, a machine description
and a system description. Occasionally such a file overrides a standard
Emacs definition (such as how to extract an integer from a Lisp object).

One of each of these files (e.g., s~-sunos4.h and m-sparc.h) are
specified in another include file, config.h which is included in all
Emacs C files. config.h is also included in the Makefile tem-
plate. Thus, the machine and system descriptions also specify the build
process. While this system has worked quite well, we expect to use the
configure system in future versions of Emacs.

GNU Emacs is a sophisticated program which continues to grow more
powerful (and not at all smaller). Between versions 16 and 17 it
became impossible to debug Emacs with the standard Berkeley debug-
ger (dbx) because its fixed-size symbol table and other built-in limits
were no longer sufficient for Emacs. Another problem was the imple-
mentation of preemptable redispiay using UNIX signals, something
dbx would never understand. Furthermore, dbx source was not pro-
vided by many vendors, and support for these platforms was not pre-
sent in the Berkeley distribution. A new debugger was needed.

Although GDB has a user interface similar to that of dbx, it was
designed to be portable. This was important because a goal for GDB
was that it be distributed with Emacs, so that Emacs could be ported
and debugged on a multitude of platforms.

Designing a Portable Debugger

GDB has been through four major revisions since 1985. The initial
design, done for the VAX, specified the following modules: a symbol
file reader, an inferior process manager, an expression evaluator, a
command interpreter, a terminal handler, and machine-dependent rou-
tines. The separation of components into distinct logical units proved
to be of key importance in making GDB portable.

One of the more interesting aspects of GDB was the implementation of
the machine-dependent interface. A number of functions in the GDB
program were simple encapsulations of macros as shown in Figure 1.

By specifying a macro interface to the lowest-level internals of the
machine interface and a function interface on top of that, the tasks of
porting and adding functionality to the debugger were cleanly sepa-
rated, so each could be pursued independently, without impacting the
other.

Evolution of the Design

GDB version 2 supported the Sun 3 workstation in addition to the VAX.
The Sun 3 is different architecturally from the VAX in some important
ways (especially byte order), but also has important similarities with
that machine: both use a stack for parameter passing, both run flavors
of UNIX which support roughly the same symbol table format, and nei-
ther architecture uses a long, exposed instruction pipeline. The design
of GDB was refined so that all the necessary changes could be kept
local to the machine-dependent files of the debugger.

EurOpen & USENIX Spring *92 - Jersey, 6-9 April 97

The Portability of GNU Software

/* Record that register REGNO contains VAL.
This is used when the value is obtained from the inferior or core dump,
so there is no need to store the value there. */

void

supply_register (regno, val)

int regno;
char *val;

register_valid[regno]

=1;

bcopy (val, ®isters{REGISTER_BYTE (regno)], REGISTER_RAW_SIZE (regno));

CORE_ADDR
read_pc ()
{

return (CORE_ADDR) read register (PC_REGNUM);

}

Figure 1: Code fragment from GDB

When GDB was ported to the SPARC architecture, serious rewriting
was required because parameters could be passed in registers, register
windows could act as stack caches, call instructions placed the
return address in a register instead of on the stack, and control transfer
instructions (branches and calls) could execute instructions in delay
slots.

There were two ways to deal with these new problems: implement a
more specific solution for the SPARC, or generalize the components of
GDB to deal with the SPARC. The first approach seemed to be the more
expedient, but would have meant cluttering up the implementation with
SPARC-specific #ifdef’s. Instead, the second approach was used,
yielding a much more powerful design: once the SPARC port had been
completed, GDB was ported to several other RISC architectures without
great difficulty.

GDB also began to serve as a cross debugger. Many embedded sys-
tems are one-of-a-kind machines consisting of custom hardware and
software. An (unfortunate) property of these systems is the lack of a
common communications interface between host and target systems.
So many developers used GDB, modifying the original remote commu-
nications mechanism to support their custom communications protocol,
and then considered their problems solved. Unfortunately, every such
instance meant another version of GDB.

This same story was repeated with respect to object file formats: one of
the most painful dilemmas of using UNIX System V is the choice
between adb and sdb. By replacing the file that read a.out file for-
mat with one that could read COFF, GDB could be ported to these sys-
tems with minimal effort.

When the GDB maintainers announced the coalescence of these ver-
sions into a new release, there was an unexpected flood of responses
from the user community: over 130 developers had “customized” GDB
to support their remote communications files and/or object file formats.
In effect, these developers individually felt that a point had been
reached where GDB had gained all that it would from being freely
redistributable, and that the time had come to only consider making
local modifications and enhancements.

98

EurOpen & USENIX Spring °92 - Jersey, 6-9 April

The Portability of GNU Software

BFD

Portability versus Maintainability

GDB was designed to be a portable debugger. It was so portable that
almost any user could port it, and almost every user did, making it vir-
tually un-maintainable. GDB version 4 was designed to retain the posi-
tive aspects of portability, but also to support maintainability. A major
component of this design was the BFD library.

The BFD, or Binary File Descriptor library, provides a high-level inter-
face to a variety of different object file (or executable) formats. Cur-
rently it runs on a dozen different systems and supports 19 target sys-
tems.

The BFD library differs in approach from programs such as GCC or
Emacs. First, rather than trying to fit many systems into one model (for
example, trying to treat all systems generally like BSD and patching the
differences) it defines a new abstraction to solve its portability prob-
lems. And second, it can be tailored at runtime to certain aspects of
multi-platform operation.

Purpose and Functionality

BFD provides a high-level interface to the manipulation of object files
(commonly referred to as “point-ohs” or “dot-oh files.”) At the time it
was started in early 1990, few of the GNU tools other than Emacs ran
on systems that weren’t substantially derived from BSD. We recog-
nized that there would be a need for COFF (and eventually ELF) sup-
port, and probably other formats as well.

Rather than trying to write what would essentially be parallel imple-
mentations of many tools, we decided to provide an interface of
unstructured objects at the level of symbols, sections, and relocations.
This has lead to a greater amount of code reuse than was possible
before.

A New Abstraction

Earlier GNU tools were tightly tailored to the Berkeley a.out repre-
sentation. Operations were performed in the order that their data
appeared in files; the file structure was apparent in the program struc-
ture.

BFD uses a different paradigm, that of considering what operations are
meaningful on any object file. An object file is represented in core by
an object called a bfd. All operations are performed via function calls
upon this bfd. The set of operations is small; it includes operations
such as creating sections, performing relocation, reading section con-
tents, searching for symbols, and reading data (in order to get the byte
ordering correct).

We then implemented the strip program for a.out using these
operations. Using concrete applications from the start helped us find
holes in the design. Once we had “ported” several applications to BFD,
we then produced another back-end, this time for COFF. When opera-
tions that we hadn’t represented were needed, we added them.

EurOpen & USENIX Spring “92 - Jersey, 6-9 April 99

The Portability of GNU Software

Runtime Behavior

Although BFD must be configured at compile-time for the host on
which it runs, it needs no compile-time knowledge of which object file
format will be used with it. That is selected at runtime through a trans-
fer vector (or branch table). Implementation in C was straightforward,
although the bookkeeping was a bit painful.

The interface to an object file format is through a structure that looks
like this:

struct bfd_target
{

char *name;
boolean byteorder_big_p;
struct bfd_target *(*_bfd check_format) (bfd *);

}i

Note that the name is uninterpreted; it is only used to identify a format
(referred to as the “target”, since “format” could also be construed as
“one of archive, core, or object”). Also, in the actual source we use a
macro for function definitions so that prototypes are defined for ANSI
compilers, and not for others.

Since the format is stored in the bfd structure itself, it’s simple to cre-
ate a method-dispatching macro which indexes through this target to
call the correct method. This looks like:

bfd_send (some_bfd, message_name, (args));.

Implementation Implications

Porting BFD has proved to be simpler than we originally expected.
Some #ifdef’s were still required, but since BFD doesn’t use sig-
nals, or other greatly varying parts of UNIX, these are minimized.?

Another reason BFD is easy to port is that the interface is precisely
described by the branch vector of interface functions. This reduces
porting to going through the list of operations enumerated in the vector
and writing an implementation for each. As these functions are com-
pletely modular, it’s a simple matter to use code from existing ports.

One problem with writing retargetable code is that different systems
may require different kinds of bookkeeping. This is especially a prob-
lem for BFD, where any special book-keeping variables must exist at
runtime in all implementations. Furthermore, because multiple bfd
structures are frequently instantiated, possibly of different types, the
back-end programmer might have to maintain all sorts of complex
stacks or lists to keep track of the correct instance.

BFD was designed from the beginning to handle this. Each bfd con-
tains uninterpreted, target-specific data (in the form of a void * in
the bfd structure). None of the external entry points use these data,
but back-ends are free to store in them whatever information they deem
necessary. In fact, there are two such blocks, an undifferentiated one
and another just for archives. This is so one may use, for example,
COFF-style archives with s-record files. If necessary, we can spilt the
target-specific data again, although as time goes by it becomes less
likely that it will be necessary.

+ The #ifdef’s were for: Setting the default target, checking the word length or endianness, and to check the names of the flags

supplied to open.

100

EurOpen & USENIX Spring 92 - Jersey, 6-9 April

The Portability of GNU Software

The GNU C Compiler

Successes

Although BFD has been highly successful in making GNU tools more
portable, programmers who have been used to programming at a lower
level are sometimes a little confused when they start programming with
it. For example, they often ask why BFD doesn’t provide a way to
identify the “text” section, since a.out files always have one. BFD
doesn’t have any built-in knowledge of a “text” section. There is often
a section called “text” or “.text”, but to find an executable section one
must identify a section flagged to contain instructions. The “price” of
this abstractional confusion is ultimately clearer and more portable
code, with fewer system-specific constraints wired in.

One useful discovery about BFD was the test program copy a user
wrote using BFD. It merely copied a binary into a file. If that didn’t
work, it meant BFD had a bug. This program turned into strip, nm,
and objdump, since those programs essentially perform a copy opera-
tion with certain information filtered out. Now it is possible to strip an
archive merely by copying it, telling copy to discard debugging sym-
bols.

Another useful surprise has been the ability to deal with heterogeneous
binaries. This allows users with different binary formats to simultane-
ously work with libraries in either format. This was achieved as a
side-effect of implementing support for the ditferent formats in BFD.
This feature is being used by the GNU kernel, which uses BFD to read
object files and write core files.

The GNU C Compiler is an optimizing C compiler that accepts ANSI
and traditional (K&R) C code as well as supporting the GNU C exten-
sions. When it was first released, it ran in “native” mode on the VAX
and Sun 3 platforms and generated code that was within 5% of the per-
formance of AT&T’s Portable C Compiler (pcc). Less than five years
later, it generates code for 22 processors, runs under 46 major host
configurations, and produces code which is typically 10%-40% faster
than that generated by pcc. Front-ends have been completed for CH
and Objective C, and are in development for Fortran77, Fortran90,
Modula-2, Modula-3, Pascal, and Ada. In this section, we use the term
“retargetability” to describe target-specific portability issues, and
“portability” in describing host-specific portability issues.

Initial Design Specifications

GCC was initially designed to meet two main objectives. The first was
to provide a high-quality implementation of C — one conformant to the
(at the time, draft-proposed) ANSI standard, with decent compilation
speed, and generating optimized code. The second was to write it in
such a way that it could be ported and/or retargeted to run on any
machine capable of running the GNU operating system, and thus to port
the GNU OS to such a platform.

The initial organization of GCC was based on experience gained from
GDB and Emacs. As described in the Emacs and GDB sections,
machine and system characteristics could be defined in header files,
and when code could not be written to be independent of these charac-
teristics, macros defined by these header files would be used. This may
sound like a rhetorical prescription, but precisely describing these

EurOpen & USENIX Spring “92 - Jersey, 6-9 April 101

The Portability of GNU Software

parameters is one of the key contributors to GCC’s portability and retar-
getability.

Emacs and GDB distinguish between “system” and “machine” depen-
dencies. The implementation of GCC refines this organization by dis-
tinguishing host parameters from target parameters, and by defining a
machine description language which can be translated into many other
sorts of information. Because the compiler does not contain a built-in
interpreter (like that used by Emacs for Lisp), GCC follows the GDB
paradigm of allowing the user one C file in which to put target-specific
functions (for example, those used to format assembly code).

When two different host machines have the same processor but differ-
ent operating systems (for example, a VMS VAX and a BSD VAX),
most “machine” characteristics are common to both, while “system”
characteristics can be quite different: under UNIX, a nonzero exit code
means failure, the opposite of VMS. To make the compiler portable,
aspects such as these exit codes had to be placed in system-dependent
files.

The host and target files are written in such a way that they can be
included by files overriding certain definitions. Thus, “system” differ-
ences need not blur host and target distinctions. By cleanly separating
concerns of portability (host parameters), retargetability (target param-
eters), and functionality (machine description and target-specific func-
tionality), GCC provides a powerful and elegant framework upon which
to build.

Within the compiler’s implementation is another important separation:
that between the representations of syntactic constructs and of
machine-specific constructs. Both were designed to be fully general,
the former having been successfully extended to handle multiple lan-
guages, and the latter a variety of machine architectures. The
machine-specific representation was further refined to distinguish
machine patterns (such as input and output operands of a given
machine operation) from architecture characteristics (such as machine
word size, numbers of bits, and numbers of bytes). These abstractions
have allowed some users to easily make GCC into a cross compiler for
small 8- and 16-bit PCs.

This implementation, GCC version 1.0, was released in June of 1987.

