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1l. Introduction

A software environment comprises an operatlng systen
and an integrated toolset. A software environment to sup-
port software pro;ect development must also support team
activity, that is, it must be p0551ble for team members to
work on developments and extensions in their area of respon-
sibility without inconveniencing other members of the team.

In addition it is essential that tools exist for all
phases of project devlopment work, from initial designs
through to maintenance. An 1mportant area, much neglected,
is the provision of tools for the project management
activity, and project configuration management.

This paper gives a brief overview of a Project Develop-
ment Environment for UNIX (PDE) which aims to provide facil-
ities under Unix to anable many management tasks to be per-
formed automatically, while allowing multiple versions of
files to exist in a controlled way. This work forms part of
a three-year project begun in September 1983, funded under
SERC's Software Technology Initiative.

2. UNIX as a Development Environment

UNIX was built to provide a programming environment at Bell
Laboratories, and it contains many tools to make the
programmer's task easier. The tools were deliberately kept
small, with an emphasis on versatility and simplicity.
Recently, however, tools of greater sophistication, to help
with design and testing of software, have begun to appear,
and as more and more powerful commercial programs are ported
onto UNIX

*UNIX is a Trademark of Bell Laboratories.
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there will soon be adequate suuport at this level for pro-
ject development.

However, UNIX has always been most popular with solo
programmers, such as those found in universities, and some
real shortcomings for project development soon become
apparent. Even the famous "Source Code Control System"
(SCCS) envisages only one version of any piece of source
code being on the system at any one time. Assumptions of
this kind are quite unrealistic when a team of even a few
people is working on a project, and it is arguable that
SCCS, and the more recent Revision Control System (RCS), are
merely archiving tools.

To see this, consider an everyday scene: a user is puz-
zling over why some piece of standard software is causing
trouble. He wants to try placing some additional printf sta-
tements to help with diagnosis. Of course, he does not want
(and is not allowed) to alter the system copy at this stage,
so he must move a copy of the software to another part of
the system, where he can work on it in peace. In a few days,
he has a new version which he makes available to his friends
and in no time the system administrator is faced with a
series of baffling bug reports from innocent third parties.
Since the happy hacker almost certainly will have left the
SCCS identifiers intact, use of "what" is no help. Perhaps
for this sort of reason, all UNIX source distributions
envisage a manual system of configuration management for the
system itself, to be the responsibility of the local guru or
wizard.

Similarly, the set of file attributes is absolutely
minimal, leaving most useful information about a file to be
contained in a filename extension (such as ".c"), a "magic
word" placed at the start of the file, or some such other ad
hoc stratagem. As file types become more complex, this prob-
lem is becoming a real one, and the general issue of cross-
references between files has no elegant solution.

3. Software Development Requirements

During software development, a hierarchical approach to
management is essential. The project consists of several
subprojects, each with various parts, and with various sup-
porting activities: design, code, testing, maintenance,
documentation, validation, etc. At any stage, some of the
material may represent work in progress, some may have been
"baselined" or approved with a contracting party and is
therefore subject to some kind of "change control".

To represent this situation in a file system, we
require that any part of the hierarchy (not just individual
files) may exist in various versions, some of which may
represent the structure at a particular baseline, prototype,
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or release (depending on the methodology being followed).
Any part of the hierarchy (including individual files) must
be able to refer to designs, histories, test results, bug
reports/fixes, and plans. And finally, all must be subject
to management supervision and control: the various attribu-
tes should be machine readable so that automated tools can
produce progress and consistency reports on the project.

On the other hand, such complexity must not obtrude.
The cross references must be accessible when they are needed
but not otherwise visible: there should be only one directly
visible version of any part of the hierarchy. The aim
should be to make the system simpler and easier to use.

We believe that the Project Development Environment,
described in this paper, provides a good solution to these
conflicting requirements.

4. The Project Development Environment

The PDE "database" is built on top of the UNIX file
system. Objects within the database are either UNIX files,
known as unstructured objects, or directories, known as
structured objects. Three main enhancements are provided:

(1) PDE object names are distinct from their corresponding
UNIX file and directory names, and are not subject to
the restriction on name length which is present in most
versions of UNIX.

(2) Several versions of an object may co-exist, sharing the
same object name. Individual versions are selected by
appending a version identifier to the name. A default
version exists which is selected if no version identi-
fier is supplied.

(3) Objects may have associated with them an extensible set
of user and system defined attributes which contain
such information as the type of the object, any special
access controls which apply, or cross references to
related objects. 1In some cases, the subobjects of an
object are considered to inherit the value of an attri-
bute of the object. In this case the value is said to
be a property of the subobjects.

Relationships between objects are represented both physi-
cally by their relative positions within the file system
hierarchy, and by the use of the objects' attributes and
properties.

The particular object types and relationships will vary
from project to project, depending on each individual
project's requirements. A project administrator will be
able to define the types of, and relationships between,
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objects within the area of a project which comes under his
control. Such definitions apply in addition to any which
may already exist above this point in the hierarchy.

5. The C library

It was considered extremely important that the process of
adapting the standard UNIX toolset for the PDE should be as
straightforward as possible. This was achieved by implemen-
ting the facilities of version selection and attribute
management by a set of low level subroutines known as the
PDE Kernel, which are called from the system call
subroutines in the C library.

The attribute management routines are available to all
UNIX programs as standard library routines. The activities
of version selection are hidden from the user, but form part
of the more general function which maps a PDE object name
onto that of the corresponding UNIX file or directory. The
"user" in this case is a programmer writing tools for use
within the PDE.

When within the PDE, the mapping function will be
invoked every time an object is accessed via one of the UNIX
"system calls", for example those which are used to open,
close, rename, and delete files and directories. The exis-
ting system calls have been modified to do this, but take no
action if the request is made from outside the PDE. Thus
programs written for use in the PDE may refer to PDE objects
in the same way as more traditional UNIX programs refer to
files and directories. Moreover, most existing UNIX pro-
grams may be integrated with the PDE simply by incorporating
the modified system calls in place of the existing ones.
This is accomplished by running the link editor on the pro-
grams using the modified system calls library.

6. Version Control

In the PDE:

(1) Objects regularly have subobjects. Version control
therefore applies to hierarchies.

(2) Several versions may co-exist in a system.

(3) Version control is transparent to the extent that a
naive user should be given a default version of an
object, without knowing that the object is under ver-
sion control.

(4) The sequence of versions of an object is not neces-
sarily linear. More usually it is tree-structured, as
new versions are not always derived from the most
recently created version.
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To refer to a version of an object, the object's name, or
base name is qualified with a version identifier, for exam-
ple:

A-1
or MyFile-3a

There will always be a version, nominated by the administra-
tor, which is selected if only the base name is given, and
yet the object exists in multiple versions. Apart from
ensuring that the version identifiers are unique, no version
numbering scheme is enforced.

A version of an object may be placed under control.
Thereafter, any changes to structured objects such as adding
or deleting subobjects, and any updates to unstructured
subobjects (ie files) are strictly controlled. An addi-
tional set of access control flags are used. These are
stored as an attribute of a controlled version. They refer
to the controlled access allowed on any of the subobjects
below this point in the hierarchy, unless one of the subob-
jects itself defines controlled access privileges effective
at and below its position in the hierarchy.

The controlled access features allow automatic logging
of accesses in a system log file, and restriction of updates
to objects, so that the existing contents are not disturbed.

Control is applied recursively to all subobjects of a
structured object. Controlled objects are owned by the PDE.
Any tools which are to alter them must run in a privileged
mode. Such tools will examine the additional access control
flags, to see if the privileged access is indeed to be
allowed. An attempt to update a controlled object using a
non-privileged tool will raise the standard "permission
denied" error.

Allowing several versions of an object to be fully
available online is potentially very wasteful of space, as
it is likely that only a few of the component objects of a
version will change between versions. When a new version is
being derived, the user states which of the subobjects are
going to be changed. Copies are made of the specified
objects, and those which are to remain unchanged exist as
links to the corresponding objects in the previous version,
with permissions unchanged. 1In Unix, linking is a feature
which allows the same nan-directory file to appear in
several directories, possibly under different names[1]

The method used for archiving is similar to that
described in[2] namely the storing of the differences
between successively archived versions, but is applied
recursively to structured objects. This permits a complete
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hierarchy to be archived as a 51ngle entity. Differences in
structure between successive versions are also recorded in
the archive.

The archived object will continue to be listed by "1ls",
but any attempt to access it will fail. A special attribute
records that it has been archived, and it can be reconstruc-
ted at any time.

7. The Toolset

The full set of tools available for use within the PDE
may be partitioned into three subsets.

(1) The standard UNIX toolset, namely all those available
outside the PDE.

(2) A small set of PDE-specific tools, known as the
privileged tools, which perform critical actions within
the PDE.

(3) Any tools which may be integrated for use in a particu-
lar project, or to support a particular methodology.
Some of these may run as privileged tools.

The privileged toolset exists within the PDE to perform
actions which should not be allowed to the normal user,
mainly concerned with the version control facilities. They
have three phases of operation - pre-execution, execution
and post-execution.

The main purpose of the pre-execution phase is to
ensure that the requested operation is valid with respect to
the restrictions laid down by the administrator. Most com-
monly this would be that the user has permission to carry
out the operation on the object.

The execution phase of a privileged tool is simply the
application of the tool. 1In UNIX interaction with the user
is deliberately kept to a minimum.

The purpose of the post-execution phase is to perform
any functions which will indicate that the tool in question
has successfully completed its work. This generally invol-
ves setting one or more attributes of the objects concerned,
or making a log entry.

The functions of the pre- and post-execution phases
reflect the particular management procedures being followed
in the development of a project; these functions may vary
from project to project. Therefore they should not be coded
as part of the tools themselves.

The actions to be performed are written down as pre-
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execution and post-execution programs. Each object con-
tains, as an attribute value, the name of which pre-
execution program (if any) is to be executed before each
privileged tool, and which post-execution program is to be
executed after each privileged tool.

The pre- and post-execution programs will generally be
written as C Shell programs, utilising additional features
added to the C Shell for attribute manipulation.

A basic set of pre- and post-execution programs is pro-
vided, which provide very elementary control facilities.
The restrlctlons imposed by these on the operation of the
privileged tools are described below, and constitute our
basic environment.

There are six privileged tools.

(1) Update the attributes of a controlled object. This may
only be done by the administrator.

(2) Create a new project. This tool allows a user to create
a project at the top level in the file system.

(3) Make a version of an object. This tool may be applied
to controlled or uncontrolled objects. Any user with
read access to the object is allowed to use this tool,
unless it is controlled, when the user must be author-
ised by the admlnlstrator.

(4) Establish a version as the default version of that
object. This can only be done by the administrator at
that point.

(5) Place an object under version control. This can be done
only by the administrator, and only when all conditions
specified in the pre-execution program have been satis-
fied.

(6) Archive/restore a version. This may only be done by the
administrator.

It is intended that the administrator(s) for a project will
extend the facilities of the basic environment by adaptlng
the pre- and post-execution programs and adding more speci-
alised tools, according to the requirements of their own
particular areas of responsibility within the project.

8. The Project Administrator

The Project Administrator is the individual who is
wholly responsible for a portion of a project. It is he who
decides on what procedures are to be followed, and what
standards are to be met.
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The administrator of an uncontrolled object is simply
the owner of the object. A controlled object is owned by
the PDE, and the administrator is some nominated user. The
first administrator of a controlled object will always be
the person who placed the object under control. Usually this
will be the previous owner.

The administrator of an object may assign another user
to be the administrator for that object. Thereafter he
reverts to being a normal user, with respect to the opera-
tions he can perform on that object. He may also assign
another user to be a "sub-administrator" for one or more of
the sub-objects which he controls. He loses his administra-
tive powers on these sub-objects, other than the ability to
remove the sub-administrator from that position.

Considerable support is given to the project adminis-
trator by the PDE in the area of configuration management.
The version selection facilities of the PDE kernel and the
privileged toolset allow configuration management to be
applied at all stages in the development process.

The project administrator builds a plan for his part of
a project by means of constructing a set of pre- and post-
execution programs for the objects. These can specify any
conditions which must be satisfied before the objects can
proceed to the next stage of development.

As an example, objects may be assigned an attribute
TYPE. This may be source code, or documentation, or tes-
ting. The connection between a source code object and a
documentation object could be represented by means of
another attribute, DOCUMENTATION, whose value is the name of
the documentation object to be associated with the source
code object. Similarly, an attribute TESTING could connect
the source code object to an object which contains various
approved test routines and data.

The project administrator could define that an object
of type "source code" may not be controlled until it has
associated with it certain documentation, and has satisfied
some testing conditions. This is done by constructing a
pre-execution program for the tool which places an object
under control. The pre-execution program checks that if the
object is of type "source code", then the DOCUMENTATION
object must exist. It also checks that the TESTING object
exists, and that testing has been carried out, indicated by
the attribute RESULT of the testing object being set to the
value 'OK'.

Such a pre-execution program is shown below:
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set status =1 £ Assume faijilure
set type = ‘'attr $1 TYPE'

if ( $type == 'SOURCE' ) then
set doc = 'attr $1 DOCUMENTATION'
set test = 'attr $1 TESTING'

£ Test for existence of documentation object

if ( ! -e $doc ) then
echo Documentation not present

£ Check testing has been carried out

else if ( 'attr $test RESULT' != 'OK' ) then
echo Testing not completed

£ Everything must be ok by now

else
set status = 0
endif

This is a simple example. The facilities provided by
connecting the attribute management routines of the PDE ker-
nel to the C Shell allow much more sophisticated processing
to be done. Configuration management procedures can thus be
carried out using the PDE as supplied, plus features added
by the project administrator to suit his own requirements.

9. Implementation Details

The PDE kernel functions make use of a table associated with
each structured object, and stored as a hidden file in the
directory representing the structured object. This table
contains, for each sub-object, all of the information
required to do both named and default version selection of
the sub-objects, and additionally stores the attributes of
each sub-object. It augments the information about an
object which is held in the UNIX directory.

