European UNIX® systems User Group

Volume 6, No. 3
WINTEK]




EUROPEAN
UNIX SYSTEMS USER GROUP
NEWSLETTER

Volume 6
Number 3

S0 How is the EUUG FUnded? ....ccccrviiviirirmrniiiereenmniieeeresoseseeoneosssrssssesnes

AFQL - A Flexible, General Purpose Interface to Relational
Database Management Systems under UNIX........ccccveeiirinnnnns

Yet Another Year wWith EUUG-S .ivirrreerssrrnsreessesserrisrssersesssnssreessnssenssenssnns

A Study in Digital Image Reduction, or,
How 10 Make Small Faces.....ccovviererieriiriinneeeriinsniinnneesessesssnsnnne

UNIX and the Electronic Office
- cognitive ergonomic reflections.....cccccummmmvieiiiiiiiiiiiiiinniienienns

Report from the AFUU on the UNIX Community in France............

Digital VAX Product Announcement: A Personal Evaluation ..............

EUUGN Voi6 No3 i



This newsletter was set in Times
Roman on a LaserGrafix LG800
printer, driven from the UNIX time-
sharing system.

Thanks to:
Jean Wood Content
of DEC
Alain Williams Content

of Parliament Hill Computers

Sally Rutter Collation and Typesetting
of The Instruction Set

This document may contain information covered by
one or more licences, copyrights and non-disclosure
agreements. Copying without fee is permitted
provided that copies are not made or distributed for
commercial advantage and credit to the source is
given; abstracting with credit is permitted. All other
circulation or reproduction is prohibited without the
prior permission of the EUUG.

il EUUGN Vol6 No3




MARTIN HOW THE EUUG IS FUNDED

So how is the EUUG funded?

Nigel Martin
EUUG Treasurer

1. HISTORY

The EUUG was formed approximately 10 years ago in 1976. A small
group of academics started the group to further the interests of UNIX
and to allow them to meet on a fairly regular basis to discuss in-
depth topics to do with the UNIX operating system. Because it was a
small group, nobody cared about money. No money was really needed
for anything. Most of the people attending meetings and committee
meetings footed the expenses out of their own pockets. Therc was no
infrastructure to support.

There were approximately two conferences per annum; each being run
on a university site. One of the committee members would typically
organise the conference. Any risk would be underwritten by the
University department for whom that person worked. Conferences
tended to make a small profit. Activities were all based around the
UK with a small number of contributions from other parts of Europe.

2. FORMATION OF EUUG

As time passed, interest from other countries, in particular The
Netherlands, suggested a change in structure to accommodate individual
national needs.

It was decided to spilt the EUUG into a number of national groups.
Before the split, every EUUG member paid a subscription to the group
to enable it to continue to operate. After the formation of national
groups, it was clear that the EUUG still needed a source of income; so
too did the national groups. It was clear too that national groups
needed the largest proportion of their income to fund local activities,
but the EUUG needed sufficient to fund all the centrally provided
services.

The EUUG had built up some central reserves, over many years, from
the profit made at each conference. It was decided to retain this fund
as a buffer to assist with the financing of major European events.

A set of rules of operation were constructed to govern the amount of
money to be paid by a national group into the central funds. At the
time of formulation of these rules, there were no visible financial
problems with any of the groups. It was the intention that national
groups would pay 40% of their total income over to the EUUG, with

EUUGN Voi6 No3 1



HOW THE EUUG IS FUNDED MARTIN

a minimum of £20 per member.

Unfortunately, there were a number of errors in the written word
contained within the original by-laws. This resulted in certain national
groups not actually operating by the spirit of the operation, but by
what was stated. This situation was unfortunate and hence the
committee were obliged to rectify it.

In the early days, certain national groups were offering an indirect
subsidy to others. Whereas this is fine as a short-term solution, it
cannot operate permanently. Hence, as time progressed, and as the
European Community grew larger, it was necessary to straighten out
the funding of each national group.

3. FINANCIAL REVIEW

Being European costs money. This is unfortunately a very true
statement, which EUUG has learned to its cost. Running Europecan
conferences is more expensive than running small local ones. The
risks attached to each are greater. As the success of the group
increased, so the need to run bigger (and better) conferences became
more apparent. Associated with large conferences are large risks;
possibly large profits too.

The committee, having studied the finances, decided it was most
unwise to rely on substantial income from each conference to fund
the essential activities of the EUUG. Therefore, some time was spent
studying the accounts in great detail. The EUUG, at the time, had an
annual turnover in excess of £100,000 but a subscription income of
less than £13,000. This is clearly an unacceptable way to operate a
user group, in which each of the members is in some way liable for
any loss the group encounters.

It is most unrealistic for members to be liable for a loss over which
they have no control: for that reason they appoint the executive
committee. The executive committee would not be doing their job
correctly if they were to allow a group to run into any financial
difficulty and subject members to any unnecessary risk.

Since the subscription income was extremely low, and the rate had
not been changed for many years, it was agreed to increase this. At
the same time, there was a strong desire to remove the financial
anomalies which were present for historical reasons. Some groups
were being very heavily subsidised. This did not appear to be a fair
or workable structure for the future. Indeed, in certain cases it was
not advantageous for the EUUG to accept new groups because it would
substantially reduce their total working funds.

2 EUUGN Vol6 No3



MARTIN HOW THE EUUG IS FUNDED

4. A NEW STRUCTURE

It was clear that a new structure was required. After considerable
thought, regarding the relative merits of charging individual and
institutional members at different rates, it was decided that since each
type of member cost EUUG precisely the same amount of money, the
fair way was to ask for a per name contribution from a national
group, regardless of the type of member.

But, how much is reasonable? The calculation performed was
extremely simple: take the cost of running the EUUG after conferences
were extracted, and divide the result by the number of registered
members. Clearly a small reserve was added to cater for the
potential inadequacies of a new budgeting system. The magic number
was £40 per member per annum.

The committee have regularly been asked to produce cheaper
conferences. With the new fee structure in place it was now seen as a
possibility to allow the conferences to break even and not make a
profit.

The new structure also provided a sound firm basis for the EUUG to
operate — we now have budgets.

4.1 Copenhagen

Unfortunately, it was necessary to introduce this scheme rather
urgently since the magnitude of the problem had not previously been
understood. It was felt too dangerous for the group to be allowed to
continue in the old manner for another half year. Hence the proposal
was put to the Governing Board at the Copenhagen meeting to suggest
a new level of contribution from the national groups. In some cases
the new system appeared to have little effect on the groups: a group
charging £100 per annum supplying 40% of their income would
indeed pay approximately £40 to the EUUG. It was assumed by the
committee that £100 per annum was not an unreasonable sum to
charge, and that £60 per annum was not an unreasonable amount for
a national group to retain for its own purposes.

Many of the national groups were certainly unaware of the financial
situation that prevailed for the EUUG. After much discussion, all
persons at the governing board agreed that the new financial structure
was essential to the well-running and hence the future of the EUUG.
To that end, the motion was passed and national groups were asked
to pay £40 per name on the address list starting at the end of 1985.

EUUGN Vol6 No3 3



HOW THE EUUG IS FUNDED MARTIN

4.2 Present State

We now have a workable structure where the income is directly
proportional to the expenditure. For each additional name added to the
address list, there is an additional amount of income and a
corresponding amount of expenditure on newsletters, postage etc. This
is a fair system. No group is treated differently from any other.
No-one is subsidised.

Although each national group had some difficulty in the beginning, all
national groups have agreed to pay the new fees. Most national groups
have already done so.

4.3 Financial Structure of the National Groups

Although there is a flat fee structure at the UEUG level, it was
always assumed that national groups would operate a multi-tier
system. The climate in each country is undoubtly different and will
always remain different. For that reason it was assumed that national
groups would take their total outgoings to the EUUG, and divide this
amount appropriately amongst their membership. For instance, it
seems reasonable to charge commercial users considerably more than
individual members. Some groups may choose to subsidise student
members and allow them to join for considerably less than the £40
per annum that is paid to the EUUG. By making the problem a
national problem it gives each group infinitely more flexibility and
allows each group to structure their fees according to national
interests.

National groups in most cases supply services in addition to those
offered by the EUUG. The extent to which this is true can be
reflected in the fees charged by that national group. It is assumed that
national groups who do a lot would charge considerably more than
the EUUG’s rate; while national groups who do little or nothing would
charge approximately the same rate as the EUUG, with a small levy
to cover administrative costs of their own.

Some national groups elect to organise local events: these are outside
the funding structure discussed above. All profit from such events
would be retained by the national group.

5. EXPENDITURE

So where does the money go? Broadly speaking the expenditure of the
EUUG can broken up into five categories.

The first is for central administration in the form of support for
Owles Hall: this occupies approximately 50% of the group’s income.

4 EUUGN Vol6 No3



MARTIN HOW THE EUUG IS FUNDED

The second is the executive committee which requires approximately
15% of the group’s income. Included in this category is the cost of
running the committee, the cost of sending members to meetings and
the cost of setting up and organising these meetings. There is little
that can be done to reduce the absolute cost of these meetings. They
are currently arranged for the location which involves minimum travel
expenditure.

The third category is the newsletter. This currently takes
approximately 20% of the group’s resources but it is expected that it
will take more in the future since the standard of reproduction of the
newsletter is rapidly being increased.

The last 15% of the group’s income is spread across numerous other
activities including relationships with /usr/group/UK, relationships
with UNIX Europe, funds for Internationalisation etc.

All funds which exist in the EUUG are used as a buffer to support
conferences. Running a large conference usually means paying out a
considerable amount of money in advance. It also means underwriting
any potential losses. We still have a requirement to run large
conferences, but the larger the conference the greater the potential loss
and hence the greater the buffer needed in order to underwrite said
loss. We have found in the past that many conference halls will not
accept bookings unless there is some evidence that we are actually
able to pay; or at least we have forwarded a substantial deposit.
Any income from a conference will simply go to enhance this buffer.

Now that the EUUG is no longer reliant on the income from
conferences, it is in position to offer and attractive revenue split
between itself and the organising national group. This allows a
national group the opportunity to significantly supplement its income.

The last conference, held in Manchester, was the first to benefit from
the fact that income from conferences is no longer essential: it was
cheap!

6. CONCLUSIONS

The EUUG is now financially sound. The new fee structure is fair
and flexible. All that remains is to answer the question “is £40 per
annum a reasonable contribution to expect for each name on the
membership list?” 1 believe the answer is yes, particularly when we
consider that this is less than the individual saving for each member
that attends one of the European conferences.

EUUGN Vol6 No3 5



European UNIX® systems User Group

“UNIX® GROWS UP”

A major 5-day event in

Finland and Sweden
on board the M/S Marnella
11th—15th May 1 7

VIKING LINE

The Event The Programme

The European UNIX systems User Group is to Under the broad heading UNIX® Grows Up,
hold one of its most important events yet — in the Conference will encompass a variety of both
May 1987. new and old developments in the UNIX field and
will also look into the future through the eves of
such leading specialists as:

Its Spring 1987 Conference and Exhibition
will be held over three days (12th — 14th Mav) on

board the Viking Line’s luxury passenger ship — Bill Joy — Sun Microsystems Inc

the M/S Mariella — with Tutorial Sessionsat the ~ Rob Pike — AT&T Bell Laboratories

Hotel Dipoli Conference Centre in Helsinki on Brian Redman — Bell Communications Research
11thand 15th May. Bjarne Stroustrup — AT&T Bell Laboratorics
The Conference and Exhibition will be staged Andrew Tanenbaum — Vrije Universiteit, The
as the M/S Mariella sails between Helsinki and Netherlands

Stockholm.

Nine different UNIX topics will be presented during the Tutorial Sessions

For turther details on this major UNIX event, contact:

The Secretariat: European UNIX® systems User Group, Owles Hall, Buntingford,
Herts SG99PL, UK. Tel: Royston +44 (0) 763 73039  Facs: Royston +44 (0) 763 73255
Network address: euug@inset.uucp

®UNIX is a Registered Trade Mark of AT&T in the USA and other Countries

6 EUUGN Vois No3



CLARK & SIMMS AFQL

AFQL
- A Flexible, General Purpose Interface

to Relational Database Management Systems
under UNIX

Paul Clark
Andrew Simms

Data Logic Limited

1. INTRODUCTION

Relational database management systems are becoming widely used
commercially, and increasingly so within the UNIX community. This
paper describes a flexible, general purpose interface for handling the
execution of relational database retrievals and updates. It has been
used in an implementation of an IBM compatible SQL under UNIX, and
is applicable to other non-procedural languages.