Evolution of the Design

By the time GCC had been available for two years, it had been ported to
about a dozen platforms. Virtually all of the ports were native ports,
meaning that the compiler was built on the system for which it would
generate code. The fact that so many native ports were accomplished
by amateurs (most commercial compiler companies were charging
about US$500,000 for a port of their proprietary software) showed that
GCC was a highly retargetable compiler.

As the reputation of GCC spread, especially in fields where perfor-
mance was critical (such as real-time robotics), users began to
configure GCC as a cross-compiler. At first there was not much differ-
ence between the native and cross configurations: users worked on
Motorola 680x0 workstations and developed embedded 680x0 boards.
Later, as users upgraded their 680x0 machines to RISC processors such
as SPARC and MIPS, GCC’s portability underwent more serious tests.

Building a cross compiler from SPARC to 680x0 was not difficult.
Structure alignment rules are different, but byte and bit orders are the
same. On the other hand, the DEC MIPS platform uses “little-endian”

102

EurOpen & USENIX Spring *92 - Jersey, 6-9 April

The Portability of GNU Software

byte order, which means that operations such as constant folding
(which amounts to performing target computations on the host at com-
pile time) needed to be done with care. Because these problems were
anticipated from the outset (there were macros for
BYTES_BIG_ENDIAN and HOST_BYTES_BIG_ENDIAN), the “port”
involved little more than verifying that the code worked correctly when
used.

What was not anticipated was that single users would want to support
GCC on multiple machines, generating code for a variety of processors.

Factors that Influenced (or Mandated) Changes

Perhaps the greatest obstacle to performing “host ports” of GCC
involved using the host compiler to build GCC for the first time. GCC is
designed to expose the user to as few predefined limits as possible. For
example, it has no fixed-sized buffers that can overflow when long
identifier names or large numbers of cases in a switch statement
are encountered.

GCC was written with the assumption that it would be compiled by
compilers of similar implementation quality. This assumption proved
to be almost universally false: the macros in GCC’s header files often
exceeded built-in limits of system compilers, various non-ANSI plat-
forms had header files that were only supposed to be provided in an
ANSI environment, and some compiler header files would simply be
wrong. A fair amount of effort went into making GCC run on these
lowest of the lowest-common-denominator platforms.

Conclusion

GNU software has been extremely portable from the beginning. As we
have gained more experience, we feel that our software has become
even more portable, an increasingly important quality in today’s world
of standards. As we extend and improve our software, including its
portability, we ask that the technical community continue to help us in
this process.

Acknowledgements

Thanks to David MacKenzie for initial thoughts on this subject, and for
his expert editing.
Thanks to Arnold Robbins for his thoughts and editing.

Thanks to Karl Berry, Kathryn Hargreaves, Henry Mensch, and Leo-
nard Tower, Ir., for their editing assistance.

References

[Fou92a] Free Software Foundation, The GNU Coding Standards,
Unpublished, but can be obtained from the address
gnuéprep.ai.mit.edu, 1992.

EurOpen & USENIX Spring *92 - Jersey, 6-9 April 103

104 EurOpen & USENIX Spring “92 - Jersey, 6-9 April

Portability in a Research Environment

Andrew Hume

Howard Trickey

AT&T Bell Laboratories
Murray Hill, New Jersey, USA
andrew(@research.att.com

Abstract

Software developed within a research environment is both easier and
harder to make portable than software developed within a industrial
environment. Projects utilising unique aspects of the underlying envi-
ronment may prove difficult or expensive to port. On the other hand,
access to the system source can sometimes solve portability problems
locally.

This report describes some of the approaches used within the Comput-
ing Science Research Center at AT&T Bell Laboratories for writing
portable software.

1. Introduction

This report describes some aspects of how portability interacts with the
research done within the Computing Science Research Center at AT&T
Bell Laboratories. For some center members, portability is irrelevant —
all they need is TeX or a Fortran compiler. For others, particularly
those who investigate new directions in paradigms, portability is simply
not an issue, as their work is not portable. A third group has a much
harder job; their work is mostly portable but is made less so every time
they use a novel part of our environment. They are very much aware
of the tension between research and standards; standards are fine when
your research can build upon them, but when your research explores
new ways of doing a particular thing, standards are often a millstone
around your neck.

2. Our Environment

The hardware supporting our Center’s computing environment is fairly
ordinary: we primarily work on VAX 8550s and SGI multiprocessors.
There is an ECL MIPS system (6280), a token Sun, a Cray X/MP-28 and
some VAX 11/750s we can’t seem to get rid of. For terminals, we use
mainly MIPS Magnums and Gnots (a terminal designed in our center by
Bart Locanthi), although there are several Nexts and NCD X terminals.

EurOpen & USENIX Spring *92 - Jersey, 6-9 April 105

Portability in a Research Environment E?

Our networking is split between Datakit, a virtual circuit based net-
work, and Ethernet. (There is also an experimental 45Mbit/s link to a
few other sites.)

The software environment is rather more mixed. The VAXen run 10th
Edition Research UNIX [Hum90a], most of the SGI machines and the
Cray run the manufacturer’s version of the UNIX system, and the rest
run Plan 9, a new operating system developed in our Center [Pik90a].

3. So How Do I Write Portable Software?

It depends a lot on how big the thing is you are trying to make portable,
and to how many different systems you wish it to be portable to. There
is a spectrum of portability; we give some examples below.

3.1. Approach 1: Use a trivial UNIX system environment

There is a class of programs that just don’t need much from the envi-
ronment. Take as an example gre, a new version of grep. The sole
requirements it has on the environment are

<ctype.h> read printf longjmp
open write malloc setjmp
close fwrite fflush

(The names above are library functions or system calls; names in <>
are header files.) Until recently, programs of this kind were extremely
easy to port. However, a growing need to work with old C compilers,
ANSI C compilers (particularly with strictness flags turned on) and C++
compilers has made the source uglier and more complicated.

The advantages of using function prototypes are too great to throw
away, so we write new programs with function prototypes. Rather than
litter up the source with #ifdef’s to accommodate non-ANSI C com-
pilers (and CH), we use an awk script to convert files to use old-style
function headers before distributing the files outside of our center.

3.2. Approach 2: Use a rich UNIX environment

Another class of programs uses much more of the UNIX environment,
or in current parlance, the environment defined by ANSI C [ANS89a]
and ISO 9945-1 (which was POSIX 1003.1). Take as an example mk
[Hum87a], a new version of make. Some of the routines it needs from
the environment include

<ctype.h> execle getuid print strchr
_exit exit lseek printf strcmp
access fflush malloc read strcpy
atoi fgets memcmp readdir strdup
atol fopen memcpy regcomp strlen
close fork memset regexec strncmp
closedir fprintf mktemp regsub system
creat fputc open signal time
dup2 fwrite opendir sprintf unlink
environ getgid perror stat utime
errno getpid pipe strcat wait
write

106 EurOpen & USENIX Spring “92 - Jersey, 6-9 April

Portability in a Research Environment

Except for the regular expression routines, these are all covered by the
ANSI C and POSIX 1003.1 standards. (The regular expression routines
are covered by POSIX 1003.2.)

Most, if not all, providers of UNIX have promised to embrace POSIX in
some way or another, so eventually programs written to these standards
ought to be very portable. Each new release from the major manufac-
turers comes closer to POSIX conformance, but most are not quite there
yet. And even if the vendors started to ship POSIX conformant sys-
tems, there are many users out there who won’t have upgraded their
operating system and, in fact, may not even do so until they buy a new
computer. Thus, any exported code is likely to run into any of the fol-
lowing levels of POSIX and ANSI C conformance:

. Older BSD-based UNIX systems: Most core functions are there,
though some string functions have different names. Headers are
mostly missing or wrong. Typically, the C compiler is pre-ANSL.

) Older System V-based UNIX systems: Most functions are there.
Many header files are there, though they lack function prototypes
and may have extra things in them. Typically, the C compiler is
pre-ANSI.

) First Pass attempt at POSIX compliance: All or almost all func-
tions are there. Header files are there, but not up to par in vari-
ous ways (perhaps no prototypes, may include extra stuff that
shouldn’t be there).

. POSIX and ANSI C compliance. Any extra stuff in header files is
either allowed by the standard, or properly protected by some
sort of extension feature-test symbol. It appears that SGI’s IRIX
release 4 reaches this level.

We have tried to anticipate the industry trend towards standard lan-
guages and environments. On all of our machines, we have built an
ANSI C/POSIX environment called APE, consisting of an ANSI C com-
piler (including preprocessor) which searches /v/ape/include
instead of /usr/include. The files in /v/ape/include are
mostly the same across machines, but there are some machine-
dependent ones too. Only ANSI C headers may be included if no
feature-test symbols are defined. If _POSIX_SOURCE is defined, then
POSIX headers may be included and more (POSIX-defined) symbols are
visible in the ANSI C headers. Note that this is deliberately picky; our
goal is that software that runs under APE locally will at least build on
any conforming ANSI C/POSIX environment. The downside is that
software developed under more user-friendly environments may have a
few easy to fix problems, and some potentially more awkward prob-
lems, compiling under APE. The easy problems involve using the
feature-test symbols, which APE applies as strictly as the standard
allows. The harder problems involve system parameters which, in
principle, are only known at runtime. One such example is the number
of files that a process can have open at once. The symbol OPEN_MAX,
if present, defines this maximum. Even though the value of this is
known (and fixed) in all our implementations, we do not define this
symbol because it is not compulsory according to POSIX and thus, we
force our programmers to cope with the hardest case (where it is not a
compile-time constant). Most often, this just means changed statically
declared arrays into malloc’ed arrays. The APE compiler loads
against a library which is constructed by extracting many functions
from the system libc.a and providing others from source of our
own.

EurOpen & USENIX Spring “92 - Jersey, 6-9 April 107

Portability in a Research Environment

One problem with the POSIX solution is that ANSI C and POSIX 1003.1
don’t quite provide enough functionality to implement some programs.
Some omissions, such as popen and ftw, are easy enough to simu-
late, but it is annoying that they are not there. Standard network access
functions are a bigger problem. Eventually, we expect various POSIX
subcommittees will solve these problems. Until then, we find it neces-
sary to maintain a small additional library to go along with APE. The
feature test symbol for these additional routines and their headers is
_RESEARCH_SOURCE.

3.3. Approach 3: A little piece of England

During the latter part of the 80s, there was an explosion in the number
and variety of UNIX systems. Every day seemed to bring another sys-
tem with a small (sometimes more) number of gratuitous differences to
existing UNIX systems. Rather than design a system to a common sub-
set of these systems, our developers would assume a specific environ-
ment and rely on a system-specific library to implement this environ-
ment.

This style of portability works quite well with largish subsystems such
as upas, our Research mail system, and the File Motel, our file backup
system. The success of this technique depends on how well the support
environment is designed and how much effort is needed to port the sup-
port library. In practice, this has never seemed to be much of a prob-
lem, but there is a lot of interest outside our Center on automating this
process. People seem to like trusting baroque programs, like config,
which act as oracles on what UNIX system you have and thus, you can
(in principle) write one support library conditioned by #ifdef’s sup-
plied by such an oracle. (This is largely unused in our Center, mainly
because even if there were a reliable way of automatically determining
the appropriate #defines, and there never seemed to be one that
worked on our UNIX system, a single library of source festooned with
ifdef’ed code seemed rather less attractive than multiple copies of
the same library tuned to various systems.)

Perhaps the most elaborate form of this self-configuring approach we
know of is that used by some colleagues in another group at AT&T Bell
Laboratories. Applications are built using a fairly extensive library
common to their group. The installation process first builds this library
piece by piece, probing for each routine by compiling a little test pro-
gram, and either using the installed routine or some portable source.
Any installation errors or problems are automatically mailed back to
the owner of that piece. This, of course, takes time; it took well over
45 minutes on a VAX 11/750 to install some tree-walking software

(equivalent to fiw)!

Note that the difference between approach 2 and approach 3 is small
but important; with approach 2, the need for a separate environment
eventually will go away (except, of course, for target systems which do
not support ANSI C and POSIX). With approach 3, you are stuck with
your support libraries forever, although with luck, you may be able to
implement your support library under POSIX.

3.4. Approach 4: Just say no

There comes a point, though, where you simply cannot port programs.
This can stem from an ideological or aesthetic point of view, or from a
simple mismatch of system capabilities. An example of the former
might be programs that depend on features peculiar to Plan 9, such as a

108

EurOpen & USENIX Spring “92 - Jersey, 6-9 April

Portability in a Research Environment

file system configured to and shared by a process group, or by the way
the environment is shared by a process group through the file system.
(In principle, these could be nearly simulated, albeit with considerable
effort.) An example of a mismatch might be programs that depend on
the normal UNIX system semantics of linking and unlinking files. Plan
9 simply doesn’t have links (of any kind). And under some circum-
stances, these programs might fail if the underlying file system is an
NFS file system.

4. Some Real Examples

4.1. gre

Here are some real examples from our center.

Gre is a fast replacement for grep, egrep, and fgrep. It consists of a
sophisticated pattern matching library, including single string, multiple
string and regular expression routines, of 3349 lines of 17 C source and
header files. The gre source, excluding this library, is 977 lines of 9 C
source and header files. The program has proven to be very portable;
the reasons why are

) It requires very little from the system; the most worrying are
setjmp and longjmp (although these have caused no¥problem
so far). Actually, the routine that caused the most porting prob-
lems was getopt, so we now just ship it with gre.

. The source is designed to be compiled with either ANSI C or C+.
However, by adhering to a specific style of declarations, an awk
script converts the source into old-style C.

