European UNIX © systems User Group

CONFERENCE PROCEEDINGS

Trinity College, Dublin, IRELAND

SEPTEMBER 1987

EUUG

European UNIX! systems User Group

AUTUMN 87

CONFERENCE PROCEEDINGS

Trinity College, Dublin, IRELAND

September 21-25 1987

1UNIX is a registered

trademark of AT&T in the United States of America and other countries

UNIX

Conferences in Europe 1977-1987

1977 May

1977 September
1978 January
1978 Scptember
1978 November
1979 March

1979 October
1980 March 24th

1980 March 31st
1980 September

UKUUG/NLUUG meetings

Glasgow University

University of Salford

Heriot Watt University, Edinburgh
Essex University

Dutch Meeting at Vrije University, Amsterdam
University of Kent, Canterbury
Brian Kernighan and Ken Thompson
University of Newcastle

Vrije University, Amsterdam

Steve Johnson

Heriot Watt University, Edinburgh
University College, London

1981 April

1981 September
1982 April
1982 September
1983 April
1983 September
1984 April
1984 Scptember
1985 April
1985 September
1986 April
1986 September
1987 May

EUUG Mecetings

CWI, Amsterdam, The Netherlands
Dennis Ritchie

Nottingham University, UK

CNAM, Paris, France

University of Leeds, UK

Wissenschaft Zentrum, Bonn, Germany
Trinity College, Dublin, Ireland
University of Nijmegen, The Netherlands
University of Cambridge, UK

Palais des Congres, Paris, France

Bella Center, Copenhagen, Denmark
Centro Affari/Centro Congressi, Florence, Italy
UMIST, Manchester, UK
Helsinki/Stockholm, Finland/Sweden

EUUG Secretariat
Owles Hall
Buntingford

Herts SG9 9PL
United Kingdom
+353 763 73039

This volume is published as a collective work. Copyright of the material in this document remains with the
individual authors. Further copies of these proceedings may be obtained from:

euug@inset. UUCP

Many people have cony
but the following deserve s
the production of this volu
Michel Gien, of Chorus SY|

Many thanks also to m|
organise this conference.

These proceedings have]
in particular I would like to
assistance.

And of course, thanks Y

Finally it is appropriate
programme. It is always
increases. In many cases, t
topics addressed were not aj
submit their papers again fq

ACKNOWLEDGEMENTS

ibuted to the production of this volume. It is not possible to thank them all individually,
pecial note. Hugh Grant, of the School of Mathematics, Trinity College, who helped with
me. 2 Timothy Murphy, also of the School of Mathematics, who was the local organiser.
STEMES who was on the program committee chaired by myself, Simon Kenyon.

y employers, ICL — Information Technology Centre, Dublin; who gave me the time to

been produced with the help of the School of Mathematics, Trinity College, Dublin. and
thank Prof. John Miller, Prof. David Simms and Dr. Richard Timoney for their invaluable

b all the authors who submitted their paper in time. 3
to thank the many authors who submitted very good papers, but were not selected for this

¢ reason for rejection was not that the paper was in any way below standard; rather that the
propriate for the material planned for this conference. Such authors should, if appropriate,
br the next EUUG conference in London.

viry difficult to perform the selection, and it is becoming more so as the quality of papers

Zevenifhiskeyboardhasabroken
3Some people will be appalled|
to divulge.

pacebar
to leamn that some of the papers werc converied from troff to ISTX. The exact mode of production is too horrific

9.30

10.00

10.30

11.00

11.30

12.00

12.30

13.00

13.30

14.00

14.30

15.00

15.30

16.00

16.30

17.00

TIMETABLE

Wednesday Thursday Friday
WELCOME
Solange Karsenty Allan Milne Lori Grob

A Framework for
Man Machine Interfaces Design

The Analysis and Manipulation
of BNF Definitions

Automatic Exploitation of Concurrency
in C, Is it really so hard?

Coffee/Tea Coffee/Tea Coffee/Tea
Mike O’Dell Barry Lynch Stuart Borthwick
What They Don’t Tell You Uncle — A Case Study in Constructing An Intelligent,
About Window Systems Tools for the PCTE Window Based Interface To UNIX
Christoph Senft Bart Locanthi

A Distributed Design Environmemt
for Distributed Realtime Systems

Chris Crampton
Musk
— A Multi User Sketch Program

Dominico Talia
NERECO : An Environment for the
Development of Distributed Software

Fast bitbltQ) with asm() and cpp

Lunch

Lunch

Lunch

Dan Klein
UBOAT — A UNIX Based On-line
Aid to Tutorials

Michel Ricard
A Knowledge Based CAD System
in Architecture on UNIX

Stephen Beer
DES — Support for the Graphical
Design of Software

Seamus Keamney
Developing ADA Software using VDM
in an Object-Oriented Framework

Roger Bivand
A User Interface for Geographers —
What can UNIX offer?

Chris Chedgey
Papillon — Support Tools for the
Development of Graphical Software

Mike O’Dell
The HUB : A Lightweight
Object Substrate

David Tilbrook
Cleaning up UNIX Source,
or Bringing Discipline to Anarchy

Coffee/Tea

Coffee/Tea

Coffee/Tea

Gerritt van der Veer

Mark Abdelnour

Experiments with the User Interface Graphical User Interfaces on
for UNIX Mail Multiuser Systems
Neil Groundwater Mike Hawley
A SunView User-Interface for More MIDI Software for UNIX

Authoring and Accessing a
Medical Knowledge Base

EUUG
Business Meeting

GOODBYE

Table of Contents

A Framework for Man Machine Interfaces Design, 1
Michel Beaudouin-Lafon, Solange Karsenty

What They Don’t Tell You About Window Systems, 11
Mike O’Dell

Musk — a Multi User Sketch Program, 17
Chris Crampton

UBOAT — A Unix Based On-line Aid to Tutorials, 31
Dan Klein

Developing Ada 4 Software using VDM in an Object-Oriented Framework, 41

Chris Chedgey, Seamus Kearney, Hans-Jilrgen Kugler

Papillon — Support Tools for the Development of Graphical Software, 59
Chris Chedgey

Experiments with the User Interface for UNIX Mail, 73
Peter Innocent, Gerrit van der Veer, Yvonne Waern

A SunView User-Interface for Authoring and Accessing a Medical Knowledge Base, 93
Neil Groundwater, Neil Bodick, Andre Marquis

The Analysis and Manipulation of BNF Definitions, 105
Allan Milne

Uncle - A Case Study in Constructing Tools for the PCTE, 123
Hans-Jilrgen Kugler, Barry Lynch

A Distributed Design Environment for Distributed Realtime Systems, 131
Christoph Senft

NERECO : An Environment for the Development of Distributed Software, 153
Giandomenico Spezzano, Domenico Talia, Marco Vanneschi

A Knowledge Based CAD System in Architecture on UNIX, 169
E. Chouraqui, D. Dugerdil, P. Francois, S. Hanrot, P. Quintrand, M. Ricard, J. Zoller

A User Interface for Geographers — What can UNIX offer? 183
Roger Bivand

The HUB : A Lightweight Object Substrate, 191
Mike O’Dell

Graphical User Interfaces on Multiuser Systems,
Mark Abdelnour

More MIDI Software for UNIX,
Mike Hawley

Automatic Exploitation of Concurrency in C, Is it really so hard?
Lori Grob

An Intelligent, Window Based Interface to UNIX,
Stuart Borthwick, John Nicol, Gordon Blair

Fast bitblt() with asm() and cpp,
Bart Locanthi

DES — Support for the Graphical Design of Software,
Stephen Beer, Ray Welland, Ian Sommerville

Cleaning Up UNIX Source, or Bringing Discipline to Anarchy,
David Tilbrook, Zalman Stern

201

209

225

243

261

275

SPEAKERS’ ADDRESSES

Mark Abdelnour

NCR Corporation

Engincering and Manufacturing
3325 Platt Springs Road

West Columbia

South Carolina 29169

USA

+1 803 796 9250
abdel@ncrcae.Columbia. NCR.COM

Stuart Borthwick
Department of Computing
University of Lancaster
Lancaster

England

stuart@dcl-cs. UUCP

Lori S. Grob

Courant Institute (NYU)
251 Mercer Street

New York

New York 10012

USA

+1 212 460 7326
grob@cmcl2.nyu.edu

Solange Karsenty

Laboratoire de Recherche en Informatique
Universite de Paris-Sud - Bat. 490

91405 Orsay Cedex

France

so@lri.Iri.fr

Barry Lynch

Generics (Software) Limited
7 Leopardstown Office Park
Foxrock

Dublin 18

Ireland

+353 1 954012
lynch@genrix.UUCP

Stephen Beer

Software Technology Research Group
Department of Computer Science

Livingstone Tower
University of Strathclyde
Glasgow G1 1XW
Scotland

+44 41 552 4400 ext 3390
stephen@cs.strath.ac.uk

Chris Chedgey

Generics (Software) Limited
7 Leopardstown Office Park
Foxrock

Dublin 18

Ireland

4353 1 954012
chedgey@genrix.UUCP

Neil Groundwater

Sun Microsystems, Inc.
8219 Leesburg Pike # 700
Vienna

Virginia 22170

USA

+1 703 883 0444
npg%sundc@sun.com

Daniel V. Klein

Software Engineering Institute
Carnegie-Mellon University
Pittsburgh

PA 15213

USA

+1 412 268 7791
dvk@sei.cmu.edu

Allan C. Milne
Dundee College of technology

Dept. of Maths & Computer Studies

Bell Street,

Dundee

DD1 1HG

Scotland

+44 382 27225 ext 299

Roger Bivand
Hggskolesenteret i Nordland
P.O. Box 6003

N-8016 Markved

Norway

+47 81 17 457

Chris M. Crampton

Human Computer Interaction Section

Informatics Division

Rutherford Appleton Laboratory

Chilton

Didcot

Oxon OX11 0QX
England

+44 235 21900 ext 6746
cme@vd.rl.ac.uk

Mike Hawley

Next Inc.

3475 Deer Creek Road
Palo Alto

CA 94304

+1 415 424 0200

mike@ media-lab.mit.edu

Seamus Kearney

Generics (Software) Limited
7 Leopardstown Office Park
Foxrock

Dublin 18

Ireland

+353 1 954012
kearney@genrix. UUCP

Mike O'Dell

MAXIM Technologies, Inc.
8618 Westwood Center Drive
Vienna

VA 22180

USA

+1 703 893 3660
mo@maximo.UUCP

M. Ricard Christoph Senft

GRTC/CNRS, Institut fuer Technische Informatik

31, Chemin Joseph Aiguier Technische Universitact Wien

13402 MARSEILLE Gusshausstrasse 30

Cedex 9 A-1040 Vienna

France Austria

+33 91 22 40 00 +43 222 588 01
senft@vmars.UUCP

Gerrit van der Veer

Subfaculteit der Psychologie

en Pedagogische Wetenschappen
Vakgroep Funktieleer en Methodenleer
Vrije Universiteit

Postbus 7161

1007 MC Amsterdam

The Netherlands

+31 20 548 3868

Domenica Talia
CRAI

Localita S. Stefano
87036 Rende (C.S.)
Italy

+39 984 833255
dot%crai@i2unix

A FRAMEWORK FOR MAN MACHINE INTERFACES DESIGN

Michel Beaudouin-Lafon and Solange Karsenty
Laboratoire de Recherche en Informatique - UA 410 du CNRS
Université dc Paris-Sud - Bat. 490

91405 Orsay Cedex - France

Tel : (1) 69 41 66 29

e-mail : mbl@sunl.lri.fr so@Iri.Iri.fr

Abstract

I With the increasing importance of man-machine interfaces appears the lack of tools for the
construction of user interfaces. Some principles are coming out, such as the separation of the
interface from the application, and allow us to start designing environments for their
construction. To facilitate their construction means to design fast, to modify easily and
eventually to reuse. On the user side, the interface should be dynamically adaptable to his
taste and experience.

Towards such interfaces, we propose an environment built upon two tools : Graffiti and
MetaGraph. The first one allows for interactive construction of the control structure of the
interface, while the second one establishes a relation between the program data and the
interface. This correspondance of high level abstractions will extend the functionalities of the
interface by reducing graphic manipulations in the application.

Keywords : construction of man machine interfaces, interaction, object oriented system,
flexibility.

1 - Introduction

Man machine interfaces (MMI) are now considered as a real part of sofware engineering.
The lack of tools, and first of all the lack of abstractions, to design MMI prove that this area
requires more experimentations. The complexity of the MMI problems is due to the fact that
human factors and programming factors are closely dependent.

We propose a model for the design of man machine interfaces. Our aims are :

e separation of the interface from the application
e casy reconfiguration of the interface
¢ handling of standard functions such as selection, cut, copy, paste

Separating the interface from the application has many advantages : for the implementation,
and for the reusability of the interface. Reconfiguration leads to more flexible interfaces in
order to adapt dynamically the interface to the user, and not the reverse as it is most of the
time. Separation and reconfiguration are also useful to build homogeneous interfaces to
different applications, or to upgrade an interface to different kinds of users.

The separation between the interface and its application can be easily achieved, as long as the
interface does not directly manipulate objects belonging to the application. Some functions
such as selection, are often part of an application. They involve both a specific interaction
and a specific action on the objects of the application. Integrating such functions in the
interface requires the definition of a protocol with the application. We show that such a
protocol can be very flexible as it does not constraint the actions to be performed by the
interface or by the application, but rather describes how these actions take place.

The overall structure of the system is composed of the application, which is accessed by the
interface through a set of entry points. The interface itself is made of a control manager and
a data manager. The control manager is generated with Graffiti : it defines a set of objects
such as windows, menus, icons and other interactive objects, to control the application. It
also processes the input devices and sends them to the application or to the data manager, by
means of a mapping between input events and entry points. The data manager is generated
with MetaGraph : it defines a data representation model, such as lists, trees, graphs, and the
mapping between this representation and the application data.

Both Graffiti and MetaGraph are interactive. This means that the control objects and the
representation model are described through graphic editors. A part of these editors can be
included in the generated interface to provide dynamic modification of the interface by the
end user. These tools are built upon UFO, an object oriented system especially adapted to
graphic interfaces and manipulation of graphical objects.

2 - An object oriented architecture

Several works have been done to provide high level tools to manipulate and build interfaces
[Hanusa83, Hayes85]. Our goal is to build an environment of tools, commonly named a
UIMS (User Interface Management System) [Kasik82], providing a variety of style of
dialogue and a standard protocol between the interface and several kind of applications.

Each interface has two sides : one to the user and the other to the system to be interfaced.
Both need to be adaptable. The user wants to adapt the interface dynamically to his taste and
knowledge, and the connections between the interface and the program need to be easily and
dynamically changed. The object oriented approach [Goldberg83] with the message passing
mechanism is well-suited to provide such a scheme (figure 1) : it provides high level
abstractions to define the protocols between the different components. The hierarchy of
classes corresponds to a taxonomy of graphical objects [Barth86]. The consequence of this
approach is that any interface of this kind could be re-usable for other programs.

2.1 - Some typical points
Interaction

Programming MMI is often closely related to graphical programming. There is today no
programming language really adapted to graphics. What we want is to provide the designer
the ability to perform actions such as drawing a rectangle as fast as you say it : we mean
interactively. The MMI designer works usually with a finite set of graphic objects to be
created, displayed, deleted and so on... Allowing these operations to be interactive means

screen

- Figure 1 -

that we propose a new way of programming : visual programming. The power of such a
language is of course limited, but completely dedicated to MMI design.

In the MMI area, prototyping is essential for the quality of the interfaces. Their development
is so long and so hard that no one would think of testing the interaction with the user, once it
is done. Giving a specific way of designing MMI that allows easy prototyping will
contribute to the development of more powerful, homogeneous and consistent interfaces.
Finally, the benefit will go to the most concerned person : namely the user.

what kind of MMI ?

The interfaces we are dealing with are composed of graphic interactive objects such as icons,
menus, windows, scroll-bars, buttons. Some of these objects are commonly included in a
"toolbox" yet this is not a standard fact. The toolbox belongs to a specific machine while our
system offers an extensible set of graphic objects. These objects can be activated in many
different ways.

The dialog with the user has many levels. The activations of the different objects named
above, through keyboard sequences or mostly mouse clicks, bring more or less explicit
answers to the user. Sometimes it is just a graphic signal, sometimes it is a full text message.
This feedback depends on the user's knowledge. That is why we want MMI to be as much
as possible adaptive to provide a large range of styles of interaction.

Intended applications

Lots of application needs a MMI. We don't pretend to give a universal tool but we think that
our system will be useful and efficient in most cases. The part (Graffiti) that deals with
objects belonging to the interface is really application independant. More power to the
interface means more complexity and involves coordination with the application. This
coordination leads us to make some suppositions : the application is accessed through a set
of entry points, and the top-level is included in the interface. The application can call the
interface from its entry points, but it should not enforce any constraining dialog with the
user. Rather the user should be able to do anything at any moment, and thus the application

4 IillllllIIIllllIIIIIIIIIIIIIIIIIIIII d|sp|ay m\““\\\\\\\g
activation—ej- - - - - - - - - - call —» g
<4— feedback § §
N

N

INTERFAC §PROGRAM \

messages STLLILHEH T messages h\mm\\\\&

should be prepared to do so.

The application manipulates objects to be displayed and connected. For example, a Petri-net
editor manipulates transitions, places and edges. An edge is connected from one side to a
place and from the other side to a transition. More generally, the application deals with a
graph having specific constraints. In this case, we are able to represent this structure
(MetaGraph) and to perform directly from the interface some operations like selection.

2.2 - Object oriented approach : UFO

To really provide an adaptable environment of this kind, we need abstractions. The tools we
present are based on UFO [Beaudouin-Lafon85a] [Beaudouin-Lafon85b], an object
oriented system specially adapted to interfaces and manipulation of graphical objects. One
important point is that UFO is portable on many UNIX machine with bitmaps graphics and a
window manager. Actual implementations include ICL Perq/PNX, SUN workstations with
XWindows [Scheifler86], HP9000 series 300. Thus the tools described in this paper and the
interfaces they generate are portable as well — provided the application itself is portable. UFO
is written in C, as a functions library.

The purpose of UFO is to separate external and internal representation, and to associate with
an object one internal representation, and one or more external representations. The internal
representation holds the description of the objects while the external one is generated and
manipulated through messages sent to the internal representation. Thus an application using
UFO needs just to maintain the mapping between these two representations.

UFO objects are complex entities as they are made of a graph, called the object graph.
Vertices and edges of this object graph are typed and attributed. Objects can be hierarchised
with the notion of sub-object : a vertex of an object graph can be a reference to another
object. This makes possible to manage very complex objects in a modular way. Messages
can be sent to objects, and to vertices and edges of the object graph. Moreover, iterators
allow to enumerate the structure in various ways, easily and efficiently.

Beside the manipulation of the internal representation, UFO contains a dedicated graphic
library. This library is a uniform, evolutive, and low-cost layer between the applications and
today's graphic worsktations which share the bitmap graphics hardware concept, and the
window manager software concept, with distinct and incompatible implementations. Thus, it
allows to write highly portable graphic software.

3 - Components
3.1 - Metagraph

Lots of applications can use graphs to represent the data they operate on : Petri-nets, SADT
diagrams, flow-chart programs, PERT diagrams, ... When they do not, the user often uses
a sheet of paper instead. The aim of Metagraph is to provide a tool to build graph editors and
make them cooperate with such applications.

Metagraph is basically a very general graph editor that can be parameterized to fit some
constraints. There are two main kinds of constraints : syntactic constraints and layout
constraints. Syntactic constraints include constraints on the structure of the graph : for

instance, in a Petri-net, edges can connect a place and a transition, but not two places or two
transitions; some graphs should not have cycles, etc ... Layout constraints include all the
constraints to build a graphical representation of the graph : for instance, edges must be made
exclusively of horizontal and vertical segments, or the vertices should not overlap, etc ...

More than a parameterizable graph editor, Metagraph is a meta-editor : it generates an editor
to be used as a front-end for applications. This means that Metagraph manages the link
between the generated editor and the application. This of course implies some constraints on
the applications.

The general graph editor of Metagraph is based on the following features :

e vertices : a vertice can be a simple graphic shape, or a UFO object. It can even be a
Metagraph object.

¢ edges : edges can be simple, oriented or not, or multi-edges : this means they can
have several end vertices. There are several graphical representations available (see
figure 2).

¢ annotations : annotations can be attached to any vertex, edge or group of them. An
annotation can be for instance a comment, or a graphic shape as a rectangle around
a set of vertices.

e constraints : as annotations, constraints can be attached to groups of vertices and/or
edges. They are most of the time layout constraints : keep two vertices aligned or
with a minimal distance between them, ... Syntactic constraints are handled in a
different way : they are defined as rules and these rules are checked and enforced
when editing a graph.

- Figure 2 -

Metagraph comes with a predefined set of vertices, edges, annotations and constraints, but it
can be extended to include more. The above features describe the components of the graphs
managed by Metagraph. To manipulate these graphs, a set of operations are included. Most
of them use the concept of selection : at any one moment, a subset of the graph being edited
is called the selection. The selection can be changed by the user, and most operations act on
the selection. This makes the interaction easier and homogeneous. Here is a quick overview
of the operations provided :

e Select : several operations exist to change the selection : select one, add to / remove
from selection, select all, ...

e Create : create a vertex, an edge, an annotation. The actual interaction protocol for
the creation depends on the object to create : creating a multi-segment edge will
require several user actions to define the intermediate points while creating a vertex
is usually easier. When creating an annotation, the current selection defines the
subset of the graph to which is linked the annotation.

e Cut/ Copy / Paste : these operations act on the current selection. Cut deletes the
selection and saves it, Paste inserts the last deleted selection, Copy saves the
selection without deleting it.

* Move : move the selection. Layout constraints are checked.

e Edit: edges, vertices and annotations can be edited : for instance the size of a vertex
can be changed or the text of a comment can be edited.

Using Metagraph means first to define within these available sets which items to use. This is
the "easy" part, as it is a static definition of the items that will be used in the graphs. The
second part concerns the dynamic behaviour of the graph on the screen. This behaviour will
be described with scripts. Each script will be activated through an interface entry point, that
is a function of the editor generated by Metagraph.

Scripts can involve user input actions (clicks, keystrokes ...), Metagraph operations, and
application entry points. The latter will be used to implement a control on the user action by
the application. Metagraph operations include the basic operations on the graph and utilities.
Utilities include for instance functions to browse through the graph. This is useful when a
script needs to check and eventually modify the selection before operating on it.

As an exemple, consider the delete script. It is intended to delete the current selection. Most
of the time the selection must be adjusted to contain exactly what needs to be deleted. For
instance all edges connected to vertices in the selection must also be selected. This can be
described in the script. If the rules are more complex, a function can be written directly and
called from the script.

As another example, consider the creation of an edge. Creating an edge consists in defining
two vertices and creating an edge between them. One can suppose that one of the vertices is
the selection, while the other must be selected by the user. The script must check that the
selection contains exactly one vertex, then wait a click, check that a vertex has been selected,
check that the edge can be created between these two vertices without breaking any
constraint, if so create the edge and call an application entry point to inform that an edge has
been created. Such scripts are very standard and they are included in Metagraph so that one
needs just to edit them instead of creating them from scratch.

At any moment, it is possible to test the scripts that are being defined. Of course in this case
there is no application and it is simulated, but this provides a very fast and effective way of
prototyping the interface.

The result of a session with Metagraph is a source file to be compiled containing an
initialization function and one function per script defined. Another file contains declarations
to be included in the application so that it can access the interface. Of course a session can be
saved so that it can be reentered to modify the definitions and scripts.

3.2 - Graffiti

Graffiti [Karsenty86] is an interactive tool for the design of flexible graphic interfaces. Its
functionalities range from the construction of the overall structure of the interface, the
dialogue with the user, to the link with the application.

The objects manipulated are high level graphic objects : there is a set of basic objects and
they can be combined to build more complex objects. The interface has its own internal
structure while the user manipulates and sees the external representation. The interface is not
static : the user as well as the application can modify dynamically any part of the interface.
This possibility allows to build adaptive interfaces : adaptability corresponds to the amount
of Graffiti's self functionalities included in the interface constructed by Graffiti. Figure 3
shows the steps for the construction of an interface. The designer builds interactively an
interface and includes some functionalities of Graffiti in it. These functionalities can be
divided in five parts :

e interaction style

e editing menus, scrollbars, icons...
o feedback to the end-user

¢ screen layout

e link to the application

The interaction style and the feedback are the parts that should be accessible for the user. The
others are for special purpose since they operate directly on the functionalities of the
interface.

Application

entry points e=

interactive interface

construction
low level
events
dynamiC . user
construction

- Figure 3 -

Graffiti is build on top of UFO classes. There are basic classes to represent windows, icons,
scrollbars (integers), buttons and menus. These objects are combined together. The kemel of
Graffiti manipulates these classes in order to create the bricks of an interface. The glue which
is necessary to establish the relations between those objects is put in a super class. This
class, called Screen, manipulates objects of basic classes and adds the semantic relations
between the structures.The result is a graph of objects. It also manages the screen display
and dispatches the events coming from the mouse or the keyboard. The classes of Graffiti
are not exclusively for Graffiti. An alternative is to use them directly as packages to program
some other application.

The application is accessed by the interface through entry points (Figure 3). The menus'
commands, the windows regions, the mouse clicks and keyboard sequences can be attached
to any of these entry points. The top level generated by Graffiti scans all kind of low level
events and finds either an entry point to call directly some function, or the object to which
was send this event. In the last case, it is mostly a message passing.The top level is defined
this way. An event associated to an object can be linked to a specific message. For instance,
a click in the main region of a window will send the message Move-Window to that one. A
click on the desktop displays a pop-up menu, waiting for the selection of a command. The
control of the application is partially defined : the control of the application's data is done
with MetaGraph. Graffiti only takes control on the objects private to the interface. This
control is not static : the links can be redefined at any time. Some standard interface is
quickly designed, and the architecture allows reusability by plugging other applications to the
same interface. Therefore, it provides a powerful tool for testing and prototyping several
applications.

A menu is an object with a set of vertices to be displayed, selected, scrolled, edited : its
commands are given in the vertices of the object graph. Each vertex contains some attributes
and this class is generic : a command can belong to any class and have its own external and
internal representation. This genericity provides an infinite number of possible menus. The
mechanism of sub-objects correspond exactly to the hierarchy of menus : each command
(vertex) can be a node leading to some other menu (sub-object). The interface is an object of
the class Screen. The nodes of the object graph are sub-objects of basic classes.
Dependencies are expressed through edges between vertices. An icon can represent a
window, a menu can belong to a window, and so...

The application designer builds a file containing a list of entry points of the application. The
interface designer specifies interactively and graphically the interface. Then Graffiti generates
the top level of the interface. The description of the interface is saved in another file to be
read at the initialization and this description can be reloaded in order to modify any part of it.

3.3 - Integration

Integration is the phase where the control manager, the data manager and the application are
linked together. The connections between these three parts are depicted in figure 4. This
figure shows that from the point of vue of the control manager, the data manager is an
extension of the application : this extension supports the graphical representation and
manipulation of the data of the application.

The data manager accesses to the application to know what to represent. It also
communicates to the application the modifications applied to the structure by the user. The
control manager interacts whith the application and the data manager as a whole, through

entry points. This scheme emphasizes the use of entry points for the communication between
the different modules. We believe that this architecture is powerful enough for most
interfaces. Moreover it has the advantages of conceptual simplicity and implementation
efficiency.

The concept of user interface generator has already been experimented through events
ordering specifications [Olsen84]. These specifications are low-level and static. In our case,
the flexibility provided with the entry points gives a dynamic and high level mean for
dialogue specifications. The protocol between the application and the interface manipulates
high level abstractions independant on the syntax of the interactive dialogue with the user.
The functionalities of the data manager form a complement to the control manager : the
control manager sees the application through the standard representation of the data manager.

control manager

l '

(scripts w entry points

data

manager application

.:}"wum4.

4 - Conclusion

The design and implementation of high-level graphic interactive applications are an important
challenge. Although some systems already exist, they are most of the time dedicated to
specific applications. Trying to standardize the user interface has proved to be very hard, and
leads to interfaces using a toolbox which is most of the time too low-level. Standardization
must be considered in terms of abstractions of the dialogue, but not in terms of toolboxes.
The architecture of the system we proposed is built this way, thus allowing for extensibility
of the differents components.

A system for building graphic interfaces to be connected to existing applications has been
presented. A preliminary version of this sytem is currentlly running for small-scale
applications. The system is itself interactive and allows immediate execution of the interface
being designed. This can be considered as the very first steps toward graphical programming
[Reiss86].

References

[Barth86]
Paul S. Barth, "An Object Oriented Approach to Graphical Interfaces". ACM
Transactions on Graphics, Vol.5 n® 2, pp.142-172, April 1986

[Beaudouin85a}
M. Beaudouin-Lafon, "UFO : un méta interface graphique pour la manipulation
d'objets”. Proc. Congrés AFCET Matériels et Logiciels pour la Séme Génération Mars
1985

[Beaudouin85b]
M. Beaudouin-Lafon, "Vers des interfaces graphiques évolués : UFO, un méta-modele
d'interaction”. These de 3eme cycle Octobre 1985

[Goldberg83]
Adele Goldberg and David Robson, "SmallTalk 80 : The Language and Its
Implementation", Addison-Wesley, 1983

[Hanusa83]
H. Hanusa, "Tools and techniques for the monitoring of interactive graphics
dialogues” Int. J. Man-Machine Studies 19, pp. 163-180, 1983

[Hayes85]
Philip J. Hayes, Pedro A. Szekely and Richard A. Lerner, "Design Alternatives for
User Interface Management Based on Experience with Cousin”, pp. 169-175 in Proc.
of the CHI'85 Conference, The Association for Computer Machinery Publ., April
1985.

[Karsenty86]
S. Karsenty, "Object Oriented Tools for the Design of High Level Interfaces : the Key
for Adaptability”, Proc. IFIP WG8.4 Working Conference : Methods and Tools For
Office Systems, Oct. 1986

[Kasik82]
David J. Kasik, "A User Interface Management System, pp. 99-106 in Computer
Graphics, July 1982.

[Olsen83]
Dan R. Olsen Ir. and Elizabeth P. Dempsey, "SYNGRAPH : A Graphical User
Interface Generator", pp.43-50 in Computer Graphics, ACM, July 1983.

[Reiss86]
Steven P. Reiss, "An Object-Oriented Framework for Graphical Programming",
SIGPLAN Notices Vol.21 n2 10, October 1986

[Scheifler86]

Robert W. Scheifler & Jim Gettys "The X Window System", ACM Transactions on
Graphics #63, Special issue on User Interface Software, 1986

10

What They Don’t Tell You About Window Systems

Michael D. O’Dell

Mazim Technologies, Inc.
Vienna, Virginia USA

1. Preamble

People communicate using languages, whether it be with other people or computers.
The nature of these languages determines what can be expressed and how effectively it
may be communicated. By providing a commonality, languages bind people together
into groups, but they also tend to exclude those not well-versed in the particular tongue.
Languages, then, become powerful mechanisms for both rewarding and discouraging
behavior.

Languages can be both aural and visual. Visual languages can be linear and verbal,
representing and recording meanings or sounds from an aural language. But visual
languages can also be powerfully non-verbal and transcend simple linearizations: the
visual languages of the artist painting, sculpting or taking photographs, the visual
language of the typographer creating fonts, or the visual language of the graphics arts
designer creating images that inform and communicate across verbal language barriers
(e.g., international signs). These non-verbal languages are some of our most powerful
ways to communicate.

The languages people traditionally have used for communicating with computers are
linear, verbal languages, strongly rooted in imperative forms. This is probably the
product of some deep-seated cultural desire to command rather than to interact - why
else would we call them command languages? These languages come in dramatically
different flavors of complexity: the rigorous complexity of programming languages like C,
Algol68, Ada and PL/I, the apparently random complexity of systems like troff, the
gratuitous complexity of “screen editors” like Emacs, the flexible complexity of the
UNIX shell, the rococo complexity of OS/MVS JCL, and the elegant complexity of pure,
unconditional linear sequences (e.g., byte-stream files).

It is bad enough for the humans involved that these languages are often quite
complex. What is worse, however, is that they are all radically different from one
another. We speakers-with-computers live in a world of linear chaos — as though the
Tower of Babel had fallen over onto our keyboards. Some of us fare better than others.
Some cope by being polyglots in the extreme, and others cope by learning a small
number of languages and then insist upon using of one of their select, fluent tongues for
whatever needs to be accomplished. This is both good and bad. If the right set of
survival languages is picked, one need not be terribly cut-off from the general goings-on
and can get on quite well in many different circumstances. If the wrong set is picked,
however, as the saying goes, “If all you have is a hammer, everything looks like a nail!”
This results in solving every conceivable problem with either a Version 8 Shell script or a
LOTUS 1-2-3 macro, depending on one’s religious upbringing.

What does this have to do with window systems? Nothing in particular, except
that we are witnessing the re-creation of our one-dimensional, linear chaos on a new

11

two-dimensional canvas. What does this have to do with software using visual languages
for communications? Everything, because creating rich, effective languages, especially
visual ones, is very, very hard. It is the province of artists and designers, of thinkers-
about-language, of those who can consider all the things one will ever want to express in
a language. It is certainly not the province of programmers or computer scientists, as
such.

2. An Object-Oriented Lesson

Imagine, if you will, that you have been given an assignment to write a brilliant
short story about what you did over summer holiday. A great deal is expected of this
story since the market for such stories is already heavily populated with other quite good
ones. This writing assignment is really rather tricky.

Now imagine that you have taken complete leave of your senses and decided to
start this project by first inventing an entirely new language in which to write it. This is
a bad idea for more than a few reasons.

The sheer complexity of a language with the richness to say what one really wants
to say is staggering. Having to invent syntax, semantics, and create a lexicon is an
immense amount of work. It is hard enough to find just the right word in English, a
language already rich with many words and subtle shades of meaning. If you are
creating an entirely new language in the process, there is a good chance the word you
need must be created and you will want to carefully adjust its meaning relative to all the
other similar words. This quickly starts to approximate hard work! Even after all this
effort, how many people will want to learn this new language so they can read your
wonderful story?

Even if one takes a less radical approach, not creating the language from whole
cloth but instead starting with a known language like English, and enriching it with lots
of new words and novel new constructions, the problem remains that most people will
have a hard time understanding what is being said. “They just don’t speak the
language.” An example that comes to mind is Anthony Burgess’s A Clockwork Orange.
In this particular example, adding new language was artistically quite successful, but
many readers found the work daunting, even though most of the writing was, in fact,
still well within the confines of traditional English. The implication is that even
carefully-controlled injections of innovation can sometimes cause considerable trauma
when they appear at odds with an existing macrolinguistic framework.

Now imagine you are setting out to create a program which allows a user to
perform some complex, variable task with great ease and aplomb. Believing that visual
interfaces often make the user’s task easier, you decide to give the program a visual user
interface, running under whatever window system is currently all the rage. So, you get
out the applicable three feet of documents and start reading about all the ways you can
draw scroll bars and create menus. You almost certainly don’t think of it as such, but
you are about to create a language, a visual, two-dimensional language, rich in
powerfully non-verbal concepts like selection and extension. Blissfully unaware you are
creating a language, you haven’t the slightest notion of the quagmire you’re about to
sink into. The worst part of this scenario is that you certainly aren’t alone; everywhere
there are many other programmers-cum-unwitting-designers about to wander off into the
weeds, creating their own visual languages, completely oblivious to the language you are
busily creating.

12

Finally, imagine for a moment, if you dare, just how much fun it will be to have
five different windows active on your favorite workstation, with each one of the five
programs communicating using a radically different visual language. ‘“You mean that in
this window, left button means ’keep’ and in that window left button means ’kilP’?!?!”
Oh boy! I can hardly wait: pixelated pictures of the Tower of Babel!

3. The Current State of Confusion

Having “good window systems,” whatever that might be, available on UNIX is
neither necessary nor sufficient for having good visual software. The richness, coherence,
and consistency of the visual languages used by such programs are the critical issues.
While everyone can agree there is a clear requirement that the individual visual language
used by any particular visual program be infernally rich, coherent, and consistent, the
issue of overwhelming importance is the requirement of ezternal richness, coherence, and
consistency across all the languages used by all visual programs in a given environment.
If the global visual linguistic environment does not exhibit global richness, coherence, and
consistency, two-dimensional chaos will unavoidably result.

The creation of a rich, powerful, consistent visual language for use by visual
programs (in the UNIX environment or elsewhere) is an astonishingly difficult task. The
number of persons in the world who can really do this job is probably about the same as
the number of persons who can really design type fonts: at most, a two-digit number.

Expressed another way, one thing that separates true artists from persons merely
chasing paint around a canvas is the successfulness of their visual language. It is the
ability to create a language which has an identifiable clarity, style, and aesthetic. This is
what makes a Picasso immediately distinguishable from a Monet, and either of those
trivially distinguishable from an O’Dell. This is what makes good Macintosh programs
instantly identifiable, whether in the company of bad Macintosh programs or Macintosh
imitators.

Why am [concerned about this? At present, there is vanishingly little visual
software running on any UNIX box. Currently, a “window environment” on UNIX
means a large, complex collection of software that manages to provide a mediocre
implementation of multiple ASCII terminals on the same piece of viewsurface. Most of
the underlying window systems have the capability to support genuinely visual programs
given sufficiently tenacious programmers, but to look at some popular window systems, it
seems as if the last ten years of device-independent graphics development simply never
happened.

Now consider what would happen if UNIX workstations with some “industry
standard window system” were to suddenly catch-on in the general computer
marketplace. Let’s assume, against all reason, that software builders immediately
scramble to build a pool of visual applications for this blossoming new market. What
would be the result? Disaster.

There are already a few brave starts on real visual products out there: FrameMaker
and Interleaf come to mind as more than credible forays into the current wilderness, but
they only drive home the point: they already speak radically different visual languages,
and this is only two programs. If you think people find “editor shock’ disorienting, wait
until they experience ‘“mouse shock.” A user faced with a collection of programs, each
truly wonderful when used in isolation, but with the collection having no global, external
linguistic consistency, will become horribly frustrated and will come to hate the system.

13

And that is, of course, the correct response.

4. What to do, what to do...

The author feels somewhat like the little boy who pointed out why the Emperor
was feeling drafts all the time, but unlike the child, feels compelled to offer suggestions as
to a good tailor. 1 fear this is rather difficult for several reasons, but will still hazard
some suggestions for addressing the current and future problems, none the less. But
first, a question.

5. Do We Even Have a Problem?

This is a somewhat odd question to raise after belaboring its description at length,
but it bears close examination. If workstations running window systems and UNIX
become successful in the larger computing marketplace, then either a miracle occurs and
the software companies wake up one morning all designing to the same visual language
standard (poof! no problem!), or we must solve the problem outlined above. There is,
however, a much more serious way we might not have to solve the problem, and we
should consider it before getting on with any proposed solutions.

6. No, We Don’t Have Much of Anything

It the UNIX workstation market does not expand to include users who demand that
their $30,000 UNIX workstation not be continually embarrassed by a $3000 Macintosh
when it comes to having truly useful software for something other than the most raw
programming task, then none of the issues raised in the first half of this paper matter
one whit, for the simple reason that no software company in its right mind is going to
spend money writing useful software for a market that isn’t interested in it. This will
reasonably be taken as proof that all our pontifications about the wonders of
workstations and video interfaces are just so much self-aggrandizement, at least as far as
the UNIX marketplace is concerned.

I happen to belong to the user community which has grown tired of the
overwhelming irony of programming on one machine (a large, "powerful” UNIX
workstation), but then doing everything else I do for a living on another. For example,
besides writing C code, I do a lot of project management, viewgraph and briefing
preparation, financial and resource modeling, and thought-organizing (using an outline
processor) on a computer which costs one tenth as much, both in terms of hardware and
software, as my "powerful” workstation machine. (One admission: I do still write final
documents with troff, not because it is my favorite way to write, but because it is often
the most powerful.) I anxiously await a single machine which can both walk and chew
gum at the same time, and for which both shoes and chewing gum are available.

One really must wonder how long the existing workstation market can survive
needing a continuing supply of customers who only want to run the FORTRAN and C
CAD/CAM/CASE/VLSI programs and who don’t need to do the other tasks associated
with running a large technical project. I have heard it said that over 50% of the
workstations in the world are being used to design new workstations. I hope this is
wrong, because if it is right, it probably means there is no market out there for normal
people.

14

In the worst case, | must agree with Steve Job’s conclusions stated at the Summer
1987 USENIX meeting: if some serious software for the UNIX workstation market
doesn’t appear soon, software for tasks other than just programming, UNIX will go by
the boards. This isn’t a very bright prospect, so let’s assume we have a problem. Now,
how can we solve it?

7. YES!! We Have a Problem!

What is the problem? The UNIX community needs a visual language standard
which can be implemented on a variety of window systems and is politically neutral
enough that software builders (and maybe workstation builders?) can adopt it for their
products without feeling that some competitor has an especial advantage for having
promulgated the standard. Then the software builders must be convinced that adopting
such a standard is actually in their own best interest, and that after adopting the
standard, building software for the UNIX workstation market can be economically
rewarding.

Most importantly, this new user interface visual language must be designed by an
expert - a person trained and gifted in the design of visual languages for computer
systems. This job certainly cannot be done by a committee, and as was shown above, it
is not a job for hackers. How such a person might come to create this design and then
what becomes of it will be discussed below.

The initial goal of the design eflort would be the production of the equivalent of
Apple’s Macintosh User Inlerface Guidelines. This is a document which describes the
lexicon, syntax, and semantics of the Macintosh interface in excrutiating detail and with
absolute legal authority. The Guidelines creates a universe where great creativity can be
exercised in building a user interface for a specific product within the limits of these
constraints. But as with the Laws of Physics in the natural world, the rules of this
universe (the behavior and placement of scrollbars, menus and their required contents,
how dialogue boxes behave, etc.) are completely specified. One cannot change the speed
of light on a whim, and programs which deviate from these guidelines are royally
chastised in public and are generally considered to be “bad’ programs.

An important adjunct to creating such a design and its supporting definition
document is creating a library of code fragments which implement the “usual” way of
handling parts of the user interface. The Apple document actually gives code fragments
showing how the Macintosh User Interface Toolbox is used to produce the specified
interface behavior.

This important task is rather more difficult for the UNIX community since our
standard would be implemented on more than one window system. This will require
significant, coordinated effort to induce true beltevers in each of the window system
camps to implement the standard interface and then make the code available to their
respective communities. This is a lot of work we would be asking people to essentially
give away for the common good. This may or may not be a reasonable request.

8. But Where Do We Get the Brain?

One large obstacle remains: where do we get a quality user interface design? One
solution is to somehow convince Apple that since they are about to introduce a UNIX
machine, the Macintosh-II running A/UX, it would ultimately be in their best interest if

15

all UNIX window applications were to conform to their user interface specification, i.e.,
the Macintosh Guidelines. This approach has two serious problems: Apple probably
wouldn’t buy it since their system will definitely support the Macintosh Guidelines either
as a UNIX library, or more directly by running Macintosh binaries within UNIX
processes. Bringing the other workstations up to that level is probably not something
Apple would find attractive. The other potential problem is that software builders might
not be willing to adopt another company’s design, particularly if it involved any kind of
licensing arrangement. This clearly violates the political neutrality constraint stated
above. Pity; Apple’s interface is easily the best and most widely implemented visual user
interface and anyone else would be very hard-pressed to do as good a job.

The other alternative is to somehow engage one of the practicing design
professionals in the field to produce the design and documents and then make them
readily available to the community. The only catch is that a minimal but credible effort
would cost about $50,000, based on conversations with a real designer. This amount
would produce a good point of departure, but more work would really be needed to even
approach the quality and detail of the Macintosh specification documents.

Maybe this is a job that X/OPEN, or IEEE P.1003, or /usr/group, or even
USENIX could fund initially, but it is rather hard to see how the first three could refrain
from the terrible temptation to meddle with the result, and worse, meddle by committee.
Other suggestions are certainly in order.

9. Conclusions

Window systems are not the answer to the problems of building good user
interfaces for UNIX workstation products. Window systems may, in fact, obscure the
problem by giving hackers a plethora of knobs to twiddle instead of doing the hard work
of creating a powerful visual paradigm for the program being created. Building a good
user interface implies creating a good visual language, a task not suited to programmers.
If the number of visual languages is not carefully limited, the resulting chaos will
astound even a UNIX user. The problem of how we get a quality visual language user
interface standard created for the UNIX community is difficult, but we hope not
intractable. The suggestions in this paper, however, are only that, suggestions. We need
more minds seriously considering the problem and addressing its solution before it’s too
late.

16

MUSK - a Multi-User Sketch Program

Chris Crampton
Human Computer Interaction Section
Informatics Division
Rutherford Appleton Laboratory
Chilton, Didcot, Oxon
0X110QX, UK

cmc@uk.ac.rl.vd

ABSTRACT

In recent times we have witnessed an explosion in the use of personal worksta-
tions, but the development of interactive applications has lagged behind the capabilities
of the hardware. This is particularly evident in the area of user-to-user communication,

The subject of this paper is a highly interactive sketch program that allows any
number of users to participate in the sketching activity. In addition to sketching, facilities
are provided for the inclusion of text and the pasting of images.

The paper starts with a brief retrospective of the user-to-user communication capa-
bilities of UNIXt and progresses to describe the design and implementation of a multi-
user sketch pad.

The paper concludes that such a facility is both feasible and useful although a
number of questions remain about how multi-user and multi-media conversations should
be managed.

1. INTRODUCTION

UNIX has always encouraged an open, informal, public environment which has helped it to acquire facili-
ties for users to communicate by making utilities such as mail(1) and write(1) easy to implement. This
paper is concerned with the synchronous, interactive style of communications programs characterised by
the write program. Write is a very simple utility allowing two users to communicate over serial lines with
lines typed at one terminal appearing on the other. No attempt is made to partition or tag the data to assist
in identifying who said what.

As the UNIX programming environment has become richer the interactive communications facilities have
also developed. The provision of interprocess communication (IPC) between separate machines and the
ability to select! from several sources of input has made the implementation of networked communications
utilities such as talk(1) possible. Talk allows two users, possibly logged onto separate machines, to com-
municate character based information. The concept of talk does not go beyond that of write except that
the message data is partitioned to assist in identifying the originator. Also, the communication is unbuf-
fered so that the data appears as typed. Other programmers have extended the talk concept to support
conversations between more than two users [Waters87].

T UNIX is a registered trademark of AT&T in the USA and other countries.
! The select(2) system call provides programmers with a way of multiplexing synchronous /O between several
channels.

17

Today’s UNIX environment is moving on from the idea that there are many users logged into a few mini-
computer hosts via serial lines. More and more users now have dedicated workstations, each with its own
CPU, high bandwidth communication channel and high resolution graphical display. However, the use of
the high bandwidth communications capabilities has been limited mainly to the support of machine to
machine data transfer to provide network file systems, network paging and swapping and file transfer. Lit-
tle attempt has been made to exploit the bandwidth for highly interactive, user to user communication.

While this has been true for the UNIX community, numerous other groups have experimented in this area,
notably the Colab work at XEROX PARC [Stefik87]. Colab is a computerised conference room where
each participant has a networked station providing a kind of digital whiteboard. It is perceived as being
useful in situations akin to meetings with a formality and structure being necessarily imposed.

This paper is specifically concerned with musk which is a highly interactive, multi-user sketching program
which aims partly to fill the hole in the UNIX environment I have highlighted above.

Musk provides the following capabilities:

° Free hand sketching

o Circles, lines and boxes

. Text

. Copy and paste of text and bitmaps from anywhere on the screen
. A pointing mechanism

. A *‘talk’’ like sub-program

. Many users, connected by a Local Area Network (LAN)

The aim of the project is to experiment with a variety of user interface techniques to explore what users
require and feel most comfortable with. Very little policy is imposed on the users’ interactions with the
system as we felt this to be the best starting point and seemed to be closest to ‘‘The UNIX philosophy!’’

Although musk is currently only implemented for SUN workstations running under the suntools environ-
ment, it is expected that musk will be ported to other environments and machines with an interworking
capability, X being the next likely candidate. As musk is implemented using a toolkit, porting should sim-
ply be a case of re-compiling once the toolkit is available in the new environment.

At the time of writing, musk functions in the homogeneous environment mentioned above with all of the
features described. Users seem reasonably satisfied with the user interface and facilities.

2. FOUNDATIONS

My colleagues and I work in the Human Computer Interaction (HCI) section of the Informatics Division at
the UK Science and Engineering Council’s Rutherford Appleton Laboratory.

The work described here is one fruit of our extensive research and experimentation effort in the area of
HCI. The primary goal is to support research into improving user interface design specifically within the
realms of highly responsive applications running on single-user workstations. One task has been to provide
a programming environment for ourselves and fellow researchers to pursue these research aims [Willi-
ams86].

The key component of this environment has been an ever-growing graphical toolkit, known as WW [Mar-
tin87]. This provides the sort of building blocks from which interactive applications can be assembled.
This toolkit has a demonstrated portability across different versions of UNIX and different types of window
managers. An almost identical programming interface is available on the /ICL PERQ running PNX and the
Whitechapel MG-1 as well as the SUN running under Suntools.

18

Other work in the section has yielded a small library of routines to greatly simplify access to the Berkeley
networking and IPC facilities.

Given these foundations and the readiness of their curators to make changes and additions as needed, I had
the relatively straight-forward task of tying them together to produce a multi-user sketch program.

3. DESIGN AND GENESIS OF MUSK

3.1. Origins

Musk started out as a very simple, single-user, sketching program that only provided for free hand draw-
ing. This was extended to support multiple users via a network connection An eraser and a simple text
handling capability were also added.

At the same time, a colleague was working on a character based communication program with support for
more than two users. This program, known as Confer, is similar to talk(l) in concept but uses a format
akin to theatrical scripts to indicate who said what, see figure 1.

userl: [joins]

userl: user one’s text
user2: [joins]

user2: user two’s text
user2: more user two text
user2: [leaves)

userl: I am all alone

Figure 1. Qutput format of Confer

The experience we gained with these two tools indicated that a more versatile, integrated conferencing tool
would be a worthwhile project. As a start, I added confer to musk as a sub-program to provide the forum
for the sort of conversation one would prefer to conduct using voice, and indeed, a parallel telephone
conversation can make this feature redundant. However, in addition to this tagged conversation feature,
the confer sub-program allows users without a graphics capability to share to some extent in the conversa-
tion using the stand-alone confer program.

3.2. Extra Primitives

I noticed users tended to stick with fairly simple sketches that were built up from straight lines and curves.
Therefore, I added lines, circles and boxes as extra primitives with local rubber banding providing feed-
back.

3.3. Copy and Paste

Although users continually asked for more sophisticated features such as splines, I felt it wrong to allow
musk to keep growing to meet the never ending wish list of desirable features. Instead, a mechanism for
including the output of more specialised programs was seen as the best way forward. This should allow the
inclusion of spline curves, formatted multi-font text and anything else displayable within the musk
workspace. Two mechanisms for copy and paste are provided:

(1) Suntools style *‘stuff”’ whereby a text selection is copied into the application as if typed by the user.
(2) Copy and paste of bitmap images using full screen access.

These features allow one, for example, to timestamp a session by simply pasting in a copy of a clock
program’s image.

19

In fact, the usefulness of this copy and paste goes beyond this example: many musk conversations are con-
cerned with some aspect of work on a computer so it is very useful to be able to paste into the conversation
the output of a program or even a code fragment or error message.

Text can be pasted into either the confer or the sketch sub-programs, The former also allows text to be
selected for pasting into other applications which use the Suntools selection service. Text cannot be
selected for copying from the sketch area as the picture is represented internally as an unstructured image.

3.4. Pointing

I noticed that a user would often wish to focus the other users’ attention onto a specific area of the musk
display. Using the sketching features to do this quickly led to a cluttered picture. Another problem was
that if conducting a parallel telephone conversation users would often gesticulate with their cursors forget-
ting that the other users could not see their cursor? too.

What was needed was some form of shared cursor so I added a “‘pointer’’ device. An alternative would
have been to echo everyone’s cursor on each musk display all the time. However, this would have resulted
in a cluttered display and been very distracting, although it would have helped participants to keep track of
who was doing what. It is only occasionally that pointing is of use, so it is better that a more deliberate
action is required. Possible confusion is limited by only allowing one pointer to be active at a time. This
was also done to experiment with the idea of a Woodstock,® which had been considered for all interactions
but was rejected on the grounds of being too restrictive. The idea is that a user can acquire the pointer
which then ties a secondary cursor on all other participants’ sessions to the local mouse. When the pointer
is released it becomes available to other users again. For the duration of the pointing phase, the pointer
icon is annotated with the user name of the current pointing party.

3.5. Concurrency and WYSIWIS

Throughout the development of musk a primary aim has been to achieve as near true WYSIWIS (What You
See Is What I See) as possible. The Colab group [Stefik87) defined WYSIWIS as being where all partici-
pants ‘“see exactly the same thing and where the others are pointing.”” They felt that their work had shown
that WYSIWIS “‘creates the impression that members of a group are interacting with shared and tangible
objects.”’

As musk imposes no ordering on users’ interactions, maintaining WYSIWIS is complicated by all musk
instances having to communicate concurrently so that remote changes are still reflected whilst local
changes are being made.

3.6. Miscellaneous other frills

I made a number of other simple additions to musk:

. A “bell”” which can be rung to attract the attention of users who appear to have dozed off or lost
interest.

. Handling of iconise (and de-iconise) events. If a user joins a conversation while the local musk is
iconised then it attempts to direct the user’s attention to the fact.

3.7. Session management

This is undoubtedly one area that has been neglected with the consequence that session management is
inadequate. Any user at any time may gate-crash a conversation and totally disrupt it. Our experience is
that this is not a problem in a genial environment, but not everywhere is lucky enough to have such an
environment.

2 Cursor here refers to the graphical cursor usually tied to mouse movements rather than the text cursor.

3 1 once heard an unconfirmed anecdote about a multi-user database system being developed at XEROX PARC. This
had no software locking to guard against corruption so the solution they adopted was that noone was allowed to update the
database unless they held the Woodstock. This was a stick with some yellow feathers attached to the end.

20

Musk itself has no facilities for initiating a session and inviting other users to join in. However, it has
been easy enough to implement a front-end which allows the initiator to specify parties, by user name, that
he or she wishes to communicate with. The network can then be searched and a musk started up remotely,
in iconised form. The remote parties can then join the session when it is convenient.

Undoubtedly this area needs consideration to devise a framework that is more secure and flexible.

3.8. User Interface

As has been mentioned, the group in which I work has undertaken extensive work investigating user inter-
faces onto interactive applications. Therefore, we already have ideas of what we think makes a ‘‘good’’
user interface. Other applications developed by the group have used a set of conventions to which musk
must adhere to preserve consistency across applications.

Musk is entirely mouse driven with the keyboard only being necessary for entering message data. Assum-
ing a three button mouse, the left button always initiates an action or makes a selection while the middle
button always pops a menu. The function of the right button is not so clearly specified and is used by musk
as an eraser in the sketch area and for extending a selection in the text area of confer.

The cursor picture is updated dynamically to provide additional feedback, for example a text bar is used
when the cursor is in the text area. Probably not enough use is made of this as yet.

The display is divided into four regions, see figure 2. Along the top are four panels labelled ‘‘Sketch,”’
““Lines,” *‘Circles’” and ‘‘Boxes.”” These are used to select the current sketch style which has a local
effect, only. Down the right hand side there are series of icons for exiting, pointing, bitmap copying and
bell ringing. Clicking on these invokes the corresponding function. The rest of the display is divided into
an upper, larger region for the sketch pad and a lower region for the confer sub-program.

Window resizes are handled by redrawing the display. However, no scaling of the text and sketching is
performed so larger drawings will be clipped in smaller musk windows.

21

Multi-User Sketch and Talk Program V8.3

[

sketch circles] boxes]

m
>
—
]

|Sketch Style Selection Boxes]

E’:jj

=
&
H
P

[Command Iconsl————§>

> of

Sketch Area ‘:%‘D

|Confer Areal

/

Chris: [Jjoins]

Mark: [joins]Hi Chris, Can you explain how to use MUSK?
Chris: Sure Mark, I’ll draw the explanations...

Chris: Does that make things clearer?

Mark: Great, thanks. By the way what time do you make it?
Chris: Well DATE says: Tue Aug 4 14:00:36 BST 1987

Mark: Okay, thats about what I make it too.

Mark: Let me have a go with the pointer...

Chris: Go ahead...D

Figure 2. Display layout used by Musk.

22

4. IMPLEMENTATION

4.1. Basic Sketching

All graphics operations are performed using the OR raster-op function as this corresponds closest to what is
expected of a sketch pad. Also, the final image is not dependent on the time ordering of operations which
is relevant in the case of musk since time ordering is not preserved.

The WW graphics library provides routines for drawing circles, lines and boxes so these are used with an
XOR raster-op function by musk to implement rubber banding feedback. Free hand sketching is ORed
straight onto the display. All lines are one pixel wide and there is no provision for brushes or the filling of
boxes and circles. A ‘‘clean sheet’ function is provided on the sketch area menu. The eraser is imple-
mented as a square brush which clears the area under the cursor as the mouse is moved.

4.2, Text

Text is drawn using a single fixed width font. It is important that all participating musks use a font of the
same size to preserve WYSIWIS semantics. The confer sub-program uses a terminal emulator for output
but the sketch sub-program paints the text onto the screen starting at the current cursor position. Consecu-
tive character events are echoed across the screen, with handling for delete and carriage return.

4.3. Input

The input model of WW owes a lot to that of the earlier window systems on which it was built. The client
has the locus of control and calls a routine everytime it wishes to wait for an input event. Lately, this
model has been extended to allow the use of select(2) in WW applications. The main WW input wait rou-
tine in fact uses a function pointer to call the lower level input function and this pointer can be reset to call
a client function instead. This allows a client to insert an extra layer of input handling which will be used
by independently developed code such as a pop-up menu package.

The information about an event given by WW is rather limited. Apart from special cases, no indication is
given as to what triggered the event, be it a button up, button down or mouse movement, although the state
of the buttons and the position of the mouse are available. Special cases of input events include resize,
iconisation, window enter and window exit.

4.4. Networking
A number of possible schemes were considered for networking musk, including the following:

Token Passing
Each participating musk is linked in a ring of network connections with one read and one write chan-
nel per client. A token is passed around the ring and if a client receives an empty token it may place
some data in the token which can only be removed by the placing client when it returns.

Broadcast
Each participant has n-1 read/write connections where » is the number of participants. All data is
written to all parties by the originating musk and each client has to select from n-1 sources for input.
Daemon
Each client kas one read/write connection to a central daemon. This daemon reads the data and
echoes it to all other parties.

These alternatives each have merits and drawbacks. The first two would make it difficult for fresh parties
to join a conversation after it has started and the ring may have problems with lost tokens and broken links.
The daemon situation requires that an extra program be written and maintained and, like the token ring
solution, needs one more IPC message per event when compared to the broadcast solution. The ring solu-
tion avoids concern over the time sequencing but propagation may take longer. Throughput could be
improved by using more tokens but this would break the sequencing.

I decided to use the daemon solution as it was the simplest and had been demonstrated to work by the origi-
nal confer program. This also meant that a daemon program was available which only needed customising
for musk.

23

musk

Figure 3. The network architecture used by Musk.

4.5. The Daemon

The daemon is implemented using TCP sockets although this is hidden beneath a library interface which
provides the following calls:

int ipc_server (port) int port;

int ipc_accept_client (gateway, verify) int gateway, (*verify)();

int ipc_client (hostname, port) char *hostname; int port;

The first routine is used by the daemon to open a file descriptor onto the specified port on the current host.
The second routine is used by the daemon to accept connections from clients. The verify routine, if not
NULL, is called with the hostname of the calling client to confirm the connection. Ipc_client is used by
clients, musk in this case, to open a file descriptor onto the specified port on the specified host.

The original daemon needed no knowledge about the structure of the data it was handling. It simply
selected for input on each channel and echoed any data read to all connections bar the originator.

The daemon can run on any machine, each musk simply has to know the machine and port number with
which to connect. As the data is transferred in machine-independent form, the daemon can execute on a
host-type different to those on which the musks are running.

As currently implemented one daemon is needed per conversation but this has not proved to be a problem
as the usual scenario is that a user initiates a session causing a local daemon to be started which the other
parties connect to. This system will break down should a user wish to initiate more than one session con-
currently. The port and host are run time parameters so recovery could be made with a little work.

4.6. Extending Musk to be multi-user

There were two possibilities considered for extending the sketch program to multi-user operation:

(1) Use a high level protocol which would map onto remote procedure calls.

(2) Tag the low level input events with a source identification and propagate them.

I adopted the second approach for the following reasons:

. The code for handling the low level events was already implemented and only needed extending to
be aware of the event source. This mainly required the use of vectors for state information.

° The networking could be mostly handled at the lowest level of the input code. The low level routine
could select on the local input source and the network, with the local events being dispatched where
they are read.

24

In fact, slightly more work was needed because of the problem of different display sizes. Events have to be
tagged as intended for the sketch or confer sub-programs otherwise each musk could interpret the X and Y
information differently. The event trigger (button up, mouse move etc.) is also reported.

Unfortunately, the functionality added to musk as it developed meant that higher level pseudo-events have
to be generated for circles, boxes, bitmap paste etc. This has led to calls to the network code finding their
way into the rest of the program.

Features of a user interface such as mouse feedback are time critical, so it is important that local interac-
tions be as responsive as possible. The local response is improved, and the network loading reduced a lit-
tle, by making local events short circuit the network and be handled directly. This also allows some cen-
soring of the events broadcast as some only have local significance or no significance at all. For example,
pop-up menu requests are not relevant to remote musks, but their effects are.

Sadly, this short circuiting has broken the WYS/WIS semantics: time ordering of events is lost. Despite the
use of the OR raster-op function two operations are affected by ordering: erasing and ‘‘clean sheet.”’ So
far, this has hardly been noticed in normal use.

4.7. Copy and Paste of Text

Suntools, the only environment in which musk so far runs, has a selection service. This allows any text
displayed by a cooperating client to be selected and copied. The WW library provides an interface to this
service which musk uses. The confer sub-program makes displayed text be selectable for copying too.

Text which is pasted into musk is handled by both the sketch and confer sub-programs as if it is a string
typed at the keyboard.

4.8. Copy and Paste of Bitmaps

The scheme here is that the user clicks and releases on the bitmap-paste icon (a pair of scissors) to invoke
the function. Musk changes the cursor when it has acquired full screen access, using WW, and the user is
then able to cut the desired bitmap. The source area is marked out using a rubber banded box and, after
taking a copy of the bitmap, full screen access is released. The user is then able to drag the bitmap across
the sketch area (using XOR) until it is placed at the desired destination and ORed onto the display. The bit-
map has then to be copied to the other parties.

A problem with this is that all other communication is performed using discreet packets of a fixed size and
a bitmap could not be made to fit into a packet. The initial solution was to use the SUN’s network file sys-
tem by copying the bitmap into a file and then sending the pathname to the other participants. This had
problems due to the requirement of having a globally accessible and writeable directory - /tmp is not glo-
bally available, at least with our file system topology.# Positional information about where to put the bit-
map was encoded into the file name.

This implementation has now been replaced by one using the network connections used for the rest of the
communication. A posting client sends a packet indicating that it is about to post a bitmap of a specified
size. The bitmap is converted to a machine-independent string representation and written into the socket.
The daemon reads the packet and buffer and then writes both to each of the other parties. Unfortunately,
there is a complication: sockets have a limited buffer size so writes exceeding this size will block until the
consumer at the other end reads data out. This can lead to deadlock. If the daemon was copying a bitmap
to one client while the same client was trying to post a bitmap both would block. The solution used is that
before a client can post a bitmap buffer it has to wait for a ‘‘go ahead’’ signal from the daemon. The client
can then be sure that the daemon will consume as it produces. The daemon has the responsibility as arbiter
for such requests.

Apart from the mechanics of actually transmitting the bitmap, there are problems with converting bitmaps
to be of use to the other clients, even in an apparently homogeneous environment. Colour bitmaps do not
(yet) copy sensibly. The problem here is working out how to collapse a colour image with, say, eight

4 Directories used for temporary files cannot be shared between machines as programs depend on a unique process i.d.
to generate unique file names. File system topology may still allow access to remote temporary file directories.

25

planes to a one plane monochrome image.

4.9. Pointing

The pointing state is entered by the user pressing on the pointer icon (a hand with index finger extended.)
That user then has hold of the pointer until the button is released. Locally, the user sees the cursor change
to look like the icon while everywhere else a second cursor appears and the pointer icon is annotated with
the pointing party’s user name.

SUNs have a ludicrously small cursor, only sixteen by sixteen pixels of one bit, which is not large enough
for what I felt appropriate. Fortunately, previous experimentation by members of the group had shown that
much larger cursors were perfectly feasible if implemented in software.5 WW supports cursors of any size
with an optional mask.

WW allows only for the single cursor tied to the mouse movements so the second cursor has to be imple-
mented by musk. This was straightforward but needs care to ensure that the pointer is removed from the
display before any graphics operations, and that the buffering is kept in sequence.

Only one pointer can be active at a time, so the clients have to negotiate with the daemon to acquire the
pointer. If the pointer is already in use then the request is rejected. There is no queuing of requests. Once
again, care is taken to make sure that clients keep in sequence with the daemon and parties joining while
someone is already pointing are to be told of the state of the pointer lock.

4.10. Session Management
As was stated previously, this area has not been addressed in sufficient detail.

The daemon has to know how many connections there are and each musk needs to know the names of each
user. The first packet that a new instance of musk sends is an initialisation packet giving the user’s name.
These are registered by the daemon and sent to the other parties. The daemon tells new parties about all
existing connections. Parties leaving are de-registered.

The front-end for starting conversations is implemented as a pair of shell scripts. The startmusk script
takes a list of users as its arguments and scans the network to locate which machines they are logged into.
If the user is using the console then it is assumed that they have suntools running and an rsh(I) used to
invoke the second script which executes a musk on the remote machine. Unfortunately this remote musk
runs with the user id of the conversation initiator but an environment variable, MUSKALIAS, can be used
to set the user name used by musk. An option for starting up iconised has been added to make the execu-
tion of a remote musk less intrusive.

5 The bitmap dragging described above shows that large bitmaps can be moved smoothly if double buffering is used. It
often amazes us to see applications suffering from terrible flicker which is quite unnecessary as double buffering is cheap
and very effective.

26

Multi-User Sketch and Talk Program V8.3

| sketch [lines boxes |

MUSK — a Multi-User Sketch Program
Chris Crampton
Human Compuler nteraction Section
Informatics Division
Rutherford Appleton Laboratory
Chilton, Didcot, 0 zon
0X11 09X, UK
ce®@ uk.acrivd

\

[Pasted Imageq

>of o B

Pasted Text

Tue Aug 4 14:12:52 BST 1987

Chris: [joins]Pasted text: Tue Aug 4 14:12:52 BST 1987
Mark: [joins][leaves] -
Chris: éext selected for pastind]*

Figure 4. Ilustration of Musk in use.

27

5. FOR THE FUTURE

In most respects, the musk program is as advanced as it is likely to get in the near future. What is now
needed is a period of consolidation while musk is used so that comments can be collated to assess what
changes and additions are required. However, some areas in need of attention are obvious and require
experimentation to arrive at solutions.

Session management
Alternatives include using a chairperson with responsibility for session management or use of a more
democratic voting system to make decisions, for example, whether to permit a new party to join or
whether the picture can be wiped. Care will be necessary to avoid disrupting the flow of conversa-
tion with too much bureaucracy.

