European UNIX® systems User Group

Autumn ’89

Conference

Proceedings

18-22 September 1989
at
Wirtschaftsuniversitat
Vienna

& ® UNIX is a Registered Trade Mark of AT&T in the USA and other Countries }

EUUG

European UNIX® systems User Group

Proceedings of the
Autumn 1989 EUUG Conference

September 18-22, 1989
Wirtschaftsuniversitat,
Vienna, Austria

This volume is published as a collective work.
Copyright of the material in this document remains
with the individual authors or the authors’ employer.

ISBN 0 9513181 3 6
Further copies of the proceedings may be obtained from:

EUUG Secretariat
Owles Hall
Buntingford

Herts
SG9 9PL
United Kingdom

These proceedings were typeset in Times Roman and Courier on a Linotronic L300 PostScript
phototypesetter driven by a Sun Workstation. PostScript was generated using refer, grap, pic, psfig, tbl,
sed, eqn and troff. Laserprinters were used for some figures.

Whilst every care has been taken to ensure the accuracy of the contents of this work, no responsibility for
loss occasioned to any person acting or refraining from action as a result of any statement in it can be
accepted by the author(s) or publisher.

UNIX is a registered trademark of AT&T in the USA and other countries.

DEC is a registered trademark of Digital Equipment Corporation.

VAX is a registered trademark of Digital Equipment Corporation.

IBM is a registered trademark of International Business Machines Corporation.

POSIX is a registered trademark of the Institute of Electrical and Electronic Engineers.
NFS is a registered trademark of Sun Microsystems, Inc.

SunOS is a registered trademark of Sun Microsystems, Inc.

PostScript is a registered trademark of Adobe Systems, Inc.

Ethernet is a registered trademark of Xerox Corporation.

X Window System is a trademark of the Massachusetts Institute of Technology

Other trademarks are acknowledged.

ACKNOWLEDGEMENTS

Sponsored by: European UNIX systems User Group
Hosted by: UNIX systems Users Group Austria
Programme Chair: eva Kiihn Technische Universitat, Vienna, Austria
Programme Committee: Peter Collinson Hillside Systems
Hans Strack-Zimmermann iXOS Software
Conference Executive: Ernst Janich Nixdorf Computer AG
Tutorial Executive: Neil Todd GID Ltd, London, UK
Proceedings Production: Jan-Simon Pendry Imperial College, London, UK
Dave Edmondson Imperial College, London, UK
Stuart McRobert Imperial College, London, UK

We would like to thank the UNIX User Group Austria for hosting this event, its chairman Friedrich Kofler
of Austro Olivetti and Mrs. Hainschink of the Osterreichische Computergesellschaft. The organisers also
wish to acknowledge a contribution from the Olivetti International Education Centre.

The resources used during the production of these proceedings were generously provided by the Formal
Methods Group in the Department of Computing at Imperial College.
— jsp. dme, sm.

it

UNIX Conferences in Europe 1977-1989

UKUUG/NLUUG meetings
1977 May Glasgow University
1977 September University of Salford
1978 January Heriot Watt University, Edinburgh

1978 September Essex University

1978 November Dutch Meeting at Vrije University, Amsterdam
1979 March University of Kent, Canterbury

1979 October University of Newcastle

1980 March 24th Vrije University, Amsterdam

1980 March 31st ~ Heriot Watt University, Edinburgh

1980 September University College, London

EUUG Meetings
1981 April CWI, Amsterdam, The Netherlands
1981 September Nottingham University, UK
1982 April CNAM, Paris, France
1982 September University of Leeds, UK
1983 April Wissenschaft Zentrum, Bonn, Germany
1983 September Trinity College, Dublin, Eire
1984 April University of Nijmegen, The Netherlands
1984 September University of Cambridge, UK
1985 April Palais des Congres, Paris, France
1985 September Bella Center, Copenhagen, Denmark
1986 April Centro Affari/Centro Congressi, Florence, Italy
1986 September UMIST, Manchester, UK
1987 May Helsinki/Stockholm, Finland/Sweden
1987 September Trinity College, Dublin, Ireland
1988 April Queen Elizabeth II Conference Centre, London, UK
1988 October Hotel Estoril-Sol, Cascais, Portugal
1989 April Palais des Congres, Brussels, Belgium

1989 September Wirtschaftsuniversitit, Vienna, Austria

iv

Technical Programme

Keynote

Wednesday (9:30)

Heterogeneous Distributed Computing — A Database Prospective
Ahmed Elmagarmid; Purdue University

Standards

Wednesday (11:00 — 11:30)

Are Standards the ANSWET?ccoovviiiiiiiiiiirrcicrectree s s e ste e ee s s aessseesssseesnns 1
Dominic Dunlop; The Standard Answer Ltd.

Multi-processor Systems

Wednesday (11:30 - 12:30)

Engineering a (Multiprocessor) UNIX Kermel
Michael H. Kelley, Data General Corporation

An implementation of STREAMS for a Symetric

Multiprocessor UNIX Kernel
Philippe Bernadat; O.S.F. Research Institute

User Interfaces

Wednesday (14:00 — 15:30)

Developing Writing Tools for UNIX Workstations
Martin D. Beer, Steven M. George and Roy Rada; University of Liverpool, UK

Implementation of a Window Manager under X11R3
Hans-Joachim Brede; BREDEX GmbH

Teaching a Spreadsheet how to Access Big Databases
Michael Haberler; Hewlett-Packard Austria

Security

Wednesday (16:00 — 18:00)

System Security — Administration Through Automation
Dale A. Moir; Lachman Associates, Inc.

Lettermatrix for the selection of passwords through the user
Ernst Piller; BULL Austria

User Experience with Security in a Wide-area TCP/IP Environment
Peder Chr. Ngrgaard; Aarhus University, Denmark

Protecting Software Through International Copyright
Alicia Dunbar Gronke; USENIX Association

UNIX in German Speaking Countries

Thursday (9:00 — 9:30)

UNIX in German speaking countries
Wolfgang Christian Kabelka; Vienna

UNIX Modelling

Thursday (9:30 — 10:30)

Using an Object-Oriented Model of UNIX for Fault Diagnosis
Anita Lundeberg; University of Edinburgh

Modelling the NFS service on an Ethernet local area network
Floriane Dupre-Blusseau,
Centre National d’Etudes des Telecommunications, France

RISC Architectures

Thursday (11:00 - 12:30)

RISC vs. CISC From the Perspective of Compiler/Instruction Set Interaction
Daniel V. Klein; Carnegie Mellon University

On the Evaluation of the Performance of RISC Systems
Kurt P. Judmann,; Technical University of Vienna

SPARC - Scalable Processor Architecture
Dr. Martin Lippert; Sun Microsystems GmbH

Tools

Thursday (14:00 — 15:30)

TeamSo: Team Software Development Support System
Eva Strausz & Janos Szel; Hungarian Academy of Sciences

A SQL Programming Interface for the Relational Database System Db++
Ralph Zainlinger; Technical University Vienna

Processable Multimedia Document Interchange using ODA
Jaap Akkerhuis; Carnegie Mellon University

Network Management

Thursday (16:00 — 18:00)

TCP/UDP Performance as Experienced by User-Level Processes
Josef Matulka; Vienna University of Economics and Business Administration

Interconnection of LANSs, using ISDN, in a TCP/IP architecture
Philippe Blusseau;, OST-DRD/CMC

System Administration of UNIX Networks: Two Approaches
Georg-Michael Raabe; Apollo Computer GmbH

Resource Management System for UNIX Networks
D. Schenk, G. Reichelt, A. Pikhard; UNISYS Austria

Graphical User Interfaces

Friday (9:00 — 10:30)

Porting Applications to the XVIEW Toolkit and the
OPEN LOOK Graphical User Interface

Nannette Simpson; Sun Microsystems

X Display Servers: Comparing Functionality and Architectural Differences
Timothy L. Ehrhart; Ericsson Telecommunicatie BV

A System for the Redirection of Graphical User-Interaction
Robin Faichney; University of Kent at Canterbury

Transaction Processing

Friday (11:00 - 12:30)

Performance Analysis for Shared Oracle Database in UNIX Environment 245
C. Boccalini; 1 & O — Informatica e Organizzazione S.r.L., Genova, Italy
A Transaction Monitor for SINIXoouieeeeeieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeo 253

Heike von Liitzau-Hohlbein: GBI

An Approach to Reliability in Distributed Programmingoccovvvvevrurnn.... 257
Giandomenico Spezzano and Domenico Talia; CRAI

Object-oriented Systems

Friday (14:00 - 15:30)

UNIX and Object Oriented Distributed SyStemsooeeeveveveeeveooeeoeeeoeooonos 265
Donal Daly, Trinity College, Dublin

XEiffel: An Object-oriented Graphical Library and an

OPEN LOOK BaSed ON It ..o e 277
Marco Menichetti; UniRel — Firenze

Efficient implementation of low-level synchronization primitives in the

UNIX-based GUIDE KEIMELc.ccoeueviveeiiiieieeeeeeeeeeeeeeeeeeses e 283
D.Decouchant; Unite Mixte BULL-IMAG Systemes

EUUG and USENIX

Friday (15:30 - 16:00)
Social Aspects of EUUG and USENIXcc.coeeieeeeeeeereeeeeeee oo 295

John S. Quarterman; Texas Internet Consulting

viii

Author Index

Japp Akkerhuis <jaap+@andrew.cmu.edu>
Gail Anderson <gail.anderson@ed.ac.uk>
Martin D. Beer <mdb@mva.cs.liv.ac.uk>
Phillippe Bernadal <bernadat@gu.bull fr>
Philippe Blusseau| <blusseau@cnetlu.uucp>
Hans-Joachim Bre
Paul Chung
Donal Daly <daly@cs.tcd.ie>

Alicia Dunbar-Gronke <epg@sun.com>

Dominic Dunlop Kdomo@sphinx.co.uk>

Floriane Dupre-Blusseau <blusseaf@lannion.cnet fr>
Martin Ertl <martin@hpuviea.at>

Robin Faichney <rif@ukc.ac.uk>

Steven M. Georgg
Michael Haberler | <mah@hpuviea.at>
Thomas Hadek <jom@vmars.at>

Andrew R. Huber| <huber@dg-rtp.dg.com>
Nicolai Josuttis <pico@bredex.uucp>
Kurt P. Judmann
Wolfgang Christiz
Michael H. Kelley <kelleymh@dg-rtp.dg.com>
Daniel V. Klein <dvk@sei.cmu.edu>

Martin Lippert <mlippert@sunmuc.uucp>
Achim Lorke <adhim@bredex.uucp>

Anita Lundeberg
Ann Marks <annm+@andrew.cmu.edu>
Josef Matulka <matulka@awiwuwl I .earn>
Marco Menichetti
Dale A. Moir <dale@Ilaidbak.uucp>

Peder Chr. Ngrgaard <pcnorgaard@daimi.dk>
Eric Paire <paire@imag.imag fr>

A. Pikhard

Georg-Michael Raabe <raabe g@apollo.com>
Roy Rada
G. Reichelt
Jonathan Rosenbe
D. Schenk
Mark S. Sherman | <mss+@andrew.cmu.edu>
Nannette Simpson] <nannette@sun.com>
Eva Strausz

JANOS SZEL ..ttt snes 145
Domenico Talia <dot@crai. uicp>cooveeeeeeeeeeeeeeeeeeeeeeeeeneernesenns 253
Ralph Zainlinger <ralph@vmars.at>ccoovveeeeieeieierceerenne. 151
AlEX ZDYSIAW ..ot 89

Are Standards the Answer?

Are Standards the Answer?

Dominic Dunlop

The Standard Answer Ltd.
4, St. Rumbolds Road
Wallingford
0X0.0X10 0DL
UK
domo@sphinx.co.uk

ABSTRACT

Moves are afot to standardize every aspect of the UNIX world in order that the benefits
of open systerms can be realised. But what needs to be standardized? What are the
benefits? And|who really cares anyway? The answers to these questions turn out to be
rather vague, gnd are not always a good fit onto the standardization activity which has
taken place to date.

This paper examines the forces behind standardisation, reaching the conclusion that,
while standardjsation is a necessary process, it cannot and should not hope to have a
significant effeft on the diversity of ideas in the field of computer technology — or in any
other field.

The UNIX community has been busy trying to standardise itself for the best part of a decade. Starting with
the 1984 /usrigroup Stdndard [USR84a], a document of under a hundred typewritten pages, standardisers
have so far churmed oyt around a thousand pages of System V Interface Decfinition [SVI86a], over two
thousand of the X/Open Portability Guide | ANS89a] and a little over three hundred pages of the POSIX
1003.1 operating system interface standard [IEE88a]. Further POSIX standards aiready in the pipeline
promise a further three thousand page deluge before the end of 1991 — and that is only from the projects
which have delivery schedules. Further working groups have yet to decide how much paper they are going
to produce, and when.

Setting aside for the mgment the question of whether anybody is going to have the time and inclination to
read all of this material} it is worthwhile to look at the whole issue from another point of view — that of
evolution. The growth|in POSIX working groups — twelve so far, with outgrowths into standards for
windowing and open systems interconnection — suggests that, as a newly-evolved species, standards
bodies have found a habitat free of predators, and are enjoying great reproductive success. Already, those
who feed the standards podies — the companies who send expensive personnel to classy hotels around the
world for assignations with other standardisers — are beginning to wonder whether the time has come for a
cull. Perhaps, the argyment runs, we can achieve the same effect with less effort, and fewer working
groups. Perhaps it might even be faster...

At first, it seems that finding a technique that does for standards bodies what DDT does for mosquitost
should be quite easy. Lpoking at Figure 1, which shows species competing for a habitat, all you have to do
is back the ultimate winner, and leave the remainder to starve. Sadly, picking winners is difficult, as
highly-profitable legal gnd illegal gambling industries around the world testify. Besides, gamblers like to
play favourites, even after it becomes obvious to onlookers that they are backing a loser. Thus, in the
domestic video recorder market, species A might be Sony’s Betamax; species B Philips’ VR2000; and
species C — the ultimae winner — JVC’s VHS. Both Sony and Philips, together with dwindling bands of
supporters, continued tq invest in the less successful systems long after it was clear that VHS had come out
on topi.

+ That is, kills off the weak ones, leaving those which remain resistant to attack...

t There are actually formhl international standards for both VHS and Betamax (IEC 774 and IEC 767 respectively).
VR2000 didn’t make it...

EUUG Autumn 89 — Vienna, 18-22 September

Are Standards the Answer?

Diversity
Species A

Species B

Species C

D
E..

Time

Figure 1: Evolution — a simplistic view

Comparisons of standards for the UNIX operating system with those in other markets are interesting.
Firstly, such comparisons emphasise that the market for information technology obeys the same rules as
other markets. Secondly, it underlines the fact that technical excellence does not drive markets, but
politicking dpes: VHS is technically inferior to Betamax, but JVC’s greater willingness to sublicence the
technology resulted in more VHS hardware and software appearing in the shops, with the result that VHS
conquered the evolutionary niche under your television set.

Pinning some more names on Figure 1, perhaps species A might be the MS-DOS operating system, species
B BSD UNIX, C UNIX System V, D Xenix, and so on. As time goes on, MS-DOS slowly dies out —
possibly because it has a tendency to choke on the large applications which UNIX can get its jaws around.
UNIX System V reigns supreme, having shown BSD and Xenix the door.

Or has it? Life is not actually like that. As we know, although the features and name of UNIX System V
are in the ascendent in the commercial market, it has not supplanted either BSD or Xenix. Instead, thanks
to pressure from the POSIX standardisation effort, and to help from Sun Microsystems, it has absorbed
features from BSD. Similarly, bowing to Microsoft’s persuasive argument that it is worth taking notice of
anything that can sell 400,000 copies, AT&T has incorporated Xenix functionality into System V.

Figure 2 shows a more correct view of the evolutionary situation: species which are related closely enough
to interbreed do so, producing an offspring which is more fit to survive. Of course, it may take some time
to overcome prejudices about interbreeding, but rationalisation wins out in the end. Perhaps it’s something
to do with hotel rooms.

Taking another example from the entertainment industry, back in 1948, RCA and Columbia were at each
other’s throats, promoting seven inch 45 RPM and twelve inch 331/3 RPM microgroove records
respectively. Both were aiming to displace the 78 RPM disk — and each other. But eventually, the
realisation dawned that the purchasing public would not put up with two incompatible formats, and that
there was enough room in the market for both — provided that reproduction equipment could handle both,
rather than just one or the other, ads had been the case when the formats were introduced. The two
companies took only a year to bury their differences and a common international standard eventually
resultedf. The 78 RPM disk duly faded away. It only took about fifteen years for it to disappear entirely.

+ 1EC 98, should you be interested.

2 EUUG Autumn 89 — Vienna, 18-22 September

Are Standards the Answer?

Diversity

becies A

becies B

pbecies C

\ITIUU)(DCD

\

\

Time

This brings us to anoth|
fade away quickly. Ld
as the operating syster]

Figure 2: Evolution — a more correct view

er problem with Figure 2. If species A is MS-DOS, it is clear that it is not going to
oking back at the micro-computer market, it is clear that MS-DOS displaced CP/M
h of choice for personal computers used in business. Yet CP/M is still around, in

low-cost dedicated wo
habitat by a descende
sought out a new niche

This happens a lot. P
which it is little used
Cassette, meanwhile, h
the most successful s
technology evolves mu

rd-processors and in the hobbyist market. Having been displaced from its original
t species which proved more fit, CP/M refused to roll over and die. Instead, it

ilips developed the Compact Cassette for low-quality dictation, an application for
oday, as micro-cassettes give equally low quality, but are smaller. The Compact
s migrated to the much richer habitat of the entertainment industry, and is currently
cies among carriers of pre-recorded music. Clearly, any picture of the way that
t accommodate this sort of migration.

Figure 3 shows this awful reality. Mapping computer operating systems onto the picture, BSD UNIX and
Xenix still merge with|System V (species B, D and C respectively), but a new species (J on the diagram),
Mach, breaks away from BSD shortly before the merger. (Mach is likely to rejoin the main line by the end
of 1990.) MS-DOS (species A) makes a dive to the low end of the market, but spawns a child (species K)
that can hold its own against many applications of the UNIX operating system. In fact, even OS/2 may join

the main line, since
system. Even as this h
from nowhere, and std
Apple][, a distant relat]

icrosoft has announced its intention to graft a POSIX interface onto its operating
ppens, species 1 — call it the Macintosh operating system — pops into the picture
ys aloof, doing nothing more than picking up a few genes from ProDOS for the
ve.

As usual, there is nothing special about the computer industry. In the world of video, VHS has spawned

super VHS, Sony has ¢
case, technological ady
using better tape than
while using less tape.]

EUUG Autumn 89 — Vienna, 18

ome up with Video 8, and Philips has launched laser discs several times. In each
ances are at the root of the changes: Super VHS gives higher recording quality by
the original VHS; Video 8 uses the same tape to achieve VHS-quality recordings
aser discs use a completely different technology from anything that went before.

-22 September

Are Standards the Answer?

Diversity
Species A

Species C... X

D
E

Concept: Brian Boyle, Novon Associates

Figure 3: Evolution — the awful reality

There is one difference between the entertainment industry and the computer industry. Experience
suggests that a successful consumer entertainment technology can expect a life of thirty years or more
before its popularity begins to wane. The industry’s thoughts are only now turning to high-definition
televisiont, after 525- and 625-line systems have been in use since the middle of the century. Vinyl disks
are only just succumbing to the threat presented by the Compact Disc. The Compact Cassette is safe for
the moment, although it remains to be seen how long music industry politics can put a brake on progress,
with every consumer electronics company that can muster the research funds working on recordable CD
media.

In the computer industry, progress is faster. Thirty years ago is pre-history. Nothing lasts that long. Or
does it? What about FORTRAN, born 1954, and far from dead yet [Bas86a]? What about COBOL, vintage
19607 IBM mainframe operating systems, with roots in the early sixties? And what about UNIX, now
twenty years old, and, despite signs of middle-age spreadt, never more successful. The fact is that the rate
of technological progress in computer software is similar to the rate of progress in recorded entertainment,
and perhaps for similar reasons: computer users want to be able to run their old programs, just as
consumers want to play their old recordings. It takes something pretty special to make either group rush
out and rebuild their existing collections of data. By this token, CDs are something special, and the
movement towards open systems may just be an analogue in the computer industry.

The thirty-year lifetime, then, appears to apply to computer programs, and to the data that they manipulate.
It clearly does not apply to computer hardware, or even to the media on which data is stored. Where now
are the eight inch diskettes of yesteryear? It is interesting that there is a long history of technology
migration from the consumer electronics industry to high-density media for computer data storage:
Compact Cassettes have been used — without, it must be said, great success — as a back-up medium, or
even as a random-access device; Video 8 and Digital Audio Tape are seeing increasing use as data storage
media which make the capacity of industry-standard half-inch tape look pretty silly; and Compact Disks

¥ HD TV, if and when it arrives, will benefit computer purchasers by slashing the cost of high-quality display devices.
But, guess what. There’s a standards war between the U.S.A., Japan, and Europe holding up progress. Plus ga change...

T SPREAD was also the name of the IBM task-force which laid the foundations for the 360 mainframe computer range...

EUUG Autumn 89 - Vienna, 18-22 September

Are Standards the Answer?

nly storage capacity in a mass-producible form that most people are still working
.

provide so much read-q
out applications for ther

Of course, this intrusion into the computer world of technology developed for mass entertainment would
not be possible without the adoption by the consumer electronics industry of digital techniques. If the trend
continues, the next big leap in media capacity for computers will come shortly after the development of a
domestic digital recording technique for video signals!

Diversity

A

Final
diversity

Initial
diversity

Figure 4: Evolution brings little change in diversity

Figure 3 is that the diversity of species at following the process is almost the same
e number of niches open for exploitation by successful species is little changed.

An important aspect of |
as it was at the start: th
Figure 4 illustrates this.

Looked at from the point of view of standardisers this is either good news or bad news. Taking the bad
news first, standardisatign is bound to be unsuccessful: as soon as one issue is nailed down, another springs
up to vex those who seek uniformity in all things. But the good news is that standardisers are never going
to be short of work!

bd news and bad news from the point of view of those who abhor standards as
verything. Standards seem to be a necessary part of the evolutionary process,
bnsistencies — or perhaps, small but interesting differences, depending upon your
en species which are trying to occupy the same niche. Certainly, a successful
bsequent attacks on the niche it occupies — who remembers three-inch diskettes
example — but it should not preclude development in other fields.

The situation is also go
taking the fun out of ¢
eliminating needless inc
point of view — betwe
standard will fight off sy
or Sony’s Elcassette, for

In fact, a successful standard actually aids progress and innovation in other fields. As part of M.LT.’s

Project Athena [Tre88a}
With this successful ch
Similarly, even before

UNIX gave the Corpor
Interconnect (OSI) prot
despite OSI’s applicabil
environment allowed CQO

EUUG Autumn ‘89 — Vienna, 18-2,

the UNIX operating system nurtured the birth of the X Window system [Sch87a].
ldhood behind it, X is now strong enough to see off competitors of its own.
e POSIX working group enshrined the operating system in legalistic language,
tion for Open Systems (COS-) a stable base for the testing of Open Systems
cols Q despite the UNIX community’s continuing love affair with TCP/IP, and
ty to many other operating environments. The very existence of a standard

S- to get on with the work in hand, rather than worrying about the structure needed

P September

Are Standards the Answer?

to support it.

Showing that cross-fertilisation in the both directions is possible, emerging standards for OSI network
management have proved unexpectedly useful in the development of techniques for the administration of
POSIX-compliant systems, and the POSIX distribution services (that is, networking) group has found itself
spawning efforts to define standard programming interfaces to OSI protocol stack layers. The IEEE 1201
project, recently started to standardise aspects of the X Window System, also has strong links with POSIX.

Standardisation, then, seems to be a necessary — if not sufficient — part of progress in information
technology. It also seems to be at least as efficient as the ‘‘market forces’’ about which some of us have
heard so much in recent years. That is to say, a standards effort may sometimes do more than is strictly
necessary, just as markets may, on occasion, provide too many goods. An example here is the IEEE 1003.2
working group’s standardisation of the UNIX shell command language and utilities, a gargantuan task
which has absorbed much time from some of the industry’s most capable minds. But is it really needed? Is
it 2 winner worth betting on? Who can tell. Only the wisdom of hindsight can yield the correct answer,
Just as it took commentators several years to realise the Compact Disc had settled in for a long stay.
Standards are like any other sort of product: you can do the market research to establish what is needed,
you can work out the time-window for delivery, and you can develop and ship the goods. But, in the end,
as with markets, and as with evolution, it is large forces beyond the control of any single group which
determine whether the ultimate standard is accepted or consigned to oblivion.

References

[USRB4a] /usr/group, /usrigroup Standard, 2901 Tasman Drive, #201, Santa Clara, CA 95054, U.S.A,
1984.

[SVI86a] AT&T, System V Interface Definition, Issue 2, 1-3, 1986.

[Bas86a] Basche et al., IBMs Early Computers, M.IT. Press, 1986,

[ANS89a] American National Standards Institute, ANSI X3.159-1989, Programming Language C. 1-7,
Prentice-Hall, 1989.

[IEE8Ba] IEEE/ANSI Standard 1003.1-1988: Portable Operating System Interface for Computer
Environments (POSIX), The Institute of Electrical & Electronic Engineers, 1988.

[Sch87a] R. W. Scheifler and J. Gettys, “The X Window System,” ACM Transactions on Graphics,
April 1987.

[Tre88a] G. Winfield Treese, “Berkeley UNIX on 1000 Workstations: Athena Changes to 4.3 BSD,”
Proceedings of the USENIX Winter Conference, USENIX Association, Berkeley, CA, 1988.

6 EUUG Autumn 89 — Vienna, 18-22 September

This paper d
symmetric my
ECLIPSE™ N
implementatio

Engineering a (Multiprocessor) UNIX Kernel

Engineering a (Multiprocessor) UNIX Kernel

Michael H. Kelley
Andrew R. Huber

Data General Corporation
Research Triangle Park,
North Carolina 27709
USA
kelleymh@dg-rtp.dg.com
huber@dg-rtp.dg.com

ABSTRACT

escribes the software engineering aspects of the DG/UX™ kernel, a
Itiprocessor UNIX kernel that runs on the Data General AViiON™ and
IV families of computers. The DG/UX kernel is a completely new
n (not based on AT&T or Berkeley source code) that has applied modern

software engineering techniques to improve the structure and modularity of the code.

The result is a

The paper disq
achieve the rg
themes of hié
throughout th
development ¢
produce the fin

1. Goals

Work on the new DG/
multiprocessor hardwa
simuitaneously. The s
compared with tradition

At the time the project
DG/UX on the ECLIP
AT&T System V sourcq
modified versions of dr
in assembly language.

kernel that is more reliable, easier to maintain, and easier to enhance.

usses four major themes that have guided the engineering of the kernel to
liability, maintainability, and enhanceability goal. It describes how the
rarchy, information hiding, conventions, and tools have been applied
t kernel and implemented using the standard C language and UNIX
nvironment. Finally some practical experiences in using this method to
ished DG/UX product are described.

UX kernel began in late 1984 with two main goals. The first goal was to run on
e in a fully symmetric fashion with multiple processors executing in the kernel
econd goal was for much better reliability, maintainability, and extensibility
al UNIX kemels that are derived from AT&T or Berkeley source code.

began, Data General had an existing UNIX kernel that became the first release of
SE/MV family of 32-bit minicomputers in early 1985. This kernel was based on
e code with the Berkeley 4.2 file system grafted in. The device drivers were heavily
vers from AOS/RT32 (a Data General real-time operating system) and were written
The virtual memory implementation was newly written for DG/UX. Later versions

of this kernel included

The uniprocessor natu
achieve the desired go:
have added locks to trf
Ham88a|, we felt that
execution and effective

The existing source cd
maintainable, and exten
clear and well organiz
seemingly unrelated, pa
and fix bugs or make ¢
creates additional awky

e Network File System (NFS™) from Sun Microsystems.

of the existing kemnel suggested that a complete rewrite would be necessary to
s. None of the code had been written with multiprocessors in mind. While others
pditional UNIX kernels to make them run on multiprocessor hardwarel [Bac84a,
such a kernel could not meet our goals of a high degree of concurrency in kernel
use of more than just 2 or 3 processors.

de also presented significant problems in producing a kernel that was reliable,
sible. The traditional source code from AT&T or Berkeley is not known for being
ed [Hen84a]. Changing one part of the code can have subtle effects on other,
rts of the code. These complex and obscure relationships make it difficult to find
nhancements without creating other problems. Including code with other origins
vard relationships because such code doesn’t always fit well together. Resolving

these problems also suggested that a complete rewrite of the kernel would be desirable.

EUUG Autumn ‘89 — Vienna, 18-

P2 September

Engineering a (Multiprocessor) UNIX Kernel

This paper will concentrate on the software engineering used to meet the reliability, maintainability, and
extensibility goal. Achieving the multiprocessor goal has been discussed in an earlier paper [Kel89a] and
will not be covered further here except when it motivates a specific software engineering technique.

2. Major themes

Four major themes have guided the engineering of the new DG/UX kernel:
e hierarchy

e information hiding

e conventions

° tools

These themes are not new and have been widely discussed in the literature. Their application, though, is
relatively less common, particularly in the UNIX environment. One of the few examples is TUNIS, a UNIX
kernel written with many of the same goals that we had [Hol83a].

The underlying motivation of these themes is to organize a complex piece of software (a multiprocessor
UNIX kemnel, in particular) in a way that the whole or any useful subset of the whole can be clearly
understood. Such understanding is the prerequisite for reasoning that it is correct, for fixing a problem
without introducing a new problem, or for adding an enhancement.

Each of these themes will be introduced below. Later sections of the paper will give details of how they
have been applied to produce the new DG/UX kernel.

2.1. Hierarchy

The hierarchy theme suggests that a large software entity should be divided into a collection of smaller
entities. Each member of the resulting collection can itself be divided into still smaller entities. This
process of dividing can be applied recursively as many times as appropriate. The resulting hierarchy
describes the structure of the original large software entity. At each level of the hierarchy, the division into
smaller entities is made by grouping related sections together. Each of these smaller entities is easier to
understand and work with because it is smaller than the whole and because it contains only closely related
sections.

In the DG/UX kernel, the kernel as a whole is the root of the hierarchy. The kernel is divided into about 50
subsystems, each of which constitutes a major functional area of the kernel. A subsystem is further divided
into modules, each of which is a C language source file. A module is divided into functions and type
definitions. These four levels are the major structure for organizing the kernel and for applying the other
software engineering themes.

2.2. Information hiding

The information hiding theme implies that a software entity should be separated into its inferface and its
implementation. The interface describes the function that is provided, including any assumptions or
constraints, but contains no information about how the function is provided {Par72a, Par72b]. The
implementation, which consists of the algorithms and data structures needed to support the interface, is
hidden from its user.

Hiding the implementation from its users has several benefits. First, the implementation can be changed
without affecting the user, if the interface is kept the same. Second, the implementation code and the using
code can be worked on independently, with the interface forming a contract between the two. Also, just
requiring that the interface be explicitly stated may bring hidden assumptions and requirements into the
open where they can be considered and either made part of the interface or explicitly disallowed.

The information hiding idea is a key component of the object-oriented approach to programming. An
object has an interface describing the operations that other objects may invoke, and it has an
implementation consisting of code and data that is hidden from other objects. This same notion is present in
languages such as ADA which incorporate the interface/implementation paradigm directly into the
language.

8 EUUG Autumn 89 — Vienna, 18-22 September

In the DG/UX kernel, thg
whole kernel, for a subsy
implementation. For ex{
that it presents for use by
of a subsystem are hidde

2.3. Cohventions

Conventions are used

encouraging developers
First, time and effort arg
“reinvent the wheel”. (
follows the same conv{
incompatibilities caused
the prescribed patterns h
the use of tools and other

Several kinds of convent|
modules within a subsy
conventions govern hov
govern how C langua
documentation that exist

2.4. Tools

The tools theme encoura
to be more productive. H
developer time and elapf

people.

Engineering a (Multiprocessor) UNIX Kernel

information hiding theme is applied at each level of the kernel hierarchy. For the

stem, for a module, or for a function or type definition, there is an interface and an
ymple, each subsystem has an interface containing functions and type definitions
other subsystems. The data structures and functions used for the implementation
h within that subsystem and may not be accessed by other subsystems.

n a software entity to increase the uniformity of the resulting product by
o do the same thing the same way. This uniformity produces several advantages.
t saved because there are prescribed patterns for doing things; developers don’t
ne developer can look at another’s work and feel comfortable with it because it
*ntions. Second, conventions promote sharing and reusing code by reducing
by two developers doing the same thing in slightly different ways. Third, since
ave been carefully checked, errors are also reduced. Fourth, conventions facilitate
automation in the software development process.

ons are used in the DG/UX kernel. Naming conventions govern how subsystems,
tem, and functions and type definitions within a module are named. Structural

subsystems are related and divided into modules. Coding style conventions
pe constructs are used and not used. Documentation conventions specify
at the subsystem, module, and function levels.

pes the use of software tools and hardware processing power to enable developers
by making a fixed investment in tool development and in hardware to run the tools,
ed development time can be reduced. The idea is to spend processor cycles, not

A number of tools and téchniques were created during the DG/UX development, including: error checking
tools that look at sourc¢ modules to detect type mismatches, violations of conventions, or dependency
loops between subsysterhs; and text processing tools that extract documentation from source modules to
produce design documengs at the subsystem or module level. The kernel “build mechanism* automates the

determination of depend

encies between subsystems and modules and ensures that the proper modules get

recompiled when a data gtructure changes.

3. Applying the Hierarchy Theme
The DG/UX kemel is diyided into a hierarchy with four levels: 1) the kernel as a whole, 2) subsystems, 3)

modules, and 4) individu

3.1. Structure of the

The kernel as a whole
functionality. Each subs
complex data types. A
developer and that is a
relatively simple utility f
functionality and have 6(
For example, all of the
subsystem. DM include]
lookup an entry in a di
Pathname Manager (PN)
DM to locate each pathn

Using a subsystem as a

al functions and type definitions. This division is summarized below.

kernel

is divided into some 50 subsystems, each constituting a major area of kernel
ystem implements a related set of functions that operate on one or more related
subsystem contains functionality that can be understood and mastered by one
natural unit on which to do development work. Some subsystems providing
unctions consist of only 3 or 4 source files. Other subsystems supply major kernel
or more source files.

code for managing file system directories is in the Directory Manager (DM)
k routines to add an entry to a directory, to delete an entry from a directory, to
ectory, and to list the contents of a directory. When a subsystem such as the
needs to resolve a pathname, it does so by repeatedly calling a lookup function in
me component in its containing directory.

unit for development has several aspects. Design and code reviews are typically

done on a subsystem because it should be understandable by a single developer. When major functional or

performance enhanceme

nts are to be made, a subsystem can_be modified and tested in parallel, and then

substituted as a replacement when it is deemed ready for real use. A subsystem is also a natural unit of
substitution for differen{ kinds of computing environments. For example, the Medium Term Scheduler

(MTS) subsystem in the

DG/UX kernel encapsulates the scheduling heuristics. It is likely that time-sharing

and real-time versions off the kernel would have different medium term schedulers, so different versions of

the MTS can be used for

EUUG Autumn 89 — Vienna, 18-2.

the different environments.

P September

Engineering a (Multiprocessor) UNIX Kernel

At the subsystem level of the hierarchy, subsystems are layered in the traditional sense to provide the
kernel functionality. Subsystems in lower layers provide services that are used by subsystems in higher
layers. The higher layers, in turn, provide the system call interface of the kernel that is used by application
programs. Note that this functional layering is independent of the kernel/subsystem/module/function
hierarchy that guides the software engineering of the kernel.

3.2. Structure of a subsystem

Just as the kernel consists of subsystems, a subsystem consists of multiple modules (C language source
files). The division of a subsystem into modules is guided by two goals. First, functionally related areas of
a subsystem are grouped together. A subsystem that implements several related abstractions has several
groups of modules, each of which implements one abstraction. Second, the different components of an
abstraction are put in different modules to support the use of the C compiler and allow flexible storage
allocation in the kernel image. Three categories of modules exist; no source file contains code from more
than one category: ‘

e definitions — C language typedefs and #defines of constant values
e data — variable declarations that cause allocation of storage in the kernel executable

e functions — functions and #defines of code fragments

Because header (.h) files contain only definitions, they never cause allocation of storage and hence can be
included in several places without causing errors due to multiple allocation of the same storage item.

Data items fall into one of four sub-categories: 1) global data, 2) per-process data, 3) per-processor data,
and 4) message data. Data items in each category are put into separate C source files that contain only data
items of that type. Global data is globally addressable within the kernel and is grouped together so it can
be placed in the global read/write portion of the kernel address space. Per-process data is unique for every
process in the system, but addresses are allocated in the kernel space for only one process’s per-process
data. Using the virtual memory mechanism, this “window™ of kernel addresses is remapped whenever a
new process is run so that a running process will always find its per-process data in the window. In order
for the remapping to work, per-process data from different subsystems must be allocated together. Per-
processor data is like per-process data except that different mappings exist for each processor instead of for
each process. Per-processor data from different subsystems must be allocated together in the per-processor
area of the kernel address space. Message data contains text strings that may be written to the operator’s
console; it is grouped together so it may be easily translated to other languages and so it may be placed in a
read only portion of the kernel address space.

Functions and #defines of code fragments are placed in C modules grouped by the abstractions they
implement. Modules containing functions are the only modules that generate executable instructions, and
they are placed in an execute only portion of the kernel address space. Write protecting the executable
code makes it easier to isolate bugs that overwrite random pieces of kernel memory.

3.3. Structure of a module

A module is a sequence of definitions, variables, or functions, depending on the type of module. It also
contains C include statements and a variety of sentinel comments that are interpreted by special tools. At
the module level in the hierarchy, little additional structure can be imposed. The ordering of definitions.
variables, or functions is constrained primarily by the C language definition.

Since the themes discussed in this paper are ultimately implemented as some method of handling the C
source files, many of the details of a source file are best left to the sections that discuss the other themes.
Include files are discussed under information hiding because of the key role that they play in implementing
information hiding. The sentinel comments and their interpretation are discussed as their specific
application is discussed.

4. Applying the Information Hiding Theme

In the DG/UX kernel, information hiding is applied at all levels of the hierarchy. Clear distinction is made
between the interface and the implementation of the kernel, of individual subsystems, and of modules
within a subsystem. Information hiding is achieved by using this distinction to control the knowledge that
different parts of the kernel have about other parts.

10 EUUG Autumn 89 - Vienna, 18-22 September

Engineering a (Multiprocessor) UNIX Kernel

The information hiding theme is implemented in the DG/UX kernel using the standard C language with a
small increment of additional tools and conventions. While programming languages such as C+ or ADA
provide various kinds of support for information hiding, compilers for these languages were not widely
enough available at the time the new DG/UX kemel was begun to make their use a viable option. The
small set of additional tools and conventions that we used enabled us to achieve almost all of the benefits of
information hiding while still using a very widely available and standard programming language.

4.1. Information hiding in the kernel as a whole

Since a traditional UNIX kernel has a well-specified set of definitions and system calls that applications
may use, the information hiding theme is evident when considering such a kernel as a whole. These
definitions and system calls define the external kernel interface, while the rest of the kernel is private and
may not be depended upon by applications. However, two major kinds of violations occur that allow
applications to depend upon the kernel implementation. First, the system call interface is incompletely
specified, allowing applications to become dependent on unspecified quirks of the implementation.
Second, the absence of system calls to support certain important operations has led to applications that read
kernel data structures directly out of kernel memory via a “backdoor” mechanism called /devikmem. The
new DG/UX kernel has addressed these problems as described below.