. One thing that varies across our computing environment is the
preferred buffered I/O system. On Plan 9, we use bio by Ken
Thompson; on 10th Edition machines, we use fio by Andrew
Hume; and on the other machines, we use stdio. These are han-
dled by a compilation flag (say USE_STDIO) set within the
makefile and an appropriate header file:

#ifdef USE_STDIO

#define PR printf(

#define EPR fprintf(stderr,

#define SPR sprintf(

#define WR(b,n) fwrite(b, 1, n, stdout)
#define FLUSH fflush(stdout)

#endif

(Gre doesn’t use buffered input; it uses the system call read for
all its input.)

. Compilation is controlled by mk on our Plan 9 and 10th Edition
machines, but an extremely simple makefile is provided for other
systems.

° Gre comes with an extensive test suite of 212 simple tests and 13
complicated tests. (Every bug generated at least one test case.)
The test suite is comprehensive, convenient to run and takes only
35 seconds to run on a VAX 8550.

EurOpen & USENIX Spring “92 - Jersey, 6-9 April 109

Portability in a Research Environment

4.2. File Motel

The File Motel [Hum88a] is an example of a larger system. It is a file
backup and restore system based on a central server and multiple
clients running on heterogeneous systems. It solves modestly well the
main problems facing such systems: heterogeneous compilers, libraries
and include files; heterogeneous networking interfaces; heterogeneous
backup media; and configurability issues. To give you an idea of the
size of the system, a client has a configuration file, 3 shell scripts and
15 executables; one script is in /usr/bin and all the other files are in
/usr/lib/backup. The server has an additional 7 shell scripts and
16 executables, supporting amongst other things a compressed B-tree
database. The source for the 10 shell scripts is 376 lines, and the C
source is 5065 lines in 38 source files.

The porting strategy chosen for the File Motel is typical for large sys-
tems in our Center; the source has almost no #ifdef’s (when used,
they control features or functions rather than alternate implementa-
tions) and instead uses system or feature specific libraries to hide sys-
tem differences. Unlike gre, the File Motel relies upon a specific make
tool mk, and a specific 1/O library, fio; it was easier to port both of these
than it was to deal with the variability and inefficiency of make and
stdio. The support libraries are

library files lines contents

libe 28 2158 fio, getopt, regcomp/regexp
libfm 24 1214 db interface, logging, etc
libcbt 14 2045 compressed B-tree library
sys/sys 9 754 (see below)

To some extent, the system specific library reflects when this system
was implemented (1986 and 1989). (If this system were reimple-
mented today, we would assume POSIX 1003.1 compliance and several
of the routines would move into 1ibc.) The routines in the system
specific library are

dateadjust set dates ona file

dirtoents return member names from a directory

ftw file tree walk routine

nofile determine number of file descriptors available
rx.ipc establish a bidirectional link to a <machine,service>
serv.ipc service requests for a given service

sysname determine the system name

username determine the user’s name

We decided, as POSIX has, that you can’t unify current IPC interfaces;
we simply cope with them. On some systems, we had to implement
some other routines as well, such as mkdir, rmdir, Istat, and dup2. To
support a new system, one simply copies the directory for a similar sys-
tem and tweaks the implementation. This admittedly crude technique
has proved manageable in practice; we have not found a bug common
to the system-specific routines.

Configuration issues are controlled by two files; one is on all systems
and designates the name of the central server machine and other system
configuration parameters, and the other is used in compilation and is
included by all the various mkfile’s. Nearly all the various
configuration options are selected in the latter file; however, the server
machine’s name is dependent on the underlying IPC mechanism. Here
is an example of the compilation options file:

110

EurOpen & USENIX Spring 92 - Jersey, 6-9 April

Portability in a Research Environment

version 10
RANLIB=ranlib

IPC=v10

IPCLIB=-lipc

SYS=v10
FMLIB=/usr/lib/backup
FMBIN=/usr/bin
LIBTYPE=a

NPROC=2

CFLAGS= -DSTRINGH="'<string.h>’"
COMPAT=.compat
WORMFACE=uda

4.3. The Research UNIX System

44. Plan 9

The research UNIX system has not been ported (except experimentally)
to a new architecture or machine since it was ported to the VAX in the
early 80s. Furthermore, it seems unlikely it ever will be; the job is
large and tedious, vendors no longer routinely provide enough informa-
tion to do such a job, and the people who are most likely to do it are
working on Plan 9 instead. However, there is continuing interest and
support for the user level programs such as grep, awk, troff etc. So we
are leaning towards a solution which is essentially porting the user
level commands and libraries (and not the operating system) to the
other systems. The problem is maintaining such programs across the
different machines and operating systems in our Center. The compo-
nents of the solution are

APE As described above. The compiler 1cc is by Chris Fraser
and David Hanson [Fra91a], and the ANSI C preprocessor
is by Dennis Ritchie.

mk Mk is a replacement for make that runs on all the machines
in our Center. It is currently being rewritten so as to better
fit within the Plan 9 environment.

dist/ship These programs aid in the distribution of database files,
source and executables across the machines in our environ-
ment. Ship [Koe84a] works well between the 10th Edition
machines. Dist, written by Mike Haertel, solves the more
difficult problem of handling the non-10th edition
machines and Plan 9.

rc Tom Duff’s new shell is the only shell common to (nearly)
all our machines. Actually, the issue of a common shell, at
least where it impacts installation scripts and mk recipes, is
one of the main unresolved issues.

Plan 9 is a research project, whose goal is to find a good way of work-
ing with modern computers, networks, displays, and storage media. A
deliberate attempt was made to question each element of the program-
ming environment, looking for better ways than the traditional UNIX
way wherever possible. Software compatibility between Plan 9 and
UNIX was not an important issue. So for Plan 9, the only portability
question is dealing with the various machine architectures that Plan 9
runs on. This has lead to a style of programming that trades CPU costs
for generality. For example, when 32 bit integers are transmitted
through communication channels, a byte order, say MSB, is chosen and
implemented in the obvious portable way:

EurOpen & USENIX Spring *92 - Jersey, 6-9 April 111

Portability in a Research Environment

long v;

unsigned char *p;
v = *pt++ << 24;
= *p++ << 16;
|= *p++ << 8;
|= *p;

4 < <

rather than using an #ifdef to determine if we can do it in some fas-
ter way for a specific system. We actively use identical source to com-
pile all of the utilities running on MIPS, 68020, 68040, Sparc, and 386
machines.

Plan 9 has its own set of system calls, libraries, header files, compiler,
shell, editor, and other utilities. There is some similarity to UNIX, but
there are also differences. One difference is that each process group
can have a custom namespace. This makes it easy to handle heteroge-
neous architectures by arranging that, for instance, /bin contains
binaries appropriate for the architecture that the process group is run-
ning on.

What are the advantages of the Plan 9 environment over POSIX? From
a programmer’s perspective, the big advantage is library and header file
simplicity. Most of the system calls and library functions used in nor-
mal programming are in libc.a, and they are all declared (with
function prototypes) in <libc.h>. There is a small architecture-
dependent file called <u.h> that defines types used in various header
files, but otherwise Plan 9 sticks to the rule: one library, one header file.
Most utilities use only 1ibc and libbio, a new buffered I/O library.
Contrast this with the situation in POSIX, where you typically need six
or eight header files, and a manual to remember which ones. For
instance, to use the open system call, you must include
<sys/types.h>, <sys/stat.h>, and <fcntl.h>.

Of course, there are occasions when we want to port software to or
from Plan 9. For importing, there is an APE library for Plan 9 that sim-
ulates most of POSIX. For exporting, we can use the “little bit of Eng-
land” approach, and provide a simulation of the Plan 9 environment
assuming a POSIX one. In particular, the graphics model is much sim-
pler than other systems and has been implemented using the X window
system.

However, the simulation in both directions cannot be perfect. For
example, there is no notion of an “effective user” in Plan 9, so
seteuid has no effect (you can’t even fake it). Conversely, the Plan
9 system calls for modifying the namespace would be hard to simulate
in a POSIX environment. So far, the problems in importing programs
have not been due to the veracity of the POSIX simulation, but rather,
with things that POSIX doesn’t yet define (networking, for instance).
Exporting programs is harder as the more interesting programs tend to
use the novel aspects of the Plan 9 environment. For example, the Plan
9 window system, 8.5, relies heavily on how the file system namespace
is built and shared by process groups and cannot be easily ported to a
normal UNIX system.

5. Conclusion

There is no magic bullet for solving portability problems. Standards
such as ANSI C and POSIX have made the chore of porting significantly
easier than it used to be, and the situation will continue to improve as
these standards become ubiquitous in the market place.

112

EurOpen & USENIX Spring “92 - Jersey, 6-9 April

Portability in a Research Environment

The approaches outlined above describe some ways that applications
can be structured for portability. One part of the Plan 9 scheme that
deserves special mention is the structuring of header files (an initial
machine-dependent file followed by one per library). This is a far
superior scheme to that in the standards (although they address rather
more concerns than we do).

References

[ANS89a]

[Fra91a]

[Hum87a}

[Hum88a]

[Hum90a]

[Koe84a]

[Pik90a]

ANSI, Programming Language — C, ANSI X3.159-1989,
1989.

Christopher W. Fraser and David R. Hanson, “A Retar-
getable Compiler for ANSI C,” SIGPLAN 26(10), pp. 29-
43 (October 1991).

Andrew Hume, “Mk: A Successor to Make,” Summer
1987 USENIX Conference Proceedings, USENIX (June
1987).

Andrew Hume, “The File Motel — An Incremental Backup
System for UNIX,” Summer 1988 USENIX Conference
Proceedings, pp. 61-72, USENIX (June 1988).

Andrew Hume and Doug Mcllroy, Unix Research System
(10th Edition), 1990.

Andrew Koenig, “Automatic Software Distribution,” Sum-
mer 1984 USENIX Summer Conference Proceedings,
pp- 312-322, USENIX (June 1984).

Rob Pike, Dave Presotto, Ken Thompson, and Howard
Trickey, “Plan 9 from Bell Labs.,” Summer 1990 UKUUG
Conference Proceedings, London, pp. 1-9, UKUUG (July
1990).

EurOpen & USENIX Spring “92 - Jersey, 6-9 April

113

114 EurOpen & USENIX Spring *92 - Jersey, 6-9 April

‘Inter-Fashion Portability

Barry Shein

Software Tool & Die
Brookline, Massachusetts, USA
bzs@world.std.com

Abstract

Fashion is an invention of civilization to make us unhappy with every-
thing we already own. Many fine programs and shell scripts seem
dated simply because they happen to also work on a printing terminal
or otherwise do not use one of the latest, fashionable window systems.

This paper will explore a set of simple primitives designed to be exe-
cuted from shell scripts (or via the simple insertion of popen or
systenm library calls within existing C programs) which manage vari-
ous user input/output requirements utilizing modern window systems.
This is not a research paper per se, but rather a position paper attempt-
ing to outline some views and implementations I have been developing
over the past few years, and to try to raise some new questions to the
community which have been puzzling me.

I will also speculate on why these programs either haven’t been written
before or why they are not commonly distributed. Fashion eschews
cheating by retrofit: Why fix a hemline when you can buy a whole new
dress?

1. Introduction

1.1. What is the problem? Fashion portability defined

We all have many programs which perform rather mundane chores,
such as tape backup regimens, mail subject summarizers or various
semi-automated operational procedures. These do not seem worth-
while re-working into window systems simply because such interfaces
have become fashionable, the effort is not warranted.

What is needed is a way to port programs to the new fashion, as one
might add cuffs to a suit or change a hemline. Window systems are
still in a volatile state and the fashions continue to change. The issue of
modifying a program only for the purpose of changing its user-
interface 1 will define as fashion portability.

EurOpen & USENIX Spring “92 - Jersey, 6-9 April 115

Inter-Fashion Portability Eé

1.2. How Did We Get Here? How Bad Will This Get?

Once upon a time it was sufficient, in the X11 world, to have a simple
menu, for example, constructed directly out of the X11 library. Today
one is asked whether their software is Open Look or Motif compatible?
Does it use the Xview or Athena or New Wave toolkit? In a few more
years a new list of requirements will be imposed upon the fashion of
the day. Three-dimensional revolving menus, stereo sound and full-
motion video icons, perhaps. How could we have lived without these?

Other window platforms have not fared better. Apple’s latest Macin-
tosh OS release seems to now want cartoon bubbles attached to every-
thing. DOS window systems arrive regularly as potential solutions to
huge corporate egos. Still others simply fade away with time, Sunview
for example. Those who persist in using these obsolete relics are
doomed to become about as popular as a paper terminal. The situation
seems to be getting worse over time as so-called standards, such as
X11, mitose into multiple new standards (de facto or otherwise) such as
New Wave and Open Look.

Another, pervasive problem is that of portability in general. Some peo-
ple still live on dumb ASCII terminals [She90a], others buy what they
believed were compatible UNIX systems from different vendors (they
all said they ran X11!) only to find that toolkits and other support is
quite different and incompatible.

1.3. Who Should Be Concerned?

Among all the teapots and tempests some of us need to get some work
done. Perhaps the most beleaguered victim of this paned warfare are
the system and network administrators and their operations staffs.
They are the keepers of the mundane, programs which ordinary mortals
don’t normally see. But nonetheless they pine for the ability to take
advantage of this brave new world of colorful rectangles but generally
cannot justify the programming staff a full re-coding effort would
require. We can add to them the many applications developers who do
not work for organizations interested in spending on developing such
windowed applications, but would be interested in using them.

1.4. Why Is This Hard?

1.4.1. Event Drive vs Non-Event Driven Programming

Window programming is normally done using an event-loop model. A
set of objects is created and displayed on the screen (perhaps not all
simultaneously.) The program then enables interest in some number of
events such as a keystroke, a mouse pointer entering a particular area, a
mouse button going down or up, etc. The program then enters a loop
extracting each event in turn and, generally by means of a case state-
ment, dispatches actions based on the events received.