Colour
Currently, musk only uses two colours even when running on machines with a full colour capability.
The copying of images on colour machines does not work. Apart from fixing this, musk could be
made to exploit colour in useful ways:

. Extending the sketching capability to allow the use of coloured ‘‘inks™
. Use of different colours to distinguish each user’s contribution

I have a number of other ideas that may be implemented if I find the time:

. Currently, when a user joins a conversation after it has started, he or she misses out on all that has
been previously ‘‘said’’. It would be straight forward to extend the daemon to keep a history of the
conversation since the last ‘‘clean sheet’” so that the screen of a new user can be brought into line
with those of the other parties. This could be a way of providing a playback feature too.

. There is no help or explain facility. Although the user interface is quite intuitive, some assistance for

new users would be valuable. This could be simply in the form of a box which advises what the
mouse buttons do at the current screen position.

6. CONCLUSION

If nothing else, musk has demonstrated the feasibility of highly interactive communication. Our initial
reaction is that it has also demonstrated that the potential for such a tool is considerable.

After a period of exploration (usually less than a minute), the user interface is quickly understood by new
users and the feedback has mostly been very positive. Comments seems to indicate that the user interface
is successful by being intuitive, responsive and practical.

I don’t pretend to have the answers for the deeper questions posed by the usage of such tools but we do
have the capability to experiment and gain the experience which will allow us to ask these questions.
Hopefully, a future paper will be able to give some answers.

A lot has been said about the ‘‘Desktop Metaphor’’ and this is symptomatic of the isolationist approach to
computing so far taken, with a few exceptions. Now is the time to break out and think of more ambitious
metaphors: the whiteboard, the beermat...

28

7. ACKNOWLEDGEMENTS

Many people have contributed to the design and implementation of musk. Foremost amongst this group is
Mark Martin who is partly responsible for the confer sub-program and, more significantly, the WW graph-
ics toolkit. He is the one who has wrestled with SunView to provide me with the facilities I needed. Cris-
pin Goswell and Tony Williams have also contributed code and ideas. Indeed, everyone in the HCI group
and many others at RAL have helped with development of musk, either with ideas or with tolerance at my
repeated intrusions when I needed someone to ‘‘talk’’ to - debugging a multi-user, interactive program
requires lots of cooperation or very long arms!

8. REFERENCES

Martin87 Mark Martin, ‘‘Foundations of a Toolkit’’, to be presented at a workshop on ‘‘High
Level Tools for Window Managers’’ at EuroGraphics, August 1987.
Stefik87 Mark Stefik, Gregg Foster, Daniel G. Bobrow, Kenneth Kahn, Stan Lanning and Lucy

Suchman, ‘‘Beyond the Chalkboard: Computer Support for Collaboration and Problem
Solving in Meetings,”” Communications of the ACM, January 1987.

Waters87 Gill Waters and C W Tony Chan, ‘‘Three-party talk facility on a computer network,”’
Computer Communications, June 1987.
Williams86 Antony Williams, ‘“An Architecture for User Interface R&D,’’ IEEE Computer Graph-

ics and Applications, July 1986.

29

UBOAT
A Unix Based On-line Aid to Tutorials

Daniel V. Klein*
Software Engineering Institute
Carnegie-Mellon University
Pittsburgh PA 15213
+1 412 268 7791
dvk@sei.cmu.edu

Abstract

Designers of computer aided education (CAE) systems are presented with the dilemma that course
authors are required to also be expert in the field of computers. While this is a laudable virtue, it is very
often the case that a skilled educator is not necessarily a skilled programmer, and conversely, a well trained
programmer is rarely a good educator. Consequently, CAE packages are either rich in information but
difficult to use, or else they are wonderful examples of human machine interfaces which convey very little
real information to the student. This paper describes our work in developing UBOAT, a system designed
to allow an educator with little computer expertise to develop an interactive, dynamic, and effective CAE
system. UBOAT allows an educator to concentrate on his or her area of expertise, without requiring a
great deal of distraction in coercing the computer to interface effectively with the learner.

Early attempts at generalized CAE generators such as learn or PILOT! provided an educator with
simple interface to the student that allowed a predominantly top-down approach to presenting the educators
materials. Little or no attention was paid to allowing for revicw, question and answer, ergonomic human-
machinc interface, or screen oriented display. Learn presented all of its text in serial form, and generally
required modifying the source program to add features. Pilot allowed for simple graphics, but required that
it be done in a terminal dependant way. Both these systems, as well as many others, had a cryptic, terse
command syntax that was fairly unforgiving. The source files for the education scripts were often huge
ASCII files, without any data compression or text rcuse, and rarely, if ever was any debugging support or
compilation facilities provided.

With the shortcomings of these systems in mind, we developed UBOAT, a system designed to allow
non-computer experts to develop good CAE packages for their field of expertise. As a side effect, we
also discovered that UBOAT could as easily be used as a menu system or a demo driver, The UBOAT
system presents to the course author a easy to use source language that requires very little programming
skills. Facilities for displaying text in a screen-independant fashion (also allowing for simple animation
and partial screen updates) are provided, as well as a number of query-response interfaces, an integral
“course dcbugger”, pacing system, and an interface to the shell. Each mechanism has built-in defaults,
so that if the course author wishes to query the student for a response of one letter from ‘a’ through
‘h’ the command in UBOAT is query range "a-h". The query mechanism will handle prompting
the student, filtering the response for errors (and printing appropriate error messages), timing out on non-
response, and returning the response to the author. The course author, however, always has the liberty to
override any or all of these defaults. The fact that the defaults are present, however, make the UBOAT
system very easy to use.

“The work described in this paper was performed in the year prior to the author’s employment at the SEI
!Learn was developed by Brian Kernighan and Michacl Lesk of Bell Laboratories. PILOT is a copyright of Control Data
Corporation

31

Course authors are prescnted with the model of an electronic book, combined with the display abilities
of a tcacher presenting information on-the-fly. To this end, the course author can segment information into
“lessons”, “units”, and “pages”, as well as including query-response, and automatic or dirccted pacing.
To easc course development, an interactive “course debugger” is provided, that allow the course author
to cxamine and affect the internal state of the course. The UBOAT system was designed to interface
with most any tcrminal (through the use of termcap), rather than through a fancy windowing system.
Qur motivation for this choice of communication medium was driven by our experiences in tcaching: the
people who need training the most arc the oncs with the poorest computer facilities. Large screen, mouse
driven windowing systems arc usually held by the rescarchers, while the secretaries, clerical staff, and
students gencrally have (or sharc) a simple terminal.

Although we designed UBOAT to present a simple, casy o use interface, we also recognized the
nced Lo allow for a great deal of flexibility in customizing a course, and allow the course author a great
deal of leeway to ‘tinker’ with UBOAT’s operation. To this end, we also provided access to the shell,
although our implementation differs from learn in that our shell remains active, and thus can be used to
save state information. We also have higher level programming fcatures such as subroutines, flow control,
multi-line textual variables, complex pattern matching facilities, an elaborate conditional execution system,
and an override mechanism for every default in the UBOAT system. Thus, although a computer novice
can develop an cffective course using UBOAT, a person more experienced with computers can ‘tweak’
the system considcrably.

The UBOAT system was written with portability (and wide distribution) as a paramount concern. Thus,
although UBOAT was developed on a VAX running 4.2BSD, it also runs equally well under System V,
System 11, Version 7, Version 6, 4.1BSD, Mach, 4.3BSD, and all other derivatives we have been able
1o access. It has been successfully ported to the Sun, Masscomp, IBM RT-PC, Heurikon, PDP-11, MIPS
M/500, Onyx, Zilog, and numerous other machines (our last 4 ports required 5 minutes of programmer
cffort). A Macintosh port is presently underway. The courses that we have developed are similarly
portable. UBOAT has been used 1o create introductory Unix instruction, a user driven Ada demo, lessons
in chemistry, a menu-driven shell, and an intermediate level presentation on linker/loader design.

1 Introduction

Before we can begin a serious discussion of the features of UBOAT, it is necessary to define a few terms. For the
purposes of this paper we need to concern ourselves with three entitics, namely:

1. The course author - this the person who deals with UBOAT as a “programmer”, much in the same way that a
programmer writes code in C. The intentions of the course author are expressed as the actions of the course.

t2

. The course - this is the “program”™ that the author develops, written in the “authoring language”. In this paper,
we will be treating the course as an active entity, since essentially it is an interactive system that responds to
stimuli, providing stimuli of its own to the student of the program (or student).

3. The student - this is the person who deals with UBOAT as an cnd user, without concern for the language that
was uscd to develop the program. As far as the student is concerned, a course written in UBOAT should be
indistinguishable from a well implemented course written in C.

2 Text Variables and Graphics

One of the biggest problems with systems such as learn and PILOT is their lack of “program variables”. Each of
these systems have a simple mechanism for displaying text (the characters to be displayed are stored in place), with
special commands being provided for extracting the information within responses. There is, in general, no concept of
a “variable”, so most of the internal mechanisms are fixed and unyielding. From a student’s viewpoint, this is oftcn
of little concern, since a clever author can manipulate the authoring language to suit his needs. However, when we

W
39}

designed UBOAT, we were also concerned with the welfare of the author, and thus took our cues from the Unix shell
and other programming languages, to provide a morc reasonable interface to the author.

All text is stored in variables, and variables can contain as many lines of text as can fit on a screen. This very
simple generalization allows for a number of interesting featurcs to be included in the UBOAT authoring system:

1. Text can be rcused. There are numerous cases in a course where the same picture or set of words nceds to be
shown 1o the student a number of times on a number of different occasions. By storing text in variables, these
pictures or scts of words can be referenced by name, instcad of by content (simple text can be used once without
needing a variable, if the author wishes). This also means that the amount of disk space that a course uses can
be greatly reduced (an auxiliary program can also be used to compress courses to roughly SOuscable).

2. Because variables can also contain strings of digits (i.e. numbers), these sequences of digits can be uscd by
UBOAT for their numerical value. Thus, the placement of text on the screen can be at a variable location,
instcad of being fixed. In fact, anywhere a number could be used in the authoring language, a variable may be
substituted.

3. Taking a cue from the C-Shell, variables can be used to alter the general behaviour of the authoring language,
rather than resorting to spccialized commands. For example, the variable FLUSHMODE sclects whether student
typeahead will be flushed, while the variable INTERPMODE selects whether the course is presented in “student”
or “author” mode (the latter mode has the debugger cnabled).

4. Variables can also be used to report to the author the status of the course. There are variables which tell the
course the size of the screen, whether a timeout has occurred, what the status of the last shell command was,
etc. Since variables are all multi-lined, multiple valucs can be stored in a single variable. The built-in variable
UBOAT contains the version and revision information, with cach component stored on a scparate line. In this
way, an author can sclect different behaviour for a course on System V Unix than on Berkeley 4.2 Unix.

The UBOAT system also takes advantage of a terminal’s ability to display text in reverse video.2 If the author
desires that text be shown in standout mode, s/he brackets the text with a special standout mask. A boolean and is
performed with this mask and a standout sclector - if the result is true, the enclosed text is highlighted. Because text
can be reused, it is very casy to use one variable to display the same information in slightly different ways. Consider
the following cxample:

~5 [/ ~0
~4|~0
~ht——m t-———+~0-———— fomm e +
~4] | | |
~4 usr ~0 ~2 bin ~0 etc unix
~4[~0 | I
B abuind ~4+-—+~0 +-—+-—+ e et tmmm - +
| ~4}~0] | | | |
games ~6 bin ~0 cat csh passwd group mount

The bracketing pairs of “~n” and “~0” arc the standout masks. Although they cause the variable to appear
somewhat distorted, they are not shown on the screen when the variable is displayed to the student. When a standout
selector of 0 is used, none of the boolean and tests result in true, so no text is highlighted, and the result would look
like this:

2We have modified termcap, so that if the terminal suffers from the sg bug, characters can still be displayed in reverse video.
(The sg bug’s sympom is that the terminal requires more than one character position on the screen to change from normal to
inverse video display). If the terminal does not have an inverse video feature, UBOAT uses special characters to enhance the desired
text, so that in any event, the student sees highlighted text.

33

Fomm— -t Fom +
| I | |
usr bin etc unix
| I |
+——— +-—+ +o—+——+ B tm—————— +
I | | | | | |
games bin cat csh passwd group mount

This, as you can seg, is a standard representation of the Unix file tree. If we wanted to highlight the root of the
tree, we would simply redisplay this same variable with a standout selector of 1, which would cause the */” at the top
of the tree to “light up” (of all the standout masks, only when 5 is anded with 1 yields true). If a standout selector of
2 was used, then both of the bin directories of the tree would be highlighted (demonstrating that there can be multiple
files in a dircctory hicrarchy with the same name). When a standout selector of 4 is used, the path from the root to
fusr/bin would be highlighted (demonstrating how similar file names are distinguished by dissimilar pathnames).

3 Stepper Subsystem - Pacing the User

Generally, an author designs a course with the intention of allowing a student to pace through it at rate that is moderated
by the student. One unfortunate aspect of learn is that it only allows a general top-down interpretation of the course
matcrial. Very often, the student will want to review a page, back up, or even cycle through an entire section again.
In many authoring languages, this is a difficult task.

Many classical evaluations of CAE compare an unaccompanied CAE course to a textbook or a taped course, yet
few CAE systems provide this basic analogy in the hicrarchy of the system. We designed UBOAT around this analogy,
and break down a UBOAT course into a set of components that parallel the breadown of a book. These components
are the “lesson”, which is broken down into “units”, which is in turn divided into “pages”. The advantage of pages
displayed on a screen over pages in a book is that clectronically displayed pages can be made to change dynamically,
much in the same way that transparencies can be overlayed by a lecturer.

The authoring language automatically provides the student with a mechanism for stepping forwards and backwards
across page boundaries. Should the author desire it, s/he can also implement mechanisms that step across unit or
lesson boundaries. In this way, the student is not constrained to reading a course from start to finish, but can skip
around much in the same way as a reader would skip from section 10 section in a book.

The UBOAT system provides much more than just an electronic book, although this in itself is a useful service.
Since the authoring language is essentially a programming language (with variables and conditional expressions), we
felt that there would be a need for higher level control structures - namely subroutines. Thus, should the author wish
to create a subroutine that compares a set of prerequisites against a record of student experiences before entry to every
lesson, this is an easy thing to do. In fact, although the UBOAT system is primarily an interpreted system, recursive
subroutines are supported. Should the author wish to write a recursive evaluation of the Fibbonacci series, this would
be possible (although it would not be recommended).

4 Query Subsystem - Getting Answers from the User

Responses from the student typically fall into a simple pair of orthogonal classes. The course is either interested in a
multiple-choice answer, or some more elaborate string. UBOAT provides both of these classes to the author, utilizing
a sct of default prompting and error handling mechanisms that present to the student a consistent interface to which
they can easily accomodate.

34

4.1 Multiple Choice Queries

The multiple choice class of response is so pervasive to all CAE systems that we felt it was a clear indication that
UBOAT should have a built-in mechanism for processing them. Thus we broke this class of responses into three
subclasses:

1. Range responses - this is where the course needs an answer in the form of a single character from (for example)
‘a’ through ‘f’, or ‘1" through ‘5, or ‘G’ through ‘K’.

2. Subset responses - when the course requires that the student respond with a single character out of a set of
(usually discontiguous) responses, such as ‘a’ for append, ‘i’ for insert, °j” for jump, ‘q’ for quit, etc.

3. Yes or no responses - when all that is needed is a yes or no response. This is actually a simplification of the
subset response.

In these three cases, UBOAT automatically prompts the student for the correct response by printing a message
appropriate to the type of the query. It then filters the student’s responses (performing the appropriate upper-to-lower
or lower-to-upper case conversions), rejecting illegal entries. The course need only test the student’s responses against
the valid sct of answers, since the query mechanism filters out all illegal answers.

As with most other features in UBOAT, the author can relegate all error checking and recovery to UBOAT, or catch
them herself as desired. Thus, the author is free to concentrate only on the course materials and not on the mechanics
of the presentation system. Alternatively, the author may also spend as much effort as desired on error recovery as she
desires. For the most part, the default mechanisms suffice, but there are cases where it may be beneficial to enhance
these. The course author has control over all of the following:

o Prompt message - the message that is printed to indicate that a response is desired. By default, this message
reflects the set of characters that are expected.

e Case conversion - by default, UBOAT accepts both upper and lower case, and converts responses 10 match what
the course expects. This may be disabled if desired.

o Error message - ordinarily, a simple error message is printed if an illegal response is given, although this message
may be changed.

e Error handling - by default, UBOAT will cycle indefinitely until the student gives a valid response. Should
the author wish to limit the number of errors, or have a subroutine process error conditions, this is casily
accomplished. UBOAT also tests for the usual student mistakes, including typing the characters *<’, *r’, ‘e’, ‘v,
etc. when a legal response is <return> (i.e. the return key). This feature can also be disabled.

o Timeout - under normal operation, UBOAT will wait "forever” until the student responds to a query. An automatic
timeout can be enabled on a per-query basis, or on a system-wide basis.

4.2 Unformatted Queries

Simple responses are not always needed from a student - often a single character (without any pre-checking) or a
string of characters are needed. The UBOAT query system provides both of these features, with an optional limit on
the number of characters that will be accepted from the student. As with the multiple choice queries, the author has
control over the prompt and error messages that are printed, as well as the error handling and timeout characteristics
of the query.

35

5 Conditionals - Checking User Responses

There is not much point in getting a response from the student unless it can be compared against what the course
believes to be a legal input. In a UBOAT course, all student inputs are captured in variables, so that a number of
high level manipulations can be performed of their contents. Because conditional expressions are implemented in
a gencralized form, comparisons can be made on pairs or variables, or on a variable and a constant (all that learn
provides is a way of checking the last student response against a constant - this is very often inadequate).

The comparisons are provided include the usual set of relational operators, namecly:

¢ Equality and inequality - these comparisons are done on a character by character basis, using the standard ASCII
lexicographic comparisons.

o Less than, less than or equal, greater than, greater than or equal - these comparisons are also performed on a
character basis. However, if both strings being compared are purely numeric, then the comparison is performed
numerically instead of lexicographically.

e Pattern match - this relational operation uses the full sct of regular expressions found in grep (although the
function is built into UBOAT).

The standard relational operators are provided for checking responses. We included a pattern match facility was
included when we observed that although the student was typing in a legal response to a question, the course was not
recognizing it as legal. This was the case when the student did not type exactly what the course expected, and we felt
that this was an inappropriate action for a modern CAE system.

It should be noted that the comparisons performed by UBOAT are still fairly simple. If the author wishes to include
more complicated recognition facilities (such as the parsing facilities provided by lex and yace, then these features can
be incorporated as describe in the following section.

Once the student responscs (or, as will be seen in the following section, the output of the shell) have been evaluated,
UBOAT provides a standard repetoire of conditional expressions, including:

e Simple conditional - if the condition is true, then execute the following set of expressions. Naturally, an else
clause is also provided.

e Case sclection - select one of a set of alternatives based on the contents of variables. The actions may be based
on the concatenation of multiple variables, so that highly complex, dynamically executable branching can be
developed.

o Compound conditionals - simple conditionals and case selections may be nested to a reasonable depth, so that
most any set of test conditions can be evaluated.

6 Interfaces with High Level Functions

There are many features that the course author may wish to have included in a course. Among these are arithmetic
packages, data sorting, data filtering, date and time facilities, etc. Rather than implement each of these features directly
inside of UBOAT, we instead decided not to re-invent the wheel, but rather to use previous incarnations of these tools.
Most all of these features are available as user level commands from the shell, so what UBOAT possesses is an interface
to an interactive shell. The choice of which shell to use was casy - we use the Bourne shell, primarily because every
version of Unix that we have encountered has it, while not every system has the C-shell.

The casual reader may at first scoff at this idea, claiming that it is nothing new, and that many other programs
(such as ed, dc, make, and learn) have a similar interface. The difference between these programs and UBOAT is that
each of these other programs spawn a new shell for each shell command that is to be executed, while UBOAT creates
a single shell, and communicates with it via a pair of pipes. The net result of this is manifold:

36

1. Because a fork()/exec() pair does not have to be exccuted for each shell command, the interface to the shell runs
much faster.

2. Since the shell is not recreated for each command, the shell can be used to save state information (in shell
variables or environment variables).

3. Since shell commands are not limited to one line, it is possible to execute complex shell commands (such as
case statements). The mechanism employed by UBOAT is far more elegant than the hack provided by make.

4, Because the course is essentially connected to the standard input and standard output of the subshell, it is possible
to take the contents of UBOAT variables (which can of course be multi-lined), feed them through a user level
program, and capture the results in another UBOAT variable. In this way, the author automatically has full access
to all of the Unix filters for arithmetic, sorting, keyword lookup, character translation, editing, etc.

5. As with interactive CAE systems such as learn, the UBOAT system allows the student’s typed input to be
executed directly, so that the output of the commands cxecuted can be shown to the student. Unlike learn,
however, UBOAT has the ability 1o capture the output of the shell comands and cvaluate it beforc presenting
it 10 the student. All that learn can do is examine the return status of the exccutcd command, a feature used
inconsistantly in Unix.

6. Many authoring languages provide a “native language” interface that allows authors to write in a subset of the
host language (a restricted set of C, for example) to facilitate more complicated course actions. By providing a
generic interface to any user level program, UBOAT allows an author to use any programming language when
s/he feels that the command syntax of UBOAT is inadcquate.

A simple very example of the power of the shell interface is shown in the following example. In this authoring
language script, we demonstrate a binary counter. The shell is used for the simple arithmetic of adding 1 to a shell
variable named x. This variable is captured in an UBOAT variable called cnt, which is used as a changing standout
selector. As each of the standout masks in the string is anded with the standout sclector, the string will appear to
“count” on the screen - each bit illuminating in proper sequence.

Initialize the shell variable x to zero.
! x=0
Provide a label for the goto at the end.
label loop
Capture the contents of the shell variable named ‘x’ into the
local variable named ’‘cnt’.
set cnt = ‘echo $x°
Display the contents of the variable ‘cnt’ followed by the
binary counter, centered on line 12 of the screen. The standout
masks in the string are moderated by the contents of the local
variable ‘ent’, which gives the appearance of a sequencing

L A

binary counter as ‘cnt’ is incremented.

show "~(cnt) ~8..~0 ~4..~0 ~2..~0 ~1..~0" 12 CEN_EACH ~(cnt)
Escape to the shell to increment the shell variable ‘x’.

! x=‘expr $x + 1°
Pop back up to the top of the loop. No ‘sleep’ is needed, since
the execution time of ‘expr’ is a sufficient delay.

goto loop

37

Clearly, this is a trivial cxample, but consider that in other languages this simple script would take much morc
effort. More complicated examples are available, but these exceed the scope of this paper, and are presented in the
UBOAT user’s manual.

7 Commercial Considerations

UBOAT is an interpreted system. As such, it is naturally less efficient than a compiled system. However, in most
cases, the speed of execution of the program is limited by the speed of the output device on which the student is
learning. Since this is typically at a maximum speed of 9600 baud, the extra time required to interpret the UBOAT
script is rarely noticed by the student.

There are some obvious advantages to an interpreted system, however. The author can make changes to the course
and test these changes quickly, without waiting for recompilation. Because the authoring language is executed “as-is”,
it was very easy for us to include an integral debugger that reports on the state of the course and all of the internal
variables, as well as providing a simple means of manipulating the source “on the fly”.

However, an interpreted system also means that the course materials are stored in plain text form, and this has two
important ramifications. The first is that the course can take up an awfully large amount of disk space - a problem at
most sites. The second consequence is that the course materials are readable by anyone - even those who are not using
UBOAT as a presentation medium. This means that theft of course materials are trivial, and this is a very real concern
in the commercial environment. To counter both of these problems, a data compaction program was developed that
not only reduccs the size of the on-line course materials, but also renders them unreadable without the UBOAT system.

Another concern of commercial applications is that of unauthorized exit from the course. Since UBOAT can also
be used as a driver program for a demonstration system, it would be potentially embarrassing (or damaging) if a
user could escape from a demo and start perusing through other files on the system. UBOAT provides a number of
different security modes (sclectable through variables in the course) that can, if desired, completely disable unauthorized
termination of a course or demo (including trapping of all signals), or ensure that correct shutdown procedures are
followed before termination. In this way, a demonstration system written using UBOAT can be left running unattended,
without fear of malicious user intervention.

8 Integral Debugger

When developing a course, usually the only way to test it out is for the author to play the part of student, and attempt
to “break” the system. When this happens, the author typically installs instructions to test for the offending condition,
and the problem is circumvented. However, when the unexpected occurs, and the course behaves in an unpredictable
way, there is often very little that can be done in most authoring languages to rigorously seck out the cause.

UBOAT provides an integral debugger that allows a course author to examine the current status of the course,
including the contents of all variables, location within the coursc, and subroutine nesting. The debugger also allows
the author to single-step through, and to trace the execution of the course. It is also possible to enter the editor directly
from the course to correct errors.

Since the authoring language is interpreted, no special considerations need to be made to enable the debugger - it
is actually a part of the interpretive system itself. Once a course is deemed to be correct, simply setting a variable in
the interpreter (via the course) disables the debugger, so that students do not inadvertenly activate it.

9 Conclusions

So far, all that this paper has discussed are the benefits to the author of a CAE script. Truly, UBOAT provides a highly
flexible, dynamic, interactive medium for developing computer aided courses with a minimum of hecadache. In fact,
owing to the flexibility of the system, UBOAT is not be limited to the development of tutorials - it has already been

38

used as a driver program for a hands on Ada compiler demonstration and as a user friendly menu driven shell. From
the author’s standpoint, UBOAT is a simple o0 use system that has default actions for most all conditions, and enables
a course author to get information onto the student’s screen with a minimum of effort.

The student also reaps from the benefits of the UBOAT system, by being presented with a consistent user interface.
Additionally, since the author of the course does not nced to be an expert on computers, the author can instcad
concentrate on their arca of cxpertise. The net result of this is that the student gets a better course, since the author
has had to spend less time jumping through hoops, and more time concentrating on the course materials.

Another benefit is onc of portability. The UBOAT system was written with portability (and of course, wide
distribution) in mind, so the source code for UBOAT can be ported to new machines with a minimum of cffort.
Becausc of this, both the presentation system (i.c. UBOAT) and the courses themselves can be readily distributed t0 a
wide variety of systems, giving a greater amount of exposure than would be generated by other, less portable systems.

The final benefit, though, is derived from the fact that UBOAT was designed to run in a terminal indcpendant
fashion. There are a number of CAE systems on the market that run on windowed graphics systems, or that utilize
special cassette tape interfaces, video disks, or “learning lab” facilitics. While these are often excellent educational
tools, they are often fairly expensive, and more importantly, present a bottleneck in that only 1 student can usc them
at a time.

The students who most need training arc very often those who have the least money budgeted to training (i.c.
secretaries, entry level programmers, etc.), and who have the lcast amount of free time to dedicate to the intensive
training that these systems provide. The special systems also require special hardware, and often special tools to
modify the existing courses, or develop new ones. This often locks the students (or the student’s organization) into onc
type of hardwarc, or course provider - a bad idead no matter who is doing the providing. So while the sophisticated
systems may be better on a per-student basis, they deliver much less “bang for the buck” when considered in the long
term,

UBOQAT thercfore provides an inexpensive, easy to modify, easy to use system, that is easily affordable in terms
of both monctary and time constraints, and can be uscd by the average student at their own terminal.

39

Developing Ada™ Software Using VDM in an Object-Oriented Framework

Chris Chedgey
Seamus Kearney
Hans-Jiirgen Kugler
Generics (Software) Limited
7, Leopardstown Office Park
Foxrock
Dublin 18
Ireland

Abstract

A software development method encompassing a variant of
Object-Oriented Design (0OD) and the Vienna Development Method

(VDM) 1is described. The development 1is targeted at the Ada
programming language. Part of the objective of the work described
here is to produce a method for constructing Ada software - a

method which follows sound engineering principles in order to
improve software quality as well as improving productivity on the
part of the developers.

1. Introduction

This paper describes the use of the Vienna Development Method (VDM)
[Bjorner 78] in the context of the development of software to be targeted at
the Ada programming language [Ada 83]. Part of the objective of the work
described here is to produce a method for constructing Ada software. In this
context a method is an orderly set of techniques and guidelines, designed for
repeated use in developing products of similar properties. The authors are
involved in examining the suitability of VDM in this context. ESPRIT project
510 ToolUse [Horgen 86] is examining the relationship of VDM to the typical
software life cycle. The use of VDM to derive Ada packages as directly as
possible is addressed within ESPRIT project 496 Papillon [Chedgey 86].

The paper discusses some of the observations made about VDM highlighting
the advantages to be gained and the inherent problems that were encountered
when applying it. A solution to the specified shortcomings is proposed
incorporating VDM within a generalised development method.

VDM is combined with a variety of other techniques, derived from Object-
Oriented Design (OOD) [Booch 83] [Booch 86] and Jackson System Design (JSD)
[Jackson 83] [Cameron 83] [Cameron 86], to improve the support during the
system specification and design phases of the software lifecycle [SLC 80].
Subsequently the refinement of data types with specific reference to their
implementation in Ada is discussed.

™ Ada is a registered trademark of the U.S. Government, AJPO.

41

The experience of the authors stems from applying O0OD, JSD and VDM to a
number of case studies [Ryan 86]. They are applicable to a software
engineering user of those methods, rather than a theoretician.

2. Developing Ada Software

The choice of which programming language to use within a development
always merits careful examination. The following requirements are normally
high in priority when assessing languages and generally apply to most
application domains. A programming language should contribute to the
effective management of the project whether it is small and simple or large
and complex. It should aim to increase programmer productivity, reduce
errors, improve performance and facilitate maintenance [Myers 86].

Ada is one programming language that supports the above features. Other
languages such as Fortran, Cobol, C and even Pascal fall short of these

demands. Most existing languages tend to emphasize syntax and features that
are used to describe relatively small program units such as statements and
procedures [LeBlanc 82]. When applied in larger projects these languages tend

to complicate problems rather than resolve them.

Ada is a programming language suitable for building large, yet reliable
systems. Ada was originally targeted at embedded systems but has, more
recently, been applied to a wider range of commercial applications
specifically those systems where complexity and size are major concerns.

Ada was designed to enhance program reliability and maintenance as these
are the largest cost areas in the software lifecycle [Ada 83]. Programming as
a human activity was considered by placing an emphasis upon helping the
programmer to manage the complexity of software solutions. The language was
required to support efficiency. Any language construct whose implementation
was unclear or that would require excessive machine resources was rejected.

These benefits cannot be realised by simply applying the programming
language. The provision of some form of design support is required to guide
the structuring of systems in a disciplined manner [Mickel 84].

The proper use of languages like Ada, C++ and Smalltalk require a
different approach to design than the approach one typically takes with more
functionally oriented languages. These latter languages are best suited to
functional decomposition methods, which concentrate upon the algorithmic
abstractions.

Functional decomposition methods are not sufficient for developing Ada

programs. In general, such methods do not explicitly consider information
hiding, and data abstractions are difficult to enforce. Functional methods
fall short in taking advantage of Ada’s expressive power. Ada embodies many

concepts that are not provided by traditional languages (e.g. packages,
tasking and generics) and, as such, these approaches could not fully exploit

the power of the language. There are also a selection of problems that
require knowledge to be represented as part of the system as opposed to the
use of purely imperative processes. Such a trend implies a move to object-

oriented problem solutions (which can be expressed with Ada packages).

42

What we require then, is a method that fully exploits the

characteristics of Ada as a programming language. This should preferably
incorporate an object-oriented approach and support data abstraction and
information hiding. The constituent techniques should be based upon sound

engineering principles so as to improve the quality of the software as well as
improving the productivity of developers.

In general we can view a development method as comprising three major
components:

Notation - the notation in which the design is expressed
Guidelines - guidelines for producing the design
Analyses - rules for checking the internal consistency and

completeness of the design steps

A number of desirable characteristics of a method can be identified.
The techniques, incorporated within the method, should cover a wide spectrum
of the software life cycle. The approach should be applicable to small and
large scale developments and provide some degree of formality i.e. formal
guidelines on applying the method should exist. The overall method should not
be purely top down in nature but make provision for iteration and change
propagation throughout the design process.

As it stands, there is no one method suitable for constructing Ada
software that supports all of the above criteria. The possibility of
combining a number of techniques that are complementary in nature was
considered. The constituent notations should be compatible and the various
design representations output from the methods should be understandable on
their own. There should be no gaps, clashes, overlaps, or difficult
transformations needed to carry the results of one method forward to the next.
It should also be possible to verify that the design documents produced during
a development are consistent with each other.

2.1 Vienna Development Method

The Vienna Development Method (VDM) 1is a well established formal
development method for the specification and design of software systems
[Bjorner 78] [Jones 86]. VDM promotes a rigorous approach to software
development based on the gradual transformation of abstract specifications
into concrete specifications. At the uppermost level, the specification is
given as an abstract model. More concrete descriptions are then derived by
transforming abstract entities into ones reflecting more detailed aspects of
the system to be implemented. This process 1is repeated until the
specification can be transcribed into code.

VDM is interesting since it provides comprehensive support during the
design stages of the lifecycle [Chedgey 87al. The method is based upon an
underlying formal specification language, called Meta-IV [Bjorner 80}. Meta-
IV is a notation for describing models and provides a number of basic data
types and type constructors out of which new data types may be modelled.

43

This approach is complementary to the formulation of packages implementing
abstract objects and abstract data types in Ada [Jackson 85].

The meta-language combined with the reification technique illustrated in
detail in [Bjorner 82a], [Cohen 86] and [Jones 86] directly supports stepwise
refinement of specification documents by operation transformations (including
functional decomposition) and object transformations (known as data refinement

or reification). Proof obligations [Jones 85] can then be generated to
demonstrate the correctness of transformations and to show that invariants or
other properties are still maintained. Guidelines exist on how to apply the

notation and reify the various design documents produced during a development.

There are a number of drawbacks to using VDM as it is currently defined.
VDM does not support concurrency. In an effort to overcome this the
possibility of combining VDM with other formal methods that model concurrency
issues is being examined [Hoare 85] [Milner 80].

There are problems with the notation of the meta-language when
considering languages supporting data encapsulation, such as Ada. The basic
concept in Ada is the package, encapsulating data and operational abstraction.
The "traditional" version of VDM does not allow for grouping of domain
definitions and operations into modules, nor does it support expression of
information hiding other than through structuring of the specification
document and careful choice of reification levels. Realisation of this
drawback led to some modification in the style of writing VDM in our design
method and will be discussed later.

2.2 Object-Oriented Design

The Vienna Development Method provides strong guidance during the design
stage but does not maintain this support during the requirements and system
specification stages where the developer is fully responsible for formulating
the problem description [Kearney 86]. A full description of the functionality
of a system must be at hand before VDM can be properly applied. This prompted
a review of other design techniques to identify a method that would combine
well with VDM and provide support for the earlier stages of the life cycle.

Object-Oriented Design (OOD) was examined within this context. Due to
its object orientation, OOD appeared to tackle data oriented problems well and
was a potential candidate for use alongside VDM since it supports the tasks of
problem formulation and description. Moreover, 0OOD was known to incorporate
mechanisms that support the specification of packages and tasks, something
rarely addressed in other methods.

OOD is a design approach based on the principles of abstraction,
information hiding and abstract data types [Guttag 77]. The object-based
approach characterises a system as a collection of abstract data types (ADT's)
or abstract objects. BAn object, in this sense, is an entity whose behaviour
is characterised by the actions that it suffers and that it requires of other
objects [Sommerville 85].

Objects themselves are characterised by associated data structures and
a fixed set of sub-programs which are the only operations defined on the

object. Emphasis is placed upon identifying essential properties while
omitting superfluous information. Subprogram bodies, dependencies and
implementation details are hidden.

OOD has been used successfully in a large number of projects, e.g. a
Satellite Tracking System developed at General Electric and a large (30,000
lines of code) application developed at Ford Aerospace.

2.3 Mechanics of OOD

The design strategy in OOD is globally top-down and recursive and starts
when a requirements analysis document is available. OOD does not incorporate
any requirements acquisition techniques. Therefore we must assume that there
has been some prior analysis and that the software engineer has a basic
understanding of the problem. Existing approaches incorporating data flow
diagrams or SADT diagrams could support this process. An alternative approach
would be to modify the entity-action and system modelling steps in JSD and
incorporate them as a front end for OOD. Jackson System development would be
particularly suitable since it is intended primarily for real-time systems.

Using VDM notation, the major steps can then be summarised as follows:

OOD :: Problem-Definition
(Informal-Strategy Formalise-Strategy)

Where the leaves of the tree are elaborated in the order above.
Problem-Definition = (Problem-Statement Analysis)

The design begins by describing the problem to be solved. The designer
is responsible for acquiring any available information and for constructing a
concise English language description of the problem. Emphasis is placed upon
helping the designer to structure the requirements analysis information
towards an object view. The support for this step is very weak in OOD. The
authors are currently experimenting with parts of JSD and SARS [Koch 83] to
improve the guidelines which can be offered to the designer.

The informal strategy step of OOD identifies the relevant entities and
actions, thus forming the basis of the model for the system specification. 1In
traditional OOD the informal strategy relies entirely on a natural language
description of the problem, with an emphasis on highlighting

o the objects which are subjected to actions or which initiate actions
o the operations which can be performed on objects, and
o constraints which apply to objects and operations

There are detailed guidelines for writing such text. The relationship to the

entity/action and entity structure steps of JSD is obvious and can be
exploited [Connolly 86].

45

Much of the analysis about the objects and their relevant operations is
left to the formalisation step:

Formalise-Strategy

(1) Identify Objects and their Attributes
(2) Identify Operations and their Attributes
(3) Establish the visibility of Objects

(4) Define Interfaces

(5) Implement Objects

The first step, identify the objects and their attributes, involves the
recognition of the major actors, agents and servers from the project
description and the identification of their role in our model of reality.

All operations suffered by or required by each object are identified
next. This step serves to characterise the behaviour of each object or class
of objects. The static semantics of the objects is determined by the
operations that may be meaningfully performed on the objects or by the
objects.

The attributes determine the dynamic behaviour of each object by
identifying the constraints upon time and space that must be observed. The
information may detail sequencing and concurrency considerations which may
later influence the decision between subprogram and tasking implementations.
An operation’s attributes will also influence the definition of the interfaces
of the operations.

In the third step the visibility of each object is established in
relation to the other objects. This involves identifying the static
dependencies among objects and classes of objects (i.e. what objects see and
are seen by a given object).

A module specification for each object is produced, which defines the
interface for each object and its associated operations using some suitable
notation. The interface is defined with respect to the clients of an object
and the object itself.

The final step of implementing the module definition for each object
involves choosing a suitable representation for each object or class of
objects and implementing the interfaces from the previous step. This may
involve decomposition or composition. If an object is found to consist of
several subordinate objects the design steps are repeated to further decompose
the object. In other situations an object will be implemented by composition
(i.e. the object is implemented by building on top of existing lower objects
or classes of objects).

2.4 Conmbination of OOD and VDM

Many of the detailed guidelines given for OOD are directly translatable

to guidelines for building specifications using VDM’s meta-language. With
some minor modifications the recommended design steps can be used as a front
end for VDM. Using this approach, objects in a system are identified and

46

their structure and the semantics of their operations are modelled in Meta-IV.
From this stage the method of refinement and the addition of more and more
detail in successive specifications is the same as the traditional VDM
approach.

Formalising the Strategy progresses from the informal problem and

strategy statements to identifying domains of relevant objects. 1In VDM terms,
this corresponds to moving from the syntactic domains in the initial
iterations to the semantic domains. The semantic domains are then used to

define the behaviour of the syntactic ones.

The emphasis on producing the objects of interest first before

specifying the operations is very close to the usual ("traditional" or
"Bjorner") style of VDM, i.e. specify the domains of interest and then the
operations. As a model based technique, however, VDM describes many
operations implicitly by specifying an abstract or representation model for
the domain of interest. If the previous steps of object identification used

abstract models, then it is important to consider the implicit operations here
as well. OOD attempts to make all design steps and decisions explicit. The
two steps of identifying objects and operations are clearly interrelated and
the use of abstract models and implicitly defined operations has a major
impact on the grouping of objects and operations, possibly causing iteration
over a number of sub-steps.

The attribute descriptions will eventually contribute to the full
definition of the interfaces of the operations. Therefore, this step will
provide the material necessary for constructing argument and result domains of
the operations. They will help ascertain whether the operation is a complete
or partial function, or a state changing operation, what the pre- and post-
conditions are, and what conditions are to be fulfilled by the implementation
of the operation (proof obligations).

The VDM meta-language does not offer (at least not in the "Bjorner"
style) any linguistic means to express associations between objects. The
meta-language has therefore been extended to support Ada, as the target
language, by introducing a piece of notation [Chedgey 86] which is a
generalisation of the type definition of Affirm [AFFIRM 81] and it’s VDM style
described in [Beech 86].

When producing the module specifications for each object the
representations and the associated operations are defined using Meta-1IV.

Implementing the model is the recursive step of reapplying OOD, just one

level further down. This corresponds closely to the combined data refinement
and operation modelling of VDM, leading to a new specification using the
reified domains [Bjorner 82al] [Bjorner 82b] [Jones 86]. The module

definitions for each object can then be implemented by specifying a suitable
representation for each object or class of objects using the Meta-IV domain
types and specifying the bodies of the interfaces from the previous step.
These representations are then refined through a number of stages until the
design is detailed enough to be coded.

47

3. Case Study

In order to clarify the approach described above, part of a simple case
study will now be described. The example application which is used is that of
project planning and scheduling.

A system 1s to be generated which will enable a project manager to enter
the various activities in a project, as well as the dependencies between them.
The system will schedule the project in order to calculate the start date of
each activity.

As described in previous sections, the Object-Oriented Design method is
first applied in order to identify the various application’s objects and
object types, and their associated attributes and operations. These objects
and types are then formally specified using a standard template and the VDM
meta-language.

The result of this method is now illustrated by presenting some of the
object and type specifications associated with the above application.

3.1 Specification of Abstract Data Types

Figure 1 shows a stripped down specification of the type "Date™. The
first two lines of the specification indicate that an Abstract Data Type
called "Date" 1is being specified. The Needs Types field lists any ADT’s on

which Date depends. The Interfaces field gives the signatures of the
functions defined for the Date type (note that it is only through these
functions that objects of type Date may be manipulated). These first three

fields of the specification then define the "signature" of the type Date, but
give no indication as to the semantic behaviour.

The Model and Functions fields contain a formal Meta-IV specification of
the ADT. In the Model field the Date data structure is modelled as a Meta-IV
type. In the Functions field the semantic behaviour of the Date functions is
specified in terms of operations on the data structure. Note that there may
be functions specified in this section which do not appear in the Interfaces
section and as such are not visible outside of the specification (for example
"is_valid_date”).

A Specification of the Activity type 1is shown in Figure 2. No
Interfaces or Functions sections have been included in this specification.
This indicates that the operations available for the Activity type are those
defined on the Meta-IV type in the Model section (i.e. mk-Activity, s-id,
s-duration, etc). This kind of specification is used when no extra semantic
layer is to be defined for an ADT.

A Project plan type is specified in Figure 3 as mapping from activities
onto the set of dependent activity identifiers.

48

Type

Date
Needs Types
INTG
Interfaces
Make_date: INTG INTG 1INTG -> Date
Sel day: Date -> INTG
Add days: Date INTG -> Date
"<t Date Date -> BOOL
Model
Date :: s-day ¢ INTG
s-month : INTG
s-year : INTG
Functions
1.0 Make_date (d,m,y) =
.1 (is_valid date (d,m,y) -> mk-date (d,m,y),
2 T -> Undefined)

type: INTG INTG INTG -> Date

2.0 Sel day (d) =
.1 s-day (d)
type: date -> INTG

end Date
FIGURE 1
Type
Activity
Needs Types
QUOT, INTG, Date
Model
Activity :: s-id : QUOT
s—-duration : INTG
s-description : QUOT
s-start : Date
s-end : Date
End Activity
FIGURE 2

49

Type
Project
Needs Types
QUOT, Activity, Date

Interfaces
Empty project : -> Project
Add_activity : Project Activity -> Project
Add_dependency : Project QUOT QUOT -> Project
Schedule : Project Date —-> Project

Model

Project = Activity _-> QUOT-set
Functions

1.0 Empty project = []
type: -> Project

Add_activity (p,a) =

(a € dom p -> Undefined

T > p U [a > (}])
type: Project Activity -> Project

N = O

End Project

FIGURE 3

3.2 Specification of Abstract Objects

By slightly modifying the specification template used for ADT’s abstract
objects can be introduced. For example, Figure 4. specifies a single project
instead of a project type.

Here the specification starting with Object indicates that an abstract
object 1s being specified. 1In the Interfaces part, most of the functions have
side-effects (indicated by the "=>"), that is they have become "procedures”.
In the Model part a state variable is declared and this variable is modified
by the various operations. Note that the state variable can only be modified
by an invocation of one of the operations defined in the Interfaces, unlike
the case in unstructured Meta-IV.

50

Object
Current_project
Needs types
QUOT, Activity, Date
Interfaces
Empty project =>
Add_activity Activity =>

Model

decl p type: Activity _-> QUOT-set := [];
Functions
1.0 Empty project =c¢ p := [];
Type: =>
End Current_project
FIGURE 4

3.3 Specification of Related Subprograms

Occasionally subprograms need to be specified, which operate on one or
more Abstract Data Types or Abstract Objects which have already been
specified. Such a general collection of subprograms is called a Package and
the specification starts with this heading.

These specifications do not generally export any types, but are used to
extend the interface to already specified types or objects or to include
application-specific operations.

4. Implementation of Specifications

When a first description of the system objects has been formalised in
the form of Meta-IV specifications, the VDM reification process may be applied
to transform these into concrete, implementable specifications. The form of
the specification templates closely reflects that of Ada packages. Therefore,
if we provide a mechanism for implementing the basic Meta-IV types [Jackson
85) (Herefordt 87] [Mac an Airchinnigh 87], the task of generating an BAada
implementation is rendered simple and may even be automated.

4.1 Implementation of Basic Meta-IV Types in Ada

The simple Meta-IV types, i.e. INTG, QUOT, BOOL and TOKEN (also include
is REAL), may be implemented directly as Ada packages. For example:

51

package INTG model is
type INTG is limited private;
function "+" (il, i2 : INTG) return INTG;

private
type INTG is
end INTG model;

The composite types, however, will require package generators in order
to construct Abstract Data Types for different subtypes as required. For the
types set, tuple and map the generics facility of Ada may be used to construct
Abstract Data Types from a generic template. For example:

generic
type element is limited private;

package set model is
type set is limited private:;
function Empty_ set return set;

private
type set is
end set_model;

Such a generic template may be easily instantiated for different element
types as follows:

package INTG_set_model is new set_model (INTG);

Two composite types, the tree (or record) and the type union
(typ_ A = typ Bl typ C | ...) cannot be generated using Ada generics, because
they would need a variable number of generic parameters and some function
names vary with the subtypes. For these types package generator programs are
provided which take the specification of the type as input and generate the
corresponding Ada package. For example, to generate the tree for the Activity
type, we would create a text file containing the specification:

Activity :: s-id : QUOT
s-duration : INTG

This file would be passed to the tree package generator to produce the
package (specification and body):

52

package activity model is
type activity is limited private;
function mk activity (id: QUOT; dur: INTG;
desc: quot; s, e: date) return activity;
function s id (a: activity) return QUOT;

private
type activity is
end activity model;

4.2. Implementation of Package Specifications from Object Specifications

It is now fairly straight-forward to implement the package
specifications of our application object types from their specifications. The
first step is to implement the base type using one of the basic Meta-IV type
packages or package generators.

For the type Date, the tree package generator 1is used to generate
package "Date imp model"™ which implements the tree definition in the Model
part of the Date specification. The package specification for Date is now
easily constructed from the Type, Needs_Types, and Interfaces sections of the
object specification and looks like this:

with INTG_model, date_ imp_model;
use INTG model, date_imp model;
package date model is
type date is limited private;
function make date (d, m, y : INTG) return date;
private
type date is new date_imp;
end date_model;

As there is no additional interface to the Activity type, package
activity model can be directly implemented using the tree package generator.

Package specification project_model is implemented by first using the
generic map and set packages to generate package project_imp model, and then
constructing the package specification as in date_model above.

4.3. Implementation of Package Bodies from Object Specifications

Implementation of the package bodies involves for the most part a
transcription of the functions part of the specification making any required
syntactic alterations. For example function add activity in the Project
specification becomes:

53

function add_activity (p: project; a: activity) return project is
begin
if memb (dom(p),a) then raise undefined;
else return merge(p, make map(a, empty set)):
end if

end add activity

Obviously since Meta-IV is a specification language and Ada a
programming language there are some constructs which cannot be directly
translated. Such constructs may have to be replaced by functions which
produce the same result in an algorithmic way. The following section
demonstrates, however, that Ada provides a mechanism for implementing some of
these constructs which is not available in other programming languages.

4.4. Implementation of More Complex Constructs

ADT’s which closely implement the pure Meta-IV types are useful for the
prototyping of specifications. However, if an efficient production quality
implementation is required, then some additional subprograms must be provided.

Significant improvements are made by including functions which replace
more than one Meta-IV function. For example, is defined (p,a) replacing
memb (dom(p), a) avoids the creation of a temporary set.

We also provide generic subprograms which avoid the need for iterative
or recursive scanning to perform selection or processing functions on sets,
tuples, and maps. For example the construct

let a € dom(p) and s-id(a) = id
may be implemented by instantiating the generic function
generic
with function predicate (d:dcmain) return BOOL;

function select_one_ from domain (m:map) return domain;

as follows

declare
function check_id (a: activity) return BOOL is
begin
return s_id (a) = id;

end check_id;

pragma in line(check id);

function select is new select one from domain (check_id);
begin

assign (a, select (p));
end

As many as 30 such generic subprograms are provided for each of set,

tuple, and map in order to improve efficiency and ease of programming with
these types.

54

5. Analysis of the Method

Experience has shown that the recommended guidelines provide a
systematic approach for developing Ada software. The method was found to be
successful in providing a high degree of formality to the previously informal
Cbject-Oriented Design on the one hand, while providing structure to the
previously unstructured VDM meta-language on the other.

Designers found the clarity brevity and precision of the meta-language
valuable for consolidating ideas and detecting inconsistencies at an early
stage. The ability to generate a complete system specification before the
start of implementation virtually eliminated subsequent redesigns.

The specification documents generated during the design and
specification phases provide a well documented development history, as well as
a sound foundation for the implementation. Even during system maintenance,
the documents were often first referenced in preference to the code.

The basic Meta-IV packages and package generators proved to provide a
powerful reusable base considerably reducing the implementation effort.

In projects with more than one implementor the use of the basic Meta-IV
and Abstract Type of packages yielded software of a consistent style and
quaiity. This significantly improved the ease of integration and subsequent
maintenance.

It was also found useful to be able to generate early prototypes
directly from specifications. The behaviour of these inefficient
implementations could be observed in order to validate the specifications
before introducing more details and efficiency considerations.

6. Conclusion

The combination of various techniques has been developed on the basis of
previous experience with the constituent components themselves. The task was
not to develop a unifying semantic base for the combination effort, but more
to use each technique to its fullest advantage. Complementary work is
performed to lay better foundations for such an approach in the ToolUse
project in the ESPRIT framework.

Another direction of current work is the development of tools to support
the method. Like in any manufacturing process the productivity and
maintainability can be increased substantially by using powerful specialised
tools in a well integrated manner.

Consistency and completeness checks, recording of development steps and
problems encountered, up to semi-automatic code generation from specifications
are functions to be supported by tools. Several toolsets are under
development, mainly independently for the various components of the method
described here. The Esprit Raise project is developing an extensive toolset
for a derivative of VDM, extensive management support is the aim of SPMMS, and
knowledge-based techniques are being employed to develop advisory tools to
support the application of the method.

55

The Generics perspective sees advisory tools governing the application
of the method described here, as well as others, with the individual steps

supported by
[Chedgey 87b]

corresponding specialist tools, e.g. interface generators
[Chedgey 87c], requirements analysis, code instrumentation etc.

A framework for guaranteeing the interoperability of such tools exists in the
Portable Common Tool Environment, for instance [Kugler 87].

References

[Ada 83]

[AFFIRM 81]

[Beech 86]

[Bjorner 78]

[Bjorner 80]

[Bjorner 82a]

[Booch 83]

[Booch 86]

[Cameron 83]

[Cameron 86]

[Chedgey 86]

[Chedgey 87a]

Ada Language Reference Manual, ANSI/Mil.Std 1815A, January
1983.

AFFIRM Reference Library, 5 Volumes: Lee, S. and Gerhart,
S.L. (eds.), USC Information Science Institute, Marina Del
Rey, California, Version 2.0, February 1981.

Beech, D. (ed.), Gram, C., Kugler, H.-J., Newman, I.,
Stiegler, H., Unger, C., Concepts in User Interfaces: A
Reference Model for Command and Response Languages, Lecture
Notes in Computer Science 234, Springer verlag, 1986.

Bjorner, D. and Jones, C.B. (eds.) The Vienna development
Method: The Meta-Language, Lecture Notes in Computer Science
61, Springer verlag, 1978.

Bjorner, D. and Cest, O.N. (eds.), Towards a Formal
Specification of Ada, Springer verlag, Lecture Notes in
Computer Science 98, 1980.

Bjorner, D. and Jones, C.B. Formal Specification and
Software Development, Prentice-Hall, 1982.

Booch, G., Software Engineering with Ada, Benjamin/Cummings,
1983.

Booch, G., Object Oriented Development, IEEE Transactions on
Software Engineering, Special Issue on Software Design
Methods, Vol. 12 (2), February 1986, pp. 211-222.

Cameron, J.R., JSP & JSD: The Jackson Approach to Software
Development, IEEE Computer Society, 1983.

Cameron, J.R., An Overview of JSD, IEEE Transactions on
Software Engineering, Special Issue on Software Design
Methods, Vol. 12 (2) February 1986, pp. 222-240.

Chedgey, C. et al., Technical Annex to 4th Interim Report of
ESPRIT 496, Generics (Software) Ltd., Dublin, November 1986.

Chedgey, C., Kearney, S., Kugler, H.-J., Using VDM in an
Object-Oriented Development Method in: VDM - A Formal Method
at Work, Proceedings VDM-Europe Symposium, Springer Verlag,
Lecture Notes in Computer Science 252, 1987.

56

[Chedgey 87b]

[Chedgey 87c]

[Cohen 86]

[Connolly 86]

{Hoare 85]

[Guttag 77]

{Herefordt 87]

[Horgen 86]

[Jackson 83]

{Jackson 85]

{Jones 85]

[Jones 86}

[Kearney 86]

[Koch 83]

[Kugler 87]

[Le Blanc 82)

Chedgey, C., Papillon - Software Tools for Development of
Graphical Software, Proceedings of the EUUG Autumn ’87
Conference, Dublin, September 1987.

Chedgey, C., Papillon - A Support Environment for Graphical
Software Development, Proceedings of the 4th ESPRIT
Conference, Brussels, North-Holland, Amsterdam, September
1987.

Cohen, B., Harwood, W.T., Jackson, M.I., The Specification
of Complex Systems, Addison-Wesley, 1986.

Connolly, P., Experimental JSD Rule System, Project ToolUse,
Insight.PC86h, Vector Software Ltd., 1986.

Hoare, C.A.R., Communicating Sequential Processes, Prentice-
Hall, London, 1985.

Guttag J.V., Abstract Data Types and the Development of Data
Structures, CACM Vol. 20 (6), June 1977, pp. 395-404.

Herefordt, H.M., Villadsen, P., An Ada Package Supporting
the Use of VDM for Ada Program Development, Proceedings of
the Ada-UK Conference, York, January 1987.

Horgen, H. et al., Workplan for ESPRIT Project 510 ToolUse,
Phase 2, October 1986.

Jackson, M., System Development, Prentice-Hall, 1983.

Jackson, M.I., Developing Ada Programs Using the Vienna
Development Method (VDM), Software Practice and Experience,
15(3), 305-318, March 1985.

Jones, C.B., The Role of Proof Obligations in Software
Design, in Proceedings of the TAPSOFT Conference, Berlin,
1985, Springer Verlag, Lecture Notes in Computer Science
185, 1985.

Jones, C.B., Systematic Software Development Using VDM,
Prentice-Hall, 1986.

Kearney, S., 00OD/VDM Methodology, Project ToolUse,
Generics,sk86t, Generics (Software) Ltd., November 1986.

Koch, G., Epple, W., Sars, A System for Application Oriented
Requirements Specification, 1983.

Kugler, H.-J., Lynch, B., Uncle - A Case Study in
Constructing Tools for the PCTE, Proceedings of the EUUG
Autumn ‘87 Conference, Dublin, September 1987.

Le Blanc J., Goda, J.J., Ada and Software Development

Support : A New Concept in Language Design, IEEE Computer,
May 1982, pp. 75-82.

57

[Mac an Airchinnigh 87] Mac an Airchinnigh, M., Burns, A., Chedgey, C.,

[Mickel 84]

[Milner 80]

[Myers 86]

[Ryan 86]

[SLC 80]

[Sommerville 85]

Reusable Units - Construction Methods and Measure,
Proceedings of the Ada-Europe International Conference,
Stockholm, Cambridge University Press, May 1987.

Mickel, S.B., Experience with an Object Oriented Method of
Software Design, Adatec Conference, Brussels, 1984.

Milner, R., A Calculus of Communicating Systems, Lecture
Notes in Computer Science, Sprinter-Verlag, 1980.

Myers, W., Ada catches on in the commercial market,
Editorial SoftNews, November 1986, pp 81.

Ryan, K.T. (ed.) et al., TCD.KR86B, An Experimental Basis
for ToolUse-Task 5.2 Report, Project ToolUse, Trinity
College Dublin, Dec. 1986.

Freeman, P., Wasserman, A., Tutorial on Software Design
Techniques, Third Edition, IEEE Computer Society, April
1980.

Sommerville, I., Software Engineering, Addison-Wesley, 1985.

58

Papillon - Support Tools for the Development of Graphical Software’

Chris Chedgey
Generics (Software) Ltd.,
7 Leopardstown Office Park,
Foxrock,

Dublin 18,
Ireland.

ABSTRACT

The Papillon project (ESPRIT 496), entitled "A configurable
graphics subsystem for CIM", has produced a prototype system to
help the application developer build well-structured software
which is initially devoid of representation or user-interface
information. Graphical representations for application data types
may be subsequently described without direct coding. Calls made
to the application by "driver" software such as process control or
simulation programs will now be reflected in the display. A user
interface may be automatically generated to enable a human user to
"drive" such applications as production planning and scheduling.
The approach has its foundations in Object-Oriented Design (OOD),
the Vienna Development Method (VDM) and the programming language
ADA".

1. Introduction

The Papillon project has produced a prototype configurable graphics
subsystem for Computer Integrated Manufacturing (CIM). An important part of
this subsystem is a collection of tools which on the one hand reduces the
effort required to generate well structured application software, and on the
other removes the need to implement a user interface.

While the example application domain used 1in the project is CIM
oriented, the toolset itself is essentially application independent and should
prove useful to software engineers from many disciplines. It is also
important to note that while software engineering principles, including formal
methods, have influenced the design of the toolset and as such the toolset
complements the use of these techniques, it has been a requirement throughout
that the toolset be usable by software developers who are not users of formal
methods.

The paper will briefly explain underlying technology, a method which
combines Object-Oriented Design, the Vienna Development Method and the
programming language Ada. The main components of the toolset will then be
introduced and their function described. The way in which the toolset is used

-

The work reported here was partly funded by the Commission of the
European Communities under the Esprit Programme.

M Ada 1s a trademark of the U.S. Government, AJPO.

59

to rapidly generate a new application will be clarified by example. Finally,
an analysis of the effectiveness of the tools is presented, followed by a
discussion of future enhancements and the integration of the toolset into a
broader software development environment.

2, The Software Development Method

A software development method which combines Object-Oriented Design
(OOD), the Vienna Development Method (VDM) and the programming language Ada is
described in detail in [Chedgey 87a] and [Chedgey 87b]. The user of the
toolset is confined only to the informal parts of the method (OOD and Ada),
while the use of the formal part (VDM) is optional. A brief description of
the method is now given; the details may be obtained from the referenced
papers.

2.1. Object-Oriented Design and Ada

Object-Oriented Design (OOD) is a system design methodology which is
becoming increasingly popular in both software [Booch 83] and hardware
[Organick 82] design.

Traditional control-based software has been data/procedure oriented,
whereby programs are composed of a set of data and a set of procedures. With
this approach, much of the expected benefit of decomposition is not realised
because of the mutual dependency of many subprograms on the form and integrity
of common data [Robson 81].

With the object-based approach to software a single type of entity, the
object, represents both the data and procedure entities. Data structures are
associated with a fixed set of subprograms which are the only operations
defined on the object. Subprograms bodies, dependencies and implementation
details are hidden. Such entities are sometimes called Abstract Data Types
(ADT’s) or Abstract Objects.

Programming languages which provide encapsulation and abstraction
facilities are particularly suitable for this type of object-oriented
programming. Ada provides these facilities through the "package" construct.

2.2. The VDM Meta Language

The Vienna Develcopment Method (VDM) is a well established formal
development method [Bjorner 78] [Jones 83]. At the kernel of the method is a
formal specification language, one dialect of which is called Meta-IV [Bjorner
80a]. Based on sound mathematical foundations, Meta-IV has proved itself in a
number of important software developments such as the DDC Ada Compiler
[Bjorner 80b].

Meta-IV is a model-oriented language, providing a carefully selected
collection of data types out of which new types may be modelled. The

60

semantics of the operations on the new data types is then specified in terms
of operations on the basic Meta-IV types. It is possible to implement these
basic Meta-IV types as ADT’s in Ada [Jackson 85] [Mac an Airchinnigh 87]
[Herefordt 87].

2.3. Combining OOD, VDM and Ada

One drawback of OOD is that it lacks formality and a disadvantage of the
VDM meta language is its lack of structure. By combining the technologies and
using the meta language to specify objects, formality is introduced to O0OOD
while a rigid object-oriented structure is imposed on Meta-IV. A collection
of Ada packages, generic packages and package generators (the latter operate
on package schemata) renders the basic Meta-IV types and thus the Meta-1IV
object specifications easily implementable in Ada.

3. The Structure of the Toolset and Generated Application

4 N
USER

"Pure”
Application
User Objects

Interface -

Representation
Tables

generates

generates
denerates

e I g R e

T Run-time
System
User Interface | Building Representation
Generator Blocks

Papillon
Tools
Descriptor Tool

N J

FIGURE 1

Figure 1 depicts the various components of the toolset and the structure
of the generated run-time system. The horizontal divide between the toolset
and the generated application is indicated. The toolset contains three basic

61

tools which are used by the application developer and user interface designers
to generate three corresponding parts of the run-time system.

3.1. The Building Blocks

The Building Blocks are similar to the collection of packages, generic
packages and package generators which implement the basic Meta-IV types. The
way these are used is described in [Chedgey 87b]. Extensive use is made of
generics within these components to render them an extremely flexible and
reusable programming base.

The simple types, which are implemented as Ada packages, are integer,
(INTG in Meta-1IV), character string (QUOT), REAL (an extension to the Meta-IV
types), and TOKEN.

Generic packages are used to create the composite types set, list
(tuple) and map. These can be readily instantiated for different sub-element
types (eg. set_of INTG).

Package generating programs are used to generate records (tree) and type
union (typ_a = typ b OF typ c or ...). These package generators take the type
specifications as input and generate the corresponding packages.

The difference with the Building Block types is that it is possible for
instances of the types to be given a graphical representatjon, and any
operations performed on the objects will be reflected in the dis lay. This is
achieved by extending the package specifications of the types to include
graphical operations and by modifying the package bodies so that calls to
subprograms also update the relevant graphical information and the display.
The application developer, however, will generally use the Building Blocks as
if these alterations had not been made. That is, he is unconcerned at this
stage with the graphical representations.

To implement application Abstract Data Types their basic data structure
is implemented either as one of the simple types or as a composite of already
implemented types using the relevant Building blocks. Some of these types
will require an additional higher level package or "semantic layer™ in order
to perform checks on parameters and/or to replace or extend the interface.
These extra packages contain the "pure” application algorithms and are the
only packages which require actual programming.

The user of VDM will first specify the application objects and their
semantics using Meta-IV and, when the reification process is complete, will
transcribe the specifications into Ada. The non-user of VDM will encode the
semantic packages directly.

3.2. The Representation Descriptor Tool
This software tool enables the user interface designer to describe a

number of graphical representations for each application object type and enter
them into the representation tables (see Figure 1.).

62

The types of representations which it 1is possible to define for an
object type depends partially on which Building Block type it was implemented

from. The simple types will generally have a number of pre-defined
representations available, although it 1is always possible to define new
representations. Representations for these may differ according to size,

font, colour etc.

When defining representations for composite types, the previously
defined representations which are to be used for the sub-types are specified.
Positioning rules must also be specified, for example whether the sub-objects
are to be automatically or manually positioned.

A static piece of graphical data (such as a surrounding box) may be
associated with any representation and will be displayed for all objects of
the particular type. This is entered by means of a graphical editor.

Once representations have been defined for any application object type,
it is possible for instances of the type, which are created by "driver”
software to be displayed (though the driver software need not be aware of
this). As the driver software modifies objects, their representations will be
modified accordingly.

3.3. The User Interface Generator

Many applications require that a human user be able to "drive" the

application. The User Interface Generator creates a handler which allows a
user to create, manipulate and observe instances of the application object
types. The result is a mouse/window/menu -driven interface which will be

described in section 5.

4. Development of an Example Application

The chosen application domain is that of Production Planning and
Scheduling (PPS). A very brief description of this is given here.

The user of the application is the manager of a production unit in a
discrete manufacturing plant. The manager receives orders from customers
which he must fulfil using a pool of resources available to him. He wishes to
allocate the resources in such a way that they are as near to being fully
utilised as possible, but not being over utilised.

The manager will wish to input a plan for each order in the form of a
Pert chart, with the nodes of the chart representing individual activities and
edges indicating which activities must be completed before others can
cpmmence. He will also wish to view the activities in the form of a Gantt
chart with the current time line displayed. In order to achieve optimum
resource allocation he must be able to examine the resource loadings as bar
charts. Depending on the manager’s task in hand, he may require different
pieces of information displayed on the screen, and he should have maximum
control over this.

63

4.1. Construction of the Application Software

Figure 2 shows how the "pure" application object types may be easily
modelled using the Papillon Building Block data types. The object types are
presented in hierarchical order. Meta IV is used in Figure 2 only as a
convenient notation. The following brief description should adequately
explain the implementation.

Order_plans = STRING _-> Order_plan

Order_plan = Activity _-> Connection_set
Connection_set = Connection-set
Connection :: s_delay : INTEGER

s_activity id : STRING
Activity :: os_id : STRING

s_dur : INTEGER

s_desc : STRING

s_start : Date

s_end : Date

s_resources_used : Resource_descriptors
Resource_descriptors = Resource_descriptor-set
Resource_descriptor :: s_resource_id : STRING
s_amount : REAL
Resource_pcol = Resource-set
Resource :: s_id : STRING
s_amount_available : REAL
s_requests : Request_set
Request_set = Request-set
Request :: s_start : Date
s_end : Date
s_amount_ requested : REAL
Date :: s_day : INTEGER
s_month : INTEGER
s_year : INTEGER

FIGURE 2

The type Order plans is a mapping from unique identifiers onto order

plans. An Order_plan is a mapping from activities to the set of dependent
activities (activities which cannot commence until this activity has been
completed) . A Connection_set is a set of connections. A Connection is a

record containing the time delay before the dependent activity can commence
and the identifier of the dependent activity (these fields may be selected by
the functions "s_delay" and "s_activity id"). An Activity 1is a record
containing a unique identifier, a duration, a textual description, a start and
end date and a set of resources required by the activity.

The meaning of the remaining object types should now be clear to the
reader. Once the structure of the application object types has been decided
they can be implemented directly using the Papillon Building Blocks. Some of
the object types will require an additional semantic package. For example not
all triplets of integers create a valid date, and an interface to the
Order _plan type containing such operations as add activity, delete activity,

schedule, etc is required rather than the interface to the basic map type with
operations such as merge, domain, apply etc. The higher level operations are
implemented as calls to the operations provided by the basic types.