The problem of the ‘incompletely specified kernel interface has been addressed in DG/UX by doing
extensive work to improve the specification of the system call interface. When the specification failed to
state the results of a particular combination of arguments to a system call, DG/UX documentation has
added an explicit statement on what the kernel does, based on the AT&T and Berkeley kernel code.
Implicit requirements on the kernel implementation heavily depended upon by applications were
documented and made an explicit part of the interface (for example, the algorithm for assigning file
descriptor numbers to open files). In other cases where applications were not dependent upon an
implementation algorithm, cautionary notes were added to the specification stating that an application must
not depend on a particular feature of the implementation. This work on improving the specification of the
kernel interface has been aided by industry-wide standards development efforts such as POSIX, but these
standards do not address all of the system calls so some work has remained.

The problem of applications accessing kernel data structures directly through /devikmem has been
addressed in DG/UX by adding some new system calls. Most of the applications that have traditionally
used /dev/kmem are utilities that report kernel status or performance information. An application, such as
ps, that shows information about all of the processes running in the system would simply read the kernel
process table directly from kernel memory and format the data into a conveniently displayable form. The
ps command must know the layout of the kernel process table, and a new version of ps must be created if
fields are added or removed from the process table. The new DG/UX kemel has added several new system
calls with well specified interfaces that report the kind of information that ps and other related commands
require. The applications have been rewritten to use these new system calls so that they are now
independent of the layout of the internal kernel data structures. The kernel data structures are now truly
private to the kernel and can change without affecting any applications.

4.2. Information hiding in a subsystem

A subsystem has an interface and an implementation. The interface is the data structure definitions (e.g., C
language typedefs) and functions that are explicitly stated in the subsystem to be available for use by other
subsystems. Such definitions and functions are said to be exporred by the subsystem. The implementation
is the set of definitions and functions that are internal to the subsystem and may not be used by other
subsystems. Such definitions and functions are said to be private to the subsystem. If the interface of a
subsystem is not modified, changes may be made to the implementation without any effect on the rest of
the kernel.

The interface to a subsystem is realized as a single C language header (.h) file that contains the data
structure definitions and external function declarations for everything that is exported by the subsystem.
This header file is the union of the interfaces of individual modules in the subsystem that are declared to be
part of the subsystem interface. Everything that other parts of the kernel may know about a subsystem is
part of that subsystem’s interface header file. A subsystem’s interface header file is created automatically
as described later in this section.

EUUG Autumn ‘89 — Vienna, 18-22 September

Engineering a (Multiprocessor) UNIX Kernel

4.2.1. Avoiding global data

By convention, all data in the kernel is private to the subsystem of which it is a part. Instead of exporting a
data item, a subsystem exports procedures that define the allowed set of operations on the data item.
Exporting routines instead of the data item itself allows the representation of the data to be changed
without having to recompile or change the code in all the places in the kernel that perform operations on it.
Having every data item “owned” by a subsystem effectively eliminates global data from the kernel.

Having clear ownership of every data item in the kernel is extremely important in achieving multiprocessor
operation. In a multiprocessor kernel data structures must be locked before being accessed in order to
ensure that the contents are consistent. Ownership of a data item restricts access to the few owning
functions so that the lock and unlock operations can be clearly and consistently applied.

A significant improvement in the new DG/UX kernel has been the elimination of global data. In traditional
UNIX operating systems two globally accessible data structures, the proc table and the u-area, are
particularly bad in this regard. For both of these data structures neither the overall structure nor the
individual fields have clear ownership because all of the fields are accessible to all kernel code. Fields are
modified directly from whatever code needs to make some change. While the rewritten DG/UX kernel
doesn’t have the same proc table and u-area, it does need something logically equivalent to each that meets
the goals of subsystem-based design. These goals are met differently for the proc table and u-area as
described below.

4.2.1.1. Proc table

The proc table is an array of structures containing various per-process fields, with one entry in the array for
each active process. In DG/UX the fields of the proc table have been distributed into several smaller
process tables, each of which is owned by a particular subsystem. Each smaller process table is an array of
structures containing only fields for which the owning subsystem is responsible. Each active process in the
system is assigned a process index that it can use to index into any of the smaller process tables associated
with a particular subsystem. The combination of the fields from all the smaller process tables entries with
the same process index is equivalent to the old proc table. See Figure 1. This rearrangement of the proc
table is possible because there is no reason the fields associated with a particular process must be allocated
contiguously.

With the rearrangement of the process table, a subsystem can add. delete, or change a field without
affecting the rest of the kernel. In particular, no recompile of the rest of the kernel is necessary when such
a change is made. A new and optional subsystem, such as for a networking protocol, can have its own
process table fields without creating a dependency on the rest of the kernel. The rearrangement will likely
produce better locality of reference when searching through the table for a particular entry or when
following links because the individual array entries are smaller. Multiprocessor access is facilitated
because each smaller process table can be individually locked by the code in the subsystem that owns it.

4.2.1.2. U-area

The u-area presents the same ownership and global data problems as the proc table. Different from the
proc table, though, is the requirement that even unrelated fields associated with a process must be allocated
contiguously to permit the remapping operation that makes a process’s u-area appear at the right logical
address.

The DG/UX kernel uses per-process data as the equivalent to the traditional u-area. Each field of the u-
area is declared as a separate per-process variable that is owned by a particular subsystem. Since per-
process variables are put in source files that contain no other kinds of variables or code, the object files
containing per-process data can be grouped together at link time to ensure that the per-process variables are
contiguous in the kernel address space. The resulting contiguous area is effectively equivalent to the u-
area. Because the order of fields within the u-area is not important, it is not necessary to control the order
in which the linker allocates space for these per-process variables.

As with the proc table, distributing the u-area provides great flexibility in being able to change fields
without forcing a recompile of the rest of the kernel. New or optional subsystems can create, modify, or
delete per-process variables without creating dependencies on the rest of the kernel.

EUUG Autumn ‘89 — Vienna, 18-22 September

Engineering a (Multiprocessor) UNIX Kernel

Old proc table \ DG/UX distributed process table
. pd | 0 1y ptr
oy pir | | 1 ity ptr
O\ _pg_thl_pir | ___pid_
| _wid] O __wd___
gid i gid
___pd_ o _pid
v | N N-TL oy prr
b ’_’g_—ib{—fif _ I gid Owned by
uid Terminal Services
—————————— . Subsystem
gid ‘
‘ 0 pg_thl_ptr
1 thl ptr
‘ ﬁﬁrlz"‘!__‘ pg_Ibi_pl
N wid
‘ gid
. pid | } Owned by
Process Manager
Iy ptr
L ’ Subsystem N-1 pg_thl _pir
N-UL pg bl pir =
. Owned by
- - - uid | Virtual Memory
gid Subsystem

Figure 1: Distributing the process table

4.3. Information hiding in a module

As with a subsystem as a whole, each module has an interface and an implementation. Since modules are
realized as C language source files, the interface and implementation at the module level are defined in
terms of C language constructs. The interfaces, in conjunction with the C language include statements in
the source file, realize the information hiding scheme of the DG/UX kemnel.

4.3.1. Module interface and implementation

For a header file, which contains only definitions, the interface and the implementation are equivalent.
Everything in the source file is part of the interface and part of the implementation. For a source file
containing data, everything in the source file except for initialization values are part of the interface.
Initialization values are part of the implementation because they are not needed in order to compile other
source files that reference the data item. For a source file containing functions and #defines of code
fragments, the names of the functions, the types of their return values, and the number and types of their
arguments are part of the interface. All #defines are part of the interface. The implementation of the
functions, which is usually most of the code in a source file, is not part of the interface.

EUUG Autumn 89 — Vienna, 18-22 September 13

Engineering a (Multiprocessor) UNIX Kernel

Prescribed comment blocks are placed in source files around the important C language syntactic elements
so a special utility program, called the extractor, can recognize and extract the interface of the source file.
As part of a kernel build, the utility program is run over every .c source file and produces as output a file
with the same name but with .d¥ instead of .c as the suffix. The extractor is not run over .h files because
the interface and implementation of a .h file are equivalent; hence .h files do not have corresponding .d
files.

The .d file contains C language external declarations for every variable or function found in the .c file. The
keyword extern is inserted and the types of the variables and function return values are reproduced as
appropriate for the .d file to be included by another source file that wishes to reference the items it contains.
Portions of the .c file that are not part of the interface are not reproduced in the .d file.

The .d file could be produced manually using an editor, but whenever editing the .c file changed its
interface, the corresponding .d file would have to be manually updated as well. Manually updating both
invites divergence between them, as well as being more work. Using the extractor establishes one source
file, the .c, with the .d simply being a product of building the kernel.

4.3.2. Include files

C language include files are the main mechanism for achieving the information hiding theme in the DG/UX
kernel. Several rules govern the use of include files. First, every source file must be self-contained in that
it either defines internally or includes a definition for every identifier it references. A source file containing
functions must include a declaration of every variable or outside function that it calls; function return types
and variables are not allowed to default to inr. Declarations for functions implemented by the same
subsystem are obtained by including the .d file corresponding to the .c file that implements the function.
Declarations for functions implemented by other subsystems are obtained by including the subsystem
interface file for the implementing subsystem. Hence a .c file may include .h and .d files from its own
subsystem, or the subsystem interface file from other subsystems.

A header file that defines a new structure must define within itself or include a definition for the types of
the fields of the new structure. As with function declarations, type definitions that come from the same
subsystem may be obtained by simply including the .h file that defines the type. If the type definition
comes from another subsystem, the subsystem interface file for the other subsystem is included. Hence a .h
file may include other subsystems. It must not (and should not need to) include a .d file from its own
subsystem.

Because each source file includes everything it needs, the source file (or, for .c source files, its derivative .d
file) can itself be included by a higher level module without requiring the higher level module to have other
include statements. Because there can be many levels, large include file hierarchies can result, and a
particular include file may be included several times at different points in the hierarchy. To solve this
problem, each include file contains a #ifdef and a #define statement that cause the file to be skipped if it has
already been included once.

The files included by a particular source file must be grouped into two categories: interface includes and
implements includes. Interface includes are the include files that are needed to define the types and
constants that are part of the interface of the source file. Implements includes are the additional include
files that are needed for the implementation of the source file. A specific include file is included only once
— as an interface include if necessary, otherwise as an implements include. For a .h file, all includes are
interface includes because everything in the source file is part of the interface. For a .c file, the includes
that define the types of variables, functions, and function arguments are interface includes and all other
includes are implements includes. The distinction between interface and implements includes is used when
.d files are created. Include statements are placed in the .d file for all of the interface includes. but not for
the implements includes. This step ensures that the .d file is self-contained: i.e., it includes definitions for
all of the types it uses.

t The .d suffix has no particular significance. The letter d was chosen simply to avoid conflict with existing commonly
used suffixes.

14 EUUG Autumn 89 — Vienna, 18-22 September

Engineering a (Multiprocessor) UNIX Kernel

4.3.3. Achieving information hiding

Information hiding is achieved by the include structure described above. First, since a module only
includes .h and .d files from its own subsystem, it only includes the interfaces of other modules, never their
implementations. Hence one module cannot get implementation information about another module.
Second, a module may only include the subsystem interface file from other subsystems; it may not include
.h or .d files from another subsystem. Third, a subsystem has explicit control over which of its .h and .d
files are part of its subsystem interface file. These latter two constraints ensure that a subsystem has control
over what it exports to other subsystems and that other subsystems cannot access non-exported parts.

5. Applying the Conventions Theme

Conventions are used heavily throughout the DG/UX kernel in order to increase the uniformity of the
resulting product even when many developers have worked on it. These conventions also allow the tools to
work properly.

The exact convention used is not the important point. Many arguments can be had over the merits of one
convention versus a competing convention covering the same area. The important point is that some
convention be used so that there is uniformity in the results. Also, the conventions are intended to be just
that: conventions. They are not mandatory and are not a substitute for the use of good judgement by the
developer, though the developer who violates the conventions should be prepared to defend his choice at a
design or code review.

5.1. Naming conventions

In order to ensure consistency from subsystem to subsystem, a number of naming conventions are used.
These include: using conventional prefixes and suffixes on C source file names to denote various attributes
(such as the source’s subsystem, the category of data items it contains, or whether the source contains
external kernel interfaces or subsystem interfaces); similar conventions on identifier names (indicating the
defining subsystem, whether the identifier is a pointer, etc.); and always naming functions in the form
verb-object (for instance, dm_create_link instead of dm_link_create). Such conventions are quite useful in
reading and debugging code, especially in unfamiliar areas of the kernel.

5.2. Coding conventions

The DG/UX kernel has many conventions on the use of the C language to obtain consistency across a large
number of developers and to avoid common errors. For example, the indentation and placement of braces
and parentheses is spelled out so that it is the same in all kernel modules, regardless of who did the actual
work. Other examples include: avoiding error-prone or non-portable C constructs (because of the
confusion between "=" and "==", assignment within conditionals is prohibited, for example); declaring
everything in the DG/UX kernel explicitly (even when allowing the C compiler to chose the default would
produce the correct result); and not using the compiler built-in types such as int and short directly within
the kernel because the realization of the types can vary on different machine architectures and because
some of the types may produce inefficient code (instead kernel basic types are used that are defined in
terms of the compiler built-in types).

5.3. Documentation

Each source tile contains comments according to prescribed conventions. A module header gives the name
of the module, lists the identifiers that are defined in the module, and gives a high-level English language
description of the logical entity the module represents. It describes how the contents of the module are
related and what the typical use is. The module header also contains a revision history in which changes to
the module are noted.

Each definition, variable, or function in the module also has a header that describes the item. For type
definitions, the header describes the purposes of the data structure, its possible relationships to other data
structures, and similar details on each field if present. For constant definitions, the header describes the
purpose of the value and how the particular constant was arrived at (e.g., mandated by a standards
organization, determined by the hardware, or experimentally as the value that makes things work “well”).
For variables, the header describes the range of legal values, when the variable is modified, and when it is
initialized. For functions, the header describes what the function does, while being careful not to give
details on how it does it. Function headers also state assumptions about locks that are held or other
conditions that must be met before the function is called.

EUUG Autumn 89 — Vienna, 18-22 September

Engineering a (Multiprocessor) UNIX Kernel

Within a function, comment blocks describe the implementation details. These comments constitute the
detailed design of the function, which may be produced and reviewed before the code is actually written.
They are not just an English language transliteration of code, but explain the overall algorithm and control
flow used. They also point out subtle areas of the code and explain why the code is the way it is so that a
future maintainer of the code will be careful when making changes.

6. Applying the Tools Theme

In addition to the standard C compiler, the tools used to create the DG/UX kernel include lint, a proprietary
type checking program called ccheck, and a variety of shell scripts and makefiles. The particular use of
these tools is summarized below.

6.1. Ccheck and lint

Ccheck is a proprietary utility that provides a stronger measure of type checking than lint or the C
compiler. It is routinely used as part of the kernel compilation process in order to make the use of C
conform to strongly typed rules. The overall reliability and enhanceability goals of the project make it
important to flag type-mismatch errors early in the development process. Using special comments
generated during the extraction of .d files, ccheck compares actual arguments against the corresponding
formal arguments for type correctness. This checking is similar to the checking that is possible using
function prototypes as specified by ANSI C, and could be done by the compiler when ANSI compilers are
widely available. Ccheck also checks for missing declarations, mixing of pointer types and mixing of
signed and unsigned arithmetic operands. Lint is used as well because of the heuristics checks it makes for
unused variables, variables that are set but not used, or variables that are used without being set.

6.2. Build mechanism

The key feature of the build mechanism is that it detects what source files have changed and recompiles
only those portions of the kernel that are affected by the changed source file. It consists of a collection of
shell scripts, make files, and utility programs that are run each night to produce object files that reflect the
state of all changes made during the day.

The first phase of the build mechanism constructs the dependency tree of the source files in the form of a
makefile. When a source file changes the list of files that it includes, sed and awk scripts that scan each
source file looking for #include statements automatically detect the change in the dependency tree and do
the appropriate recompilations.

The second phase builds the interface of each subsystem by extracting the interfaces of source modules that
are part of the subsystem interface and concatenating them to form the subsystem interface include file.
The newly created subsystem interface include file is compared with the previous version, if any. If both
versions are identical, then the subsystem interface hasn’t changed and the old subsystem interface include
file, with its old modification time, is preserved.

The third phase compiles each subsystem. Within each subsystem, interfaces are extracted and compared
with the old version to determine if the interface has changed, and include files may be touched (changing
the modification time) to reflect that an include file it depends upon has changed. Code modules are
compiled and the resulting object files are archived into a library that contains all the code from the
subsystem. Though the work within a subsystem must be done according to the hierarchy within the
subsystem, subsystems as a whole can be processed in any order during the third phase of the build. This
fact accrues from the requirement that a subsystem cannot have dependencies on the internals of other
subsystems; it can only depend on other subsystems’ interface include file. Since these were all created in
the second phase of the build, subsystems in the third phase can be done in any order. The build
mechanism takes advantage of this by doing multiple subsystems in parallel. On a multiprocessor machine,
this parallelism makes more effective use of the processors and allows the build to run faster.

The build mechanism also supports check-in and check-out operations on source code. Whole subsystems
must be checked out, and only one developer may have a subsystem checked out at a time. Not being able
to have different developers check out different source files in a subsystem has proven somewhat
restrictive, though not unbearably so. The restriction simply refiects that more work is needed in the tools
and is not inherent in the design. Source code revision control is provided using SCCS as part of the
check-in and check-out shell scripts.

16 EUUG Autumn 89 - Vienna, 18-22 September

Engineering a (Multiprocessor) UNIX Kernel

6.3. Source level debugger

Use of a source level debugger has been an important productivity enhancement in the development of the
kernel. The debugger can be used on all parts of the kernel. It allows walking back the kernel stack of a
particular process, displaying the value of local and global variables, and setting breakpoints at source line
numbers. Structure variables and arrays are displayed showing the individual field names or indices along
with its associated value.

The debugger also forms the basis for a crash analysis tool which operates exactly like the debugger,
except that it accesses a main memory image dump file created after a system panic. All of the debugger
features for walking back stacks, display variables, etc., are available except for setting and taking
breakpoints. This method of examining crashes has proved extremely fruitful in finding and fixing bugs
from remote sites.

7. Experience and Conclusions

The application of these engineering techniques to the DG/UX kernel began with the project in late 1984,
and have continued in use through its first release and up to the present. On the whole the results have been
very successful.

7.1. Design and implementation implications

The decomposition of the kernel into subsystems and enforcement of the distinction between interfaces and
implementation has been an excellent framework for motivating good design. Issues in the design were
forced into the open early when interfaces between subsystems didn’t mesh properly and when there was
difficultly in maintaining the interface/implementation paradigm. These issues forced the designers to re-
examine the partitioning of work between subsystems, resulting in a better understanding of the
interactions between different parts of the project and hence a better design.

The emphasis on information hiding and encapsulation made it possible during the development to replace
whole subsystems with new versions. In particular, the Medium Term Scheduler (MTS) subsystern was
initially coded without much sophistication because the full kernel was not operational and writing a good
scheduler requires a working system on which experiments can be run and measurements made. The
interfaces were designed to encapsulate the scheduling knowledge, however, such that it could be replaced
later without much trouble. Much later, after the system was working with the rudimentary MTS, a new
MTS was developed in parallel that was eventually substituted for the old one. The new MTS did require
some additional information from the Virtual Memory (VM) subsystem, so some functions were added to
the VM interface that were not used by the old MTS. After testing was completed, the new MTS was
inserted without disturbing the rest of the system.

At another level, information hiding allowed the representation of an eventcountert to be changed from 64
bits to 32 bits in order to increase performance. The modules defining the eventcounter type and
implementing the operations on eventcounters were modified to reflect the change and inserted into the
main code tree. After a night of recompilation everything worked fine — except for the one place in the
code where an eventcounter had been cast as a 64 bit integer in order to perform a non-standard operation
on it. This sort of cheating cropped up occasionally, though in most cases it was spotted during a code
review and corrected before it caused a problem.

The emphasis on strong type checking provided two advantages. First, strong type checking forces
designers to be sure they understand how the various parts of their subsystem fit together. If the types are
not working out correctly, or many casts are required in the code, it may be an indication that the design
needs to be rethought. Second, many simple coding errors were eliminated at compile time instead of at
debug time. Errors such as passing an int instead of an /nt * as an actual argument are detected when
ccheck is run, and can be corrected before going to the trouble to set up a debugging environment.

The subsystem organization also allowed partial kernels to be built and tested well before the full kernel
was ready for active use. The first test contained just a few of the lowest level subsystems and tested the
ability of the Virtual Processor (VP) subsystem to swap virtual processors among the pool of physical
processors. This test was run on dual-processor hardware long before most of the rest of the kernel was
ready. Later, the Medium Term Scheduler (MTS) test checked out a larger portion of the system. Also, a
Logical Disk Manager (LDM) test was built that just tested the ability of the system to read and write disks,

+ An eventcounter is a data structure used for synchronization in the DG/UX kernel. The detail$ are not relevant here,
but see [Kel89a].

EUUG Autumn 89 — Vienna, 18-22 September 17

Engineering a (Multiprocessor) UNIX Kernel

including the process multiplexing required to take and handle interrupts.

7.2. Performance implications

Two kinds of performance implications occur because of the emphasis on good software engineering.
First, a significant amount of production machine time is required to perform the extract, compilation,
ccheck, and kernel build phases. The large number of separate modules in the kernel and the include file
hierarchy increase the compile time. These production machines resources, however, are being used to
find bugs that would otherwise be found on standalone machines during kernel testing. A conscious
decision was made to obtain the necessary production machine resources because bugs were found earlier,
reducing the level of standalone machine resources and debug time required.

The check in and check out procedures associated with the subsystem paradigm are still too slow and
cumbersome to be completely satisfactory. The procedures were developed on an ad hoc basis, and could
benefit from some serious work by someone experienced in producing good tools. The slowness problems
may be largely resolved by the introduction of the next generation of faster processors.

The second and more important performance implication is in the runtime performance of the kernel. Use
of information hiding and encapsulation is often criticized because it generally introduces a larger number
of function calls in a given code path than would be there if code paths directly modified all data structures.
For example, it is not uncommon for a system call to produce 30 frames on the kernel stack at its deepest
point. In most cases, however, the DG/UX kernel is willing to pay the additional cost of the function calls
either because the additional cost is small relative to the total cost of the system call, or because the code
path that incurs a significant penalty is rare during typical operation of a system. Hence the overhead of
function calls usually has a negligible effect on overall system performance while providing significant
benefits in the maintainability and enhanceability of the software. In the few cases where function call
overhead is significant, code has been changed in ways that might be less than ideal from a software
engineering standpoint (by coding in assembler, for example) in order to meet performance goals. In these
cases, the software engineering has allowed the decision to be postponed until the latter stages of the
project so that the important places could be fixed and premature optimization is avoided. Also, because
processor performance is generally increasing at a faster rate than memory or 1/O performance, the relative
importance of processor overhead in making function calls is decreasing over time. The DG/UX kernel
was designed with this trend in mind, and with the belief that trading a small amount of performance for
increased reliability, maintainability, and extensibility is a worthwhile trade.

8. Acknowledgements

We would like to acknowledge the enthusiasm and professionalism of the entire DG/UX kernel
development team in producing the DG/UX kernel. Special thanks is due to the original members of the
group: Katie Algeo, Philip Christopher, Bob Goudreau, Jerry Pendergrass, Jeff Kimmel, Earle MacHardy,
Joe Pittman, Steve Stukenborg, Tom Wood, and Hilary Zaloom. We would also like to thank and
acknowledge our management for providing critical support: Dennis Balch, Jim Hebert, and Lee Schiller.

Trademarks

ECLISPE is a registered trademark of Data General Corporation.
DG/UX and AViiON are trademarks of Data General Corporation.

References

[Bac84a] M. J. Bach and S. J. Buroff, “Multiprocessor UNIX Operating Systems,” AT&T Bell
Laboratories Technical Journal, vol. 63, no. 8, pp. 1733—-1749, October 1984,

[Ham88a] Graham Hamilton and Daniel S. Conde, “An Experimental Symmetric Multiprocessor Ultrix
Kernel,” Proceedings of the Winter 1988 USENIX Conference.ds [1 The USENIX Association,
pp. 283-290, Berkeley, CA, 1988.

[Hen84a] Sallie Henry and Dennis Kafura, “The Evaluation of Software Systems’ Structure Using
Quantitative Software Metrics,” Software — Practice and Experience, vol. 14, no. 6, pp.
561-573, June 1984.

[Hol83a] R. C. Holt, M. P. Mendel, and S. G. Perelgut, “TUNIS: A Portable, UNIX Compatible Kernel
Written in Concurrent Euclid,” Proceedings of the Summer 1983 USENIX Conference, pp.
61-74, The USENIX Association, Berkeley, CA, 1983,

18 EUUG Autumn 89 — Vienna, 18-22 September

Engineering a (Multiprocessor) UNIX Kernel

[Kel89a] Michael H. Kelley, “Multiprocessor Aspects of the DG/UX Kernel,” Proceedings of the
Winter 1989 USENIX Conference, pp. 85-99, The USENIX Association, Berkeley, CA, 1989.

[Par72a] D. L. Pamas, “A Technique for Software Module Specification with Examples,”
Communications of the ACM, vol. 15, no. 5, pp. 330-336, May 1972.

[Par72b] D. L. Parnas, “On the Criteria To Be Used in Decomposing Systems into Modules,”
Communications of the ACM, vol. 15, no. 12, pp. 1053—-1058, December 1972.

EUUG Autumn 89 — Vienna, 18-22 September

20 EUUG Autumn 89 — Vienna, 18-22 September

An implementation of STREAMS for a Symetric Multiprocessor UNIX Kernel

An implementation of STREAMS for a Symmetric Multiprocessor
UNIX Kernel

Philippe Bernadat

O.S.F. Research Institute
c/o Bull-Imag*
2 Avenue Vignate, Z.1. Mayencin
38610 Gieres
France
bernadat@gu.bull fr

ABSTRACT

This paper describes a solution to running UNIX Streams in a multiprocessor
environment. As for other layers of the UNIX kernel, every part of the streams code and
every stream module can be executed on any CPU. The design is adaptable to various
kernel implementations and only relies on the streams message mechanism.

1. Introduction

The Streams mechanism was designed and implemented for monoprocessor machines. Kemel
programmers develop their own stream modules or drivers and then link them into the basic kernel. No
assumption is made about the kernel implementation; the programmer only knows the interface which is
described in “The Streams Programmer’s Guide” [ATT87a]. As a consequence no multiprocessor
synchronisation is added to modules and drivers. We describe an implementation of streams in the kernel
where synchronisation is done outside the modules. The algorithm takes advantage of parallelism.

The kernel implementation is based on R3.1 & R2.4 versions from AT&T with additional functionalities
such as the FFS (fast file system), socket interface from BSD 4.3 and SUN 3.2 NFS. This implementation
of streams is adaptable to all symmetric multiprocessor kernels based on common memory architectures.

2. Machine Description

This multiprocessor kernel has been developed on a prototype model of the BULL DPX2000 family. This
architecture includes local memory for each processor and also a common memory.

2.1. Global Bus

The hardware architecture is built on a proprictary global bus, to which up to 8 CPUs, 16 IOPs and
Common Memory boards are connectable. The CPUs have local memories plugged on a local bus,
invisible to the other CPUs. All the CPUs can address the [OPs and Common Memory boards on the
global bus with the same priority. 10Ps are slaves, which means they cannot access the global bus.

2.2. CPUs

All CPUs are identical, with the following components:
e MC68030 microprocessor.

e MC68881/2 floating point unit.

e 16 KB of physical cache memory.

e One asynchronous line.

e Timers.

+ The author was employed within BULL S.A. (Echirolles. France) at the time the paper was written.

EUUG Autumn 89 - Vienna, 18-22 September 21

An implementation of STREAMS for a Symetric Multiprocessor UNIX Kernel

2.3. I0Ps
The main types of IOPs are:
e SCSI board: connectable to disks, cartridge tapes, floppies and magnetic tapes.
e Ethernet board.
e Asynchronous lines boards.
Synchronous board.
Line printer board.
Graphic stations board.
GPIB/DR11 instrumentation boards.

Each IOP has its own microprocessor and memory.

2.4. Multiprocessor features

Each CPU can raise an interrupt to wake up all the CPUs. There is a flip-flop used in conjunction with the
TAS instruction to prevent a cpu waiting for a resource from looping with the TAS instruction on the
global bus.

Ethernet

7

proprietary bus

Figure 1: DPX 2000 architecture description

3. Kernel Description

The kernel is based on AT&T’s R3.1 version, including FSS (File System Switch), Streams, shared
libraries and System V IPC. The FSS is used to add both BSD 4.3 FFS (Fast File System) and SUN 3.2
NFS (Network File System). Sockets are implemented on top of the streams. The multi-processor
adaptation is based on AT&T’s R2.4 version, except for FSS, FFS, NFS and Streams which are not part of
R2.4.

UNIX code is duplicated in each local memory, with most of the common kernel data loaded in common
memory. The user segments and the User area block are loaded in local memory with shared memory
segments loaded in common memory.

3.1. Multiprocessor protection

Multiprocessor protection is implemented with semaphores and locks [Bac84a]. Locks are used for “busy
wait” and semaphores allow queuing of processes waiting for a resource or an event. A semaphore itself is
protected with a lock. The following operations on semaphores are used:

EUUG Autumn ‘89 — Vienna, 18-22 September

An implementation of STREAMS for a Symetric Multiprocessor UNIX Kernel

P wait/grant operation on a semaphore.
V signal/free operation on a semaphore.

CP Conditional grant on a semaphore with no wait, a return status indicates if semaphore was free.

Depending on its initial value a semaphore is used in two different ways:

0 The semaphore is used for event synchronisation, for example waiting for a file system buffer.

1 The semaphore is used to ensure exclusive access to kernel text or data.

3.2. File Systems

We designed a synchronisation which allows foreign file systems to be added without modifying their
code. An optional external seraphore is taken with a P operation when entering the FSS and released with
a V operation when leaving it. This semaphore is also released each time a process inside this file system
goes to sleep, or if calling another file system, or a driver. The first implementation of NFS has been tested
using this external synchronisation. Later on, locks and semaphores were added to the NFS code (just as
for FFS) to allow for more parallelism.

3.3. Drivers

Here the goal (just as it was for FSS) was to link-edit drivers without modifying their code with multi-
processor synchronisation. For each driver, an optional structure is used, containing the following items:

e A semaphore.

e A linked list of pending interrupts.

e A lock to protect this list.

This structure is pointed to by the bdevsw and/or cdevsw structures. When calling a driver through the

bdevsw or cdevsw a P operation is done on the semaphore if it exists. This is transparent from the
programmer’s point of view. A V operation is done when coming back.

When an interrupt occurs, the semaphore state is checked, using a conditional CP operation. If it is free,
just process the interrupt and then release the semaphore. If it is not free, the interrupt is acknowledged,
linked on to the list but not processed. The process owning the semaphore will process this interrupt when
releasing the semaphore. As a consequence, each time a process or an interrupt routine leaves a driver, it
must run the pending interrupts linked inside the list.

When a process goes to sleep inside a driver, the semaphore must also be released and taken back when the
process is awakened.

4. Streams Mechanism

A stream consists of connected modules, with data flows in both directions: from stream heads to drivers
and vice versa. Each module consists of two queues, one in each direction. The communication between
the modules is done exclusively by sending messages to the upper or lower module [Rit84a].

There is 5 types of interface between stream modules or between stream modules and other parts of the
kernel:

1. System call interface with stream heads.

2. “Put” procedures, used to pass a message to the queue of the upper or lower module of a stream.
The only parameters for this procedure are a message and a pointer to the next queue, there is no
return code and this is the only interface used between two modules.

Service routines used to delay module processing. These routines are called once more time-
sensitive kernel activities have been performed.

Recovery from message block allocation. If a message block allocation fails, a module can ask to
be called with a private function as soon as new message blocks are available.

Hardware interrupts.

EUUG Autumn 89 — Vienna, 18-22 September

An implementation of STREAMS for a Symetric Multiprocessor UNIX Kernel

stream
head

b (2)

Streanm (3,4)
module

BN('D"‘I"’CIJ

= 0 T a0 Ow

stream
driver

Figure 2: Stream basic architecture

5. Multiprocessor Streams

Besides the stream modules, other parts of the stream code are protected with the usual semaphores and
locks. This includes:

e Message block allocation.
e Queue allocation.

e Stream head allocation.

e Stream scheduler.

e Clone driver.

When accessed from above, a stream head is considered as a regular module, so that it may be protected in
the same way as any other module.

5.1. Module protection

To maintain consistency without modifying the module’s code, at most one processor at a time is allowed
to run a module. The goal is to protect the module code in an efficient way: “busy wait” must be avoided
before entering modules, and taking advantage of parallelism would enhance performance.

For each module there is defined an optional structure containing the following items:
e A semaphore.

e A linked list of messages

e A linked list of interrupts.

e A lock to protect the two lists.

5.1.1. System calls

When using streams via system calls, a process enters a stream head module. The stream head module is
locked using a P operation on the module semaphore. It is released with a V operation when returning
from the system call. If the process goes to sleep, the semaphore is released, and taken back when
awakened.

24 EUUG Autumn 89 — Vienna, 18-22 September

An implementation of STREAMS for a Symetric Multiprocessor UNIX Kernel

5.1.2. Put procedures

Put procedures are called in both directions: this means that the kernel may be in interrupt mode and that it
cannot use P operations (otherwise the system could sleep whilst in interrupt state). Using busy waits is not
performed. So the conditional CP operation is used and 3 situations may occur:

1. The module of the next queue is free. Just process the put procedure, without releasing the previous
module semaphore. When coming back, this called module is released, and the previous one is not
“relocked” as it was not released.

2. The next module is not free but the current task already owns it. The put routine is processed
without locking or releasing any module. (A task stands here for a process in kernel mode or a cpu
handling an interrupt.)

3. The next module is not free and is not owned by the current task. The message is added to the linked
list of messages defined above. The queue identification is also recorded in the message: indeed
there are two queues per module and a module may be pushed on more than one stream at a time.
From the caller’s point of view, this linking of the message is completely invisible, there is no
synchronisation when calling “put” procedures, the caller ignores what will be performed on the next
queue, and potential replies are sent using a “‘put” routine (qreply) in the reverse direction.

This solution implies that when releasing a module, the linked list of messages must be scanned to perform
the put operations on the related queues.

If the notion of owner of a semaphore does not exist, or if it is not possible to know the owner, case 2 and 3
are merged: if a module is locked by the current task, the message is linked and will be processed when the
task itself releases it. It is just a matter of performance.

r—-">""—">""">"">""™"""~>"~"—"~"~""~>"~"~"~" "~~~ T TTYTTTTToTToTSToTTSo--o-STT-=S—-—oT= A
: i sched. :
\ | queue pending pending \
[' messages interrupts |
I + 1
I . msg m\svg msg msg : |
| | ~[msg.] _[msg. Sg. Sg. Sg. Sg. |
' 119" L head [Jolock || block head | |block| | block !
: ; YA]] !
' ! o . = !
1NN M |
oy i 5 o
| § r o
| vA |
: b — o V '} :
| = I
= Tnext V ;
queue ,
| 7 ¥ |
' | |queue I] :
| T |
: : (1) pointer to the destination queue |
| v |
L o o o e e e e e e e e e e e e e = - ——— — J

Figure 3: Module organization

EUUG Autumn ‘89 — Vienna, 18-22 September 25

An implementation of STREAMS for a Symetric Multiprocessor UNIX Kernel

5.1.3. Service routines and recovery from allocation failure

These two interfaces are called by the stream scheduler. The stream scheduler is activated when returning
from interrupt mode to user process and before the system enters the idle state and in fact once more time
sensitive activities arc performed. The scheduler is not a process, it has no context and cannot sleep.
When activated, it scans several lists:

e A list of queues to activate via the service routines.
e For each message class, a list of modules waiting for message blocks. If message blocks are free, a
specific function of the module is called.

For every member of each list, the scheduler tries to lock the corresponding module semaphore with a CP
operation; if it is free, just perform the work. Otherwise, the queue or module activation is delayed until
the next scheduler activation. All the CPUs can activate the scheduler, and more than one CPU at a time
can run the scheduler. The lists of queues to activate are protected from concurrent accesses but are
shared. This allows parallelism.

5.1.4. Interrupts

Interrupts are performed exactly as they are for a regular driver, using a linked list of pending interrupts in
case the module is not free. Additionally the interrupt task must also process pending messages before
releasing the module.

5.1.5. Linked list processing

The above algorithms imply that before releasing a module’s semaphore, a task (process or interrupt task)
must perform the following operations:

I. Process the pending interrupts.
2. Call the put procedures for the pending messages.

5.1.6. Message priorities

To keep a priority order between data messages and control messages, the control messages can be linked
at the head of the linked list and data messages at the tail. Pending interrupts are always processed before
pending messages.

5.1.7. Module functional organization

At init time a module contains text and private data. When pushed on a stream, queues are allocated to the
module. Messages are then sent by the upper and lower queues of other modules. Additional needs for the
multiprocessor synchronisation are one linked list of pending messages and one linked list of interrupts
(Figure 3). A semaphore controls the access to the module and a lock protects the two linked lists.

5.2. Parallelism

Figure 4 illustrates the type of parallelism that can happen for a single stream with this implementation.
The different modules of the stream can be run by different CPUs at the same time.

There is also parallelism between different streams as long as they are not processing the same module,
however, there is no parallelism between different streams inside the same module.

6. Application to sockets and NFS

NFS, and TCP/IP applications (remote commands, file transfer protocols ...) are implemented using
sockets. Sockets are themselves implemented over streams. The interface between a user process and the
kernel is the socket’s one. The socket layer consists of specific stream heads invisible from the user’s side,
accessed only by the kernel.

Figure 5 illustrates this stream implementation: each solid line boxes represents either a stream head, a
simple module, a multiplexer or a driver module. Each one is protected with an external semaphore.

26 EUUG Autumn 89 — Vienna, 18-22 September

An implementation of STREAMS for a Symetric Multiprocessor UNIX Kernel

user
process

module 0

—
—
module 1

BN(‘D"‘"’W
- 0 —c QOoOD> o w

module 2

Spo—®
"o TeE QAO0ODS Ow

module

module 4

Figure 4: Multiprocessor stream execution example

7. Performance

This algorithm has been developed on a prototype machine. When running with a single processor, only
local memory is used. whereas when running with more than one CPU, most of the system tables are in
global memory which is much slower than local memory. Indeed, global memory is organized with 16-bit
words and is not cached.

However, to measure the impact of parallelism, the prototype is sufficient. We have done measurements
with two types of commands:

rep running over TCP/IP.
cp across NFS running over UDP/IP.

First each of the two commands is executed from 1 to 4 times in parallel on a single CPU. Then it is
executed from 1 to 4 times in parallel on 4 CPUs. The same transfer is done with each of the two
commands.

Most of the elapsed time is system time inside the stream’s code or idle time. When running with only 1
command, the system idles 30% of the time, which means that the global throughput is limited by the
Ethernet board throughput and cannot be increased with additional CPUs. Looking at the figures for 1
command the impact of parallelism for TCP can be observed. System time on the CPU where the
command runs is 13.34 for 1 cpu and 5.40 for 4 cpus. 60% of the system time (i.e. stream procedures) is
achieved by other cpus. TCP intensively, uses service procedures whenever possible as recommended in
the streams programmers guide, whereas UDP does not.

