iINDRE BY-TERMINALEN

ved Kgbenhavns Universiiet
Siudiestreede 6 over garden
DK-1455 Kgbenhavn K
Telefon 01-1201 15

EUROPEAN UNIX
USER GROUP NEWSLETTER

Volume 2, No. 4
WINTER 1982

CONTENTS

Editorial 1
Leeds Report 2
Design and Structure of an Open Distributed Operating System 20
Alice 22
Benchmarks 29
Software catalogue 30
Henderson's SECD Machine 33
Uniflex Evaluation . E 40
AT & T Licences 45
Dutch Unix Bulletin 47
UNIX for the STD Bus 49
Prolog 52
C.: Toward a Concise Syntactic Description 54
Proposed changes to C 70
Formatting in C 73
C Style and Coding Standards 86
Unix - like system Standards 107
Ada from York 112
Losing the Sticky Bit 125
Onyx 129
Abstracts 132
Letters 136
Press Clippings 146

This document may contain information covered by one or more licences, copyrights and non-disclosure
agreements. Circulation of this document is restricted to holders of a licence for the UNIX™ software
system from Western Electric. Such licence holders may reproduce this document for uses in conformity
with their UNIX licence. All other circulation or reproduction is prohibited.

* UNIX is a Trademark of Bell Laboratories.

EUUGN Vol. 2 No. 4

Editorial

Well, this is a good time to get rid of all the dead wood that has collected on my desk(s). This is the
last Newsletter of ‘82, and with a bit of luck, we will actually make 4 Newsletters in a 12 month period.
All the backlog is in this one, so if you send me a letter or article, 1I'll stick a cover on it and it will be the
next Newsletter.

There are a number of diverse articles here, the report on the excellent Leeds Meeting, some interesting
pieces from outside the U.K., and a number of views on Languages.

Things are changing. The EUUG now has a permanent Secretary to field all those enquiries, and to dis-
tribute things on time. The address is:

Mrs. Gibbons

European UNIX User Group
Owles Hall

Buntingford

Herts. SG9 9PL

United Kingdom

Tel: Royston (0763) 73039

The other thing to note is that | am moving, so the address for the sacks of articles will be, from 1st
January 1983:

Stichting Mathematisch Centrum
Kruisiaan 413

1098SJ Amsterdam
The Netherlands

Tel: Amsterdam (020) 5929333
EUNET address Imcvax!jim

No, McVax is not a Scottish machine. Next issue will reveal all about the EUNET, how you can send me
articles on it, how usefu! it is, and where to get it. Network mail is now the preferred means of contact.

The next EUUG Binge is in Bonn, 11th to 13 April 1983. Contact Mrs. Gibbons for details.

Just had a phone call from Stan Meachin, 0734-342666, looking for anyone using MICROSIM. Any
takers?

So, all for now. Hope you have/had a pleasant Festive Season. Roll on Vol. 3.

EUUGN Vol. 2 No. &4 2

EUUG Meeting Leeds, 6/8 September 1982

EUUG Group meeting
University of Leeds, 6/8 September 1982

Peter Collinson
Secretary

Day 1 - Applications

The main theme of the first day of the conference was applications on

*
UNIX. The day was open to all comers and a successful attempt was made to
eliminate all the vendor presentations which have made previous conferences so
uninteresting (to me anyway). The introduction was done by Emrys Jones.

Item 1: 11.08am John Wilson, Logica

The strengths of UNIX

John had been asked to give a brief introduction to UNIX aimed at those
who were there to find out about it.

Item 2: 11.28am John Saunderson, Root Computers
Where is System III taking UNIX?

Root Computers are a case of °mv CDS Root'. John started by talking
about the importance of the Anti-Trust decision for AT&T, see Otis Wilson's
talk below. He isolated three market areas where UNIX System III is impor-
tant.

First, the program development area, where he mentioned °make' and °sccs'
as 1important tools. Many large companies are looking at C as a development

language. Another important factor for sites with IBM machines is the RJE
emulation software.

Secondly, in the area of office automation systems, UNIX provides good
mechanisms for communications, networking and electronic mail. Also, System
III provides much better system accounting than was previously available.

The third area is in the 16/32 bit micro market because UNIX is available
on a wide range of micros.

John ended his talk with some cautions: he feels that standards are
important for UNIX and some thought needs to be given to the areas of file
locking and system security.

* UNIX is a Trademark of Bell Laboratories.

EUUGN Vol. 2 No. &
EUUG Meeting -2 - Leeds, 6/8 September 1982

Item 3: 1l.47am Tom Leonard, Precision Software
The Marriage of C and CIS Cobol

Precision Software use a Bleasdale machine running Xenix to develop pack-
ages for UNIX. The company sells software to distributors and not to end
users. In order to give a distributor the ability to tailor the product to
meet the needs of the end users, it is desirable that packages are written in
Cobol because the commercial market place knows about it.

In addition Cobol has a number of advantages, these include: ease of
implementation, good 1/0, indexed files, arithmetic to at least 18 digits
(this is important because packages often need 13 significant digits), good
data formatting and portability across many machines. CIS Cobol now comes in
two flavours: an interpretive system and a compiler (Level 2).

The company uses C to overcome the restrictions of Cobol and insert C
routines into Cobol by calling them via the CALL verb, which is designed to
call external functions and routines using a special data section for linkage.
C is used to give access to shared files and also to create asynchronous
processes.

-— Lunch --

The afternoon session was chaired by Eddie Bleasdale.

Ttem 4: 2.30pm Otis Wilson, AT&T

AT&T and UNIX

Otis started by talking about the history of the Anti-trust decision
which is altering AT&T, and allowing them to sell software.

On January 8th, 1982, the US Justice department and AT&T reached agree-
ment. On Jamuary 15th, the jurisdiction of the case was assigned to Judge
Greene and 6 months was allowed for submissions by the public. On August
l11th, the Judge issued an opinion which broadly agreed with the way AT&T
wanted to do things; and on August 24th, the Judge approved the agreement
between AT&T and the Justice department. At the end of 6 months AT&T have to
submit a plan for the re-organisation of the company and at the end of an 18
month period, the company must have divested itself of the 32 telephone com-
panies which it wants to get rid of. So, the company is currently going
through a planning stage and consequently all the details concerning the sale
and licencing of UNIX are not clear.

Otis went on to give the commercial licence fees for various AT&T
sof tware products. The numbers below are dollars.

EUUGN Vol. 2 No. 4 4

EUUG Meeting -3 - Leeds, 6/8 September 1982
Initial Addi tional Customers Time +
Sof tware CPU CPU CPU's Sharing
Mini UNIX 12,000 4,000
UNIX 20,000 6,700 8,400 10% AC
PWB 30,000 10,000 12,000 10% AC
UNIX V7 28,000 9,400 11,700% 10% AC
UNIX 32V 40,000 15,000 18,000 10% AC
UNIX-SIII 43,000 16,000 * 107 AC
UNIX/1000 30,000 10,000 12,000 10% AC
utilities
UNIX SYSTEM TSS 100,000 20,000

* means refer to the binary schedule.
+ AC means Access charges, so you pay a royalty to AT&T

If a customer wishes to sell binary versions of System III, there is a
one time payment of $25,000 which is non-~returnable and non-creditable. Then
the following table applies:-

User Capacity Cost in $ / CPU depending on

per CPU Cumulative total of customer fees paid
$0-$1 million $1-$2.5 million "$2.5 million

1 100 70 40
2-16 250 125 50
17-32 1000 750 500
33-64 3500 3500 3500
over 64 7000 7000 7000

Otis showed the well worn slide containing the magic words: How we
licence - as is, no maintenance, no warranties, no patent indemnification, no
trial period and payment in advance. He said that he hoped that it was the
last time that he had to show that particular slide - so read into that what
you like!

He said that the staff in the licencing division had been increased sig-
nificantly and consequently it was much quicker to get licences: the customer
should allow 2 to 4 weeks for AT&T to prepare the agreement after the receipt
of the written request. After the agreement and the money has been received
by AT&T, it takes 1 day to get the agreement executed and then you should
allow 1 to 5 days for delivery of the software ~ I guess this will take a bit
longer in Europe. (My experience is that they ship stuff to the UK using air
freight - so allow an extra f100 or so to get the box through customs).

Otis showed a slide of UNIX licencing activities as of the lst June 1982:

EUUGN Vol. 2 No. &

EUUG Meeting -4 - Leeds, 6/8 September 1982
Licenses
Sof tware Commercial Educational Govermment Total
Mini unix 6 119 0 125
UNIX V6 90 355 54 499
PWB/UNIX 46 59 75 180
UNIX - V7 133 313 64 510
UNIX - 32V 71 156 25 252
UNIX - S 11T 84 0 4 88
Totals 430 1002 222 1654
Installations
Sof tware Commercial Educational Govermment Total
Mini unix 8 358 0 366
UNIX V6 167 946 135 1248
PWB/UN1X 127 223 92 442
UNIX - V7 209 915 78 1202
UNIX - 32V 105 294 29 428
UNIX - S IIT 107 0 4 111
Totals 723 2736 338 3797

Otis went on to make an announcement of the Educational licencing policy
for software from AT&T. All educational licences in future will be granted at
a System III level, so if you ask for a licence for UNIX V7 - you will get a
System II1 licence but UNIX V7 software. The licences are available to all
qualifying institutions whether in the USA or elsewhere. Licences are granied
on a per CPU basis and will cost $400 for all software packages. The System
TII educational licence costs $800 for an initial CPU which includes 1 set of
sof tware and documentation. Additional CPU's cost $400 for the agreement to
be serviced, and an extra $400 for a software distribution. Institutions who
are already holding licences may upgrade all currently licenced CPUs along
with their initial CPU request for the $800 fee. So, make sure that you
include all your currently licenced CPUs on your request for a System IIT

licence.

Administrative fees for System III are $16,000 for an initial CPU and
$5,400 for each additional CPU. Full upgrade credit is given for current

administrative CPUs.

For all licencing for System III write to:

Otis Wilson,

Technology Licensing,
P.0. Box 25,000
Greensboro, NC 27408, USA

Phone: 919-697-2078
919-697-6530

In reply to a question, Otis said that you still have to have a licence
to get the System IIL manuals. He also said that it was possible to licence

EUUGN Vol. 2 No. & 6

EUUG Meeting -5 - Leeds, 6/8 September 1982

the C compiler separately: it costs $4000 + $2000 per/CPU, note that this 1is
lots more than a UNIX licence. Also, if you have sub-licencing rights, AT&T
can supply a list of which software may be supplied to a customer on a sub-
licenced CPU - this includes some required source files.

-- Tea --

Item 5: 4.02pm Emrys Jones, Cgram Sof tware
Programming applications in C

Emrys talked about the way his company is writing software in C, his sys-
tems are aimed at small processors. The objectives of the software are:

1) Fast response time. This means that programs should be small to minimise
system overheads. It is also important to minimise file opening time.

Code must be efficient and the system must utilise economical disc data
base systems.

2) Portability of the software and transportability of data files between
machines. The latter requirement means that some machines need byte ord-

ering code to be built in.

3) An elegant user interface. Screens of data must be built in a predict-
able fashion (unlike some systems where the cursor darts about the
screen, updating as it goes); good output buffering is required and file
1/0 delays must occur predictably.

4) Comprehensive security. Each user has a security protile file which is
accessed at login time, this data restricts access to the parts of the
file system which they have a right to see.

5) Fast development of individual applications.
6) Ease of modification.

To do this, their software required the following tools. First, a file
infrastructure has been implemented which uses B-trees to contain keyed data
files. It is possible to lock records or lists of data in a file. To give a
locking capability to UNIX, a small device driver containing a semaphore sys-—
tem was added to the UNIX kernel. The file structure can be checked to be
internally consistent.

The programs are mostly °data driven' from tables of constants. The
tables are C structures which are pre-loaded using the standard C initialisa-
tion syntax. They found that there was a need to perform type checking on the
contents of the structures, because the compiler is not good at recognising
errors. To do this, they have developed a tool which checks the synchronisa-
tion of data types inside the structures.

EUUGN Vol. 2 No. &
EUUG Meeting -6 - Leeds, 6/8 September 1982

Item 6: 4.23pm Peter Osborne, Redwood Sof tware
Word processing in C

Peter described the UNIPLEX system which is a word processing and menu
selection system. The software is written in C and this was chosen because it
can run on a wide variety of computers and operating systems.

The UNIPLEX program is driven by a text data file and presents a series

of menus to the user. The script for the data file can access existing UNIX
facilities as well as act as a word processor.

END OF DAY 1

EUUGN Vol. 2 No. 4 8
EUUG Meeting -7 - Leeds, 6/8 September 1982

Day 2

The day was chaired by Roger Boyle, from Leeds University.

Item 7: 9.24am Evan Adams, Amdahl Corp

UTS

UTS is a UNIX sub-system running on the Amdahl 470. This processor is a
plug compatible IBM 370.

In 1977, Amdahl employed a lot of graduates from Berkeley who were fairly
reluctant to use IBM existing operating systems. Their managers decided that
they could run UNIX, but higher management wouldn't buy a PDPl1 because "this
company mamnufactures computers”. A start was made in porting UNIX to one of
their machines, and Amdahl got a V7 tape, but the project was cancelled. In
1978, Princeton students ported UNIX onto an IBM machine. This lead to a re-
emergence of the idea of Amdahl attempting to port UNIX.

UTS does not run on the bare machine but runs on top of the VM operating
system on the 470. VM supports °virtual' machines and it is possible to run
different operating systems concurrently. However, there was a bootstrap
problem. It was necessary to use an existing time-sharing operating system
(CMS) running on a 470 as a base for the development because the maxim of "we
make computers” meant that they couldn't start from a UNIX machine. Evan felt

that porting UNIX from a UNIX machine is much easier.

The first problem was to get a compiler for C. Bell had a compiler
called C370 which is a subset of C and generated code for CMS. It was neces-
sary to write programs to convert from CMS internal formats to UNIX formats
and also to write an IBM assembler and loader. Other required changes to UNIX
are in the area of I/0 handling and memory management. The system also had to
be made to handle the standard IBM full screen, half duplex terminal. A lot
of work has gone into making a better C compiler.

In early 1979, a V6 UNIX implementation was running on the machine. The
system was slow and unreliable; this was mainly due to the VM overhead in han-
dling priviledged instructions. It was necessary to recode parts of the ker-
nel so that device interrupts could only occur in certain well defined sec-
tions rather than spending lots of time changing priority in the kernel via
the spl() routine calls.

In November 1979, the V7 tape arrived and a port from the old to the new

system done. This was much easier than the original port from CMS to UNIX.
The V7 test system was running by February 1980, the use of VM meaning that it
was possible to run both systems in the same machine for testing purposes.

To improve performance, the disc block size was increased from 512 bytes
to 4096. In the current system, the VM overhead is 25% to 30%. /tmp is a
core file to get better performance. Evan mentioned that the system could
support in the region of 150 users, There are 20~25 sites running UTS.

Amdahl are currently thinking of running UNIX on a bare machine.

EUUGN Vol. 2 No. 4

EUUG Meeting -8 - Leeds, 6/8 September 1982
Item 8: 10.00am David Tilbrook, Computer Systems
Alice

Alice is the "You kin get anything y'want at Alice's restaurant” memu
system but Alice doesn't stand for "another language involving C enhance-

ments".

Alice is a software tool running under UNIX. It provides facilities for
developing interactive application packages with a simple and consistent user
interface. Its primary use is for applications for the novice or casual user,
which can be easily extended or modified in parallel with the user's needs or

experience.

The system is script driven and can contain specifications for four basic
questions: the user can be asked for a value; can be asked to answer °yes' or
°no' where yes is the default; can be asked to answer °no' or °yes' where mo
is the default; or the system can pause and/or paginate the screen. Responses
from the user are consistent and allow the user to ask for an explanation of
the command (supplied in the script) or for a list of available commands.

The system can be used to genecrate management systems, special user sys-—
tems, or general oftice systems. All of which can be used by personel with
little or no UNIX experience. It also allows the knowledgeable user to handle
a large variety of problems involving data bases, complicated procedures that
require user interaction (i.e. creating new users) or as front ends to sets of
related applications.

(Thanks to David for the blurb on which this section is based).

—— Coftee ——

Item 9: 11.10am John Collins, Root Computers
So what's different about System III?

Root Computers are selling and supporting UNIX System IIL in the UK, they
can supply binary licences on the PDP11 and VAX ranges and can also sell
turn-key systems. Their current developments in UNIX consist of: security
enhancements, ISAM package, a relational database, BASIC, additional peri-
pheral support, word processing sof tware and accounting programs
(sales/purchase ledger).

What's new on System III? SCCS - the source code control system; extended
°make'; first-in first-out devices - which are sometimes called °named pipes';
non-wait I/0; mm macros for nroff; system accounting software; C compiler; EFL
- extended Fortran language (the manual is missing); °cpio', a new tape driv-
ing program; and °chown’, which can be used by anyone.

What's missing? Multiplexed 1/0 devices, the ms macros for nroff, the
°at' system, °refer', °struct', secret mail and °learn'.

The things which don't work are: the standalone system, which allows cer-
tain utilities to be run in the bare machine; °volcopy' for backup of disc
volumes; system activity reporting; handling the UNIBUS map on the 11/44;
there are problems with the CLOCAL bit and the floating point interpreter on
separate I/D space machines; and there are problems with non wait I/0. There

EUUGN Vol.

2 No. & 10
EUUG Meeting -9 - Leeds, 6/8 September 1982

are compatibility problems with V7 UNIX in the area of the terminal handler,
the internal structures used for stty/gtty are different. The system is sup-

plied in °cpio' format and you need a °cpio' binary to read it.

Root Computers are putting work into: Berkeley Pascal, user overlaying
tor C an F77 processes, file locking, file quota control, RX02/RX03 floppy
disc driver, RMO2/RMO3 disc driver, the standalone software and an enhanced
spooler.,

Item 10: 1l.56am Chris Miller, Leeds University
Experiences with Eunice

Eunice is a system which emulates UNIX under VAX/VMS, The system was
written and originally supplied by SRI international and $500/cpu. There was
no support for the system under the original licence agreement and there is no
Eunice source in the basic system. Currently, Eunice is supplied by the Wol-
longong group at $5000/cpu including support for the first year, after that a
maintenance charge is required to get support.

The system is almost Berkeley 4.1BSD running under VMS versions 2 & 3, it
has the C shell, APL, Lisp, vi/ex, vtroff and the standard 32V utilities. The
file system is identical with the VMS file hierarchy, files created under Eun-
ice can be read from VMS and vice versa. However, file names are restricted
by the VMS limitations.

The system can create and run either VMS binaries which can be executed
on VMS AND Eunice because the object files contain the usually shared
libraries; or you can create UNIX binaries which are only runnable under Eun-
ice.

There are some problem areas. Eunice uses the VMS device drivers, so
some 1ioctl calls work and some don't. The filename restrictions of VMS are a
pain. The system runs fairly slowly and tends to be 1less robust than most
UNIX systems running on the bare machine.

Conclusion: if you are forced to run VMS, Eunice is better than nothing.

Item 11: 12.19pm Adrian King, Logica
UNITY

UNITY is another system which emulates UNIX under VAX/VMS and is a pro-
duct of Human Computing Resources. The system emulates UNIX completely using
no VMS privileges, it uses the VMS device drivers and is installable onto any
VMS system. To load the system, the user logs into VMS and from there calls a
sub-system which is UNITY.

There are several problems in the emulation of UNIX under VMS. First, it

is necessary to emulate the UNIX process hierarchy. This is hard on VMS
because VMS only has detached processes with no notion of the parent/child
relationship and also, VMS has no °fork' primitive. Although VMS has a struc-
tured file system, it has no °root' directory and the file naming conventions
are difterent.

Each user on the UNITY system gets a process manager which controls

EUUGN Vol. 2 No. &4
EUUG Meeting - 10 - Leeds, 6/8 September 1982

processes using message passing as a means of communication. The °fork' prim-
itive is done as follows:

1) Process A creates a forkfile

2) Process A sends a message to the process manager saying °fork’
3) The process manager starts a seed process

4) The seed process reads the forkfile

5) and tells the process manager that all is OK

6) Process A continues.

There are performance problems with fork/exec due to this mechanism.

The file management allows the handling of various VMS file organisations
and levels of directories and it copes with the handing of the sharing of
files opened by multiple processes. UNIX file links cannot be emulated. How-
ever, UNITY does some name mapping so that UNIX file names are allowed. This
means that you get some strange VMS names, but this seems much better than the
Eunice approach. UNIX files are 512 byte fixed length record files on VMS and
it is possible to create VMS typed files from inside UNITY.

Adrian finished with some reasons as to why you should run UNITY. VMS
has a lot of packages for CAD/CAM; DEC engineers are happier; and for some
sites, the idea of replacing VMS by an unknown system is a bold step.

UNITY has a Beta test release in August and the first production release
will be on October lst. This will be a V7 system, the System II1 additions
and support for Berkeley utilities will be added slowly.

—= Lunch --

Item 12: 2.19pm Mike O'Carroll, MSU, Leeds University
The Micro Systems Unit development facilities

The Micro systems Unit is responsible for courses for undergraduate
teaching on micro processors. It provides lab facilities for student projects
and supplies advice and a pool of equipment for research staff in all depart-
ments of the university.

The lab is based around a PDP11/44 which has 1.5Mbytes of memory, a 134Mb
Winchester, a 67Mb SMD disc and 2 * 26Mb RKO7's. There are 32 serial ports.
The software is UNIX V6 and runs the Whitesmith's cross compilers for Pascal
and C to generate code for the PDP11l, the 8080/280 and the M68000. Leeds have
written some down--line loading code.

A number of workstations are attached to the system, a workstation can be
a simple vdu or a local micro computer. The micro contains a PROM which
allows it to work in either standalone mcde or to connect the VDU to the PDP11
as if it were a terminal. It is also possible to down-line load the worksta-
tion from the host. The standard work station is a S100 based micro computer,
usually the Z80. The Z80 has two serial ports, one connected to a VDU and the
other to the host machine. The standard hardware package has 64Kbytes of
memory, a digital/analogue 1/0 card (Cromemco), a counter/timer, and some PROM
based software.

The non-disc based system for the workstation has a local monitor which
has a boot-strap and elementary utilities. It emulates CP/M console handling

EUUGN Vol. 2 No. & 12
EUUG Meeting -11 - Leeds, 6/8 September 1982

and supplies a run-time enviromment for down-loaded programs.

The disc based system uses a standard CP/M operating system and has a
disc resident linker which allows the workstation to be used as a normal ter-
minal development system.

For further details, contact Mike 0O'Carroll.

Item 13: 3.04pm Euug Ctte

EUUG Business

There were several items of news on the User group. First, Emrys Jones
has been elected Chairman of the Group. The post of Treasurer falls vacant.

Secondly, AT&T has informed the group that it can no longer be called the
°European UNIX User Group' but must change its name to the °European UNIX Sys-
tems User Group'. However, the old acronym can remain - so we can still be
°EUUG', pronounced °eee double-you gee' in English, in Dutch it's something
else again.

Forthcoming meetings: the next Spring meeting will very probably be in
Bonn but no confirmation has been received about this., Teus Hagen will look
into it. The September 1983 meeting will be in Trinity College, Dublin -~ this
is definite.

There then followed a discussion about standards and the need for them.
I'm aftraid I took no notes - apart from the quote from Bruce Anderson — "UNIX
used to be for space cadets and now it's for lorry drivers"”. However, there
was a clear difference in opinion and ideas between those who were interested
wanted a standard so that they could sell more UNIXes and UNIX applications
programs and those who merely wanted a reference standard so they would know
what was involved in porting the software.

-— Tea and bickies -~

Item 14: 4.05pm Berkley Tague, Bell Labs

UNIX Operating Systems development: Directions and standardisation

Berkley gave a very interesting talk which shed quite a lot of 1light on
what is happening to UNIX inside Bell. He is responsible for looking at where
the system should go inside Bell, his customers are internal to AT&T.

At present, there are four development directions with which he 1s con-
cerned ., These are networking, multiprocesser UNIX, file system/data base
management and language development.

On the networking front, there are currently many different ways to
interconnect machines and there are several possibly different sorts of inter-
connections which might be needed. For instance, UNIX to UNIX connections may
be different from connections between UNIX and hosts running other operating
systems. Also, the connection of terminals to UNIX is likely to alter as ter-
minals get smarter. In fact, terminal connections might begin to look like
either UNIX/UNIX or UNIX/other host connections. There are several networking

EUUGN Vol. 2 No. 4
EUUG Meeting - 12 - Leeds, 6/8 September 1982

issues which require solutions. There 1is a need for a media independent
applications interface, it is not clear to what extent it is desirable for the
file and device access to be integrated with the inter-process communication.
Bell are currently looking at the Berkeley IPC definition (because 1it's
there). Local area network protocols are a hot issue in the US, as are the
global protocols; X25 is starting to be used.

For multi-processor UNIX, the issues are several . Should systems be
loosely or closely coupled? Are we multi-processing for reliability or capa-
city? Is multiprocessing on a local area network feasible? There is a lot of
interest in single board computers on a common backplane where the backplane
supports more than one processor.

The questions in the area of file systems and data base management are as
diverse. Should use be made of a DBM sub-system or should the file system
just be extended so that existing tools (awk and sed) can be used? 1If the DMB
sub-system approach is adopted, then which DBM? There are lots of ad-hoc DBM
systems already developed. If the file system approach is adopted, then the
file system will need alteration to provide better robustness, some backup and
journalisation, some locking features, concurrency control and record manage-
ment. There is also a need for transaction processing. A better IPC is
needed and the scheduler needs to be able to be controlled to allow priority
for certain users.

Languages — well, C is unlikely to be altered radically in the future.
Bell are looking at the standard °traditional' languages: F77 (need a good
compiler), BASIC and COBOL. They are also looking at languages with stronger
typing than C, e.g. Modula, Euclid and Concurrent Pascal. They are also look-
ing at ADA.

Berkley then talked about the Bell Lab's view of research and development
inside Bell. This is called the °Bell Labs technology transfer model'. There
are three levels; first, the Research group, which has a very long time scale
(like 5 to 7 years) for generating anything. The second level is °Applied
Research', this is created in order to get things out of the research labs,
the time scale of projects is 2 to 3 years but there are no very hard dead-
lines. Thirdly, the Development group, which is funded by the manufacturing
arm of the company and runs using fixed time scales with one year milestones.
Bell feel that University work augments research in Bell Labs, the wuniversi-
ties act as a cutting edge for new ideas but there are severe technology
transter problems because universities produce °bread-boards' not products.

Berkely's group is also looking at the standardisation issue. They think
the goals of standardisation are two fold. First, there should be application
code compatability and portability; and secondly, there should be a machine
independence definition, SO that the system 1is independent of particular
hardware vendors. The approach being adopted is °certification', i.e. a suite
of programs is written which test whether a system is °standard'. The pro-
grams will test subsets of the UNIX system.

In summary, Berkely said that Bell and the rest of the UNIX user commun-—
ity have common interests in the future developments of the system. Bell
needs university research and wants to know about user requi rements. Bell
want to co-operate on standardisation.

END OF DAY 2

During the day, there was a °competition' on the black board which asked
for the most useless new switch for °ls', here are the suggestions for

13

EUUGN Vol. 2 No. &

EUUG Meeting - 13 - Leeds, 6/8 September 1982

answers:

1) A switch which prints the files which °rm' can't remove (this is margi-
nally useful).

2) A switch which prints the nulls after the file names.

3) A switch which prints all the file names backwards (so we can find a use
for °rev').

4) A switch (preferably the first 1letter of the arabic alphabet) which
prints times in solar time (see ctime(3)).

5) A switch to invoke /usr/games/ching for explanatory diagnostics.

6) A switch which causes all output to be suppressed and returns a status of
ZeTro.

7) A switch to delete directories and leave the files hanging about - this
switch exists on the Eunice system.

8) A switch to switch off all other switches (just try saying that when
you're drunk!)

9) A switch which does nothing but is extremely well documented.

Any more ideas? Send them to the Newsletter Editor.

EUUGN Vol. 2 No. b4
EUUG Meeting - 14 - Leeds, 6/8 September 1982

Day 3

The last day of the meeting was mostly about Distributed UNIX and related
topics. The day was chaired by Chris Pinches from Leeds University.

Item 15: 9.15am Ian Wand and Andy Wellings, University of York

ADA and PULSE

PULSE stands for Personal UNIX Like Systems Environment and is an SERC
funded project to develop a distributed UNIX-like enviromment.

York also want to investigate methods of distributing systems and have
chosen the °personal' computer approach where a number of small machines are
connected together by a network. For the approach, each personal computer has
its own CPU, disc and network connection. Currently, the processors being
used are PDP LSI 11/23's. The network is a Cambridge ring and supports a glo-
bal file server for shared data. The system is coded in Ada.

Fach Pulse machine will provide a kernel for inter-process communication,
virtual memory management and Ada task management. The kernel is a message
passing system with transparent access to remote resources. The idea is to
have a minimum set of kernel facilities and utilise user tasks for anything
complicated. The Ada tasking model replaces the UNIX process model, this
means all tasks have a shared memory and all tasks in the machine compete
equally for resources. The kernel does not contain any file system access.

The interprocess communication system is based on the Carnegie-Mellon
University IPC for UNIX and Spice. There is uniform access to user/kernel
resources, whether they are local or remote. Access is controlled by capabil-
ities, and these capabilities can be passed from one task to another.

The file system is distributed. Each pulse processor contains a local
file server which can be connected to a global server. The aims of the file
server project are: first, to generate a global hierarchical file store where
each file has an absolute pathname. Secondly, to cope with file replication
and last, to allow extensibility.

For more details of the project see the document "Distributed UNIX pro-
ject 1981", by A.J. Wellings, I.C. Wand & G.M. Tomlinson; York Computer Sci-—
ence Report No. 47.

The second part of the talk concentrated on the York Ada compiler. There
are several problems with Ada: it is difficult to write a sensible interrupt
handler using tasks; there is a high tasking overhead in Ada; there are high
consistency checking overheads; there 1is no controlled way of cheating the
strong typing; there are no unsigned integers. The language 1is complex to
learn and use and the implementation is large and slow.

Despite all this, the preliminary version of the York Ada compiler will
be available on the 15th October, this will be released to educational estab-
lishments and UK research council labs only. See elsewhere in this newsletter

for a form to request the distribution.

15

EUUGN Vol. 2 No. &4 16
EUUG Meeting - 15 - Leeds, 6/8 September 1982

Item 16: 10.00am Keith Bennett, Keele University
The Keele Distributed File Store

The objectives of the Keele project are: to have a single name space for
all files on the system; to have a consistent client view of the file store -
so that the client always sees all the file store even though some of it may
not be present; and there should be an ability to have the sharing of files
and protection.

Things that were NOT objectives of the project are: distributed UNIX;
issues of security; fault tolerance and recovery; data base management sys-
tems; general purpose operating systems; and the migration of processes
between machines.

What has been implemented is a single network wide tree (with no 1links).
The tree is present for all users. However, the actual files in the tree are
not necessarily present on each user's file store even though the names are.
The file store structure is replicated on a per disc volume basis, so each
disc volume in the file store contains a copy of the structure of the tree.

The main problem with the structure is file replication, the system copes
automatically with updating of different copies of the same file. There will
be a master file somewhere on the system and a 1list of replication addresses.
The other problem 1is the consistency of the entire file store, To maintain
consistency, each file 1s given a time stamp which is actually a version
number. It 1is then poesible to locate and inspect all on-line copies of a
file; compare the time stamps and update files, If a master file is deleted,
then an °assassin' is left which causes copies to be deleted when the volumes
come on line,

== Coffee ~=-

Item 17: 11,03am Andy Tanenbaum, Vrije University

Monix and Amoeba

Amoeba is a fully fledged distributed operating system, it 18 an operat-
ing eystem aimed at research into distributed operating systems for local area
networks, Monix is a new UNIX-like system for real time operations running on
personal computers.

Why bother to rewrite UNIX? There are the academie aesthetie reasons;
Andy wanted a well-structured UNIX kernel without goto's, side effects, splx,
global variables and a big monolithic system., Also, it 1is not possible to
teach the structure of UNIX V7 and systems which came after it. Finally, UNKX
is not a real time system and Andy needed the response which you can get from
such a system.

Andy has written something on his talk which appears elsewhere in the
newsletter,

EUUGN Vol. 2 No. &
EUUG Meeting - 16 - Leeds, 6/8 September 1982
Item 18: 12.05pm Colin Low, QMC

The Network Shell

Colin wanted to connect several UNIX processors together. The main
requirement was for a simple user interface without complicated procedures to
learn. The system should be consistent with the overall UNIX design philoso-
phy. It should be simple to install, capable of performing what most people
want and should involve no modifications to the UNIX kernel.

The idea was to extend the shell to support some cross machine features,
i.e. to allow process invocation and argument passing; the ~, ~, and | opera-
tors; and to allow current working directory access.

Files are addressed by °connecting' all the trees of the separate tree
structures together and allowing some of the names in the tree to represent
the addresses of remote machines.

The operation of the system starts with a network 1login program. This
keeps forking to set up connections to each machine and uses an initial con-—
nection protocol to invoke a remote login process and then the shell in the
normal way. The network shell thus retains connections opened as it goes
along and can direct shell commands towards a shell on any connected system.
The net shell functions as a switch, passing user's input and deciding which
system a given expression refers to. The shell can invoke °glue' processes in
any system, these processes are used to communicate between processes running
on a machine and the network. There are two of these processes: °netfile’,
which communicates between a file and the network (or vice versa) and is used
to deal with ~ and ~; and °netpipe', which connects the network to a pipe (or
vice versa) and is used to deal with the | operator.

All UNIX commands work in the normal way across the network. The main
problem is that copying files between machines has to be done by the use of
data stream utilities. So, to copy a file you have to say:

cat file * /70/mnt/foo

rather than

cp file /70/mnt/foo

—— Lunch --

Item 19: 2.17pm John Parkinson, Apollo
The Apollo Domain System

The DOMAIN (Distributed Operating Multi Access Interactive Network) is
the world's first commercially available distributed operating system. The

system consists of several workstations connected by a local area network.

Each workstation consists of (minimal):

17

EUUGN Vol.

2 No. &4 18
EUUG Meeting -17 - Leeds, 6/8 September 1982

CPU 2*M68000 (two because one is used for memory management)
512Kbytes of EEC memory

A4 size bit map display (can be colour)

Display manager with 128Kbytes of memory

33Mb winchester

1 Mbyte floppy disc drive

Block multiplexer (controls network and disc access)
Optional multibus controller

3 * V24/RS232 serial 1/0 ports

The system costs 23,000 with a disc and £17,000 without one.

Each node is uniquely identified by a number inserted at the mamifactur-
ing stage. The network is °home-grown', and is a single token ring network
with a 12Mbits/second data rate. The data packet size is 1K bytes, which 1is
the same as the internal disc block size, The network is fast enough to sup-
port paging and disc-less nodes do work.,

Item 20: 3.02pm Brian Randell, Newcastle University
The Newcastle Connection

The talk was sub-titled "UNIXes of the World Unite" and described a
mechanism for connecting several UNIX systems together.

The Newcastle Connection is a software sub-system which can be added to a
set of physically interconnected UNIX or UNIX-lookalike systems to construct a

distributed system. UNIX-lookalike means any system which supports UNIX V7
system calls., The resultant system is functionally equivalent to a comven-
tional single processor UNIX system. The Newcastle Connection allows file
access, device wusage, I/O re-direction, interprocess communication, change
directory, mail and remote execution, all to take place on and between several
machines., It does this by conceptually joining the file systems of the
machines into one huge tree, so that every machine can address every other
machine in a consistent manner.