4.2. Defining Representations

The representations for the object types may now be defined with the

Representation Descriptor Tool. Because of the hierarchical nature of object
type representations, it is usual to start with the objects lowest in the
hierarchy and work upwards. In the example one would start with types

INTEGER, STRING and DATE. For such low-level and frequently used types, it
would be normal to use previously defined (standard) representations (though
it is possible to define new ones).

4 N

TEMPLATES = EXAMPLE INSTANCES

dese [T C__Joavs START | 2 pavs

start |11 | Setup m/c 1 & m/c 2
Baziews! !II Fo—{] FROM 1/1/87 | TO 3/1/87

end | | m/c1:0.5, mic2:1.0

resources

FIGURE 3

Two possible representation templates and corresponding instances for
the Activity type are shown in figure 3. The labelled boxes in the templates
define the positions of sub-objects of the Activity type. The rest of the
templates comprise the static data. When we come to describe representations
for the Order plan type we can use the upper Activity representation to
generate an easy-to-read Pert chart and the lower for a detailed chart. It is
possible to specify that the user locate the Activities in the Order plan
(Pert chart format) or that they are listed in rows and columns, perhaps in a

65

specified order (directory format). We can also specify a bar chart
representation for the Order plan type. One of the possible representations
for the Resource type is a histogram showing the resource loading over time.

The run-time system can be completed now by using the User Interface
generator to create the software modules which will enable the end user to
manipulate the application objects.

5. The Run-time System

A possible snap-shot of a run-time system generated for the example
application is depicted in a simplified form in Figure 4. The arrows in the
figure indicate relationships between the windows and do not appear in the
actual display.

4)

ORDER PLANS Order 041

Order 039
Order 040

Order 042
Order 043
Order 044

RESOURCES

m/c 1

START I 2 mxsl

Set up m/c1 & m/c2
Fromi/1/84 To 3/1/87

m/c1:0.5, m/ic2:1.0§
T

FIGURE 4

The user has loaded up the order plans and associated resources. Both
of these have been chosen to be displayed in a dictionary format. He has then
chosen to view one of the order plans (Order 041) in both Pert chart and bar
chart format. When he modifies the order plan, both representations will
reflect the change. He has then chosen to observe/edit one of the Activities
in the plan ("START") and this has appeared in detail in its own window. At

66

present this is the window into which commands are directed and the menu of
available commands for Activities is displayed.

The user has also chosen to view one of the resources (m/c 2) in the
form of a histogram. As order plans are modified and the resource loadings
for m/c 2 change, the histogram will also change.

The user may switch between windows; for example, from working with
activity "START" he may move to resource "m/c 2". He may change the
representation of an object or open a new window containing another
representation. He has other viewing operations available such as panning and
zooming on the Pert chart or shifting the displayed time slot on the Gantt
chart or histogram.

When the user has finished observing/editing the activity, the activity
window will close and the order plan will be updated. When he has finished
with the order, the order windows will close. Eventually, when all windows
have been closed, the user will be able to transfer the modified Order_ plans
and Resource_pool to permanent storage and perhaps load some other objects for
modification or observation.

6. Analysis of the Papillon Prototype

6.1. Reconfigurability of the User Interface

This is an important aspect of the toolset. Because the user interface
software is independent of the application software, the representations of
object types may be edited, replaced or added to at any time (conceivably even
at run-time). It may occasionally be advantageous to supply the Papillon
tools with the application code in order that the user interface may be
modified by OEMs or even end users to suit their needs as closely as possible.

6.2. Suitability for different applications

An analysis of the type of applications for which the Papillon tools are

most suitable will require more experimentation. However, it can be expected
that the approach will work best for those applications which are amenable to
Object-Oriented Design. Such applications tend to be data-oriented rather

than control-oriented.

Although the prototype currently supports the various object
representations associated with a particular application domain, many of these
representations will also be relevant to other applications. However, in
order that derived tools be useful for a wide variety of applications, a set
of representations must be provided which fully supports each application. A
certain amount of investigation has been undertaken which indicates the
particular suitability of the tools to model-oriented applications such as
parts of process control or simulation.

67

6.3. Comparisons with User Interface Management Systems (UIMS)

The work undertaken on the Papillon project is sometimes compared to
that on User Interface Management Systems. There are however some important
differences between the Papillon toolset and the more traditional type of UIMS
{Pfaff 8371.

In a UIMS, the user interface designer usually describes the user-
machine dialogue and the overall form of the user interface in considerable
detail by means of a fairly complicated description language. The application
implementor then either "fills in the blanks” where the UIMS will call
application routines, or writes his applications software to call the UIMS
when input or output is required.

This approach means that the application implementor must write a
certain amount of user-oriented software, although this will be minimised by
the UIMS. There is generally little encouragement by the UIMS towards the
generation of well-structured software which is likely to enhance reliability
and reuse. Also, one can generally say that the tighter the coupling between
UIMS and the application software, the less the ease of configurability of
both the application and the user interface.

With the Papillon approach on the other hand, the application
implementor makes no user-oriented calls, rather he is free to concentrate on

the pure application algorithms. He 1is encouraged and indeed helped to
generate his software quickly and in the form of well-structured, reusable and
easily reconfigured components. As there 1is complete separation of

application from user interface, the configurability of the user interface is
maximised.

7. Enhancement of the Toolset

For the remainder of the project and the subsequent exploitation phase,
during which the product AnimAID will be developed by Generics, a number of
advancements will be made to the toolset. Some of the envisaged areas of
improvement are now mentioned.

The number of possible representations for the various Building Block
types will be expanded. The available Building Block types themselves may be
expanded upon to provide new types or higher level composites of existing
types.

The Representation Descriptor Tools could be improved to provide more
checks for valid representations and more assistance to the user interface
designer. A facility for specifying and editing prompt and error messages
should be provided. Another useful feature would be the support of generic
representations for generic object types.

As 1is typically the case, there are a number of important areas for
improvement of the generated wuser interface. Examples include the
incorporation of more direct manipulation for input, the improvement of error
handling, the introduction of "explosion levels", and the ability of the user
to create his own commands as a sequence of existing commands.

68

The relative importance of the various possibilities for improvement are
becoming clearer with experimentation.

8. Incorporation Within a More Comprehensive Tool Environment

While the tools described here form a powerful development aid in their
own right, there are implicit links with the broader software development
method described in [Chedgey 87b]. Other tools which support this method are
currently under development within Generics. It is envisaged that these tools
will be combined within a common environment to provide support for the entire
software 1life cycle. The ESPRIT program provides a basis for such an
environment through the Portable Common Tool Environment (PCTE) and Generics
is currently involved with PCTE developments [Kugler 87].

9. Conclusions

The toolset described in this paper makes use of Object-Oriented Design
principles in order to simplify the normally complex task of semi-automatic
user interface generation. Because the generated user interface closely
adheres to the application object structure, the benefits associated with 0QOD
are retained in the generated graphical application.

The potential for reuse of software components in very high. Once
objects have been implemented for one application they are easily reused in
another, along with the representations which have been defined for them. The
reusability of the basic Building Block types themselves greatly reduces the
programming effort when implementing new objects. When the reconfigurability
of software components is combined with that of the user interface, the result
is a highly flexible system.

The prototype in its present form is immediately valuable as a tool for
prototyping and testing of Ada packages. Further development in the areas

mentioned in section 7 are expected to result in a powerful toolset for the
development of highly configurable graphical software of production quality.

Acknowledgements

I wish to thank all those in Generics and Trinity College Dublin who
have worked on the implementation of the toolset.

References

[Booch 83] Booch, G., Software Engineering with Ada, Benjamin/Cummings,
1983.

69

[Bjorner

[Bjorner

[Bjorner

[Chedgey

[Chedgey

[Chedgey

78]

80a]

80b]

87a]

87b]

87c]

[Herefordt 87]

[Jackson

85]

[Jones 861}

[Kugler 87]

Bjorner, D., and Jones, C.B., (Eds.), The Vienna Development
Method : The Meta-Language, Lecture Notes in Computer
Science, Vol. 61, Springer Verlag, Berlin, Heidelberyg, New
York, 1978.

Bjorner, D., Reference Manual for the Meta-Language in
Toward a Formal Description of Ada, Lecture Notes in
Computer Science, Vol. 98, Springer Verlag, Berlin,
Heidelberg, New York, 1980.

Bjorner, D., and Oest, O.N., (Eds.), Towards a Formal
Description of Ada, Lecture Notes in Computer Science, Vol.
98, Springer Verlag, Berlin, Heidelberg, New York, 1980.

Chedgey, C., Kearney, S., and Kugler, H.-J., Using VDM in an
Object-Oriented Development Method for Ada Software, in VDM
- A formal Method at Work, proceedings of the VDM-Europe
Symposium 1987, Lecture Notes in Computer Science, vol. 252,
Springer Verlag, 1987.

Chedgey, C., Kearney, S., and Kugler, H.-J., Developing Ada
Software Using VDM in an Object-Oriented Framework,
Proceedings of the EUUG Autumn ‘87 Conference, Dublin,
September 1987.

Chedgey, C., Papillon - A Support Environment for Graphical
Software Development, Proceedings of the 4th ESPRIT
Conference, Brussels, September 1987, North-Holland,
Amsterdam.

Herefordt, H.M., Villadsen, P., An Ada Package Supporting
the use of VDM for Ada Program Development, Proceedings of
the Ada-UK Conference, York, January 1987.

Jackson, M.I., Developing Ada Programs using the Vienna
Development Method (VDM), Software-Practice and Experience,
15(3), 305-318, March 1985.

Jones, C.B., Systematic Software Development Using VDM,
Prentice~Hall, 1986.

Kugler, H.-J. and Lynch, B., Uncle - A Case Study in
Constructing Tools for the PCTE, Proceedings of the EUUG
Autumn ‘87 Conference, Dublin, September 1987.

[Mac an Airchinnigh 87] Mac an Airchinnigh, M., Burns, A., and Chedgey, C.,

[Organic 82]

Reusable Units - Construction Methods and Measure, in Ada
components: libraries and tools, Proceedings of the Ada-
Europe International Conference, Stockholm, May 1987,
Cambridge University Press, Cambridge 1987.

Organick, E.I., A Programmers View of the Intel 432 System,
McGraw-Hill, New York, 1982.

70

[Pfaff 83]

[Robson 81]

pfaff, G.E., (Ed.) User Interface Management Systems,
Springer Verlag, Berlin, Heidelberg, New York, Tokyo, 1983.

Robson, D., Object-oriented Software Systems, Byte, August
1981.

71

EXPERIMENTS WITH THE USER INTERFACE
FOR UNIX MAIL

* ok dokok
Peter R. Innocent , Gerrit C. van der Veer and Yvonne Waemn
%
School of Mathematics, Computing and Statistics,
Leicester Polytechnic, UK.

**projcct coordinator,
COST-11-ter working group HUMAN FACTORS IN TELEMATIC SYSTEMS,
Department of Psychology, Free University of Amsterdam, the Netherlands.

>M*Psychology Department, University of Stockholm, Sweden

ABSTRACT

Designing the user interface and application interface are only two aspects of
the complex work that has to be done to provide users with systems that they both
are able to use, and like to use. An interdisciplinary approach is necessary to
define, design, and construct these interfaces. For the COST-11-ter working group
HUMAN FACTORS IN TELEMATIC SYSTEMS electronic mail was used as an
example to illustrate the way to develop user interfaces. As we wanted to start from
an existing situation (an application system in actual use), we chose an application
that is certainly neither the best, nor the most advanced. It is, however, a standard
component of UNIX which is becoming a standard operating system for a growing
diversity of generally available machines.

Beginning with an analysis on task level, we restricted the task domain to the core
functions of electronic mail proper, i.e. the preparation, sending, receiving,and
administration of electronic messages, and the learning of this facility in interaction
with the system (not aiming at a special learning program). We explicitly excluded
from the task domain in our study all functions regarding file management outside
the mail system, network protocols and addresses, and editing.

We collected experiences of novices and expert users with the existing system. List-
ing strong points and weak points, inconsistencies and notions on feedback, we
drew conclusions on the function of attention, evaluation, memory, interpretation
and generalisation. We derived a definition for a "better” functionality (the seman-
tic level) for an application interface. We defined the conceptual model of the sys-
tem (or the user virtual machine) in terms of objects, attributes, actions, and
metacommunication. In the next phase of our project, we will construct an applica-
tion interface (including communication between the system and the user) and a
user interface (including metacommunication), applying different description
methods and definition languages, and we plan experiments on the effects of func-
tionality of different interfaces. At this moment we concentrate our efforts on the
comparison of several alternative systems of mnemonics for commands, prompts,
and messages, on which we will report the first experimental results.

1. INTRODUCTION

This contribution describes the progress of the working group "Human factors in telematic systems"”
a project within the COST-11-ter Human Factors action, sponsored by the Commission of the Euro-
pean Communities, DG X111, information technologist and telecommunications task force. The pro-
ject coordinates research on the feasibility of human factors (cognitive psychological) requirements
and guidelines for the definition and design of human-computer interfaces in OSI (Open Systems
Interconnections). An important role in this effort is played by the distinction between categories of
users and between categories of tasks or task elements. The goal of the project is to contribute to the
standardisation of definition languages for user interfaces in OSI environments. enabling the applica-
tion of human factor guidelines by the designer.

Work on the development of open systems standards is continuing at every level in the OSI model.
Such work often takes the form of devising agreed protocols for communication within a layer and
between layers. The protocols are then specified formally and subject to testing and approval. The
application and presentation layers present certain problems in that people are involved and cannot
be formally represented in this strategy. This is particularly important to the user interfaces of both
applications and the other visible components of an open system. Prior work under the COST 11 bis
established a human factors working party comprising a multi disciplinary group. This group
developed ideas which have been published. The working group has thus far completed work on the
inventory of theoretical and empirical knowledge on human factors in OSI (Van Muylwijk. Van der
Veer and Waern, 1983; Wheeler and Innocent, 1983), and on the feasibility of design criteria (Han-
nemyr, 1983). A representational framework and design strategies have been developed (Hannemyr
and Innocent, 1985), and a feedback model for metacommunication inside the virtual machine (Van
der Veer, Tauber, Waern and Van Muylwijk, 1985).

Trying to solve the problem users face when confronted with a system they do not know in all its
details (and which they may never be able to know completely), we will have to answer the following
four questions:

a. Is it possible to describe the user interface part of the conceptual model of an existing real life
computer application.

b. Is it possible to define the conceptual model for the user interface component of a real life com-
puter application that is acceptable from cognitive psychological and cognitive ergonomic
viewpoint, taking care of interactions at the user interface, individual differences, and learning
processes.

c. Is it possible to construct a user interface according to the conceptual model as we have defined
it.

d. Is it possible to demonstrate that the new user interface leads to "better” man-machine interac-
tion than does the already existing interface.

The group works along two interconnected lines:

a. user modelling

This title covers the field of human factors in relation to human computer interaction. The activi-
ties along this line are directed at the analysis and definition of the requirements of users in an
OSI applications environment. These have to be structured and described in a form that is suit-
able for incorporation in an ISO (International Standards Organisation) standard. An important
aspect of this is the distinction between the human-machine interaction proper (directly aimed at
the delegation of sub-tasks to the machine), and "metacommunication” consisting of off-line and
on-line interaction concerning the interaction proper (c.g. documentation, help-facilities, error
messages, implicit metacommunication by the wording of commands or the choice of icons).

74

Both the interaction concerning delegation of tasks to the computer and on-line metacommunica-
tion are located in the user interface. The conceptual model of this interface should be defined in
relation to both the task space and the intended user-group. In the definition of the conceptual
mode! of a system adaptation to relevant user variables and individual differences may be taken
care of. The metacommunication facities in the user-interface are designed to evoke the develop-
ment of a mental model in the user that is consistent with the conceptual model of the system.

b. language for defining user interfaces

This activity aims at developing and testing the feasibility of implementation of a flexible language
for the definition of user interfaces for OSI application. along the guidelines developed in the
other line of the project. The distinction of functional different levels in the command language
(c.f. Moran, 1981) will be a useful method to locate the source of inconsistency between the
user’s mental model and the actual user interface, and to develop an adequate structure in the
interface to cope with requirements of learnability, ease of use, and the avoidance of interactive
deadlocks (A situation in which specific human-machine interaction cannot proceed because both
the user and the machine are unable to infer what to do next).

The human factors requirements will have to be translated into design standards. to be incor-
porated into the layers of the ISO model for OSI, with the help of an appropriate language inter-
face.

To answer the basic questions we have chosen an example of an application that makes sense in an
OSI environment: UNIX mail.

It is important to realise that the version of the mail utility used was chosen because it is a standard
component of UNIX systems and not because it is the best program for handling mail under UNIX,
There are many different mail service programs available under UNIX with great varieties in user
interface and functionality. For our experiments we needed generality and availability. UNIX is
being more widely used by none computer specialists and in a network environment. Hence, our
interest in approximating open systems usage by novice users in a mail application centred on UNIX
mail. Our goals in the first phase of this work are:

a. to analyse the electronic mail application from a users point of view.
b. design and run multi site pilot experiments into novice use of an electronic mail application.

In order to achieve these goals new representation and simulation languages and other tools had to
be developed. These are described in detail in van der Veer et al (1987). This paper describes some
of the main results of the work with reference to the interests of Unix users and experiments in
using Unix mail,

2. ANALYSIS OF AN ELECTRONIC MAIL APPLICATION
2.1. cognitive ergonomic aspects of electronic mail

In order to analyse the users’ requirement on a particular application, it is useful to understand what
general requirements are posed by the human cognitive system, what these requirements amount to.
and what they actually mean when a particular computer system is concerned. We will consider gen-
eral cognitive psychological requirements, applied to the situation where a computer user wants to
use a mail system in an open systems interconnection (OSI). The general cognitive requirements are
schematically represented in Figure 1 below.

75

Physical world Cognitive acts Inner world

Goal —————— Plan Declarative
/ A Generalise «~* Models
. ; Interpret

Action l » Procedural

i v Remember<— models

\L __sEvaluate N
Result — 5 Notice

Figure |. The interaction between physical world, inner world and cognitive acts.

This figure represents a crude simplification of the cognitive complexities of the human being. This
simplification is made to highlight the most important aspects. when computer use is concerned.

The designation "physical world" corresponds to the perceptible aspects of the current situation. The
perceptual and motor acts which are required to deal with these aspects are not covered in the figure.
The denotation of "goal” refers to a goal as described from the "outside”, for instance in terms of a
particular configuration of symbols at the screen to be attained by the user. By "action” is meant an
action performed by the user with respect to the system. e.g. a command given. or a menu selection.
Other kinds of actions by the user are covered by the notion "cognitive acts”. By "result” is meant
the feedback given by the system. either in terms of a direct echo of the keys pressed (as in typing
letters), or in terms of the effect accomplished by a command menu selection or direct manipulation.
The result as here referred to is in some way be perceptible by the user. and does not refer to the
computational processes in the system.

The cognitive acts mediate between the physical world and the inner world. We can regard them as
taking place within the constraints of the working memory. The different cognitive acts will be
described further below.

The inner world refers to the content of long-term memory which is relevant for the use of the com-
puter system in the particular task. The notion of declarative and procedural models will be
described further below.

The situation to be analysed here is goal-oriented. Pure exploratory activity will not be covered in
this analysis. In a goal-oriented situation. a goal is posed (either by the user himself or by somebody
else). This goal can be reached by performing a sequence of acrions. The resulr of the action is
noticed and evaluated with respect to the goal. The cognitive acts related to goal-handling consist of
planning what actions to take in order to achieve the goal and evaluating the results with respect to
the goal. Eventual discrepancies between results and goal are processed by other cognitive acts.

Related to the evaluation is the cognitive act of noricing. The user will notice the results which lie
within his focus of attention. This means that there is no guarantee that all relevant feedback from a
computer system to a user really is noticed by the user. It also means that some irrelevant informa-
tion may be noticed, if it lies within the users’ focus of attention. Knowledge of factors affecting
human attention are thus important in order to be able to design "user-friendly” systems. Some
relevant factors are the following:

a. The users will attend to aspects which are related to their plans. i.e. their visual focus of atten-
tion will be at the place where they expect the results to turn up. This means that the users well
may miss information which is out of focus.

76

b. The user will suppose that the information contained within the visual field in some way is
related to his current goals and actions. This means that the user can risk to attend to informa-
tion which is no longer relevant, if the screen is not continually updated with respect to the
current goal.

c. The user will attend to aspects which are related to their "model” of the system and task they are
performing. This means that feedback which is not compatible with the current model will risk
not to be noticed, and that eventual irrelevant feedback which is compatible with the current
model will be noticed. The notion of "model” will be further explained below.

Next cognitive act is related to remembering the actions performed and their results. This is crucial
for the users’ possibility to learn the system. There is no guarantee that all that which is noticed will
be remembered at a later time. The conditions for memory have been extensively investigated by
psychologists, and all details cannot be presented here. The most important generalisations are the
following:

a. The meaningfulness factor.
That which is compatible with prior knowledge will be easily remembered. This factor is related
to the models of the system and task, since models represent one aspect of prior knowledge.

b. The repetition factor.
Repetition gives a higher probability for remembering.

c. The consistency factor.
Regularities facilitate remembering. This factor is related to the ability of human beings to use
variables and abstractions. Users will try to find regularities between commands or menu selec-
tions, and systems which capitalise upon recurring similar action sequences will be easier to
learn.

In the figure, the cognitive act of interpretation is separated from remembering only for clarity. In
effect, interpretation is intimately related to remembering. The (conscious) memory of a noticed act
and its result is always retained in an interpreted form. The interpretation is intimately related to the
model of task and system, which will be described below. By interpreting the acts and their results
the users make sense of the system. When the result of the act does not correspond to the result
expected, the interpretative activities will be particularly prominent. Several different interpretations
may be put forward and tested in renewed plannings and acts. The interpretation arrived at does not
necessarily correspond to the "true” way to describe the actual act-result sequence. Instead, it is
often the case that users arrive at interpretations which deviate from the actual functioning. These
deviations may or may not be detrimental for the users’ understanding of the system. If they lead to
wrong or nonefficient plans and actions, they are of course detrimental. If they inhibit the user from
creating useful generalisations, they are also detrimental.

The final cognitive act here described is concerned with generalisation. By this is meant the activity
by which different experiences of the system and different interpretations are collected together under
a common concept and treated as similar. Such generalisations are always attempted by human
beings, and contribute, as was said above, to the ability of human beings to learn. Generalisations
are derived by utilizing semantic and structural similarities. This activity is related to the use of
models, both by being derived from them and by contributing to the creation of models.

Models can be defined as the more or less connected set of long term memory knowledge a user has
available about a system and the task to be performed. The model can either be given to the user
from the "outside” (by a teacher, system designer, etc.) or it can be derived by the user himself by
his experiences with the system. It is here suggested that models can contain knowledge of two dif-
ferent kinds which sufficiently different to merit separate consideration. The distinction is based
upon the well-known differentiation between declarative and procedural knowledge.

77

A procedural model contains the particular procedures to be performed in order to perform a certain
task in the system. A user who has a procedural model does not necessarily understand WHY the
procedures work, nor how to combine the procedures into more general methods. A declarative
model implies an understanding of the structural aspects of the system, where concepts are related to
each other without being tied to any particular procedure. The most important thing to notice is that
these different types of models may not be related to each other. A user may well have a declarative
model, without being able to apply it in a particular task. He can also well know the procedure.
without being able to describe it.

The only knowledge which a user evidently applies in order to cope with a system is procedural
knowledge. It is not always necessary to provide users with declarative explanations of why or how a
system works. This is the main reason behind so called "direct manipulation” systems. However,
there are conditions which make direct manipulation systems impossible or impractical. Hardware
and software restrictions (particularly in the Open System Interconnection situation) hinder the
implementation of direct manipulation. The task itself may benefit from a declarative model, particu-
larly when it is concerned with abstract entities, variables. or repetitions.

The cognitive acts of interpreting and generalising from the actions performed and their results serve
to transform the procedural experience into a declarative model. By using declarative models the
users may get the procedures to fit within the constraints of working memory. However, the problem
with declarative models consists in the difference between their form and the form of a procedure. A
procedure most often has the form of a conditional sentence: if you want to accomplish this, then do
that. A description is a declarative model. It may, however, take the form of an explanation: You
can do this. because.... or a metaphor: This is similar to... Declarative models therefore have to be
mapped into procedures in order to be of practical use, and procedures have to be transformed into
declarative sentences in order 10 be understood.

A complex interaction is going on between the outer world of goals, actions and results, and the cog-
nitive acts of planning and evaluation, noticing. remembering, interpreting and generalising. which
all feed into and are fed back by the models. Problems can easily surface at one place of this com-
plex interplay and hereby affect all other elements involved. We will investigate some of these prob-
lems by taking a concrete case as point of departure. An "ideal” computer system should at least
avoid known problems,

Some methods are based on the believe that the easiest way to minimise problems consists in tutoring
the users at the points where they lack procedural or declarative models. This reflects a very simpli-
fied view of education. We should know be now, that education is no guarantee that the student will
arrive at the "right” knowledge. For instance, a currently used solution is to give the user informa-
tion about the procedures to perform in the system (Breuker and De Greef, 1985). This kind of
tutoring relieves the problem of noticing (here noticing the relevant information in the manual), but
does not provide real help, when the acts of remembering, interpreting and generalising are con-
cerned. Current discussion about intelligent tutoring systems shows that these problems are neither
trivial, nor easily solvable.

2.2. UNIX mail from a user’s viewpoint
The present section tries to categorise users’ observations and provides some (modest) guidelines to
people who might wish to construct an electronic mail system. At first glance criticism seems to

dominate the paper. But its goal is to summarise experiences, not to derogate a powerful and useful
tool. The specific system which was studied was the seventh edition of the UNIX system, update

78

2.1. For obvious reasons not all the characteristics of the UNIX mail system (UMS) are classified.
Only a summary will be presented.

2.2.1. strong points

The UMS gives (especially in combination with “write”) tremendous opportunities for inter-user
communication. The strong points of the UMS in this respect are:

a. power
A few examples of the power of the UMS:
- It is relatively easy to send mail to other institutes (when UUCP is installed).
- It is possible to send secret mail (using xsend).
- The UMS provides sophisticated and fast mail handling (e.g. looking through your mail in
reversed order).
b. speed
To send a short letter to another user can be done within 15 seconds.
¢. complete integration with the UNIX operating system. For instance:
- Sending of files from your directory to other users (using pipes or re-directs).
- The possibility of giving commands to the shell while looking through your mail.

2.2.2. weak points

The term "weak points” has two limitations. Firstly, it doesn’t mean weak in an absolute way but
only relative to the rest of the system. Secondly, the only weak points that are considered in this
paper have cognitive ergonomic nature. That is, they refer to user friendliness, not to technical
aspects.

a. inconveniences
The word "inconveniences” is used for aspects of the UMS which are not vital shortcomings but
do cause loss of time, increased error rate etc. The aspects mentioned below are of course an
arbitrary choice but probably most "heavy users” will recognise them as unhandy.

- When sending a message fails the message is saved in the file "dead.letter”. When another
mailing fails this file is overwritten without informing the user.

- When a letter prepared with "mail” has been sent successfully there is no possibility to save a
copy of this letter (except when you send it to yourself).

- A user is informed if he has any mail just after a successful login. But there is no (fast) way of
finding out who has sent the mail or how many letters there are.

- When entering the UMS there is no way of knowing how to invoke the help-menu before you
have seen it.

- While working with your mail 'x’ and ’q’ turn out to be not the only ways to go back to the
shell. Control d gets you back. And if you are viewing your last message so do *+", 'd’, "n",

[y

s’, 'm’ and return.

b. inconsistencies
With "inconsistencies” are meant events, feedback and commands which are not logical or con-
sistent with the rest of the system. Some examples:

- When using the UMS the command "ddddghtyt&&543*" will delete a message. Obviously the
shell does more error checking. Strangely .”sfgrthg” is not equal to "s” but "nfhytnvc” is to

79

”

"

n-.

- If a message is sent from the shell to two users who are not listed (Ziggy and Elton) the follow-
ing error message appears:

mail: can’t send to Ziggy.
mail: can’t send to Elton.
Mail saved in dead.letter.

If you do the same from the UMS (using m) you get:

mail: can’t send to Ziggy.
Mail saved in dead.letter.
mail: can’t send to Elton.
Mail saved in dead.letter.

Although not entirely cryptic, it is more confusing.

- When the user wants to see the previous message in the UMS and there is no previous, then
the same message is shown again. If (s)he requests the next and there is no next (s)he is sent
back to the shell automatically.

- "mail xxxxx" (from shell) and "m xxxxx” (from UMS) are essentially the same commands, So
why not give them the same name? (typing "mail xxxxx” in the UMS causes an error)

c. lack of feedback

The UNIX operating system and all its utilities give no feedback if a process is started correctly.
The only evidence of a successful completion of the process is the re-appearing prompt. This
approach is called "silent mode”. Especially novice users would like to have more feedback when
they use the UMS. ("But how do I know my message is sent?”) Before we criticise this
unfriendly behaviour it is good to know that UNIX, when it was developed in the early seventies
(!), was intended as programmer’s workshop. Its users therefore, would be well-trained profes-
sionals who do not need and want "useless” feedback messages. But today the system is used by
people with very little experience and the lack of feedback is often a problem.

2.2.3. evaluation

The UMS is still a powerful and useful utility but these characteristics are not sufficient. Today.
many non-experts are using the UMS and sortlike programs. Their demands are of cognitive
ergonomic nature: user friendliness, learnability etc. If software is developed without considering the
human factors, it will take longer to learn and will result in more errors by users. The great advan-
tage of UNIX and its components is adaptability. Until now this advantage has only been used to
improve the system technically. Since the system is becoming popular very fast in the world of
office-automation maybe this is the right time for improvements concerning the area of human fac-
tors.

2.3. an example of various problems encountered in UNIX mail
An exploratory study was performed in Stockholm, where one subject who did not know anything
about computers was asked to perform some simple tasks in a simulated part of UNIX mail. The

subject was given a short introduction to UNIX mail. The subject was not given the manual (the
reason is that in an open system you might not have all manuals available). The subject was told that

80

he could get help by pressing the "?” key. At the operating system level, help was given orally
(according to some simple rules). At the mail level, only the in-built help was used.

The following difficulties were encountered (in order of severity):

a. The subject did not understand how to send a letter (once he had written it). From the subject’s
comments and the registrations of the interactions, the following reasons for this difficulty were
found:

- The subject could not find any way to check that the letter really was sent, even though he
tried hard. (There is no way).

- The subject could not understand the description of commands in the help menu. In particu-
lar, he tried to use commands in “send” mode which were only applicable in "read” mode.
(For instance he tried to "remail message”, when he was through writing.)

- The subject had no way of knowing "where he was” (i.e. in the operating system, in "send”
mode or in "read” mode).

- The subject was uncertain about the difference between received mail and written mail. This
uncertainty showed up when he tried to check that the letter was sent by checking his own
letters.

- The subject did not know how a written letter is treated by the system, i.e. he did not know
that finishing the mail session by "ctrl-d” also sends the letter.

b. The subject did not understand when the help-text could be derived. This difficulty is related to
the layout of the screen. In fact, the help-text is only available in “read”-mode. However. in this
particular case, the subject had first read a letter, and then asked for help. Thereby the help-text
was available all the time he tried to send his own letter. It was this help-text that the subject
used to find out how to send the written letter.

The subject’s difficulties in handling the system can be summarised in the words of the letter written
by the user:

"This lousy system makes me crazy!”

Why were the problems so difficult to overcome? One of the main reasons lies in the fact that the
system does not make the most important distinction sufficiently clear: the distinction between
"send” and "read” mode. The very faint hint lies in the prompt, which consists in a "?” in read
mode and nothing in send mode. Combined with the cluttered screen, which showed the “read”
commands also while the user was writing, it is rather evident that the user did not notice the impor-
tant distinction. Not noticing it, it was of course impossible for the user to understand which actions
lead to which results, and thus to make a coherent plan for writing letters.

2.4, conclusions for an "ideal mail” system

It is often hold that an "ideal” system should conform to users’ expectations. However, users of new
computer systems do not usually hold any particular expectations on the system. The new system
offers new facilities, and it is not necessary that these comply with the facilities which already are
familiar to users.

Instead, it is necessary that the system as a whole complies with the users’ cognitive requirements:

a. attention,
Human beings’ attention is restricted. It is therefore essential that attention is directed to the
right place. Users' prior knowledge will make them attend to particular things (and neglect

81

b.

others). If a system includes an important distinction (such as between "read” and "write” mode
as here illustrated) users should also be made to attend to that distinction.

The "ideal” system would to start with "refresh” the screen when changing "mode”. This would
avoid the confusion the user encounters when nonrelevant helpmessages are still visible on the
screen. It would also be advisable to invoke some active help to make the users attentive to the
necessary distinction. The actual method to draw attention to the relevant facts has still to be
determined.

evaluation.

The user will evaluate the result achieved with reference to his goal. It is thus essential that the
system gives some information about the result. One of the main difficulties in the UNIX mail
system is that it normally operated in “silent mode”. It does not give any indication at all about
the outcome of a certain command once it has been given by the user. This absence of feedback
was responsible for most of the problems encountered by our example user.

An "ideal” system should strive for as much feedback as possible to novice users (and maybe less
to experienced users). A good example in this respect is the COM system, developed at QZ,
Stockholm Computer Center, where all messages, once they have been sent are accompanied by
the information: ”Message sent, No. XXX",

A question for research is how much feedback should be given when and to whom. We here
encounter the problem of trade-off: A great amount of feedback will compete with the user’s
attention when other aspects are concerned. The user’s planning of the next action may for
instance be hampered if he has to wait for the feedback to appear and has to process it before he
can continue. Frequent users of the same system may not need much feedback at all.

memory.

When new and unfamiliar procedures are presented, people will have difficulties memorising
them. Users will differ in terms of what procedures that are unfamiliar to them, and will thus
need different reminders.

The "ideal” system should thus have the possibility to tailor the information about the system
(metacommunication) to the needs of the particular user. The knowledge the user brings to the
particular situation can be assessed in advance by some simple questions. This assessment should
cover not only information about whether or not the user knows this particular system, but also
information about what other systems the user is familiar with. It has been found that both nega-
tive and positive transfer results between different systems (Waern, 1986).

There are some different ways of helping memory: giving concrete, procedural reminders and
trying to fit the procedures into an overall structural model. We do not know what way is best,
but suppose that different kinds of users may need different kinds of memory helps.

interpretation.

Users have to make sense of what they themselves and the system are doing, both in order to
ease the working memory load and in order to plan future actions. We here encounter the big
problem of what “models of the system” users create, and how these models may differ from the
most adequate model in the particular situation.

In this particular project we have found that it is no trivial task to define even an "adequate
model” of the UNIX mail system, even less to define the different conceptions which users might
create from the metacommunications and interactions with the system. An "ideal mail” must
therefore specify the objects and actions which are concerned in the particular system.

82

Next step concerns how to specify these objects and actions so that prospective users will inter-
pret them in the intended way. This is a question which has educational implications, and will be
covered by further studies within this project.

generalisation.

Whereas interpretation refers to particular procedures to be performed to achieve a particular
goal, generalisation implies that some rules can be found which can generate different procedures
for different circumstances.

In the UNIX mail study we found that one particular difficulty was related to the inconsistency of
the commands used to invoke the “read” and the "send” mode respectively. Whereas the com-
mand “mail” would be expected to refer to an invocation of the mail system as such (as in DEC-
type systems), in UNIX (and other types of mail systems as well) this command leads the user
directly to the "read” mode. To write, the user has to give the command "mail”, followed by a
user-identity. This command structure is not very consistent and contributes to keeping the user
to the procedural type of knowledge, where the difference between "read” and "write” modes is
not clearly understood.

An ideal system is built on consistent rules to help the user with his generalisation attempts. A
careful consideration of the functions which the system should perform can help system designers
to create a consistent “grammar” (S. Payne, 1985). Starting at the functional level, further
developments of the systems can then be made by specifying the corresponding command struc-
tures and the interaction rules (Moran, 1981).

2.5 The consequences for systematic experimentation.

Most of this analysis is based on introspection and observation of a small number of people trying to
use the functionality for an artificial set of tasks. This is sufficient for establishing the problem areas
that naive users are likely to have. Among the many questions that arise we chose the following as
focal points to start with:

are these problems general for all computer naive users

to what extent can these problems be alleviated by alternative user interface design (mnemonics
and making the system less silent).

are these problems a consequence of lack of functionality with respect to the users perceived
needs.

A PILOT EXPERIMENT WITH AN ELECTRONIC MAIL SYSTEM

1. Objectives

The objectives of this experiment were:

a.

to establish a multi-site basis for future large scale experiments based on Stockholm. Amsterdam
and Leicester.

to design and run an experiment with a multi-disciplinary team of cognitive and computer scien-
tists with the prime objective of finding out to what extent naive users problems with unix mail
can be alleviated by alternative user interface design. The main null hypothesis is that different
mnemonics and making the system less silent will not result in a different system from the
users point of view.

83

¢. to systematically explore within the context of the null hypothesis:

1. representations that naive users have
2. the task performance of naive users

3. the relationship (if any) between user performance and representations used and the spatial
ability of users.

4. the perceived mental load and mood of users when using the mail system.

3.2. Experimental Details

A simple design was adopted based on controlling for order effects due to users learning two dif-
ferent systems - the standard system (UMS) and the system with an alternative user interface
(UMAI). All users in the experiment were selected to be naive to electronic mail. Subjects are ran-
domly assigned to one of two groups depending on the order of learning: UMS first or UMAI first.
time -
Session No: 1 2 3
training phase A trial B trial C

group 1 UMS UMS UMAI
group II UMAI UMAI UMS

The training phase is to teach users the functionality which is invariant for the following trials of the
two systems. Equal numbers of subjects were used in each group. The experiment for each subject
consisted of:

a. introductory information, collection of details about, for example, prior computing experience.
b. completing a mood and mental load questionnaire

c. written instruction about the system
d

. training phase of guided and free exploration, terminated with a timed task completing a second
mood and mental load questionnaire relating to d

f. repeating c-e with a new task inserted after c (trial B)
g. repeating c-e on the alterative interface, with a new task inserted after ¢ (trial C)
h. spatial ability test

In total the experiment took over 4 hours, including coffee breaks between the sessions. The
interaction between the subjects and the experimenter was carefully controlled with respect to giving
help to users.

The following data were collected in the experiment:
a. questionnaires on mood and mental load, scored on a ranked scale

b. a time stamped log made during all the mail sessions from which objective task performance time
and accuracy figures could be derived.

c. a "teach back” questionnaire relating to the users representation of the systems used and
knowledge learned of using the systems.

3.3. Unix mail (UMS): Table of restricted command set considered

84

Some commands in UMS may appear in different notation, although the syntax is in principle
equivalent. For the experiments we chose one of the alternative notations only to teach the users.

Command Function
d mark current message for future deletion,
move onto next message Now

w {<file>} append current message without heading to <file> now
mark current message for future deletion
move onto next message now

s {<file>} append current message as is to <file> now
mark current message for future deletion
move onto next message NOw

X exit mail without updating mailbox
q quit mail after updating mailbox by removing marked messages
? give help now

return to current message
+ if not last message move onto next message now clse do x
- if not at first message go back to previous message now
p print the current message now

m {<user>} {<user>} forward the current message now to < user>
mark for future deletion
move onto next message now

<user> is a valid user, default is the sender of the mail.
<file> is a valid filename or defaults to "“mbox” in the user directory.

Command prompts possible user response
? All commands valid
$ UNIX prompt on leaving mail process

means all UNIX commands valid

Command responses :

1. to any unrecognised command "usage” followed by help information
2. to forwarding problems (m) message that mail cannot be sent,
then saves file in "dead.letter”
3. to file problems (w.s) message that mail cannot be written to file
3.4 The Unix mail alternative interface (UMAI):

In order to test the null hypothesis. a version of unix mail had to be designed and developed which
differed only in the user interface characteristics. A number of possibilittes were explored around a
well defined functionality. These were:

a. | character commands

2 character commands

b

c. Full commands

d. Metaphorically based mnemonics
€

Semantically based mnemonics (hybrid of a to e)

85

The semantically based commands were chosen for the experiment.

3.4.1. derivation of semantically based mnemonics

The single commands of the standard UNIX mail as described above do not correspond to primitive
operations. They can be organised into semantic groups and listed as follows:

operations on navigation through mail session Metacommunication
current message mail control
print now on screen goto next message now abort session now give help now
mark for future deletion goto last message now leave mail
append to <file-as-is>/ application now &
< file-as-text> now update mailbox

forward current
message now

This simple semantic analysis shows there are two themes.
Spatial: involving objects and places (files, messages) and associated operations (path traversing)

Temporal: events that happen immediately after invocation, or in the future and associated opera-
tions, (marking/signaling, ending a mail session)

Mnemonics should enable these themes to be easily organised and recalled with respect to operations

an objects.

a, Temporal theme:
Default semantics for users to learn are that all commands are executed immediately (direct
commands) unless they are special temporally marked commands (indirect commands). Some
commands are both direct and indirect. The mnemonic principle is that commands that are both
direct and indirect always contain a capital letter, else they are always lower case letters.

b. Spatial theme:
Default semantics are that after operations on the current message, the next message becomes the
current message. i.e no path is specified by the user. When the current message is the last
message in the mailbox, any current message operation (or going to the next message) is fol-
lowed by a normal exit from the mailbox by the system i.e. the system makes a path from the last
message to outside the mail session.

Paths must be specified for certain commands and these are organised so that the syntax of
the message specifies the path (e.g. append current message to file is "a <filename>").

3.4.2. semantically based command set (UMAI)

Using the mnemonic principles and the results of a simple semantic analysis outlined in the previous
section, a set of mnemonics was developed.

Mnemonic command Function
operations on current message
s(how) print the current message now

D(elete) mark current message for future deletion,
move onto next message now

p(ut)D(elete) { <file>} append current message without heading to <file> now |

86

mark current message for future deletion
move onto next message Now

p(ut)t(itle)D(elete) { <file>} append current message as is to <file> now
mark current message for future deletion
move onto next message now

m(ail)D(elete) { <user>} {<user>}
forward the current message now to <user >
mark for future deletion
move onto next message now

<user > is a valid user, default is the sender of the mail.
<file> is a valid filename or defaults to “mbox” in the user directory.

navigation through mailbox

n(ext) if not last message move onto next message now else do x
b(ack) if not at first message go back to previous message now
mail session control
q(uit) quit mail without updating mailbox
q(uit)C(hange) quit mail after updating mailbox by removing marked messages
metacommunication
h(elp) give help now
return to current message
Command prompts possible user response
Command: All commands valid

Input next line of message to be sent,
or end-of-file symbol

You left mail

$ UNIX prompt on leaving mail process
means all UNIX commands valid

Command responses :
same as for UMS

3.5. implementation

The controllability of the experiment and the need for multi-site implementation requires that the
unix mail (UMS) and its alternative (UMAI) are simulated. Such simulations also serve secondary
goals of achieving consistency (some versions of UMS have minor differences in functionality) and
ensuring that the functionality is well understood and formally represented. It is necessary that the
UNIX environment is well defined and controlled in the experiments as well as the mail systems
themselves.

An extended BNF grammar was used to formally represent the interface components of both UMAI
and UMS in a UNIX environment for the purpose of simulation. Simulations were developed in
FORTRAN, LISP, PROLOG, C and SYNICS (a user interface manager language). Some simple
evaluations were made of these on various criteria: portability, reliability, response times, etc.

A detailed guide for experimenters was developed and standard instructions for users in 3 languages

87

O

were used. Analysis programs are being developed as necessary for use on each site. However, the
analysis of the user’s representation and mental model of the system is an issue we are still working
on.

4. RESULTS

So far the general achievements of the project resulted in a basis for multi-disciplinary multisite
working, and a consistent representational framework within which to describe users models of the
task and the system.

On the subject of user interfaces for electronic mail systems, the first series of experiments has been
partially completed. At the time of writing we are analysing the data from two out of the three
experimental sites. Other aspects are to be reported and further details are available from the project
coordinator.

4.1, Site 1: Stockholm

In the following analysis, the factor experience denotes the number of sessions that subjects have
completed in the experiments. Thus subjects are inexperienced before session 1 and (relatively)
experienced after session 3. The second factor in the experiment is the order in which the two mail
interfaces have been studied. The following discussion and results, based on 20 subjects (most of
them university students), are preliminary only. We applied an analysis of variance technique, from
which (with one exception) only statistically significant results (p<.05) will be reported.

4.1.1. Subjective data

a. mental load

mental load generally decreases as experience increases, but it always is reported to be well above
the base rating (before the introduction to the first system). There is an interactive turn over
effect between sessions 2 and 3, depending on the order of the systems: when going from UMS
to UMAI there appears to be a greater mental effort perceived by the user than when going from
UMAI to UMS. A possible explanation is that applying UMAI requires a greater effort because
the mnemonics are more complicated than the UMS. If it is assumed that the mental effort is
mainly based on the mnemonics rather than the conceptual understanding of the system (both
systems are semantically equivalent), this would give rise to an interaction effect such as that
observed in the data.

b. mood
- rating on dimension Happy-Sad
We only found a significant interaction effect which is difficult to interpret. It seems that subjects
who started with the UMS system get more happy when they learn it, whereas the subjects who
started with the UMAI system get less happy during learning.
- rating of confidence
The main effect of experience is significant, the subjects were not too confident to start with, but
grew more confident as the experiment went on. The interaction effect is only significant at 10%
level, which leads to the speculation that subjects who started with the UMAI system got more
confident, even when they turned to the UMS system, whereas subjects who started with the
UMS system only got more confident within that system. This would be expected if the UMAI
system made subjects confident about the functionality the systems have in common, by

88

providing more consistency in command set than in the case of UMS.

- rating of relaxation

At the first task, the subjects were a little more tense than to start with, a tension that quickly
disappeared in the second session. But for subjects going form UMS to UMAL the effort of learn-
ing the new mnemonics clearly made them less relaxed. The other subjects going from the
UMAI to UMS became more relaxed. This could be because the mnemonics for UMS are easy
once the functionality of the system has been well understood by prior use of UMAI. The signi-
ficant interaction indicates that the introduction to UMAI made the subjects feel more tense,
which agrees well with the result presented above regarding the ratings of mental load.

4.1.2. Objective data.

a. task performance
We find that the tasks were pretty difficult to perform, with only about half of the subjects per-
forming them correctly to start with. However the subjects easily learn, which is shown by a sig-
nificant effect of experience on performance. Even when the subjects changed system in session
3, the performance either stayed constant or increased.

b. mental model representations
The subjects’ free explanations of how to perform five different tasks (assumed to be an indica-
tion of their mental model) were rated concerning correctness and completeness as a whole.
Correctness of the subjects’ representations was on the lower half of the scale at the beginning.
but the subjects were very close to correct at the end, even when they shifted systems, correlating
with the results from the performance measurement. In the same way, completeness in explana-
tions increased significantly with experience.

c. questionnair performance
In the second part of the questionnaire, the questions were divided into questions which primarily
touched the semantic aspect of the system and questions which primarily concerned the syntactic
aspect. Only the amount of experience is significantly positively related to the number of correct
answers for both types of questions.

4.2. Site 2: Amsterdam

The analysis of the data collected in Amsterdam is not finished at the moment of writing. First of all
we focussed on the representations users develop of a new application. In the second place we inves-
tigated the relation between this and individual differences in spatial ability. The "teach back” situa-
tion in Amsterdam was much more free than it was in the Stockholm experiment. So we applied a
descriptive analysis, based on 22 subjects from a comparable population as those in Stockholm. Most
of these had finished secondary education and were university students or graduates. some were in
the final phase of secondary school. The experimental factors were again experience and order of
mail interfaces to be studied.

4.2.1. Description of teach back results
After all three phases of the experiment we asked our users to explain, to somebody who did not

know any computer system, how to delegate certain tasks to the electronic mail system. Subjects
were allowed to apply all written means, either graphical, verbal, or mixed.

a. levels of description

89

We scored the representations by level of description (Moran, 1981). About half of the descrip-
tions explicitely mentioned solne notions of task delegation from user to computer, nearly all
incorporated notions both on the level of semantics and of syntax, and 3/4 of the protocols con-
tained some description at keystroke level. We found some extreme ways of representation, e.g.
one subject only produced lists of keystrokes (inciuding some indications of loops) although there
were a lot of incorrect sequences in the representations. Another presented a complete and
correct verbal description of task delegation to the system, of semantic structure, and of
corresponding syntax, already after session 1.

b. structure of representation
About half of the users structured their knowledge as lists of actions (often not completely
correct, as some kind of loops or diadic choices had to be included in the interactions to be
described). One of every 4 users represented his knowledge as a set of (verbally described) pro-
duction rules. Another quarter of the subjects gave more or less complete algorithms. sometimes
applying graphical schedules or even full grown flowcharts.

¢. quality of representation
Both the correctness and the completeness of representation in the teach back procedure increase
with the order of the sessions. There was no clear relation with the order of the systems studied.
d. spatial ability
In the teach back data this factor seemed to be related with the correctness of description, not
with the completeness or with any other characteristic of the representations.

4.3. Overall summary of experimental results.

The preliminary analysis of some of the Stockholm and Amsterdam data gave some idea of the
greater mental effort and tension reported by the users in dealing with the mnemonics of UMAI,
accompanied with a greater confidence (about the knowledge of the functionality, we assume), com-
pared with the application of the traditional UNIX mail commands.

In general the mental load decreases with experience, whereas confidence and relaxation increase.
Overall, both interfaces (with identical functionality) could be learned in a couple of hours, which
was evident from task performance, from answers to questions about syntax and on semantics, and
from representations of the system produced by the users.

The levels and structure of representation showed a lot of individual differences. Spatial ability seems
to be related to correctness of free representation.

5. Conclusion and Discussion:

Thus far we have only made some exercises regarding the four basic questions asked in the introduc-
tion to this contribution.

a. Itis possible to describe the user interface of an existing application in a complete and consistent
way

b. The conceptual model of a new user interface may be defined from an analysis of the semantics
of an existing application.

c. From this model an actual interface may be constructed, in a way that supports portability and
experimentation,

d. A methodology has been developed to do feasibility studies on alternative user interfaces.

90

Regarding the specific questions we posed in 2.5 we are only in the pilot phase of our study. The
two alternative interfaces we compared did not make too much systematic differences in user
behaviour or subjective experiences. On the other hand we collected experiences about representa-
tions that naive users have, about their perceptions of mental load and mood, and about their perfor-
mances for this kind of tasks.

For the future we established a multi site base for large scale experiments, and developed a metho-
dology of multi-diciplinary cooperation. The impact of a more user oriented functionality for the
design of application interfaces, combined with notions on metacommunication still to be worked
out, will be the focal point of the next studies.

REFERENCES

Breuker J. & de Greef P. (1985) Functional Specification. Teaching and Coaching Strategies for
EUROPHELP. 4.2 ESPRIT Project 280. Memorandum 49 of the Research Project: The
Acquisition of Expertise.

Hannemyr G. (1983) Human factors standards. The design of conceptual language interfaces to
open computer network application and management systems. Behaviour & Information Technol-
ogy, 2, p. 335-344.

Hannemyr G. & Innocent P.R. (1985) A network user interface: Incorporating human factors
guidelines into the ISO standard for open systems interconnection. Behaviour & Information
Technology, 4, p. 309-326.

Moran T.P. (1981) The command language grammar : a representation for the user interface of
interactive computer systems. International Journal of Man-Machine Studies, 15, p. 3-50.

Muylwijk B. van, Veer G.C. van der & Waern Y. (1983) On the implications of the user variability
in open systems. An overview of the little we know and of the lot we have to find out. Behaviour
& Information Technology, 2, p. 313-326.

Payne S.J. (1985) Task action grammars: the mental representation of task languages in human
computer interaction. Unpublished PhD thesis, University of Sheffield.

Veer G.C. van der, Tauber M.J., Waern Y. & Muylwijk B. van (1985) On the interaction between
system and user characteristics. Behaviour & Information Technology, 4, p. 289-308.

Veer G.C. van der, Guest S., Haselager P., Innocent P., Lammers E., McDaid E., Oestreicher L.,
Tauber M.J., Vos U.& Waern Y. (1987) Human factors in telematic systems - progress report
for the COST-11-ter working group. Free University, Amsterdam.

Wheeler T. & Innocent P. (1983) Human factors in and requirements of the OSI environment,
Behaviour & Information Technology, 2, p. 335-344.

Waern Y. (1986) Understanding learning problems in computer aided tasks. In: F.Klix and H.
Wandke (eds.). Man-Computer interaction research Macinter-I. North-Holland, Amsterdam.

91

A SunView User-Interface for Authoring
and Accessing a Medical Knowledge Base

Neil P. Groundwater

Sun Microsystems, Inc.
8219 Leesburg Pike, # 700
Vienna, Virginia USA 22180

Dr. Neil Bodick
Andre Marquis
Department of Pathology and Lab Medicine
2 Gibson Building
Hospital of the University of Pennsylvania
3400 Spruce Street
Philadelphia, Pennsylvania USA 19104

1. INTRODUCTION

A system named Eidetic has been built for the storage, retrieval, and examination of microscope
slides. The foundation of the system is a Sun Workstation running the SunView window system with
application programs built at the Hospital of the University of Pennsylvania in Philadelphia in coopera-
tion with Sun Microsystems, Inc., and Elsevier Science Publishers.

The term Eidetic has been chosen for the system because as an adjective it is employed by cogni-
tive psychologists to characterize the memory of images or the process of visualization. The complete
system with image capture and display inspires the user to closely associate vivid color images with the
process of medical diagnosis. Eidetic is intended to be used much like a reference journal, increasing
the capacity of a physician to analyze relevant data.

Two major subsystems make up Eidetic: an authoring system and a searching system. After an
author collects images and composes a knowledge base both get transferred to Compact Disk Read
Only Memory (CD-ROM). Searchers can analyze the stored data to draw conclusions and assist their
diagnostic process. Eidetic supplies "power tools" to the physician or medical student.

This discussion will cover the overall design of the system with the intention of highlighting the
components which are affected by SunView programming techniques. To acquaint the reader with the
goal of the delivered system, sections will also cover the world-view of the users, an overview of the
knowledge base and its use, describe the authoring and user systems, and outline the organization of the
CD-ROM storage. This is not intended to be an introduction to SunView programming therefore only
pertinent details will be discussed. For the reader’s convenience a short glossary of SunView terms is
attached at the end of this paper.

2. WORLD VIEW

The users of Eidetic will generally be physicians or students in hospitals or medical schools.
Although they may have been trained on other computers, our general assumption is that there has been
little past experience and there may be no computer reference material present. The appearance to the
user must never become too cumbersome to comprehend; while advanced use of the system does
involve significant processing of the stored data, the user is encouraged to "explore” without fear of
"getting stuck”. Eidetic requires almost no keyboard input by the end-user and presents an interface in
which only the appropriate choices and controls are visible at any moment. The mouse is used for
almost all input and even the authoring system only uses the keyboard for the collection of the medical
and clinical terms which comprise the vocabulary.

With the power of a workstation computer at hand, the user can expect quick response, both
searching the database and retrieving images to the screen, but at the same time the system is tailored
for utility rather than to overwhelm the user with flashy visual displays. There is the capability to

93

display 256 simultaneous colors, however that capability is not used to flash buttons and menus in
gaudy colors just to impress and confuse the viewer. Color is only used when displaying the images
and their annotations.

3. OVERVIEW

A physician’s personal knowledge base tends to organize itself around the history of cases that
the doctor has either treated or studied in the medical literature. Clinical categorization of case his-
tories is the foundation of the Eidetic system in a three-tiered hierarchy:

Category The category is the highest level of information specific to a case. It divides a case into
approximately twenty clusters of information ranging from patient descriptors to detailed
clinical terms. In the former instance, patient descriptors such as age will probably not
refer directly to images but in the latter, specific terms may well be reinforced by images.

Feature The elaboration of a category results in its features. To expand on the category above,
patient descriptors including age and sex are features and each can be assigned a specific
grade.

Grade At this level of case-documentation an image may be attached to illustrate a grade or more
accurately, the degree to which a characteristic is visible. The author can draw an overlay
on an image and directly connect that overlay to one or more feature-grades.

Other than the notion of the above levels of case-documentation, the end user is not restricted to
a particular view of the data. FEidetic is a system which does much to encourage exploration. As is
generally expected of visual-interface programs, the user, whether physician or student, can vary the
flow and choose to:

. Show a case when given patient descriptors and clinical descriptors match.
. Show images where the diagnosis was malignant and the cell-groupings were in clusters.
. Given cases where both xx and yy were present, show the tendency for zz.

Usage is not restricted to a directed query-response formula but rather a "seek-and-ye-shall-find"
hunt for pertinent information.

4. SUNVIEW

The SunView library includes routines to display panel items in a panel subwindow and respond
to the user’s selection and interaction by means of the mouse or the keyboard. The level at which the
application responds to the user is based on events and can be developed with an object-oriented style.
While the advantage of an object-oriented style is beyond the scope of this paper, it reduces the depen-
dence on global variables and the programming anomalies introduced when one must program around
special cases because there are a large number of exceptional situations. One feature of SunView that
enables an object-oriented approach is the use of handles to SunView objects and their attribute value
lists. Together they give a uniform way to access and manipulate the items on the display without
undue reliance on user-maintained state. Another feature is the PANEL_CLIENT_VALUE parameter which
may be specified when declaring a SunView object. It takes an argument of type caddr_t which may
point to a variable, data-structure instance, function-name, etc. Once given a handle to an object, one
may recall and access the PANEL CLIENT VALUE supplied parameter.

Although SunView provides many features as part of its generic behavior, most of the features
may be enhanced or overridden if different responses are desired. Because of the target users for
FEidetic, the standard Sun-supplied behaviors were in several instances deemed to be too complex for
the casual user. Historically, sales of Sun Workstations have been to a technical market where the
users are accustomed to a high-powered and sophisticated UNIX system and their window-based tools
have had an equally sophisticated interaction-level. While third-party software developers for many of
today’s workstations have been prone to entirely replace the UNIX interface and manufacturer’s "look
and feel” by defining their own model "from the ground up", with the release of SunView accompany-
ing SunOs Release 3.0 the was made to use and adapt the "standard” interface.

94

Some of the behaviors provided by SunView were appropriate just as supplied, some were either
eliminated or simplified, some new panel items were built from existing parts, and some changes may
be made in the future. The primary notion that buttons can be "pressed” has been kept; however, the
appearance has been altered to display an image or icon as a button which visually implies the action
one may expect when activated:

. An arrow-button indicates the "flow" of the interaction and pressing on the button may generate a
pop-up menu.

. A button made of a color picture will display the microscope slide with that image, generally
with annotation in the form of an overlay and text.

4.1. Traditional Features

Within the scope of standard SunView features there is tremendous flexibility to define the
displayed user interface without needing to create complex event procedures to handle interaction.
Perhaps the most useful of these techniques is the ability to supply images, both 1-bit and 8-bit, to be
used as a PANEL_CHOICE_IMAGE. A sample set of buttons and the associated image for one of them are
shown in Figure 1. In the user system, 1-bit (black and white) arrow-buttons are used to indicate flow
of control and the 8-bit (color) buttons are used as selectors for the display of a case’s images.

4.2, Custom Features

Several of the interactions with Eideric require the user to choose among a list of medical terms.
One technique for dealing with this is the use of pop-up menus which may be intimidating for inexperi-
enced or casual users. When the appearance of menu requires a conscious action on the part of the user
- namely pressing a mouse button - it should be strongly indicated that that operation is appropriate
through the appearance of a particular panel_item.

Most of the choose-from-a-list operations in Eidetic appear instead as a scrolling list much like
the Macintosh SFGetFile function provides in Inside Macintosh, the Apple reference manual. Macin-
tosh users are most accustomed to seeing this item appear when they choose Open in the File menu in
a Macintosh application. The code included in Figure 2 is the basis for such a device and its appear-
ance is shown in Figure 3. This is a PANEL CHOICE with the selected item highlighted by setting
PANEL_FEEDBACK t0 PANEL_INVERTED, which causes the whole-text of the entry to invert to white-on-
black. For the inexperienced or casual user the full range of selections may be reviewed by means of
the scrollbar attached to the window. For advanced users the PANEL_CHOICE offers a menu when the
right mouse-button is pressed. These items are dynamically constructed when a new category or feature
is chosen; a linked-list in the database provides the values for the choices. When a selection is picked
from the list, the PANEL_VALUE returns the offset of the selection and the PANEL_CLIENT_DATA points to
the information related to that selection.

An additional function is related to the visual continuity when a pop-up menu is used to make a
selection. If the scrolling list is used in the normal manner, the selection is scrolled into the visible
region of the list by the user before being picked. If the pop-up menu is used, there is no internal feed-
back to normalize the list and make the choice visible because the scrollbar doesn’t intrinsically "know”
whether the choice is visible. In order to preserve fidelity when the menu is used, the event procedure
compares the positional value of the choice against the value of the first visible entry and number of
entries visible. If the selection is off-screen then scrollbar_scroll_to is called to reposition the scroll
bar and redisplay the adjusted entries.

4.3. Advanced Features

A combination of the above functions was produced to provide a list of image-based choices.
One of the advanced analysis features of Eidetic measures the interrelation of case-features based on a
comparison composed by the physician-user. From the information retrieved from the database a histo-
gram is produced to illustrate the correlation of two of the cases’ feature-grades. Such a histogram is
illustrated in Figure 4. Given the histogram the user may choose to review the cases which produced
the statistics by selecting the relevant bar with the mouse and pressing the List Cases or List Images

95

button.

4.4. Unused Features

There are several SunView features that are notable in their absence. A few of the exclusions and
their reasons follow:

[1] ~ There are no frame-menus on the Eidetic tools like those which appear with standard SunTools;
Eidetic intended for exclusive use on the workstation. Although there is no technical reason for
restricting the use of Eidetic while other SunTool (UNIX) windows are in use, the current scheme
begins when the user logs onto the workstation and completely controls the selections of tools and
windows which may be used.

[2]1 The middle mouse-button doesn’t allow the movement or resizing of windows or sub-windows
because the screen "real estate” is used in a manner which mixes tiled and overlapped windows.
The choice of windows present is designed to maximize the utility of the tools; at no time would
it be opportune to "move a window out of the way" to expose another window. Rather, once the
screen is filled with windows the user has reached a point where something should be "put away”
before proceeding; the end of a particular investigative path has been reached.

(3] In general, only the left mouse-button is used. The normal SunView interface defines that the
left-button is select, the center-button is adjust, and the right-button shows a menu, which might
be difficult for the inexperienced or casual user. The only time the Eidetic user system requires
the use of the other buttons is when scrolling through a list of choices and this is actually con-
sidered undesirable because there is some difficulty in explaining how scrollbars are operated.
For the current system it was expedient to use the scrollbars as provided by SunView rather than
invent new ones. As development of more Eidetic tools proceed, some other scrolling paradigms
may be investigated.

5. AUTHORING SYSTEM

Creation of the knowledge base is performed on a Sun workstation which is coupled to a televi-
sion camera mounted on a microscope. The author of a knowledge base for a particular field of medi-
cine is an expert in that field. The two fields which have been documented to date are cytology and
dermatology.

Four major phases are involved in creating a knowledge base:

[11 The descriptive terms for the field of interest are entered into a thesaurus tool. New terms can be
added during the collection of images, however the discipline of a restricted vocabulary improves
the ability to present a useful search strategy.

[2] The author(s) collect a set of microscope slides which covers the field of interest.

[3]1 The slides are previewed, captured, and stored on magnetic disk. Concurrently, the overlays are
composed and associated with images and feature-grades. During this phase the author’s exper-
tise determines the quality of the final product since the annotation and overlays attached will
appear in the final knowledge base.

[4] A completed knowledge base is pre-mastered into a form appropriate for producing a Compact
Disk and sent out for production. The specifics of the disk layout will be presented later in an
overview of the CD format.

5.1. Thesaurus Generation

A relatively simple SunView program helps the expert enter the vocabulary of terms which will
be used to create the knowledge base and document the annotation drawn on the microscope slide
images. This vocabulary is stored in a hierarchical database descending from category to feature to
grade. The structure of the vocabulary is integrated into the knowledge base such that the information
for each case parallels the structure of the thesaurus and both may be maintained in memory for fast
search and retrieval.

96

It is the concept of fully qualifying the grades for each feature that allows the expert/author to
ensure the level of accuracy that may be later used in searching. Given a new case, each feature will
be marked not reported until the author fills in all of the details. Even "no information" may be
entered since for each feature-grade there is a value reserved for unknown.

5.2. Image Collection

A Sun 3/160 is connected to an Ikegami /TC 350M video camera mounted on a Leitz Laborlux
12 microscope and the RGB image from the camera is transmitted to three Matrox M/P 512 boards in
the Sun Workstation. The image capturing routines compress the 24-bit color image to 8-bit color and
present the result on the screen in the authoring tool. Compression of the image-data consists of error-
diffusion of each channel followed by colormap assignment and takes about 100 seconds; a few of the
256 colormap entries are reserved for the windows, their borders, and the overlays.

For image control, only an intensity adjustment is supplied by the software; its value varies the
sensitivity of the Matrox boards to dim or brighten the image captured. Focus, magnification, and
illumination are adjusted at the microscope. Once the image appears satisfactory on the screen it is
“"confirmed", stored on the magnetic disk, and made available for annotation. Since the microscope
slides are stored at a fixed resolution, if there is an interest in examining a site more closely it is the
author’s responsibility to store it in the database at multiple magnifications: 100x, 250x and 1000x.

5.3. Drawing Tools

The annotation may be performed with three basic styles of paint-tools: The first resembles the
MacPaint "paintbrush” type and just lays down paint while tracking the mouse, a second is for outlining
and draw a square, a circle, or a line which "rubber-bands” to follow the mouse until the button is
released. A third set of tools are arrow-stencils which deposit an arrow with its point at the mouse and
its shaft trailing away in one of the four cardinal directions depending on which arrow-tool was chosen.
The tools are a simplified rendition of those provided by MacPaint and the "paint” appears on the
microscope slide in a color which contrasts with the colors of the slide and appears to flow "on top of”
the image itself.

The mechanism by which paint is applied to the image involves the canvas subwindow-type. The
drawing is performed via pw stencil operations on the canvas pixwin and consist of capturing the
mouse-down event in the canvas. At the same time that the paint is stenciled onto the canvas an off-
screen pixrect is retained of the previous annotation in case the next operation is undo. Once the over-
lay is completed, an Attach Overlay button is activated to connect the overlay with the currently
selected feature-grade.

In the painting canvas there is some advanced capability attributed to the middle and right mouse
buttons. Although optional, it allows the use of the middle button to act like an eraser and the right
button to undo the last bit of overlay that was drawn. Since the user of the authoring system is trained
and not a "casual user”, the increased capability speeds the annotation process.

6. USER SYSTEM

The user system presents the most simplified of the Eidetic applications by beginning with a
near-blank screen containing just a few icons to choose among the analysis subsystems. Figure 5 illus-
trates one such window after some user responses have occurred and the subframes have all appeared.
The gray arrows along the right side of the figure show the current course of input and it is clear that
the boxes (subframes) have appeared from the top to the bottom. Once again the scrolling list panel
items are present and the large arrows are all panel buttons. As the search proceeds the user can
choose to call up images or cases based on the results of each inquiry.

7. CD-ROM Organization

Compact disks have been selected as the distribution media for Eidetic because of the low cost of
reproduction and the static nature of the data. CD-ROM had some impact on the storage layout and
retrieval techniques involved: the volume of data, the directory scheme for the disk, minimizing disk-

97

GGG————.——..————

head-seek times, and the interface to the workstation.