The interface comprises two major components. The first, the Relation
Manager, contains a full set of relational database functions providing
facilities for the creation and maintenance of relations, tuples,
attributes and indices. A range of data types is supported, together
with an implicit locking and transaction management strategy. An
interface to this component is available to application programmers.

The second component is the Amplified Functional Query Language
(AFQL), a language in which the database is viewed as functions
mapping between relations, tuples and attributes. It allows retrievals
and updates of arbitrary complexity to be constructed, including
recursive constructs, whilst minimising storage requirements and
employing lazy evaluation techniques. Examples of its use are
illustrated, together with UNIX- and C-related features of its
implementation.

The UNIX environment provides tools which greatly assist in the
support and maintenance of structured query languages built upon the
AFQL interface.

Let us set the scene with a forty second summary of forty years of
computing.

To begin with, users accessed and stored their data in a totally
unstructured manner. The advent of hierarchic and networked
databases provided a more structured route for users to reach their

EUUGN Vol6 No3 1



AFQL CLARK & SIMMS

data, via procedural applications interfacing to a database management
system (DBMS).

Whilst this approach is well proven, and gives many users a warm,
comfortable feeling, it is essentially inflexible. A contemporary
solution to this inflexibility has arrived with the use of relational
database management systems (RDBMS).

The use of an RDBMS, with a non-procedural query language (such as
SQL), is beginning to supersede the traditional procedural approach [or
systems design and implementation (figure 1). SQL is now the de
facto standard query language used to interface to RDBMSs, and has in
fact been proposed as the ANSI standard.

USERS

APPLICATIONS RDBMS

DBMS

DATA

Figure 1. RDBMS

Now you may be thinking that you have heard all of this before!
And so you may have, but you probably think that you have to use
SQL. We believe that SQL should be just one way of using a
relational database.

8 EvUGN vois No3



CLARK & SIMMS AFQL

Over the next few years there will a variety of different man-machine
interfaces utilising RDBMSs, and SQL is likely to be relegated in
importance. If SQL and the RDBMS are tightly bound together, it will
be that much harder to implement these new systems.

The implementation techniques we have used within our RDBMS are
innovative, enabling several diverse man-machine interfaces to be
supported concurrently.

We describe two general purpose and powerful components, that can
be used to implement either procedural or non-procedural applications,
using RDBMS.

The procedural level interface is provided by the Relation Manager
(RM), while a functional query language approach (AFQL - Amplified
Functional Query Language) has been taken for the non-procedural
interface. This is shown schematically in figure 2.

RDBMS

AFQL

RM

Figure 2. RDBMS Components

We will go on to describe the functionality of each of these
components in some detail, before concluding with some illustrations
of their use.

(An appendix provides a formal definition of AFQL constructions used
to illustrate this paper.)

EUUGN Vol No3 9



AFQL CLARK & SIMMS

2. RM FEATURES

A general purpose RDBMS needs flexible facilities for manipulating and
managing the individual components which comprise the database.
Within our implementation these facilities are provided by the
Relation Manager (RM).

For the RM to be flexible enough to support a general purpose RDBMS
it must provide (at least) the following facilities :

e A Comprehensive Database Access Capability

An RDBMS will need to support not only extensive ad-hoc
retrieval access, but also full capabilities for data modification. If
RDBMS systems are to be successful in the long term then they
must provide the full range of facilities currently available from
conventionally organised, specialist databases.

e A Comprehensive Dynamic Data Definition Language Capability

Facilities for the dynamic creation and manipulation of the data
structures that make up the database must be provided. There is
a need for relations to be created and deleted, indices to be
allocated and de-allocated, and new attributes added and removed.

e Data Dictionary Support

An essential requirement of an RDBMS is a data dictionary. This
dictionary should be readily available to the user and support
definitions and descriptions of all data attributes, stored and
perceived tuples, database names, indexing, user help, macro and
routine definitions. The maintenance of such a dictionary must be
automatic, and always reflect the current status of the database.

e Access Control

RDBMSs provide a large range of facilities and support multiple
applications for a large range of wusers. Maintaining such a
database relies heavily on having a comprehensive access control
capability, providing varying levels of access to both user and
system data.

e Transaction Management

The essential requirement from any database management system
is that the user knows that his/her data is safe at all times. Not
only must the safety of the data be protected from system
failure, but also (as far as possible) from inadvertent user failure.

10 EvueN vois No3



CLARK & SIMMS AFQL

e Locking

Databases supporting multi-user update access must also support a
locking mechanism which resolves update clashes.
Misunderstanding the use of the locking strategy can lead to
problems with the design and implementation of applications. To
prevent misuse the locking strategy must be comprehensive, easy
to use and be able to recover from deadlocks.

e Database Integrity

An RDBMS supports both user data and system data. System data
must be made available to users as required (for example, to
provide catalogue facilities). This makes the integrity of the
system data of paramount importance, a problem complicated by
the fact that some users may have update access to it.

e High Performance

The traditional hierarchic/networked approach uses structures
which are inherently optimised for high performance. On the
other hand, an RDBMS is manipulated using formal set processing
techniques, which may involve large amounts of processing of both
system and user data. Although users may be willing to trade
some performance for extra flexibility, overall the RDBMS
performance must be somewhat comparable to that provided by
current DBMSs.

e A Distributed Database Capability

The architecture of the RM component must be such that, if a
particular implementation of the UNIX environment provides an
efficient inter-processor communication capability, it will be
amenable to enhancements incorporating support for distribution of
the Relational Database across several processors.

e A User Application Program Interface

Whilst the RM may be transparent to users owing to the higher
level interfaces that are built upon it, certain applications may
have a requirement to wuse the specialist, low-level, hi gh
performance interfaces direct to the RM. Therefore these interfaces
should be made available to high privilege, specialist users.

3. RM FUNCTIONS

The RM provides some of the above facilities via the following set of
functions:

EUUGN Vo6 No3 11




AFQL CLARK & SIMMS

e Find first/next tuple in relation

12

Simple predicate matching within a relation can be performed by
the RM, allowing the use of performance aids such as multi-key
retrieval, and index optimisation to be performed automatically.
These functions allow all matching tuples in a relation to be
retrieved.

Insert, Rewrite and Delete tuple in relation

At any position in a relation (located via Find tuple) updates may
be performed.

During update operations all necessary relation and tuple locking is
performed automatically by the RM. In addition there are facilities
which allow entire relations to be explicitly locked by a user.

Create/Delete Database

The creation of a database automatically creates and initialises all
necessary system relations.

Create/Delete Relation

The creation/deletion of a specific relation automatically causes the
RM to modify all relevant system relations, thus ensuring
database integrity.

Create/Delete Index

The creation/deletion of indices is performed by the RM, allowing
all users (whether using a high level query language interface or a
low level, direct RM interface) to benefit (or suffer) immediately
from the database modification.

Access Control

User permissions are presented as tuples within system relations,
and may be modified using the standard relation modification
facilities. However, for performance reasons, the access permissions
are stored in bit map form and are mapped into relational form
for user convenience. (This is an important feature of the RM:
whatever form the underlying data takes, the RM presents its user
with a relational representation of it. We have coined the term
“relationally homomorphic” to describe this.)

Attribute Level Access

In addition to relation and tuple management the RM provides
routines allowing attribute level access (using the dictionary
facilities provided within the system relations). Because the user
of the RM does not deal in byte offsets when accessing data, the

EUUGN Vol6 No3



CLARK & SIMMS

data can be restructured without affecting existing programs.
e Start, Commit and Cancel Transaction

Up to ten levels of nested transactions are permitted, and an
arbitrary number of RM functions may be included within an
individual transaction. In addition, each RM function is
transactionally “atomic” by default.

e Distributed Database Capability

The RM is implemented using server processes which may be
allocated on a per-database, per-disc or per-processor basis. This
architecture facilitates inter-RM  server communications if
necessary.

All of these facilities are available via the RM interface and are thus
available to all users of sufficient privilege.

4. AFQL - AMPLIFIED FUNCTIONAL QUERY LANGUAGE

The RM thus provides comprehensive facilities for the interrogation
and update (hereafter called "query") of individual relations in a
database. Most relational query languages allow significantly more
than this, for example filtering data using relational and logical
operators (including pattern and sound matching), performing
arithmetic on attribute values, handling statistical functions such as
maxima,minima and averages, returning single-valued and set-valued
results from subqueries, grouping results by attribute values, sorting
results, filtering out duplicate results, and, most importantly of all,
catering for the relational algebra operators SELECT, PROJECT and
JOIN. All of this is available within AFQL.

AFQL is a considerable commercial development of the language FQL,
[1], Although the concepts of the two languages are identical, AFQL
allows several features not present in FQL, of which the two most
important are an update capability and the simultaneous execution of
several sequence-reducing functions (such as maxima and averages).

AFQL is best explained using an example. Figure 3 is a procedural
schematic of part of a personnel database, which comprises threce
relations. The STAFF relation contains basic information for each
employee, the MANAGERS relation describes the company hierarchy
and the DEPT relation describes the company organisation. Domain
congruencies (i.e. those domains which may be used during a JOIN
operation) are also indicated.

EUUGN Vol6 No3 13



AFQL CLARK & SIMMS

MANAGER |EMPLOYEE
MANAGERS (NT) D)
STAFF EMPNO | ENAME | DEPNO | SALARY
(INT) (CHAR) (INT) (DEC)
DEPNO | DNAME
PERE (INT) (CHAR)

Figure 3. Procedural Schematic of Personnel Database

In AFQL, a database is viewed as a collection of functions which map
between relations, tuples, attributes and values, and a query is
performed simply by composing these functions (figure 4). For
example, in the personnel database gSALARY (‘“‘get SALARY”) is a
function, which, when passed a tuple of the STAFF relation (its
“domain”), will produce a decimal value (its “range”), while the
function p[SALARY,ENAME] (“put values into SALARY and ENAME”)
will place a decimal value and a character string into the SALARY
and ENAME attributes of a STAFF tuple.

14 rvueN vois No3




CLARK & SIMMS AFQL

DECIMAL MANAGERS

gSALARY gEMPLOYEE gMANAGER

AR le—— STAFF INTEGER
CH gENAME sEMPNO

¢gDEPNO

INTEGER

|

gDEPNO

e———  DEPT
CHAR gDNAME

Figure 4. Functional Schematic of Personnel Database

AFQL is best thought of as a database programming language, in
which the user concentrates entirely on the domains and ranges of the
functions used in the query, and not on variables or assignment
statements at all. It may be used in two forms, either as an end user
language or as an implementation vehicle for a higher level language.
Although its syntax is more suited to computer scientists than the
typical end wuser, it is an elegant language which exceeds the
capabilities of most relational query languages available, as the fifth
example presented below demonstrates.

The examples are presented with a minimum of explanation and
without formal mapping definitions: the appendix of this paper
should be consulted for formal details of the AFQL functions used.

(1) English: Who earns more than $20000?

EUUGN Voi6 No3 15




AFQL CLARK & SIMMS

AFQL: a[STAFF,SALARY,20000,> ]&*gENAME

This can be read as “all (a) STAFF with SALARY > 20000, and
(&), for each one (*), get (g) ENAME".

In general a[X,...] produces a sequence of all tuples in X matching
conjunctive simple predicates, while f£[X,...] produces the first such
matching tuple.

(2) English: What are the employee and corresponding department
names?

AFQL: a[STAFF]&x*[gENAME, “DEPT&gDNAME ]

where “DEPT = f[DEPT,DEPNQO,gDEPNO,=]

"DEPT is a function mapping a STAFF tuple to the corresponding DEPT
tuple. The overall query produces a sequence of two element AFQL-
tuples, each element being a character string. (The term “tuple” is
used in two ways in this paper, firstly as a row of a relation, and
secondly as a combination of AFQL functions enclosed in square
brackets []).

(3) English: What are the maximum and minimum salaries per
department?

AFQL: a[STAFF )&« [gDEPNO,gSALARY ,gSALARY ]&GROUP

where GROUP = grpl[max,min]

"GROUP is a function which groups a sequence of AFQL-tuples on
their first elements, applying “max” and “min” to the second and
third elements of these grouped sequences. It produces a three element
AFQL-tuple containing the department number, maximum salary and
minimum salary respectively.