One particularly neat idea with this scheme is the use of the chroot sys-
tem call to move the root of the file system °down one', so that all remote
addresses are of the form:

/../ machine id”/destination on remote machine"

This means that your local machine is conceptually °under' a vast invisible
tree which connects all the UNIX systems together. It is not mandatory to do
things this way - but nicer.

The software will allow each constituent UNIX system to have it's own set
of users, user groups and password file and each has it's own super-user. It
is possible to unite systems which have already allocated the same numeric uid
to different individuals. Each system administrator controls remote as well
as local usage, but relies on the remote machine to authenticate users.

The software which implements the connection is a tramsparent layer which
sits between the wusual system call interface and the kernel. The software
intercepts all system calls, and diverts those which relate to some other sys-—
tem to a server process and then to the Newcastle Connection on the other
machine. The results of the system call are passed back to the applications

EUUGN Vol. 2 No. &
EUUG Meeting - 18 - Leeds, 6/8 September 1982

program, completely hiding whether or not they come from the local kernel.
The tasks of -the connection layer are:

Mapping local names from remote systems. For instance, it maps names of
open files and devices, processes, internal user id's etc.

Diverting accesses that are in fact to be dealt with by another system
using a remote procedure call mechanism.

Providing server processes to carry out requests from a remote machine.
Maintaining relevant parts of the overall system directory structure.
Providing surrogate environments for calls from a remote machine.

There is no requirement to alter the kernel, it 1is only necessary to
recompile user processes with a new library.

Currently, the system is in regular use at Newcastle on 5 PDPll's inter-
connected by a Cambridge ring. The software has been provided to one other
university in the UK for trials. It is subject to confidential discussions
re. commercial exploitation with 6 UK companies. It will eventually be avail-
able to UK universities.

There are two extensions which are under investigation. UUL (Unix United
Ltd.) provides multi level security on the file systems. It uses encryption
to enforce the security barriers and to control re-classification. The proto-
type of this system has been demonstrated to the MoD. The other extension is
NMP (Newcastle Modular redundancy) which uses file/process replication and
majority voting to mask hardware faults. The applications programs are
unchanged, but run on several machines with hidden voting. The prototype 1is
operational using 3 PDPll's.

The Newcastle Connection technique should be applicable to other systems.
However, UNIX seems to have been designed for it; important factors are: the
hierarchical file system with moveable current working directory's and root
directory pointers; the wunification of files, commands and I/0 devices into
one name space; the ability of wuser processes to initiate asynchronous
activity; the clean kernel interface; and the fact that system call parameters
are passed by value. There seems to be no obvious technical obstacle to the
idea of connecting all UNIX systems in the country into one °UNIX United' sys-—
tem.

-- END --

This was the best meeting for some years, the atmosphere was friendly, there
was lots of good natured heckling from the audience and the talks were all
interesting. Dave Tilbrook was the winner of the "Jim McKie - sorry the
Newsletter's late" sound-alike competition and Jim McKie was the winner of the
lumberjack look-alike competition. Thanks should go to all the Speakers and
to Chris Miller and his collegues for organising the Leeds end of the meeting.
Also, thanks should go to Cornelia Boldyreff and Emrys Jones for wvarious
pieces of organisation, including getting the booking forms out and arranging
some of the speakers.

19

EUUGN Vol.

2 No. & 20

Design and Structure of an Open Distributed Operating System

Andrew 3. Tanenbaum
Sape J. Mullender

Dept. cf Mathematics and Computer Science
Vrije Universiteit
Amsterdam, The Netherlands

The Computer Science Group at the Vrije Universiteit is currently
dcing research in a number of areas related to networks, distributed
cperating systems, distributed data bases, portable ccmpilers, and re-
lated areas. This talk was mainly concerned with two topics: a small,
well-structured rewrite of UNIX (called MONIX) for real-time work and
personal ccmputers (with or without networking) and a full-blown distri-
buted operating system called Amoeba.

Both systems are built on top of a small kernel that does the
barest essentials of processor management, memory management, and device
handling. The kernel implements "tasks" and "processes." A task is a
short rcutine, typically scheduled by an interrupt, that runs to comple-
ticn. All device drivers run as tasks. Since tasks run to ccmpletion,
many race ccnditicns caused by inopportune interrupts are eliminated.
When an interrupt occurs, all that happens is that a task is queued for .
executicn when the current task is finished. Tasks run in kernel mode.

Prccesses, in contrast, run in user mode, and may be time-sliced

and pre-empted by tasks. The kernel manages full multiprogramming of
prccesses.

The MONIX system primarily consists of a user process that carries
cut all the V7 file system calls (open, creat, read, write, lseek,
mcunt, chdir, chrcet, link, etc.). To make a system call, a user pro-
cess sends the file system a message via the kernel's interprccess com-
munication facility. The file system is compact (10K bytes), well-
structured (no gotcs, no locking, no global variables, etc.) and also
has scme facilities for real-time work (e.g., semi-contiguous files.)

The Amoeba system is also built on top of the kernel. It is Dbased
¢n prccesses sending and getting messages in a protected way. To re-
ceive messages, a prccess, (say, a file server), picks a large random
number, get-port, ccmputes put-port = F(get-port), and then does a GET
cn get-port. The function F(x)-is a one-way function, that is, given x,
it is easy to find F(x), but given F(x), it is impossible tc find x.
Clients who want to ccmmunicate with the server send messages to put-
pcrt, nct get-port, which the server keeps secret. The kernel (or a
hardware interface) that performs the GET(get-port) call only accepts
packets destined for put-port. Since intruders dc not know get-port,
they cannct intercept messages.

This poert mechanism forms the basis for a distributed cperating

"EUUGN Vol. 2 No. b

’

system based on capabilities. Each object has a capability consisting
of the put-port of the server that manages the object, an object number,
a rights field, and a random number that authenticates the cbject. When
a message bearing a capability arrives at a server, the server uses the
object mumber as an index into its tables to locate information about
the object. A UNIX-like file server would normally use the i-node
number as the object number. When an object (e.g. a file) is created, a
random number is generated and stored in the i-node. When a capability
for the cbject arrives, the random number in the i-node is compared to
the cne in the capability. If they agree, the capability is assumed
valid, and the requested operation is carried out.

Alternatively, the random number can be used as an encryption key
tc encrypt (part of) the capability. If this method is used, the capa-
bility may contain rights, such as READ, WRITE, etc. When a capability
arrives, the object number field (in plaintext) is used to locate the
i-node, which in turn provides the decryption key. When this system is
used, the random number field in the plaintext capability contains all
zerces. If decryption yields a plaintext capability with all zeroces in
the random number field, the capability is accepted as valid, and the
rights field is accepted.

An unusual feature of the file system is the separation c¢f the
block server and the file server. The block server allows its clients

tc read and write raw disk blocks, with no file structure. The file
server then turns these into files. This arrangement allows multiple

(potentially incompatible) file servers to co-exist 1in the network,

sharing disk space on the same disk.

Yet ancther part cf the file system is the directory server, which
maps ASCII names onto capabilities. Given an ASCII name or path, the
directcry server returns the ccrresponding capability. The directory
server need nct know what kind of object the capability is for.

A more sophisticated multi-version file server, which allows cocn-
current updating in a structured way is alsoc in the works.

Little has been published on Amoeba so far, but a slightly obsolete
cverview of the whole system can be found in Operating Systems Review,
July 1981.

A related prcject being worked on at the Vrije Universiteit is a
crcss ccmpiler that cconsists of front ends for various languages (c,
Pascal, etc.). FEach front end produces a common intermediate code that
is then cptimized and fed into a table driven back end. The back end
prcduces target ccde for the machine described in 1its input table.
Tables are being made for the PDP-11, VAX, 68000, Z8000, 8086, Z8&0,
8080, and other machines. The whole system runs cn UNIX (did you expect
RSX-1172).

Sccner or later, all ¢f this software will be release to universi-
ties for a ncminal fee.

21

EUUGN Vol. 2 No. & 22

ALICE

An Interactive Application Programming Language
for

UNIX *

PRODUCI_DESCRIBTIION

Systems Designers Limited,
Systems House,

ly Pembroke Broadwayy
Camperleyy

Surrey, Engtland

GU1S 3Xh

Tel: Canbertey (0276) 62244
Telex: 858200 SYSDES G

¥ UNIX is a trademark of Bell Telephone Laboratories

ALICE - PRODUCT DESCRIPTION

1.0 Introduction FEUUGN Vol. 2 No. &

Alice is a2 software tool running under UNIX, It provides facilities
for developing interactive application packages with a simple andg con-
sistert user interface, Its primary use is for applications for the
novice or casual user, that «can be easily extenaed or modifiead in
parallel with the user's needs and experience. It therefore adas to
UNIX a powerful facility to generate management systemsy, special user
systemsy or general office systemsy all of which can be used by per-
sonnet with little or no UNIX experience, Furthermore it is ang has
been uLsed to build applications for the knowledjable UNIXx user Lo han-
dle a large variety of problems involving data bases, complicatea pro-
cedures that require user interaction (e«3.y creating new users) or as
front enas to sets of related applications.,.

1.1 The Neaed for Alice

The majcr benefits of UNIX lie in its simplicitys its generalitys and
Its close matching of facilities to the needs of software devejopment
cersonnel . This means that systems can pe ooth developed angd main-
tainec at minimum cost and in the lowest practical timescalesy uUSinyy
whenever possibley software tools and packayes already avditabvle
within the systeme. Ffurthermorey, these tools and packages have wide
application to the needs of users other than the softwdare developer.
Howavery the major drawback of UNIX for the non-specialisty is that
the orientatjon of the interface s to the specialisty and is conse-
quent ly terse and assumes experience and understanding of the tools
ind their interaction.

Alice cvercomes this problem by providing a wuser-oriented interface
that camn serve as a front—-end to the basic UNIX tools and facilities.

2.0 Ihe User lptertace

In a typical Alice application programy the user is promptea tor a
command line. The prompt will consist of a string, set by the pro-
grammer, inside a pair of square brackets as in:

[Seltect a command]
The user response to such a prompt is to enter one of the following:

1) An empty line
The default command is invoked. WUsualily this is to Qgisplay a
tattleau (menu) of the commandse.

2) 2
A trief exptanation of the prompt is output.

3) 220
A list of the valiad responses to the prompt is given.

4) '?2' foilowed by 3 command name
An explanation of the named command is output.

5) *x' fcilowea by optional arguments

The 'x' (for Xplain) command invokes a program that displays
information aboult some aspect of Alice programming and/or use.

82 09 0% rage 1

23

EUUGN Vol. 2 No. 4 24

An "'x' by itself explains the *x' commande.

6) '1' followed by a UNIX command
The UNIX command is interpreted.

ra) OQO
Tre current Alice application program exitse.

8) A command name and optional arguments
Thre named command is fetched from the Alice data base and inter-
fretea.

When the user enters a command namey in response to a "[1" promptsy the
item in the data base associated with that name is retrieved and
interpretea.

This interpretation may prompt the user for more information wusing a
question suffixed by one of the following strings:

1) ':'
A value is required.

2) (y/n)
A "yes" or "no" answer s requireds with "yes" as the dgefault
(ieeesy "yes" is assumed if an empty line is given as the
response),

3) (n/y)
A "yes" or "no" answer jis requiredy with "no"™ as the default,

The resgonses to these prompts may be: an empty tine (the default
vatue is used); "?2" (an explanation of the question is output); "z29
(a list of the valid response is output); the terminal's interrupt
character (the current item is terminated); or a valid value (Alice
resumes execution).

The only other user interaction is a "<paused>" prompt, which is wused
to suspend Alice output until the wuser enters a newliney or any
interaction invoked by a program invoked by Alice (e.jey an editor
invokec by the jtem to create a file).

The above describes the total user interaction of Alice and the wuser
(excluding error handling and special cases),

One of the advantages of Alice is the consistency and simplicity of
its user interaction., ?Past experience seems to indicate that a novice

user can learn to use interact with Alice programs in about 10
minutessy by using the computer assisted instruction package for Alicey
which fitself is an Alice application. Furthermores once the wuser

understards this interactiony the wuse of new Alice applications
requires (fjttte or no additional traininge.

3.0 Ine Qevelopment 3Jysiem
The primary inputs to an Alilce application are: the user commands reagd
from the terminaly and an Alice data base. To execute a user commands

Alice retrieves the item named in the command from the data basey and
interprets that item,

82 09 05 gpage 2

EUUGN Vol. 2 No. &4

fach item of an Alice data base file can hoid the following records of
information:

1) A short description
This string is displayed in the taoleau.

2) & status (on or off)
Tris element spacifies whether the user may select the item tor
executione. The status "off" s used to prevent an item being

selected by the usery for exampley when the item is only to oe
used as a subroutine by other itemse.

3) A group code
Items may be grouped into subsets that are used to select sets of
items for display in a tableau or for a change in status.

4) A list of aliases
The names by which the item may be selected by the user or other
ftems.

5) A monitoring string
The name used for logging usage of this item (similar to command
monitoring in the Unix shelll.

6) An explanation string
The string output to the user when he/she asks for an expltanation
using the "?" totlowed Dy the item name as a response to the wpm

prompta
7) A set of command records
These records are interpreted when the item is executed. They

consist of guards (conditionals used to suppress interpretation
of the record)s a2 keywords and its arguments. Section 6 proviaes
a list of all currently implemented keywoOrds.

8) Askuser description recordse
The command record keyword "™Askuser®™ is used to prompt the user
for a value or a "yes" or "no" answer. The arguments to this
keyword s the label of a "Askuser"™ record and the name of the
variable to which the response is assigneds The "Askuser" record
contains: the record labely the prompt type the default or yes/no
values and the Qquestion prompt and explanation stringsa.

9) “~ASCOYT Form records
Alice uses MASCOT Channels to communicate with other processes.
The command keyword "Form™ can be wused to initialize other
rrocesses that Jare attached to an Alice program via message chan—
nels., The Form records contain tne description of the rew
grocesses. (Only availapte for ANGUS userss)

The source tor these Alice items are held in standard TIPs format text
files using the Alice profile as briefly outlined above. TIPs format
text files are standard UNIX text files using an "*" followed by 2
record "tag" to separate and name records. Thus any standara UNIX
tools can te used to create Alice source files. A torms editor that
understanos TIPs format is available to facilitate TIPs file editing.

Interrallys Alice uses tables of item statuss group, names anaga alias
recorcCse 1o minimise the effort of creating these tablesys 4 tools

82 09 €5 page 3

25

EUUGN Vol. 2 No. 4 26

"Mkmeru" is provided which creates a copy of the standard Alice source
with the tables already built and appended to the output file. Alice
can accept input in either this object form or the straight text forme
In the latter case Alice invokes Mkmenu to create a temporary object
fite which is then {oaded.

One of the intentions ot Alice was to facilitate quick anad easy
development and usSe. The elapsed time from program creation to pro-
9rim use should be secondsy not minutes. As 3 resulty Mkmenu does not
check tor syntactic or semantic errorsy that don't relate to the
actual TIPs format,. For the most part this tS acceptable. Alice
scripts are usually smail and the language is simpley thus serious
errors are uncommon., However they are not impossible, particularlty in
scripts that make extensive use of arithmetic expressionss 4and/or con-
trol tlow constructs (2.g.y LOOpPpSy Breaks, Jumptos).

To facititate "compile" time checking the program "Chkmenu" is used.
Chkmeru reads an Alice script and checks each item for a variety of
potential errors and/or oversights (e.gey missing explanations or
atiases). It checks altl expressions for syntax, all arguments for
correct use and formatss and where possible for valia valuese

The Alice interpreter itself supports a numper of debugging adidss that
are invokea wusing supplementary commands at the "(]" prompt fevel.,
These supplementary commands aliow the programmer/user to:

- Display and/or change the values of the strings number or control
variatles;

- Examrine the code for an item;

~ Examine the contents ot any message [DAs (MASCOT Interprocess (ata
communication Areas);

- Fdit the source text and reload it using your favourite editor.
4.0 Ine Alice Package

The SCL Alice product consists of the tollowing components:

1) The Alice interpreter

2) Fkmenu
Converts Alice source text to an Alice object formate.

3) Chkmenu
Ctfline Alice script syntax and semantic checker.

4) Xalice
An online documentation package used by both programmer and user
to expiain Alice interactions error messagesy dnd Keywordse Xal-—

ice is used to Support the *??' responses to a query ano the 'x°
commanc.

5) Programmer Manual sections for the above programs,.

6) Ar Alice programming tutorial.

82 09 C% page 4

EUUGN Vol. 2 No. &

7) Exampte Alice scripts including: setting up a nNnew user; a com-—
ruter assisted instruction package for Alice users; a simple
oftice system; a game parlour including an adventure type game.
If combined with SOL's ANGUS product line (the UNIX/MASCUT kerne! and
MASCCT development tools) the following extensions are proviged:

1) Alice message channel! |ibrary
Used to build applications that talk to Atice scriptse.
2) Examgple Alice scripts using IDAs.
Computer conferencing scripte
3) Altice IDA terminal! interface
Al other required tools are provided as part of the ANOGUS packdgee.

~ User dcceptance,
a variety of applicationsy
acceptability of Unix based systems to users without Unix expertise.

5.0 ummacy of Alice Henefits

The simple user interfacey which can be used
reduces the cost of user

- Flexitilitys The user interface for the same systemy cdan be changed
to match the "know!ledge”™ or requirements of different users without
charge to the internal working of the systeme.

- Reduced adevelopment overheads and timescales.

Atl

facilities are availabley, as well as the special Alice facilities,
aimed at minimising the timey, and the costy of developing new Sys-
tems.
6.0 List of Alice (ommand Keywords
Anymsg : Get IDA message and assign to string variable,
Apperd : Append string to a file.
Assign = Assign value to string or numper variable,
Askuser : Call subroutine to prompt user for value.
Attach : Attach to IDA message channel file.
Break : Break out of nested command blockse.
Call = Calt an item,
Case : Skip to labelied Case.
Cat : Dump named file to outpute.
Chcir : Change working directorye.
Control : Set named control.
Create ¢ Attempts to open file for writing.
Date * Set variable to formatted current time.
Drogp : Set variable to string with lst word dropped.
Echo : Cutput A-arg and B-arge.
Fnatle : Enable or Disable list of items,
Exit ¢ Exit from alice with status A-arg,
Form ¢ Form a child process with attaching IDAs.
Ftime : Set variable to a formatted file's modification time,
Getmsg : Get a message from an IDA and assign to variable.
Isnpum ¢ Test if string is numeric.
[temnum : Set number variable to index of named item.
Jumgto : Jumpto 3 new item or out to top level.
Lojtiile ¢ Open and/or close logging file.
Loop : Loop back to start of nested command DlocCke
82 09 €5 page

over
training ang the

the standard Unix

EUUGN Vol.

Menu
Newmeru
Pause
Perror
Popworc
Putmsg
Read
Redo
Remove
Reset
Return
Setargs
Setitenm
Shell
Shiftt
Space
Strcmp
Tabteau
Take
Test
nrite

32 09 0%

86 00 se 0s 3 0% es 80 e VS a8 e

@ 98 Se 48 w8 % s b s

No. & 28

Spawn new Alice process with new menue.

Load news menufilee.

Pause for carriage returne.

Cutput system errore.

Drop a word from one variable and assiyn to
Put a message to an [DA.

Set vartable to contents of file,

kedo current item from the tope.

Remove words from a string variable.

Reset globalss control, statiie

Feturn from the current Item,

Set the special arguments to words of given
Name special item,

Execute a Shell command.

Shift $N arguments,

Output blank lines

Compare two stringse.

Cutput tableau of itemse.

Set string variable to first word of a
Test a file's attributes.

Write a string into a filee

list.

another.

string.

page 6

EUUGN Vol., 2 No. 4
SOME BENCHMARKS

Andy Tanenbaum
Vrije Universiteit
Amsterdam, The Netherlands

Teus Hagen
Mathematical Centre

Amsterdam, The Netherlands

At the EUUG meeting in Leeds, several vendors displayed their respective wares
in close proximity. To take advantage of this opportunity, we wrote two programs
and then measured how long it took to compile each one and how long to run each
one. Program #1 is a CPU test; program #2 is an I/0 test. Program #1 was tested
five times, with the type 'word' declared in five different ways, as shown below.
The numbers for test #l are User time in seconds; the times for test #2 and the
compile times are Real times. All tests were made with only a single user. The
PDP-11, VAX and PERQ tests were made later. The programs follow (PERQ version
was in Pascal, the rest were in C).

/* Test 1 */ /* Test 2 */
typedef ... word ; main()
main() ¢ int i, n;
¢ word 1i,j,k; char a[512];
for (i=0; 1~1000; i++) if ((n=creat("foo0",0755)) 0)perror(“bah");
for (j=0; j~10000; j++) for (i=0; i~500; i++)
k =1+ j + 1982; write(n, a, 512);
? 1
VAX PDP- Bleas-
Test 11/780 11/44 Zilog dale Codata CRDS PE3210 PERQ
#1 register short 86 57 73 156 105 ~ 158 67 -
#1 register long 47 218 133 562 105 158 67
#1 short 88 112 147 333 171 282 167
#1 int 67 112 147 333 193 317 159 182
#1 long 67 218 257 562 193 317 159
2 2 32 8 16 28 14 3
Compile time test 1 3 16 20 20 28 28 4 20
Compile time test 2 3 16 20 21 30 42 4

Notes on the machines:

VAX-11/780: 2 67MB RM03 drives and 1 256MB CDC 9766 storage module.
PDP-11/44: 2 160MB Ampex Storage Modules

Zilog: 6 MHz Zilog Z8001 with 24 MB Winchester (Zilog Inc.'s system)
Bleasdale: 4 MHz Zilog Z8001 on Multibus with XENIX (Bleasdale BDC 600)
Codata: 8 MHz 68000, memory accessed directly, not via Multibus

CRDS: 8 MHz 68000, memory accessed via Versabus (Charles River Data Sys.)
PE3210: Perkin-Elmer 3210

PERQ: ICL PERQ (measured at QMC)

Conclusions: None. Eight isolated tests are not worth much. The purpose of this
exercise 1is to stimulate other people to make more tests. Like in physics and
biology, experimental results should only be taken seriously when they can be re-
produced by people from different laboratories.

29

EUUGN Vol. 2 No. &4 30

At the EUUG conference in September I volunteered to
carry out the task of building and maintaining a “software
catalogue’ of all software publicly available for UNIX. The
idea 1s to have a centralised place where everyone can write
to or phone and enguire about what software 1s available and
where from. The benefits are obvious - although a large
amount of software is produced at universities, it 1s very
aifficult for other universities to find out about this. We
desperately need to build up and maintain a list of
software.

Although this kind of scheme has been tried in the past,
it has not been very successful, mainly due to a lack of
response from the EUUG members. For some reason the members
don‘t seem to want to advertise locally produced software.
The sort of reasons that were put forward at a discussion at
the last EUUG meeting, were as follows :

- no-one wants to give away software they have
worked hard to develop.

- no-one wants to spend time distripbuting tapes
containing their software to others,

- no-one wants to spend most of their time answerin
g

queries from outsiders about their software,
perhaps asking for bug-fixes or how to get the
software up and working on their particular
system.

All of these points are understandable. However there
has to be a little give and take of software. If no-one
were to give any software to other members of the EUUG, then
there would be no prospects for interchange of software
between the EUUG members, which can’t be a good thing for
any of us.

As to the problem of software distributions, another
member of the EUUG has volunteerea to aistribute tapes 1if
the software is sent to him. However ke doesn’t want to
nave to send little bits here and there, so our first task
is to build up a tapeful of software arising from different
contributors, and Kkeep it centrally. Then a whole copy of
this tape will pe sent to anyone who asks for it, at a
nominal charge.

As to the problem of being pestered by outsiders asking
guestions about your software, we can make 1t a conaition
tnhat the receivers of the tape accept 1t "as 1is" with no
support. This 1isn’t nearly as bad as it sounds at first;
after all one of the piggest distriputors of UNIX software
(lLet” s name no names) has a very similar policy.

EUUGN Vol. 2 No. 4

So, before we <can start on collecting software and
building a tape o©of 1t, we need to Dpbuild a software
catalogyue, and the sooner we do this the better it 1is for
all of wus. Here’s what to do. Make up a list of any new
pieces of software on your system that you would like to
contrivute to the software catalogue. The list should be
headed something like this :

(1) Title of software

(2) Implementation machine

(3) Description of software
(4) Implementation language
(5) Documentation availability
(6) Outstanding bugs known

(7) Machine dependancies

(8) Original source

Here is a description of what each category should contain;
I hope that the motivation behind each is obvious.

(1) Title of software
~ e.g. Graphics package, rewrite of chmod command,
28000 cross assembler etc.
(2) Implementation machine
- what machine was this software developed on ?
(3) Description of software
- a brief description of the application
(4) Implementation language
- what language is it written in ?
(5) Documentation availapility
- is there any documentation availavle on 1ts use?
(o) Outstanding Lugs known
- are there any major ougs Or restrictions that you
Know of?
(7) Machine aepenuancles
- 1s this csoftware «aesignea to run only on
particular machines? does it require any non-
stanaard features?
(6) Original source
- 1£f you got 1t £from elsewhere, wihere uiu you get 1t
from?

Try and give as much information avout the software as
-, . .

you can, but don’t worry 1f you don’t have all the info -
someone else in the group might ve able to work 1t out. Try
ana consicer what you would 1like toO know apout someone
else’s software, ana try and proviae suchi information about
your own software. After having made your list, please send
1t to me at the following aadress :

31

EUUGN Vol. 2 No. 4 32

Mr. bipin Dattani,

Perkin Elmer Data Systems Lta.,
227 bath Roau,

Slough, _

serkshire SL1 4AX,

England

Shoulad you neea to contact me by phone, the numper is
{Slough) 34511

Thank you,

E{ Q}%ﬁﬁ?h;

bBipin Dattani.
Sept 1982

EUUGN Vol. 2 No. U

An implementation of Benderson's SECD machine
under UNIX

Mark Dawson

SWURCC

1. Introductiion

The SECD machine implemented exactly corresponds to the one
described in Henderson's book: ‘'Functional Programming -
application and Implementation'. The effort was primarily
an exercise in implementation and took the author about 5

days in all.

An SECD machine is a simple computer, it has 4 registers,
Lhe Stack, Environment, control, and Dump. The execution of
the computer is described by transitions of the form:

s, E, ¢, D —> S', E', c', D'

(seleclied by inspecting what is the CAR of the Control
register). Henderson describes 21 basic transitions, and in
his book cleverly and naturally works from a lisp—1like
language through a description of an SECD machine to a com—
piler for the language. The interpreter described here exe—
cutes his definition, and successfully compiles the com—
piler. ’

My enhancements to the machine are not described.

2. Implementation

The machine as developed in the book can be split into
several parts: S—-expression input and output, garbage col-
leclion, and instruction execution. The main consideration
was the design of the data atructures representing the node
space, and it is these I describe first.

3. Dbaia Structures

The node is essential to the machine, it has three roles: as
a integer, as a symbol, and as a pair (with CAR and CDR
parts). It is using the node +that all s-expressions are
constructed, and manipulating s—-expressions is the bread-

September 17, 1982

33

EUUGN Vol. 2 No. &4

and-butter of the machine.

The data structures for the node went throught two itera-
tions of design from the original. It is quite interesting

to see how they developed from one to the other. Initially
I took the simple approach described in Henderson's book,
ie: S

e s aa o —+

o} o CAR] CDR]

e R N B +

e +- —- +

fF141) INTEGER !

+———t———+ + +

t o} 0} SYMBOL !

This is represented by the C data structure (a):

typedef struct node {
int tag;
union {
long int ival;
struct {
struct node *car;
struct node *cdr;
} pval;
char *sval;
} uval;
} NODE, *PTR;

Which is basically a union of the three types; a long
integer, a pointer into the symbol space, or a pair
(CAR+CDR). The size of this structure came to six bytes.
Even using separate I1&D spaces I was only able to get an

‘array' of 4000 of them - hardly adequate for anything
except debugging the machine, certainly not compiling the
compiler.

The key to the first development was to realise that the s-—
expressions used by this machine are mainly linear lists
with occasional lists branching to the left. Knowing this
it is possible to almost double the storage. The secret is,
to allow the CAR and CDR parts to be actual values rather
than simply pointers to nodes containing the values. In
ef{fect creating a psuedo pointer, which sometimes doesn't
point anywhere but is itself the value. This leaves the CONS
funclion as the only thing to consume node space - previ-
ously calls to 'new_int' and 'new_str' also did.

September 17, 1982

The following C structures achieve this (b):

typedef struct object (
char tag;
union {
struct node *ptr;
int ival;
char *sgval;
} uval;
} PTR;

typedef struct node ({
char tag;
struct object car;
struct object cdr;
} NODE, *NODE_PTR;

The size of this structure is 10 bytes (instead of 6). For-—
tunalely this gave me enough room to compile the compiler
and generally prove the rest of the design but to do any-
thing more required more space.

Fortunately bit stuffing (b) gave the solution. I was able
to cult the cost of a node by more than a factor of two,
again doubling the amount of freespace available. (Bringing
the number of nodes in a separate I&D system to over 12000.)

C allows one to do this relatively cleanly by specifing
fields of bits within a machine word and allowing one to
manipulate fields as unsigned integers — doing all the fid-
dling itself. Using this technique the final data structure
was achieved (c):

typedef struct node
{

unsigned pair: 1;

unsigned car : 15;

unsigned tag : 1;

unsigned cdr : 15;
} NODE, PTR;

Along with each data structure I wrote a corresponding set
of C macros. By constraining access to the data structures
through these I was able to make the transition from one
structure to the next relatively painless, although there
was still some unavoidable hacking. Macros do not have the
costs in time associated with functions as would be the case
with Pascal, say. (Although an good optimising compiler
might well expand them in-line...)

The evolulion of these macros is shown below.

Tor (a) above:

September 17, 1982

EUUGN Vol. 2 No. 4

35

EUUGN Vol.

2 No. &

#define
#define
#define
/* Atom
#define
tdefine
. /* Type
#define
#define
#define

36 - 4 —

CAR(x) (x->uval.pval.car)
CDR(x) (x->uval.pval.cdr)
TAG(x) (x—>tag)

handlers */

STR(x) (x->uval.sval)

INT(x) (x->uval.ival)
predicates */

1SP(x) ((x—>tag&tMASK)==pTYPE)
I1SI(x) ((x~->tag&tMASK)==iTYPE)
1S5(x) ((x->tag&tMASK)==sTYPE)

/* Print atoms */

#define
#tdefine

PTI(x) printf(” %1d ",x->uval.ival)

PTS(x) printf(” %s ",x—>uval.sval)

For (b) above:

#define
#define
#define
/* Atom
#define
#define
#define
#define
/* Type
#define
tdefine
#define

CAR(x) (x.uval.ptr—>car)
CDR(x) (x.uval.ptr->cdr)
TAG(x) (x.uval.ptr->tag)
handlers */

STR(x) (x.uval.sval)

INT(x) (x.uval.ival)

VAL(x) (x.uval.ptr)

TYP(x) (x.tag)

predicates */

ISP(x) ((x.tag&tMASK)==pTYPE)
ISI(x) ((x.tag&tMASK)==iTYPE)
18S5(x) ((x.tag&tMASK)==STYPE)

/* Print atoms */

#define
#define

PTI(x) printf(" %4 ",x.uval.ival)
PTS(x) printf(" %s ",x.uval,sval)

For (c) above:

#define
#define
#define
/* Atom
#define
#define
#define
#define
/* Type
#define
#define
#define

CAR(x) (((NODE_PTR)(x<<2))—>car)
CDR(x) (((NODE_PTR){x<<2))—>cdr)
TAG(x) (((NODE_PTR)(x<<2))—>tag)
handlers */

STR(x) (symbols[x&cMASK])
1STR(x,y) (x=sTYPEly)

INT(x) (X&CMASK)

1INT(x,y) (x=iTYPEly)
predicates */

ISP(x) ((X&PMASK)==pTYPE)
ISI(x) ((x&tMASK)==iTYPE)

ISS(x) ((x&tMASK)==sTYPE)

/* Print atoms */

#define
#define
/* Type
#define
#define

PTI(x) printf(” %d “,x&CMASK)

PTS(x) printf(" %s ",symbols[x&cMASK])

conversions */
NTP(x) ((PTR)x)>>2
PTN(x) ((NODE_PTR)(x<<2))

September i7, 1982

-5 - EUUGN Vol. 2 No. 4 37

Nolice how ihe complexity of the macros increases ‘as the
data structures become more obscure in form.

4. The Freelist

when the interpreter is started one of the first thlngs it
does is to grab a large contiguous area of store and to con-
slruct a freelist within it. The freelist is a linear 1list
of unused elements, when it becomes empty it is necessary to
force a garbage collection to try and reconstruct it.

An interesting idea would be to number the CAR portions of
the freelist in such a way that the head of the list indi-
cales the size of the remaining list (this would cost noth-
ing using the 'psuedo’ pointer idea). The system could then
garbage collect conditionally on the size of the remaining
list before certain events.

5. S—-expression Input and Qutput

This is an interesting aspect of the interpreter. I used a
Lechnique slightly different to the one described by Hender-—
son. Introducing functions for token, token_type, etc,
enabled me to simulate lazy input. Unix's input/output is
very simple, avoiding the need for line buffers. Any res-—
trictions on line length can be imposed by a filter process
tacked on the interpreter by a pipe.

6. Garbage Collection

Fundamentally similar to Henderson's, the only change neces-—
sary was to improve the performance of the marking pro-
cedure. Henderson describes a purely recursive algorithm,
but a little thought suggests that the stack requirement can
be reduced drastically by making it iterate over the CDR
branch. (Making use of the assumptions about the form of

s—-expressions.)

The main stumbling block for me was an obscure bug in the
code of the collection phase. The node before the start of
the freelist was also collected onto the freelist (corrupt-
ing one marked node). This bug was difficult to find, and
only crept in because I didn't test the collector with suf-
ficient care.

2. Machine Execution

The SECD machine is represented by a loop which executes
insiructions repeatedly until a STOP instruction is reached.
(The stop instruction is actually defined as the transition

which leaves the state of the SECD machine unchanged, ie:

s, E, (sTOP.C), D —> S, E, (STOP.C),

September 17, 1982

EUUGN Vol. 2 No. 4 38 -6 -

fortunately the implementation and specification diverge
here inorder to allow the machine's state to be displayedl)
The evaluation loop has the basic structure:

8 = CONS(a,NIL);
e = NIL;

c = {;

d = NIL;

stop = FALSE;

do

{
i-= INT(CA%‘C));
if(debuggf’ﬁgﬁ?) show_opcode(1i);
switch(1)

{

case pLD:

case pSTOP:
stop = TRUE;
break;

default: '
print£f("**ERROR** Unknown opcodeO);

dump_all();

}
} while(stop!sTRUE);
e
} - 1.
Y e
Instructions are written very simply by translating their
transitions into C. One very important consideration is to
avoid nesled CONS's — since if a garbage collect occurs dur-

ing the outermost CONS, there will be no way of marking the
inner CONS and it will be added to the freelist. Loosing it

forever, viz:
CONS(x,CONS(Y.,z))
should be written as:

w CONS(Y.,z)
p = CONS(x,w)

i

The following example illustrates an instruction:

((c'.e') v.s) e (AP.c) d ——> NIL (v.e') c' (s e c.d)

September 17, 1982

-7 - EUUGN Vol. 2 No. 4 39

case pAP:

w = CONS(CDR(c),d);
= CONS(e,w);
= CONS(CDR(CDR(8)),w);
CONS(CAR(CDR(S)),CDR(CAR(S)));
= CAR(CAR(8));
= NIL;

N

n 00 C £
n

.