7.1. Volume of Data

A survey determined that a typical field of medicine can be significantly documented by images
from between 100 and 400 cases and the calculations which follow will show that the CD-ROM capacity
is a good match. The images come from a television camera video output and provide 512 by 480 8-
bit pixels after data compression, thus an image requires approximately 250K bytes. For other storage
technologies it might be attractive to compress the data (a two-to-one reduction could easily be
expected), but then the retrieval time would have to include decompressing the image too, and would
affect the system’s response times dramatically. Each case provides from three to eight images and
each image has one to seven overlays. The above numbers result in about 700 images and 3000 over-
lays for a disk covering 125 cases and that will only occupy about forty percent of a compact disk.
None of these numbers have an upper bound in the on-disk directory scheme, these particular numbers
just represent two clinical fields thus far documented.

Following that, a simple directory on the disk needs only eight bytes per image (case number, image
number, and disk-offset). Image retrieval would suffer considerably if all referrals commenced with a
return to track zero (or other fixed location) for every search so the directory is read into memory only
once and indexing is always fast. Once the image is located an Iseek and read of the raw disk can
transfer the image into the target canvas.

In addition to the directory, images, and overlays, the CD-ROM also stores "postage-stamp" iconic
images which are used as color buttons representing the full-size images. Some of those images are
visible near the top of Figure 1. During the user-search, when a case is "opened" on the screen, these
icons appear to show all of the slides attributed to the case. The compression-scheme to create the
reduced image is basically one of discarding-seven-of-eight-bits and it requires only four kilobytes on
disk per icon.

In order to "lead” the user to select the "correct” image for inspection, the icon which illustrates a
feature-grade can be outlined to indicate that it is "interesting".

7.3. Access Times

Although not specifically pointed to by the directory, an image’s icon offset on disk can be trivi-
ally computed once the associated entry is found in the directory. All of the icons for a given case are
stored contiguously on the disk so that they can all be quickly loaded when a case is opened up on the
screen.

After an image is brought to the screen, the disk-head is in position to read the directory of asso-
ciated overlays since they immediately follow it on the disk. In contrast to the images, the overlays are
very suitable for compression since they represent a one-bit-deep image which likely illustrates a couple
of arrows pointing out image features. Without compression, that data would require thirty-two kilo-
bytes but with simple run-length compression the overlays usually are no longer than three to five kilo-
bytes. As a nice side effect, the standard Sun Rasterfile access routine, pr_load, reads using stdio so
when stdio is used to read in the overlay-directory the first one or two overlays are transferred to
memory "for free” because of the sidio eight kilobyte internal buffer size.

The access techniques used for the CD-ROM are traditional UNIX techniques with the restriction
that all accesses must be on a 2K-byte boundary. Thus a read is always preceded by an Iseek to the
appropriate starting point. It is known that the buffers for stdio accesses will always read an even mul-
tiple of 2K which then allows stdio to be used with only the proviso that fseek’s are done to 2K boun-
daries too. Since there are no other restrictions on access it is convenient for testing or demonstration
that a magnetic-disk file containing a small database in the CD-ROM style can be used with no software
modifications.

7.2. CD-ROM Directory
The CD layout is shown in Figure 6 and begins with a label and a copyright notice in clear-text.

98

7.4. The Sun Workstations

As described above, the authoring station is a Sun 3/160 with video frame-grabber boards added
to collect images. The users’ workstation is a Sun 3/110 connected to a CD-ROM drive through the SCSI
bus which extends to disk and tape peripherals. The software driver for the CD player was adapted
from software Sun Microsystems had already developed to support write-once (WORM) drives. Both the
authoring and user workstations are standard offerings with appropriate hardware added for this applica-
tion, so there is a long-term advantage that these systems may also be used as traditional workstations
and Eidetic need not require dedicated resources.

8. FUTURE

The Eidetic hardware suite includes a frame grabber and sufficient computer power to allow the
end-user to collect and annotate images "in the field". While there is a premium on read-write media of
sufficient capacity to allow long term collection and storage of images, it is presumed that write-once or
some other technology will deliver the means for the physician or student to build up their own image
collection and knowledge base. In addition, there are several areas of image processing which can be
provided to allow clinical research to extend the capabilities of the Eidetic system.

9. SUMMARY

Eidetic has been built for both composing and retrieving clinical information and microscope
images. The system uses physicians’ ability to interpret microscope images and connects that interpre-
tation to a clinical knowledge base that may be examined via a mouse-based interface. SunView has
been utilized to build the software components and their user interface with standard panel items, with
scrolling lists, and with PANEL BUTTON _IMAGEs.

Emphasis in the design of the man-machine interface is on decreased user training time and
encourages the user to deepen the search by continuing to associate new references. There is no "con-
clusion" to the search; the final analysis is always subject to interpretation by the physician/user. A
staged appearance of windows and their interface-objects leads the user through the analysis process.

99

SunView Glossary

PANEL_CLIENT DATA

A pointer of type caddr_t to a user supplied data item. In the C tradition it may be any storage
type or a routine name.

PANEL_NOTIFY_PROC
The procedure called when the item is selected.
PANEL_EVENT PROC

If a behavior is not provided by default event processing a new behavior may be supplied.
Eidetic uses these to alter the standard mouse-button handling to simplify and constrain the user
interface.

PANEL_FEEDBACK

The feedback given when a choice-item is selected. One of: PANEL_INVERT, PANEL NONE,
PANEL MARKED, etc.

PANEL LAYOUT, PANEL_VERTICAL or PANEL HORIZONTAL

"Relative” positioning policies. Positions can be enumerated and based on a parameter such as
font-size so the layout dynamically adjusts if the default-font is changed.

PANEL_SHOW _ITEM, TRUE or FALSE

The buttons and text-items may be composed in advance and then dynamically shown when a
particular mode or subsystem is activated.

PANEL VALUE

When used with PANEL CHOICEs it sets or retrieves the value (ordinal number) of the current
selection,

References
Sun Microsystems:

System Interface Manual for the Sun Workstation
The SunView Programmers’ Manual
The SunView System Programmers’ Manual

Apple Computer:
Inside Macintosh

100

Figure 1. Panel with button-images (top) and an
Eidetic image in a canvas subwindow (bottom)

101

static Panel_item
create_cat_list_item(cat_ptr, catnum)
struct CATEGORYSTRUCT *cat_ptr; /* linked list of entries */

int catnum; /* entry # to be highlighted */
{

int item num, position = 1;

Panel_ item cat_item;

/* set it up to show the selection in reverse video */
cat_item = panel create_item(cat_panel, PANEL CHOICE,

PANEL_FEEDBACK, PANEL INVERTED,
PANEL_NOTIFY_PROC, cat_list_notify proc,
PANEL_CLIENT DATA, NULL,
PANEL_SHOW_ITEM, FALSE,

0);

/* put the strings into the "list" */
for (item num = 0; cat_ptr != NULL; item num++) {
panel_set (cat_item,
/* index and string for choice */
PANEL CHOICE_STRING, item num, cat_ptr->categoryname,

PANEL LAYOUT, PANEL_VERTICAL,
PANEL_CHOICE_Y, item num, position,
0):

if (item num == catnum) /* the "current" selection */

panel_set (cat_item,
PANEL CLIENT DATA, cat ptr,
0):
position += font_height;
cat_ptr = cat_ptr->nextcategory;
}

/* make it appear */
panel_set (cat_item,

PANEL_VALUE, catnum, /* highlight it */
PANEL SHOW_ITEM, TRUE, /* become visible */
0):

return (cat_item);

Figure 2. Scrolling-list sample code

CASE AUTHORING SYSTEM
CATEGORIES

CLINICAL FEATURES
| CF Patient Descriptors - Incomplete
CF Sites Involved - Incomplete
CF Previous Tumor - Incomplete
F Other Diseases - Incomplete
urrent Symptoms - Incomplete
CF Chest Radiograph - Incomplete
CELL BLOCK FEATURES

Figure 3. Scrolling list

102

(_LIST CASES) (LIsT IMAGES)

MP Number of Epidermal Nests, Plaque

Absent
Ba Few

Moderate

Many

s N/A
Other

Figure 4. Histogram list made of PANEL_CHOICE_IMAGEs

4::)7chqu

u MP Hyperkeratosis (moderate/marked), Plaquen

SET VALUE

u Present n

tlelanoma, Pr

\/CLEAR

/: DELETE ADD MICROSCOPIC CRITERION

CASE #7585208 Melanoma, Acral-Lentiginous
CASE #7586800 IMAGE 9 Dx: Melanoma, Acral-Lentiginous
CASE #7701108 Dx: Melanoma, Superficial Spreadi

& 2lap0 o a

Figure 5. User system with highlighted arrow-buttons

103

disk name
copyright notice

Directory
for each image:
case number
image number
disk offset

4 Kbyte reduced images

246 Kbyte 8-bit color image

Overlay Directory
overlay numbers and offsets

Overlay
run-length encoded 1-bit image
32 K compressed to 3-6 K

...More Overlays

g
Overlay Directory

Overlay
Overlay

.More Images

Figure 6. CD-ROM organization

104

The Analysis and Manipulation of BNF Definitions

Allan C. Milne

Dept. of Mathematics & Computer Studies
Dundee College of Technology
Bell Street
Dundee
Scotland

ABSTRACT

An extended BNF notation (EBNF) is formally defined and
its use described. An associated software tool called LL1l pro-
vides analysis and manipulation functions for systems defined
using this notation. The facilities provided by LLl are par-
ticularly useful in the development of LL(1l) definitions. This
paper will also discuss the use of EBNF and LL1 in the develop-
ment of language syntax and will consider some implications of
using EBNF representations of Jackson structure diagrams.

1. Introduction

Backus Normal Form (or Backus-Naur Form) (BNF) is a widely used nota-
tion for the definition of programming language syntax. Although other
notations such as syntax diagrams are also used, none match the formality,
consistency and completeness of BNF. A BNF definition implicitly defines a
grammar, the theory of which developed from work in linguisties and which
has now matured into a well-understood, rigorous mathematical discipline.
The theorems and axioms of grammar theory (see[Aho72,Back79]) can be
directly applied to systems defined in BNF.

It is felt that the theory of grammars and the use of BNF have wider
applications than that of defining the syntax (or structure) of programming
languages. Most applications have an implied "language" in their human-
computer dialogue, an appropriate and useful specification tool for this
would be BNF. The structure of other notations which include recursive and
iterative constructions may also be represented in BNF, one example of such
s notation is the Jackson structure diagram.

Unfortunately, there is no a formal definition of the BNF notation and
the original BNF does suffer from certain limitations. Many extensions
have been proposed but these also have not been formalised and are often
inconsistent. To encourage a wider use of BNF there must be a formal

105

definition of a useful extension together with appropriate tools to allow
automatic manipulation and validation of specifications.

The extended BNF notation (EBNF) described in this paper is formally
defined in itself and allows great flexibility in the style and structure
of system specifications. The notation allows both recursive and iterative
constructions and a distinction can be made between major structural com-
ponents and the "micro-syntax" of more elementary entities.

The LL1 tool provides analysis and manipulation functions for systems
defined wusing this EBNF notation. The facilities provided are designed
particularly for processing LL(1l) specifications although they can also be
usefully applied to more general definitions. Analyses provided by LL1
include validating the correctness and consistency of a specification, com-
putation of LL(l) director sets and a full cross-reference. Manipulations
include transformation into BNF, factoring, substitution and removal of
left recursion.

The application area addressed by EBNF and LL1 is the specification of
system structure. This paper will describe their use in the design of
language and dialogue syntax and will consider some implications of using
EBNF specifications of Jackson structure diagrams.

2. BNF and Extended BNF

hS)
[

Terminology of BNF

The theoretical underpinning of BNF is the theory of grammars (or
language theory). A grammar is a tuple (N,T,S,P)

N : A finite set of non-terminal symbols.
T : A finite set of terminal symbols.

S : The distinguished or starter symbol. This is a designated non-
terminal from the set N.

P : A finite set of productions, each mapping a non-terminal to a
string of terminal and/or non-terminal symbols.

Terminals are the basic symbols which constitute the entity being
defined, for example the digits "O" through "9" and "." might be the termi-
nals for a real number. Non-terminals are introduced by the designer to
represent structural components of a system. The distinguished symbol
non-terminal is the highest level component representing the system as a
whole. A production of the form

non-terminal -> string
defines the string of terminals and/or non-terminals which can be derived

from the non-terminal. Starting from the distinguished symbol, productions
are repeatedly applied until a string of terminals is reached.

106

The notation BNF was first used to describe a grammar in the defini-
tion of the language Algol-60[Back59,Naur63]. A grammar is defined in BNF
by giving a series of rules for the non-terminals of the grammar. These
rules are made up of one or more productions. Each non-terminal must be
defined by a rule of the following form:

non-terminal ::= production-list
The meta-symbol "::=" is read as 'can derive'. A production-list 1is a
series of one or more productions seperated by the "|" ('or') meta-symbol.

For example, a binary number may be defined as

<bin-no> i:= <bin-digit> <rest-no>
<rest-no> 1:= <bin-no> | <
<bin-digit> ::= 0 | 1

The meta-symbol "<>" is used here to represent the null production which
derives the null string. The symbols 'O' and 'l' are the terminals.

This BNF specification defines the grammar (N,T,S,P) where
N = {<bin-no>,<rest-no>,<bin-digit>}
T = {0,1)

S = <bin-no>

p = { <bin-no> -> <bin-digit> <rest-no>
<rest-no> -> <bin-no>
<rest-no> - <O

<bin-digit> -> 0
<bin-digit> -> 1 }

One very useful type of grammar is the LL(l) grammar in which rules
must exhibit certain characteristics. These characteristics are concerned
with parsing which is the process of determining if, and how, a specific
string of terminal symbols can be derived from the distinguished symbol. A
string which can be so derived is thus a valid sequence of terminals meet-
ing the specification. For a rule to be LL(1) it must either have only one
production or the choice of which alternative production to apply must be
uniquely determined by the next terminal symbol to be processed, i.e. there
is no requirement to look ahead. A grammar is LL(1l) if all the rules are
LL(1).

An example of an LL(1) rule is
<filename> ::= <letter> <rest-name> | . <rest-name>

A non-LL(1) rule is

107

<response> ::= yes please | yes thank you

2.2. The Extended BNF Notation

The extended BNF notation (EBNF) defined here is based on BNF. A for-
mal definition of EBNF (in EBNF) is given in Appendix 1 to this paper.

Within EBNF there are three distinct types of symbols
Meta-symbols which are symbols of the EBNF notation itself.
Non-terminals which are bracketed by angle-brackets (<...>).
Terminals which are any other character strings.

Non-terminal symbols are bracketed by "<" and ">" as for BNF and must
not contain any meta-symbols. Terminal symbols are strings of characters
delimited by a meta-symbol, space, end-of-line or end-of-file. If a termi-
nal is to include a meta-symbol or space then the terminal must be enclosed
in quotation marks. The apostrophe is used as the escape character within

such a terminal stribg to include quotes or apostrophes. Thus "'''"" ig
the terminal '".

Rules in EBNF are of the same form as previously described for BNF but
must be terminated by a period ".". The first rule of an EBNF specifica-
tion defines the distinguished symbol of the grammar.

While in BNF a production is simply a string of terminals and/or non-
terminals, a production in EBNF is a string of clauses of the following
form:

symbol : a terminal or non-terminal
{production-list} ! production-list may optionally appear
{production-list}* ! production-list may appear 0 or more times
[production-list] : used to bracket alternative productions
[production-1list]* : production-list may appear 1 or more times

N.B. the second and third clausal forms above are enclosed in curly brack-
ets.

Using the extended clausal forms the binary number defined earlier in BNF
might be alternatively defined as any of the following in EBNF

<bin-no> ::= <bin-digit> {<bin-digit>}*
<bin-no> ::= [<bin-digit>]*

<bin-no> ::

(0] 1]

108

Clauses may be nested to any depth as in the following specification of a
real number:

<real-no>
<digit>

f<digit>]* | (<digit>}* {("." (<digit>}*)
oft1r12)34)5]16]7]|8]29

Another example is of a UNIX-type command:

<command> ::= <name> { -<option> {<specifier>)}*
{<parameter>)}*

The notation is free-format except for end-of-line delimiting termi-
nals and non-terminals. Comments may be included in a specification any-
where that a rule or clause can occur. The start of a comment is indicated
by a question mark "?" and it continues to the end-of-line.

BNF is a proper subset of EBNF with the exception that "." must be
used to terminate a rule.

2.3. Macro- and Micro-syntax

One of the innovations of EBNF is the distinction which can be made
between the macro-syntax and the micro-syntax of a specification. Rules
occurring first in a system specification are taken to define the macro-
syntax. Rules which define the micro-syntax must appear at the end of the
EBNF definition and are seperated from the macro-syntax by the meta-symbol
"$microsyntaxs".

Macro-syntax rules define the main structural components of a system.
These rules must be complete and formally define the constructs which
represent the primary processing requirements. A system may be entirely
defined within the macro-syntax. Formal definition of a complete system
can be tedious and result in an over-detailed specification. The micro-
syntax of EBNF allows more intuitive, descriptive or less formal defini-
tions to be made. The rules within the micro-syntax may define entities
which are elementary, pre-defined or generally accepted and which do not
require a full rigorous specification.

A simple example of the use of this concept can be found in the defin-
ition of EBNF given in Appendix 1. To avoid listing all possible charac-
ters which can be derived from <char-string> and <any-char-string> these
non-terminals are defined descriptively in the micro-syntax.

In the context of programming language design the macro and micro com-
ponents might relate directly to processing phases within the compiler.
The macro-syntax may define the major syntactic constructs which are pro-
cessed by the syntax analyser or parser. The micro-syntax may define the
tokens which are processed by the lexical analyser.

This concept allows the system designer flexibility in developing

109

specifications. The system definition can be built wup in a stepwise
manner, gradually moving definitions from the micro to the macro-syntax as
the design detail emerges and can be formally defined. Another implication
of this distinction is that it opens up the possibility of differentially
processing rules. An example of this can be found in the LL1 tool where
rules in the micro-syntax play no part in transformations, in fact LL1
treats non-terminals defined by these rules as terminals as far as its pro-
cessing is concerned.

2.4. Advantages of EBNF

Using BNF to specify systems or parts of systems has certain attrac-
tions, BNF is a reasonably concise formal specification technique which
has been used in programming language design for over 20 years. The theory
of grammars which underpins BNF is well-understood and there are many use-
ful results which might be applied to specifications.

One of the major disadvantages of BNF is that the designer is res-
tricted to wusing recursive definitions. EBNF allows iterative construc-
tions through its extensions to the clausal forms within productions. The
designer is now free to choose an iterative form of definition which may be
the most natural and which can have implications on the efficiency of
implementation. It is important not to constrain the implementation through
lack of flexibility in the design tool used.

The arguments of efficiency and flexibility in design and implementa-
tion also support the other functional extensions in EBNF. The distinction
between macro- and micro-syntax can be used to hide detail from the main
design and allows the specification to be complete in structure without
being complete in detail. A stepwise refinement approach can then be used
to develop the level of detail required.

Other advantages of EBNF relate to its increased utility as a specifi-
cation document. The formal definition of EBNF ensures there can be no
ambiguities in the form of the notation, while the variety of constructions
available allows flexibility in the form of the specification. The free-
format layout and provision of comments hopefully make a specification
easier to write, understand and maintain.

198

The LL1 Software Tool

I

.1. Introduction

The original motivation for LLl came from work in designing the syntax
of programming languages. The syntax specification should be correctly
formed, consistent and complete. It may also be desirable that it exhibit
certain specific characteristics, such as being LL(1). Manual validation
of these criteria is certainly non-trivial and may be unrealistic. An
automatic mechanism is needed to perform such validation and to guarantee
that validity. A model for such an automatic tool can be found in SID
[Fost68]. The functions of SID are similar to those of LL1 but while SID
was innovative in 1968 there have been many advances since then which now

110

limit its wusefulness. LL1[Miln86] 1is an attempt to revise, extend and
structure both the facilities provided and the implementation.

The overall objective of LL1 is to provide a tool to assist in the
development of grammars (especially LL(l) grammars). The grammars are to
be defined using the EBNF notation described earlier. The operation of LL1
is to be flexible with the user controlling all display, analysis and mani-
pulation functions.

The current implementation of LL1 is in the language S-
Algol[Cole82,Morr79] which is a high-level orthogonal language developed at
the University of St. Andrews. The language has very powerful program and
data structuring facilities including support for list-processing. LL1 is
heavily reliant on the list-processing environment since the two main data
structures representing the grammar and the data dictionary are multi-
linked list structures. The intention is to implement any future version
in C for greater portability.

3.2. Functional Description

The main functional phases of LL1 are shown in Figure 1. All func-
tions of LL1 are under the control of the user through a list of options
supplied when invoking the tool. The EBNF notation is used as the defini-
tion language for the input grammar to allow flexibility in the specifica-
tion and to ensure there are no artificial constraints, In the descrip-
tions that follow all analyses and transformations are with respect to
rules in the macro-syntax. Non-terminals defined in the micro-syntax are
treated by LL1 as terminals as far as the defined grammar is concerned.
The input grammar is checked for correctness and completeness of rule con-
struction and non-terminal definition.

The theory of grammars relates to recursive rather than iterative
definitions and therefore during input any iterative (EBNF) clause is
transformed into an equivalent recursive (BNF) definition as follows

<a> ::= ...{s}... . => <a> ::= ...<$$Option-1>...
<§$0ption-1> ::=s | < .

<a> = ...{s}*... . = <a> ::= ...<$S80ption-1>... .
<$$0ption-1> ::= s <$$0ption-1>
| < .
<a> ::= ...[s]... . => <a> ::= ...<SGroup-1>...
<88Group-1> ::= s
<a> i:= ...[s]*... . => <a> ::= ,,.<$$Group-1> <$$List-1>...
<$8Group-1> ::= s .
<$8List-1> ::= <§$Group-1> <$$List-1>

| < .

111

Process

Options Options]
P Input & Remove -
Remove Left Useless - Mﬂmn."ﬁv
1 Recursion Productions (
Standard LL (1)
Transforms BNE nulls Standard
BNF
Director
S Starters Sets and
ource . Audit
Syntax Audit {
Followers
Return to
| Simplify | extended »| Output »| Generate |[g
BNF Analyser
Simplified Extended Cross- ‘template’
Standard BNF Grammar Reference
BNF
Audit Audit .

‘xyz.syn

’

112

In the above, and in the following transformations, <§$0ption-1>,
<$$Group-1> and <$$List-1> are new non-terminals generated by LL1; "s" and
"t" are arbitrarily complex production lists. Also during this input phase
any direct left-recursion in non-terminal definitions may be removed by a
rule transformation of the form

<a> :1i=<a>s | t |... . => <a> ::= <§$Group-1> <$$0ption-1>
<$$Group-1> ::=t |
<$$0ption-1> ::= s <$$0ption-1> | <

Using these generated non-terminal names allows this to be transformed by a
later phase of LLl into the EBNF form

<a> ::= [t]...] {s}*

A production is useless if it either cannot be reached from the dis-
tinguished symbol or it cannot (eventually) derive a string of terminal
symbols. Such useless productions are normally the result of an error in
specification and their occurrence can be reported and the offending pro-
ductions removed from the grammar.

The grammar may be checked to determine if it satisfies the LL(1) con-
dition. If it does not then it is possible to apply certain transforma-
tions in an attempt to arrive at an equivalent LL(1l) specification. This
is described in more detail in the next section.

Some elementary simplification of the grammar can be made at this
stage to remove non-terminals which have only a single production and are
referenced only once. The final grammar can then be transformed back into
an EBNF representation. This is done in a manner which ensures that the
final grammar is as close to the original as possible, taking into account
any transformations which have been applied. The EBNF transformations are
applied only to productions which include a generated non-terminal
(<$8Group-1> etc.) and are exactly the reverse of those described for
transforming from EBNF to BNF. The grammar can be output in the EBNF nota-
tion.

During LL(l) processing information is computed which defines the ter-
minal symbols determining the application of alternative productions of a
rule. This information can be used to generate a recursive-descent syntax
analyser (parser) which will recognise terminal strings meeting the speci-
fiication. The procedure used is described in the next section.

As can be seen from Figure 1 various analyses and audit listings are
provided. One of the most wuseful analyses is a cross-reference report
which, in effect, is a data dictionary for the system specification, it
lists all terminals and non-terminals with references to their definitions
and occurrences.

113

3.3. LL(l) Processing

The motivation for specifying a system as an LL(l) grammar lies in the
ease of recognising valid terminal strings. Given a terminal string, at
any stage in the derivation sequence the cortrect production of a rule to
apply is defined uniquely by the next terminal in the input stream. Thus
the input stream is processed one terminal at a time with no requirement
for look-ahead or backtracking in the recogniser procedure. Consider the
rules

<response> ;.= <yes> <conditional> | <no> <conditional>
<yes> = yes
<no> = no

The rule for <response> is LL(1l) since the presence of 'yes' or 'mo' as the
next input terminal defines the production to apply. If a terminal other
than these is present an invalid <response> has been made and an error pro-
cedure will be invoked.

In any realistic specification there will be a number of terminals
which can validly define the application of each production. This set of
terminals is called the director set[Grif76] of the production. It has
been shown that a necessary and sufficient condition for a grammar to be
LL(1) is that the director sets for each production of each rule be
disjoint[Knut71,Grif76]. LLl1 uses this result in its LL(1l) determination.
The director sets of each production are computed, this 1is not as
straight-forard as it may appear since allowance must be made for null pro-
ductions. An analysis of the director sets can be produced and this can be
useful in manually validating the correctness of a specification. The
structure of the LL(1l) determination algorithm follows that proposed by
Griffiths[Grif76], certain details borrow from Backhouse[Back79] and
Warshall[Wars62].

Given that a specification is found not to be LL(1) (i.e. it has
intersecting director sets) it is possible to attempt to transform it into
an equivalent LL(1) specification. This cannot be guaranteed to succeed
(this 1is theoretically unsolvable) and if LL1 detects looping or cannot
apply further transformations it will terminate this phase for the rule in
question. The transformations applied are factoring and substitution.
Factoring is applied as follows

<response> ::= yes please | yes thank you .

=> <response>
<$$Group-1>

yes <$$Group-1>
please | thank you

The resulting LL(1) rules can be transformed later into the EBNF form

<response> ::= yes [please | thank you]

Substitution is applying a non-terminal definition to a production in which

114

the non-terminal occurs. It is of the following form

<a>

r | s . => <a> 1'=tr |ur | s
t |

!
t | u. ::= u

This does not by itself make a production LL(1l) but it is often necessary
before an appropriate factoring transformation can be applied. The order
of application of these transformations is important and an appropriate
application algorithm is used[Miln86].

With an LL(1) grammar the passive specification can be directly
transformed into an active recogniser for processing strings of terminals
(in compiler terminology a syntax analyser or parser). The technique wused
is recursive descent compiling (for details see[Davi8l]) in which, using a
small set of primitive procedures, recopgniser procedures are derived for
each non-terminal in the specification. LLl offers the facility to
automatically generate a recursive descent parser from an LL(1l) specifica-
tion. The parser 1is in the language S-Algol and incorporates error han-
dling and an elementary lexical analyser, to build up terminal tokens from
character input. The generation algorithm used is designed to allow
parsers in other languages to be generated. The transformations between
EBNF and the generated code are defined in Appendix 2. The elements of the
parser which are not specific to any particular grammar are stored in a
template to which the recogniser procedures and other information is added.

4. Application to Language and Dialogue Design

The specification of programming language syntax was the original
motivation for the development of EBNF and LL1, however most systems have a
"language" implicit in the design of their human-computer interface. EBNF
is an appropriate specification tool to use for this dialogue and is,, for
example, itself the input "language" for LL1.

Using EBNF gives the designer flexibility in a formal specification
and imposes no restrictions on the design, its features also make it self-
contained for documentation purposes. LL1 can be wused to verify the
correctness of the specification in terms of missing definitions, spurious
rules or general clerical errors. Thus a syntactically correct and com-
plete specification 1is assured. A specification can be checked for
correctness of meaning by using LL1 to provide analyses of attributes and
applying transformations as appropriate. During all transformations made
by LL1 full audit listings are is produced to ensure the designer is aware
of any manipulations and to allow the design to be tuned as necessary.

If an LL(1l) specification is used then LL1 can derive the correspond-
ing recursive descent recogniser. The use of the recursive descent tech-
nique to process systems defined by an LL(1l) EBNF specification has many

advantages. Perhaps the most important is that a formal specification
which can be validated at the design stage is automatically transformed
into the corresponding processing structure. This structure is, in a

sense, a proved implementation since it is directly derived from the formal
design. The implementation is also elegant and easily understood with many

115

published algorithms for error handling[Fisc80,Grah75,Maun82,Turn74].

This method can be used as a prototyping tool to test the quality and
effectiveness of the design. Using EBNF and LL1 will allow extensive test-
ing to take place and make it relatively easy to modify the design and
recycle through the verification and testing phases. It is hoped that the
ease of use of these tools will also encourage the designer to investigate
alternative designs.

The objective for EBNF and LL1 in this application area 1is to give
more formality, flexibility and efficiency in the design and implementation
process.

5

elevance of EBNF to Jackson Structure Diagrams

Jackson Structure Programming (JSP) is a popular system development
methodology which 1is based on a graphical representation of data and pro-
cess structure. It is noted that EBNF can be used to represent the various
forms of structure diagram which can occur in JSP and preliminary work is
being carried out on the relevance of this representation. The EBNF
representations of the structures are as follows

/\ <A> = <C> <D> .

A <A> 1= | <C> .

116

<A> = { }*

If the structure diagram defines a data structure then the elementary JSP
components are represented by a terminal which is the primary component of
the data item (for example a character, digit, etc.).

If a process structure is being defined then the representation of the
elementary components 1is more complicated and dependant on the standard
used for labelling the components. A textual non-formal labelling standard
may result in a component being represented by a non-terminal defined in
the micro-syntax. A more formal labelling can give more power to the EBNF
representation, If a unit is labelled "sum := a+b;" then an appropriate
EBNF representation might be

<sum> ::= 'sum :=a + b;"

The final program structure could then be derived from the EBNF representa-
tion through appropriate substitution of these elementary non-terminal
definitions,

At the very 1least EBNF can be wused as a formal "mathematical"
representation of the graphical JSP diagrams. However the use of EBNF also
opens up the prospect of applying the body of knowledge which exists about
grammars to JSP diagrams, and of utilising automatic tools. LL1 might be
used to verify that all JSP components have been defined and that there is
no ambiguity. Also LL1 will produce a full cross-reference of component
defintions and uses which can form the basis of a data dictionary which is
known to be complete.

The relevance of some LLl1 transformations to JSP diagrams 1is clear,
for example the removal of useless productions will remove superfluous
definitions from the structure. The meaning of a JSP representation being
LL(1) is 1less clear, one avenue being explored arises from the phases in
the JSP methodology

JSP Jsp
data -> process -> implementation
structure structure

If a JSP data structure is represented by an EBNF specification then it can

117

transformed into LL(1) form. The processing of the data structure should
then be less complex in that only one data component need be considered at
any one time. The implementation from an LL(1l) process specification might
be automatic using the recursive descent technique. This offers all the
advantages described in the previous section.

6. Summary

This paper has proposed EBNF as a formally defined specification nota-
tion which defines a grammar. This notation can be used to specify many
different types of systems and allows the theory of grammars to be used to
analyse and transform the specification. The EBNF standard is flexible,
self-documenting and is one more tool in the toolkit of formal specifica-
tion techniques.

LL1 is a software tool which can be used to manipulate and analyse
specifications written in EBNF, it is especially designed for the produc-
tion of LL(1l) grammars. It provides an automatic mechanism foir validating
specifications including the non-trivial task of LL(1l) determination.

The use of EBNF and LL1 in language and dialogue design has been
described and their relevance to JSP discussed. EBNF has wider applica-
tions than its traditional role in defining the syntax of programming
languages and it is hoped that further work will be done in investigating
its usefulness in other areas.

References
Aho72.

A. V. Aho and J. D. Ullman, The Theory of Parsing, Translation and
Compiling Volume 1 - Parsing, Prentice-Hall, 1972.

Back79.
R. C. Backhouse, Syntax of Programming Languages : Theory and Prac-
tice, Prentice-Hall International, 1979.

Back59.
J. Backus, "The Syntax & Semantics of the Proposed International Algo-
rithmic Language of the Zurich ACM-GAMM Conference," Proc. Int. Conf.
Information Processing, pp. 125-132, UNESCO, Paris, 1959.

Cole82.
A. J. Cole and R. Morrison, An Introduction to Programming with S-
Algol, Cambridge University Press, 1982.

Davi8l.
A. J. T. Davie and R. Morrison, Recursive Descent Compiling, Ellis-
Horwood, 1981.

118

Fisc80.
C. N. Fischer, D. R. Milton, and S. B. Quring, "Efficient LL(l) Error
Correction and Recovery Using Only Insertions,"” Acta Informatica, vol.
13, pp. 1l41-154, 1980.

Fost68.
J. M. Foster, "A Syntaxq Improving Program," Computer Journal, vol.
11, pp. 31-34, 1968.

Grah75.
S. L. Graham, "Practical Syntactic Error Recovery," CACM, vol. 18, no.
11, pp. 639-650, 1975.

Grif76.
M. Griffiths, "LL(1l) Grammars and Analysers," in Compiler Construction
- An Advanced Course (2nd. Ed.), ed. F. L. Bauer, J. Eickal, Lecture
Notes in Computer Science, vol. 21, pp. 57-84, Springer Verlag, 1976.

Knut71.
D. E. Knuth, "Top-Down Syntax Analysis," Acta Informatica, vol. 1, PP.
79-110, 1971.

Maun82.

J. Mauney and C. N. Fischer, "A Forward Move Algorithm for LL and LR
Parsers," Sigplan Notices, vol. 17, no. 6, pp. 79-87, 1982.

Miln86.
A. C. Milne, "LLl1 - An LL(1) Grammar Analysis and Manipulation Tool,"
Dept. of Maths & Computer Studies Technical Bulletin 5, Dundee College
of Technology, Dundee, Scotland, 1986.

Morr79,
R. Morrison, "S-Algol Reference Manual,” Dept. of Computational Sci-
ence Report CS/79/1, University of St. Andrews , St. Andrews, Scot-
land, 1979.

Naur63.
P. Naur and et al, "Revised Report on the Algorithmic Language Algol-
60," CACM, vol. 6, no. 1, pp. 1-17, 1963.

Turn74.
D. Turner, "Error Diagnosis and Recovery in One-Pass Compilers,"
Information Processing Letters, vol. 6, no. 4, pp. 113-115, 1974.

Wars62.
S. Warshall, "A Theorem on Boolean Matrices," Journal of the ACM, vol.
19, no. 1, pp. 11-12, 1962.

119

Appendix 1 - Extended BNF Notation

? Formal Definition of the Extended BNF Notation EBNF

<grammar> ::= <syntax-part> {<micro-syn-part>)
<syntax-part> ::= [<rule>]* ? 1st rule defines the
? distinguished symbol
<micro-syn-part> ::= "smicrosyntaxt" [<rule>]*
<rule> ::= <non-terminal> "::=" <production-list> "." |
<comment>
<production-list> ::= <production> ("|" <production>)*

<production> ::= [<clause>]* |

"t ? null production

<clause> ::= <symbol> |

<option-clause> <rep-symb> | ? 0 or more times

<choice-clause> <rep-symb> . ? 1 or more times
<option-clause> ::= "{"<production-list>"}"
<choice-clause> ::= "["<production-list>"]"
<rep-symb> ::= "¥" | <O
<symbol> ::= <non-terminal> | <terminal> | <comment>

<non-terminal> ::= "<"<char-string>">"

<terminal> ::= <char-string> |
? eol or space

ntnngany-char-string>"'"".

<comment> ::= "?"<any-char-string>. ? ends with eol

gmicrosyntax%

<char-string> :@:= "any ASCII chars except meta-symbols"

<any-char-string> ::= "any printable ASCII chars.". 7 use '"
? and ''

120

? ends with meta-symbol,

to include
to include

"

Appendix 2 - Recursive Descent Recogniser Procedures

The following primitive procedures are used
mustbe.. - checks that a supplied terminal is the next input terminal
token. If present the input stream is moved on, if not the error pro-

cedure is invoked.

is.. - indicates whether a specified terminal is next on the input
stream.

For brevity the following abbreviations will be used

P - a production

ds(P) - tests for all members ofthe director set of P
(using the procedure is..)

T - a terminal

N - a non-terminal name (not including "<" and ">")

Rules and Procedures

There is one procedure generated for each rule in the macro-syntax, the
procedure name being the non-terminal name made into a valid identifier

with ".." appended. For a rule with one production the generation is
<N> ::=P . => procedure N..

begin P end

A production which consists of terminal and/or non-terminal symbols is han-
dled as

N1 T N2 => N1..
mustbe. . (T)
N2..

Within a rule there may be alternative productions which are generated as
P1 | P2 => if ds(PLl)

then P1
else P2

PL | P2 | ... | Pn => case true of
ds(P1) : Pl
ds(P2) : P2

default : Pn
EBNF clauses

(P} => if ds(P) do P

121

(P1 | P2 |

(P}*

(P1 | P2

[P]

[P1 | P2]

[Pl | P2 |

(P]*

[Pl

N

}

L)

| Pn]

=>

=2

->

=>

-

=>

case true of

ds(P1l) : P1
ds(P2) : P2
defé<)

while ds(P) do P

{ let end.loop.. := false
while ~end.loop.. do
case true of

ds(Pl) : Pl
ds(P2) : P2
default : end.loop.. := true

same as for P

same as for Pl | P2

same as for P1 | P2 | ... | Pn
repeat P while ds(P)

{ procedure group.. (cint time.. -> bool)
begin
ans.. := false
case true of
ds(Pl) : P1

default : { if time..=1
do syntax.error.

ans.. := true
)
ans. .
end
let end.loop.. := group.. (1)
while ~end.loop.. do
end.loop.. := group..(2)

122

Uncle - A Case Study in Constructing Tools for the PCTE’

Hans-Jiirgen Kugler
Barry Lynch
Generics (Software) Limited
7, Leopardstown Office Park,
Foxrock Dublin 18
Ireland

Abstract

A set of common service interfaces has been proposed as
basis for a portable common tool environment (PCTE). The PCTE
favours a distributed workstation approach to software engineering
environments and uses an object management system (OMS) based on
an entity-relationship approach as fundamental information
repository.

The PCTE defines functional interfaces allowing the creation
and manipulation of complex data-models using the distributed OMS,
thus facilitating the interpretation of development and management
tools. The PCTE interfaces are currently based on Unix services
and expressed in C.

UNCLE is a tool to allow the construction of command and
response languages for the PCTE which are turned to the users’
views of the underlying system and his or her skills. An object-
oriented abstraction mechanism allows the construction of common
tool interfaces.

INTRODUCTION

Portability and reusability are major issues in increasing productivity
in system development. Portability requires the existence of standards in
interfacing as well as a certain harmony in development paradigms. Industrial
standards are being developed on a wide scale, especially in those areas which
have to deal with interfacing to computers in the widest possible sense. Open
System Interconnection, Graphical Kernel System, and a variety of programming
languages, including Ada™ ([1] as the latest example, are being standardised.

Uncle - a User’s Nice Command Language Environment - is a realisation of
the designs for user interfaces undertaken by working groups in the
International Standards Organisation and the International Federation for
Information Processing [2]([3]. Uncle emphasises the portability of user
interfaces and the need for adaptation to the user’s view of a system. This

Part of the work reported here is funded by the Commission of the
European Community under the Multi-Annual Dataprocessing Programme,
contract MAP 759.

™ Ada is a registered Trademark of the U.S. Government, AJPO.

123

implies that the interfaces of tools contained in the system are presented in
a uniform way - and tailored to the user’s understanding. To provide such
functionality Uncle supports the concept of public tool interfaces.

The provision of a unified framework for tool interoperability was the
concern driving the PCTE project in the European ESPRIT framework. PCTE is a
basis for a Portable Common Tool Environment [4], which is now protected as an
industry standard.

PORTABLE COMMON TOOL ENVIRONMENT (PCTE)"

The PCTE project was launched in 1983 with the aim to create the
technological base for the project partners, Bull, ICL, GEC, Nixdorf, Siemens
and Olivetti, to construct modern software engineering environments. The SEEs
would provide a set of tools and services to support the complete system
development life cycle. These tools, however, are created by the SEE developer
using services and function calls common to all PCTE systems. Thus the SEE is
portable across all hardware supporting the PCTE.

The PCTE interfaces are a set of program-callable primitives which are
machine~independent. They were published in document form early on in the
project, so that the information would be disseminated throughout the rest of
ESPRIT and indeed, beyond.

The preferred architecture for the PCTE is that of a Local Area Network
(LAN) of powerful single-user workstations with a high resolution display and
a pointing device. Account was also taken of the more conventional mainframe
and mini computers which would be supported with or without LANs.

From the PCTE user’s point of view, the structure of the network is
completely transparent and no explicit communication is necessary between the
user of one machine and machines elsewhere in the LAN.

The approach to portability taken by the design team led to the choice
of UNIX being the first base system upon which PCTE would be built. The
reasoning behind the decision was that more widespread availability would be
achieved within a short time-frame because of the size of the Unix community.
The increase in size of the X/Open [5] group, which includes all of the
project partners, was also a factor.

Unix on its own is not a distributed system, so a distribution layer had
to be built to provide a base for communicating nodes each running an
independent Unix system. The logical link between the nodes is established by
using a distributed Object Management System in place of the conventional Unix
file system. The OMS provides the central mechanisms needed for tool
interface, object and project activity definitions.

Currently the PCTE specification takes the form of a (large) set of C
interface definitions, in the form recommended by X/Open. The 1long term
objective of the project was to also produce a complete rewrite of the PCTE in

..

Readers familiar with the PCTE may want to skip this section.

124

Ada on top of a minimal portability kernel. This would cater for the non-Unix
operating systems. In the medium term an Ada interface definition was to be
defined which would allow an Ada interface to the C definitions. This was seen
as a necessary step, particularly if the PCTE was to be targeted to the US
market.

The PCTE primitives cover three main areas:
1. Basic Mechanisms

These deal with the manipulation of various entities found within an
SEE as well as with program execution. These entities would be
programs, documents, software tools and program data. Central to the
PCTE is the Object Management System (OMS) where these entities are
stored and accessed. This replaces the conventional concept of a
file system and means that all objects in the environment are
handled homogeneously.

2. User Interface

The Workstation approach implies that a high resolution raster
display is used, although non graphic terminals are also supported.
Most operating systems now support multiple applications running in
parallel and this suggests a multi-window approach. Thus, all the
primitives for opening and manipulating windows as well as
conventional I/O are provided.

3. Distribution

Primitives are also provided to cater for the administration of the
distribution mechanism. The distribution is, however, largely
transparent to the individual user and linked to the data schemata
provided by the OMS.

THE OBJECT MANAGEMENT SYSTEM

The OMS 1is the central store of information. It is distributed across
the LAN. Most of the information is kept as local as possible to ensure quick
access to data and to prevent wunavailability of data during network
breakdowns.

Information is kept in volumes which are mounted and dismounted as
necessary. When mounted, a volume becomes visible to the whole network. The
OMS is based on a typed Entity-Relationship data model, defining Objects and
Relationships as being the basic components of the environment information
base.

An object is characterised by

- a contents, in the traditional file sense,

- a set of attributes, which are individually named and accessed,
representing primitive values,

125

- a set of relationships in which the object participates, where a
relationship is a bidirectional link between a pair of objects (uni-
directional links may also exist).

All objects, relationships (links) and attributes are typed entities to
define their basic properties. The type definitions are contained in special
predefined objects known as Schema Definition Sets (SDSs). SDSs can be a
specific to a particular project or sub-project or to individual users and
user groups.

A running process operates with a set of SDSs known as a Working Schema.
This may be viewed as a set of constraints on the properties of collections of
objects visible to a particular process. Different views of parts of the OMS
may thus be possible for different users working with different Working
Schematas.

The OMS primitives may be accessed directly using C. Schema manipulation
primitives may further be used through a Data Definition Language (DDL). An
interpreter is built on top of the OMS primitives.

Commercial implementations of the PCTE exist for Bull machines, and
versions for other workstations, including Sun and MicroVAX are expected to be
available soon. Several tool development projects within the European
community target at the PCTE.

UNCLE

The Uncle project was originally set up to develop a portable and
tailorable command and response language for the Portable Ada System designed
by Olivetti [6]. This led to the to an initial Uncle interface specification

[71.

Uncle was redefined to work with the OMS part of the PCTE and uses a
prototype version developed by Olivetti in Pisa, Italy.

The PCTE philosophy makes a clear distinction between the underlying
system as described above, and the software tools utilising the services of
the system. Therefore a command language processor (CRLP) is a tool allowing
user-system communication. This allows context and application specific
command and response languages (CRLs) to be utilised. Uncle is a tool to
create such CRLs in the context of an Ada Programming Support Environment.

Abstract Machines

Central to Uncle is the idea of a Universal Store, a logical concept
which would ensure independence of and, at the same time, sharability of user
resources and data by tightly controlling access to objects contained within
the store while maintaining relationships between these objects and their
registered holders and sharers. The objects contained in the store may range
from simple data structures to tools and large databases. In the current
implementation strategy, this store is seen as the PCTE OMS.

126

The Uncle objective of providing facilities which exactly match users’
skills and needs is achieved by an abstraction mechanism which gives the user
his or her own "Abstract"™ Machine. All abstract machines are derived from a
single all-powerful Basic Abstract Machine, the BAM. The BAM is implemented on
the services provided by the PCTE. Individual abstract machines, in turn, are
implemented in terms of the BAM or other higher level abstract machines.

Different abstract machines may share objects. When the problem to be
solved requires object sharing the user may become aware of the existence of
other users and their abstract machines, even if the views of the objects may
differ. In this case mechanisms to build strict control for manipulating
shared information are necessary.

The Abstract Machine provides the the user with
- a set of abstract data types

- a set of objects, which are instances of these data types

- a CRL to manipulate the objects

Command and Response Language Types

The Uncle system has three levels of abstraction. At the lowest level is
the Object Management System. The BAM types are implemented using the OMS
primitives. The types provide an interface designed for consistency with Ada
applications.

New CRL types and new views of existing types can be defined when
designing new abstract machines. From the system developers point of view CRL
types are objects, from which new, more specialised instances can be derived
to populate a specific user interface. A CRL type object defines structure and
values for instance objects, operations allowed in these, and permissions
which are necessary to call these operations. Note that operations are treated
as objects themselves - they belong to a CRL type which models executable
objects.

Structuring the Object World

Rather than offering the primitive (but powerful) entity-relationship
facilities to structure a user’s object world, Uncle provides predefined
directory types, which can be used to construct hierarchical systems in a
fairly conventional manner. Similar to Unix directories these are groupings of
objects identifiable by (simple) names. Several related object types are
grouped into classes, and the class an object belongs to can also be used to
distinguish objects.

Directories are pairs of simple names and object references, which will
allow the user to retrieve objects from the underlying store. This level of
indirection also allows directories to share objects - a concept easily
represented using the OMS primitives.

127

To model the possibility of wider object world structuring, including
short and wide-haul networks, the concept of a context element was introduced.
A context element references several directories and can therefore be seen as
a group of entry points into a directory structure. The universe of objects is
now structured by having many context elements forming a tree. The user would
usually be working with objects found through directories at a leaf context
element of this context tree. Objects in other, higher context elements can be
made accessible to the user if the user has a means of describing the path
from his current context element along the context tree. By introducing a
naming convention for context elements object in any part of the context tree
can be identified.

This provides a natural model of the object world accessible to the
user: objects local to an activity embedded within the context modelling a
session, which is again contained in the local network node and so on.

Protection

All user can, in principle, share objects individually or on a group
basis. This requires a powerful access control mechanism if owners of objects
are to be guaranteed control of their objects. Another requirement is that the
protection mechanism be adjusted to the semantic level of the user interface.
This means that a simple read/write/delete tag does not offer the right level
of granularity.

As stated previously, the definition of a CRL type includes the
definition of the operations which can be performed on objects of this type.
The first level of the protection mechanism relies on the typing of objects,
which means that formal and actual parameter types in operation invocations
must match. Operations do not only specify types the actual parameters must
have, but also a set of permissions the caller must hold for this object.

In processing an .Invocation request the CRLP first performs name
resolution. If the operation and parameter objects are visible to the given
caller, then the actual permissions associated with the objects in the current
context are evaluated to return a set of access rights. A simple key -~ lock
technique is now employed to find out if the operation was permissible. The
formal permissions for each object are also evaluated to produce sets of
access rights, which must form subsets of the corresponding actual ones.

Only if all these conditions are fulfilled does the CRLP retrieve the
objects from the bonded store, which locks the objects stored in the OMS from
uncontrolled user access.

The process of evaluating permissions to produce access rights can be
used to express a large variety of security strategies. Permissions may be
conditional or unconditional. Unconditional permissions always return the same
set of access rights. Conditional permissions can return context dependent
sets of access rights. Assume, for example, that an optimising compiler
requires a large amount of processor time, whereas a standard compiler could
be more efficient. A permission could be used to control the load on the
system:

128

if Number_of_Users > 30
then ({Standard_Compile}
else {Compile,Link}

CONCLUSIONS

In developing a prototype Uncle tool for the PCTE (OMS) it turned out
that the power of a relational OMS considerably facilitated the construction
of schemata representing the context and typing structure of the Uncle system.
Generally one can build the tool faster and more flexibly using the PCTE
rather than using Unix directly. One can conclude from this that PCTE is one
step closer to the objective of making even complex tools interchangeable.

The largest drawbacks the encountered were limitations imposed by the
prototype - performance as well as functional limitations.

There are, however, some more fundamental problems.These are clashes
between design philosophies. The PCTE OMS implements a typing and subtyping
structure with inheritance, but does not cater for abstraction. It is thus
very usable for refining, but makes it more difficult to implement the Uncle
concept of abstracting to produce CRL types. Also, the OMS does not treat
types as objects, which means that link between objects and types can only be
system, but not user defined.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the invaluable contribution of the
German partners in this project, U. Kugler and C. Unger, and would like to
thank the reviewers and project officers of the CEC for their helpful
comments.

REFERENCES

[1] "Reference Manual for the Ada Programming Language", Ada Joint
Programme Office, January 1983

[2] Newman, I. (Ed.), "Operating System Command and Response Language
Specification”, Working Draft, International Standards
Organisation, July 1987

[3] Beech, D., Gram, C., Kugler, H.-J. , Stiegler, C., Unger, C., "The
IFIP WG 2.7 Reference Model for Command and Response Languages”,
Springer Verlag, Berlin, September 1985

[4] Bourgignon, J.P, "PCTE: A Basis for a Portable Common Tool
Environment”™, in: Roukens, J., Renuart, J.F. (Eds.), "ESPRIT ’84:
Status Report of Ongoing Work". Elsevier Science Publishers B.V.
(North-Holland), Amsterdam, 1985.

129

(5]

[e]

(7]

X/OPEN Group Members, "X/OPEN Portability Guide”, Elsevier Science
Publishers B.V. Amsterdam , 1985.

Olivetti Grouppo Informatica Distribuita, "Portable Ada
Programming System", Global Design Report, January 1982

Hopper, K., Kugler, H.-J., Unger, C., "Uncle - Towards a User-
Oriented Command and Response language for the PAPS", October 1986

130

A DISTRIBUTED DESIGN ENVIRONMENT
FOR DISTRIBUTED REALTIME SYSTEMS

Christoph Senft
Institut fuer Technische Informatik
Technical University Vienna
Austria
senft@vmars.UUCP

ABSTRACT:

Over the past few years the need for systematic design of real-time sys-
tems has received considerable attention due to the increasing criticality and
complexity of the applications. This paper presents a distributed project sup-
port environment for the design of fault tolerant distributed real-time sys-
tems. The innovative aspects of this environment relate to the handling of
real-time from the requirements phase to the detailed implementation stage
and the integration of the design tools with the evaluation tools. Data
refinement, function refinement, evaluation and project management are
supported by an open, but coherent tool set. The uniform man-machine
interface is one the integrating factors of the whole environment.

The design environment is implemented under the UNIX} operating system
on a state-of-the-art graphic workstation with pointing devices. The X-window
system supported the creation of the window and icon driven user interface.
All the information gained and used during the design process is stored in an
entity-relationship model implemented by the relational data-base DB++.

KEYWORDS:

Software Engineering, Distributed Realtime Systems, Design Environ-
ments, Design Evaluation, Graphic User Interfaces.

tUNIX is a registered trademark of AT&T in the USA and other countries

131

1. INTRODUCTION

In the 1970’s, the effort in software engineering focused primarily on the
development of technical procedures and management methods that
addressed specific aspects of the software life cycle. In the 1980's, this
emphasis has shifted towards automated support for various tasks associated
with software development and towards integrating tools and techniques into
coherent software development environments. Examples of these environ-
ments are the Gandalf project /Hab86/, the Unix programming environment
/KerB1/, the Saga project /Cam84/, the Smalltalk environment /Gol84/, the
Ada environment /Ste81/, and the Toolpack project /0st83/.

Current research is taking place in at least two areas. The first area is
concerned with developing programming environments, that ease the pro-
gramming process, i.e. powerful integration of editors, compilers, debuggers,
etc. The second area focuses on the construction of system development
environments, which cover management aspects and life-cycle support of a
system development from the overall beginning. Only few of the developed
environments are suitable for the design of real-time systems, e.g. Mascot
/Mas86/. But there is none which focuses on hard-real-time systems and the
consequences of heavy load and fault conditions.

This paper presents an environment for the design of fault-tolerant dis-
tributed real-time systems. The distributed technical approach is reflected in
the design methodology, in data and project management support. These
main aspects are integrated in one framework, which appears to the user as
one system due to the consistent interface of the different tools.

Section 2 discusses principles of distributed real-time systems which
guarantce a foreseen behavior even under extreme load and anticipated fault
conditions. The objectives and goals of a support environment to create and
manage such systems are stated in section 3. Every design environment has
Lo be supported by at least one certain method. Section 4 presents a metho-
dology for the design of distributed real-time systems, which follows the
stated principles. The design environment, proposed in section 5, integrates
the technical development and the derived project management approach. A

final conclusion discusses, how the environment meets the required goals.

2. PRINCIPLES OF DISTRIBUTED REAL-TIME SYSTEMS

Distributed computer systems have gained wide acceptance in real-time
applications. They hold the potential of improved reliability and increased
functional flexibility over central architectures. Functional flexibility is a

132

necessary prerequisite for extensibility, which permits the development of a
generic distributed computer system for a large real-time application area.
Without redesigning major parts of the basic system, each particular applica-
tion instance can then be implemented with minimal effort /Fra81/.

In a real-time system typically a control object (the environment) is con-
nected to a controlling system (the computer) via sensor and actuator based
interfaces. The control system accepts information from the environment via
sensors, processes the data, and outputs the results to actuators. The
output-data influence the control object such that the effects can be
observed via the sensors closing the loop as shown in figure 1.

Figure 1: A typical realtime system

It is important to avoid inconsistencies between the internal states of
the controlling system, the controlled object and the operator. As an example
consider an "automated car” before a traflic light. The car vision system
recognizes the value "the light is green"”. If the validity of this information
expires, i.e. the light turns to red before the car moves on, the inconsistency
between the controlled object (the traffic light is red) and the information in

the car guiding systemn (the traflic light is green) can lead to an accident.

The control system must respond to a stimulus from the control object
within an interval dictated by the environment, the so called response time.
This response time must be guaranteed even under extreme load and antici-
pated fault conditions. An example of a system meetling these basic require-
ments is MARS /Ko85a/. In the following, several principles for the design of
real-time systems as specified in /Ko85b/ are considered.

133

Control | ‘ Control l 1:
ontrol | ,.. | Control | wan | |
Obiject :..ﬁlnic.i System i.‘f,?.i}‘.':: | Operator |

s N — |

The operational structure of a real-time application can be described by
a set of components which produce, consume, and process information and
by the information flow between these components. This structure can be
modeled by an information flow graph - the components form the nodes and
the channels form the edges. Usually, this graph is not a tree, so the
appropriate structure of a real-time application is a network, not a hierarchy.
In order to manage the structure of such a large network the concept of clus-
tering is introduced. A cluster is a subset of the network with a high inner
connectivity. Clusters composed of communicating components form the
basic elements of our design methodology.

A component is a hardware/software unit of a given functionality and
performance. This early binding of software functions to hardware units is
necessary for the early analysis of the timing and reliability properties of a
design. The concept of component implies the information hiding principle,
Le. the inner details of component implementation are hidden from the out-
side. Components are autonomous, they are responsible for plausibility
checks on their input and output, and for intelligent behavior under fault
conditions. We further assume that components have the selfchecking or fail-
stop properly, they either operate as intended or do not produce any results.

The information exchange between the distributed components is
expressed by the exchange of messages only. A message is a named unit of
information which is formed for the purpose of communication. In MARS two
types of messages, event and state messages, are distinguished. Event mes-
sages are used in the exchange of information about events, which occurred
at a given time. They are queued when received and consumed when read.
State messages are used to exchange information about the state of the
environment which has been observed at a given time and is assumed to hold
for a certain time interval. A new version overwrites an old one State mes-
sages are not consumed when read. They can be read an arbitrary number of
times. In the case of periodic state messages the transmission period of the
messages determines the maximum information flow, making the communica-
tion traflic predictable even under high load conditions.

To guarantee the correctness of a system under any load conditions, a
system should be designed and validated for the peak load. As a consequence
the timing behavior of the whole system will be predictable. This considera-
tion of the worst case should not only concern the timing aspects, but also
the single fault case. It has to be assumed that every physical unit fails after
its characteristic mean time between failures. The effects of such failures and
their consequences for reliability and availability of the whole system have to
be analyzed during the design phase.

134

3. GOALS OF A DESIGN ENVIRONMENT

Methodology Support:

A large number of methods, techniques, and tools have been developed
to address various aspects of system development and evolution activity. Ini-
tially, these approaches focused on the coding activity, but more recently
efforts have been made to cover all phases of the life cycle, from the initial
system concept to testing and system modifications. Due to this broader
range of activities a methodology has to be supported by an environment of
integrated tools.

Ertensibility:

However, system technology is advancing so quickly, that any environ-
ment locked in the state of the art would rapidly become obsolete. Thus it is
desirable that an environment even initially tailored to current needs, can be
adapted to incorporate future methods and tools. This flexibility and adapta-
bility should not only concern the ease of change of the environment to new
technologies, but also facilitate the creation of new tools to expand and
improve the tool-bench.

Scalability:

Analogous to the extensibility of the environment by new methods, it
must be possible to design systems of different magnitudes in size and effort.
Moreover, not only the development of systems of a fixed size should be sup-
ported, but also the creation of small systems which in time can grow to
larger ones. In this way the design process is open ended and no restrictions
on the architecture of the environment with respect to the increasing size of
the designed application will occur.

Project Team Support:

Another prime objective is to provide support for project teams rather
than just for individual programmers. In general, such teams are distributed
over distinct geographical locations or organizational entities. The support
system must therefore also be distributable.

ntegration:

Integration emphasizes the difference between an environment and a
loosely coupled set of tools. Usually, tools in an integrated environment
share a common intermediate representation of the system and present a

135

consistent user interface. The purpose of integrating a design environment is
to build a unique tool that does not force the designer to perform mental
context switches, e.g. between different editor interfaces or various data-base
languages.

Reusability and Repeatability:

Different studies /Boe84/ have shown that in the very long run the big-
gest productivity gains in system engineering will come from increasing use of
already existing software. Moreover, the costs of development of the environ-
ment are so high that it has to be suitable for a wide variety of applications
or projects.

Fase of Use:

In many projects, development tools are not accepted by the working
personnel due to their complexity and difficulty of use. An environment,
which integrates a set of tools, should simplify and not complicate, their
usage. This can be achieved by a multiple window display, state-of-the-art
pointing devices and effective graphic tools.

4. THE DESIGN METHODOLOGY

4.1. Basic Concepts

Software design and specification is a well established field in computer
science research and application development. The transformation from
ideas to deliverable software is guided by a software development process
model, e.g. the traditional cascade-model /Boe81/ or advanced approaches
like rapid-prototyping /Acm82/. These phased development models are sup-
ported by many different development techniques. /Was83/ contains the
results of a questionnaire-based survey of 48 software development tech-
niques in a condensed way. For more details according to a lot of techniques,
see e.g. /Bir85/.

Almost all these techniques are developed to produce conventional
software, i.e. software which is not related to real-time (and hard real-time)
topics. Usually, a certain matter of criticality is charged to real-time prob-
lems. Faults in the software could cause enormous costs in material and
potential loss of human lifes. Thus, a design methodology developed for the
support of real-time software must gain a concrete understanding of the
phenomenon time and the related fault tolerant aspects. Real-time systems

136

are strongly connected to the resources and power of the underlying
hardware (e.g. the processor), the operating system, and the communicating
network. Four basic concepts have to be underlined:

Network Approach:

A primary reason for the inadequate specification of real-time systems is
determined by the use of hierarchy-function models. Anything worth to be
said about something must be expressed in a maximum or fewer number of
pieces /Ros77/. Any part, that is not sufficiently easy to grasp, must be bro-
ken further into pieces. This implies a hierarchical, top-down decomposition
of the whole into easy-to-grasp chunks. We feel that the operational structure
of a real-time application is a network and not a hierarchy. In the network
representation a real-time control system is described by a set of com-
ponents, the nodes, which produce, consume and process information
exchanged via channels, i.e. the edges of the network. In order to manage the
complexity two refinement-steps are used. The first step is the horizontal
partitioning of a given system into disjunct clusters; the second the vertical
decomposition of a cluster into components. The network approach supports
the parallel design of clusters and components, and the connection of addi-
tional clusters or components due to requirement changes. Components are
modules of information hiding /Par72/, and can therefore easily be expanded
into a cluster without change of the rest of the system.

Specification of Real-Time:

In the non real-time world, we are only concerned with the value-domain
of information, i.e. the correctness. In a real-time environment, any informa-
tion has to be assessed in two domains, the value-domain and time-domain.
Consider the car-example again: the correct, but late information ""the light is
green’ is useless and dangerous. The specification of real-time begins as
soon as possible in the system life-cycle, i.e. during the requirements phase.

Semiformal Design Approach:

Requirements engineering must include rigorous, but natural ways to
describe models of realworld problems. In the semiformal system design
approach we follow neither a fully formal nor an exclusively informal way. It
is unnatural to start a problem description in a formal language, as the
engineer is hindered in his liberal way to state all the information related to
the problem. On the other hand it is not recommendable to use only unstruc-
tured, ambiguous and inconsistent narrative text libraries. A minimum on
structuarization and formal arrangement is introduced, i.e. requirements

consist of several attribute-slots which can be filled with narrative text. The

137

general bipartition in non-functional and functional requirements, e.g.
/YehB2/, is very function-oriented and does hardly support data-orientation
in the requirements phase and thusin the whole life-cycle.

Function and Data Orientation:

System requirements are distinguished in general, transaction-oriented,
and data-oriented requirements. They comprise several timing and failure
domains, e.g. minimal and maximal time between stimuli of transactions or
criticality and cost-factors in failure-effects. These system-requirements
determine the establishment of the clusters, components, tasks, and mes-
sages during the design-phases. System-refinement is realized as well
Sfunction-oriented (e.g. transactions -> sub-transactions -> tasks), as data-
oriented (e.g. data-requirements -> cluster-data-field -> messages). The allo-
cated requirements are refined, too, e.g. system-requirements to cluster-
requirements and cluster-requirements to component-requirements. This
repetition of similar elements is incorporated in the user-interface of the
tool-set.

5. THE DISTRIBUTED DESIGN ENVIRONMENT

5.1. Qutline

There are two distinct views of what constitutes a good design and pro-
gramming support environment. On the one hand it should nurture creativity
by providing freedom, flexibility, and extensibility and on the other, it should
promote orderliness by providing control, discipline, and accountability.
Some people might argue that the two views represent those of academia and
industry, or developers and managers. A good design environment must sup-
port both aspects: the technical development of a system and its project
management, e.g. by the use of an appropriate data management.

The technical objective is the design of an environment for the creation
of distributed real-time systems within the framework of the design metho-
dology proposed so far. The project management includes the management of
the development in planning, control, and evaluation. The data management
has to provide mechanisms for the capture, storage, and retrieval or infer-
ence of all potentially useful information relating to product and process.

138

5.2. The Environment Tools

We distinguish between design creation tools and design evaluation tools.
Design creation tools support the system analyst in the creation of the distri-
buted real-time application; evaluation tools can be used for the analysis of a
given design and the verification to the proposed requirements. The analysis
can be carried out in a formal and automated way. In contrast, design is a
creative process. It incorporates the conversion from informal requirements
to a formal specification and cannot be automated by nature. However, this
convergence can be guided by similar application designs processed so far.
Figure 2 gives an overview of the tool set.

Design Crealion Design Evalvalion

Requirements
Definition
Dependability
Analysis

|
(Tlmm
Analysns

System Design

Cluster Definitlon

| ®

Cluster Design }

b

Frogramming
m the large

N NCH

Clusterpath Design
Component Definitio

Component Design
Task Definition

L_J

FProgramming Task Design
m the small Implementation

Figure 2: The toolsystem

139

5.2.1. Design Creation Tools:

Requirements engineering is a systematic process for the development of
requirements through an iterative process of analyzing a problem and docu-
menting the results as requirements. The requirements definition phase pro-
vides the engineer with a tool needed to gather the information, to reason
about, and to understand the problem domain. As already stated, require-
ments are specified in a semiformal way. They are divided into functional
transaction-oriented, data-oriented, and general requirements. Functional
requirements are represented as transactions, according to the well known
stimulus-response model. A transaction is characterized by stimulus,
response, maximal transaction time, minimal interval time between stimuli,
maximal interval time between stimuli, and a criticality description. Data-
oriented requirements, the so called spots, include the physical data-
producing elements (e.g. sensors) and a description of their behaviour in
terms of input and output data-items.

The specified system requirements (transactions, data-spots, and non-
functions) represent the system on a very abstract level. It is a key concept
of a system design technique to reduce abstraction by decomposition. As
already mentioned the final representation of a real-time application is a net-
work. Since it is too complex to translate the system requirements in a single
step to the components we take one additional step, the breakdown of the
overall system to the cluster level. There are at least two clusters in every
system, a controlling and a controlled cluster. The definition of the clusters
and the cluster-interfaces is guided in the cluster definition tool by a “struc-
tured walk” through the system-requirements.

Every cluster can now be refined independently of the rest of the system.
The design is taking place in numerous ways, in the refinement of the cluster
requirements, e.g. cluster-items to messages and cluster-transactions to sub-
transactions (component-transactions), and in the establishment of the com-
ponents. These activities are supported by the cluster design and component
definition tool. Special cluster characteristics have to be also specified, e g.
the parameters of the general cluster-communication system, the so called
cluster-bus. All the cluster-data-items related to one cluster build the clus-
ter data-field. This data-field will be refined into a set of messages. A message
is characterized by one sending and several receiving components, the send-
time, and the validity-time of the message information.

The basic elements of the whole system, the components, are located on
the cluster bus and communicate via message exchange only. They arc deter-
mined by the component requirements, e.g. the allocated subtransactions,
the sent and received messages and the usage in the cluster, eg. as an
interface-component to another cluster. A component is specified in detail

140

during the component design and task definition phase, where the tasks and
their characteristic time attributes for the implementation are modeled.
Different kind of tasks are distinguished. In the MARS kernel it is guaranteed
that the most critical tasks, the so called hard real-time tasks, will stay
within their specified time limits /Dam87/.

User Interface:

The global user interface outside the tools will be explained later. Inside
a tool design activities can be realized textually and graphically. A kind of
template structure is chosen to specify the explicit values of an object in a
textual way. The refinement of objects is supported by the handling and
operation on graphical diagrams. We distinguish between decomposition and
relationship diagrams. The next two examples are taken from /Sen87/. The
decomposition of a "tempomat system” in three nearly independent clusters
and their clusterpaths is shown in figure 3, the relationship between the
"calc-throttle-setting” component and its imported and exported messages is
given in figure 4.