(4) English: Delete all staff who earn more than their immediate
managers.

16 EvvGN Vois No3



CLARK & SIMMS AFQL

AFQL: a[STAFF]&! ([gSALARY,MANAGER_SAL]&gt)&#*del

where MANAGER_SAL = f[STAFF,EMPNO, "MANAGER, =]
&gSALARY

and "MANAGER = f[MANAGERS,EMPLOYEE,gEMPNO, =]
S&gMANAGER

"MANAGER is a function mapping a staff member to his/her
immediate manager. MANAGER_SAL finds that manager’s salary. In the
overall query, STAFF tuples are filtered () according to their salary
being greater than (gt) their manager’s salary (MANAGER_SAL), and
these STAFF tuples are then deleted (del).

(5) English: Give all of Smith’s staff a 10% pay rise.

AFQL: SMITH&JUNIORS&#UPDATE_PAY

where SMITH = f[STAFF,ENAME,Smith,=]
and “EMPNO = f [ STAFF, EMPNO, id, =]
and “MGR = a[MANAGERS,MANAGER,gEMPNO,=]

&#* (gEMPLOYEES "~ EMPNO)

and JUNIORS = “MGR&#*([id,JUNIORS]&cons)&red

and UPDATE_PAY = [id, [gSALARY,1.1]&mu]&p[SALARY]
Sxrw

SMITH is a function that finds the STAFF tuple for Smith. "EMPNO
is a function that maps an integer X to the STAFF tuple which has
employee number X.

"MGR is a function that maps a STAFF tuple to a sequence of all
STAFF tuples of that staff member’s immediate employees. It achicves
this by finding all the employees of the manager, and, for each one,
finding the corresponding STAFF tuple.

JUNIORS is a recursive function producing a sequence of all STAFF
tuples of all employees below someone in the hierarchy. It achieves
this via the “cons” (construct sequence) and “red” (reduce sequence of
sequences) list processing functions.

UPDATE_PAY takes a STAFF tuple and multiplies (mu) the salary by
1.1 placing the result back in the SALARY attribute (p[SALARY])
before rewriting (rw) the tuple.

EUUGN Vol6 No3 17




AFQL CLARK & SIMMS

Note that it is impossible to do recursive queries like this through a
relational query language such as SQL.

5. IMPLEMENTATION FEATURES OF AFQL

Given the power of AFQL we have just illustrated, the implementation
is considerably more concise and compact than might be thought. Some
of the major implementation features are described below, many of
which are feasible because of the tools and facilities of UNIX and C.

e Yacc/Lex/Sed/Awk

18

The syntax of AFQL is defined through BNF. Yacc and Lex are
thus used to generate the syntax analysis part of the AFQL
translator, and to build the internal evaluation expression
corresponding to the external query. Sed is used to alter the
yacc/lex externals to different names, so that yacc/lex can be used
for the syntax analysis of other languages if desired. By the use
of an Awk script it is easy to regenerate the BNF from the yacc
source.

Lazy Evaluation

A major feature of AFQL is that expressions are only evaluated
when they need to be. This is particularly important when there
are expensive subqueries, such as those calculating an average.
For example, in the query ‘show employees named Smith who
earn more than the average salary for all employees”, the average
is only calculated if and when the first tuple for a Smith is
found.

Pipes

Several types of query demand sorting. We have introduced a
special sort process which handles several data types, and data is
piped to it. AFQL retrieves data from the sort in a manner
analogous to obtaining tuples from relations.

Space Management

AFQL expressions are held in a list structure in which the nodes
have been made of equal size in order to ease space allocation and
garbage collection problems. Space for a set number of nodes is
obtained from the system via the use of malloc, and maintained
internally by AFQL. Further calls may be made to malloc should
the evaluation of the query demand it, although this is very
unusual.

Garbage Collection

EUUGN Vol6 No3



CLARK & SIMMS AFQL

The garbage collection mechanism uses a reference count in each
node and works synchronously with the query. There are thus no
long periods when processing stops awaiting the job of the garbage
collector. This method is so efficient that, in general, a query
needs at most twice as many nodes for its evaluation as it starts
with.

e Pointer Manipulation

C is ideal for the implementation of a list processing language
such as AFQL. Considerable use of pointers is made within the
AFQL implementation: for example, they are used within the list
structure to point not only to other list nodes, but also to the
entry points of the AFQL functions themselves.

e Constant Sub-Expressions

AFQL marks expressions which are known to be constant-valued,
so as to avoid evaluating them repetitively. For example, in a
query which calculates an average (such as has been described
under “Lazy Evaluation”), the average is saved by overwriting the
part of the AFQL evaluation structure that calculates it.

e Linked Lists

Ordinarily, AFQL treats results as sequences in which only the
current result is of interest. When handling set-valued results
from constant subqueries, however, it links the results together to
avoid repeated expensive evaluation. For example, consider the
query ‘“show all employees named Smith who earn more than the
average salary of at least one department”. A typical system will
work out the average salary of each department, save the results
in a temporary relation, and then compare each Smith’s salary
with all these tuples. AFQL avoids this by only starting to
calculate the averages when the first Smith tuple is found (lazy
evaluation), and only calculating as many departmental averages as
are necessary to prove whether Smith earns more than some
average. These averages are stored together in a linked list as a
constant sub-expression. In this manner, should every Smith earn
more than the average salary of the first department, the averages
of the remaining ones are never calculated.

As a final comment on the applicability of UNIX and C to the AFQL
implementation, the code below shows the simplicity of the ‘“‘sequence
construction” function cons, used in example (5) above.

EUUGN Voi6 No3 19



AFQL ‘ CLARK & SIMMS

struct afqls *cons(argp); /% maps [X,#X] -> *X */

struct afqls wargp; /% pointer to susp. u */

{
register struct afqgls *xtbase; /* general tuple pointer =/
register struct afqls *node sy /% general node pointer %/

register struct afqls xtup ; /% tuple pointer */
tup = eval(argp); /% eval u to give [X1,X2] »/
tbase = tup->nod1i.argt; /% tuple base pointer */

node = crstr(*tbase,
#(tbase + 1)); /% create sequence *X */

return(node) ;
}

6. APPLICATIONS OF AFQL AND RM

An AFQL interface to an RDBMS, whilst being highly flexible, is not
particularly user-friendly. The whole purpose behind implementing
such an RDBMS is to provide a tool to be used for the implementation
of more useful systems.

Currently we have implemented a Structured Query Language (SQL)
interface based upon IBM SQL/DS. The SQL language comprises two
basic command types: finite commands and infinite commands. Both
types are syntax checked using parsers implemented with yacc and
lex, and conventional tree structures corresponding to the query are
built.

The finite commands lend themselves to implementation using
intermediate AFQL very easily. The command type is used to index
into a library of AFQL translations, and the AFQL command
corresponding to the current SQL command is retrieved and executed.
To achieve this, special AFQL functions performing semantic validation
were written. This approach provides an extremely flexible mechanism
for the SQL finite commands.

The infinite commands are somewhat more complex, demanding
semantic validation such as assigning unqualified column names to
their owning tables and incorporating view definitions. This task is
handled by special code, after which the “AFQL Builder” routine is
called. This routine translates the tree structures into the equivalent
AFQL form, following which the AFQL expression is evaluated.

20 EUUGN Vois No3



CLARK & SIMMS AFQL

There is no reason at all why the same approach cannot be taken to
implement other relational query languages such as QUEL, which is
used in INGRES.

Relational query languages are, however, just one of the options
available to a systems builder (figure 5). We have plans to use the
AFQL interface in several further ways, of which two are outlined
below:

— Natural Language

Languages such as SQL are extremely powerful, but are
encumbered by having a formal syntax that the user must learn.
We are likely to see natural language interfaces increase in
importance over the next few years, so that everyone can really
take advantage of the relational approach.

One possibility under consideration is to produce a natural
language prototype using the AFQL interface. The prototype will
access a data dictionary which will include a data lexicon and full
semantic information. The user will have the ability to maintain
this dictionary, in particular to add synonym type information.
The natural language parser will possibly be written in Prolog,
building tree structures corresponding to the natural language
query and a translator will then transform this into the
equivalent AFQL expression.

— Artificial Intelligence
A user has the following problem:

A product, comprising a very large number of complex electronic
components, requires maintenance. Whilst experienced electronics
engineers are able to analyse and repair most components (whether
or not the engineer is familiar with the component), inexperienced
engineers are not.

One solution is to set up an RDBMS comprising data describing
product descriptions, engineering tools and uses, principles of
operation and component lists, using SQL. An artificial intelligence
system, implemented upon an AFQL interface to the product data,
is used to guide the inexperienced engineer through the maze of
component  descriptions and test  procedures until  the
product/component at fault is located and repaired. The Al system
may choose to modify its test procedures in the light of observed
responses.

EUUGN Voi6 No3 21



AFQL CLARK & SIMMS

USERS
APPLICATIONS
SQL NL Al
AFQL
RM
DATA

Figure 5. User Applications

7. SUMMARY

The traditional hierarchic/networked DBMS is being superseded by
RDBMS, particularly in the UNIX world.

Currently SQL is the de facto standard (and the proposed ANSI
standard) query language interface to RDBMS.

Man-machine Interfaces are becoming increasingly more sophisticated,
and we have illustrated some of the current developments in this
area.

22 EUUGN Vo6 No3



CLARK & SIMMS AFQL

Future RDBMSs will have the capability for concurrently supporting
several diverse interfaces to a database.

The architecture described provides the tools necessary for the
implementation of these diverse interfaces.
8. ACKNOWLEDGEMENTS

The significant contribution from Mat Ware, together with the advice
and consultation provided by Martyn Legge and Ross MacMillan is
gratefully acknowledged.

9. Appendix: AFQL Definition

9.1 Domains and ranges used in the examples

Entity Explanation
ROW(RRR) Row of a relation RRR
RVA Value of an attribute in a relation with possible

value types: SMALLINT, INTEGER, DECIMAL,
FLOAT, CHAR, VARCHAR and NULL. Often
shown as RVA(TTT) where TTT is the data type.

LIT Literal with the same value types as RVA. Often
shown as LIT(TTT) where TTT is the data type.
Where RVA and LIT are alternatives in a mapping,
they are shown as RVL(TTT)

TAB(RRR)  Relation name RRR

NAM(RRR) Column name belonging to relation RRR

Cp Currency pointer (a number corresponding to a
dictionary entry defining a particular column of a
relation

BOOL Boolean with three possible values: TRUE, FALSE,

MAYBE. This is often shown in AFQL mappings as
BOOL(TRUE) etc

EUUGN Vois No3 23




AFQL

CLARK & SIMMS

9.2 AFQL Operators and Functions used in the examples

FUNC Name(symbol) Mapping Notes
/0P
FUNC | AMENDMENT rw: ROW(RRR) = ROW(RRR) | Rewrites a tuple to
(rw) relation RRR
op COLUMN If V: - CP(?DICT) Gets an  attribute
ACQUISITION or V: = NAM(RRR) from RRR. The
(g) then gvV: ROW(RRR) — RVA attribute is identified
by a CP for the

dictionary row that
defines it, or by the
column name itself.

oP COLUMN
PLACEMENT (p)

If R: X - ROW(RRR)
and Vj: X = RVL
and Cj: = CP(?DICT)
or Cj; = NAM(RRR)
then p[C1,...,.Cn):
[R.V1...,Vn] —
ROW(RRR)

Places value Vj in
attribute Cj of
relation RRR.

oP COMBINATION

If Vii X = Yi

Each Vi must have

(1)) then [V1,V2...,Vn]: the same domain X
X — [Y1,Y2....Yn] or may be constant-
valued
FUNC | COMPOSITION fFv:X-Y Equivalent to “o” in
(&) and W: Y = Z Buneman'’s paper
then V&W: X = Z
FUNC | CONSTRUCTION | cons: [X,*X] -> *X Constructs a sequence
(cons)
FUNC | DELETION del: ROW(RRR) - Deletes a row from
(del) ROW(RRR) relation RRR
oP EXTENSION (*) If V: X = Y Extends function V
then *V: *X — *Y to operate on a
sequence of Xs
oP FIRST TUPLE | If T: X — TAB(RRR) Finds the first tuple
ACQUISITION and Cj: X — NAM(RRR) of relation RRR that
(f) and Vj: X = RVL matches the
and Rj: X — LIT(CHAR) predicates defined by
then f[T.C1,V1,R1,..., the triplets
Cn,VnRnl: X = ROW(RRR) {Cj.Vi.Rj}: see
TUPLE
ACQUISITION.