Non-window programs with a user interface also use a loop as the heart
of their control, but generally a loop on a single input stream. The
characters (tokens) entered into the input stream are used to switch
among possible actions by the program.

116 EurOpen & USENIX Spring “92 - Jersey, 6-9 April

Inter-Fashion Portability

1.4.2. The Collision Point Between The Two Models

The major collision between the two programming models involves
state. In a windowed interface a user might begin typing text into a
dialog box and suddenly move the mouse over to a button for help and
click on it. The state of the input must be preserved while the help text
is being displayed and scrolled. Other states, such as button choices,
must also be preserved during this time.

In a non-windowed interface, generally, only one thing can go on at a
time. If you are entering a string and suddenly decide to go off and
read some help text you must cancel entering the string and instead
enter a command to request help, often requiring you to pop out of the
entire action back up to a command level. Interfaces which attempt to
provide some help during text input, such as was popular on the Tops-
20 command completion interface, only provide brief prompt and noise
strings in response to a special character such as ‘?” and don’t actually
change state in any significant way.]

It is this multiplexing of input types in a windowed system which
imposes an entirely different programming style on the problem. Each
possible action must be coded in a highly modular fashion and be ready
to relinquish control in mid-stream and resume later as if nothing inter-
mittent had occurred. Most non-windowed programs are not prepared
to deal with this flexibility.

2. A Basic User Interface Taxonomy

2.1. Let’s Make A List

Other than particulars, there are not that many different objects com-
mon to popular window systems. Here is a good list to start working
from:

e Menus — Short lists of strings to be chosen from.
e Lists — Long lists of strings to be chosen from, often scrolled.

e Text Displays — Program, mail, news and other textual messages,
scrolled or not scrolled depending on the length of the message.

e Alerts — A brief message with a small choice of buttons displaying
possible actions such as confirming a program exit.

e Dialogs — A brief message with an area to enter a bit of text.

e Editor — A two-dimensional, potentially scrolled panel into which
extensive text can be typed and modified.

This list is not exhaustive, there are no gouraud-shaded virtual reality
objects, for example. But it does cover the basics I have found useful
in converting old, non-windowed programs into new, fashionable, win-
dowed programs. Perhaps the most obviously missing object is a forms
manager which would allow the grouping of several objects onto one
window panel. I have purposely omitted this as it sorely complicates
use of the solution I will describe.

Also missing are entries into new domains such as displaying bar, line,
pie and other charts, drawing programs to capture graphical user input,
icon management etc.

The choices are heavily weighted towards textual input and output.
But so are the expected applications. Another reason for the weighting

EurOpen & USENIX Spring 92 - Jersey, 6-9 April 117

Inter-Fashion Portability e

towards textual output is to allow implementation of the primitives on
non-bitmapped displays.

3. Solution

3.1. A Set of Shell Primitives

What I have done is implemented a set of primitives which follow the
above taxonomy of objects. Each program is completely standalone,
taking any options it needs either as command-line options, via a stan-
dard input stream, or both.

This effort started, intermittently, back when X10 was current. When |
implemented and submitted xman to the X consortium I also submitted
a program called xmore which was a windowed analogue to the popu-
lar UNIX more program. This program appeared on their X10 tapes
but was never converted over to X11 entirely.

All programs take standard X11 arguments such as -display and
-font. These are mostly ignored on non-bitmapped implementations,
but harmless. All programs return their results as either strings to the
standard output or exit values. The intention is that these should be
easily run within shell programs, typically as an assignment to a shell
variable within backquotes. The popen standard I/O library can also
be used similarly with these programs from within C code.

A brief overview of the programs and their use:

e wmore — Display text read-only, generally intended for textual
displays of more than a few lines. Scrollbars are created automati-
cally, as needed. An optional -s flag adds a save button to the
display so the user may save the file to his or her own area.

There are no outputs from wmore.

e wconfirm - Put a message on the screen waiting for
confirmation. There may be one, two or three buttons. These may
have text labels attached on the command line by using -1
text, -2 text and -3 text arguments. If all are omitted
one button is displayed with the text oK. The text message to be
confirmed is specified on the command line as a string.

The motivation for the three buttons is the common one button
OK, two button YES and NO, and the three button YES, NO, CAN-
CEL. Any text may be attached to the buttons, within reason, but
they generaily are similar to the structures implied by these exam-
ples.

On exit wconfirm puts the text of the button chosen onto the
standard output.

e wdialog — Get an input string. Puts up a prompt, by default
Input, or as specified with the -p flag. There are two buttons
offered, OK and CANCEL. Any other text on the command line is
used to initialize the input area (editable.)

The string typed in is printed to the standard output. In order to
distinguish between an empty string and a cancelled input the pro-
gram exits with zero when OK is chosen, otherwise one.

e wlist — List a display of choices and waits for the user to pick
one. The choices may be specified either as separate arguments
on the command line or through the standard input. For example,
the first form might be used for a short list while the second form

118 EurOpen & USENIX Spring "92 - Jersey, 6-9 April

Inter-Fashion Portability

#!/bin/sh
while true
do

BACKUP=‘wlist -T ‘Which Backup?’ Incr Full Spec’

case $BACKUP in

Incr|Full)

weconfirm ‘Tape Mounted and Ready?’
echo ’'backup started...’

exit 0

e
s

Spec)

wconfirm ‘Ready to start Special Backup?’
echo ’‘special backup in progress...’

exit 0

ii
*)

echo ‘Backup cancelled, do call again.’

exit 1

HH
esac
done

Figure 1: Sample script

3.2. Commentary

using the standard input might be used to allow choice among an
arbitrarily long list of files (1s |wlist). If a -s option is given
then the list is sorted first. The first item in the list is *CANCEL*
unless a -c flag is given, in which case it is suppressed. A -T
text argument creates a title above the list. Scrollbars are added
as needed.

The user’s choice is printed to the standard output. If the input is
(optionally) cancelled an empty string is returned. Empty strings
in the list are silently ignored.

The intention is that these programs be useful within shell scripts or
very simply from within programs (via popen() or equivalent.) A
simple but illustrative example is show in Figure 1.

An attentive reader might note that we have not included a separate
menu program. | found that the wlist program works well enough
due to the automatic addition or not of scrollbars. Short lists look like
menus, long lists look like scrolled lists (reminiscent of the file choice
box from the Macintosh tool chest, but a bit more flexible.)

3.3. Current Implementations

These programs are currently implemented in Xview (which is quite
similar to Sunview in programming style), Athena Widgets and curses.

4. Similar Work

Other than my own xmore of several years ago (already described),
there are a few pieces of the concept I am presenting already available
on the net. There is even a question in the Frequently Asked Questions
list posted regularly on the comp.windows.x USENET discussion list
which alludes to these (Figure 2).

EurOpen & USENIX Spring “92 - Jersey, 6-9 April 119

Inter-Fashion Portability

82) Where can I find X tools callable from shell
scripts? I want to have a shell script pop up menus
and yes/no dialog boxes if the user is running X.

Several tools in the R3 contrib/ area were developed to
satisfy these needs: yorn pops up a yes/no box,
xmessage displays a string, etc. There are several
versions of these tools; few, if any, have made it to
the R4 contrib/ area, though they may still be
available on various archive sites.

In addition, Richard Hesketh (rlh2Bukc.ac.uk) has
posted the xmenu package to comp.sources.x ("v08i008:
xmenu") for l-of-n choices.

Two versions of XPrompt have been posted to
comp.sources.x, the latter being an unauthorized

rewrite. [R. Forsman]

There is a version of XMenu available from
comp.sources.x; it is being worked on and will likely

be re-released.

Figure 2: Extract from comp.windows.x FAQ list

These cover similar ground but I felt that a single-minded, cohesive
attack would be useful. Note that Xmenu continues to be released
real-soon-now, 1 think it has been about four years. There is also no
attempt to make these work in multiple windowed and curses environ-
ments. Current work is very unsatisfying and not of much use to a
truly heterogeneous shop.

The package XVT [Roc89a] is a multi-window system package, now
commercialized, which provides a portable subroutine interface to sev-
eral window systems. My concern is currently limited to UNIX, or at
least multi-tasking operating systems. It would not be difficult to adapt
the programs in my package and their style to a subroutine library for
DOS or Macintosh systems (that is, the specification is simple enough
and won’t be the problem.) The software described in [Pik91a] and
[Pik91b] provides very good overview of the sort of things one needs
and one perhaps doesn’t in a basic window system.

5. Lessons

The best explanation I have for why a package like this has not shown
up earlier is that programmers, when confronted with new technology,
make the best the enemy of the good. When given a window system
the same part of the brain that used to fire off when laser-printers and
multiple font documents first appeared takes over. Every program must
be heavily customized with careful widget design and rapt attention
paid to placing little icons onto buttons which are artfully customized
to the application. That anyone gets any work done is secondary.

In that atmosphere, the idea of generic windowing software goes out
the window, so to speak. If an application can’t display full-animated
fonts in sixteen million colors and use every feature of the window sys-
tem then, it would seem, it is not worth thinking about. The mundane
are left behind. The quest to be fashionable rules supreme.

Technology continues to amaze and astound. With upcoming multi-
media technology promising to integrate voice, video and other sensa-

120

EurOpen & USENIX Spring “92 ~ Jersey, 6-9 April

Inter-Fashion Portability

tions managers of software environments would do well to stop for a
moment and ask themselves why some basic access to these new tools
cannot be provided in a simple manner.

One stellar example of a simple interface to new technology is Sun’s
/dev/audio device. You can make good use of it with

cat /dev/audio > file

to record some sound and later

cat file > /dev/audio

to play it back. At the other extreme are computers like the Macintosh

where every idea, no matter how trivial, seems to need another store-
bought, customized package.

6. Conclusion

I have raised an issue analogous to the “dusty-decks” problem of days
past. The dusty-deck problem was what to do with those old card
decks, often containing huge FORTRAN programs, and often still very
useful. It wasn’t the card media so much as it raised the general soft-
ware re-use question. Billions of dollars had been poured into writing
those dusty-decks, and many were written in a non-portable manner.

Today we are rapidly building an inventory of unfashionable programs.
Programs which are still very useful, but don’t fit into this windowed,
bitmapped, friendly GUI world. I have presented a way to raise those
hemlines, cuff those pants, and take them back out for a proud walk
with little trouble.

References

[Pik91a] Rob Pike, “A Minimalist Global User Interface,” pp.
267-280 in USENIX Conference Proceedings, USENIX,
Nashville, TN (Summer 1991).

[Pik91b] Rob Pike, “8%4, the Plan 9 Window System,” pp. 257-265
in USENIX Conference Proceedings, USENIX, Nashville,
TN (Summer 1991).

[Roc89a] Marc J. Rochkind, “A Unified Programming Interface for
Character-Based and Graphical Window Systems,” pp.
109-117 in USENIX Conference Proceedings, USENIX,
Baltimore, MD (Summer 1989).

[She90a] Barry Shein, “Primal Screens,” Sun Expert 1(3), Computer
Publishing Group (January 1990).

EurOpen & USENIX Spring “92 - Jersey, 6-9 April 121

122 EurOpen & USENIX Spring “92 - Jersey, 6-9 April

Camera: Cooperation in
Open Distributed Environments

Gert Florijn'
Ernst Lippe'*
Atze Dijkstra*

Norbert van Oosterom
Doaitse Swierstra*

T Software Engineering Research Centre — SERC
Utrecht, The Netherlands

£ University of Utrecht
Utrecht, The Netherlands

camera-info@serc.nl

Abstract

The next generation of end-user computing environments will be
marked by two features: they must be able to operate in a rapidly
evolving distributed environment and they must provide support for
cooperation among users. The Camera system, a platform for defining
(end-user) workspaces, provides a particular approach to these issues
which is based on visible distribution of data and explicit communica-
tion among users.

This paper describes the architecture of the Camera system in some
detail. Among the topics addressed are the Object Management Sys-
tem, which replaces the traditional file system as a data store, the two-
level architecture which introduces a distinction between development
activities and the products created during these steps, and the mecha-
nisms for communication and cooperation, which allow users of differ-
ent, isolated systems to exchange progress and merge the results of dif-
ferent activities. The paper includes a description of a prototype imple-
mentation on UNIX, and indicates some of the work in progress.

Introduction

The large-scale introduction of networks combined with the develop-
ment of more open computer systems offers some interesting promises
for the future. In principle, we can expect to see “open distributed
environments”, rapidly evolving, integrated networks consisting of all
kinds of computers, tools and data. People will use these environments

EurOpen & USENIX Spring “92 - Jersey, 6-9 April 123

Camera: Cooperation in Open Distributed Environments

to communicate, share data, exchange progress, synchronise activities,
in short, to cooperate.

At the moment, most attention is focussed on the technical “openness”
of future systems. Committees and consortia are defining standards on
all layers of current computer systems: processors and other hardware,
operating systems, communication protocols, user interface systems
and styles, and now even inter-application communication models
[Gro90a]. Of course, these developments are important. They will
solve (some of) the extremely annoying interoperability problems well
known to anyone who tries to get some work done on a heterogeneous
multi-vendor network.

But, with all this activity (and the related hype) going on, some people
seem to forget that things like tool interoperability and system integra-
tion are not goals per se. We need these technical provisions to make
computers more practical and useful for individual users and to enable
groups of computer users to cooperate more smoothly. Thus, besides
thinking about machine interoperability, we need to consider user
interoperability as one of the primary goals of open systems.