Better performance could probably be obtained if some modules were rewritten in a multi-processor
environment. In our example, the IP layer is a multiplexed module and might be a bottleneck.

EUUG Autumn 89 — Vienna, 18-22 September

An implementation of STREAMS for a Symetric Multiprocessor UNIX Kernel

User Process

(TLI)
steam | 7777 e e :
head ! sockets/NFS !
timod | m l—_—‘ m ﬁ ﬁ '_| ’_l :
R W o W i W A W v i iy W B W i S
|
tcp udp icmp rip
v 1 v i1 v
ip
v | P! v
{)%% 2?{; slip
i 1
Ethernet X25 Lottys
L - - - - - J

Figure 5: Network’s stream implementation

8. Conclusion

The algorithm described here is quite natural, it relies on the Streams basic idea: a unique way to
communicate between layers (modules) with messages. Besides the advantage of not having to change
module’s code, performance is enhanced if procedure services are widely used. Future enhancements
concern a larger parallelism within multiplexed modules.

9. Acknowledgments

I would like to thank the following people who worked with me on this implementation: Eddine Walehiane
who introduced me to the streams, Philippe Durieux who helped me in designing and porting algorithms
for the sockets and Jean Pierre Joannin for his useful comments.

References

[ATT87a] AT&T, UNIX System V Release 3 STREAMS Programmer’s Guide, 1987.

[Bac84a] M. J. Bach and S. J. Buroff, “Multiprocessor UNIX Operating Systems,” AT&T Bell
Laboratories Technical Journal, vol. 63, no. 8, October 1984.

[Rit84a] D. M. Ritchie, “A stream Input-Output System,” AT&T Bell Laboratories Technical Journal,
vol. 63, no. 8, October 1984.

28 EUUG Autumn 89 — Vienna, 18-22 September

An implementation of STREAMS for a Symetric Multiprocessor UNIX Kernel

Command

cp across NFS

Number of
commands run time
in parallel (seconds)

real
user
system

real
user
system

real
user
system

real
user
system

Figure 6: Compared performances of mono- and multi-processor execution

EUUG Autumn 89 — Vienna, 18-22 September

30 EUUG Autumn 89 - Vienna, 18-22 September

Developing Writing Tools for UNIX Workstations

Developing Writing Tools for UNIX Workstations

Martin D. Beer, Steven M. George and Roy Rada

Department of Computer Science,
University of Liverpool,
P. O. Box 147,
LIVERPOOL
L69 3BX.
UK
mdb@mva.cs.liv.ac.uk

ABSTRACT

The availability of networks of UNIX-based graphical workstations has stimulated new
developments in authoring software. This paper presents our experiences along several
fronts. First, we discuss the lessons learnt from developing a simple authoring tool to run
on the Atari-ST, using the GEM operating system. This was always intended to be used
by a single author and was not tied to expensive computer networks. With the arrival of
a large network of powerful graphical workstations in our department, developments
have recently transferred to them. We discuss the development of software using 1) the
X11 toolkit and one of the readily available widget sets, 2) a configurable editor (GNU
Emacs) to develop prototype applications, and 3) the Andrew toolkit to re-implement the
original Atari authoring system, but this time providing a tool that will allow several
authors to collaborate closely with each other. The practicalities of these approaches are
discussed with reference to our own experiences.

1. Introduction

The recent development of high-powered, relatively cheap, graphical workstations has opened many
opportunities for investigating tools to assist in the writing process. Since these workstations are based on
a full, multi-user operating system (UNIX). which support not only the execution of many processes on
different network clients, but also a single integrated, network-wide filestore, it is much easier to share
information between users than on conventional, PC-based networks of word-processors. This has led to
the investigation of existing collaborative writing tools, and their methodologies, in the same framework.

Before the advent of more sophisticated equipment in our department, atternpts to develop writing tools
that provide a comfortable user-interface were based on the Atari-ST microcomputer. These generated
user interest, but were limited in the functionality provided as all the features had to be developed from
scratch. A number of valuable lessons were however learnt at this stage, and these will be discussed next.

2. The Atari Experience

A usable prototype authoring system, called ATARI-ST-TROFF, was developed on the Atari, which
provided an acceptable interface for the user who did not wish to learn the complexities of the standard
UNIX documentation tools:

e the troff phototypesetting program,

e the ms macro set,

e the thl table preprocessor, and

e the egn equation preprocessor [Ker84a].

Both Academic staff and research students spend a considerable proportion of their time preparing
documents. It was therefore relatively easy to assess the main requirements of the intended system. These
included:

EUUG Autumn 89 - Vienna, 18-22 September

Developing Writing Tools for UNIX Workstations

e avoiding the need to edit and preview documents on the larger UNIX machines, which was often not
convenient, particularly when members of staff needed to work at home,

e not having to learn another collection of commands. Discussions with a number of active users
indicated particularly difficult tasks, such as:

- remembering the order in which certain macros should appear, particularly in the document
heading (i.e. the order of .RP, .TL, .AU, .Al etc.), and

- ensuring that bracketing macros matched (ensuring that for example there was a .KE for every
KS).

e obtaining draft output whenever required.

e editing documents in their final form on-screen. People did not like modifying text files that bear no
relation to the final output.

Further investigation showed that proofs are used mainly for correcting the content of documents and their
overall look, rather than to sort out particular layout problems. It is therefore unnecessary for proofs on dot
matrix printers and the basic editing screen to show exactly what will appear on the final printed page, so
long as the essential features are present. In the pilot program for instance, no attempt was made to place
page boundaries on the editing screen, since these may appear in different positions in the final document,
This corresponds closely with the intermediate editing representation used by GRIF [Fur88a].

ATARI-ST-TROFF allowed the user to enter titles and section headings by means of dialog boxes which
control the levels. Information which does not vary often, such as the author’s name and address, was
collected from a simple database, so that it did not have to be entered for every paper. Once headings had
been defined, text was entered from the keyboard, in the same way as with a normal word processor.
Paragraph starts were selected from pull-down menus.

Analysis of intended usage showed the need for a system that was portable in that drafts for documents
could be downloaded onto a floppy disk that was compatible with a home computer. The document was
saved to disk as a straightforward text file that, after transferring to the server by means of the Kermit
[Cru84a] file transfer protocol, could be entered directly into the phototypesetting program. Facilities are
also provided for outlining and dynamic reorganisation of the document on the workstation screen.

Our ATARI-ST-TROFF system has been used to good effect by several of our colleagues. However,
major deficiencies were soon identified relative to the following needs:

e to configure functionality, so that the editor could be easily tailored to individuals’ requirements and
writing styles,

e 10 manage large bodies of text (typically books and large reports consisting of hundreds of pages in
several chapters),

° to collect text from several sources,

e to mark-up and index, which users considered to be a chore that could be considerably eased by
partial automation.

It was also found that the requirement for a transportable text entry system (hence the use of the Atari) was
not as important as originally envisaged, as a much higher proportion of the actual typing was performed in
the department, than was originally expected. This was fortunate because it was clear that the additional
functionality that our colleagues were requesting, could not be accommodated within the Atari, which was
already fully stretched running the initial prototype.

3. Converting to a Workstation Environment

The delivery of a large departmental network of Hewlett-Packard 300 series workstations allowed a new
approach. Every member of staff and postgraduate student has ready access to a workstation at their place
of work. The adoption of the X-Windows user interface has allowed much of the ATARI-ST-TROFF
design work to be continued with little modification, particularly as the Mouse-Window-Menu structure
could be retained. In fact, the conversion has been highly advantageous in several respects, as limitations
imposed artificially by GEM on the Atari’s have been removed.

The conversion to a system with a large shared filing system, as is the case with our workstation network,
has allowed the text storage and retrieval mechanisms to be improved considerably. This supports
collaborative writing and elementary version control. Since the basic editor does not now provide a fully
transportable working environment, tools have been provided that allow documents generated on other
systems to be entered into the system. It was also necessary to develop data structures to manipulate large

32 EUUG Autumn 89 - Vienna, 18-22 September

Developing Writing Tools for UNIX Workstations

items of text as collections of independent objects, that could be linked into a coherent whole. This led to
the adoption of a hypertext model.

To try the various strategies as quickly as possible and to allow user reactions to be determined at an early
stage, rapid prototyping tools have been used. This paper will discuss the advantages and disadvantages of
three rapid development methods:

e expanding the functionality of a powerful text editor (GNU Emacs) by writing programs in its own
programming language (Mock Lisp)

developing programs based on the X-Toolkit widget libraries (principly the HP widget set, with the
user interface built around the text editing widget)

making use of specialised toolkits (in our case the Andrew toolkit for building multimedia editors)
[Mor86a].

All three approaches have allowed us to investigate methodologies for developing writing tools in the
workstation environment.

3.1. Using Widget Libraries

The first requirement was to develop a program which would provide equivalent facilities to those
available using the Atari program. This required the development environment to be as close as possible to
that available under GEM on the Atari, (or on the Apple Macintosh, which was the other windowing
system which had been used extensively for development work within the department). The version of X
Windows that was delivered with the workstations was only X104, and proved to be a major
disappointment, as the programming facilities provided by the X/ib library are at a very low level.
Fortunately we were soon able to obtain a copy of MIT Release 3 of X11. This proved much more
satisfactory, as it provided us with not only the XrLib toolkit library, but also a variety of widget sets as
well.

After some investigation, it was decided to try to implement the document editor, using the HP widget set.
This choice was made primarily because full documentation was available [HPW88a]. This proved
remarkably easy, so long as the functions required were available as widgets. The code proved to be much
more compact than the Modula-2 code for the Atari. (It is not possible to give reliable statistics at this
stage as the Atari version includes considerably more functionality.) Considering the traumas of installing
and working on a totally new system, implementation work started very swiftly.

It was decided to base the main editing functions on the Texr Editing widget, which provided much of the
front-end functionality that was required. This widget is extremely complicated, and proved to be the most
difficult part of the system to program. As provided, it is really only suitable for handling small amounts of
text. It does however, allow the programmer to replace its editing functions with his own. This was
essential in our case anyway, as we did not want to store the document in exactly the same form that it
appeared on the screen. So far the program has been developed with the default editing facilities, so that
the basic user interface could be defined. This proved relatively easy, except in the case of the menus. The
documentation describes the use of pull-down menus in some detail, but only widgets for pop-up menus are
provided. It took much experimentation to redesign the menu tree so that it would look right as pop-up
menus.

3.2. Expanding on Emacs

On delivery of Hewlett Packard workstations, several new editing tools soon became available. At an early
stage it became apparent that one of the editors, GNU Emacs, could be customised and extended with
relative ease.

3.2.1. Characteristics of Emacs

GNU Emacs is a freely available member of the Emacs [Sta8la] editor family. It has a large set of
primitive functions and a programming language called Mock Lisp as an integral part of the release. Mock
Lisp contains many of the functions of the Lisp language. The language is particularly strong in functions
(including all those of the editor itself) which may easily be used for the development of document
processing programs. In the best traditions of Lisp programming, one can build new, more complex,
routines from those already existing. These new functions become part of the language by loading them at
the start of each session.

EUUG Autumn 89 - Vienna, 18-22 September

Developing Writing Tools for UNIX Workstations

Emacs also has a program running environment. The program can be edited within Emacs itself, and when
complete and having been saved to a normal text file, it can then be loaded, which comprises its
compilation before being successfully incorporated as an extension to Mock Lisp. Once successful loading
has taken place, the function is available either for use in new programs, or from an interactive mode, in
which the user can type in Mock Lisp expressions and see the results immediately on screen.

GNU Emacs offers a multiple window interface to the user, giving the ability to look either at different
documents within buffers of the editor, or the user can see multiple views on the same document (or even a
mixture of both). On the Hewlett Packard workstations, the Emacs editor can run under the X Windows
interface, and thus several, simultaneous copies of the Emacs editor can be used on one workstation
concurrently. Each of these incantations can have access to the same files, and the editor will provide
elementary messages to bring the users attention to the fact that certain versions of a document may have
changed during the current working session. Although this may seem obvious when the different copies of
Emacs are on the same workstation, this principle is very important when considering collaborative work
where the simultaneous copies of the editor are on distributed workstations.

3.2.2. Authoring Method

Initially a structure for representing documents within the prototype was agreed. This consisted of mainly
three parts the first of which was a directory (called the paragraph directory) which contained many small
files each of which represented a basic building block (either paragraphs or figures) of the document. Since
we were looking at this prototype from the point of view of a Hypertext approach, we were investigating
the methodology of splitting texts into smaller units and creating documents from a concatenation of these,
controlled by a traversal of the second part of the prototype, the semantic net.

The semantic net was also stored in the form of many small files each of which was called a frame. Each
frame represented the information about a single node in the semantic net, showing the name of the node,
the links to other nodes in the semantic net and also which paragraphs should be associated with the node.
The semantic net was built up in parallel with the collection of paragraphs, and by traversing this network
we hoped to produce a coherent document representing the authors original intentions.

Now that we had a prototypical document representation and authoring method, we looked at traversal
techniques for the semantic net and tried to compare the document created by this method with that
originally in the mind of the author. We looked at different orderings of the paragraphs produced by
different traversal algorithms, trying to assess the most useful and make improvements where necessary.
The different traversals have also given rise to an investigation into browsing a semantic net in the form
that we have developed, allowing users to move around the document via the semantic net and in the case
of an author, be able to edit the document using this navigation method.

It can be seen that even with this crude, early attempt at an authoring system, there is favourable scope for
collaborative authoring. However, we see that there are several problems which need to be overcome, such
as version management for the semantic net files and the paragraph files. We also need to support
communication among collaborating authors. This has led us to look at discussion techniques and consider
how comments could be incorporated into the system.

Although easy to customise (given knowledge of Lisp) and very powerful, Emacs does have some serious
drawbacks. It is very slow indeed. The production of a 60-page, linearised document could take to 20
minutes. We certainly do not have a user friendly interface as the production of a document requires
knowledge of the Emacs editor, which is not easy to learn. The structure under which the document is
stored is unsophisticated and in the future would be replaced by a relational database. Speed has been
increased by using the C programming language in conjunction with Emacs.

In conclusion then, although Emacs has provided a quick and easy route to implementing a rough and
ready prototypical authoring method, we see that for an advanced system, we would have to look towards
other methods of programming.

3.3. Using Andrew

Another approach to re-implementing the Atari document processor was to use a specialised document
editor toolkit. The most widely distributed example of this is the Andrew toolkitf. This toolkit was
designed so that a multi-media editor could be written which allows text, tables, drawings, animations and

+ We originally obtained a copy on the X11r3 release tape, but later obtained a version customised for the HP 300
series workstations from Jean Gascon of HPlabs, Palo Alto, to whom we are most grateful

34 EUUG Autumn 89 — Vienna, 18-22 September

Developing Writing Tools for UNIX Workstations

$0 on to be combined in a single document. This has been achieved very successfully, and a multi-media
editor, an associated mail system and an extremely comprehensive help system are provided as example
applications. In many cases sites will mount the example Andrew programs on their own system and use
them without modification. This is not our intention, as we wish to develop our document model.

Further study of the example document editor (£Z) showed that it could be used as a basis for developing
our work:

e Documents are held in a special internal format, which is converted into raw ditroff before printing (a
previewer is available, which displays the text on the screen in exactly the same form as it is printed).
This internal format could be modified very easily. We would need to write a new document
translation program, which would generate text to be processed either with LaTeX, or with troff plus
the ms macros.

There was a need to allow documents to be made from the contents of several files (in the same way
as the document browser implemented in Emacs, described in the last section). This would require
modification of the present editor to handle the file requirements.

Andrew allows document formatting to be modified by Style Sheets, which are held as part of the
document. This means that it is difficult to change the form of a document, once it has been entered.
The advantage is that the style sheet is always available, anywhere on the network, including when
messages are sent by electronic mail [Joh88a]. We would like to be able to determine the usage of the
document, and then select the appropriate Style Sheet from a database.

This is a formidable list of objectives, and obviously could not be tackled at once. One advantage is that
there is no immediate need for the picture drawing capabilities of the multi-media editor, as the software
necessary for printing them is not currently available at Liverpool. This simplifies the document translator
considerably. It was therefore decided to tackle the printer translator first.

The internal representation of different text objects within Andrew, is a bracketed structure, that allows
these objects to be nested. This is a somewhat simpler structure than our own representation, which is
based on the ms macro calls. This had been adopted originally to avoid the need for complicated
translation programs, which could pose considerable difficulties on small computers, such as the Atari.
Since Andrew required this translation anyway, it was decided to use the Andrew representation.

Menus similar to the Atari program were defined, and included within EZ. The only problem that has so
far been identified, is that it is impossible to automatically number sections (those introduced by the .NH
macro) when displayed on the screen. This would require a considerable reorganisation of the editor, and
has been avoided for the moment.

Andrew makes use of an object-oriented class system, similar in many respects to C+. All applications are
written in this way. This is a particularly easy environment in which to work, and progress has been quite
rapid so far. Simple objects are defined from scratch, and then combined into more complex objects.
These can in turn be used on their own, or combined with further complex objects to form even more
complex applications.

We have been fortunate in being able to follow the form of the usual document translation program,
ezprint. This is supplied as part of the standard Andrew release. Our program, msprint, follows the form
of this program very closely. In practice, our program is considerably simpler, as in most cases all that is
necessary, is for the ms macros to be added before and after the text.

4. Conclusions

So far, all but one of the systems described here have assumed what is essentially a hierarchical document
model. Work elsewhere in the department [Ben89a|, shows that this is in many respects inadequate, and
proposes a model based on directed graphs. This approach has been taken further where a generalised
model is developed that can support multi-threaded [Bar89a] documents. This approach shows
considerable promise in supporting our current research into support tools for collaborative authoring.

Problems are caused by the desires of users to make use of the facilities offered at the earliest possible
stage. They then pressurise the developer to make early versions of their software available, which may be
incomplete or inadequately tested. This either leads to dissatisfaction with the system, which then goes out
of use, or users make copies of development versions that were never intended for general distribution, and
problems with these come back to the development team long after they have been solved in the main
development process.

EUUG Autumn 89 — Vienna, 18-22 September

Developing Writing Tools for UNIX Workstations

Particular difficulties are caused by the nature of the distributed filestore, which requires many systems files
to be copied to each file server. This problem has been avoided to a great extent by linking local
directories to a single support directory, on a user disk. It is then possible to apparently update the software
on all workstations simultaneously. This avoids problem caused by forgetting to update individual servers,
at the same time as the rest. Once installed, these links have proved extremely successful, not only for the
above reasons, but also because any software installation can be generally performed from within the
development username, and not by root. '

Care needs to be taken that released software has only the execution traps set in favour of the users. On the
rare occasions that this has not been done, copies of that version have multiplied extremely rapidly, as
users took copies ‘just in case’. Unfortunately these were usually copies of extremely early releases of
programs that were soon superseded by significantly better versions. When problems that we had thought
were long sorted out reappeared, we soon learnt our lesson!

It is now clear that our original aim of providing a single support tool, which could be configured to accept
individual document models, be they:

e reports,

° books,

o documentation,

e letters, memos, Or
° source code

in such a way that any item of data need only be entered once, is too ambitious for current methodologies,
at least within a development timeframe that we can handle. There is still the need to investigate the means
by which information can be managed away from the main network.

This includes both:
e version control as the document is developed separately on two different systems, and
e authorisation control when the new text is made available again to the main system.

We have proposals in both these areas [Bee89a].

References

[Mor86a] J. H. Morris et al., “Andrew: A Distributed Personal Computing Environment,” CACM, vol.
29, pp. 184-201, 1986.

[HPW88a] Hewlett-Packard Company, Programming With the HP X Widgets, 1988. HP Part Number
5959-6155

[Bar89a] J. Barlow, M. Beer, T. Bench-Capon, D. Diaper, P. E. S. Dunne, and R. Rada, Expertext:
Hypertext-Expert System Theory, Synergy and Potential Applications, London, England,
September 1989. To be presented at Expert Systems '89

[Bee89a] M. D. Beer, The Use of an Office Information Server in an Environment based on High-
Performance Workstations, Cologne, West Germany, September 1989. To be presented at
EUROMICRO 89

[Ben89a] T. J. M. Bench-Capon and P. E. Dunne, “Consistent Graph Modification Systems for Classes
of Electronic Document,” Report CS/CSCW/1/89, Computer Science Department, University
of Liverpool, Liverpool, 1989.

[Cru84a] F. da Cruz and W. Catchings, “Kermit: A File Transfer Protocol for Universities,” Byte, June,
July 1984.

[Fur88a] R. Furuta, V. Quint, and J. Andre, “Interactively Editing Structured Documents,” Electronic
Publishing, vol. 1, pp. 19-44, 1988.

[Joh88a] J. Johnson and R. J. Beach, “Styles in Document Editing Systems,” IEEE Computer, pp.
32-43, January 1988.

[Ker84a] B. W. Kemighan, “The UNIX Document Preparation Tools — A Retrospective,” Conference
Proceedings of PROTEXT I, Dublin, 1984.

[Sta81a] R. M. Stallman, “EMACS: The extensible, customisable self-documenting display editor,”
Proceedings ACM SIGPLAN/SIGOA Conference on Text Manipulation, pp. 147-156, 1981.

36 EUUG Autumn 89 - Vienna, 18-22 September

Implementation of a Window Manager under X11R3

Implementation of a Window Manager under X11R3

Hans-Joachim Brede
Nicolai Josuttis
Achim Lirke

BREDEX GmbH
D-3300 Braunschweig
nico@bredex.uucp

ABSTRACT

A window manager in the X11 environment is responsible for the appearance of all X
applications. It does the placement (moving, resizing, stacking etc.) of windows and can
add some ““decoration” (titlebars) to the top-level X windows. Additionally, it will
enforce some policy on iconifying windows.

After a brief overview over the duty of a window manager and the responsibility of
conforming clients, we will describe the design and implementation of a specific window
manager. The implementation follows the guidelines given in the *“Inter-Client
Communication Conventions Manual” [I[CCCM].

Special effort will be given to some of the less trivial aspects of a window manager. This
includes discussion of colormap policy, icon concepts and some special X requests
(synthetic events, save-set handling and additional properties).

The whole window manager is part of a bigger system that emulates an existing window
system for SINIX? called COLLAGEZ$ This system was realized using X toolkit widgets,
and therefore the window manager is integrated in the toolkit environment. Problems
that arose from this context are those with the reparenting of windows and the handling
of events regarding the root window.

1. Introduction

A project we haved worked on was to port an existing window system for SINIX called COLLAGE into
the X environment. COLLAGE is a proprietary system that runs on a variety of Siemens hardware. It
includes an application monitor (APM), a build in window manager and an application programming
interface (API) called Window Access Method (WAM). The goal of our XCOLLAGE project was to build
an environment that only requires relinking of already existing applications to make them work with our
implementation and let them coincident with other X Window applications. This leads to an architecture
with an XCOLLAGE server interpreting WAM messages, translating them into X calls and vice versa. An
environment variable, similar to the DISPLAY variable in X, tells a COLLAGE application were to look
for its server.

XCOLLAGE is carried out by using the X toolkit with new widgets. For more details on XCOLLAGE
refer to [Lor89al.

In this paper we want to concentrate on the window manager part. COLLAGE has a build in window
manager that provides window decoration like titlebars etc. This means all windows in the COLLAGE
desk top window have to have this COLLAGE look and feel. All other X windows, including the
XCOLLAGE desk top window, have to be maintained with a normal X window manager. In general it is
not helpful for the end user to work with two different window managers. Therefore it was obvious to
extend COLLAGES window manager capabilities to replace the X window manager. The actual
implementation of XCOLLAGE allows the user to choose any existing X window manager or to use the
build in window manager called CWM.

+ SINIX is a trademark of Siemens AG, Miinchen.
t COLLAGE is a trademark of Siemens AG, Miinchen.

EUUG Autumn ‘89 - Vienna, 18-22 September 37

Implementation of a Window Manager under X11R3

While we were working on the window manager part of the project, the Inter-Client Communication
Conventions Manual [Ros89a] was sent out for public review. Because the X Window Systems only
provides mechanisms and no policy, these conventions try to formulate rules for how X applications should
interact with each other. Because a window manager is a “normal” X application we have decided to
follow this document.

In this paper we do not discuss all the details of interaction between clients and window managers or even
all aspects of the ICCCM, like selections, cut-buffers and session managers.

2. Some aspects on implementing a window manager following the ICCCM

2.1. Basic tasks, start, save set

One important component of the X Window System is the window manager. Windows in the X Window
System are organized in a tree hierarchy. At the top is the “root window”. Window managers only control
direct child windows of the root window called “top-level windows”. Because the window manager is a
client process and not built into the server, the user is free to use a window manager of his choice or even
not to use any window manager. But usually a window manger will be used.

{ICCCM]: “It is a principle of these conventions (in the ICCCM) that a general client should
neither know nor care which window manager is running, or indeed if one is running at all.

“A goal of the conventions is to make it possible to kill and restart window managers without
loss of functionality.”

Not all conventions are supported by direct Xlib calls or specitied in the X protocol so they have to be
carried out by a series of Xlib calls. (ie. colormap or icon handling).

Because the user is free to start a window manager of his choice, he might try to start a second one at the
same time. This is not useful and might result in conflicts between those different window managers.
Therefore it is necessary to make sure that only one window manager is running. This has to be done by
registering interest in the SubstructureRedirect Event on the root window. Because only one X client at a
time is allowed to select this event, an X error is generated if a second client tries to select this event type.
To handle this error an error handler should be set up.

static int XErrorOtherWM (display, error event
Display *display:;
XErrorEvent *error event;
{
fprintf (stderr,
"It seems, you are running another window manager\n");
exit (1)

void InitWM ()
(

/* Tell server, CWM does Layout policy.
* Exit if another window manager is running.
*/
XSetErrorHandler (XErrorOtherWM);
XSelectInput (display, root_window,
5ubstructureRedirectMask |
SubstructureNotifyMask);
XSync (display, False);
InitNormalErrorHandling ()

)

Because “it is possible to kill and restart window managers without loss of functionality”, a window
manager not only has to control windows that have been created after his startup. It is also necessary to
manage all previously existing windows.

EUUG Autumn 89 — Vienna, 18-22 September

Implementation of a Window Manager under X11R3

if (XQueryTree (display, root_window,
&root_return,
&parent return,
&children_return,
&nchildren_return)) {

for (i=0; i < nchildren_return, i++) {

CreateWindow (children_return([i]);

The CWM is a so called reparenting window manager. This means it modifies the window hierarchy and
puts a container or decoration window in between the root window and the application window. Because
of the window hierarchy, all child windows of a window are lost or destroyed if the parent window is
destroyed. So this change in the hierarchy would delete all application windows if the window manager
dies unexpectedly, and therefore his windows (and child windows) are deleted by the X server. X supports
a save-set, that is a safety net for windows that have been reparented by the window manager. The
windows in this set will remain alive, because they are automatically reparented to their closest living
ancestor, whenever the window manager dies. This ancestor is the root window.
void CreateWindow (window)

Window window;
{

XAddToSaveSet (display, window):

¥

For space reasons, other standard actions of a window manger, like setting up the window title or looking
into standard window manager properties, cannot be discussed in this paper.

2.2. Colormaps

An interesting topic is the usage of color. The X Window System allows virtual colormaps. Each window
might have its own colormap. These colormaps have to be installed into one or more physical color lookup
tables. One subsection in the [CCCM is dedicated to this topic. The key sentence (it differs from previous
drafts) is that

Clients must not use InstallColormap or UninstallColormap .

This task has to be done by the window manager. Many of todays X window managers and X applications
will not fulfill the ICCCM requirements for handling colormaps correctly.

CWM is one of the first managers, that follows the correct ICCCM colormap conventions. This new policy
also might require rework of client programs, that use private colormaps. If applications (un-)install
colormaps directly, not expecting having a window manager performing this task unpredictable behaviour
might occur.

The ICCCM introduces a new property called WM_COLORMAP_WINDOWS. Clients might set up this
property if they want to specify a priority list for colormaps. This property should contain window-id’s.
The window manager will install as many of the attached colormaps as possible. If no
WM_COLORMAP_WINDOWS property is set, the colormap, being the top-level window’s attribute, is
installed. Note, that if the top-level window does not appear in the list it will be assumed to be higher
priority than any other window in the list.

CWM has the following colormap focus policy build in. When a client’s top-level window or icon gets
activated, that means it gets the input focus, it also get the colormap focus. Windows that have the
colormap focus will be displayed in correct colors, while other windows might have false colors. CWM
will ensure that for the activated client’s top-level window the M most recently installed Colormaps are
guaranteed to be installed, where M is the min-installed-maps field of the screen in the connection setup.

Because in X11R3 there is no Atom WM_COLORMAP_WINDOWS predefined, this Atom has to be
defined implicitly by “XInternAtom”.

EUUG Autumn 89 — Vienna, 18-22 September

Implementation of a Window Manager under X11R3

An example of colormap handling is given in listing 1.

The window manager also has to react on changes to colormaps of top-level windows. CWM does this by
handling the ColormapNotify event if there is only one colormap installed. If there is a colormap priority
list, it will handle the PropertyNotify event.

2.3. Window State Policy
Client top-level windows are in one of three different states:
o NormalState. The client’s top-level window is visible.

e IconicState. The client’s top-level window is iconic, whatever that means for this window manager.
The client can assume that its icon_window (if any) will be visible, and failing that its icon_pixmap (if
any), or its WM_ICON_NAME will be visible.

e WithdrawnState. Neither the client’s top-level window nor its icon are visible.

Newly created top-level windows are in Withdrawn state. Once it has left Withdrawn state, the client will
know that the window is in Normal state if it is mapped, and that the window is in Iconic state if it is not
mapped.

The client is free to change the state. The ICCCM describes conventions for a change from any state to
any state. As an example, if a client application wants to iconify its top-level window, it has to send a
special client message event with the atom WM_CHANGE_STATE to the root window.

The CWM will handle that event like this:

void ProcessClientMessage (wop, ep)

WindowObj *wop; /* Pointer to structure with several window
informations */

XClientMessageEvent *message event;

{

if (message_event->message_type == XA WM _CHANGE_STATE
&& message_event->data.l([0] == IconicState
&& (wop->window_state & cwmNormalState) != 0) {

IconifyWindow (wop);

}

Because WM_CHANGE_STATE is an atom, that is not predefined in X11R3, we have to define it with
XInternAtom:

#ifndef XA WM_CHANGE_STATE

#define XA_WM_CHANGE STATE \
(XInternAtom(display,"WM_CHANGEVSTATE",False))

#endif

As a second example, if the client wants to change the window state to Withdrawn state, in addition to
unmapping the window itself he must send a synthetic UnmapNotify event. The reason for doing is, to
ensure that the window manager gets some notification of the desire to change state, even though the
window may already be unmapped (being in Iconic state for example).

/* tell window manager window changed to withdrawn state
*/
SynthUnmap (window)
Window window; /* window getting unmapped */
{
XEvent event;

event.type = UnmapNotify;
event.xunmap.display = display;
event .xunmap.event = root;

event .xunmap.window = window;
event.xunmap.from_configure = False;

XSendEvent (display, root, False,
SubstructureRedirectMask\SubstructureNotifyMask,
&event) ;

40 EUUG Autumn 89 - Vienna, 18-22 September

Implementation of a Window Manager under X11R3

If CWM gets such an UnmapNotify event, it changes the window state to Withdrawn, destroying the
window the client’s window was reparented to.

3. Window Manager Functionality in XCOLLAGE

XCOLLAGE is a typical X toolkit program. There is a “main loop” which looks into the event queue and
then dispatches all the toolkit events. To perform window manager operations, the CWM part of
XCOLLAGE has interest in events that happen on the root window, that have no widget. Therefore we use
a slightly modified main loop. The event is taken with XtAppNextEvent(). If the returned event has
happened on the root window, the CWM dispatcher is called, otherwise the call is passed to
XtDispatchEvent ().

XtAppNextEvent (CollageContext, &event) ;
if (event.xany.window == root) {
cwmDispatch (&event) ;
}
else |
XtDispatchEvent (&event) ;
}

CWM was realized by designing and implementing a set of widgets for different purposes. For every top-
level X window there is a special class “HolderWidget”. It is a subclass of the standard XCOLLAGE
“DataWidget” and makes it possible to interact with the X window as a normal COLLAGE window.
Special functions are enforced with special callbacks. The realize method is shown in listing 2.

COLLAGE provides an icon button and a close button in its title bar. If the user clicks into one of these
buttons, a specific event is generated and sent to the COLLAGE application. It is the responsibility of that
program to perform the appropriate action. This differs from X.

4. Conclusion

In this project we have implemented the functionality of a proper window manger and made its look and
feel visible to other X clients. These applications will get the same window decorations as normal
COLLAGE applications. The internal interface follows the ICCCM.

In the above paper we have discussed some aspects like colormaps and window state policy. There are
many more aspects we have to regard. See [Nye88a] for some of these aspects.

All told it is possible to integrate the functionality of a window manager into the emulation of another
window system. It works even with very good performance in spite of a very high and complex
programming level.

References
[Lor89a] Achim Lorke, “XCollage: Portierung eines Windowsystemes auf X11,” Proceeding at 12th
DECUS Symposium, Miinchen, 1989.

[Nye88a] Adrian Nye, Xlib Programming Manual for Version 11, O’Reilly & Associates Inc., Newton,
Massachusetts, 1988.

[Ros89a] David S. H. Rosenthal, X Window System, Version 11, Inter-Client Communication
Conventions Manual, 1989. Public Review Draft

Listings

#ifndef XA_WM_COLORMAP_WINDOWS
#define XA _WM_COLORMAP_WINDOWS \

(XInternAtom(display, "WM_COLORMAP_WINDOWS",False))
#endif

static int NumCmaps; /* number of installed Cclormaps,
* if window gets colormap focus
* (getting activated)
*/

/* InitCmap

*
* Initialize NumCmaps.
*/

void InitCmap ()

EUUG Autumn 89 - Vienna, 18-22 September

Implementation of a Window Manager under X11R3

cwmNumCmaps = MinCmapsOfScreen (ScreenOfDisplay(display, screen));

/* InstallCmaps
*
* Install the colormaps for window.
*/
void InstallCmaps (window)
Window window;
{
Atom actual_type;
int actual_format;
unsigned long nitems;
unsigned long bytes after;
unsigned char *prop;
XWindowAttributes winattr;
Window *cwp; /* Colormap Window pointer */
int i;
int WindowInPropertyList;

/* read WM_COLORMAP_WINDOW property
*/
XGetWindowProperty (display, window, XA_WM_COLORMAP_WINDOWS,
0, 100, False, XA WINDOW,
&actual_type, é&actual_format,
&nitems, &bytes_after, é&prop);

/* wrong property type
*/
if (actual_type != None && actual _type != XA _WINDOW) {
WarningMsg ("wrong WM_COLORMAP WINDOWS property type"):;
/* install window’s colormap */
actual type = None;

/* get window’s colormap
*/
XGetWindowAttributes (display, window, &winattr);

/* IF no property set, install window’s colormap

*/

if (actual_type == None && !winattr.map_installed) ({
XInstallColormap (Display, winattr.colormap):
return;

/*NOTREACHED*/

/* ELSE process property:
*
* window in property list 2
*/
WindowInPropertyList = False;
for (i-=(int)nitems-1; i >= 0; i--) {
if (winattr.colormap ==

(Window *) (prop+(i*actual_ format/8))) {
WindowInPropertyList = True;
break;

/* install colormaps */
i = MIN ((int)nitems, cwmNumCmaps):
for (i-=1; i >= 0; i--) {

/* get windowID for colormap

*/
cwp = (Window *) (prop+(i*actual format/8));
/* install colormap

*/

XGetWindowAttributes (display, *cwp, &winattr);
XInstallColormap (display, winattr.colormap);

/* If window does not appear in list it has highest
priority */
if (! WindowInPropertyList) {
XInstallColormap (Display, winattr.colormap);

42 EUUG Autumn ‘89 — Vienna, 18-22 September

Implementation of a Window Manager under X11R3

XFree ((caddr t)} prop):

Listing 1: An example of colormap handling

/* realize DataWidget for WAM or X application
*/
static void Realize(widget, value_mask, attributes)
Widget widget;
XtValueMask* value mask;
XSetWindowAttributes* attributes;
{
if ((DataWidget)widget->data.original_x_window == (Window)O0) {
/* WAM application */

/* create WAM data window */

XtCreateWindow (widget, (unsigned) InputOutput,
(Visual*)CopyFromParent,
*value mask, attributes);

/* X application */
Arg args(10]};
Cardinal n = 0:
Widget holder;

/* create data window for X application */

XtCreateWindow (widget, (unsigned)InputQutput,
(Visual*)CopyFromParent,
*value_mask, attributes);

/* create special subwidget for the X application */
XtSetArg(args[n],XtNholderWindow,
(DataWidget)widget->data.original_x_window);
n++;
holder = XtCreateManagedWidget ("holder"”, holderWidgetClass,
widget,args,n);

/* data window contains x window */

XReparentWindow (XtDisplay (widget),
(DataWidget)widget->data.original_x_window,
XtWindow (widget),
0, 0);

/* special event handling */
XtAddEventHandler
(widget,
SubstructureNotifyMask|SubstructureRedirectMask,
False, ClientHandler, (caddr_t)NULL);
XtAddEventHandler
(holder,
PropertyChangeMask |ColormapChangeMask,
True, ClientHolderHandler, (caddr_t)NULL };

Listing 2: Realizing a dataWidget

EUUG Autumn 89 — Vienna, 18-22 September

44 EUUG Autumn’89 - Vienna, 18-22 September

Teaching a Spreadsheet how to Access Big Databases

Teaching a Spreadsheet how to Access Big Databases

Michael Haberler
Martin Ertl

Hewlett-Packard Austria, Vienna
Technical University Vienna
mah@hpuviea.at
martin@hpuviea.at

ABSTRACT

While PCs are becoming commodity items, few attempts have been made to tap their
processing power for cooperative programs in typical business applications. We view a
cooperative program as set of distributed communicating processes with specialized
tasks. In the context of a typical data entry/lookup application, the PC “process” might
provide the user interface while a process running on a mainframe is responsible for
database access. This might result in a fast, responsive user interface while lowering the
mainframe and communications requirements. To explore the feasibility of this
approach, we have built a sample cooperative program: a PC spreadsheet which can
access a relational database running on a UNIX host. We describe different approaches to
problem partitioning as well as our experience with using Sun Remote Procedure Call
and BSD sockets as a programming interface for cooperative programs.

1. Introduction

Both spreadsheets and relational databases operate on tabular data. Assume you would like to analyze the
result of a mainframe database query with your favorite PC spreadsheet. You probably would logon to the
host using a terminal emulator, run your query, transfer the resulting file to the PC, convert into a format
digestible by your spreadsheet, and run the spreadsheet on the result. Or one might have the database
reside on the PC, or use a spreadsheet on a mainframe, provided there is one.

These usage patterns seem fairly widespread: PCs are mostly used “standalone”, maybe with device- and
file-sharing, or as dumb terminals, having limitations from both worlds. An alternative approach might be
to build distributed applications where tasks are more sensibly assigned to machines, like having
application and user interface code run on the front-end, while the database runs on a remote server. In our
example, one could teach the spreadsheet program to directly access a mainframe database. One might
provide functions to connect to a remote database, to specify a query and to insert the resulting table into
the worksheet. This is the approach we have taken.