24 EUUGN Voi6 No3




CLARK & SIMMS AFQL

FUNC Name(symbol) Mapping Notes
/0P — =
oP GROUPING If F: [X.X] = X Enables a sequence to
(grp) then grp[F1,F2.....Fn}: be grouped on a
Y X1.X2....Xn] — value or over the
Y, X1,X2,....Xn] entire sequence. Each
where Y is RVL or ROW Fj is a function to
be applied across the
group to the
corresponding Xj, e.g.
“max” to get the
maximum of the
values
FUNC | IDENTITY id: X » X The identity mapping.
(id)
FUNC | MAXIMUM max: [RVL,RVL] -> RVL Maximum of two
(max) values
FUNC | MINIMUM (min) min: [RVL,RVL] = RVL Minimum of two
values
FUNC | MULTIPLICATION | mu: [RVL,RVL] = RVL Multiplication of two
(mu) values
FUNC | REDUCTION (red) | red: **X — *X Sequence reduction
(equivalent to
Buneman's /conc)
oP RESTRICTION (1) If V: X - BOOL Filters the sequence
then IV: *X — *X X according to the
predicate V
oP ROW If T: X = TAB(RRR) Loosely equivalent to
ACQUISITION (a) | and Cj: X = NAM(RRR) Buneman's ! operator
and Vj: X = RVL with {Cj.VjRj}l being
and Rj: X — LIT(CHAR) simple {column,value,
then a[T.C1,V1R1,.., relational operator}
Cn,VnRn]: X — conjunctive predicate
*ROW(T) triplets
FUNC | > COMPARISON gt: [RVIL.LRVL] = BOOL Three-valued logic
(gt)

EUUGN Vol6 No3 25




SVS™ FORTRAN 77 /
Pascal/BASIC-PLUS/C

SVS family of native mode
compilers for MC68000™, 68010™,
68020™, with optional support for
68881 floating point processor. Full
ANSI standard, symbolic debugger
and optimized code generator
with high speed optimization.
Support for IEEE floating point,
both single and double

precision. SVS languages give
excellent performance.

u4dth

FORTH programming language
for UNIX. Largely compatible
with the FORTH-83 standard.
udth is interactive and allows
full UNIX system call interface,
as well as UNIX command
pass-through. Permits C
primitives and FORTH words to
be loaded into a new kernel
image. Used frequently in
Artificial Intelligence work.

SSI TOOLKIT

SS| Toolkit is a set of Intel-style-
cross development tools for
UNIX and VMS™. Package
includes macro cross
assembler compatible with
Intel ASM-86/87/88/186/188;
linker, locator and librarian.

LATTICE® C CROSS
COMPILER

Use your VAX™ (UNIX or

VMS) or other UNIX machine
to create standard MS-DOS™
object code for 8086™ and
186™. The Lattice package
includes compiler, linker,
librarian, disassembler and
8087™ floating point support.
Optional SSI Intel-style cross
development tools can be
used in conjunction with
Lattice for native mode 8086
applications.

AMSTERDAM
COMPILER KIT

Now includes BASIC,
additional back-ends and
simpler licensing!

A package of C, Pascal and
BASIC (native and cross)
compilers for UNIX machines.
Hosted on VAX, PDP-11™,
MC68000™, Z8000™ and
8086. Targets for VAX, PDP-11,
MC68000™, 6500™ / 6502™,
28000, 8086, NSC16032™
and 8080 / Z80™. Cross
assemblers provided for
MC6800™ / 6805™ / 6809™,
NSC16032 and Signetics
2650™. Package contains
complete sources.

AN EXTENSIVE LINE
OF PROGRAMMING
LANGUAGES FOR
NATIVE AND CROSS
DEVELOPMENT
WORK

For more information on these
and other UNIX software
products, call or write:

UniTec

a Division of MEDELCO SA
Postfach 76

CH-3097 Liebefeld/BE
Telephone: 41 31 59 22 23
Telex: 911859

UniTec is the exclusive European
Distributor for UNIPRESS
and SVS Software

UniTec

a Division of MEDELCO SA

26 EUUGN Vois No3




ERIKSEN ANOTHER YEAR WITH EUUG

Yet another year with EUUG—S

Bjorn Eriksen

ENEA DATA Svenska AB
ber@enea.uucp

This is a report about the activities within the Swedish UNIX system
users group and the UNIX community in Sweden since the spring
conference in Paris 1985 —— and perhaps a few bits and pieces from
ancient history.

1. EUUG-S ORGANISATION

The Swedish user group started in March 1983 and had its first
formal annual meeting in October 1983. The name for the user group
was to begin with SUUG, but we soon found out that the Swedish
Univac Users Group already had taken that one. We then came up
with the idea to let EUUG—S be a short form for Svenska
UNIXsystemanv

The membership categories and number of members as of April 1986
were

125 Institutional 1000 SKR
15 Individual 700 SKR

About 13% of the institutional members are universities. Obviously
more people start companies than universities.

2. EUUG—S ACTIVITIES

So far the Swedish group have had only one major meeting a year.
These are arranged as conferences combined with an exhibition. At
every meeting a speaker from US has been invited. At the last
meeting in September 1985 we had Brian Kernighan as a guest. Just
over 100 members attended the meeting and we had 10 exhibitors.

The next meeting will be 27-28 October and the guest speaker this
time is Richard “GNU” Stallman, talking about moral and free
software.

In several European countries we start to see a lot of commercially
oriented exhibitions, like the one in Paris, Comunix in London and so
on. The same thing has developed in Sweden with the so-called
“UNIXfair”. Although this is not a part of the EUUG-S activity as
such, the organisers want very much to have the blessing of the

EUUGN Vol No3 27




ANOTHER YEAR WITH EUUG ERIKSEN

national user group, and as we had a booth place free of charge and
it’'s hard to refuse that kind of visibility we have chosen to cooperate
with these kind of exhibitions. This fair was attended by more than
3500 people and it will be repeated every year.

We have a local newsletter of course, which is produced at irregular
intervals, normally 3—5 a year. In order to improve the newsletter
one of the board members was appointed official newsletter editor, and
is now constantly struggling with Wood-syndrome, trying to find
good and interesting articles.

3. EUNET IN SWEDEN

Sweden was hooked up on the network in April 1983 and since then
a lot of machines have now joined the net, some have also left it.
Just for fun, I've kept the very first electronic mail I ever got from
another Eunet machine:

Return-Path: <mcvax!jim>

Date: Thu, 7 Apr 83 14:02:08 MET DST
From: mcvax!jim (Jim McKie)

To: enealber

Subject: Hello

You are now hooked to the mcvax. This is just a test.
Reply, we will be calling you again soon!

Ignore any references to a machine called "yoorp", it

is just a test. Mail should go to "mcvax!....".
Regards, Jim McKie. (mcvax! jim).
I wonder what ever became of that machine yoorp ... For about six

months there was only one eunet site in Sweden, essentially due to
lack of dialers. As I didn’t want to buy a DN-11 interface I bought a
dialer from Vecom in Holland. Actually I had two dialers, one was
sent between the Swedish PTT and Vecom in a test-modify loop, the
other one I used. To begin with there was one minor problem with a
“foreign” dialer as we here in Sweden have the dialing sequence
0,1,2,...,9 instead of 1,2,..,9,0 which is more common elsewhere. This
started my career as a uucp hacker. Finally I got it all working and
the {\m swnet/} started to grow very rapidly. When I last counted
we had

74 registered sites

49 sites connected direct to backbone machine
23 sites receiving netnews

28 EUUGN Vois No3



ERIKSEN ANOTHER YEAR WITH EUUG

Behind these registered sites there are often a lot of other machines.
For example, the Swedish Defence have more than 150 sites
connected through a separate network with one gateway machine to
Eunet.

With the 8 autodialers we can now use 300, 1200 and 2400 baud
lines and the X.25 pad connects Sweden to the other backbone
machines in Europe as well as seismo in the US and even munnari
in Australia. Well, for the time being munnari can call us but we
can’t call them. Mcvax had the same problem and it turned out that
if the PTT routes X.25 through Great Britain, the ‘“No European
standard, please, we’'re British” -island, you loose.

Within swnet we also maintain a simple form of “name server”, in
order for people to easily figure out the electronic mail address of
others. A program extracts the information from /etc/passwd and after
some hand-editing to remove unwanted names, this list is sent to a
special recipient at the backbone machine where the list is in turn
sent out to all other sites already in the database. Currently we
have 927 names in this ‘“name server” database.

EUUGN Vo6 No3 29



Another in a series of
productivity notes on
software from UniPress and
UniTec

EMACS"

EDITOR FOR: UNIX"/
VMS"/MS-D0S™

Subject: Muiti-window, full screen
editor.

Multi-window, full screen editor provides
extraordinary text editing. Several files can be
edited simultaneously, giving far greater
programming productivity than vi. The built-in
MLISP™ programming language provides
great extensibility to the editor.

New Features:

a EMACS is now smaller and faster.

= Sunwindows with fonts and mouse controi
are now provided.

= Extensive on-line help for all commands.
m Overstrike mode option to complement
insert mode.

a New arithmetic functions and user definable
variables.

a New manual set, both tutorial and MLISP
quide.

s Better terminal support, including the
option of not using unneeded terminal drivers.
s EMACS automatically uses terminal's
function and arrow keys from termcap and
now handles terminals which use xon/xoff
control.

= More emutation-TOPS20 for compatibility
with other EMACS versions, EDT and simple
Wordstar™ emulation.

» Multi-window, full screen editor for a wide
range of UNIX, VMS and MS-D0S machines.
a «Shell windows» are supported, allowing
command execution at anytime during an edit
session.

a MLISP programming language offers
extensibility for making custom editor
commands! Keyboard and named.macros, too.
w «Key bindings» give full freedom for
defining keys.

@ Programming aids for C, Pascal and MLISP:
EMACS checks for balanced parenthesis

and braces, automatically indents and
reformats code as needed. C mode produces
template of control flow, in three different

C styles.

m Available for the VAX™ (UNIX and VMS), a
wide range of 68000 machines, AT&T family,
Pyramid™, Gould™, IBM-PC™, Rainbow™
100+ and many more.

30 mwGN Vois No3

TELIX

TELEX CONTROL
UNDER UNIX

ELIMINATED:

= PAPER TAPE

= WRITING and MODIFYNG telex messages
on telex terminals with limited capability.

w INTERRUPTIONS while trying to send a
message due to incoming or other
«important» outgoing message(s)

ADVANTAGES:

u Multi-user Unix systems allow many users
to prepare and submit telexes simultaneously.
TELIX resolves all scheduling and priorities.

a Incoming telexes stored in computer for
easy reference. Any part of incoming telex
may be easily included in another transmission.
= TELIX system includes user-friendly
«menu interface».

» Extremely easy to work with TELIX.

» Training time for new users about

30 minutes.

SOPHISTICATED FEATURES:

a Telexes may be prepared and transmitted
at specified later time, allowing telex line

to be left open during business hours.

w Priority system used in the queue = important
telexes may be sent ahead of others.

a Consolidate numerous telexes for same
destination for one transmission;
eliminating repeated calls to same number.
« When a call fails for any reason, telex

teft in queue to be tried again

in about 30 minutes with lowered priority.

a Any number of lines managed simultan-
eously.

Q-CALC

SPREADSHEET

Subject: Powerful spreadsheet with

NEW ADDED FEATURES.

(Q-Calc is an extraordinary spreadsheet for
UNIX including extensive math and logic
facilities, comprehensive command set,
optional graphics, many new ease-of-use
features, and the ability to run UNIX programs
on spreadsheet data.

Features:

m Fast spreadsheed with large model size,
allowing sorting and searching.

m Interfaces with UNIX and user programs via
pipes, filters and subprocesses. Data can be
processed interactively by UNIX.

m Q-Calc profile mechanism aliows the user
to stare default information, as well as support
for terminai-specific profiles. Uses termcap.
a Available for Plexus™, VAX™, Sun™,
Masscomp™, AT&T 3B & 7300 Series,
Pyramid™, Gould™, Cadmus™, Integrated
Solutions™, Cyb™, IRIS™, Callan™, and many
more.

a Graphics for bar and pie charts. Several
device drivers supported.

a New Features of Version 3.2 include more
powerful printing, simpler data input,
keybinding definitions, new string operator,
pind-to-key, and more.