The AP (APply function) instruction expects the closure of
the funcltion's code (c¢') with the environment in which the
function was declared (e') on the top of the stack. Beneath
the closure are the arguments (v) to the function. The pre-
vious values of 8, e, and c are saved on the dump, d, the
stack is NILed, the control becomes the code of the function
(c'), and the environment the original environment augmented

by the arguments.

September 17, 1982

EUUGN Vol. 2 No. & Lo

UNIFLEX Evaluation

Zdravko Podolski

Computing Science Department
University of Glasgow

December, 1981
(A personal view)

Introduction

South West Technical Products were kind enough to lend me a Uniflex
system for evaluation. The system was similar to that shown at the Not-
tingham EUUG meeting in September 198l1. It consisted of a Motorola
M6809 cpu running at 2MHz, 256KB of memory, two 8" floppies, a 20MB Win-
chester disk and four terminal ports. There were also two SWTP termi-
nals and a serial printer.

Uniflex requires a system with at least 128KB of memory and twin 8"
floppies. Such a system would cost about 5000. Expansion is possible
up to a total of 1MB memory and several disk drives. It is claimed that
the maximum system could support about 20 users.

The evaluation system would cost about 12000, including terminals,
printer and software.

Impressions

The hardware appears robust, particularly the winchester. I did
not like the printed circuit boards in the cpu assembly being supported
by their edge connectors. Nevertheless the system performed reliably
half an hour after being taken out of a very cold car boot. There were
three components to the main system, the cpu box with memory, measuring
about a foot by two feet, the floppies in a similar sized box and the
winchester in a box about two foot by two foot. The whole 1lot fits
neatly into a desk also supplied by SWTP.

The terminals were SWTP's own. These are extremely powerful intel-
ligent terminals with rudimentary but impressive graphics facilities.
Their looks were strange at first sight but one quickly got used to it.
The keyboards were high quality and seemingly robust and no fault could
be found with the picture quality. However the coating on the screen
surface on both seemed to be coming away, giving a curious out of focus
image at the corners. These terminals have been carted about and sub-
jected to much abuse so it was amazing that they worked at all. All the
terminal parameters could be changed from the keyboard by typing various
control character combinations, including the baud rate.

The software too was robust, although sensitive to wild address
references. I did not manage to cause appreciable file system damage
even though the system crashed several times. The main command inter-
preter 1is based on the Unix shell, but with only a small subset of

EUUGN Vol. 2 No. &

features. Languages available on the evaluation system were assembler,
C, basic and Pascal. I did not have the time to test the Pascal and

ignored the assembler. Utilities supplied with the system were only a
small subset of those a Unix user is accustomed to, but are increasing
in number all the time. One has to pay extra for languages beyond
assembler. A very good programmers' editor 1is available as is a
sort /merge package.

Features

The file system is closely modelled on the Unix file system. Files
may be up to l billion bytes long and are considered to be simple col-
lections of characters. I/0 devices appear in the file system as spe-
cial files.

The system calls appear different at the first glance, but from C a
Unix like interface is provided. Some incompatibilities still remain,
but the suppliers are actively working on removing them. A major addi-
tion is a system call enabling one to lock a section of a file (1 to 64K
bytes long) for exclusive access. Although simple in concept, this is a
viable alternative to the semaphore system as implemented by Glasgow.
The locking does not actually preclude writing the 'locked' section,
unless the new writer also does a lock system call. This mechanism is
thus useful for system programs such as printer spoolers etc, but not
general user software. Extending it should not be difficult.

The memory management appears similar to the small PDPll's, with
4KB segment size. A big criticism is that there is no protection
against wild addresses, so programs could corrupt one another and the
kernel. Similarly, all instructions are available to the programmer and
it is possible to mask interrupts or whatever, thus completely disabling
the machine. Before the system could be used in a hostile enviromment
such as a student programming system this will have to be fixed. Use in
a friendly environment, such as a software house, would be perfectly
feasible. The C compiler in particular, generates reliable code.

The system allows programs to be up to 64KB in length, of which at
least 4KB 1is reserved for the stack. Sharing text is allowed. User
id's are similar to Unix (8 letters all lower case) and there 1is no
notion of groups. ‘

The shell is a small subset of the Unix shell, allowing pipes, 1/0
redirection and background processes. Shell scripts are possible, but
there does not seem to be any facility for changing the flow of control.

The C language recognised by the compiler is almost that in the
'book'. Exceptions are bit fields and structure assignment. For some
unfathomable reason initialisations of variables are not permitted. The
compiler is quick and seems to produce good code.

The stdio library is implemented almost in its entirety so most
Unix C programs should work on Uniflex. The C compiler and the
libraries are undergoing improvement to bring them closer to the stan-
dard.

The Basic supplied looks reasonable, if one can say that of any
Basic. It would seem to be related to DEC Basic and is similar to the
one in Flex. Those used to DEC Basic will have to be careful at first,
those converting up from Flex should not have any problems. There are
some deficiencies though. The if-then-else is too primitive, not

U1

EUUGN Vol. 2 No. & 42

-3 -

allowing multiple statements per line after the 'then' if the condition
is false. Only simple expression functions are allowed. On the other
hand the macro definition facilities look pretty useful.

Performance

The performance of what is after all only an 8 bit microcomputer
was impressive, particularly in file handling. SWTP claim a swap rate
of 180KB per second and a file to file copy rate of about 25KB per
second. Some I/0 times are given in the following table. They are for
copying a 480 block file.

System CPU Elapsed (sec) msec/block
Unix PDP11/70 21 21.8
IAS PDP11/70 19 19.8
Uniflex M6809 (1MHz) 27 28.1
Uniflex M6809 (2MHz) 24.6 25.6
VM/UNIX VAX11/780 9 9.4

The last two figures were obtained here thus justifying the SWTP claims.

Benchmark timings

Scripts were run to test the fork/exec performance and the Kashtan

benchmarks to test ipc and context switching. The Kashtan benchmarks
contain bugs, and the multiprocess versions gave inconsistent timings.
These are quoted below, but no attempt can be made on assessing perfor-
mance. All the tests were repeated three times, except where stated.

DR1

Compile and link the ubiquitous C program:

main()g

/* this is a timing test */
long int 1i;

i=1;

while (i!= 10000)

i+=1;

t

The times were:
11.3 real, 2.5 user, 4.2 sys
11.3 real, 1.6 user, 4.3 sys
11.8 real, 2.2 user, 3.9 sys
DR2
Change into a directory containing 52 files:

cd /usr/include ; echo 'ls | we' | time sh

There were 52 files, the names adding up to 783 characters.

EUUGN Vol. 2 No. 4 43

1.6 real, 0.3 user, 0.8 sys
1.7 real, 0.2 user, 1.2 sys
1.7 real, 0.3 user, 1.2 sys

DR3
cd /usr/include ; echo 'cat * | we' | time sh
There were 3050 lines, 8846 words and about 76000 characters.
18.6 real, 10.2 user, 4.3 sys
18.1 real, 9.9 user, 4.8 sys
18.6 real, 10.6 user, 4.3 sys
DR4

The following was simulated using a file of all the names:

cd /usr/include
echo '"for A in * ; do cat $a; done | wc' | time sh

What was actually done was:

cd /usr/include
echo 'sh temp | we' | time sh
(where temp was: ' cat fl ; cat f2 ; ... ')

The numbers were unsurprisingly the same as before, but the times were
now:

31.8 real, 11.4 user, 13.4 sys
29.9 real, 11.1 user, 12.6 sys
30.2 real, 9.9 user, 15.0 sys

From the last two tests it can be calculated that the cost of a
fork(), exec(), exit() sequence for the system is:

0.24 seconds real, 0.011 seconds user and 0.18 seconds system time

This is as fast as the fastest 16 bit Unix V7 system. This does not
mean that Uniflex will outperform a PDPl11 in normal timesharing applica-
tions, but that it is very quick in generating new processes.

Kashtan Benchmarks

The programs were run, but they contain bugs and also the timings
were very inconsistent. Nevertheless the Uniflex system performed the
signaling without context switch test at about 60% the speed of the
PDP11/45 running fairly standard V7, and the context switching test at
30 to 40%.

The IPC tests show a performance between 20 and 304 of the
PDP11/45.

The general feel was of a fairly quick machine, not in the league

EUUGN Vol. 2 No. &4 Ly
-5 -

of the PDP11/45, but then the cost is an order of magnitude less than
the 11/45 was in its day.

Conclusion

The Uniflex system is a modestly priced entry level system for peo-
ple wanting Unix-like facilities. It remains to be seen how the pricing
will be affected by the 16 bit microprocessor based competitors. Where
the system really comes into its own is when owners of Flex systems
(small M6809 based systems) wish to upgrade. A modest investment will
buy them a significant improvement in performance and facilities, with a
system sutficiently similar to Flex on the surface to avoid alienating
the users.

P.S.

I have asked Mr. Russell Brown of South West Technical Products to
comment on the above and he came up with the following points which I
quote:

1) The maximum number of terminals supported on the system is 32.
This is with the use of an I/0 pre-processor.

2) A new processor card (the MPU-1) is to become available shortly.

This card incorporates hardware protection of the memory mapping
registers (accessing of which will cause the system to crash), 64
memory maps (the previous board only had one) and improved context
switching.

3) The C compiler now has variable initialisation and structure
assignments, Bit fields are almost here (being tested as I
write).e

4) The bug in wc has been corrected (my fault for using an int!!).

And finally I would like to thank SWTP and Russell Brown for their
cooperation,

® April 1982, Zp

EUUGN Vol. 2 No. & Ls

(@) ATsT

Technology Licensing Amencan Telephone and
y L S
Telegraph Company
Guillord Center
P O Box 25000
Greensboro, N C 27420
Phone (919) 637-5000
Cable TWX 510 925-1176

Thank you for your recent interest regarding our UNIX* Time-Sharing
Operating Systems. We are pleased to announce that UNIX System III
can be made available to qualified institutions under an Educational
Software Agreement on a per CPU basis for the following rates:

Initial CPU ~ $800.00 (includes distribution of

set of tapes and documentation)
Each additional CPU - $400.00

Each software/documentation - $400.00
distribution

Educational institutions may upgrade all CPUs licensed as of September 30,
1982, in their initial request for a UNIX System III license for the $800.00
fee. Your institution should submit one request for upgrading which defines
all such licensed CPUs by type, serial number, and location.

Educational institutions may also license UNIX System III under an
administrative agreement for the following fees:

Initial CPU - - $16,000.00
Each additional CPU - 5,400.00

Full upgrade credit will be given for any prior fees paid for an adminis-
trative license on the same machine.

If you feel you qualify for an educational license and wish to apply,
please write to:

AT&T

Technology Licensing

P. 0. Box 25000

Greensboro, North Carolina 27420

and provide the following information:
1) The type of software you wish to obtain.
2) The model of computer on which it will run.

3) CPU serial number of that machine.
4) Specific location of machine.

*UNIX is a trademark of Bell Laboratories

EUUGN Vol. 2 No. 4 16

5) A statement of your intention to use the software for
educational/academic purposes only, as opposed to
administrative or commercial use.

6) Type of funding used to acquire the requested software and
type of funding for proposed projects that will use the
software.

7) Specific academic and educational areas that will use the
software (i.e., courses within school curriculum, masters
or doctorial thesis, etc.).

8) Authorization by Department Head or the appropriate
administrator.

9) Address of your administrative office.

10) Procedures for making the results of research available
to the public on a non-preferential basis.

If you find that I can be of further assistance, please do not hesitate to
call on (919) 697-5081 or (919) 697-5082.

Sincerely,

-

.)
///,WJK /}744%13 q,/

Technology Licensing

EUUGN Vol. 2 No. 4

UNIX bulletin

NLUUG
Local UNIX-systems Group, Netherlunds

Met dit bulletin willen we een aantal zaken onder uw aandacht brengen. Veel van deze zaken ver-
gen wat spoed, zodat we dit bulletin buiten de EUUG newsletter om naar de leden van de
NLUUG sturen. Omdat we tevens wat reklame willen maken voor de NLUUG wordt dit bulletin
ook naar andere adressen, waarvan we weten dat men in UNIXT geinteresseerd is, verstuurd. Ech-
ter deze adressanten zullen de statuten van de NLUUG niet in dit bulletin aantreffen. Treft u
geen statuten aan in uw bulletin en stelt u daar toch prijs op dan verzoeken wij u kontakt op te
nemen met het NLUUG-secretariaat: Marten van Gelderen, Nikhef-K, Postbus 4395, 1009 AJ
Amsterdam, tel 5922030.

Kontributie regeling

Vanafl 1 november 1982 wordt de regeling ten aanzien van de kontributic van de EUUG en de
NLUUG veranderd. Na die tijd worden alle lidmaatschappen geregeld via de NLUUG. Dat wil
zeggen dat de kontributie direkt aan de NLUUG betaald kan worden. Details, zoals de grootte
van de kontributie-bedrag, rekeningnummer e.d. vindt u in de NLUUG brochure, bijeevoegd in
dit bulletin. In januari 1983 ontvangt u van de NLUUG een faktuur voor het lidmaatschap van
de NLUUG en de EUUG. Door uw lidmaatschap van de NLUUG bent u automatisch lid van
de EUUG. Dc nieuwsletter van de EUUG blijft u dus toegezonden krijgen. Ook kunt u gebruik
blijven maken van de diensten van de EUUG (networking, software distributies, EUUG meetings
ete).

Zijn er klachten (geen newsletter ontvangen, e.d.) dan kunt u kontakt opnemen met het NLUUG
secretariaat of via de gemakkelijke weg door het netwerk naar mevax!nluug,

10 december NLUUG meeting

Op 10 december 1982 zal de cerste officiele NLUUG meeting plaatsvinden. Plaats: VU, Amster-

dam.

Er zijn drie paralelle sessies gepland:

- Lezingen sessie; voorzitter Teus Hagen, MC, Amsterdam.
Voor deze sessie is iemand uitgenodigd van Bell Laboratories. Wie dat precies is wordt
momenteel nog even geheim gehouden. Bovendien krijgt ook u de kans om een lezing te hou-
den. U wordt uitgenodigd om de titel van de lezing en een abstract voor 24 oktober op te stu-
ren naar Teus Hagen, MC. Kruisluan 413, 1098 SI Amsterdam.

- UNIX introduktie; voorzitter Hendrik Jan Thomassen, IVV, KU, Nymegen.
Deze sessic is bedoeld om de nieuwsgierigheid met betrekking tot UNIX wat te bevredigen.
Zij die denken dat UNIX een andere naam voor CP/M is, krijgen de gelegenheid hun kennis
bij te schaven. Tevens zullen enige videoopnames van Bell Laboratories over UNIX vertoond
worden (voor het eerst in Europa!). Deze sessic is vooral bedoeld voor niet leden.

- Tentoonstelling van UNIX produkten; voorzitter A.S. Tanenbaum. VU, Amsterdam.
Verkopers van hardware en van software. welke enigzins met UNIX tc maken hebhen, krijgen
de gelegenheid hun produkten tentoon te stellen. Hicrvoor is een aparte zaal ter beschikking
gesteld. Indien men produkien op 10 december tentoon wilt stellen dan dient men hiervoor

FUNIX s 2 Tridenark of Bel Laboratorios.

L7

EUUGN Vol. 2 No. 4 L8 ,

Kontakt op te nemen met A.S. Tanenbaum, afd. Informatica, Wis- en Natuurkunde faculteit, de
Boclelaan 1081, Amsterdam, tel 5482975,

Gastheer van de meeting is de afdeling Informatica van de Vrije Universiteit te Amsterdam. Vlak
voor de meeting zullen nog uitnodigingen verstuurd worden met de details van de meeting.

EUUG newsletter

De disk met de adreslabels van de EUUG-computer is drie maanden defekt geweest. En natuur-
lijk was er geen backup. Dit heeft er toe geleid dat de verzending van de newsletter even op zich
heeft laten wachten. Het juli-nummer kunt u nu eerdaags verwachten (tweede week van oktober).
Kort hierop kunt u ook het oktober-nummer verwachten. Het oktober-nummer wacht nu slechts
nog op de verslagen van de meeting in Leeds. De verwachting is dat volgend jaar de administra-
tieve afhandeling van EUUG zaken sneller zullen verlopen, aangezien vanaf 1 oktober een admi-
nistratie kantoor in de hand is genomen.

System III nieuws

Op de EUUG meeting in Leeds heeft AT&T bekend gemaakt dat de prijzen voor een educatieve
license voor UNIX SIII zijn gewijzigd:

Initi€le CPU $800, en $400 voor een add-on of een extra kopie van de documentatie en de
software. Alle educatieve instituten kunnen hun educatieve license van voor 30 september 1982
eenmalig ‘verheffen’ tot UNIX SIIT voor de totaal prijs van $800.

Een administratieve SIII license voor educatieve instellingen kost $16000, $5400 voor de add-on.
De prijzen voor de andere license-typen zijn niet veranderd.

De aanvragen voor een educatieve license dient voorzien te zijn van het CPU-type, seric nummer
van de computer, de lokatie en een aantal gegevens waarmee duidelijk gemaakt moet worden hoe
educatief of non-profit men wel niet is (6 items).

Adres: AT&T, Technology Licensing, PO Box 25000, Greensboro, NC 27420,US.

NLUUG statuten

[n dit bulletin kunt u ook de statuten aantreffen van de NLUUG, zoals die momenteel bij de
notaris liggen. Op 10 december zal tevens de algemene ledenvergadering of officiele oprichtings-
vergadering gehouden worden. Mocht u aanmerkingen hebben op de statuten, dan verzoeken wij
u deze voor 24 oktober aan ons kenbaar te maken. '

NLUUG UNIX brochure

Omdat er veel vraag is naar UNIX en naar de gebruikersvereniging hebben we een brochure met
wat algemene UNIX informatie samengesteld. Aan het bestuur van de EUUG is verzocht om iets
dergelijks te doen. Misschien kunnen we de brochures van de EUUG en van de LUUG’s bunde-
len tot een geheel. Bijgevoegde brochure is een aanzet en kan, mits onveranderd, gebruikt worden
voor verdere publikatie.

EUUGN Vol. 2 No.

UNIX (%) for the STD bus

by
Luiqi Cerofolini
University of Boloana
(Italy)

(£) UNIX iz & trademzrk of Fell Llatoratoriec.

INTRODUCTION. The STI bus, jontly developped by Nostek and Fro-Log
around mid-1978 and now being in the pubklic domain, has qained wide
acceptance among designers and, with over 70 manufacturers producing
board based products for it, it is one of the fastest growing buses of
the past ten years. So it wac natural start thinking to make UNIX, one
of the most popular operating systems available to-day, running on the
STI. The CPU choice was very natural. The STDh data bus is 8-bit wide
while UNIX was oriqinally designed for & 1é6-bit CFPU: The Intel BOEB
CPU and associated co-processors 8089 for I/0 and and 8087 for number
crunching seemed to satisfy nicely the general systes requirements.
Eeczuse pf the small size of the STI boards (4.5 in. » 4.3 in,) we
tzve been forced to work on @ very modular multi-procecsore system and
this turned out to be the key factor in order to have & very high
perfoMance system,

Ve divided the system into four main subhsysteas or Functional
Units (FU): CPU, terminals, disk and tape, memory. In order teo
cffload the CPU from low level peripherals control activities we needed
intelligent 1/0 controllers, but this was contrastina with the wvery
emall board size. S0 we opted for @ two-toards set solution for every
FI! {except memory that fits nicely into one STD board): one of the two
boards, the Universal Processor Unit or UPU, is the same for all FUs,
while the other bord, the Special Unit or SU, is of course taylored to
specific functions. The two hoards of the same FU are connected
together thru a flat cable.

This possibility of sharing the saue hardware hetween different
FUs was very apreciated by all people working for the project: e had
the csome well known and detuqied piece of hardware {(the UPU) ac the
starting point for all new specialized SUc we needed for the system.
and this wac @ decisive fact for the success of the whole project!

THE UPU STRUCTURE. All the UFU= {(Universal Procescor Units) share the
same hardware design ond their wmain components ave: the 8032 CPY, owne
free 40 pine socket (to be used for @ cooprocesor lile the B0R° or the
8ng7 or for @ Silicon Keal Time Operating System Kernel like the 380130)
whose usaqe 1t very application dependent, 1latches and STD tuffers,
logic for IMAing intc the sysytem STD bws, local ROM and RAM and &
rumpers confiquratior arrav,

REMALY . Pecaucse ¢f the precence of multiple bus masters, we had
to charae the (very crude) STH buc contention resolutien crheme
(EUSROY, BUSACK#), Ue opted for a parullel reseolution ccheme wuszing @

49

EUUGN Vol. 2 No. 4

priority encoder and decoder combination thus permitting up to 8
wasters to live on the bus. The XFER logic of the UPU is dedicated to
control the data transfer between local and system memory: the local
CPU sets the 2-bits XFER_REG before attempting & data transfer.

THE CPU EOARDS SET. In this case the UPU btoard has the number cruncher
8087 chip into its spare socket and @ flat cable takes the hiqhest 8
address tite DA13I-DA1Y to the associated SU, in this case called the
Hewnory Manaament Unit (MNU). The MMU has the responsability to remap
these @ddresses into Physical Addresse PA13-PA19 which =zre then
buffered into the STD. The MMU, in addition to remapping, is also
responsible for memory protection and previleged instructions trapping.
The WMU module operates in two modes: the system mode, used only by the
UNIX operating system, allows modificatipn of the memory map, access of
the 1/0 devices and interrupts. Processes running in user node are not
allewed to use these previleqed functions. The MMU unit contains also
one programmable timer for syctem timing requirements (time ticks and
tineouts) and one proqrammable interrupt controller chip.

DISK AND TAFE CONTROLLER. The UPU koard has this tire one 8089 I1/0
processor housed into the spare socket. The SU board contains the
device reqisters to communicate with the system, the interrupt 1logic
and @an B-bit qeneral pourpose interface to an intelligent
controller-formatter, the SA-1400 from Shugart Corp., for up to four 8"
winchester hard disk drivers and to four 1/4" streamer tape drives.
The hardware of this SU is very strzightforward but, when combined with
the intelligence of the UPU, makes the resulting {wo boards set a very
powerful disk and tape controller matching qracefully the UNIX general
requiresents for such kind of peripherals control.

REMARK: In our implementation of thic SU we had = lot of free
real estate on the board. So we decided to add two Serial 1/0 chanmnels,
timer @nd interrupt logic, and one parallel port. Thic enhanced FU can
be wused, with the addition of one 256Kk memory board, at & minimal
(three STD hoards set) system to run UNIX {even if with poor menmory
nanzqment capasbilities).

TEFRMINALS CLUSTER CONTROLLER. In many UNIX systews communicaztion with
terninal worketztions is usually done in an interrupt-driven 1/0 one
character at @ time. Further CPU loading is due to intra-line editing,
datz flow control, errors and communication protoccls hamdling. Qur
tup bhcards ¢et for terminale control offloads completely the cystem CPU
fror this kind of low level, but wvery timse consuming, tasks.
Connuaication with terminals is handled, as we chall scee later, in o
very high level and efficient way. The UPU bourd has the Silicon Real
Time Operatina System Kernel 80130 chip incstalled into the spare socket
while the SU bowrd has thiee serial I/0 channels, one programmable
timer 7zounter, one progqranmmable dinterrupt controller, device regictere
foar ceyetem communication and interrupt logic.

Atsc in thie case the hardware of the SU structure i¢ very simple,

EUUGN Vol. 2 No. &4

but, @t in the case of the disk and tape controller, hecomes very
powerfull when conbined with the intelligence of the UPU board.

NEVICE HANDLERS. The nmain CPU and I/70 Functional Units (FUs)
caommunicate using @ simple hut efficient protocol build on & queued
command-response structure, UWhen for exanple CPU has an I/0 request
for @ certain FU it generates an I/0 command by adding = new 1/0
Parameter Block (JOCPR) with an FU tag to the COMMAND_QUEUE associated
with the FU. From its side the FU, when ready to procescs an I1/0
conmand points to its COMMAND_QUEUE, process the 1/0 comaand and frees
the pointed IOCFR retaqiing it for CPU use {and ,if requested,
interrupting the CFPU). This buffering of I1/0 commands permit to the FU
also to optimize the processing of commands: for example the disk
controller usually tries to optimize disk accesses minimizing heads San
Vito dance,

A similar set of operation occurs for the RESPONSE_QUEUE, which
2lco iz associated to every FU.

All FUs are very much the saie to the operating system ond this
uniformity has various nice consequences like easy maniainance, short
desiqn time, qo00d performance and low cost.

CONCLUSIONS. 1In order to make UNIX running efficiently on the STD Lus
we made two basic decisions: the first was the CPU and the associated
co-processors choice; the second wss multiprocessing with =all
Functional Units (CPU, Disk and Tape, Terminals) sharing the same
intelligence, thus facilitating both the hardware and software system
development. '

EIBLIOGRAFY

I.Ritchie et alt. The Unix Time-Sharing System, The Bell Systes

Technicesl Journal, (Special Isssue), July-Auqust 1978, Vol. 57, No. §,
Part. 2.

51

EUUGN Vol. 2 No. 4 52

Prolog - What it is and Where to get it

Fernando Pereira

Why should 1 want Prolog?

Prolog is a simple but powerful programming language for symbolic computation based on a computa-
tionally treatable subset of logic. It can be seen as a clean combination of the concepts of symbolic pro-
gramming languages such as Lisp and those of relational databases.

Prolog was born at the University of Marseille in the early 70’s. After 8 years of comparative obscurity
in a small community of dedicated implementors and users, Prolog has been brought to the attention of
the wider world by its surprising adoption as the starting point for the Japanese 5th generation com-
puter research effort.

Prolog has been used for (order of items doesn’t imply any form of ranking):

- natural language interaction with computer systems
- architectural design

- drug design (very successful commercial application in Hungary)
- VLSI circuit analysis

- artificial intelligence research

- compiler writing (Prolog itself, APL)

- algebraic computation

- database access and data description languages

- discrete event simulation

- program development systems

- expert systems

and certainly more that I can’t remember or don’t know about.

I have a Unix system; how do I get Prolog?

Please note that Prolog, like other interactive symbolic languages requires more space to run than
lower-level languages. Don’t expect miracles on a PDP-11.

For the PDP-11 UNIX V6 or V7:

- Chris Mellish’s system, obtainable from the Dept. of AL
Edinburgh University, Forest Hill, Edinburgh, Scotland.

- Very compact and reasonably fast, will run substantial
programs even without separate 1I/D space.

- As far as I know, its development has been frozen.

- Written in PDP-11 assembly code.

For the VAX UNIX 4.1 BSD or Eunice under VMS:

EUUGN Vol. 2 No. 4

- CProlog, obtainable from EdCAAD, 20 Chambers Street,
Edinburgh EH1 1JZ, Scotland.
- Designed for machines with 32 bit addresses; requires
at least 750K of virtual memory to run comfortably.
- it has an extensive set of system predicates.
- still being developed and improved: if you get the
initial licence from EdACAAD, you may ask me for
bug fixes and improvements.
- Written in C and Prolog.

Forthcoming:
For the VAX and Z8000:

- POPLOG, combined POP-11 and Prolog from the University of
Sussex (available now only for VMS).

- Reported to be somewhat faster than CProlog.

- Written in POP-11 and VAX assembly code.

For 68000:

- EdCAAD’s CProlog is being ported.

All these systems comply broadly with the syntax and repertoire of system predicates described in "Pro-
gramming in Prolog” by Bill Clocksin and Chris Mellish, Springer Verlag 1981. This is the book to get
if you want to get into Prolog.

Others:

There are several other more or less portable Prolog systems written in C or Pascal, but they are
rather experimental and [cannot recommend them for general use.

If you have information about other Prolog systems, want to know more about Prolog or have bug
reports on CProlog, write to:

Fernando Pereira

Artificial Intelligence Center
SRI International

333 Ravenswood Ave.

Menlo Park, California 94025
USA

53

EUUGN Vol. 2 No. & 54

C: TOWARD A CONCISE SYNTACTIC DESCRIPTION

Patrick A, Fitzhorn and Gearold R. Johnson
Department of Computer Science
Colorado State University
Ft. Collins, Co. 80523

C is a widely used, low level systems programming language that has
found a wide following since its conception at Bell Labs in the middle
1970's. It is the host language of the operating system UNIX. currently
available on a wide variety of machines: from the Intel 8086 microprocessor
to the venerable IBM System/370. Currently. an effort is even being made
at the University of Texas to implement C on a Control Data Corporation
Cyber system.

The operating system kernel of UNIX contains 7000 lines of C [John
78]1. written to be as portable as possible. The C compiler itself operates
in two passes and consists of 8000 lines of C. of which about 1500 are tar-
get machine dependent in the code generation phase. According to Ritchie,
et al [Ritc 78a]l C has completely replaced assembly language programming in
Unix based systems.

A system recently introduced by BBN Computer Corporation, the C
series, is the first machine to be designed with C as its low-level machine
language. It also implements, in microcode, the most frequently used con-
structs of the language allowing for very fast response times.

M One of the unique features of C is the structured concept of pointer
arithmetic, manipulation and handling as a specific base type. Although
some have contended that pointers should not be used [Hoar 751, the type is
handled well and quickly becomes indispensable. Pointers to scalar types
(integer. character, pointers, etc.) and aggregates (structures, arrays,
etc.) are manipulated in a very terse manner. Because of the succinctness
of notation however, declarations can become extremely cryptic to generate
as well as understand! As an example, consider the following valid func-
tion declaration:

int (* (* (* Test ()) (1) ()) (]

Test is a function returning a pointer to an array of pointers which
point to functions returning pointers to arrays of integers! Once a
thorough understanding of pointer manipulation is gained. the notation
becomes a help rather than a hindrance, even close to APL in notational
conciseness. This feature. along with preprocessing capabilities, struc-
tured types built from basic and user definable types (the "enumeration”
type documented in 1978), and the extremely rich and powerful set of

EUUGN Vol. 2 No. b

C: Toward a Concise Syntactic Description 4 2

operators make C an excellent tool for systems programming.

From the viewpoint of the compiler writer however, the language has
severe drawbacks. Anderson [Ande 80] has described C's syntax as "irregu-
lar and messy". The cavalier attitude taken by the authors of the language
can allow numerous misconceptions of the language's syntactic and semantic
capabilities. It would appear that the language's syntax has never experi-
enced a period of rigorous definition and design. This is witnessed in
part by the large number of semantics associated with the language. It
seems C 1is given a rough outline in the syntactic description, requiring
the semantics to force a viable implementation of the language.

Here then it would seem, a problem exists. On the one hand, C has
been targeted for systems programming and implementation. i.e. operating
systems and compilers, but due to its vague (and sometimes incorrect) gram—
mar description, the development of a campiler for the language can become
a major task.

As an example of the syntactic vagarity, consider the following valid
function definition:

extern unsigned long int VALID () { ... function body ...}

Note the long list of qualifiers appearing before the function name, VALID,
Extern is a storage class specifier, unsigned long int is the type of the
function (a 32 bit unsigned integer). Now note the following function
definition in BNF from [Kern 78]:

<function definition> ::= <type specifier> <function declarator> <func-
tion body>

::= char
short
int
long
unsigned
float
double
<{struct or union specifier>

<{typedef name>

It is obvious that function VALID cannot be produced from the syntac-
tic description of a function.

<type specifier>

Now consider the following invalid function definition:
int INVALID () [5] { ... function body ... }

From the definition, INVALID is a function returning an array of five
integers. Functions in C, however. may only return a pointer to struc-
tures, unions, arrays or other functions. But, from the syntactic

55

EUUGN

Vol. 2 No. 4 56

C: Toward a Concise Syntactic Description 3

description of a function declarator:

1

<function declarator> ::= <declarator> (<parameter list>)

opt

<declarator> i:

identifier

(<declarator>)

* <declarator>

<{declarator> ()

<declarator> [<constant expression>]

opt

it is clear that the incorrect function return value for INVALID can be
built from the syntactic description. Therefore, it is relatively easy to
build constructs that are illegal, or to attempt to build legal constructs
that cannot be generated fram the syntactic description. It then becomes
the purpose of the large number of semantic definitions associated with the
language to "weed out" the correct fram the incorrect and to allow the
correct. It is the purpose of this paper to begin a syntactic description
of C that will reduce the number of semantic "hooks" required by incor-
porating many of the semantic idioms into the syntax, producing a clearer,
more complete definition of C.

The syntactic description was specifically scanned in an effort to
maximize the correctness of the syntax. while minimizing the number of
semantics associated with the grammar. The study focused on three areas of
concern in Bell Labs' version of C. whose syntax description is listed in
[Kern 78] and [Ritc 78bl:

1. Function definitions and declarations are very incamplete,
requiring a large number of semantics to check conditions
implementable in the syntax.

. Statement descriptions are confusing. and in one case in error.

Data and function types are used haphazardly in the grammar,

with no thought to trap the utilization and scope of storage

class specifiers and types.

w N
.

in addition to the above areas. a study wasi also conducted concerning SLR
parser compatability.

EUUGN Vol. 2 No. & 57

C: Toward a Concise Syntactic Description 4

P o0 definitions and declarati

One of the annoying discrepencies in C's syntax has already been docu-
mented in this paper: illegal function declarations being syntactically
allowed, and legal function declarations being excluded. Other areas in
the function syntax required close checking also. Three specific areas
needing improvement were found:

1. allowing only valid implementations of storage class specifiers and
function types, and disallowing any incorrect constructions
in function declarations and definitions.

2. requiring functions to return pointers to aggregates
(structures and unions), arrays and other functions.

3. separating function declarations from data declarations.
Data declarations are extremely broad in syntactic scope,
while function declarations are limited.

Storage class specifiers and function typing problems were solved in
general by adding a new syntax section called 'type analysis'. This sec-
tion yields a tightly defined syntactic definition of typing requirements
in the language.

According to Ritchie, et al [Ritc 81]. a function may not return
arrays, structures, unions or functions, although they may return pointers
to these types. Bell-C's function declarator, for which the BNF descrip-
tion has already been included. makes no restrictions on these cases. It
was felt that the semantics used to inforce these rules could be concisely
reproduced in the syntax. Note the following legal and illegal examples:

leqal tactic descripti

F is a legal function returning:

1. int FO) an integer

2. char *F(a pointer to a character

3. union **F() a pointer to a pointer to a union
4. int (*F(Q)) [] a pointer to an array of integers

5. struct * (*F()) () a pointer to a function returning a pointer
to a structure

1leqal l cactic descrivti

W is an illegal function returning:

6. char (W()) [] a function returning an array of characters

7. int (*WQO [1) O a function returning an array of ptrs to
functions returning integers

8. char ((*W()) () [l a function returning a ptr to a function
returning an array of characters

By separating the legal declarations into two parts, a syntactic
definition can be constructed allowing legal definitions and declarations
while disallowing illegal constructs. The first part allows functions with

EUUGN Vol. 2 No. & 58

C: Toward a Concise Syntactic Description 5

no additional function ('()') or array ('[]') qualifiers. This allows
declarations of the forms specified by 1. 2 and 3 above. The second part
allows a function to return functions and arrays only as pointers to these
items. As a byproduct of this division, aggregate types can be neatly
excluded from a declaration not returning a pointer.