Our goals were twofold: first, to gain experience with distributed programs for typical business
applications, and second, to explore the feasibility of peer-to-peer-communication between a a low-end
computer running the application-specific code and a larger server. We did not intend to implement yet
another spreadsheet, or replace commercially available products. Despite the narrow focus of our example,
we believe that our approach might be applicable to a wide range of typical business applications, resulting
in programs with better “look and feel”.

2. Design Considerations

When designing a distributed application the tasks must be divided among the cooperating processes.
Usually there are several possible choices about where to cut. To the user, the whole application appears
as a single program; she should never be aware of the fact that more than one process is involved. The
underlying structure of our spreadsheet example might be as follows:

EUUG Autumn ‘89 - Vienna, 18-22 September 45

Teaching a Spreadsheet how to Access Big Databases

Terminal
Emulation
User Interface
Distributed Window
System
Spreadsheet
Remote Database
Access Distributed
Database System -
Database
. Network
File System -— .
File Access

Figure 1: Possible Interface Choices

Terminal Emulation leaves all processing and functionality to the host side, resulting in host and network
load and usually a poor user interface. The front-end remains essentially unused. Distributed Window
Systems like the X Window system offload some user interface tasks from the host and may provide a high
quality user interface. However, network traffic and processing requirements on the host are still high if
only the X server rubs on the front-end. Remote Database Access leaves all spreadsheet and user interface
functions to the front-end and accesses the host just for database operations through some kind of protocol.
Distributed Database access might leave a part of the database on the front-end while accessing a host for
data not available locally. This requires substantial resources on the front-end while not providing
convincing advantages over the previous variant. Network File Access would leave the complete database
system on the front-end and use the host only for file access on the file system level. Resource
requirements are similar to the previous variant. The synchronization of several databases and data transfer
volume might pose problems.

There are additional possibilites to divide the application; e.g. one might leave user interface and
spreadsheet command parsing to the front-end while interpretation and database access is left to the host, or
partition the database system. However, these interfaces are fairly “wide” and inelegant in the software
engineering sense. For the particular example, one might also consider using the external representation of
a worksheet. Besides from being specific to spreadsheets, this method also suffers from the plethora of
different external formats currently in use (for example [Wal86a] lists five different spreadsheet programs,
each having its own format for storing worksheets).

We have decided for the remote database access interface for the following reasons:

e There are good reasons for running a database system on a central host as opposed to distributing it
over several small computers. Amongst them are access control, consistency, economies of scale and
very likely a better-maintained environment. No distributed database is required just for remote
access, with its associated problems of higher cost and likely version mixes due to different machine
architectures.

e The interface for remote database access can be closely modeled after its programming interface.

e The traffic over an applications interface to a database system is considerably less than the database
1/O traffic.

e Leaving the user interface and non-database operations in the front-end provides short, constant
response time. The user interface can be made as fancy as the front-end is able to support.

e The front-end part of applications partitioned along these lines usually fits within the limits of low-end
PCs without requiring expensive hardware upgrade, which would render this approach incompetitive
compared to terminal-based approach.

For our example, a few prerequisites are necessary:

e A spreadsheet program as a basis for remote access extensions. In our case, we used a public-domain
spreadsheet program available in C source code from the comp.sources.unix Usenet bulletin board. It
runs under UNIX as well as MS-DOS.

46 EUUG Autumn 89 - Vienna, 18-22 September

Teaching a Spreadsheet how to Access Big Databases

The database system must support formulation of queries at runtime when accessed from via the
programming interface (dynamic queries). Many database systems support this functionality, e.g.
ORACLE, INGRES and Hewlett-Packard’s Allbase. If all data types are known at compile time (like
for a typical data entry/lookup application, as opposed to ad-hoc queries), this feature is not needed.

Networking functions to establish program-to-program communication. We use the TCP/IP protocol
suite as a foundation. This comes standard with many brands of minicomputers and workstations, and
is also available for mainframes and PCs. On the PC side, we used the library available from Network
Research Corporation [NRC88a], and in a second implementation, Sun’s PC-NFS Programmer’s
Toolkit [Sun87a]. Both libraries provide the Berkeley socket interface; Sun’s product also provides
the RPC/XDR Remote Procedure Call Interface.

Conventions for exchanging data between host and front-end to cope with different data
representation like byte ordering, word size and floating point format.

Hardware to support the networking functions. In our case, we used an Ethernet card for the PC
connected to a LAN.

3. Implementation

The implementation involved three steps: a set of remote database access primitives, a server to provide
them, and extensions to the spreadsheet to use them.

3.1. Remote Database Interface

We did two implementations, the first one being based on a TCP transport, the second implementation is
based on Sun RPC on top of TCP. We defined a set of data types and database operations which was to be
general enough to allow opertion with at least Oracle and HP’s Allbase (these we had at hand). Both
employ a database-cursor-based programming interface, which we used as a foundation. Figure 2 shows a
subset of the rpcgen specification.

program REMSQL {
version REMSQLVERSION {

rsqlca CONNECT (conn_info) = 17
rsqlca PREPARE (string) = 2;
description DESCRIBE (desc_info) =
rsqlca OPEN_CURSOR (void) = 4;
row FETCH{(void) = 6;
rsqlca CLOSE_CURSOR (void) = 7;
rsqlca EXECUTE (void) = 8;
rsqlca COMMIT (void) = 9;
rsqlca ROLLBACK (void) =
void EXIT(int) = 12;

3;

10;

}o= 1

} = 200001;

Figure 2: Remote Database Interface Description

Connect() conveys authorization information. Prepare() submits a SQL statement to the SQL parser.
Execute() executes a parsed statement. Describe() returns the data types for a row after executing a query.
Open_Cursor() is used to define a database cursor, which is essentially a pointer to the “current row” in a
relation used in insert/delete, iterator and fetch() operations.

3.2. Database Server

For the TCP-based version, we used a demon process started by inetd(8). This demon connects to the
database based on the authorization information passed with connect(). The actual database interface was
implemented using the standard SQL preprocessor for C. The protocol handler is a state machine driven by
input events and database state. Protocol requests and replies are encoded as ASCII encoded messages
which takes care of architectural differences. This demon actually does not know about being run over a
network connection and thus can easily be tested interactively.

EUUG Autumn 89 — Vienna, 18-22 September

Teaching a Spreadsheet how to Access Big Databases

The RPC-based version was implemented by mapping the remote operations onto a rpcgen specification,
and the resulting XDR data conversion functions provide machine independence. The server process is
started by inetd(8) with help from portmap(8).

3.3. Spreadsheet Extensions

The front-end part involved an extension of the spreadsheet with commands to connect a remote database,
edit and execute a query and specify the coordinates for the resulting table within the worksheet. This
proved easy due to the use of the yacc parser generator.

The whole package was developed on a UNIX machine and after testing the front-end was moved to a PC.
The PC and UNIX versions share the same code, as the networking interface provided by both DOS
libraries is identical to the one found on UNIX versions derived from Berkeley UNIX. Implementation
effort was about 5 person weeks by the second author who knew the C language but had no previous
experience with networking and yacc.

4. Results

The resulting program is simple to use. The fact that actually more than one machine is involved is
transparent except for the hostname which is parameter for the connect command. A query may be started
by using the sqg/ command. A default editor is used to create or modity the query; it can be replaced to
match the user’s taste. The location of the result table is determined by the destination command.

Performance of the first implementation was poor. A query resulting in a 14-row by 8-column table took
about five seconds. We traced this to inefficient use of the TCP stream through single-character 1/0.
Instead of improving this version we moved on to the RPC-based approach. This improved performance
by an order of magnitude. Using UDP instead of TCP as a transport showed only insignificant
improvements; however, tranferring the result of a query as an XDR array brought another 30%
improvement.

ASCII RPC RPC
Stream | one call/row | XDR array
316 33 22

Figure 3: Time 10 transfer a 490-row table with 8 columns (seconds)

These figures are medians of five runs and were measured between HP9000/350 computers running HP-
UX Revision 6.5.

There is still room for improvement. A promising approach is the use of batching [Sun88a]. Batching
introduces asynchrony by sending multiple requests without waiting for replies until after the last request.
This approach also has been taken in the X Window Protocol for performance reasons. Some timings we
have done show that by batching a speedup of at least half an order of magnitude can be achieved for long
batches. In our case, this could speed up the iteration over the result table, which is the primary bottleneck.

S. Lessons learned
When embarking on a related project, these are points to watch for:

e There is no equivalent to stdio(3) for database access yet. Even with de-facto standards like the SQL
preprocessor interface, annoying differences remain. For example, SQL statements passed as strings
must be delimited by a semicolon with one system and may not with another. Although it might be
feasible to define a class which could then be mapped onto several database systems, the sequence of
calls through this interface varies, and thus either must be hidden under the interface layer or exported
to applications.

e The idea of stateless servers [Sun88b] does not work too well for remote database access, at least with
current programming interfaces. Most database systems follow a model similar to login, and keep a
substantial amount of state information which is hardly accessible, e.g. the database cursor. Besides,
if the database system is fragile, a stateless server will hardly make it robust.

48 EUUG Autumn 89 — Vienna, 18-22 September

Teaching a Spreadsheet how to Access Big Databases

RPC by default provides access to a single server process from several clients. This is different from
the inetd(8) model where each connection request is usually handled by a different process. In our
spreadsheet example, this implies that the first client’s database access authorization might be used or
changed by another client if credentials tied to processes on the server. On the other hand this is an
elegant scheme for multi-access applications.

The cost of remote procedure calls is substantially higher than local calls. Iterators might have to be
redesigned, batching requests if possible. Unfortunately, Sun RPC batching is currently only
implemented in the client-to-server direction, although a suitable mechanism for the other direction
exists with the broadcast RPC interface.

RPC might not be the right paradigm; asynchronous message passing based on strongly typed streams
(maybe using XDR without RPC) might be an alternative.

Use all the type checking you can get, especially when running the code on different architectures.

RPC requires compile-time binding of argument and result types; a dependency which must be
managed. In many cases it is possible to generate RPC data type definitions by tranforming a data
dictionary entry.

Even if you dont use RPC, rpcgen is a sane way to create XDR routines automatically.

References

[Sun87a] Sun Microsystems, Inc., PC-NFS Programmer’s Toolkit User Manual, 1987.

[NRC88a] Network Research Corporation, Fusion Network Software — Programmer’s Reference Manual,
Oxnard, CA, 1988.

[Sun88a] Sun Microsystems, Inc., ONC/NFS Protocol Specifications and Services Manual, August,
1988. Part No. 800-3084-10

[Sun88b] Sun Microsystems, Inc., “ONC-Open Network Computing,” Tutorial given at the 1988 Winter
USENIX conference, Dallas, TX, 1988.

[Wal86a] Jeff Walden, File Formats for Popular PC Software, John Wiley & Sons, New York, 1986.

EUUG Autumn 89 — Vienna, 18-22 September

50 EUUG Autumn 89 - Vienna, 18-22 September

System Security — Administration Through Automation

System Security — Administration Through Automation

Dale A. Moir

Lachman Associates, Inc.
1901 N. Naper Boulevard
Naperville, IL 60540
USA
dale@laidbak.uucp

ABSTRACT

A suggested approach to implementing an automated computer security policy is
presented. Policy considerations ranging from physical security to file permissions are
discussed in detail. In each case, methods of integrating the security policy
considerations into an automated procedure are described. The cost effectiveness of an
automated policy is defined in terms of user education, administrator training, and
relative advantages over alternative methods. A brief section on disaster recovery is also
included, as the same approach to automation may be applied in this area as well.
Finally, the resultant computing environment, with full security measures in place, is
described from the user and administrator perspectives.

1. Introduction

It has long been recognized that information can be a very valuable resource. This is true for governments,
corporations, and individuals. In the age of electronic data processing, the task of protecting the
information resource has evolved along with the technologies used to process and store the information.
Most of the traditional resource protection schemes consist primarily of a set of policy directives, defining
how the resource is to be managed and protected. In the case of information, a security policy should
encompass both the physical and virtual representation of the resource. More specifically, this amounts to
a computer security policy that addresses both hardware and software security issues.

Designing and implementing a computer security policy can seem like a monumental task. However,
given that most of our information processing tasks have been automated, it follows that the information
security tasks can be treated in a similar manner. Continuing with this line of reasoning, we might guess
that a small amount of up-front effort (developing proper tools), will result in a considerable reduction of
effort in the long term.

This paper considers the task of formulating a reasonable security policy for a research and development
environment. At the same time, in an effort to adhere to the methodology described above, each phase of
the policy will be designed for automation (where possible). The resulting set of tools will be designed to
1) implement the policy, 2) insure its execution, and 3) educate the users in the process.

An automated approach to computer security can ease the difficulty of policy implementation, and reduce
the effort required for user education. Note that the concepts discussed in this paper can also be applied to
computing environments where more stringent security requirements exist.

2. Designing a Security Policy
Our goal is to provide a security policy for a research and development (or similar) environment. We will
begin by defining those areas that our security policy should address. These are:

Physical security — site and computer facilities

Access security — access to computer resources, either remotely or locally

Resource security — protecting the resources that people can access

Recovery mechanisms — correcting problems, restoring functionality

EUUG Autumn 89 — Vienna, 18-22 September

System Security — Administration Through Automation

In the following sections, we will outline a computer security policy that addresses each of the above
issues. In doing so, we will consider ways to automate the task of security administration.

2.1. Physical Security

Physical security consists of three major categories:

1) Building Access — the ability to enter the office complex
2) Computer Room Access — the ability to access the computing hardware
3) User Access — the ability to utilize the computing facilities

We will consider each aspect (or “layer”) of physical security in detail.

2.1.1. Building Access

For most companies involved in research and development, some form of controlled entry system is
required. The selected method of control may range from a single entry point monitored by a receptionist
to a system of employee identification with verification checkpoints.

The security policy essentially dictates that all persons entering the building must be authorized employees.
The approach used to enforce this policy will depend on the size of the installation in question, and on the
perceived security requirements. A common approach is to issue all employees some form of identification
— a photo identification badge, for instance. Then, upon entering the premises, each employee displays
their identification as a means of authorization.

This approach works well, but is somewhat labor intensive. In the interest of automating both the entrance
and authorization steps, one might issue electronic key-cards to their employees instead. A key-card
electronically stores an employee’s identification and building access privileges. In many cases, use of
such a device is a sufficient mechanism for providing building access security. The key-card notion can be
combined with a photo identification badge as well, by means of a magnetic strip or other electronically
readable media.

The advantage of a key-card or similar system is that it automates the verification process. In addition,
employee access privileges can be limited to certain access points, and certain time periods. For example,
certain employees may only require access through the main entrance, during the hours ot 7:00 a.m. to 8:00
p.m. These access limitations can be specified in most key-card access systems. Such a system may also
provide access logging, and similar advantages not available in mechanical key systems. Regardless of
how building access is controlled, some thought should be given as to whether or not the process can
reasonably be automated, or otherwise integrated into our overall security policy.

2.1.2. Computer Room Access

In addition to requiring basic building access control, many companies also require access control for
“sensitive” areas within the building. Again, the implementation of this policy decision may take a variety
of forms. If a key-card system is used, it becomes a simple matter to limit physical access to selected
resources via the key-cards. The computer room is a good example. In most facilities, the computing
hardware is maintained in a temperature-controlled environment. And, since the physical hardware
embodies the information processing capability, it represents a physical security concern. Thus, the
computer room is a logical candidate for key-card or similar access protection.

2.1.3. User Access

The remaining aspect of physical security that we wish to address is user access. User access can be
defined as the ability to access the computing equipment via log-in or other user interface. In general, user
access requires physical access to a terminal or other 1/0O device. Thus, the first line of defense against
unauthorized user access is to prevent unauthorized access to computer terminals.

If user terminals are grouped in separate rooms, then key-card access can be applied to the terminal rooms.
More commonly, terminals are distributed among employee offices, or otherwise openly available. In
either case, the risk associated with terminal access should be minimized. We will consider the
login/password authorization sequence in a later section devoted entirely to software access control
mechanisms. In this section, the issue of easily accessible logged-in terminals must be addressed.

52 EUUG Autumn 89 - Vienna, 18-22 September

System Security — Administration Through Automation

Efforts to control physical access to computer terminals may or may not be effective. An additional
security policy consideration should address the exposure created by unattended, logged-in user terminals.
This is perhaps the most common source of risk for unauthorized user access. The policy statement should
basically specify that logged-in terminals are not to be left unattended. Efforts to automate the
enforcement of this policy may include an idle terminal log-out program, or software utilities for terminal
“locking”. If an appropriate mail message or other electronic warning is issued prior to log-out, then users
will begin to understand that unattended, logged-in terminals are a considerable security risk.

2.2. Access Security

Access security requires that only authorized personnel can access the computer resources. Of course,
physical security is a substantial part of the access security problem. Assuming that physical access has
been adequately addressed, then the task becomes one of maintaining a policy for access to on-line
resources. In many systems, some level of access control is provided by the operating system. Since we
are addressing a research-type environment, we will use the UNIX operating system in our examples. UNIX
is a reasonable choice because it exemplifies the “open” nature of research and development computing
environments, and still offers a fairly robust set of security features. In less “open” environments, the same
examples will apply, but the implementations will vary somewhat.

One facet of access security is insuring that legitimate users do not allow others to easily gain access to the
system. The first line of defense against unauthorized access in UNIX is the login/password verification
sequence. Thus, a good example of access vulnerability is an easily guessed password. A good security
policy will include some provisions for password management.

2.2.1. Password Management

Basically, our policy should be designed to insure that the login/password sequence is utilized to its fullest
advantage. For the most part, this consists of insuring that users select and maintain “good” passwords. A
“good” password will be defined as one that is reasonably complex, difficult to guess, and yet still easy to
remember. Since password selection is a distributed responsibility, there are several considerations to be
addressed by our security policy.

The obvious first step in addressing the password issue is user education. Barring any form of password
assignment, users will be responsible for selecting their own passwords. Thus, each user should be aware
of the significant role that passwords play in controlling computer access. Also, some minimum
requirements for password complexity should be defined and explained. Our policy may dictate that users
should be familiar with the password management guidelines, and at the same time specify what the
guidelines will be. Advising against password sharing and similar procedural errors can be included in our
policy statement. In addition, we can attempt to include automated measures designed to enforce our
password policy.

Given that a minimum complexity criteria has been defined for user passwords, it is possible to include a
software check that determines if a user’s new password meets the criteria. For example, if we require that
passwords be a minimum of six (6) characters, and include at least one (1) non-alphabetic character, then
these criteria can be checked in software when a user selects a new password. In fact, many operating
systems provide password complexity checking as a standard feature. It would be reasonable to suggest
that employees refer to the password policy guidelines within the error message that rejects a “bad”
password.

Password complexity checking ensures that users’ passwords contain a sufficient number and mix of
characters to thwart a naive attempt to gain unauthorized login access. Still, the use of a password like
“wizard1” will meet our complexity criteria, but would not necessarily be difficult to guess. If passwords
are to meet all of our suggested criteria, then an additional, automated approach may be in order. For
example, we might have a program designed to “guess” users’ passwords during idle machine cycles, or
during off-hours. Such a program could rely on a variety of information, and might send mail to users
whose passwords are discovered. Again, it would be appropriate for the mail message to direct the user to
the password management guidelines.

The final consideration to be applied to user passwords is the length of time permitted between updates.
Since password effectiveness tends to erode over time, it is reasonable to require a periodic password
change as a part of our security policy. Many systems support password aging, and so again we have
available an automated method of ensuring that our policy directives are followed.

EUUG Autumn ‘89 — Vienna, 18-22 September

System Security — Administration Through Automation

Note that the access privilege itself may also be allowed to expire — much like a password. For example,
users that do not log onto the system for some specified amount of time might be considered “expired”.
Allowing unused logins to remain on a system allows intruders a stable environment for subversion. Our
policy should also include a provision for forfeiting access privileges by default — if events indicate that
access is not really required. The automation of this policy requires a tool that examines user logins for
recent activity, and flags those users whose privileges have expired.

2.2.2. Dial-up Access Control

Assuming that we have done our best to insure that users select “good” passwords, and that our facilities
are not easily roamed by intruders — or if so, that idle terminals and other forms of machine access are
limited, we are left with one more line of attack. This is the modem connection, or dial-up access. This
can include user dial-up for login, or network connections that utilize the telephone network. An example
in UNIX, our reference system, might be the uucp networking facility.

Dial-up connections can be addressed in a variety of ways:

Access Logging — each user’s dial-up session is logged according to date and time of access. One
can then check for unusual login patterns.

Failed Access Hang-up — if it is possible to determine in software that a dial-up line is being used,
then the login program can terminate after some number of failed attempts. This will discourage a
“brute force” attack on your password space, by forcing a would-be intruder to reconnect after just a
few login attempts.

Dial-up Password — of course, if a dial-up terminal is easily detected at login, then a prompt for a
dial-up password can also be installed. This provides an extra layer of access security. Note that
dial-up passwords that are shared among many users are limited in their effectiveness.

Access Limiting — it may be reasonable to limit the hours that dial-up access is available. In a
research environment, however, it is unlikely that limited access will be desired.

Dial-back Software — on systems with dial-out modems, the task of adding a dial-back feature to the
login program is relatively straightforward. A dial-back feature terminates the incoming call, and
calls the user back at a predefined number.

Dial-back Modems — dial-back modems are also available, and provide a dial-back capability
without necessarily invoking the login program. These are an attractive alternative for administrators
that do not wish to modify their system software.

It may be reasonable to assume that your password management scheme will adequately address dial-up
access control. However, if any of the above-mentioned mechanisms are available, then they should
certainly be considered. Again, it is a policy decision to determine what constitutes reasonable dial-up
access capabilities. This policy decision should be reinforced with automated mechanisms that entorce the
policy directives.

2.2.3. Network Access Control

The final issue to address under dial-up access is networking utilities and protocols. In many cases, system
network activity is on an auto-timed, poli-and-respond type basis. That is, the network activity takes place
without administrative intervention, responding to requests by users. The potential access control issue
stems from the fact that networking software is often riddled with security holes. In our example
environment, where UNIX is the target system, the most common network connection is via “uucp”. The
uucp facility consists of software utilities, and so-called “configuration files” that determine how the
utilities can be used. For example, the configuration files determine what other systems can dial in, what
they have access to, what commands they can run, etc.

From a security standpoint, networking software is a virtual nightmare. However, as the marketplace has
illustrated, connectivity and communication are essential to productivity. For most sites, the limited
amount of risk incurred by having network connectivity will be offset by the increase in productivity.

The security policy on network connections is simple. Network utilities should perform their function in as
limited a manner as possible. Given the capabilities of the network software, the security policy should
dictate exactly what the network capabilities should be. This done. automated methods of verifying that the
policy directives are followed can be designed.

EUUG Autumn 89 — Vienna, 18-22 September

System Security — Administration Through Automation

In the case of uucp, the network capabilities are defined by the software specification and uucp
configuration files. Based on this information, we can write policy directives that specify exactly how
information is to flow through the network, and what tasks the network software can “legally” perform.
This done, we are left with the task of automating the network evaluation task. The goal is to write a
software utility that interprets the configuration files, and based on the implicit capabilities of the
networking software, outputs a list of security problems, or a description of network capabilities. [t then
becomes a simple matter for the administrator to determine if the network configuration conforms to the
security policy.

The added benefit of automating the network configuration process is that future administrators will not
have to be experts on how the network software works. By using the tools, they can easily determine what
effect their configuration file changes will have on the network. Thus, in addition to saving the
administrator’s day-to-day time, you also have a tool that allows novice administrators to perform
adequately, and at the same time trains them in network administration. Again, with a small investment
up-front, your long term gains are substantial.

The access control problem has been addressed at the physical security level, at the system log-on level,
and at the dial-up level. Additional concerns arise once a user is logged into the system which may
legitimately be called access control issues. However, once a user is logged on to the system, the problem
is really one of resource control — with resource access being one part of the overall issue. Resource
security is covered in the following section.

2.3. Resource Security

Resources in a computer system can be categorized in a variety of ways. When designing a security
policy, the following resources should be considered:

Computer time — execution time is a resource.
Storage space — primarily disk storage, also memory.

Ownership domain — users on a system have resources that they “own”, such as files and
directories. This defines an ownership domain for each user, and a “system” domain as well.

Execution domain — users’ execution privileges on a system also define a domain — and other users
may attempt to usurp those privileges. The same is true for “system” or administrator privileges.

In essence, we can view ourselves as benevolent caretakers of a microcosm. Our users have rights, and
privileges, and commodities, and we must insure that these are protected. Now, some responsibility is left
to the individual users, but we can assist them in a wide variety of cases. Also, we must take care that no
one should usurp our privilege — the administrator privilege — for this privilege overrides all others. The
following sections examine security for the above-mentioned resources in detail.

2.3.1. Computer Time

Computer time is perhaps the most difficult resource to protect. On most systems, there is nothing to
prevent each user from creating a CPU-intensive job, starting it, and collectively bringing the machine to
its knees. This issue is addressed only through access control in most cases — if a user has access, it is
assumed that his or her job is legitimate. More sophisticated systems might try to limit or recover from
CPU overload, but such a feature requires that some “reasonable” limit be placed on CPU execution time.
Assuming that this is possible, perhaps even on a per-user basis, then a simple tool that periodically checks
the cumulative CPU utilization of each active process is called for. This tool might also be given the power
to terminate any processes that have exceeded their CPU execution-time limit.

2.3.2. Storage Space

Most computer storage is in the form of disk space — the so-called file system. While some systems
employ a more sophisticated storage hierarchy, this discussion will be limited to user files and directories.
In reality, the storage space for each user might be considered a part of the ownership domain — space that
the user “owns”. We will make the distinction between things that are owned (files) and places to put them
(space). Here we will consider only space.

EUUG Autumn ‘89 - Vienna, 18-22 September

System Security — Administration Through Automation

In our example system (UNIX) users have what is known as a login directory — a directory in the file
system that is their current directory at login time, and under which they are free to create their own files
and subdirectories. All of the users whose login directories share a common file system will collectively
share that disk space. This sharing occurs on a first-come first-served basis. In order for a user from
another file system to “steal” disk space from these users, a file or directory that is writable must be
located. If such a file or directory exists, the malicious user may overwrite the file with new information,
or add his own files to the directory. The same considerations apply to files and directories “owned” by the
system — although some file space is supposed to be shared.

Our security policy should dictate that user file space be clearly partitioned. Files belonging to one user
should not be openly accessible to other users. At a minimum, write permission should always be
partitioned on a per-user basis. If file space is to be shared, then a predefined mechanism for file sharing
must be provided.

In the interest of automating our policy directives, several checks can be performed. In addition to the
resource issue, a more security-minded concern is vulnerability to attack via trojan horse, virus, or spoof —
any of which can be installed in a writable login directory. If we devise a tool that checks for files owned
by “others” beneath a user’s home directory, then files installed by other users can be detected.
Additionally, a search for writable executable files will turn up any tools that can be easily overwritten with
a spoof, virus, or trojan horse. Finally, a search for writable files and directories might turn up instances
where storage space can be “stolen” by other users. This final check might not be necessary in a research
or similar environment, unless disk space is specifically charged for.

An additional check, perhaps more important than the above, can be developed for systems such as UNIX.
Users on a UNIX system control an environment variable called “umask”, which can be assigned some
value. The value of this variable determines the default access permissions assigned to each file that the
user creates. If this variable is not set, then any files that the user creates may be writable by default. Thus,
an additional check that our administration tool might perform would be to verify that users’ default
permissions meet some minimum security criteria.

In short, our storage space policy basically states that users will not leave their own storage hierarchy
vulnerable to attack, or to unauthorized use by others. Once again, our automated tools provide a means
for the administrator to insure that the users are protecting themselves. These same tools can be used to
insure that system-owned files and directories are likewise protected. Note that the tools serve to
implement the policy, and the design of the tools incorporates the reasoning behind the policy. If warnings
of policy violations are tempered with informational messages, then the tools serve to educate the users and
administrators, as well as automate the task of ensuring that the policy is followed.

2.3.3. Ownership Domain

The idea of ownership is now limited to items that may be owned, as storage space for these items is
covered above. The difference can be likened to someone stealing your car, versus someone stealing your
parking space. The act of “stealing” a file can take several forms. First, a user can change the ownership
on a file so that the original owner no longer controls it. A user might also copy a file to another location,
even though he or she is not authorized to do so. The act of overwriting or removing a file is covered in the
above section, as the resource “taken” is really the file space — even though the file contents may also be
lost.

In most systems, each user is free to “give away” files by changing their ownership to someone else. The
ability to “take” files from other users is limited to the administrator only. In cases where ownership
modification is an issue, some form of monitoring is appropriate. That is, a periodic check should be run to
insure that critical files do not have their ownership modified. Security policy should define the correct
ownership and permissions on all critical system files, and our security tools should verify that the current
state of the system matches the expected state.

Unauthorized copying of files can be prevented in much the same manner. Those files that are not to be
copied (such as games) should be subjected to an occasional global search. Should an unauthorized copy
turn up, the owner of the file should be reminded of the policy, and asked to remove the unauthorized file.

EUUG Autumn 89 - Vienna, 18-22 September

System Security — Administration Through Automation

2.3.4. Execution Domain

Execution domain defines the set of programs that a given user is authorized to execute. Under this
category, a variety of issues needs to be addressed. These include:

System Integrity — the executable files provided by the system must be monitored for integrity. Any
modification of system utilities, either by virus or unauthorized user, must be detected.

Trusted Paths — users should be protected or protect themselves against illegitimate command
substitution. In UNIX, this must include verification of utilities (as above) and PATH variable
verification.

File Permissions — execution permissions on system files must be set up such that unauthorized
users are denied access. This requires a periodic check of system file permissions.

Domain Variance —~ some operating systems, such as UNIX, allow a program to vary its permissions
upon execution. An example is the use of setuid or setgid programs. These programs assume the
privileges of the owner of the file upon execution. As such, all instances of such files must be
specifically authorized, and their contents monitored.

File Naming — in addition to trusted path verification, a security policy must dictate that command
names be unique. This helps to insure that users do not execute spoofs or trojan horses instead of the
intended utility. Again, periodic checks of the file system should insure that system program names
are unique within the file system.

Log File Monitoring — many utilities keep a log of their activity for billing or security purposes.
These logs can be automatically checked for evidence of security breaches.

Known Bugs —~ well-known software bugs may exist that allow a breach of security.

2.3.5. System Integrity

If security policy dictates that system file integrity is to be maintained, then some method of verifying
integrity must be devised. In the case of utility programs, the most effective method is the use of
checksums. One approach is to design a system utility which records the checksum of each critical system
file, and periodically verifies that the current checksum matches the expected value. This amounts to a
periodic check of the contents of these files.

2.3.6. Trusted Paths

Trusted path verification is subject to interpretation on the system in question. In our example, the UNIX
environment variable PATH would be subject to verification for each user. The PATH variable defines a
list of directories to be searched (in sequence) to locate command names. Such a PATH would have to be
checked for legitimate system directories, along with an integrity check of any directory found in the
PATH itself.

2.3.7. File Permissions

The execution permissions on the utility programs in the system implicitly define the execution domain of
each user. This should be compared against the expected execution domain. Again, an automated utility
program which defines the “correct” set of system file permissions, and periodically checks the actual
permissions is needed. Directories, a special type of “file”, can also be protected in this manner.

2.3.8. Domain Variance

The ability to vary one’s execution or access permissions can be a powerful tool if properly used. It can be
even more powerful if subverted for use by an intruder or other malicious user. In UNIX, the setuid/setgid
feature allows a system designer to permit limited, distributed access to privileged system files. However,
it also creates a significant level of vulnerability. For example, a setuid copy of the command interpreter
(shell), owned by userid 0 (root), would allow a user to invoke a command interpreter such that all
commands submitted may be executed with administrator-level permissions. As such, the use of this
feature must be carefully controlled. To automate this policy, a list of “authorized” setuid/setgid files
might be compiled, which are then compared against the set of existing setuid/setgid files. Needless to say,
these files” contents and permissions must also be carefully monitored.

EUUG Autumn ‘89 ~ Vienna, 18-22 September

System Security — Administration Through Automation

2.3.9. File Naming

As we have noted, command execution in UNIX depends on the command name matching a file name that
appears in a PATH directory. As such, the substitution of a spoof or trojan horse for a legitimate
command, using the same command name, can be very effective. Assuring that users set up their PATH
variables appropriately is the first line of defense. An additional policy measure is to require that command
names be unique in the file system. This policy disallows executable files whose names match those of
legitimate commands. Also, a check for illegitimate file names is easily devised, and an automated
periodic check can be performed.

Again, UNIX supplies a special case that must be considered. Users may have the ability to “alias”
command names. This feature can be used to cause the command interpreter to substitute some other
command name for the one that the user typed. This feature can be subverted if a user’s alias list can be
modified, or if the files associated with the alias list are themselves vulnerable. This implies that a tool to
check users’ alias values might be useful.

2.3.10. Log File Monitoring

Some system utilities keep a log of their activity so that illicit use can be detected, or so that billing can be
performed or verified. If security can be enhanced with a periodic check of these log files, then this task
can also be automated. In the UNIX operating system, several of the networking facilities keep an activity
log, the activity of user terminals is logged, and use of the “su™ program (which grants super-user
privileges) is also logged. In each case, a periodic check of the log files to insure that only authorized,
reasonable use of these facilities is in order. An example can be drawn from the physical security
discussion of idle user terminals. If the log files indicate that some users tend to leave their terminals idle
for long periods of time, then these users might be reminded of the policy regarding unattended terminals.

2.3.11. Known Bugs

In many systems, and UNIX is no exception. there exists an ever-changing set of known software bugs,
some of which can potentially be used to breach system security. In addition to remaining abreast of these
issues, it may be wise to devise an automated test for each known bug as soon as it is discovered. By doing
so, it is possible to re-check your system for known security risks after a new operating system release is
installed. Also, if your company uses several implementations of the same operating system, supplied by
different vendors, it becomes a simple task to check all of your systems in one simple operation.

To summarize, the use of the execution domain must be clearly spelled out in our security policy. This
done, an automated method of verifying the integrity of the execution domain can be devised. This allows
the administrator to verify that policy is maintained, and provides a working implementation of the policy
itself.

The final area that we wish to discuss is recovery mechanisms. The discussion up until now has focused on
preventive measures.

2.4. Recovery Mechanisms

Our computer security policy has thus far been concerned with protecting our computer resources. Implicit
in our discussion, however, is that some method exists for correcting any problems that might occur. In
most cases, the correction scheme is relatively straightforward. For example, a poorly selected password
need only be replaced with one that is more sophisticated. A system file with incorrect permissions need
only have its permissions corrected. However, what does one do when a system file becomes corrupted?
We have assumed, of course, that a back-up copy, or an uncorrupted version, can somehow be obtained.

The final addition to our security policy is the mechanism required to recover from security breaches. Note
that the security policy can be considered a component of an overall disaster prevention and recovery
scheme. The recovery mechanisms for some security “disasters” are the same as those for some physical
disasters. A case in point is file system back-up tapes. Back-ups provide a means to restore disk files.
Whether the disk files are destroyed by a head crash, a fire, or a disk virus is inconsequential in terms of
recovery. In each case, a well maintained back-up library provides the recovery mechanism.

By considering our security policy as a natural extension of an overall disaster recovery plan, we can
extend our previous line of reasoning to include recovery tools. That is, a tape back-up system, or utility,
can be integrated into an overall recovery mechanism. If the back-up function is automated, then there is
additional assurance that the task will be performed on a timely and regular basis.

58 EUUG Autumn'89 — Vienna, 18-22 September

System Security — Administration Through Automation

Thus our first line of defense, and the most cost-effective, is a comprehensive set of preventive measures
designed to avoid disasters — security or otherwise. In the event that those measures are not sufficient,
recovery mechanisms must be put in place so that a total loss is avoided. For mechanisms like a tape
back-up library, issues such as the time between back-ups, and the storage location of the tapes themselves
(off-site?) must be considered.

3. The Resulting Environment

We have now described a variety of computer security concerns, and the ways in which they can be
addressed. Our goal was to devise a comprehensive security policy at the outset, and build a set of
automated tools to implement that policy. Once this mechanism is in place, a variety of benefits can be
realized.

First of all, the policy itself exists in theory and in practice. That is, new users can be made aware of the
policy as part of their education, but the task of implementing the policy is not entirely left to the
distributed user community. Instead, the policy is implicit in the set of utilities that implement it. This
way, should a user or administrator stray from the accepted policy, the tools will notify them of the security
breach, and remind them of their responsibility.

Second, the task of security administration is largely automated. This simplifies the job of the system
administrator, and ensures that security concerns are continually addressed. Even if the administrator is not
knowledgeable in security issues, an adequate level of security can still be maintained. And, like any other
skilled profession, continued use of the tools provides a continuing education in security concerns.

Finally, by formalizing the security policy through implementation, the task of changing the policy is
reduced to software maintenance. The re-education effort is not necessarily reduced, but the effort
required to verify that policy is adhered to is reduced significantly.

In the course of this discussion, we have described a long list of security related tools and practices. For
the most part, employing these tools and practices would not detract from normal computer operations, or
normal employee activity. True, each user may be required to think about security a little more seriously,
such as when choosing a new password, but most day-to-day activities would remain unchanged.

Assuming that administrators are responsible for maintaining computer security, and that the tools
described are made available, their overall workload should actually be reduced. The savings are derived
from our automated methodology — most of the security checking is done in software, rather than through
human effort. This leaves the administrator free to perform more important tasks — like solving problems
and helping users.

Note that in no case have we assumed that the operating system itself must be modified, or that additional
layers must be added to the user interface. That is, users would still see the same UNIX system that they
are familiar with, even though we maintain a reasonable level of security. Thus, our security policy
implementation does not adversely affect productivity, or require additional equipment or staff.

4. Conclusion

What [have tried to illustrate in this paper is the application of a well-known principle in computer
science. That is, if you spend a little time up-front developing proper tools, your long-term costs in time
and development will be greatly reduced. In the computer security arena, this amounts to a set of
administrative tools that implement a corporate computer security policy. In the case of UNIX and other
well known operating systems, these tools are readily available on the commercial market — and in fact
form the basis for this discussion. The use of a commercial tool provides several additional advantages for
the security practitioner:

1) You can be relatively certain that most major issues have been addressed, without developing the
expertise yourself.

2) On-going support and development can often be left up to the vendor, through some sort of support
agreement.

The cost of acquiring a tools package is fixed, which simplifies the task of incorporating computer
security plans into the budget.

EUUG Autumn ‘89 — Vienna, 18-22 September

System Security — Administration Through Automation

In summary, a good security policy can be made much more effective if it is automated. By automating the
procedures for maintaining security, the task itself is simplified, security is much more likely to be
maintained, and the educational curve can be reduced. Finally, commercial automation packages eliminate
the need for development and maintenance, and at the same time provide a comprehensive administration
policy that might not otherwise be developed. After all, policy without practice is no policy at all.

5. Bibliography
John Cray, An Automated Approach to UNIX System Security, in Communixations, Vol. VII, No. 5.
Jusr/group, Santa Clara, California, September/October 1987.

F. T. Grampp and R. H. Morris, UNIX Operating System Security, in AT&T Bell Laboratories Technical
Journal, Vol. 63, No. 8, Part 2. AT&T, New York, New York, October 1984.

Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language. Prentice-Hall, Englewood
Cliffs, New Jersey, 1978.

Patrick H. Wood and Stephen G. Kochan, UNIX System Security. Hayden Books, Indianapolis, Indiana,
1987.