The "mapping table" can be compared to the Common Apse
Interface Set (CAIS)[3] notion of a node as a carrier of
information about an object. CAIS provides specifications
for a set of Ada packages designed to promote portability of
Ada development tools, and other programs using the APSE.

An earlier paper(4] has shown how the PDE could support this
interface.

The mapping table is locked during PDE updates, and a
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system of timestamps prevents conflicting updates. Updates
occur during system calls such as creat() or unlink() and
are carried out by the PDE kernel.

If an object has versions, an extra UNIX directory is
inserted which is invisible to the user. This is done for a
number of reasons: (a) directories might otherwise become
overlarge, (b) if the object (with all versions) may be
copied or archived more easily, (c) renaming the obejct can
be done in one move (if UNIX allows this).

The "real" UNIX names of PDE objects consist of
anonymous strings 14 digits long. The PDE object names are
not used (a) so that long object names can be allowed even
if UNIX does not support long filenames, (b) to discourage
people using vanilla UNIX tools for hacking the PDE.

The mapping table is in a hidden file, but is not oth-
erwise protected: great care is taken by the PDE to ensure
that the table has the same owner, group, and access modes
as the directory it refers to. This can be seen as a weak-
ness of the present implementation, but the problem is
lessened by the name translation process described above.

In porting standard UNIX tools onto the PDE, the only
problems encountered have been (a) programs that read direc-
tories must be modified where necessary to use standard
subroutines as in 4.2bsd, (b) some programs abuse the memory
allocator (both shells do this), and this can cause prob-
lens.

Experience with the current implementation has not
shown any appreciable slowing down of the system. However,
there is obviously some overhead associated with version
selection, and any program that needs the PDE kernel is
appreciably larger in size.

A tempting development, which would solve many of the
small problems noted above, would be to incorporate the PDE
kernel into UNIX

by creating a new layer in the operating system at execu-
tive or supervisor level, and/or altering the UNIX directory
structure to include attributes. Certainly the PDE has now
reached a point of stability where this could be contempla-
ted, but UNIX itself remains in a state of flux.

10. Conclusions - A Tailored Environment

A software development "methodology" consists of:
management procedures; technical methods; and software
tools. It is a function of project management to define the
methodology to be used for any given project. 1In some cases
the methodology is not supported by tools, and the pro-
cedures are manual. Current thinking[5] is that the
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methodology should be preeminent over the tools used in it.
However, many methodologies exist, and some are appropriate
only for certain types of project. For example, a metho-
dology designed for real-time software may not be suitable
for developing business oriented systems.

It is therefore not feasible to expect a single
software environment to support the development of more than
one type of software system with the same degree of rigour.
In this paper the Project Development Environment has been
described which allows project management a more flexible
approach, while still retaining aspects of project control.

By providing only a minimal toolset, but giving the
facilities to extend this and incorporate any existing UNIX
based tools, the PDE is not restricted to supporting a
single software development methodology. Additionally,
within a particular methodology, project management may add
additional features, and restrictions, giving an environment
tailored to suit the needs of individual projects.

The system as described above is ready to undergo
evaluation, and is available to other participants in the
Alvey Programme. Continuing development work on the PDE
will be concerned with providing the project administrator
with a more formal means of defining project structure, and
also further investigations into the implementation of the
CAIS specifications.

In addition a comparative study is being made of the
PDE and other software development environments.
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68000 MEMORY MANAGEMENT UNITS

and the UNIX* KERNEL
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INTRODUCTION

UNIX system performance depends on many factors, one of
which is the memory management unit. Porting the UNIX kernel
to Motorola 68000 and 68010 based systems has given Root a
unique insight into the implementation and performance of
MMU designs. This talk describes the kernel's interaction
with the MMU, observations and recommendations of MMU design
and implementation, and a brief discussion of the memory-
management schemes Root has c¢ome across.

The following terms are used in this talk. In the simplest
case, a "process" is a program, "multiple processes" are
concurrent programs, and "switching processes" is the
transition from executing one program to executing another.
A "memory management unit" is the hardware providing memory
management to the system. A "context" is the hardware
concept corresponding to a "process", e.g., having an MMU
with 8 contexts means 8 processes can be "mapped" or "made
known" to the memory management hardware at a time.

* UNIX is a trademark of AT&T Bell laboratories
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KERNEL PERFORMANCE and the MMU

Before discussing how the MMU affects kernel performance, it
should be pointed out that the UNIX kernel performance
depends on a wide range of factors. The MMU is only one of
several factors necessary for a high-performance UNIX
system. Several hardware components affect system
performance; these include the CPU instruction cycle speed
(8, 10 or 12.5 MHz), disks and disk controllers~, serial
controllers+, data transfer-rate and bus features~, as well
as the number of CPU wait states introduced by the MMU per
memory cycle. Other factors affecting performance less
directly include the amount of memory available (which, in
turn, affects the amount of swapping or paging), the amount
of decision-making required in the interrupt service
routine<>, file system parameters and disk organizations,
and the software required to implement the MMU. All of these
factors affect UNIX kernel performance, to different
degrees. This talk focuses on the impact of the MMU design.

The MMU in a UNIX system provides several basic services to
the kernel. If these services were implemented entirely in
software, they would require tremendous overhead. An MMU
makes physical memory easily accessible to many processes
simultaneously with minimal system overhead.

Each time a process references a memory address, the MMU
translates this logical address into a physical address. In
addition to protecting user programs from each other, the
MMU also protects the UNIX kernel itself from faulty user
programs. With the help of a MMU, each process runs without
knowledge of or hindrance from other processes, and, at the
same time, possibly sharing memory with cooperating
processes. The more completely these services are

~ e.g., a controller with DMA performs better.

+ e.g., terminal controllers that interrupt processors
for each character slow the system.

~ e.g., whether the speed of the bus can keep up with
the processor and memory.

<> e.g., more logic is required to implement terminal
controllers with a single interrupt vector for receiver
and transmitter than for those with separate interrupt
vectors.
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implemented in the hardware, the faster the system performs.

Memory management hardware is generally designed for speed.
Most of the proprietary MMUs are well designed, resulting in
fast (zero-walt state) memory access. However, any overhead
generated in programming the MMU slows system performance.
Different MMU de51gns require vastly different amounts of
management software in the kernel. The less work the kernel
has to do, the better the system performs.

The UNIX kernel performs operations requiring high-frequency
interactions with the memory management unit. These
operations happen many times a second, practically every
time the user does data read/write, at every I/0 1nterrupt
and at every clock interrupt. The following list summarizes
the areas where the UNIX kernel and the MMU interact. These
areas include memory allocation and mapping, switching
processes, and accessing user memory (which can be
subdivided into validating a user logical address and
translating it into a physical address, and reading/writing
the user memory). The kernel's objective is to perform these
functions as easily as possible.

- memory allocation and mapping

Every time a new process is created, the kernel allocates
chunks of physical memory for the process, locates the
reglsters where the pieces of memory are to be mapped, then
maps in the physical addresses as user virtual addresses.
Ideally, the MMU should not place any requirement on memory
allocation, the MMU registers should be easy to locate, and
the contents that need to be loaded into the registers
should be evaluated 51mply. Conversely, the following
require additional logic in the kernel to decide where to
map memory: size and boundary mapping restrictions,
collision of MMU locations (i.e., more than one virtual
address for one or more processes mapped in a given MMU
location); multiple locations where a given virtual address
can be mapped; and complicated formulas for locatlng and
evaluating MMU registers or locations. Other pitfalls for
MMU designs in this area include requiring a huge amount of
memory for in-memory page tables, overly restricting kernel
virtual address space, or having portions of the MMU
registers dedicated for a particular purpose.

- switching process

Switching from the execution of one process to another
involves setting up the MMU hardware to map in the new
process and then switching to it. This is typically done by
loading several special MMU registers. The number of
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processes that can be simultaneously set up in the MMU
hardware varies from one to many. The number of registers
that need to be set up per process also varies. If only
process can be mapped at a time, the mapping information for
the new process has to be set up every time the kernel
switches processes. If the MMU can map in two processes at
the same time, then the kernel does not need to set up
mapping information every time it switches between the two
processes.

The objective is to reset registers infrequently and easily.
Allowing many processes to be mapped at the same time,
keeping down the number of registers that need to be reset
for each process, and avoiding implementing part of the
context-switching mechanism in software helps keep this
operation simple. Any added complexity, such as disabling
supervisor mode when switching context, specifically needing
to unset previously mapped areas before re-use, clearing
status, waiting for acknowledgement and response, checking
for return value and errors, etc., increases overhead and
should be done in hardware, if possible.

- validating a user logical address and translating it into
a physical

address

The kernel constantly needs to read/write bytes, words, or
blocks from and to user memory. Before actually doing the
read/write, the kernel checks that the logical address
referenced is within the user virtual address space.
Validation is usually followed by translation into the
physical address used by the kernel to access the data. For
most MMUs, validation and translation simply require looking
up one or two registers, or using built-in functions (as in
the Motorola 68451). Requiring complex logic to find MMU
location in a multiple- location scheme, and/or to interpret
register contents once they are found adds to the overhead.
For systems in which the kernel cannot read the MMU
registers (write-only), the kernel either needs additional
logic to keep track of the mapping information, or might
need to actually map in the area through a scratch page and
try touching it for validation.

- reading/writing user area

The amount of work the kernel has to do here can be viewed
in three levels of difficulty. In the simplest situation,
the kernel is a logical extension of the user (i.e., the
kernel and the user are in the same virtual space). Moving
information back and forth between the user and kernel
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itself and does not even require translating into physical
address. An example of this is the Stanford MMU. In the
second level of difficulty, the MMUs allow one-to-one
mapping of virtual to physical memory for the kernel. The
user virtual address is translated into a physical address;
once this is done, the physical address, which is the same
as virtual for the kernel, is used to access the area as if
it is part of the kernel area. An example of this is the
Motorola 68451. In the third case, the MMU does not allow
mapping in all of physical memory for the kernel. The user
virtual address is translated into physical address, then
this physical address is mapped into the kernel virtual
space before actually reading or writing it. In this last
case, mapping in the user physical as kernel virtual
requires additional checking to determine if information is
crossing page boundaries.

TYPES of MMU

The most popular MMUs Root has implemented software for are
the Stanford MMU and the Motorola 68451 MMU. Among the
proprietary MMUs, the most commonly found are derivatives of
the Stanford MMU. These derivatives range from those running
the kernel out of a particular context to those eliminating
segment tables. In this discussion, the MMUs are grouped as
follows:

- Stanford MMU

Motorola 68451 MMU

Modified Standard MMU and Single-level Stanford-like MMU

Other proprietary MMUs
e.g., base and bound,
multiple base and bound,
a slave processor handling MMU

- no MMU|
The amount of work it takes to implement the MMUs listed

above is briefly described here, to provide a sense for the
magnitude of possible diversity from a generic kernel. The

| The requirements for this type of system are very
different from one with an MMU; details are not
discussed in this talk.
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modifications to the kernel required by the different MMUs
can be viewed in three categories. In the worst case, there
is no memory management unit.

Since UNIX requires that processes be switched, massive
modifications throughout the kernel are requlred for it to
run with no MMU. This includes major surgery, such as
discarding the swap scheduler (process 0) itself. In the
best case, implementing the MMU requires changes only in the
MMU-dependent section of the kernel. This is fairly
straight-forward and does not require changes outside of the
MMU-related code. An example of this is the Stanford MMU.
Between these two categories are MMUs that require
modifications of code in parts of the kernel that are not
directly MMU-related, such as memory allocations. An example
of this is the Motorola 68451 MMU, which requires a
particular memory allocation scheme. The following is a
brief discussion of the various groups of MMUs; the
intention is not to describe any particular MMU in detail,
but to highlight some of the characteristics related to the
kernel-MMU interactions noted above.

I. The Stanford MMU

The Stanford MMU has a multi-level mapping scheme. The
highest level identifies the process number, called the
context. For each context, the entire virtual address space
of 2 megabytes is divided into many 2k-byte pages. These
pages are accessed through segments (the next level), which
point to page entries (the bottom level) in a page table.
Each running process has its own page tables, whose entries
point to fixed-size pages. Every time a memory address is
referenced, it is translated to a unique page table entry
containing the physical address. For most current
implementations, translation from virtual to physical
address in this mapping scheme is performed so fast that the
68000 processor requires no "wait states".

One characteristic of the Stanford MMU which does not occur
in most other MMUs is the presence of the UNIX kernel in the
user process' virtual address space. The supervisor does not
run in a special context, but is mapped into virtual
addresses in the same context as the current runnlng
process, using one set of page registers which is pointed to
by each context through its segment registers. Using part of
the user virtual address space for the kernel slightly
reduces the addressable space for a particular process, but
does not pose a real problem since the reduced virtual space
is still quite large*. A disadvantage of this feature is
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that binaries from a system with a Stanford MMU cannot be
ported to systems with most other MMUs. In most other
systems, the kernel does not take up any space in the user
process' virtual address space, and user programs are
usually origined at virtual zero. Since the kernel on a
Stanford MMU system resides in low virtual memory of a user
process, the process can no longer be origined at virtual
zero.

II. The Motorola 68451 MMU

Unlike most MMUs which have unique direct correlation
between virtual address and MMU register address, the
Motorola 68451 has 32 descriptors, each of which can be used
for any virtual address. Thus, a particular virtual address
can be mapped using any one of the 32 descriptors; most
other MMUs have a unique register where the virtual to
physical information is kept. The 68451 has variable page
size. Once the page size is selected, however, it restricts
memory size and boundaries allocation; e.g., if a system
chooses a page size of 2k, every mapping has to be of a size
divisible by 2k. In addition, the boundary at which this
piece of memory lies must be on a multiple of the size~. 1In
general, a system with one Motorola 68451 is quite well
suited for four to eight users, with approximately 5
segments per process.

As mentioned before, on a system with Stanford MMU, virtual
to physical address can be evaluated easily because the
virtual address maps into unique segment and page register.
On the Motorola 68451, however, a virtual address may be
mapped into any of the descriptors, so more searching is
required.