S 3 s
Consider the following syntax fram Bell-C:

<{statement> ::= <compound statement>
{expression> ;
if (<expression>) <statement>
if (<expression>) <statement> else <statement>
while (<expression>) <statement>
do <statement> while (<expression>);
for (<expression> ; <expression> ; <expression>)
<statement>
switch (<expression>) <statement>
case <constant expression> : <statement>
default : <statement>
break;
continue;
return;
return <expression> ;
goto <identifier> ;
<identifier> : <statement>

'

<compound statement> ::= { <declaration list> <statement list> }
opt opt

<statement list> ::= <statement> | <statement> <statement list>

The switch statement in C is analagous to the Pascal Case statement or
the PL/1 Select. It evaluates an expression and then selects the proper
sequence of code to execute from the constant evaluated. An example from
[Kern 78] follows:

EUUGN Vol. 2 No. 4

C: Toward a Concise Syntactic Description 6

switch (exp) { case '0' : /* empty */
case 'l' :

case '9'" : ndigit [c-'0']++;

break;
case ' ' : nwhite++;

break;
default : nother++;

break;

}

The switch evaluates the expression ‘'exp', selecting the proper case
to execute. If no case is satisfied, the default (if present) is executed.
From the Bell-C description, a case statement is the word ‘'case' followed
by an expression, a colon and a statement. It becomes clear from the syn-
tax that the statement list following case '9', ' ' and the default cannot
be constructed. Multiple statements after a colon, according to the syn-
tax, can only be generated using a compound statement, which would generate
a semantic error because of the missing left and right braces required for
the compound statement.

Also, from the Bell-C syntax, the following illegal statement set can
be constructed:

switch (<expression>) goto <identifier> ;

This is illegal, although constructable because of the loose syntactic
description associated with statements in general. By breaking the state-—
ment syntax into statement type descriptors, only correct statements can be
generated.

Data and function typing

This section of the Bell Labs' syntax was the hardest to define and
change. A large number of semantic idioms are associated with each syntac-
tic production outlining various allowable type configurations for dif-
ferent declaration contexts. A data declaration can consist of many inter-
related constructs which vary with the type (char, struct, etc) and the
context (external. i.e. outside of a function; internal, inside a campound
statement; and parameter declarations). It is sad to note that most of our
time was spent in this section of the grammar. yet it produced the least
results. As an example of the variation involved consider the following
data declaration from [Kern 78]:

59

EUUGN Vol. 2 No. & 60

C: Toward a Concise Syntactic Description 7

extern struct KEY { char *KEYWORD;
int KEYCOUNT;

} KEYTAB [] = { "break", 0;

"case" . 0;

mehile", 0;
};

This declaration defines a structure called KEY which is external. It
consists of two members, a pointer to a character (KEYWORD) and an integer
(KEYOCOUNT) . KEYTAB is an array of type KEY and gets initialized with C
keywords and an initial count of 0. Note that the array length of KEYTAB
is implicit from the initialization. This declaration consists of four
distinct parts: a storage class (extern); a data type (struct); a vari-
able declarator (KEYTAB []) and an initialization of the declarator. The
pattern is simple, but the construct itself. when semantics are added, is
not- As an example, consider a few of the associated semantics:

The storage class specifier 'register' may only be used with
scalar types (int, char or pointer).

It is not permitted to initialize unions, or aggregates with
a storage class specifier of 'auto'.

When an initialization is applied to a scalar type, it
consists of a single expression (a constant if external) possibly
in braces.

In the above example, if the initializers were not all present, or not
simple constants, the required form would be:

e o o } KEYTAB [] = { {.break.’ O}'
{"case" . 0},

.
.

{™while", 0},
};

The only syntactic elements (in declarations) addressed in this study
were storage class specifiers and data typing. By adding two new sections;
called 'type analysis', which was discussed above and ‘'data declarations’,
discussed below, the problem is partially solved.

The first step taken to provide some syntactic structure was to
separate declarations into four distinct groups: external data declara-
tions (outside of a function), internal data declarations (inside a com—
pound statement), function declarations and parameter declarations. Each
has its own semantic nuances directly associated with its group classifica-
tion. Thus. it became an easier task to identify the associated semantics
and incorporate them into the syntax if possible. Storage class specifiers
were easily trapped, as each group is limited to the type of qualifier that

EUUGN Vol. 2 No. &4

C: Toward a Concise Syntactic Description 8

can be applied to it. The typing problem was partially solved, as was pre-
viously stated. The initialization problems were essentially left as is,
with minor changes for syntactic readability.

The investigation of C as a bottom-up grammar was pursued since the
implementation of the language using an LALR parser generator was the basis
for this study. Unfortunately, no LALR generator with efficient diagnos-
tics was available. An SLR parser generator was available, so it was used
for the tests.

As might be imagined, neither version of C is inherently SLR. Con-
flicts occur in many areas. with the largest number occurring with the
definition of 'primary' and 'lvalue' expressions as follows:

{primary> ::= <identifier>
<{string>
<constant>
(<expression>)
<primary> (<expression list>)
<primary> [<expression>]
<{lvalue> . <identifier>
<{primary> -> <identifier>

<lvalue> ::= <identifier>
<primary> [<expression>]
<lvalue> . <identifier>
<primary> => <identifier>
* <{expression>
(<lvalue>)

An <lvalue> is an expression referring to a manipulatable region of
storage, while a <primary> is an expression referring to any usable object.
Because the syntactic definition of the two expressions are reasonably
close. on SLR item set construction, shift-reduce conflicts occur on over-
lapping information. Obviously, a new expression class is needed combin-
ing these overlaps, allowing greater distinction between the two.

For a camparison of the two grammars, we shall define and use the
"conflict ratio". A conflict ratio is simply the ratio between the number
of parse table shift-reduce conflicts generated and the total number of
item sets constructed. The SLR generator produced 299 item sets for Bell~C
with 46 state conflicts for a conflict ratio of approximately 15 percent.
CSU~-C had 357 states generated. This increase in states was anticipated
since many new productions were incorporated in the syntax in leu of seman-
tic hooks. 80 state conflicts occured causing a conflict ratio of 22 per—
cent.

61

EUUGN Vol. 2 No. & 62

C: Toward a Concise Syntactic Description 9

Even with the moderately high conflict ratios, it is anticipated that
the grammars could be made SIR with effort. Unfortunately, since an LALR
generator was not available, comparable conflict information for that
parser could not be gathered. It is anticipated, since LALR handles more
general grammars, that the conflict ratio will be lower for both grammars.

Summary

C is a popular systems programming language for good reason. Its rich
set of operators (allowing succinct expressions), pointer manipulation,
structured constructs and user definable types all point toward an excel-
lent systems programming language. Unfortunately though, the syntactic
description of the language available in the literature [Rern 78], [Ande
801, [Ritc 780l all leave much to be desired. The only truly objective
paper on C in the literature has been Anderson [Ande 80]. He has detailed
several errors and weak points in the syntactic description which we have
tried to correct and/or implement, along with our own work.

This paper has attempted to define a C that incorporates into the syn-
tax many of the semantics currently describing the language. This should
result in easier compiler implementation, and faster compilation. As a
justification for an increase in compilation speed consider: instead of
executing code associated with certain semantic conditions. a bottom—up
parser will be shift-reducing instead, an inherently faster operation.

The authors have not attempted to completely specify C syntactically,
but rather have tried to lay the foundation for a structured. correct syn-
tax. We would welcome any comments and constructive criticism of this

paper.

References

{Ande 80] Anderson, Bruce

"Type Syntax in the Language C"
ACM Sigplan Notices 15(3) March 1980

EUUGN Vol. 2 No. &4 63

C: Toward a Concise Syntactic Description 10

[Hoar 75]

[John 78]

[Kern 781

[Ritc 78al

[Ritc 78bl

{Ritc 81]

Hoare, C. A. R.
"Data Reliability"
ACM Sigplan Notices 10(6) June 1975

Johnson, S.C. and Ritchie, D.M.

"Unix Timesharing System: Portability of C programs and
the Unix System"

The Bell Systems Tech Journal 57(6) July-Aug 1978

Kernighan, B.W. and Ritchie, D.M.
"The C Programming Language®
Prentice-Hall, Inc. Englewood Cliffs. NJ 1978

Ritchie' DoMo’ JOhnSOﬂ, S.C.' I.ESk' M.Eo al'ld Kemigmn, Baw.
"Unix Timesharing System: The C Programming Language"
The Bell System Tech Journal 57(6) July-Aug 1978

Ritchie, D.M.

"C Reference Manual"

Interactive System/One Programmers Manual
Interactive Systems Corp Santa Monica, Ca
Oct 1978

Ritchie, D.M., Johnson, S.C., Lesk, M.E., Rernighan, B.W.

"The C Programming Language"
The Western Electric Engineer 25(1) Winter 1981

EUUGN Vol. 2 No. 4 64

C: Toward a Concise Syntactic Description 11

Appendix

The following is a BNF description of C as developed by the authors.

*** PROGRAM DEFINITION ***

<C PROGRAM> ::= <PROGRAM MODULE>
<INCLUDE MODULE>

<PROGRAM MODULE> ::= <EXTERNAL DECLARATIONS> <MAIN FUNCTION> <EXTERNAL DEFINITIONS>

<INCLUDE MODULE> ::= <EXTERNAL DEFINITIONS>

<MAIN FUNCTION> ::= main (<PARAMETER LIST>) <PARAMETER DECLARATIONS> <FUNCTION BODY>
main {) <FUNCTION BODY>

<EXTERNAL DEFINITIONS> ::= <EXTERNAL DEFINITION>
<EXTERNAL DEFINITION> <EXTERNAL DEFINITIONS>

<EXTERNAL DEFINITION> ::= <FUNCTION DEFINITION>
<EXTERNAL DECLARATION>

<EXTERNAL DECLARATIONS> ::= <EXTERNAL DECLARATION>
<EXTERNAL DECLARATION> <EXTERNAL DECLARATIONS>

<EXTERNAL DECLARATION> ::= <FUNCTION DECLARATION>
<EXTERNAL DATA DECLARATIONS>

#** FUNCTION DEFINITIONS ***

<FUNCTION DEFINITION> ::= <FUNCTION HEADER> <PARAMETER DECLARATIONS> <FUNCTION BODY>
<FUNCTION HEADER> ::= <FUNCTION SC> <FUNCTION TYPE HEADER>

<FUNCTION TYPE HEADER> ::= <SIMPLE TYPE HEADER>
<COMPLEX TYPE HEADER>

<SIMPLE TYPE HEADER> ::= <SIMPLE TYPE> <IDENTIFIER> (<PARAMETER LIST>)
<TYPE SPECIFIER> <POINTER> <IDENTIFIER> (<PARAMETER LIST>)

<COMPLEX TYPE HEADER> ::= <TYPE SPECIFIER> <COMPLEX HEADER> <COMPLEX POSTFIX>

<COMPLEX HEADER> ::= (<POINTER> <IDENTIFIER> (<PARAMETER LIST>))
(<POINTER> <COMPLEX HEADER> <COMPLEX POSTFIX>)

<PARAMETER LIST> ::= <EMPTY>
<IDENTIFIER LIST>

<IDENTIFIER LIST> ::= <IDENTIFIER> \
<IDENTIFIER> , <IDENTIFIER LIST>

<PARAMETER DECLARATIONS> ::= <EMPTY>
<PARAMETER SC> <TYPE SPECIFIER> <PARAMETER DEFINITIONS> ; <PARAMETER DECLARATION

EUUGN Vol. 2 No. & 65

C: Toward a Concise Syntactic Description 12

<PARANETER DEFINITIONS> ::= <DATA DECLARATOR>
<DATA DECLARATOR> , <PARAMETER DEFINITIONS>

<CFUNCTION BODY> ::= { <INTERNAL DATA DECLARATIONS> <STATEMENT LIST> }

% FUNCTION DECLARATIONS *

<FUNCTION DECLARATION> ::= <FUNCTION SC> <FUNCTION TYPE DECLARATOR>

<FUNCTION TYPE DECLARATOR> ::= <SIMPLE TYPE DECLARATOR>
<COMPLEX TYPE DECLARATOR>

<SIMPLE TYPE DECLARATOR> ::= <SIMPLE TYPE> <IDENTIFIER> ()
<TYPE SPECIFIER> <POINTER> <IDENTIFIER> ()

<QOMPLEX TYPE DECLARATOR> ::= <TYPE SPECIFIER> <COMPLEX DECLARATOR> <COMPLEX POSTFIX>

<OOMPLEX DECLARATOR> ::= (<POINTER> <IDENTIFIER> ())}
(<POINTER> <COMPLEX DECLARATOR> <COMPLEX POSTFIX>)

CPOINTER> ::= *
* <POINTER>

*** DATA DECLARATIONS ***

<EXTERNAL DATA DECLARATIONS> ::= <EMPTY>

<EXTERNAL SC> <TYPE QUALIFIER> <DATA DECLARATION> ; <EXTERNAL DATA DECLARATIONS)

<INTERNAL DATA DECLARATIONS> ::= <EMPTY>

<INTERNAL SC> <TYPE QUALIFIER> <DATA DECLARATION> ; <INTERNAL DATA DECLARATIONS

<DATA DECLARATION> ::= <SIMPLE TYPE> <DATA SPECIFIERS>
<AGGREGATE TYPE> <DATA SPECIFIERS>
<ENUMERATION TYPE> <DATA SPECIFIERS>

<DATA SPECIFIERS> ::= <DATA DECLARATOR> <INITIALIZER>
<DATA DECLARATOR> <INITIALIZER> , <DATA SPECIFIERS>

<DATA DECLARATCR> ::= <IDENTIFIER>
(<DATA DECLARATOR>)
* <{DATADECLARATOR>
<DATADECLARATOR> <COMPLEX POSTFIX>

<INITIALIZER> ::= <EMPTY>
= <EXPRESSION>
= { <INITIALIZER LIST> }

<INITIALIZER LIST> ::= <EMPTY>

<EXPRESSION>
<INTTIALIZER LIST> , <INITIALIZER LIST>
{ <INITIALIZER LIST> } A

<AGGREGATE DECLARATOR> ::= <IDENTIFIER> { <MEMBER LIST> }
{ <MEMBER LIST> }
<IDENITFIER>

EUUGN Vol. 2 No. 4 66

C: Toward a Concise Syntactic Description 13

<MEMBER LIST> ::= <MEMBER>
<MEMBER> <MEMBER LIST>

<MEMBER> ::= <INTERNAL SC> <TYPE SPECIFIER> <MEMBER DECLARATOR LIST)>

<MEMBER DECLARATOR LIST> ::= <MEMBER DECLARATOR>
<MEMBER DECLARATOR> , <MEMBER DECLARATCR LIST>

<MEMBER DECLARATOR> ::= <DATA DECLARATOR>
<DATA DECLARATOR> <FIELD>
<FIELD>

<FIELD> ::= : <EXPRESSION>

% STATEMENTS *

<STATEMENT LIST> ::= <EMPTY>
<STATEMENT> <STATEMENT LIST>

<STATEMENT> ::= <QOMPOUND STATEMENT>
<SWITCH STATEMENT>
<CONDITIONAL STATEMENT>
<LOOP STATEMENT>
<ACTION STATEMENT>
<MULL STATEMENT>
<EXPRESSION> ;

<COMPOUND STATEMENT> ::= { <INTERNAL DATA DECLARATIONS> <STATEMENT LIST> }
<SWITCH STATEMENI> ::= switch <EXPRESSION> { <CASE LIST> <DEFAULT> }

<CASE LIST> ::= {CASE STATEMENT>
<CASE STATEMENT> <CASE LIST>

<CASE STATEMENT> ::= case <EXPRESSION> : <STATEMENT LIST>

<DEFAULT> ::= default : <STATEMENT LIST>
<EMPTY>

<CONDTTIONAL STATEMENT> ::= if (<EXPRESSION>) <STATEMENT>
if (<EXPRESSION>) <STATEMENI> else <STATEMENT>

<LOOP STATEMENT> ::= while (<EXPRESSION>) <STATEMENT>
do <STATEMENT> while (<EXPRESSION>) ;
for (<OPTIONAL EXPRESSION> ; <OPTIONAL EXPRESSION> ; <OPTIONAL EXPRESSION>) <STATEME!

<ACTION STATEMENI> ::= break ;
continue ;
goto <IDENTIFIER> ;
<IDENTIFIER> ; <STATEMEND>
return ;
return <EXPRESSION) ;

<NULL STATEMENT> ::= ;)

EUUGN Vol. 2 No. &4 67

C: Toward a Concize Syntactic Description 14

#*% EXPRESSIONS ***

<OPTIONAL EXPRESSION> ::= <EMPTY>
<EXPRESSION>

<EXPRESSION LIST> ::= <EXPRESSION>
CEXPRESSION> , <EXPRESSION LIST>

CEXPRESSION> ::= <UNARY EXPRESSION>
<BINARY EXPRESSION>
<ASSIGNMENT EXPRESSION>
<OONDITIONAL EXPRESSION>
<PRIMARY EXPRESSION>

CUNARY EXPRESSION> ::= * <EXPRESSION>
& <LVALUE>
- <EXPRESSION>

<LVALUE> —

(<TYPE NAME>) <EXPRESSION>
sizeof <EXPRESSION>

sizeof <TYPENAME>

CBINARY EXPRESSIONY ::= <EXPRESSION> <BINOP> <EXPRESSION>
CASSIGNMENT EXPRESSIONY ::= <LVALUE> <ASSIGNOP> <EXPRESSION>
(OONDITIONAL EXPRESSION> ::= <EXPRESSION> ? <EXPRESSIQ> : <EXPRESSION>

<PRIMARY EXPRESSION> ::= <IDENTIFIER>
<CONSTANT>
<STRING>
(<EXPRESSION>)
<LVALUE> . <IDENTIFIER>
<PRIMARY EXPRESSION> -> <IDENTIFIER>
<IDENTIFIER> (<EXPRESSION LIST>)
<IDENTIFIER> [<OPTIONAL EXPRESSION>]

<LVALUE> ::= <IDENTIFIER>
<ILVALUE> . <IDENTIFIER>
<PRIMARY EXPRESSION> -> <IDENTIFIER>
* (EXPRESSION>
(<LVALUE>)
CIDENTIFIER> [<OPTIONAL EXPRESSION>]

EUUGN Vol. 2 No. 4 68

C: Toward a Concise Syntactic Description 15

<BINOP> ::=

<ASSIGNOP> ::= =
=

R

/=
=
>o=
«=
&=

~
=

% TYPE ANALYSIS *

<TYPE SPECIFIER> ::= <SIMPLE TYPE>
<AGGREGATE TYPE>

<SIMPLE TYPE> ::= long <TYPE>
short <TYPE>
unsigned <TYPE>
<TYPE>

<TYPE> ::= <INTBEGER TYPE>
char
float
double

<INTEGER TYPE> ::= <EMPTY>
int

<AGGREGATE TYPE> ::= struct <AGGREGATE DECLARATOR>
union <AGGREGATE DECLARATOR>
<TYPE QUALIFIER>

<ENUMERATION TYPE> ::= enum { <ENUMERATION LIST> }
enum <IDENTIFIER> { <ENUMERATION LIST> } N
enum <IDENTIFIER>

<EMUMERATION LIST> ::= <ENMUMERATOR>
<ENUMERATOR> , <ENUMERATION LIST>

EUUGN Vol. 2 No. 4 69

C: Toward a Concice Syntactic Description 16
<ENUMERATCR> ::= <IDEMTIFIER>
<IDENTIFIER> = <EXPRESSION>
<TYPE QUALIFIER> ::= typedef <IDENTIFIER>
typedef
<IDENTIFIER>

<TYPE NAME> ::= <TYPE SPECIFIER> <ABSTRACT DECLARATOR>

<ABSTRACT DECLARATOR> ::= <EMPIYD>
(<ABSTRACT DECLARATOR>)
* <ABSTRACT DECLARATOR>
<ABSTRACT DECLARATOR> <COMPLEY. POSTFIX>

<COMPLEX POSTFIX> ::= ()
[<OPTIONAL EXPRESSION>]}

<FUNCTION SC> ::= extern
static
<EMPTY>

<PARAMETER SC> ::= register
<EMPTY>

<EXTERNAL SC> ::= extemn
static
<EMPTY>

<INTERNAL SC> ::= auto
register
extern
static
<EMPTY>

' EUUGN Vol. 2 No. 4 70

24

Proposed Changes to C
Tim Long
(timl:basservax)

October 23, 1981

Work on C at the Basser Department of Computer Science has spawned
some ideas on possible improvements to the language's definition. These
are our proposals. We solicit reader’'s thoughts on this matter.

1. Maxima and minima for arithmetic types

It is proposed that two unary operators be introduced. Their syn-
tax is given by the following addenda to the definition of expression.
To section 18.1 of The C Programming Language — Reference Manual add:

maxof expression
maxof (type-name)
minof expression
minof (type-name)

The syntax is identical to that of sizeof, but the type of the
argument must be arithmetic. These expression elements are resolved at
compile time into the maximum/minimum value attainable by the type of
the argument. The type of this value is the same as the type of the
argument .

2. Bit stream type

It is proposed that a new data type called bits be added, to super-
cede bit fields. It can also act as a representation for sets. To the
type-specifiers in the syntax in section 18.2 of The C Programming
Lanquaqge Reference Manual add:

bits—-specifier

with syntax

bits—specifier:
bits { bits-decl-list }
bits identifier { bits—decl-list)
bits identifier

bits~decl-list:
bits-declaration
bits-declaration bits—decl-list

bits—declaration:

range H
range identifier ;

range :
constant—expression
constant—-expression .. constant-expression

AUUGN Vol IV No 1

EUUGN Vol. 2 No. 4 71

The syntax of the bits-specifier and the bits-decl-list are analo-—
gous to the equivalent sections of struct, union and enum declarations.
The declaration of a bit stream defines a type which is seen as a stream
of at least as many bits as the maximum value found in the bits -
declaration. For example:

bits charset

{

'\QO" null;

'0'..'9" numbers;
'‘a',.'z' lowers;
'A'..'Z' uppers;

maxof(char);
)i
bits charset a, *p;

Unlike Pascal, bit streams can not be operated on as a unit. There
are two ways to reference the components of a bit stream. The first ig
the extraction into a long or an int (whichever is appropriate) of a
named field of a bit stream. This is done in the same manner as struct,
union and bitfield member references. For example:

a.null /* will be 1 iff the '\0'th bit of a is setr/
p-»>numbers /* will be non-zero iff *p has bits representing*/
/* numbers set */

The second is the treatment of a bit stream as an array of bits
with reference by an index. For example:

a.[ch]) /* will be 1 iff the ch'th bit of a is set*/
p—>[ch]

3. Random initialisation

An additional form of compile time initialisation is proposed to
allow the random initialisation of arrays and bit streams. To the ini-
tialisers in section 18.2 of The C Programming Language - Reference
Manual add: B

= set { random-init-list)

and to the initialiser-list add:

set { random-init-list)

where

AUUGN Vol IV No 1 25

EUUGN Vvol. 2 No. 4 72

random-init-list:
random~initialiser
random—-initialiger , xrandom-init-list

random-initialiser:

range
range <— constant-expression

4 range 1s described as part of the syntax of a bits-specifier.

A random initialisation must apply to a type which can be indexed,
Such as an array or bit Stream. Such an initialisation will cause all
elements in the ranges given to be set to the coresponding constant
expression, one if no expression if given. For example:

bits { maxof(char);) white_spaqe =

set -
{
', '\n', '\t "\Nf',
)i
int afl1l0] =
set
{
1..3 <—- 5;
(0] <- 1;
4..9 «<- 10;
}:

26 AUUGN Vol IV No I

EUUGN Vol. 2 No. &

Formatting C

Tim Long
Basser Department of Computer Science

University of Sydney
(timl:basservax)

1. Introduction

Every C programmer has strong views on idiom, style and formating.
Unfortunately these views are as idiosyncratic as they are inflexible.
In C many semantically distinct constructs have only minor syntactic
differences. For human beings formatting is often the only reasonable
method of distinguishing them.

2. Object and type declarations

To establish some terminology we present the following example:

static unsigned int stab_segs, stab_size = 1109, ref_counts[HAx_N];
<-——-base type-—--» <——item-> <——item-> (=————= item————- >
«--~-first part--—-» <= second part-—————————o___ >
T T T e e e declaration - - —=>

A declaration usually has two parts. The first part, which we will
call the base type, is a 1list of storage class specifiers, basic type
specifiers and adjectival modifiers of basic types. Some examples of
storage classes are static and register. The term storage class has
lost much of its original intuitive meaning. Por instance the modifier
typedef is considered a storage class, but it clearly has nothing to do
with storage. Examples of basic types are int, float and enum. Exam-
Ples of adjectives are long and short.

The second part is a comma separated list of items to be declared
and their initialisations. Each of these items includes an identifier,
possibly surrounded by *, () or [)J. Any item may be followed by an =
and an initial value.

ATNICN VAT Tar [P

73

EUUGN Vol. 2 No. 4 74

2.1. Formatting gsimple declarations

Only one item should be declared per declaration: there should be
no comma gseparated lists. For example:

char *p, C; /* WRONG */
char *p; /* RIGHT */
char c; /* RIGHT */

The reasons for this are

(a) all but the first identifier in the WRONG case are hidden and often
missed in a quick glance;

(b) the mixture of types (pointer to character and character in the
above example) can cause confusion;

(c) it is harder to add a comment or initialisation to an item in the
WRONG case.

All base types, items and initialisations within a group of
declarations should be verticaly aligned. For example:

char *tape_name = "/dev/rht0" /* WRONG */
unsigned long offset; /* WRONG */
int state = st_idle; /* WRONG */

char *tape_name = "/dev/rht0o”; /* RIGHT */
unsigned long offset; /* RIGHT */
int state = gt_idle; /* RIGHT */

We can now consider a declaration to have three parts.
(a) The base type, which i3 never omitted.

(b) The item being declared, which may be omitted.

(¢c) The initialisation, which will probably be omitted.

It is this three part nature which dominates the layout of simple
declarations.

2.2. Complex type definitions

The definition of complex types such as structs, unions and enums
should be isolated and typedefed. The definition of a complex type in C
is a side effect »of its appearance in the base type part of a declara-
tion. To make this clearer, consider the following declarations:

enum gtates state;
struct point where;

Clearly the enum gtates and the struct point are base types and state

AUUGN Vol IV No I

EUUGN vol. 2 No. &

and where are items. Now consider this (badly formatted) example.

enum gstates (st_idle, st_active) ' state;
struct point {int x; int y;) where;

This 1is equivalent to the first example except that definitions are
bound to the identifiers states and point. Notice that the definition
of the members of the complex type is part of the base type. Finally it
should be noted that it is not necessary to bind the complex type defin-
ition to an identifer, as the following example shows:

enum {st_idle, st_active) state;
struct {int x; int y) where;

2.3. Formatting complex type definitons

5

The complex type declarations in the previous section were in poor
style: a new type name should be created for each complex type genera-
ted. There are two ways of doing this. This example demonstrates one:

typedef enum /* RIGHT */

{
gt_idle,
gt__active,

states;
typedef struct /* RIGHT */
{

int x;

int Y:
)

range;

Much of the above formatting will be explained latter. The main point
is that the enum and struct are not bound to any identifier. A new type
name 1is created to refer to the types as a whole. The declaration of
the objects state and where becomes:

states state; /* RIGHT */
point where; /* RIGHT */

Unfortunately this method cannot always be used. When a struct or
union references itself (in the form of a pointer) the type of the poin-
ter can not be named because its declaration is not complete. In this
situation the following variation can be used.

AUUGN Vol IV N~ v

75

EUUGN Vol. 2 No. 4 76

typedef struct struct_node node;
struct struct_node
(

int node_value;

node *node_1link;

}:

This binds the definition of the structure to the identifier struct node
in order to achieve a forward reference. But the following declaration
is also valid (and preferable):

typedef struct node node; /* RIGHT */
struct node
{

int node_value;

node *node_link;

}: -

Notice that this binds the definition of a structure and a new type to
two identifiers, both of which are called node. These identifiers come
from 1logically distinct symbol tables. The structure binding is
irrevelant and serves only as a mechanism for the forward definition of
the type.

Formatting the member 1list of a complex type is straightforward.
The on curly brace should be placed on a new line directly under the
base type. The elements of the member list are indented one tab stop,
and the formatting rules are applied recursively. The off curly brace
is aligned with its matching one. 1In the second variation this is fol-
lowed by the semicolon. But if a type name is being defined, the name
is placed on a new line indented one tab stop from the off brace, fol-
lowed by the semicolon.

There are several justifications for this layout.

(a) The conceptually independent acts of type definition and storage
allocation are separated.

(b) The indenting and positioning of brackets serves to surround the
memberlist declaration with white space, separating it from peri-
Pheral activity and placing it where it can be seen and modified.
The same arguments apply here as for simple declarations.

(c) The use of a typedef makes the programmer's intention clear.

(d) Subsequent declarations become clean and narrow enough for the
author to be consistent with vertical alignment.

The following is a trimmed example of large structure declaration.

The source fragments comes from an include file. Near the top of this
file is found the following block of typedefs:

AUUGN Vol IV No I

EUUGN Vol. 2 No. &4 77

/‘k
* Forward declarations of general purpose data types.
*/

typedef struct cfrag cfrag;

typedef struct cnode cnode;

typedef struct ident ident;

typedef struct xnode xnode;

typedef union data data;

Although not all of these forward refrences were necessary all stuctures
and unions were given them in this case for consistency.

The following structure definition was found further down the file
along with all the other complex type definitions.

struct xnode

{
union
{
xnode *xu_xnd;
ident *xu_id;
}
x_left;
union
{
xnode *xu_xnd;
cnode *xu_cnd;
}
x_right;

xnode *x_type;
xnodes x_what;
data x_value;
short x_flags;

)i

Typical declarations involving this and related types look something
like:

register xnode *x;

register ident *id;
place where;

3. Function definitions

char *
strcpy(sl, s2)
char *s1;
char *32;

{

6 AUUGN Vol 1V No 1

EUUGN Vol. 2 No. 4 78

The above function definition has a useful characteristic.
Although the function returns a non int object, its name appears at the
start of a line. This both improves readability and lends itself to
automated searching methods. The alternative

char *strcpy(sl, s2)
char *g]1;
char xg2.;

(

is readable but does not allow an easy distinction between invocations
and the definiton in an editor search. In general the same rules apply
to a function definition as a simple type except that a new line is
taken immediately before the identifier,

The leading bracket of the formal parameter list should be placed
jmmediately after the function name. The formal parameters themselves
should be placed on the same line with -a space after each comma. The
closing bracket should be placed hard against the last formal parameter
(or the opening bracket if there are no formals). For example:

main(argc, argv, env)
main()
Declaration of the formal parameters follows, hard against the left

margin and obeying the rules of simple declarations.

4. Formatting blocks

Blocks have two parts, surrounded by curly braces. These parts are
(a) declarations local to this block;
(b) executable statements.

Where the block is the body of a function the on curly brace is
placed on a line of its own, hard against the left margin. Each time a
sub-block is opened the on curly brace is indented one further tab stop
from the level of the enclosing block. The brace always appears on a
line of its own. For example:

while (i < n)
{

dothis();
dothat();

This positioning of the opening curly bracket is important to

AUUGN Vol IV No 1

EUUGN Vol. 2 No. &

(a) visualy seperate the body of the block from surrounding periphera?
acitivity;

(b) act as a pointer to any flow control construct controlling the
block;

(c) allow a similar visual clue to any controling expression.

Placing the opening curly brace on the end of the previous line
both embedes any controlling expression in blocks of text and leads to
special cases when blocks are opened to gain local variables.

The local declarations are started on a new line indented one tab
stop from the initial brace. Formatting is as described above. One
blank line should be left between the local declarations and the execu-
table statements. If there are no declarations the code should start on
a new line immediately after the on brace. For example:

{
char *p;
int i;
P = "this is a demo™;
(
i= 0;

return 1;

The occasional blank line between executable statements is accepta-
ble but should be not be over-indulged. The significance of such blank
lines 1is easily 1lost. Often a block comment is more appropriate (see
"Comments").

5. PFormatting executable statements

Statements are placed on new lines indented one tab stop from the
level of the on and off braces of their surrounding block. Its is unac-
ceptable to have more than one statement on one 1line.

i=20; 3 =10; /* WRONG */
return; /* WRONG */
i = 0; /* RIGHT *»/
j = 0; /* RIGHT */
return; /* RIGHT */

Placing many statements on one line banishes all but the first to
oblivion. Although it may be argued that some statements are logically
related this is not sufficient justification for the devaluation of sta-
tements tacked onto the end of another.

AUUGN Vol 1V No 1

79

80

EUUGN Vol. 2 No. 4

6. Formatting expressions

When an expression forms a complete statement, it should, like any
other statement, occupy one or more lines of its own and be indented to
the current level. Binary operators should be surrounded by spaces.
Unary operators should be placed hard against their operand.

* p ++; /* WRONG */
i=i*104c-'0"; /* WRONG */
pt+; / RIGHT */
i=1i*10+4c- '0"; /* RIGHT */

The ternary operators ? and : should also be surrounded by spaces.

When a sub—-expression is enclosed in brackets, the first symbol of
the sub-expression should be placed hard against the opening bracket.
The closing bracket should be placed immediately after the last charac-
ter of the sub-expression.

a=>b*(c-4d); /* WRONG */
a=>b=* (c - 4d); /* RIGHT */
Note that the symbols ->, ., and [] which build up primaries (factors)

are not considered binary operators in this context. They should not be
surrounded by spaces. For example:

addr = addrs{ (d »>> 3) & 037 }; /* WRONG */
addr ~»> csr = 0; /* WRONG */
addr = addrs((d >> 3) & 037]; /* RIGHT */
addr-s>csr = 0; /* RIGHT */

The round brackets which surround the arguments of a function call
attract no spaces.

puts ("hi\n"); /* WRONG */
puts("hi\n"); /* RIGHT */

Commas, whether used as operators or separators, should be placed hard
against the previous symbol and followed by a space.

write(2, "whoops\n",7); /* WRONG */
write(2, "whoops\n”, 7); /* RIGHT */
White space in expressions is useful as much by its lack as its
Presence. For instance placing spaces in the inside edges of brackets

merely sgpreads out the expression and loses the suggestion of binding.
Excessive white space causes inflation and promotes devaluation.

AUUGN Vol IV No 1

10

FUUGN Vol. 2 No. & 81

Occasionally expressions become too large to fit on a single line.
Breaking at an arbitrary column is distasteful and often unreadable,
Rewriting the expression as two, possibly using a temporary, may destroy
1ts conceptual integrity and efficiency. The solution is to reformat
the expression over several lines. Consider the following:

fprintf
(
stderr,
"%8: Could not open %s for reading. %s\n",
my_namne,
tape_name,
érrno > sys_nerr ? "" : 8ys_errlist[errno]

)

This demonstrates the formatting of the most common cause of long lines,

the function call with many arguments. Not the position of the open-
ing and closing brackets. The actual para rs are aligned vertically
one tab stop in from the current level. 1 actual parameter occupies

a line of its own.

if
(
(id->id_type == NULL)
H

(
(id->id_type->x_what == xt_arrayof)
&&
(item->x_left->x_what == xt_arrayof)
&&
(id->id_type->x_subtype == item->x_left->x_subtype)
&&

(id->id_type->x_flags & XIS_DIMLESS)

Here we see another common 1line length transgressor put in its
place. Notice the placement of binary operators and brackets on lines
of their own,

The basic message in the above exmaples is don't be afraid of using
more lines to make the expression clear.

7. Formatting flow control constructs

In order to give visual distinction between flow control constructs
(such as for and while) and function calls, a small variation in format-
ting is introduced. A space is used to seperate a flow control keyword
from any controlling expression. FPor example:

AUUGN Vol IV No I

FUUGN Vol. 2 No. 4 82

if (p I= NULL)
{
dothis();
dothat();
)

return p;

The space seperates the keyword in order to emphasise the flow con-
trol dominating the following statement or block.