60 EUUG Autumn ‘89 — Vienna, 18-22 September

Lettermatrix for the selection of passwords through the user

Lettermatrix for the selection of passwords through the user

Ernst Piller

BULL Austria
Linke Wienzeile 192
A-1150 Vienna, Austria
piller@atbull.at

ABSTRACT

In UNIX a user authenticates himself by entering a secret password. Most users choose
simple passwords (short words and/or words with a special meaning), which are changed
frequently. The result is a lack of security. In this paper, a new method for the selection
of passwords by the user is beeing introduced. The method is based on a usual
(traditional) secret password and on a lettermatrix, which is displayed on the screen of
the user. The user has to find his way through the lettermatrix, based on his usual secret
password, and he will find during and at the end of these steps, his actual password.
These passwords constantly change (one-time passwords) and stand out because of their
security.

1. Introduction

The UNIX login program asks the user to type his name and password, which consists of a character string.
The password can be observed by an observer (for instance “over the shoulder observer”) and detected by a
hacker (someone who attempts access by the “trial and error method”). Passwords should for security
reasons be:

e be long (as many characters as possible)

e have no meaning (no well known names of persons, countries, firms etc., first names, birthdates, house
numbers, street names, city names, words as “test”, “demo” etc. and also these words spelled
backward)

e be changed regularly (for instance once a month; but not too often, since the password can be easily
forgotten or written down or because of the frequent change, become too easy.

e not be written down anywhere and only stored in the user’s brain and under protection in the UNIX
system

e be entered into the terminal (keyboard) quickly

Many people do not accept these security regulations, because of lazyness or lack knowledge. They prefer
short passwords (e.g. four characters) and passwords which have special meanings, which in addition are
changed only rarely. Short passwords, but especially passwords with special meanings, can be found out
by trial and error method or by looking over someones shoulder while he is putting the password into the
terminal (keyboard). One way out of this dilemma is the use of special algorithms. It permits the use of a
new password at each new *“login”. It is simpler and more secure, to remember a “password algorithm”
with, for instance a simple secret word, than to try to remember a long password without any meaning and
to change this regularly. The result of the use of password algorithms is either one-time passwords or very
long “relative static” passwords, which the user remembers through a special technique (for instance
reconstructed passwords or word combinations with veiling). Such algorithms are presented in [Has84a]
and [Pil86a].

In this paper a new algorithm is introduced with which passwords can be secured and which makes it
practically impossible for hackers, observers and “eavesdroppers” to break the password. With this
algorithm, from now on called LEMA-method (lettermatrix algorithm), a new lettermatrix will be
displayed on the display of the user at each login. The user has to find his way through the lettermatrix,
based on his secret word (usual secret password), and he will find during and at the end of these steps, his
actual password. Since the lettermatrix is changed at each login, the user constantly receives a new

EUUG Autumn ‘89 — Vienna, 18-22 September 61

Lettermatrix for the selection of passwords through the user

password. An observer and an eavesdropper cannot find out the current secret word then, and a hacker also
fails because of the many possibilities which exist, since every password represents a random character
string.

2. Verbal description of the algorithm (LEMA-method)

The user takes note of the usual secret password G=g, g, g,, and 3 numbers (n, r| r,), which are
described more fully below. The user only ever gives the UNIX system this secret word and the 3 numbers
whenever a change is made. Every change should be especially protected (without observers and, if
possible, encrypted).

When the password is requested (login phase), a lettermatrix with 24 rows and 24 columns will be
displayed on the screen. Each of these 24 rows and columns contains all 24 letters of the alphabet from
“A” to “X", i.e. individual letters appear only once in a row or column. The user now searches for his
password by going through the matrix. This way has h positions (changes of direction) resulting from the
letters g, to g,. Two of these h positions are designated end positions, and the letters following these two
positions give the password.

The user starts searching for his password by looking for the first letter of his secret word (g) in the first
row of the matrix. The position of g in the first row indicates the first position, especially the column, in
which the second letter of the secret word (g5,) is to be found. Once the second position has been found,
the third letter is searched for in the same row etc. until the last letter (g,) in the lettermatrix has been
found. The second end position is given by the position of the last letter (g,). The first end position
corresponds to the n™ position (based upon the letter g,) with 1 <n < h. The letters following both end
positions make up the searched for password, whereby the user chooses himself how many letters, after the
first and second end position, will be selected (variable »| and r,). The sum of r, + r, is equal to the length
of the password. The values of n, r| and r, are chosen loosely by the user. If the user, for example,
chooses a four letter password in the form of two pairs of letters (— 7, =2 and r, = 2), then the 2 letters
immediately following the first and second end position create the password.

3. An Example

The user chooses as his secret word the letters “KRILIR™ and the values n =5, r; =2 and r, = 2 and then
gives this data to the UNIX system. This secret word and the values of n, r| and r, are valid until the next
change is made. The UNIX system generates randomly a combination of letters to create a lettermatrix
which is then displayed on the screen of the user. For example the matrix in Figure 1 results in the
password “QSBD".

V] X W G 1 \Y K N P E O H B R T A L F Q M 8 C D I

I L K S u W B D Q C T N F H M X R E A G O P v
G I I Q S H U X B 0O A R L D F K v P C W E M N T
W B A I K X M P R G Q D T v C N H S o u E F L
D G F N P E R u wW L v 0 1 A C H S M X T B J K Q
A D C K M B O R T I S L F v X E P J u Q wW G H N
v A X H] W L 0O Q F P I c s U B M G R N T D E K
T W VvV F H u M O D N G A Q S X K E P L R B C I

S vV u E G T I L N C M F X P R w] D O K Q A B H
CcC F E M O D Q T v K 8) N H X B G R L w S A [J P
M P 0O W A N C F H U G X R] L Q D VvV 1 E K S T B
R u T b F S H K M B L E W O Q VvV 1 C N J P X A G
X C B J L A N Q S H R K E u wW D O 1 T P vV F G M
F I H P R G T WA N X Q K C E J Uu O B v D L M S

J M L T v K X C E R D U O G 1 N A S F B H P Q W
O R Q A C P E H 1} Wl B T L N S F X K G M U v D
K N M U W L A b F S E v P H O B T G C 1 Q R X
H K) R T 1 v A C P B S M E G L w Q D X F N O U
L O N A% X M B E G T F w o Q I K P C U H D ! R S A
P S R B D Q F I K X] C U M O T G A L H N vV W E
Q T S C E R G] L A K D Vv N P U H B M 1 O W X F

N Q P X B O D G 1 A% H A S K M R E W F L T u C
E H G O Q F S Vv X M W P J B D 1 T N A u c K L R
B E D L N C P S u J T M G W A F Q K V R X H 1 o

Figure 1: Example lettermatrix

62 EUUG Autumn 89 — Vienna, 18-22 September

Lettermatrix for the selection of passwords through the user

The next time a password is requested, another lettermatrix is displayed on the screen and therefore by
using the same secret word another password results.

4. Description of the algorithm

Lettermatrix K =k | | kog04 With k; j€ {“A”.."X"} and 1 <1i,j<24
Secret word G=g g, with g;e {“A”..“X”} and 1<i<h

Length of the password q=r | +r, with g >3

First end positionn with 1<n <h

Password P=p p, p, = Algorithm1(G, K, n, r |, 73)

Algorithm1:
i=Lj=hvi=1;
while v<h do
begin
j=1
while k; ;#g, doj:=j+1;
if v =n then
begin
s:=1i;
t=j
end;
vi=v+1;
if v <h then
begin
1:=1;
while k; ;#g, doi:=i+1;
if v =n then
begin
S:=1;
t:=]
end
end;
=v+1
end;
foru:=1to ry do Pu :=kx,l+(1+u—lmnd24);
foru:=1to ra do pu+r,:=ki,l+(j+u—|mod24);

5. Notes

There are no letters “Y” or “Z” in the lettermatrix. Therefore these letters cannot appear in the secret word
or else the result will be that all “Y” will be replaced by “I” and all “Z” by “C”. Also, only capital letters
appear in the matrix.

The screen must be capable of displaying 24 rows and 80 columns. The lettermatrix is made up of 24 rows
of letters and 49 columns (24 letters and 25 vertical dividing lines). The dividing lines (e.g. | or blanks)
serve to improve the ease of reading the matrix. No (horizontal) dividing line is necessary between the
rows. Beside the matrix, 33 columns per row remain free for text such as prompting for a password, error
reports, comments etc. The lettermatrix disappears from the screen as soon as the password is given (e.g.
after the last letter of the password has been entered).

In a nonstandard version the lettermatrix can consist of more, or less than, 24 letters and also with numbers.
A numerical matrix requires only a 10 row-screen and a single number as secret word and password. With
a 10x10 numerical matrix, a “hacker” can choose from 10,000 different possibilities (with a 24x24
lettermatrix, there are more than 300,000 possibilities). The number of different secret words, paths
through the matrix etc. is also less, in other words, the chances of success for a “hacker” is much higher
than with a 24x24 lettermatrix.

EUUG Autumn 89 — Vienna, 18-22 September

Lettermatrix for the selection of passwords through the user

6. Algorithms for calculating the lettermatrix

The lettermatrix can either be completely calculated in the UNIX system, or, a part of it in the UNIX system
and the rest in the terminal. The former method has the disadvantage that when the lettermatrix and
password string are transmitted along the line (between UNIX system and terminal) in a cleartext
(decrypted) form, an electronic eavesdropper tapping the lines could eventually find out (calculate) the
secret word from these two pieces of information. In order to do this, however, he would also require more
logins (lettermatrices inciuding password) of the same user and a lot of computing time and memory. A
much safer method would be a twin or shared generation of the lettermatrix, i.e. the UNIX system generates
one part and the terminal the rest. The password and that part of the matrix created by the UNIX system,
can then be transmitted decrypted without an electronic eavesdropper being able to use the information.
This kind of divided generation is only possible with an “intelligent” terminal.

6.1. Algorithm for the complete generation of the lettermatrix in the UNIX system

Starting with two vectors, each with 24 elements, the lettermatrix is made up from these two vectors
through addition of their elements. A function called “random” serves as an aid in this case by producing
random numbers from the range of the natural numbers {1,2,3,....}.

Algorithm?2:
letter y ;=A™ letter | :=“B”; letter , :==“C”; letter 57 := X"
fori:=0to023do
begin
row; :=1i; column; =i
end;
fori:=0to 23 do
begin
j = random modulo 24;
VIS TOW; FOWISTOW; FoW; (= V5

j := random modulo 24;

v :=column; ; column;:=column; ; column; :=v
end;
fori:=1to24do
forj:=1to24 do

begin
v = (row;_+column;_;) modulo 24;
k; j=letter,

end;

This algorithm allows to calculate 24!* 23! (i.e. appr. 104) different lettermatrices.

6.2. Algorithm for the two-part generation of the lettermatrix: UNIX system part

The UNIX system calculates a vector (called “comp”) based on function random and sends this vector to
the terminal. With this algorithm 24! (i.e. approximately 102) different vectors can be calculated.

Algorithm3:

fori:=0to 23 do comp, =1;
fori:=0to 23 do

begin
j := random modulo 24;
v = comp;,
comp ;:==comp; ;
comp; =V
end;

64 EUUG Autumn ‘89 — Vienna, 18-22 September

Lettermatrix for the selection of passwords through the user

6.3. Algorithm for the two-part generation of the lettermatrix: Terminal part

In each terminal there is a vector with 24 elements secretly stored, which in the following algorithm is
called “term”. In this vector, each element has a value between 0 and 23 and each value appears only once.
This vector is only known to the terminal and the UNIX system and should be different in every terminal
connected to the UNIX system. The lettermatrix is created by the addition of the vector (called “comp”)
transmitted from the UNIX system and the vector (called “term”) stored in the terminal. In doing so, the
basic rule that in every lettermatrix, each letter appears only once in each column and row, is adhered to
automatically.

Algorithm4:

letter := “A™; letter | = “B”, letter := “C" letter 3 :=“X";
fori:=1to 24 do
forj:=1to24do
begin
v := (comp;_+term;_;) modulo 24;
k; j:=letter,
end;
With this algorithm 24!* 23! (i.e. approximately 10 sup 46) different lettermatrices can be calculated.

7. Acceptance

The LEMA-method requires more work to be done at the login. Since any “unnecessary” extra effort is
always regarded as being inconvenient, the user should be briefly informed as to the dangers of using
traditional (usual secret) password systems and the advantages of the LEMA method. Additionally, if the
user no longer needs to change his secret word (i.e. his traditional password) so often (e.g. annually instead
of monthly) then, as a rule, no acceptability problems should arise. Some users have problems in using the
LEMA method, in that they cannot always find their way through the matrix. You should avoid using two
or more identical letters following one another in your secret word and choose n=h-1 (i.e. the two end
positions immediately follow one another). Generally it can be taken for granted that a considerably higher
degree of security should be more important for certain users than the fact that the login is somewhat more
complicated.

Acknowledgments
The author thanks Mr. E. Eder and Mr. T. Gmach for several valuable suggestions.

References

[Has84a] J. A. Haskett, “Pass-Algorithms: A User-Validation Scheme Based on Knowledge of Secret
Algorithms,” CACM, vol. 27, pp. 777-781, 1984,

[Pil86a] E. Piller and A. Weissenbrunner, Software-Schutz. Reihe Angewandte Informatik, Springer
Verlag, Wien, New York, 1986.

EUUG Autumn ‘89 — Vienna, 18-22 September

EUUG Autumn ‘89 — Vienna, 18-22 September

User Experience with Security in a Wide-area TCP/IP Environment

User Experience with Security in a Wide-area TCP/IP Environment

Peder Chr. Ngrgaard

Computer Science Department,
Aarhus University,
Denmark
penorgaard@daimi.dk

ABSTRACT

EUUG is currently considering establishing a TCP/IP based network on leased lines
between its European members, similar to the North American Internet.

We know from stories from the USA that the Internet is breeding ground for things like
the Internet Worm of November 1988. This gives natural basis for concerns about the
security problems in the wide-area TCP/IP environment.

In the Scandinavian countries the NORDUnet has been operational since January 1989.
NORDUnet connects most Nordic universities offering several services, among those
TCP/IP. The NORDUnet is connected to the John v. Neumann center in USA through a
64 Kb transatlantic line, effectively integrating it into the Internet.

1 will here report on those considerations of security that we have been focusing on since
it became evident that any computer science student of USA and Canada can connect to
any TCP/IP-based service on all our machines.

1. Introduction

First, let me elaborate a bit on the title of the paper. The word “‘user” does not mean ordinary user. | am
system manager at a Computer Science Department, and I suppose that most of the readers will have a
similar interest in system managing. But on the other hand, I am not managing the wide-area network
itself, and I am no security expert, so in that sense | am a “user”.

Experience should perhaps have been Considerations. To my big disappointment the most alarming
security experience I have had was a single student at the neighbouring university who used an account
with no password to browse our system. So in this sense I have not experienced a lot of security problems.

Wide-area TCP/IP environment means exactly that: the computer on my desk sits directly on a class B
TCP/IP network together with several hundred computers on the five Danish universities, and this class B
network is connected via a gateway to the entire Internet.

We enjoy “being on the Internet”. We pay a fixed yearly sum for which we get fast and verified e-mail
with no amount charge. We can pick up all kind of interesting things via anonymous ftp, we can “talk”,
and run X-window applications against computers everywhere. And it is only the system managing staff
that sometimes worry a bit about the potential security problems.

1.1. Security Goals

To find out, what the topic really is, let me present the two different purposes that we try to reach when we
tighten up the network security.

Firstly, we do not want anyone from outside the department to do anything to our computers, except for a
short list of well-defined operations that we define as “public”. Among these are: sending mail to us,
fingering us, and logging in to shells after giving legal password/username combination.

Secondly, we do not want to compromise our access to the wide-area network by having any of our users
trying to break into other systems. I figure that this consideration is perhaps only of relevance to Computer
Science Departments like ours; employees at private companies generally have work to do and no time for
hacking, and students at other departments may not have the necessary knowhow. But we certainly have to
keep an eye upon the activities of our more competent students.

EUUG Autumn ‘89 — Vienna, 18-22 September 67

User Experience with Security in a Wide-area TCP/IP Environment

Having noted this I must admit that our department is not very security conscious. [study security for
personal interest, and because being sure that nobody fools around in our systems eases the system
managing job. But we don’t keep sensitive information on our computers at all, so I won’t lose my job if
some bright US student some day gets root access on our system. At least, not if | can get him out again in
a few days...

1.2. Network Layers and Security

The architecture of networks is layered, and [have chosen to structure the paper after those layers. The
lowest layer is the data link layer, where packages are sent on local physical nets like Ethernet or token
ring.

The next layer is the rnetwork laver; this layer is independent of network hardware, and takes care of
routing packages across gateways.

The upper layer is the transport layer. This is the layer where a user process on a UNIX system can open
connections and communicate. The two lower layers are hidden in the kernel, and only the superuser can
access them.

1.3. Structure of the Paper

The most important class of attacks on a UNIX system is the attacks on the transport layer. This is because
any user anywhere on the Internet with access to the protocol specification from manuals and RFCst can
perform that kind of attack from a user level proces. Section 2 is about the attacks on the transport layer

The more clever attacks where the intruder tries to trick the networking software itself on the the lower
layers is described in section 3.

In section 4 I describe the miscalleneous measures we have taken to reduce the possibility of attack
success, and to improve the possibility of attack exposure.

Section 5 contains the conclusions.

1.4. What the Paper is not about

I will not write very much about general UNIX system security; rather I will assume that the reader knows a
lot about this topic. As a matter of fact, the most important thing at all in networking security is having
your users use passwords hard to guess, keeping “/”" and “/etc” well protected, and other similar and well
known security measures. However, much of what is said is also relevant to system security on local
TCP/IP environments.

Neither will I suggest improvements that can only be done by recoding the network drivers and standard
application programs, using source code for the system. A lot of improvement of network security can of
course be done this way, but this is not a task that in my opinion should be done by system managers; it is a
task for the software vendors.

The paper is written in the middle of a process. 1 just started on networking security in January 1989, so
this is not a scientific paper describing a completed project, but rather an intermediate report with food for
thought, suggestions and ideas, and several loose ends.

My personal experience is almost exclusively with Sun computers running different versions of SunOS, so
the paper is somewhat biased against Sun systems; but the principles of networking security is the same for
all UNIX brands.

t RFC means “Request for Comments” and is the common title of the now very long (more than 1000 issues) set of ar-
ticles, specifications, and other kinds of papers that defines the Internet. I have never found out why they are called RFC: |
believe that the term is historical, for an exact specification like RFC822 (the specification of the Simple Mail Transfer Pro-
tocol), do not request comments; it rather says, stick to this in your coding or everything will go wrong.

The RFCs are available from several sources; most EUnet backbones keep them.

EUUG Autumn ‘89 — Vienna, 18-22 September

User Experience with Security in a Wide-area TCP/IP Environment

1.5. A short Course in TCP/IP Networking

I will not assume a detailed networking knowledge. In this section I define the most important networking
terms. If you know nothing about networking, these should help you understand most of the paper.

The terms defined here originate from the RFCs. Readers who know a lot about networking will know that
things are not quite as simple as described here; the definitions are for readers with no or little networking
knowledge. Readers who know about SunOS will miss any reference to RPC services; this is for brevity,
and because use of the RPC level really does not change anything with respect to networking security
(except that the RPC portmapper creates a big security hole in itself).

The DoD internetwork protocol suite defines a networking layer protocol, called /P, two transport layer
protocols, TCP and UDP and several application specific protocols on top of these (examples are felnet,
the terminal emulation protocol and smip, the Simple Mail Transfer Protocol. Collectively, these protocols
are known as TCP/IP. Several terms are used in the TCP/IP environment:

A host is the networking term for a computer. It may be anything from a PC to a supercomputer.

A network is a group of hosts who can communicate directly. My network is the “Danish Ethernet” which
consists of many Ethernet segments all over the country, connected via long-haul lines and so-called filter
bridges. In the sense of TCP/IP this is a single net, because the filter bridges hides the fact that the
Ethernets are separated. Most specifically, a broadcast packet from one host will reach all other hosts in a
few milliseconds.

The address of a host is a 32-bit global number, normally written as four decimal numbers (my host is
129.142.16.13). The number is global because it contains the address of the network (129.142) as well as
the address of the host within the network (16.13).

The network layer protocol of the TCP/IP protocol suite is /P. It is a packet switched, unreliable protocol,
easily mapped upon hardware like Ethernets and token rings.

On top of IP two transport layer protocols are defined. TCP is the reliable, bidirectional sequence
controlled protocol, and UDP is the unreliable datagram protocol, with facilities for broadcasting within a
single network.

The address of each end of a specific transport level communication is the concatenation of the host
address and the port number which is an unsigned 16 bit number.

A certain subset of these numbers are registered as well known port numbers. These are typically used
when establishing new network connections to remote hosts; as an example, TCP port number 25 is the
well known port number of the Simple Mail Transfer Protocol, which carries all the electronic mail of the
wide-area TCP/IP network. The port numbers not well known are available for dynamic allocation by
application programs.

Typically, a communication language is defined together with the well known port number. The SMTP,
for instance, defines that the initiator of the smtp connection must speak ten different four-letter commands
with specific arguments, and the server must answer with three-digit state numbers and arbitrary text.

The port numbers below 1024 are said to be priviledged port numbers — it is UNIX convention that only
root processes can allocate them, so if another UNIX machine connects to you, and the source port humber
is below 1024 you can be certain that the communicating process runs as root; on the other hand on an IBM
PC you can allocate any port number, and you can do the same thing on a UNIX system in single user
mode, so the definition is not safe.

Most TCP networking (mail transfer is a good example) works so, that a process (called the daemon
process) sets itself to wait for outside connections on one or more well known port numbers. When
connection is made, the daemon process forks itself; the new process then executes a communication
session, typically by exchanging messages via the bidirectional connection in some language with a well-
defined syntax, while the original process goes back to the listen state, ready to handle new service
requests.

Most UDP-based services also works with a server that listens on a well known port number. The main
difference is, that forking is seldomly done because the interaction is brief, one request datagram and one
answer (as in Yellow Pages requests) or even an information datagram which calls for no answer (example
is a syslog entry).

EUUG Autumn 89 — Vienna, 18-22 September 69

User Experience with Security in a Wide-area TCP/IP Environment

Another relevant way of using UDP is the broadcasting for information about hosts which offer a specific
service. The SunOS-specific process yphind broadcasts a request for a Yellow Pages server in a specific
domain; any host on the local network which sees the request can answer this request.

Note that apart from the concept of priviledged port numbers, the TCP/IP protocol suite do not in any way
map to “normal” UNIX security concepts, like user and group ids. If someone can connect to a port number
on a host, everybody can do so, and it is not possible to have the networking software verify in any way,
who the user in the other end of the connection is.

2. Attack at the transport layer

Attack on system security via regular TCP or UDP calls is by far the most dangerous. Most systems are
wide, wide open to a whole set of attacks via this channel, when they are put on a network initialized as
suggested by the software vendor, System management have to study the system carefully, read a lot of
manuals and do a lot of guessing just to close the most evident holes. The famous Internet Worm worked,
as everybody probably knows today, through holes created by careless programming in two regular
servers, the sendmail and finger daemons, while exploiting holes left by careless users using telnet and
rsh services.

2.1. Attack scenario

Any attack will consist of two phases. The first thing the intruder wants is to somehow get into the system
in order to be able to change information. This is the easiest phase to study; there are a final number of
ways of getting into the system.

The next phase is worse. Any intruder’s second task is to ensure that he can enter the system again, even if
his original entry point is closed. Therefore he will change something in the system, creating new security
holes.

Thus, when we want to make it more difficult to break into our systems, we must not only close entry
holes; it is also very important to know how new holes can be created. This is why the most important
facet of our security program is the supervising of those files that defines the entries to the system.

2.2. Establishing an overview

It is a pretty big task in itself to establish an overview of the possible ways of connecting to a system from
outside, and trying to figure out if it can be done by intruders.

There are two sources of information relevant for the job. You can study system configuration files like
fetc/rc.local, /etc/inetd.conf, /etc/services and the like, to figure out which services are established during
system initialization. Then you can read the relevant manual pages to see how these services are
configured, especially how access to them are restricted. Later I will go through a list of examples of this.

Unfortunately this is not sufficient. Programs, both from the vendor who delivers the basic system, and
third party software vendors, as well as programs you write yourself, have a way of opening network
connections without stating so in the manuals. Did you know, for instance, that any SunView window
opens a TCP connection and listens on it? 1 did not, before I began to study networking security. 1 still do
not know why, although I suppose it has something to do with selection service. It is probably harmless.
but how can I be sure of that?

So you also have to check which connections are actually open. The BSD based systems has a program
called “netstat” which is of some use: it gives a complete list of all open network connections.
Unfortunately it does not tell which processes holds the connections open. A little program, “fstat”, of the
BSD 4.3 Tahoe release (published in USENET group comp.sources.unix as v18i107) helps you to obtain a
complete list of all processes listening on network connections.

2.3. The well known Entry Points

I will now go through a list of network server daemons that can be found from the source files mentioned
above. [will try to group them according to their relevance for networking security.

70 EUUG Autumn ‘89 — Vienna, 18-22 September

User Experience with Security in a Wide-area TCP/IP Environment

2.3.1. Those with Real Security Holes in them

These servers have all some kind of bug that was exposed by the Internet Worm or discovered (or perhaps
just became wide known) in the turmoil that followed it. Other servers probably have similar holes, they
are just not discovered yet. These servers are fingerd, sendmail, ftpd, ypbind, yppasswdd, walld.

Sun has fixes for them all; for sendmail I would suggest that you get the public version 5.61 instead — your
Eunet backbone has it. Apart from being an improvement of earlier versions of sendmail, the BSD people
have given it a security overhaul.

2.3.2. The virtual terminal services

The telnetd is just as safe as your general UNIX user setup, as it demands user/password combination
before allowing any login. The only problem I know of is described in section 3: that you have to send the
password in clear text along the network where snoopers may be listening.

The rlogind, the remote login daemon is a bit less safe than telnet because you can atllow remote logins
with no passwords from other systems, by specifying the files /etc/hosts.equiv and .rhosts file in the user
home directories. This has also advantages, amongst those that you don’t need to send passwords in clear
text along the network, and that the accompanying services, remote shell and remote copy, can be done
across the network, preserving user idenfication.

The /etc/hosts.equiv and all the users’ .rhosts files must however, be supervised. An intruder might very
well like to keep his access to the system by manipulating those files. And the standard setup is to have a
“4+ in fetc/hosts.equiv, effectively trusting every host on the entire Internet. Change that, please!

2.3.3. nfsd, the Network File System Daemon

This is one of those where you just have to do something. Sun’s standard system installation leaves the
Jetc/exports files exporting all the file systems, even the root partition with no access limitation at all. This
means that any machine on the entire Internet can mount all your file systems read/write; the only
limitation is that files owned by user root cannot be accessed beyond their own access mode.

The cure is simple: at the very minimum, define a netgroup holding your machines and put it into an access
specification in the exports file. Also remove the exporting of “/”; I don’t know why it is there.

Incidentally, remember that a user on a PC is a superuser: if you export a partition to a PC running PC/NFS
you must accept that you have exported the entire partition, except those files owned by root. The PC/NFS
system do a certain effort to check user id and demand password, but this is just a politeness; the user of
PC/NFS can change the verified user id at will.

2.3.4. The Yellow Pages servers

The Yellow Pages system from Sun Microsystems maintains a set of consistent network-wide databases,
the most important being the password, group, and hosts database. The YP system is very flexible and
efficient and quite stable. Even after correction of the serious errors acknowledged by Sun as mentioned
above it is unfortunately still very easy to trick. As an example, any host on the local network can claim
that it is Yellow Pages server. There is really nothing you can do about it, except for the suggestions 1
make in subsection 4.6 below.

3. Attack on the network and data link layer

In order to work on the network layer, an intruder needs superuser access on a UNIX system or access to a
personal computer, like an IBM PC or a Macintosh with network hardware. This is because the network
layer is not accessible from a non-superuser process on a UNIX system.

Attacks on the network layer is not very interesting in itself. The only extra action that is possible on this
layer is faking you own address; in this way you could hide your tracks when trying to break into systems,
but no more. You cannot even fake the network part of your address, because routing in the IP network is
done directly on the network address. -

Many more options is present for an intruder who works on the data link layer.

The first option is simply information sampling by listening on the network and reading information not
meant for him. It is, for instance, not very difficult to discover when a new telnet or rlogin connection is
established, and trace the first score of packages, thereby picking up the password of the user making the
connection.

EUUG Autumn ‘89 — Vienna, 18-22 September

User Experience with Security in a Wide-area TCP/IP Environment

All the other options involve some kind of faking. There are no definite limits to the amount of faking that
can be done; the only limits are practical, that is, how much work will the intruder spend on faking.

The easy thing is to fake answers on UDP-based requests. Requests for Yellow Pages information is a
good example. I do not know whether a Yellow Pages requester checks that the answers come from the
hosts that is asks (it certainly ought to), but this does not matter when the intruder works on the data link
layer. From this layer you can also fake the source address of you package, thus completely cheating the
quUCStCI'.

The more complicated thing is to fake multi-package interactions, like TCP connections and NFS file
transfers. I don’t think this can be done while the host that you are faking is active; but I think it could be
possible to confuse a host enough with false packages, perhaps even to bring it down, so that it will be
silent while you do some faking.

4. Security Measures — what can be done to improve Network Security

I will now proceed to list the measures taken (or intended to be taken in near future) at our department, in
order to improve the network security.

4.1. Make a Single Host Hard to Get At

This is, in my opinion, one of the strongest initiatives. We let one of the hosts run as few services as
possible and make it unaccesible to anyone but a few staff members. We then proceed and make it Yellow
Pages master server, syslog host and other important functions. The host does not have to be very
powerful; in our case we chose a Sun 3/50 with a local disk.

Several of the other security measures are based on the assumption that this one host is invulnerable.

4.2. Supervise Logins

Irrespectively of all the security holes described above, the most frequent attack point is still attack via
telnet or rlogin by an intruder who guesses, steals or breaks the password of our users. Furthermore, an
intruder who enters the system by some other means will very soon do a login; the shell is still the most
versatile tool for finding out things about a system.

So we keep an (automated) eye upon all logins as they are being recorded in the /usr/fadm/wtmp files on the
individual hosts. Every few minutes the additions to the /usr/adm/wtmp is transmitted to the master host
where they are checked for strange entries. We record for each user which non-local hosts he uses to login
from. For most users, this list is empty, and when a new username/remote host combination show up
(which happens once a week or so), we check manually, that the correct person is behind it.

4.3. Supervise config files

The following files are generated automatically from a database on the master host; at random intervals it is
automatically checked that the files are still in place and not changed:

. fetc/exports

. fetc/fstab

° Jetc/inetd.conf
. Jetc/printcap

° fetc/rc.local

. fetc/syslog.conf
. fetc/ttytab

Furthermore the files /.rhosts, fetc/hosts.equiv, /.cshrc, /.login, /.profile, and /.logout are identical on all
hosts and also checked on irregular basis. More files is expected to be added to the list as our project is
advancing.

EUUG Autumn ‘89 — Vienna, 18-22 September

User Experience with Security in a Wide-area TCP/IP Environment

4.4. Do not allow Single-User Boot.

The best tool for breaking into other UNIX systems is undoubtedly a UNIX system where the intruder has
root privileges. In order not to tempt our own users by making things too easy for them, the systems are
configured so that single user boot (which is easy to do for any user) demands the root password before
giving access to the shell. This is a new feature in SunOS 4.0; at SunOS 3.x there was no protection
against single user boot.

4.5. Do not allow Network Window Applications as Superuser

It is a general UNIX security advice that you should run as little as possible as superuser. But as network
window applications (X-windows and NeWS) listens on well known ports this is more important than for
other applications. Most important is NeWS where it is possible to connect to the window server and
actually download and run code.

4.6. Spy on the Network

The Network Interface Tap facility of SunOS 4.0 gives a user with root privileges unlimited access to read
any packets on the Ethernet. This ability was seen in section 3 as a possible attack point. It can also be
used in the service of the good: we can configure a host to spy on the net, thereby trying to discover any
irregular behaviour.

There is no end to the amount of verification you can do this way; the theoretical limit is complete
simulation of all the hosts on the net. This is of course beyond the capability of any one CPU!

But within the capability of one CPU is for example looking for intruders trying well known holes. I have
no practical experience with this kind of supervising yet, but my first plan is to keep a permanent watch for
those irregular Yellow Pages packets which would show up if someone was trying to trick our Yeliow
Pages system. Secondly, I plan to keep an eye on unusual connections from local hosts to external hosts.
thereby catching potential intruders among our own users.

4.7. Write your own Server Application to verify the Requester’s Address

We have written a few networking applications (an archive system and an account system) and these are
written to check that access to the server is only allowed for hosts in a certain netgroup. This is about three
lines of extra code in each server program, and these three lines of code ought to be present in many of the
standard servers mentioned in section 2!

4.8. If possible, isolate your Local Network via a Gateway.

We plan to do this during to autumn of 1989. Instead of being part of a big class B network covering all
Danish universities, our network will be a class C network with only our own computers on it. All traffic
will go through a gateway. This will exclude all possible attacks on the data link layer.

4.9. If possible, use C2 level Security

The SunOS 4.0 has a specific feature that makes it possible to run the system on the security level known as
C2 (ordinary UNIX systems run on level C1). Other vendors have or plan to have similar features.

While this feature do not stop intruders at all, it is a very useful defense against “phase 2" of an attack
(modifying security-relevant files). '

5. Conclusions

It has been demonstrated that the fundamental problem with security in TCP/IP networks of UNIX hosts is
that the TCP/IP protocol suite does not map well onto the traditional UNIX security concepts. Everytime a
process starts listening for requests on a port number, it opens a hole for any process on the whole Internet
to connect to. The listening process can choose to verify two facts about a new connection: the host
address of the host from which the connection comes, and whether connection is on a priviledged port
number.

And worst of all, the UNIX< vendors are not very worried about this (at least, they were not before
November 1988). Scores of utility programs using the network are coded with absolutely no concern for
security; they do not even perform those checks that are possible. Even security-crucial utilities like Sun’s
Yellow Pages service could be broken with a little technical knowledge.

EUUG Autumn 89 — Vienna, 18-22 September

User Experience with Security in a Wide-area TCP/IP Environment

One may wonder how it is possible at all to run a wide-area TCP/IP under these circumstances. 1 think that
the reason is that although attacks are not difficult, it is near impossible to avoid exposure of attacks. And
the network has means of punishing attacks: single users will have their access to the system barred, and a
system manager who will not stop his users will soon see his whole institution shut out. So in practice the
security problems are not big.

EUUG Autumn'89 - Vienna, 18-22 September

Protecting Software Through International Copyright

How to Protect Your Software Through
International Copyright Laws:
Step-By-Step Instructions

Alicia Dunbar Gronke

USENIX Association
Berkeley, California
epg@sun.com

ABSTRACT

This article will attempt to clarify some common misconceptions about copyright
formalities as applied to intellectual properties. Due to the fact that these laws vary from
country to country, the examples presented here should be viewed only as basic
approaches to copyright protection, not a legal reference.

Taking these few necessary precautions to protect your work from theft or unauthorized
alteration isn’t nearly as much of a task as one might believe. Here, we set about taking
the mystery out of what should be only a few simple procedures. The idea being stressed
here is taking as many preventative measures as possible to protect your work. The
effort required to do this is minimal.

Introduction

Copyrights, by my definition, were designed with the idea that if a person is willing to share their works
and expressions with the interested populace by distributing “copies” of said works, that person has an
exclusive “right” to protection under the law from those ever present scavengers that watch for the drop of
the proverbial ball, only to profit at that person’s expense. That person is also entitled to the right to reap
any rewards or benefits which may become evident upon publication. This type of law provides protection
for the form an expression takes, not the ideas being expressed.

Step Number One: The Copyright Notice

Let’s say that you've just put the finishing touches on your new CH program. You're on top of the world
and you feel like a new parent. That’s fine, but what's to deter anyone from stealing your new offspring?
A Notice of Copyright. And this is what a notice of copyright entails. First, the copyright symbol, namely

©.

This should be followed by the word “Copyright”, date of first publication and your name. This simple
step fulfills the minimum formality requirements set by the UCC, the Universal Copyright Convention, as
well as all signatory nations of the Berne Convention.

Example:

© Copyright [DATE OF PUBLICATION] [YOUR NAME)

However, this may be your second or perhaps third revision of this work, in which case your statement will
look something like this:

© Copyright 1985, 1989 [YOUR NAME]

© Copyright 1989 Alicia Dunbar Gronke All Rights Reserved

EUUG Autumn 89 — Vienna, 18-22 September

Protecting Software Through International Copyright

In the case of multiple authors, the practice of showing the names of individual contributors (as well as the
date of publication of their contribution) is often used:

© 1988 Modesia Fleming
© 1986 Elissa Metterhausen
© 1983 Daniel Karrenberg

These notices are not mandatory requirements of the UCC, however, the use of them makes the owner
exempt from any other copyright formalities imposed by any other UCC nation. Although it is implied by
the copyright notice, it would also be to your advantage to add the fact that this publication is not to be
copied in any way, shape or form without the express written permission of the author. There is no such
thing as too much insurance. To make it easier for the user to comply with your wishes, you may want to
include the name and address of your publisher.

On works containing trade secrets, such as computer program source code, a notice indicating that the
work contains non-public proprietary information should also be added.

As for [DATE OF PUBLICATION], the moment you give, sell, rent or lend the work, consider it
“published”. The exceptions to this rule are if the people using it are your employees or are part of a
limited group of individuals of the understanding that further distribution of said work is unacceptable. In
such instances, this could be viewed as a “limited publication”. To keep a tighter reign, a friendly legend
should be added, such as:

*“This copy is for private circulation only and may not be used in any other manner.”
Or you may choose a more formal approach:

*“The material within is an unpublished copyrighted work containing trade secrets or otherwise
sensitive information of [THE COMPANY]. This copy has been provided on the basis of
strict confidentiality and on the express understanding that it may not be reproduced or
revealed to any person, in whole or in part, without express written permission from [THE
COMPANY], which is the sole owner of copyright and all other rights therein.”

To deter any later arguments, your notice of copyright should be affixed in obvious places throughout the
work making sure it is not concealed from view upon reasonable examination. For example, in source or
object code, the notice should be placed at the beginning as well as the end of all printouts, not forgetting
occasional insertions in the program itself on disk or tape. It is preferable for most users that this notice be
placed solely at the very beginning or at the top of the menu. This is also acceptable. There are few things
more irritating than having a copyright notice on constant display. And don’t forget to affix this notice to
all packaging as well, on the outside of boxes and on tapes. If a proper copyright notice is not placed on all
“publicly distributed” copies of a work, the work with which the copyright is associated may in time enter
the “public domain”, as an improper copyright is an invalid copyright.

Allow me to stress the fact that under the Berne Convention (more on Berne later), the use of the copyright
notice on published copies of a work is optional. However, the use of it is still encouraged in the U.S. As
an incentive to do so, a new section was added to the U.S. Copyright Act. This section [401(d)] prevents
claims of innocent infringement by defendants where notices have been placed on stolen works.

Step Number Two: Registering Your Work

This is the second most vital step toward protecting your work. Although this is no longer mandatory in
most countries, it still carries considerable weight in courts of law throughout the world in cases of
infringement. As each country has it’s own individual approach to intellectual property law, it is extremely
important that you seek the advice of legal counsel before making any final decisions. One advantage of
this step is that your work, should it be distributed without notice of copyright, (heaven forbid!), will still
have some form of protection. Your registry notice is proof that you took precautionary measures to insure
against this sort of thing. Another plus: Bringing suit to enforce your copyright sans registration makes the
job just that more difficult.