Principally the screen within a tool is divided in four non overlapping
windows. In the two right quarters the different design objects are
represented as little icons, i.e. in the lower part the input objects of a former
phase and in the upper part the actual new designed objects. In the lower left
part all graphical presentation and processing is done, in the upper left part
the textual template of an actual object can be edited. The information
between the four parts is transferred with the help of a three-finger-mouse.

‘igure 3: Example of a T.P“"OP’::"“
system-decomposition diagram
i aiiaiainte ! ;T 1 T 1
[} 1 H t
i Car— onar Car— el Driver
‘ Road ——+ Control +— '
i Cluster i custer -1 Cluste :c!ulhl-: Cluster :
| ! opeth { ' patn :
| S 3 o __ 1 | J
wheel -
rotation
N\ J
) Calc -
car— throttie throttle —
status setting setting
| component
throttie— |
close Figure 4: Example of a component-messages

relationship diagram

141

5.2.2. Design Evaluation Tools:

It is the problem and challenge of every methodology to evaluate the
early phases of system design in order to detect failures as soon as possible.
It is well known in the software engineering community, e.g. /Boe81/, that
the later errors are detected, the disproportional the cost-increase will be. In
the developed approach the evaluation of a given design is possible in a very
close loop from the viewpoint of timing and failure behaviour. Since these
analysis are automated, design alterations can be evaluated efficiently and
effect the system cost in a bearable way. Both checks are CPU-time consum-
ing. The distributed approach makes the use of different workstations as sin-
gle task machines reasonable.

It is the objective of the timing analysis tool to determine if the timing
properties of the given design are consistent with the timing requirements
stated in the requirements phase. This checking concentrates on a predict-
able timing behavior under heavy load conditions, i.e. it is a worst case
analysis. The tool input contains the characteristics of the individual tasks
defined in the component design, e.g. messages produced or consumed, basic
cycle time, maximal execution time(s), and information about the cluster e.g.
size and bus-properties. Complex algorithms try to find a solution, how the
different tasks can be scheduled on the component-processors and how the
communication system can handle the message traffic between this
scheduled tasks.

According to /Mul87/ the dependability of a system, i.e. reliability, avai-
lability, safety, is investigated with respect to system cost. Three types of cost
are considered, cost for the design of the application, cost for delivery and
installation of a system, and cost for running the system, e.g. cost of system
failures. The interactions between the design structure, failure effects, fault
occurrence and fault/error handling, and repair and maintenance strategies
are analyzed in the dependability analysis.

Different methods for the analysis and description of dependability
models exist, e.g. block diagrams, fault trees, markov-chains, etc. During the
last decade different tools have been developed to support these models on a
mathematical and theoretical level, for a general comparison see /Mul86/.
The proposed new approach connects these basic levels with a practical
application layer bounded to a system design and integrates all the aspects in
one tool. The applicability of this model can be seen as well from the design-
evaluation view, as the design-guidance point.

142

5.3. The Distributed Data and Project-Management

Every design environment uses a certain form of information or data
base to carry all the information according to the supported project. Every
large software project maintains a project library containing a collection of
project components which include plans, documents, forms, code, schedules,
resources, etc. The organization of this project base and their differing use
by the project staff has to be well considered.

According to the Stoneman report /Bux80/ many approaches can be fol-
lowed to build a central database. All project members are to be supported in
their work by one project master data base. Each individual user deals with
some subset of the project base in a certain way. It must provide views
depending on user roles in the project and capabilities depending on user
expertise on the environment. Thus, the underlying structure must support
abstraction and composition of objects depending on these roles.

The central database approach works well as long as small projects are
developed and as the developers work on the same station. Usually projects
based on a relational data base architecture decrease in performance from a
certain size of data. It seems that a distributed data-approach in a distri-
buted design environment for the creation of distributed real-time systems is
more realistic. A fully distributed and loosely coupled approach of the design
of the information base in many independent "small databases” is chosen due
to the still unsolved problems of data integrity and data consistency in
strongly coupled distributed data-bases.

All tasks within a project should be well defined, and tasks for every
member of the project team should be clear at all times. The various tasks
should be properly coordinated in such a way that the eflorts of different
team members can be combined to accomplish the overall project objectives.
Efforts of individual project members should be protected so that their stored
data are not undermined by the actions of others, intentionally or acciden-
tally.

These requirements demand a management architecture which is based
on a network structure. All participants are coupled in a loose net, where
different workstations with different tools are considered as the nodes and a
special communication system as the edges. It could be even possible that
one tool requires a work station for its own, e.g. if complex markov-modeling
is done for the evaluation of a fault tolerant design. It does not matter how
many tools are distributed on different stations as long as they fulfill the
basic requirements of a consistent user-interface and the interrelated data
exchange. Every node in this net includes and maintains its own little data-
base, closing the gap between the distributed management-approach and the

143

proposed distributed database-approach.

Todays most powerful database management systems (DBMS) are based
directly or indirectly on the relational data model. In /Ber87/ several handi-
caps are presented why even relational DBMSs are inadequate for the data
handling requirements of a design environment, including i) storing multiple
versions of data, ii) storing large, variable-length objects, iii) storing of flexi-
ble data-types, e.g. with complex nested structures, iv) flexible storing of
graphs and dependencies, e.g. flow graphs, syntax trees, integrity constraints.

An E/R approach on the logical level:

Interest in the entity-relationship concept /Che76/ stems from the need
for a modeling tool, that surpass implementation oriented data models (the
hierarchical model, the network model, or the relational model) in specifying
designers needs and requirements. The concept of entity and relationship is
natural to modeling a system on a logical level. A simple diagram technique
visualizes entities, relationships, attributes, and value types. Therefor the
E/R approach is useful to support the design phases by capturing data and
their relationship from the requirements phase to task definition.

A hybrid database approach on the implementation level:

Although the relational database approach does not seem to be sufficient
for representation of structured design objects and interdependencies, we
found it the best model available. The relational DBMS DB++ /Agn86/ was
chosen because of its availability on all current workstations and its imple-
mentation embedded in the Unix philosophy which facilitates development.
For large amount of textual data in one attribute, e.g. the contracts
specifications, Unix files are used. The possible support of "unlimited” textual
data dominates the performance loss by opening an additional file.

The refinement from the entity relationship model to DB++ relations and
Unix files is done by some simple rules. The mapping consists merely of
translating each object into a relation and each relationship into a relation.
The attributes of the original entities are the domains of the new relations.
Some complex attributes became themselves relations. Unlimited textual
data are stored in Unix files, the file name is the domain (attribute) value of
the associated relation. Tables 1 presents 3 relations and their domains of
the primary physical data-spot entity of the requirements phase. In table 2
the relation between cluster and clusterpath is shown with data of the exam-
ple in figure 3.

144

Spot Fallure Cost
Physical Spot Object
- demain type
domain type
- spotname string
h":c";: string probability real
T string cost integer
description textfile
tnitial-cost integer
running-cost integer Spot Repair Cost
Sature distribution string domain type
repair distribution string
spotname string
probability real
cost integer

Table 1: Mapping of a physical-spot entity to three relations

cluster clusterpath

car/road cluster car/road-control path

car-control cluster | car/road-control path

car-control cluster | driver-control path

driver cluster driver-control path

Table 2: An “E/R relationship’ relation with examplary data

5.4. The Contractual Approach

The network architecture reflects the management need to coordinate a
multi-person effort on a common project. It is important for its success that
each activity and sub-activity must be defined in terms of nature and charac-
teristics of its inputs, outputs, and operational environment. This must be
agreed on before related activities are initiated. If the work for a client has to
be undertaken by a subordinate, the agreement must be recorded in some
way, e.g. in terms of management in a contract. The subordinate may split up
his activity in subactivities fixed in sub-contracts with other servers. Gen-
erally, it is possible to model a project and its activities in a structured set of
contracts. This contractual approach of system development was first pro-
posed by the Istar technology and environment, which can be generally used
for software development and evolution /Leh86/.

In our approach, a contract is the only interface between different tools
and their users. Therefore, it should include all necessary information for the
subcontractor to maintain his own little database and to accomplish his
tasks. The core of any contract is a precise and concise specification. A con-
tract specification has three main components: i) a header, ii) a technical
specification, and iii) a management specification including constraints on
the process or product and their acceptance criteria. It must also enclose

145

deliverables such as the contract product and required reports.

Once a project has been started, a contract hierarchy emerges. The
amount of contracts active will grow and shrink as tasks are initiated and
completed. The hierarchy defines the decomposition of project activities at
any time. As previously mentioned each contractor holds its own database,
so only the collection of all such bases comprises the overall project informa-
tion base. A snapshot of the dynamically changing contract-structure and
their related data bases reflects the state of the project. A sequence of

snapshots provides the total project history.

Contract Contract
order delivery
e i»ﬂanout)
} 4
7 | \
accept Desktop aispartch

l

connect

d/sconnect
accepted actual o/ created
L " order 2 i —— lresponse |
/ project \

forwsro / Sp/”\ /’ ragr /e\ forwarg

Internal external oxternai Internal
sub - sub - response | [response

N contract contract P -«

\. 1 1|‘ J
aisparet acecep!
(Mailout) (Mailin
external external

subcontract subcontract

order delivery

Figure 5: The contract passing scheme

146

The architecture of a loosely coupled tool-and-workstation network
bears another important design goal, extensibility and scalability. The pro-
posed construction supports the development of large systems by the open
endedness of the related tool network. There are no constraints and limits in
personnel and hardware involved. Moreover, the evolution and/or
moedification of tools are facilitated by the nearly independent nodes with
contractually defined interfaces and the concept of information hiding.

Figure 5 demonstrates the main states of a contract and its operation in
a tool. A new contract for the supplier reaches the “mailin” box. It is
rejected, i.e. rejection explanation added and moved to the "mailout” box or
accepted, moved to the suppliers working area (desktop). Now he can decide
if he wants to complete the contract i) alone or ii) with the aid of internal and
external subcontracts.

5.5. Desktop oriented design environment user interface

The contract passing scenario revealed the few important objects in the
user interface outside the tools: mailin box, mailout box, contract folder,
desktop for actual projects, design toolbox, office toolbox. At this point it
seems to be reasonable to describe some aspects of the design environment
user interface on the global tool level. On the nongraphic oriented terminals
the handling of the objects and tools are embedded in the Unix programmers
toolbench. In the graphic oriented implementation on the vaxstation (the
core design tools are graphic oriented) these objects are represented by

K

Mards-Tools

°Z

Office-Tools

icons as shown in figure 6.

a7 EP s

Contracts

Mailin Mailout

-)

Desktop for actual projects

Figure 6: On the desktop level
147

Manipulating certain objects in command oriented user interfaces, e.g.
the widespread Unix workbench interface, is based on a sequence of <com-
mand> <options> <object>, which does not fit the natural human way of
thinking: <object> <activity> <tool>, e.g. orange-peel-knife. Disadvantages in
the common approach are i) that a user must know the exact name of a com-
mand (including options) which provides his desired activity, ii) that the same
activity needs different commands with different objects, e.g. the commands
rm and rmdir for the activity delete-a-Unix-object, iii) that the user must
input all names in an error prone character oriented way. The interface
model, which is achieved on the MARDS desktop level, is based on a simple
<object> <tool>, <object> <activily> approach, supported by the graphic and
icon oriented X window software.

Desktop user interfaces have been pioneered at the Xerox Palo Alto
Research Center during the seventies. The most common desktop activities
have been made popular by Apple’'s Macintosh user interface, e.g. take and
move an object is simply achieved by selection of the object with the cursor
controlled by the movement of the "mouse” and “dragging” it with a pressed
mouse-button to the new desired place. Opening a folder is realized by simply
clicking on it. Besides these de-facto standardized activities, we implemented
the application dependent actions in two ways. Activities, which are valid on
most objects, e.g. look at, print, copy, are realized by tools in the office tool-
box, where you find icons for glasses, printers, copy machine {<object>
<tool>). For example if you need a high quality printout of a contract, open
the office toolbox and drag the laserprinter-icon over the desired contract-
paper or vice versa (you don't need to know any print command). Activities,
which are valid only for few objects are not represented by graphical icons,
they are presented as a little pop-up text menu attached to the selected
object, e.g. if you click on a new arrived contract in the mailin box, you will
get a menu, which contains among others the terms "accept’ and "reject”
(<object> <activity>).

6. CONCLUSIONS

This paper presents the importance of a design environment for the
specification of real-time systems. A new approach is described including
three main aspects: the technical development of a real-time system and its
project and data management.

The technical part of the system is built on significant principles to han-
dle a system under fault or heavy load conditions. Typically, a real-time sys-
tem has to react to stimuli from the application environment within a critical,
specified period of time. This response time has to be guaranteed even under

148

extreme load and anticipated fault conditions. If a real-time system is
designed for the peak load, it will work under all load conditions. In order to
support these requirements the clear network concept of clusters, com-
ponents and messages - according to the MARS approach - is used. A new
design methodology is introduced, that focuses on breaking the complexity of
the overall system into subsystems under real-time constraints. In this way
the system analyst is assisted to bridge the gap from an informal to a formal
representation by a knowledge based decision support, which is based on a
reusability of already designed and existing systems.

The sooner a design can be evaluated, the smaller is the risk of transfer-
ring faults into the implementation phase at significant additional cost. The
evaluation tools in our approach examine and verify the timing and fault
behavior immediately after a proposed design.

The special architecture of the design environment handles the whole
project management. A distributed workstation approach was chosen to sup-
port the objectives of addressing different project members on different pro-
ject tools on different design stations. Every tool maintains its own little data
base and can use its own hardware if necessary. The management corpora-
tion between the tools and their users is established by contract and subcon-
tracts, which include all information about technical specification, accep-
tance criteria and deliverables of the tasks to work on. While the project
progresses, a dynamic contract hierarchy grows and shrinks as tasks are ini-
tiated and completed.

The environment implementation is developed under the Unix operating
system on a state-of-the-art workstation for the graphic supported design
tools and some other Unix machines for non graphic requiring tasks as e.g.
design evaluation. The X window system supports the creation of the window
and icon driven graphical user interface. The relational DBMS DB++ is used in
connection with the Unix file system for design information storage and
retrieval. As far a complete environment prototype is finished and evaluated
on some smaller applications in an academic environment. Further work will
concentrate i) on an improvement of the single tools, ii) on the installation of
a "personal assistant” component for intelligent design assistance and gui-
dance, and iii) on the development of practical industrial process control
applications.

149

7. REFERENCES

/AgnB8/ Agnew M., Ward R., The DB++ Relational Database Management System, Proc. of the
European Unix User Conference, Florence, Italy, April 1988

/AcmB2/ Special Issue on Rapid Prototyping, Working Papers from the ACM SIGSOFT Rapid
Prototyping Workshop, Columbia, Maryland, ACM Software Engineering Notes,
December 1982

/Ber87/ Bernstein P., Database System Support for Software Engineering, Proc. of the 9th
Intern. Conference on Software Engineering., April 1987, Monterey, California, pp.
1686-178

/Bir85/ N.D. Birrell, M.A. Ould, A Practical Handbook for Software Development, Cambridge
University Press, ISBN 0-521-254682-0, Cambridge 1985

/BoeB1/ B W. Boehm, Software Engineering Economics, 1981 by Prentice Hall, Inc., Englewood
Cliffs, N.J. 07632, ISBN 0-13-822122-7

/BoeB4/ Boehm B., et.alt., 4 Software Development Environment for fnproving Productivity,
IEEE Computer, Vol. 17, No. 8, June 1984

/Bux80/ Buxton J.. Requirements for Ada Programming Support Environments: Stoneman,
US Department of Defense, 0SD/R&E, Washington D.C., October 1980

/Cam84 /Campbell R.H., Kirslis P.A.,, The Saga Project: A System for Software Development,
Proc. of the Software Eng. Symp. on Practical Software Development Environments,
Pittsburgh, April 1984

/Che76/ Chen P., The Entity-Relationship Model: toward a unified View of Data . ACM Tran-
sactions on Database Systems, Volume 1, Number 1, January 1978, pp. 9-368

/Dam87/Damm A., Kernel Aspects of the Realtime Operating System of MARS, Technical
Report 86/87, Institut fir Technische Informatik, Technical University Vienna,
February 1987

/FraBl/ Franta W., Real-Time Distributed Computing Systems, Advances in Computers,
vol.20, Academic Press, 1981, pp.39-82

/Gol84/ Goldberg A.. Smalltalk-80: The mteractive Programming FEnvironment, Addison-
Wesley, Reading, Massachusetts, 1984

/HabB86/ Habermann A., Notkin D., Gandalf: Software Development Environments, IEEE Tran-
sactions on Software Engineering, Vol. SE-12, No. 12, December 1988

/Ker81/ Kernighan B., Mashey J., The Unizx Programming Environment, Computer, Vol. 14, No.
4, April 1981

/KoB5a/ Kopetz H., Merker W., The Architecture of Mars, Proceedings of the FTCS-15, Ann
Arbor, Michigan, June 1985

/KoB5b/ Kopetz H., Design Principles for Fault Tolerant Realtime Systems, Mars Report No.
8/85, Technical University Vienna, June 1985

/LehBB8/ Lehman M., Approach to a Disciplined Development Process - The ISTAR Itegrated
Project Support Environment, ACM Software Engineering Notes, Vol. 11, No. 4, Aug.
19868

/MasB6/ Special Issue on Mascot 3, Software Engineering Journal, Vol.1, No. 3, May 1986

150

/MulB6/ Mulazzani M., Trivedi K., Dspendability Prediction: Comparison of Tools and Tech-
niques, Proceedings of Safecomp88, Sarlat, France, 1988

/MulB7/ Mulazzani M., Dependability Analysis and System Design , Technical Report 8/87,
Institut far Technische Informatik, February Technical University Vienna, 1987

/0Ost83/ Osterweil LJ.. Toolpack: An ezperimental software development environment
research project, IEEE Transactions on Software Engineering, Vol. 9, No. 6, pp. 673-
685, November 1983

/Par72/ Parnas D., On the Criteria ta be used on decomposing Systems into Modules, CACM,
Vol.15, December 1972, pp.1053-1058

/Ros?77/ Ross D.T., Structured Analysis (SA): A Language for Communicating /deas, IEEE
Transactions on Software Engineering, Vol. 3, No. 1, pp.16-34, Jan. 1977

/Sen87/ Senft C., Remodel - A REaltimesystem Methodology On Design and Farly evaluation,
accepted for the IFIP Conf. on Distributed Processing, October 1987, Amsterdam

/Ste81/ Stenning V., Frogatt T., Gilbert R., Thomas E., The Ada Environment: A Perspective,
Computer, Vol. 14, No. 6, pp.26-36, June 1981

/Yeh82/ R.T. Yeh, Requirements Analysis - A Management Perspective, Proceedings Compsac
1982, November 1982, pp. 410-416

/WasB3/ Wassermann T., Freeman P., ADA Methodologies, Concepts and Requirements,

151

NERECO : An environment for the development of distributed software

Giandomenico Spezzano, Domenico Talia
CRAI, Localita S. Stefano, 87036 Rende (C.S.), Italy

Marco Vanneschi
Dipartimento di Informatica - Universita di Pisa
Corso Italia, 40 - 56100 Pisa, Italy

ABSTRACT

NERECO (NEtwork REmote COmmunications), the system
here described, is constituted by a set of tools for the
development and the execution of distributed programs. From
an architectural point of view the tools supporting such
programs have been realized through the enrichment of many
sequential languages (Pascal, C language, CHILL) with
concurrent statements and the run-time support for such
statements. The integration of the concurrent part into the
sequential languages has been done in order to preserve the
syntactic coherence.

The cooperation model utilized is derived from CSP, with some
extentions to allow asymmetrical and asyncrounus
communications; moreover, some Statements for fault
treatment have been added. The run-time support implements
the syncronization and the communication among the
processes; for its implementation the IPC of UNIX 4.2BSD,
and particurarly the TCP/IP protocol has been utilized. The
NERECO system has been implemented in C language on a
collection of SUN workstations connected by Ethernet.

1. INTRODUCTION

Efficient and reliable distributed software design needs mechanisms
and tools based on a clear semantics, characterized by high modularity,
expressive power and robustness. Though the kernel and the lower levels
of remote communications offer mechanisms for the control flow (e.g.
dynamic memory management, swapping, buffer area for messages

his research has been supported by CSELT.

153

trasmitted by value or by reference) the greatest part of distributed policies
require a set of mechanisms more powerful and at higher level to manage
complex communications.

To make a linguistic level available as an abstraction level in which
resources are defined like abstract data types encapsulated into one or more
manager processes which implement them we need to define :

- resources data-structures,

- a set of operations and associated parameters which can be
executed on the data structures.

This enables the distributed software designer not to take into account
pre-existent network architecture, communication protocols and operating
system, when he has to solve tipical problems of the distributed
environment (concurrent activities management, synchronization, data
and processes replication, fault tolerance).

A distributed program is a set of processes cooperating through
message passing and located on one or more computers. The proposed
environment provides a metodology for modular and robust structuring of
distributed programs by:

- characterizing the processes in a functional way, by associating a

type with each of them,

- using unidirectional typed channels,

- expressing communication forms either point to point (rendez-
vous) or by diffusion (broadcast and multicast),

- controlling nondeterminism in communications,

- handling, in a simple and flexible way, error conditions, by
detection, confinement and recovering.

The system described here is the first of a tool series which will be
developed at CRAI, with the purpose of achieving this goal. It is a
prototype of a distributed support for the development of concurrent
distributed programs called NEtwork REmote COmmunications
(NERECO).

2. MOTIVATIONS

In this section, the architecture and tools of NERECO will be
described in general, especially in order to point out design criterions and
choices. Several aspects, particularly static and dynamic tools, will be
described in the next sections.

The principal goals of NERECO are:

a) making some mechanisms available, in a small number but
sufficiently general and powerful to achieve concurrency

154

management, communication facilities and error recovery;

do not bind users to one specific set of statements and data types
for sequential part;

making the distributed run-time support for concurrent constructs
simple and efficient as much as possible, even in order to take
into account new mechanisms and fault-tolerant requirements;

d) without being bound to a particular host system guaranting a good
portability.

A fundamental problem is to choose the programming language to be
offered to the users for developing distributed programs. The requirement
b is obviously incompatible with the choice of one of the concurrent
languages available at present or in development , such as Ada®[Ada 83],
NIL [Strom 83] and CSP-based languages [Hoare 78] such as ECSP
[Baiardi 84], CSP80 [Jazayeri 80], Occam [Inmos 84], Planet [Crookes
84], Joyce [Brinch 87], etc. Actually, the use of languages with powerful
abstraction mechanisms on data and on control flow, like Ada, could be
suitable, but it is opposite to the needs of many users, who want to use a
programming style already experienced in centralized systems. Further,
more complex languages contradict requirement ¢, because the complexity
of the sequential part has remarkable impact on concurrent run-time
support.

The choice of NERECO is to put a set of concurrent mechanisms,
with well-formed sintax and semantics, into a sequential language,
completing static development tools with those for concurrent part. This
approach has been used successfully in other projects, such as Conic
[Magee 86]. At the moment NERECO is based on Pascal language.

As regards point a, our choice has fallen on a set of mechanisms
derived from ECSP language [Baiardi 84b], both because familiar for
authors and above all for his characteristics of flexibility and generality,
already fully experimented. Some mechanisms, such as process nesting,
with respect to ECSP have not been considered, while others, such as
broadcast communication, have been added.

The run-time support of concurrent constructs has been also realized
by cooperating processes, as a virtual machine on an existing operating
system (OS). In this case the OS is UNIX' 4.2BSD. The fundamental
aspect is that the designer is able to transform typical mechanisms of
concurrent languages into system calls easily by a good knowledge of
concurrent programming metodologies. The virtual machine, in the

® Ada is a trademark U.S. Government-Ada J. P. Office.
+ UNIX is a trademark AT&T Bell Laboratories.

155

NERECO development, has been initially described in a ECSP-like
language and then "translated"” in C language [Kernighan 78] plus UNIX
system calls [Ritchie 78], with a limited design effort.

Another advantage of the choosed approach consists in a greater
possibility to concieve reconfiguration and fault-tolerant mechanisms, in
the support implementation . This aspect has been essential in order to
allow the user to get rid of whatever problem derived by network physical
configuration and by network reliability.

In outline, dynamic tools realize:
e the installation/initialization of program

e the distributed run-time support of concurrent part, constituted
by processes which interpret concurrent constructs and by
processes communicating on the network

¢ the concurrent constructs logging.

3. THE PROGRAMMING LANGUAGE

Like ECSP language, the processes cooperate through communication
channels and by input/output commands; the channels are typed and are
identified by the triple:

(sender process set, receiver process, message type)
they can be symmetrical or asymmetrical, generally they are asyncronous.
Channels are not shared objects, but are private of the receiver process, in
order to achieve better protection. Finally, channels can be dynamic: in this
case the name of the partner process is a variable of processname type.

The cooperating model utilized has some differences with respect to
the ECSP language, both as limitations and as extensions. More
considerable limitations are in the lack of parallel command for the
processes activation. In the NERECO system a concurrent program is
constituted by a set of processes at the same level and all activated at the
same moment.

More important extentions are:

* explicit declaration of message type, in order to have a complete
static type checking and process interfaces checking

* addition of output asymmetric communication forms : multicast
and broadcast, required by the lack of parallel command.

The informations which characterize a process in a distributed program
are its name and its type. The process type is useful to identify a class of
processes, such as: monitor, file_server, etc. This characterization is useful
when, for example, a process needs to operate on a replicated resource
available on the network. The process sends the request towards all the
resource managers without mentioning the name of each process, but only

156

their type.
On the inside of each process there are the declarations of the process
itself and its partners, as follows:

self < process_id> : < process_type_id> ;
partners < process_id> ,...,< process_id> : < process_type_id> ;

To allow dynamic channels management it is necessary to declare
variables of processname type, variables whose values are process names
and on which two constructs are defined: connect(X,PI) (to assign a value
and the communication rights) and detach(X) (to assign the undefined
value and to revoke whatever communication right); the declaration is as
follows:

procvar < procvar_id> , ..., < procvar_id>

further it is possible to specify a range in which his values can vary.

Channels are "logic objects" realizing the communication among
processes into the program. A communication channel, always
unidirectional, is considered private object of the single receiver process.
Channels can be static or dynamic; in the first case the name of the partner
is represented by a constant, in the second case it is represented by a
processname variable. It is necessary to specify that in the communication
constructs, channels are not mentioned. In the constructs the names of
partners quoted in the channel declaration are mentioned, differently from
other languages (e.g. Occam), in which ports are used.

The channel message type is constituted by a pair (co, T), where co is
the type constructor and T is the type offered by sequential language. In
pure syncronization channels there is only the constructor. Static channels
can be defined as follows:

e symmetric and syncronous
e symmetric and asyncronous

e asymmetric and syncronous.
Dynamic channels can be defined as follows:

e symmetric and syncronous.

Let us show, for example, the syntax of an asymmetric syncronous static
channel:

chan from (< process_id> ,.....,< process_id>)
type < costr_id> (< msg_type>);

157

Notice that, having explicitly declared the message type, makes it
possible to check automatically the process interfaces, increasing reliability
and making easier the integration test. Processes define, by channels,
visible points through which it is possible to make requests and to receive
messages. Program security is considerably enhanced guaranting that a
process can send or receive a message on a channel if and only if the
message type is equal to the channel type.

Communications are realized by i/o commands: send and receive. The
send construct can have symmetrical or asymmetrical form:

send (< proc_id> , < costr> (< msg_var>));
send (all of (< proc_id_list> , < costr> (< msg_var>));

in the first case, only a partner exists, in the second there is a set of
partners, defined by a list (send multicast) or by a process type identifier
(send broadcast). Nondeterministic constructs are similar to the ECSP ones,
namely repetitive and alternative commands with input guards and
priority.

The syntax of the receive statement is :
receive (< proc_id> , < costr> (< msg_var>));
receive (< procvar> :any of (< proc_id_list> ,< costr> (< msg_var>));

in the first form, there is only a sender, in the second there is a set of
senders, but one of them delivers the message.

A process can terminate at any moment whether as a result of a
construct failure, or by natural termination. For this second case the
construct terminate is provided, which lets the process it executes
terminate, informing all the partners. Notice that a process can exclusively
execute his termination, and constructs are not provided to force other
processes termination.

Fault treatment policies handle the communication failures because of:
- partners termination

- channel disconnection

- physical communication media faults.

Failures can be handled by means of the onfail, onterm, onprot
clauses. They make possible to execute some recovery actions (forward
recovery) when a failure occurs. In fig. 1 we used the onprot clause as a
mechanism to continue the process trans_I execution when a
communication fails because the partner has disconnected the dynamic

158

channel, refusing the access to a resource.

TRANS_1:

send (EXE_02, ready_to_commit())
onprot
send (EXE_Of1, abort()) ;
send (EXE_Q3, abort()) ;

terminate ;

endrec ;

Fig. 1. The onprot clause

4. STATIC TOOLS

The architecture of NERECO is composed by two parts. The first,
identified as the off-line component, is constituted by a series of modules
devoted to support the development of a distributed program. They are:
the preprocessor, the consistency checker, and the configurator. The second,
identified as the on-line component, is constituted by a set of modules
devoted to support the program execution. They are: the installator and the
network server. In this section we address the off-line component, in the next
one the on-line component.

4.1. The preprocessor

The preprocessor carries on, essentially, the role of a compiler for the
concurrent part of the language. It produces a program in sequential
language starting from a concurrent one. The preprocessor output will be
the input for the compiler of the sequential language. Notice that it is a
‘rational preprocessor” [Aho 86], namely it is not a simple macro
translator, but a precompiler for a language enhanced with new data
structures and new control flows.

159

The preprocessor operates on every single process composing the
program. As we said above, the dependence of NERECO from a particular
sequential language is confined on the preprocessor. From that it is easy to
deduce that the choice of a different sequential language in which to embed
the concurrent part involves to change only this module.

In the preprocessor design a lot of attention has been paid to preserve
the syntactic and semantic coherence of the host sequential language. The
preprocessor generates the sequential code after the execution of the
syntactic and semantic analysis of the concurrent part. In the code
generation the concurrent constructs are translated into function calls,
which contain the code to communicate with the run-time support, using
the Inter Process Communication (IPC) of Unix 4.2BSD [Leffler 83].
Further, it generates a table containing the necessary informations to
execute the consistency controls among the processes of the program.

4.2, The consistency checker

The consistency checker executes the static analysis of consistency
among the concurrent objects of the processes componing the program. In
this phase the entity distributed program is created, assigning a name to
the set of processes. The consistency checker analizes all the objects which
have a global interaction on the program; they are: process names and
channels.

The consistency checker analizes the tables generated by the
preprocessor for every process, and works out the following operations:

1. consistency analysis among the declarations of processes;
2. production of diagnostic messages on the insubstantiality;

3. synthesis of the global informations, about all the concurrent
objects of the program, in a global table.

4.3. The configurator

The configurator provides the physical configuration of the distributed
program on the network hosts. It receives from the user the host name on
which each process must be executed, hence it takes care to transmit the
executable files on the corresponding hosts. Finally it creates a table of
correspondence between processes and hosts, which is useful to the run-
time support. It is not necessary to allocate the executable files on the
network hosts, having a distributed file system available, like that of UNIX
4.2BSD rel. 2.0 [Lyon 84},

A program, once developed can be configured in all possible ways
without changing the code of the processes. This is possible because the
concurrent constructs are independent from the particular processes
location. It is the distributed run-time support, which provides the

160

communication routing, on the basis of the configuration table. Now we
are going to enhance the configuration facilities by putting in the run-time
support a tool for load balancing configuration.

5. THE DISTRIBUTED RUN-TIME SUPPORT

The NERECO run-time support has been realized as a virtual
machine, by a set of cooperating processes located on the hosts involved
into the program. They are implemented as UNIX processes,
communicating by means of lower level inter-process communication
facilities. The distributed run-time support mainly implements the
execution of concurrent constructs offered by the language. Besides this, it
provides the initialization of the program and the logging of concurrent
executed constructs.

The NERECO run-time support is constitued by two logic components
(everyone of which is composed of a set of processes) :

1. Installator: it provides the installation of the distributed program;

2. Network server: it provides the run-time support of the
concurrent part of the language.

For processes implementation and for processes communication we
used the UNIX facilities, in particular sockets. They also offer rough
mechanisms for error detection.

5.1. Sockets

In the previous releases of UNIX, interprocess communication was
realized by means of pipe, which provides a unidirectional and symmetric
channel. The use of pipe is restricted among processes which have a
common ancestor, namely among processes which are forked by a parent.
Further, pipes can’t be used among processes located on remote hosts. In
UNIX 4.2BSD new IPC facilities have been added, extending the pipe
concepts. They are called sockets.

Sockets implement bidirectional communication channels among
detached processes, without a common ancestor and even located on
remote hosts. The utilized protocols are TCP/IP and UDP. To TCP/IP
corresponds the reliable stream socket, to UDP corresponds the datagram
socket. The stream sockets are not so efficient as datagrams, because they
offer higher services. On the other, datagrams force the user to handle, by
program, if any failure or message duplication occurs. We preferred to
utilize stream type because of the high reliability required by our system.
In the datagram hypothesis we should enhance the number of
communications for avoiding errors and failures.

Sockets have resulted suitable for solving all the problems of local and
remote communications in the NERECO run-time support. Further, they

161

have been useful to check error condition in the communications. By them
it is possible that a process failure can be revealed by all the other partners
located on the same host or on a remote one. Therefore sockets offer to the
programmer the basic tools for the distributed handling of failures.

5.2. Architecture
The main phases of distributed run-time support are :
a) Start execution: the user asks for the program execution;

b) Rendez-vous: from the node on which the execution request has
been done, some actions start to make an early set of channels
towards the other nodes;

¢) Network set-up: in this phase the logic network is completed, by
building a complete connection among all the hosts;

d) Local set-up: on every node the data structures of the run-time
support are set-up and the instances of user processes are created;

¢) Run-time support: in this phase all requests of communication
among the processes are served and moreover the support for all
concurrent constructs is provided.

The logic component Installator implements the Start execution,
Rendez-vous, and Network set-up phases. Its task is to receive the user
requests and to settle a logic communication network. To provide these
facilities, the Installator is composed by the following UNIX processes:

e NERECO initializer (NRC)
The NRC is the user interface component. The user invokes the
NCR execution from the shell environment, specifying the
program name. NRC delivers to the local RCSP process the
execution request.

¢ Remote Connection Service Point (RCSP)

There is a RCSP process in every node, its address is constituted
by a pair : (host address, Internet port). RCSP receives the
request from NRC and communicates with other RCSP processes
on the remote host involved in the program. Then it forks and
executes the LIS Master process, whilst every remote RCSP
execute the LIS Slave process. After that the RCSP breaks away
and waits for other programs execution requests.

e Local Initializer Server (LIS)
There are two kinds of LIS processes: on the node where the
execution is requested is present the LIS Master, which will check
the Network set-up by communications with the LIS Slaves
installed on the other nodes. LIS Master and LIS Slaves establish
a logic mesh network, implemented by means of sockets as

162

described in fig. 2. Each LIS Slave receives the name of the
processes which will be executed on its node. When the Network
set-up is terminated the LIS Master process informs the NRC
process. Hence every LIS process is transformed to a network
server process, by the execl system call.

v
®

Fig. 2. LIS connections on three nodes.

The NRC and LIS processes are created dynamically for every
distributed program whereas the RCSP process is created in one single
copy in every node when the bootstrap occurs, and remains always active;
in summary it is a UNIX daemon. Obviously, if the program is configured
on only one node, any network procedure is not executed and the program
set-up is done only in that node.

The network server is the logical component which provides the run-
time support of the concurrent constructs. It implements the various forms
of communication provided by the cooperating model, and provides to
interpret the nondeterministic commands, and to manage dynamic
channels. The network server is created by transforming the LIS process
image, when the installation is finished with success. It is composed by the
processes : NS, IN, OUT, and NETLOG. Later we will denote the user
processes of which the program is composed as Process Component (PCs).

163

¢ NS

The NS process, created on every node, loads its data structures
putting in them informations about local PCs and remote PCs
which are mentioned in the communication constructs of local
PCs. These informations allow the NS process to control the local
PCs and their remote partners status. The NS processes create
local PCs by means of fork and execl system calls, hence they set
out to serve the requests coming from local PCs or from remote
hosts. In the first case the NS process will forward the
communication requests towards the remote hosts by the OUT
process (according to the fig. 3), or it will provide to support the
communications among the local PCs. Further, NS processes
cooperate each other to maintain consistent informations on the
PCs status.

e 1IN and OUT

The IN and OUT processes are created by LIS process during the
installation phase. Every OUT process is connected to every IN
process and viceversa. The existence of these processes makes it
possible to enhance the computing bandwidth of the network
server by executing in parallel extern communications and
internal computing. In fact, they serve to send towards and
receive from the network.

e NETLOG
This process provides to maintain the log of every executed
concurrent construct, in order to monitor the distributed
application. It is only created on the node from which the
execution has been requested, and receives informations from
every node. Finally, the NETLOG stores the informations in a
file.

Processes which compose the network server end their tasks when
every PCs is terminated. Hence they provide to the network server
termination.

164

AR AATA VAT

Fig. 3. Run-time support processes on three nodes.

6. CONCLUSIONS

This paper has described the language and the architecture of the
NERECO system. At present, NERECO is used to develop distributed
programs. The system demonstrated that the use of an high-level language
is useful to develop distributed programs.

Now we are going to put in the system some tools for load balancing
management, concurrent debugging, and syntax driven editing. These new
tools will enrich the NERECO environment and will assist the user to
develop distributed software.

References

[Ada 83]
Ada Joint Program Office, R eference M anual for the Ada programming

165

language, ANSI/MIL-STD 1815 A, 1983.

[Aho 86]
Aho AV, Sethi R., Ullman J.D., Compilers: Principles, Techniques
and Tools, Addison-Welsey, Reading, Mass., 1986.

[Baiardi 84]
Baiardi F., Ricci L., Vanneschi M., "Stating checking of interprocess
communication in ECSP", ACM Sigplan Notices, 19, pp. 290-299,
1984.

[Baiardi 84b]
Baiardi F., Ricci L., Tomasi A., Vanneschi: M., "Structuring
processes for a cooperative approach to fault-tolerant distributed
software", 4th IEEE Symp. on Reliability in Distributed Software and
Database Systems, 1984.

[Brinch 73]
Brinch Hansen P., Operating System Principles, Prentice-Hall,
Englewood Cliffs, New Jersey, 1973.

[Brinch 87]
Brinch Hansen P., "Joyce- A Programming Language for Distributed
Systems", Software - Practice and Experience, vol. 17, pp. 29-50, Jan,
1987.

[Crookes 84]
Crookes D., Elder JW.G., "An experiment in language design for
distributed systems", Software - Practice and Experience, vol. 14, pp-
957-971, 1984.

[DeFerrari 85]
DeFerrari L., Spezzano G., Talia D., "NERECO : Architecture”,
Internal Report , n. 85/24, CRAI, Rende, June 1985.

[Hoare 78]
Hoare C.A.R., "Communicating Sequential Processes", Commun. of
the ACM, vol. 21, n. 8, pp. 666-677, Aug. 1978.

[Inmos 84]
Inmos, Occam Programming Manual, Prentice-Hall, Englewood
Cliffs, New Jersey, 1984.

[Kernighan 78]
Kernighan B.W., Ritchie D.M., The C Programming Language,
Englewood Cliffs, New Jersey, 1978.

[Jazayeri 80]
Jazayeri M. et al, "CSP/80 : A language for communicating
sequential processes”, IEEE Compcon Fall 1980, pp. 736-740, 1980.

[Leffler 83]
Leffler S.J., Fabry R.S., Joy W.N., "A 4.2BSD interprocess
communication primer", UNIX Programmer's Manual Berkeley
Software Distribution, Virtual VAX-11 Version, vol 2C, Univ. of
California, Berkeley, Aug. 1983.

166

[Lyon 84]
Lyon B., Sayer G. er al, "Overview Of The Sun Network File
System", Sun’s Network File System Documentation, 1984.

[Magee 86]
Magee J., Kramer J., Sloman M., "The Conic support environment
for distributed systems", NATO Advanced St. Inst., Distributed
Operating Systems: Theory and Practice, Izmir, Turkey, Aug. 1986.

[Ritchie 78]
Ritchie D.M., Thompson K., "The UNIX time-sharing system", Bell
Syst. Tech. J., 57, 6, pp. 1905-1929, 1978.

[Strom 83]
Strom R.E., Yemini S., "NIL: An integrated language and system for
distributed programming", SIGPLAN Symp. Progr. Lang. Issues in
Software Syst., pp. 73-82, Jun. 1983.

167

A KNOWLEDGE BASED CAD SYSTEM IN ARCHITECTURE ON
UNIX

Authors' Names :
S. HANROT, P.QUINTRAND, J.ZOLLER(GAMSAU)
E..CHOURAQUI, P.DUGERDIL, P. FRANCOIS,M..RICARD (GRTC)

Authors's Addresses :
GAMSAU/EAM - 70,Route Léon Lachamp 13288 MARSEILLE
GRTC/CNRS - 31,Chemin Joseph Aiguier 13402 MARSEILLE

Speaker name : Michel RICARD - member of the AFUU

Mail address . GRTC/CNRS - 31,Chemin Joseph Aiguier 13402
MARSEILLE cedex 9

Electronic mail address : GRTC@FRMOP11.BITNET

Abstract :

The aim of this project is to realise an intelligent CAD system
integrating part of the Architectural knowledge.lt is mainly based
on the assumption that this knowledge is partially included in the
vocabulary of the architect and in the drawing techniques
elaborated along the centuries.

In this system the symbolic representation of knowledge is based
on an object-oriented language, OBJLOG, we purposely defined as a
layer above PROLOG II, and which offers some interesting
processes of inheritance.

To implement the geometric model we have chosen SMALLTALK-80,
an object-oriented language provided with a rich graphic
programming environment, which permits us to realise a quite
sophisticated wuser interface(pop-up menus,mouse device
controls..).The communication between the model of knowledge and
the geometric one is carried out by UNIX in running Objlog and
SmallTalk as two concurrent processes.

169

INTRODUCTION

A general survey on the CAD systems in architecture shows that
they are mainly used in the final phases of the project in the
production of the drawings or for the more sophisticated of them
in the instrumentation of the project : they are used as tools of
development and completion.

So, one of the major problems the systems designers have to
face is the creation of a tool available in the design phase,
allowing the modelling of uncompletely specified objects or ill-
defined problems characterising the architectural design.

The classical programming methods do no fit very well this kind
of problem; Conversely, it seems to us that an artificial
intelligence approach could bring interesting elements in their
resolution.

In that, the TECTON project is a contribution to the resolution of
such a problem where choosing an artificial intelligence approach
did not mean realising an expert system to solve the
architectural problems but rather the creation of a tool
integrating part of architectural knowledge concerning the
description and the manipulation of objects during the phase of
design.

Three classes of problems are investigated

1-Architectural knowledge modelling.
2-Symbolic representation of architectural knowledge
3-Graphical representation of architectural knowledge.
ARCHITECTURAL KNOWLEDGE MODELLING

The universe of knowledge in architecture is defined as a

regular universe which can be described,modeled and represented.
It is described through the observation of the knowledges and the

170

know how, referring to a set of objects and methods used in in
the architectural project. Through its descriptive vocabulary,
elaborated along the centuries, the analysis of architectural
knowledge reveals a whole set of facts and rules which could be
carried out in the framework of an "artificial intelligence"
approach so as to describe and manipulate Architectural objects
while designing.

The investigated domain of Architectural knowledge is described
by related objects provided with some properties and whose
analysis is performed at different levels and point of views.

An architectural object is defined at four levels .These levels
refer on one hand at the different states of progress of the
project and on the other hand ,at the geometrical scales and
categories of description the architects are used to handle.

At every level of definition the architectural object is described
as a composition of material objects and immaterial ones (walls
and openings at the level two ; envelopes and rooms at the level
three).These objects are described by properties in respect with
different point of views (Morphology , Building , Style ,
Functionality).

The relations associate objects at differents levels in accordance
with the point of views(The relation "morphological composition”
associates "envelopes" and "walls-openings").

Hence, the knowledge base aims to help the architect at first in
the definition of the architectural object at the different levels
and then, in its effort to find a consistency between the selected
point of views .

SYMBOLIC REPRESENTATION OF THE ARCHITECTURAL KNOWLEDGE

Short description of the model

The knowledge representation is based on the object-oriented
model through a language, OBJLOG,we are developing as a layer
above and over Prolog.This model provides the architects with a
conceptual and methodological framework to structure their
knowledge.

The object is the fundamental element which itself splits in
classes and class instances. The classes represent the
architectural knowledges.

Classes and instances are described with slots and the slots
with facets that give the characteristics and values of the slots.
Some of those slots and facets are predefined in the language, the
others depend of the application domain.

The predefined slots are :

171

KIND-OF : express the link between a sub-class and its super-
classes. This slots contains pointers to a set of classes.

ISA : express the link between an instance and its class. This slot
contain a single pointer to a class. The reason of introducing this
different slot is to remove the ambiguity, common in object
oriented languages, between the inclusion relationship given by
"kind-of" and the element-of relationship that exist between an
instance and its class.

PART-OF : express the relationship between an object that
represent a part of one or more complex objects. It is located in
classes and instances that represent part of classes and
instances respectively. In the first case, its value contains
pointers to classes. In the second case the pointers are to
instances. This slot, particular to our model, allows us to define
the selective inheritance process between objects : the set of
slots that an object which represent a part of a complex object
can inherit from the latter is a sub-set of the slots of the
complex object. This subset is explicitly given as the value of a
distinguished facet of the "part-of" slot.

Inheritance mechanisms

Inheritance is the fundamental mechanism operating on this type
of representation . It allows the description of an architectural
object at different conceptual levels and to access,from one
given class, to all the classes higher located in the hierarchy. We
distinguish between :

Vertical inheritance

it is that of the KIND-OF and ISA slots. It is defined as the
access by a sub-class to the whole set of slots of its super-
classes. The inheritance process is then multiple (several paths).
The process is the following : when a value is needed for a slot of
an instance, its own slots are examined. If no value is present, its
class and super-classes are examined breadth-first and the list
of the values found is returned by the process.

Selective inheritance

it is that of the "part-of' slot. As two classes sharing the part-
of relationship represent two different concepts, their instances
will be separate and will also contain the "part-of" slot. So the
selective inheritance process will begin at instance level before

172

going through classes and then allows the inheritance of
instanciated values. The list of inherited slots is given only at
class level. The system will then look for this list during the
inheritance process. This process is the following : when a value
is needed for a slot of an instance and that it is not found in the
instance, the presence of a "part-of" slot in the instance is
search. If the "part-of" slot is found, the list of inherited slots is
search at class level. If the slot of which a value is needed is
given in this list, it is inherited from the instances pointed by
the "part-of" slot. This inheritance process is then multiple.

Rule of composition for the inheritance processes.

As it is possible to simultaneously inherit of a value through
both inheritance processes, the conflict resolution principle is
the following :

- The selective inheritance process has an absolute priority over
the vertical inheritance.

- If the selective inheritance can be initiated, then the vertical
inheritance process will be disabled.

- If not, the vertical inheritance process is initiated.

- If no value is returned by the selective inheritance process, the
vertical inheritance process is initiated from the last instance
examined by the selective inheritance process.

173

sorte-de \ \

yd
O
sorie-ae

mur
standar \
\ partie-
de artie-de
P partie-de R

SOMMET
arase
/ sorte du sorte-de
sorte-de
-oru de .orte de
sorte- dn
SOMME T sorte-de
SOMMET
‘ . SOMMET sortee
tete tete
N debut
fin

graph of a knowledge base with inheritance.

GRAPHICAL REPRESENTATION OF KNOWLEDGE
The geometric modelling

The aims of TECTON concerning graphic is to provide the architect
with a designing tool allowing :

-The manipulation of geometrical shapes, their definition and the
modification of their relations.

-The graphical representation of objects on display devices.

-A high level of interaction between the graphical
representations and the conceptual model of the object in the
description as well as in the modification of any kind of
knowledge of its concern.

To achieve this goal ,we distinguish between the following
different levels in the geometric modelling :

174

-A purely conceptual level in which the geometrical component of
the objects is described by its properties and by its relations.

-A formal level of constraints expression, more specific than the
previous one ,concerning the geometric nature of the objects as
well as their composition.

-A level of 3D graphical representation of the model from which
we can extract 2D subviews on a display screen in order to
interactively manipulate the object.

The implementation of the first two levels is integrated in
Objlog itself written in Prolog Il. But the lack of graphic
predicates in this latter leads us to choose an other language to
implement the third level.
We have chosen SmalltalK-80, an object oriented language
provided with a very rich interactive environment not only about
the tools (many hundreds pre-defined classes and methods) but
also about the concepts(MVC triad,dependence,..).
Generally in CAD there are close links between the model, the
views and the interactions. SMALLTALK distinguish the three parts
and allows their connections so that an action on a certain view
associated to the model is managed by the controller.
This modelling fits quite well with our problem
- The model contains the data of the problems(classes) and
the corresponding operations(methods). In our case the
architectural project in its globality.
-The view displays (generally on a bit-map screen)
informations from the model.
-The controller allows the interactions with the project,by
means of the keyboard or the mouse which permit, for
instance, to point at a particular architectural element on the
associated view, or to choose a command in a pop-up menu .

To trigger the updating of the views, the model use the notion of
dependency (changed,update) .A given model may have any number
of couple view-controller that necessary (ex: plan ,face view,side
view,3D axonometry..).

175

commandes

calages sur axe

saisir
reperer
supprimer

éditeurs

mise a I'axe

translater

mise au nu droit

calage

mise au nu gauche

undo
copy

commandes de
la fenetre de
saisie

calerSur

messages a l'utilispteur

cut
paste
accept

axonometrie

cancel

zoom
home

annuler

etats :

trouve % g %7
| au nu gauche |eP=20 Ilz= 0 | ht

S YEIT e

N

Example of views associated to a model.

The implementation of the System on UNIX.

It was one of our hypotheses that

architectural modelling, |

knowledge representation and geometric modelling modules

should be in close connection

in the system. The communication

between these components must be performed with a complete

interactivity

any graphic modification must be immediately

176

transmitted to the knowledge module which check that the
send back the
information necessary to modify the drawing of the dependent

integrity constraints are not violated; this latter

objects.

In terms of computer implementation, this requires that

the

knowledge representation module and the graphical module run

concurrently .Smalltalk deals only with the graphical

representation and the interaction with the user while Objlog
manages the knowledge base and the dependencies between the
Architectural object; so, to make them communicate we need a

software layer above them

s it is UNIX.

/

/
T

Objlog

—

Prolog Il

SR

Knowledge

Base

~

—

UNIX

?

v

(

)

Graphical

Interface

~

N

Smalltalk
_ J

\

J

In Unix a process is the execution of a computer execution
environment.Several processes may run concurrently . Data may
be sent between two processes via an inter process channel

called a pipe .

So, to run both the knowledge base management program
(Objlog/Prolog process) and the interface user (Smalltalk-80

process)

/usr/Prolog/prolog2 objlog.multi

-w4

177

we have to send the following command to the system :

/usr/Smalltalk80

The first process to be activated is Objlog/Prolog ,then the 'w4'
option means that the following process (Smalltalk80) must be
created and run concurrently and 4 is the number of the co-
process; these processes can communicate through two pipes :
The pipe 3 from Objlog towards Smalltalk and the pipe 4 from
Smalltalk to Objlog . Thus the execution of the previous command
will allow us to achieve our goal :A CAD system with a friendly
interface written in Smalltalk-80 and with a knowledge base
management written in Objlog/Prolog run as a background
process.

Communication from Prolog towards Smalltalk.

The Prolog process executes an infinite loop on the following
sequence of statements :

1/ wait for the reception of a string from the concurrent
process(the user interface).

2/turn this string into a Prolog goal.

3/execute this goal, in fact send a message (unary or with
arguments) to a class instance.

4/ send the answer relative to the previous message to the
concurrent process.

S/receive the end message.

6/go to 1.

Message processing.
In fact ,Prolog always receive a string of the type

sendsun (name of class,message;<argument or list of
arguments>, error)

for instance
sendsun (wallS, create-inst,<wallS1>, x)

which aims to create an instance named wallS1 of the class
wallS
After execution of the message, sendsun send the result towards
the concurrent process through the pipe 4 (after transforming it
into a string) and wait for the reception of a string from the
same process indicating that a correct ending for the sequence
has occurred .

178

Along the type of message it receives, Objlog returns either the
error type expressed as two digits ('00' for a normal ending free
of errors, or an error code) followed by a list of names separated
by slashes.

Communication from Smalltalk towards Prolog.

Smalltalk consider Objlog as an object belonging to the class
Objlog we purposely defined.

This class manages the transfers between the two actors : it
allows the sending of the kind of messages we considered above
and the reception of the corresponding answers to these
messages.

sendsun (name ofclass, message, <argument or list of
arguments>, error code)

In the class Objlog we defined methods to send messages
towards Prolog, to interpret the received string in respect with
the message sent and to return the end of transmission message.
In Smalltalk we use the class UnixSystemCall containing the set
of Unix commands which allows the reading and the writing of
data through the pipes defined in the master process.

Hence in Smalltalk user interface, sending a message towards
Objlog/Prolog will be performed in sending, in case of an error
code is expected, the message requeteWithError with a string
selecting the message to send in argument, the returned value
being an error code.

example:

Objlog requeteWithError : 'sendsun(wallS,create-inst,<wallS7> x)'.

In case of a detailed answered is expected, we use the method

RequeteWithAnswer .

Actually we are achieving the implementation of a restricted
architectural model on a SUN-3/160 running UNIX 4.2 BSD version 3.0:
We use An interpreter Prolog Il version 2 on Unix distributed by
ProloglA and Smalltalk-80 version VI 2.1 distributed by ParcPlace

Systems.

CONCLUSION

179

This approach is interesting for its taking into account the
architectural knowledge in its full complexity. The computer
implementation will provide with a general object-oriented system of
knowledge representation. The integration of the triad knowledge base -
Objlog - interface user on UNIX is fairly efficient and prove that this
latter is a great environment for the communication inter program.

BIBLIOGRAPHIE

QUINTRAND P. et al. - La CAO en Architecture.Paris Hermes
Publishing.1985.

CHOURAQUI E., DUGERDIL PH. - Application des langages orientés a la
CAO de l'architecture. 3emes Journées d'étude sur les langages orientés
objet, AFCET,IRCAM,Paris,8,9 et 10 Janvier 1986.

DUGERDIL PH. - Une méthodologie orientée objet pour la représentation
des connaissances en CAO architecture. Mémoire de DEA en Informatique
et Mathématiques, Faculté de Luminy, univ. d'Aix-Marseille I, 1985.

HANROT S. -Elements de modélisation des connaissances
architecturales. Memoire de DEA en informatique mention XIAO, Faculté
de ST-Jerome , Univ. AlX-Marseille Il 1986.

CHOURAQUI (E.), DUGERDIL (Ph.), FRANCOIS (Ph.), RICARD (M.)

"Le projet TECTON : un systéme expert de CAQ intégrant le savoir
architectural. Journées Internationales CAO et Robotique en
Architecture et BTP", Marseille, 25-27 juin 1986, ed. Hermes,
Paris , 1986, pp. 73-84.

CHOURAQUI (E.), DUGERDIL (Ph.), FRANCOIS (Ph.), RICARD (M.), et
All.. Le projet TECTON. Un systéme expert de C.A.O. Intégrant le
savoir architectural. International symposium on Computer aided
design in architecture and civil engineering, ARECDAO 87,
Barcelona, Espagne, 1-3 avril 1987, 77-79.

CHOURAQUI (E.), DUGERDIL (Ph.), FRANCOIS (Ph.), RICARD (M.), HANROT
(8.), QUINTRAND (P.), ZOLLER (J.), GIRAUD (C.). A C.A.D. system
integrating architectural knowledge. Fourth International Symposium
on Robotics and Artificial Intelligence in Building Construction, Haifa,

180

Israel, june 22-25, 1987.

BOBROW D.G., WINOGRAD T. - An overview of KRL, a knowledge
representation language. Cognitive Science, Vol 1 N°1, 1977.

GOLDBERG A. , ROBSON D., Smalltalk-80 , the language and it
implementation, Addison-Wesley,1983

PROLOG Il - Manuel d'utilisation . ProloglA , 1986.

181

A user interface for geographers—
what can UNIX*offer?

Roger Bivand
Nordland College, P. O. Box 6003, N-8016 Mérkved, Norway

1 Introduction

Geographers are playing an important role in the development of user interfaces to major data sources. Geography,
regional and environmental studies have a scope defined by resolution from the individual phenomenon—a journcy to
work, the erosive effects of running water—10 system-wide interaction up to the global scale. This implies the need to
move smoothly from scale to scale, like zooming, and (o be able to tackle empirical issues without necessarily being
theory-bound. Certain problems have a cartographic solution; others result in more complex reporting forms.

As Openshaw has pointed out (1987), geographers have not developed portable software tools either for themselves,
1o assist in model development, or for end-users. Much of the basic work has however been done for manipulating the
data sources, and for creating low-threshold markets—like the “Domesday project.” What is missing is an environment
at lcast promising a consistent approach to portability, one suited to software development.

School geography has made great advances with uncomplicated hardware including now fractal simulation of urban
land usc patterns. Beyond this, programs continue to build upon Fortran subroutine libraries which geographers have
never managed to standardise, despite the potential markets for user interfaces integrating character, numerical, and
graphical presentation media. Since leading computing geographers arc now starting to use UNIX systems, the paper
concludes that the portability and software development qualitics that UNIX offers can assist gcography as a subject
over the whole educational range, and, more importantly, can enhance the perception of geographical approaches as
features of user interfaces in more general terms.

2 The geographical domain

A typical description of geography is as a sct of items intersecting with scts representing subjects such as ecology,
meteorology, geology, economics, anthropology, history and so on. This picturc has country-specific versions, with
geography in the United States covering only the “human” side, dropping the physical aspect. Geography has no evident
market, a featurc which has led to the coopting of planning with a variety of adjectives—urban, rural, regional—as
a promotion vehicle. Most of the commercial market for software associated with geography has indecd been for
planning, for instance transport modelling.

Curiously, this professionalisation of geographical knowledge has not been very successful, with the pursuit of
instrumental goals running in parallel with cuts in research and tcaching at all levels. There are many examples of early
commercial niches as it were backfiring, with transport models being just one. It turns out that forecasting models are
very sensitive 10 the zone boundaries used for trip origins and destinations, somcthing which perhaps should have been
self-cvident. The consequence is of course that the forecasts are conditional on the chosen zones, the “modifiable areal
unit problem” (Openshaw, 1977). In addition, much work with statistical modcls has foundered on the impossibility of
defining a “geographical sample.” A typical instance—a study related uscd car prices in the 49 contincntal US states

*UNIX is a trademark of Bell Laboratories.

183

(and DC), to sales taxes and delivery charges on ncw cars, explaining around 25% of price variability. If one on the
other hand looks at the average of used car prices in neighbouring states, explanation is 73%, with tax and delivery
charges dropping out of the model (Bivand, 1984). Again, this “neighbourhood effect” should have been expected,
reflecting Tobler’s First Law of Geography: Everything is dependent on everything else, but near things are more
dependent than more distant ones (1970). Finally, study arcas or “regions” are not imperviously encapsulated, but are
subject to often unspecifiable influences from beyond their boundaries.

In terms of system theory, geography has a domain determined by choices of entity and scale of resolution. One
can sct bounds on resolution, down beyond the current best in remote sensing, from the Spot satellite, up to lunar
earthrise. The French geographer Brunhes has illustrated the link between entitation and resolution by placing himself
in the basket of a slowly ascending balloon. From a first view of the hedges around the field, the fauna and flora, the
perspective widens to the village, paths, roads, reaching out to the broader region, market towns, rivers; the increase
in altitude continuously removes the higher-resolution detail which has gone out of scope.

The unresolved issue underlying geographers’ discomfort is the discipline’s lack of fit in modern times—which is
not an acknowledgement that the times should dominate every ficld of knowledge. One of the pioneers of computing
in geography, Torstein Higerstrand, has devoted the last decade to considering this question. In essence, it is the
conclusions that can be drawn from this train of thought which delimit the qualities required in a user interfacc of and
for geographers.

In two recent utterances, Hagerstrand has explained very clearly the burden of his thought, instanced in the
following anecdote:

“Some years ago a young colleaguc of mine, Dr Thomas Lundén in Stockholm, told me that the
beginners® class of his litde daughter has been asked to classify different items. The teacher drew three
pictures on the blackboard representing a spruce tree, a bear, and a mouse and suggested that the children
should place a ring around the two things which belonged together. Thomas’s daughter combined the
spruce-tree with the bear. The teacher told her that this was a mistake. She should have joined the bear
and the mouse, because they were both animals. When the girl came home she asked: ‘But daddy, did I
make it wrong? Don’t bears live in woods?’ As a good geographer Thomas, of course, answered: “Ycs,
you are right. They do.” ” (1984, page 374).

He continues to draw out the moral in the story:

“The teacher who maintained that the bear and the mouse belonged together and that the other sug-
gestion was wrong, has an overwhelming scientific tradition behind her. ... We have inherited a structure
of knowledge which ties e: ~ry discipline to its own class of phenomena. ... When the little girl drew
her ring around the tree and the bear she demonstrated that at least for an unconfused mind there exist
other criteria than similarity for grasping the complexity of the given world. Instcad of taking items apart
according 1o category, we could attend more to a given bounded pocket of the world.” (1984, page 375).

The term which Higerstrand employs to depict this pocket is diorama® which in the above anecdote would
represent the wood with a bear about its own business. Parts of the system constitute the landscape, and others
projects “submitted” by actors (1982, page 325). Atkin has described a similar conceptualisation as waffic on a
backcloth (cf. Gould, 1981). The landscape/backcloth is subject to slow dynamic change, while for the time and
spatial resolution chosen for viewing, the action/iraffic has a fast dynamic (Bennett, Haining and Wilson, 1985).
Returning to Higerstrand, we can begin 10 sce that the diorama is a powerful modelling tool:

“A real-world diorama as I understand it can never be fully accessible or describable in an cmpirical
manner. The fullness must instead be taken as the ceiling of a way of viewing the world, the geographic

from the Concise Oxford English Dictionary: ... small representation of scene with three-dimensional figures, viewed through
window etc.; small-scale model or film set.

184

way in its most genuine sense. Nevertheless, it should help us to observe relations which would escape us
otherwise. It should help us to ask questions which we would not ask without it. And it should help us
to estimate the importance of what we have to leave out of consideration, because we know at least the
locus of what is left out” (1982, page 326).

After an examination of some facets of geographical computing in the following section, 1 shall return to the idea
of diorama generation and manipulation as a source for user interfaces.

3 The current situation

3.1 Communication forms

Geographical computing differs little from that of other disciplines, with less emphasis on mapping or remote sensing
than one might have expected. It is now only a few geography departments that succeed in topping university usage
statistics, despite the handling of large data masses, for cxample from remote sensing or population censuses. Since
the aim of data processing is to arrive at results worthy of passing on to others, it is necessary to pick out the groups
with whom geographers wish to communicate. Subsequently one should examine whether this may be supported using
relevant software, and whether software or hardware development is called for. The prime current communication
function, at least as stressed in recent reviews, is that of publications, articles and conference papers, but takes place
chiefly within special interest groups. The content of well over half such items, to judge for example from the titles
in the programme of the 1987 European Congress of the Regional Science Association, is based on empirical data.
Beyond this, specialist interests address wider audiences in teaching, and in the reporting of research to contracting
authorities and the public at large.

The medium most commonly employed is the printed page: text, tables, and figures, including of course maps.
This has always been supplemented by live or recorded forms of presentation, especially of photographs, but more
recently also overhead transparencies. It is however only in the present period of rapid development of computing
hardware that these media have been able to be integrated in communication with selected audiences. The “Domesday
Project” illustrates many of the benefits which may be gained by providing Geographical Information Systems (GIS)
with suitable interfaces, despite the technical problems encountered and largely solved in its marketed form; the
contribution of geographers is described by Openshaw, Rhind, and Goddard (1986). It is this project in particular
which possesses a likeness to the diorama concept, permitting access to pockets of data by stepping down a hierarchy
of grid sizes.

3.2 Interface features

The present decade has seen a major change in the use of data processing by geographers. This has taken place
with the diffusion of interactive terminals on multi-user systems and of microcomputers, also used to emulate such
terminals. Transfer of data and programs was previously largely limited to magnetic tape and punched cards, and then
as numerical data and program source code, most often in Fortran IV, but also occasionally in Algol. Output units
were line printers, and for the fortunate plotters, and were not suited to the production of documents. The priorities
revealed in much software development were those of onc-off products meeting specific demands, having in common
with most of those years’ programming few guarantees of achieving the intended result, at least not as efficiently as
possible.

As already mentioned, most academic geographers now have direct access to processing power and data storage that
have grown by several orders of magnitude within the present decade. Indeed, many of those with whom geographers
communicate have enhanced their compuling base to an even greater extent; this remark certainly applies to students
and the educational sector as a whole, and the houschold sector. The areas which appear to have hung behind are those
involved in the gencralisation of onc-off programs to libraries of subroutines for use on differing hardware running

185

under a variety of operating systems. Further, it has only been the educational market which has seen the distribution
of geographical software in binary form in any extent, supplemented by the entertainment market to a certain extent.

The issues which emerge are related to the priorities perceived within our discipline, on the one hand for soft-
ware development, and on the other for production-class systems. They encompass programming language qualities,
programming style, portability and compatibility, interface characteristics and device drivers.

Chiefly because of the speed of diffusion of computing machinery, it turns out that the transfer of information even
between terminals and hardcopy devices is often a non-trivial problem - something those of us who need characters
beyond the 7-bit ASCII set would acknowledge. The transfer of figures is still more bound to the system specification,
unless one utilises a programmabile filter, such as a screen or plotter device driver, which has been ported to a variety
of systems (cf. PostScript). Again, such drivers entrain non-trivial decisions regarding the image being processed,
critically the interaction between pixel resolution, raster size, and figure dimensions, solved very creditably in the
“Domesday Project” (Openshaw, Wymer and Charlton, 1986). The transfer of information between systems, despite
advertised compatibility, is also fraught with difficulty, an cxample being the proliferation of different diskette formats,
and of occasionally inadequate upward compatibility following system updates.

One rﬁay object that portability and compatibility are of little significance in activity typically conducted by
individuals or small groups and directed to others chiefly in spoken or document form. This does however imply
that skills built up by these individuals are carried with them, and not necessarily transferred to their environments,
meaning that everyone has to start from the beginning. Such a situation would be rejected in cartography, and has also
been in quantitative geography in its modelling and statistical form. As we have built up our experience of statistics,
we have undoubtedly become more aware of the pitfalls lying in the path of those who choose to believe the verbatim
results they obtain from statistics programs, of whatever provenance. It must be accepted that if commercial software
publishers update their products to remove errors, even given the scale of resource use involved in development, then
one-off programs must be very vulnerable to the risk of error. This feature is reflected in Nelder’s introduction to the
collection of statistical algorithms edited by Griffiths and Hill (1985, p. 11), remarks which could, and perhaps should
have been made by a geographer:

“We began tentatively, and we made inevitable mistakes, some of which are tactfully alluded to in this
book; what I suspect none of us realized at the beginning were the difficultics that beset the production
of a good algorithm. It is hard to get the code right, to ensure that the algorithm is efficient and well-
structurcd, that it adheres to the language standard, that all kinds of potential misuse are trapped, and
that the description is clear and accurate. ... To the extent that increasing numbers of people are now
learning statistics from running programs rather than from reading books, the executable algorithm has
become part of a new and powerful form of literature, with its own style, and perhaps eventually its own
masterpieces.”