In view of the above the formatting of for and while statements is
straightforward:

for (p = root; p I= NULL; p = p—>next)
process(p—»>data);

- A

while ((c = getchar()) != EOF)
putchar(c);

when formatting if statements several alternatives are possible.
The simple if statement is again straightforward:

if ((fid = open(name, O_READ)) == SYSERROR)
perror(name);

In a simple if-else combination the else keyword should be placed on a
line of its own at the same indentation as the if:

if (c == "\\')

Although these are the only variations of if statements distinguished in
the language the author feels that it is often desirable to consider an
if-else chain as a flow control construct in its own right. In this
case the following layout is acceptable:

AUUGN Vol 1V No I

EUUGN Vol. 2 No. 4

if (c == '\\")
{

)

else if (c == Tt

{
)

else if (c == N

The formatting of switch statements ig simple:

switch (pid = fork())
(

}

However the placement of Case labels and labels in general often gives
trouble. The keyword case should be placed on a line of its own at the
same indent level as the controlling switch keyword. A space should
separate the word case from the constant expression which is immediately
followed by the colon. A blank line should be left above a case label
if program flow does not fall through it. For example:

switch (pid = fork())

{
case SYSERROR:

fprintf(stderr, "%s: Could not fork.\n", my_name);
exit(1l);

case O:

)

Ordinary labels and defaults follow the same rules.

Placing executable statements on the same line as a label (of any
sort) 1is unacceptable since

(a) the statement is visualy hidden by the label;

(b) it is impossible to be consistent with indenting, there will always
be some constant expression too long.

The formatting of do statements is difficult. The intuitive method

AUUGN Vol IV No I

83

EUUGN Vol. 2 No. 4 84

is:

do
{

}
while (...):

However the duality of the while keyword often leads to confusion,
especially if the preceeding block is large. To avoid this an arbitary
convention is adopted (as in the case of flow control keywords and func-—

tion calls). The while keyword should be indented one tab stop from the
level of the closing brace:

do
{

) -
while (...);

jo

Comments

Much of this document has concerned itself with formatting aimed at
improving readability. The tacit assumption is that readable code is
easier to understand than unreadable code. Comments do not improve
readability but attempt to directly aid understanding and maintenance.

Comments embedded in code tend to create a dense mass of text.
comments which begin and end on the same line, intermixed with code,
should be avoided. It is better to use a few large comments than many
smaller ones distributed through the text.

/*
* This demonstates the layout of a "block comment”. One
* comment such as this at the head of a hundred line
* function is often more useful than hundreds of two or
three worders. ’
*/
main(argc, argv)
int argc;
char *argv(];

(

AUUGN Vol IV No I

14

EUUGN Vol. 2 No. L 85

/t
x Block comments such a this and the above should follow
* the level of the code they refer to.
*/
if (...)
{
/*
x Indented when the code is indented.
*/

one of the most important aspects of comments is their semantic

content. Cryptic references should be avoided, "in” jokes should be
obviously irrelevant. comments should contain either

(a)

(b)

(¢)

complete english sentences, with capital letters and full stops
(periods);

some sort of well defined logical symbolism;
diagrams.

For example:

/*
x warningl
* i + strlen(str) + base — p <= BUFSIZ
* or else.
*/
/*

* The shape of the file is thus:
*

* ! header
* ’ _______________
* ! hashtable
* ! (hashsize *
]
]

:
]

1

|
'
TABENTLEN) |
_______________]
)

table !
(tabsize * !
TABENTLEN) |
'

!

/

»

entries

*
S —— -

* 1 hope this 1is a little clearer now.

AUUGN Vol IV No 1

CUUGN Vol.

2 No. &4 86

C Style and Coding Standards

Dennis F. Meyer

Uniqg Computer Corporation

ABSTRACT

This paper presents a series of standards for
the coding of programs written in the C language.
These standards are intended to maximize the rea-
dability and maintainability of C programs. No
attempt is made to specify or influence the func-
tional organization of a program; this is inten-
tionally left to the discretion and creativity of
the programmer. All code authored by Uniq Com-
puter Corporation will adhere to these standards.

January 22, 1982

EUUGN Vol. 2 No. & 87

CONTENTS

1. INtroductioN..eeeeceescescasccccnccseans P |
1. DefinitionNS..ceceecesscccssccce R |
2., SUMMALY.eecososesosssosssssnssnsesocsssnscas .2

2. Files...e..een ceecsansssseneee ceecssenaas ceeeeesl
1. Organization.....ececeeeeeccne crecsssasnoas 2
2., Definition FileS..eeereetetroansceccacans .04
3, Header FileS..ceceeeoosccossscccscncsns ceesed
4. Naming ConventionS.......eeeeeceeeaceeeeessd

3. VariableS...ceceecseccscoanscs cevsensaae cer e eans 6
1. DeclarationS..ceesvescescccescscaes ceeeecanan .6
2. InitializatioN...ccereccccccessns ceeseenaneal
3. Naming ConventionS......ceeceeveeccesesecss8
4. GloDAl.c.eeoeesosososseossssssssascssnosanesd

4., Coding ConventioNS.:..eeesecsoocccnns .
1. Conditional StatementS...ecececseeceoacesssl

2. LoopsS...... P

3. Compound StatementS..ceeeeessnccseoessoasasll

1. Conditional.....cececoscseccensccsnssasll

2. LoopS..... s esecssasccenas et e cesssessl?

5. Commenting ConventionS.....ceeeeeeececccecenasal2
1. File DescriptioN..eceeccecceecccesscsseanssl?
2. Function Description..ceeceeeceeececsaasssel3
3. Block CommentS....ccceecesccsncscccnss R
4. Short COMMENtS...ecocsesssessssasacasansssld
5. Appended COMMENtS..eeeoceccsassasscsnsnsosld

6. MiSCEllaAaNEOUS . eeeoosessssccsscsssssescassassesld

7. Conclusion.‘...I.........l..'................'lls

EUUGN Vol. 2 No. b 88

C Style and Coding Standards

Dennis F. Meyer

Uniq Computer Corporation

1. Introduction

This document presents a series of standards for the C
language style and coding. The intent is to provide a means
for maximizing the readability and maintainability of
software written in C. Although the functional organization
of such software is not addressed, a logical structure and
organization is assumed, in keeping with good programming
practices; any software with an ill-conceived organization
or illogical structure will defeat any attempt at its
maintenance.

1.1, Definitions

The following definitions are applicable to terms
within this document.

application: a collection of loosely related software that
performs all the processing required to fulfill the
objectives of a project.

global: a symbol that is referenced by more than one
object; also called "external".

module: a cohesive set of procedures that perform a dis-
tinct data processing operation.

object: a relatively independent entity in a file, such as
a set of one or more macro definitions, or a func-
tion.

program: a cohesive set of modules, one of which must be a
"main", that performs a subset of the processing
required to fulfill the objectives of a task.

system: the local operating system (monitor, compilers,
utilities, etc.).

task: a series of one or more cooperating programs that
performs the processing required to fulfill related
objectives of a project.

EUUGN Vol. 2 No. 4

1.2. Summary

Following is a brief description of each of the subse-
quent sections in this document:

Files: discusses the organization of the files that are
used in the production of a program.

Variables: discusses the declaration and documentation of
variables used in a program.

Coding Conventions: discusses techniques for visually
indicating the structure of a program.

Commenting Conventions: discusses the use of comments in
the body of a file.

Miscellaneous: assorted recommendations for coding prac-
tices,

All files applicable only to a given program, task, or
application should be maintained in a manner that enables
them to be readily identified. File names should, as much
as 1s reasonably possible within the confines of the operat-
ing system and/or naming convention restrictions, be indica-
tive of the function(s) performed by the object(s) contained
in the file.

Each file is to contain one or more logically related
objects. Recall that the term "object"™ is used here to
designate some sort of relatively independent entity, such
as a set of one or more macro definitions, or a function.

2.1. Organization

A file consists of various sections that are separated
by several blank lines. Although there is no maximum length
limitation, files should be kept short enough to enable
relatively easy editing, compilation, and/or perusal.

Lines within a file, where possible, should be short
enough to enable their display without overflow on most ter-
minals (currently 88 columns). Lines filled with asterisks
or some other character should be used sparingly, only as an
attention-getting mechanism for some particularly complex or
critical piece of text.

The order of the sections in a file is as follows:
A. File Description - a comment describing the function

and contents of the file (see 5.1); this section is
required in all files.

89

EUUGN Vol. 2 No. 4 90

B. "includes" - all header files applicable to any object
in the file. Each declaration should be on a line by
itself beginning in column one, and should include com-
ments briefly describing the contents of the file and
the reason(s) for its inclusion. For example:

#include <stdio.h> /* Define Standard I0 macros */
$include "common.h" /* Define data structures */
/* for inter-module
* communication

*/

This section is applicable only if files are to be
"included". See section 2.3.

C. Definitions - all definitions (e.g., typedefs, defines,
Structure or union templates) that apply only to this
file. Each definition begins on a line by itself in
column one, and should include comments describing the
defined datum. If any structure templates are defined,
each member declaration should include comments
describing its use and/or function. This section is
optional; it should appear only if applicable.

D. Globals - declarations for global variables applicable
only to this file. Each declaration should be on a
line by itself beginning in column one, and should
include comments briefly describing the declared datum.
All variables in this section should be declared
"static", in order to explicitly limit their scope;
e.g.,

static char Buffer ; /* Temp buffer */
This section appears only if applicable.

E. Functions - any function(s) in the file come last.
Each function should begin on a new page (insert a
control/L into the text), and the body of the function
should fit on one page, if possible; only in very rare
cases should the body of a function be permitted to
exceed two pages. The recommended organization of each
function follows: '

l. Function Description - a comment that gives the
name of the function and a description of what it
does. See section 5.2,

2. Function Declaration - the type of value returned
by the function should be declared first, on a
line by itself, with the "static" keyword
prepended if the function has a local scope; func-
tions that return no value should not be given an
explicit type.* The function name and formal

* If the compiler supports the "void" type for func-

EUUGN Vol. 2 No. 4

parameters then follow, also beginning in column
one. Each parameter should then be declared, each
on its own line in column one, together with com-
ments explaining the parameter. The opening brace
for the function comes last, again on a line by
itself in column one.

3. Local variables - definitions for all variables
referenced only by this function, whether
automatic or register. Register variables are
particularly beneficial as pointers to structures.
Variables that are designated registers should be
ordered by priority; i.e., put the variables you
want most to be registers first. All definition
lines are to be tabbed over by one tab stop. 1In
most cases, each variable should be defined on a
line by itself, and includes comments explaining
the function and use of the variable. Exceptions
to this rule include:

- exceedingly obvious variables, such as
"temp", need not be commented, and may be
grouped in one definition.

- multiple variables with the same function and
usage, such as two pointers to the same char-
acter array, may be grouped in one definition
line.

4., Code - the actual code that performs the function.

2.2. Definition Files

Definition files depart from the normal source file
organization in that they contain no executable code.
Definition files are used to declare and allocate global
variables and data structures. They may, in addition, con-
tain typedefs, defines, and structure or union templates
that serve to clarify the definitions and/or initial values.
Therefore, a definition file can contain only sections A
through D of the file organization. Note, however, that the

global variables that are to be referenced by actual func-
tions cannot be declared as "static".

Definition files are required for programs and modules

that have multiple source files, unless they have no global
variables.

tions that return no value, such functions should be
given that type.

91

EUUGN Vol. 2 No. 4 92

2.3. Header Files

Header files differ from the normal source file in that
they contain no executable code and no declarations that
result in the allocation of memory. Header files are used
to provide a means for inserting sets of definitions and/or
declarations into other source files. The contents of a
header file is inserted into the applicable source by
"include" statements in those sources. Since some compilers
do not allow nested "includes", and in order to preserve the
clarity of a program, header files may not contain any
"include" statements. Header files, then, may contain
typedefs, defines, structure or union templates, and global
variable declarations that do not allocate memory. There-
fore, only sections A, C, and a variation of section D may
appear in a header file. All global variables mentioned in
a header file must be declared as "extern".

Note that the processing of "included” files is depen-
dent on the compiler and the operating system being used.
Some compilers may place a limit on the number of files that
can be included in a source file. For operating systems
that support multiple or hierarchical directories, there may
be complications in the manner and sequence in which direc-
tories are searched to locate a header file. Some operating
systems implement a standard directory search algorithm,
which the compiler may or may not choose to use. Some com-
pilers may require that header files reside in a particular
directory, or in the "current" directory, or in the same
directory as the source file, etc. Others may allow the
user to specify or modify the search algorithm at run time.
Since there is such a potential for confusion, some conven-
tion should be established and documented for each applica-
tion, so that header files can be located by compilers and
by humans.

2.4. Naming Conventions

Some sort of comprehensive file naming convention
should be established (and documented) for each non-trivial
application. Particular conventions will depend on the com-
plexity of the application and on the limitations imposed by
the operating system under which the application is
developed. Most operating systems will impose their own
standardized suffix (or extension) conventions for source,
binary, and library files, etc. For example, UNIX* requires
C source files to end in ".c", assembler source files in
".s", etc. The user is generally free, however, to stand-
ardize suffix (or extension) conventions for header files,
although ".h"™ appears to be a de-facto standard. Conven-
tions for the first part of the file specification are

*UNIX Is a Trademark of Bell Laboratories.

EUUGN Vol. 2 No. 4 93

limited by the number of characters allowed by the operating
system. As a general rule, the following can be used to
generate a naming convention for any operating system:

- Allocate the first "n" characters to identify the pro-
gram

- If the complexity of the application warrants that pro-
gram modules be split into more than one file, allocate
the next "m" characters to identify the module

- All remaining characters are to be used to identify, as

much as is reasonably possible, the contents and/or
function of the object(s) in the file

For an operating system that supports sub-directories, much
of the naming convention can be off-loaded from the file
name onto the directory structure. For example, under the
UNIX operating system a directory can be established for
each application; this directory would contain files common
to tasks in the application, and directories for each task
in the application. The task directories would contain
files common to programs in the task and, if necessary,
directories for each program in the task. The program
directories would contain files commo» ‘o modules in the
program and, if necessary, sub-directories for each of those
modules. Each module directory would contain files unique
to that module. This type of structure is recommended, if
it is possible, since it will allow for the generation of
more meaningful file names.

3. Variables

One of the key factors in debugging and/or maintaining
a program is an understanding of its use of variables and
data structures. This is especially true for global vari-
ables, and ultimately true for global data structures. It
is essential, then, that all such items be exhaustively
documented, by narrative in a separate file, if appropriate.
Failure to document such items is to be considered a capital
offense.

é'l' Declarations

The documentation of variables and data structures in a
separate file does not relieve the programmer of the respon-
sibility for commenting such items when they are declared in
the source file; it only reduces the amount of explanation
required. The general rule for declaring variables is to
place one declaration per line (exceptions have been previ-
ously noted). The comments which explain the variables may
be block comments, short comments, appended comments, or any
combination of these, depending on the personal preferences
of the author.

EUUGN Vol. 2 No. & g4 -7 -

All declarations should precede any executable code.
Although it is valid C to pPlace declarations within blocks
of code, this practice is discouraged, since the potential
for confusion is great.

When structures or unions are declared, the opening
brace for the member declarations may be placed on a line by
itself, immediately below the first character of the
declaration, or it may be placed on the same line as the
declaration, separated from the declaration by one space.
Each member declaration should be pPlaced on a separate line,
tabbed to the right by one tab stop. The closing brace
should be on a Sseparate line, in the same column as the
first character in the declaration. 1If any variable is
declared, it should be on the same line as the closing
brace, separated by a single space. For example,

Struct time /* Time of day template */
{
int tim_ hour ; /* @ - 23 %/
int tim minute ; /* 8 - 59 */
int tim_second ; /* B - 59 */
int tim jiffy ; /* 1/68th of a second */
long tim_ ticks ; /* Jiffies since midnight */
} start ; /* Time program started */
struct time end ; /* Time completed */
Struct date { /* Day of year template */
int da_day ; /* Day in month */
int da_month ; /* Month in year */
int da_year ; /* Year, A.D. */
int da_inyear ; /* Day in year */
} creation j /* Initial entry date */
Struct date update; /* Date last modified */

3.2. Initialization

The initialization of variables when they are declared
can produce confusing text, especially for multi-dimensional
arrays and arrays of structures. For simple variables and
short arrays, the initial values may be placed on the same
line as the declaration; for other cases, initial values on
succeeding lines should be tabbed to the right by one tab
stop. The equals sign preceding the initial value should
always be included. 1In general, all initialization text
should be made as pretty as possible; comments should be
included where appropriate.

EUUGN Vol. 2 No.

3.3. Naming Conventions

A desirable feature in any program is to be able to
identify a general class of variable easily within the text
of the code. For this and other reasons, the following nam-
ing conventions should be followed:

- symbols that begin with an underscore are generally
reserved by the system software; therefore, unless the
object is to become part of the system software, no
symbol should begin with an underscore.

- typedefs, macros, and constants should be all upper
case and may not contain any underscores; the only
exception to this rule is for system software, where a
macro may also exist as a function on other systems
(e.g., "getchar", "putchar").

- bits and masks that refer to a particular variable or
type of variable should be all upper case and must con-
tain an underscore. Characters to the left of the
underscore are to be used to identify the variable or
type of variable, and are to be the same for all
related symbols. Characters to the right of the under-
score are to be used to identify the function of the
symbol.

- global symbols must have their first character capital-
ized and all subsequent characters lower case, like a
proper name. One-character globals are prohibited.

-~ global symbols that are referenced only by a particular
module should all begin with an "n" character module
identifier, optionally followed by an underscore.

- local symbols are to be all lower case, and may contain
one or more underscores to increase the clarity of the
name.

- structure and union member names should begin with a
two or three character structure or union identifier,
followed by an underscore.

Within the confines of the above, all symbol names should as
much as possible be indicative of the function and/or usage
of the variable to which they refer. Variable names that
exceed the compiler limit on length are encouraged (to
increase the clarity of the name) providing that no compiler
rules are violated and that the names are unique within the
number of characters recognized by the compiler. Adherence
to these conventions will not only increase the clarity of
the code, but will produce beneficial side-effects in the
generation of cross-reference listings; all symbols of a
like class will appear grouped together, enabling easier

4

95

EUUGN Vol. 2 No. & 96 -9 -

analysis of their actual use.

3.4. Global

Extreme care should be taken in the assignment and use
of global variables, since inconsistent usage is a frequent
cause of program bugs, and one of the most difficult to
track down.

If a module or a program uses global variables and is
of sufficient complexity to warrant multiple source files,
all global variables should be defined in separately main-
tained and compiled definition files.

4. Coding Conventions

This section describes conventions that are to be
applied to the text of the code in a file. These conven-
tions are intended to force the text to reflect the block
structure of the code. As a general rule, the appearance of
the text must make this structure visually obvious. All
statements within a block of code must be indented by one
tab stop from the enclosing block; multiple statements on a
line are prohibited. If an expression or statement is too
long to fit on one line, it should be broken at a logical
point, and the continuation line(s) should be indented from
the originating line. The following rules and recommenda-
tions pertain to the format of the text within a statement
or expression:

- keywords that are followed by expressions in
parentheses should be separated from the left
parenthesis by one space.

- for function calls and macros with arguments, the left
parenthesis should be placed immediately adjacent to
the last character of the function or macro name.

- spaces may be placed after commas in argument lists as
an aid in visually separating the arguments.

- there should be no space between primary expression
operators (i.e., () [] . =>) and their operands.

- there should be no space between a unary operator and
its operand.

- all binary operators should be separated from each of
their operands by one space.

- the first expression in the conditional operator should
be parenthesized (e.g., max = (a > b) 2 a : b).

-~ the operator symbol in an assignment operator must

.1@
EUUGN Vol. 2 No. 4 97

immediately precede the equals sign (e.g., +=, *=,
etc.)

- expressions containing mixed operators should be fully
parenthesized.

- the statement terminator character may be separated
from the statement by one space.

The following sub-sections describe conventions for complex
statements.

ﬂ'l' Conditional Statements

Conditional statements contain statements that may be
executed based on the results of the evaluation of one or
more expressions. The statements that are conditionally
executed should be placed on a separate line and indented by
one tab stop.

if (expression)
statement ;

if (expression)
statement
el se
statement ;

~e

if (expression)
statement ;
else if (expression)
statement ;
else
statement ;

i'Z' Loogs

Loops contain a statement that is repeatedly executed
as long as some condition is met. The statement that is to
be executed should be placed on a separate line and indented
by one tab stop.

while (expression)
statement ;

for (statement(s); expression; statement(s))
statement ;

do
statement ;
while (expression) ;

EUUGN Vol. 2 No. 4 98 - 11 -

4.3. Compound Statements

Compound statements are composed of multiple statements
enclosed by curly braces. The opening brace for compound
statements should be placed on a separate line, in the same
column as the enclosing block. 1Individual statements within
the compound statement should each be on a separate line,
indented by one tab stop. The closing brace should also be
on a separate line, in the same column as the opening brace.
The following two sections contain examples.

i'é'l' Conditional

if (expression)

statement
statement

~e weo

}
if (expression)

statement
statement
} else

{

~e o

Statement
statement

“e %o

}

if (expression)
{
statement ;
statement ;
} else if (expression)
{
statement
statement
} else

{

“e W

Statement
statement

«s we

}

switch (expression)

{

case ABC:

case DEF:
statement
Statement
break ;

case XYZ:
statement
break ;

default:

w~e W

e

-12 - EUUGN Vol. 2 No. 4 99

statement ;
break ;

4.3.2. Loops

while (expression)
{
Statement
Sstatement

e we

}

for (statement(s); expression; statement(s))
{

statement ;

statement ;

statement
statement
} while (expression) ;

we wo

5. Commenting Conventions

The importance of comments in a file cannot be over-
emphasized. As previously mentioned, the use of variables
and data structures, especially globals, requires explana-
tion. Although a comment for each statement is not manda-
tory, it is essential that all code be thoroughly explained;
this is especially true when employing machine-dependent or
"tricky" code. Comments, however, may not obscure the
structure of the code; unnecessarily verbose or frivolous
comments that contribute to cluttered listings are
discouraged.

Five classes of comments are described here. The file
description comment appears once at the beginning of each
file. The function description comment appears once at the
beginning of each function. The other three classes are
intended for general use, and may be freely inter-mixed
according to personal preference; these comments are deemed
to be the personal property of their author, so few restric-
tions are imposed.

5.1. File Description

One file description comment is required at the begin-
ning of each file. This comment is intended to contain
information describing the file and its contents, and has
the same general form as a block comment. This comment is

EUUGN

VYol. 2 No. 4 100 - 13 -

divided into five sectors:

1. Identification - this sector identifies the name of the
file, the module to which it belongs, its version iden-
tifier, and an indication of when it was last modified.
If SCCS* is used, all this information should be
automatically provided (note that the module name can
be set with an admin command that contains "-fmmodule-
name®). Format for SCCS files:

/*
* $M% (3F%) - %I% (3G% 3U%)
*

Format for non-SCCS files:

/*
* module-name(file-name) - version (date)
*

2. Description - a narrative describing the file. 1Include
a description of where and how it is used; note any
special features; etc.

3. Directory - the name and a brief description of each
object in the file.

4. Author(s) - the name and location of the original
author(s) of the file, and of each person who has modi-
fied the file.

5. Revision History - the date, new version indicator,
perpetrator, and reason for each modification of the
file; not required for SCCS files.

5.2. Function Description

— —

A function description comment is required at the
beginning of each function. This comment is intended to
contain information describing what the function does and
how it interacts with other parts of the program or with the
outside world. Function description comments have eight
sections, as follows:

1. This section has one of the following forms:
/* Function: name - english

/* Local Function: name - english

* Source Code Control System -~ available under the UNIX
operating system.

- 14 - EUUGN Vol. 2 No. &

where "name' is the function name as defined in the
program and ‘english' is a one-line english explanation
of what ‘name' stands for. The first form should be
used for functions whose scope goes beyond the file,
the second for local (static) functions.

2. A narrative describing what the function is intended to
do.

* Parameters:

followed by a 1list of each of the formal parameters and
what they are used for.

* Globals:
followed by a list of global variables used and/or
modified by the function.

* Input:
followed by an explanation of any peripheral input per-
formed by the function.

* OQutput:
followed by an explanation of any peripheral output
performed by the function.

* Calls:
followed by a list of function or macros that are
invoked.

* Returns:

followed by a 1list of possible return values from the
function.

5.3. Block Comments

Block comments are used when relatively lengthy expla-
nations are required. When block comments are placed within
a block of code, they should be tabbed over to the currently
prevailing tab stop. A block comment begins with */*" on a
line by itself, and ends with "*/" on a line by itself. It
is recommended, but not required, that each line within a
block comment begin with an asterisk; it is also

101

EUUGN Vol. 2 No. & 102 - 15 -

recommended, but not required, that all leading asterisks be
Placed in the same column. Some programmers may prefer to
tab or space over the text of each line in the comment.

5.4. Short Comments

Short comments generally fit on one line. They may be
tabbed over to the currently prevailing tab stop, and may be

separated from the text above and below by one or more blank
lines.

5.5. Appended Comments

Appended comments appear to the right of the code or
declarations to which they refer. When more than one
appended comment appears within a block, they shou.d all
begin at the same tab stop. Appended comments may extend
over more than one line; all conceivable continuation con-
ventions are permitted.

g. Miscellaneous

This section contains assorted programming gquidelines.
Whether, and to what degree, these are applied is dependent
on the requirements of the application.

1. Portability - the importance of writing portable code
is a function of the application; some will require
portability, others will require optimization for a
particular processor or operating system. Portable
code is recommended where feasible; non-portable code
should be so noted in the source, and isolated from the
portable code as much as is possible.

2. Embedded Statements - this is a very powerful feature
of C; beware, however, of carrying their use too far.
There is a trade-off between clarity and run-time effi-
ciency that should be kept in mind.

3. goto's - goto statements are considered a necessary
evil, and should be used only as a last resort. The
targ * labels for goto's should be placed on a line by

s themselves, beginning in column one.

7. Conclusion

It is recognized that the standards set forth here will
not be followed in all cases. 1In those cases where there is
a deviation from these standards, this should be noted at
the point where the deviation occurs; in addition, the fol-
lowing text should be inserted at the beginning of the file:

16 EUUGN Vol. 2 No. & 103

/**/

/*********** ***********/
VAL AR This is a deviate file kkkk /
/*********** ***********/

/**/

Following is a sample file.

EUUGN Vol. 2 No. & 104

/* String Classification(s.strclass.c) - 1.1 (7/13/81 16:02:26)
*
* This file contains functions which pertain to the classificati
* of character strings based on the characters contained in the
* string.
*
* Contents:
* classify - function to determine the actual class of a string
* isclass - function to verify that a string is of a
* particular class.
*
* Author: Dennis F. Meyer
* Unig Computer Corporation
* 143 First Street
* Batavia, IL 6@51@
* (312)879-1566
*/
#include "class.h" /* Define classification bits */

/* and the global Class array */

EUUGN Vol. 2 No. 4 105

/* Function: classify - determine a strings classification
*
* This function examines all the characters in the string in order
* to determine the classes of characters which appear in the string.
*
* pParameters:
* S pointer to the string to be classified
x .
* Globals:
* Class (readonly) table of classification bits for each character
*
* Input:
* none
*
* Qutput:
* none
*
* Calls:
* none
*
* Returns:
* integer bit table showing all classes of characters in the string
*/
int
classify(s)
register char *s ; /* Argument is pointer to string */
register int actual_ class ; /* Accumulates bits */
actual class = STR NONE ; /* Initially no class */

/* Repeat until end of string or all character types seen */

while ((*s != '\@') && (actual class != STR ALL))

actual class |= Class[¥*s++] ; /* OR in the next bit */
return (actual_class) :

EUUGN Vol. 2 No. 4 106

'~
»

Function: isclass - see if string is of a given class

Check all characters in the given string to ensure that they
are within the given class.

Parameters:
S pointer to the string to be tested
type bit table showing the classes of allowable characters

Globals:
Class (readonly) classification bits for each character

Input:
none

Output:
none

Calls:)
classify (strclass.c) determine actual classification of string

Returns:
The actual classification on success
Error code on failure

* % % % X ¥ ¥ ¥ % % * * N % N ¥ ¥ ¥ * ¥ % ¥ % »

/
int
isclass(s,type)
register char *s ; /* Pointer to the string */
register int type ; /* Type required */

{
register int actual class = STR_NONE ; /* Accumulates bits */

if (type == STR ALL) /* If all types allowed
return classify(s) ; /* Just get actual class
while (*s != '\@"') /* For each character */
if ((Class[*s] & type) == @) /* iIf type not allowed *
return (CHR ILLEGAL) ; /* Illegal character */
else - /* If a legal character
actual class |= Class[*s++] ;

return (actual class) /* Success */

EUUGN Vol. 2 No. & 107

UNIX-LIKE SYSTEM STANDARDS

The UNIX* system has been proposed as a standard system
for various user environments, such as personal computing,
program development, and general purpose timesharing Bl),
(2), (33 . There is a substantial difference between
proposing the UNIX system as a standard, and proposing
standards for UNIX-like systems. To draw a correlation
with languages, Cobol andlBasic are highly prevalent
languages for commercial applications. Cobgl, however, has
language standards and some substantial commonality between
most implementations. Basic has minimal standards, with
far too little commonality between the hundreds of imple-
mentations; yet it is a de facto standard language for

small business systems.

Like Basic, UNIX systems are now running on a wide
range of vendor's equipment from 8-bit to 32-bit systems.
And while UNIX software isaclosely controlled (though non-
supported) product of Bell Labs/Western Electric, there are
now multiple versions and independent implementations
provided through sources outside of Western Electric.
Versions include variations on "Rev 6" UNIX, PWB, "Rev 7"
UNIX, and Bell's most recent System III (Microsoft,

University of California-Berkeley, and others).

The development of compatible systems that are not
licensed through Western Electric from vendors such as
Charles River Data Systems ('UNOS'*), Whitesmith ('Idris'?¥)
and Mark Williams ('COHERENT'*) provides additional strength
to the argument for "UNIX" standards. For the purchaser
seeking a vendor independent operating system in terms of
both hardware and even operating system supplier, a UNIX-
compatible system would seem to be one of the only choices.
However, he finds no standard or basis for evaluating the

correctness or completeness of a system's "UNIX-like"

EUUGN Vol. 2 No. 4 108

rr.ature, or relating the facilities to his application

requirements.

One UNIX users group, "/usr/group" (Box 8570,
Stanford, CA 94305) has formed a standards committee to
address some of these issues. There is a sufficiently
large number of UNIX and UNIX-like suppliers, and more
importantly, enough companies looking toward UNIX-like
solutions that some industry standards would be very

useful.

We would suggest a standard target on these major areas:

(1) User program interface to the operating
system (built around the 'C' language
library--for portability). (While this
is a bit language dependent, 'C' sub-
routine interfaces to other languages
such as Pascal, Fortran and Basic are
possible, and some standards here would
be useful as well.)

(2) Media standards for program interchange be-
tween systems. A floppy disk standard here
is most needed where interleaving and use
of track @ are issues independent of actual
file structure. Nine track tape seems a '
little easier, but also requires inter-
change standards.

(3) Standards for 'tool set' functionality.

UNIX-like environments provide a wide
range of useful program development tools
and "“filters." For purposes of a standard,
these tools should be categorized into

functional groups.

EUUGN Vol. 2 No. & 109

The Cobol standard, with its multiple modules, with
various levels of implementation would be a useful model to
follow. This allows & user to compare implementations on a
high level, and make sure the implementation he's getting
has the facilities he needs. For example, some users won't
need some of the development tools such as YACC or LEX,
and it's clear that providing such tools is not essential

to meeting some level of UNIX standard.

It is not the objective of a standard to force the
burden on system developers to provide facilities that
their target audiences won't need, but rather to provide
those buyers with enough information to make an informed
evaluation and selection. Also of high importance is a
guide to application developers for developing portable
code. For this reason, we would propose that a standard
for UNIX-like systems follow the multiple level-multiple

module standard structure of Cobol.

For example, the major modules of a UNIX-like standard

might include:
I. Operating System
A. I/0 control standard streams, pipes
B. File System (directories, protection)

C. Process management (Exec, Fork, signals,
priority, environment, etc.)

I1. C Language
(Multiple modules that correspond to other
language standards would be appropriate here.)

IITI. Utilities and Tools

A. Text processing (editors, formatters, unique,
Grep, Diff, translit...)

B. File manipulation (copy, sort, cat, move,
compare)

C. Program development (Make, Lint, Archive,
SCCS)

D. System management (Login, ps, 1ls, du)

EUUGN Vol. 2 No. 4 110

E. Data communications (cu, uucp, ...)

F. Language development utilities (YACC, Lex,
etc.)

(Other groups would be warranted.)

Levels used could be as follows:

For program development utilities

Level ¥ = Null (none required)
1 = Assenmbler, Linker, Libraries, Debugger
2 = Diff
3 = Make, Lint
4 = SCCS

For file I/0 operating system capabilities

it

Level £ Not applicable, must have Level 1
1 = Standard input and output channels,
standard error channels,STDIO
functions, file create & delete
2 = Extensible files
3 = Pipes
4 = Named pipes
The levels are a key to evaluation of different systems.
If a function is not required by all users, then it should
be in a higher level. For this reason, we've suggested that
YACC and SCCS be put in a high level. However, some
facilities, like STDIO, are so crucial to UNIX-like opera-
tions that they would be required (i.e.: no level zero or
"null" implementation of the file system). 1In addition,
system dependent characteristics should be identified and
called out for vendor specification. This includes maximum
process size, maximum file size, maximum file system size,
floating point number representation and precision, etc.
In the review of this approach with others, we en-

countered the question - could future versions of Bell's

EUUGN Vol. 2 No. &4 IR

UNIX be non-standard? Like any other product, once a
standard is created, the various versions of Bell's

UNIX could be measured for compliance in terms of levels
and modules. This will be just as useful for buyers as
a comparison of UNIX-like systems. It is worth noting
that each version of UNIX to date will have its own set
of strengths and weaknesses in such a comparison. For
example, IBM's PL/I is now evaluated in terms of ANSII

standards.

This outline is not intended to'be a detailed break-
down of modules, levels and UNIX facilities nor are the
examples intended as specific proposals. However, it
provides some basis for the discussion. We urge the
IEEE standards group to join with the /usr/group stan-
dards group and see if a useful standard for UNIX-like
systems can be established.

(1) Haynes, "UNIX--A Software Marketing Phenomenon,"

Computer, June 1979

(2) 1Isaak, "UNIX--From One Marketeer's View,'" Computer,
November 1979.