For the sake of argument, say a writer of a non UCC country, say Upper Volta, first publishes their work in
Japan, a UCC nation. That work will be automatically protected as in any other UCC nation.

76 EUUG Autumn 89 — Vienna, 18-22 September

Protecting Software Through International Copyright

What is the UCC?

The UCC, otherwise known as the Universal Copyright Convention, first came into force 16 September,
1955. The two other major copyright conventions are the Berne Convention and the Buenos Aires
Convention. Of the three, the UCC is the most widely adopted treaty. It is the “umbrella” providing
protection known as the “national treatment” doctrine. By employing this doctrine, each member country
is obliged to grant the same protection to the works of other member countries as works first published
within its own boundaries, as long as that protection meets the minimum requirements of the UCC. This
rule applies to both published and unpublished works. So far, it sounds like the panacea for all those
“copyright protection blues”. Not true. The problem with this is the fact that there are still many countries
not belonging to the UCC, and even for the ones who do, there are limitations to the protective
requirements imposed beyond national treatment. The minimum standards set by the UCC aren’t nearly as
comprehensive as the alternatives.

Note:

Depending on the country, you may have trouble protecting object code, since some countries still view it
as an adaptation or derivative of source code.

What is the Berne Convention?

The Berne Convention for the Protection of Literary and Artistic works is the oldest and most respected of
international treaties. It was concluded at Berne, Switzerland in 1886 and is organized as a Union which is
open to all countries of the world provided these minimum protective requirements are met:

e the granting of national treatment,

e the granting of certain “moral rights/droit morale” to authors with regard to the exploitation of their
works,

e the granting of certain “economic rights”, such as the exclusive rights of translation, reproduction,
performance, adaptation, arrangement or alteration, regarding protected works, and

e the adoption of certain minimum terms of protection, generally the life of the author plus 50 years, for
various works.

In essence, Berne provides a substantially higher level of protection. For example, copies accidentally
distributed without copyright notice are given protection under Berne. This is not the case in most UCC
countries. Should any conflict in protection arise, an author is assured to receive the most favourable
protection offered under either treaty. Both conventions stipulate that any disputes between member States
concerning the interpretation or application of the Convention that has not been settled via negotiation
should be referred to the International Court of Justice.

Here is a quote from Dr. Henry Olsson, Director of Copyright and Public Information Department, 21
November 1986 at an international conference on copyright in s’Gravenhage, The Netherlands, speaking
on the Berne Conference:

“The Assembly of the Berne Union in September of 1986 declared inter alia that copyright is
based on human rights and that authors, as creators of beauty, entertainment and learning,
deserve that their rights in their creations be recognized and effectively protected both in their
own country and in all other countries of the world.”

What is the Buenos Aires Convention?

This treaty provides copyright protection for sixteen South and Central American countries as well as the
United States. According to Article 3 of the Buenos Aires Convention, no formalities have to be observed
in any country other than the country of origin, provided a statement appears in the work that indicates the
reservation of the property right. The phrase All Rights Reserved or it’s equivalent (e.g., Derechos
Reservados) are commonly used for this purpose. The three nations of this convention choosing not to sign
the UCC treaty are Uruguay, Hondura and Bolivia. To gain equal protection in these countries, the
formalities of the Buenos Aires Convention require your notice to look something like this:

© 1989 Jaap Akkerhuis All Rights Reserved

EUUG Autumn ‘89 - Vienna, 18-22 September 77

Protecting Software Through International Copyright

Between contracting states which are also signatories of the UCC, the notice provision, as well as any other
conflicting provisions, are superseded by those of the UCC. When distributing software in Latin American
countries, take into account the technology transfer legislations which can limit the years during which
protection can be provided in contracts. An excellent reference on this subject is Trade Secrets and
Know-how Throughout the World, (1981) by Aaron N. Wise.

Below are lists containing the names of independent nations which have signed the UCC treaty, the Berne
Convention, the Buenos Aires Convention, as well as those without any major treaties. These Conventions
are voluntary agreements made by the governments of these signatory countries. (As only three of the
sixteen member countries of the Buenos Aire Convention are UCC signatories, time will be spent rather on
the two larger Conventions.)

Countries signing the Universal Copyright Convention:

Algeria, Andorra, Argentina, Australia, Austria, The Bahamas, Bangladesh, Belgium, Brazil, Bulgaria,
Cameroon, Canada, Chile, Colombia, Costa Rica, Cuba, Czechoslovakia, Democratic Kampuchea,
Denmark, Ecuador, El Salvador, Fiji, Finland, France, German Democratic Republic, Federal Republic of
Germany, Ghana, Greece, Guatemala. Haiti, Holy See, Hungary, Iceland, India, Ireland, Israel, Italy,
Japan, Kenya, Laos, Lebanon, Liberia, Liechtenstein, Luxembourg, Madagascar, Mali, Malta, Mauritania,
Mexico, Monaco, Morocco, The Netherlands, New Zealand, Norway, Pakistan, Peru, Poland, Portugal,
Romania, Senegal, Spain, Sweden, Switzerland, Trinidad & Tobago, Tunisia, United Kingdom, United
States, Venezuela, and Yugoslavia.

Countries signing the Berne Convention:
(as of November 1, 1988)

Argentina, Australia, Austria, Bahamas, Barbados, Belgium, Benin, Brazil, Bulgaria, Burkina Faso,
Cameroon, Canada, Central African Republic, Chad, Chile, Philippines, Colombia, Congo, Costa Rica,
Cote d’Ivoire, Cyprus, Czechoslovakia, Denmark, Egypt, Fiji, Finland, France, Gabon. German
Democratic Republic, Federal Republic of Germany, Greece, Guinea, Holy See, Hungary, Iceland, India,
Ireland, Israel, Italy, Japan, Lebanon, Libya, Liechtenstein, Luxembourg, Madagascar, Mali, Malita,
Mauritania, Mexico, Monaco, Morocco, The Netherlands, New Zealand. Niger, Norway, Pakistan, Peru,
Poland, Portugal, Romania, Rwanda, Senegal, South Africa, Spain, Sri Lanka, Suriname, Sweden,
Switzerland, Thailand, Togo, Trinidad and Tobago, Tunisia, Turkey, United Kingdom, United States, (as of
1 March 1989), Uruguay, Venezuela, Yugoslavia, Zaire, and Zimbabwe.

Countries signing the Buenos Aires Convention:

Argentina, Bolivia, Brazil, Chile, Columbia, Costa Rica, Dominican Republic, Ecuador, Guatemala, Haiti,
Honduras, Nicaragua, Panama, Paraguay, Peru, United States, and Uruguay.

Countries Without Conventions:

Afghanistan, Albania, Angola, Antigua, Barbuda, Bahrain, Belau, Belize, Bhutan, Botswana, Burundi,
Cape Verde, Comoros, Djibouti, Dominica, Equatorial Guinea, Ethiopia, Gambia, Grenada, Guinea-Bissau,
Guyana, Indonesia, Iran, Iraq, Jamaica, Jordan, Kiribati, Korea, Kuwait, Lesotho, Malaysia, Maidives,
Myanmmar, Mongolia, Mozambique, Nauru, Nepal, Oman, Papua New Guinea, Phillippines, Qatar, Saint
Lucia, Saint Vincent and the Grenadines, San Marino, Sao Tome and Principe, Saudi Arabia, Seychelles,
Sierra Leone, Singapore, Soloman Islands, Somalia, Sudan, Swaziland, Syria, Tanzania, Tuvalu, Uganda,
Upper Volta, Vanuatu, Western Samoa, Yemen (Aden) and Yeman (San’a).

Protection is automatic anywhere as long as you are a citizen of a UCC or Berne country and the work is
unpublished. However, once the work is published, you must adhere to the rules imposed by the member
country with which the work is registered.

Austria:
No provision has been made with respect to the protection of software in Austrian law. A court in
Wien confirmed the position that under certain conditions, software is protected under the Austrian
Copyright Act. [Oberlandesgerichts Wien, 8 august 1985, GRUR Int. 793 1987]

EUUG Autumn 89 — Vienna, 18-22 September

Protecting Software Through International Copyright

Belgium:
Like Austria, no special provision has been allotted in Belgian copyright law for the protection of
software. A bill was introduced in Parliament in June of 1988 for the enactment of a new Copyright
Act. The proposal provides that software is protected by copyright with a term of protection lasting
25 years. This Act is not expected to become Law until 1990.

There are currently two laws in Belgium for the protection of copyrightable works. Only programs
that are original and express the personal creativity of their authors are eligible for this protection.
Belgian law does not protect ideas or opinions, only the form in which they are expressed.
Protection begins with creation. The term of copyright spans the life of the author plus a period
ending 50 years after January 1st of the following year of her death.

Germany:
Like the rest of Europe, filing in Germany is unnecessary. They have what is called the Copyright
Revision Act, which includes “programs for the processing of data”, (“Programme fiir die
Datenverarbeitung”), Section 2(1)(1) of the German Copyright Act. The term of protection lasts for
the lifetime of the author plus 70 years. A computer program is copyrightable only if:

e itis not just a simple program, i.e., the answer to the problem being solved is not obvious,
e while developing the program, various solutions could freely determine variables,

e the program is not restricted to mechanical-technical continuation and development of generally
known subject matter, and

one can perceive an important, creative and original ability of selection, assembly, reviewing,
arranging and classification of information and instructions which surpasses the general average
ability.
In the eyes of the German court, only an individual can own a copyright, not a company, which
temporarily dissolves the idea of “work-for-hire”. The common way around this is for companies is
to request the worker to execute a license agreement, giving the company exclusive user and
marketing rights to the program.

Sweden:
Computer programs in Sweden are protected under the Swedish Copyright Act which states:

“Catalogues, tables and similar compilations, in which a large number of particulars have been
summarized, may not be reproduced without the consent of the producer...”

Future legislation will expressly provide for software protection under copyright law.

The Netherlands:
There are really no formal requirements for software copyright protection and only the outward form
of the work is protected. Computer programs in Holland are protected under Dutch law only after
meeting the general requirements of originality and perceptibility. Original in the sense that the
work be the result of creative activity; Perceptible to the point of the work being perceptible to the
senses. Protection is recognized at creation and terminates 50 years from the st of January of the
year following the death of the author.

Japan:

According to the 1982 decision of the Tokyo District Court, only source code is copyrightable and
object code is merely a copy which is also protected under the Japanese Copyright Act. The period
of protection is for the life life of the author plus 50 years. Copyright is affirmed the moment of
creation. As with other signatory countries, registration is not a prerequisite for filing a lawsuit,
although it makes proving infringement a much less painful ordeal. It is presumed that the date of
creation corresponds with the date of registration. Your best move, should you be creating
something in Japan, is to register with the Commissioner of the Agency for Cultural Affairs in order
to establish the name of the copyright owner and the date of publication.

Their work-for-hire applications are quite similar to that of the U.S. In cases of infringement, the
damages collected are equal to the profit made by the infringer. On the other hand, damages could
equal the possible amount accrued had the author sold the programme.

France:
Seeing as France has no formal copyright office, paperwork here is not a problem, even though
software is indeed copyrightable. Acceptable evidence of copyright date, in some cases, can be
proven by showing the work was registered in the U.S. A new law introducing the principle that
software is an intellectual property protectable by copyright law came into effect January Ist, 1986.

EUUG Autumn 89 - Vienna, 18-22 September

Protecting Software Through International Copyright

Article 1 of this law expressly confers copyright protection on software. The term is 25 years from
the date of the program’s creation. France requires the program to be an original work, marked by a
personal and intellectual contribution of the author.

United Kingdom:
Section 1(1) of the Copyright Amendment Act confirms that programs are to be treated in the same
way as literary works under the 1956 Copyright Act. An Act which states that a copyright work first
comes into existence when it is reduced to writing or some other material form. Section 2 of the
same Act states that computer programs comply with the material form requirement, even if the
programs are not printed or written on paper but simply stored on a computer.

Once again, registration here is not required. So please keep careful records of program creations
and changes by date. It is still unclear as to whether or not object code is seen by the United
Kingdom as copyrightable. Here the author of the program is the owner of the copyright unless it
was composed under a work-for-hire situation, in which case the employer would be the owner.
Under a new Act passed in November of 1988, (the Copyright, Designs and Patents Act), the
electronic copying of a program constitutes infringement.

United States:
All it takes to obtain a copyright registration is to file a copy of the program with the Copyright
Office, along with a two sided form and a $10.00 filing fee. There is only a cursory examination to
see that the form is filled out completely, the money paid and the deposit made. Once issued, the
copyright is assumed valid and the term of protection is essentially 75 years from the date of
publication, or 100 years from the date of creation, or the life of the author plus 50 years, whichever
is shorter. For more detailed information, contact:

Register of Copyrights
Copyright Oftice
Library of Congress
Washington, D.C. 20559
U.S.A.

Registration of a work with the Copyright Office used to be required as a prerequisite to a suit for
infringement. Section 411 of the Copyright Act has been changed to a two-part system where
American authors are required to register while authors of other countries are not.

Judging by Congress’ litigation “track record”, they still favour the registration system. Works
accompanied by a registration certificate continue to be given prima facie standing when the question
of copyright validity is in infringement litigation.

Registration provides the copyright owner with a broader range of infringement remedies. For these
reasons, registration within 3 months of first publication is generally advisable. (Known as “timely
registration”.) You’ll be needing Form TX for software. Take note that the U.S. Copyright Office
now accepts copies of object code under the “rule of doubt” theory. So, in granting registration, no
opinion is expressed as to whether the code actually embodies the registered work. The alternatives
listed are available should you feel uncomfortable submitting only object code:

e Submit only the first and last ten pages of source code,

e Submit all of the source code (referring to programs consisting of 25 pages or less) with up to
half of it blocked out as necessary to protect trade secrets,

e Submit only the first and last 25 pages of source code with up to half of the code blocked out,
making sure to block out just enough code in order to protect trade secrets, or

e Submit the first and last 25 pages of object code with an additional 10 consecutive pages of
source code.

What are the differences between Copyright, Trade Secret and Patent Law?

Trade Secret is information. It is a way to “protect something of economic value by keeping it a secret”.
This something generally provides some sort of an edge, otherwise known as a “competitive advantage”.
Taking careful measures to keep source code under wraps and away from prying eyes and sticky fingers is
of utmost importance. If by chance, in spite of all your precautions your work still falls into the wrong
hands, you will have a very strong case against the infringer if you can prove your diligence and
persistence in defending your work. Here is a list of steps which may prove helpful:

80 EUUG Autumn 89 - Vienna, 18-22 September

Protecting Software Through International Copyright

Store working copies of source code in a safe, a locking filing cabinet, (one that is difficult to carry
away), or a safe deposit box. Remember to keep backup copies in separate places.

When you’re finished working with the code or are stepping away from it for a break, lock it up.

Stamp ALL copies of the source code with a rubber stamp (preferably in red ink) reading
“CONFIDENTIAL”. This includes diskettes and their jackets.

Include a notice, along the same lines of the formal notice shown on page 2, at the top of the menu.
You of course can use your own discretion as to how many times you’d like to list this throughout the
work.

When showing the source code, have that party sign a Trade Secret Nondisclosure Agreement form
before viewing it.
There is a veritable plethora of precautionary measures one can take regarding Trade Secrets. I've named
but a few. Most countries appear to allow trade secret information to be transferred via license agreement
or contract. There is a possibility that in your particular country the transfer of trade secrets may result in
tax consequences. Consult with local counsel.

Patent deals with the right of protection to an inventor for the sole monopolization of use and commercial
exploitation of an ’invention’. So far, patent is the most costly particularly in terms of the application
process, and it takes up to three years to obtain. Now that we’ve covered the less attractive aspects, here
are the positive points. Should your software qualify for a patent, cannot be used by anyone without your
permission. And that holds true for 17 years. Of course there’s no telling how long it will take before the
software becomes obsolete.

Note:

There is an international agreement that covers patents by the name of the Patent Cooperation Treaty
(PCT) which establishes procedures for obtaining uniform patent protection. Their aim is to guarantee
national treatment internationally, to enhance the creation of national protective systems and to avoid a
far-reaching legal disintegration in this somewhat limited field outside the Berne and UCC conventions.
For more information, a booklet called the PCT Applicant’s Guide can be obtained from the World
Intellectual Property Organization.

WIPO
34, chemin des Colombettes
CH-1211 Geneva 20 SWITZERLAND

Piracy: Haw to Fight It From the U.S. Vantage Point

An acquaintance brings up in casual conversation, this great new CH program she just bought for a mere
fraction of what you're charging for yours. Upon careful investigation, you find -yourself face to face with
a slightly modified version of your program. Being a victim of piracy is bad enough, but how can you fight
him if he’s living in Switzerland? (Piracy seems to have paid off handsomely in his case). Besides having
a screaming fit and tearing your hair out by the roots, what do you do? You’ve done everything your
lawyer told you to do in the first place. You slathered warnings and copyright notices on the box, on inside
labels, in the source code. In the words of Douglas Adams, “Don’t Panic”.

First, call a good, (please note the emphasis on the word good) lawyer. Not all who advertise themselves
as “copyright lawyers” know what they’re talking about. Try to get a referral from someone whose
judgement you trust. Be sure you have all the necessary documentation on hand, i.e., notice of registration
or other proof of creation, such as sealed self-addressed envelopes with dated cancellations. Once you've
found your attorney, she will clarify the procedure for you and make sure all is in order before moving on
to the next step.

This next step entails making sure that your copyright registration is recorded with the U.S. Customs
Service, [19 CFR Part 133 Subpart (D)]. This should slow down any imports bearing a suspicious likeness
to your work until your case makes it into court and the court can issue an order preventing any furthur
importation.

Now you’re ready to move into the final stretch. You must seek an order from the International Trade
Commission to bar the counterfeit work from entering the country on the grounds that its importation
would prove to be an unfair act or would constitute an unfair method of competition [19 USC. Section
1337]. A similar rule applies to trademarks as well.

EUUG Autumn 89 - Vienna, 18-22 September

Protecting Software Through International Copyright

When filing this complaint, you must be armed with the following information:
— Is this product produced in another country?

- Does it threaten to destroy an existing industry in the U.S.?

— Is the threatened industry efficiently and economically operated?

After the answers to these questions are reviewed and the formal complaint is filed, the case will be heard
by an Administrative Law Judge, empowered to grant immediate relief and to ban the imposter work in
whole or in part.

Conclusion

Last and most importantly, I must stress the importance of seeking legal counsel on a country-by-country
basis to protect your intellectual property. There is no worldwide panacea for the piracy menace as yet.
As the needs change, so will the laws, and no one is better qualified to keep you up to date than a lawyer
who specializes in the area of Intellectual Properties. Every effort has been made to assure all the facts
stated in this paper are current and accurate.

Acknowledgements

The author would like to express her deepest appreciation to all those who have been so giving of their
time, patience, expertise and support. Edward Gronke, husband, devil’s advocate and friend; Dan
Appelman, whose insight proved to be most invaluable, and Michael Kerekes, both friends and lawyers
extraordinaire; Peter Salus and Shelly Anderson, true inspirations when it comes to dealing with the human
- animal; and lastly, the Data Communications group of Sun Microsystems.

Bibliography

Neil Boorstyn. Copyright Law. The Lawyers Co-operative, 1981

Brad Bunnin & Peter Beren. Author Law & Strategies. Nolo Press, 1983

R.M. Gadbaw & T.J. Richards. Intellectual Property Rights. Westview Press, 1988

R. Lee Hagelshaw. The Computer User’s Legal Guide. Chilton Book Company, 1985

Jozef A. Keustermans & Ingrid M. Arckens. International Computer Law Mathew Bender, 1989
Melville B. Nimmer. Nimmer on Copyright. Mathew Bender, 1988

Daniel Remer. Legal Care for Your Software. Nolo Press, 1984

Robert H. Rines, et al. Computer Software: A New Proposal. 1DEA: The Journal of Law & Technology,
Vol. 29 Franklin Pierce Law Center, 1988

M.J. Salone, Stephen Elias. How to Copyright Software. Nolo Press, 1988
William S. Strong. The Copyright Book. MIT Press, 1986

EUUG Autumn ‘89 — Vienna, 18-22 September

UNIX in German speaking countries

UNIX in German speaking countries

Wolfgang Christian Kabelka

Hockegasse 17
A-1180 Vienna

ABSTRACT

With hardware becoming less lucrative the next great battle in computers may be over
software. Customers increasingly see versatile software as strategic tool to gain
competitive advantages. This paper should help to answer the question if UNIX grants
the application coverage in German speaking countries?

1. Who knows about UNIX applications?

Over the past decade, practically every major computer maker has tried to convince the executive in charge
of computer systems that its machines were the answer to his every problem. But more and more of these
executives still doubt.

They know that committing themselves to a certain brand of computer might make it harder to buy the best
product in the future.

UNIX was obscure and had the touch of being a bit hard to use. But it has a big advantage: unlike the
proprietary operating systems it is available on many different machines.

Nonproprietary systems such as UNIX put more bargaining power in the buyers hand and consultants
predict: “The marketplace is getting a lot smarter”.

The industry did not fail to spread a lot of information about “The UNIX Wars” between IBM, Digital
Equipment and AT&T and the battles over standards such as OPEN LOOK, MOTIF, PM/X and NEXT
STEP. Compared with this there is little information about running UNIX applications.

It is well established that the customers first buying priority is application coverage. Still we are often
asked by our clients if we do know about a UNIX solution for a specific application field.

“The role of independent software vendors has become pivotal in the future development of the open
systems market” said J. Totman at the 4th UNIX Forum in Vienna. It should be demonstrated that the

suppliers for UNIX applications in the German speaking countries play a growing role in the software
arena.

2. ISIS — the source of data
The following data is condensed from the ISIS (International Software Information Services) reports.

They are published by Nomina, a company specialized on syndicated catalogue marketing. Nomina, the
independent source for information concerning the information industry in German speaking countries, is
situated in Munich and cooperates with offices in Basel and Vienna. ’

The ISIS reports collect data by means of prestructured questionnaires. The reports are updated biannually.

3. Comparison of UNIX with other system solutions

The underlying concept of the survey follows a top down approach beginning with overall statistics on the
software market and leads to a thorough analysis of the spectrum of UNIX applications.

Beginning in 1970, a historic documentation shows the market development of standard software (Figure
1). It should be mentioned that the development, measured by the complete number of programs, in the
meantime doubles every fifth year.

EUUG Autumn ‘89 — Vienna, 18-22 September

UNIX in German speaking countries

12 K

Software market — Development
ISIS Reports

10 KI

ot

6 K

\

4K
2K

e S OO

0

NN

1970 1974 1978
number of programs

1980

1982 1984 1986

Figure 1

Unix (16.62)

Engineering (8.9%) —4

Personal Comp., (30.7%)

Software marketplace
ISIS Reports 1/89

Figure 2

Based on the actual figures, the 1989 segment was split according to operating systems or application fields

(Figure 2):
ISIS UNIX report
ISIS Personal computer report

L}
L]
° ISIS software report (mini and mainframe)

ISIS Engineering report

More than 10,000 programs are stored in the current database. Approximately 16% of them relate to UNIX.

EUUG Autumn 89 - Vienna, 18-22 September

UNIX in German speaking countries

Unix — vendors & programs
ISIS reports 1/89

o LYY

j programs

Figure 3

At the moment 685 companies in three German speaking countries — Austria, Federal Republic of
Germany and Switzerland — offer programs based on UNIX. On average (Figure 3) each company
produces 3 UNIX based applications.

4 major segments
ISIS reports 1/89
1
20/ __\
i Y
N Business | B raustry »‘ Engineering IR systen

Figure 4

The question was if there is a significant difference (Figure 4) in the application fields between UNIX and
applications based on proprietary operating systems. Although direct comparison is not possible relative
figures show a very good fit.

The three bar charts (Figures 5, 6, 7) are based on a classification of applications:

EUUG Autumn ‘89 — Vienna, 18-22 September 85

the
ch of both

a specific field in
xplains the application

and e

§:¥§proprietary operating system
d relative figures

ere is the same number of programs in ea

tions. Each bar represents

ry applications

ISIS Reports 1/89
h

a. A value of 50% shows, that t
the total amount.

Indus
ss applications
system software

The bars show the cumulative values of both solu

The following tables (Tables 1, 2, 3) shows the absolute an

programming worlds, relative to
specific abbreviations

o industry applications
application are

. busine

UNIX in German speaking countries

System Software

100% ISIS Report 1/89

801

60X

ot

-

]
Unix operating system

Figure 7
Business Applications UNIX % Prop.SW 9%
Fi nanz-/Rechnungswesen 169 27 573 29
Pe rsonalwesen 75 12 199 10
Ma rketing 90 14 212 11
Ma terialwirtschaft 60 10 278 14
Fe rtigungswirtschaft 80 13 262 13
In standhaltung 5 1 26 1
P! anungssysteme 28 4 111 6
Bu erokoimunikation 90 14 181 9
Do kumentationssysteme 16 3 49 3
De sktop Publishing 6 1 6 0
Gr aphik-Software 7 1 33 2
Au torensysteme 3 0 14 |
TOTAL 629 100 1944 100

Table 1: Business Applications

In addition there is also a fourth category: technical application. But because of slight differences in the
representation only the cumulative figures are presented:

UNIX | Prop.SW

Technical Applications 249 936

Table 4: Technical Applications

EUUG Autumn 89 — Vienna, 18-22 September 87

UNIX in German speaking countries

Industry Applications UNIX % Prop.SW %
En ergiewirtschaft 13 2 28 2
In dustrie 46 9 199 16
Ba uwesen 57 11 98 8
Ga rtenbau 11 2 18 |
Ha ndel 136 25 324 25
Ve rlage 17 3 4] 3
Kr editwesen 34 6 89 7
Ve rsicherungswesen 4 1 36 3
Tr ansportwesen 45 8 112 9
Di enstleistungen 87 16 188 15
Ge sundheitswesen 44 8 67 5
Ko mmunalwesen 31 6 66 5
Ve rbaende 10 2 17 i
TOTAL 535 100 1283 100
Table 2: Industry Applications
System Software UNIX % Prop.SW %
Be triebssysteme 50 14 202 14
Ne tzwerke 52 15 154 11
Bt X 6 2 19 1
Ko nvertierung 4 1 30 2
Da tenverwaltung 34 10 90 6
So ftware-Entwicklung (1) 100 29 301 21
So ftware-Entwicklung (2) 21 6 76 5
So ftware-Entwicklung (3) 22 6 28 2
Pr ogrammiersprachen 45 13 80 6
Da tensicherung 6 2 40 3
Da tenerfassung 5 1 14 1
TOTAL 345 100 1404 100

Table 3: System Software

The interpretation of the data (e.g. business applications) shows a lot of UNIX “activity” in personnel (Per),
marketing (Mar) and office automation (Bue). On the other hand independent software vendors can hope
to get into business with insurance companies (Ve2) which seem to be heavily oriented on proprietary
operating systems.

4. Relevant Information

Many customers see UNIX as a major alternative and want to be free in mixing brand and size of computers
to build any network according to their needs. There is still a lack of relevant information although the
technical solution is ready on the market.

We are convinced that the short summary helps to get a first impression about UNIX application
development in German speaking countries and represents a first step towards better evaluation of better
evaluation applications in different computing worlds.

88 EUUG Autumn 89 — Vienna, 18-22 September

UNIX in German speaking countries

5. Bibilography

ISIS UNIX Report, 1. Jahrgang, 1/89

ISIS Software Report, 20. Jahrgang, 1/89

ISIS Personal Computer Report, 7. Jahrgang, 1/89

ISIS Engineering Report, 6. Jahrgang, 1988/89

ISIS Reports: Nomina Gesellschaft fur Wirtschafts — und Verwaltungsregister mbh, Munchen

EUUG Autumn'89 - Vienna, 18-22 September

90 EUUG Autumn 89 — Vienna, 18-22 September

Using an Obhject-Oriented Model of UNIX for Fault Diagnosis

Using an Object-Oriented Model of
UNIX for Fault Diagnosis

Anita Lundeberg

Department of Artificial Intelligence

Gail Anderson, Paul Chung

Artificial Intelligence Applications Institute

Alex Zbyslaw

University of Edinburgh
80 South Bridge
Edinburgh EH1 1HN
United Kingdom
gail.anderson@ed.ac.uk

ABSTRACT

The modification of an existing system based on a model of UNIX is described. Object-
oriented programming techniques are employed in a new version of the model. This is
combined with code for diagnosis of problems with UNIX and with a program to generate
parts of the model automatically, producing a general diagnostic system. A demonstrator
application for the system is developed.

1. Modelling UNIX

This paper describes project work towards the Degree of Master of Science (Information Technology) at
the University of Edinburgh. The aim of the project is to modify and supplement an existing diagnostic
system [And88a, And89a] for the UNIX Operating System.

The existing system used a model of UNIX which was based on the filesystem structure. It was written in
Inference’s Automated Reasoning Tool (ART) [Ind88a], a sophisticated programming environment for
Atrtificial Intelligence applications. The model was based on the user’s view of the UNIX filesystem and
included representations of the filesystem structure, processes and programs, and of the relationship
between hardware and UNIX devices. The model was used successfully as the basis of a program to help
the user run filesystem checks on UNIX machines, and was also used (rather less successfully) to perform
diagnosis of problems which occur during a boot procedure and cause the boot to fail. The version of
UNIX modelled was SunOS Version 3.2.

The goal of the current project was to improve and extend the existing system. The filesystem model was
to be refined and the modelling of processes and programs expanded using object-oriented programming
techniques. The method for diagnosis was to be improved by making better use of the facilities within
ART for reasoning about hypothetical and parallel worlds. The system was to be generalised, first by
producing facilities for automatic generation of the filesystem model, and second by adding code to handle
diagnosis of problems with a running UNIX system.

The project has resulted in a useful demonstrator system, which can diagnose simple problems which occur
with line printing. The system cannot cope with multiple faults. It incorporates a slightly updated version
of the filesystem check helper and a program to generate models automatically. The practical work has
been completed — it will be documented in [Lun89a].

EUUG Autumn ‘89 — Vienna, 18-22 September

Using an Object-Oriented Model of UNIX for Fault Diagnosis

The project work was divided into several parts. First, the program for automatic model generation was
written. Second, the model of UNIX was updated and refined, and the filesystem check module was
updated to work with the improved model. Third, the general diagnostic code was written and a specific
application (diagnosis of problems with line-printing using a simplified model of the line-printing software)
was developed. Lastly, all the constituent parts were integrated to form the demonstrator system.

2. Why Use Model-Based Reasoning?

There are several reasons why it makes sense to build systems which base their reasoning on models of the
“real world”. Humans tend to base their thinking on internal models of the world around them. This
makes it easy for them to notice implications and draw conclusions based on the information stored within
their internal models. It allows them to infer how an object will behave in any given situation from their
knowledge of its structure. Computer programs which use model-based reasoning -are able to use
reasoning which is closer to the way in which people think, and which embody a deeper understanding of
their domains than do programs which are based merely on a collection of observations. In addition,
constructing a model of a domain encourages the programmer to structure the information: systems
constructed from lists of observations and conclusions, on the other hand, do not by their nature encourage
the programmer to represent knowledge in a tidy, maintainable and understandable fashion. See [ART84a)
for further information on model-based reasoning.

3. Changes to the Existing System

There were three changes made to the existing system:

e the filesystem model was refined

e anobject-oriented representation of processes and programs was introduced

e the method for diagnosis was improved (partly by making better use of the facilities within ART for
reasoning about alternative worlds)

Frames are available within ART as ART schemata. The original system used schema hierarchies to
represent the filesystem. There was a unix-object hierarchy to represent the directory structure. Several
types of unix-object were identified, including directory, plain-file, special-file. Within the sub-hierarchy
plain-file files were organised according to increased specialisation — there was s sub-type exec-file to
represent executables and a sub-sub-type bootable-file to represent bootable images. The new filesystem
model has abolished those sub-types; executability is represented completely in terms of the mode slot and
bootability in terms of the contents of the file. The new representation is more consistent and more in tune
with the “real” UNIX. The revised unix-object hierarchy is shown in Figure 1, and a sample plain-file
schema in Figure 2.

unix-object

Y

plain.-ﬁle ' uni,r—dire;:rory i symbolic-link | socket sperit}l-ﬁle ‘ ﬁfo

EN

N

1 root-directory | directory block-file "' character-file |

Figure 1: The unix-object Hierarchy

92 EUUG Autumn 89 — Vienna, 18-22 September

Using an Object-Oriented Model of UNIX for Fault Diagnosis

;v Name: bin-rm
;33 Purpose: Represents /bin/rm — the command which removes files.

(defschema bin-rm
(instance-of plain-file)
(real-name #LI/bin/rml)
(in-directory bin)

(mode ((r w x)Xr - XXr - X))))

Figure 2: A Sample plain-file Schema

3.1. Object-Oriented Modelling

Within the original system there was a rudimentary representation of processes. Transient processes were
never created as such within the model; they were modelled by executing the LISP functions which
represented the programs (for example, the LISP function u-rm represented the actions of the UNIX
program rm). Daemon processes were represented as schemata, which were created from the appropriate
LISP functions.

One of the goals of the project was to improve the representation of processes and programs by making use
of the facilities for object-oriented programming within ART. First, the notion of the contents of a file was
separated from the notion of the file itself. The old contents slot was modified so that, instead of
containing the data itself (usually a LISP-like representation of the data on the real disk) it contained a
pointer to the schema in which the information was stored. A file-contents hierarchy was constructed,
within which various types of file-content were identified. This is shown in Figure 3.

Jile-contents

programs

shell

Figure 3: The file-contents Hierarchy

Separating the contents from the file allows the representation of hard links (previously omitted from the
model). In addition, it models more closely the way users think of UNIX; a program will not normally be
thought of as equivalent to a file.

The contents of a text file will be represented as an instance of file-contents. The representation of
programs and processes is approached in a rather different way. The actions of a program are represented
as a method invoked on a program schema. See Figure 4 for the instances of plain-file and a.out which
represent [pr. When a process is fired up from an executable file in the model (either from within a rule, or
from another method) the following sequence of actions occurs (see Figure 5):

e amessage is sent to usr-uch-Ipr (an instance of plain-file) — which is where Ipr is normally kept

e the name of the appropriate file-contents schema is looked up — it is p-Ipr— and a message is sent to it

e this message invokes a LISP method which emulates the program action and creates an instance of a
process schema

EUUG Autumn 89 — Vienna, 18-22 September

Using an Object-Oriented Model of UNIX for Fault Diagnosis

;; Name: usr-ucb-lpr
3 Purpose: Represents file /ust/ucb/lpr

(defschema usr-ucb-1pr
(instance-of plain-file)
(real-name #LI/usr/ucb/lprl)
(in-directory usr-ucb)
(contents (program p-lpr))
(condition 0))

;s Name: p-lpr
»»» Purpose: Represents the program Ipr

(defschema p-lpr

(instance-of a.out)
(stored-in usr-ucb-lpr))

Figure 4: The Schemata which Represent lpr

e when the execution on the method is complete, the process schema is destroyed and control is
regained by the rule (or method) which called the program originally

lusr-ucb-lpr | | p-lpr
" instance-of plain-file run program © instance-of program
e DT _ execute pseudo-code
message ‘)
create-schema

return control

pid-12

- instance-of process

Figure 5: Running Programs within the Model

3.2. Better use of Viewpoints

The original system attempted to use the model to diagnose problems occurring with the boot process by
generating a search tree of all possibilities and pruning this tree according to the answers given by the user
to the system’s questions. The search tree, however, proved unmanageably large. The boot diagnosis part
of the system was never completed because of time constraints. One of the project goals was to improve
the mechanism for diagnosis by making better use of the facilities within ART for reasoning about
alternative worlds. Better ways were used to generate possible solutions — see section 5 for a description of
the diagnostic method.

EUUG Autumn 89 — Vienna, 18-22 September

Using an Object-Oriented Model of UNIX for Fault Diagnosis

4. Approaches to Generalisation

Two approaches to generalising the system were adopted. First, a program to generate the model of the
filesystem structure automatically was developed. This generates only the unix-object hierarchy; it does
not generate the file-contents. The automatic generator is described in section 6.

Second, the system was generalised so that it could be used to diagnose problems with a running system.
This work was combined with improving the diagnostic method, and is discussed in section 5.

5. The Diagnostic System

The diagnostic system is composed of several elements:

e the model of the filesystem structure (which can be generated automatically)

e general diagnostic rules (representing meta-knowledge about reasoning about problems using this type
of system)
several domain-specific elements

a file-contents hierarchy appropriate to the domain, and knowledge about where certain programs
usually reside

— aseries of tests which can be carried out by the user
— aset of mappings between the results of these tests and their representation in the model.

The system uses the model to reason about the problem by hypothesising a few possible faults. It then asks
the user to carry out a series of tests, and compares the results of the tests with the current hypotheses,
eliminating those which conflict with the user’s answers.

5.1. Generating Possibilities

The different components defined within the domain are all possible candidates for causing a system
failure. Examples of components from the line printing domain are the user command, the line printer
daemon, and the printer queue. Associated with each component is its reliability (its likelihood of causing
a failure). Reliabilities are decided according to expert advice. In a complex system not all possible
components can be considered at the same time, and a fallibility threshold is set. Components are
considered only if their fallibility exceeds this threshold. For each component under consideration a
hypothetical world is constructed in which that component is assumed to be faulty. Later, each world will
be compared with the user’s description of the real situation.

A hypothesis is removed from the tree of possibilities if it is found to be contradictory to the information
given by the user. If all alternatives in the current set are eliminated, a new set of less likely faults should
be considered, and so the fallibility threshold is lowered.

5.2. Selecting Tests

At each stage of the fault localisation the system recommends to the user the test which it considers to be
most suitable at that time. The method used for selecting a test is similar to that described in [Ind88b]. The
recommended test must involve at least one component from the set of those currently under consideration.

There is a reliability defined for each component within the systemn and a difficulty defined for each test.
Also, associated with each test is a list of those components which are involved in that test.

A utility factor is calculated for each possible test using:

e the total component reliability for the components currently under suspicion which are involved in the
test (calculated from the individual reliabilities of the components)

the total component reliability for the components currently under suspicion (calculated from the
individual reliabilities of the components)

e the difficulty of the test

The system compares the utility factors of all possible tests, and selects the one it considers most suitable.
In general, for a test to be most effective, it must be equally likely to succeed or fail (if it is very likely to
succeed or very likely to fail, the system will be likely to gain little new information from it). This means
that the system’s ideal test will involve half of the total reliability of the components still under suspicion.

EUUG Autumn ‘89 — Vienna, 18-22 September

Using an Object-Oriented Model of UNIX for Fault Diagnosis

6. A Demonstrator Application — Line Printing

A demonstrator application was developed. This is a simplified diagnosis system for problems which occur
with line printing in a running UNIX system.

The model of the domain was restricted as follows to allow for rapid development of the demonstrator:
e the model covers local line printing only, so the line printer daemon listens at only one socket
e the only request understood by Ipd is start printer

e there can be only one printer for each spool queue (so there will be a maximum of one running /pd for
each queue

e the information in /etc/printcap is complete, but only the queue and printer definitions are used

Among the faults the system can detect are faulty hardware, printer or print queue disabled, hung printer
daemon and certain mistakes in the user command.

7. An Example Run

The operation of the system is best described by going through an example run. The example below is
greatly simplified, but adequately shows the methods used for setting up, and reasoning about, the
hypothetical alternatives. The tree of alternatives is shown in Figure 6.