The Effects of Distribution

Support for working in distributed environments will be a key ingredi-
ent of future open systems. Again, most attention nowadays is
focussed on technical issues: physical networks, communication proto-
cols, networked applications, etc. Far less time is spent on the concep-
tual model of distribution that should be used for these open computing
worlds. From an end-user’s point of view, however, this model is the
key ingredient because it determines how they view their computing
environment, and how they communicate and cooperate with others.

Some developments point in the direction of a “heterogeneous, dis-
tributed mainframe” model. The idea is that all users share a logical
workspace consisting of tools, data, etc., which is mapped transparently
on all available machinery. If a new service is introduced somewhere
in the network, it can be accessed and used by all people connected to
it, regardless where it is located or on which machine it runs. People
basically use the same name-space and protocols for accessing local
and remote entities.

There are, however, some fundamental problems with this model. In
particular, the model only supports people as long as their system is
connected to the network. While this may seem a reasonable assump-
tion it has some severe limitations and drawbacks. As more and more
computers move from the desktop via the “lap top” and the “palm top”
into the background [Wei9la], computers and computer users will
become less tied to one physical place. People will take their comput-
ers along wherever they go, and use them wherever they want.

This means that computers will not always be linked to the same net-
work and even that they will not be connected to any network for
unknown periods of time. Of course, future protocol architectures must
find a way of dealing with people and/or computers moving from one
network to another without losing their identity. But, on a more
abstract level we must consider how end-users deal with the fact that
they aren’t connected to a network or that their current physical con-
nection is too slow to get the full integration they want. Clearly, the
wrong conclusion would be to say that users should not continue work-

124

EurOpen & USENIX Spring 92 - Jersey, 6-9 April

H

Camera: Cooperation in Open Distributed Environments

ing in such situations and wait until their machines are connected
(properly) again.

The model of one shared workspace also has some conceptual prob-
lems with respect to cooperation among people. Sharing a workspace
with others is only useful if people actually cooperate in some way or
another. Cooperation implies more than sharing of data and tools, run-
ning remote applications or accessing remote information. Within any
team (regardless how closely they cooperate) there exist conventions as
to how particular activities are carried out, agreements on which tools
are used for particular jobs, conventions on how information is
archived, protocols describing how and when others are informed of
certain developments, etc. Since people can be involved in many differ-
ent collaborations, this means that they participate in many of these
shared workspaces, each possibly with its own particular conventions.
It is clear that this mismatch with the model of one global workspace
should be handled in one way or another.

The Camera Project

Given these problems it is essential to investigate alternative (end-user)
models for organising distribution and cooperation. In the Camera pro-
ject at SERC we study a somewhat radical model which is based on
explicit communication and non-transparent distribution.

The goal of the Camera project is to devise mechanisms and tools
which assist people who use loosely-coupled infrastructures for cooper-
ative development, like the joint writing of a book or the development
of a software system. The term “loosely-coupled” indicates that we
focus on situations in which the network configuration is dynamic:
computers need not be permanently linked to others, or may be linked
by slow lines. In particular Camera concentrates on asynchronous
cooperation. We want to investigate concepts and technology that help
these people keep track of their own progress, and allow them to peri-
odically synchronise and coordinate their work with others.

Our overall approach to the problem is strongly influenced by two
choices. The first one is that we accept the autonomy of individual
computer users. We aim to support cooperation among individuals and
teams who are more or less free to organise their own (computer)
workspace, without having to conform to central procedures. The con-
sequence is that coordination and synchronisation of activities cannot
be enforced, but can only be stimulated.

The second fundamental choice is that we do not attempt to hide distri-
bution details. We assume that data must always be available within
the workspace of a user before it can be accessed. Thus the networked
world is divided into two units: the “own” system, and the rest of the
world. In this way, the functionality of the workspace does not depend
on whether it is connected to a network or not. It can be used even
without being connected to any other system.

Of course, these choices imply that there is no implicit data sharing.
The basic model is to communicate copies of data and to integrate them
into the recipient’s workspace. Thus, if an author wants to change
something in a chapter prepared by her colleague, she must transfer it
into her own workspace before being able to read and/or change it.
This style of working resembles the way people currently cooperate
using message systems such as electronic mail or bulletin boards.

EurOpen & USENIX Spring 92 - Jersey, 6-9 April 125

Camera: Cooperation in Open Distributed Environments

Replacing a shared repository by explicit copies of data introduces a
version management problem. There are potentially many copies of
the same data which are being modified by different users in parallel.
An individual user must not only track her own activities, but must also
explicitly synchronise and merge her progress with that of others.

The Camera System

Research in the Camera project is aimed at developing generic (i.e.
application domain independent) mechanisms to support communica-
tion and collaboration among these “isolated” systems and to help peo-
ple solve the corresponding versioning and synchronisation problems.
The mechanisms are unified in the design of the Camera system
[Lip91a] which represents the working system of one user or a small
team of users who cooperate closely. In compliance with the choice
for autonomy, each Camera system is fully protected against interfer-
ence from outside. Users have full control over what is stored and
what happens within their system.

The architecture of the Camera system has the following characteris-
tics:

° To improve support for the exchange of data and for merging
separated activities, it is necessary that the computing environ-
ment has as much knowledge as possible about the semantics of
the user’s data. On the other hand, since the application domain
is open, this need should not restrict the use or expressiveness of
the system. To satisfy these needs, Camera users store their data
in an extensible Object Management System (OMS). Data is rep-
resented as (typed) objects and relationships among these
objects. Functionality is represented by methods associated with
object types. Methods can be invoked by sending messages to
objects.

. In order to help people combine the results of different develop-
ment activities, users should be able to represent their activities
and keep track of the history of these activities. In Camera we
support this through a two-level architecture combined with
built-in facilities for history management. Development activi-
ties are represented as objects in a special OMS called the
“Album”. The data that is the subject of a development activity,
which constitutes an OMS in itself, is versioned. States of such
an OMS (called snapshots) together with the changes that were
involved are also stored as objects in the Album.

° Within Camera, facilities for communication with other users
(i-e. those using other Camera systems) are integrated with the
rest of the system. Transferring data does not require different
representations, or packing and unpacking. Camera users only
have to communicate on the logical level: they can send (collec-
tions) of objects to other Camera systems/users who are repre-
sented as objects on the Album level.

) Incorporating and combining the results of different development
activities is supported for different scenarios. For a producer-
client relationship, in which a recipient uses the end-result of
work carried out by someone else, it is possible to exchange
either complete states of an OMS (snapshots) or a comprehensive
part of such a state (called a piece). For true parallel develop-
ment, the end-results have to be merged. Camera contains sup-

126

EurQpen & USENIX Spring “92 - Jersey, 6-9 April

Camera: Cooperation in Open Distributed Environments

port for merging based on the operations carried out in the devel-
opment lines.

In subsequent sections we discuss the architecture of the Camera sys-
tem in somewhat more detail.

The Object Management System

Camera users store their data in an Object Management System (OMS),
which is an extension and generalisation of the traditional file system.
Object management systems have become popular over the past few
years, especially within the area of software engineering environments
(PCTE [ECM90a] is a good example in this domain). The Camera OMS
is inspired by this work, but also incorporates developments from the
field of object-oriented databases (see [Kim89a] and [Zdo90a] for an
overview).

The Camera OMS data model is truly object-oriented. Data is stored as
objects which have a system generated, unique identifier. Objects are
instances of classes which define the structure of objects by listing their
attributes. Attributes can store values of various primitive data types
(e-g. integer, arbitrary length string, symbol). Associations among
objects are not modelled through object-pointers but through (n-ary)
relationships. Relationships are tuples in a relation and can also con-
tain primitive values. The functionality that manipulates and trans-
forms the data in an OMS is represented as methods associated with
classes. The basic interaction paradigm is message passing: usets send
messages to objects to invoke certain behaviour.

The OMS is extensible: users can define new object classes (inheriting
from, possibly multiple, existing classes), relations and methods (using
an external language). More dynamics can be added by using triggers,
which invoke an action when certain conditions become true, and
through (partially) computed relations, where a script determines which
tuples make up the relation. Since the OMS is modelled in itself (i.e.
classes are objects, etc.), adding new definitions is done by sending
messages to meta-objects.

The OMS provides built-in support for derivation management. A
derivation manager keeps derived values (such as the compiled form of
a program source) up-to-date with the values on which these values
depend (e.g. the source code, the compiler, include files, search paths,
options, etc.). The main role of a derivation manager is to optimise the
amount of computation involved (mostly by caching previously com-
puted values).

In Camera, derived values are modelled as the result of invocations of
functional (i.e. side effect-free) methods. The derivation manager
caches (in a hidden cache) the results of such invocations and also
tracks all dependencies for a given derived value. This is done by log-
ging all attributes that are accessed and other functional methods that
are inveked during the computation. The dependency information is
made visible in a system-maintained (read-only) relation. Whenever
some part of the OMS is changed, some cached derived values may
have become inconsistent. Re-computation of such values and further
propagation of changes (either on demand or immediately) is then nec-
essary. Propagation stops whenever the end-result of a computation is
the same.

There are several advantages of combining the derivation management
with the (implementation of) the OMS. First, users do not have to spec-

EurOpen & USENIX Spring “92 - Jersey, 6-9 April 127

Camera: Cooperation in Open Distributed Environments

ify derivations and dependencies explicitly in some separate file as is
the case with tools such as Make [Fel79a]. In Camera one only
specifies the methods that compute derived values and associates these
with the relevant class. Since dependency tracking is implicit and com-
plete’ the system guarantees that the derived values are always consis-
tent with all inputs. There is no chance of forgetting implicit depen-
dencies on things like options and tools. Finally, propagation of
changes does not depend on criteria such as the last-modification time.
If a re-computation results in the same outcome (as when a comment is
changed in a source file), propagation stops.

Program 1 shows an example of the use of the OMS. It is an edited
script of a session with our current prototype [Dij92a]. We use an Elk
Scheme [Lau90a] shell to interact with the OMS. The example shows
the definition (by sending a construct message to class Class) of
a class C-source which is a sub-type of the predefined class Edit.
The attribute value of class Edit is inherited, and contains the actual
C source code. The functional method compile defines a derived
value, the compiled form of the C source stored in the value attribute.
The method execute takes the byte string produced by compile
and runs it as a UNIX process. As follows from the example, the OMS

;; Construct a new class named ‘C-Source
> (send (€c ‘Class) ’'construct ‘name ‘C-Source ‘super (€c ’'Edit))

; Define a new function ‘compile on C-source. It has no arguments
; and returns an arbitrary length byte-string

H

H

> (send (€c ’'C-Source)} ’‘def-function ‘compile ‘() ’'(bytestring)

> (lambda ()

> ;; Invoke the byte-string that constitutes the compiler,

> ;; obtained by sending a message to another object, on this
> :; C source code, obtained by doing (send (self) ’'get-value).
> ;; Return the byte string produced by the compiler

>))

;; Define a new function ’‘execute on C-source. It has no arguments

;; and an undefined return type.

> (send (€c ’'C-source) ‘def-function ‘execute ' () ‘(**)

> (lambda ()

> ;3 Invoke the compiled form of this source by executing

> :; the byte string returned by (send (self) ’‘compile)

>))

;; Create a place for sources in the name-space (/src) and

;; create a piece of C-code under the name ’/src/hello.c

> (send (@ ’'/) ’'dir-add ‘src (send (€c 'Object) ’‘new))

> (send (@ '/src) 'dir-add ‘hello.c (gend (€ ’'/class/C-source) ’'new))

> (send (& ’/src/hello.c) 'set-value "... The Hello World program ... ")

;; Run the C-source code (with implicii compile)
> (send (€ '/src/hello.c) 'execute)
Hello world

;; List the dependency information for method ‘execute for the source.
;; Note that the #[objectid...] value represents the object identifier
;; of the source object. The <- indicates a dependency.
> (dependency-print (€ ‘/src/hello.c) ’execute)
(#[objectid 192.87.7.19 7824 17] execute ())
<- (consistent derived #[objectid 192.87.7.19 7824 17] compile ())
<- (consistent attribute #[objectid 192.87.7.19 7824 17] value ())

Program 1: Sample interaction with the OMS

+ Dependency tracking is complete because the OMS is self-contained

EurOpen & USENIX Spring “92 - Jersey, 6-9 April

Camera: Cooperation in Open Distributed Environments

contains a basic naming scheme for objects, similar to the UNIX file
name structure. One specific name is predefined: the symbol / refers
to a specific instance of class Object. Classes can be found under
the directory object /class. Resolving an object name is done by
sending the method dir-lookup to any object. In the example in
Listing 1, we use the macro @ as an abbreviation for dir-lookup,
and the macro @c as an abbreviation to look up classes.

Camera’s Two-level Architecture

The Camera system offers support for modelling and tracking develop-
ment activities. The basic idea is that each activity has its own OMS
associated with it. This OMS contains the product data, i.e. the data
that is manipulated and modified in that particular activity. Activities
are called environments in Camera terminology and they are repre-
sented as objects in a special OMS called the Album. Camera thus has a
two-level architecture (illustrated in Figure 1). The Album OMS has
(almost) the same data model as the environment OMS’s, which means
that it is extensible and programmable.

Support for activities is extended by mechanisms for tracking their his-
tory. In Camera, version management is applied to the complete object
management systems associated with environments." Camera (logi-
cally) stores distinct states of these OMS’s in Album level objects
called snapshots. Thus, the association between an environment and its
OMS in fact is an association between an environment and a particular
snapshot. In OMS terminology: within the Album OMS there is a rela-
tion called “current-snapshot” which links environments to their cur-
rent snapshot object.