(3) Cherlin, '"The UNIX Operating System: Portability a
Plus," Minimicro, April 1981

Jeff Goldberg
Vice President Software Development
ACM, SIGops, SIGplan, IEEE, IEEE Computer Society

Jim Isaak
Product Marketing Manager
ACM, SIGpc, SIGSmall, IEEE, IEEE Computer Society

CHARLES RIVER DATA SYSTEMS, INC.
4 Tech Circle
Natick, MA 01760

EUUGN Vol. 2 No. &

112

University of York Ada Workbench Compiler

ORGANISATION

CONTACT

FUNDING

DEVELOPERS

PURPOSE

4JST/ TARGET

COMPLETION

IMPLEMENTATION LANGUAGE

COMPILER 3TRUCTURE

Status Report

11 June 1982

University of York

Dr Ian Wand

Department of Computer Science
University of York

Heslington

York, YOl 5DD

United Kingdom

Tel: +44-904-59861 X5570
Telex: 57933 YORKUL

Science and Engineering Research Council
of Great Britain

Ananda Amatya
Jim Briggs
Charles Forsyth
Chris Johnson
John Murdie

[an Pyle

Colin Runciman
Ian Walker

Ian Wand

Tony Williams

Dave Hdoldsworth, of Leeds University Computing Service
helped with the early development of the run-time
debugger

Compiler for full revised Ada, plus associated tools

Host: VAX~11/780 running Berkeley UNIX
Target: Host or PDP-11/LSI-11 either running UWIX or
"bare”

End of December 1982, although this is wuncertain wuntil
the implications of revised Ada are understood

C, although Ada has been used for the coding of some of
the input/output libraries

The compiler is in six passes which use an intermediate
data structure called AIR (Ada Intermediate Representa-
tion) during all phases of the compilation. AIR
comprises both an abstract syntax tree and associated

COMPILATION SPEED

SIZES

IBJECT CODE QUALITY

LIMITS

LANGUAGE IMPLEMENTED

OTHER USER TOOLS

AVAILABILITY

EUUGN Vol. 2 No. &4

management and semantic information. The first pass is
a top down syntax analyser; the next three passes carry
analysis of declarations, scopes and names; the next
pass performs type analysis and remaining machine
independent semantic checks; the final pass 1is a code
generator which uses a modified version of the Aho and
Johnson algorithm. There is a separate compiler manager
which is responsible for the maintenance of the separate
compilation libraries and for controlling the sequencing
of the compiler during the analysis of a file containing
multiple compilation units.

Approximately 700 source lines per minute (system plus
user time, measured by UNIX "time") for compilation to
linked executable binary on a VAX 11/780 with RP06 disks
and only one level of library dependency

The size of the compiler sources and objects together
with the run-time libraries are given in Appendix A

The object code is compatible with and roughly similar
in quality to that produced by the VAX UNIX C compiler

The only limits on the sizes of items during compilation
are the maximum line length, which is currently set to
132 characters, and the names of compilation units which
must not exceed 12 characters in length. The largest
single compilation unit we have compiled to date is
about 6000 lines.

The language implemented by the present compiler is
described in detail in Appendix B. We challenge other
implementors to publish a detailed description of the
language implemented by their compilers! After all we
could simply have written "implements most of Ada apart
from generics and derived types"!

Source pretty printer
Run-time debugger (early version)

A first release will be made to UK Universities,
Polytechnics and Research Council Laboratories during
September 1982. This release will implement the level
of language outlined below, together with generics and
most remaining attributes. A further release will be
made in 1983. The second release will be of a full
language compiler.

Availability of the compiler to commercial wusers is
under discussion with the British Technology Group (who

113

EUUGN Vol. 2 No. &

FUTURE PLANS

REFERENCES

114

have the right to exploit any "product” developed with
SERC funds).

An implementation on the Three Rivers/ICL Perq will
start in the near future; the first release is planned
for mid-1983. This implementation will run wunder the
UNIX-like operating system for Perq under development at
the SERC Rutherford laboratory. This project is also
funded by the SERC.

We have two research projects which are looking at the
hardware and software aspects of run-time debugging of
Ada programs. The latter is using colour graphics tech-
niques. Furthermore, we are investigating "expert sys-—
tem” methods for the presentation of compile-time diag-
nostics.

Finally we have two APSE-related projects. Jne is inves-
tigating command languages suitable for use in an APSE,
the other is looking at the filing system structures
necessary and the associated tools.

J S Briggs et al: "Ada Workbench Compiler Project 19817,
University of York Computer Science Report number 48
(January 1982)

C W Johnson and C Runciman: "Semantic Errors - Diagnosis
and Repair”, ACM compiler construction conference, Bos-
ton, USA, June 1982 (to be published in SIGPLAN Notices)

EUUGN Vol. 2 No. 4 115

Appendix A: Sizes of Compiler Parts and Libraries

A.1l Lines of C in Compilation System Source Modules

Specifications

1759 AIR definition
2468 total of other specifications (mostly small)

4227

Compiler driver

The Compiler driver controls the compiler during single compilation unit compi-
lations.

2431 compiler driver

Compiler manager

The Compiler manager controls the compiler during multiple compilation unit com-
pilations and manages libraries of compilation units.

3884 compiler manager
217 library aquisition
76 library identity
62 convert AIR for subprogram specification to that for body

4239

Parsing and AST building

710 lexical analysis

3055 top—down parsing and building

1135 error recovery

1288 context-sensitive checks and transforms

6188

Semantic analysis

2618 dictionary building

1763 dictionary completion

5156 identification

2631 type resolution

328 name-sensitive semantic checks

EUUGN Vol. 2 No. & 116

Machine independent code generation

386 record field allocation
2385 blocks and statements
2453 miscellany
1607 declarations
1581 expression transforms
4542 expression coder

110 target externals

lachine dependent parts of code generator

723 templates
50 VAX machine parameters
1875 VAX code body

2648

Abstract data type packages

113 flattened lists
196 dynamic lists
76 sets
71 bit-packed sets
52 stacks
37 strings
2429 universal numbers
277 literals
1437 definitions
857 dictionaries
468 formulae
2032 types
425 subprogram signatures
345 static expressions

8310

Jther support packages

6061 AIR input/output from/to linear form
192 memory allocator

1855 diagnostic message control

829 separate compilation aids

246 process AIR management nodes

9183

EUUGN Vol. 2 No. & 117

62848 THTAL compilation system source lines

A.2 size in Bytes of Compilation System Jbject Modules

Compiler driver

159438 code
4576 static initialised data
2056 static uninitialised data

Compiler manager

27740 code
8536 static initialised data

2056 static uninitialised data

Compiler - syntax analyser

90288 code
15048 static initialised data
2208 static uninitialised data

107544

Compiler - semantic analyser and code generator(VAX)

285696 code
70656 static initialised data
22792 static uninitialised data

Specifications

707 specifications

General run—-time support library

477 run-time support

EUUGN Vol. 2 No. &4 118

Machine independent tasking library

139 clock handler

922 tasking

97 exception handling
78 coroutine package

1236

Machine dependent tasking library - VAX

44 array comparison (assembler)
29 stack switching (assembler)
49 exception handling

122

Predefined package implementations

1104 package YORK TEXT I0
620 package INPUT OUTPUT
133 package REPORT (for SofTech test cases)

1857

4477 TOTAL run-time system source lines

(I
| &
7]

ize in Bytes of Run-time System Object Modules

General run-time support library

1552 code
532 static initialised data
12 static uninitialised data

2096

Tasking library — VAX

5900 code
1004 static initialised data
40 static uninitialised data

6944

EUUGN Vol. 2 No. & 119

Predefined package implementations

The predefined packages presently comprise “YORK TEXT IO, “INPUT JUTPUT", and
“REPORT”. -

9980 code
20106 static initialised data

21036 TOTAL run—-time system object bytes

EUUGN Vol. 2 No. 4 120

Appendix B: Subset Supported

The York Ada Workbench compiler supports the language defined in the
Language Reference Manual of July/November 1980 [LRM], but with the qualifica-
tions described in this appendix.

Each item is preceded by the relevant section number of the LRM. Those
entries introduced by describe unimplemented features and those by "~"
describe deviations from the LRM. An "*" is used to introduce explanation.

2.8 - Pragmas.
* As a result of this restriction, LRM sections 11.7, 13.9 and
Appendix B do not apply.

3.1 =~ Generic subprograms and generic packages.
3.2 - Number declarations.

3.4 ~ Derived types.

3.5.6 - Accuracy constraints.

* No derived types and no accuracy constraints means no user-
defined numeric types.
* No numerics may involve digits or delta.

3.5.9 - Fixed point types.

3.6.3 T String literals are only of type STRING.

3.7.1 - Discriminants used as the bounds in a index constraint.

4.1 - Indexed components, selected components or slices, where the

preceding name is a function call.
4.1.4 - Certain attributes. See under appendix A.

4.3 * Aggregates require a context which determines a unique aggregable
type. (This is in line with the March 1982 revision).

4.3.2 ~ Array aggregates with named components, including others.
4.5.2 - Membership operators.
4.8 ~ Allocators with initial values.

4.9, 4.10 * Static expressions are more restricted than those described in
the LRM; in particular, only scalar types can be involved. (This
is in line with the March 1982 revision).

5.9 - Goto statements and <<Labels)>).
7.4 - Private and limited private types.
8.4 - Use clauses may only appear in context specifications. An iden-

tifier that is declared in the visible part of more than one used
package is made visible: a warning is issued.
The effects of use clauses are always considered in overload

8.5

8.6

9.6

9.11
10.2

10.4

10.5

11.6

12
13.1
13.6
13.7
13.8
13.10

14

Appendix A

Appendix C

EUUGN Vol. 2 No. &4

- 10 -

resolution. (This is in line with the March 1982 revision).

Renaming packages, subprograms and tasks (task renaming has been
removed in the March 1982 revision).

SYSTEM is a separate package. Its definition is given in Appen-
dix F of this document. (This is in line with the March 1982
revision).

Type DURATION, package CALENDAR and function CLOCK are not avail-
able as part of STANDARD (but see appendix C)

The expression following "delay” must be of type integer; it is
not in seconds - it simply denotes relative time.

Procedure SHARED_VARIABLE_pPDATE.
Subunits of compilation units.

The packages YORK TEXT IO and REPORT are predefined in every
library and may not be redefined.

A package body is elaborated immediately following its
corresponding declaration.

Exception FAILURE. (This is in line with the March 1982 revi-
sion).

Generics.

Length specifications.

Change of representation.

Package SYSTEM is defined under Appendix F.
Machine code inserts.

Unchecked programming, via conversion and deallocation.

Packages INPUT JUTPUT and TEXT IO.

We provide only a limited form of text input/output. This 1is
done using the package YORK TEXT IO which provides a subset of
the facilities in TEXT I0.

Attributes IMAGE, VALUE, POS, VAL, PRED, SUCC, DELTA,
ACTUAL DELTA, BITS, LARGE, MACHINE ROUNDS, DIGITS, MANTISSA,
EMAX, SMALL, LARGE, EPSILON, MACHINE RADIX, MACHINE MANTISSA,
MACHINE EMAX, MACHINE EMIN, MACHINE ROUNDS, MACHINE OVERFLOWS,
RANGE and STORAGE SIZE are unimplemented. PRIORITY and FAILURE
are unimplemented—in line with the March 1982 revision.

The version of package STANDARD supplied omits the following:
SHORT INTEGER
LONG INTEGER
SHORT FLOAT
LONG FLOAT
package ASCII

121

EUUGN Vol. 2 No.

Appendix F
1)
2)

3)

4)

5)

6)

7)

8)

4

122

- 11 -

subtype PRIORITY

type DURATION

package CALENDAR

generic procedure SHARED VARIABLE UPDATE
generic procedure UNCHECKED DEALLOCATION
generic function UNCHECKED CONVERSION
generic package INPUT OUTPUT

package TEXT IO -

package LOW_LEVEL IO

Packages ASCII, YORK TEXT I0 and CALENDAR are available as
separate library units.

(VAX and PDP-11)
All pragmas are accepted, but ignored.

No implementation dependent attributes are available.

package SYSTEM is

type SYSTEM NAME is (PDP1l, VAX, INTERDATA, M68000, PERQ);
type OPERATING SYSTEM is (UNIX, GCOS, IBM, RSX);

NAME: constant SYSTEM_NAME := VAX;
OS_NAME: constant OPERATING SYSTEM := UNIX;

STORAGE_UNIT: constant INTEGER := 8;
subtype ADDRESS is INTEGER;

TICK: constant INTEGER := 1;

MIN INT: constant INTEGER : -2 147 483 648; —- -2%*31
MAX INT: constant INTEGER : 2_147 483 647; —— 2%%3]1-1
MAX DIGITS: constant INTEGER := 7;

end;

The system storage unit (used in representation specifications)
is the 8-bit byte. Fields that are records or floating point
numbers may start and end on byte boundaries. Scalar fields may
start and end on arbitrary bit boundaries. If representations
specifications are used to specify the components of a record,
all components must have representations supplied.

There are no system dependent component names.

Address specifications are interpreted as byte addresses of the
named entities.

UNCHECKED CONVERSION is not implemented.

A main program must be a parameterless procedure.

EUUGN Vol. 2 No. &

UNIVERSITY OF YORK
Department of Computer Science

8th September 1982

An Ada Compiler for VAX UNIX

The Software Technology Research Centre of the Department of Computer
Science at the University of York announces the availability of a
preliminary release of its Ada Workbench compiler from 15 October
1982. The compiler is available, in object form only, free of charge
to UK educational establishments and Research Council Laboratories.

The compiler:

* supports the Ada language of July 1980, but excludes
generics, derived types, private types, subunits, number
declarations, and accuracy constraints. A complete Ada
compiler will be released in 1983;

* produces good diagnostic messages which can be made
verbose or very verbose for the beginner;

* can be hosted by Berkeley 3 and 4 UNIX and UNIX 32v on
the VAX-11;
* compiles Ada source code at approximately 700 lines per

minute on a VAX-11/780;

* produces good quality code for the VAX~1ll which runs in
conjunction with a small run-time system.

The distribution package consists of:

Compiler executable code Installation Guide
RTS executable code Functional Specification
Compiler manager Test cases

executable code

The completion of a Software Licence and a BTG Confidentiality
Undertaking is required before the compiler can be supplied.

Please note that the compiler cannot (and never will) be hosted on a
PDP-11.

Ada is a registered trademark of the U.S Government, Ada Joint
Program Office.

VAX is a trademark of the Digital Equipment Corporation.

UNIX is a trademark of Bell Laboratories.

123

EUUGN Vol. 2 No. 4 124

Ada Workbench Compiler - Distribution Questionnaire

If you are interested in obtaining the compiler, please complete this
questionnaire and return it to:

“Ada Compiler Distribution”,
Software Technology Centre,
Department of Computer Science,
University of York,

Heslington,

YORK,

YOl 5DD,

UK.

Name of Department, Establishment:

Address:

Contact:

Telephone:

Please tick the following options where applicable:
Hardware: VAX-11

730 750 780

Store capacity:
Mbyte
Operating System: UNIX

Berkeley 3 Berkeley 4 32v

Preferred distribution medium: 1/2" 9 track magnetic tape

800bpi 1600bpi

EUUGN Vol. 2 No. &

The Loosing of the Sicky bit,
or
How to Speed up Your UNIX.

"What on earth is the sticky bit"? A plea uttered by more than
one user of a Unix system, I know from experience. If you’re one

of them, then read on and find out what 1t is. Even 1f you
aren’t, read on, because later in this piece I intend to show
that the damned thing 1s a positive nuisance. If you feel

adventurous, and have a source code licence, you might even do
what I’ve done: abolish 1it, and get a 30-40%Z improvement 1in the

response of your system.
What it is, and excuses for why.

As is commonplace nowadays, Unix overspends its budget - give
it mn Kbytes of main memory and it will happily allow you to
create enough concurrently running programs (processes) to use
far more than that. To make up for the lack of real memory, the
Unix kernel uses space on one of the filestore discs to extend
the apparent memroy available. For a process to run it has to be
located in real memory, but if it is suspended for any reason
(waiting for i/o, used up its share of mill time....) then it can
be written out onto disc. Writing it out releases real memory,
so a process already written out but 1s now ready to run can be
read in and allowed to continue. The kernel has the job of
making all this invisible to the programmer, which it does. The
whole business of transferring programs between disc (secondary
memory) and real (primary) memory is known as swapping and is a
well known feature of anything that deserves to be called an

operating system [1]. CP/M users please note.

To reduce the amount of real memory required by a typical
workload - say eveybody having the shell waiting, about half the
users deep in ‘ed’ and the rest doing more or less random things
- the kernel allows programs to share memory. If five people are
using the editor then it doesn’t make a lot of sense to have five
totally separate copies of the editor, one each, shuffling to and
fro between disc and memory. Provided that the editor doesn’t
indulge in antisocial practices like modifying itself as it rums,
there’s no reason why the five users shouldn’t share one copy of
the program between then. They will need private data areas,
obviously, but the instructions part of the editor will be the
same for them all.

By sharing the instructions part of each program between a
number of processes, the amount of swapping can be reduced. The
system will only swap stuff when it has to; to make memory
available for a process already swapped out that now wants to
run. Reducing the demands on memory will therefore reduce
swapping, which is a rather slow operation, and in this way will
improve the response seen by users. Taking advantage of the fact

that the shared part never changes also helps, as we shall see.

125

EUUGN Vol. 2 No. &4 126

To allow instructions to be shared between processes, no
process may be allowed to write into the shared part. To enforce
the rule, rather than simply express the hope that it will be
obeyed, the kernel puts these shared sections (known as ‘texts’)
into write-protected memory. That won’t be a hard 3job if the
memory management hardware is adequate. For every text currently
in use the kernel keeps a single copy in the swap area. If any
processes needing that text are in real memory, then a copy must
also be in memory - it will remain in real memory as long as any
process 1is using it. If every process using the text happens to
be swapped out, then the real memory copy of the text can simply
be abandoned: it <can‘t be different from the copy in the swap
area because it has been write protected. If any process needing
the text 1is to be swapped into real memory, then the text must
also be swapped in. Not having to swap the text portionm out to
disc reduces the amount of swap i/o that has to be done.

All of the standard Unix compilers produce programs that can be
run 1in this way, although the loader “1d’ has to be warned that
the feature is actually required. It shuffles the program around
so that the invariant parts are all in one lump and makes a note
within the executable binary file that this has been done. For
example;

cc fred.c
will produce an “a.out’ that isn’t shareable. Giving the ‘=n
flag, which ‘cc’ passes on to the loader, is what you want to do:
cc -n fred.c
There is no point at all in doing this for small programs that
are rarely used. It’s only worth the effort if programs are
large and there is a high probability that several copies will be
run at the same time.

4

As a word of warning, this only applies to compilers that
produce directly executable binary programs. If they produce an
intermediate code, like the Berkely ‘pi’ Pascal compiler, or CIS
COBOL, then 1it‘s the interpreter and not the intermediate code
that should be shareable.

khkdthhkhkkhhkhkrrhkhhhhhhhkhhhhhhhhhhikt

The Sticky Bit.

The sticky bit - much misunderstood - now comes into play. If
an executable binary file has the ’“sticky’ (sometimes called the
‘save text’) bit set in it’s permission field, things change a
little. In the normal run of things, that swapped-out copy of a
text is junked as soon as the last process using it decides to
terminate. If 1it’s needed by another process later, it has to
be re-read from the executable file and re-established on the
swap disc. Unix is not well-known for the speed of its file i/o,

so for a large program this can be relatively time-consuming;
with big programs 1t can account for a substantial part of the

delay a user notices between giving a command and seeing it start
to run. Setting the sticky bit prevents the swap copy being

EUUGN Vol. 2 No. 4

junked.

With the sticky bit set, once the swap copy of a text 1is set
up, it remains there until the machine is re>started. The first
time the program 1s executed the same delay will be present, but
after that the text 1is always available to be swapped in when
it’s needed. Swapping is usually accomplished in a single 1i/o
operation, whilst reading a large executable file may take
several hundred. The resulting speed up may be an order of
magnitude and 1is certainly noticeable, particularly since other
processes doing their own disc i1/o don’t get clogged wup by the
unnecessary extra disc transfers.

So, if it’s so good, why not set the bit on every executable
file you’ve got? Well, there’s a price to pay. All those swap
disc copies of text segments absorb space, and one of the
quickest ways to bring a Unix system to its knees is to exhaust
its swap space. Even if you can afford enough disc to cope with
it all, the kernel’s internal table will overflow instead and you
end up going up the ladder only to come back down the snake.

The rules adopted by most wusers come into one of two
categories. The "I don’t understand it" bunch take the easy way
out and ignore the sticky bit altogether; this is not a bad thing
to do. Those who do have some idea about it usually set it on
the binaries they think will be heavily used. This is not a very
good idea.

There’s no point in setting the sticky bit on things 1like the
shell and the editor. Loading the first copy of each will be
slow anyway, and from then on the likelihood 1s that at least one
copy will always be active, resulting in a swap copy of their
text anyhow. Now, (say) the C compiler probably would benefit
from the sticky bit. It’s big, fairly regularly run, but
unlikely to maintain a permanent presence except 1in very big
systems. Short C compilations can be dominated by the time taken
to load the various <compiler ©passes, the assembler and the
loader. The trouble is that it’s a pain to find out the names of
all these things and set the bit, so few people bother themselves
about it. Incidentally, 1if you thought that ‘/bin/cc’ was the
name of the C compiler, you’re wrong ~ its just the management
program that invokes all the other things.

To sum up: The sticky bit is more trouble than 1it’s worth.
Forget it.

khkkhhkhhhhhdohhbhbhdohdhhdbbhhkrhhrhhhhhkdrhhrdhridiri

One Step Beyond - Greasing the Sticky Bit.

What’s wrong with the sticky bit -is that it’s up to the user to
set it. Surely the system itself 1s 1n a better position to know

127

EUUGN Vol. 2 No. 4 128

what’s going on, and ought to ad just accordingly? Correct!

If you could persuade the kernel to hang on to the last so-many
texts wused, the most heavily used would automatically be in
there when the were wanted. Experiments on a PDPI11 systeum at
Bradford University bear this out.

The experiment meant modifying the existing kernel to implement
a cache of most recently used text segments, even when they
became disused. A list of out of wuse texts is kept in most
recently used order. Whenever a text is needed, a search is made
of this list to see if it already exists in swap space. If 1t
does, it is removed from the “free’ list, placed on a ‘busy’ list
and used immediately. If it doesn’t already exist, then 1t 1is
dragged 1in from file as before. If a text is only used once, it
will gradually be pushed down the free list as other texts are
brought in and wused, and unless the free list is very long it
will eventually fall off the end. When it does, the swap space
is freed.

Swap space is also freed if it runs out. When that happens,
texts are thrown away in reverse order starting from the far end
of the free list. This solution is much better than the standard
V7 Unix approach, which is for the kernel to throw up its hands
in horror.

The modifications described above have added about 1/2 Kbytes
to the kernel, dispensed with the sticky bit altogether, and
result in the typical time taken to compile and optimise a 50
line C program falling from 25 to 17 seconds. Users have
(without prompting!) commented on a ‘noticeable improvement’ 1in
response. Enough said?

Mike Banahan.
15th. December 1982.

Reference:

Fundamentals of Operating Systems,
A. M. Lister,

Macmillan,

1981,

Chapter S.

EUUGN Vol. 2 No. 4 129

An ONYX implementation of an allocation checking
technique.

Tony Cornah

MRC/SSRC SAPU,
Dept of Psychology,
The University,
Western Bank,
Sheffield,

S10 2TN.

ABSTRACT

This note describes the implementation of the tool originated
by Barach, Taenzer and Wells[1]. That paper set out a system for
detecting storage allocation errors in C programs: basically an
error report for each unfreed allocation or the release of an
unallocated area. However the details of how to trace the alloca-
tion and release of dynamic storage presuppose access to the
source of the C library: a false supposition for holders of binary
licenses. Renaming the original routines in the library, writing
new ones which call the renamed ones and adding these to the
library will overcome the problem.

1. Renaming the original routines.

A program, "rename", to copy "/lib/libc.a" to "newlibc.a" was written
fairly easily: the names of the archive members which needed altering were
discovered by scanning a table of contents for instances of "*alloc*" and
N¥fpeehn, In fact only "malloc.o" turns up, something which may have been
expected from the layout of the section of the manual dealing with the
library. A namelist of the extracted "malloc.o" revealed " malloc", " free"
and " _realloc". The last calls the first two so needs no modification
(ascertained by trial and no error). The program "rename" scans for the
required archive member and then scans within for the required symbols. The
names are changed to "zzmalloc.o", " zzalloc" (because of the restriction
to seven characters) and "_zzfree".
{

2. The new routines.

Routines along the lines of the ones in the original paper were written.
Modifications were

a) "uwriterecord" writes out one less return address: that of "malloc" or
"free",

December 6, 1982

EUUGN Vol. 2 No. 4 130

-2 -

b) "malloc" calls "zzalloc" and "free" calls "zzfree" to perform the heap
manipulation.

c) "malloc" looks at the word before the allocated area to determine the

size "zzalloc" has decided to give (this word points to the last word
of the allocated area in the ONYX implementation): another example of
trial and error to overcome the lack of source code.

"ar" was used to add the new routines into "newlibc.a" which was then moved
to "/lib/libtrace.a", where it can be used by specifying "-ltrace" in a
call to "ce".

3. The analysis program, "plumber".

Again, this is slightly different from the program "prleak" described in
the original paper.

a) The error reports are not sorted, nor are they counted and no average
size is produced. The format of the reports differs in minor details.

b) An option, "-s", will produce a file, "summary.out", which contains
the total size of unfreed storage and each unique traceback path
(sorted this time!!). The total size is useful in that a working pro-
gram may be stopped after all allocations have been done (or anywhere
else for that matter) and "plumber" can report how much of the heap
has been used. The unique traceback path reports are useful if the
program being examined is likely to use each call to "malloe" or
"free" very often. Reams of paper detailing all instances of a few
calls are less useful than the calling sequences themselves.

c) The call to the macro "checkleaks", which calls "plumber", can specify
a series of octal addresses. If this is the case then instead of
reporting errors in the normal way, the program reports all instances
of the allocation or release of these addresses. This is useful if the
errors are duplicate frees. Having found that such an error exists
then how the particular block was allocated and freed is useful infor-
mation.

4, Distribution.

Anyone requiring a copy of this software should send me an ONYX tape
cassette onto which I will "tar"™ the files: the C sources involved, the
library "libtrace.a" and a manual page. If this is not possible then I
will send 1listings (not of the library) or will try to prepare another
transfer medium: we have a TERAK (8" single-sided, single-density, soft-
sectored floppies), an Apple (Apple DOS 3.3 and 5 1/4"" single-sided,
single-density floppies) and a North Star (CP/M and 5 1/4" single-sided,
double-density floppies "Lifeboat P2 format"). All of these can communi-
cate to a greater or lesser extent with our ONYCES.

December 6, 1982

EUUGN Vol. 2 No. 4 131

References.

[1] Barach, D.R., Taenzer, D.H. and Wells, R.E., "A Technique for Finding
Storage Allocation Errors in C-language Programs", SIGPLAN NOTICES, Volume
17, Number 7, July 1982.

December 6, 1982

unoouanbooy - neaonjop ap aurrwoq
3NOILYNOLNY N3 13 3NDILYWHOANI N3 3HOYIHO3Y 30 TYNOUWN 1N111SN

GE9E -ZSL0 NSS!

S1HOd3H TNJ3ISN HIHLO IWOS ANV 'SLOIFOHd NIHY ONV HIQYN
TI0S HYAVM 'SNIHIS 'SIAVIOAD IHL NIHLIM 030NA0Hd

S1HOd3d 03103713S 40 LOVH1ISAY SINISIHd ONILSH Q3HOVLLY 3HL

132

y

2 No.

SLOVH1Sav

Z861 J8qo1d0
6°L0S Q19

EUUGN Vol.

133

*su013ed13123ds 33aydwod ayl uo paseq

3q 1114 saanpadoxd UOTIBDTIITI11aD> pue uorleplifes *3Idafoid 70s 3yl utl padojsaap
Furay sia]rdwod YOSV4 JO 39S 3yl JO uOIIEDTII23ds [BUIDIXD PIBPUEIS Ayl

swioj 11 ‘juawndop OSI 3yl Yilm paieldossy -uorieaado 1ajidwod pirepuels auljzap
pue s3dT0Yd uoTIrIUdWAI[dWT 3ONPal1 03I 13p10 UI (§8i¢ OSI) TvOSVd 28enduey Butw
—wea8oad ay3 jo suorled1jrdoads paepueds ayl 03 SIuaWA[dwWod SIUTIIP IOU STYL

L

2 No.

-dg| ‘(18°AON) *“I0S-TVv)SVd 51nassadoxd $3] SuUep 81AN3G Ul asiw

32 T ¥OSvd a3eJUey np swiou ey g uU0TIBI1J152dS ap 10awa(d@o) - ‘g FDTAOVK

youaig ‘4l - Z°8€S1 NV1

*autyopw 333183 UIATIR yoea 103 103B1I3UA3
apo> ® Aq apod> autydew 03U palesSuell ag 03 ST aBendue] 3ILTPAWIIIUT SIYL

EUUGN Vol.

*si1a1dwo)y jedsed 10S Yl jJo }duni) uoumwod 3yl £q padnpoiad 3pod
3yl ssaidxa o3 pasn (17) @3Fen3ue] 231eTP3UWIAIU] 3YI $IQTIAIS3P JUIWND0P STYJL

o © d eg ‘(08722Q)
‘(1 ubTS137) TYISVd SINa3dnpell ap aunuwol 3Yyonos el

youaad ‘gL - €161 NV1

+saanpadoid uoliepriea jo s3oadse Teuorieziuedio ayil pue Burisal xayrdwod jo
sidadse jedTuydal ayl yjoq 103 pasn sI 3dTJJO UOIIEPITEA 3yl ‘Spiepuels af
-engdue| Zuruwei¥oiad jo uorlTutrjap 3yl £q paajoaur swajqoad se J[am se pakaains
£1331aq 21e sansst A31]1qe3iod 21em3jOs jJO 13quWuu y °d1eM3JOs 3yqeizod jo
jJuswdo]anap ay3l ul Juawal2 K3 B SB pajuasaid ST 3DYJJO UOIIBPI[EA TYISVd V

* €l1-604 dd
C(1861) ‘Tou ‘A1Isnpul ul siaandwo) ul oste ‘(0gel*ady) ‘eraisny
‘euuaty ‘Sutlaay 3utadg ggl ¢ (2doany anping) swaisdg Burinduo)

1eraisnpul uo doysyaom ueadoing *335TFJ0 UOTIBPTITEA TVOSVd V - "W NdID

4yst118u3 ‘al - 1 90S 1 NV1

rjuduuoataua Butwweidoid ajqeiied e jo pue

*(VOSVd U1 u211:1am ose) waisks Burieredo ayqelaod v jo juswdoyanap ay3
*(IVOSVd) 98endue] dutuwe1801d piepuels b O SUOTIEIUIWA[AWT PIEPUEIS S3A|OAUT
11 rwayqoad sty3l 03 suotlinjos Buraq o1 0S 12afoad joy1d ay3 utr uaxel uaaq

sey ydeoadde 1eqo(8 v -43171qe3iiod weaBoiad jo syydo1q Fuipquwnis [1131S 3ie
suotriejudwaidw a3endue] Ul UOTIBEZIPIBPUBIS JO YOE[PUB SIDEBJIIJUT WIISAs Burl
-vi1ado Ing ‘sodendue] Butuweizoxd ‘juspuadapul dulydew ‘13adl y31y jo Isn oyl
43nNoayy SprW uavq oary S$s9i1doad ‘snolawnu ale ajqelrod uou sweiBoiad ayew eyl
$313771q1aedwodul Jo $331no§ *[einieu Suraq woij 1ej st A3111qe3iod aiea3jos

*d gy ‘(08 aue[) ‘Dealnn-s01ldy

19121307 91Uy , sopniy,p
E}

al
{eqo1873y503dde 3un"1nog - ‘K NIID
yausad ‘a9 - 70S'I VD

- €6 -

©$31101€40qE] 1128 2yl 3O YIBW 2pEId B ST XINO *°

*JUBWUOITAG3 uolldnpoiad

s1em31jos pood e jo 1ioddns swalsds syl 103 (apow B SE UINEI 23Q pinod

yo1ym wa3sAs XINQ 34l JO S31n3eaj uUTEW 3yl JO WOS SaqIAIS3p 1aded styl
*STUTW UBDTIdWY 31S3Q 3Yl U0 punoj 3q ued

yoTym 250yl 03 10113¢nS UaAd pue Jualeainba jJudwuOITAUS uot3onpoad weadoad e
$123ndwo>-010TW 10 Tulw youarjy uc 3urdolaaap Je sure 10§ 309foad 30711d Byl

L _ +d gy .mmn.>ozv -
‘gi.N 2181g ‘XINQ 3@333Ks Rp 53855305 §5p 001I81Ca55ad ~ ‘W L 1011105 /TR NAID
2

youaix ‘Al - v0S°i SAS

*s1od03014 -~
saanpadoxd uolledrTunuwoe) -
suot3eandijuoy -

elpaw uorsstusuel] -
21N3233TYJIY SHIOMIAIN [Ed07 -

: sjuauodwod

SNOTJBA 113yl JO pue $)10M3a3u [BO0] 3O SOTISTIAIDLIBYD Y3 JO A31A1da0 uB
$2A18 3] -S)10M313N E23Y 1EO0T 03 UOTIINPOIIUT [BTI0IN] 3I0Ys B ST 1aded styy

-+ d |y ‘(6¢'3dy) *XNES0T XnESEPY Xn@ UOTIGNPOIILT - "W NAID

youaig Nl - 10§71 SM

*§2083J133ul syl uodn paseq

wei3oiad Aue o3 K3t11tqeizod jea1 Burinsul snyj ‘sSaVe3aaJuT pIBPUEBIS T0S 443
yita A3TWiojuod 113yl 3Yd3yd o3 uot3eiuswajdut Iendtiled Lue o3 patydde
a1 s2inpadoid uollepI[eA ‘siaindwod-oi1dTw pue Tulw jo £3121TIBA B UO pajulw
~37dwt ST 31 *TYDSVd UT U2331dm OSTE ‘51003 21emIJOS 3O 335 B pue ‘vosvd
ut valllia ‘wsisds Burieaado 37q13edwod xtup B ‘s1a(1dwod Ty)ISYd PABPUElS
uo paseq S1 31 °'s]oo3 Jurisaut3us axem3jos jo uoljeiado pue quawdoiaa’p

¢ yoaeasai 3uriioddns 10J papualul “TYISYd UT UIIITam pue aiqeijiod udu
~uo11Au3 SurtiaauiBua alem3jos dIseq B Burddorassp s1 308foad 3j0711d 10$ dul

-
o~ -dg ‘(zg 2unr) 3537613730774 708 3043 3o Uo131€3ua5014 (815099 - 'W NIID
ys118ug ‘39 - 1S 1 940
-paieutwial st 3dafoad 3yl 133je s}unil pajeldosse
ayl pue SpiEpPuEBlS JO0S 24l JO UOTINTCA2 3yl 21INSUT PUB UTEBIUTEW PINOYS 3]
* wi3s£s
= 8utjeizado ayqeizod 0 3yl pue s1911dwo)y ydSvd 103 3dafoad 70s ayl
. Aq paddoyaaap s)unil juspuadapul IuTyOEW BYJ UTEIQO O SUBAW Y3 ST 3T
mw * (9de3123u1 swaisds Buriezado 708 3yl
~ 10 Ty¥Osvqd dutpiedai) spiepueis 0§ 34a o3 Butwiojuod s3idnpoad Buipracad 1o
. 3uisn suorleziue310 10j wWNI0j B SB 3AIaS 01 ST J0S QATD,3ul 3o asodand ayy
2 d ¢ ‘(zyra2d) 1057QA1d e1 - "W NEID
= youaig ‘"9 - 1762571 WO
[So]
o]
Sy NAr - 56 -

INSS

*13u13) waisds pain

T13s1
~e1ado 705 aya Juswa [dut on. oTaaed o1 pasn gl lon Se wadsks b

3 aendoTazed ut pasn ST ainidairyoie STyr

*SNQ uouWOd 3y3 o3 pa3
. pP3ydoeije s
wcaunowwwmAMWMMMMNmWM”H0w~wQ wmm 0/1 rsjudwaatnbai paads 10 »u-ammwwuwowu
T 18 20 A13juspuadapur)snq 13yits o e
c 1 T 3 payoe
Mmmmwnmmuoswz SNQ 18307 ® 0S¥ sassad0® pieoq uOmmuuouM ”umMuw ”uscmu
. oAH‘n Y121 4ita paudIsap snq uommwod e punoie ITING 51 31 ‘(2w mUm :M
nmm>owow PU® 00089) 21qB(T®RAR s1ossadoxdordtu uﬂnno_ snotiea osuH o.umc
PE 343 33E3 03 paudrssp ainivajrydae howmwuounouu~E|*UH:E ® um OM “M

- ‘d g1 ‘(zg°1ady) *3373Ang733
S— ! 035
PATBINPON 211911938 310135774578 30/ TGRS - 5 ANSTAAR 77 9IONTT

Udua1yg *ar - 60571 IVH

"J1ISIT MuNI3 3yl jo juspuadapur aie

o T PUB quni3 uowwod ay3 £

A<UMM mwvoo 93FIPaWIAIUT 3y3 uo parpdde aie suolestwradg :.wuw wwmwv
d 30 junijy uouwod 0§ 2y3 woij apoo pastwrido aanpoid o pio o

a
Pen0T103 poylaw uorlesturido ays jo uorzejussasid 11e13A0 :mmﬂu Ton et

ajou s1yjy
*d 6 ‘(z8 TeR) ‘asno

. - - AJO.H.