For more information on these and other UNIX
software products, call or write:

UniTec

a Division of MEDELCO SA
Postfach 76

CH-3097 Liebefeld/BE
Telephone: 41 31 59 22 23
Telex: 911859

UniTec

a Division of MEDELCO SA




KINGSTON HOW TO MAKE SMALL FACES

A Study in Digital Image Reduction
or
How to Make Small Faces

Doug Kingston

Centrum voor Wiskunde en Informatica
Amsterdam, The Netherlands

dpk@mcvax.uucp
dpk®@brl.arpa

1. INTRODUCTION

Those of you at the Florence conference this spring are likely aware
that there were several people cajoling attendees to get their picture
taken for something called “‘the faceserver”. Those who managed to
get to the I2UNIX booth on the second floor found a group of
energetic Germans from UNIDO with a large television camera and a
table full of bits and pieces of Atari 520st and related peripherals.
The purpose of this equipment was to collect digitized faces for later
conversion into small bitmap icons.

You might ask why would someone want to collect faces. There are
many uses for the face icons, but they all have in common the desire
to have graphical representations for people that can be used in place
of the traditional written names or addresses. Associating an identity
with a picture can often be easier than associating the identity with a
written name especially when the name is abbreviated (e.g. a login
name). The faces can also be used in a ‘““white pages” service to
allow us match a face with name or to help remind us which person
goes with what written name.

The first work on face icons was done by several members of Bell
Labs, Murray Hill, in particular Rob Pike and Tom Duff. They
found that a useful representation of a face could be gotten in an
icon no larger than 48 by 48 bits. They spent a good portion of the
Utah Usenix conference collecting faces with a 35mm camera. Their
work in this area stimulated a number of other people to look into
doing the same thing. At the Dallas /usr/group exhibition, Masscomp
had a booth that included a Masscomp system set up to collect faces
and store them with the person’s name and net address.

The most technically interesting aspect of these face icons is that they
represent the output of a very large data compression operation. The

EUUGN Volé No3 31



HOW TO MAKE SMALL FACES KINGSTON

original images are typically 256 by 256 by 4 bit grey level images.
In some cases the original images have even more resolution. When
converted into icons, the information in that image (32K bytes) is
compressed into 288 bytes (48 by 48 by 1 bit)) Now needless to say
there is significant information loss here, but if you are clever you
can maintain a very recognisable image despite the information loss.
How you compress the data is the crux of the problem.

2. FACE ICON FORMAT

The work at Bell Labs has developed a standard of sorts for face
icons. The format for interchange is an ascii representation. The icon
description consists of 48 lines each specifying 48 bits. Each line
consists of three comma separated hexadecimal numbers with no white
space. Each number specifies a 16 bit word in big endian order. For
a given word, such as 0x1267, the output bit horizontal bit pattern
would be: 0001, 0010, 1100,01 1 1. Put verbally, write
out the the binary representation of each nibble from left to right,
most significant bit first.

The following is the complete description of the face of Peter .
Weinberger. His face is a somewhat of a standard of its own. [
have include the entire description as a reference. If you get this
face right, you can view any face. (This description would normally
be single column. It has been listed in multiple columns to save
space. The first line contains scanlines 1-3, read from left to right,
the second line contains scanlines 4-6, etc.)

0x0000 0x1FAQ 0x0000 0x0000 0x7FFC 0x0000 0x0000 OXFEFF
0x0001 OxBFBF 0xC000 0x0001 OxEFFA 0xE000 0x0002 Ox00FF
0x0002 0x007F OxFF80 0x0000 0x001F 0x7E00 0x000C 0x001F
0x0000 0x0015 OxFFCO 0x0030 0x001F OxFFFO0 0x0070 0x000F
0x00CO 0x0007 OxFFF8 0x00EQ 0x0007 OxFFE8 0x01E0Q 0x0003
0x03cCo 0x0001 0xFFF8 0x03E0Q 0x0001 OxFFF8 0x07C2 0x8000
O0x0FFA OxF83F OxBFF8 0xOFEQ 0x7C67 OxFFF8 0x1FF1 OxEFF9
0x1FF7 OxFFFF OxFFF8 Ox1FF5 OxA4FF OxFFF8 0x1FDO 0x247F
0xOFEO 0x8045 OxFFFO 0x1FAQ 0x0870 O0x3FFO0 0x0320 0x0060
0x0B80 0x1030 0x1F80 0x0181 0x601F 0xF780Q 0x0085 0x405A
0x0000 0x0BFB 0xFF00 0x0180 0x1FES8 OxEEQ00 0x0380 0x07F2
0x0182 0x03D5 O0xEFCO 0x0080 0x0075 0x7F80 0x01C1 0xD5DD
0x00C1 0x57FF 0xFF80 0x0040 0x0039 0x7F00 0x0060 0x006B
0x0004 0x1FEB 0x6000 0x0000 0x07FF 0xF800 0x0002 0x0015
0x0000 0x0057 0xC000 0x0002 0x003F 0x4000 0x0000 0x804B
0x0002 0xBBFE 0x8000 0x0000 0x8FFB 0xC000 0x0001 0x7ABF

32 EVUGN Voi6 No3




KINGSTON HOW TO MAKE SMALL FACES

3. OUR EUROPEAN FACESERVER PROJECT

Since Dallas, little has happened until slightly before the Florence
conference when I rekindled the idea after briefly mentioning it to
Daniel Karrenberg. Much to my surprise, UNIDO immediately went
out and got an inexpensive video digitizer for one of their many Atari
520st’s, and we then began a crash program to get enough face server
collection software running to take it to Florence. We had two
weeks, but we made it. A large portion of the credit goes to Hans-
Martin Mosner whose work on the collection software for the Atari
made the idea a reality in time for the conference.

The actual hardware was:

— an Atari 520 ST+ (1MByte)

— 2 double sided FD drives (3 1/2 inch)
— b/w television camera (really old stuff)
— video digitizer

Our software made heavy use of the GEM user interface on the Atari.
Data was read from the digitizer and displayed in 4 windows:

256*256*1 (thresholded raw data),

48*48*1 (resulting icon),

48*48*1 (magnified 4 times for bitmap editing),
and a histogram of grey value distribution.

Since we had too little time to develop compression algorithms, the
icons looked quite ugly. Most people couldn’t imagine that it was
their picture we took, but we actually stored more data than was
displayed. If you have questions about the technical details, feel free
to ask hmm@®@unido.uucp.

At Florence we managed to collect around 150 faces in three days.
However, it was a learning experience. The equipment had necessarily
been put together in a hurry and we had a couple of hardware
failures (broken cables, flakey floppy drives). We also were not
equipped to properly light those being photographed, and the lighting
in the room was quite variable. I don’t think we realized at the time
how critical the lighting was. This problem will most certainly
receive more attention in the future. As a result not all of the faces
are usable, but we have done our best to have our digitizing
algorithm compensate to the lighting automatically (see the algorithm
description below).

We had originally intended to only store the compressed icons but
after a short while we were convinced that our current algorithms

EUUGN Vol6 No3 33




HOW TO MAKE SMALL FACES KINGSTON

were not good enough. We decided to store the full 32K byte images
on multiple disks and process them after the conference when we had
time to refine the data compression algorithms. This has been a low
priority task for all of us, so things have moved slowly until
recently when more time could be devoted. We now have a quite
good compression algorithm, and we will hopefully be able to seed the
European faceserver with the faces collected at Florence. Those who
had electronic mail addresses on EUNET should receive an ascii copy
of their face by the end of August 1986. The entire collection
should be made available in the not to distant future, although the
exact method is not yet known.

4. THE DATA COMPRESSION ALGORITHM

Some explanation is necessary of the problems in getting good face
icon representations. Initially, it may be necessary to correct for the
aspect ratio of the digitizer vs. the aspect ratio of the camera. In our
case the camera’s 4 by 5 aspect ratio was scanned into a 256 by 256
raster. The picture can be divided into several distinct portions each
with different qualities. The background of the picture is white. It
should stay white since it serves to outline the face. Shadows must
be avoided on the background. Very bright features and very dark
features should stay that way. In general it is fairly straightforward
to assign the very bright and very dark areas to 1 and O respectively.
The real problem in the compression process is to maintain ‘“greyness”
in the image. Since you have only 288 output bits (48x48), you
cannot use dithering in the classical sense. You simply cannot afford
to take several bits to represent one value. Every bit in the icon
must be chosen so that it helps convey the sense of the original
image. Since you have only O and 1 as values for each pixel, you
can only introduce ‘“greyness” by considering how a given pixel
interacts with adjacent pixels. The human eye will not normally be
close enough to pick out individual pixels of the icons so you can use
the natural tendency of the eye to average a given pixel with its
neighbors. This can be exploited to produce very good icon
representations of 48 by 48 grey level images in 48 by 48 icons.

We realized in Florence that the basic problem was reproducing the
grey in images. I spent a considerable amount of effort on trying to
reproduce grey in the icons with generally poor results. The first
attempts tried to use weighted calls to a random number generator to
decide if the bit should be on or off, but the information loss from
the random factor was not acceptable and it did not take into account
the neighbor averaging effect. The next algorithm was concocted by
myself and Hans-Martin while waiting for an EUUG Executive
meeting to adjourn in Florence. The idea was to set all the known

34 rwen vois No3



KINGSTON HOW TO MAKE SMALL FACES

I's and O’s, and then to set each remaining pixel based on the grey
value desired, and the current surrounding pixels. The evaluation was
left to right and top to bottom in that order and unfortunately
produced a very regular striping of the image. The next round of
attempts focused on using prime numbers to randomize the evaluation
of the image without in fact being random. This also produced
patterns although they were less describable. The biggest strides on
improving the algorithm came on the weekend of 21 June when I was
making a visit to Dortmund. Sunday afternoon Daniel Karrenberg and
I spent about 5 hours improving the algorithm. The key was the
choice of averaging overlay. We had been using a 3 by 3 grid with
the pixel of interest at the center. The flaw in this type of approach
is that the pixels already assigned unduly bias the next assignment,
and do so in a geometrically regular manner. The current version of
the algorithm is not susceptible to this regular distortion. We now
use cross shaped averaging overlay that examines the four pixels
immediately adjacent to the image (above, below, right, and left).
The image is scanned 4 times examining a quarter of the pixels each
time. The order is (even,even), (odd,odd), (even,odd), and (odd,even).

What follows is the current algorithm with a number of comments.

int value(x,y); /* return grey value from original image */

int map(]; /* index by grey value to get new grey value #*/
long face[48][48]; /+ summed grey values */

int buckets[]; /#* histogram counts =/

These are the basic data structures. Since the target icon size is 48
by 48, we can conveniently compress a 192 by 192 image into the
required 48 by 48. This conveniently drops the left and right side of
the image which are unnecessary border. The following chunk of
code also maps the 256 vertical pixels into 192 as a side effect.

/% Fix aspect ratio and sum the grey values into 48x48 array +/
for (y = 0; y < 192; y++) {
register int val;

for (x = 32; x < 224; x++) {
val = map[value(x, (y*256)/192)];
face[y/4][(x-32)/4] += val;

}

So now we have a roughly 48 by 48 by 8 bit image. The next basic
operation is to determine the mean grey value and “shift” it towards
the center of the range. This is basically a contrast enhancement step.

EUUGN Vol6 No3 35




HOW TO MAKE SMALL FACES KINGSTON

/% Determine the mean #*/
for (y = 0; y < 48; y++) {
for (x = 0; x < 48; x++)
mean += face([y]l[x];
}
mean /= (48x48);

/+ Actually do the shifting */
mean = tmean -~ mean; /* Convert to shift amount */
for (y = 0; y < 48; y++) {
for (x = 0; x < 48; x++) {
n = face[y][x]/(MAXSUM/NBUCKETS) ;
if (n >= shiftlo && n <= shifthi) {
facel[y]l[x] +=
(mean * (2#tmean - abs(face[y][x] - tmean)))/(2*tmean);
if (facel[yl[x] < 0)
face[y]l[x] = 0;
else if (face[y][x] > MAXSUM)
face(y][x] = MAXSUM;

}

We now determine where the low and high water marks should be.
The trick here is to do it based on a percentage of the total number
of pixels (a percentile).

for (y = 0; y < 48; y++) {
for (x = 0; x < 48; x++) {
n = (face[y][x]*NBUCKETS)/MAXSUM;
buckets[(n >= NBUCKETS ? NBUCKETS-1 : n)]++;

x = 0;

while (n < ((48%48)xlowater)/100)
n += buckets[x++];

lowater = ((x-1)*MAXSUM)/NBUCKETS;

while (n < ((48%48)*hiwater)/100)
n += buckets[x++];

hiwater = ((x~1)*MAXSUM)/NBUCKETS;

Having done this, we are now ready to start assigning bits to the
icon. The first and easiest step is to assign the bits that are so dark
or so light there is no question as to their appropriate value.