Summing up, geographers have not been sufficiently concerned with the programming tools that they have used, and
have not succeeded in economising on development costs by sharing relevant software through subroutine or function
libraries. While geographers have worked hard on geographical information systems of various kinds, especially for
handling large data sources, the retreived information is relatively highly compartmentalised, and seldom suited for
systematic interrogation or simulation. Indeed, in the light of advances in the handling of image data, including maps,
outside geography, one might feel justified in concluding that we are neglecting our calling.

4 Criteria for user interfaces

4.1 User identity

The idea of a diorama presupposes an enactment, a staging of one of a range of possible models of a pocket of reality,
comprising input from many differing sources. Such a theatrical/movie analogy suggests that a major user identity
is that of the receptive group or audience, in front of whom the “drama” is played out. This is also the situation in

186

museums with displays of this kind, in particular the new wave of exhibition facilities attempting to give the visitor a
whole picture of life in a different time/space pocket. The burden of responsibility for maintaining the interest of the
audience here lies with the producer, who should be able to tailor productions to suit particular target groups. The
speed of the interface is here not critical, since the diorama is presented in a non-interactive form.

In more organised teaching, the interface would be manipulated by the teacher, both in order to present some
feature considered of importance for the learning process, and in response to current class activity. This implies that
the time taken to introduce changes becomes more vital to the success of the presentation. Finally, in full interactive
use, the user should be able to retrieve information in various formats, and to relate this information in a systematic
way to relevant models. The diorama used for simulation can then take on some of the qualities of a spreadsheet for
a system of interacting elements at the chosen level of resolution.

While the above discussion has been couched in terms of the enactment of events in dioramas of a geographically
relevant scale, there is no very evident reason why the experience of other related fields cannot be utilised, nor why
others should not be able to use such interfaces in order to present or examine complex pockets of modelled reality.
Much is to be learned from software supporting the design of integrated circuits, and from CAD in general, involving
as it does the interaction of hierarchical data bases, knowledge rules, and graphical presentation.

4.2 Passive use

For production of a movie or slide-show type of diorama, certain facilities are required. These include the display of
the landscape of the pocket of reality to be represented at an acceptable level of resolution, with the ability to reveal
the relations assumed to be fundamental for its form in terms of the model. This could be termed showing the reverse
of the backcloth. Traffic on the backcloth, or projects in the landscape are to be depicted, perhaps by icons, together
with their reasoning—what the actor is doing and which factors are involved in path choice. Interactions between the
traffic and the backcloth should also be accessible, although the more often they are revealed in the surface structure,
the more the “story line” will be broken. Changes in both traffic and backcloth over time are features requiring further
refinement. It is likely that the use of changes in resolution, altering the time and space envelope in scope will ease
the depiction of the structuring features, the reverse of the backcloth and so on. Since it is these structures, the frames
on which the pictures are hung, that incorporate gencralised knowledge, their representation will often take the form
of text, tables, diagrams and formulae.

4.3 Active use

Active use of a diorama can occur at two main levels, interaction in the choice of retrieved information and its temporal
and spatial scope, and interaction in altering the models and structures used to generate the exhibits. In the second
case the interventions will only seldom have a deterministic character, so that the simulation of a range of outcomes
may be necessary.

A thematic area may be introduced here to illustrate some of the required features, perhaps the intersection between
human scttlement and environmental risk. The management of risk from flooding is a key feature of most cultures,
either through engineering or social solutions. Other, more modern, threats from pollution are less well socialised, and
require more effort in terms of the calculated description of the “real” level of horror. While forest death is associated
with acid rain, with consequent effects on settlement, employment and recreation, the systematic relationships are far
from clear, and could be explored in the form of a diorama which knew about competing hypotheses relating to factors
like felling rates and soil structure deterioration. Again, a diorama approach to the accidental emission of radioactive
materials, could combine knowledge of weather and scttlement patterns with agricultural production related to scason.
Access to both the backcloth, and the traffic, and their reverses—the structural frames constraining them—would
permit a perhaps less sensational but more reliable presentation of the actual risks.

187

5 UNIX and user interfaces

5.1 Software development

As mentioned above, geographers need user interfaces for two linked tasks, for software development and for
production-quality systems. These needs are associated with the insignificance of computing geographers as a market:
nobody is going to produce the tools we might find useful for us commercially. On the other hand, if our production-
quality systems are good, then it may be possible to broaden our market from education into entertainment—understood
as including enhanced public access to information and the models/dramatisations accompanying this information.

The various national communities have gone their scparate ways, with solutions like the use of BBC microcomputers
as a standard for software portability. This impedes the transfer of concepts like the “Domesday project” out of its
national cradle; not totally, plans for the usc of the same disk formats with other data and vidco material arc extant
in other countries too. Such bases are however a major hinder for software development, which would better be
accomplished under an operating system that provided more uniform handles to low-level functions.

The advantages of UNIX as a software development environment certainly do not require elaboration here, but
a number of fcaturcs which strike a geographer may be worth mentioning. First is its availability, and the range of
utilities and libraries included in standard releases. Second is the hicrarchical file system, and the relative predictability
of the location of the various system files within it. Third is the quality of the command language support given by
the system, from the shells to special languages like eqn or tbl, or in a different context awk. Perhaps most important
however is the “software tools” approach lying behind the utilities, their modularity and mutual compatibility. This can
best be illustrated by the review by Mcllroy of Knuth’s literate programming solution to a problem sct by Bentley in
“Programming Pearls” last ycar. Mcllroy shows conclusively that a script linking small but reliable ools can provide
a prototype, or provisional answer without the nced to deploy virtuoso programming skill (Bentley, 1986). Bentlcy
has returned to this in his recent plea for discussion on profiling: a software tools script can highlight the parts of a
problem which would bencfit from special attention (1987).

Additional features which recommend UNIX as a software development environment for a user interface embodying
geographical knowledge arc the prominence of at lcast appeals to cleanliness and readability in programming within
the UNIX community. Two approaches are of interest here, firstly literate programming. This has been implemented
for C and troff by Thimblcby (1986), and as with Knuth’s WEB, promotes the exposition of the reasoning behind
coding choices in a discursive way. On the other hand, even the most elaborate comments cannot ensure that the code
corresponds to the programmer’s intentions,

The second approach of interest is through languages giving support to object-oriented programming and simulation.
There are good reasons to suppose that dioramas may benefit from a profiling of programming work towards the
definition of prominent landscape and traffic components. This might suggest that Smalltalk was a place to start, but
the same arguments would point to C++, given the paucity of our knowledge of relevant classes.

5.2 Production-quality systems

Since there is a direct trade-off between image quality and processing power/screen characleristics, it is reasonable
1o expect pre-recorded dioramas to exceed interactive ones in visual impact. A certain sketchiness in pictorial rep-
resentation may however be worth retaining in order to avoid burdening the user with detail superfluous at the level
of resolution currently chosen. It is necessary to maintain awarencss of the way in which we process information re-
ceived visually (cf. Kosslyn, 1985), and of the ease with which humans read “pattern” into truly random distributions
(Openshaw, 1987).

A model which has some attraction is to assign at least one parallel processor to the backcloth, and one to each
traffic component, thus allowing them to assume their autonomy, communicating in message form when required. In
practice however, an adecquatcly powerful processing engine would be able to cover the same functions. The key
features which a user interface modelled on a diorama would have to meet would include windows, for the diorama

188

itself, perhaps at differcnt scales, and for access to the structuring rules. The interventions in these structures are best
written in a command language, with alternative shells for users of differing persuasions and aptitudes.

Although UNIX offers a superior development environment for such a system, it is at present difficult to see how
far portability would be prejudiced by graphics terminal heterogeneity. Given that ity variety is handled well in UNIX
and supported in libraries like curses, and that groups like X/OPEN say a lot about common applications environments,
this is possibly a problem in retrcat. On the other hand, 7-bit ASCII is several dozen orders of magnitude easier to
handle, as the move to 8 bits is showing.

Does a production-quality diorama need to run on a multi-user system? The “Domesday Machine” stands alone,
with its laser disc store holding enough data to occupy an attentive user for seven years. The store holds up to ten
copies of some maps at different levels of resolution, to save aggregating data on inadequate processors. An argument
for multi-user systems is sharing of large data stores, performed in the cited case by their replication. If onc wanted
o do something else with the data than simply display from store, for instance change the structuring rules, then
the advantages of shared storage might return. The advantages of multiple linked users would increase if accessible
processing power was such that the large quantities of data associated with the diorama could be handled within
acceptable time limits.

In summary, the role of UNIX in running rather than developing a geographical user interface based on dioramas
would hinge on the overheads introduced by not bypassing the operating system in graphic display as on stand-alonc
microcomputers. Since a geographical user interface cannot expect to be resourceful enough to command networked
workstations on grounds of cost, at least in the forseeable future, it is not easy to draw any very optimistic conclusions.

6 Conclusions

Recent thinking in geography has pointed to the importance of modelling system interaction in the form of dioramas
composed of a backcloth or landscape upon which traffic or actions/projects arc superimposed. The systems of interest
vary in spatial and temporal scale, but include phenomena oftcn compartmentalised by the segmental disciplines.
Representation of such wholes in textual form presents problems of substantial scale for geographers, as for historians
and others who wish to set their “stories” in contexts. Even in textual form, the “story” is no unprocessed depiction
of reality, but relics on an elaborate structure of data and rules. The posited advantage of the diorama for examining
complex ensembles “inhabiting” a place at a time—what Hagerstrand has called thereness — is the inherent character of
the system intcractions presented. However, this also requires the formulation of the subset of all possible interactions
judged significant in generating the outcome.

The software tools that UNIX incorporates cover most of the requirements present in the modelling module of the
diorama interface. This suggests that prototyping of the structural frames may be advanced by adopting a common
development environment. The experience of users of the UNIX system in the production of animations certainly
holds promise for the realisation of dioramas like slide-shows or dramatisations. Problems however arise in relation
to questions of cost and speed in handling the graphics windows required to give an interactive diorama life.

189

References

(1

(2]
3

—

(4]

(5]

{6

[=d}

[7

—

(8]

B

[10]

[11]

{12]

[13]

[14]

(15]

Bennett R J, Haining R P, Wilson A G, 1985 “Spatial structure, spatial interaction, and their integration: a review
of alternative models” Environment and Planning A 17 625-645

Bentley J L, 1986 “A literate program” Communications ACM 29 471-483
Bentley J L, 1987 “Profilers” Communications ACM 30 587-592

Bivand R S, 1984 “Regression modelling with spatial dependence: an application of some class selection and
estimation methods” Geographical Analysis 16 25-37

Gould P, 1981 “Letting the data speak for themselves” Annals of the Association of American Geographers 71
166-176

Griffiths P, Hill I D, (eds) 1985 Applied statistical algorithms (Chichester, Ellis Horwood)
Higerstrand T, 1982 “Diorama, path and project” Tijdschrift voor Economische en Sociale Geografie 73 323-339

Higerstrand T, 1984 “Presence and absence: a look at conceptual choices and bodily necessities” Regional
Studies 18 373-380

Kosslyn S M, 1985 “Graphics and human information processing” Journal of the American Statistical Association
80 499-512

Openshaw S, 1977 “A geographical solution to scale and aggregation problems in region-building, partitioning
and spatial modelling” Transactions Institute of British Geographers NS 2 459-472

Openshaw S, 1987 “An automated geographical analysis system - guest editorial” Environment and Planning A
19 431-436

Openshaw S, Rhind D, Goddard J, 1986 “Geography, geographers and the BBC Domesday project” Area 18 9-13

Openshaw S, Wymer C, Charlton M, 1986 “A geographical information and mapping system for the BBC
Domesday optical discs” Transactions Institute of British Geographers NS 11 296-304

Thimbleby H, 1986 “Experiences of ‘Literate programming’ using cweb (a variant of Knuth’s WEB)” Computer
Journal 29 201-211

Tobler W R, 1970 “A computer movie simulating urban growth in the Detroit Region” Economic Geography 46
234-240

The HUB: A Lightweight Object Substrate

Michael D. O’Dell

Mazim Technologies, Inc.
Vienna, Virginita USA

1. Introduction

“Lightweight Processes” are currently ires chic in the leading-edge UNIX
community, and “Object Oriented Programming Systems” (OOPS) are gaining in
popularity. Both of these ideas may be fundamentally sound, but seem to be suffering
somewhat at the hands of hypesters promoting them as the cure for everything from
designus inconceivus to tertiary code-bloat. Combining these two hot topics is sure-fire
way to get funding (and a paper accepted).

The Hub is a simple little operating system which is rather different from most of
its process-based brethren seen running about. Like with most systems, these differences
characterize both its strengths and weaknesses. The Hub has activities somewhat like
processes, called tasks (sorry, but there are only so many words for these things), but it
doesn’t have the overhead of traditional context switching. Hub tasks communicate
primarily with messages, but they don’t incur all the message parsing and multiplexing
overheads of other systems. The Hub could use a bit of linguistic support which it
doesn’t get from most programming languages, but the C preprocessor and a modicum of
programming discipline largely fill the gap. The computation model of the Hub is
somewhat non-traditional to folks raised on the beatitudes of pure processes. And
finally, because the basic design doesn’t deal with protection domains, the Hub is a
Scoul’s Honor programming environment like most little operating systems, and it will
run perfectly well within a UNIX process for debugging and development, or as an
implementation of user-level “light-weight processes.”

It also turns out that the Hub uses some of the central OOPS ideas, admittedly in
crude forms, but 1t is, none the less, an interesting platform for supporting, shall we say,
object-inspired programming. Hence the title: mix lightweight processes with object-
oriented glue, and you get a substrate which can support objecty kinds of things,
assuming they don’t weigh too much.

2. What’s All the Hubbub, Bub?

The Hub was created by Gary Grossman, then with the Center for Advanced
Computation at the University of Illinois. The design was first implemented and
described by Masamoto [MAS] for his Master’s thesis under Grossman’s direction. The
current implementation is inspired by the system described in Masamoto’s thesis, but
revised considerably for portability, generality, and more concern for memory
management issues.

There are three major elements of the Hub world: the Hub Queue, which gives the
system it’s name, Hub instructions which are placed in the Hub Queue, and Hub tasks
which execute the instructions (see Figure 1). The sequence of operation is really quite

191

simple: it mirrors the traditional fetch-execute cycle of a computer CPU.

The Hub dispatch loop (the Dispatcher) removes the next instruction from the Hub
Queue and inspects it to determine the recipient task and which specific task entry-point
should be invoked to execute it. The Dispatcher then makes an indirect subroutine call
via a task-specific methods vector supplying the decoded instruction fields as arguments.
The task method then runs to completion, adding any necessary new instructions to the
Hub Queue. When task method returns, the Dispatcher goes back to the top of the loop
to fetch the next instruction waiting in the Hub Queue.

2.1. Instructions Pre-Fetched While You Wait

The Hub Queue functions very much like the instruction prefetch buffer used in
modern CPU designs. Instructions which form the next fragment of the instruction
sequence but are not yet executing wait their turn in the prefetch buffer, and likewise in
the Hub Queue. Where do the instructions come from? In CPUs, the relentlessly
advancing program counter marches new instructions into the prefetch buffer. In the
Hub system, the stream of new instructions arises from the execution of other
instructions! One of the most important side-effects of interpreting a Hub instruction is
adding a new instruction or two to the Hub Queue, for without a steady supply of new
instructions, nothing happens in the Hub world.

Tasks communicate by placing instruction for each other in the Hub Queue. The
only way a task ever executes is for an instruction destined for it to bubble to the top of
the Hub Queue and be dispatched. For example, instead of the classical sleep()/wakeup()
process model, an interrupt routine in a device driver notifies its client “top half”’ of
service completion by placing an instruction destined for it in the Hub Queue. With only
very minor exceptions, state information is never shared directly between autonomous
execution domains (this includes both other tasks and interrupt code). Instead,
instructions carrying the necessary information are queued for execution by the recipient.
This results in very infrequent processor interrupt lockout, but most importantly, the
entire system is manifestly observable, if not truly synchronous. All activity flows
through the Hub Queue and the Hub Dispatcher, so one need monitor only that one
simple point to produce a very complete picture of exactly what is happening in the
system. With a little planning, it is even possible to record and replay instruction
sequences to assist in analyzing behavior.

2.2. Detailed Instructions

Hub instructions specify an opcode and several operands: source and destination
task identifiers, source and destination port identifiers, and a general-purpose operand
which is usually a pointer to a message buffer (see Figure 2). (There can be several
general-purpose operands, but rarely is more than one used.) The opcode is equivalent to
the method selector of languages like Smalltalk; it identifies which task entry-point
(method) is to be executed to interpret the instruction. This saves multiplexing and
demultiplexing in several ways. First, we avoid wasting the time spent assembling and
then parsing explicit message headers which simply indicate the requested function.
Second, decoding the instruction is very straightforward and very fast, and it only need
be optimized in one place. Third, task entry-points tend to do only one thing so the
path length is minimized and the code simplified.

192

The source and destination task identifiers in Hub instructions are used to create
the sender and self references used for executing task entry-point methods. A task
identifier is a handle to the task’s Task State Vector (TSV) as it is called, and tasks are
known by their TSV handle. A handle to the new TSV is returned to the parent task
when a new task is created.

The source and destination port identifiers are small integers which are available for
further multiplexing and demultiplexing within a method. In general, they are simply
integers and can take on any such value. Their name, however, arises from an array of
port structures in every task’s TSV, and port values usually index this array. A port is
simply a header for a doubly-linked queue which is included in the TSV port array.
These are included in the basic TSV overhead because TSVs often need queues, and
having a queue designation encoded in the instruction often prevents reinvention of
mechanism and improves observability.

Arbitrary message data can be carried in an instruction by incorporating a
reference to it in one of the general-purposed operands. This tends to avoid data copies
and provides for quite general messaging. The messages carried by Hub instructions are
usually said to flow from the source to the destination port of the participating TSVs.

2.3. Tasks - the Functional Units of the Hub

Tasks are the unit of execution in the Hub system. A task is represented by its
activation record, which is called a Task State Vector, or TSV. It is common for “task”
and “TSV” to be used somewhat interchangeably, although it isn’t strictly correct.
Associated with each TSV is a collection of functions called the Task Program (TP)
which the task executes in response to instructions. Each such function is called a Task
Program Entrypoint, or TPE. Mapping between the instruction opcode and the
implementing TPE function is done with an array of function pointers stored in a generic
section of the TSV. This binding allows task programs to be shared between tasks even
if the code is not strictly reentrant.

The Task State Vector contains two sections: a generic common prefix and a data
area specific to the Task Program being executed by the task. The TSV prefix contains
the port vector, vectors to the TPEs, and a few other miscellaneous fields. The TP-
specific data area is of variable size and is specified when then TSV is created. The
entire state of the task is represented by data stored in this section of the TSV.

To summarize in object-speak, the Task Program is the methods collection for the
object implemented by the task, and since the task program is shared, multiple object
instances can be implemented which all share the same methods. Instance variables used
by the implementing methods of an object are stored in the object-specific portion of the
TSV. Class variables can be implemented (crudely, to say the least) by global variables,
or static variables within functions contained in shared TPE code.

The Hub Queue and the Hub Dispatcher, Hub instructions, and Tasks are the basic
inhabitants of the Hub world. The way these parts interact to do computations creates
a programming environment which is both familiar and strange at the same time.

3. Not Entirely Unlike Processes

This section will examine the programming style which arises from the Hub’s unique
structure. As can be discerned from the description so far, systems based on the Hub are

193

composed of a collection of tasks which communicate with each other via instructions,
and these tasks implement higher-level abstractions, either abstract data objects or
compute objects like protocol machines. In point of fact, the Hub was born to do
communications processing. This is a programming area classically described on the
blackboard by clouds of processes blithely exchanging messages willy-nilly across
beautifully abstract interfaces. The implementation, on the other hand, is usually quite
different because of real-world performance requirements. One is easy to understand, the
other runs fast enough to be useful. The Hub is an attempt to assuage the disparity
between the pictures and the code.

Unmentioned until now is the central notion that all tasks in the Hub world obey
essentially the same set of legal Hub Queue instruction opcodes. This makes sense when
one reviews the structure of most communications software implementations, particularly
those based on the traditional picture with processes. Tasks primarily exchange data
with one task on one side, and do essentially the same thing with another task on the
other side. The exceptions to this are device drivers, which talk to hardware on one side,
but are tasks when viewed from the other, and multiplexing tasks which communicate
with potentially many other tasks.

Each Hub Task Program is expected to implement the following basic instructions
most appropriately for the function provided by the specific TP.

e [Initialize - an instruction sent to a newborn task so it may initialize its instance
variables before it receives any other instructions. The final act of this TPE is to
call a Hub function which acknowledges the initialization. Sending instructions to a
task before it has acknowledged the initialization is considered a serious error.

e Die - the task should clean up whatever it was doing and commit suicide by calling
the appropriate Hub function. Any shutdown synchronization between the
requestor and the dying task is purely their business.

e Timer - this instruction is posted to a task to notify it that a timer event has
expired. The arguments in the Timer instruction are specified when the timer event
is scheduled with a Hub primitive function.

e Data - this instruction is the basic data transfer mechanism. The argument
usually points to a buffer containing the data to be transferred to the destination
TSV and port. The usual protocol is that ownership of the buffer is also
transferred and becomes the responsibility of the recipient. Note that this is
essentially a write() function to a task expecting to receive data.

* Datarequest - this instruction is used to request a source to send data to the
originator. This is essentially a read() request from a task desiring data. This
instruction may or may not be used in all cases depending upon the flow control
protocol between tasks, and the level of asynchrony between the tasks. Packets
arriving from a network would typically be posted to an IP protocol machine with a
Data instruction, while a task like an FTP server might use a Datarequest
instruction when requesting data from its underlying TCP task.

¢ Control - a task-specific control function (like ioctl())

¢ Poll - an instruction for implementing polite busy waiting. Typically, a task
waiting for a bit to change in an interface would do the polling by posting a Poll
instruction directed to itself. When the Poll TPE gets entered, it checks the
appropriate bits and decides whether to post another Poll instruction, or whatever

194

instruction is appropriate to continue what it was doing. This provides the
simplicity of busy waiting without hogging the machine.

e Debug - a task-specific function which manipulates debugging state. Hub systems
use some internal protocol for determining how the debug state is interpreted, but
there is a common mechanism for manipulating it. This encourages useful
debugging machinery be included in every TP.

e Private - there are two instructions included which are valid instructions, but
whose interpretation is local to each TP. This number is easily changed for
whatever is needed.

e Default - this is not an instruction, per se, but is a TPE which is entered like an
instruction whenever an opcode is not one of the above. (The name arises from the
C case statement.)

Each Task Program Entrypoint is called from the Hub Dispatcher with two
arguments: a pointer to the private area of the appropriate TSV (a self context), and a
pointer to the instruction which caused this TPE to be executed. This has the
unfortunate side effect of requiring local instance variables be addressed with something
like

self —> localvariable

and is one area where a little language support would be useful. In Pascal, the with
clause would do the trick; in C, a few preprocessor #defines reduce the pain.

The instruction pointer is supplied so the port values and sending TSVid can be
ascertained, as well as to pick up any message buffer pointers in the general-purpose
operands.

As can be seen, the Hub is non-blocking. There is no context switching code
necessary, and almost no machine-dependent assembler is required, save for that
necessary to glue interrupts into the require device driver functions, and for the two
functions which set and return the machine’s interruptibility state (equivalent to spl()
and splz() in the UNIX kernel). This implies the Hub needs only one stack segment for
execution. While a separate stack for interrupt routines an advantageous of some
modern processor architectures, there is no requirement for any such. support, and it can
probably be readily exploited.

4. The Structure of a Hub System

Hub systems tend to be be constructed from “task teams’’ with one task managing
the activity of several worker bees. Manager tasks tend to communicate with each other
to create any needed worker tasks and to establish the plumbing between them, leaving
the workers to do the actual work. This is much like the daemon daemon of 4.3BSD. In
an X.25 system currently being built with the Hub, a Level 2 interface manager task
watches link devices for signs of life. When the link starts up, the Level 2 interface
manager contacts the Level 3 protocol manager with a request for Level 3 service. The
Level 3 manager responds by creating a Level 3 protocol machine task and works with
the Level 2 manager to arrange the rendezvous between the Level 2 protocol machine and
the Level 3 machine. After the initial introductions, the two protocol machines interact
with each other and only interact with the managers when some terminating condition

195

o

arises.

One important issue in any operating system is flow control. Flow control in this
context means the procedures and protocols which constrain the amount of data the
system must buffer at any one time. Several recent systems provide for synchronous
interactions between processes, thereby rendering the flow control issue essentially moot.
However, the disadvantage of this simplification is that the maximum possible
concurrency seems to be somewhat limited.

Flow control within a Hub system is visible at two levels. Topmost is the issue of
how many Hub instructions are currently awaiting execution. A runaway task which, for
example, queues two instructions for each it receives could quickly exhaust the Hub
Queue if it proceeded unchecked. This problem is handled by approaching the design
with a resource “conservation law” in mind. In other systems, violations of the
conservation laws result in bugs like memory leaks, or occasionally freeing an already free
resource. The nature of the Hub encourages explicit establishment of such laws as part
of the design process (this is both a strength and a weakness).

The other flow control issue is one of how message flow is mediated between tasks.
The Hub system provides a modicum of queuing via the instructions in the Hub Queue.
Again, a central notion of Hub execution is that a task must always do something with a
message when it arrives. This is where the port queues come into play. Often, a task
can’t really do anything with a message because it algorithmically can’t proceed; a closed
TCP transmit window is a good example. The port queues can be used to sit on the
data until the task can dispatch it.

In such a scenario where there is potentially a large impedance mismatch between a

stream producer and a stream consumer, an explicit low control strategy must be used.

For example, after a producer sends a buffer in with a Data instruction, it must await a
Datarequest instruction from the consumer returning the previously-sent buffer to be ‘
refilled. By simply changing the number of allowable outstanding Data instructions to |
be greater than one, we can easily implement sliding-window style multiple buffering ‘
between tasks for bulk throughput applications needing maximal concurrency. In other |
situations like an Ethernet driver sending packets to an IP protocol module, the interface |
may not be flow-controlled at all, relying on a simple policy of dropping excess packets |
upon an overflow condition. The important point is that the level of sophistication |
needed by any particular interface can be crafted from the available Hub facilities, |
thereby neither overbuilding for some uses or underbuilding for others. |
|
|

In concluding the discussion of the Hub environment as seen from inside, it should
be said that the Hub was intended to be a flexible framework for implementing what is |
needed to do the specific job at hand. It has a modest set of facilities beyond those |
described like timer management and buffer and storage allocation which, when taken ‘
with the Hub facilities described above, form more of an operating systems toolkit, |
rather than an ornate edifice replete with strictures. This is, of course, a double-edged |
sword. |

5. Closing Notes |

There are two other areas which deserve comment, one because it was advertised,
and another because it is interesting to consider in light of the current architectural
trends.

196

5.1. Some Thoughts on Implementing Objects

1 hope by this point the notion of using the Hub to implement objecty systems,
possibly hidden behind some syntactic overcoat, is not completely absurd. There are
more than a few problems if you want real Smalltalk, but with a modicum of reserve, the
Hub can go a reasonable job of supporting object-style programming done in a more
traditional programming language. Note that this opinion arises from the belief that the
most important feature of object-oriented programming is one of encapsulation, with
limited, static inheritance far short of the Smalltalk extreme probably being quite
adequate to realize the advantages of OOPS for most tasks. Others will certainly differ,
probably strongly. That’s what makes horse races.

The other topic has to do with the notion of context switching in general and the
impact of evolution in machine architectures on the basic complexity of this mechanism
which is so central to traditional process-rich systems.

5.2. Context Switching and RISC Machines

The traditional process context switch involves saving the ‘“visible’” processor state
(register values, condition flags, interrupt level, floating point modes, memory
management state, etc.), and reloading the processor with a new copy of this same
information. In its full glory, a great many bits move around, and many, many machine
cycles can go by if the state is very complex.

RISC architectures are often characterized by large register stacks on the processor
chip which must be loaded and unloaded on context switches. These stacks are generally
much larger than those of their CISC friends and it is interesting to ponder the
performance impact of heavy context switching upon RISC performance. One useful
description is that a process-based system tends to be “broad,” meaning it spans many
different state domains (many relatively shallow stacks), while the state of a RISC
machine tends to be “deep,” meaning it excels at nested subroutine calls within one state
domain (stack). Since the Hub systems needs only one stack, and spends all its time
doing subroutine calls, it may be particularly suited to RISC architectures. This is an
interesting area to pursue experimentally with actual measurements!

6. You Have Tea and No Tea

In conclusion, the Hub is both traditional and radical at the same time. It is both
process-like and thread-like. It contains some objecty notions, and some explicit
programmer responsibility for managing the environment. Maybe the way to see the
landscape is as a continuum between process-richness at one end, and traditional
monolithic realtime multi-threaded systems at the other, with the Hub as an operating
point somewhere in between. Traditionally, a process is a defined, fabricated object
which, like Algol, everyone understands but can’t quite nail down. With the advent of
Objects, which seem to be somewhat like processes in their persistence and activity, but
which somehow don’t really satisfy the intuitive definition of process, maybe process-ness
has become an analog value which can be possessed in greater or lesser degrees instead of
being an absolute attribute. This is certainly In the spirit of the Hub, and possibly
places the Hub at the confluence of Object-oriented programming concepts and operating
systems.

197

7. Bibliography

[MAS] Masamoto, K., "Implementation of HUB Processor," Master’s Thesis,
University of Illinois at Champagne-Urbana, 1976

198

Instructions

Procedure Calls

R N

TSV TSV TSV TSV

B EEIEE

Figure 1
The HUB System

Op Code | Dest TSVid| Src TSVid Arg1 Arg2 Arg3
|— What to do .
Arguments for the operation
By Whom — (Buffers, pointers, ect.)

For Whom —

Figure 2
A HUB Instruction

199

More MIDI Software for UNIX

Michael Hawley

MIT Media Lab’
Cambridge, MA, 02139
mike@media-lab.mit.edu
August 8, 1987

1. Introduction

At the Media Lab we have configured a 25Mhz Sun-3* to control 64 channels of MiDI synthesizers in real
time. We also intend to control the ultimate player piano — a computerized Bbsendorfer Imperial concert
grand, a glossy, impeccable 9’6" instrument which records performance data using optoelectronic sensors
and plays it back using a stack of solenoids. The imperial Bbsendorfer is generally considered to be the
Rolls-Royce of pianos — the *‘standalone’’ (i.e., non-computerized) version costs in the neighborhood of
us$60,000 — so this is quite a lavish setup.

Persuading such machinery to render synthetically accompanied piano concerti or ensemble music is a
seductive job and will consume much more time in hardware and software work. Of course, software that
can take full advantage of such wonderful music hardware is a long way off, and it will continue to be a
pleasure to evolve it. But to do this one also needs insight into what factors make a performance entertain-
ing, and the fresh influx of high-quality performance data has sparked some ideas for music analysis
software,

For example, the command
record | kee

records performance data from a musical keyboard and returns its key (e.g, ‘‘a minor’’). The trick to this is
not deep Al or even expert musical hackery (like looking at cadential pitches, or melodic interval analysis)
but rather, the simplest conceivable statistic: a note-counting program counts all the pitches in a perfor-
mance and looks at the histogram to pick the key.

Rhythmic analysis is more interesting, and closer to human perceptual issues. Consider what it means to
listen to some piece of music, like a fugue — tracking the separate voices, recognizing each voice entrance,
etc. Two crucial parts of the process are finding the beats (e.g., being able to count to three in a waltz) and
auditory streaming (hearing the parallel voices as distinct streams). These are easy for people to do — as
easy as tapping to the beat, or following the clarinet and soprano lines at the same time — but no one seems
to have computed good solutions yet. At the MIDI data level, streaming turns out to be fairly easy to do
(algorithmically) most of the time: simply graph the MIDI data in a 2-d pitch-time space and *‘connect the
dots’’ by clustering the onsets of notes that are closest together. The graphical piano-roll views of data
cluster into visual blobs almost as readily as they do in the audio sense. By a similar kind of clustering in

T Current address: NeXT, Inc, 3475 Deer Creek Rd, Palo Alto, CA 94304
} Thanks to Sun Microsystems, Inc, for this donation.

201

the 1-d time domain, we can chunk strings of notes which are usually perceived as phrase groups by human
listeners. For interesting musical recognition problems, like looking for tunes in a database of musical
themes, recognizing pieces or styles, or recognizing repetitions of a melody within a piece, we think that
the intersection of a few simple statistics like these will give us sufficient precision to find good matches.

In what follows we will briefly describe the machine configuration, and discuss the analytical tools we have
developed so far for studying the data.

2. Hardware and Software
Our hardware setup is a somewhat enhanced version of that described in [1,2]:

mpy-401’s
e TP

sun- any, man
nthesizers

9600/19.2/ | _
serial line
{Lbcwj """" mbus

e

/dev/piano

serial
interface

hardware configuration.

The Sun contains a VME/MPU interface card which allows it to control four real-time MIDI processors
(Roland MPU-401’s). These appear as /dev/mpu[0-3] in software, and the utilities described in [1,2] will
all run in this environment. Because they are addressed as separate devices (i.e., four file descriptors) syn-
chronization of all four is likely to be a mild problem. Each MPU has two MiDI plugs for output and one
for input. There are ways to make the devices clock to a ‘‘house sync,’” but we haven’t yet explored them.
Since each MPU can theoretically transmit 16 channels of MIDI output (a channel is represented as a 4-bit
mask) while reading 1 channel of MIDI input (as from a performer at a keyboard) 64+4 i/0 channels should
be possible. We haven’t yet assembled the performance software or synthesizer arsenal to take full advan-
tage of this; an awful lot can be done with 16 instruments.

As /o devices go, communicating with the Bdsendorfer is a little like negotiating with a finicky prima-
donna. At this writing, it is not yet possible to open("/dev/piano”,2), because there is no
hardware connection to the Sun. The piano is unfortunately not a MIDI device — it has a somewhat higher
data rate, and greater precision (e.g., 16 bits of velocity data instead of 8). The multibus cardcage houses
some Z-80 cards which drive an arcane CPM operating system, including some strange floppy disks and a
tape-recorder i/o port, but no modern data port of any kind. This of course would be a criminal offense in
certain parts of California. Kimball (which owns Bbsendorfer) has recently built an IBM-PC-based serial
interface to the instrument which provides data at 19.2 kbaud (a barely adequate data rate, though sufficient
to deal with most human playing, except perhaps Art Tatum on a good day.) We expect to have this
hardware early in September, so some form of piano i/o should be possible soon. The problem of house
synch is looming for the piano, too; eventually, all real-time controllers must clock to a common synch.

The graphics software is currently written using the library described in [3], which is adequate and expedi-
tious for our needs.

202

3. Simple Statistics for Music

Relatively little general statistical work has been done on performance-level musical data, mostly because
that data has been so scarce until fairly recently. To begin with, we will use a few simple statistics to try
and locate the most salient features from the data. First we’ll look at a method for finding key words in text
based on relative frequency, and show how, as simple as that idea may be, it does a good job of hilighting
the most important topical words in a document.

3.1. Counting English

Many people have studied the word-frequency distributions of natural languages (George Zipf and Claude
Shannon are prominent among them). This is usually done with an eye towards understanding the predic-
tability and redundancy of the language. Zipf noticed that, in English and many other statistical popula-
tions, word frequencies are distributed in a 1/n-like curve, with the commonest words (e.g., ‘‘the’’,
“‘and”’, “of”’, ...) taking up the fat end of the curve:

% cat MobyDick/* | hist | histo

the

alice
kel ght

a typical word histogram.
Here, the hist program reads text and produces a sorted word count:

the 16037
of 8239
is 6325

and histo takes a stream of label/value pairs and plots them in a window.

To identify the most important terms in a document a good approach might be to filter out the function
words and all other vocabulary words which appear with roughly average English frequency. The com-
mand pword does this: it computes an index of peculiarity for every word in a document, and prints out
the list in descending order. The index is
2

f . / fg
where £ is the frequency of the word within the document, and £ is the global frequency of the word in
some larger domain (common english). This prioritizes those words which are used relatively often in a
document, and it turns out to be quite a good ‘‘important word’’ finder considering its simplicity. The

peculiar word listings for Alice In Wonderland and for UNIX man pages do seem to capture the most
important features:

% cat AlicelnWonderland/* | pword
190.51 alice

39.86 queen

27.18 glove

203

14,
12.
11.
11.
11.
11.
11.
10.
.15
.08
.81
.27
.99
.90
.82
.12
.61
.96

o]

;oY O @

4

4.
3.

37
36
90
49
20
13
01
06

40
59

tart
hatter

gryphon
humpty-dumpty

tone

turtle

daresay lory tove

rabbit

dormouse

wabe whisker brillig knight

mock

king

duchess

tweedledum

remarked

caterpillar

teacup
kitten

sneeze hookah mimsy juror telescope borogove outgrabe gimble...

tweedledee oyster

mabel

% deroff /usr/man/manl/cat.1 | pword

745,
477.

27.
.01
12.
12.
.69
6.
6.
2.
1.

14

6

Pword can optionally slide a sampling window of some size over the document. This shows how the

30
70
77

90
39

64
26
97
07

concatenate

cat

display

character

blank

non-printing

file

standard

output
input

number

(e.g., "'line numbering’’)

priority of important terms changes over time, producing a chart that mirrors the storyline:

This graph, with a window size of 30Kb moving at 15Kb increments, shows how Alice figures prominently
throughout the book, with a dip in the chapter in which she is put on trial for stealing the tarts (and not

alice\|

hatter | e, YPP
Ifreymed
Lalicedaic ey P L i
alice”] rhc . jalice
halice/] - \lured tarts
h queen]
"‘”'{ ueemfdIeen e] uee
cheshir jplic aueen
\\ tafts d/
theshir hatic

the trial -
who stole the tarts?

story lines in Alice In Wonderland

204

allowed to speak). Other topics can be seen as they come and go throughout the book.

3.2. nc, kee, nv

As with English text, we can use very simple statistics to find some of the important features in music per-
formances. For instance, to determine the musical key of a piece, we’ll simply look at the histogram of
pitches. The note-count program, nc, produces a count of the pitches in a MIDI file:

% nc bach/2part-inventions/i.01

c2 3e 1 311
D2 38 1 53
G2 43 4 261
A2 45 3 202
B2 47 4 276
C3 48 7 605
D3 50 13 585
E3 52 16 724
F3 53 6 266
F#3 54 8 477
G3 55 18 901
G#3 56 2 77
A3 57 22 965
A#3 58 3 138
B3 59 20 1101

The listing shows, for each key that is struck, its symbolic name, its index on the MIDI keyboard, the
number of times it was played, and the total duration (in ticks) the note was held. Folding all the pitches
into one octave and sorting by duration,

% nc -m bach/2part-inventions/i.01 | sort +3nr

c 0 68 4029
G 7 69 3555
D 2 72 3449
E 4 69 3453
A 9 65 2685
B 11 58 2649
F 5 48 2614
F# 6 17 853
G# 8 7 299
A# 10 7 282
C# 1 4 251

we see that, sure enough, Bach’s first two-part invention is predominantly in C major (CG. . .E), and the
next most reasonable choice would have been the dominant, G major (...GD...B). The histogram
shows this:

% nc -m bach/2part-inventions/i.01 | sort +3nr | awk ... | histo

205

c g d e a b T T ghafc#

pitch distribution in the C major two-part invention

For simple tonal music, pitch histograms are generally more crisply descending than this. Atonal pieces
(e.g., much of Schoenberg) tend to produce flat distributions and some pieces, like Joplin rags, begin in one
key and end in another (e.g., Solace begins in C major but ends in F, producing a bi-modal distribution in
which the first choice is F — the ‘‘correct’’ key — and the second choice C). Because knowing the key of
a piece (or whether or not it Aas a key) is important, we replaced the nc pipeline by a single program,
kee. Of course, just as we slid pword over Alice In Wonderland to chart plot developments, we can
slide the kee program over an entire MIDI file to locate the major tonal regions.

Another useful statistic is knowing the number of active voices, which gives a good indicator changes in
texture. The program nv does this. Here is a view of the first movement of Bach’s ¢ minor partita, show-
ing the piano roll aligned with a trace produced by nv:

voice texture of Bach ¢ minor partita, aligned with piano roll
In the scrollbar of the piano-roll view we can see that the piece has three main sections: an opening 6-

voice chordal section, a florid middle section with melody and walking bass, and a final fugal section.
These major structural divisions correlate nicely with blips in the nv trace.

206

3.3. Clustering and Streaming

By rhythmic clustering, we mean collecting events that are proximate in time into a single group. At the
simplest note level, this means finding attacks that are close together and making a group out of them.
Consider the opening of Beethoven’s 5th, reduced to rhythm:

rhythmic groupings in opening of Beethoven’s 5th

A rhythmic clustering algorithm will find four main groups here, which turn out to be the main utterances
in the opening phrase.

Streaming is similar to rhythmic clustering but occurs in 2-d pitch/time space. A sequence of events may
decompose into several streams depending on their relative spacing (e.g., how fast they are played). So a
zig-zagging melody may be heard as a single wobbly stream at a slow tempo, but as two separate streams
at a faster tempo:

several possible streamings

This can be a difficult problem in general, not unlike line recognition in vision. For instance, correctly fol-
lowing voices that cross may require knowing something significant about the context — like lots of impor-
tant melodies — in order to stay on the right track. To help study rhythmic clustering and voice streaming
we’ve written a graphical program which displays MIDI data and attempts to segment it into sensible
streams. We have a database of many melodies and fragments, including all the melodies from the Well-
Tempered Clavier. The following shows how the program might stream a performance of the ¢ minor
prelude from the second book:

T wte/p.B2
e AW
|—o—-_\ yv J N\ ¢ V7
[f ' o
Yy 5 [/ Pl
Y —

¢ minor prelude, wec/ll, showing melodic streams

A crucial measurement is the distance between two note onsets: the proportion of temporal and pitch units
determines how the notes will cluster. Also it is worth noting that two notes an octave apart may actually
be “‘closer’” than two notes a major 7th apart, because the octave is harmonically closer, and because
octave leaps occur much more frequently than leaps of a major 7th. Thus it is probably desirable to weight

207

pitch distance by the frequency of interval occurence (and this can of course depend on whatever has
recently been heard). We have not explored this yet.

4. Conclusions

We have presented a variety of simple analytical programs for finding some salient features in music. Most
of this work was done in a few weeks during which our hardware and software coalesced, and we are look-
ing forward to incorporating Bdsendorfer data as well. The simple UNIX tool-building approach is a good
way to focus on particular aspects of the problem, and it appears that a program which uses techniques like
these (rhythmic clustering, melodic streaming, key sensing, voice texture, etc) should be able to recognize
melodies, compositions, and perhaps compositional styles given enough training. However, one missing
link is the lack of any felicitous way to implement a set of simple parallel parsers which inform each other.
For instance, group-boundary suggestions which derive from key and voicing information should
strengthen each other and make it easier to know ‘‘where to look’ for important events.

Our analytical work is just beginning, and likewise, the hardware is just coming up to speed. We look for-
ward to many entertaining interactive applications in the near future.

5. Acknowledgements

Sun Microsystems generously provided a full Sun-3 system, making much of this work possible. Daniel
Steinberg and Don Jackson (both at Sun) adapted older multibus MIDI boards and drivers [1] to the
VME/multi-MPU world, and kindly forwarded their knowledge to us. Dave Cumming (at MIT) built our
VME board, cleaning up the design somewhat. Advisors Andy Lippman and Marvin Minsky at MIT
haven’t complained about the noise yet.

6. References

[1] Michael Hawley, MIDI Music Software for UNIX, Usenix Summer Conference Proceedings (1986)

[2] Peter Langston, 201-644-2332, or Eedie and Eddie on the Wire, Usenix Summer Conference
Proceedings (1986)

[3] Michael Hawley, Samuel Leffler, Windows for UNIX at Lucasfilm, Usenix Summer Conference
Proceedings (1985)

208

Automatic Exploitation of Concurrency in C: Is It Really So Hard?
Lori §. Grob

Ultracomputer Rescarch Laboratory
Courant Institute of Mathematical Sciences
New York University
251 Mercer Strect
New York, NY 10012

August, 1987

ABSTRACT

The vast majority of work being done today on the automatic exploitation of concurrency, for both mul-
tiprocessors and vector machincs, is not being done for C. Yet there are many important applications, wrilten
in C, which would benefit immenscly from the speedup produced by such techniques. Many more applications
would be written in C were there optimizing, vectorizing and parallelizing compilers for the language.
Scientific and numerical computing is largely done in Fortran and so the bulk of the advances in both optimiza-
tion and automatic exploitation of concurrency are done on Fortran compilers of various flavors. So a vicious
cycle has developed. Even a company as avant garde as Thinking Machines has found it necessary to start a
Fortran group in order to broaden their user base. Yet much work that is currently done in Fortran would be
done in C were there efficient compilers. The issues involved in writing an optimizing C compiler arc largely
the same as those involved in writing a compiler or preprocessor that will automatically exploit concurrency.

In this paper we consider whether it is possible to have compilers that will automatically exploit con-
currency in C. We discuss the relationship between automatic exploitation of concurrency for the purposes of
veetorizing and multiprocessing. We review the basic techniques and transformations used and examine the
necessary conditions to perform these transformations, with examples in C. Several elements of the C language
and programming style, such as pointers and recursion, make it difficult to do the nccessary data flow analysis.
There arc two possible approaches to this problem: to bypass code or blocks of code that contain “‘difficult’”’
featurcs and be unable to apply optimizations to these fragments, or to suitably restrict the language. We exam-
inc the choices made by the few available vectorizing and parallelizing C compilers and consider what the fu-
ture may hold in the light of current rescarch.

1. Introduction

The goal of automatic parallelization, whether for multiprocessors or for vector machines, is 1o take a program
with serial scmantics and have the compiler or preprocessor produce a parallel program.

The are many advantages to this. The programmer avoids having to deal with the difficultics of synchroniza-
tion and other issues that arise in the writing and debugging of explicitly parallel programs (Grob and Lipkis [86]).
There is a guarantce that the semantics of the program will be preserved and that the resulting program will be
corrcct. The arguments that are used for stating the need for and advantages of optimizing compilers arc applicable
here as well. The compiler will be able to find parallelism that the programmer does not sec. Programmers who sct
out to solve a problem shouldn’t have to be experts in the kinds of data flow techniques used 10 find non-obvious
potential parallelism, or in the transformations necessary to exploit parallclism. A parallelizing compiler will be
able to work on library routines and other functions that were not written by the programmer. In a large softwarc
project with many programmers with different styles of programming and different levels of expertise the parallcliz-
ing or vectorizing compiler will supply a consistent level of parallclism and provide some guarantee of correctness.
However, these arguments do not eliminate the uscfulness or the desirability of explicit parallel programming. It is

209

often useful for a programmer to be able to manipulate the parallelism and control the asynchrony him or herself.

Because the potential benefits of automatic parallelization are considerable there is a great deal of interest in
the topic. However, most work on the compilers that discover and exploit concurrency is being done on FORTRAN
and noton C.

There are features of the C programming language that make it difficult to do the analysis necessary to optim-
ize, much less exploit concurrency. These features are unconstrained pointers and other forms of aliases.

The first few attempts to write parallelizing or vectorizing compilers for C either restrained the language by
limiting the use of pointers or didn’t attempt to parallelize statements or blocks of code that contained pointers.

In this paper, we will attempt to explain what it is necessary to know about a program in order to parallelize it
safely and why the C language poses problems. We will also give a few approaches to the problem that appear
potentially promising. In order to present these issues clearly, we will first present an overview of the necessary
background material.

2. Architectural Models

We are concerned with automatic exploitation of parallelism for three basic architectural models: vector pro-
cessors, multiprocessors and very long instruction word (VLIW) machines. The techniques and constraints involved
in finding parallelism for these architectures are similar although the architectures themselves are quite different.

2.1. Vector Processors

Conceptually, the idea behind a vector processor is quite simple. An operation is performed with two arrays
as the operands. Instead of a loop iterating through all the elements of the arrays, all the elements of the arrays arc
processed in parallel. For many kinds of programs, which spend the bulk of their execution time on vector opera-
tions, this can be a significant speedup.

Architecturally, what happens in most modern vector processors is somewhat different. The elements of the
arrays that are the operands of the vector operation are passed into a pipeline of processors. Each processor per-
forms a part of the primitive operation on whatever data it is given. The data then moves on to the next processor
which performs its part of the operation. At the same time the previous processors are performing on other data. It
takes some amount of time for the first operands to move through the pipeline. There is a result on every tick
thereafter.

2.2. Multiprocessors

The multiprocessors referred to in this paper are MIMD! machines. MIMD machines consist of many proces-
sors working together on a single job. Each processor may operate autonomously, not in lock step with the other
processors. The processors may or may not share memory. They may communicate over a bus or a network

2.3. VLIW Machines

VLIW machines have a word size large enough to hold multiple machine instructions. Instructions loaded
into the word at the same time are executed in parallel. The difficulty is in deciding which instructions may be exc-
cuted in parallel and in restructuring the program to execute as many instructions as possible in parailel without
changing the results of the program,

2.4. Hybrids

Although these are the three architectures that we are going to discuss, the categorics arc not absolute. There
arc vector machines that contain morc than one sct of vector processors and do vector processing in parallel and
there are multiprocessors and VLIW machines that have vector units.

'In the taxonomy of Flynn [66], MIMD is the category of Multiple Instruction stream, Multiple Data stream computers (i.e. asynchronous
multiprocessors); whereas in SIMD designs there is just a Single Instruction stream for the Multiple Data streams.

210

3. Dependences

Dependence analysis is important in many areas of optimization and critical in automatic parallelization,
including deciding which statements may be loaded into a single VLIW instruction and executed together. A depen-
dence exists between one statement and another or between a statement and itself when the same memory location or
elements of the same array are accessed in those statements. This may enforce an ordering or serialization of the
statements in which the dependence exists.

Not all dependences prohibit parallelization or optimization. In some cases, the code must be transformed and
the dependence removed before any parallelization or optimization can occur. Sometimes all the dependent code
must be moved or treated as a unit. In other cases, the dependence will preclude any parallelization or other poten-
tial alteration in the sequence of execution.

The dependences which occur between statements have been put into three classifications: flow dependence,
anti-dependence, and output dependence (for more background on dependence see Wolfe[82] and Burke and
Cytron[86]).

A flow dependence means data will ““flow’’ forward from one statement to another. An example of a flow
dependence is:

for (i=0; i<=100; i++) {
X=W+1Z;
alil=x;

]

The second statement is dependent upon data from the first. The store must be completed before the load.

An anti-dependence is the reverse of a flow dependence. The load precedes the store. In order to get a correct
value stored the order of the statements must be preserved.

for (i=0; i <= 100; i++) {
a[i] = x + foo(g);
X=wW+2Z;

)

There is no data dependence between the statements. But there is a storage dependence between them. The fact that
load of x must complete before the store into x could be a problem if this loop were run in parallel or if these instruc-
tions were executed together.

Recent research suggests a solution to the problem of anti-dependences or storage related dependences called
variable renaming (Cytron and Ferrante[87]). The use and reuse of variables is sometimes a matter of happenstance
or storage conservation. Once it is determined that there is no computational dependence between two statements,
only a storage dependence, then the dependence can be eliminated of by renaming the variables. Of course, all
future references to the variable must use the last variable name. So the transformed code would look like this:

for (i=0; i<= 100; i++) {
afi] = x1;
X2=w+12,

211

An output dependence is caused by several stores to the same location. Again, in order to get the correct result
and not alter the observed behavior of the program the stores must be completed in the order that they are written.

for (i=0; i<= 100; i++) {
x =afi];

X=w+1z;

)

As with anti-dependences there is no data dependence here only a storage dependence. This too can be resolved with
variable renaming, When removing output dependences the last assignment to a variable must have the original
variable name or all later occurrences must be renamed. This is so that if the variable is printed immediately after
the loop the observed behavior will be the same.

Flow dependences are more of a problem. The semantics of the program may require that data be communi-
cated from one statement to a subsequent statement. Sometimes forward substitution can be used to remove the
dependence while retaining the flow of data.

for (i=0; i <= 100; i++) {

a=x+5; (1)
b=a-10; 2)
c=a+b;, (3)
x=c+y; (4)

There are flow dependences between (1) and (2) because the value of a is carried forward, likewise between (2) and
(3) with respect to both @ and b and between (3) and (4) with respect to c.

After forward substitution this looks like this.

for (i=0;i<=100; i++) {

a=x+35;
b=x-5;
c=2x;
d=2x+y;

212

4. Optimization

Optimization is both the precursor of and the nccessary first step in automatic parallelization. Automatic
exploitation of concurrency can be thought of as a special kind of optimization. In both cascs the goal is 1o make the
code faster. The analysis and code transformations needed to do optimization are a subsct of those needed to dis-
cover opportunities to create parallelism.

In some sense, a compiler will generate code for the program that has been written while an optimizer should
generate code for the program that would have been written if a very good programmer had a very good knowledge
of the architecture. Of course this is a vast over-simplification. Optimizing compilers work on the principle that
programmers write without any rcal cognizance of the architecture that their programs are running on. The optin-
izer takes the code that has been written to solve some problem and restructures it in order to make it run faster. A
great deal of this restructuring is architecture independent. The restructuring that is not machine independent
includes things such as register allocation and substitution of a faster instruction sequence for a slower onc. In this
section we will discuss some of the machine independent transformations.

One of the problems of optimization is deciding how much the code can be changed while still being secmanti-
cally the same program. It is clear that the transformations done to optimize code change the state of the program in
some sense. What defines a program? Certainly the output should be the same as before the optimization. Also, the
optimization should not cause an exception to be raised in the optimized program that would not have been raised in
the original program. But what about statement execution? If a statement isn’t executed the same number of times in
the optimized program as it is in the original program, is it still the same program? How difficult is it to determine
that changing a variable name or dcleting or moving a statement will not change the result the of the computation?

The idea behind many optimizations is that some statements do not have to be exccuted in the order that they
arc written. The ordering is often random or at least imposed only by the necessity of putting them in some some
linear sequence. The relative order of every statement is rarcly nccessitated by the problem.

A similar line of reasoning pertains to variable names. Many times a single variable is used and rcused for
computationally unrclated purposes. It is only being used for storage. If this is determined to be the case then later
instances of that variable can be renamed or moved.

Two of the most common optimizations are constant propagation (or constant folding) and common subcx-
pression elimination. These techniques are first applied to small sections of code and then to whole procedures and
functions.

4.1. Dataflow Analysis

Data flow analysis is done by summerizing information about a program in equations and then using those
equations in the analysis. The flow of data is followed; information such as which variables are live at any point and
which definitions of variables reach any given point is kept track of. There arc cquations that are recomputed along
all the possible control pathes in a program. In some cases, the information is propagated forward along the program
control graph. In other cases, the information is propagated backwards from the program exit to the beginning. An
example of information that is propagated backwards is live variables. A variable is live if there is a later use of its
valuc. An example of information propagated forward is reaching definitions. Rcaching definitions arc the sct ol
possible definitions that reach a variable at a given point in the program. The problem of dataflow analysis becomes
complicated when it is nccessary to do it on a program with many modules. It is nccessary to know which variables
are changed or defined in a module.

4.2. Levels of Optimization

Local optimizations are optimizations applicd at statement or {Ibasic block level. A basic block is a scquence
of consecutive statements that has only one entrance and one cxit. Global optimization is actually a misnomer. It is
not global optimization that makes use of the overall program call graph, that is interprocedural optimization. Glo-
bal optimization is applied at the procedure and function level. In order to show the kinds of problems and the types
of solutions involved, we will give 2 examples of local optimizations.

213

4.2.1. Constant Propagation

Constant propagation is an important problem in optimization. The purpose is to find values in the program
that are constant and propagate them through the code. When expressions are found whose operands are constant
they can be evaluated at compilc time and then these results propagated forward through the program as well. This
last is sometimes also called constant folding.

4.2.1.1. Motivation

Constant propagation and folding can lcad to faster exccution because some of the evaluation will be done by
the compiler. In some cases, this can be critical in deciding if code can be vectorized or run in parallel. Also, con-
stant propagation can be an aid in register allocation. If there are several variables that evaluate to the same valuc
they can be assigned the same register. If an expression in a conditional branch turns out to be constant then the
branch not taken can be eliminated as dead code.

4.2.1.2. How many constants can they find?

All the work that we discuss below takes a conservative approach to finding constants. These methods may
not find all constants but everything that is found will be constant over all possible executions of the program. The
early work on constant propagation (Kildall [73]) found all simple constants. A simple constant is a value that is
never changed along its path through the program. Furthermore, no assumptions are made about which direction a
path will take. This means that if there is a branch that leads to a change in the value of a constant, even if that
branch may never be taken, this will ki!l the constant.

More recent work (Wegman and Zadeck [85]) has made it possible to relax these constraints. It is possible to
decide that a term is constant even though it appears as if its value may change as the result of an assignment under a
conditional branch. It is also possible to propagate a value forward even if the variable has different constant values
at different points. The branches that are never taken are ignored and parts of the program that are never executed
are dead code eliminated. All the constants that can be found by evaluating all the conditionals that have all con-
stant operands are found.

4.2.2, Code Motion

The goal of code motion is to make the code faster by moving code from places where it is executed many
times to places where it is executed once. The most obvious place to apply this is to a loop. The more deeply nested
a statement is, the more times it may execute.

Safety, a recurring issue in code optimizations, is especially an issue in code motion. Safety refers to the fact
that the observed behavior of the program must not be altered. This includes avoiding any exceptions that would not
be raised in the original program.

4.2.2.1. Safety

Safety really deals with deciding if moving a piece of code could affect the observed behavior of the code on
some possible execution of the program. If the statement is a loop-invariant why should moving it out of the loop
change the observed behavior of the program? The statement might be only conditionally executed. So moving it
out of the loop and out from under its conditional guard may cause it to be executed when it wouldn’t be executed if
it remained in the loop. There might be a dependence of some kind between the statement and another statement,
where only one of the statements is an invariant.

4.2.2.1.1. Dependence and Code Motion

Dependence has been discussed in a previous section. The relationship between dependence and code motion
is slightly different with each type of dependence. Looking at the examples of dependences in the previous section:

In the case of the flow dependence: the first statement can be moved out of the loop saving the recomputation
of the expression.

214

S

In the case of the anti-dependence: variable renaming removes the dependence. The invariant statement can

now be moved out of the loop without modifying the program result.

The output dependence can be handled in exactly the same way as the anti-dependence. After the variables

are renamed, the dependence disappears.

4.2.2.2. Strict versus Non-strict Code Motion

Code motion is strict if the affected statement is executed no more frequently after it is moved then before

(Cytron, Lowery and Zadeck([86]).

But what if a statement is moved out of a while loop? Then the statement is moved from a place where it may
never be executed to a place where it is necessarily executed once. This may violate the rule that the observed

behavior of the program should not be altered.

If the surrounding control structure is loop-invariant, then the solution is to copy the control structure as well.
This will insure that the statement will never get executed unless it would have been executed in the original loop.

while(n+m+p>y){

x=f;

m++;

if(n>2z){
aln] =z;
Yy=p
n++;

)

when transformed and after code motion becomes

cl=n+m+p>y;

c2=n>z
if (c1) {
x =f;
‘ if (c2) {

while(n+m+p>y) {

m++

if (n>z){
a[n] = z;
;1++;

215

]

Thus the observed behavior of the program is preserved. Nothing is executed more often then it would be in the ori-
ginal program. The necessary condition for strict code motion is that the test guarding the code must be movable or
the code cannot be moved.

Non-strict code motion will move a statement from a place where it may never be executed to a place where it
will be exccuted at least once in the hope that the expected behavior of the program will cause this to be a profitable
move. Both kinds of code motion must be equally conservative in the sense of preserving the expected behavior of
the program. In fact, all optimization algorithms must err on the side of missing optimizations rather than altering
the behavior of a program,

The non-strict procedure looks for code or expressions that are common along all paths from a branch. If it
finds such expressions, then they can be moved above the branch.

4.3. Interprocedural Optimizations

The same optimizations and transformations that are applied locally may be applied interprocedurally, subject
to certain conditiens. If the program consists of one single source file, then it is easy to apply the techniques above
and others like them. However, if the program consists of several modules then there are various options. Onc
option is to perform only local optimizations and not try to do any interprocedural optimization. This is a popular
alternative because local optimization is easy and profitable and interprocedural analysis is difficult. In order to do
interprocedural optimization it is necessary to take into account aliasing. Also, if any module is changed the entire
program must be reoptimized. The kinds of optimizations that should be performed globally arc the same ones that
are performed locally; such as global constant propagation, dead code climination, constant subexpression elimina-
tion and code motion. In order to do that it is necessary to perform interprocedural data flow analysis.

4.3.1. Interprocedural Dataflow Analysis

Aliases pose a problem in interprocedural analysis. They arise, even in languages without pointers, from
parameters passed by reference. Aliases also arisc from several structures mapped onto the same area of memory,
such as unions in C and equivalences in FORTRAN. The most conservative forms of interprocedural analysis deal
with the presense of aliases by making worst case assumptions. The worst case assumption is that any function call
may modify any variable. So after the function call it is assumed that all the variables that are reachable by that func-
tion have been modified. This will affect all optimizations as well as any possibility of vectorization or paralleliza-
tion. But, is it nccessary to be that conservative?

There are groups that have applied modern dataflow techniques to this problem and been able to handle the
problems of aliasing (Burke [84]). The information about a module is summerized and propagated back 10 its call
point where it is matched with the parameters to the module. This information is then used in the parent module and
propagated back to its call point. Thus, it is possible to to determine the actual aliasing.

4.3.1.1. Separate Compilation

In order to do good interprocedural analysis all code for all the modules must be present. In the presense of
separate compilation this is not always feasible. Certainly it would be better not to have to reoptimize the entire pro-
gram every time one module is changed. If the program calls library functions or links in some module wherc i
does not have access 1o the code then it cannot do the reoptimization. For the most part, it is a problem that remains
unsolved today. There are several partial solutions and attempts at solutions.

The MIPS solution is to link the intermediate code (Himmelstein, Chow and Enderby [87]). When a module
is altered the necessary parts of the code are all there to reoptimize. So this lets you reoptimize, after changing a
module, but forces you to look at the entire program with every change.

216

There is rescarch being donc that work says that when a single module of program is changed it isn’t neces-
sary to recompile the entire thing (Cooper, Kennedy, and Torczon [86]). Given a database of information containing
compilation dependences, this information is compared with changes in the programs interprocedural information
and a list of procedures requiring recompilation is produced. A change in one module might not have to necessitatc
the reoptimization of the entire program. This can be tremendously complicated, of course, by the presense of glo-
bal variables and pointers.

5. Automatic Parallelization

5.1. Where does the parallelism come from?

Parallelism can be found at many different levels in a program. Expression level parallelism refers to the
cvaluation of several different parts of the expression at the same time. For instance, in an expression containing
addition operations and multiplication operations the various operands could be evaluated at the same time, subject
to the rules of precedence. This is the type of parallelism found in VLIW machines. Further, in VLIW machines,
there is expression level parallelism for many expressions happening at the same time. There are also statcments
that can be run in parallel. There is loop level parallelism, where the iterates are run in parallel. Ideally, it is desir-
able to find all the parallelism in a program, no matter at what level it exists. It may be questioned whether it is
worth executing something in parallel if it is only a single expression. The answer to this is based on the architcc-
ture and the implementation of those fcatures that create and control parallelism.

Numerical programs and other scientific applications are often very regularly structured. The computation is
often done in a series of loops. The data structures are arrays or matrices This type of program lends itself very well
to automatic parallelization and vectorization as generally practiced.

Non-numeric applications may have a less regular structure. But if a program is written with the idea that it is
going to be automatically parallelized, that is, bearing in mind the types of transformations done and the constructs
that can be parallelized, these applications can get significant speedup (Lee, Kruskal and Kuck [85]). When non-
numeric applications with irregular shapes are parallelized the speedup obtained is likely to be less significant.
Because VLIW machincs exploit fine grain or expression level parallelism they are less susceptible to this problem.

Most vectorizing compilers and parallelizing compilers for multiprocessing look for parallclism at the loop
level. The vectorizing compilers attempt to parallelize the innermost loop in a nested construct. Each statement in
the innermost loop will be vectorized separately. The compilers for multiprocessing attempt to parallelize the outer-
most loop in order to minimize synchronization and to achieve optimal parallelism. The goal of here is to execute
loops in parallel with all the iterates being done at once. It is loop level parallelism that we are going to discuss.

5.2. When Can A Loop Be Executed In Parallel?

In order to understand the complexities of parallelism of this sort, one must picture all the iterations of a loop
cxccuting in parallel and at different speeds. The danger is that there may be a dependence existing between several
statements in the same or different itcrations. The existence of a dependence may make it necessary to have storcs
and fetches of various elements completed in a prescribed order. Vectorizing or multiprocessing may allow that ord-
cring to be violated, causing the program result to be incorrect. So it is necessary to discover the dependences that
exist and decidc if they are of a type that will prevent the vectorization or parallelization of the loop. The data flow
analysis that is necessary 1o find dependences for optimization is a subset of the analysis that is needed to detect
parallelism.

5.2.1. Analysis of Array Subscripts

In a previous section dependences involving scalars were discussed. But in many programs the majority of
the computing is done by manipulating arrays and elements of arrays. When there are loops, possibly nested, and
arrays with onc or more subscript variables, it is not always obvious when two or more statements will be accessing
the same locations on the same or different itcrations. The most conservative approaches for discovering depen-
dences do not attempt to analyze the subscript of the arrays to sce if a dependence exists. Instcad, a store to any cle-
ment of an array is considcred to have changed the entire array. This may unnccessarily prevent parallelization or

217

vectorization since it will appear that there is a dependence where none exists. This is erring on the side of conscr-
vatism. It is much safer to sec dependences where none actually exist and therefore not to parallelize a section of
code, then to execute it concurrently and violate a dependence.

More sophisticated dependence analysis is based upon forming dependence equations based upon linear sub-
script expressions (Wolfe [82]). The corresponding expressions are set equal to each other and if there is a solution
to the equation then there may be a dependence.

5.2.1.1. Context

It is possible to get a more precise answer to the question of the existence of a dependence if the contexr of the
loop is considered. Context means that only integer solutions within the bounds of the loop are considered as solu-
tions to the dependence equations. So if it can be proved that a dependence exists, but not within the bounds of the
loop, then the loop can be parallelized.

for (i=0; i <= 49; i++) {
ali] = b(i};
d[i] = a[100 - i};

The stores into g in this loop are into elements 0,1,2,...,49 and the fetches from a are from elements 100,99,98,...,51.
When i equals 50 there is a dependence between these two statements but since the bounds of the loop go from 0 to
49 no dependence exists within the context of this loop. Even if the loop bounds are symbolic they may well be
available by compile time. Clever analysis and constant propagation may maximize the chances of parallelizing
such a loop.

5.2.1.2. Plausiblity

There might be many solutions to the dependence equations. But only some of them will fall within the con-
text of the dependences. The context is also a function of the direction that the dependence runs in. If there is a
dependence that exists only if one loop is running forward while the other loop runs backward and both are actually
running in the normal fashion from one to n then that dependence is implausible and doesn’t have to be considered.
Information about the chronological relationship between the subscripts of the two elements that are being tested is
summerized in a direction vector (Wolfe [82]), (Burke and Cytron [86]). There is one entry in the direction vector
for each subscript of the array. This vector can be interpreted according to the direction that the loop is running.
This can help decide if a dependence that exists is plausible.

5.2.1.3. A Hierarchy of Tests

There are scveral different tests for independence. They can be thought of as forming a hierarchy that ranges
from the most general that looks for any integer solutions to the dependence equations, to tests that look for only
integer solutions within the loop bounds, to tests that look for integer solutions within loop bounds and consider the
dircction vectors. In order to minimize the cost of the analysis the cheapest test is done first. If this test proves
independence it is not necessary to do any further analysis. If this test fails to prove independence then a more
expensive test is applied. If there is still a dependence then finally the most exact test is applied. By using the tests
in a hierarchy there is a possibility of holding down the amount of analysis necessary. This is because all the tests
are conservative and will err on the side of not proving independence. Once independence is proved no further test-
ing is nccessary.