‘1313eqes 1neq-atun +I03-TvOSvd 545n05 B g

1$Ina33npel1l ap :oﬂuwwwsqumm

- 'd J0T¥0VK /€ DYA0ESONV,a

Yously ‘3l - 65571 NV

) *10S Q1D 2ya y8noay3l aqeyreae £1saz
- anvmwmwwww mwummmemEou Y3 uodn paseq ‘5U013IBITj10ads me vmmNmeM
e, .u04muwcww . enduey ay3 sassadoiad pue TVOSYd ul ua33ram £1axijus
|wemwu=H e vom Juapuadap-autyoew e Aq passasoad 3aq Ow 3po) mwm~v
Ty e 1 duad auoc 3Ise] 3yl ‘sassed omy Jo apeuw s1 3] .mum-usm
3 3una3 vowwod 10§ Iyl jo uorzejuasaid Amuwcww.m ST uuo:.ma:w

Youarg ‘3l - 65 1 NV

*1a11dwod o13193ds Lue yita
! D HT 14 papracad sienue
aq Kew kays {paI8ITPUT 018 quspusdep co«,~ w £1ejuawaydwod Ul pajre3ap

3BUdWaTduT utewal yaiym Sjuawail
*51311dwod 105 ayi jo
31 °"Y3arm-Uasuay pue
W 243l 4£q paiirdsul s1 a2z
11dwod Tygsyd 103 m:oﬁumumw~wwam
2pInd, s1asn TvISVd e ST Hmscms.wazk

mw«w4~mw~:uwa U3Ta 1apeas ay3 Burzlieryiwey je swie
01 43 wa 9 ,1enueq 1ssn TydSVd, pue w31oday q<um<m.
-f3IoN13s s3] -piepuels (g1 ay3l uo paseq sia
T10S Piepuels ay3 o3 Burpuodsaiiosr ¢

Youald ‘II - 1°Zwg | NV

- v6 -

wmn
o™
—

2 No.

EUUGN Vol.

*28esn d13122ds ©3 pajeidepe 1233139 aq ued eyl afen3ue] purmmod

3yl jO sIuel1IBA §53d01d 03 paljIpow A[IE¥3 3ag ued IV IBYI OF pajusw
-o1dwy pue pauB1sap udaq sey 31 "wIISAS Yl Yiim I[qelIeAE 3uUO A{UO BY3
xﬂ‘ummmwuwc 10U s1 11 ‘?2103813yl -[EdSEJ Ul UaIITim ‘weiBoid 19sn B ST

’ 112uUs T0S 3yl -112ys Aaya)13g 3yl se yons S[[3ys 1ayio £q papiacad
S3TITTIOBY 3yl jO aWos oS Sapnidul 31 “3IT yils 3[qiiedwod ST pue []ayg
h.cmﬁmum> Jo 33siadns B s1 3] 'w3isds XINN 3yl Yiim oiqefleae sadenBueq
vcmEEoo Aq paitdsur A12pim uaaq sey a%endue] pupumod waisds QS SYL

youaig ‘dl - 90G°| 11N

- 16 -

"§911031B10QRT [13d JO YIPWAPERII B ST XINNw

‘smex8oxd 1asn

Jo uotrjerndiueuw Kseas Sutmorie 28ensuey PuewWWOd Injaamod e ‘8ad1Aap pue
Sa113 sweaBoiad uaamjaq uorjemrojut 3Julydueydxa 103 sdea pPaepuels pue ard
-uts ‘aiempiey snotiea uo £3111qe3iod §31 31F S$O13§11230BIBYD UTEW 83T

*8133ndwod-01dTW pPaseq 0pO9]
PUE 9808 ‘00089 ‘®13TH/swag ‘9 19a27 [1emA3ucy se Yons saa3ndwod oidtw
PUB Tutm 31q 9| jo £3311®A apim ® uo pPajuswardmt ST 31 *$313TTIIN pue
SIVBJIAIUT WIISLs m:«umuwaov XIN1 243 43ia arqriedwos £y3a7dwod aze
S3I3T1IIN 3Y3 SB [[am SE $3dDEJiaqul [aulay 34yl "TVOSVd PaEpue3s uy
Uo33lam osTe sweidoad 317130 d1seq 30 335 ® pue TyDSV4 piepuels ug
ua33tam ‘yauaay Butieys—aw1y ayqejaod e 3O opew s1 31 ‘juamdoyaaap
PUB U4d1B3521 §7003 21em3jos Juiiioddns 103 Jjuamuoataua SuriasuiBua
3lem3jos O1seq plepuels e se pasn 2q 03 sT waisds Buriezado Tog ayr

“d vz _‘(z8_uer_) ‘70§ N
uoryeatordxq,paugIsATET - T5THIIAITIONW NATD7Td VINARS T TIAT TS

Youaagd ‘3L - ¢ng' | SxS

*1971dwod e jo ssed ISB] 243 se pasn aq Aew pue ardmts

£13a 3q 03 s1 31 'S9AT30311p juapuadaput surydew plepuels sapracad 3ng
325 UOTIIONIISUT SUTYDBW 3ATIBU 2Yy3 S3ssanoid 131quasse ay] ‘wajss
8ur3eiado 705 ay3 Y3ITs pajeId0SS® 1031p3 WUIT pue 131quassy 3iqejdepe
2UTYdBW Y3 3O SUOIIBDTITdads Truiajxa 243l S3QIIdSIP JudwWNd0p H1YJ

-153357 27705 sUSTT ap in3311p3/INGTqEESY - "8 F4IRI74 NOSTFHOVE/TSNOG

Yousag ‘3l - 7'0ES'1 SAS

“®aBMpiBY 3yl 3DBJIa3jul pue s3daduod Butany
-dN13s 3y) Judwarduy o3 TIOYIVK ut U3311aM 21em sainpadosd Teuiajxs [Wog

"B821a9p [®vioydriad puw slvutwiay 1va
-3A98 Jo Butripuey ayi smolle 3daduod seasoid 3yl r3d4k1 elep 3Ideaysqe jo
3daduod ayy sjuswardwy 3dsduod> aynpow 2yl -aioydewses pue I npow ‘ssadord

P wa3sds 2yl 3an3Ioniys 03 1apao Ul TYDSVd 01 pappe 213m §3daduod mag y

‘1I1¥ 43nolys paziiesa s1 Futddeissioog *€0/11-151-04q
B uo wcﬂcc:» [11§ 23pun 1a71dwod TVISVA-ISWO 243 ST pasn 1a[tdwod
24l °TIVISVd Ul U3IITIm WaISAs 18SN-13{nw TejuswIIadxa ue s1 SYdSAS

(z8 2unr) *(WyND) ‘T€5583 03 377133 2wIsXS TUTA UATTTSVASAS - T57T 1AONVE

yavead ‘3L - (16| SAS

- 9§ -

EUUGN Vol. 2 No. 4 136

T INSTITLITE OF TECHROL Oy

1

F.o.Box 5375 Tokyvo International
Tokyo 10031 JAFAN
OR(a1zya9vl

August 17 ;1928

Furorepan UNIX llsers Grour

caaoJim Meokie. Unix Sueeort Offireer
Fdinburah FReaional Computing Centre
S0 Chambers Street Edinburah Scotland

Uear Managser:
“ipase send me more information on the unix users SrouP.

Sincerelys

W RE A

Shigeehito Jitoh
Research Assistant
Computer Science Department

EUUGN Vul. 2 No. &4 137

ISTITUTO DI MATEMATICA APPLICATA
FACOLTA DI INGEGNERIA - UNIVERSITA DI BOLOGNA

VIA VALLESCURA 2 - 40136 BOLOGNA - ITALIA
TEL. (051) 331588

August 19, 1982.

UNIX Newsletter.

c/o J. McKic

Edimburgh Regional Computr Center
c/o EJCAAD

20 Chambrers Street

Edimmburgh, Scotland.

Sirs:

Please enter my subscription to EUUG Newsletter starting
from now and bill me.

Enclosed you can find copy of our licence for UNIXV7
and preliminary version of an article decribing what
we are doing here in Bologna.

Thank you very much.

Sincerely R

Luigi Cerofolini
Associate professor.

EUUGN Vol. 2 No. L 138

Kazuhiko Nishioka
Technical Manager
37F Sumitomo Bldg.
2-6-1 Nishi Shinjuku
Shinjuku, Tokyo 167-91
JAPAN

Attn: Jim mcKie

UikiX Support Officer

European UNiX User Group

Edinburgh Regional Computing Centre

c/o EACAAD 20 Chambers Street, Edinburgh

Scotland

Dear Mr. McKie,

Ve came to know your activities in "A User's Guide to UNiX

Systens".

Thouygh we are in commercial world, I want to get your news-

letter if possible.

So plcase send your newsletter or let us know how we can

read it.

Our primary interest is on the software tools on UNiX mainly

for microprocessor software development.,

Fnclosed is the check for airmail charge.

Sincerely,

Kocadilee Mrelipfoan

Kazuhiko Nishioka
Technical Manager

Oct 17, 1982

4, EUUGN Vol. 2 No. 4 139

. + 2KONGSBERG vapenfabrikk

Jim Mckie Postbox 25 N-3601 Kongsberg. Norway
c/0 EJdCAAD
20 Chambers Street Tel. National (03) 73 82 50
Edinburgh, EH1 1JZ International (+47 3) 73 82 50
3 ; Telex 11491 vaapn n
United Kingdom Telegram Vépenfabrikken
Bank Andresens Bank A/S
t + Den norske Creditbank

DERES - vNUR-'HAE REE VAR/OUR/UNSERE REF DATO/DATE/DATUM

01 Nov 1982

Dear Jim,

Thought I'd@ let you know how we got on with the installation of the EUUG
small machine tape on our 11/34. The answer, I'm afraid, is "not very
well”! The reason we were particularly interested in the system 1is that
we wanted to replace our existing DZ/11 with an Able DHDM, and
discovered that this pushed us over the address limit, by some
considerable number of bytes. (We have 2 RM disks, a TUl6 magtape, plus
the DHDM).

The first attempt to put the EUUG system up worked, and things looked
promising until we unleashed the users, when it rapidly became apparent
that we weren t supporting enough processes. A comparison of the old
and new param.h files quickly showed that this was correct, so we
adjusted appropriately, recompiled, and ... miles too big!! To cut a
long story short, we learned a lot about our original system that
weekend - it turns out that it has been through the "VU” tuning mill
before 1t reached us, and has inodes ported out, enabling considerably
increased values to be used in param.h.

In the end all went reasonably well - we incorporated some extra "byte
slicing” techniques from the EUUG source into our original, and managed
to squeeze it back down to a sensible size again, with all the required
devices, and the enough processes to sensibly support our 7-10 users.
The command sources installed are now EUUG (slightly modified to handle
tty00... and not ttya..., and to allow user names with non alphameric
characters again - the Norwegian alphabet has 3 additional vowels over
the English one, placed after z in the Ascii character set).

To give you an idea, this is what you can achieve!

/* KV tunable variables */

#define NBUF 25 /* size of buffer cache */

#define NINODE 125 /* number of in core inodes */

#define NFILE 100 /* number of in core file structures */
#define NMOUNT 4 /* number of mountable file systems */
#define MAXUPRC 25 /* max processes per user */

#define CMAPSIZ 30 /* size of core allocation area */
#define SMAPSIZ 30 /* size of swap allocation area */
#define NPROC 60 /* max number of processes */

#define NTEXT 30 /* max number of pure texts */

#define NCLIST 65 /* max total clist size */

EUUGN Vol. 2 No. 4 140 o

3KONGSBERG vapentabri

/* original tunable variables */

#define NBUF 8 /* size of buffer cache */

#define NINODE 75 /* number of in core inodes */

#define NFILE 75 /* number of in core file structures */
#define NMOUNT S /* number of mountable file systems */
#define MAXUPRC 15 /* max processes per user */

#define MAPSIZ (NPROC/2)

#define NPROC 50 /* max number of processes */

#define NTEXT 25 /* max number of pure texts */

#define NCLIST 100 /* max total clist size */

However ... I have the distinct impression that the system is now

slower than it was before, which is rather puzzling. Unfortunately,
we almost simultaneously had a disk head crash, with the result that
we have reorganised our file system placement, and are not yet
certain whether or not this is the cause of the performance change.
1 heard you had a system in Edinburgh with a DHDM in — any ideas?

on the question of performance, I have one tip to pass on to people
using uucp/uux a lot. Uucp searches the spool directory to find if
there is work to be done, building up a table of the files it finds,
emptying this table, and then searching again. IF the spool directory
has been very full at some point, then this search can take a long time
(because a directory never shrinks, but simply gets null entries).
Under heavy load, we have found out that the other machine simply times
out waiting for a request acknowledgement (usually HY). The obvious
solution is to increase the MAXMSGTIME parameter, but if you cannot
persuade your correspondent to do this, then a “quick and dirty" fix is
simply to delete and recreate the spool directory.

Which brings me to the next point. Hugh Connor wonders (EUUG
Newsletter, Vol 2, No 1, p71) why anyone would want to join a line to
jtself with ed. Unless anyone can show we a neater way to do this, the
answer is in this operation:

g/*s/ ../ /-13

which turns all sequences of one or more empty lines in a file into
a single empty line. So my preference is not to put in his change!

I don t know what kind of editorial policy you follow as regards what 1is
mugeful” and what isn ' t, so you can decide yourself whether or not to
include the attached shell procedures, which are designed as an aid to
system managers tired of sending pleading mail about disk space. We
have used them with considerable success here, and are pleased with the
response from the users, who tend to “"cooperate" with the setup.

Yours sincerely
a/S Kongsberg vaapenfabrikk
Avdeling U4

peter J Story

EVUGN Vol. 2 No. 4 14

Nov 1 12:42 1982 Space Admin Procedures Page 1

This procedure will search from the specified directory for "junky"” or
"big” files, and make a set of mail files to be sent to the owners.
There is an "ok" lists of junk and big files which are not notified, so
that the users can send the names of "wanted"” files back in the mail,
and avoid being pestered in the future.

: Synopsis: spacefinder directory

: finds all files from the given directory which look junky or big
: and makes ‘mailowner’ files

: These can he examined, and then mailed to the owners with

the procedure ‘sendmail’

Pug if too many files - ls just gives up!
if test $1
then

FOUND=/usr/tmp/ jnkat$
NOTOK=/usc/tmp/ jnkb%$%
LS=/usc/tmp/ jnkcss$
trap ‘rm $LS $FOUND $NOTOK; exit;’ 1 2 3 15
find $1 \N(-name ’*junk#*’' \
-0 -name ‘#tmp¥*’ \
~0 -name ’‘*temp*’ \
-0 -name ‘La-lnog-zA-71' \
-0 -name ’'core’ \
-0 -name ‘nohup.out’ \
-0 -size +50 \
\) —-print \
I sact >$FOUND
if test -s okjnkbig

then
comm -13 okjnkbig $FOUND >$NOTOK
rm $FOUND
else
mv $FOUND $NOTOK
fi
if test -s $NOTOK
then
ls -1d ‘cat $NOTOK:* \
I tee $LS \
| sed -e ‘/not found/d’ \
8 8/ it iianeananadld N\
-e ‘s/ .¥//° \
| sort -u \
| while read owner
do
led $LS >/dev/null <<K7?
V/ suenasseesss.bOowner /d
W mail$owner
q
7
done
rm $LLS $NOTOK
else
rm $NOTOK
fi
else

echo ’‘Synopsis: jnkfinder directory’
fi

CUUGN Vol. 2 No. & 142

Nov

1 12:42 1982 Space Admin Procedures Page

1 prefer to scan the files before I send them, so 1l have
the second procedure available for doing that.

takes all files starting ‘mail’, and mails them, preceded by the
current ’‘hdr’ file, to the person named in the rest of the

mail file name
eg, mailpete results in ‘cat hdr mailpete | mail pete’

designed for the output files from procedure jnkfinder, bigfinder
etc

1s mail* \

2

| sed -8 ‘5-"....\(.#¥\)-cat hdr & | mail \1 \&\& rm mailri-" \

| sh

[

EUUGN Vol. 2 No. &4 143

"IN TRAITEMENT DE L'INFORMATION TECHNIQUES NOUVELLES

SIEGE SOCIAL ET BUREAUX :

1 4 5, RUE GUSTAVE-EIFFEL, 91420 MORANGIS
TEL. : 909-34.44 TELEX : 691163 TITN MOR

Chilly, le 2 Novembre 1982

UNIX NEWSLETTER
N./Rét..)) C/0 Jim McKie, Unix Support Officer
V./Rél ?./cc - 6226174 Edinburgh Regional Comuting Centre
C/0O EDCAAD
20 chambers St

Edinburgh
SCOLTAND

Dear Sirs,

TITN, a large OEM which is part of the THOMSON Groug,
i1s interested in UNIX related products and information.

Would you please send us information about your newsletter
sc we may consider subscribing.

Regarde.

F. TARTANSON D.H. JONES

~

Cas’ ngénieur

LnTEInlSur er

AGENCE : TITN - PROVENCE
7, RUE LOUIS-ARMAND
Z.1. D'AIX EN PROVENCE
13763 LES MILLES CEDEX
TEL. : (16.42) 26.37.49 - TELEX 400 221

S. A. au capital de 990.000 F R. C. CORBEIL 662 024 983 B SIRET 062 024 983 000 30 Code APE 7703 C. C. P. PARIS 2.575-09

EUUGN Vol. 2 No. 4 144

Hugh Conner

European UNIX® Systems User Group Dept. of Electrical and
. an
Electronic Engineering
Heriot-Watt University
Edinburgh EH1 2HT

Dear Jim,

o Some information on a known bug which 1 thought might be worth
printing. Anyone who has the EUUG distribution system will know of a problem
on 11/44s and 11/23s with long division, A fix for this has already been pub-
lished and requires ifdefing some code with DIVFIX. Well, it now appears that
these are not the only machines which require this fix. I was recently in-
formed that on 11/34s the division of 32768 by 1 gave the answer 32767. Tests
on our 11/34 showed that it requires DIVFIX as well. I advise others to try
this. Also, if anyone has an 11/60 could they see if DIVFIX is required for
that machine. It may bhe that the older machines (11/40, 11/45, 11/70) are
okay, while the newer models (11/23, 11/24, 11/34, 11/44, 11/60) all require
the fix. Actually I think that one solution may be to always include the
DIVFIX code, as it stil] works on machines that don’t require it.

Yours sincerely,

F{4:;;A?? M. Comrsor

fs.
Form DINFIX ook DPIN_FIX

EXECUTIVE COMMITTEE
Chatrman : EMRYS JONES, CGram Software

Meeting Secretary : PETE COLLINSON, University of Kent
Membership Secretary: HUGH CONNER, Heriot-Watt University
Executive Editor : JIM McKIE, Edinburgh Regional Comp. Centre

Newsletter Editor: CORNELIA BOLDYREFF, SW Univ. Regional Comp. Centre
Newsletter Editor : BRUCE ANDERSON, University of Essex
Member : NIGEL MARTIN, University College London
Member : MIKE BANAHAN, Bradford University

®UNIX is a trademark of Bell Laboratories

EVUGN Vol. 2 No. 4

ssMETRICs

SKODSBORGVEJ 305 . DK-2850 NARUM . DENMARK . TEL. (02) 80 4200 . CABLE METRICTRADE . TELEX 37163 . A/S REG. NR. 37994

5

EUROPEAN UNIX USER GROUP

Edinburg Regional Compating Centre
c/o Chambers Street

Edinburg, Scotland.

YOUR REF.: OURREF.. KBN/ksh NARUM December 1st 1982

Dear Sirs,

We are using ZEUS (UNIX) on our Zilog System 8000 microcomputers. We are interested
in different application packages running under ZEUS.

We would therefore appreciate if you could send us a list of the packages you have
available for distribution.

Do you know of any implementation of HASP or JES 2 capable of rumning under ZEUS?

Also please inform me if your packages are avaiable on ZEUS for format cartridge
tapes.

Yours sincerely
SC METRIC A/S
// : N , : . ."w‘v" / h/”(’/;{, 4

’
L L

Kim Biel-Nielsen
product manager

scanou METRIC a» METRICrs rom METRIC ov scanous METR | € oaron an ~s METRIC-NORTRA

Stockhoim tif. 8204 00 Oslo tif. 282624 Helsinglors tif. 400844 Stockholm Uf. 8204 00 Hjerm uf, 07- 4846 22

n
“

EUUGN Vol. No. 4

Compiled by Emma Searle, Small Business Microsystems Support,
Microsystems Software Unit,

Unix machines

in transparen
networking race

NOW THAT almost everyone has
Unix on their favourite machine,
the race seems to be on to
produce extensions to link lots of
them together. And the UK
seems to be winning,

At Newcastle University, Brian
Randall and his group have de-
veloped software to link vanous
Unix systems transparently in
local or wide-area networks.

“The software, called the New-
castle Connection, makes the dis-
tributed system indistinguishable
from a single Unix system,” Ran-
dall said. “Each user can read or
write any file, use any device,
execute any command, or inspect
any directory, regardless of which
system it belongs to.

“It’s the most ‘fun’ thing we've
had for a long time. We didn’t plan
to develop it as a commercial
system, but we rapidly found that
we couldn’t do without it - it's a
tremendous convenience.”

It tends to make processing

146

SWURCC,

by Logica, who want to add it to
their Xenix systems. Adrian
King, divisional manager of the
Software Products Group, be-
lieves that it is the most advanced
system of its kind in the world.

“In the US, Bell Research
Labs, Berkeley and other univer-
sities are all trying to develop
similar systeins, but this is better.
It has more capabilities, it’s the
next step. And it’s nice that it's
British.

“We want to use it internally to
connect our own Unix systems. It
will be very useful to firms want-

Unix versions
are claimed unacceptabl

Unix goes locz

THE Unix opemung system

ing brought closer to the peoq
Newcastle University. A sofi
subsystem developed there 3
Unix systems to be connected
local or wide-area networks,

Cw?w

~ Fastertha
a speedin'g
Visicalc -

VISICALC is under attack a
this time from Dynacalc, an
tronic spreadsheet from (
pusense.

According to Compus
ing to connect lots of small 16-bit director Ted Opyrchalit, Dyj
systems. is “wrtten in Assemble

“At the moment it would only speed, and will run on any
be of value to sophisticated users dard 6809 machine under
such as universities and research Flex, Uniflex or 05/9.”
labs. It will need a few months’ Southwest Technical Prg
work to hide some of the comple- is evaluating the product
xities before it becomes a com- own machines. Software
mercial product, but the problems Russel Brown is “personall
are all identifiable, all solveable.” impressed with it. It's ab

Newcastle University is col- million times faster than V
laborating to exploit the product and has heaps more facilities
with locally-based Micro- “But what I really like is
electronics Applications Research haven’t been able to crash
Institute (MARI). and neither has anyone elsa

Geoff Conrad we have really been trying.”

for ICL Pel

-_VL-

more efficient as a command can ALL available versions of Unix
be executed on any machine in the being developed for the Perg
ring the user does not have to computer by the Science and
wait until his own machine is free. Engineering Research Council
Also, as many Unix programs (SERC) and ICL are unacceptable
contain pseudo-parallel proces- 1n their present form, according
sing, if machines are free they can to Geoff Manning, director of

be exccuted as real parallel pro- SERC.

cesses on different machines. Unix is the operating system
All this is done transparently, favoured for all development

and it will werk with any Unix work funded by SERC and the

Jock-alike whichiois conap rible at ICL distributed Perq, a Motocola

the systenod!isdogel, 68000 16/32 hit computer, is the
| he Sy ster s he E!;; eoabted favouredmachine.

SERC is becoming increasingly
frustrated with the problems
associated with the project, parti-

cularly as it has at least 120
rnachines awaiting a suitable ver-
ston of Unix before distribution to
Universities and other research
centres can begin.

“I'll be very disappointed if it is
not running in considerably less
than five months,” Rob Witty,
SERC’s Perq team leader, told
Datalink in March.

Last week researchers from
ICL, SERC and Carnegie Mellon
University in the US met in Lon-
don to discuss the future of Unix
on the Perq. Camnegie Mellon
University is where the 32 bit
addressing operating system Ac-

cent was developed, and a k4
of this is used as the bas
SERC'’s version of Unix.

According to Geoff Ma
SERC’s own version of U
“up and working, but the
formance 1s not everything th
required,” meaning that thg
they have Pascal and a Fo
compiler working, the resp{
times are for too slow for prag
use.

The ICL version of Unix,
is also being developed at SER
Rutherford Labs, has no po
problems but “the Fortran d
piler doesn't work yet.”

revor Huggins

is prepanng to launch
new operatingsystems for
Sirius 1 16-bit micro-
puter and has unveiled a
ech package for the mac-
e as well as a 10 mega-
¢ Winchester disk drive.
on Upton, ACT Sirius’
ware manager, told Com-
ing: ‘We'll be offcring the
sis 16-bit operating system

C?:&wp Che (b= K2

during the second quarter of
1983 and that will be used as a
stepping stone to a release of
Unix later in the year.’
Uptonwent on: ‘We see the
Qasis system appealing to
commercial users of the Sirius
while scientific users are ex-
pected to take Unix.” ACT is
claiming sales of over 3,000
machines since the product —
which was designed by ex-
Commodore man Chuck Ped-

dle — had its UK launch last
autumn.
ACT also launched a 10

output to the machine. The
package costs £295 and can be
used for either voice annota-
tion of text or of programs so
that items such as error mes-
sages can be spoken rather
thandisplayed.

Other software products in
the pipeline include an ex-
tended graphics package for
the Sirius — entitled Graffix
— to make its UK debut in
November. ACT is also
understood to be on schedule
for a November announce-
ment of its networking of the
machine using Corvus Sys-

EUUGN Vol.

megabyte disk drive for the
.Sirius and an Audio Input
Package adds voice input/

Unix record -+
smended *
by chairman

1 AM writing to corrcct some
errors of reporting in recent
copies of Datalink. .

@ No decision has as yet been
taken within AT&T regarding
Educational Licenses for System
I11. That does not imply that there

tems Omninet network.
@ Standards battle, Page 18.

will be none. In fact my informa-
tion from within AT&T suggests
the contrary outcome, in that it is
more likely that Educational
Licenses will soon be extended to
System IlL. (Datalink August 9).
@ Your report on the Alvey Com-
mittee suggests that there are no
database management systems
available under Unix. This is an
extraordinary statement. Without
reference to files I can think of at
least seven commercial products,
the first of which appeared in
1977. (Datalink, August 16).

2 No. &4 147
© AT&T have not yet “thrown
off the shackles imposed on it in
the US”. Their actions are still
governed by the 1956 Consent
Agreement, under which they are
not allowed to be in the computer
business. AT&T agreed terms
with the Justice Department early
this year under which they were
released from their Anti-Trust
commitment, but these have not
yet been ratified by Senate. In-
deed, substantial objections have
been raised there, and as a result
some renegociation is taking
place. (Datalink, August 16).

E S Jones, chairman,
European Unix User Group.
While appreciating Emrys Jones's
awareness of the world of Unix, he
seems to have forgotten that in each
of our stories on these subjects it
was made clear that:

@ “proposals were not firm policy
yet. We would like to hear what the
academic communtly thinks of
them.”

@ It was not suggested that there
was no database management sys-
tems available for Unix, just none
that are built into the product, te by
Bell.

@ If anyone seriously beligves that
AT&T is not going to be allowed to
market compulers in the near fu-
ture under Reagan’s regime, then
perhaps they could explain the;r(

reasoning.

t the beginning of this year,
n the Letters page was full of
s about Pergs at SERC in
ks and worse, Unix was going
be available in a couple of
ths. Then in June. Then in
st. Then “it's up and work-
but unacceptable in its present

ut what has happened to the
dred-odd machines that SERC
ght to distribute to university
earchers but was waiting until
d Unix before sending out?

t the start of the project, ICL
working with SERC to pro-

duce a single version that both

could use. Then SERC decided
that it wanted to base its version
around the Spice kernel de-
veloped at Carnegie-Mellon Uni-
versity in the US, so ICL decided
to develop a straightforward com-
mercial version. But they tarried
on working with SERC’s Ruther-
ford Appleton Laboratory.

While all this was going on, a
Canadian software house quietly
brought out an implementation
that was snapped up by Three
Rivers Corporation, the US com-

- pany that developed the machine

and granted ICL a licence to
manufacture it in the first place.

But both British organisations
decided to carry on with their own
versions.

Last week, when ICL demons-
trated its “fairly fragile” imple-
mentation at Sicob in Paris (see
page 3), it transpired that it had
been developed internally and not
in collaboration with SERC,
whose own version is nowhere to
be seen. ,

Indeed, they were so touchy at
SERC last week that they would
not let Datalink formulate specific
questions, let alone cough up a
typical “no comment”.

Top level US approval
~ for Micro Focus’ ¢
- Cobol compiler :-

Robert Parry

K SOFTWARE firm Micro Fo-
cus has won top level certification
for its Level 1I Cobol compiler.
The US government General Ser-
vices Administradon has certified
the product at “high level” — the
highest of four grades — with no
errors. Level IT, 8 microcomputer
product, joins compilers from only
seven other companies at this level
of certification. All seven others
are major mainframe suppliers,
like IBM, Honcywell and Sperry
Univac. | i

“We really went for GSA list-
ing,” says Micro Focus director

Stewart . “The micro scene
sces Jots of in hardware,
but people are fed up changing
their programs all the ime.”

So far the high level certification
is for the Intel 8080 microproces-
sor implementation of Level II Co-

bol, but others will follow soon.
An 8086 version has reached the
second highest grade, and it will be
a “straightforward operation” to

"bring it up to high level says Lang.

Versions to run under Unix will
also be pushed for the top grade
certification soon.

With the certification of Level I
Cobol, the link between
microcomputer and mainframe &
ﬂihcation software has been esta
ished, says marketing manager
Peter Hewitt. Much of the vast
‘bulk of Cobol application software
worldwide conforms to the Ansi 74
standard, as does Level II, and
Micro Focus’ aim has been to de-
velop portable Cob%: compilers to
allow transfer of such software to a
range of microcomputers.

The GSA high level certification
means that US government and
federal agencies can now buy
micros running level II Cobol. The

- *GSA authorises such purchases,

rather as the CCTA does in this
country, and demands that the
‘machines’ run a certified Cobol

compiler.

Aﬁudy US micro manufacturer
Cromemco has announced it will
offer the Micro Focus Level II Co-
bo!l with its 16-bit micros.

EUUGN Vol. 2 No. &

148

Unix group

Bell price decision

The European Unix User
Group has called on Bell
Labs to make up its mind
about pricing of Unix System
111 after reports that conces-

" sions for universities may be

axed.
The commercial cost of a
source code licence

System HIis $43,000 but uni-
versities have been able to
buy licences for earlier ver-
sions of the operating system
for $300.

Emerys Jones, chairman of
the user group, said: *Univer-
sities would be prepared to
pay for the administrative
costs of Unix which have
been mentioned as about
$3,000. But I'm quite sure

that none of them could come
forward with $43,000.

‘We now require that Bell
Labs makes up its mind on
pricing and comes forward
with a clear statement.’

Bell Labs said that it would
reach a decision within two
months on pricing for Unix
System II1 for academics.

Jones added: ‘But if there
are no concessions it won't be
an unqualified disaster
because there are still the
Unix lookalikes such as Idris
and Coherent.’

There are cheaper and
source code for Idris can be
bought in unbundled seg-
ments.

Jones also suggested that
the Computer Board or the
Science and Engineering
Research Council might be
" brought in for special negoti-
ations with Bell Labs if
university concessions on
price of the system were not
granted.

A NEW software house is de-
veloping software for the Unix
operating system to turn it from a
development into an applications
environment.

Precision Software is currently
developing what its founder, John
Tranmer, called an “environment
manager” to provide facilities for
running the applications software
it will be launching in September.

“Unix provides the ideal multi-
processing environment,” said
Tranmer. “The first thing we had
to do was develop an environment
manager to take the user away
fromUnix.” ;=x¥ 22 .

The manager produces a menu
controlled system allowing each
user access to a private set of
utilities and files via passwords.

Precision has also made “substan-
tial modifications” to the telepro-

;cessing . environment, . which,

to Tranmer, offers im-

e

Precisionsh

a 6.¢.82

OWS

‘software on the UK develope

ovams UMIXTOr
applications

provements like easier syste
recovery.

Precision will be launching
manager along with a geners;
ledger package in Septembe
with other applications to follo
including sales and purchase led|
ger, order processing and a tele
and viewdata interface.

The company will also be offe
ing remote software support, i
cluding access to a central prog
ram library, with users comm
cating with Predsion’s o

.machine via the UUCP commut
"diations program, which is one
the Unix utilities. ~

Also, using UUCP, which -
initiate processes on other cp
as well as send ASCI files,
message switching system sen
ing mail between users could
set up.

Tranmer said that most of
software has been written in (
the ‘system development

guage used to implement Uni
and in Microfocus's CIS Cobo
which is used mainly to code da
entry routines.

Precision is developing th

Blea§dale micro, which uses
16-bit Z8000 microprocessor.
- Benjamin Woolley

ledgersat Forum'

PRECISION Software will be ex-
hibiting two new ledger packages
at the European Computer Trade
Forum next month.

The Environment Ledger in-
corporates a full screen editor and
menu controlled access to all ap-
plications functions, plus Unix
type features such as the mail-box
and desk directory. This package
is aimed at office equipment and
catering wholesalers.

The other package, General
Ledger, is aimed at the financial
world. The system can handle up
to 13 balances and maintain them
for the current year. It also in-
cludes posting facilities, foreign
currency conversions, standard
reports and trial balances.

Both software packages run on

PDP 11’s and Vax models and will
be available from October.

Precision Software has also
been appointed European distri-
butor for the XED word proces-
sor and the TXED full screen
editor. ,

Both are products of Computer
Methods, the Los Angeles-based
software company which special-
ises in Unix-based word proces-
sing systems.

XED is a direct entry word
processor. It incorporates a con-
trol and command language which
may be entered directly or via
simplified help menus.

The TXED is a standard ASCII
file text editor, providing system
developers with a complete range
of screen editing facilities. \/

Cost of Unix

licences for
academics to
be kept down

A promise to keep the cost of
Unix licences for academic
users down to a few hundred
dollars has laid to rest
university fears of a massive
price rise.

Frank Riffle, technical
licensing manager with AT &
T which developed Unix, said
rumours that universities

would have to pay $43,000
| for a Unix System 111 licence
are unfounded. Earlier ver-

figure,’

sions of the operating system
have cost academics $300.