The result is comparatively slower address translation for
the Motorola 68451 than the Stanford MMU. A maximum of 32
different chunks of memory can be mapped at a time. Due to

* This reduces the addressable space from two megabytes
to approximately one and a half megabytes. In UniPlus+,
the kernel resides in location 0-80000 for a system with
a standard Stanford MMU on 68000.

~ This creates certain problems. If one wants to map in
a large process, this limits where it can be placed
(e.g., if you want to map in a chunk of memory of 64k,
this piece must go on a 64k boundary).
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the restriction on size and boundary, the standard memory
allocation scheme cannot be used, resulting in a slightly
higher overhead in the kernel for memory allocationt*.
Memory also fragments more often under this mapping scheme.

These shortcomings are compensated for by several positive
features. One advantage is fewer registers need to be set
up. Special built-in functions also help to speed up several
operations performed frequently by the kernel, including
validating virtual addresses and translating v1rtual
addresses into physical addresses. Despite these advantages
and disadvantages, the Motorola 68451 and the Stanford MMU
run similarly as far as MMU operations are concerned.

The above analysis is based on our experience with a
swapplng kernel; when implemented as a virtual kernel, there
is a further dlsadvantage for the 68451. For a system with
virtual memory, it is desirable to map in a lot of memory in
reasonably small chunks at a time. Due to the small number
of descriptors in a 68451, only a few chunks of memory can
be mapped at a time. If these chunks are large, more memory
can be mapped at a time, but the resolution on the page-
frames is too rough for an efficient paging scheme. If a
small page size is chosen, only a little memory can be
mapped in at a time, and the system will page fault
frequently. Compared to the 68451, the Stanford MMU scheme -
with its fixed page size in small granularity - is better
suited to a virtual memory system.

III. Modified Stanford MMU and Single-level Stanford-like
MMU

A large group of proprietary MMUs fall into this category of
variations of the Stanford architecture. A modified Stanford
MMU has the same multi-level mapping as the Stanford
architecture, except the supervisor runs in a separate
context. A Stanford-like MMU does not have segments, but has
a single-level mapping scheme with only page tables. In
addition to these changes, other modifications are used in
the proprietary MMUs for such things as to increase the
number of processes mapped in at a time, to increase
flexibility in accessing user memory, to prov1de faster
translation of virtual to physical memory, to increase

* e.g., due to the mapping scheme restrictions, the
data, the stack, and the udot are allocated separately
on a system w1th a 68451.
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protection flexibility, and to increase addressable virtual
space for a process.

There are a variety of approaches to achieving additional
flexibility. These include allowing more contexts, allowing
larger page sizes, allowing more segments per context, using
in-memory page tables, using cache memory, using a common
page table for all processes, allowing variations of mapping
modes, allowing fancier protection permissions, and allowing
the kernel to readily access the area of any context at any
time. Most of these efforts do serve their purpose, the one
exception being increase in protection flexibility. Since
the UNIX kernel currently only makes use of write protection
for shared text and shared data, additional protection
permissions are not currently used.

Some of these modifications, however, introduce new overhead
in the kernel. Examples are additional logic in the kernel
to resolve collisions in a common page table, to invalidate
pages in cache memory when switching processes, to handle
insufficient page table entries, to do additional book-
keeping for switching context, and to evaluate added levels
of indirection for accessing MMU registers.

IV. Other proprietary MMUs

In addition to the MMUs listed above, we have encountered
other schemes. Some of these are the more conventional base
and bound or multiple base and bound schemes. Others use one
or a few sets of registers to do the mapping. A less
conventional MMU uses a 280 slave processor to handle all
memory locations and management.

Most of these MMUs have the advantage of being simple and
easy to set up by the kernel. However, some have
disadvantages. Those with few registers have to be reset
more often when switching processes. This might not be a
problem when few processes are running, but would be more
noticeable with many users. In some cases, the scheme is so
simple that it is difficult to implement certain kernel
features or functions requiring additional registers to map
in more than the usual text, data, and stack area - such as
the phys system call, shared text, and shared data. Severly
restricting the mapping and the size of the kernel virtual
space also creates a handicap when the kernel is accessing
user area. For those with a huge number of registers, the
kernel might require additional logic to set up only the
necessary registers instead of setting all of them up when
switching processes.
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In general, MMUs with a limited number of registers are more
suited to a swapping kernel, but are less suited to a
virtual memory kernel. In the case of the slave processor
MMU, which handles allocation as well as memory management,
the system can turn into a virtual memory system without
requiring any modifications to the kernel itself. It only
requires changes in the MMU.

CONCLUSION

The amount of work done by the UNIX kernel depends on how
the hardware translates virtual to physical address. A
simple MMU allowing sufficient mapping registers is more
desirable than a complex one requiring more effort from the
kernel software. A simple design also expedites the process
of porting the UNIX kernel. The overhead we have seen in a
swapping kernel is expected to be more pronounced in a
virtual memory system, because of the complex record-Keeping
and more frequent reloading of registers required. When
designing a MMU, one should find a simple scheme that
efficiently performs the frequent basic operations before
considering fancier features for supporting virtual memory.
Even though the affect of the MMU logic on system
performance as a whole might not be significant, a well
designed MMU does mean less work for the kernel. Using an
already proven MMU instead of designing new ones, OEMs can
also take advantage of the debugging and refining others
have done.
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ABSTRACT

The Computer Graphics Laboratory at UCSF was
established in 1976 for research on the structures
and interactions of proteins, DNA, drugs and other
molecules of importance in biomedicine. MIDAS
(Molecular Interactive Display And Simulation) is
a large interactive molecular modeling graphics
package developed at UCSF under UNIX, originally
on a PDP 11/70 with an Evans and Sutherland Pic-
ture System 2 in black and white. It now runs on
a VAX 11/750, and provides a flexible tool for the
study of small and large molecules and their
interactions, taking full advantage of available
interactive three dimensional color display capa-
bilities on both the Evans and Sutherland Picture
System 2 and Multi Picture System and eventually
on a PS300. Bond rotation, interactive monitoring
of several distances and ''docking'' with real-
time representations of molecular surfaces is well
supported. Among its more innovative features is
an unusually coherent hierarchical database for
storage of macromelecules which minimizes storage
space requirements and access time. The "tool
building" philosophy encouraged by UNIX has resul-
ted in a well organized and maintainable program
that is suited to reimplementation on UNIX-based
graphical workstations such as the Silicon Gra-
phics IRIS. Supported by US National Institutes
of Health research grant RR1081.
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1. Introduction

MIDAS, which stands for Molecular Interactive Display
And Simulation is a real-time, interactive, three-
dimensional color graphics molecular modeling system running
under UNIX*. It is the third-generation of modeling system
developed at UCSF, following MMS (Molecular Modeling Sys-
tem), and MIDS (Molecular Interactive Display System).
Molecular modeling is especially well suited for computer
graphics because the graphics reduces large amounts of data
to v1sually recognizable patterns; real-time interactive
graphics is even more useful for our users because they can
manipulate these patterns to discover the relationships
among them[1].

2. Capabilities

The result of three years of design, programming and
debugging is a user-friendly, real-time, interactive three-
dimensional molecular modeling system which aids in the
study and prediction of biomolecular interactions. For
example, Dr. Jeffrey Blaney, while he was a graduate student
at UCSF, correctly predicted the relative activities of thy-
roxin analogs when binding to the thyroid hormone carrier
protein prealbumin[3]. In English, that means he used our
software to predict how variants of a drug would interact
with their receptor.

The basic capabllltles of MIDAS include displaying
selected atoms in large models, coloring them independently,

* UNIX is a trademark of Bell Laboratories.
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and manipulating them via dials and joysticks. Molecular
models may be displayed in full, which usually results in an
incomprehensible mess; more commonly, only the backbone
atoms are displayed to reduce the amount of extraneous
details and produce a visually useful pattern. Color con-
tributes greatly to legibility and also provides an addi-
tional dimension for conveying information to the observer.
Being able to manipulate these patterns in real-time using
the dials and joysticks is also important because it enables
users to study models from different vantage points. This
helps the chemist to discover geometric relations among
various molecules which may not be immediately apparent from
a single view. The real-time manipulation of models is most
important when chemists try to understand the binding
between an enzyme and a protein by ''docking'' molecular
models.

Some more interesting features of MIDAS include the
ability to rotate bonds, to monitor bond distances and tor-
sional angles, to simulate atomic surfaces, and to modify
molecular structure. Bond rotations are different from glo-
bal manipulation of models in that they modify the structure
of models instead of their position or orientation; they are
important for molecular modeling because molecules are gen-
erally ''*"floppy'' and often change their conformations by
splnnlng about a chemical bond. Distance and angle moni-
toring is done in real-time on the updated positions and
orientations of the models; it aids the user when he tries
to ''dock'' molecules or determine the degree of overlap
between atoms. Displaying van der Waals surface+[4] of
atoms provides another way of detecting the degree of over-
lap. The surface, represented as a set of dots, may be
manipulated in the same manner as the stick model and pro-
vide a greater bandwidth of communication. Finally, the
ability to modify model structure makes studying molecular
interactions much easier. The user may replace pieces of a
model with other predefined pieces to form similar models
with user-defined properties ( e.g. add a new group of
atoms to a drug to increase the interaction between drug and
receptor). The combination of these features provide a
powerful tool to chemists and biochemists for interactive
molecular modeling.

3. Design Constraints

MIDAS was designed primarily for modeling proteins and
nucleic acids and their interactions. These molecules are

+ The van der Waals surface is generated by creating a
sphere around each atom according to its atomic number.
The molecular van der Waals surface is the union of
these spheres.
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large compared to typical drug molecules: the average number
of atoms in proteins and nucleic acid structures, as found
in the Protein Data Bank[2] files, are 1500 and 1000 respec-
tively, and these are only a small subset of the huge family
of these molecules found in nature, the scope of which can
range up into millions of atoms. The average amount of data
associated with each atom is roughly 20 bytes (atom name, X,
y, 2z coordinates, some physical properties, and graphics
information). So the memory requirement for studying an
average sized interaction is roughly 50 Kb, just for raw
data.

We currently have two VAX 11/750's**, an Evans and
Sutherland Picture System 2, an E&S Picture System 300, and
a Silicon Graphics IRIS workstation. The PS2 is a high-
performance vector graphics system, capable of displaying
and transforming 20,000 vectors in real-time and without
image flicker. The PS300 is also a vector graphics system.
The IRIS workstation supports some real-time raster gra-
phics. However, these later two graphics systems are rela-
tively recent acquisitions; when we started designing MIDAS
in 1979, the only equipment we had was the PS2 and a PDP
11/70.

The original equipment imposed some physical con-
straints on our design of MIDAS; the limited address space
of the PDP 11/70 immediately restricts the amount of data
that can be kept in memory. The computing environment
imposed further constraints during the design phase of
MIDAS. The 11/70 was not dedicated to just graphics. Other
users did text processing, numerical calculations, and pro-
gram development. We had to make MIDAS as efficient as pos-
sible. We originally had only a 300 Mb disk shared by 100
users; so we could not afford to sacrifice disk space for
execution speed. Therefore, our goal when we designed MIDAS
was to build a modeling system which processes a large
amount of data using very little memory, gives real-time
performance while consuming little CPU time, and does not
use excessive amounts of disk space for storing the molecu-
lar database.

4. Implementation

The problem of a limited address space on the PDP 11/70
was solved by dividing MIDAS into three processes: one to

These numbers do not include the hydrogen atoms which
are much more numerous but not important for displaying
molecular structure.

* % VAX, PDP, and VMS are trademarks of Digital Equipment
Corporation

March 17, 1985




handle the real-time interaction with the user, one to main-
tain the molecular database, and one to store the graphics
objects so they need not be regenerated each time. Effec-
tively, we tripled the available memory by modularizing our
system. This arrangement also enforced strict modularity.
The processes communicate with each other using the standard
UNIX IPC mechanism of pipes. Large volumes of data are
passed back and forth between processes using shared disk
files. Sharing is synchronized by use of the above-
mentioned pipes.

Of course, one of the modules (the database editor)
would require too much memory if it were to keep all of the
databases in main memory. We therefore designed a disk-
based system which allows reasonably fast access time. We
chose a hierarchical database format which corresponds
closely in structure to the molecules we modeled. It was
fairly easy to implement on UNIX because files on UNIX are
byte-streams and do not have system-imposed structure.

Thus, we were able to store arbitrarily sized arrays of
structures in our data file with an index to each unit
stored in a second file; each of the data array corresponds
to a residue (a set of atoms which form a subcomponent of
the overall molecule, e.g., an amino acid) in the molecule.
A third file stores the connectivity information for each
residue; since there is often a large number of residues of
the same type (but with different atomic coordinates) in
each molecule, we minimize redundancy by only storing one
connectivity record for each different residue type. There
are an average of 150 residues in each molecule with approx-
imately 10 atoms per residue; so the data arrays are about
200 bytes each, and thus an average data file is about 30 Kb
long. This scheme provides for a compact database
arrangement with a minimum redundancy. A more complete
description is given in [5]. The database access routines
maintain only one data buffer for each database, which is
large enough to accommodate the longest array stored in the
data file. Thus, only a small amount of memory is needed
for each database. One of the advantages of using byte-
stream format files is that they are easy to simulate in
memory. We have also experimented with the virtual read and
write routines (vread, vwrite) in 4.1BSD UNIX and, thereby,
implementing a memory-based database system. Surprisingly,
and perhaps unfortunately, the memory-based system was not
measurably faster than the disk-based system. The reason
for this comparable behavior is that we essentially simula-
ted in software with our disk-based system the same func-
tionality that is provided with the help of the VAX paging
hardware on the virtual-memory based system. Since the
predominate access time is getting the data from disk,
whether this data is paged in with virtual memory assistance
or read in via the read system calss makes little dif-
ference. Of course, the code to support the former is pro-
vided by the system while the code to support the latter was
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written by us and resides in user space.

The layer of code which resides above the database
access routines forms the database editor. We designed a
simple command language for it and produced the correspon-
ding grammar. We took advantage of the tools that UNIX
offers to generate a prototype parser for the command langu-
age. It took about 2 days to produce a parser using yacc
and lex. This approach allowed us to test our command
language before committing ourselves. The database editor
project was a classical software engineering project where
we wrote the specifications and documentation, generated
code, debugged, and released the product[6].