36 EvUGN Vois Nos



KINGSTON HOW TO MAKE SMALL FACES

/% Wire down the known bits =/
for (y = 0; y < 48; y++)
for (x = 0; x < 48; x++) {
if (face[yl[x] < lowater) {
face[y]llx] = 0;
/#% clrbit(x,y); */
} else if (facel[yl[x] > hiwater) {
face[y][x] = MAXSUM;
setbit(x,y);

}

Now for the hard ones. We walk around the image in a regular but
carefully chosen manner so that the effect of previously assigned
pixels does not generate feedback patterns. The first two passes run
into only preassigned pixels and no others. The second two passes
will always have all neighbor pixels assigned.

/% pass1 get every other pixel (even,even) »/
for (y = 0; y < 48; y+=2) {
for (x = 0; x < 48; x+=2) {
if (facel[yllx] == 0 i| face[y][x] == MAXSUM)
continue;
choice(x,y);

}

/% pass2 get every other pixel (odd, odd) »/
/% pass3 get every other pixel (even, odd) */
/+ pass4 get every other pixel (odd, even) */
/% ... same as above, just change subscripts. #/

The choice function decides which value to set the pixel to based on
which one will more closely approximate the desired grey value.

EUUGN Vol6 No3 37




HOW TO MAKE SMALL FACES KINGSTON

choice(x,y)
register int x, y;
{
long sum();
register long ifzero, s, a;

ifzero = sum(x,y) - facel[y][x];/* what zero gives you */
s = (2«ifzero + MAXSUM)/2; /% dividing line */
a Sxfacel[y]l[x]; /% what you want »/

if (a > s) {
setbit(x,y);
facel[yl[x] = MAXSUM;
} else {
/% clrbit(x,y); */
face([yl[(x] = 0;

}

long

sum(x,y)

int x, y;

{
static intxs[5] {0, -1, 0, 1, 0};
static intys[5] {-1, 0, 0, 0, 1};
register int xx, yy, i;
register long s = 0;

/% sum over the 5 pixel in a cross about this pixel »/
for (i = 0; i < 5; i++) {

xx = x+xs[i];
yy = y+ysl[il];
if (xx < 0 |} xx > 47 ! yy < i yy > 47)
s += face[y]l[x];
else
s += facelyy][xx];
}
return(s);
}

There are several important tunable variables in the algorithm. The
first is the input map. I am current using the following map:
012 2 3 5 7 9 10 11 12 13 14 15 15 15. The
lowater and hiwater marks are points which control when pixels get
hardwired to zero and one respectively. Each is expressed as a

38 EvueN vois No3




KINGSTON HOW TO MAKE SMALL FACES

percentile after the pixels are shifted. I am currently using a lowater
mark of 25% of and a highwater mark of 55%. The range of pixels
subject to shifting is tailorable, however I am currently shifting all
pixels. The tmean is the ‘“target mean”. This is the value towards
which we try to shift the “mean” value. It is expressed as a
percentile based on the original (unshifted) pixel values.

We are happy to make available any of the software we have written
to do this work. In particular the complete version of the above
program should be usable on any UNIX system since it only uses
read, write and stdio. It’s just a filter. We also have a simple
histogram program for helping to analyze an image’s information
density. We will mail these to any interested parties. Simply
contact us by electronic mail. We have some other tool-like programs
for use with both the DMDS620 and the Atari 520st. Tools for
making icons on the Whitechapel MG1 from our binary files exist but
need to be collected. 1 will make the DMD software available, and
the Atari stuff can be gotten from hmm@ unido.uucp.

EUUGN Vol6 No3 39




SPONSORED
UKUUG
MAILSHOTS

Are you interested in a fast, economical way
of reaching around 300 named users of the

UNIX System in the UK?

If you are, why not make use of the regular

UKUUG MAILSHOT which can take your

literature or message direct to these key
people?

The cost to Mailshot sponsors is reasonable
— make the most of this opportunity and
contact us NOW for further details.

The Secretariat
UKUUG

Owles Hall
BUNTINGFORD

Herts SG9 9PL

England

Tel: +44 (0) 763 73039

Net: evug@inset.uucp

40 EVUGN Vois No3




VAN DE VEER UNIX AND THE ELECTRONIC OFFICE

UNIX and the electronic office
- cognitive ergonomic reflections

Gerrit C. van der Veer
Amsterdam

1. INTRODUCTION

This contribution concerns a special kind of computer user. In offices,
computers are becoming increasingly common. The modern office, often
called an “electronic office”, has many tasks allocated to electronic
devices, to either individual special purpose devices or to a general
purpose system.

The UNIX operating system evolved in academic and laboratory
situations. UNIX got its start as an operating system for text
processing programs. Although UNIX was the developers’ goal, for Bell
Laboratories it was an acceptable byproduct of programs to complete
copyright applications. That is, UNIX has always been heavily oriented
towards text processing. At present, however, several developments
point in the direction of other types of use and other groups of users.

e The X/OPEN activities of the collective major European computer
manifactors aims at portability and wusability of UNIX in a
multitude of different applications and environments. Their
systems find their way to “open shops” in which non-expert users
are doing, among other things, all kinds of administrative jobs.

e In the software industry an increasing number of both small and
large companies are developing their products in a UNIX
environment. Turnkey systems and custom-made software tools
may be constructed on UNIX, including a lot of office applications.

The growth of UNIX based applications for offices and office tasks
leads to new kinds of problems for a new group of users.
2. UNIX IN THE OFFICE ENVIRONMENT

There are good reasons for the growing popularity of UNIX for oflice
applications.

e The standard text processing facilities are powerful, although not
easy to handle for incidental and novice users.

e Communication between systems, users and terminals is readily
available (mail, write).

EUUGN Vo6 No3 41




UNIX AND THE ELECTRONIC OFFICE VAN DE VEER

e The hierarchically ordered file system is very simple and elegant.

e The multi-user and the multi-tasking concept are combined in a
logical way.

e By producing applications with the ‘“‘standard” UNIX environment in
mind, they gain in portability and flexibility, allowing customers to
change to new hardware and new organisational structures.

e Nearly ‘“anything” that might be useful in an office situation may
be constructed in a UNIX environment, although advanced
understanding and good programming strategies are essential.

e UNIX compares favourably with other general purpose operating-
systems for mini computers and mainframes, especially for non-
professional users.

Users in an office situation are not normally computer professionals.
They are experts in their own task domain: management, typing,
secretarial jobs, administration. In the light of this situation Norman
(1981) wrote an evaluation of the possibilities for non-expert users to
work with the UNIX system, with the title “The trouble with UNIX".
Although he did not consider any other operating system worth
commenting on, he called UNIX ‘“a disaster for the casual user”, and
the criticism he casts upon the system from the point of cognitive
psychology has to be taken seriously. His main points are:

e inconsistency of command names, functions and syntax.

— The command cat may be used to list the content of a file on
the terminal, whereas the name cat is short for concatenate,
which presupposes at least two arguments.

— The symbols /, $ and * have several different meanings, /
even within a single expression.

— Commands like ln and mv are abbreviations of the words
“link” and “move”, words that are of the same length as the
commands mail, date and kill, which are written in full.

— The first two characters of chdir denote a change, but the
command for ‘‘change password” is passwd.

These inconsistencies are a source of errors and misunderstanding
for non-expert users. Commands should be easy to remember, even
if they are not used very often. Names should help as a
mnemonic aid, they should be systematic in order to be
reconstructed by analogy, and have the right semantic connotations,
referring to the functions they are used for.

42 EUUGN Vol No3



VAN DE VEER UNIX AND THE ELECTRONIC OFFICE

o user unfriendliness.

When a command is accepted, UNIX remains silent, even if the
result has probably not conformed to the user’s intention, as in rm
chapter . If, however, the system cannot decide about the
intention of a command, the feedback is usually a ‘‘usage” line,
disapproving the user’s action. This ‘“‘quiet” approach, on the other
hand, is one of the most appealing aspects for a regular user:
messages only will appear if there is a good reason to react to
them.

3. DESIGN CRITERIA FOR AN OFFICE SYSTEM

Office systems are constructed for a special task domain. The typical
user can be expected to be an expert in this domain, but may be not
an expert in computing in general (e.g. may not be a professional
programmer). Office systems differ from other systems for this user
only in regard to the task domains. Apart from the need for
application dependent tools, the general design criteria are the same.

3.1 Ease of use
In relation to this criterion several aspects are relevant:

i. Commands can only be used if their name and their syntax can
be remembered. Both the names and the syntax should be regular
and systematic (so they can be reconstructed), and the names
have to be chosen in such a way that they refer to the meaning.
There are many ways to solve this. One of the simplest is to
make an additional entry with the “improved” name via the
command 1n (link). This is the preferred way because no extra
disk space is required and management is simplified. Change the
contents of the old bad name, and the new name is changed too.
A second way is mv (move) the old name to a new name. This
is confusing for expert users. A third way is to cp (copy), but
this wastes disk space and does not guarantee that both programs
are always identical. A fourth way is to write a shell script
that, among other things, calls the original program.

ii. If a user needs help this should be available on the level at
which the problem exists: Moran’s four level command language
grammar (1981) makes a clear distinction between task level,
semantic level, syntax, and key stroke level. Help is only useful
if it describes the facility on the level at which the user needs
clarification. The user should be able to specify this level if
desired.

EUUGN Vol6 No3 43




UNIX AND THE ELECTRONIC OFFICE VAN DE VEER

iii. The number of symbols to be typed, and especially the amount
of bizarre combinations of key strokes makes a difference for the
casual user. Unusual combinations of actions in combination with
insufficient feedback often lead to errors. On large general purpose
mainframe systems a considerable number of sessions is aborted
even before the actual start, because of these kinds of errors
during the login transaction (Coombs and Alty, 1981).

iv. Offices differ from each other. Occasionally a certain office is
characterised by a frequently used special task, for which a
“tailor made” command is of great help. The system should
allow an easy construction of this kind of special purpose
facilities.

v. Users differ from each other too. For example, programmers
usually like the “silent” approach. For them the computer is
there to worry. Too much feedback would complicate reading
program output. For them programs should not say something
without being asked. There should, however, be ‘“verbose” options
for users who need this. For example, tar is normally silent, but
many users add v for the verbose output.

3.2 Resistance to slips

By slips we refer to errors due to incorrect actions even though the
user’s original intention is correct, e.g. typing errors such as
permutation of characters, the interchange of control-key and shift-
key, the use of upper case symbols in the editor vi when a lower
case command symbol is intended (which is often only discovered
after a few key strokes, when the damage is irreparable).

Slips may be avoided or at least made less dangerous. Consistency of
commands will help to avoid confusion, commands with different
results should not be nearly identical sequences of key strokes, like
the vi commands :w (write) and :wq (write and quit, a combination
of two commands that could originally only be issued separately).
This last command may be replaced in later versions of UNIX vi by
2z (a command issued without temporally leaving the visual mode),
which will lead to less confusion with :w. This command, however,
is incomparable to other commands that have semantic relations
outside the scope of wvi, by not being preceded by : and by not
needing to be terminated with carriage return. Moreover, the
mnemonic value of ZZ is rather questionable.

For all kind of slips an undo possibility is in fact unavoidable. Thus
far it is not implemented in most UNIX facitilies. The shell itself is a
command interpreter, and can’t redo the actions of commands external
to it. The shell should be extended to include this facility.

44 EUUGN Vo6 No3




VAN DE VEER UNIX AND THE ELECTRONIC OFFICE

As far as confusion is created by the occurrence of different modes
(vi and ex as two modes of one editor), this feature has to be either
avoided, or presented very explicitly and consistently to the occasional
user.