‘The universities will not
have to pay this prohibitive
Riffle promised.
‘Education licences will cost
something more along the
lines of $400, in keeping with
our present policy.’

Riffle claimed that AT& T
is anxious to hang onto its
traditional links with the
academic community, in the
hope that university users will
later become commercial
users and pay the full licence
fee.

Riffle admitted that
$43,000 is rather high for the
commercial licence. ‘But
System III includes both the
Programmer’s Work Bench
and Version 7,” he added. v

ULIX VEI 51U

of PDLwWill

% |

aid output

SOFTWARE designers and de-
velopers are promised increases
in output of up to 30% if they take
on and use the Program Design
Language (PDL) just brought into
this country by WP Computers of
Stevenage. And theyll never
have to draw flowcharts again.

While PDL has been in use in
the US for many years, WP
Computers has also announced a
brand new rewrite of the system
called PDL/81, which works
under the Unix operating system.

“The Unix version of PDL is
really powerful,” said Graham
Evans, product manager at WP
Computers. “We're hoping to
market it with a 16-bit micro
system to small software design
teams in the UK, but haven't
quite decided on the hardware
yet.

“The language has two main
functions. One is that it can per-
form very well as a software
design tool. The other, and I think
more important, aspect of PDL is
that it is a method of communica-
tion between software designers
and coders, the coders and the
managers, and so on right down
to the end user. PDL caters for
everyone.”

According to Evans, users of
PDL no longer need to concern
themselves with the task of physi-
cally drawing flowcharts.

“Using PDL requires a certain
"kind of attitude on the part of the
designer,” said Evans. “This is
because at its highest level it is
what you might call a sophisti-
cated word processor, and at its
lowest, a software language.

“Once 3 design has been en-
tered into the PDL system - and
this can be in a fairly crude English
statement-like form — then the
software will automatically be able
to generate full documentation of
that system, before coding has
begun. This has been our biggest
selling point."\

PDL was developed and is
marketed in the US by Cain,
Farber and Gordon of Pasadena.
Not all price details have been
finalised, but the PDL, package for
a DEC system running RSX-11M
costs abouat £3,300. PDL/8Y pre-
sently costs €5,000, but Evans
saied that this could drop depend.
ny onden nd

T goes. St

transatlantic
by Robert Parry e
MICROCOMPUTER hardware
and software supplier Keen Com-
puters is going transatlantic to fo-
cus on its twin enthusiasms Unix
and loca! networks. Atlantic Soft-
ware, a wholly owned subsidiary of
Keen, is to operate on both sides of
the Atlantic and in Australia.

Keen specialises in local net-
work- and the Unix operating
system markets, through its
dealerships of Apple and Corvus
hardware, and intends that Adan-
tic Software should act as a clear-
ing hous€ for software products
that fit in with these interests. _

“The priority " 3 lookinx for
t

- sound Unix products,” says Atlan-
Chris Knight. “There’s so lirtle of
it around”. At first the emphasis
will bé¢ on software forthe Unix
machines Keen Computers

handles —*the Onyx micro and-

Plexus mini — but Knight aims to
extend the range of machines he
will cater for. .. - o

Adantic will also develop soft-
ware for Keen’s other hardware
lines, with products for Apple
micros networked through Corvus’

‘Omninet and for the Corvus 16-bit ~
“micro, the Concept. The main - .

. package for the Concept will initi-

ally be a library of subroutines for -

_software houses to use to put to--
gether applications * packages for
end users. The ‘Concept runs un-

der its own operating system, and "
" doesn’t work as part of another

Knight sees a strong need to
promote the writing of applica-

. _KEEN ... “Must concentrate.”
tic Software’s marketing director .. S o

P

“_the . software side within Keen,

.EliUFSN Vol. 2 No. &

tions software for it. . . ||

Until now such goftware activi- |
ties have gone on inside Keen
Computers. With the setting up of

- Atlantic Software,-the new com-

pany will take over the work and
supply software for Keen. This
will include standard CP/M pro-
“ducts from Microsoft and
MicroPro, UCSD Pascal for
Apples, and the range of Unix pro--
ducts from US Interactive Systems
for the Onyx and Plexus machines.
-The reason for setting up a new
_corppany, rather than expanding

Computers, was management con- .
trols says Tim Keen. “To make a |
success out of software you have to
concentrate on - it,”- he says. “It

operation.” | |

No lack of Unix DBM

THERE has been some discussion
in recent weeks regarding the fate
of AT&T’s policy of granting pre-
ferential source code licences to
academic institutions. My under-
standing is that no definite deci-
sion has as yet been taken on
whether these licences will be
available for System III or not, but
according to informed sources
within AT&T it is more than likely
that they will; and also that they
will be available to universities
outside the US.

There is only onc fly in the
ointment; the present price of $350
will rise considerably to something
more in line with what it costs
AT&T tp issue and monitor these
licences. Figures of around $3,000
have been suggested.

While very few universities
could afford the full commercial
licence at $43,000, I do not believe
that $3,000- will cause serious

roblems for those who are really
interested in Unix.

Secondly, I have read the recent
articles on the Alvey Committee
with some surprise. It has been
reported in some quarters that Al-
vey is recommending a prompt
start on a project to write a data- °
base system for Unix. The reason
given that there is no DBMS avail-
able for Unix, implies that either
the Alvey Committee have not

done their homework properly, or
that their chairman- has been
misreported. Without particularly
trying I can think of seven data-
base systems available under Unix,
tllg_:, 7ﬁrst of which appeared in

What also su&riscs me is that
while the Alvey Committee is con-
sidering recommending invest-
ment in the Unix area they have
not at any time consulted the Unix
User Group. We are probably bet-
ter placed than anyone else to re-
port what is currently being done
within the Unix community in the
UK, and indeed there are now a
pumber of companies in the UK
investing in Unix products.

If the Alvey Committee wishes
to make an immediate start with
something, I suggest that it would
be more constructive to co-ordi-
nate these efforts rather than fin-
ance yet another database system

for Unix.
E. S. JONES
Chairman
European UNIX Systems User
Group
Swansea

o 5)<
MORE LETTER

PAGE 16

EUUGN Voi. 2 No. 4

150

neeting of the European Unix Systems Users Group held last week

Industry experts are sceptical
about Bell Labs’ current work
on a system of certification to
define standards for Unix.

The Unixoperatingsystem,

a powerful program develop-
ment tool, is mainly used in
universities but as business
gets interested standards be-

come an issue.

‘We will probably intro-
!duce standardisation by writ-
ing a program that tests the
- minimum facilities a system
' n\)ust have to be called Unix,’

Bell faces

on Unix standards

said Berkley Tague from the
Technology Licensing De-
partment of AT&T.

This is how the General
Services Administration
(GSA) tests Cobol, although
it uses a suite of about 300 test
programs.

Areas that Bell Labs is
seeking to standardise for
Unix include networking,
multiprocessors, database
management and languages.

Applications programs
running under Unix are most-

ng.pu*-“fé!-f YA

attacks

ly written in C. Tague added
that business Unixwill needto
support Cobol, Basic and
Fortran ‘and we will have to
make decisions about
whether we implement full
compilers, for example, or
just syntax checkers’.

But experts were sceptical

-about standardising Unix.

In the words of one user,
Charles Forsyth from York
University, ‘once something
becomesastandard thereisan
inbuilt resistance to change’.

‘It is a red herring as far as

the Unix experts are con-

cerned,’ said David Tilbrook
of Computer Systems.

‘How can you prove a
compiler?” asked Cornclia
Boidyreff from the microp-
rocessor software unit of
South West Universities’
Computing Centre.

She hopes that standards
would protect users from
buying a micro advertised
with Unix and finding essen-
tial features missing.

UNIX*and ‘C
COURSES

As consultants to the training department of the
world’s largest user of Unix, we offer intensive
training workshops in both the Unix Operating
System and C Language Programming.

Courses can be organised on a public or in-house
basis. Currently we have planned public courses

STRUCTURED METHODS
COURSES

We offer training courses in Structured techni-
ques based on the De Marco approach to
structured analysis and the Constantine/
Myers/Yourdon design method. The structured
analysis and design methods lead into easy
structured programming and can complement
and interface with existing methods of struc-

for early 1983 as follows:- tured programming (eg; Jackson etc) if required.

Unix 17-21 January 1983 Our courses run throughout the year on a public
Operating System 21-25 March 1983 basis, but we can of course offer tailor-made
c 10-14) 1983 projects to suit.
. - aanuary Our November offerings are:-
Programming Language 14-18 March 1983 1.2 November _ Managing Systems
Development

3-4 November

*Unix is a trademark of Bell Laboratories

— Reviews, Walkthroughs
and Inspections

8-12 November —Structured Analysis
Workshop

15-19 November —Structured Design/
Programming Workshop.

For more details please contact Andy Ellis

STRUCTURED
METHODS

(UK) LTD @ A SPAN GROUP COMPANY

43-44 GREAT WINDMILL STREET,
LONDON WiV 7PA
TELEPHONE: 01734 7394 24 HOUR ANSWERPHONE

RS of Digital Equipment’s
" microcomputers will be able
broduce Cobol code at the rate
bout 5,000 lines a day with a
gram generator developed by
company Phoenix Systems.
at’s the “‘conservative” esti-
e given by the company on the
abilities of the latest version of
System 80 range of Cobol
gram generators.

Additionally, DEC itself has
itten a version of the Unix
rating system to run on the
bfessional 350, but apparently
as a test of the machine’s
ities.

hoenix Systems started life
b a generator for Prime mini-
puters and soon added others
as Texas Instruments and
eywell, venturing into the
o market with a deal to pack-
the product for the Tandy
0. Now Phoenix has ex-
Hed its presence in the micro
h by signing up DEC.

DEC liked the look of the
em, asked us to rewrite it
ifically for its micros, and

OF }Pe IBMpc

E OASIS mult?(s‘gzgp%rating

Ltern, claimed to be more than
t Unix-like by its supporters,

puter to be bought in from
htsushita by IBM.

Phase One Systems of Califor-
b, which developed Oasis, is not
hiting around though: it has
eady put the system on the
M Personal Computer and
hns to market it for about
,500 within the next two
bnths.

asis destined”

Id feature on a new mMicro- .

jiid Unix to run
n DECmachin

intends to sell it as a DEC pro-
duct,” said a Phoenix spokesman
in the US. “There has been a lot
of interest in the System 80.”

The DEC version will appear
on the Rainbow 100 twin-microp-
rocessor system, the Profession-
al 300 range, the VT180 terminal
and the DECmate II word pro-
Cessor.

System 80 products are data
dictionary driven and feature a
menu selection facility.

Still acting shy about putting a
full Unix system onto any of its

EUUGN Vol. 2 No. 4

151

«s«~ \Wicatjoins

supermicro’
raceinUK =

SOFTWARE Sciences is to distri-
bute a US 68000-based micro in

products, DEC has nevertheless the UK and is looking for software

let it be known that it has de-
: - h d to prod ft-

run on the professional 350 micro.

The machine is the Wicat 150

The motivation seems to have micro, based on the Motorola

come primarily from a desire to
see just how compatible the 350 is

68000 processor.
Wicat claims 700 are already

with the DEC PDP-11, on which installed in the US and that for-

it is based.

ward orders of £7.5 million are

One of the DEC staff who already inthe bag.

worked on the project confirmed
the experimental nature of the
product, adding that he “wouldn’t
recommend that anyone tries to
Robin Webster

useit”.

Relational DBMS for

&lalea

16-bit micros on

RELATIONAL database will
soon be available for 16-bit
microcomputers on the Oasis
multi-user operating system.

Systems house SISCO has im-
plemented the Control database
developed by Phase One in Cali-
fornia on the Oasis system to run
on the Executive machine made by
the Computer Information Com-
pany in the UK, for which it is an
OEM. Executive can be either an
8- or 16-bit micro, so the 16-bit
implementation will be compatible
with the IBM Personal Computer
and ACT Sirius 1, both of which
support Oasis.

“We have held back from

launching the 16-bit version be-
cause people have not yet realised
the benefits of the second genera-
said Patrick

ton of micros,”

O’BRIEN . . . “Not to be the cav-
alry and first over the bridge.”

Software File is compiled by Maggie McLening.
]

QOasis

O’Brien, sales director of SISCO.
“We decided not to be the cavalry
and be first over the bridge, but to
wait and sec what happens.”
SISCO has integrated word
processing into Control, and given
the package full English language
faciliies for interrogation using
the Access module report writer,
to make it suitable for end users.
“Effectively, we have stopped
selling word processing and data-

base as separate functions and put '

the two raw products together,”
said O’Brien. “It was a case of
getting away from bits and bytes,
and giving the user a straightfor-
ward means of producing persona-
lised letters for about £8,600, in-
cluding the cost of a top quality
printer.”

This price puts the SISCO
system into the same competition

bracket as the Wang and |

Wordplex word processing
systems, but with the advantage of

an integral database. Oasis is a |

more attractive operating system
to end users than, for example, the
Unix portable system, because of
its user-friendliness. It also has
record-locking facilities and,
f ed up with a Winchester
disc on the Executive, can :upgaon
up to five users on an 8-bit
machine, according to O’Brien,

“On an 8-bit machine with that
number of users, the end user cost
is about £5,000,” he said.

The combined database and
word processing system has al-
ready been installed at the
Periodical Publishers Association
and ington Fuel Oils, and at
three major . -

Software Sciences has just set
up its own distriBution arm — the
Wicat 150 s the first product to be
picked and the company is on the
look-out for more. “We chose the
Wicat”, said distribution manager
Paul Sherry, “because of its com-
petitiveness on price.” '

The Wicat 150 is a multi-user
16-bit system with 256K of RAM
and comes supplied with one 10
megabyte Winchester disk, the
Wicat operating system and a
choice of one language, wrapped
into the price.

Software options include Unix,
MSC and a CP/M emulator. The
machine will support all the major
languages including APL, Cobal,
Fortranand C.

Software Sciences has pro-
duced a basic range of applications
software with Wicat. Packages on
offer so far include financial mod-
elling, word processing and busi-
ness accounting.

The company is also providing
a number of hardware options
including a graphics screen, RAM
up to 1.5 megabytes, a video disk
interface and extra Winchester
drives plus 5Y4 inch floppy back-
up.
Prices for the Wicat start at
£4,995 and a three user system
with a 10 megabyte Winchester
disk configuration will cost
£7,250.

X

University of Strathclyde

DEPARTMENT OF
COMPUTER SCIENCE
A First Coursa on UNIX®
6-9 Septamber, 1982
Fee £185
Further information from:
Continuing Education Office
McCance Building
16 Richmond Strest
Glasgow G11XQ
Tel: 041-552 4400, Ext 2132
*Unix 830 "~ingrk~f Balt
C o taboratocles

JRpu——

[

iModusoft
- software

/

susera subset of Unix.

EUUGN Vol. 2 No. &

UIN\ III'TI] TUIS

152

7 on 68000 micro

by Robert Parry

BRITISH micro builder Bleasdale
Computer Systems is redoubling
its attack on the emerging Unix
market. A 68000 machine running
Unix Version 7 is now up and run-
ning, ready for delivery within
four weeks, according 1o managing
director Eddie Bleasdale.

“It runs a full implementation of
Unix,” says Bleasdale, “‘the real
McCoy, not a look-alike version.”
He claims his is the first 68000-
based machine in Europe to run a
complete implementation, rather
than cut down operating systems
based on Unix which only give the
probably fair

The claim 1s

A

“A MAINFRAME on every desk”
is the theme behind Hewlett-Pack-
ard’s worldwide launch this week
of a 32-bit desktop computer for
engineers and scientists. The com-
pany believes it to be the most
powerful computer workstation on
the market.

The HP 9000 uses the five-chip

set announced earlier this year,
{ “super chips” which HP claims
‘ pack up to eight times more cir-
| cuits into the same space as cur-
| rently available integrated circuits.

With up to three central proces-
! sors in every unit, the HP 9000

enough for European machines,
reckons Emrys Jones, chairman of-
the European Unix Users Group.
But he noted that most users did
not use all the facilities available
within the operating system: “The
trouble is they all want different
bits, so for a manufacturer it
perhaps makes sense to offer a full
implementation.”

The 68000 machine is a brother
to Bleasdale’s Z8000 computer
running Xenix, the Microsoft deri-
vative of Unix.

It comes with half a megabyte of
memory, expandable to 3V-
Mbytes, 10 Mbytes minimum of
hard disc with floppy or tape
streamer backup, and can support

Unix

BLEASDALE . . . “£70,000 of
orders have been received.”

six to eight users comfortably.
Bleasdale has £70,000 of orders
already, representing four

systems.

‘Desktop mainframe’

offers Unix and Basic operating
systems; Ethernet and HP net-
working, and Pascal, Fortran and
C languages. First deliveries of the
single processor HP 9000 series
500 will begin in December, with
volume shipments by March 1983.

Announcing the workstation at a
worldwide satellite teleconference,
executive vice-president Paul Ely

jﬁ

Precision made *
1Unix products

: Anew software house
specialising in Unix-based
;f;?c ages has launched its
irst products for 16- and
32-bit microcomputers runn-
ing under this “standard”
. operating system.
PrecimgonySoftware is now
looking for distributors for its

called the product a breakthrough
in the technical markets, and said
it gives the best of both worlds:
“Distributed nectworks- of indi-
vidual computers, as well as the
big mainframe benefits of sheer
processing power.” X

Using Modusoft on OS9 the

user now has multi-tasking and
multi-user facilities.

Internally, the database mana-

ger contains an indexing system
which permits high speed acces-

tool for Unix
look-alike

MEASUREMENT Systems
(MSL) of Newbury has unveiled a
software development tool for the
0S9 operating system.

The new product, Modusoft, is
a program development tool
offering a library of commands
and utilities which automatically
handles interfaces with hard or
floppy disks. This leaves a prog-

rammer to concentrate on his .

program, since he is relieved
from screen formatting, data stor-
age and retrieval.

Modusoft incorporates a data-
base manager, designed to run on
the powerful OS9 Unix look-alike
operating system.

0S9 already has some file
handling capabilities, but not a
fully fledged database manage-
ment system.

ses even when using large files.
For example, data may be re-
trieved within 3-5 seconds when
using a floppy disk system with
1,000 records, claims MSL.

Modusoft acts like a series of
powerful sub-routines and has to
be called by any program which
needs its facilities. It cannot run
by itself.

All the modules are machine
code based and can be called from
high level languages or assembler
programs, without any degrada-
tion in speed. They can be pro-
vided as disk or PROM based.
Dave Davies, managing direc-
tor of MSL, said: “The 0S9 is
infinitely superior to its major
competition, CP/M, but will be-
come more popular when it has
the same amount of software

back-up.” AL kb .%.82

ledger packages and the En-
vironment Manager electronic
office system.

Environment Manager in- .
cludes a diary, electronic mail,
a text editor and a calculator.
The facilities are called up
through menus.

The ledger packages use
transaction processing techni-
gues to provide quick recovery

om system crashes. Screen
and report formats can be
crea and amended easily.
Other features include foreign
currency handling and budget
control facilities.

The packages cost £950
each.

‘ Enquiry card: circle 84

Unix deal

ROOT Computers has concluded
2 deal with UniSoft of Berkeley,
California, to port the Unix

System 3 operating system 10
ni,iscms on the Motorola
68000 chip.

DEC to support Unix

DEC “intends to-get into Unix
business in earnest,” said a source
at Digital Equipment Corp, in an
exclusive interview.

This follows DEC’s June an-
nouncement of VNX, a “combina- .
tion of the VMS operating system
from DEC and Unix-like enhance-
ments for the VAX.” The trend
within DEC toward supporting
Unix, the popular operating
system from Bell Labs, has been
marked by several milestones:

B Formation of Unix special in-
terest groups within DECUS,
the DEC users’ group;

Developments
daily in Unix field

Apart from the graphi
add-ons and packag
Unix seems to be the busi{
area of software at the mj
ment. There are ne
developments daily, addi
to the strong movement ¢
make Unix one of the pri

software vehicles of th
eighties.

Recently two new Un
machines, the US-designe

Wicat, and the British-bui
Britannia machine runnin
Unix lookalike Idris, ha
broadened the options sti
further.

Unfortunately there a
deficiencies in the operatin
system which was originall
developed by AT&T's Be
Laboratories for research, no
commercial operatio
Because of its desing it is po
table, and easy to transfer t§
other machines (latest
IBM’s Series 1), but it lack
the end-user facilities whic
users expect whatever th
well-publicised programmi
aids.

Products are beginning
make their way onto t]
market, making Unix an 4
tractive buy for end-usel
not just OEMs. Real Ti
Systems and Zilog are bo
offering Redwood’s Unipl
word processing softwa
linked to their Unix syste
RTS's Idris and Zilog's Ze

Precision Software has
nounced a series of busing
applications for Unix-bas
32-bit and 16-bit machines,
cluding Nominal Ledger a
an office system called t

oD

Environment Manager.
“We're trying to ma
Unix into a hands-on tool f(
commercial users,”” explaine
Precision’s managing dire
tor John Tranmer. *‘We don
mean to build genera
purpose tools, but to develo
the actual applications,
that end-users hav
something which is pleasa
to use. Unix should be a ped
ple system.”
Enquiry card: circle 117 fo
RT%, 118 Zilog, 119 Britannig
120 Precision

B Formation of the Unix Eng
neering group.
B Announcement that DEC wi
provide free of charge Unix d
vice drivers for DEC p
pherals;

@ VNX, announced in Jund
which makes VMS look lik
Unix to VNX users.

These milestones, coupled wi
news that DEC “now offers
similar set of Unix facilites fo
DECSystem-20 hardware,” ind
cates official DEC support fd
Urix soon. q

Robert Parry
D, not a football team. Unix
ited, otherwise known as the

sparent user access to distri-
tied systems running under Unix
erating systems.

f A software subsystem developed
the computing laboratory of
ewcastle University, it is incor-
ated into a set of standard Unix
Unix look-alike systems and
ws them to be connecttd to-
': mto local or wide area net-
xploitatiol of the Newcastle
. jon is to be co-ordinated
MARI, the Microelectronics
blications Research Institute.
RI is part-owned by the Uni-
1iy, Newcastle Polytechnic,
. London-based software
se Logica is expected to be the
to supply it commercially to
users, as an extra feature for
nix implementation Xenix.
ca will install an evaluation
b next month.

distributed system using
castle Connection software is
tinguishable from a conven-
single system as far as the
is concerned. Inter-processor
munication is hidden from the
L, who can access devices on the
ork — within the normal
password control constraints
though they were part of his
system.

p particular network hardware
ecified. As no modification of
Unix kernel or applications

ewcastle
onnection
jpreads
e Unix net

wcastle Connection, promises —

a/g/se
X

programs is needed, the set-up can
be used with any Unix-like system
compatible with the original Bell
Laboratories Unix at system call
level. Different Unix implementa-
tions can be mixed in a Unix
United system. . .

“That’s the beauty of it,” says
MARD’s general manager Bob
Cooper. “Provided we’re talking
about genuine Unix or Unix look-
alike systems we can talk across
anything. It really doesn’t matter
what network is used, as we are
sitting on top of the communica-
tions.” '

The original implementation at
the University of Newcastle is run-
ning on a Cambridge Ring, but
only because that happens to be
the network used there.

" Logica will install a system for
evaluation in London, to sece what
needs to be done to turn it into a
real commercial product. The
system will probably be fitted early
in August, says software products
group development manager
Adrian King, the delay being due
to a move of offices.

Cooper reckons the Newcastle
Connection will be available in the
marketplace in about three
months’ time. After Xenix, he ex-

/pects applications to other Unix-

like operating systems to appear,
possibly led by one for Idrs, the
Unix look-alike marketed by Real
Time Systems based in Newcastle.
A case of another Newcastle
connection? -

ot C compiler

kional 350 microsystem is to
a C language compiler, but the
Hision will not necessarily lead
Unix being put on the same
tem.

ast week DEC confirmed that

ting the Unix system onto the
), but “had no immediate plans
ell the system commercially”.

owever, it seems the C com-

ets DEC marketing standards.

Cmicrote X

tnot Unix yet

E DIGITAL Equipment Pro-

under Unix

XG L GILUND VILIA

The CCTA recently ann-
ounced that it will give
higher priority to micro-
computers offering CP/M
and BOS operating syst-
ems rather than Unix.
The Central Computer
and Telecommunications
Agency (CCTA) is a gov-
ernment procurement
body which hopes to est-
ablish between 6-12 app-
roved suppliers of micro-
computers for govern-
ment departments.

This recent decision has
created a lot of controver-
sy and disbelief since Unix
is rapidly becoming a

Unix moves >

-

\; decision not to authorise
/

APL68000
now running

-I. next month. Full report of

ad been experimenting with

r developed during the project |

THE FIRST APL interpreter run-

1 ning under Unix on a 68000-based

micro has been announced by
Codata Systems in California.

APL6800Q is a full implementa-
tion of IBM’s APL.SV, which was
released in 1972. It was written
by Philip van Cleave for The
Computer Co (TCC).

“The 68000 is the first microp-
rocessor with the horsepower to
do justice to APL,” van Cleave
said. “It’s really a 32-bit proces-

%
Pressure is building up for
commercial users to aban-
don manufacturers’
operating systems and
turn to Unix. Adrian King
of Logica (above) told last
week’s Unix conference in

Leeds of an emulation for
VAX users, due for launch:

the - meeting, Page 15.
Meanwhile News Analysis
looks at the Government’s

Unix, Page 18

sor with a 16-bit data bus; with its
32-bit registers it looks like an
IBM 370.”

APL operators treat arrays as
basic data structures, so an APL
machine must be capable of mov-
ing around large blocks of data.
The - 68000’s 32-bit internal
architecture. means that it can
address up to 16 Mbytes of mem-
ory and swing large blocks of data
around.

standard. Unix is a multi-
purpose multi-user oper-
ating system designed (o
run on the new generation
of powerful 16 bit micro-
computers as well as on a
wide range ¢ minicomp-
uters such as PDP-11s and
VAXs. It is receiving a
lot of backing from the
hardware and software
producing areas of the
industry with the result
that there is a wide select-
ion of machines, data-
bases and applications
available on Unix. A gov-
ernment department, the
Science Research Council
has recently installed a
Unix system and Britains
Universities are also back-

. ing Unix.

Logica, who have rec-
eived a lot government
aid are now selling Xenix
a version of Unix under
license from Microsoft
and have submitted a pro-
posal to the CCTA.

There are only two
machines available, from
Corvus and Wycatt, which
allow CP/M, BOS and
Unix capabilities togeth-
er. While Bleasdale Sys-

| tems, a British firm who

have recently received
£50,000 in government
loans, is leading the Euro-
pean market in delivering
and installing Unix syst-

' ems, and would not be

eligible to compete for
the CCTA contracts.
Emris Jones, chairman of
the European Unix Users
Group told Micro Fore-
cast, ‘‘this is a very
strange decision and 1
would like to know the
reasons for it’’. It seems
likely that the CCTA like
the Alvey committee, has
not done its homework on
Unix and will eventually
have to change its decision
through commercial
pressure.

. FUUGN Vol. 2 No, &4

1S SOFTWARE company Micro-
soft is seeking 1o dominate the
i6-bit operating system market
with two new versions of its MS
j Dos product and a rewrite of its
{7~k multi-user system around
iscll Lab’s commercially targeted
Unix System 111

The first new MS DOS release,
to be made this month, will be
version 2.0 and this will be sup-
plied to current MS DOS version
1.0 oem customers - including
IBM, Hitachi, NEC, Wang, and
Tiigital Equipment - free of
charge. .

T'he second addition will be a
* mlti-tasking version of MS DOS,
although this is not expected until
early next year.

And paving the way for Micro-
| soft’s new Xenix in the UK will be
| Logica, which is shortly to
announce a version of Xenix in-
corporating some of the major
features of Unix System I11.

Although MS DOS version 2.0
will support all version 1.0 system
calls and programs, the new pro-
duct will not necessarily come

jiciosoft
b-hit o/s market?

7 R——

with a CP/M look-alike user intet-
face, as was the case with version
1.0.

Rather, users will be presented
with a menu-selection interface
that makes far better use of the
file and operating system struc-
tures that lay behind the original
“false” CP/M front-end.

“What we're trying to do is
build a software bridge between
MS DOS and Xenir,” a US
spokesman for Microsoft told
Datalink. “Version 2.0 is really
quite an update. If an oem wants
to take version 2.0 and put a
CP/M front-end on it, that'’s up to
him, but we've decided to give the
user the ability to create his own
interface, or what we like to call a
visual shell.”

Other enhancements include:
upward compatility with the
Xenix operating system: the in-
clusion of pipe and filter facilities
typically only found in Unix or
Unix look-alikes; and a cursor
pointing feature which allows
commands displayed on a terrhinal
screen to be executed by simply
positioning the cursor alongside

UK-hallelujah!

ROOT Computers has clinched
its first orders for Unix System 111
in the UK - the new version of the
Bell operating system that was
released last December.

It has also released two soft-
ware packages for System IlI: a
spooler suite and a source code
control system.

According to director Michael
Kinton, “We are the only people
in the UK to have System Il up
and running.”’

One order is from Microlease,
who want eight systems running
on DEC PDP 11s to control a
mailing list for the Billy Graham
Organisation.

Systém Minthe

the required word.
Xenix compatibility has been
‘achieved by irittoducing new sys-
tem calls into MS DOS which give

L o&la)ga

oru

&

it the same tree structured file
directory that Xenix employs.

Extensive HELP facilities have
been included in MS DOS vetsion
2.0 and these are invoked when
user typesina"?”

In MS DOS pipelines and filters
could be used to sort directories
or format ant ttle docutnent files.

Logica's involvement in the
popularisation of Xenix will come
in the form of a Digital Equipment
PDP-11 version of Xenix which
will appear soon. This will include
the Source Code Control System
(SCCS) and a remote job entry
connection to mainframes facility
taken straight out of Bell Lab'’s
Unix System I1L

Microsoft s working on a Sys-
tem HI Xenix, but intends to do
the complete upgrade job in one
go with a release date set for the
end of the year.

It appears the Logica will
switch over to Microsoft's up-
graded Xenix when it appears,
but additiohal plans are being laid.

“Logica will offer an imple-
inentation derived from Systemn
Il on the Vax and other
machines, and we will be provid-
ing full support of the system,”
said a Logica spokesman.

)?’

Robin ngstelx

Unix gets.”

another

defender

From John McEvoy
I must take brief {ssue
Jane Rird over some rems
on Uttix in her artfele on
National Computer Con
ence (Computing, July 8{.

Reeord locking faeili
have existed fotsome time!
nutaber of Unix variants, §
least TSC's Unifiex marke
in the UK by South
Technical Produets. -

I simply cannot aeeept
hopeless lack of user frier
taeilities with Unix'.

Unix itself and most of
variants offer an extrem
powerful comtand {nteep!
ter, ‘shell’, and a perfec
adequdate fhacrg build’
faeility.))

The combination of the
means that operating prd
dures can be eustomy
tapidly 50 as to provide
user with systetis which
perfectly aceeptably.

The Haive user need i
know that they dre talkin
an operdting system.
experienced user will de
in [ts comBination of 3iM
ity, flexibility and power.

[would venture to Sugg
may be laek of skill in pae
ing applications rathet
deficiéncy in the operd
system which has led Bi
hef coticlusios.

John McEvoy, director, @
%u?e‘r House (Turikey),

ewbridge Street, Newe
Upon Tyne.

Gettingdown
totheroot
of thematter

FURTHER to your article about
Unix running on Vax (Datalink,
September 13), we should like to
draw your attention to the fact
that Root Computers has been
supplying and supporting Unix
System Il in native mode on Vax
since the first Root installation in
June 1982.

D J Saunderson, Root
Computers, London EC1.

2

Root director, David Saunderson, sets the record straij

\

European Unix Users
1p meetings are becoming
> and more a springboard for
Huct launches. Not only did
week's meeting attract the
t of AT & T, with its own
cements, but also a hand-
UK users saved up releases
e event.

example, Logica took the
e to at least verbally launch
h Unix look-alike system for
igital Equipment Vax 32-bit
bmputer, and another for
L Perq.

ither was available for scru-
but just as soon as Logica
ts Vax machine delivered in
ple of weeks then Unity,
ed from Human Computing
ces in Canada, should be
ble. . :
spokesman on the Logica
claimed that this was the
32-bit Unix available on a
hl machine, with the excep-
bf the Berkeley Unix, which
on a Vax, but is only Unix
bn V11, rather than the latest
b 1.

ica’s

he first

\%}o\ &a

hi
Unix for

EUUGN Vol

tyis

JEC' supermini

Logica still looks to be ahead on introducing a Perq Unix

No 155

" This was won in competition
with Logica, but seemed to be
.due primarily to the fact that
Logica is not yet selling a System
III version.of the look-alike sys-
tem, Xenix.

Logica has one almost ready to
go, but it isn’t fully System I
compatible, since it is waiting for’
the authors of Xenix, US-based
software house Microsoft, to
come up with a full System III
type version.

At the same time Root has also
decided to offer the Unix Source
Code Control System, for use on
System III Unix. It was a bit
unclear as to why this warranted,
an announcement, since it is part:

Jand parcel of Unix, but some

suppliers, Root claimed, do not
upply it. Root also announced a

~_spooler package for"a variety of

At first Unity will only run as a
program under Digital's VMS
operating system, but later a
faster native mode versuon will be
released.

But the Perq Unix, like every-
body else’s, isn’t really ready yet.
The spokesman added: “At one
time we thought it would be quite
a while, but things have speeded
up and we now expect to be
running Unix on the Perq by

October.” If he manages that

printers.

Perkin Elmer was busy telling
everyone what its adverts have
been telling us all for the past
week or so: that it has a special
joffer on Unix systems based

'around its 3210 machine, a 32-bit

minicomputer. .

The offer is a 15% discount for
everyone qualifying for an educa-
ional licence for Unix. Perkin
Elmer also supplies it with the
Source Code Control System, but
currently offers only the Version
VII Unix. Peter White

schedule, he could still beat both
ICL and the Science and En-
gineering Research Council.

One company, Root Compu-
ters, used the conference both to
claim a victory over Logica and to
announce a couple of products of
its own. Root has just landed a
contract with John Mowlem, a
lzrge publicly owned construction
company, to supply Unix-based
machines for intemmal develop-

AL Equipment is taking
it sees as the “most signi-
features” of the Unix oper-
system and putting them on
X.

bile other companies already
complete Unix systems on
achine, DEC has decided it
be highly selective in its
e of Unix facilities and let
demand dictate product de-
ment.

nducts are being developed

(ETs UNIX

under the VNX banner, and two
have just been released on the
market: the Vax-11 C compiler

and the DEC/CMS (Code Man-
agement System) package. Both
run only under the VMS operating
system.

“The Vax-11 C compiler is an
extended version of the C prog-
ramming language system already
available on the Vax,” said a DEC
UK spokeswoman. “The DEC/
CMS system is a tool for the

ment of software.

management of the software de-
sign process.

“They are just two of what will
be a number of Unix facilities that
will be made available to Vax VMS
users from the VNX development
programme in the US. This is not
to say that we are putting the
Unix system on the Vax - it's
more a case of providing the
significant Unix features to meet
the demands of Vax customers.”

With the Vax-11 C compiler, it

dll

D"_ ¢ \: Q 3»1
will be possible to write and
execute C language programs
under VMS.

The DEC/CMS system is
essentially a version of the stan-
dard Unix Source Code Control
System (SCCS) which, in the
Unix environment, controls and
records the creation and revision
of programs.

Both products will be available
in the UK by early next year.

Robin Webster

The Secretary

European Unix User Group
Owles Hall

Buntingtord, Herts.

SG9 9PL.

Tel: Royston (0763) 73039.