The user-interaction module is a different story. We
did not know at design time all the features that users
might want. We therefore attempted to keep the design
open-ended. For example, one of the commands in MIDAS is
''run'', which forks off a user-specified shell command,
reads back the output, and interprets this output as MIDAS
commands. We used this scheme to interface a rigid-body
energy minimizert++ with MIDAS; this was done relatively late
in the implementation phase but has still proved was to use
and powerful. Most users do not realize that the energy
minimizer is not a ''built-in'' command to MIDAS. In gen-
eral, the programming methodology used for the user-
interaction module is more akin to the exploratory program-
ming style described in [7] than to classical software
development.

The real-time response demanded by MIDAS was provided
for in UNIX by some custom kernel modifications written by
Tom Ferrin; an rtp() (real-time process) system call was
first added to the V6 kernel[8], and later to V7 and 4.2BSD.
This system call makes the scheduler always place the cal-
ling process at the head of the run queue regardless of
other considerations. In addition, time consuming kernel
subroutines such as copyseg() and clearseg() are now preemp-
table. The result is that MIDAS runs fast enough to support
real-time interaction. System response for other users
degrades significantly while MIDAS is applying transforma-
tions to the models; otherwise, MIDAS does not affect system
response noticeably.

5. Portability

Tom Ferrin ported MIDAS to VMS with an E&S MPS as the
graphics engine. The code in MIDAS is essentially machine-

++ An energy minimizer works by modifying the relative
positions of two molecules to decrease the overall
energy of the system.
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independent C code, which the VMS C compiler handled
reasonably well. Ken Arnold ported MIDAS to the SGI IRIS
terminal in 4 weeks and to the System V UNIX workstation in
an additional 2 weeks. Greg Couch is currently working on a
version for the PS300. Our original modular multi-process
design has proved extremely valuable in our porting efforts.
The database editor process is essentially independent of
the different graphics engines and can be brought up on new
hardware relatively quickly and without the need of the
interactive module. The interactive module, which is very
graphics-engine specific, can then be brought up separately
and with the knowledge that the database access and editor
routines are fully functional. Our experience has shown
that if you write programs in a portable fashion, using
tools provided in UNIX such as lint and stdio, then these
programs can be moved to other systems (not necessarily
UNIX-based) with relative ease. On the other hand, some
programs are necessarily machine dependent. The best
approach here is to isolate the machine dependent parts into
well known modules and then document the code thoroughly.

6. Future developments

We've reached the point of diminishing returns in terms
of adding features to MIDAS. This is not to say that MIDAS
is the end of the road; it means that we've taken the
minimal resources approach of MIDAS as far as reasonable.
However, the availability of more powerful hardware such as
VAXen and high performance workstations, new graphics
engines like the E&S PS300, and raster graphics workstations
such as the Silicon Graphics IRIS, which means that we can
provide additional functionality for our chemist and
biochemist users. We've already brought MIDAS up on some of
our new hardware system, however, it does not take full
advantage of the capabilities of these machines. The next
generation of molecular modeling system will be much more
sophisticated; it will move towards artificial intelligence
with some sort of expert system[9] which will free the user
from some of the grunt work; and it will take full advantage
of the new hardware capabilities.
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Aprlications usindg speech recognition are riot
widesrpreads but +the 1larde number of published discussions
suddest a8 deneral interest in the medium. Accaounts of the
rpaossible use aof spreech recodgnition in such advanced arrlica-
tion areas as air-force precision bombing [1] imepluy that we
have an advanced and reliable sepeech recodnition technolodgy.

Crusadindg articles list the surrosed gains offered by
voice interactian [2]1, and suddest that the serhere of arrli-
cation of sreech input is limited more bws +the imadination
and rurse of system desidgners» than by the remaining techro-

laogical eproblems [31.

A closer laok at the assumptions surrounding sreech
input reveals a different ricture!

i) Naturalness - this is the idea that sreech recaognition
offers a more natural waw of interacting with a comru-
ters The reality is that usindg a normal tone of voicey
particularly with devices that rperform whole-word tem-
rlate matchinds increases the number of recodnition
errors. Indeedsy it is not uncommon for new users to be
instructed to adort the tone of voice theuy  would use
for commands to a dog. Even the more advanced recos-
nisers which attempt to handle continuous speechy
nevertheless impose a restrictive suyntax combined with
38 small vocabularys which is 3 long wayw from natural

spPpeakind.

ii) Sreed - the assumrtion that speech will offer faster
inruty simrly because rFeorPle are known to be carable of
sreaking faster than thewy can ture. In realityr recent
experiments [4,3]1 reveal that rerlacing keuboard with
vaice dives sidnificantly slower inrput: and in particu-
lar that sepeech input more than doubles the time that
users srend in checking the screen for errors L[51].
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iii) Iraioind
- the idea that speech reauires no traininsds because
it is already a familiar medium. In fact, the orrosite
is true. The user has to be trained to sreak 1in the
manner reauired by the sustem» and most systems have to
be laboriousls trained for each sreaker: and then fre-
auentls retrained.

In addition to these dgeneral rproblems there are some
particular ones that arise if one attemrts to intedrate
speech into an existing s4ystem. As an illustration: imadine
that we want to use a sroken subset of UNIX commands:

- saome commands are uneronounceable: and mas need to be
spelt aut (ewds chdir)d.

- gpelt commands mas be acoustically too similar (cr: cC»
cdy PC).

- allowing sindle-letter ortion flads will increase the
vocabulary size by wur to 26 words: some of which are

hidhly confusable.

- adding new vocabulary words is problematical. Every
time 3 new file name is denerated: one would need to to
type or srell it the first time it occurreds and the
machine would need a short training session on the new

word.

In factr» bolting on a8 sreech device to an existing
arplication is alwaus rroblematicaly and may re@uire can-
siderable (and often unaccertable) chandes to the command
landuade. In sepite of thiss and in srite of the imrerfec-
tions of available technolody in comrarison with the rerfor-
mance of human listenerss specific areas are emerding where
speech input can offer real advantadges. Obvious examrles
are use by the phusically disabled and by lons-term well-
motivated users in "hands—busu' and ‘eves-buss*® occurations?
but the drowth of interest in human-camruter interfacing and
dialodgue artimisation is likely to exrose some other realis-
tic aprplications wusing small vocabularies and highly-
constrained suntaxs where srpeech maw merely ausment conven-—
tional inFut mades (&) . Finding out whether an arplica-
tion can use sreech to advantade is too often 3 matter of
buving the harduare and horing it will fit the task.

Ihe search far staodards.

What is urdently needed is some way of predictind rer-
formance in advance. The onluy rperformance fidures available
until now have been those provided bu the manufacturers:
normally (and rerhars understandably) measured with 3
highlu-trained sepeaker in near-ideal conditionsy usind a




small or sreciallu-selected vocasbularg. Usually no attemrt
is made to simulate a real task (because as a deneral ruley
cadgnitive loading results in dedraded recodnition rerfor-

mance) .

The wvarious standards ordanisationsy such as the NES in
the U.S. have recently devoted an entire conference to the
idea of develorind obdective srrocedures for speech recodni-
tion assessment [4&]ly and they are loakind at 3 number of

possibilities?

i) bernchmark arrlications - direct comeparison of recas-
nisers usind standard vocabularies and susnta.

ii) "sreech databases®
- tare recordinds af standard sreakers could eliminate

the eproblem of sreaker variabilitwsy assuming that the
ordanisations concerned can adree on what constitutes a

*standard® accent [73].

iii) user exrectations - this asrpeproach examines how well a2
system can meet the reuirements of a8 wuser. New

theoretical models are reauired - for examele the U.S.
Navy are develorinsg theoretical models of sepeech
interaction [81y and lLodgica have suddested E

transaction-based madel L[%91.

iv) exrerimental aprproaches — this arproach is derived from
rsycholody and human factorsy and is unique in allaowing
us to measure those asrects of arrplications that affect
rerformance. Alsory it 2llows direct comrarison with
other inrut modes (usually the kesboards or rerhars 3
raointind device and 3ssociated software). There are
some eighty factars that are thougaht to affect rerfar-
mance [10Jy but only a3 few of these are at all well

understood, (e.d. vocabulary sizer rnoise level). Our
own wark 1is currently examinind two less well documern-
ted factors - suystem trainind and error recovery gro-
cedures.

Implementatian.

The hardware to perform recodnition is a medium priced.
isalated-word recadnisery with a8 wvocabulary of ur to 100
waords [111, There is a8 simrle rrotocol +that allows host
control of the recodnisers for downloading rnew vocabularies:
settind the recodniser rarameters: and so on. These func-
tions are initiated by a3 series of short C erodrams:» with
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names like traio» recadniser and usdate.
Two main problems arose a3t the imrlementation stase!

The first eroblem was a human one! the +traio efrodram
builds a new set of temelates by prompting the user to utter
one word at 3 time. Subdects usind this prodram turically
drew tense and irritabler and were left out of breath after
retraining on even uite small vocabularies. It was
discovered that this was .because the rprompt for the next
word was beind disrlaved as soon as the rrevious word had
been sroken. This was causing a2 feeling of urdency in the
speakery and a failure to draw enough breath between words.
In shorts speakers felt the sustem was hurryindg them. When
the prodram was altered to idle for a second ar two between
words:y the rroblem disarreared and the resultind vocabu-

laries were also more robust.

The secornd rroblem was related to the hardware confi-
dguration. The recodniser is desidned to share a3 sindle
serial line with the terminal. While this has the advantade
that the mode of input (kewboard or sreech) can be tran—-
sparent to the hosts it causes problems in communication of
control information between host and device. A user running
an application which uses sreech inPut reauires:?

i) the host should be able to instruct and interrodate the
recodnisery without interrurtion to +the aprlication
which is also running on the host.

ii) the lodic to achieve (i) should not be embedded in the
aprlication.

These reauirements were fulfilled by using EMACS [121.
Emacs was pradrammed to handle bath inFut to an arrli-
cation from a user» and inFPut to a recodniser driver
prodram from the recodniser (which is always in rack-
ets» with a recodnisable header and trailer). Thusy
information coming in on a8 sindle terminal line is re-
routed to one of two EMACS buffers (turically associ-
ated with a shell window and an arplication window).

EMACS was also used to implement 3 self-urpdating bhele
buffers whose contents chande in accordance with the state
of the dialodue. For instance» the buffer always contains s
list of words in the currently active sub-vocabularg. A
command-set displaw like this is evern more imrortant for
speech than for keuboard inputy» because of the higher renal-
ties which are potentialls incurred by 3 wild duess made by
a3 user wha cannot remember the correct word. The helr buf-
fer can be displaded or removed at any time: using the wards
*helr® and °"no-helr'.
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Iask Area.

The task we are usind is carrectind and runnind a8 Fas-
cal rprodram containind deliberate turpindg errors. The com-
mands to perform this are rprovided by a prodramming environ-
ment written by EBill Findlay [13]1 where students have access
to 3 subset of UNIX commands and some rurrose-written com-
mandss wvia a3 bedinners’ shell. The students who will
comPrise our exrperimental subJects are alreads familiar with
the keyuboard version of this sustems so that our results
will be only minimally affected by 3 task learning effect.

A student’s environment is constructed sa that each
prodramming pradJect takes place in a different directory.
Because the namind of files fallows the same convention
across directoriesr and because most commands are semanti-
cally arprorrisate to anly one or two filesy we have been
able to do 3way with command—-line arduments. Where same
ambidguity is unavoidabler the command becomes interactiver
accerting yes—-or-no answers. In this waw» the vocabulary is
reduced from 21 to 15 words» and the averade number of words
per command from 2.6 ta 1.2, These are obviously important
dains when using sreech inrPrut.

Experimeruatal sietus.

We now have 3 UNIX-based exrerimental testbed for
evaluatind various huyrotheses about the human and sustems
factors in sreech recognitian. Far instancer 3 mador reason
why voice inrut is so often disarrainting in rpractice is not
the fact that it is slow: so much as the tendencuy Yo repewd
over: thus brindindg the systemwm to an effective standstill.,
To deal with this sroblem: a3 rnumber of error recovery stra-
tedies have been suddestedr» and while there is mo difficultu
in iarlementing them» the main work is in evaluatindg their
efficacy. Our current prodect aims to measure the imrpact on
error freauency and on task comrletion time.

Caoclusian.

Affordable srpeech technolodw is nmot in a3 state where it
can be denerally used to rerlace more canventional insrut
methods. Nevertheless: isalated asprlication areas do exist
in which sreech inrut can be used to advantadge. In these
casesy the user interface has to be carefully designed to
take account not onle of the arplication but also of the
idiosuyncrasies of speech infut.,

We prorpose to examine the human and systems factors
that a3arply to sreech interaction» in a testbed built on a
well-suited application ares, a student rrogdramming
environment.

e Sowne
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Processes as Files

T. J. Killian

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

We describe a new file system, /proc, each
member of which, /proe/nnnnn, corresponds to the
address space of the running process whose pid is
nnnnn. Access to these files is restricted, via
the normal file protection mechanism, to the pro-
cess owner. Lseek(2), read(2), and write(2),
allow inspection and modification of the process'
image. Other services are available via ioctl(2),
including stop/go on demand, selective intercep-
ting of signals, and the ability to obtain an open
file descriptor for the process' text file. The
technical problems related to the implementation
of /proc on a VAX+ under the 8th Edition of the
Unix#+ operating system have mostly to do with the
paging system. Security issues are also con-
sidered.

The window-based interactive debugger pi,
developed by T. A. Cargill, is the first major
user of /proc. It can control multiple processes
dynamically and asynchronously. Thanks to the
network file system, /n, these processes may be
running on several different machines. We also
describe an efficient, almost portable ps(l).

Introduction

Any debugger is dependent on, and often limited by, its
ability to access the address space of the debugged program.
This is especially true in the case of interactive debugging
under the Unix system, where the debugger and the debugged
object are separate processes. The problems associated with
the standard mechanism, ptrace(2), are well known:

} VAX is a trademark of Digital Equipment Corporation.
4+ Unix is a trademark of AT&T Bell Laboratories.
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¢ The object must agree explicitly to be debugged, and
furthermore it can only be debugged by its immediate
parent. Thus there is no dynamic binding, and children of
the original object process cannot be handled.