3.3 Mental models of the system

Norman (1983) makes a distinction between the system, the conceptual
model of the system, and the mental model the user has in mind.
The conceptual model is, in fact, a description of the user interface:
the part of the system the user should be aware of in performing his
task in interaction with the system. The conceptual model of a
system depends on the task domain and on characteristics of the
group of users. Only when his mental model is in accord with the
conceptual model will the user have correct expectations concerning the
outcome of his actions.

The relation between the conceptual model of the system and the
mental model in the mind of the user is dependent upon two aspects:

i. The interface is designed after some conceptual model. Only if
this conceptual model is constructed with the task and the special
group of users in mind is it possible for those users to develop
mental models of the user interface in which the other part of
the system remains invisible. The user only has to take note of
those aspects of the system that are directly relevant to his view
of the task domain.

ii. Interaction with the system is accompanied by a special kind of
communication, the content of which is the interaction itself.
We call this type of communication metacommunication. Different
forms of metacommunication will take place, some of them
initiated by the user, such as asking for help and looking for
documentation. The man command is an online facility in UNIX
that does not present a description, which a novice can
understand without having to ask an expert to translate it for
him. Apart from this the man command can only be used if one
knows the correct name of the command on which one needs
help. The UNIX programmers manual (from which the content of
man is derived) is definitely not a primer (the alphabetic order
and the “permuted index” have no relation to any sensible
structure), so the beginning user needs other kinds of
metacommunication to learn new facilities and discover unknown
possibilities.

A special kind of online metacommunication may be called
implicit metacommunication. This consists of the actual names of
commands or the appearance of icons. Command names always

EUUGN Vol6 No3 45




UNIX AND THE ELECTRONIC OFFICE VAN DE VEER

suggest some meaning, derived from the common semantic
associations with the word. In the editor vi a group of
commands containing the character d suggest the meaning “delete”
although in fact the action performed is the transport of some
information from the edit file to a single buffer. The information
remains available for repeated copy-and-insert commands and is
only erased by refilling the buffer.

The above mentioned aspects of wuser friendliness are strongly
interrelated, especially when novice users are involved.

4. ADAPTATION OF UNIX FOR THE ELECTRONIC OFFICE

In this section we will present some examples of new developments
that may add to the usability of UNIX for casual and non-professional
users in office environments.

i. New commands and facilities have been added to UNIX, although
this is one of the reasons different variants arise. Some commands
indeed result in more user friendly systems, coping with the
objections we mentioned in the last section. Other new commands
are however only powerful tools for experts. An example of a
new feature that certainly is an improvement for some users is
Vsh, a visually oriented shell with a menu structure.

ii. Special applications often ask for dedicated facilities. Tailor made
software is always the best method to cope with individual
wishes, taking care of the problems of casual users. In situations
in which programming experts are accessible, e.g. in large offices
and in university environments, these kinds of tools can be
constructed. In fact, UNIX contains many possibilities needed for
these kinds of extensions. We know of examples such as
dedicated spreadsheet-like systems, data retrieval and library
programs, constructed according to specifications given by
administrative workers. These users have expert knowledge of
their task domain and have learned to specify their needs in such
detail that a programmer can do the job. These examples,
however, are only to be found in environments of relative
luxury, where programmers are available and cooperative. This
situation might, in fact, result in incompatible systems, if
programming is done at system level, destroying the real profit of
portability, but it can be done at a higher level. A danger of
this method is that it invites programmers to re-invent the
wheel.

iii. The novice user needs the opportunity to develop his own mental
model of the system. Therefore metacommunication is

46 EUUGN Vo6 No3



VAN DE VEER UNIX AND THE ELECTRONIC OFFICE

iv.

indispensable. The original UNIX facilities are insufficient for
users with a limited knowledge of the system. The system UC
(UNIX Consultant) (Wilensky, Arens, Chin, 1984) offers the
possibility for wusers to ask the system questions in natural
language about the semantics and syntax of UNIX commands, by
consulting an Artificial Intelligence user interface and a database
derived from the UNIX documentation. This facility is a useful
alternative for the UNIX programmers manual (Kernighan,
Mcllroy, 1979) that is of no help for some users. It may
prevent them from wandering around the office, looking for
colleague victims to discuss problems none of them is really
capable of solving, giving each other the idea that they at least
understand the problem. For professional programmers the UNIX
programmers manual can be an efficient source, without
unnecessary garbage, packed with exact information.

In situations in which a wuser needs only a limited set of
facilities, such as extended text processing, or only
telecommunication possibilities, task-specific user interfaces may
prevent the user from getting lost in the multitude of
possibilities of the UNIX system. This situation is often a
temporary one, in that the user, after having gained sufficient
experience with his main task, will start to use the system for
additional applications. The interface can only be constructed
after the task level and semantic level of the discourse (Moran,
1981) have been analysed, i.e. what is “logical” for the naive
computer user. Research by a combination of European centers
of human factors and informatics (van der Veer, Tauber, Waern,
van Muylwijk, 1985, Hannemyr, Innocent, 1985) aims at
designing a user interface for the UNIX mail system. Starting
point will be an analysis of the office mail task space. The
interface will be constructing in SYNICS (Edmonds, Guest, 1984),
a tool for dialogue design, with syntactic and semantic rules to
translate user input to system commands. With this kind of
interface all official possibilities of UNIX are preserved, as should
always be a goal, but the special task domain can be handled
with a communication protocol that appears logical to the user
and presents optimal metacommunication.

In some situations it is not sensible to expect users to
communicate with the UNIX system directly via the Bourne shell,
even if the special possibilities and the architecture of the shell
are well suited for the application domain. In that case a user
interface may be defined which completely hides the original
system, and is optimally oriented to a task specific way of
interaction, e.g. screen oriented form-filling, or the use of menus,

EUUGN Vol6 No3 47




UNIX AND THE ELECTRONIC OFFICE VAN DE VEER

with task oriented feedback and hierarchical control structures
based on the structure of the task domain.

UNIKIT (CERG, no date) is a powerful tool for the creation of
task environments for administrative jobs. The use of this tool
does not in itself guarantee a design that is justified in cognitive
ergonomic science (as in the case with SYNICS). In the case of
UNIKIT research is now going on in which design guidelines will
be incorporated in a database (written in PROLOG) in order to
supply the designer with criteria to evaluate his prototype in the
course of construction.

We expect UNIX will become popular in office situations. Users in
these types of environments are not computer experts, so they need
special facilities. The examples from this section illustrate ways to
enhance the user interface, as long as these methods are applied with
a clear view of the human computer interaction in mind (e.g. aiming
at ease of use by defining short and handy commands), taking into
account the effects of the method on other aspects of the interaction
(e.g. the mental model that is introduced or adapted by the semantics
that are derived from the mnemonic code), and preserving the unique
characteristics for which the UNIX system became famous.

5. REFERENCES

CERG (no date)
UNIKIT version 1.1 Editeurs d’ecrans. CERG, Groupe BFM, Paris.

Coombs M.J., Alty J.L. (Eds.)(1981)
Computing skills and the user interface Academic Press, London.

Edmonds E., Guest S. (1984)
User Guide for SYNICS Leicester Polytechnic, Leicester, U.K.

Hannemyr G, Innocent P.R. (1985)
A network user interface Behaviour & Information Technology, 4,
p. 309-326.

Kernighan B.W., Mcllroy M.D. (1979)
Unix programmer’s manual Bell Telephone Laboratories, Murray
Hill, N.J.

Moran T.P. (1981)
The command language grammar: a representation for the user
interface of interactive computer systems International Journal
of Man-Machine Studies, 15, p. 3-50.

Norman D.A. (1981)
The trouble with UNIX Datamation, 27 no. 12, p. 139-150.

48 EUUGN Vois No3




VAN DE VEER UNIX AND THE ELECTRONIC OFFICE

Norman D.A. (1983)
Some observations on mental models In: A.L. Stevens, D.Gentner
(Eds.), Mental Models. Erlbaum, Hillsdale, N.J.

Veer G.C. van der, Tauber M.J., Waern Y, Muylwijk B. van (1985)
On the interaction between system and user characteristics
Behaviour & Information Technology, 4, p. 289-308.

Wilensky R., Arens Y., Chin D. (1984)
Talking to UNIX in English: an overview of UC Communications
of the ACM, 27, p. 574-593.

EUUGN Vo6 No3 49




50 Evven vois No3




DAX & PEAKE REPORT FROM THE AFUU

Report from the
Association Francaise des Utilisateurs d’Unix
(AFUU)
on the UNIX community in France.

Phillipe Dax
Philip Peake

1. INTRODUCTION

Writing an entry of this type is not an easy task. But, to keep our
editor, happy here goes ....

A history lesson

Firstly, for those of you who haven’t heard all this before, a bit of
publicity for the AFUU. The AFUU is the French UNIX users’
group, and thus a constituent member of the EUUG. We are
currently the 2nd largest group in Europe (after the UK ... look out
UK, we are catching up fast!).

The history of UNIX in France begins recently. Leaving aside one or
two institutions (both commercial and academic) who managed to get
UNIX up and running from the Bell Labs’ V6 or V7 distribution
tapes, the first real appearance of UNIX dates from 1981. The first
commercial UNIX distributor in France was Unixsys, who distributed
ONYX and PLEXUS systems. Unixsys was rapidly joined by other
companies such as Zilog, Tektronix and others. The UNIX system had
it’s champions in France at this time but remained relatively unknown
in the French computing world.

This was the reason for a small group of people to form an
association of UNIX users - the Association Francaise des Utilisateurs
d’'UNIX. This, being almost as much of a mouthful for the French as
for anyone else, is normally reduced to AFUU.

The AFUU was created in 1982, and strongly promoted by its first
president, Jean-Louis Bernard. The principal aims of the group were
to promote (in non-commercial terms) the UNIX system and its
derivatives, and to provide a source of information on various aspects
of the system, which was hard to come by in France at that time.

EUUGN Vois No3 S1




REPORT FROM THE AFUU DAX & PEAKE

In 1983 the AFUU began to grow (95 members), and to structure its
activities, with the creation of its first working groups (a group to
gather information for the creation of a catalogue of UNIX products
available in France, and a group working on standards - headed by
Michel Gien), an exhibition of UNIX software and materials at the
AGM held at the Prince of Wales hotel in Paris.

In 1984 the growth continued (180 members - a 90% increase). The
AFUU continued to function, mainly due to the efforts of certain
members, but not with sufficient vigour to satisfy demands in general.
A new working group (networking) was formed and driven by
Humberto Lucas. As a result of the regular meetings (and some hard
work) of this group, the French network (FNET) was formed.
During this year, the first newsletter (bulletin de liason de UAFUU)
was started by Phillipe Hammes. This was later to become the
current AFUU newsletter - TRIBUNIX. The end of 1984 a two day
exhibition was organised at the hotel PLM - St. Jacques in Paris, with
displays of software, machines and a technical conference.

In 1985 the membership grew to 235 (only a 30% increase this time!).
The growth in the association was the cause of two successive moves
of the association, eventually ending up at its current location at
SUPELEC (Ecole Superior de l'Electricite). The move gave the chance
to improve the infrastructure of the organisation, with the
employment of a full-time administrator, Anne Garnery.

During 1985 the AFUU collaborated with the EUUG to organise the
EUUG-Paris meeting, at the Palais de Congress. The newsletter
(TRIBUNIX) was taken over by Phillipe Dax, and given a face-lift.
The result is now much more professional, mainly due to the use of

TEX. and a laser printer. A new president, Dominique Maisonneuve, was elected during 1985.

The situation today

The AFUU is somewhat atypical in that it has a large number of
commercial members. We are currently looking at ways of increasing
the number of end user members. Hopefully, this will happen more
or less automatically as the number of installed systems increases.

An area in which the AFUU is very active is that of networking.
There exists a French network (FNET), which forms part of EUNET.
Until recently the work of providing a backbone for FNET was
performed by CNAM, with their machine (vmucnam) forming the
gateway into and out of France. The only problem with this
arrangement was that CNAM is a higher-education establishment, and
so closes during holiday periods. With the increasing load and
reliance being placed upon FNET, the decision was taken to transfer
backbone activity to INRIA, who can provide a full time service (via

52 rvvuGN vois No3



DAX & PEAKE REPORT FROM THE AFUU

their machine inria). One of the most active working groups
sponsored by the AFUU is our network group.