The system first asks the user a few basic questions. It then generates two hypotheses using the method
described in section 5.1.; one in which the printer is assumed to be the failing component, and one in which
the line printer daemon is suspect. The system reasons that at this stage it is most effective to test whether
the printer is on-line. If it is found to be on-line, a new test (whether the printer is enabled or disabled) is
chosen. If the user replies that it is disabled, the test has failed, and all components involved in the test are
marked as suspects. All other components are marked as working properly. In general, a failing test
implies that all components not involved in the test are working properly, and are marked as such. In this
example, the world in which the line printer is assumed to be faulty is is inconsistent with what is currently
believed, and this hypothesis is eliminated. The resulting search tree is shown in Figure 7.

After pruning the search tree, the system compares the different hypotheses (in this example only one) with
the situation described by the user. If it finds a matching world, and if the answers the user has given are
considered to be enough evidence for the world to be believed, the fault is found and appropriate advice is
offered. A simple trace of the system’s reasoning is available.

8. Automatic Model Generation

The automatic model generation is done by a C program which examines the real filesystem structure and
generates the appropriate ART definitions. It uses a template file, recognising certain tokens and
generating file-specific information in their place. It can generate schemata for individual unix-objects
specified in the command list, or can recurse automatically down a directory structure. A sample template
is shown, with the corresponding output, in Figure 7.

The automatic modeller is available from within the diagnostic system; the user can choose to generate her
own choice of files, or can ask the system to generate all those necessary for a particular domain (in the
demonstrator system the only domain available is line printing).

9. Further Work

Two major areas for further work have been identified, each of which would help to increase the general
applicability of the system.

9.1. More Sophisticated Automatic Model Generation

The automatic model generator can construct only the unix-object hierarchy at present. One possible
direction for development lies in examining the possibilities for generating the contents of files
automatically. It is not possible to generate the LISP code necessary to represent the actions of compiled
programs automatically, but there are possibilities for parsing UNIX text files and generating other types of
file contents. Alternatively, the system could read the real data files (in line printing, for example,
fetc/printcap) rather than examining a model of them.

EUUG Autumn 89 — Vienna, 18-22 September

Using an Object-Oriented Model of UNIX for Fault Diagnosis

" lpd faulty

. initial world . | testresults

'prim‘er Jaulty

while two alternatives are being considered

initial world : t testresults | printer faulty

once Ipd has been eliminated as a subject

Figure 6: The Search Tree

9.2. Interaction with UNIX

This opens up the possibility of running the system in conjunction with the UNIX system under diagnosis.
That is, it would be possible to interface the diagnostic system to UNIX. One obvious way of doing this
would be to have the diagnostic system running on a networked machine, and using the network to
interrogate the faulty UNIX system. This approach could be extended by making the diagnostic system
actually fix the problem rather than just suggesting a solution. For example, it could restart the printer
daemon itself, rather than saying “ go and type /usr/lib/lpd & .

10. Conclusions

The construction of a model of UNIX lends itself to several applications. The part of the system which
advises a user running fsck uses the model directly (by running a simulated boot) to discover the
importance of individual files. The line-printing diagnostic system demonstrates some of the possibilities
for diagnosis of problems with UNIX through modelling aspects of the operating system. Although it is not
feasible to construct a model of UNIX as a whole, and although parts of the model must be “hand-crafted”,
models of particular domains can be combined with heuristic information to produce useful help systems.

EUUG Autumn 89 — Vienna, 18-22 September

Using an Object-Oriented Model of UNIX for Fault Diagnosis

;:; Template for a directory

(defschema #d #N
(instance-of directory)
(réal-name #R)
(sub-directory-of #D))

2 Output

(defschema usr-spool
(instance-of directory)
(real-name #LI/usr/spooll)

(sub-directory-of usr-root))

Figure 7: A sample template and output of a directory

References

[ART84a] Artificial Intelligence, 24, 1984.

[And88a] Gail Anderson, “A Model-Based Diagnostic System for Sun Workstations,” M.Sc.
Dissertation, Department of Artificial Intelligence, University of Edinburgh, 1988.

[And89a] Gail Anderson, Paul Chung, and Robert Inder, “A Model-Based Diagnostic System for the
UNIX Operating System,” UNIX: European Challenges, EUUG Conference Proceedings,
Spring 1989,

[Ind88a] Robert Inder, “The State of the ART.,” Technical Report AIAI-TR-41, A.L. Applications
Institute, University of Edinburgh, 1988.

[Ind88b] Robert Inder, “Experience of Constructing a Fault Localisation Expert System Using an Al
Toolkit,” Proceedings of the First International Conference on Industrial and Engineering
Applications of Artificial Intelligence and Expert Systems, IEA/AIE-88, June 1988. Also
published as AIAI-TR-47, A.l. Applications Institute, University of Edinburgh, 1988

[Lun89a] Anita Lundeberg, “A Model-Based Diagnostic System for UNIX,” M.Sc. Dissertation,
Department of Artificial Intelligence, University of Edinburgh, 1989. due for submission 1989

Trademarks
INFERENCE is a trademark of Inference Corporation

EUUG Autumn 89 — Vienna, 18-22 September

Modelling the NFS service on an Ethernet local area network

Modelling the NFS service on an Ethernet local area network

Floriane Dupre-Blusseau

Centre National d’Etudes des Télécommunications
Service LAA/ITP/GMI
Route de Trégastel
BP 40
22301 Lannion Cédex
France
blusseaf@lannion.CNET.FR

ABSTRACT

This article contributes to the field of performance evaluation based on simulation of
queueing networks. Obtaining information on the performance of a local area network
supporting the distributed file system traffic of NFS (Network File System) is the main
goal of our work. We want to find out beforehand, with scientific methods and no more
empirically, whether excess load brought about by the addition of connected
workstations on the network, saturates the network. To achieve this goal, we studied
NFS and the underlying protocols with a view to performance. Based on the generated
load on the network and the processing delays, we retained the most relevant features in
order to complete an NFS model. Then we chose the most appropriate software to build
our model, which was QNAP (Queueing Network Analysis Package). Finally we
designed and solved the NFS model, using simulation and by varying entry parameters.

One of the main results relates to the acquisition of an NFS model which does not yet
exist, and of a methodology also usable in other environments. We are able to determine,
by solving the model, the greatest number of connected workstations working together on
the local area network. One also can use the model to choose between several network
utilization policies, the most appropriate one, provided that the criteria were first fixed.

1. Overview

The model of the NFS service was arrived at through modular modelling where each module corresponded
to one of the protocols used for NFS operation. Once models have been obtained for each protocol, it is
possible to reconstitute the overall model of the NFS service, associating the inward flow (respectively
outward) of the model of one protocol of a given level to the outward flow (respectively inward) of the
model of a protocol of the immediately superior (respectively inferior) level, in the terms of the OSI
reference model.

The chief advantage of this method, which consists of modular modelling of a service by associating each
module to one of the protocols on which it is based, lies in the ease of writing the model, and in the ease
with which the model is understood. In addition, any modifications which might have to be made to the
model are easier to perform. If the service were to be performed by new protocols, or if the model were to
be enhanced, it would be quite simple to modify the model accordingly by inserting a new model. Lastly,
modular modelling makes it possible to obtain intrinsic performance characteristics for each level or layer
of the protocol, and thus makes for easier identification of the various bottlenecks in the system under
evaluation.

We can attempt to draw a parallel between protocols used by the NFS service and those of OSI
architecture, but it must not be deduced that NFS and subordinate protocols use an OSI standard. The NFS
operation level is equivalent to the application layer of the OSI reference model. In order to perform its
distributed file system service, NFS uses the following protocols as a base [Ste86a]:

EUUG Autumn 89 —- Vienna, 18-22 September

Modelling the NFS service on an Ethernet local area network

e XDR (eXternal Data Representation): performs a task equivalent to that of the Presentation layer of
the OSI reference model;

¢ RPC (Remote Procedure Call): performs a task equivalent to that of the Session layer of the OSI
reference model;

o UDP (User Datagram Protocol): operates at a level equivalent to the Transport layer of the OSI
reference model;

e [P (Internet Protocol): operates at a level equivalent to the Network layer of the OSI reference model;
o Ethemet: operates at the level of the Physical and Link layers of the OSI reference model.

[\

. Study of performance of NFS and subordinate protocols

2.1. Introduction

Study of the performance of NFS and its subordinate protocols called for choices to be made at parameter
level so as to keep only the most pertinent ones, for it would be unthinkable to run a model of the NFS
service and its subordinate protocols which took account of all their characteristics, partly because we need
only information on the performance of the service, and partly because the model obtained has to be
resolved.

The criteria adopted to obtain a list of parameters judged pertinent to the NFS service model are essentially
those of load and delay. This choice is motivated by the fact that the results of interest to us concern the
network load factor, the user request processing delay, the collision rate, and the rates of request resends
and drop out.

Not all the parameters screened through these criteria are necessarily used in creating the model: some of
them will be seen to be of negligible value with respect to other processing delays or to the load already
created by other parameters.

2.2. Ethernet performance study

The performance criteria mentioned in the introduction of this section make it possible to determine which
characteristics are likely to influence the performance of the Ethernet network. Essentially, the elements of
the protocol which modify the processing times and network load will be dealt with.

The Ethernet protocol breaks down into three levels: LLC (Logical Link Control) layer which provides the
interface with protocols of the next level up, the MAC (Medium Access Control) layer which submits
frames to the medium and resolves contentions, and the PLS (PhysicaL Signaling) layer which conveys
frames and detects collisions.

The performance characteristics of the LLC layer correspond to a single delay for processing data, i.e.
packing of data frames for transmission and unpacking upon reception. This delay is 0.375 ms [Mei87a].

The MAC layer submits frames to the medium, which gives rise to a preparation delay of 0.175 ms
[Mei87a] and a time between submission of two frames defined in the standard as 9.6 microseconds. To
these service times can be added a wait time due to the fact that the medium is busy transmitting another
frame. Sun workstations have a special feature that allows them to submit several frames to the Ethemnet
board simultaneously. This means that the time between transmission of two frames corresponds solely to
the inter-frame delay. Frames transmitted one after the other are prepared during transmission of the first
frame. The number of frames which can be submitted in this manner is limited to six. The MAC layer also
resolves contentions by using the following characteristics:

— Maximum number of resends used in calculating wait time = 10
— Maximum number of resends permitted = 16
— Jam size = 25 bits

h

The wait time before the n” resending are random whole numbers uniformly distributed between 0 and 2,

where k = min(n ,10).

The performance characteristics of the MAC layer upon receipt of a frame correspond solely to the time
required to find the destination address in the frame, i.e. 0.175 ms [Mei87a].

100 EUUG Autumn ‘89 — Vienna, 18-22 September

Modelling the NFS service on an Ethernet local area network

The PLS layer transmits frames on the medium. The propagation delay on the bus is a basic characteristic
of the Ethernet protocol. This value depends on the length of the bus, its transmission rate, and its
propagation speed. The local area network of the CNET at Lannion comprises a 500 m long bus with a
transmission rate of 10 Megabits per second and a propagation velocity of 200,000 km/second. This gives
an end-to-end propagation delay of 2.5 microseconds and a minimum frame size of 50 bits (twice the end-
to-end propagation delay). The maximum amount of data contained in an Ethernet frame is 1518 bytes.

2.3. Study of performance of UDP and IP protocols

The processing performed by the UDP protocol is very limited since there is no check at this level. The
associated service time is therefore negligible.

The size of the UDP buffer on the other hand can influence network load, for messages from the higher
levels of protocol have to be broken up in order to fit into the buffer. Consequently, the smaller the UDP
buffer is, the greater is the number of messages sent. The standard defines a size of 8192 bytes for the
UDP protocol. However, current implementation of the NFS service on the Amdahl computer uses buffer
whose size is restricted to 2048 bytes.

The processing performed by the IP protocol basically consists of determining if the datagram received has
to be fragmented before transmission to the subordinate protocol. In our study, the lower network is of the
Ethernet type. It has been seen above that the maximum data size of an Ethernet frame is 1518 bytes.
When the IP protocol receives a datagram larger than this, it has to break it down into several smaller
elements. A boolean symbol is placed during fragmentation to indicate if each fragment is the last in the
datagram.

When the IP protocol receives frames from the Ethernet protocol, it must rebuild the original datagram (if it
has had to be fragmented) and then send it to the higher protocol.

The processing times of the IP protocol were obtained with an analyser for the Ethernet network (LANana-
lyser EX 5000E by EXCELAN). The times for fragmentation and re-assembly of a datagram are each
4.5 ms, giving 9 ms in all. When a datagram contains no more than one Ethernet frame, the IP protocol
processing time simply corresponds to the data length test, i.e. 1.5 ms out and in, or 3 ms in all.

2.4. Study of performance of the NFS service

2.4.1. Introduction

The performance characteristics of the NFS service are obtained by analysing the processing sequence of a
command sent via the service, from the moment of transmission to receipt of the corresponding reply,
retaining only those parameters which are likely to effect network performance, i.e. those which increase
load or processing delays.

This means that for each protocol (NFS, XDR, and RPC), as well as for client application of the NFS
service and for the NFS server, the characteristics considered essential for the performance evaluation will
be dealt with.

Current implementation of NFS on the Amdahl computer makes use of only the server aspect. The client
application of NFS will therefore be represented by user commands sent from the Sun workstations via
NFS, the server being represented by the Amdahl computer.

2.4.2. Performance characteristics of the client application

Within the scope of NFS service modelling, we dealt only with user commands which use this service, i.e.
user commands using files or directories. The main commands concerned are as follows [Sun86al:

cat file_name displays the contents of the file on the screen.
cd dir_name change of directory.

epfnlfn2 copyoffiles.

difff n 1 f n 2 supplies the differences between the two files.
Is lists the contents of the current directory.

EUUG Autumn ‘89 — Vienna, 18-22 September

Modelling the NFS service on an Ethernet local area network

mkdir dir_name creates a directory.
mvfnlfn2 renaming of files.

pwd prints the working directory.

rm file_name removes the file file_name.
rmdir dir_name removes the directory dir_name.

Once the list of user commands likely to use the NFS service has been obtained, it is important from the
point of view of performance to determine the time span between the moment when the reply to a user
command is received and that when the next user command is sent.

For this, the Ethernet network analyser already referred to was used. The distribution function of the
random variable representing the user thinking time is obtained from values given by successive
experiments. They are as follows: .
Is (twice) — 1.2s (4 times) — 1.4s — 1.6s (twice) — 1.85s— 1.9s — 2.4s— 2.55s — 3.5s — 3.9s — 4.3s -
4.4s — 4.6s (twice)— Ss— 5.3s— 7.6s — 8.1s— 8.2s — 8.5s— 9.65s — 9.9s — 11.4s — 15.7s — 22.4s —
39.45s —42.45 — 57.8s — 233.5s.

It is clear that the longest thinking time (233.5s) is far longer than the others (1sec. to 1 min.): it will not be
taken into account in what follows so as not to invalidate the analyses with a non-representative value.

By regrouping the remaining times into whole-second categories, we obtain the distribution function of the
*“user thinking time”, for which 50% of the values are less than 5 seconds, 85% are less than 16 seconds
and 95% are less then 43 seconds.

2.4.3. Performance characteristics of NFS server

The NFS server must perform the tasks requested of it via the NFS requests received. This concerns
basically the disk access required upon receipt of data-read or -write requests.

In order to determine the disk access time on the Amdahl computer, read/write routines were applied to a
data block. The results are as follows:

Read access time: 12ms (4 times) — 16 ms (twice) ~ 17ms—~ 2Ims— 23 ms— 24 ms - 25 ms —
‘ 26 ms (twice) — 27 ms — 28 ms — 39 ms — 40 ms — 41 ms — 57 ms — 148 ms.
Write access time: 27ms— 32ms— 37ms— 39ms— 4Ims— 42ms— 49 ms— 53 ms— 54 ms —

55 ms — 56 ms - 57 ms — 58 ms (3 times) — 59 ms (twice) — 106 ms — 169 ms.

The RPC protocol uses a timeout to prevent losing messages. It could be worthwhile giving priority to
processing of remote requests to the Amdahl so as to prevent the clock activated by the client RPC protocol
intervening too often in the event of heavy load on the Amdahl. However the Amdahl makes no distinction
in processing remote or local requests, which means it would not be possible to give priority to remote
requests, even if that could have improved network performance.

2.4.4. Performance characteristics of NFS protocol

A user command transmitted via the NFS service is processed due to a certain number of NFS requests.
The type and number of requests is important since they will have a greater or lesser effect on network
load. Yet it is not easy to appreciate the relationship between user commands and the number of NFS
requests of each type generated as a result.

Using the nfsstat command on the Sun workstations, it can be determined which NFS requests are
necessary for processing a given user command. Additionally, the command determines the proportion of
each type of NFS request transmitted in a given time. On the other hand, neither the distribution of user
commands or that of NFS requests are known.

A different approach must therefore be used to obtain the relationship between user commands and NFS
requests. The Ethernet network analyser is again used. Through observation it was possible to associate a
captured frame with an RPC request, and the RPC requests with the user commands which generated them.
From this can be determined the relationship between user commands and RPC requests. Among the
requests, only read requests (comprising several frames on receipt) and write requests (comprising several
frames on transmission) can be distinguished from other types (each comprising one small Ethernet frame).
It is not possible to make a distinction between the various RPC requests other than read/write requests.
Through successive observations with the network analyser, it was thus possible to work out a distribution
pattern for the number of read, write or other RPC requests per user request.

102 EUUG Autumn 89 — Vienna, 18-22 September

Modelling the NFS service on an Ethernet local area network

RPC read and write requests have 8192 bytes, or in other terms are the same size as the UDP buffer. The
other requests have 150 bytes on average.

2.4.5. Performance characteristics of the XDR and RPC protocols

It has been seen that an NFS request is transferred through the XDR and RPC protocols before being
processed by the Transport protocol. The purpose of the XDR protocol is simply to reorganize data and
make it comprehensible for the various machines communicating with each other. This task has no effect
on network load, since all the work is done locally and the request is not split up. On the other hand, the
processing time taken by the protocol is included in the predetermined overall time for generation of a user
request.

To process an NFS request, the RPC protocol uses routines running locally as well as a procedure call
which corresponds to a request for service by the server [Ste86a]. Only the procedure call is transmitted
via the network, and it alone therefore constitutes a load. For our study, it will be considered that for an
NFS request there is a single RPC request, i.e. that which makes the remote procedure call.

The RPC protocol uses a timeout which triggers retransmission of requests. Its default value is 0.7s, which
is multiplied by two for each retransmission. After three retransmissions, processing of the request is
dropped out.

2.5. Summing up of a user request processing

2.5.1. Introduction

In order to set the ideas out clearly, we will sum up the different information gathered, in the example of a
file copy.

Let us assume that a user has mounted two directories, one under the local directory mnt/ and the other one
under the local directory mnt2, and that the user wants to copy file mntl/file_name, under the directory
mnt2, with the same name. He will use the command cp mntl/file name mnit2lfile name. The size of
the copied file is taken to be 3500 bytes.

2.5.2. Study of the command processing sequence

We will study stage by stage the processes carried out on the user command from transmission to the
reception of its reply. It should be noticed that the copy was done from one remote file to another remote
file.

First of all we must determined which NFS requests are produced by the user command c¢p, by applying the
nfsstat command to the Sun workstation. The NFS requests transmitted are: getattr — lookup — read —
create — write. So the cp command sends five NFS requests and therefore five RPC requests.

The RPC protocol functions in a synchronous mode, therefore the requests are processed one after the
other, the processing of a request starting only when the preceding request has been replied.

The RPC request is then processed by the IP protocol (the UDP protocol is not taken into account as it adds
on negligible load and delay). The processing by IP protocol requires a time delay of 3 or 9 ms. At this
level the request can be fragmented into several datagrams if the received message contains more than one

LI LE TS

data frame. The messages corresponding to the NFS requests “lookup”, “getattr”, “read” and “create”™ will
not be segmented. However the message corresponding to the write request is split into three datagrams as
it concerns a file of 3500 bytes.

Each of the datagrams is then processed by the LLC layer with a delay of 0.375 ms, and then by the MAC
layer with a delay of 0.175ms. At the level of the MAC layer, it is necessary to wait until the
communication medium is free before transmitting. In the event of collision, the wait time is determined
before retransmission and then the frame is retransmitted.

The medium of communication transfers each frame to all the stations which are connected to it. This is
expressed by a delay equal to the length of the frame in bits, divided by the medium throughput (here,
10 Mbits/s), that is 1.2 ms for a frame of maximum length.

At reception, the frames are only retained by Amdahl. Their progress across the MAC and then the LLC
layers, at reception, adds on a delay of 0.175 ms and 0.375 ms respectively. The datagram is reassembled
at the level of the IP module. The processing of messages corresponding to NFS requests other than “read”
or “write” does not cause a processing delay on Amdahl. On the other hand the “read” and “write”
requests require a disk access, that is a delay corresponding to the values mentioned in the preceding part

EUUG Autumn 89 — Vienna, 18-22 September

Modelling the NFS service on an Ethernet local area network

of the section. Once the read or write operations has been carried out, a reply is produced and transmitted
across the IP and Ethernet protocols with the same delays as before. Only the reply to a “read” request
causes a fragmentation into three datagrams at the IP level. When the reply to the RPC request has been
received, the next RPC request can be processed.

When all the replies to the RPC requests have been received, the NFS service is terminated and the user
can continue with his work.

3. The NFS service model

3.1. Introduction

Modelling of a system in order to evaluate it can be broken into phases. The first one has been described
above: it consists of simplifying the system so as to retain only the most pertinent parameters. This phase
is very important, since the accuracy of the model, and consequently of the resuits, depends on the choices
made.

After writing the model itself, the model must be validated so that it can be relied on to a certain extent if
not totally. In our case, this aspect consists of comparing the results provided by the model with those
obtained with the network analyser.

When it is deemed that the model is sufficiently reliable, the next phase of analysis and interpretation of
results is launched.

3.2. Selecting performance evaluation software

3.2.1. Selecting the most appropriate tool

A model’s resolution methods call for the use of specific tools. The trend is towards integration of all
resolution methods and a model description language in the same package so that the appropriate resolution
module can be chosen in accordance with the model described.

Of the software available, the most appropriate to the problem at hand must be chosen. The information
required concemns load, wait times, etc., or in other words, guantitative information. The tool chosen
should therefore be based on queueing networks. Furthermore, it should enable us to resolve the model of
NFS service in a local area network environment and should therefore be especially adapted to this kind of
problem. Lastly, the software must be available at the Lannion CNET site.

Consequently, the QNAP (Queueing Network Analysis Package) package was chosen for this task. It
enables description and resolution of queueing networks by simulation and exact or approximate analytical .
methods, and provides quantitative results. The fact that it was available on Multics at the CNET site at
Paris, and its relative ease of use were of importance in the choice. Use of QNAP is justified, for it is
perfectly appropriate for the problem in hand since the system to be evaluated can be regarded as a
queueing network. In addition, the object-oriented approach of QNAP makes for easier follow-up of
programme writing, as well as making it possible for the programme to be used subsequently by people
other than its creators.

3.2.2. Presentation of the selected tool

QNAP [Pot84a, Ve84a] was developed jointly by INRIA and Bull company. The latest version (QNAP2,
1982) is fitted up with a user interface which defines the network and supplies a print-out of results in the
form of summarized tables. QNAP2 also includes a command language which defines the different
elements in the model, and an algorithmic language. The writing of a programme is quite simple once the
queueing network, on which the model is based, has been clearly defined. Figure 1 shows a waiting queue.

Armmiving I | | l I XILDepanure

Queue Server

Figure 1: A waiting queue

EUUG Autumn 89 — Vienna, 18-22 September

Modelling the NFS service on an Ethernet local area network

When building the model, it is necessary to know the description of the customers arriving in the queue, the
description of the server process for customers, and the queue discipline, that is the procedure by which the
customers are chosen in the queue to be processed.

The QNAP language describes the configuration of the queueing network which is represented by a group
of stations (a station includes one or more servers, serving one single queue), which the customer pass ac-
cording to the routing rules. The customers can be allocated to different classes which characterize the
various processes in the stations. The QNAP stations represent the physical or logical processing charac-
teristics of the system which is to be modelled (central unit, protocol). The customers represents processes
carried out by the stations.

Next, the QNAP language describes the processing performed by each station on the customers. In the
case of a simulation resolution, this procedure can be described as a simple delay defined by its probability
distribution, or by a more complex algorithm, including synchonization operations or customers generation.

Lastly the QNAP language allows the user to carry out a resolution check, either by initialising or updating
parameters, and by activating the resolution methods, and finally by the printing of the results.

Once the tool for design and resolution of the NFS model has been decided upon, it must be determined
which resolution method will be used. The level of detail required in modelling the protocols and the
volume of data to be processed led to choosing simulation since the model is enormous, complex, and
non-homogeneous.

3.3. Resolution of the NFS service model

3.3.1. Introduction

NFS service is modelled with the QNAP tool by associating NFS queueing networks and the subordinate
protocols dealt with in the preceding study with a network of QNAP stations. The network thus comprises
as many stations as there are protocols implemented by NFS, multiplied by the number of machines in the
network.

The customers passing through the stations represent the commands, requests, datagrams or frames
transmitted or received by each protocol.

It must be noted that for the moment, the implementation of the NFS service on the Amdahl computer takes
account only of the server aspect. Therefore in the model the Sun workstations are clients and the Amdahl
is their server.

3.3.2. Validation of the NFS service model

The queueing network representing the system to be modelled allowed us to write the corresponding
programme in QNAP language on Multics. The resolution method chosen is discrete-event simulation,
with calculation of 95% confidence intervals.

The results obtained from simulation initially correspond to a network with three Sun workstations, the
Amdahl computer, and a set of other machines represented by one QNAP station.

The printout of results of the QNAP programme resolution gives the service time, the busy rate, the aver-
age number of customers on the station, the reply time, and the total number of customers served by the
station. all for each station and each class of customer. To this data can be added the statistics programmed
or calculated during resolution, which include the user command processing delay, the number of colli-
sions, etc.

It is obvious that the need to obtain a model whose resolution is not too costly forces certain simplifications
relative to the real system.

Regardless of the difference (be they additions or simplifications) between the model and the real system it
represents, it is important that the model obtained be validated by comparing the results obtained with the
model with those obtained by observing the real system.

In addition, the model will eventually be used in an operational environment, in order to determine the
optimum policy for file saving for example. It is therefore vital that the model be fully reliable.

EUUG Autumn ‘89 — Vienna, 18-22 September

Modelling the NFS service on an Ethernet local area network

To perform this check, the Ethernet network analyser was used to compare simulated and real values.
However, it is not possible to make direct comparison between these values since the difference between
UDP buffer sizes on the Sun workstations where real observation is made (8192 bytes) and on the Amdahl
computer used for modelling (2048 bytes) must be taken into account.

It is therefore necessary to resolve the NFS service model for a UDP buffer size of 8192 bytes in order to
validate the model. The following table shows the results obtained by observation with the analyser (first
column), results of model resolution with a 8192-byte unit for data handled by UDP (second column), the
deviation between the first two columns (third column), and the results of simulation of the NFS model
which will be used in what follows (UDP buffer size of 2048 bytes).

Values observed Values obtained Deviation Values obtained
on analyser (8192 | by resolution of [(b)-(a)|/(a) | by resolution of
byte UDP buffer) NFS model (8192 NFS model (2048
(a) byte UDP buffer) byte UDP buffer)
(b)

Number of

user requests generat- 0.056 0.055 1.78% 0.069

ed per Sun per second

Number of (1

RPC requests per user 6.26 6 4.15% 13.4

request

Number of ()

frames per RPC re- 2.34 2.25 3.84% 1.55

quest

Number of &)

frames per reply to an 1.7 1.69 0.59% 1.21

RPC request

Number of (H*2)

frames per user re- 14.65 13.5 7.85% 20.77

quest

Number of (H*(3)

frames per reply to a 10.64 10.14 4.69% 16.21

user request

Number of

frames generated per 0.8 0.75 6.25% 1.45

Sun per second

Mean busy 0.89% 0.85% 4.49% 0.978%

rate of medium

Mean user

request processing de- 0.212s 0.2191s 3.35% 0.6794s

lay

Mean 916 bytes 869 bytes 5.13% 631 bytes

frame size

Comparison of values obtained by resolution of the NFS model with a UDP buffer of 8192 bytes and
values observed with the network analyser reveals differences of between 0.59 to 7.85%. If a confidence
interval of 95% is assumed, three parameters are invalid. If the interval is extended to 92%, all the parame-
ters are validated.

It can therefore be deduced that the NFS model is valid with respect to observations made with the network
analyser. The model having thus been validated, it can now be used at real-life scale by performing simu-
lations with an increasing number of connected Sun workstations, until the network saturates. This is dealt
within the next section.

106 EUUG Autumn ‘89 - Vienna, 18-22 September

Modelling the NFS service on an Ethernet local area network

3.4. The results obtained by resolution of NFS model

We resolved the NFS model by simulation for different values of the number of Sun Workstations and
different user thinking time values.

So we measured the relationship between these parameters, and five results, that are : the medium load, the
average user request processing delay, the collision rate on the network, the resending rate of RPC
requests, and the drop out rate of user requests.

The results are summarized in the graphs in the appendix. The first graph shows the medium load. We
have studied this rate in a number of Sun workstations ranging from one to twenty five, and for a user
thinking time with an average value of 15 seconds. The model is very useful in that it allows us to see
beyond the only point supplied by the network analyser.

The second graph shows the average user request processing delay, according to the connected
workstations, and to the user thinking time. We observed that for a user thinking time of 15 seconds there
is a big increase in the average user request processing delay, from 20 connected workstations. The
increase is greater for a lower user thinking time, with the processing delay lasting almost 50 seconds. The
point at which the delays increase relates to the fact that the RPC timeout ends (0.7 second). Therefore the
request has to be retransmitted, which in turn extends the processing delay accordingly.

On the third graph also, it can be seen that from 20 connected Sun workstations, the collision rate, for a
user thinking time of 15 seconds, increases greatly.

The observations of the second graph are confirmed on the fourth graph, where the resending rate of RPC
requests goes up to 200%.

The last graph shows the drop out rate of user requests, which remains low for a user thinking time of 15
seconds. For a user thinking time of | second, the drop out rate reaches 20% for 15 connected Sun
workstations, and 50% for 25 connected workstations (that is drop out for one in two requests).

3.5. Use of the NFS service model with file saving

The Amdahl 5840 has a disk capacity that allows it to be a file server on the Ethernet LAN at CNET
Lannion. UNIX System V is the operating system on the Amdahl. so the NFS service could be
implemented.

Thus we can believe that the connected Sun workstations will save their files onto Amdahl using NFS. We
want to know the LAN performance evolution while doing file saving on the Amdahl host. Furthermore, it
is important to obtain the average file saving delay when there is no other load on the LAN.

We modified the NFS model considering that the connected workstations made one, and only one, file
saving during the simulation. That is, the only NFS request is a write, whose length equals the file saving
data length. When the file saving is done, the Sun work is finished.

First of all, we solved the NFS model for only one Sun workstation doing savings. We obtained a data rate
of 70 Mbytes per hour. Different tests on the LAN validate this value. Averaging the available disk
capacities of Sun workstations, the length of data to be saved is approximately 500 Mbytes. So, with a rate
of 70 Mbytes/hour, the file saving delay is a bit more than seven hours. In this case, only one saving can be
made per night.

Since successive file savings are not feasible in one night, is it possible to make simultaneous savings? To
know that, we solved the NFS model for more than one connected Sun workstation. When two Sun
workstations save their files simultaneously, the data rate is 41 Mbytes per hour, giving a file saving delay
of about twelve hours. Thus simultancous savings are no more feasible in one night than successives ones.

Finally we tried to know if a file saving can be made when there is other load on the LAN. We solved the
NFS model for one Sun workstation doing a file saving, and ten Sun workstations sending requests every
fifteen seconds. The result is the drop out of the file saving due to the retransmission of one RPC request
more than three times, without receiving any reply. Thus file saving during the day is not feasible.

4. Conclusion

The methodology we used consists of breaking a service into its different underlying protocols, carrying
out a study of each of these protocols with a view to performance, and then building a model based on the
fundamental points of the study. Thus a collection of reusable models is built up. If, for example, one
wanted to carry out a performance evaluation of a service based on the TCP (Transmission Control
Protocol), IP and Ethernet protocols, one only has to model the elements concerned with load and delay in
the TCP protocol (opening of connection, ...). The model could be stacked with the IP and Ethernet models

EUUG Autumn 89 - Vienna, 18-22 September

Modelling the NFS service on an Ethernet local area network

which are already built. With this methodology, it is also possible to go back later to the modelling of a
protocol, in order to improve it, without having to rebuild a complete model.

One of the main results of our work is the acquisition of a model of a service such as NFS which is
considered to be the standard, and was recently implemented on the Amdahl computer. Another important
result is the future use of the model by the Amdahl France company, in order to evaluate other
configurations.

We resolved the model by simulation for different values of the number of Sun workstations connected to
the Ethernet network, and different user thinking time values. We observed that for a user thinking time of
fifieen seconds, all the studied parameters increase from twenty connected workstations. When the user
thinking time is one second, the great increase is near fifteen connected workstations.

The NFS model is used to evaluate different file saving policies between Sun workstations and Amdahl.
We end in a transfer data rate of 70 Mbytes per hour for one Sun workstation doing savings, and 41 Mbytes
per hour for two workstations simultaneously saving. These results show that only one Sun workstation
could make file savings per night. Giving the increase of connected workstations, we can wonder if it was
not more feasible to use other protocols such as FTP (File Transfer Protocol), indeed give up the idea of
using Amdahl as a file saving server.

Now we must continue with the simulation to refine the results already obtained. Lastly, we envisage to
build the model of a bridge, that reduce the network load.

References

[Sun86a] Sun System Overview, Sun Microsystems, 1986,

[Mei87a] B. Meister, “A performance study of the ISO Transport protocol,” The 7th international
conference on Distributed Computing Systems, Berlin, 21 to 25 September 1987.

[Pot84a] D. Potier, “New users’ introduction to QNAP2,” Rapport Technique INRIA No 40, INRIA,
October 1984.

|Ste86a) Mark Stein, The Network File System, Sun Microsystems, 1986.

[Ve84a] Michel Véran and Dominique Potier, “QNAP2: A portable environment for queueing systems
modelling,” Collogue international sur la modelisation et les outils d’ analyse de performance,
Paris, May 1984.

108 EUUG Autumn 89 — Vienna, 18-22 September

Modelling the NFS service on an Ethernet local area network

Medium Load

Analyser

Number
of
T T T 1 T Sun
678910 25 Stations

0 T T 17717717
1 23 45
Average user request
processing
delay

Number
of
Sun
Stations

Collision rate

2.0%

1.5% —

1.0% —
(15%)

0.5%
Number
of
Sun
Stations

EUUG Autumn ‘89 — Vienna, 18-22 September

Modeclling the NFS service on an Ethernet local area network

Resending rate of
RPC requests
200%
(1s)

27% 100%

24% —

21% |
18%
15% |
12%
9% |
6% () (15)

3%
Number
of

T T 1T T T 1T 1771 I T T T T Sun
12345678910 12 1517 20 25 Sutions

Drop out rate
of user requests

45% —
40% —|
35% -
30% —
25% —
20% —
(1s)
15% -

10% —

5% —
(15s) Number
of

T T 1 T 1717 T T Sun
1 23456 7 8 910 12 15 17 20 25 Stations

110 EUUG Autumn 89 - Vienna, 18-22 September

RISC vs. CISC From the Perspective of Compileriinstruction Set Interaction

RISC vs. CISC From the Perspective of Compiler/Instruction Set
Interaction

Daniel V. Klein

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15217
dvk@sei.cmu.edu

ABSTRACT

This paper compares the utilization of a number of different computer instruction sets by
a collection of compilers. Wherever possible, several compilers were used for each
architecture. This paper demonstrates that CISC instruction sets are underutilized by
compilers, while RISC instruction sets are nearly completely utilized. We observe that if
an instruction exists on a computer, it should be usable by the compilers for that
computer. Because CISC computers have large numbers of instructions which are not
effectively used by compilers, the instructions are superfluous. By eliminating
superfluous and redundant instructions from architectures, future systems can run more
efficiently, and algorithms can be executed with greater celerity.

1. Introduction

The data reported on in this paper are the result of a Reduced Instruction Set Computer (RISC) assessment
project conducted at the Software Engineering Institute.t When | entered into the RISC assessment

project, it was with a strong bias toward Complex Instruction Set Computer (CISC) architectures. 1 was a
vocal proponent of the VAX and MC680x0 architectures, and looked at this project as an interesting
exercise in which I would have my (negative) suspicions about RISC processors confirmed, and one in
which I would find vindication for the CISC side in the great “RISC versus CISC” debate.

I have, however, come to the opposite conclusion. My research on this project has convinced me (quite
consistently, I might add) that, if there is a “right” side of the debate to be on, it is the RISC side. In all
features — execution speed, compiler efficiency, language consistency, and code size — the concept of a
reduced instruction set computer has proven to be the correct architectural choice.

This paper, however, does not compare benchmark statistics, nor does it contrast the execution speeds of
various machines. In general, benchmarks results present highly misleading statistics, and offer little or no
insight into the subtle effects that can alter benchmark performance. The performance of the Whetstone
benchmark on a machine tells you little about how fast it will run your programs — instead, it tells you is
how fast the Whetstone benchmark ran. The Dhrystone benchmark specifically requires you to disable
certain compiler optimizations, a request which defeats optimizations that would otherwise show off the
power of a compiler — power which can be used quite effectively in “real life” applications.

What this paper does discuss is how well compilers can use the instruction sets for which they are targeted.
The purpose of this study is to ask (through demonstration) “'if the great majority of programmers write in a
high level language (and not assembly language), and if certain instructions cannot be used by a compiler,
then why are they in the instruction set of the machine?” Of course, some instructions will never be used by
a compiler, and these are not considered in our discussion. Examples of these instructions are those used to
effect context switch, return from trap or interrupt, etc. These instructions are necessary for the proper
functioning of an operating system, and not for user level utilities. The “superfluous™ instructions in
question include the polyf instruction on the VAX (which calculates a floating point polynomial from a
vectored set of coefficients), the redundant logical operations on the condition codes of the 680x0 (which
are just as easily simulated using a simple load/store instruction and the logical operations on integers), and

+ This work was sponsored in part by the U.S. Department of Defense.

EUUG Autumn ‘89 — Vienna, 18-22 September

RISC vs. CISC From the Perspective of Compiler!Instruction Set Interaction

other overly complex instructions which no compiler can utilize.

Although not specifically called out in this paper, many CISC architectures have instructions which the
compiler is sometimes able to use, but which are so “special case” that their inclusion into the architecture
is quite questionable, especially when these instructions could easily be simulated with simple
combinations of other simple instructions. One example of this type of instruction is the acbleq
instruction on the VAX, which adds one to a variable, and branches to a location if the result is less than or
equal to a comparison variable. This instruction is (at best) infrequently used, and its function could easily
be performed by the trio of an add, a cmp, and a blegq instruction. A compiler (and certainly most
assembly language programmers) can just as easily use a template containing 3 instructions as they can use
a template containing a single instruction.