¢ Before it can be examined, the object must be put in a
stopped state, typically by sending it a signal(2). This
can 1nterrupt the object's own system calls, so the debug-
ging is not transparent. Or the object may be ignoring
signals (e.g., sleeping forever on a locked inode), so the
mechanism can fail entirely.

¢ Ptrace(2) provides low bandwidth at high cost: two context
switches per word of data transferred, an achievement
equaled only by some text editors. Its protocol is arcane
and unnatural compared to most other system calls.

We have tried to overcome these difficulties by provi-
ding an interface that is as uniform as possible, using an
existing mechanism for accessing random data external to a
process: the file system.

Fig. 1: A sample /proc directory

—IW=—————— 1 root 14336 Feb 20 12:59 00001
—fWe—————— 1l root 528384 Feb 20 12:59 00002
—-rWe——————— 1l root 12288 Feb 20 12:59 00019
“rWe—————— 1 tom 32768 Feb 20 12:59 02596
—IW——————— 1l tac 106496 Feb 20 12:59 02652
—IWe—————— 1l root 14336 Feb 20 12:59 02801
—rWe—————— 1l tac 39936 Feb 20 12:59 02900
—rW——————- 1l tac 23552 Feb 20 12:59 02910
—-rWem—————— 1 tac 184320 Feb 20 12:59 02911
—-IWe—————— 1l tom 33792 Feb 20 12:59 02912
- rW——————— 1l tom 54272 Feb 20 12:59 02913

System-Call Interface

Fig. 1 shows the result of a typical ''ls -1 /proc.'!'
The name of each entry in the directory is a five-digit
decimal number corresponding to the process id. The owner
of the ''file'' is the same as the process' user-id; note
that only the owner is granted permissions. The size is the
total virtual memory size of the process. The time is not
very useful: it is always the current time, for reasons dis-
cussed later.

The standard system-call interface is used to access
/proc. Open(2) and close(2) behave as usual with no side-
effects. 1In particular, the object process is not aware
that it has been opened. Data may be transferred from or to
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any locations in the object's address space through
lseek(2), read(2), and write(2). Reading and writing have
slightly peculiar behaviour jour due to the segmenting of the
process' address space.

Fig. 2: Address structure of /proc/nnnnn

I
0x80000000]| System segment |

-------- e e L L L L L L DD D DDl

| I
Ox7f£££000 | User area |
-------- e L LB L L L LD DD DD Dg o

I I

(*) | Stack segment |
-------- et EEE LB L LD DL DLl o

I I

| [Non-existent] |

(*) | I
-------- e L L L L L P P L L L DL Lg

I I

(*) | Data segment |
-------- ettt L L L L L LD s o

I I
0x00000000 | Text segment |
________________________________ +

(*) addresses computed from segment sizes

The text, data and stack segments (see Fig. 2) all
allow both read and write access; if the text segment was
shared at the time of the write, a private copy will be
made. The user area is read-only, except for locations
corresponding to saved user registers. The system segment
is not accessible. For simplicity in enforcing these res-
trictions, a single I/O operation may not cross a segment
boundary; the byte count will be truncated if necessary.
Note that for ordinary files, the entire file is either
write-protected or not, and ''holes'' read as zeroes.

As with other special flles, there are a number of ser-
vices available via ioctl(2), in this case having to do with
process control:

PIOCGETPR fetches the object's struct proc from the kernel
process table. Since this information resides
in system space, it is not accessible via a nor-
mal read.

PIOCSTOP sends the signal SIGSTOP to the object, and
waits for it to enter the stopped state.
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PIOCWSTOP simply waits for the object to stop.
PIOCRUN makes the object runnable again after a stop.

PIOCSMASK specifies (via a bit mask) a set of signals to
be traced; i.e., the arrival of such a signal
will cause the object to stop. A mask of zeroes
turns off the trace. There are three side-
effects: (1) a traced process will always stop
after exec'ing; (2) the traced state is retained
after the object is closed, although the mask
bits themselves are lost; (3) the traced state
and mask bits are inherited by the child of a
fork(2).

PIOCCSIG clears the object's currently pending signal (if
any) .

PIOCOPENT provides, in the return value of the ioctl, a
read-only file descriptor for the object pro-
cess' text file. This allows a debugger to find
the symbol table without having to know any path
names.

All system calls are interruptible by signals, so that,
for example, an alarm(2) may be set to avoid waiting forever
for a process that may never stop. Any system call is
guaranteed to be atomic with respect to the object, but, as
with ordinary files, there is nothing to prevent more than
one process from trying to control the same object.

Implementation

The interface to the file system was provided by P. J.
Weinberger, who introduced the notion of a file system type
to support his network file system [l1]. In a sense, this is
a generalization of the top level of the pipe(2) mechanism,
in which, e.g., the kernel's read routine calls a special
procedure if the file descriptor refers to a pipe. 1In
Weinberger's scheme, the kernel has a well-defined set of
internal entry points (read, write, open, close, etc.) for
each file system type, and uses the appropriate one tran-
sparently. A special mount(2) command is used to associate
a particular file system type with a given leaf of the
directory hierarchy. Weinberger in fact made an early
attempt at an implementation of /proc, but the communication
mechanism was too similar to that used by ptrace, making it
impractical.

In our implementation, the calling process accesses the
object directly. This requires the cooperation of the swap-
per, the scheduler, and the paging system. A flag in the
object's struct proc informs the system globally that the
object is undergoing I/0 via /proc. The swapper recognizes
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the object as a candidate for being swapped in, and will not
swap it out as long as the flag is set. The scheduler will
not run the object; in particular, the effect of any signal
or wakeup on the object will be delayed until I/O is com-
pleted. Finally, hooks have been added to the paging system
so that the object's pages may be brought in on demand by
the calling process. Thus I/0 via /proc can take place
under almost any circumstances. The exceptions occur where
the object is waiting for an actual virtual-memory event,
i.e., it is exec'ing, paging, forking, or exiting. In these
cases, the I/O call returns an error, and the caller must
try again.

Because the caller and object must both be swapped in
during I/0, there is the possibility of deadlock on very
small systems. In practice, this is unlikely to happen
under 8th Edition Unix because being swapped in implies only
that the user area and page tables are present; the remain-
der of the process can page in and out as necessary. In any
case, I/0 via /proc is always interruptible, even in an oth-
erwise deadlocked situation.

Reading the /proc directory and stat'ing(2) its members
present special cases. The information returned is made up
exclusively from the kernel's process table. Some poten-
tially useful data, like process times which reside in the
user area, are not returned for efficiency reasons, since a
swap might be required to get access.

Security

The most obvious security loopholes are plugged by the
file system interface. The standard protection mechanism
prohibits free-for-all access to every process, and the file
system type itself does not support things like mv(1),
rm(1l), chmod(l), etc. Some more subtle problems are the
following: /proc provides a way of reading a file which has
execute, but not read, permission; this is easily solved,
since the inode of the object process' text file is availa-
ble at the time the object is stat'ed or opened, and permis-
sions can be checked. If a process opened by /proc exec's a
program with setuid bits, there is the potential for any
user to become the super-user; we take care of this by not
honouring the setuid bits in such a case. Note that if the
open is attempted after the exec, the process owner will
have already changed and the normal protection applies.

Finally there is the problem of not corrupting shared
text. The /proc interface does copy-on-write, as mentioned
previously. Due to the page-table scheme used by the VAX, it
is simplest to copy the new private text segment directly
from the text file. A special check is necessary at the time
of a fork. Breakpoints already set in the parent should be
inherited by the child, and yet subsequent modification of
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the parent should not affect the child; thus a copy from the
parent's address space must be made in this case. There is
one more case, added as a convenience: if an opened process
exec's, it is automatically given impure text, on the
assumption that a debugger is waiting in the wings.

The system interface

T. A. Cargill has developed an interactive, window-
based debugger called pi (process inspector). It can be
bound dynamically to multiple processes, and control them
asynchronously. Binding is particularly simple: pi opens
the object process, gets hold of the text file via
PIOCOPENT, and reads the symbol table. It is frequently
useful to have control of the object before it has actually
begun executing. This is easily done, given the semantics
of PIOCSMASK. Fig. 3 shows the program hang, which takes any
command as argument, and starts it up in the stopped state.

Fig. 3: The hang program

finclude <stdio.h>
finclude <signal.h>
finclude <sys/pioctl.h>

main(argc, argv)
int argc; char **argv;
{
int pfd; char procnam[16]; long mask = (1<<(SIGSTOP-1)):
FILE *ttyerr;
ttyerr = fopen("/dev/tty", "w");
if (argc <= 1) {
fprintf(ttyerr, "Usage: %s cmd [args...]\n", *argv);
exit(1l);
}
sprintf (procnam, "/proc/%05d", getpid()):
if ((pfd = open(procnam,0)) < 0) {
fprintf (ttyerr, "cannot open %s\n", procnamn);
exit(1):;

}

ioctl (pfd, PIOCSMASK, &mask):;
close(pfd):

fprintf (ttyerr, "%s\n", procnam);
fclose(ttyerr);

execvp(argv[l], argv+l):;
perror(argv(1l]):;

exit(1l):;

Pi obtains status information and data from a process
using ioctl's, or a combination of seeks and reads. Other
operations require a more complicated series of primitives.
Single-stepping is accomplished as follows (the object is
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assumed to be already stopped):

1) Arrange, via PIOCSMASK, for the object to stop on
SIGTRAP.

2) Set the TRACE bit in the object's PSL. This involves a
seek, read, and write in the object's user area.

3) Issue PIOCRUN.

4) Wait for the object to return to the stop state, by
issuing PIOCWSTOP.

5) Issue PIOCCSIG to clear the SIGTRAP.

Single-stepping over a function call (CALLS instruction) is
only slightly harder. 1If the instruction stepped was a
call, one sets the TRACE bit in the PSL saved on the stack
and issues PIOCRUN; the SIGTRAP will then be taken upon
return.

Breakpointing is similar to single-stepping. 1In step
(2) above, one writes a BPT instruction at the desired loca-
tion.

The command

We have written a version of ps(l) which is two to four
times faster than the standard one. It uses the /proc inter-
face to obtain process table information, obviating the need
for searching the kernel symbol table. Usually the struct
proc contains sufficient information to decide whether or
not the process warrants further inspection. If so, the
SLOAD bit indicates whether it is more efficient to read the
user area and stack segments from /proc, or from /dev/drum.
Fig. 4 sketches the main flow of control for nps.

Summary

We have described a uniform mechanism for transparent,
dynamic communication between a debugger and its debuggee,
along with a set of primitives for process control. It is
successful largely because it fits so well into the Unix
model. We feel that it is probably ill-suited for general
inter-process communication, though it should work well for
specialized application-oriented debuggers, or other pro-
grams which would benefit from clean access to dirty data
structures.
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Fig. 4: Skeleton of the nps program

finclude <sys/param.h>

int drum;

main()
{
int dirfd; struct dir dir:
drum = open("/dev/drum", 0);
chdir("/proc"); dirfd = open(".", 0);
while (read(dirfd, &dir, sizeof dir) == sizeof dir)
if (dir.d_ino && dir.d name[0] != '.!')
do_proc(dir.d_name) ;

}

do_proc(s)
char *s;
{
int fd; struct user u; struct proc proc;
fd = open(s, 0);
ioctl(fd, PIOCGETPR, &proc);
if (proc.p flag&SLOAD) {
lseek(fd, 0x80000000-UPAGES*NBPG, O0);
read(fd, (char *)&u, sizeof u):;
} else {
lseek(drum, proc.p swaddr*NBPG, 0);
read(drum, (char *)&u, sizeof u);

}
print(fd, &proc, &u);

close(fd):;
}
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UNIX in Australia, 1984

J. Lions

University of New South Wales

l. The Australian University Scene

In three months the University of New South Wales will be
celebrating the tenth anniversary of its receipt of the
Fifth Edition of UNIX. Ten years ago, UNIX was not yet, as
it is now, known as a trademark of AT&T Bell Laboratories.
The exact chronology is now hard to reconstruct - no one
then understood how far this new undertaking would carry us
- but our license agreement was dated December 15, 1974, and
we received our tape and manuals by air-freight shortly
thereafter, just in time for Christmas.

Within the Computer Science department of the University of
New South Wales, we found that UNIX provided all sorts of
new insights into traditional problems and into some new
ones as well, such as word-processing, that we hadn't
previously thought much about. My own first serious project
on UNIX was for the production of a newsletter named
''CUSwords''. This was an appropriate name for a newssheet
for a Computer Users Society on campus whose main aim was to
pressure the university's central computing centre into
providing more useful services occasionally. It was the
continuing insistence of the computer centre to feed
everyone on a raw diet of Fortran and not much else that
made us determined to get our own full-blown UNIX system to
be used for all aspects of Computer science teaching.
Australian universities have differed from UK universities
in that funding for computing has always been a local
decision and there has never been a centrally funded,
coordinated national plan for the provision of computing
services.

Many other departments of Computer Science around Australia
have since followed our lead in basing their major Computer
Science activity on UNIX. Our first outside 'convert' was
Piers Lauder of Sydney University. Another early one was
Juris Reinfelds of Wollongong University (just after he had
signed up for Interdata kit, because DEC was too expensive).

The battle at the University of New South Wales for
provision of adequate facilities peaked in 1979, when
students often could not find a free terminal at midnight,
and sometimes only with difficulty, at 2 am. By comparison,
Sydney University's problem peaked only last year when they
sometimes had more than 100 users logged into a single VAX
computer. Now they have a second VAX, for staff use, and
the student load on the original VAX usually peaks at around
80 users.




It is for reasons such as these that Australian UNIX users
have long been concerned with maximum operational efficiency
more than increased functionality.

1.1 Highly Tuned Systems

Right from the start, we found ourselves using systems that
were chronically overloaded, and by users with real
deadlines (student assignments are like that). We had
neither the luxury of shedding load (sending our students
back to the central computer centre was not an option) nor
the luxury of buying additional hardware if and when
required.