Snapshots represent an end-result or an intermediary stage of a particu-
lar activity. Once created, they are immutable. Changes to an existing
snapshot lead to a new snapshot, which is the successor of the old one.
In addition, the Album also registers transformations, the sequence of

-~
Album OMS gnapshot User-interface

Environment = @

Current
Snapshot

Figure 1: Camera’s two-level architecture

T A coarse-grained versioning model like this is also found in the Network Software Environment [Cou88a], while Hume [Hum89a]
presents a similar model applied to UNIX file systems.

EurOpen & USENIX Spring *92 - Jersey, 6-9 April 129

Camera: Cooperation in Open Distributed Environments

operations that led from one snapshot to another. Transformations are
not merely the differences between two snapshots. They contain the
messages sent by users which changed the state of the OMS. Transfor-
mations are editable and reusable, which means that they can be
applied to other snapshots.

A snapshot is self-contained: it contains no references to anything out-
side it. This implies that all data that is involved in a development step
(source code, documentation text, tools, libraries, editors, include files,
etc.) is logically part of the snapshot. This has the big advantage that
historical states are (likely to be) consistent. Installing a new compiler
does not break the reproducibility of old releases, since the compiler
with which they were created with is still stored as part of their snap-
shots.

Incorporating all relevant data in a snapshot can make these quite large.
It is clear that it is not feasible to store the different snapshots as dis-
tinct copies. The Camera implementation therefore maintains a delta-
based, incremental data structure [Lip91b] for storing snapshots.

Doing work within the context of an activity starts with activating an
environment. This initiates a transaction in which all operations (mes-
sage sends) are directed to a temporary, mutable copy of the
environment’s current snapshot. When the transaction is completed,
the new state may be saved as a new snapshot in the Album as a suc-
cessor of the previous state. If so, the “current-snapshot” relation is
updated accordingly and the transformation object is stored too.

Environments also provide the mechanism for accessing historical
information and for travelling in time. By associating an environment
with an older snapshot (changing the “current-snapshot” relationship)
we can work in that old state. Modifications may lead to a new snap-
shot which is a new successor of the old state. This introduces
branches in the revision graph of snapshots.

A Camera system can be used by a team of users. This means that
these people share the workspace constituted by the data in the Album
OMS. Of course, they all can use distinct environments to represent
their own activities. Consequently, at any moment in time, multiple
environments can be active. Each of these active environments is iso-
lated from others. Changes carried out within one environment are
invisible to the outside world. Even if two environments point to the
same snapshot, changes in one environment will not be seen in the
other; two distinct successor snapshots will be created. For close coop-
eration it is possible to share an active environment. This means that
changes carried out by one person will also be immediately visible to
the other users. This mode of working is similar to current file systems.

Snapshots, transformations and environments are mechanisms. Using
them in a particular situation requires policy decisions for determining
such matters as whether and when a snapshot should actually be saved
for later reference, what extra annotation should be added to snapshots,
what relationships exist among environments, etc. The extensibility of
the Album OMS allows for the implementation of such policies.

Mechanisms for Communication and Cooperation

A Camera system is inherently isolated from other Camera systems,
whether they are running on the same machine, the same local-area
network, or in different continents. In order to break this “splendid iso-
lation” we first of all need constructs to communicate with other Cam-

130

EurOpen & USENIX Spring “92 - Jersey, 6-9 April

Camera: Cooperation in Open Distributed Environments

era systems. To support cooperation among users at different Camera
systems we must make it easy to exchange the results of development
activities and support combination of parallel work.

Within an Album OMS other Camera systems can be represented as
objects. For each system a list of possible “routes” to reach that system
can be defined. Each route indicates a communication means (e.g. a
TCP/IP connection, E-mail) and an address for that type. This informa-
tion is used by the implementation to determine how to transfer the
data. Non-computerised transfer, for instance via floppy discs, is mod-
elled in a similar fashion.

Sending data to another Camera system involves nothing more than the
invocation of a message on such a “remote Camera” object with the
data to be transferred (a local Album level object) given as an argu-
ment. The actual data transfer is done asynchronously. Of course, the
time needed to carry out the transfer depends on the network situation.
Therefore, users can query the progress of the transfer session. Fur-
thermore, the system informs the users of the completion of a transfer.
Incoming data is modelled as a method invocation (executed by the
Camera implementation) directed to a general “in-box” object in the
Album. This object can decide what to do with the incoming message
and the Album object that it contains.

Since communication is defined on the level of Album objects, a basic
mechanism to share progress among different Camera systems is by
transferring snapshots. Since snapshots are self-contained they contain
not only the data that is being developed (the text of a book, the source
code of a program), but also all the data needed to use and further
develop it (text formatters, compilers, libraries). Given the right cir-
cumstances (e.g. similar machine architecture) this means that a snap-
shot can be used immediately in the receiving Camera system without a
need for any reconfiguration or adaptation. This can be useful when
people take work along on laptops, or when they use different comput-
ers at different places.

Communicating on the level of complete snapshots is not always suit-
able. The situation in which different machine platforms are used is
but one example. In many cases, changes made by one user do not
affect a complete snapshot or even all the parts of the product that is
being developed. Their work has concentrated only on a specific part
of this data (e.g. a chapter of a book). In this situation, transformations
can be useful to share progress, because they can be edited and applied
to other snapshots. The net changes that were carried out can be trans-
ferred and re-applied. This is somewhat comparable to the use of
patches [Wal88a] with the aforementioned distinction that transforma-
tions are logs of user-level operations, not mere differences between
states.

Transformations however do not give the level of abstraction we need
because they do not allow us to decompose snapshots into more man-
ageable sub-units. To alleviate this problem we have introduced the
notion of pieces as a modelling mechanism in the snapshot OMS. A
piece is a collection of objects and relationships among these objects
They are somewhat similar to complex or composite objects found in
some object-oriented database systems [Kim87a]. Pieces in Camera
also can have some knowledge about the other objects which are not
part of the piece itself, but that are needed to use the data in the piece.
These external connections can be modelled as scripts of computed
relations. For instance, a piece containing source code could have an
external relationship that should be connected to an object representing

EurOpen & USENIX Spring “92 - Jersey, 6-9 April 131

Camera: Cooperation in Open Distributed Environments

a particular compiler. The script of the computed relationship contains
the constraints to identify the proper compiler object within an actual
snapshot.

Pieces are a key mechanism for cooperation because a piece can be
transplanted into other development lines and thus into other snapshots.
A transplant involves adding the piece elements to another object sys-
tem and (automatically) establishing the relationships of the piece with
its environment. If a previous value of the piece exists it will be over-
written. If some of the external relationships cannot be established,
some functionality may not be available (e.g. the source code cannot
be compiled), and the user will be warned accordingly. A copy of a
piece can be extracted out of a snapshot into an object on the Album
level, and thus be sent to other systems.

Transplanting pieces is mainly useful in producer-client collaborations
or in situations in which parallel activities have focussed on distinct
sub-parts. In the case of true parallel development however, the
changes in one development line must be merged with changes made
in another. Merging is a difficult problem which, in general, cannot be
automated. Changes in distinct development lines may create a conflict
and in some cases only the user can decide how this conflict should be
resolved. The level of support that can be given for automated merging
depends on the knowledge about the semantics of the data to be
merged. Instead of merging states, as done by most existing merge-
tools, Camera uses an operation-based model [Lip91c] to implement
three-way merging, i.e. combining the changes of two development
lines based on a common ancestor. The model uses the transformations
that constitute the two development lines. The idea is to merge the two
transformations by checking whether operations from the two transac-
tions commute, i.e. whether the order in which the operations are
applied is interchangeable without altering the end-result, and by iden-
tifying and grouping sequences of operations that conflict. These
conflicts must be resolved by the user. The algorithm works in an
extensible data model since users can specify merge conditions for
newly defined operations. Of course, this approach does imply that the
quality of merge support depends on the level of detail that the opera-
tions provide.

Operation-based merging has several advantages over traditional
(state-based) merge tools. Most of these traditional tools support merg-
ing of ASCII text files using individual lines as the granule. The tools
try to recover the operations that have been carried out, but only have a
limited repertoire of operations such as adding and deleting blocks of
lines. Single operations that affect multiple lines, such as a global sub-
stitute, cannot be identified and the user is confronted with a conflict on
each instance. Furthermore, since there is no insight in the actual
semantics of the data involved, the result of a merge may be an invalid
data structure. Since our merging tool simply re-invokes operations on
the OMS, the semantics of the underlying data-structure are guaranteed
to remain intact.

We are currently investigating how the Camera system could be used
to describe different collaboration scenarios. The idea is that if the
activities of a group of users follow a certain plan, this plan can be
described in the Album OMS’s of the participating Camera systems. A
major advantage of putting these process descriptions in the system is
that they can be used to automate parts of the communication. Such
standard procedures are often found in software development projects,
e.g. for handling bug-reports and fixes, for the development and admin-

132

EurOpen & USENIX Spring “92 - Jersey, 6-9 April

Camera: Cooperation in Open Distributed Environments

istration of new releases, etc.t However they can also occur in other
domains, such as office systems. Our preliminary research gives us
confidence that such process programs can be described as applications
in the Album OMS.

A UNIX-based prototype implementation

The Camera system has been implemented on top of UNIX. The proto-
type consists of several communicating processes (see Figure 2). The
key process type is the one that implements an OMS. It is used for
implementation of an Album, and also for environments in which a
particular snapshot is manipulated. This OMS (process) is implemented
partly in C and partly in Elk Scheme [Lau90a]. Users can therefore
write new OMS methods in Scheme, and, in principle, in C.

The OMS processes use several servers with which they communicate
via UNIX IPC mechanisms. The snapshot storage server stores (ver-
sions) of objects. It is also responsible for optimising the index struc-
tures that store snapshots. The long-field server manages arbitrary
length byte strings which are created in an OMS. The cache manager
contains the cache of derived values. The communication manager
handles communication with other Camera systems. All the servers
use the UNIX file system for background storage.

The simplest user-interface to Camera is currently a small “shell”
implemented as a separate Scheme process. However, interfacing
other tools with the Camera OMS processes is relatively easy. These
processes basically implement a virtual machine with one instruction:
send a message to an object. Integrating this with an existing language
or tool only requires one to implement this instruction (by making it a
remote procedure call to an OMS process). Further integration can be
provided by mapping the basic data types of the Camera OMS (strings,
symbols, lists, etc.) to the host environment.

User Interface
Process{es)

Unix L] Environment

Album L] Unix

Toot Process OMs Tool
£ &
Active Environment Album
Active Environment ! g
— Cache
Manager
2
¥
Object & e 'i::,?:gele? <#—®1 Communi-
Snapshot cation
Server ” Manager

Figure 2: Processes in the Camera prototype implementation

t The term process program [Ost87a] is often used to describe these computerised work flow descriptions.

EurOpen & USENIX Spring *92 - Jersey, 6-9 April 133

Camera: Cooperation in Open Distributed Environments

Since this coupling is so small and easily implemented, it means that it
is possible to connect existing tools to Camera. We have, for instance,
added such a connection to Emacs [Sta86a] and to a Smalltalk-80 sys-
tem [Gol83a). This approach provides the opportunity to use Camera
as a backing store and extension of these tools.

Several extensions to the functionality of the prototype are currently
under construction. Besides a window-based shell we are constructing
a piece-editor, a tool which assists users in defining pieces. Work is
currently also underway to integrate the Camera OMS with the UNIX
file system. The goal is to be able to run existing UNIX tools on the
Camera OMS without modifying or recompiling them and without writ-
ing tool-specific wrappers. This will be done by creating a special NFS
[San85a] server which translates the file operations carried out by these
tools into messages sent to OMS objects. This means that tools such as
compilers and text formatters can be viewed as functional methods in
the OMS. This also means that derivation management is available for
these tools.

Conclusions

The Camera system provides platform technology for systems that
operate in an open distributed environment. It highlights a particular
approach to organising distribution: instead of viewing the whole net-
work as one shared workspace, we assume that each user or team owns
a workspace, and that communication and distribution of data among
these workspaces is explicit. People must copy data into their own sys-
tem before they can access it. This model makes the system usable in
evolving networks.

The Camera system provides a number of basic mechanisms that can
be specialised towards particular application domains. The mecha-
nisms are fundamental, but provide a higher level of abstraction than is
commonly found in current systems. The Object Management System
offers the modelling power and flexibility of an object-oriented system
as a replacement for the traditional file system. The two-level architec-
ture introduces a distinction between development activities and the
products produced in them. The history management facilities give the
means to save consistent states of products and to re-use them later on.
Finally, the available mechanisms for communication and cooperation
reduce the amount of work involved in exchanging progress and com-
bining results of different activities.

Using the Camera system implies specialising the definitions for a par-
ticular use. Currently, we use the prototype for its own further devel-
opment. This work is carried out by several people located at SERC
and at the University of Utrecht. Since there is no direct network con-
nection between these sites, the system is actually used in a situation
that it was designed for. In our case, Camera is used as an end-user
system similar to UNIX. We have defined classes in the OMS to repre-
sent the kinds of data that we are working with: programs written in
Scheme and C, OMS definitions, documentation written in TeX and
LaTeX, etc. Since our development process is not strictly structured we
have not yet found agreement upon a canonical activity model or his-
tory management procedures. The various users define activities and
save snapshots as they like it. Likewise, communication patterns are
not (yet) structured.