5.2.1.4. Flow Dependences

The dependences that prevent parallelization or vectorization are flow dependences. A flow dependence is one
that occurs when a store of a variable precedes a fetch. It can also exist between iterations as when there is is a store

218

into an element in one iteration that is fetched in the next or in any succeeding iteration. This can be in a single
statement or between two statements and can be thought of as a recurrence.

5.2.1.5. Vectorization

Vectorization works by running one statement at a time in parallel over all its iterates. It cannot take place if a
cycle of dependences exists in the statement or statements being vectorized.

If there exists a flow dependence between two statements in a loop, and the statements are to be vectorized
then one statement must be completely executed before the other is begun or the answer will be incorrect. Given the
following code fragment:

for (i=0; i <= 100; i++) {
a[i] = bli] + cli];
dli] = a[i] + efi];

If this was executed serially then in every iterate the store of afi] would be completed before the access of afi]. But
if both of these statements were vectorized, then there might be at least one iterate where the load of a[i] in the
second statement would be executed before the store of the same ali], in the first statement. The solution to this
problem is to vectorize the first statement and when it completes to do the second statement also in parallel.

Early vectorizers would parallelize all or none of a loop. More modern compilers try to do as much as they
can.

for (i=0; 1 <= 100; i++)
afi] = afi-1] + c[i] + d[i];
A clever vectorizer would separate the last piece of the statment and vectorize the addition of ¢ to d.

5.2.1.5.1. Conditionals

Conditionals that limit which elements of an array are used as operands can be dealt with by taking the test
and making a conditional array out of it.

for (i=0; i <= 100; i++)
if (alil<n)
d[i] = a[i] + bli];

Can be transformed as follows:

Vectorize; c[i] = a[i] < n;
Vectorize: d[i] = a[i] + b(i] where c[i];

Then the vector operation is performed on all the elements where the conditional array contains a one. If the condi-
tional array is very sparse it may not be worth it to do the vectorization. This can be applied to nested conditionals
as well. The more deeply nested the conditionals are, the more important it is to estimate the sparsity of the

219

conditional array. Since each layer of nesting probably eliminates some number of iterates that can be vectorized, it
may be that it can become unprofitable to perform the vectorization.

Conditionals that cause an exit from the original loop cannot be dealt with this way.

5.2.1.6. Multiprocessing

Multiprocessing of a loop cannot take place if there is a flow dependence between iterations. If there is a store
in one iteration that is used in a subsequent iteration the two iterations cannot be run in parallel. There is every possi-
bility that they will complete out of order and the result will be incorrect. If there is a flow dependence but it is only
in the same iteration then that loop can be multiprocessed. Sometimes the dependences can be worked around by
synchronizing the references. This provides an added cost and removes some of the benefit, sometimes all of the
benefit of parallelization. If the dependence is across iterations of the outer loop or if there are many synchroniza-
Lion points in the outer loop then it may be most profitable to parallelize an inner loop. The desire to obtain the most
parallclism by parallelizing the outermost loop must be balanced against the cost of synchronizations in that loop.

5.2.1.6.1. Do Across

If the loops have a flow dependence across iterations that makes it impossible to run them completely in paral-
lel it may still be possible to get some of the benefit of parallelism. There has been a construct suggested? called the
do across construct (Cytron [86]). It is a parallel loop with a delay. This allows a dependence in the form of a refer-
ence to a previous iterate be satisfied.

When the first iterate is executed, the second is not started until the store in the first iterate completes. This is
repeated for all iterates. Thus if the store is is in the beginning of the loop, it is conceivable that all of the loops will
be running at the same time in this overlapping fashion.

The profitability of this is directly linked to the length of the delay. A delay of zero is equivalent to a fully
parallel loop.

5.2.1.7. Transformations for Concurrency

Code can be transformed in order to make it vectorizable or parallelizable or in order 10 increase the benefit of
concurrency. Like the optimizations discussed in a previous section, these transformations must not cause the pro-
gram 1o give an incorrect answer or raise an exception where none was raised before the transformation.

5.2.1.7.1. Getting Rid of Dependences

The first group of transformations are architecture independent and used to put code into a form which can be
cither parallelized or vectorized. One goal is to get rid of all output and anti-dependences and as many flow depen-
dences as possible.

The first transformation is scalar renaming which removes anti and output dependences by using more storage.
This was discussed in the previous section on dependences. Scalar expansion is a similar transformation. Here a
scalar that is used in a loop is promoted 10 an array. This can climinate a noncomputational dependence that could
prohibit multiprocessing or vectorization. The price of this expansion is a large amount of storage which must be
reclaimed at the earliest possible time.

5.2.1.7.2. Other Transformations

The number of implied and explicit gotos can be reduced by reproducing the program from the control flow
graph. This has the effect of straightening the code, thus exposing more of it for possible parallclization. Also,
loops can be normalized by making their lower and upper bounds zero or one through n and adjusting the array sub-
scripts.

Since vectorizing code means vectorizing inner loops, if there is a dependence in the inner loop but not the
outer loop it would be desirable to be able to exchange the inner and outer loops. The preconditions for loop
exchanging are that the exchange must not turn an anti-dependence into a flow dependence or an flow dependence

220

into a anti-dependence.

Another transformation used for vectorization is to convert if statements to loops, where possible, and then
vectorize them.

There are many other code transformations used to increase the amount of parallelism possible. These arc
some of the most important oncs.

6. The C Programming Language
6.1. Difficult Language Issues

In order to be execute an instruction in parallel with another instruction, it is necessary to prove that no depen-
dence exists between the them. This is true whether the instructions are going to be run on a vector processor, a
multiprocessor or a VLIW machine. The reasons that make it necessary to prove independence and some of the
techniques used to do so have been discussed in previous sections. There are features in the C language which make
it difficult to prove independence. These are recursion, unions, parameters, global variables and unconstrained
pointers. Of these features, only unconstrained pointers are unique to C.

In particular, unions, parameter passing by reference, global variables and recursion all occur in FORTRAN.
The problems posed by these language features have been dealt with by various automatically parallelizing or vec-
torizing FORTRAN compilers in different ways. Since the purpose of this paper is to discuss the unique difficultics
of automatic parallelization in C, we will not elaborate on the different solutions that have been applied to these
problems.

6.1.1. Pointers

How does the presense of pointers make it more difficult to discover areas of potential concurrency? Pointers
make it possible to refer to the same memory location through many different paths. This makes it very difficult to
detect dependences.

When the use of pointers is constrained by the language, it is easier to devise some scheme for working
around them. In C, where the use of pointers is essentially unconstrained, where the address of any variable can be
taken, where a pointer to a type can be made to point to any other type just by casting, the ficld of possible aliascs is
enormous. The analysis becomes very difficult, If not impossible to do effectively.

6.2. Is There an Overall Solution?

The problem of dependence analysis in the presence of pointers is so hard that in the general case there is no
solution. It is not possible to know to what location a pointer is pointing. Thus it is impossible to know, at compile
time, when a variable is being fetched or stored and when it is not. Therefore, it is not be possible to compute the
necessary dependence information.

This doesn’t mean that nothing can be done to parallelize code that contains pointers. It is not necessary to be
able to solve the general case. There are solutions for specific cases that can provide enough parallelism to be satis-
factory, if not optimal. To put it another way, if it possible to run a loop concurrently becausc it has been possible to
do the dependence analysis for that specific case, then the parallelism is still worthwhile even if it is impossible 0
solve general problem of dependence analysis in the presense of pointers.

6.3. Proposed Solutions

One approach that is safe and conservative is to treat all pointer variables and variables that have their address
taken as if they are aliased together. Then whatever dependence analysis is done takes that alias into consideration.
This is very safe and may yield some parallelism even in the presense of pointers.

2Now in use by Alliant.

221

This can be improved by allowing the programmer to pass information to the compiler by means of directives.
The compiler could be told to vectorize or parallelize some code even if it looked like a dependence existed. This
would cause a wrong answer if a dependence really did exist. It also relies on the programmer to understand enough
about the process of automatic parallelization to know if a dependence exists.

We believe that it may be possible to do better. Several general approaches appear promising. We are not
going to spell out algorithms; instead we are going to suggest some ways of thinking about the problem and some
techniques that might lead to more information.

While it may not be possible to know in advance where a pointer is pointing; it may be possible, in a few rela-
tively static cases, to know where it is not pointing. It is not necessary to know at what location a pointer variable is
pointing if it can be proved that it is not aliased to anything that would prohibit the parallelization or vectorization of
the loop. We would like to be able to partition the set of possible aliases.

First consider global (meaning one function at a time) analysis. Starting at the definition of a pointer variable
and going forward along the control flow graph, every time a pointer variable is set to point to any specific named
variable the aliased pointer variables could be put into an equivalence class. A member is removed from the
equivalence class if it is set to point to an address that is specifically in another equivalence class. If a member of an
equivalence class is found to be an alias for a member of another equivalence class then the two classes are unioned
together. All pointer variables and variables that have had their address taken and that are not found to belong in a
specific equivalence class are put together in an equivalence class of their own. Since it cannot be determined what
the set of possible aliases for these variables are, it must be assumed that they can point anywhere. The analysis
must be done assuming that these variables are included as potential aliases in every equivalence class. If the pointer
is a parameter to a function the alias information is carried forward interprocedurally in the same way that aliased
sets of reference parameters are handled in FORTRAN (M. Burke [84]). In this manner, while it may not be possi-
ble to know where something is pointing, it may be possible to know that two pointers cannot be aliased together. If
the pointers are in two disjoint classes, they cannot be aliases for each other. This should increase somewhat the
available parallelism.

In the case of a function that has only local pointers this should provide enough information to do the depen-
dence analysis. In the presense of dynamic allocation and pointers returned by user functions, this is certainly not
sufficient.

Pointers used to index into arrays are another arca where we believe it may be possible to obtain sufficient
information to perform the dependence analysis and get some parallelism.

The pointer and its increment can be thought of as an operation on an induction variable. An induction vari-
able is a variable that is incremented or decremented a constant amount, usually on each iteration of a loop. The
address arithmetic done to increment a pointer is often of this nature.

In this case, where a pointer is being used to iterate through an array, then by treating the pointer as an induc-
tion variable is possible to convert the pointer reference into an array subscript operation and perform dependence
analysis as mentioned previously. If there is more then one pointer addressing s single array this is equivalent to
having more than one subscript.

The pointer must be restricted from going past the end of the array.

6.4. Conclusion

There are real difficulties involved in writing optimizing, parallelizing or vectorizing C compilers. It appears
to be possible to to work around these difficulties without restricting the language or totally giving up the advantages
of parallelism. The cost of this is a great deal of analysis. It remains to be seen whether the benefits from the added
parallelism will outweigh the costs of this analysis.

As dataflow techniques improve, it will become possible to make less pessimistic assumptions about data rela-
tionships without sacrificing program correctness. These improved techniques will be applied first to FORTRAN,
which offers a much more static environment for experimentation and which has a much higher demand for parallel-
ism. Inevitably thesc improved techniques will be applied to C and an amount of parallelism and optimization
which was deemed miraculous a short time ago will appear to be unacceptable in the light of what can be demanded.

222

We do not believe that a general solution to the problems of pointers will be found. But we believe that it is
possible to obtain a useful amount of parallelism from C even under present conditions. We also believe that the
approaches that we have discussed here and other approaches that will arise from later dataflow work and be applied
to this problem promise a greater amount of obtainable concurrency without restricting the language.

7. Acknowledgements

This work was inspired by and stemmed from conversations with Ron Cytron of IBM Research, who
encouraged me to pursue this and whose own work contributed to the foundation upon which this rests. Stefan Freu-
denberger of Multifiow Computer, Inc., participated in later discussions. J im Lipkis of the NYU Ultracomputer Pro-
ject contributed to all these discussions and provided encouragement and insight. My heartfelt thanks to these threc

people.

References

F. Allen, M. Burke, P. Charles, R. Cytron, and J. Ferrante, *‘An Overview of the PTRAN Analysis System for Mul-
tiprocessing’’, Proc. International Conference on S upercomputing, 1987.

M. Burke, “‘An Interval Analysis Approach Toward Interprocedural Dataflow’’, IBM Research Report RC11794,
1984.

M. Burke and R. Cytron, “‘Interprocedural Dependence Analysis and Parallelization™’, Proc. the SIGPLAN '86 Sym-
posium on Compiler Construction, 21(7):162-175, July 1986.

K. Cooper, K. Kennedy, and Linda Torczon, “‘Interprocedural Optimization: Eliminating Unnecessary Recompila-
tion”’, Proc. the SIGPLAN '86 Symposium on Compiler Construction, 21(7):58-67, July 1986.

R. Cytron ‘‘Doacross: Beyond Vectorization for Multiprocessors’’, Proc. International Conference on Parallel Pro-
cessing, August 1986.

R. Cytron and J. Ferrante, ‘“What’s in a Name?: or The Value of Renaming for Parallelism Detection and Storage
Allocation”’, Proc.International August 1987.

R. Cytron, A. Lowery, and K. Zadeck, ‘‘Code Motion of Control Structures in High-Level Languages’’, Conf Rec.
ACM Symposium on the Principles of Compiler Construction, 1986.

M. J. Flynn, *“Very High Speed Computing Systems””, IEEE Trans., C-54, pp. 1901-1909, 1966.

L. Grob and J. Lipkis, “*Approaches to Parallel programming on Multiprocessors™, Proc. of the EUUG Autumn
1986, September 1986.

M. Himmelstein, F. Chow, and K. Enderby, *‘Cross-Module Optimizations: Its Implementation and Benefits™, Conf.
Proc. Summer 1987 Usenix, June 1987.

G. Kildall, “‘A Unified Approach to Global Program Optimization”’, Conf. Rec. First ACM Symposium on Princi-
ples of Programming Languages, pp. 194-206, October 1973.

G. Lee, C. Kruskal, and D. Kuck, ‘‘An Empirical Study of Automatic Restructuring of Nonnumerical Programs for
Parallel Processors”’, IEEE Trans. Comp., October 1985.

M. Wegman and K, Zadeck, ‘*Constant Propagation with Conditional Branches’’, Conf. Rec. Twelfth ACM Symposi-
um on Principles of Programming Languages, pp. 291-299, January 1985.

M. Wolfe, ““Optimizing Supercompilers for Supercomputers™, PhD thesis, University of Illinois at Urbana-
Champaign, 1982.

223

An Intelligent, Window Based Interface to UNIX

Stuart Borthwick, John R. Nicol, Gordon S. Blair

Department of Computing
University of Lancaster
Bailrigg
Lancaster, LA1 4YR
UK.

email: mcvax'dcl-cs!stuart

ABSTRACT

Many operating systems have been developed with little thought
given to the user interface. Most interfaces tend to be awkward to use
and rely on simple command line interpreters. Although many experi-
enced users have little trouble with the UNIX’ interface, the popularity
of the system demands that a more user oriented interface will be
required in the future. One aim of this interface should be to alleviate
the need for naive users to learn and remember a large number of com-
mand names and cryptic command lines.

The UNIX interface can be improved by employing the facilities
offered by bit-mapped graphical workstations (menus, windows, icons,
etc.). To use these facilities most effectively, the interface requires intel-
ligence. This can be provided by associating semantic information with
UNIX objects. This paper describes a UNIX interface which uses a
mode of interaction known as direct manipulation. Direct manipulation
assumes an environment of objects and associated semantic information
(i.e. attributes). It encompasses the ability to select objects with a point-
ing device, display and issue commands associated with the objects and
change attributes of the objects.

This kind of interface helps a user in several ways. Displaying
UNIX objects (files, directories, etc.) as icons provides a more natural
interface. In addition, the association of semantic information with
objects makes it easier to provide a more intelligent user interface. For
example, with typing information the system can deduce exactly which
commands are permissible in a given context and does not rely on com-
mands themselves to detect errors. Consistent and helpful error mes-
sages can also be generated. Finally, the use of direct manipulation,
combined with semantic information, permits a much reduced command
set to be displayed in a given user context. The authors see this as an
effective way of assisting the user.

T UNIX is a trademark of Bell Laboratories.

eSS

An Intelligent, Window Based Interface to UNIX

1. Introduction

UNIX is unarguably one of the most successful operating systems in the history
of Computer Science. The system has been adopted universally by both industry and
academia. Indeed, the ever increasing acceptance of UNIX has resulted in the system
being regarded by many as a de facto standard. However, the rapid growth in UNIX
popularity has led to some serious repercussions. In particular, a number of important
new requirements has created a pressing need for several aspects of the system to
evolve further.

This paper focuses on one such aspect of the system’s evolution path, its user
interface: the growing number of non-expert UNIX users and the need to exploit the
sophisticated graphics facilities typical of modern workstations have highlighted the
inadequacy of the traditional UNIX user interface, the shell. The command line inter-
face presented by the shell is difficult for naive users to learn, is inconsistent across
products and is a burden to remember [12]. The shell cannot make use of the power-
ful facilities provided by workstations and its interface is in stark contrast to that
presented by a window manager or a tool designed to run in a window system.

More recently, systems have been developed which use a mode of interaction
called direct manipulation [5]. This is described as the interaction of a user with an
information environment consisting of dynamically changing windows. The user has a
simple pointing capability through which he/she can select objects in the environment,
issue applicable commands and, possibly change attributes of the objects. The graph-
ics display not only provides a means of presenting sophisticated forms of output, but
can be used as a mechanism to reduce the complexity of the system itself.

The display can be greatly improved through the use of an iconic interface [9].
By presenting user commands in the form of icons, it is possible to exploit further the
capabilities of the graphics display. The user selects combinations of objects and facil-
ities as a substitute for commands and parameters. Some attempts have been made to
provide this type of interface to UNIX (e.g. UNICON [8]), but these have been res-
tricted by lack of information pertaining to objects and the relationships between
objects in the underlying UNIX system.

This paper presents a user interface to the UNIX system which has been
developed on a Sun workstation. The system uses the direct manipulation type of
interaction introduced above. To overcome some of the restrictions imposed by UNIX,
the interface has been provided with a degree of intelligence (the primary source of
which is through the association of semantic information with UNIX objects). The use
of direct manipulation combined with semantic information permits a much reduced
command set to be displayed in a given user context and allows, for example, con-
sistent and helpful error messages to be generated. The system can deduce exactly
which commands are permissible in a given context and does not rely on commands
themselves to detect errors. The result is a much more user oriented system which
makes effective use of existing UNIX tools as well as workstation facilities.

The paper is organised as follows. Section 2 discusses the underlying mechanisms
used to provide the interface with intelligence. Section 3 presents an overview of the
window system and style of interface. The support of version and configuration control
is described in section 4. Section 5 then gives a more detailed description of the

226

An Intelligent, Window Based Interface to UNIX

window interface, and a brief outline of the current implementation status is given in
section 6. Section 7 summarises the advantages of the interface and, finally, section 8
discusses the implications of the work in the wider context of operating system design.

2. Providing UNIX with Intelligence

A central feature of the UNIX operating system is its hierarchical filestore. Two
primitive object types are defined in the filestore: files and directories. Files can be
further classified as being either regular or special’ files. Regular files act as con-
tainers for anything from source and object code to data and text.

In our opinion, to improve the user interface, the traditional view of the UNIX
filestore must be generalised. For example, it should be possible to define new object
types (and the operations applicable to them), relationships between objects, and to
associate additional semantic information with objects.

The authors have generalised the UNIX filestore by further classifying regular
files into a new set of system objecr rypes. In our experimental system, the set of
object types is based on the set of types recognised by the UNIX file command
(although this set can be augmented further by arbitrary user-defined types). Once the
type of each object in the UNIX filestore has been established, it is associated with the
object as one of its attributes. Additional attributes can be defined in a data structure
called a frame, with a different frame existing for each object type.

The rollowing sub-sections discuss the various ways in which object types and
semantic information have been exploited in the pursuit of intelligence in the UNIX
interface.

2.1. Semantic Checking

Forms of semantic checking such as type checking are commonly found in pro-
gramming languages; however, they have received relatively little attention in the con-
text of operating systems. By using the semantic information stored in object frames
in conjunction with a simple rule base (described in the following sub-section), it is
possible to implement type checking in UNIX. The key to a solution is to store type
mapping information pertaining to UNIX tools in a rule base. In addition, the frame of
a UNIX tool (or command frame, see section 2.3) is required to store a specification of
the types of its possible input and output objects. The additional type information
stored by the system can be used to check the validity of the given input objects in a
tool invocation,

One major problem exists with type checking in operating systems. If the level of
type checking is too strong, it becomes difficult to incorporate essentially generic tools
such as editors (thus implying that specialised tools would have to be provided for
each object type). If, however, the level of type checking is too weak, unreasonable
operations will be permitted, e.g. displaying a binary object. We propose a flexible
strategy to overcome this problem, based on a hierarchy of types. A simple hierarchy

T Special files are associated with physical devices. They are provided so that UNIX devices

can be written and read in the same way as regular files. However, these are mentioned here
only for completeness.

227

An Intelligent, Window Based Interface to UNIX

is shown in diagram 1.

Generic tools can now be incorporated by selecting a type at a high level in the
hierarchy (e.g. an editor could take any input object with the attribute rext). Other tools
can be more specific, e.g. a C compiler should only be allowed to operate on an object
with attributes rext:source:C.

file

RN

text binary

/

source

VAN

pascal

Diagram 1: A Hierarchy of Types

Thus, type checking can be used to provide more intelligence in the user inter-

face. For example, it would be relatively straightforward to generate error messages of
the form:-

Editing a non-textual file is not permitted.

2.2. The Rule Base

It is possible to implement type checking and type hisrarchies (as described in
section 2.1), through the additional use of a rule base. An example of a rule base is
shown in diagram 2. In the diagram, three types of commands are introduced’:

* the TYPE command

-- this allows the user to create new object types,
* the member of set (MS) command

-- this allows the user to set up an arbitrary type hierarchy (the TYPE and MS

commands in diagram 2 illustrate how the type hierarchy of diagram 1 would be

built), and
* the RULE command

-- this allows the user to add new rules to the rule base. A RULE command is

expressed as a triple of the form <function name> <type mapping> <tool>, where

<tool> specifies the UNIX tool to be invoked to produce the <rype mapping>
designated by <function name>.

T Other commands exist for removing types, member of set information and rules respectively.

228

An Intelligent, Window Based Interface to UNIX

TYPE file, binary, text

TYPE c, pascal, source,

TYPE unformated, formated

text, binary MS file

source MS text

¢, pascal MS source

RULE ’format’: unformated -> formated: nroff
RULE ’compile’: pascal -> binary: pc
RULE ’compile’: ¢ -> binary: cc
RULE ’edit’; text -> text: vi

RULE ’edit’: text -> text: ex

Diagram 2: A Sample Rule Base

The rule base mechanism can be used in several ways to support intelligence in
the user interface. Examples of such uses are now illustrated through a discussion of
the various scenarios which may occur when the rule base mechanism is in operation.
In the discussion, it is assumed that the rule base in use is identical to the one shown
in diagram 2.

* Unambiguous Rules

Given that a user has produced an object called "report" (of type unformated) and

he/she now wishes to format the document, it is necessary to select the object

"report” and then apply the format command. To determine which UNIX tool is

required, the system searches the user’s rule base for a command with the

<function name> format. In this case, there is only one such rule, and the system
unambiguously knows to apply the UNIX formatting tool, nroff.
* Generic Rules

Assume now that a user has an object called "prog" (of type pascal) and he/she

wishes to compile it. As before, the object is first selected and then the appropri-

ate command is applied (compile in this case). Once more, the system searches
the rule base for a rule with a matching <function name> field. In this case, how-
ever, it will find two rules with compile as the <function name> field. The system
must then attempt to resolve this ambiguity in the following way. It interrogates
the type of the object "prog". Having established that "prog" is of type pascal, it
then examines the <type mapping> field of the two ambiguous rules concerned to
determine if the input type of either rule matches pascal. In this case, one of the
rules does have a matching input type, and so the system knows to apply the pas-
cal compiler, pc.

* Ambiguous Rules

In some cases, ambiguities arise that cannot be resolved by the system. For

example, consider the case where a user wishes to edit a text file by applying the

function edit; the system will be unable to select a rule from the rule base unam-
biguously using the strategies described above. Either of the rules concerned with
the editors ex or vi could be applied. In this case the system must rely on the user

229

Dublin. 21-25 Seotember 1987

An Intelligent, Window Based Interface to UNIX

to resolve the ambiguity (section 5.1 describes how this is achieved).

Note that the rule base assumes a one-to-one mapping from input object to output
object. This is particularly well suited to the direct manipulation mode of operation,

The rule base aids the user in a number of ways. In the case of unambiguous
rules, the rule base assists the user by removing from him/her the need to know the
specific details of a given UNIX tool. More significantly, the rule base can be used to
support generic commands in UNIX. The power of generic commands is that users
are no longer burdened by the need to know the names of various editors, compilers
and debuggers (etc.) which UNIX offers. Rather, the user can simply choose to com-
pile a given object, for example, without necessarily knowing its type or the name of
its compiler. Finally, it is worth noting that in each of the above examples, the system
is able to deduce from the mapping information contained in the rule base, the type of
the object produced as a result of applying a rule.

Establishing a rule base from afresh could be a daunting task for many non-expert
UNIX users. Subsequently, it is our intention that the system administrator would build
a standard rule base, containing rules for common UNIX activities such as document
preparation and software development. The UNIX tool indicated by the <tool> field of
each rule would also have associated default parameters. The user would then be free
to tailor his/her rule base to personal needs. Thus, for example, if a user had developed
some tools for a new application, he/she could extend the rule base by adding new
rules and possibly an enriched set of object types.

2.3. Command Frames

The traditional type of UNIX interface has a single scrolling terminal in which
commands are issued and results are displayed. An iconic interface however has no
scrolling terminal. Rather, it creates windows itself in which to execute commands. A
mechanism is required which allows the interface to decide which type of window is
required for each command.

This is achieved by using the frame associated with the object of type command.
The command frame contains a range of information pertaining to commands, includ-
ing type information. The command frame also specifies the size and type of window
and subwindows required by a given command, and which outputs should be displayed
in each subwindow.

A command may request the use of several types of window. For example, a
command which produces output but has no input may request a simple display win-
dow with a scrollbar, a command such as a visual editor may request a terminal emu-
lator. Other commands may themselves create and control windows and need no help
from the interface.

Command frames are also used to store the type information mentioned above,

An interface such as this allows commands to make effective use of windows
without knowing any details of the window system.

230

An Intelligent, Window Based Interface to UNIX

3. The User Interface

This section describes the main interface to the system which consists of an icon-
shell. The iconshell is a window which displays the contents of a UNIX directory as a
set of icons. The user has the ability to select an icon by pointing at it with the mouse
and can then issue related commands.

As shown in diagram 3 below, the iconshell consists of three subwindows: the top
subwindow is used for error and help messages, the middle subwindow is a control
panel from which general commands may be issued, and the bottom subwindow is
used to display the icons. The title line of the window contains the name of the
current directory.

Error Level Create Onject] i
=

Fes o] Selections
Felp Leve o
Terse | [MakE Dbjects

attshest.c attshaet.o help.c help.o

@ [+ [@ [-

n1scs.C R1SCS.0 options.c cptions.o

w181
rulenase.c rulebass.c unix.c froi]
8181 -m 8181 m

comasheet.c comagheet.o defs.h display.c display.o dustoin

5 & (] (@)][]

»ain main.c »ain.o menus.h selection.c selection.ol

Diagram 3: An Iconshell Display

The contents of the directory are displayed as captioned icons, a different icon
being associated with each object type. For example, the icon with the Oldenglish 'C’
character represents a C source object, and the icon with the sequence of binary digits
represents a binary object. We have attempted to associate a meaningful icon with
each object type (and with commands associated with objects -- see section 5.1).
Research has shown that the success of an icon to convey its intended meaning
depends on the combination of a number of factors. These include the type of pictorial
representation used, the underlying functionality of the object and how directly these
map on to each other [16].

The control panel in the iconshell contains three types of items: burtons, menus
and szate selectors. Buttons are used to issue distinct commands (Help, Quit, etc).
Menu items have a group of related commands in a pop-up menu (Create Object, etc).
State selectors also have a pop-up menu. This, however is not used to execute com-
mands, but rather to set the values of environment parameters. For example, the Help
Level state selector is an attribute of the help system. It has two possible values, Terse
and Long, which are contained in the pop-up menu. Setting the value to Terse causes

231

An Intelligent, Window Based Interface to UNIX

the help system, when invoked, to display a short message in the top subwindow.
Conversely, setting the value to Long causes the help system to create a separate win-
dow with detailed help information.

These control panel items are used throughout the interface and other items are
introduced in later sections. To maintain consistency in the interface, the three buttons
on the Sun’s mouse are always used for the same purpose, both in control panels and

- display windows. The left button is a selection button; it is used to select icons or
issue commands. The middle button is used to display commands associated with an
object. The right button provides more information about an object; this may be attri-
butes of the object or an associated menu.

The display window in the iconshell not only displays the contents of the current
directory, but also conveys other information to the user. It monitors the current work-
ing directory and any changes are immediately reflected in the display window.
Objects whose types are related by a rule statement in the rule base are grouped
together (therefore, in diagram 3, C source objects and their related binary objects are
displayed together). If a related object becomes out of date, its icon caption is
inverted (the source object unix.c above has been edited but not recompiled, the binary
unix.o is therefore out of date and is shown inverted).

4, Interface to UNIX tools

An important objective of the iconshell is to support version and configuration
control. This is achieved through the re-use of existing UNIX tools, i.e. SCCS and
make. These should be integrated into the system while presenting a consistent inter-
face to the user.

4.1. Version Control

One of the tools supported by the iconshell is the UNIX version control system,
SCCS [15]. SCCS is a tool for storing and controlling changes to text files. All ver-
sions of a file are stored by recording differences (or deltas) between successive ver-
sions. Each time a significant change is made to a file, a new delta is recorded. To
produce the latest version of a file, SCCS applies each delta in turn to the original file
until all deltas have been processed. A major criticism of SCCS is that much of the
responsibility for using the tool correctly and effectively remains with the users and
not with UNIX. For example, although SCCS records and manages versions of files, it
is still necessary for users to check out the required version from SCCS control when
it is needed. SCCS also leaves the user to decide when to create new deltas and how
to keep track of the various relationships that exist between files which together form a
system configuration.

To ameliorate this situation, the iconshell automatically invokes SCCS when
required. A user creates a new object in a directory through the Create Object menu in
the iconshell control panel (see diagram 3). The iconshell issues an SCCS create com-
mand when a new text file is to be created. It also creates the SCCS sub-directory if
necessary. Each time a text file under SCCS control is edited, the iconshell invokes
SCCS to make a new version of the file and prompts the user for comments to be
associated with the version.

232

An Intelligent, Window Based Interface to UNIX

Mechanisms are provided to allow the version history to be inspected or for com-
mands to be issued on any version of an object. These are described in section 5.

4.2. Configuration Control

Another UNIX tool used by the iconshell is the make command [6]. Make pro-
vides a simple mechanism for maintaining up-to-date versions of programs that result
from many operations on a number of files. It is possible to tell make the sequence of
commands that create certain files, and the list of files that require other files to be
current before the operations can be done.

The information required by make is stored in a special file called makefile. To
use the make mechanism, the user must learn the format of the makefile language and
maintain the makefile.

The iconshell provides a limited interface to the make tool through the MAKE
objects and Selections menus in the control panel. A user can set dependencies
between objects by selecting a group of objects in the display window of the iconshell
and then selecting the Ser Dependency option from the Selections menu. The iconshell
will then prompt the user to select an object which the group is dependent on. The
information is automatically stored in a makefile.

The user can also specify how new objects are made by selecting a group of
objects and linking them together with a command. The iconshell examines the
makefile to find which objects may be created from it. These objects are stored in the
MAKE objects menu in the control panel (see diagram 3). Selecting an object from this
menu causes it to be constructed if required.

5. Iconshell Subwindows - Commands and Attributes

This section describes how the iconshell is used to issue commands and to
display and change the attributes of an object. The interface uses separate windows
which appear when required. Section 5.1 describes the command window and section
5.2 introduces an associated window, the command option sheer. Sections 5.3 and 5.4
describe the attribute window and the interface to the SCCS version control mechan-
ism.

5.1. Command Subwindow

To issue a command from the iconshell, an object in the display window is
selected using the middle mouse button. This causes a command window to appear
which contains all commands applicable to that object type. The command set
corresponds to all rules in the rule base which have the appropriate source type in the
<type mapping>. An upward closure of the type hierarchy is also performed to estab-
lish the full range of applicable commands. A typical command window is shown in
diagram 4. The window is for a C source object. Once more, the window is divided
into three parts: a message window, a control window and a display window.

The commands are displayed as captioned icons. Selecting an icon (with the left
mouse button) causes the corresponding command to be executed.

By displaying all appropriate commands, the need for the user to remember cryp-
tic command names or command line formats is removed. In addition, the user is

233

An Intelligent, Window Based Interface to UNIX

Command Sheet - attsheet.c

compile indent Tint remove
A=
@ TEIE I==| N
d
edit Tlist print

Diagram 4: A Command Window for a C Source Object

prohibited from issuing inappropriate commands (e.g. attempting to word process a C
source object).

Notice that the generic name from the rule base is used as the icon caption, rather
than the specific tool name (e.g. compile is used rather than cc). Using the generic
name improves the interface by reducing the complexity of the system [17]. The com-
mand window for another type of source object (e.g. a Pascal source object) may have
a similar icon set although the underlying tools will be different.

As discussed in section 2.2, the system may be unable to resolve unambiguous
rules in the rule base, i.e. where the <function name> and <type mapping> components
of the rules are the same. For example, the edir command may be executed with vi, ex,
ed, etc. In these cases, only one icon is displayed in the command window. The icon
however has a shadow beneath it and selecting the icon causes the various alternatives
to be displayed. In the diagram above, print is a multiple command and selecting it
causes several different printers to be displayed. A Back button then appears in the
control panel which may be used to restore the display.

The command window has an interface to the SCCS mechanism. The version box
displayed in the control panel indicates which version of the current object the com-
mand will be applied to. The user may select a different version by locating the cursor
in the version box and entering a new version number. When a command is selected,
the new version is automatically copied into the current directory before execution.
The user may choose to make this version the default version in future command win-
dows by pressing the Tag button.

5.2. Command Parameters

Before a command is executed, the user has the ability to set command parame-
ters. These correspond to normal UNIX flag or switch parameters. If flags are not set,
then default values are used. These are stored in the command frames described in

234

An Intelligent, Window Based Interface to UNIX

section 2.3.

To set parameters, the attribute mouse button is pressed over a command icon in
the command window. This causes a command option sheet to appear as shown in
diagram 5 below.

; Optior. Sheet -

fi {Prin]

Yalue

Test.orr

Diagram 5: An Option Sheet for the C Compiler

This is an option sheet for the cc compiler. Switch attributes can be set on or off
and text attributes may be changed by typing into the appropriate area.

After attributes have been changed, they may be stored as default values for sub-
sequent use of the tool by pressing the Change It button.

5.3. Attribute Subwindow

As mentioned earlier, the attributes of an object may be displayed by selecting the
object with the right mouse button. This causes an aztribute window to appear in which
the information is shown. The attribute window is used to display information such as
the size of an object, its access permissions, time created, etc. The attributes displayed
depend on the type of the object.

The information contained in the attribute window is similar to that obtained from
the UNIX /s command. The /s command (of BSD 4.2 UNIX), however, has seventeen
possible parameters. These parameters may be applied in various combinations to
return different attributes of the object. Although the command is capable of providing
a large amount of information, most users tend to rely on a small subset of the param-
eters and, subsequently, fail to exploit the full power of the command.

The attribute window does not require the user to learn and remember parameter
combinations and will always give as much information as possible. A typical attribute
window is shown below in diagram 6. This is for a C source object.

The attribute window maintains the interface mode of direct manipulation by
allowing the user to change attribute values at the point at which they are displayed.
Attributes which are user changeable are shown in an attribute box preceded by an
arrow. For example, the user may enter a new value for the Name attribute in diagram

235

An Intelligent, Window Based Interface to UNIX

Attribute Sheet - attsheet.c

E

g attsheet.c l I c_source |

!8583 I gstuart | | Aug 7 1987 |
!ru rr | I Aug 7 1987 I

Last Accessed
Aug 7 1987

Diagram 6: The Attributes of a C Source Object

6. Pressing the Change It button will cause the new value to be stored. This allows all
attributes to be modified in a consistent manner without requiring the user to learn and
remember any command names.

5.4. Displaying an Object’s Version History

The attribute window also allows information on object versions to be displayed.
If an object is under SCCS control, the History button will appear in the attribute win-
dow (see diagram 6). Pressing this button causes the version history of the object to be
displayed as shown below in diagram 7.

Attribute Sheet - commsheet.c

o E B

Version From Time Owner Comments

87/81/29 date and time created 87/81/29 1
)
[E] D 15:86:45 5:86:45 by stuart
1.2
'Q[-Z__—J 87/82/26 Implemented built in commands r‘(

13:28:54 emove" and "display"

Put version control via SCCS int
0 the command sheet

Diagram 7: A Typical Version History Window

The version which is currently stored in the working directory is shown inverted.
This may be changed by selecting another version with the mouse. Once more, the

236

An Intelligent, Window Based Interface to UNIX

user is not required to possess knowledge of SCCS commands: only familiarity with
the iconshell type of interface is necessary.

6. Implementation Status

The system has been implemented and runs on a Sun workstation. All the features
described in previous sections have at least been partially implemented. A typical Sun
screen layout is shown below in diagram 8. The screen has an iconshell with an asso-
ciated command window and also shows several commands during execution.

Create Object
Selections

L tor
include defs.k

static char Sccaldl] ()kelp.c 1.1t5/6187,
extern Pangl, :
Wl extern int

= hd Il

complla fadent Yat remsve

| name, 0);

rois oo 1 I G. . 0%
(1 be | 'Up' changus
o parent dir
' M m m C. The new con
X ure displs,
) Py *Clote’ closes
i{window 10
r y NG, . 0),

asin.o senus.n selaction.ceslection.ol

break,
cats 3 : panelset{errmaessage, PANELLABELSTRING, *Quit’ kills 1hq

ell process., 0);
pumelaciterrmessage?, PANELLABELSTRING, This require

braak;

irmation, 0);

case 4 ; panelse(errmessage. PANELLABELSTRING, Prassing the i
(ouse bution over an object selacts it., 0);
pa-ul mr-ﬂm'mguz PANELLABELSTRING, Middle buttd

ctive stusrt 288 testl
bytas

dsb-ac1ipee)3t m testl
rm . remove testi? y

l(dsb-#c) 1pne)34% screenprint | pssun -p testl -1 2 3.3 -5 3

Diagram 8: A Sun Screen Layout

The current implementation provides only a limited set of execution windows.
All execution windows have a control panel to provide status information and to allow
commands to be applied to the window contents. A display window with a scrollbar is
shown in diagram 8. This has been used to list a C source object. Notice that the win-
dow contents may be directly manipulated by the user. The diagram shows an attribute
window for the displayed text. The user may change attributes such as fonr sryle, font
size, etc. and other information such as the character count is displayed.

Two other commands are also shown during execution: compiling and editing a C
source object. The windows however have been closed to icons. The current imple-
mentation uses dynamic icons for executing commands. The icons have areas which

237

An Intelligent, Window Based Interface to UNIX

are used as indicators. These show if an error has occurred, if a process is waiting for
input or has produced output. Dynamic icons help users keep track of what they are
doing and aid the monitoring and controlling of tasks operating at the same time [10].

7. The Iconshell -- Revisited

In this section, the major features of the iconshell are revisited. The main proper-
ties of the system are highlighted and the resultant benefits of the approach discussed.

Much of the power of the iconshell derives from the extra layer of abstraction
that is added to the system. The iconshell takes the basic UNIX tool-set and command
execution facilities and provides an extra layer of mapping from abstract functions on
to actual UNIX tools (with this mapping being governed by the rule base). As in all
Computer Science, an added layer of abstraction can encompass many extra features
and provide a higher level of service to the user.

The first benefit of this mapping is that users are presented with a set of icons
describing whar tasks are appropriate rather than how the task is to be carried out.
Intricacies of the command language can thus be hidden from the user. The more
expert user, however, can always invoke the options sheet (section 5.2) for more
sophisticated operations. This more abstract user interface is also ideally suited for
icon display. As mentioned earlier, icons are known to be more effective if they
describe operations at a more abstract level.

A second major benefit is that genericity can naturally be supported by the icon-
shell. Several related tools can be represented by the same function name with typing
information being used to resolve ambiguities. This again raises the level of interaction
with the user. In addition, it reduces the number of concepts to be learned by the user.
In most cases, type information will successfully resolve ambiguities. However, if
ambiguities remain, the user is asked to resolve the ambiguities by making a selection.
As mentioned earlier (section 5.1), this is semantically meaningful at the user level.

A final major benefit stemming from the extra abstraction is the partitioning of
the tool-set. A select group of tools (or more precisely functions) can be presented to
the user in a given context. As soon as the user selects an object, the tool-set can be
reduced to a much smaller number of applicable tools. This is particularly important
given the current size of the UNIX tool-set and will be of considerable benefit to the
naive user. One important factor is that the classification of the tool-set is achieved in
a very dynamic way. The tool-set is not divided in advance into an artificial set of
"workbenches’. Rather, type information is used in real time to determine the relevant
set of tools. Thus, the iconshell manages the tool-set as dynamic, over-lapping and
changeable domains of interest.

It is really the three properties together which lead to the major benefits of the
iconshell. The higher level of abstraction together with genericity and the automatic
partitioning of the tool-set provide a strong basis for attaining a more sophisticated
form of human-computer interaction.

238

An Intelligent, Window Based Interface to UNIX

8. Conclusions

The UNIX Operating System has come a long way in the last ten years. It is
now recognised as a de facto standard in many fields of work. As such, UNIX exerts
a large influence on the directions and rate of progress in computing.

As with all influential systems, the potential exists for UNIX to be either a bar-
rier to change or a vehicle for change. Often, the difference between the two alterna-
tives can be very subtle. There is no doubt that the pressures for UNIX to change will
continue. User expectations are constantly increasing and new hardware advancements
can bring unforeseen developments. It is therefore important that the UNIX community
responds positively to change.

The last prime example of change with respect to UNIX, was the advent of distri-
buted computing. It very quickly became clear in the UNIX community that earlier
versions of UNIX were inadequate to meet the demands of distributed computing. For
example, the inter-process communication model was inappropriate and there was little
support for distributed applications. As a result, UNIX has undergone substantial revi-
sions including the implementation of sockets [4] and the provision of distributed ser-
vices such as NFS and Yellow Pages [20].

We would postulate that the next big change will be in areas concerned with the
user interface. Such developments are helped by the advances in bit-map displays and
the recent interest in human factors in computing. As with distributed computing,
UNIX is lacking in its user interface. It is now clear that tools like the shell (and
indeed command language interpreters in general) do not provide a long term answer
to user interfaces. The question must therefore be posed as to the effect this will have
on UNIX. Will the design of UNIX change as a result and, if so, in what way?

The system presented in this paper is one attempt to enhance the UNIX interface.
It has given us some useful insights into the operating system requirements of human-
computer interaction. Although it proved possible to develop the iconshell in the
existing UNIX environment, the implementation would have been much easier if
UNIX supported directly the association of attributes with objects.

It is possible to place this discussion in a wider context. Many recent projects in
human-computer interaction {19,18] and in other areas [13,7,2] are using a model
consisting of objects, attributes and possibly inter-relationships. This is obviously a
major thread in computing. Thus one interesting and topical question is whether
UNIX can adapt to a more object-oriented world. Clearly, UNIX can never be an
object-oriented system in the full sense. However, several features of objects could
easily be adopted by UNIX. It is our experience that this could be of significant
benefit in the provision of better human-computer interfaces.

9. Acknowledgements

The ideas conceming the rule base and frames of semantic information discussed
in section 2 have been influenced by the design of the Cosmos distributed operating
system [11]. Similar mechanisms have been used in Cosmos to provide support for
several sophisticated programming environment functions [3]).

The style of interface using control panels, buttons, state selectors, etc. was
developed as part of the Alvey Eclipse Project [1]. Further details of this interface can

239

An Intelligent, Window Based Interface to UNIX

be found in [14].

References

1.

10.

11.

12.
13.

14.

15.

16.

Alderson, A., Bott, M. F., and Falla, M. E., ““An Overview of the Eclipse Pro-

ject,”” Integrated Project Support Environments (edited by J. A. McDermid), pp.
100-113, 1985.

Almes, G. T., Black, A. P., Lazowska, E. D., and Noe, J. D, ““The Eden System:
A Technical Review,”’ IEEE Transactions on Software Engineering, vol. 11, no.
1, pp. 43-59, January 198S.

Blair, G. S., Mariani, J. A., Nicol, J. R., and Shepherd, W. D, ‘A Knowledge
Based Operating System,”” The Computer Journal, vol. 30, no. 3, pp. 193-200,
June 1987.

Coffield, D. and Shepherd, D., “Tutorial Guide to Unix Sockets for Network
Communications,”” Computer Communications, Butterworth Scientific, vol. 10, no.
1, pp. 21-27, 1987.

Fahnrich, K. P. and Ziegler, J., ‘‘Workstations Using Direct Manipulation as
Interaction Mode - Aspects of Design, Application and Evaluation,”” Human-
Computer Interaction - INTERACT * 84, 1985.

Feldman, S. 1, ‘“Make - A Program for Maintaining Computer Programs,’’
Software - Practice and Experience, vol. 9, no. 4, pp. 255-265, April 1979,
Fishman, D. H., Beech, D., Cate, H. P., Chow, E. C., Connors, T., Davis, J. W.,
Derrett, N., Hoch, C. G., Kent, W., Lyngbaek, P., Mahbod, B., Neimat, M. A,
Ryan, T. A., and Shan, M. C., ““Iris: An Object-Oriented Database Management
System,”” ACM Transactions on Office Information Systems, vol. 5, no. 1, pp.
48-69, January 1987.

Gittins, D. T., Winder, R. L., and Bez, H. E,, ““An Icon-Driven Interface to
UNIX,”’ International Journal of Man-Machine Studies, vol. 21, 1984.

Lodding, K. N., ““Iconic Interfacing,”” /EEE Computer Graphics and Applica-
tions, March/April 1983.

Myers, B. A., ““The User Interface for Sapphire,”” IEEE Computer Graphics and
Applications, vol. 4, 1984.

Nicol, J. R., ““Operating System Design for Distributed Programming Environ-
ments,”” Ph.D. Thesis, University of Lancaster, October 1986.

Norman, D. A., ‘“The Trouble with UNIX,”” DATAMATION, November 1981.
PCTE, Project Team, Overview of PCTE: A Basis for a Portable Common Tool
Environment, Esprit, 1985.

Reid, P. and Welland, R. C., “Project Development in View,”” Software
Engineering Environments, Peter Peregrims , 1986.

Rochkind, M. J., ““The Source Code Control System,”’ IEEE Transactions on
Software Engineering, vol. 1, no. 4, pp. 364-370, December 1975.

Rogers, Y., “‘Evaluating the Meaningfulness of Icon Sets to Represent Command
Operations,” Proceedings of the Second Conference of the BCS HCI Specialist -
Group, 1986.

240

17.

18.

19.

20.

An Intelligent, Window Based Interface to UNIX

Rosenberg, J. K. and Moran, T. P., ‘‘Generic Commands,’’ Human-Computer
Interaction - INTERACT '84, 1985.

Sibert, J. L., Hurley, W. D., and Blesar, T. W., ‘“‘An Object-Oriented User Inter-
face Management System,”” ACM Computer Graphics, vol. 20, no. 4, August
1986.

Smith, R. B., “‘Experiences with the Alternate Reality Kit: An Example of the
Tension between Literalism and Magic,”” Human Factors in Computing Systems:
CHI'87 Conference Proceedings, April 1987.

Walpole, J., ““An Overview of the Sun Network File System,”” Alvey Eclipse Pro-
Ject Working Document ADN/WPIDH/7, 1985.

241

Fast bitblt () with asm() and cpp

Bart N. Locanthi

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

1 Introduction

bitblt () is both a fundamental building block of bitmap graphics and a demanding implementation
challenge. bitblt()’s speed, or lack thereof, is an important factor affecting one’s perception of a
machine’s interactive response.

Since the Alto [Thacker79], people have understood the importance of making bitblt() go fast
and have devoted a great deal of effort and, unfortunately, ill-conceived hardware in this cause. Iil-
conceived because hardware assists historically have compromised bitblt()’s generality in pursuit of
speed.

Some processor or memory architectures inherently and actively obstruct the implementation of
bitblt(). One that comes to mind on both counts is the IBM PC, for which the display byte
order differs from that of the processor, and in which the processor isn’t very good at dealing with
bit-aligned data anyway. In these cases there isn’t much hope but to include extra hardware, and
even then one has to be very careful in the face of these built-in architectural disadvantages.

Usually, though, it seems that people don’t try hard enough to make their software fast before they
resort to hardware. Two problems with this approach are 1) having insufficiently high expectations
for the resulting hardware and 2) not developing enough understanding about the problem to do a
good job on the hardware.

This paper, then, is about squeezing the last microsecond out of software implementations of bitblt ().
The environment for this exercise is a bitmap display based on the Motorola 68020 and a C com-
piler derived from an internal 68000 compiler. Both the asm() capability of the compiler and the C
preprocessor will figure prominently.

2 Definitions

Our basic definitions haven’t changed much from the time of the Blit [Pike85]:
typedef unsigned long Word;
typedef struct Point {
short x,y;

} Point;

typedef struct Rectangle {
Point min,max;

243

} Rectangle;

typedef struct Bitmap {
Word *base;
int width,ldepth;
Rectangle rect;

} Bitmap;

Rectangles are defined to be “half-open”. That is, the Rectangle {{0,0},{1,1}} is defined to
contain only the Point {0,0}. This convention is similar to that for arrays in C and both makes
tiling rectangles easy and minimizes opportunities for ”off-by-one” errors in programming.

Bitmaps are one dimensional arrays of words that are given two more dimensions by the software that
deals with them. The bitmap width is the number of words from the beginning of one scanline to the
beginning of the next, and the 1depth is the log base 2 of the number of bits per pixel. Addressing
is handled by the support function

Word *addr(Bitmap *b, Point p);

which returns the word in a bitmap containing a given point.

The primary bitmap manipulation function is
bitblt(Bitmap *dm, Point p, Bitmap *sm, Rectangle r, int fc);

where sm and dm are source and destination bitmaps, r is the source rectangle, p is the min of the
corresponding rectangle in dm (the destination point), and fc denotes the function to be performed on
the destination rectangle. For the purposes of this paper fc will be limited to the 16 bitwise logical
operations defined for two variables.

3 Why it’s Hard

bitblt () has to do a lot of things and get them all right. To begin with, source and destination
bitmaps can be arbitrarily aligned. Naturally this means shifting is involved, but picking up a word
on a bit boundary is more complicated than that, not to mention highly machine dependent.

A side effect of arbitrary alignment is that source and destination bitmaps often occupy a different
number of words. On top of this, the first source word to be fetched in the inner loop might not
actually be the first word in the bitmap, since it must correspond to the whole of the first word of
the destination. Determining the inner loop count and the first source word are both easy off-by-one
candidates.

bitblt() can alter only the destination rectangle, whose left and right edges seldom lie on word
boundaries. So, the inner loop has to mask at these edges and deal with the case where both edges
lie within the same word at the same time it’s working with bit-aligned data and trying to go fast.
bitblt () has a two-dimensional version of the block move problem. The inner and outer loops must
proceed left to right or right to left and top to bottom or bottom to top in order to avoid copying
data over itself. In arranging these logistics one must cautious of the opportunities to make off-by-one
errors.

bitblt () has to implement lots of different functions. This involves more than figuring out how best
to write the 16 possible logical operations. Some of these operations involve only the source, or only

244

the destination, and so present opportunities for avoiding work. Note that source-only functions still
have to fetch destination data at the left and right edges for proper masking.

bitblt () has to be fast. This must be attacked along several lines. It is important to put variables in
registers, but most machines don’t have enough registers to accommodate all the important variables
in bitblt(). Most inner loops are short enough that it pays to unroll them. Most C compilers
generate better code for do-while loops than for for loops. Characters account for the vast majority
of calls to bitblt (), so special case character drawing loops are usually well worth the investment.
Even so one has to avoid spending a lot of time deciding whether and which special case code to run.

4 Copying Bit-Aligned Words: The Source

Every machine has different capabilities for dealing with bit-aligned data. The worst case is when
there are no bit field instructions and machine registers have the same width as the memory bus. One
has little choice in this case but to fetch two words and shift them in two directions:

register Word *d,*s,m,a,b;
register 1,r;

b = *g++;
m = (a<<1) | (b>>1);
a=b; /* fetch each source only once */

*d++ op= m;

This is clearly a lot of work to be doing in an inner loop. This code is going to be a lot slower than
a simple block move. Worse yet, the machines for which this approach is necessary usually also have
small register files and take multiple cycles to shift data.

For a short time in the early 1980’s the new wave of microprocessors had 16 bit memory busses but
32 bit registers. The 68000 is one such machine, and getting source data is slightly easier:!

typedef unsigned short Word;
register Word *d,*s,m;
register 1,r;

m = kg++; /* load 16 bits */
asm(" ror %m, %1"); /* rotate 32*/

*d++ op= m;

asm(" ror %m,%T"); /* move to high 16 */

Compared to the previous example this code saves not only the two declared registers but also the
temporary registers needed to hold (a<<1) and (b>>r) and the time needed to move partial results
about. This approach is made possible by a subtle but critical feature of the 68000: loading the low
16 bits of a register does not affect the high 16 bits.

The 68020 is quite a nice machine for implementing bitblt(). The one instruction that makes the
difference is bfextu, which can load a 32 bit register with a 32 bit quantity that may straddle a word
boundary:

register Word *d,*s,m;
register 1;

'asm() doesn’t really allow variable names here. Call this progr: amer’s license.

245

asm(" Dbfextu %m,%s,0,%1"); /* get the source */
B+t; /* increment pointer */
*d++ op= m;

This code is faster than any of the alternatives despite the fact that bfextu has to go to memory
twice to extract the 32 bit source. It also requires a minimum of registers. A more subtle advantage
is that the initialization code has a relatively easy time of figuring out which source address is the
first one.

5 Basics

Before moving on to actual bitblt() code, here are some simple loops and their execution times on
the 68020 test vehicle. The intent here is to illustrate the basic costs of the several decisions one must
make in designing inner loops. There are too many variables here to present a complete taxonomy,
and peculiarities of the machine preclude conclusions based on superposition, but it is hoped that the
examples presented illustrate enough to be interesting.

The first comparison is for loop versus do-while. There is no fundamental reason why these loops
should take differing amounts of time, but even relatively clever compilers appear to have no com-
punction about putting two branches in a for loop:

/* for loop: 1.7Tus/loop */
register 1i;
for (i = 1000; i > 0; --i)

/+ do-while loop: 1.13us/loop */
register i;

i = 1000;

do

while (--i > 0);
The next test pits for loop and do-while loop block transfers against each other.

/% for copy loop: 3.33us/word */
register 1i;
register *d,*s;
for (i = 1000; i > 0; --i)
*d++ = *g++;

/* do-while copy loop: 2.63us/word =*/
register i;
register *d,*s;
i = 1000;
do
*d++ = *gt+;
while (--i > 0);

Note also that the loop overhead is a significant fraction of the time spent.? At this point I'll write
off the for loop and unroll the do-while:

2A newer 68020 compiler uses a byte displacement branch for this loop and comes up with a 2.0us/word loop time.

246

/* 4X unrolled do-while copy loop: 1.65us/word */
register i;
register *d,*s;
i = 250;
do {
*d++ = *8++;
*d++ = *g++;
*d++ = *g++;
*d++ = *g++;
} while (--i > 0);

Having a poor bitblt() engine is a mixed curse. In the following case it takes so much time to
process a word, even in the simplest case, that unrolling and even for versus do-while decisions are
moot:

/* the hard way: 4.73us/word */
register i,r,1,x,y;
register long *s,*d,m;

i = 1000;
do {
X = *8++;
m = (y<<1) | (x>>1);
Y = X
*d++ = m;

} while (--i > 0);

By contrast, using the 68020 bfextu instruction is almost as fast as a straight copy loop and unrolling
is worthwhile:

/* bfextu copy loop: 3.35us/word */
register i,1,x,y:
register long *s,*d,m;

i = 1000;

do {

asm(" bfextu (%s),%1,0,%m "),
g++;
*d++ = m;

} while (--i > 0);

/* bfextu 4X unrolled loop: 2.63us/word */
register i,1,x,y;
register long *s,*d,m;

i = 250;
do {
asm(" bfextu (%s),%1,0,%m ");
¢ st+;
*d++ = m;
asm(" bfextu (%s),%1,0,%m ");
gt+t,;
*d++ = m;
asm(" bfextu (%s8),%1,0,%m ");

The processor manual doesn’t show this much variation due to branch displacement size but allows that the size could
affect whether the instruction is executed in ”best case” or not.

247

B+

*d++ = m;

asm(" bfextu (%s),%1,0,%m "),
B+
*d++ = m;

} while (--i > 0);

One last pair of examples shows the effect of using the 68020 decrement and branch instruction:

/* dbf copy loop: 2.06us/word */
register i;
register long *s,*d;

i = 999;

asm("loop: "),
*d++ = *g++;

asm(" dbf %d2,1loop ");

/* 4X unrolled dbf copy loop: 1.56us/word */
register i;
register long *s,*d;
i = 249;
asm("loop: "y,
*d++ = *g++;
*d++ = *g++;
*d++ = *kg++;
*d++ = *g++;

asm(" dbf %d2,lo0p "),

6 Dbitblt() in C

The code presented here is an example of a bitblt() written entirely in C that depends only on byte
order. As such it is both portable and relatively slow. It should serve, then, as a standard below
which one should never go.

bitblt () spends quite a lot of time cracking its arguments:

#define ONES ((Word) Oxffffffff)
#define WSHIFT 5

#define WMASK OxiF

#define WSIZE 32

void

bitblt(dm,p,sm,r,f)

Bitmap *dm,*sm;

Point p;

Rectangle 1;

{
register Word *s,*d;
register Word mask,a,b,m,1ls,rs;
¥ord 1lmask,rmask;
int i,j.qx,sw,dw,dy,nw;
qx = p.x + (r.max.x-r.min.x) - 1;
lmask = ONES >> (p.x&WMASK);

248

rmask = ONES << (WMASK-qx&WMASK);
1s = (r.min.x-p.x)&WHASK;

rs = WSIZE - 1s;
nw = (qx>>WSHIFT) - (p.x>>WSHIFT);
dy = r.max.y - r.min.y;

sw = sm->width - nw - 2;
dw = dm->width - nw - 1;

The sort of computation that goes on here is pretty independent of data structure. If instead of
rectangles one chooses to think in terms of areas

typedef struct Area {
Point p; /* same as Rectangle.min */
Point dp; /* extent */

} Area;

the code would be marginally less complex here but would have surprises in store later. Best to pick
a data structure convenient for use.

Before computing source and destination pointers we need to decide in which directions to scan. The
top to bottom, bottom to top decision is straightforward and doesn’t affect the inner loop. Scanning
from right to left is necessary only if there is no vertical translation. In any event it is safe to ignore
the whole scan direction question if the source and destination bitmaps differ.

if (sm == dm) {
if (r.min.y < p.y) { /* bottom to top */
r.min.y += dy-1;

p.y +=dy-1;
sw -= 2*sm->width;
dw -= 2*dm->width;
}
else if (r.min.y == p.y && r.min.x < p.x)
goto right;
}
r.min.x -= p.x&WMASK; /* adjust for first destination word */

s = addr(sm,r.min);

d = addr(dm,p);

if (nw == 0) /* collapse masks for narrow cases */
lmask &= rmask;

There are four basic inner loops. The two bits of distinction are right to left versus left to right,
and bit aligned versus word aligned. I’ve put these loops into macros that take a function code
expression as an argument. In the interest of compactness I unified the left and right edge treatments
by convoluting the inner loop some. The first macro is the most common case, left to right scan and
bit aligned:

#define ltor(tag,expr) case tag:\
for (j = 0; j <dy: j++) Q\
mask = lmask;\
a = *5++;\
for (i = nw+l; i > 0; i--) {\
b = *s++;\
m = (a<<ls) | (b>>rs);\

249

a = b;\

expr;\
d++;\
mask = ONES;\
if (i == 2)\
mask = rmask;\
n
8 += sw;\
d += dw;\
n
break

Putting a test in the middle of a buzz loop is definitely not a gateway to speed. Nor is using an
expression involving a mask where none is needed. These deficiences are worth addressing when the
source fetch code is improved.

The next macro also scans left to right but has a much simpler time dealing with word aligned data.
This is the loop that would be executed when scrolling a screen.

#define wltor(tag,expr) case tag:\
for (j = 0; j <dy; j++) {\
mask = lmask;\
for (i = nw+l; i > 0; i--) {\
m= *s++;\

expr;\
d++;\
mask = ONES;\
if (i == 2)\
mask = rmask;\
A
8 += sw+l;\
d += dw;\
n |
break

Code this bad would surely need to be sped up or have a special scrolling case written in. The latter
is easily arranged in this case.

The 1tor and wltor macros have duals for the right to left cases.

These loops are invoked from switch statements according to the function code. All the groundwork
has already been laid for the left to right cases:

#define S 0xC

#define D OxA

#define X OxF

if (1s&WMASK) switch (f) { /* ltor bit aligned */

1tor (0, *d &= "mask);
ltor(~(D|S), *d = (("m | =*dst) & mask));
ltor(D&"S, *d "= ((m & +*dst) & mask));
ltor(~s, *d "= (("m ~ =*dst) & mask));
ltor(~D&S, *d = ((m | *dst) & mask));
ltor (7D, *d "= mask) ;
ltor(D"S, *d “= (m & mask));

250

1ltor{~(D&S), *d “= ((m | ~*dst) & mask));

ltor(D&sS, *d “= (("m & +dst) & mask));
1tor(~(D"S), *d “= ("m & mask));
1tor(D, *d);
ltor(D|"S, *d |= ("m & mask));
ltor(S, *d “= ((m = *dst) & mask));
1tor(~DIS, *d “= ("(m & *dst) & mask));
1tor(D|S, *d |= (m & mask));
1tor(X, *d |= mask);

}

else switch (f) { /* word aligned */
wltor (O, *d &= "mask);
wltor (" (DI|S), *d "= (("m | +*dst) & mask));
wltor (D&~S, *d = ((m & =*dst) & mask));
wltor("S, *d *= (("m - *dst) & mask));
wltor ("D&S, *d “= ((m | *dst) & mask));
wltor (D, *d "= mask);
wltor(D"S, *d "= (m & mask));
wltor (7 (D&S), *d “= ((m | “*dst) & mask));
wltor (D&S, *d “= (("m & #*dst) & mask));
wltor ("(D"S), *d “= ("m & mask));
wltor(D, *d) ;
wltor(D|"S, *d |= ("m & mask));
wltor(S, #d = ((m - *dst) & mask)); /* scrolling! */
wltor (“DIS, *d “= ("(m & *dst) & mask));
wltor(DIS, *d |= (m & mask));
wltor(X, *d |= mask);

}

Note the scrolling case wltor(S...) . Making scrolling fast is a simple and easily isolated matter.

The right to left cases require minor adjustment before invoking the inner loops. Recall that these
cases are extremely rare.

right:
sw += 2x(nw+l) + 1;
dw += 2% (nw+l);
if (aw == 0)
rmask &= lmask;
8 = addr(sm,Pt(r.max.x-1-(qx&WMASK) ,r.min.y))+1;

d = addr(dm,Pt(qx,p.¥y));

if (1s&WMASK) switch (f) { /% rtol bit aligned */
rtol(0, *d &= “mask);
rtol(~(DIS), *d “= (("m | *dst) & mask));
rtol(D&"S, *d "= ((m & =*dst) & mask));
rtol("S, *d "= (("m ~ *dst) & mask));
rtol(~D&S, *d "= ((m | +dst) & mask));
rtol(°D, *d "= mask);
rtol(D"S, *d "= (m & mask));
rtol(~(D&S), *d "= ((m | “*dst) & mask));
rtol(D&S, *d “= (("m & *dst) & mask));
rtol("(D"8), *d “= ("m & mask));
rtol(D, *d) ;
rtol(D|"S, *d |= ("m & mask));

251

rtol(s, *d "= ((m " *dst) & mask));

rtol(°D|S, *d "= (“(m & *dst) & mask));
rtol(D|S, *d |= (m & mask));
rtol(X, *d |= mask);

}

else switch (f) { /* word aligned */
wrtol (0, *d &= “mask);
wrtol(~(D|S), *d *= (("m | *dst) & mask));
wrtol (D&"S, *d = ((m & *dst) & mask));
wrtol(~S, *d "= (("m ~ *dst) & mask));
wrtol ("D&S, *d "= ((m | =*dst) & mask));
wrtol ("D, *d "= mask);
wrtol(D"S, *d "= (m & mask));
wrtol (" (D&S), *d = ((m | “*dst) & mask));
wrtol (D&S, *d "= (("m & =*dst) & mask));
wrtol(~(D"S), *d “= ("m & mask));
wrtol(D, *d) ;
wrtol(D|"S, *d |= ("m & mask));
wrtol (S, *d "= ((m - *dst) & mask));
wrtol("DI|S, *d “= ("(m & *dst) & mask));
wrtol(D|S, *d |= (m & mask));
wrtol (X, *d |= mask);

}

}

The actual macro invocations are trivially different from the left to right cases.

This bitblt () draws about 3400 characters per second, moves a 250x250 rectangle in any direction in
about 23 milliseconds, and scrolls a 1024x1024x1 screen in 265 milliseconds. Faster than the terminal
I’'m using to prepare this paper, but not enough faster to justify the three year difference in technology.

7 Medium bitblt ()

Most programming languages make it easy to handle special cases compactly. However, this usually
entails making decisions in inner loops. Pulling decisions out of loops can make code run fast at the
expense of replicating a lot of it. This is what macros are for.

In the previous section I kept some case analysis out of the inner loop by defining loop macros and
instantiating them in case statements. In the interest of compactness I handled the edge conditions
by bloating the inner loop some. This clearly has to change if we want speed.

Now that the form of the inner loop is under scrutiny, it is a good time to introduce the first serious
machine dependency:

#define bfextu asm(" bfextu (%s),%d4,&0,%m ")

The 1tor macro handles the inner loop and edge conditions separately. In doing so it orphans the
case where only one word of the destination needs to be touched.

#define ltor(tag,edge,expr) case tag:\
for (j = 0; j <dy; j+) {\
mask = lmask;\
bfextu;\

252

edge;\

for (i = 0; i < nw; i++) {\
bfextu;\
5++;\
expr;\

n

mask = rmask;\

bfextu;\

8++;\

edge; \

8 = &s[sw];\

d = &d[dw];\
n
break

The inner loop expressions are generally much simpler than those for the edges, and often correspond
to single machine instructions. The result is messy but worthwhile; src and dst have been turned
into s and d to make the code fit on the page.

if (1s&WMASK) switch (f) { /* left to right, bit aligned */
1tor (0, *d++ &= "mask, *d = 0;);
ltor (" (DIS), *d++ “= (("m | #*d) & mask), *d++ = “(xd|m));
ltor(D&”S, *d++ "= ((m & *d) & mask), *d++ &= “m);
1ltor(~S, *d++ "= (("m -~ =*d) & mask), *d++ = "m);
ltor(~D&S, *d++ "= (((m | =*d) & mask), *d++ = “xd&m);
1tor(°D, *d++ "= mask, *d++ “="0ONES);
1tor(D"S, *d++ "= (m & mask), *d++ “=m);
1tor(~(D&S), *d++ "= ((m | “*d) & mask), *d++ = ~(xd&m));
ltor(D&S, *d++ "= (("m & *d) & mask), *d++ &= m);
ltor(~(D"S), *d++ "= ("m & mask), *d++ "= "m);
1ltor(D, xd++, *d++);
ltor(D|"S, *d++ |= ("m & mask), *d++ |= "m);
ltor (S, *d++ "= ((m - *d) & mask), *d++ = m);
1tor(°D|S, *d++ *= ("(m & *d) & mask), *d++ = “#d|m);
ltor(D|S, *d++ |= (m & mask), *d++ |=m);
ltor(X, *d++ |= mask, *d++ = QNES);

}

Note the use of auto-postincrement. Some compilers complain about the use of side effects when a
variable appears more than once in an expression. Our compiler happens to do the right thing here.