The organisation of the AFUU is becoming more established. We have
a second full time employee, Jean-Christophe Petithory, who works as
a full time technician. His tasks include taking care of running our
UNIX machine, which, by the time you read this will hopefully be
joined by a second machine; an SM90 on loan from Telmat. The
arrival of the SM90, with its increased processing power and disc
capacity should allow the AFUU to have a connection to FNET.
Jean-Christophe also dedicates part of his time to an advice service
for AFUU members, and is available either by telephone or for
personal visitors. He will undertake to resolve technical problems, or
if these are either large amounts of work, or require specialist
knowledge, he can advise on where to find the required skills.

Of course, our full time office manager, Anne Garnery, is also to be
found at the same office, which is now located at:

AFUU

SUPELEC

Plateau du Moulon,
91190

Gif sur Yvette

Tel. (+33) (1) 60 19 33 61

We are in the process of deciding the details of our next AGM, to be
held in September, either at SUPELEC, or if it looks as if there will
be enough interest, and we will run out of space, in Paris. The GGM
will, as usual will include a technical session. This session will be
free to AFUU members. The sessions themselves will be in French,
but anyone interested in attending will, of course, be welcome (details
from Anne Garnery).

The following tables describe the actual situation and constitution of
the AFUU.

EUUGN Vol6 No3 953




REPORT FROM THE

AFUU DAX & PEAKE

TABLE 1. Division of members

registered expected on-file

April 86 End 86 85/86
Manufacturers 40 50 60
Public and private institutions 90 115 135
Schools, Universities and Institutes 44 50 56
Individuals 33 42 51
Students 3 3 3
Total : 210 260 305

TABLE 2. Classification of commercial members

registered expected on-file

April 86 End 86 85/86
Large industrial 10 15 15
Service and training S0 64 80
Nationalised industries 5 5 S
Administration, government 10 13 15
Banking 5 6 6
Other commercial users 10 12 14
Total : 90 115 135

TABLE 3. C(lassification of academic institutions

registered forseen on-file

April 86 End 86 85/86
Universities 20 22 22
IUT 4 4 4
Grandes Ecoles 9 10 10
Institutions and Laboratories 11 14 20
Total : 44 50 56

TABLE 4. Geographical distribution

registered forseen on-file
April 86 End 86  85/86

Paris region 140 178 215
Province (the rest) 65 76 82
|_Foreign S 6 8
Total : 210 260 305

54 rvuen vois No3




DAX & PEAKE REPORT FROM THE AFUU

TABLE 5. Distribution within France (excluding Paris)

registered forseen on-file
April 86 End 86 85/86
Alsace 6 7 7
Aquitaine 7 8 8
Bretagne 7 9 10
Centre 2 2 2
Languedoc, Midi-Pyrenees 8 10 12
Nord 3 3 3
Provence-Cote d’Azur 7 9 10
Normandie 8 9 10
Rhone-Alpes 11 13 14
Other regions 6 6 6
Total : 65 76 82
TABLE 6. Evolution of the AFUU

1981 (creation) 8

1982 45

1983 95 110%

1984 180 94%

1985 235 30% 150 (April)

1986 (April) 210 40% / April 85

TABLE 7. UNIX machines in France end 1985

Alcatel Thomson (Micromega 32) 3200
Altos (serie x86 et 68000) 1500
Bull Sems (Sps7, Sps9) 700
Unixsys (Plexus, Onyx, Cci) 600
NCR (Tower 32) 400
Divers (DEC, SUN, Apollo, Olivetti) 1600
Total: 8000

EUUGN Vol6 No3 55




EUUG NATIONAL GROUPS

AFUU (France)

¢/0 SUPELEC.

Platecau du Moulon.

91190 GIF-SUR-YVETTE.
France.

DKUUG (Denmark)
Kabbelejvej 27B.
DK-2700 BRONSHUI.
Denmark.

EUUG-S (Sweden)
NCR Svenska AB.
Box 4204,

17104 SOLNA.
Sweden.

FUUG (Finland)
OY Penetron ab.
Box 21,

02171 ESPOO.
Finland.

GUUG (Germany)
Movzartstrasse 3.
D-8000 MUNICH 2.

Federal Republic of Germany.

IUUG (Ireland)
Glockenspiel Ltd. .
19 Belvedere Place.
DUBLIN 3.
Ireland.

i2u (ltaly)

Viale Monza, 347,
20126. MILANO.
Italy.

NLUUG (Netherlands)
Xirion bv,

World Trade Center.
Strawinskylaan 1135,
1077 XX.
AMSTERDAM.

The Netherlands.

NUUG (Norway)
Unisott AS.
Enebakkvn 154,
N-0680 OSLO 6.
Norway.

UKUUG (United Kingdom)
Owles Hall,

Buntingtord,

Herts. SGY 9PL.,

United Kingdom.

UNIGS (Switzerland)

¢/o Instutut fur Informatik.
ETH Zentrum,

8092 ZURICH.
Switzerland.

UUGA (Austria)

TU Wien.

Inst fur Praktische Informatik.
Gusshausstr 30/180.

A-1040 WIEN.

Austria.

The Secretariat: European UNIX® systems User Group, Owles Hall, Buntingford,
Facs: Royston +44 (0) 763 73255

Herts SG99PL, UK. Tel: Royston +44 (0) 763 73039
Network address: euug@inset.uucp

56 ruGN vois No3




ROBERTS VAX PRODUCT ANNOUNCEMENT

Digital VAX Product Announcement
A Personal Evaluation

Boyd Roberts

The Instruction Set
now at
Austec Software

1. OVERVIEW

I attended what DEC claimed to be the “Information Technology Event
of 1986” at the Novotel in London. DEC were launching their new
VAXen, a new VAX bus and for good measure the odd 4GL. Prior to
the event DEC were making wild and wonderful claims, facts
notwithstanding.

2. CHAMPAGNE SUITE AT THE NOVOTEL

After an interminable wait at the cloakroom [ proceeded to the
Champagne Suite hoping to find some of the French stuff, but only to
find some truly foul coffee. There were between 500 and 800
attendees including a large number of badge wielding DEC personel.
Not far from the coffee were some new DEC workstations, or
VAXstations to the initiated.

There were four VAXstations in total, looking suspiciously like SUN
III's save for the colour displays. Two ran ULTRIX and two ran
VMS. The DEC ULTRIX support guy said that ULTRIX was “fully
System V compatible”. Except, they didn’t support some of the more
dubious System V enhancements (shared memory, messages and
semaphores). Not really “System V compatible” I thought. When
asked about a network file-system for these systems he commented
that yes they had it, and yes it was developed at DEC. A very
likely story.

The ULTRIX VAXstations were bearable, but the microVMS VAXstations
left you wondering why they bothered. The mouse interface was
truly naive. The windowing was slow and the pop-up VT100
windows were inconceivable. You selected at VT100 window, up it
popped, complete with the message

Username:

This floored me. You had to log in each time you swept out a new
window.

EUUGN Vol6 No3 ST




VAX PRODUCT ANNOUNCEMENT ROBERTS

They also had menu selections of various bit-mapped terminal
standards (a clock, bouncing balls etc). All were very slow.

3. THE PRODUCT LAUNCH

This is where the hype started. A large video screen spewed forth
shots of various high technology processes mixed with various shots of
“digital” and “solutions”. Not only that, the room pulsated with
mechanistic 80’s muzak: drum machines and synths all doing their
worst. The managing director of DEC UK got up and told us all how
DEC were the computer company, putting your needs first, etc, etc.

Various DEC marketing types were to follow stressing that DEC stood
for compatibility and were leaders in computer networking. The
networking aspect I found a bit hard to swallow. Flogging a lot of
DECnet ethernets does not equal networking. As for compatibility;
they were doing it with hardware when you'’ve got to do it with
sof tware.

Then the lasers started. Was this really the Hippodrome?
3.1 VAX 8200/8300

Here were the new VAXen. They are the replacements for the 750
and the 780. Stressing that they were smaller, faster and less
expensive than their predecessors. Well, what could you say? They
were just better packaged 70’s technology. The 8200 claimed to be
15% faster and £70k cheaper than the 780 (but these were list
prices). You could pick up a minimal configuration 8200 (9 track
tape + RA81) for £120k in mid ’86.

The 8300 is the big sister to the 8200. It’s claimed to be twice as
fast as a 780, but it’ll set you back £160k. Again, that’s list price
for a minimal configuration. Both the 8200 and 8300 come with the
new VAXBI (which is like the 780’s SBI). Attached to that are the
CPU and the the VAXBI adapters. However, here’s the catch. The
8200 has one CPU, the 8300 has two.

Here we come face to face with the “DEC MIP”. DEC would have
you believe that CPU power stacks up like Lego blocks. We know it
doesn’t. However, if you can exploit the parallelism you do get a
win. Is the 8300 a 2 MIP machine or a machine with two 1.15 MIP
CPUs?

3.2 VAXBI

This is DEC’s new bus. They claim that it has “faster throughput”,
but at 5Mb/s it’s slower than the 780’s SBI (13Mb/s). They quoted
the 5Mb/s, but the technical summary claims that it’s 13Mb/s for 16

58 rvuGN vois o3



ROBERTS VAX PRODUCT ANNOUNCEMENT

byte transfers. Obviously it’s slower for smaller transfers. My
“red” book says the SBI does 13Mb/s for 4 byte transfers. So, the
SBI is still faster. VAXBI “faster thoughput’?

As they were harping on about reliability, they continued in this vein
by commenting that the VAXBI has ‘“full error checking”. Well,
you’d certainly hope so.

3.3 VAX 8800

By the time the 8800 came around I was beginning to get a bit bored
with the “VAX in any flavour” approach. However, I was to be
suprised. Till now the VAX was not exactly a fast machine. The
8800 is 11 DEC MIPs. It has 2 VAXBIs as well as a fast memory
bus.

The 2 VAXBI hang off the memory bus, as do the CPU and the
memory. This fast bus is. It’s claimed to be able to do 60Mb/s.
That was a bit more like it. In all of these presentations they seem
to forget that most peripherals can’t saturate the bus, far from it.
The memory is, of course, another issue.

A minimal configuration 8800 will set you back £608k. Sound ok?
Guess again. It's got 2 CPU’s. My feeling is that these you get 2 5
MIP CPUs. Again those DEC MIPs raise their ugly heads.

You can put 32Mb of memory in an 8800. Memory comes in 4Mb
chunks and these chunks are made up of 256k chips. Also, for your
£608k, you get an ethernet and a clusterbus (is that the term?). A
cluster allows you to chain CPUs together to share peripherals and
CPUs.

3.4 Clustering

The subject of clustering was hailed as a way to get your DEC MIPs
to stack up. You get networking for free via this approach (so they
said). A lot of nice diagrams showed how you could cluster CPUs
and network microVAXen and terminal concentrators, supposedly
adding up to a tens (or hundreds) of MIPs (DEC ones). The mud
began to fly at this stage. DEC started to compare their clustered
approach to various other vendors’ mainframes. The clustered DEC
VAXen versus the IBM 3083 etc. I was a bit dismayed at this, but
the clustering is sort of cute. Would the gullible industry types fall
for these slickly packaged misconceptions?

3.5 4GL

DEC have finally got on the 4GL bandwagon. I know that Burroughs
have been doing this for years. DEC give you a mouse-based
bitmapped interface to what they call a “COBOL generator”. You

EUUGN Vo6 No3 99




VAX PRODUCT ANNOUNCEMENT ROBERTS

draw up these dinky little data-flow diagrams with icons and out
spews 10,000 lines of COBOL. The increases in productivity were
done to death and we were informed that all our applications
programmers were behind schedule.

Apart from the applications programmer interface they also provide an
interface for managers. The manager can use this menu driven query
language to do database inquiries, extended to the point where the
retrieved data can be turned into graphs etc. With all this lot
they’ve given you layered databasing.

4. Cocktails

I was quite thirsty by this stage. I headed for the free booze. What
a poor show that was. Only beer, wine and soft drinks. Not even a
G&T. And, there was no food. After the odd lager I was prodded
to give the top UK ULTRIX guy a hard time. I did my best, but he
knew his stuff and was not easily ruffled.

60 EUUGN Vois No3



.

The Secretary

BEuropean U '1X Systerns
Gwles £lall

Buatingford

©Herts. SGY 921

'~ Tei: Royston (0763) 73039,

SUNIN 15 3 Registered Trade Mark of AT&T in the T'SA and cther Countries

weer Group