Changes made at the University of NSW in the 1978-79 period
by Ian Johnstone, Greg Rose and others converted a situation
where the CPU was spending 40% of its time in user mode, and
60% in kernel mode (leaving 0% idle), to one where the
user/kernel split was reversed (60:40). The effective 50%
improvement certainly helped. Ian Johnstone subsequently
moved to Bell Laboratories, and some of the changes (hashed
inode tables for example) that we made then have finally
made it into System Five.

There is still no shortage of ideas for further tuning and
improvements. Recently Robert Elz of Melbourne University
has been experimenting with 1mprov1ng directory searches.
Some heavily used programs ('ls' in particular) follow what
is in effect a quadratic algorithm when searching
directories (they read the directory, and then perform on
each file an operation such as 'stat' that implies a
directory search). Kirk McKusick at UCB has changed the
kernel to keep an 'end-of-last-directory-search' offset
value, one per process, and to initiate new directory
searches by resuming from this offset value (of course
looping back to the beginning of the directory if required).
Robert has found that implementing a cache for recently
found names in the directory structure can also expedite
searches in up to 75% of cases. These two ideas seem to
mesh very nicely, as the cache benefits the search for the
early components of a path name, and the directory offset
benefits the search for the last component.

1.2 Improving Disk Accesses

It is well known that disk accessing can be a limiting
factor in system performance, and this has been tackled by
UC Berkeley primarily by increasing the basic unit of disk
allocation by a factor of two or more. By reducing the
number of accesses to disk this speeds up the average disk
transfer rate, but at the significant cost of reducing the
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efficiency of disk storage utilisation by some 15-20% as
file sizes are rounded up to multiples of 1024 or more.

Both Sydney University and ourselves have felt that we could
not afford to buy the Berkeley changes in total, and this
one in particular. Tim Long, then with Sydney University,
found recently that disk throughput could be substantially
improved without changing the long-established disk
allocation quantum (512 bytes) and file system structures.
His changes are as follows:

1. keep the segment of the free list (of disk storage
blocks) stored in the superblock for a file system in
ascending order. This will tend to localise in space
the blocks allocated to any file that is written
locally in time (i.e. during a short time period).

2. when a file is apparently being read sequentially, the
number of read-ahead blocks i.e. blocks read into the
buffer pool in anticipation of future use, may be
varied from one to thirty-two. Any block read is
placed at the head of the 'bfreelist' and will
gradually work its way to the end of the list whence
it may be reused. The policy that Tim chose was as
follows: when the time comes to interrogate the
contents of a buffer containing a read-ahead block,
determine how far it has progressed in the freelist.
If it has progressed by less than one eighth of the
list, double the number of read-ahead blocks for that
file; if it has progressed by more than one quarter of
the list, halve the number of read-ahead blocks.

3. 1in the disk device driver, when beginning access to a
new cylinder, extract from the device queue all the
outstanding commands queued for that cylinder. Sense
the position of the disk and pick the operation that
can be performed soonest. As far as possible, combine
two or more operations together. On machines such as
the VAX with scatter read/write capabilities, this can
work particularly well when several blocks are to be
read from the same track. The contents of any disk
block that is not required but lies between the first
and last required blocks may be read into one of the
yet unfilled buffers in main memory, and then
immediately overwritten. It is Tim's impression that
it is worthwhile skipping single individual blocks on
a track in this way, but that where two or more
unneeded ones occur together, it is preferable for the
driver to read the first block in one operation, and
then to be reinvoked to reconsider its next operation
(which frequently, but not always, will be to read the

48




next block on the same track).

These changes have been found to double disk throughput on
average. In extreme cases speed improvements of up to a
factor of five have been observed while reading some
sequential files on an idle machine.

1.3 Sshare Scheduling

This is an appropriate occasion to acknowledge our debt to
the University of Cambridge for the Share Scheduling scheme.
A colleague, David Hunt, spent a sabbatical leave here in
1975 and brought back the news of the effective scheduling
scheme developed by J. Larmouth for use in a batch
processing environment.

Although the details do not carry over immediately to a
time-sharing system, the basic philosophy does: a user
should be able to consume the system's resources at a rate
proportional to his current 'share'. The latter can be
determined based on the user's intrinsic worth (as
determined by the management) discounted by a factor related
to the resources he has consumed in the recent past.

Reevaluation of shares and rates of working are needed at
moderately frequent intervals. The system may adjust a
component of the user's 'nice' value to align his rate of
working with his computed 'share'. 1Individual user shares
can fluctuate markedly as other users login and logout.
Users tend to have a high share when they first login, but
this can decline rapidly once they start to perform useful
work. This scheme has been successful in making a single
machine appear lightly loaded to a deserving user, while at
the same time appearing very sluggish to an undeserving one.

The original implementation of share scheduling to create
the Australian Unix system Share Accounting Method (AUSAM)
was done by Andrew Hume before he joined Bell Laboratories.
It was later adopted by Sydney University and further
developed there. There has been some disagreement about
some implementation details: currently the University of Nsw
does not use the share scheduler, the University of Sydney
swears by it (if not at it) and it has recently been
modified and installed by Robert Elz of Melbourne University
into their 4.2+ BSD system under the acronym of 'MUSH'.

49




50

1.4 Epicondolitis

No discussion of our current scene would be complete without
mentioning an isolated but severe epidemic at Sydney
University of epicondolitis (sometimes known as
tenosynivitis, or 'repetition strain injury'). No less than
three academics have had to take sick leave, one for two
months. There are at least two common factors: they have
offices on the same corridor, and they use the same UNIX
systemn.

2. My Activities

I would like to dwell for a moment on my own activities.
While these are just a few of many interesting UNIX
applications in and around Australia, they have the
advantage of being familiar.

As editor of a scientific journal, I am much concerned with
ways to expedite an extensive correspondence, much of it
very routine. My efforts to devise effective procedures
recently culminated in the first version of a software
package that I call 'correspond'. It is composed for the
most part of a careful formulation of shell procedures that
use standard commands. My conclusion is that, if one
discounts 'nroff' for a moment, the standard UNIX tool-kit
is capable of solving all the relevant problems in a
satisfactory manner.

My other application is an annual one: for me, teaching
operating systems means also teaching C. A new language is
best learnt via at least one programming exercise - in this
case a suitable exercise is for a program that interacts
with its environment via system calls, especially 'fork' and
'exec'. My annual challenge comes from the need to assess
the resultlng programs. Each year I try to become more
cunning in setting the ground rules for the exercise, but
each year some new mutation of Murphy's Law appears. My
shell procedures have grown very elaborate; I use every
trick I know with 'awk', 'sed', 'grep', 'diff', etc. to try
an discipline the students' output for my test data. I have
concluded that, for this purpose, the standard UNIX tool-kit
is far from complete. in particular I need a file comparlson
routine that is far more sophisticated than 'diff' i.e. a
real expert system.




2.1 Drafting the AUUG constitution.

Recently I have been involved in drafting a constitution for
the Australian UNIX systems User Group. This was an
illuminating experience. I wonder how many of you have
noticed the similarities between such documents and computer
programs. A constitution is a program that is executed,

with variations, by many independent, sometimes cooperatlng,
sequential processors. The rules for exception handling are
particularly interesting: there are more defaults, with much
more interesting precedents, than any PL/1 programmer ever
dreamed of. I think both programmers and lawyers could gain
by exploring the common ground that can be found here.

2.2 AUUG

On August 27 the AUUG became a formally constituted society,
with a management committee of seven members and myself as
President. 1Its initial activities will be as before: to
publish a newsletter (six issues per year) and to hold
twice-yearly technical meetings. We shall be delighted to
welcome you all as subscribers to the newsletter and as
visitors to our meetings.

3. ACSNET

In a country as full of train-spotters as England, it should
not be necessary to explaln to many of you that, due to lack
of foresight by our pioneering forefathers, Australla still
has rallways built to three separate gauges, with all the
inconvenience and expense that that entails. However we are
hoping that history won't always repeat itself.

The analogue today of last century's battle of the gauges is
the 'battle of the protocols'. One jousting ground is the
world-wide community of UNIX users who wish to communicate
with each other. Our champion knight in these lists is
known variously as SUN or ACSnet. SUN (for Sydney UNIX
Network) is the technology, ACSnet (for Australian Computer
Science network) is one implementation of this, much in the
same way as USENET is one exploitation of UUCP.

Uucp has been one of Mike Lesk's greatest ideas. Initially
it allowed a UNIX machine with an automatic calling unit
(ACU) to communicate as required using the telephone network
with many other UNIX machines within Bell Laboratories. At
first, all communications were direct, and involved only the
source and destination machines. However, even within Bell
Labs, not every UNIX machine is blessed with its own ACU,
and occasions arose when two such machines were required to
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communicate. This could be arranged if a third, AcCU-
equipped machine participated in a two-stage transfer. From
there, the jump to multi-stage transfers along with
multipart destination names was easy.

One well-known problem with networks based on uucp is that
messages must be explicitly routed. This would not be so
bad except network topology can, and will, change almost
daily, and nodes may fail, or become congested or just plain
uncooperative.

In Australia, when we built our first UNIX network, starting
about 1979, things were entirely different from the Bell
Labs situation: ACUs were non-existent, connections were via
tie-lines, and each host was connected only to one or at
most a few other hosts. Multistage transfers were normal,
but multipart names were not. Only the final destination
had to be named in the message, with the network providing
the necessary routing information. Moreover single physical
channels were multiplexed into sets of virtual channels to
enable remote logins as well as file transfers over a single
tie line.

Recent developments to SUN version III include changes to
improve robustness, make proper use of full-duplex
connections and ACUs, give better support for mixed message
flows, and a more general scheme for naming hosts using the
concept of 'domains', which becomes almost mandatory once
the number of hosts grows beyond the ken of any single host.
The name/address couple 'name.host' may be generalised to
'name.host.domain' (or even more generally to
'name.host.domainl.domain2...domainN') when the host name is
not unique, or routing information for the domain, but not
for the particular host is known at the source machine. The
form 'name.host! may also be generalised to the form
'name.domain' if a name server exists for the domain.

Development of the SUN software is being undertaken by Piers
Lauder and Bob Kummerfeld of Sydney University. Development
of an X.25 interface that will provide virtual circuits for
use by ACSnet is being carried out by Robert Elz at
Melbourne University.

Recently Michael Rourke at the University of NSW has written
a program 'netpath' that will attempt to locate an optimal
path between any pair of hosts known in a database of UNIX-
machines worldwide that has been set up by Peter Ivanov. I
am now agitating for a program that will provide complete
ready-to-use mail addresses for my overseas correspondents
that are separated from me not by oceans but by wildly
diverse computer networks.




4. Non-DEC Hardware

One of the interesting new developments here is a growing
flight away from DEC hardware. New suppliers in the market
place with processors faster than the VAX 11/780 have opened
up interesting new avenues for consideration, and the
incentive to explore these has been helped along recently by
DEC's maintenance support.

4.1 The Monash Pyramids

Monash University in Melbourne bought two early models of
the Pyramid: they got a good price, and though they did not
plan to be, they have effectively functioned as a Beta-test
site. Since there is likely to be some interest in these
machines, I thought a brief summary of results reported by
Ken McDonell of Monash University at the recent AUUG meeting
might be of interest:

''The Pyramid architecture features a blend of novel RISC-
based ideas, bit-slice componentry and third-party input-
output subsystems. ... Pyramid's UNIX port (0Sx) is
innovative in that it attempts to provide concurrent support
for both AT & T's System V and Berkeley's 4.2BSD versions.
This ... relies upon an extension of the Berkeley symbolic
link concept ..."!

After some drawn-out, initial teething problems, Monash is
pleased with its Pyramids. There are still problems
inherent in the absence of VAX-dependent software, missing
utilities from the System V set, and limitations in
connecting peripherals to the i/o bus, which is not a true
Multibus as advertised. Much tuning and refinement remains
to be carried out, but will almost certainly improve the
present advantage of the Pyramid, which can be summarised as
''1.35 times the power of a VAX 11/780 for two-thirds the
price'’'.

4.2 Monash Bench-mark Suite

As part of their initial selection procedures, and part of
their ongoing effort to keep their supplier honest, Monash
University has developed an elaborate Benchmark Suite known
as 'MUSBUS'. As benchmarks are really only interesting to
the cognoscenti, it is not appropriate to dwell on this one
here, except to say that it exists, it attempts to assess
arithmetic capabilities, recursion, context switching,
interesting system calls including 'fork' and 'exec', memory
accessing, filesystem throughput and multi-user interference
effects. More information, if you are interested, can be
obtained from Ken McDonell.
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4.3 ELXSI Port

While the porting of UNIX to yet another computer system is
no longer particularly newsworthy, one such activity
currently being carried out in Sydney certainly interests
me, since it is being carried out by a small group that is
headed by one of my former students, Greg Rose, and that has
succeeded where another group (nameless) had failed. Here
the target machine is the ELXSI 6400, born in Silicon Valley
to a new breed of computer architects who think big:

1. It is a tightly coupled multiprocessor system, with
each processor rated at about 4 Mips (i.e. about four
VAX 11/780s). A fully expanded system contains ten
CPUs.

2. The system interconnection is via 128 bit wide bus
with a raw speed of 320 megabytes per second, and
usable speeds up in the 200 mbps range.

3. The basic architectural style is to use messages for
all communications between processes, processors and
hardware peripheral controllers. The speed of the
common bus is sufficiently high that contention for
its use is rare, so that interprocessor interference
is rare, and system power grows almost linearly as
processors are added (at least that is the claim: Greg
tells me that he believes it).

The ELXSI port is still at an early stage: the current C
compiler, without the second optimising pass, generates code
that shows the ELXSI to be 2-3 times the power of the VAX
(the optimising pass should increase its speed by at least
20%). Because UNIX is being built on top of the preexisting
ELXSI operating system, EMBOS, certain things are less than
perfect, particularly the 'fork' system call, which is still
too costly in time. Also, incremental dumps have proved a
problem since an entire UNIX file system is equated to a
single EMBOS file.