The word aligned left to right case comes out very nicely. This will help scrolling:
#define wltor(tag,edge,expr) case tag:\

for (j = 0; j < dy; j++) {\
mask = lmask;\

edge;\

for (i = 0; i < nw; i++) {\
expr;\

n

mask = rmask;\

edge;\

s = &sfsw];\

253

d = &d[dw]:\

n

break

else switch (f) { /* left to right, word aligned */
wltor (0, *d++ &= “mask, *d = 0;);
wltor ("(D|S), *d++ == ((“*s++ | *d) & mask), *d++ = ~(xd|*s++));
wltor(D&~S, xd++ = ((*s++ & *d) & mask), *d++ &= “*s++);
wltor(~S, xd++ = ((“*s++ = *d) & mask), *d++ = “*gt++);
wltor (TD&S, *d++ ~= ((*s++ | *d) & mask), *d++ = “xdbxst+);
wltor (“D, *d++ “= mask, *d++ “= ONES);
wltor(D"S, *xd++ “= (*xs++ & mask), *d++ "= *g+t);
wltor ("(D&S), *d++ “= ((*s++ | "*d) & mask), *d++ = ~(xd&*s++));
wltor (D&S, *d++ "= (("*s++ & *d) & mask), *d++ &= *g++);
wltor ("(D"S), #d++ “= (“*a++ & mask), xd++ "= “kg++);
wltor (D, *xd++, *d++) ;
wltor (D|~S, *d++ |= (“*s++ & mask), *d++ |= “kg++);
wltor (s, *d++ = ((*g++ = *d) & mask), *d++ = *g++);
wltor(“DIS, *d++ "= (" (*s++ & *d) & mask), *d++ = “xd|*s++);
wltor (D[S, *d++ |= (*g++ & mask), d++ |= *g++);
wltor (X, *d++ |= mask, *d++ = ONES);

}

The right to left cases can’t use auto-predecrement (the only C decrement mode that really corresponds
to an addressing mode in the machine) because the side effect destroys the meaning of the expressions.
Our compiler does the wrong thing in auto-postdecrement cases anyway, and the reader is spared the
resulting ugliness.

Not all single word loops draw characters, and not all characters do not span word boundaries. Still,
there is no better name for the following macro:

#define chars(tag,expr) case tag:\
if ((i = dy) > 0) do {\
bfextu;\
8 = &s[sw];\
expr;\
d = &d[dw];\
} while (--i > 0);\
break

Invoking this macro is comparatively easy. One simply ANDs the left and right masks together and
passes an edge expression to chars.

This bitblt () draws about 5400 characters per second, moves a 250x250 rectangle in any direction
in about 10 milliseconds, and scrolls a 1024x1024x1 screen in 91 milliseconds. The larger the area, the
bigger the improvement. This version occupies 8152 bytes of code, up slightly from the 7800 bytes
the all C version takes.

8 Killer bitblt()

One way of coping with code expansion is to compile it on the spot. This approach promises com-
pactness at the expense of the overhead of compilation. This overhead is an unaffordable luxury for
small cases such as characters.

254

Although special purpose, a bitblt() compiler still has to deal with compiler-like issues such as
temporary register allocation and choosing address modes. In this compiler I take the easy (rhymes
with ‘sleazy’) approach of letting the existing C compiler generate expression code so that I can
concentrate on the loops and cases.

Lisp devotees are fond of saying ‘program is data’. Appropriate use of macros can give C programmers
this illusion:

#define boilerplate(f) \

OO
register Word #*s,*d,m,lmask,rmask;\
register Word shift;\
int sw,dw,dy;\

asm(" data 1");

#define asmtab(lab,stat) \
asm("lab:");\

stat;\
asm(" short O");

#define code(n,c0,c1,c2,c3,c4,¢5,¢6,c7,c8,c9,ca,cb,cc,cd,ce,cf) \

boilerplate(n/++/fun)\
asmtab(n/**/0, c0);\
asmtab(n/*%/1, c1);\
asmtab(n/**/2, c2);\
asmtab(n/**/3, c3);\
asmtab(n/**/4, c4);\
asmtab(n/**/5, c5);\
asmtab(n/**/6, c6);\
asmtab(n/*%/7, c7);\
asmtab(n/**/8, c8);\
asmtab(n/*%/9, ¢9);\
asmtab(n/**/a, ca);\
asmtab(n/**/b, cb);\
asmtab(n/**/c, cc);\
asmtab(n/*x/m, cd);\
asmtab(n/**/e, ce);\
asmtab(n/**/f, cf);\

asm(" text");\

}

#define labtab(n) \

extern short \

n/*+/0[1,n/**/1[1,n/**/2[] ,n/**/3[] ,n/*x/4[]1 ,n/*+/6[) ,n/**/6[] ,n/**/T[]1 ,\
n/**/8[]1,n/*+/9[] ,n/*+/all ,n/**/b[] ,n/*x/c[],n/*+/m[] ,n/**/e[] ,n/+x/£[];\
short *n[] = {\

n/**/0,n/*x/1,n/**/2,n/**/3 ,n/**/4,n/*x/5,n/**/6,n/**/T \
n/**/8,n/+%/9,n/**/a,n/**/b,n/**x/c,n/**/m,n/*x/e n/**/f \

}

The point here is to make an array of zero-terminated code objects indexed by function code.
boilerplate() is there to assure correspondence between the registers used in bitblt() proper
and the code put in the array.

255

Now we can compile a few arrays of expressions. As before, there are four basic inner loops, differ-
entiated by left to right versus right to left scanning of bit aligned versus word aligned data. In this
code the bit aligned cases assume the source data has been loaded into a register, whereas the word
aligned cases get it directly from memory:

#define funs(nam,dptr,sptr)
*dptr = 0,
*d = ~(*dst|sptr); dptr,
*dptr &= Tsptr,
*dptr = “sptr,
*d = "*dst&sptr; dptr,
*dptr "= Oxffffffff,
*dptr "= sptr,
*d = ~(*dst&sptr); dptr,
*dptr &= sptr,
*d = ~(xdst”sptr); dptr,
*dptr,
*dptr |= “sptr,
*dptr = sptr,
*d = "*dst|sptr; dptr,
*dptr |= sptr,
*dptr = Oxffffffff

N\
labtab(nam) ;

funs(_lrbit,d++,m)
funs(_rlbit,--d,m)
funs(_lrword,d++,*s++)
funs (_rlword,--d,*--8)

code(nam,\

/*
/*
/*
/*
/*
/%

/*
/*
/*
/*
/*
/*
/*
/*
/*

0 */\
“(DI8) */\
D&™S */\
"8 */\
“D&S */\
"D */\

D"S */\
~(D&S) */\
D&S */\
“(D"8) */\
D */\

D|~8 */\

S */\

“DIS */\
DIS */\

F */\

Note how the 8§ mode word aligned cases degenerate to auto-increment/decrement copy code that

maps directly onto the 68020 architecture.

and time penalty of dealing with masks. The edge cases collapse to two:

Using clever address modes isn’t as important for edge conditions, which have the added complexity I
|
\
|

#define edge(nam,mask) code(nam,\
*d &= “mask,
*d "= (("m | =*dst) & mask),
*xd "= ((m & =*dst) & mask),
*d "= (("m ~ *dst) & mask),
*d "= ((m | =*dst) & mask),
*d “= mask,
*d “= (m &= mask),
*d “= ((m | "“*dst) & mask),
*d "= (("m & *dst) & mask),
*d “= ("m & mask),
*d,
*d |= ("m & mask),
*d "= ((m ~ *dst) & mask),
*d "= ("(m & *dst) & mask),
*d |= (m &= mask),
*d |= mask

N

0 */\
~(DI8) */\
D&~S */\
“s */\
“D&S */\
D */\

DS */\
~(D&S) */\
D&S */\
“(D"8) */\
D */\

DI~S */\

S */\

“DIS */\
DIS */\

F */\

labtab{(nam) ;

edge(_left, 1mask)
edge (_right,rmask)

Now we have the pieces to construct code templates for the inner loops. The form of the templates will
be a sequence of literal code segments and pointers to previously defined code tables. The bitblt()
compiler will depend on these templates having a fixed format and will copy the code and follow the
pointers in building the actual doubly nested loop it will jump to later. The template format also
calls for unrolling the inner loop four times:

#define X4(x) x x x x

#define acc(stat) stat; asm(" short O")
#define bfextu asm(" bfextu (%s),%shift,&0,%m ")
#define template(nam,cOt,f0,cOb,c1,f1,c2t,f2,c2b) \

boilerplate (fun/#+*/nam)\
asm("nam:");\
do {\
acc(cOt);\
asm(" long £0");\
acc(cOb) ;\
X4(acc(c1); asm(" long £1") O\
acc(c2t);\
asm(" long £2");\
acc(c2b; } while (--dy > 0));\
}

Invoking the template macro involves the use of some bizarre spacing for the sake of the C prepro-
cessor; I hope the result isn’t too unreadable. This is the left to right, bit aligned loop, which uses
the left edge, scans left to right with 1rbit, and finishes with the right edge for each scan line:

template(_lrshift,

bfextu;
s++,_left,
d++,

bfextu;

s++,_lrbit,
bfextu;,_right,
(char *) 8 += sw;
(char *) d += dw
)

Note the casts at the end. Although our C compiler is clever enough to use a load-effective-address
instruction to implement 8 += sw; , this instruction is slower than the simple add instruction that
results from adding prescaled sw and dw quantities to character pointers. Not all compilers allow
casting of lvalues.

Here are the remaining three cases:

template(_rlshift,
bfextu,_right,

257

)

bfextu, _rlbit,

8--;
bfextu;
d--,_left,

(char *) 8 += sw;
(char *) d += dw

template (_lrword,

)

m = *g++,_left,
d++,

,-1lrword,
m = *8,_right,
(char *) 8 += sw;
(char *) d += dw

template (_rlword,

)

The four templates defined so far all assume the destination takes at least two words. The one word
destination case is special in several respects. First, there is no need for auto-increment/decrement,
since only one source and one destination will be fetched per scan line. Second, it requires only a singly
nested loop. Third, and most important, this case most often corresponds to the use of bitblt() to

m = *g,_right,
,_rlword,

m = *--8;

d--,_left,

(char *) 8 += sw;

(char *) d += dw

draw characters.

Characters involve so little memory that the overhead of compiling would be significant compared
with the time spent actually moving bits. Even decoding the arguments to bitblt () and deciding on
the character case is significant. There just isn’t time to compile character code, but fortunately there
is only one case for each function code. All bitblt() has to do in these cases is index by function

code and jump right in:

#undef asmtab

#define

asm("lab:");\

asm("
asm("

asmtab(lab,stat)
bfextu;\
(char *) s += rmask;\
stat;\
(char *) d += dw;\
dbf %dy,lab");\
rts")

edge(_chars, 1mask)

The rest of this bitblt () is straightforward, messy and not included here. The reader may complete
it as an exercise.

258

Killer bitblt () draws about 5400 characters per second, moves a 250x250 rectangle in any direction
in 5.4 milliseconds, and scrolls a 1024x1024x1 screen in 46 milliseconds. We got the character case
right the last time, but there was still plenty of room for improvement in handling larger areas.
Equally dramatic is the reduction in code size to 2764 bytes.

The results for summarized here for comparison.

version all C | medium | killer
chars/sec 3400 5400 | 5400
move 250x250 (ms) 23 10| 54
scroll 1024x1024x1 (ms) 265 91 46
size (bytes) 7800 | 8156 | 2762

9 Conclusion

bitblt () is hard to get right and hard to make go fast. Its implementation is also extremely machine
dependent. The programming ethics of simplicity and compactness are especially important in the
face of so many things to get wrong and the absolute requirement for speed. asm() and cpp are
strange but surprisingly effective tools in this endeavor.

For all its hackiness, I claim that the result is reasonably portable across processors, probably more
so than across assemblers and C compilers. This version took me less than a week to write and has
so far been the mostly easily maintained version of bitblt() that I have yet written. And it’s fast!

References

[Pike85] R. Pike, B. N. Locanthi, J. F. Reiser, " Hardware/Software Trade-offs for Bitmap Graph-
ics on the Blit”, Software - Practice and Ezperience, vol 15, no 2, 1985.

[Thacker79] C. P. Thacker et al, ” Alto: A Personal Computer”, in Computer Structures: Principles
and Ezamples, D. P. Siewiorek, C. G. Bell, A. Newell, ed., McGraw-Hill, 1982.

259

DES - Support for the Graphical Design of Software

Stephen Beer and Ray Welland
Dept. of Computer Science
University of Strathclyde
Glasgow G1 IXH, Scotland
stephen@uk.ac.strath.cs

lan Sommerville
Department of Computing
University of Lancaster
Lancaster LAl 4YR, England

Software design methods such as JSD, MASCOT and Structured Design have been in
existence for some time now and most of these methods utilise graphical as well as textual
notations for describing designs. These graphical forms quickly convey the overall structure
and interconnections of a design more easily than straightforward textual descriptions.
However, the full impact of design diagrams employing these graphical notations has been
severely restricted in the past due to the lack of automated facilities for production and
maintenance of such diagrams. This contrasts markedly with CAD developments in other
engineering fields.

This paper describes DES (the Design Editing System) - a system which investigates how such
graphical support may be provided in a generalised way for software engineering purposes.
DES comprises of 3 tools: a shapes editor (SHAPES) for defining the shapes of a method, a
language (GDL) for describing a software design method and a graphical design editor (DE)
which is driven by tables generated from the first 2 tools. The system is implemented in C on a
Sun workstation using the pixrect graphics layer and the panel user interface package.

At a very high level of abstraction a design diagram can be viewed as a number of symbols and
a number of rules concerning the physical and logical constraints on those symbols. A novel
feature of DES is that it is not geared towards any specific method. Rather, the tool builder
defines the syntax, semantics and shapes of a design method using the high level tools
SHAPES and GDL. This increases the applicability of the system since MASCOT and JSD
users, for example, may utilise the same system facilities.

This paper presents each of the tools, emphasising how method specific checks may be
specified in GDL and enforced during design editing sessions.

261

1 Introduction

A major aim of software engineering is concerned with bringing methodical practices into the
various phases of the software life cycle. At the present moment there are a very wide variety of
methods within the phase of software design. Examples of such methods include JSD
(Jackson83], Structured Design [Constantine79], Petri-Nets [Peterson81] and MASCOT
[MASCOTS80]. Many of these design methods have associated graphical techniques to
complement or replace textual design descriptions. Structured design, for example, provides
for two diagram types: structure charts and dataflow diagrams.

These graphical techniques have been in use for some time now but are not as widespread as
one initially might expect. One reason often put forward is that a design diagram lacks formality
and cannot capture the same amount of detail as a straightforward textual description. This is
true in many cases, but their major use is in conveying overall system structure and
interconnections in a more easily digested form. The absence of automation from the design
process, we believe, is a key reason as to why these graphical techniques are not in common
use.

To date, support for the creation and maintenance of design diagrams in other fields of
engineering has been extensive. Electronics has seen systems supporting the design of logic
circuits which can then generate pin connections. CAD in the area of mechanical engineering
allows metal components to be designed graphically; the design information is then passed to a
cutting machine which automatically cuts the part to specification. Support for graphical
techniques within the area of software engineering, however, has been acutely scarce.

One reason for this is the sheer number of methods that already exist and the number of
methods likely to be developed in the future. Many reasons can be stated for the existence of
each, among these being the area of application. For example, JSD is more suited for the area
of data processing tasks whilst MASCOT is aimed particularly at real time embedded
applications.

The work described in this paper has been taking place within the context of ECLIPSE
[Alderson85] which aims to provide an integrated project support environment for different
approaches to the software process and tools to assist in software design. A requirement of
ECLIPSE is that many different graphical techniques should be supported and that designs
created can then be captured in the project database and manipulated by other tools. A common
user interface across design support tools is another requirement.

One approach to providing design support is to build a specific design editor for each method
from scratch. However, given that we have a situation where many different methods do exist
and more will be devised it seems much more sensible to abstract the general concepts of
design methods into a design editing system which has the capability of being tailored for a
specific method.

Our work here at Strathclyde has been concerned with just that. We have been experimenting
and building a design editing system which can be tailored at a very high level to cater for many
different methods. This paper will describe our system and emphasise how a design method
can be described more formally.

The next section in the paper presents an overview of our system and compares some related
work in the area of describing software design methods. This is followed by brief descriptions
of each of the three constituent tools. The task of checking a design diagram finally concludes
the paper.

262

2 A Design Editing System

A large number of graphical design techniques can be characterised as exhibiting a graph-like
structure composed of design objects. Each design object can be classified into one of the
following:

node denotes a software component, state, etc.
link denotes flow of control or data, etc.
label denotes the textual and graphical annotations of a design

These techniques whilst sharing the common properties of graphs tend to differ with respect to:

. the actual symbols used to represent design objects
. rules concerning how a design diagram may be constructed

Some of these rules refer to syntactic constraints such as ensuring that the name label of a node
appears completely within the perimeter of the nodes' symbol. Other rules refer to the semantic
properties of a design - for example, in designing a dataflow diagram it is generally considered
"good" design to have no more than 8-10 nodes on any one diagram.

The DES approach to providing design support for different methods is to provide tailoring
tools to describe the essential features of a method and a generic design editor which is
configured by this method specific information. This is achieved by providing the following
three distinct tools (depicted in Figure 1):

SHAPES a graphical shapes editor allowing the representation of each design

object to be defined.
GDL a language for specifying the "grammar” of a method.
DE a generic design editor configured by tables from the previous tools

In this type of system there are two types of user. The method administrator is the person
responsible for serting up support for a design method. The end-user is a person who uses a
design editor to create design diagrams. The tasks performed by the method administrator in
tailoring an editor for a specific method are:

. Describe the types of design objects (node, links and labels) by writing a GDL
description

. Define how each object is to be represented using the SHAPES editor

. Tables created using the GDL compiler and SHAPES are then used as input to the

generic design editor, thus configuring it for a specific method.

End-users can now create design diagrams using the tailored DE. Diagrams may be stored and
retrieved at any time thus ensuring that the task of diagram maintenance is made easier.

263

Method
Specification

Rule and Type
Tables

Design
Editor

Design
Diagrams

Figure 1 - The Design Editing System

The tailoring technique has been used successfully in many other areas where general
properties are abstracted and specific differences described. A particularly useful and
commonly known analogy is available from compiler-compiler systems. Such systems are used
to automatically generate compilers for languages specified with high-level tailoring tools. In
this area the observation has been made that compilers in general possess the same common
stages of scanning, lexical analysis, semantic analysis, etc.. What they actually differ in are:

. the lexical tokens of the language (eg. keywords, identifiers,
operators, etc.)
. rules referring to how a syntactically legal program may

be constructed from the available lexical tokens

The lex [Lesk75] and yace [Johnson75] tools of UNIX provide a means of defining such
language specific features. The lex tool takes a specification of the legal tokens of a language
and generates C code to perform the scanning and lexical analysis phase of compilation. The
yacc tool takes a specification, describing the grammatical rules for constructing a legal
program, and generates code to accomplish the remaining stages of compilation. The lex and
yace generated code can then be linked, together with user-written code, to produce a working
compiler for the specified language.

The DES approach in providing method support is similar. The major difference is that the
output from the tailoring tools are rables encapsulating method information rather than C code.
These tables are then used to "drive" a generic design editor.

264

Related work in providing graphical support for design methods shows slightly different
approaches. The work of [Woodman86] is inspired from the development of picture grammars
in the field of pattern recognition. The principle idea is that specific patterns can be described
using a grammar and the task of recognising a new scene corresponds with trying to parse it
according to known pattern definitions. Rather than return a value of "parse failed” or "syntax
error”, a weighting is returned and used in deciding how close a scene fits a known pattern.
Their application to software engineering diagrams is similar. Essentially it consists of
specifying what a dataflow diagram, for example, should look like. The grammar approach in
DES is similar except that the definition of the methods' lexical tokens is separated from the
specification of the method rules. In their work the symbol definition is an integral part of the
grammar.

From Figure 1 it can be seen that the DE is essentially syntax driven - the syntax of the method
"drives" the editor. Another grammar based approach in defining a method is contained in the
SEGRAS-Lab [Kramer86]. This system provides graphical support for Petri nets within a
syntax directed editing environment. Their grammar normally used for generating textual
syntax directed editors has been extended to allow context-sensitive constraints to be specified.
The end product here is a syntax-directed graphical editor. Our approach differs here in that
actual diagram construction by an end-user is accomplished with a non-restrictive interface.

3 Defining Method Symbols - SHAPES

The purpose of the SHAPES editor is to allow a method administrator to define the
representation (symbols) of each design object of a design method. Once created, the symbols
can be stored in method specific libraries which are used as input to the generic design editor.
The SHAPES user interface (Figure 2) consists of:

a control panel for selecting commands

a shapelist for storing/selecting shapes

a scrollbar for scrolling through the shapelist

a drawing area for constructing new shapes (symbols)

e o o o

Most interaction is via a mouse device except for the task of naming a symbol prior to storing it
on the shapelist. The shapelist initially consists of a number of primitive shapes. This list can
be extended by adding new user-defined symbols. The primitive shapes provided are text,
ellipse, rectangle (right-angled and round cornered), triangle, diamond and line with circle and
square being special cases of ellipse and rectangle. Whilst it is not possible to produce every
conceivable shape of every method from a combination of these primitives it is possible to
generate a very large percentage of them.

To define a new shape the method administrator first selects a primitive shape from the
shapelist using the mouse. This shape is then instantiated in the drawing area by defining its
enclosing boundary, again with the mouse. Any number of shapes can then be added and all,
or any subset, of these can be moved, stretched or deleted. Once created, a symbol can be
entered into the shapelist along with its name.

Atany time during a SHAPES session the user may store the current shapelist in a shape
library for later use as input to the DE.Therefore a shapes library consists of a number of user-
defined shapes each identified by a name and described in terms of basic, primitive geometric
shapes.

265

Strathclyde SHAPES Editor 2.0 (DEVELOPMENT)
(_Erase] [Clear] [

Input Library:

Output Library: MASCOT

Shapelist Shape Name: subsystem
LineStyle

Quit

TRIANGLE

—

ROUNDED BO

FILLED BOX "

CALLED CUR

Figure 2 - The SHAPES Editor

4 Describing a Method - GDL

The notation we have developed for describing a software design method is the Graph
Description Language. A method administrator describes a method by writing a GDL

266

description which is then transformed into tables using the GDL compiler. The compiler has
been constructed using lex and yacc and also employs the facilities of cpp - the C preprocessor.

The best way of describing the GDL is by example and the following fragment describes some
of the design objects of the MASCOT design method used in an editing session shown in
Figure 3.

type PATH is LINK (src : NODE; dst : NODE))

type JUNCTION is NODE (parent : owned by SUBSYSTEM;
in_path : in set of PATH;
out_path : out set of PATH)

type PORT is JUNCTION
type WINDOW is JUNCTION

type SUBSYSTEM is NODE (junctions : owner of set of JUNCTION)

for PORT use SYMBOL (MASCOT .port)
++ ACCESS_INTERFACE (STRING)
++ JUNCTION_NAME (STRING)

for SUBSYSTEM use SYMBOL (MASCOT.subsystem)
++ TEMPLATE_NAME (STRING)
++ COMPONENT_NAME (STRING)

assertion Junc_name_enclosed (SUBSYSTEM):
insti:
forall j; Member (Dependents (i), j) and GetType (j) = JUNCTION:
Encloses (GetLabel (i, SYMBOL), GetLabel (j, JUNCTION_NAME })

The type JUNCTION is in fact a place holder in the type hierarchy so as to avoid unnecessary
repetition.

Types

In describing a design method the main task is to assign some type to each design object of the
method (ie. node, link or label). The base types of the language are node and link (ie. the
basic constructs of any graph) and a hierarchy of types is formed from these. In the example
shown the type PATH is introduced stating that any instance of a PATH should have
parameters src and dst of type NODE. The type SUBSYSTEM is based on NODE and has only

dependent (or child) nodes. A child node is always associated with some parent node and any
operations affecting the parent also affects its children. In our example a child node of a
SUBSYSTEM node is of type JUNCTION which in effect is a PORT or a WINDOW. Having

introduced the node and link types attention is now turned on how label types are defined.
Labels

The for-use declaration is the construct for specifying the label types to be associated with a
node or link type. In the example, a PORT type has one symbolic (iconic) label and two textual
labels.The reserved word SYMBOL indicates that this label is the one used to represent an
instance of the PORT type on a diagram. The name MASCOT port refers to a symbol named
port stored within a shape library named MASCOT.

Assertions

267

The assertion construct is used to define the syntactic and semantic constraints of a design
method. In the example, we have chosen to describe the constraint that the
JUNCTION_NAME label of every child JUNCTION node of a SUBSYSTEM must be
completely enclosed within the SUBSYSTEM boundary. This is a syntactic constraint which
cnsures that in Figure 3, for instance, the labels "access1" and "access2" both appear within the
"Processing Subsystem” symbol boundary. Semantic constraints could refer to the number of
JUNCTION's present within a SUBSYSTEM, so as to reduce design complexity, for
example. Further details of the GDL and its capabilities can be found in [Beer87 and
Sommerville87].

5 The Generic Design Editor (DE)

The envisaged user of a DE tailored for a certain method is a software designer having
knowledge of the design method. Rather than interacting via simple graphical drafting
terminology (eg. box, circle) the DE uses the same terminology as the designer. A designer
selects a TEMPLATE or a PROCESS, for example, and adds it to a design diagram as opposed
to selecting a box or a line. Hence the designer 1nteracts in terms of the design objects of a
method.

The major facilities of the DE allow the user to:-

add, move or delete images representing design objects

create a design diagram larger than the designers' workstation window,

view the total diagram at a reduced size

annotate the diagram only, not the underlying design, with text, boxes or lines.
utilise a grid facility for aligning objects

The object oriented approach to user interaction has been pursued throughout the development
of the DE. The functions available to the designer are applied to a currently selected object from
the design. The current selection may consist of a node, link, label or combination of,
Functions are applied consistently across all objects wherever it is sensible to do so. It is
nonsense to edit the graphical symbol of a node but sensible to textually edit its labels.

The implication here is that the designer points at an object to make it the current selection and
then applies some editing function, such as delete or move. The converse to this philosophy is
the function-oriented approach where a function is first selected followed by the objects to
which the function is to be applied. The choice of interface essentially depends on whether
user-interaction is more natural with the object or the function.

The DE has been implemented on a SUN workstation running under the Suntools window
environment. The user interface (see Figure 3) consists of a tool window subdivided into the
following four subwindows:

. drafting area where a design is constructed,
. a control panel giving access to the editing functions and object types,
. two subwindows containing scroll bars. These allow the the drafting area to be

moved around the total area of the diagram.

268

demonstration

_ MASCOT _ subsystem

E Current Selection _ mn_.aL _ Font _ _ Grid _ _ﬂ:m_

Mo Selection

[Modes][Links][Labels|{ Annotation |

Input Subsystem

—

Processing Subsystem

Output Subsystem

—

- accessli

- access2

|/

Figure 3. The DE User Interface

269

Editing functions are selected from a control panel [Reid86] containing pull down menus and
"soft" buttons. The designer selects an node, link or label type from the menu and then adds
this to a design by fixing the position for its graphical image on the diagram.

The concept of a label is used within the DE to associate either a name or a graphical symbol
with a node or link. Therefore, the label is a generic object for capturing textual and graphical
descriptions. Labels have a defined enclosing boundary, contain a value and may be
manipulated in the same fashion as other objects of the design.

As mentioned previously, the DE has built-in knowledge that the design must be in the form of
a graph. The one restriction implicitly enforced by the DE is that a link must originate from and
end at a node. This prevents a design from being created where dataflow links, for example,
lead to or originate from nowhere.

This graph knowledge is used in other situations. For example, each node can have an
associated set of input and output links and labels. When a node is selected as the current object
then its links and labels are automatically selected as well. Subsequent functions applied to a
node are also applied to its links and labels, for example, if a node is deleted then all its
associated links and labels are also deleted- it makes no sense for them to reference a non-
existent node. In the same way a move operation automatically moves all links and labels
associated with a node.

6 Design Checking

In a software design editing system the provision of drafting facilities for automating diagram
production is important. What is even more important, from the point of view of ECLIPSE, is
that the underlying design is captured in the project database. A neat looking diagram is of no
use, and indeed may be harmful, if it is incorrect. Design checking therefore is a major
function of the DE and is one aspect in which it differs from a straightforward drafting tool.

Other design support tools have demonstrated the need for method specific checking of a
design [Jones86, Stephens85] but a novel feature of the DE is that checking is enforced at three
levels and at various times throughout an editing session. These checks are all closely
integrated with the GDL description of the method being supported and the three levels can be
defined as :-

. "connectedness”
. layout and semantic constraints
. completeness checking

In the.case of a node the strong typing of parameters can be used to enforce correct design
automatically. This is so because each node has associated links defined as being either in or
out. Subsequently, in the DE, at the time when a link is added to a design the parameter lists of
both the source and destination nodes can be checked. This check ensures that the link type is
consistent with the legal types of the source node's out links and also with the destination
node's in links.

The method rules to be enforced in the DE are called assertions. These are compiled by the
GDL compiler into rule tables which drive the DE. These assertions could be enforced at
different times in an editing session, as described later, but we believe that the best approach is
to allow the user to specify when checking should take place. At this time any object in error is
highlighted and made the current selection. An appropriate message is displayed in the control
panel and the designer can then apply functions to the erroneous object to correct the design.

270

Type checking can be enforced mainly through assertions if the link parameters are specified as
the generic type NODE and appropriate assertions on connections are written. Alternatively, a
strongly typed description removes the need for such assertions but increases the number of
~hecks each time a link is added to the design. This GDL trade-off effectively means striking a
balance between continuous checking (closer to syntax-directed editing) and user-initiated
checking.

In a GDL representation expression a label can be specified as being either compulsory or
optional. This information on the optionality of a label is transmitted to the DE through the
GDL generated tables and the presence of mandatory labels is checked at an appropriate time.
This is an example of a completeness check which can only be carried out under the control
of the user.

In interacting with the DE the end-user has freedom to construct a design diagram in any
appropriate manner. This is in contrast to other editing systems which provide a syntax-directed
user interface [Kramer86]. Design checking occurs in a non-obstructive manner. If an assertion
is violated then an appropriate warning message is output and the offending object highlighted.
The end-user can then choose to fix or ignore this error rather than being forced into a fixing it
before proceeding with the design.

The specific timing of checks is a contentious subject. The basic philosophy behind the DE is
that the designer should be given as much freedom as possible to construct a design diagram is
his or her own way. This is achieved by provided an object-oriented, modeless interface with
most of the design checking initiated at user specified times. Checking in the DE can be
classified on its timing during an editing session as follows:

1. implicit / restrictive There is implicit continuous checking throughout an editing session
because certain editing operations are restricted at certain times. For example, at the point
when a node is selected only certain label types are made available to the designer. This
ensures that, by restriction, the designer cannot associate a label of incorrect type with a
particular node.

2. immediate As soon as an editing operation alters a design certain assertions will be
executed immediately. For instance, these would include checking that a link has source
and destination nodes of the correct type.

3. user-initiated Rather than providing a syntax directed editor where the user is forced to
construct a design in a certain manner, the DE allows the designer freedom to develop a
design in whatever manner is favoured. Checking can be called at the designers'
convenience and may include assertions concerning completeness and consistency,
assertions about spatial arrangement of objects and completeness of label sets.

7 Conclusions

Presented in this paper has been a description of some applicative research into providing
automated support for graphical diagrams within software design methods. The system can be
tailored at a very high level to support different methods. So far, descriptions for methods such
as ISD, MASCOT, state transition diagrams and dataflow diagrams have been defined.

The novel aspect of this work is the ability to be able to specify and enforce method specific
checking within a generic design environment. The true worth of a production-level version
of this work would be obtained within an integrated project support environment requiring
many different design methods to be supported.

271

Acknowledgements

The work described here was funded by the Alvey Directorate, UK. Thanks are due to our
collaborators in the ECLIPSE project namely Software Sciences Ltd., CAP Industry Ltd.,
Learmonth and Burchett Management Systems Ltd., and the University College of Wales at
Aberystwyth.

Personal thanks are also due to Alistair Blair, Stevie Keith and Jim Reid for providing good,
constructive criticism of this paper.

References

[Alderson85]
Alderson A, FallaM. E., Bott F., "An Overview of ECLIPSE", Integrated Project
Support Environments, J. McDermid (ed) Peter Perigrinus London (1985)

[Beer87]
Beer Stephen, Welland Ray, Sommerville Ian, "Software Design Automation in an
IPSE", To appear in Proc. of 1st European Software Engineering Conference,
Strasbourg, France (Sep 1987)

[Constantine79]
Constantine L. L., Yourdon E., "Structured Design”, Prentice-Hall (1979)
Englewood Cliffs, NJ

[Jackson83]
Jackson Michael, “System Development”, Prentice-Hall(1983)

[Johnson75]
Johnson S. C., "Yacc: Yet Another Compiler Compiler”, Computing Science
Technical Report, No. 32 Bell Laboratories Murray Hill, New Jersey (1975)

[Jones86]
Jones John, "MacCadd, An Enabling Software Method Support Tool”, Proc of 2nd
Conference of British Computer Society Human Computer interaction Specialist
Group, Harrison (ed) pp. 132-154 Cambridge University Press (23-26 Sep 1986)

[Kramer86]
Kramer Bernd, "Interactive Graphical Specification Using he Syntax-Directed
SEGRAS Nineteenth Annual Hawaii International Conference on System Sciences,
Bruce D. Shriver (ed) pp. 420-429 (1986)

[Lesk75]
Lesk M. E,, "Lex - A Lexical Analyser Generaror”, Computing Science Technical
Report, No. 39 Bell Laboratories Murray Hill, New Jersey (Oct 1975)

[IMASCOTS80]
MASCOT, "The Official Handbook of Mascot”, Mascot Suppliers Association
Malvern, UK (1980)

[Peterson81)

Peterson James L., "Petri Net Theory and the Modeling of Systems", Prentice-Hall
(1981)

272

[Reid86]
Reid P., Welland R., "Software Development in View", Software Engineering
Environments, Ian Sommerville (ed) Peter Peringrinus London (1986)

[Sommerville87]
Sommerville Ian, Welland Ray, Beer Stephen, "Describing Software Design
Methodologies”, The Computer Journal, Vol. 30 No. 2 pp. 128-133 (1987)

[Stephens85]
Stephens M, Whitehead K, "The Analyst - A Workstation for Analysis and
Design”, Proc of 8th International Conference on Software Engineering, IEEE
Computer Society Press London (28-30 August, 1985)

[Woodman86]
Woodman M, Ince D, Preece I, Davies G, "A Grammar Formalism as a Basis for

the Syntax-Directed Editing of Graphical Notations", Open Univeristy Technical Report
86/19, (1986)

273

Cleaning Up UNIXT Source
- or -
Bringing Discipline to Anarchy

David Tilbrook
Zalman Stern

Information Technology Center
Carnegic Mellon University
dt@andrew.cmu.cdu
7501 @andrew.cmu.edu

ABSTRACT

Many people are coming to the realization that the distribution of UNIX
software is not just a matter of creating a tar tape. Approaches to software and
distribution management vary from simple disciplines, conventions and pro-
cedures to full scale Integrated Programming Support Environments (IPSIs).
This paper discusses some of the problems and issucs involved in the manage-
ment of software, concentrating primarily on the exporting of source to remote
locations.

1. Introduction

This paper is a discussion of techniques for managing medium size software distributions (c.g.
4.3bsd!) and for the installation of that software at remote locations. For the most part, the
paper is based on the strategy originally formulated by David Tilbrook to manage and distribute
the D-trec softwarc [Tilbrook 86]. In this paper thc authors attempt to extract the relevant points
that should be applicable to most UNIX based software projects. The Information Technology
Center plans to use this strategy to manage the Andrew software produced at Carnegie Mellon
University. If this endeavor is successful, these techniques will be applied to other softwarc
developed at CMU as part of the effort to produce a CMU distribution tape.

The paper is divided into eight sections. The next two sections introduce the goals and objectives
of Software Mangement and some of the guidelines to be followed in implementing a Software
Management system. These sections are followed by a discussion of some of the more important
aspects of such an implementation, namely the key personnel and their responsibilitics, the con-
tents and structure of the supporting database, and some of the more important tools. The final
section presents some prognostications as to the effectiveness of the strategy and its future.

2. What is Software Management

“Software Management” is the discipline of managing, maintaining, and distributing a body of
software in source form. The ultimate goal is unremarkable and painless installation of software
and its subsequent upgrades at a remote sitc. The notion behind this is that software should be
judged on its inherent worth, not the amount of hassle involved in getting it to run.

+ UNIX is a trademark of Bell Laboratories.
! Approximately 4300 files and 850,000 lines of code.

275

Software Management is a different discipline from Software Engincering. While, the primary
goal of both Software Management and Software Engincering is increased reliability of the subject
software, the disciplines have very different approaches to achicving this goal. The software
engineer is primarily concerned with creating, transforming and validating descriptions of a sys-
tem. The software manager, in contrast, is primarily concerned with the management of those
descriptions 5o as to make them available to other parties. Furthermore, the software engincer
should be concerned with the climination of semantic errors (e.g., bugs), whereas the software
manager tries to cnsure that the system, when installed remotely, is semantically equivalent to the
system as delivered by the supplicr.

Achieving software rcliability through Software Engincering is largely a matter of the application
of techniques to facilitate the creation, modification, transformation and validation of system
descriptions. ['or example, the use of programming conventions, high level languages, and formal
design systems all enhance the clarity of the descriptions and might facilitate the use of formal
validation techniques.

Achieving software reliability through Software Management is largely a matter of providing con-
sistent representation and control of the software source. The provision of such a representation
and the controlling mechanisms should facilitate the rectification of problems and the distribution
of the solutions in a timely and well-controlled manner.

The rest of this section outlines some considerations when designing a source representation.

® The representation must permit the easy extraction of a subsct of the software for transmission
to another location. The extraction mechanism must support the specification of the files to be
cxtracted in a variety of ways, such as version numbers, subsct specifications, or a list of
changed files since the last appropriatc extraction.

¢ The organization [sic]? of the source must be done in such a manner as to allow personnel to
manage, install and test the source without an extensive understanding of the software’s purpose
or function.

® The addition and/or removal of source files must be simple. Iixtensive modification of any
secondary files (c.g., system construction files). Ideally, the mere act of adding or deleting a file
will cause the software construction tools to do the right thing.

® The procedures to create and install a distribution must be usable by a large number of pcople.
If a software distribution is to succeed it cannot require or demand extensive understanding by
the instalier. To do so would impose limitations on the number of installations that could be
performed by demanding more resources than are cither merited or available.

* Solutions to distribution or installation problems must be applicd across the entire source data-
basc in a consistent and casily-stated manner. For example, the mechanisms used to specify
installation controls (e.g., installed file attribute specification), environmental variations (c.g., file
naming mechanisms), search paths, versions of compilers to be used, include paths, and library
paths must be expressed in a way that they can be casily modified by the user. Any significant
change in the values of those controls has to force the re-creation and installation of any
affected files. Achieving this objective is important since minimizing the mechanisms used to
specify such controls will increase the flexibility of the installation and facilitate the adaptation
of the distribution to different requirements (c.g., different compilers, operating systems, or
machines).

3. General Principles

The principles described in this paper are guided by two considerations. On the onc hand, the
installation process should proceed flawlessly. On the other hand, there is Murphy’s law. Despite
all efforts to create a fail-safe distribution, installation will take place in an alicn environment,
which makes it likely to fail in new and different ways.

2 Since both authors are now being paid in American currency, some concessions have been made

276

“Keep It Simple, Stupid” (a.k.a. the KISS principle). Another way of stating this is “Don’t do
what you don’t understand.” The area of Softwarc Management is new and full of hard problems.
The goal is to increase the reliability of software, especially at a remote site, not to solve all the
problems in the field. Clients will not appreciate rescarch being done on their systems. There-
fore, the distribution system should be based on proven, well understood tools. T'urthermore, if
the software management system is too complex to understand, it will not be used successfully.
On the onc hand, to try to keep things simple, specialized tools should be avoided. Including
such tools in the distribution can be very costly. On the other hand, a specialized tool will often
greatly simplify a task by centralizing all of that task’s complexity in one place. A good tool must
fit well into the distribution as a wholc and place minimal demands on the software manager.
Attempts to solve the software distribution by writing more complex versions of make(1) arc dis-
tressing in that they require very complex human generated Makefiles. In cffect, they address the
wrong problem, thereby adding many complex Makefile throughout the distribution.

“If it won't take off in Poughkecpsic, don’t expect it to land in East Podunk! The first clue that
a mechanism is too complex is that it does not work reliably in the development environment. If
it is the least bit difficult for the software management staff to use a tool, it will be a failure in the
installation environment. Makefiles which seem to cmploy magic are an excellent example of this
phcnomena. Many people struggle to make a Makefile work without realizing how fragile it is.
Such “solutions’ will only cause problems when they Icave the development organization.

“Too many cooks spoil the broth.” If a Software Management system requires more than one
“cook”, it is unlikely to achieve some of the goals discussed eariler. It must be designed and
implemented to be completely managable by a single person. This is a key point that will be dis-
cussed at length in the next section.

4. Roles and Responsibilities

Any Software Management system must accomodate three distinet responsibility classifications:
the software gatekeeper, the software supplier, and the client site installer (i.c., the client). There
are other types of personnel associated with the distribution (e.g., the end-user is conspicuously
absent from the above list). ITowever, at this time, we are, concerned with the above three classes
only.

4.1. The Gatckeeper

Onc of the guidelines established in the previous scction was that a single person be able to
manage of the softwarc. To ensurc consistency, to facilitate communication and to centralize
efforts, there must be one well identified individual who is assigned the authority and responsibil-
ity to manage and protect the software database. This person is called the gatekeeper.

The gatekeeper stands between the supplier and client, protecting both partics’ interests. When
cxamined with respect to the goal of increased software rcliability, the gatckeeper's primary
responsibility is to be the best source of the best information about the distribution’s status, avai-
lability and compatibility. Hence her primary responsibility is to maintain and protect the
integrity of the software database, and to ensure that the information required to install, use and
maintain the subject software is available, accurate and (we hope) uscful.

The gatekeeper need not be a programmer. Her responsibility is the management of source, not
the creation of it. Understanding its functionality might be uscful but is not nccessary. She
should have a technical and administrative support group to aid in the preparation and validation
of the database and to process the details of exporting and monitoring distributions to remote
clicnts. She will also require the support of an “editorial board” which will act as the “arbitrators
of tastc.” This board is a group of scnior technical advisors and management who can advisc the
gatckeeper on the suitability or necessity for inclusion of a software package in the distribution.

The gatekeeper’s responsibilities do not include component testing. She should expeet and
demand that software submitted for publication has been tested to an acceptable standard by the
software supplicr or some other party on their behalf. The gatckeeper will test the system, but

277

only with respect to its construction and installation within the context of the entire distribution.
Ideally, the gatekeeper should have access to a secondary groups to do quality assurance testing,
but this is not essential.

In order to fulfill her responsibility, the gatckeeper will have to clicit the cooperation of both the
supplicr and, cventually, the client, as covered in the following sections.

4.2. The Software Supplicr

For the most part, it is assumed that the supplicr is accessible to the gatckeeper, in that the latter
may call upon the supplier to provide extra information and help where the delivered source is
insufficicnt. In such cases it is also assumed that the software supplicr will have sufficient interest
in the proper distribution of their software to incorporate the changes required to make the it con-
form to the structure and style of the databasc. If this is not the casc, the gatckeeper may choose
to rcject software or to acquire alternative assistance to reshape the softwarce as she requires. The
point is the supplicr must accept the following realitics:

e their role is dcliver software in its complete source form to the gatckeeper along with the addi-
tional construction information in acceptable or an agrced upon manner (“‘read the Makefile' is
not acceptable);

® once delivered to the gatckeeper, the gatekeeper is in control of that version of the softwarc;

¢ the gatckeeper can expect (and somectimes demand) the supplier to be prepared to rectify prob-
lems in previously released versions (up to an acceptable level) so as to be able to provide
minor fixes to the client where a full upgrade is cither impossible or unacceptable to the client;

¢ the supplicr should attempt to inform the gatekeeper of any substantial activity that might affect
the delivery of future releascs of the software.

It is difficult to imagine a programmer who would reject such conditions, but it is rumoured [sic]?
that some of the breed have been known to be uncooperative on rare occasions.

The gatckeeper, in turn, will ensurc that the supplier’s software is protected, freely readable
(though not writable) by the supplier, and that any changes required to install the source at
remote locations or any software failures are reported to the supplier in a meaningful manner
(“You got it wrong, bimbo!"). Furthermore the gatckeeper will attempt to provide a service
whereby redundant bug reportings and/or queries arc handled by an appropriate support group so
as to not interfere with the supplicr’s work unnecessarily.

4.3. The Remote Site Support

Normally, little can be demanded of the site that receives a distribution. Therefore we must
examine the gatckeeper’s relationship with such a site. A remote site should be asked to identify a
person responsible for the remote location management of the softwarc. IHence, the gatckeeper
should attempt to foster and promotc a cooperative relationship with this person. This can be
done by providing casy to implement mechanisms for the reporting of problems (c.g., 4.3bsd
sendbug(1)), a hot-line and, above all, meaningful and helpful responscs to queries and problems.
Eflort should be made to make such reporting worthwhile to the remote site as the return will be
significant.

As is the case with many aspects of this paper, the above would appear to be obvious, but unfor-
tunately there are far too many examples to indicate that these homilies are often ignored.

5. The Database

The authors belicve that formal and rigourous databases should be used to manage all the infor-
mation about a software system across all phases of the software’s life cycle (i.c., from conception
to retircment). Such a database and the integrated tool sct (c.g., compilers that extract source

¥ There is only so far we will go.

278

from that database) would provide much better control for both the Software Engincer and
Manager.

But, at this time, there are number of impediments to the use of such databases. It is currently
impossible for us to employ such a database without violating some of the guidelines discussed in
the previous section. The authors feel that we are still a long way from understanding how such a
database would be constructed. There are concerns as to how it would be uscd without imposing
severe constraints on the programming stafl.

This section examines the D-tree distribution information and its structuring. It is offered to illus-
trate the range of the required information and its uses, rather than as an example of the way it
should be done. Attention is paid to the rational for the particular representation.

The information is split into the following classifications, although the division is at times arbi-

trary.

e The Source — the software as a body of text and data prior to transformation to the installed
form.

® Boot strapping information and site parameters — information used to establish the sitc and
system dependent information and to initialize the tools and environment required to do the
installation;

e Construction Controls — the information used to control the creation and installation of the
software;

¢ Distribution Management Information — data uscd to control, prepare, distribute and monitor
the software with respect to remote sites;

e Installation Documentation — details and guidelines to aid the installer of the software;

e User Documentation — information regarding the usc and purpose of the subject softwarc.

5.1. The Source

In the large perspective, source can be considered as all the information that is required to distri-
bute, control, install and use software. TFor the purpose of this discussion, “‘source’ only refers to
that information that is directly transformed into an installable component (e.g., the expression of
a program in the C language or a data file).

The source files are stored in a directory tree. The source directory architecture strategy is difficult
to describe. It is highly dependent on the relationships between components and the mechanisms
used to convert the source into the installable form. owever, some points must be emphasized:

e Naming conventions must be adopted that facilitates the identification of a file's type and func-
tion and the mapping of the installed file back to its sources. For example, the file that con-
tains the “main” entry point has the same base name as its installed form (e.g., “main.c’” is to
be avoided).

e The directory tree should be designed to facilitate the creation of rational sub-distributions and
the expression of dependencies using directory names alone.

¢ The directory dependency graph must be acyclic.

¢ Directories should be monochromatic except where it leads to severe fragmentation. By a
monochromatic directory we mean that ALL the files of the dircctory are processed in the same
manner.

To store past versions of the source file, there should be a versioning mechanism (e.g., Sccs or
Rcs). Such a mechanism must be used, in a consistent manner, for all source files that can be
modified. There must be a deterministic way to map the name of any source file to the file used
to administer its past versions and vice versa. It must be possible to fully install the system in the
absence of the versioning mechanism.

279

5.2. Boot strapping and sitc parameters

The site parameters are those system and location dependent settings that must be specified at
installation time by the client. As much as is possible, such information is isolated and central-
ized in a well identified dircctory (e.g., in the D-tree it is called magic). Site parameters, arc
specified in two configuration files (one for the machine and one for the site) that contain variable
value pairs. In addition to the configuration files, the magic directory contains all those files that
need to contain a site parameter. The first step of the installation is to copy such files to a new
file, replacing the variables in the input file by the value specified in the configuration files. The
directory also contains command files to install such files in the required location. In addition to
the site paramecters, magic contains the commands to boot the tools that are required to build and
install the rest of the system. The smagic directory is the most difficult to create as it must be
carcfully designed to present as few problems as possible. It is used before the site parameters arc
in place and the distribution tools are usable.

5.3. Construction Controls

By construction information, we mean the names of target dircctories, header and library scarch
paths, symbolic mappings for librarics, specifications for construction tools (e.g., $CC), options,
directory dependeney lists, and construction specifications required to create and install the sys-
tem.

In the D-tree, two conventions are used to specify such information.

Files called LelVars contain simple variable value pairs to specify information that applics across a
dircctory tree. All such named files from the root down to the current directory are processed to
retricve the scttings. The more local scttings override the settings closer to the root. A mechan-
ism to select or suppress scttings within the IclVars files, based on the system and options list, is
provided.

The actual construction processes to be applied within a specific directory is specified via a pmak
contro! file, usually called PMC. This file normally contains a line that specifies a shell command
to be interpreted to create the full construction description file (the pmak script). The PMC file
may also contain lines to specify cxceptions and local overrides. The semantics of PMC files arc
described at length in [Tilbrook 86].

The directory dependency graph (used to control multi-directory constructions and to build subset
distributions) is contained in a special form of PMC file. The list of librarics used by a program
is specified (symbolically) within the main source file for the program. ‘The expression of all other
dependencics are created by processing the source or special rules files provided as part of the
pmak system.

5.4. Distribution Management Information

The distribution management information may be divided into five classifications: the distribution
file list (a list of all the files in a source form distribution), a validation database used to check the
latter for the appearance or loss of files, a set of snapshots for remote installations (i.e., the list of
files and their respective version numbers sent to a remote location), the change audit trail with
checkpoints indicating releases to remote sites, and the version number databasc. The use and
form of most of these files should be relatively obvious. It must be emphasized that the creation
and protection of above information is a crucial gatekeeper responsibility.

5.5. Installation Documentation

This class of information is provided as an aid to the remote site installer and system administra-
tor. Each source dircctory should contain a file called Read_me. Thesc files contain information
pertaining to the source files contained within the directory. Tor example, any special instructions
or warnings arc provided via this file. It should also provide a list of all the contained files plus
brief descriptions, where the actual use is not obvious. Read_me files should be brief but com-
plete as installers invariably do not read them as carcfully as onc might wish. The Read_mec files

280

are considered part of the source .

Three other forms of information are provided for update tapes and these are: the list of removals,
the delta comments, and the update commentary. The list of removals names all the files that are
to be removed from the previous distribution (renaming files is done by removing the old file and
creating a new one). This information is automatically included by thc update tape generating
procedure. The delta comments are also automatically included in any update tape. These com-
ments are extracted from the Sccs administration files for all “delta’s included in the update.
The update commentary is normally manually produced by the distribution manager and should
treated as a new source file that is delivered to the remote site.

5.6. User Documentation

Traditional UPM style manual sections (in -man format) are provided for every installed tool as
part of the source tree. These manual sections are kept in either a sibling or child dircctory
(called man) of the directory that contains the main component or in the directory itself. Manual
section files are always suffixed by a single digit, as in manual./. They should never usc the suffix
‘I' (a common habit in net.rubbish) as that as that suffix is reserved for lex(1) source files.

6. Version Numbers

Version numbers are very important when distributing software to a remote site. They are the
key link from the programs at the remote site to the software manager’s database. As with any
other database key, version numbers must be expressed in a consistent form. Version numbers
must also be available in any situation where a user will be communicating with the distribution
organization. Among these instances are bug reports and general questions.

In order to cnsure the universal existence and consistency of version numbers, they arc generated
automatically by a specialized tool as part of the construction process. To meet the requircment
of accestbility, version numbers are compiled into each program's binary. The version number
string has the following components:

V@@#)Name 1.2.3(4) 17 Aug 87 05:06:07

V@(#): string used to find version string in binaries and/or core files using what(1).
Name: capitalized name of the program

1.2.3(4): Edition, Revision, Level and compilation numbers collectively referred to as the Version
number (see below).

17 Aug 87 05:06:07: The date and time the version string was created (usually immediately prior
to compilation).

The Edition number (1.2.3(4)) corresponds to the edition number of the hard copy Andrew guide
and will be changed by the documentation group when a new edition of the manual is to be
released.

The Revision number (1.2.3(4)) is used to indicate major revisions or modifications to the system
within the edition. It is may be incremented by the creator once the documentation is ready. It
reset to | whenever the Edition number is incremented.

The Level number (1.2.3(4)) is used to indicate revisions which are discernible by the user but do
not merit or require an upgrade of the documentation. The programmer may increment the level
number at his/her own discretion. The Level number is reset to 1 whenever the Edition or Revi-
sion numbers are changed.

The compilation number (1.2.3(4)) is incremented automatically every time the program is com-
piled. It is reset to | whenever a higher level number is changed.

Each program has one of these version number strings compiled into its data section. This way,
one can use the /flwhat/fP(1) program to extract the version number from a binary or a core
dump. Although it is not of paramount importance, it is also convenient to be able to sce the
version number while the program is running. It should be remembered though that the version

281

number is for use by the programmer and software manager. It should not clutter up the user
interface of a program or get in the way of the user.

7. Preparing a Distribution

Much of the work that goes into preparing a distribution can be characterized by the phrase
“rigorous application of common sense.” The methodologies outlined here are not magical, or
even necessarily original. Unfortunately, it is not clear that these methods are employed for most
distributions. Therefore we outline the following four steps to preparing a system for distribution:

¢ Deciding which software into the distribution.

¢ Identifying the source for the chosen software.

e laying out the distribution database.

¢ Establishing conventions for the distribution as a whole.

The first step in organizing a collection of software into a distribution is to figure out what is to
be included. A good distribution should be easily manageable and place minimal “stresses” on
the environment into which it is installed. It should must make minimal assumptions about the
target environment. For these reasons, one must consider very carefully what goes into the final
product. Programs should be evaluated in terms of their dependencies (costs) versus their useful-
ness (benefits). If possible, seldom used programs should be eliminated since they are not worth
their dependencies. Keeping track of many small programs can easily make the task of preparing
a distribution unmanageable. It is often easier to add pieces to the distribution after the basic
structure is in place and the necessary components are provided.

After the dead wood has been culled from the system, the next step is to identify the sources for
the chosen components. In sizable development efforts, it is easy to lose track of where all the
sources are. Although the task of finding the sources for a program may seem trivial, it often
isn’t. For example, the Andrew system has been developed on a distributed filesystem with over
fifteen gigabytes of storage. Within this system, there are six separate operating system distribu-
tions for four machine types, and two complete scts of Andrew software (one for the campus
released software and one for the development versions). It would be for all practical purposes
impossible to match the released software to source. Even within the development environment,
we find things like twentyfive versions of the install(1) program. The process of identifying the
source for programs will involve lots of tree combing and such. This is largely the gatekeeper’s
responsibility, but will require good communication with the software supplier.

Now that there is some idea of what constitutes the distribution, a database in which to put the
source must be designed. The representation of this database will be a filesystem tree. Its basic
structure is dictated by the dependency graph of the softwarc. The very first things to go in will
be the distribution tools, which are fairly much the same from one distribution to the next. The
rest of the trec will depend on the interrelationships of the many picces of software in the distribu-
tion. Fortunately, usually there is already a running system to start from, so the process of organ-
izing the tree can be lazy evaluated to some extent. It is not necessary at first to have all of the
dependencies in the tree. It is permissible to reach out into the existing system to grab com-
ponents. This gradual conversion process should make things casier for both the gatckeeper and
the supplier. The dircction should not stray from gaining a disciplined approach though. One
should ensure that software remains buildable during every step of the copying process. The best
way to do this is to frequently rebuild the system. Is important that development not be going
full blast while this is happening. This process is complete when the entire system is organized
into a source tree.

The final step is to do a global cleanup of the software system. Since the entire system is now in
a “semi-organized” tree, it is possible to take a global view of the software. This is a good time
to establish certain conventions across the entire distribution. The gatekeeper should identify site
parameters (i.c. pathnames where data files are found, optional configurations) and coordinate
with the software supplicr to establish a minimal set. All such parameters should be collected in a
single directory to make it casy for the remote site to configure the system. Conventions for

282

portability should be established. The gatekeeper may have to suggest alternate coding conven-
tions for use within the development environment. A trivial example of this is the use of strchr(3)
under System V vs. index(3) under 4.3bsd. The distribution may provide a library which has a
strchr function for portability. The software supplier should be encouraged to use the portability
library and strchr instead of index.

After the distribution has been put together, it is very important to test the construction process.
It should be possible to build the entire system at a site which has never received any software
from the supplier. Having a friendly beta test site where this can be done is invaluable. If possi-
ble, the distribution should be tested on all flavors of machines and operating systems it is
intended to run on. Any dependencies of the software that are assumed should be carefully
enumerated so that they can be announced as prerequisites for the distribution.

Usually, a distribution is prepared from an existing system. The above outlines a method of get-
ting from the chaos of a development system to the “‘order” of a distributable system. Having
put all this effort into creating order, it is a good goal to keep it that way. The gatekeeper will do
well to try and reimpose some of these conventions on the software supplier. Hopefully this can
be done in an undisturbing way. The software supplier’s interest in a disciplined software
approach is to increase the quality of their software. An organized source tree makes it much
casier to track bugs and rccognize when they are fixed. The requirement that any change to the
software must be explained to the gatekeeper before it goes into the distribution will help
encourage good record keeping. Historical records of the software’s evolution are very useful for
gaining an understanding of how the system works.

8. The Tools

This scction does not describe specific tools. Rather it discusses changes to the D-tree tools since
the last paper, some approaches that have proven to be essential to manage thousands of files,
and the source versioning system choice (e.g., Sccs or Rcs).

8.1. The D-tree Pmak tools

[Tilbrook 86] paid extensive attention to the tools used to support the construction and installa-
tion of software at a remote site. These issues will not be discussed in this paper, other than to
state that eightcen months later the basic reasoning has remained the same: there is the need for a
better approach to the system construction process.

In fact, some aspects of the approach have been considerably strengthened. The primary goal of
the use of prmak(1) and its script generators to control construction can now be justified by stating
that its use has permitted extensive simplification and/or centralization of the information required
to control the construction process. This has becn accomplished primarily by creating a mechan-
ism for expressing various construction controls (c.g., include and library search paths, library
mappings, target path names) in a simple generalized syntax. At the ITC, new script generators
have been created or are under construction to deal with some of the new requirements imposed
by the Andrew system and its components.

There has been considerable work on the dependency problems. Since one of the objectives esta-
blished carlicr in this paper was the simple update of a remote distribution, the mechanisms for
ensuring that a generated script is accurate and up to date have been substantially improved.
pmak will soon be able to infer dependencies even within a dynamically changing construction
cnvironment.

One of the objectives stated in the 1986 paper was to use whatever version of make(1) was pro-
vided by the host system. lowever, we have now rcached the decision that this policy is no
longer viable and imposes too many restrictions, thus future distributions will provide their own
alternative to make. The major reason for this departure is that few makes can adequately or
casily handle what is an absolute necessity at the ITC, the creation of objects for multiple
machines from a single copy of the source. This requirement, coupled with the desire to eliminate
the gymnastics required to cope with the variations among the various implementations of make

283

have forced us to design and develop yet another variation. But, it must be pointed out that this
version adheres very strongly to the K.I.S.S. principle, and includes some of the key features of
mk [Hume 87]. Also the reader should note that because this version will always be front-ended
by pmak, it can be very simple minded (namely, compatibility is not a concern).

8.2. E2BIG

Another area in which the tool set has to be considerably enhanced when dealing with a distribu-
tion is to cope with the frequent occurrence of the message:

Arguments too long.

(i.e., errno= = E2BIG).

Far too many of the tools cannot cope with the file lists of even a medium sized distribution.
Many of the tools (e.g., Is, bm, grep) have to be modified to process an input list of files as
opposed to an argument list specified on the command line. Alternatively one may have to create
new tools with enhanced functionality for efficiently dealing with large files lists.

8.3. The File List Creation System

In the section on the database, the major file lists were explained. One of the gatekeeper’s major
responsibilities is to ensure the accuracy of these lists, hence a set of tools are required. Rather
than to attempt to explain all the processing that is required, the following is a list of all the file
lists that are produced during the process used to maintain the D-tree database:

a.all: all files in the subject dircctory

,a.dirs: all the directories in the subject directory

,c.cfiles: all the p-files with SCCS/p. removed

,c.gfiles: all the s-files with SCCS/s. removed

Jd.gfiles: existing g-files

[+ files: all +files or + directory files (temporary file)

Sf.commas: all comma files or comma directory files (temporary file)
[felse: all files not identified by flsplit

f.pfiles: existing SCCS p-files

[f.sfiles: existing SCCS s-files

[f.tmps: temporary files identifiable by name

,m.pnos: p-files with no s-file (s-file might have been lost)
,m.regs: registered distribution files that don’t exist (might have been lost)
,m sfiles: registered s-files that don’t exist (might have been lost)
,Mm.snog: missing g-files (s-file exists but g-file doesn't)

,m.tmps: registered temporary files that don’t exist

,n files: unidentified (new) files

;n.sfiles: unknown (new) s-files

Normally any empty ““,[nm].*” file will be removed. If any such files arc not empty, they contain
the names of files that will have to be processed to bring the major file lists into sync with the
cxisting database.

8.4. Sccs vs. Res

The current D-tree system uses and depends on the Sccs system. For the most part this is due to
historic considerations in that it has becen managed that way since its life on pwB (circa 1978),
which was the first system to include these tools. However, due to the unavailability of the Sccs
system on bsd systems, many people at CMU use Rcs, thus we have been forced to evaluate its
possible use for large scale distributions. The choice is not an easy one; choosing the lesser of
two evils never is. Both have advantages and disadvantages, as outlined below.

¢ Rcs’s interface is slightly morce attractive than raw Sccs, However, Fric Allman’s Sccs inter-
face is better than that offered by Rcs and offers other advantages.

284

e Rcs's ability to include the history in a source file would appear to be very useful for the distri-
bution of small software systems but becomes costly when considering thousands of files. Sccs
can be modified to provide a similar mechanism, but it is cumbersome to use.

e Sccs is buggy in some of its error condition handling and needs some fixes to deal with non-
vaxen (unbelievable as this may scem) due to byte order dependent code.

¢ Sccs’s keyword scheme makes it undesirable to ship sources with expanded keywords to exter-
nal software developers, whereas Rcs can deal with expanded keywords.

e Rcs does not check the return values of all its writes for error codes thereby endangering the
V-file. Sccs checks the return code of every write by redefining write(2) thus guaranteeing user
notification on write failure. Unfortunately neither system checks the uses of close(2), which on
the ITC VICE file system can cause unreported failures.

e Rcs does not have any check sum in the V-file thus there is no mechanism to check its
integrity. Every Sccs s-file contains a check-sum which is checked on every access.

® Rcs writes the locking information into the V-file whenever the file is checked out with a lock,
which, when combined with the last two points make the V-files very vulnerable. Even worse,
from the software manager's viewpoint, the fact that the file is locked is not obvious (ie. it
requires parsing the V-file to tell if a file is locked). Sccs creates or modifies a supplementary
file (a p-file) which avoids cndangering the s-file and makes the fact that a file is “checked out”
conspicuous.

e Rcs's scheme for version management is inferior to that of Sccs for a variety of reasons. It is
based on line numbers which are somewhat unreliable in the face of failure. Rcs needs to do
multiple editing passes of the file to build old versions, hence it is much slower. Finally, the
Rcs administrated source (i.e. ,v file) is not expressed in a form that can be viewed directly to
determine when or how a change took place, whereas that of an Sccs file can.

e Rcs provides a binding scheme across multiple files, whereas Sccs does not.
¢ Neither system has a scheme to to deal with file removals or renaming.

® Rcs always appears to have been extensively hacked, a good clue something is wrong, whereas
Sccs is amazingly stable.

e Rcs offers a merge facility. Sccs does not.

For the gatckeeper, the better choice would appear to be Sccs, partly because of the greater relia-
bility and partly because of the usc of a p-file instcad of a line in the v-file to indicate work in
progress. On small source systems this may not secem important, but when dealing with large sys-
tems, the ability to determine what is being edited using find(1) is very important. The advan-
tages offered by Rcs (e.g., embedded history, proper management of expanded keywords, and
releases) can all be dealt with in a satisfactory manner using supplementary tools.

At the TTC, the suppliers will probably continue to use Rcs for their personal development, how-
ever, the gatckeeper will use Sccs for the above reasons and since a mature set of well integrated
distribution maintenance and creation tools exist for Sccs and not for Rcs.

9. Conclusions

There is a limit to the cffort anyone will spend installing or upgrading a picce of software. Over-
stepping this limit results in user impatience and frustration, which ends up in the software not
being evaluated on its own merits. Software management techniques, such as those described in
this paper, will substantially reduce the effort involved in installation and upgrades. Ilence, these
techniques are necessary to the success of any sizable project.

There are two ways in which software developed within a university rescarch environment can be
valuable. The first is through the traditional method of publication of papers in technical journals
or presentation at conferences. The second is through “publication” of the software itsclf, that is
making the software available in an installable form. This allows the objective evaluation of the
concepts behind the project through its use. However, the costs (both in time and people)

285

wolved in creating a proper distribution are often too high. A coherent Software Management
system will reduce these costs and avoid the pitfalls of installation that prevent proper evaluation
of the delivered software.

The techniques described in this paper have been used effectively elsewhere. However, we are just
beginning to use them at the ITC. It has been an interesting experience watching the transforma-
tion of programmer attitudes towards Software Management. The ITC software staff consists of
many high quality, conscientious, and by necessity opinionated, programmers. Initially, their per-
ception of Software Management was negative in that they felt threatened and questioned its
value. After three months of exposure to the principles outlined in this paper, they are very
enthusiastic, and believe that it will make their job easier. Furthermore, there is a consensus
throughout the ITC that Software Management will improve the overall quality of the system and
make the large scale distribution of the Andrew system a reality.

Acknowledges

Many thanks to Jennifer Robertson of the ITC for her help and patience.

References
D.M.Tilbrook and P.R.I. Place, Tools for the Maintenance and Installation of a Large Software
Distribution, EUUG Florence Conference Proceedings, April, 1986, USIINIX Atlanta Conference
Proceedings, June 1986.

Andrew Hume, Mk: a successor to make, USENIX Phoenix Conference Proceedings, Junc 1987.

286