134

EurOpen & USENIX Spring “92 - Jersey, 6-9 April

Camera: Cooperation in Open Distributed Environments

We are, at the moment, investigating other possible application
domains for the Camera system. Our interest is in situations where the
Camera system would be used as an extension of an existing tool or
environment, such as an object-oriented development environment or
software design tools. Roughly speaking, the idea is to store the data
structures manipulated by these tools as objects in the snapshot OMS by
connecting the tools to an environment process. Camera then provides
the additional mechanisms for distinguishing activities and catching
their history, and for sharing progress including the merging of distinct
development lines.

References

[Cou88a] W. Courington, J. Feiber, and M. Honda, “The NSE High-
lights, NSE Tackles Large-Scale Programming Issues,”
SunTechnology, pp. 49-53 (Winter 1988).

[Dij92a] Atze Dijkstra, The Camera Prototype Documentation,
SERC (1992).

[ECM90a] ECMA-European Computer Manufacturers Association,
Standard ECMA-149 Portable Common Tool Environment
— Abstract Specification, December 1990.

[Fel79a)} Stuart 1. Feldman, “Make — A Program for Maintaining
Computer Programs,” Software Practice and Experi-
ence(9), pp. 255-265 (1979).

[Gol83a] Adele Goldberg and David Robson, Smalltalk-80: the Lan-
guage and its Implementation, Addison-Wesley (1983).

[Gro90a] Object Management Group, “Object Management Archi-
tecture Guide, Revision 1.0,” OMG TC Document 90.9.1
(September 1990).

[Hum89a] Andrew G. Hume, “The Use of a Time Machine to Control
Software,” pp. 119-124 in Proc. of the USENIX Software
Management Workshop, New Orleans, Louisiana (April
1989).

[Kim87a] Won Kim, Jay Banerjee, Hong-Tai Chou, Jorge F. Garza,
and Darrell Woelk, “Composite Object Support in an
Object-Oriented Database System,” SIGPLAN 22(12),
pp- 118-125 (December 1987).

[Kim89a] Won Kim and Frederick H. Lochovsky (Editors), Object-
Oriented Concepts, Databases, and Applications, ACM
Press (1989).

[Lau90a] Oliver Laumann, Elk — The Extension Language Kit, 1990.

[Lip91b] Ernst Lippe and Gert Florijn, “Implementation Techniques
for Integral Version Management,” in Proceedings of the
1991 European Conference on Object-Oriented Program-
ming (ECOOP), ed. Pierre America, Springer Verlag (July
1991).

[Lip91c] Ernst Lippe and Norbert van Ooé‘térom, “Operation-based
Merging,” Report 91/11, Software Engineering Research
Centre (November 1991).

[Lip91a] Ernst Lippe and Gert Florijn, “CAMERA: a Distributed
Version Control System,” Report 91/01, Software Engi-
neering Research Centre (January 1991).

EurOpen & USENIX Spring *92 - Jersey, 6-9 April

Camera. Cooperation in Open Distributed Environments

[Ost87a]

[San85a)

[Sta86a]
[Wal88a]
[Wei91a]

[Zdo90a]

Leon Osterweil, “Software Processes are Software Too,”
in Proceedings of the Ninth International Conference on
Software Engineering (March 1987).

R. Sandberg et al, “The Design and Implementation of

the Sun Network File System,” pp. 119-131 in Proceed-
ings of the USENIX Summer Conference (1985).

Richard M. Stallman, The GNU Emacs Manual, 1985,
1986.

Larry Wall, Patch — a Program to Apply Diffs to Original
Files, 1988.

Mark Weiser, “The Computer for the 21st Century,”
Scientific American 265(3) (September 1991).

Stanley B. Zdonik and David Maier (Editors), Readings in
Object-Oriented Database Systems, Morgan Kaufman
(1990).

136

EurOpen & USENIX Spring “92 - Jersey, 6-9 April

Distributed System and
Security Management with
Centralized Control

Chii-Ren Tsai

VDG, Inc.
Maryland USA

Virgil D. Gligor

University of Maryland
Maryland USA
{ crtsai | gligor }@eng.umd.edu

Abstract

We have designed and implemented a prototype of distributed system
and security management for AIX Version 3 on the RISC System/6000
by using an experimental secure remote procedure call (RPC) mecha-
nism [Tsa91a] based on Network Computing System (NCS) [Din87a]
and Kerberos [Ste88a]. The prototype consists of distributed SMIT
(System Management Interface Tool), distributed audit [Tsa90a] and
access control list (ACL) management for AIX systems. Distributed
SMIT can manage user accounts, file systems, devices, networks, spool-
ers and system configuration. Distributed system security manage-
ment, which includes distributed audit and distributed ACL manage-
ment, allows the distributed system security administrator to turn on/off
auditing, perform audit system management, analyze audit trails and set
ACLs on a per-file, per-directory or per-application basis. Based on the
experimental secure RPC mechanism and Motif widgets on the X win-
dow system [Sch86a], we designed and implemented a high-level,
protocol-transparent, integrated interface for the prototype of dis-
tributed system and security management.

1. Introduction

We have combined the services of the MIT Kerberos authentication
protocol [Ste88a] with vanilla RPCs of Network Computing System
(NCS) [Din87a] to support an experimental secure RPC mechanism

The work described herein was performed under contract to IBM and only contains the authors’ perspectives. It does not represent, im-
ply or describe any IBM products.

EurOpen & USENIX Spring *92 - Jersey, 6-9 April 137

Distributed System and Security Management with Centralized Control

[Tsa91a). Based on the secure RPCs, we implemented a prototype of
distributed system and security management for AIX systems.

The prototype consists of a distributed-system management subsystem,
a distributed audit subsystem and an access control list (ACL) manage-
ment subsystem. The distributed-system management subsystem is an
extension of AIX SMIT (System Management Interface Tool), which
can be used to handle various system management tasks from system
configuration to network management. The distributed audit subsystem
can invoke and revoke auditing for remote hosts, locate the audit trail
server to which audit trails are transferred, perform audit system man-
agement, such as dynamically adding or deleting audit events on a per-
user, per-group, or per-system basis and querying the audit status of
remote hosts, and trace audit trails. The ACL management subsystem
can browse and change ACLs on a per-file, per-directory or per-
application basis.

In this paper, we highlight the experimental secure RPC protocol, dis-
tributed SMIT and ACL management, the distributed audit mechanism
and the ACL structure of AIX. We also compare distributed SMIT with
the MIT MOIRA Service Management System [Ros88a]. Furthermore,
we present the design and implementation of the prototype of dis-
tributed system and security management with Motif widgets on AIX
Version 3 for the RISC System/6000. We aiso take a snapshot of the
interface of the prototype. Finally, we discuss the migration of the pro-
totype to the OSF Distributed Computing Environment (DCE) platform.

2. Overview of the Experimental Secure RPC Protocol

The experimental secure RPC protocol is shown in Figure 1 [Tsa91a].
In this protocol, all security enhancements, including authentication,
data encryption and decryption, and authorization, are implemented at
the client and server stubs, so that the interfaces of secure RPCs are the
same as those of vanilla RPCs and RPC runtime is left unchanged. Our
secure RPC mechanism uses the Kerberos authentication protocol,
encrypts input and returned data, provides data encryption standard
(DES) cipher-block-chaining (CBC) checksums for data, and performs
access checking against the caller’s identity. Therefore, it provides the
capability of authentication, data secrecy and integrity, and authoriza-
tion.

In this protocol, message 1 requests a ticket for the Ticket Granting
Service (TGS); message 2 returns a ticket for TGS; message 3 requests
a ticket for an RPC server; message 4 returns a ticket for the RPC
server; message 5 invokes an RPC by sending a packet that contains
encrypted input parameters, the 64-bit DES CBC checksum of input
parameters, and a ticket for the RPC server, message 6 returns the
encrypted results, timestamp and checksum. The first two messages,
performed by the Kerberos command kinit or klogin, obtain a
ticket granting ticket, which is subsequently stored in a ticket file, so
that the client stub can retrieve the ticket from the ticket file. The client
and the server of a secure RPC can authenticate each other by utilizing
the Kerberos mechanism. The RPC server authenticates the client by
ensuring that the name in the server ticket, T ;, and the name in the
authenticator, A ., are the same. This protects against the usage of a
stolen ticket. The client authenticates the RPC server by the returned
timestamp, ¢, , which must be the same as the timestamp in the authen-
ticator. Input parameters and the returned data of RPCs are encrypted
to maintain the secrecy of the data. To ensure the integrity of the data,

138

EurOpen & USENIX Spring 92 - Jersey, 6-9 April

Distributed System and Security Management with Centralized Control

c.lgs

KERBEROS

AUTHENTICATIO|

{ Kc,lgs

SERVER

]KC { TC,lgS } Klgs

—— et — - ———

3 S, { Tergs } Klgs, {Ac]Kc,lgs TICKET
GRANTING
SERVER
4 {Kc,s]Kc,lgs { Tes } Ks e o e e e e e e e e — 4
5 {IP) Kc,,s { Tes } Ks’ { Ac) Kec.s
CLIENT SERVER
STUB Ko STUB
6 {results, ta} ’
c : client {xyz } Kes xyz encrypted withkey Kecs
s : server IP/results: RPC input parameters/returned data
tgs : ticket granting service Tes : c’stickettouses
Ks : sprivate key Tes = { s,c,addr, ts,life, K cs }
Kecs : sessionkey forcands ts :timestamp of ticket Tes
addr : address A ¢ : authenticator = { c,addr, ta }
life : lifetime of the ticket ta :timestamp of authenticator Ac

Figure 1: Secure RPC Protocol

64-bit DES CBC checksums are provides for the tickets, the input
parameters and the returned data. Unlike Kerberos, the server returns
t, instead of ¢, ,; to the client for mutual authentication while provid-
ing the same level of security [Bur90a]. The protocol is similar to the
Kerberos protocol except that with messages 5 and 6 encrypted input
parameters are sent with the server’s ticket and authenticator, and with
message 6 results are returned with a timestamp.

To enforce access authorization, we implement access checks in the
server stub. After authentication in the server is done, the caller iden-
tity is checked against the access control list, which is maintained by
the server, before the RPC is called. If the access check succeeds, the
RPC is executed. Otherwise, the server stub immediately returns an
error.

3. Overview of Distributed SMIT and ACL Management

System management tasks in AIX can be handled by using the System
Management Interface Tool (SMIT). AIX also provides several system
calls and commands for users to browse or change ACLs of objects. In
the following sections, we review SMIT and the structure of AIX ACLs
and then describe the concepts of distributed SMIT and ACL manage-
ment. In addition, we compare distributed SMIT with the MOIRA Ser-
vices Management System in terms of their purposes and system mod-
els.

EurOpen & USENIX Spring *92 - Jersey, 6-9 April 139

Distributed System and Security Management with Centralized Control

3.1. Distributed SMIT

The AIX SMIT integrates all system management functions in a single
tool, which can be used to interactively manage software installation,
system maintenance, devices, physical and logical storage, user
accounts, communications applications and services, the spooler,
resource scheduling, system environment and processes, and applica-
tions. SMIT provides a hierarchical screen structure. Users are guided
through the use of menus and dialogs to run system management com-
mands. The data objects managed by SMIT are handled by the Object
Data Manager (ODM) [IBM90a], which is a data manager intended for
the storage of system data. System data managed by ODM include
devices configuration information, display information for SMIT, vital
product data for installation and update procedures, communication
configuration information, and system resource information. All the
data are stored either in the /etc/objrepos directory or the direc-
tory specified by the ODMDIR environment variable. SMIT generates
and updates two log files, smit.log and smit.script, for each
user. The smit.log file keeps additional detailed information that
can be used by programmers to extend the SMIT system, while the
smit.script file records shell-script commands used to perform
system management functions. These two files can be used as audit
trails.

Distributed SMIT is an administrative function that can provide the
SMIT interface and communicate with each system’s ODM through a
daemon, dsmitd, to retrieve and modify system data or to execute
configuration functions. The distributed-system administrator interacts
with dsmitd via secure remote procedure calls. The mechanism of
distributed SMIT is shown in Figure 2.

The purpose of Distributed SMIT, to reduce the effort of distributed
systems management, is different from that of the MOIRA service man-
agement system of the MIT Project Athena. Unlike Distributed SMIT,
MOIRA’s purpose is to perform centralized data administration, not
system administration. Services supported by MOIRA include a name
service HESIOD [Dye88a], NFS, mail service and a notification service
ZEPHYR [Del88a]. Consequently, MOIRA is designed to provide a
unique, consistent view of administration data. To accomplish this

< Distributed System & ACL Administrator
secure distributed SMIT RPCs secure ACL RPCs

Host A]

HostAn

w@

Casmita D Csacld

Object Object
Data Data
Manager Manager
SMIT Database || ACLs SMIT Database || ACLs

Figure 2: Distributed SMIT and ACL Management

140

EurOpen & USENIX Spring 92 - Jersey, 6-9 April

Eg Distributed System and Security Management with Centralized Control

Client n

Library Library

Moira Protocol

LN RO N ______
v |
' DATA
b
' MOIRA CONTROL UPDATE
i MANAGER 0
: \ SERVER (DCM) ! SERVER
R i
4 N\ [}
]]
1 ~ ~ no authentication 1
! A 7 !
1]
System
E Database BACKUP i Configuration
L]

Figure 3: The MOIRA Service Management System

goal, all users in MOIRA must communicate with a central server,
which is the MOIRA server as shown in Figure 3, to access or modify
administration data. The server is responsible for maintaining the
integrity and consistency of the data. Clients call the MOIRA library,
which uses the MOIRA remote procedure call protocol to send requests
to the MOIRA server. The MOIRA server may then access the database
to provide its service. The Data Control Manager is responsible for
distributing data to servers, which subsequently update the data. Some
provisions have been made, so that data updates can survive from
server failure to perform action, server crashes, and MOIRA crashes.
Consequently, data updates in the MOIRA system are atomic.