There are some advantages: two or more UNIX systems can
exist simultaneously within the one set of hardware (which
is certainly attractive to developers). Also the system
library is truly shareable, so that the code size for many
of the standard UNIX commands drops significantly.

There have been some difficulties with integers: the
hardware supports 64 bits nominally, but handles 32 bit
integers better in some situations. As things stand,
'short' translates to 16 bits, 'long' to 64 bits, and 'int!'
to 32 bits. I am told there are places in the system where
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it is assumed that while an 'int' may be either 'short' or
'long', it is expected to be one or the other.

The ELXSI port is 1nterest1ng, it does address the hlgh end
of the market. It is comparable with, but less expen51ve
than, the Cray 1 that Bell Labs Computlng Research is
buying. Melbourne University has now installed one and I
think you may hear more about the ELXSI 6400 in the future.

4.4 The First UNIX Port

I said earlier ''the porting of UNIX to yet another computer
system is no longer particularly newsworthy'' but there had
to be a first time. It may not be widely known, but in the
period 1976-77 there were two efforts in progress to port
UNIX from the PDPl11l to another machine. By coincidence the
target in each case was an Interdata machine. One of these
efforts is well-known, involved members of Bell
Laboratories, led to the development of Level Seven UNIX,

and was well reported in the 1978 special issue of the Bell
System Technical Journal.

The other effort was carried out at Wollongong University,
against great odds, by one person working almost without
assistance and few resources. Although Richard Miller has
now returned to his native Canada, we are proud to say that
this work was done in Australia and that we - particularly
Juris Reinfelds - can take some of the credit (or blame if
you prefer) for creating the conditions under which he
worked.

You may be interested to know that Richard has been
nominated for ACM's prestigious Grace Hopper award. The
result of the nomination will not be finally known until
next November, but if he is successful, it will be the first
time that the award has gone to someone other than an
American. I hope you will join me in keeping your fingers
crossed.

5. UNIX goes commercial

So far I have not said much about the commercial
exploitation of UNIX within Australia. It is happening but
it doesn't seem to have occurred at the same rate as
elsewhere. The Australian commercial community has tended
to stick to its guns and sales of traditional name-brand
mainframes have remained as strong as ever.

However this should change rapidly, since our universities
have for some time (misguidedly in the opinion of many) been
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turning out graduates well-acquainted with UNIX and almost
totally unacquainted with the likes of systems such as MVS.
There has always been a straightforward justification for
this: we could afford UNIX but not MVS. We have been
surprised that others did not reach the same conclusion soon
after we did.

There is now strong recruiting in Australia of graduates
with UNIX and C experience for overseas positions.

Moreover, since many of the students now crowding into our
Computer Science courses come from the near North (or if you
prefer, the far East), if you are interested in looking to
recruit such graduates you might do worse than look towards
Malaysia, for example.

5.1 Commercial Activities

As examples of current commercial activities, I might
mention just two items:

1. Time Office Computers in Sydney have embarked on an
ambitious project to build a distributed system
consisting of high performance workstations (up to
several hundred) communicating via Ethernet and
running UNIX as their basic software.

2. Qantas Airways has acquired a Pyramid 90x to develop
and support the sale of tour packages. Eventually
they hope to serve up to 80 operators world-wide. The
application uses the 'Unify' relational database
package and after six man-months and about 15,000
lines of C code they have completed about 80% of the
project. (This may be compared with the estimated 30
man-years expected for their more traditional
mainframe approach.)

5.2 A UNIX Software factory

While commercial exploitation of UNIX as a base for computer
applications may have been slow to start, activities in UNIX
systems development have been moving ahead. Greg Rose
(already mentioned in connection with the ELXSI port) has
been one of the principals of a small company called
Fawnray, that has already completed several successful ports
for IDRIS and UNIX.

His company has recently suddenly become much larger by the
infusion of substantial Government-backed venture capital.

The goal is to provide strong UNIX software systems backup

for many fledgling hardware companies forming in Australia.
Although you may groan '‘not another M68000 port!'', we



believe that it is important that proprietary rights to UNIX
software enhancements should be owned locally so that
Australian hardware companies will not be beholden to and
held to ransom by remote overseas companies, for whom
Australia is right off the edge of the map.

6. In conclusion ...

I feel bound to say that, in 1984, in Australia, the UNIX
system is alive, well and quietly humming along.
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ABSTRACT

As part of the research on distributed opera-
ting systems being done at the Vrije Universiteit,
we have implemented a set of network-oriented pro-
grams for use on several UNIX machines connected
by a high-speed token ring. With these tools it
is possible to transfer files between machines,
log in to remote machines, and implement mul-
timachine shell scripts. The transaction proto-
cols discussed in another paper at this EUUG
meeting are used to implement two basic services:
a "shell server" and a data transfer service.
Other services are easily implemented as shell
scripts that use these services. A file transfer
program, for instance, executes the command "to <
filel" on one machine, and "from > file2" on the
other machine. More examples of these facilities
and their implementation and performance are dis-
cussed in the paper.

1. Introduction

At our university we are developing a distributed operating
system called Amoeba[Tanenbaum8l] As a spin off from this
research, we have incorporated some of the Amoeba interfaces
into UNIX, and used these interfaces to build some applica-
tion programs for communicating between UNIX systems. These
tools include file transfer, remote execution and remote

*UNIX 1s a Trademark of Bell Laboratories.
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login. 1In this paper we describe the different layers into
which our implementation is divided, and the interfaces that
connect them, and discuss the performance of our implementa-
tion.

When we started this project we had 2 PDP11/44's run-
ning UNIX V7, 2 VAX 750's running Berkeley 4.1BSD and 8
Intel 8086's and 8 Motorola 68000's running Amoeba 1.0. As
Amoeba was designed to be a distributed system, we needed a
network.

Our network had to be fast, even under heavy load, so a
ring network seemed the best choice. After some study, we
chose ProNET. This is a 10 Mbit/sec star shaped ring
network with decentralized control and token arbitration,
supporting up to 255 hosts. It can send and receive packets
concurrently, do scatter/gather operations, has variable
length packets up to 2044 bytes, checks parity, and has a
primitive hardware acknowledgement bit. Pronet interfaces
exist for UNIBUS and MULTIBUS; both are used in our
machines.

Our desires, with respect to UNIX, were modest. We did
not want to make a distributed system, but only some capa-
bilities to do file transfer and remote execution. 1In
retrospect, we feel that we have achieved these objectives.

2. Network Interface

Network application programs need a mechanism to commmuni-
cate reliably. We have designed a network interface that is
simple to use, which uses a efficient, simple and fast pro-
tocol. We envision communication between two processes, one
is called the server and the other the client. A server
handles requests from clients. When the server has handled
the request it sends a reply back to the client; the sending
of a request to the server and a reply back to the client is
called a transaction*[Mullenders84]

The transaction primitives are:

typedef struct Mref (

char *M_oob;
char *M buf;
unsigned M len;

} Mref;

PDP, VAX and UNIBUS are registered trademarks of
Digital Equipment Corporation.

ProNET is a trademark of Proteon Associates, Inc.
MULTIBUS is a trademark of Intel, Inc.

*Not to be confused with the concept "atomic
transaction."
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The client, in order to do a transaction calls

trans(cap, req, rep):
Cap *cap; Mref *req, *rep;

The server receives requests and sends replies with

getreq(port, cap, req):
Port *port; Cap *cap; Mref #*req:;

putrep(rep) ;
Mref *rep:;

3. User Programs

And now the moment of truth: can the primitives we designed
be used to make useful programs? The basic things we want
are file transfer and remote execution. 1In this section we
will discuss some of the programs we have built; they ful-
filled our desires and are now among the most-used programs
on our UNIX systemns.

3.1. File Transfer

The first thing expected of a fast local network is fast
file transfer. We have made two simple programs to accom-
plish basic data transfer, requiring the user to be logged
in on both the machine producing the data, and the machine
consuming the data. Their syntax is:

from identifier
to identifier

To reads from standard input and from writes to standard
output. If the identifiers of to and from are the same, the
input data to to becomes the output data of from.

For example, when "to hamlet < /etc/passwd" is executed
on machine A, and "from hamlet > /etc/passwd" on B, the
password file of machine A is copied to the password file of
B. The same can be done with the execution of "rcp
A!/etc/passwd B!/etc/passwd," called at any machine on the
network; rcp will be treated in a later section.

3.2. Remote Login

As programmers are lazy, they do not like to walk from ter-
minal to terminal to work on different machines, especially
if the terminals are in different rooms, floors or buil-
dings. So a desire existed to be able to login onto any
computer from any terminal; therefore, we made our own ver-
sion of the cu command to call another UNIX system, except
that our version does not lose characters. The syntax is:




call machine-name

After calling this program you get a login message from the

remote machine, and you can login and work onto that machine
as if the terminal is connected directly to the new machine,
with one exception: lines beginning with a '~' are special.

Their meaning is as follows:

~.: switch back to local machine;
~!l: shell escape;

~~: send a '~' to the remote machine;

~%take from [(to]: copy file "from" to local machine;
~%put from [to]: copy file "from" to remote machine.

To execute call you will have to be logged in on some
machine. If you are not, you can login as "remote." Instead
of a shell you get a program that asks you for the machine
you want to login on, and then executes call.

So each terminal is effectively connected to each
machine. At the moment, if you inspect what each user is
doing in our department, you will notice that half of them
are executing call. It is useful because most of our
machines are dedicated to one or two specific projects, and
most of the faculty members are working on projects on dif-
ferent machines.

3.3. Remote execution

Many times you just want to execute a simple command at a
remote machine without going to the trouble of logging in;
e.dg., you want to know if you are still in the top 10 of
your favourite game on a certain machine, and if you are not
you will have to login on this machine to fight for your
place. Commands are executed on a remote machine with:

rsh machine command

The output of the command is defaulted to the user's ter-
minal, but can be redirected in the usual way, the input
comes from "/dev/null." For example, "rsh A who" will give
you a listing of the person's who are logged in on machine
A,

It is now possible to run your programs on multiple
machines. For example, if you want to run an negn/nroff job,
you could run it on two machines as follows:

(negn file | to format)s&
rsh machine "from format | nroff -ms" > out

The nroff output is redirected to the file "out" on the

local machine. If you want to direct input to the remote
command, and split standard output and error output, you
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could do something like this:

rsh machine "from input | command | to output" >&2 &
from outputé&
to input

This means: execute command at the remote machine, with
input from the process "from input" and output to "to out-
put." Locally a "from output" is started in the background
to catch the standard output of the command; the standard
input is sent to the remote machine with "to input." The
error output is done by the rsh process. If you put all
this in a shell script, you can execute a command as if it
runs locally. 1In the special case that this command is "sh
-i," you can almost work on the remote machine as if logged
in there.

3.4. Other Useful Programs

Out of the basic elements of file transfer and remote execu-
tion many interesting programs can be built. In this sec-
tion we will discuss the programs used most on our machines;
all these programs are shell scripts. Many of these scripts
call to and from, which need a unique identifier as
argument; for this purpose, the program unigport outputs a
random string of printable characters, to used as argument
to from or to. The presented implementations of the pro-
grams are slightly simplified.

For file transfer it is a nuisance to have to login on
two machines; therefore, we made a shell script called rcp
which transfers files from any place in the network to any
other place. Its syntax is:

rcp [machinel!]filel [machine2!]file2

This will transfer the first file to the second. One can
leave out the machine part if the file is on the local
machine. An implementation, in which the machine parts are
non-optional, could be:

IFS=! port='uniqgport'
(set $1; rsh $1 "cat $2 | to S$port")&
(set $2; rsh $1 "from $port | cat > $2")

A program related to rcp is rcat, with syntax:

rcat [-] [machine!]file ...
and obvious meaning.

An implementation of this command, with exactly one
file argument, could be:
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IFs=!

set $1
case S$f in
1) cat $1 ;;

2) rsh $1 cat $2 ;;
*) echo "Usage: $0 [machine!]file" >&2 ;;
esac

Here is another thing about programmers: they are nosy.
They want to know where their fellow-programmers are logged
onto, and what they are doing. For this purpose we created
the programs rwho and rw, which give information about the
whereabouts and actions of all person logged in on any
machine.

In our department we have several different printers
attached to several different machines. Some produce ugly
output fast, others produce pretty output slowly. It would
be nice to prlnt a file on an approprlate printer, indepen-
dent of the machine the printer is attached to, or the sys-
tem the file is on. With the program rpr you can do the
same as with lpr, but with the advantages of location
independence:

rpr printer [file ...]
Its implementation, in a configuration having two printers
on the machine called "tjalk" and one on the machine "klip-
per," is:

case S$printer in
tjalk) mac=tjalk com=1lpr ;;

pnds) mac=tjalk com=opr ;;

klipper) mac=klipper com=lpr ;;

*) echo "$0: unknown printer" >&2; exit 1 ;;
esac

port='unigport'

rsh $mac "from $port | Scom" &
shift

pr -t $@ | to $port ;;

Each shell script was written in 1 to 15 minutes; the
basic elements of our network utilities (from, to and rsh)
have proved their strength.

3.5. Implementation

Now having described the communication programs and the
shell scripts we have built with them, we will discuss how
from, to, rsh and call are implemented; in particular, we
will take a look at the servers needed. All these programs
use transactions as communication mechanism.

63




The implementation of from and to is simple: from acts
as a server waiting for request to output data to standard
output, to acts as a client doing transactions requesting
the from process to output the data to has read. The port
used in the transaction header is just the identifier given
as argument to to and from.

To execute a command on a remote machine, a server is
needed that awaits a request and executes it when one
arrives. The rsh command is nothing but a client process
doing a transaction with this server, requesting a command
to be executed, and awaiting a reply saying the command has
been executed. The servers on the different machines listen
to different ports; given a machine's name, rsh knows the
port to use*.

For remote login one also needs a server. Although the
server for remote execution could be used for this purpose
too, a new one is made. A simple-minded implementation of
call could be the following:

rsh machine "from input | sh -i" &
to input

The problem here is that the remote shell has pipes for
input and output; for example, you can not do ioctl's, or
send signals along pipes. Therefore, we installed a device
driver implementing a "pseudo terminal." The job of the
remote login server is to manage these pseudo terminals.