3.2. ACL Management

An object’s Access Control List defines the access authorization of the
subjects in the system. AIX Version 3 implements ACLs on objects
such as files, directories, named pipes, message queues, shared memory
segments and semaphores, so that users can browse and change the
ACL of an object through system calls. The structure of AIX ACLs is
shown in Figure 4. Each ACL may consists of base permissions and
extended permissions. Base permissions, which can be modified by
chmod, contain the setuid, setgid and save text bits, and three sets of
access modes for owner, group and others, respectively. Each set of
access modes consists of read, write, and execute/search permission
bits. Extended permissions consist of an unordered list of Access Con-
trol Entries (ACE) [IBM9%0a]. Each ACE contains a list of identifiers, the
type of the ACE and a set of access modes. The ACE types include per-
mit, deny and specify. The permit and deny types indicate that the
specified set of access modes is granted or denied, respectively; the
specify type means that only the specified set of access modes is
granted and others are restricted. The type of an identifier is either
USER or GROUP.

Distributed ACL management is the centralized control of ACLs in a
distributed system, so that the central ACL administrator can manipu-
late the ACLs of objects through a daemon, dsacld. To simplify ACL

EurOpen & USENIX Spring *92 - Jersey, 6-9 April 141

Distributed System and Security Management with Centralized Control

Base Permissions Extended Permissions
l ACE ACE ACE
acl : | acl_entry I acl_entry | : acl_entry |
acl_len | ace_len ace_len | ace_len
acl_mode : ace_type ace_type : ace_type
acl_rsvd | ace_access ace_access ! ace_access
u_access : ace_id | ace_id | : ace_id |
g_access | id_len id_len | id_len
0_access : id_type id_type : id_type
! id_data id_data ! id_data
J' ace_id | ace_id | : ace_id |
acl_ext | id_len id_len I id_len
id_type id_type : id_type
id_data id_data | id_data
T T ! T
ace_id : ace_id : : ace_id :
id_len id _len] id_len
id_type id_type : id_type
id_data id_data I id_data
l I ;
Figure 4: The Structure of AIX Access Control Lists

management, ACLs can be changed on a per-file, per-directory or per-
application basis, which means that the ACL administrator can change
the ACL of a file, the ACLs of all files in a directory, or the ACLs of
files categorized to the same application. The mechanism of ACL man-
agement is shown in Figure 2.

4. Overview of Distributed Audit Mechanism

The distributed audit mechanism discussed herein is another central
administrative function that can perform audit system management,
invoke/revoke auditing for each host, instruct each host to transfer its
audit trail to a specific site called an audit trail server, and trace audit
trails [Tsa90a, Tsa91a]. As shown in Figure 5, the central audit admin-
istrator invokes/revokes auditing by using the secure RPC mechanism.
Each host mounts the audit trail filesystem from the audit trail server
over a local directory by utilizing NFS [San85a], so that the host’s audit
records are compressed and stored in a file, called the audit trail of the
host. Consequently, audit trails are collected in the audit trail filesys-
tem of the audit trail server, and the audit administrator can manage
these audit trails, or trace user activities or security violations.

The current implementation of the distributed audit system is based on
homogeneous stand-alone audit subsystems. To extend it to heteroge-
neous systems, we need to resolve several problems such as the dis-
crepancies of audit system configurations and audit records. In this
paper, we do not address these issues.

142

EurOpen & USENIX Spring “92 - Jersey, 6-9 April

Eﬂ Distributed System and Security Management with Centralized Control

Audit Administrator
invokes audit commands

Al A2 A3 An
O = > traces audit trail S
Audit Trail
NFS mount

Audit Trail Servers

Figure 5: A Distributed Audit Mechanism

5. Implementation

We have implemented three sets of secure RPCs for distributed audit,
distributed SMIT and ACL management, respectively. Based on the
secure RPCs, we also have implemented a distributed audit daemon
dsauditd, a distributed SMIT daemon dsmitd, a distributed ACL
management daemon dsacld, and a command xadministrator
to support the central administrator’s role. The xadministrator is
an application based on the Motif/X interface and secure RPCs. An
instance of the interface of xadministrator for an environment of
seven RISC System/6000 systems is shown in Figure 6.

Note that the systems under the control of a distributed-system admin-
istrator may not necessarily be connected within the same network. As
a matter of fact, the systems shown in Figure 6 are configured into sev-
eral networks, as shown in Figure 7.

allosaur i Jan 10:15:20

ankylosaur 184188 Tue Jan 11:09:12
apatosaur 80586 Mon Jan 08:35:23
brachiosaur 1538165 Wen Jan 09:29:44
iguanodon 107588 Thu Jan 15:23:15
stegosaur 64068 Sat Jan 11:49:12
trachodon 249280 Sun Jan 07:58:37

Figure 6: Distributed System and Security Administrator

EurOpen & USENIX Spring *92 - Jersey, 6-9 April 143

assy

Distributed System and Security Management with Centralized Control M
iguanodon brachiossur Ethernet I
ool [—]° ool [=]°
RISC 6000 llll}}}lsl(l:llﬁl??lqlu
I
Ethernet 11 trachodon
ankylosaur
ool [=]°
ool [=1°8 RISC 6000
RISC 6000 Token Ring BOROOIONRENRNENEINNY
T
apatosaur I stegosaur I allosaur
eell [=]" S—— Hun i
RISC 6000 — —— N T
TN 1242 redwood llll:: — :::::: —
=] =] ne — —
L Ol Ol
! [«] . a
RT RT ISC ISC
AIX AIX 000
e o . W

xadministrator

Figure 7: Network Environment for xadministrator

In Figure 6, there are two sets of main selection menus. The set of
menus that contains “ON”, “OFF”, “CONFIG”, and “TRACE” buttons is
designed for distributed audit, the other for distributed SMIT and ACL
management. MSMIT is a version of SMIT that provides a Motif/X-
based interface. Each main selection button is associated with a pull-
down list of hosts which are controlled by the xadministrator.
Each host selection may lead to subsequent submenus or dialog boxes.

The xadministrator can turn on/off auditing of any or all hosts
through “ON/OFF” buttons. The “CONFIG” button can be used to
configure (1) audit trail servers, (2) the high-water-marks of audit trail
size, the local audit trail filesystem and the central audit trail filesystem,
and (3) audit classes on a per-user, per-group or per-system basis,
where an audit class is defined as a subset of audit events. Conse-
quently, the xadministrator can instruct the audit subsystem to
collect the audit records of certain audit events for a specific user, or
the users of a specific group, or all the users in the system. The func-
tion of the “TRACE” button is to trace an audit trail or selected audit
trails through a query dialog. The four panels under the main menus
show host names, audit status, audit trail sizes, and the time the audit-
ing was turned on/off, respectively. Audit status and audit trail sizes
are updated periodically. The buttons above those two panels are used
to instantly update the data in them. The button above the time panel
can be used to show system-clock discrepancies and to sychronize each
host’s clock with that of the local host. The purpose of clock synchro-
nization is to satisfy the Kerberos requirement for loosely synchronized
clocks and to maintain the consistency of the timestamps of audit
records to allow accurate tracing of users’ activities.

Note that the distributed audit system encompasses an integration of
stand-alone audit subsystems, so that both the central audit administra-
tor and the local audit administrator can manipulate the audit subsys-
tem. If an action of the central audit administrator changes an audit
status, the audit status is displayed in capital letters such as ON and
OFF shown in Figure 6; otherwise, it is shown in small letters. Any
intervention of the local auditor will immediately signal the central
auditor. If the audit rpc daemon of a host was running and is now out
of service, its status is marked as “xx.” If a distributed audit daemon
has never been reached, its status is left blank.

144 EurOpen & USENIX Spring “92 - Jersey, 6-9 April

Distributed System and Security Management with Centralized Control

Distributed SMIT and MSMIT support the same functions but different
types of interfaces. Distributed SMIT provides a keyboard-driven inter-
face, while distributed MSMIT offers a mouse-driven X interface. To
select an object for ACL management, the xadministrator can
search the file tree of a remote filesystem like a local filesystem. To
simplify ACL management, the ACL administrator can browse and
change not only the ACL of a single object, but also objects in the same
directory or objects of a specific application. We create a file
app.conf to store the definitions of system applications. Each appli-
cation occupies a stanza in the file, so that dsacld can discover the
list of files in each application.

6. Migration to the OSF DCE Platform

Our experimental secure RPCs are based on NCS and Kerberos, which
are subsets of OSF DCE, except that we use earlier versions as our plat-
form. We can easily replace our secure RPC with the DCE authenti-
cated RPC [Som90a]. NCS supports local and global location brokers
(LLB and GLB) to provide the identity and location information of
objects utilizing RPC interfaces. In OSF DCE, the LLB is replaced by
the Remote Procedure Call Daemon, and the role of the GLB is simply
replaced by the DCE Directory Service [OSF91a]. Also, we can take
advantage of the DCE Distributed File Service (DFS) to replace NFS.

The structure of AIX ACLs is different from that of DCE ACLs. Each
DCE ACL includes owner privilege and denial entries, inter-realm
authorization and optional extensions. A DCE ACL entry contains the
type of the ACL entry, the entry class, a set of access modes, an
optional key and optional application-specific entries. DCE ACLs sup-
port four types of ACL entries: simple, key, foreign key and extended.
A simple ACL contains the ACL type and no key; a key entry contains a
key that identifies the principal or group to whom the entry applies; a
foreign key entry contains a key that identifies both a principal or group
and the realm of administrative authority from which the principal or
group certification will be accepted; an extended ACL is application-
specific and requires the interpretation of a specific data manager. To
migrate ACL management to DCE ACLs, we would have to modify the
xadministrator’s interface to support various types of ACL
entries.

7. Conclusions

The trend toward distributed system and security management is aimed
at reducing management efforts while still maintaining security, espe-
cially when the number of systems is increasing and these systems are
geographically distributed. The prototype described here, which sup-
ports a central administrator and uses secure remote procedure calls, is
an example of this trend.

Acknowledgments

We are grateful to Debby Yakov of I1BM for her insightful suggestions
and discussions on this paper. We also acknowledge Wen-Der Jiang
and Tom Tamburo of IBM for their support of this effort.

EurOpen & USENIX Spring 92 - Jersey, 6-9 April 145

Distributed System and Security Management with Centralized Control

References

[Bur90a]

[Del88a]

[Din87a]

[Dye88a]

[IBM90a]

[OSF91a]
[Ros88a]

[San85a]

[Sch86a]

[Som90a]

[Ste88a]

[Tsa90a]

[Tsa91a]

M. Burrows and M. Abadi, “A Logic of Authentication,”
pp- 18-36 in ACM Transactions on Computer Systems
(Feb. 1990).

C. A. DellaFera, M. W. Eichin, R. S. French, D. C. Jedlin-
sky, J. T. Kohl, and W. E. Sommerfeld, “The Zephyr
Notification Service,” pp. 213-219 in Proceedings of the
1988 USENIX Winter Conference, Dallas, Texas (Feb.
1988).

T. H. Dineen, P. J. Leach, N. W. Mishkin, J. N. Pato, and
G. L. Wyant, “The Network Computing Architecture and
System: An Environment for Developing Distributed
Applications,” pp. 385-398 in Proceedings of the 1987
Summer USENIX Conference, Phoenix, Arizona (June
1987).

S. P. Dyer, “The Hesiod Name Server,” pp. 183-189 in
proceedings of the 1988 USENIX Winter Conference, Dal-
las, Texas (Feb. 1988).

IBM, AIX Version 3 for RISC System/6000: General Con-
cepts and Procedures, 1990.

OSF, DCE Application Development Guide, March 1991.

M. A. Rosenstein, D. E. Geer, Jr., and P. J. Levine, “The
Athena Service Management System,” pp. 203-211 in pro-
ceedings of the 1988 USENIX Winter Conference, Dallas,
Texas (Feb. 1988).

R. Sandberg, “Design and Implementation of the Sun Net-
work Filesystem,” pp. 119-130 in Proceedings of the 1985
Summer USENIX Conference, Portland, Oregon (June
1985).

R. W. Scheifler and J. Gettys, “The X Window System,”
pp. 79-109 in ACM Transactions on Graphics, 5:2 (April
1986).

B. Sommerfeld, A Mechanism Independent API for
Authentication with NCS, 1990.

J. G. Steiner, C. Newman, and J. I. Schiller, “Kerberos: An
Authentication Server for Open Network Systems,” pp.
191-202 in Proceedings of the 1988 Winter USENIX Con-
ference, Dallas, Texas (Feb. 1988).

C. R. Tsai, V. D. Gligor, and M. S. Hecht, “Potential Pit-
falls of a Distributed Audit Mechanism,” pp. 91-103 in
Proceedings of the 1990 EurOpen Autumn Conference,
(also available as IBM Gaithersburg Technical Report
85.0098), Nice, France (October 1990).

C. R. Tsai and V. D. Gligor, “Distributed Audit with
Secure Remote Procedure Calls,” pp. 154-160 in Proceed-
ings of the 1991 IEEE International Carnahan Conference
on Security Technology, Taipei, Taiwan (October 1991).

146

EurOpen & USENIX Spring “92 - Jersey, 6-9 April

s

T

== 7

The European Forum for Open Systems

EurOpen

Owles Hall
Buntingford
Hertfordshire, SG9 9PL
United Kingdom 4

Telephone +44 763 73039
Facsimile +44 763 73255
E-mail europen@EU.net