A pseudo terminal really consists of two devices: a
master and a slave device. The master device can be opened
by a process simulating the terminal by writing to it for
terminal input, or reading from it for terminal output; the
slave device just looks like a terminal device to UNIX. The
master device is called "/dev/ptyxx," and the slave device
"/dev/ttyXX." The slave device is put in "/etc/ttys" as the
other terminals are, so a getty process can manage it. The
master device has two processes driving it: the first wri-
ting to it simulating the pseudo-keyboard, and the second
reading from it simulating the pseudo-printer. These pro-
cesses are just from and to, so that the pseudo terminal can
be controlled at the local machine. All the remote login
server does when it gets a request, is pick a free pseudo
terminal and start the from and to processes.

The client process call sends a message to the server
requesting for a pseudo terminal, sets the local terminal in
RAW mode, and starts a from and a to. The from catches the
output from the pseudo terminal, and the to will send its
input to the pseudo terminal. Call just copies its input to

*The port is a function of the machine's name.
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the to process via a pipe, except for the lines beginning
with a '~', for which it must do some local processing.

As an example of how this mechanism works, we will con-
sider what happens when the user types a DEL character, with
the intention to generate an interrupt at the remote
machine. First, the DEL is read by the local terminal
driver, but because it is working in RAW mode, it just
passes the character to the reader: the call process. Call
outputs it in the pipe, giving the DEL to the to process,
which sends it to the remote from process; from writes it to
the controlling site of the pseudo terminal device. Now the
DEL character is treated as if the pseudo terminal was an
ordinary terminal where a DEL was typed in: an interrupt is
sent to all the processes belonging to the process group of
this terminal.

Although the characters typed in when executing call
pass through a pipe, are sent to and echoed by the remote
machine, and thus sent over the network twice, they are sent
back to the terminal fast enough to see only a delay in the
exceptional case of a lost packet, when the corresponding
character has to be retransmitted. All the network programs
are fast enough to work with, even by impatient programmers;
but their success is mostly because of the simplicity of
usage.

4. Performance

In this section we will give some performance figures for
the rates we achieve using from and to. They were measured
during the middle of the day, i.e., many persons were logged
in, of whom some were working. Running the tests on a
single user system sometimes doubles the data rate, but
these figures are not of any importance, since in practice
the systems are always multiuser. On the other hand, the
performance drops fast if the systems are heavily used. The
rates, as shown in Fig. 1, are not bad compared to most
other systems.

VAX 750 PDP 11/44
VAX 750 25,000 15,000
PDP 11/44 15,000 10,000

Fig.l1. Data transfer rates in bytes per
second over ProNET from user process to user
process. The VAX's run 4.1BSD, and the PDP's
V7. The buffer size is 512 bytes.

When we made the buffer size 2048 bytes on the VAX's, we
achieved a data rate of 90,000 bytes per second (without
file I/0). Unfortunately we could not use this size in
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general as we could not enlarge the buffer size on the
PDP's.

As it does not matter where you run the network
software, you may also run from and to on the same machine.
The rates we achieve now are in Fig. 2. As these rates are
the same as when running from and to locally, we may con-
clude that ProNET is not the bottleneck, but either the pro-
tocol or UNIX. Since our protocol is light weight, it must
be UNIX. Indeed, when we look at where the most time is
spent, it is in copying the user buffer to a kernel buffer,
and in setting the timers.

VAX 750 PDP 11/44
25,000 10,000

Fig.2. Local rates. From and to both run on
the same machine, and do not use ProNET.
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SNDAWK - A SIGNAL PROCESSING LANGUAGE
Den Timis

1. R.C. A M. 31, ruesSt. Merri, 75004 Paris.
( mevax ! ircam ! timis )

ABSTRACT

Signal processing and sound synthesis with the UNIX system
often use pipelines of programs that perform specific treatments
such as filtering, changing the sampling rate or the gain, etc. on
binary floating point samples. Users who want to use their own
algorithms must spend, for even a very simple treatement, time
and energy to write, compile and test a program in C or FORTRAN.

sndowk (sound awk) provides a signal processing program-
ming language that is simple to learn and easy to use. Inspired by
the well known pattern scanning and processing language auk!, it
follows much of its syntax as it includes much of the syntax of C2.

1. Why sndawk ?

There are essentially two kind of sounds to process: recorded sounds (often
natural sounds) or synthesized ones. Recording sounds with a computer means
converting an analog signal into a digital one and storing the samples in a sound
file. In order to play a sound, one must convert the samples of a sound file into
an analog signal.

Programs which synthesize sounds can write samples on a pipe or store
them in a sound file. We can think of the following scheme:

record sound
command file

sound sound play
processing file command

sound synthesis
program

fig. 1 -Sound processing chain
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At LRICA 81 we use a real time sound file system, csound®, and many pro-
gramss performing standard sighal processing algorithms on binary floating point
samples, written at CAHLY.

In order to read a sound file, to apply a gain to the samples and to store the
result on another sound file, one must type the command line:

sndin foo | gain - 8dB | sndout bar

Programs like gain, filter, reverb, etc. are written in C and are easy to use.
When processing a very large amount of samples, the user can put the command
in the background and, in the meantime, do something else.

Applying a non-slandard algorilthm using Lhe C language means:
< writing the program (or modifying an already existing one),
< compiling,
= besting,

e arnd finally renning Lhe program.

This could be a good solution if we would like to use the program many
times. Otherwise, an interpreted language, with the program written in the com-
mand line (like awk), is a better solution. One could apply a gain using the com-
mand:

madin feo | btoa | awk '{print $1 *0.5]" | atob | sndout bar

where btoa (binary to arabic) converts binary floating point samples into arabic
numbers (as text), and atob converts arabic to binary. Of course, a pipeline with
a lot of conversions plus an interpreted program processing text, cannot be very
fast. But to type such a command line for a non-standard algorithm, and to wait
the result, is very often much faster than writing, compiling, etc., a program in
C. S

The syntax of auk is not well adapted to signal processing and the use of
text instead of binary floating point could not provide satisfactory speed in exe-
cution. A command line like:

sndin foo | sndawk ‘print $ * - 6dB’ | sndout bar

is a better solution (of course, assuming the algorithm used is not standard and
there is no other already existing program performing it).

tInstitut de Recherche et Coordination Acoustique /Musique
$Computer Audio Research Laboratory (UCSD)




2. Usage, structure and syntax

sndowk will read binary samples when its standard input is a file or pipe,
and text when the input is a tty, the output following the same rule. Like its
model awk, the program can be written as an argument in the command line or

in a file:
sndawk - fike

Pattern matching on binary samples is much less meaningful than on text.
While qwk searches files or standard input for patterns and performs actions
upon lines or fields of lines, sndawk simply performs specified actions upon
binary floating point samples present on standard input. So the program struc-
ture:

paitern { action }
pattern | action | ...

of xwk becomes:

action
action ...

for sndmwk (braces become useless).

Actions (or statements) will be applied on each input sample (or group of
inpul samples). The special pallerns BEGIN and END will allow caplure of Lhe
control before and after any input sample is present on the standard input.
These are optional, therefore the grammar is:

<Program> ::= <BEGIN section>
<statement section> (or main loop)
<END section>»

<BEGIN section> = BEGIN <statement> |
empty

<statement section> = <stafement list> |
empty

<END section> ‘= END <statement> |
emply

<statement> = "a Clike statement”

fig. 2 - sndowk grammar

Flow-of-control statements il-else, while, for, and statement grouping
between braces, as in C, are provided. Statements are separated by semicolons,
newlines or right braces. The auk-like statements print and printf will
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respectively piat binary floating point values (when output is not a tty) or text on
the standard output. Thus:

print! "XM\n" $+ 1

will force text to be written on the standard output, even if it is a file or pipe. A
file can be written or appended using the > or the >> notation. Other UNIX com-
mands or CARL programs can be called. Thus:

print $ | "sndout foo"
will write samples in the csound file foo.

3. Variables and expressions

Expressions are similar to those used in C. Arithmetic operators including
% (modulo) and ~ (power), relational and logical operators together with opera-
tors ++, —, +=, -=, etc. can be used in expression lists, multiple assignments and
can be grouped with parentheses. Arrays and simple variables need not to be
declared and are initialized to 0. There is only one type: 32-bit floating point.
Even relational expression are floating point therefore given:

x=ac<hb;

x will be 1.0 or 0.0 according to the value of the relational expression (true or
false). Many functions of the mathematical library are provided:

fabe, Beor, ceil, exp, log, lag1D, sin, cos, tan, asin, acos, atan.

Some special variables like SR (sampling rate - default 16000 sample per
secorﬁr_g. NS (number of the current sample - incremented automatically) and
™ (&%

—— time in seconds) can be used.

Arrays are considered to be sampled functions so interpolation or extrapo-
lation are used when addressing them. A special variable (IP) can be used lo
choose the degree of the polynomial interpolation {(default linear). Of course,
interpolation is not used when an array element is the left value of an assign-
ment. While a[2.25] = 0.5; (equivalent to a[2] = 0.5;) will be accepted, a[-10] = 1;
will produce an error. Statements like print a[2.25]; or print a[-10]; are correct
and sensible. Thus with:

IP=25;

a[0] = O;
af1] = 1;
a[2] = 0.5;
a[3] = 0.25;
a[4] = 0.125;
a[5] = 0;

we could think of the following envelope function:




1.0

0.5

0.D T T T T e
0.0 1.0 2.0 3.0 4.0 50

fig. 3 - An envelope Tunctian

Some post-operators are provided. Thus -8dB will be 0.501187, 2sec will
mean 32000 {with SR = 16000) and one could write print sin{100Hz);.

(ezpr)K = 1024 x (ezpr)

(expr )k = 1000 x (expr)
(szpr)

(ezpr)dB= 10 *

(expr)sec = SR X (expr)

(ezpr ¥z = 2LNE x (cacpr)

|

fig. 4 - Post-operators
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4. Input and wetput

Bf course some would like to use a filter:

input y(n) output

y(n-1)

- y(n-2)

ete.

fig. 5- Afilter

and would want to keep some of the input and output samples. Others would like
toprocess multi-channel sounds (stereo, quadrophonic, etc.):

loop

mpul Jiepldice di1ca OCn}--joc2—oc pouput |

fig 8. Multi-chamnel processing

and will want to read and write more than one sample each time the main loop
is executed.

Two multi-channel delay lines, one for the input the other for the output are
provided. Special variables can set, in the BEGIN section of the program, the
length and number of channels for input and output. ID is the length of the
inpl)lt delay (OD for output) and IC is the number of input channels (O€C for out-
put).

The current sample is indexed by 0 and the first channel is indexed by 1.
The default is no delay {only current input and output samples) and one chan-
nel. The input is denoted ¥{deluy:channel] and the output &[delay:channel]
Thus ${1:2] means the previous group of input samples, channel 2. When the
expression for delay, for channel or both are missing, the respective default
value is taken. Thus 8 is equivalent to ${0:1] &[:2] to &[0:2] and $[1:] to $[1:1].



input [03]-%[1)22_‘, $[0:1] F[D:n] [0:2]+[0:1] output
k[lm}—' [12}—1 8 1:1 ] (1n

2] [1:1]

[}
—
>

|t

—
x

[AY]

oo
A
FY)

—

[2‘1’1}4-] 22 EZ-I—J}-— [2n

L] 4

etc. etc. etlc. etc. etc. etc.

fig. 7 - #hdli-channe] inpal and oulpul delay lines

5. Design and smplemenlation

The lexical analysis of the program is performed by lex. The syntactic
analysis is done by an syntactic analyzer generator of the author's design. The
program is translated into a tree which is directly interpreted.

After executing the B section, the special variables IC, ID, OC and OD
are consulted and the mput and output delay lines are built. A number (equal to
IC) of samples are read, then after one execution of the statement section, if
there was no primt or printf statement; output samples are written Before
repeating the cycle, delay lines, which are circular lists, are rotated. Users
must specify which value is to be assigned to the current output and can use
either the print/prntf statement or the default output.

The functions getWoat]) and putfloat(), from the procom* library are used
to read and to write samples, providing full compatibility with other CARL pro-
grams.

Tree execution i1s not very fast for the large amount of data required by
sound processing but the conciseness of the language and the absence of the
compiling phase make it very comfortable to use. A simple test for speed shows
that if a C program is faster than an equivalent sndawk one, awk is much slower.
The test was made for the following command lines:
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gain 2 < datal > data2
andawk ‘& =$*2' <datal > data2
amk "{ print $1*2 " < textl > text2

datal contained 16000 floating point samples and textl, 16000 numbers, one

nurnber per line with no space.
real user sys
Sain 8.0 1.8 D.?
sndamk | 1B.0 11.0 1.1
awk 4:230 | 1:4869 | 8.1

fig. 8 Speed test

Some simple examples of programs are given in the appendix.
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WIPULSE, RESPONSE FOR A FILTER

fmpulse 100 | sndawk BEGINOD=2, & =8+ 99*& [ 1:]-9*&[R:]

STERED TO MOND

BEGINIC=2, &= 2*8+ .B*3[:2]

REVERB
BEGIN { SR = 3200D; ID = 0.53ec; }
&=05*83+0.1*3[03sec: |+ 0.05*3 [ 0.5sec: ]
FREQUENCY MODULATION

print sin (( 200 + 10 *sin ( 5Hz )) Hz)

¥ELODY

BEGIN |
do = 281.82;
re = 293.686;
mi = 329.62;
dur = 0.B;

!
if ( TM < dur ) print sin ( do Hz );
else if ( TM < 2 * dur ) print sin ( re Hz );
else if {( T® < 3 * dur ) print sin ( mi Hz ):
else print sin ( do Hz );
APPLY ENVELOPE

BEGIN |

— o
RS
H<

Yooccoro

print § * env [ TM / totaldur * maxenv |;

75







Published by the European UNIX® Systems User Group,
Owles Hall, Buntingford, Herts SG9 9PL_.
Tel: Royston (0763) 73039.