For an audience such as the UNIX community, the next question which usually comes to mind is “of what
use is this information to UNIX systems?” Answering this question entails placing the cart before the
horse, and giving some conclusions before we present our methods and results. The answer to this
question is simple. A great deal of UNIX systems are based on CISC architectures — the VAX and the
680x0 family are the most prevalent of these. Yet if it is indeed the case that UNIX compilersT (and in fact,
compilers in general) are unable to utilize the instruction sets efficiently, is there then not a great deal of
“wasted silicon” - hardware which is never used, but which nonetheless takes up space and more
importantly time — in these systems? If a RISC system can be used more efficiently than a comparably
sized and priced CISC system, then not only will the users of the RISC system benefit from the increased
speed of the individual instructions, but the compilers will be able to make better use of the hardware, and
thus return a second benefit to the users — that of efficient (and thus, celeritous) use of the instruction set of
the machine.

2. Methods

The methods used to test the instruction set utilization of the compilers was rather simple, but we believe it
was effective. A collection of integer based applications were given to the compiler, and the resultant
assembly code was examined. Purely integer based applications were chosen over those that also
contained floating point for a number of reasons:

1)~ Some processors followed the IEEE 754 floating point standard, while others implemented
their own floating point instructions. While following a standard is laudable, the machine
architecture should not be penalized for elaborate nature of the IEEE standard.

Some architectures utilized a floating point co-processor. While this is a valid option, floating
point instructions can either be executed as separate instructions, or as sub-codes passed to a
single co-processor instruction. Evaluating these instructions in either manner can introduce a
bias in the measurement techniques.

Integer applications abound in the UNIX environment, but finding a representative floating
point application is difficult. The use of float versus double variables can affect the use of one
or another instruction mode, and it is very difficult to find a generic application which uses
both variable types (while it is easy to find applications which mix long and short integers).

The eight integer applications and libraries were chosen for their size (a larger program is more likely to
use a large number of language features) and breadth (different applications do different things, and hence
exercise different aspects of the instruction set). The programs chosen for the evaluation were:

1) csh — The UNIX C-shell, containing 15,058 lines of code,t
2) vi — A screen based editor, containing 24,414 lines of code,
3) libcurses — The UNIX screen display library, containing 5,496 lines of code,

t To make this a fair evaluation, we used multiple vendor's compilers for the same architecture wherever possible. For
example for the VAX, our comparisons were based on the Berkeley, Tartan Labs, and DEC (VMS) C compilers. For the
68020 and Sparc, the Sun and Gnu compilers were used. By using multiple compilers, we hoped to eliminate the bias that
could be introduced by a single good (or bad) compiler.

T The lines-of-code count in all cases was determined with the command

cec -E *.c | sed -e '/°$/d" -e '/ "#/d’" | wc -1

EUUG Autumn ‘89 — Vienna, 18-22 September

RISC vs. CISC From the Perspective of Compilerilnstruction Set Interaction

4) dc — An arbitrary precision arithmetic package of 2,000 lines of code,

5) bc — A yacc based front end for dc, containing 830 lines of human and machine generated
code,

6) efl — An extended FORTRAN language preprocessor, containing 18,281 lines of code,
7y libmp — The UNIX multi-precision math library, with 778 lines of math intensive code, and
8) troff — The UNIX typesetter runoff program, containing 7853 lines of truly baroque code.

To maintain accuracy of our results, the same source code was compiled on each of the tested machines.
We present the statistics for the eight packages together, rather than inundating the reader with individual
analyses. In truth, the compiler generated roughly the same instruction mix for each program, so we feel it
is fair to present the average mix for each compiler. Although we would have liked to include other classes
of programs in our analysis (e.g., an operating system, graphics tools, CAD tools, and database
applications), the highly consistent output from the compilers for the applications which we did consider
leads us to believe that we would have seen an insignificant difference in instruction and addressing mode
usage from the set of applications selected.

In all cases, we did not count the instructions in the run-time libraries or the C initialization or finalization
routines, since some of these are written in assembly language, and are not generated by the compiler.

For the CISC architectures, where the final machine instructions are nearly identical to the input assembly
language, instructions and addressing modes are counted from the assembly language output by the C
compiler. Since it would not adversely affect our statistics, the UNIX jcond instructions were counted as
a single conditional branch instruction (instead of actually seeing which resulted in a simple branch, and
which were a combination of a branch-around and jump instruction). For the RISC architectures, however,
where the assembler typically also performs code reorganization, the instructions and modes were counted
(wherever possible) from the disassembled object files. In this latter case, where assembler reorganization
could substantially affect our results, extra care was taken to insure accuracy.

For each architecture, we present three tables. The first table shows the frequency with which each class of
instruction is used. In these tables, the following definitions are used: “Load” instructions fetch data from
memory into registers, while “store™ instructions place the contents of registers into memory locations.
“Shuffle” instructions move data between registers. “Arithmetic” instructions include add, subtract, and
shift, while “logical” instructions include bitwise and, or, and exclusive or. “Compare” instructions are
similar to logical instructions, except that they compute single bit results (for use in subsequent conditional
branch instructions). The terms “conditional branch”, “unconditional branch”, and *“call” should be self
explanatory.

In the second table we show the patterns of instruction usage — the frequency with which instructions are
used irrespective of type. From this we can see the percentage of the instruction set which is used the most,
and what percentage is used the least. The third table compares the use of the various addressing modes
available in the architecture.

3. RISC Architectures

We first consider three RISC architectures — the Mips R2000, the Sun SPARC, and the Motorola 88100 —
which will be later compared and contrasted with three CISC architectures — the Digital VAX, the Motorola
68020, and the Intel 80386.

It should be noted that the instruction mix presented here is that generated by the compiler, and not a list of
the instructions executed by the applications. In other words, we present a static analysis of the code
generated by the compiler, rather than a dynamic one. The two concepts are fundamentally different, and
for this paper we did not research the latter. However, we have no reason to doubt that the two values will
be substantially the same.

3.1. Analysis of the MipS R2000 C Compiler

Tables 1 through 3 show the instruction mix generated for the six applications on the Mips R2000. The
compiler was version 1.31 of the MIPS compiler, running on a DECstation 3100.

The Mi1ps R2000 is a classic load-store RISC architecture. Data values must be loaded into registers before
they can be changed by other instructions and stored back into memory. Almost all the instructions
execute in a single machine cycle, but some instructions require a delay state before data becomes valid
(e.g.. a load requires a delay state before the value enters memory) or before a state change (branch
instructions do not complete until the second machine cycle). Many of these delay states can be filled with

EUUG Autumn 89 — Vienna, 18-22 September

RISC vs. CISC From the Perspective of Compiler/Instruction Set Interaction

Instruction Class Count % used
Load 38098 | 30.0

Store 15270 | 120

Shuffle 8407 6.6

Move 61775 48.6
Arithmetic 16590 | 13.1

Logical 1958 1.5
Compute 18548 14.6
Compare 2120 1.7
Conditional Branch 11886 9.4
Unconditional Branch 6042 48

Call 9091 7.2

No-op 17646 | 13.9

Control 46785 36.8
Total 127108 100.0%

Table 1: R2000 Instruction Use

other instructions (in the case of a load instruction for example, any instruction which does not rely on the
loaded data can be used). In those cases where no suitable instruction can be moved into the delay state, a
nop instruction is used. This accounts for the high percentage of nop instructions in the count.t

Percentage use Number of
of Instructions Instructions
Never Used 8
<0.05% 8
< 1.0% 19
<2.5% 6
<5.0% 4
£7.5% 3
<10.0% 1
<15.0% 2
> 15.0% 1

Table 2: R2000 Patterns of Usage

The pattern of instruction usage shown in Figure 2 shows another expected result — namely that a large
percentage of the instructions are used with approximately 1% of the time (each), while a few instructions
are used with great frequency. The low frequency instructions and the high frequency instructions each
take up approximately half of the work load.

Of the 51 instructions on the R2000, 35 are used at least 0.05% of the time, and only 8 instructions are
never used. This means that the compiler uses 84% of the instruction set, and would indicate that the
compiler and the instruction set are well matched (in that the architecture is adequate for the task, and the
compiler covers the instruction set).

Recall that we are not considering floating point or co-processor instructions in our count, but that we are
considering even those instructions which are likely to be used only in an operating system context. Of the
8 instructions which the MIPs compiler does not generate, 3 are associated with operating system functions,
another 3 are used only when arithmetic overflow checking is necessary (which C does not require, but
other languages do), and yet another is used only when a branch target is farther from the source than any
of our tests allowed. If these are eliminated from our count, the R2000 C compiler is able to use all but one
operation of the instruction set!

t The version of the Mips assembler reorganizer (that part of the compiler which is responsible for filling in delay slots
with instructions other than nop instructions) that was available to us is somewhat conservative in its reorganization stra-
tegy. The most recent version is more aggressive, and is able to reduce the percentage of nop instructions.

114 EUUG Autumn 89 - Vienna, 18-22 September

RISC vs. CISC From the Perspective of Compiler/Instruction Set Interaction

For all of the RISC architectures, some leeway should be allowed in the instruction usage count. The MIPS
R2000 assembly language reference guide lists a nop instruction, when in fact this operation is performed
by a shift by zero bits of the zero register into itself. (Other non-operations exist in the instruction set, such
as an add immediate to self of 0. 1 am told that this choice of no-op, however, presented itself as a result of
the layout of the R2000 IC mask, in that it has an instruction code of 0x00000000). A move instruction is
similarly listed as being in the instruction set, when in fact a move is really just an unsigned add with an
addend of zero. The SPARC and MC88100 instructions perform similar prestidigitization.

Address Mode Example | Count % used
Immediate 35 23178 9.8%
Absolute label 28852 12.2%
Register r2 140419 59.8
Displacement 35(r2) 42557 18.1
Total 235006 100.0%

Table 3: R2000 Addressing Mode Use

Looking at the addressing modes available on the R2000, we see that all of them are used, and that all of
them are used with a reasonable frequency. Although absolute addressing is infrequently used, it is
essential for accessing global variables (and its function cannot be easily duplicated by any combination of
any other addressing mode).

3.2. Analysis of Motorola 88100 C Compilers

The 88100 is Motorola’s new RISC processor, announced in late 1988. We were able to compare two
different compilers for the 88100. In this case the compilers were:

1) The Green Hills 88100 compiler (version 1.8.4), and
2) The Gnu 88100 compiler (version 1.30).

The Gnu compiler was billed as untested, but generated what appeared to be correct code. Occasionally,

however, it dumped core and was unable to completely process a source file (this happened extensively in
the source code for eff, which does all sorts of questionably legal things). Because of this. the instruction
counts and addressing mode usage counts for the Gnu compiler are lower than they should be. The results
obtained from the two compilers were similar, although as with other sets of compilers, the individual code
idioms and instruction counts varied. Tables 4 through 6 summarize the results obtained with the two
88100 compilers.

A familiar pattern is seen in the 88100 pattern of instruction usage. For this processor, the number of move
instructions is somewhat low, and the logical instructions are rather high. One reason for this is that there
is no “move” instruction on the 88100. This function is assumed by an or with the zero register into the
destination register. If the or instructions used for this purpose (approximately 19.4% of the total
instruction count for the Green Hills compiler and 10.3% of the total for the Gnu compiler) are counted as
load instructions, the ratio of Move : Compute : Control instructions becomes 52.4 : 16.4 : 31.1 for the
Green Hills compiler and 54.4 : 11.7 : 33.9 for the Gnu compiler, figures which are much closer to the
norm we will see throughout this paper.

Unlike the R2000 and the SPARC, the 88100 does not use nop instructions to fill in delay slots following
load operations. Instead, it uses a “scoreboard” register to keep track of which data registers are presently
“in transit”. It uses the contents of this register to cause delays whenever needed (e.g., when the contents
of a data register is not yet valid due to a load in progress). Consequently there are no nops needed on the
88100. This accounts for the lower fraction of control operations in the instruction mix.

t In order to examine the real instructions an addressing modes used on the R2000), an object code disassembler -must
be used. In the disassembler, absolute mode is used only for jump instructions (including calls to subroutines). Branches
and load-address instructions, although coded with labels in the assembly language, are reported by the disassembler as im-
mediate mode operands. By counting the branches and certain 1ui instructions, many uses of immediate mode can be as-
sumed to be absolute mode — a translation which has been performed here. Due to the inherent inaccuracy of this method,
the reported values may be in error by a few tenths of a percent.

EUUG Autumn 89 — Vienna, 18-22 September

RISC vs. CISC From the Perspective of Compiler/Instruction Set Interaction

Green Hills Gnu
Instruction Class Count % used Count % used
Load 23907 225 24611 304

Store 9959 94 9887 12.2

Shuffle 1215 1.1 1115 1.4

Move 35081 X 35613

Arithmetic 12996 12.2 8386 104

Logical 25060 23.6 9428 11.7
Compute 38056 . 17814

Compare 4898 4.6 4905 6.1
Conditional Branch 11502 9288

Unconditional Branch 7893 7.4 5256 6.5

Call 8762 8.3 7958 9.8

Control 33055 31.1 27407 339
Total 106192 100.0% | 80834 100.0%

Table 4: 88100 Instruction Use

Percentage use Number of Instructions
of Instructions | Green Hills Gnu

Never Used 23

< 0.05% 10

< 1.0% 10

<2.5% 4

<5.0%

<7.5%

<10.0%

< 15.0%

> 15.0%

N
S

OSNNA~Rh OO

Table 5: 88100 Patterns of Usage

When we look at the pattern of instruction usage for the 88100, we see the similar curve of roughly half of
the instructions being used for roughly a third of the work, another 4 instructions performing roughly half
of the work, and the remainder taking up the slack. This pattern repeats itself throughout most of the
architectures examined (with the greatest variation being in the number of instructions which were unused).

The Green Hills compiler used 38 of the integer instructions, meaning that 62% of the instruction set (61%
for the Gnu compiler) is used by the compiler. Again, this indicates that the compiler is making effective
use of the instruction set. As with the R2000, some of the never used instructions are designed for
operating system use, or are used for array bounds checking. If these instructions are eliminated from our
count, the percentage of instructions used rises to 70% for the the Green Hills compiler (69% for the Gnu
compiler).

T The Condition and Bit Field modes are really just mnemonic devices for specifying single bits or collections of bits,
and are another form of Immediate operand. They are included only for completeness, but should be counted as immediate
operands.

+ The Green Hills compiler does not use Register Indirect Index mode. One reason for this is that when it needs an in-
dex of zero, it uses Register Indirect Immediate mode with an immediate operand of 0. On the other hand, the Gnu com-
piler accomplishes this by using Register Indirect Index with the zero register. These are essentially equivalent when the
index value is zero, and counts for 13733 of the accesses with the Green Hills compiler, 8871 of the Gnu compiler.

EUUG Autumn ‘89 — Vienna, 18-22 September

RISC vs. CISC From the Perspective of Compiler/Instruction Set Interaction

Green Hills Gnu
Address Mode Example | Count % used | Count % used
Immediate 35 31207 12.4 12864 7.0
Conditiont eq0 9231 3.7 8715 4.8
Bit Field¥ 3<0> 826 0.3 1100 0.6
PC Relative label 26663 10.6 21457 11.8
Register r2 149673 59.5 103174 56.7
Register Indirect Immediate r2,35 32674 13.0 24054 13.2
Register Indirect Indexf r2,r3 0 — 9706 53
Register Indirect Scaled Index r2[r3] 1192 0.5 931 0.5
Total 251466 100.0% | 182001 100.0%

Table 6: 88100 Addressing Mode Use

The addressing modes on the 88100 almost all involve registers, and syntactically appear quite similar.
The differentiation is found in the instruction to which the registers are applied. The three register indirect
modes are only used with the load, store, and memory exchange instructions.

Again, we see that the modes used (and as we will see later, most frequently used by complex
architectures, too) are immediate, register, absolute, and some form of register indirect. In the 88100, some
instructions automatically use registers as a source of an indirect address, so Register mode is counted
rather high. In truth, a large fraction of this mode could be counted with Scaled mode (a special type of
indirection which is explicitly called out in the assembler).

3.3. Analysis of SPARC C Compilers

The SPARC is the new “standard’ architecture designed by Sun Microsystems. At least one other hardware
manufacturer has adopted the SPARC instruction set architecture and is developing a GaAs version of the
chip. We were able to evaluate two different compilers for the SPARC. In this case the compilers were:

1) The Sun SPARC compiler, and
2) The Gnu SPARC compiler (version 1.30).

Regrettably, the Gnu compiler was incomplete, and often dumped core during compilation (again, typically
while compiling parts of efl). We therefore present the statistics of this compiler with the caveat that the
results may be incomplete and inconclusive.

The results obtained from the two compilers were, however, similar. As with other sets of compilers, the
individual code idioms and instruction counts varied, although the general patterns of instruction and
addressing mode usage was consistent between the two compilers. Tables 7 through 9 summarize the
results obtained with the two SPARC compilers.

A familiar pattern is seen in the SPARC pattern of instruction usage. For the Gnu compiler for this
processor (as with both compilers for the 88100), the number of move instructions is somewhat low, and
the compute instructions are rather high. One reason for this is that there is no “load address™ instruction
on the SPARC. This function is broken up into two instructions: sethi, which loads the high 22 bits of
the address, and an or instruction which loads the low bits of the address. If the or instructions used for
this purpose (approximately 9.5% of the total instruction count) are counted as load instructions, the ratio
of Move : Compute : Control instructions for the Gnu compiler becomes 47.4 : 9.7 : 42.9, which is much
closer to the norm we have seen previously.

The SPARC is a difficult architecture for which to classify instructions when considering the patterns of use.
On the one hand, it clearly follows many of the precepts established for load-store RISC architectures. On
the other hand, it has 48 different conditional branch and conditional trap instruction mnemonics (none of
the latter being used by the C compiler), branch instructions which either execute or annul the following
instruction on condition FALSE, and instruction mnemonics for arithmetic and logical instructions that
modify the condition code register, as well as arithmetic and logical instructions that do not.

For purposes of this study, our best intuitive sense was that the paired conditional branch and branch-annul
instructions should be counted as a single instruction. We also felt that the “modify condition codes” bit
was an option to the various instructions (since it essentially gates the output of the condition code
calculations into the condition code register) rather than altering the essential function of the instruction.

EUUG Autumn ‘89 - Vienna, 18-22 September 117

RISC vs. CISC From the Perspective of Compiler/instruction Set Interaction

Sun Gnu
Instruction Class Count % used Count % used
Load 29018 294 13320 19.2
Store 6822 6.9 4026 59
Shuffle 11717 119 8806 12.8
Move 47557 48.2 26062 379
Arithmetic 8312 8.4 5930 8.6
Logical 4354 44 7254 10.6
Compute 12666 12.8 13184 19.2
Compare 9866 10.0 5023 73
Conditional Branch 9636 9.8 5424 7.9
Unconditional Branch 4467 4.5 3465 5.0
Calt 10703 10.8 7136 104
No-op 3779 38 8454 123
Control 38471 39.0 29502 429
Total 98694 100.0% | 68748 100.0%

Table 7: SPARC Instruction Use

Percentage use | Number of Instructions
of Instructions Sun Gnu
Never Used 37 40
<0.05% 5 5
< 1.0% 13 14
<2.5% 10 6
<5.0% 8 6
<7.5% 1 2
<10.0% 2 3
< 15.0% 2 2
> 15.0% 0 0

Table 8: SPARC Patterns of Usage

The SPARC instruction set seems to be covered very well by the two compilers, showing the same even
distribution of instruction usage of the other RISC compilers. Looking at the raw numbers, though, the Sun
compiler uses 41 out of 78 instructions, or 52.6% of the instruction set (48.7% for the Gnu compiler) — a
rather poor showing for a RISC architecture. If, however, we eliminate the kernel and system specific
instructions from consideration (including the conditional trap instructions which are never used by C but
are probably used extensively by Ada), the coverage of the instruction set rises to a much more respectable
69.5% (64.4% for the Gnu compiler).

With the SPARC, we see the same 4 basic modes being used with roughly the same frequency as the other
two RISC architectures. The dual register mode — Indirect-2 — is used infrequently in a static count. This
mode is very useful for stepping through arrays and structures, and we feel that this mode would be used
extensively in a dynamic analysis.

As shall be shown in the subsequent sections, the four addressing modes that are shared by the three RISC
architectures are the same as those modes which are used most frequently by the CISC architectures we
shall now examine.

T On the SpaRc, there are actually only S addressing modes. Register-1 is a special case of Register-2, where the zero re-
gister is used as the second register (and hence is not expressed in the assembler output). Similarly, Indirect-1 is a special
case of Indirect-2, where the second register is the zero register. In the interests of examining all the possible permutations
and their frequency of use, the special cases are separated from each other.

118 EUUG Autumn’89 - Vienna, 18-22 September

RISC vs. CISC From the Perspective of Compiler/Instruction Set Interaction

Sun Gnu
Address Mode Example Count % used | Count %used

Immediate 35 40950 23.2 10784 11.3
Absolute label 21276 12.0 19363 20.3
Register-17 %2 93772 53.1 54599 57.2
Register-2 $2+%5 0 — 0 —
Indirect-1 [%3] 3718 2.1 8580 9.0
Indirect-2 [%$3+%5] 722 04 0 —
Indirect-3 [$3+37] 16145 9.1 2083 2.2
Total 176583 100.0% | 95409 100.0%

Table 9: SPARC Addressing Mode Use

4. CISC Architectures

The second part of our analysis is to compare the results of CISC compilers with those of the RISC
compilers. The three CISC machines that were chosen were those found in most UNIX systems currently
on the market, namely the Digital VAX, the Motorola 68020, and the Intel 80386.

4.1. Analysis of VAX C Compilers

The VAX is a classic CISC register architecture — almost all instructions can use almost all of the
addressing modes, with many instructions having both a two and three operand format. There is no need to
load the instruction operands into registers — the addressing modes can reference memory as well as
register based data.

The same six applications and libraries were run through the following VAX compilers

1) Berkeley VAX C Compiler (Ultrix version 1.2),
2) Tartan Labs C Compiler (version of March 12 1986), and
3) DEC VMS C Compiler (version 2.4).

The results obtained from the three compilers were very similar. While the actual code idioms generated
by the three compilers were different, and while the count of individual instructions varied somewhat, the
statistics that we examined for this report are surprisingly similar. All three values are reported in Tables
10 through 12. :

Berkeley Tartan Labs DEC (VMS)
Instruction Class % used Count % used Count % used
Move 40.2 28217 40.7 30941 39.8
Arithmetic 8.0 5460 7.9 6320 8.1

Logical 1.2 956 1.4 1012 1.3
Compute . 6416 . 7332

Compare 8734 12.6 10945 14.1
Conditional Branch 10632 15.3 10894 14.0
Unconditional Branch . 6602 9.5 6737 8.7

Call 8776 12.6 8994 11.6

No-opt 0o — 1926 2.5

Control 50.7 34744 50.1 39496 50.8
Total 100.0% | 69377 100.0% | 77769 100.0%

Table 10: Vax Instruction Use

1 The DEC VMS C compiler uses nop instructions to cause labels (i.e., branch targets) to be placed on even byte ad-
dress boundaries. Often, these nop instructions immediately follow a branch instruction (the branch around the “else”
clause of an “if-then-else™), so that they are never executed and incur no run-time penalty. Neither the Berkeley nor the

EUUG Autumn 89 — Vienna, 18-22 September

RISC vs. CISC From the Perspective of Compiler/Instruction Set Interaction

The first point of interest is the comparison between the VAX and the general RISC instruction usage.
Although the actions of the various instructions are quite different on the two machines, the ratios of move
instructions to compute and control instructions is similar on the two machines. This similarity means two
things:
1) The applications and libraries used in this evaluation are a correct choice, since they produce
similar results on two highly different architectures, or

2) The simple instructions on the R2000 are as adequate to the task as are the complex ones on
the VAX.

To further address the second point, Table 11 examines the frequency of instruction usage on the VAX.

Percentage use Number of Instructions

of Instructions Berkeley Tartan Labs | DEC (VMS)

Never Used 117 101 111

< 0.05% 34 41 26

<1.0% 44 48 54

<2.5% 5 10 8

<5.0% 3 5 7

<7.5% 4 2 1

<10.0% 0 0 1

< 15.0% 3 3 2

> 15.0% 0 0 0

Table 11: Vax Patterns of Usage

Some very interesting information now presents itself. Ignoring those instructions which are never used, or
used only rarely, the frequency of instruction use very closely parallels that of the R2000 instruction
usage.f What is most notable, however, is that of the 210 integer instructions on the VAX, over 100 are
never used by either of the three compilers, and another 33 (on the average) are used < 0.05% of the time.
This means that depending on the compiler, between 65% and 72% of the integer instruction set that is
available to the VAX C compilers is never used, or used with such a small degree of frequency as to make
one ask “why are these instructions present in the architecture?”

In addition to the 210 integer instructions, there are an additional 110 floating point instructions which are
not being considered in our calculations. To be sure, some of the instructions which the compiler never or
rarely generates are used only in an operating system context, but many are what would be expected to be
generated. To be fair to the designers of the VAX, some of these instructions indeed have a function.
There are some instructions that are specifically designed for FORTRAN or for PL/1, but even these perform
functions that could very easily be executed using one or two other instructions.

One wonderful example of this is the ediv instruction, which calculates both the quotient and remainder
for an integer division. Unfortunately, neither the Berkeley, Tartan Labs, nor the DEC (VMS) compiler
take advantage of this fact, and use this instruction only for calculating remainders (the division being
performed by other means). The Minsky exception principle says that the compilers should probably have
some special case processing to recognize when both a quotient and remainder are being calculated, and
use the ediv instruction for just this purpose. The fact is, however, that either none of the compiler
teams thought of this special case, or that the level of effort required to implement it was sufficiently high
to warrant not including it. In either case, much the complexity of the instruction set is unused for these
and similar reasons.

The VAX also has a very large number of addressing modes. The great flexibility in addressing modes is
considered one of the strong selling points of CISC architectures. However, when the frequency of use of
these modes is examined, some questions arise as shown in Table 12.

Tartan Labs compiler uses this technique.

} The author would hasten to point out that the ordinate values in Tables 2, 5. 8. 11, 15, and 18 were chosen prior to
knowing those on the abscissa. This is not a case of massaging the data to fit a curve — the data fits the curve all by itself!

t The VMS C compiler exhibits a substantially higher percentage of Register and Deferred (i.e.. indirect) mode usage
than do the other two compilers. This is readily understood when one realizes that the UNIX compilers use only registers
Ré-Ri1 for local (non-temporary) variables, while the VMS compiler is allowed to use registers Ro-R11 for the same pur-
pose. This extra allowance enables the VMS compiler to store addresses in registers instead of using the Relative address-
ing (i.e., memory direct) mode.

120 EUUG Autumn ‘89 — Vienna, 18-22 September

RISC vs. CISC From the Perspective of Compiler/Instruction Set Interaction

Berkeley Tartan Labs DEC (VMS)
Address Mode Example Count % used | Count % used | Count % used

Immediate $270 4685 4.6 5105 49 4279 3.8
Literal $24 (n < 64) | 14942 14.8 15122 145 16449 144
Absolute $*label 0 — 0 — 0 —_
Absolute Indexed $*label[r4] 0 — 0 — 0 —_
Relative label 28.1%
Relative Indexed label([r4] 0.5 04 0.2
Relative Deferred *label 03 . —
Relative Deferred Indexed *label[r4] — R —
Register r3 32.3%
Deferred (r3) 2.3 . 8.4t
Deferred Indexed (r3)[r4d] 97 0.1 44 0.5
Autoincrement (r3)+ 0.5 . 0.5
Autoincrement Indexed (r3)+(r4] 0 — 0 0 —
Deferred Autoincrement *(r3)+ 0 — 0 0 —
Deferred Autoincrement Indexed * (r3) +[r4] 0 — 0 0 —
Autodecrement -(r3) 935 0.9 1290 1.2 1076 0.9
Autodecrement Indexed -(r3) [r4] 0 — 0 — 0 —
Displacement 24 (r3) 13059 129 9827 94 11568 10.1
Displacement Indexed 24 (r3) [r4] 86 0.1 89 0.1 167 0.1
Displacement Deferred *24 (r3) 753 0.7 670 0.6 568 0.5
Displacement Deferred Indexed ~ *24 (r3) [r4] 122 0.1 169 0.2 123 0.1

Total 100903 100.0% | 104482 100.0% | 114061 100.0%

Table 12: Vax Addressing Mode Use

Of the 21 addressing modes available on the VAX, 7 are never used by the Berkeley and Tartan Labs C
compilers, 8 by the DEC C compiler. Another 9 are used (on the average) less than 1% of the time, so that
simulating their actions through a combination of other instructions and modes would be worthwhile. In
fact, when we examine the addressing modes that are used most frequently (namely Immediate, Literal,
Relative, Register, and Displacement), we find that the modes correspond exactly to those available on the
simpler RISC instruction set of the Mips (Immediate and Literal modes on the VAX are identical but for the
length of the operand, and correspond to the MIpS Immediate mode). Considered together, the usage of
these five simple modes comprises between 96.4% and 97.8% of all the addressing mode usage on the
VAx!

Why then are all of these addressing modes present, if they are hardly ever used, and when they can be
simulated using other modes? The VAX was supposedly designed with the help of compiler writers. With
all the superfluous instructions and addressing modes, one is inclined to ask *“What happened?” There can
be no answer to this question — all of the fancy addressing modes of the VAX are superfluous, and need not
be present in an architecture at all. Compiler technology has only gotten better over the last 10 years, so
one can only conclude that these frills were never necessary.

Before we leave the VAX, let us examine one more point, namely that of the 3 operand instructions. Many
VaX instructions allow the programmer to specify three operands instead of two, so that the high level
instruction a = b + ¢ may be coded as:

addl3 b, ¢, a
instead of the slightly more cumbersome:

movel b, a
addl2 ¢, a

Many compilers go to great length to try to use this 3 operand mode, since it results in smaller and more
efficient code. However, in spite of all this effort on the part of the compilers, the 3 operand mode is
greatly underutilized as shown in Table 13.

EUUG Autumn 89 — Vienna, 18-22 September

RISC vs. CISC From the Perspective of Compiler/instruction Set Interaction

Berkeley Tartan Labs DEC (VMS)
Number of Operands | Count % used | Count % used | Count % used
2 Operand 29155 91.0 30233 91.0 33884 92.0
3 Operand 2870 9.0 3004 9.0 2930 8.0
Total 64576 100.0% | 66689 100.0% | 72913 100.0%

Table 13: 2 Operand vs. 3 Operand Addressing

As can be seen, the 3 operand mode is used (at best) only 9.0% of the time. The instruction logic necessary
to distinguish between these modes is made unnecessarily complicated (and slowed) by requiring it to
handle addressing modes that are rarely used. To be sure, the 2 operand mode requires that more
instructions be executed. The whole machine is slowed by its complexity. If the architecture only had 1
and 2 operand modes, then the whole system would run faster (having one less mode to decode), and only
in 4.5% of the instructions (at worst) would extra work be incurred. We feel that the payoff is on the side
of simplicity, and not on that of complexity.

4.2. Analysis of MC68020 C Compilers

The MC68020 is another classic CISC architecture that is widely used in the industry, and especially in the
UNIX marketplace. It differs from the VAX in that the 68020 has specialized address and data registers,
while the VAX has general registers which can be used for either purpose. Other than this primary
difference, it shares with the VAX the ability to directly address both memory and registers from most
instructions, and the large number of addressing modes and instruction types.

We were able to evaluate two different compilers for the 68020. In this case the compilers were:
1) The Sun 680x0 compiler (operating system version 3.5), and
2) The Gnu 680x0 compiler (version 1.31).

The results obtained from the two compilers (both with the 68020 code generation option enabled) were
again similar. As with the VAX, the individual code idioms and instruction counts varied, although the
general patterns of instruction and addressing mode usage (as seen in Tables 14 through 16) was consistent
across the two compilers.

Sun Gnu
Instruction Class Count % used Count % used
Move 41383 46.3 39518 46.6
Arithmetic 12566 14.1 10527 12.4
Logical 1386 1.6 1370 1.6
Compute 14021 15.7 12011 14.2
Compare 9281 10.4 9050 10.7
Conditional Branch 9950 11.1 10385 12.3
Unconditional Branch 5844 6.5 5561 6.6
Call 8856 9.9 8226 9.7
Control 33931 38.0 33222 39.2
Total 89335 100.0% | 84751 100.0%

Table 14: 68020 Instruction Use

Examining the instruction class coverage, we see patterns that are quite similar to the other processors and
compilers in the test suite. This similarity of use of the various instruction classes adds to our belief that
our methods and test suite were valid.

When we examine the pattern of instruction use, we find that as with the VAX, the 68020 compilers are
unable to effectively utilize the instruction set of the target architecture.

122 EUUG Autumn 89 — Vienna, 18-22 September

RISC vs. CISC From the Perspective of Compiler/Instruction Set Interaction

Percentage use | Number of Instructions
of Instructions Sun Gnu

Never Used 89
< 0.05% 11

< 1.0% 24
<2.5%
<5.0%
<7.5%
<10.0%
<15.0%
> 15.0%

Table 15: 68020 Patterns of Usage

Without considering the floating point co-processor instructions, of the 140 instructions listed in the
MC68020 instruction set, 88 (on the average) of the instructions are never used by the compilers, and
another 12 (on the average) are used < 0.05% of the time. This means that roughly 71% of the 68020
instruction set is not used by either the Sun or the Gnu C compiler. Of course, some of these “unused”
instructions are used only in an operating system context (i.e., return from trap or test-and-set instructions).
Nevertheless, the very large fraction of unused or unusable instructions seems to indicate that the 68020
instruction set architecture is overly complicated. The 68030 introduces even more addressing modes — we
wonder how, or even whether they will be used by compilers.

Gnu
% used
13.0
27.0
40.4

Sun

Address Mode % used

Immediate
Absolute
Register
Register Indirect
Postincrement
Predecrement
Displacement

Example
#270 13.9
label 294
d3 359
a3e@ 4.0 6.7
al3@+ 0.4 0.9
a3@- 4.5 6.1
a3e(4) 11.0 4.8

PC Displacement
Indexed

PC Indexed

Memory Postindex
Memory Preindex

PC Memory Postindex
PC Memory Preindex

pc@(4) — —

a3@(4,d3:w:2)

pc@(4,d3:w:2)
([4,a3],d3:w:2,300)
([4,a3,d3:w:2],300)
((4,pc],d3:w:2,300)
([4,pc,d3:w:2],300)

0.8
0.1

0
0
0
0

0.9
0.1

Total 136055 100.0% | 131014 100.0%

Table 16: 68020 Addressing Mode Use

The most notable difference in addressing mode usage was that the Gnu compiler is a little more clever in
its use of register based address modes. It also seems to keep better track of addresses in registers, and
consequently is able to use the register indirect, predecrement, and postincrement modes with greater
facility.

However, of the 14 addressing modes available on the 68020, the three modes which are used the most
frequently are (again): immediate, absolute, and register. Displacement mode and register indirect mode
(the latter being a special case of the former, with a zero displacement) fill in the remainder of the main
usage of the addressing modes. The more complicated modes involving indexing are used rarely or not at
all. While we can see their occasional utility, we feel that the architecture would be better off without
them. Again the question arises, “if simple instructions and address modes can perform the same functions
as complex ones, and if the very complex functions of CISC architectures are rarely used, why are they
present, instead of allowing the compiler to generate a sequence of simple instructions?”

EUUG Autumn 89 ~ Vienna, 18-22 September

RISC vs. CISC From the Perspective of Compiler/Instruction Set Interaction

4.3. Analysis of 80386 C Compilers

The 80386 is another yet classic CISC architecture that is widely used in the industry, in both the UNIX and
PC marketplace. The notable features of this processor are a baffling array of addressing modes, and the
fact that the specialization of registers in the 80386 is even stranger than that in the 68020.

We were able to evaluate two different compilers for the 80386. In this case the two compilers were:
1) The Sun 80386 compiler (operating system version 4.0), and
2) The Gnu 80386 compiler (version 1.31).

The results obtained from the two compilers were again similar. As with the other two CISC architectures,
the individual code idioms and instruction counts varied, but the general patterns of instruction and
addressing mode usage (as seen in Tables 17 through 19) was consistent across the two compilers.

Sun Gnu
Instruction Class Count % used Count % used

Load 6891 7.4 9034 11.7
Store 14521 155 13172 17.1
Shuffle 27310 29.2 18585 24.1

Move 48722 . 40791

Arithmetic 7933 8.5 4173 5.4
Logical 2801 3.0 1508 2.0

Compute 10734 . 5681

Compare 9596 103 8753 114
Conditional Branch 10018 10.7 9131 11.9
Unconditional Branch 5860 6.3 4881 6.3
Call 8534 9.1 7737 10.1
Control 34008 36.4 30502 39.6

Total 93464 100.0% | 76974 100.0 %

Table 17: 80386 Instruction Use

Examining the instruction class coverage, we see patterns that are quite similar to the other processors and
compilers in the test suite. This similarity of use of the various instruction classes adds to our belief that
our methods and test suite were valid.

When we examine the pattern of instruction use, we find that as with the other two CISC machines, the
80386 compilers are unable to effectively utilize the instruction set of the target architecture.

Percentage use | Number of Instructions
of Instructions Sun Gnu

Never Used 105 106
< 0.05% 4
< 1.0% 21
<2.5%
<5.0%
<7.5%

< 10.0%
<15.0%
> 15.0%

Table 18: 80386 Patterns of Usage

Ignoring the floating point co-processor instructions, of the 146 instructions listed in the 80386 instruction
set, 105 of the instructions are never used by the compilerst and another 5 (on the average) are used <

t As with the other CISC architectures, earnest attempts were made to portray the 80386 instruction set in a fair light.
To this end, many different instruction mnemonics were considered to be identical for instruction counting purposes. Ex-
amples of this consolidation include grouping the jcc (near) and jcc (short) instructions, the cmps, cmpsb, cmpsw,

EUUG Autumn'89 - Vienna, 18-22 September

RISC vs. CISC From the Perspective of Compiler/Instruction Set Interaction

0.05% of the time. This means that roughly 75% of the 80386 instruction set is not used by either the Sun
or the Gnu C compiler — the worst showing of any architecture reviewed for this paper. As with the other
two CISC architectures, some of these “unused” instructions are used only in an operating system context
(i.e., return from trap or bit test-and-set instructions). Nevertheless, the very large fraction of unused or
unusable instructions seems to indicate that the 80386 instruction set architecture suffers from the same
overcomplicated design that the other CISC machines do.

Sun Gnu
Address Mode Example Count % used | Count % used
Immediate $76 19396 14.2 14838 13.4
Register $ebp 62042 45.3 47003 42.5
Register Indirect *%eax 4 — 32 —
Offset 12 (%ebp) 20041 14.6 17371 15.7
Offset Indirect *12 (%ebp) 16 — 0 —
Absolute _foo 34050 249 30098 27.2
Indirect * foo 13 — 0 —
Indexed (%eax, $edx) 229 0.2 343 0.3
Indexed Offset 4 ($eax, sedx) 14 — 72 0.1
Scaled Indexed (%eax, $edx,4) 697 0.5 479 04
Scaled Indexed Offset 4 (%eax, $edx, 4) 1 — 132 0.1
Based Indexed _foo(, %edx, 4) 396 0.3 268 0.2
Indirect Indexed * foo(,%edx,4) 57 — 52 —
Total 136956 100.0% | 110688 100.0%

Table 19: 80386 Addressing Mode Use

It was not clear exactly how we should describe and partition the 80386 addressing modes. One way of
describing them is that there are a few modes with many optional components. Another is to attempt to
describe each of the options as a separate addressing mode. The compromise description which we arrived
at was to simply list all of the addressing modes that either of the two compilers used, and simply make the
parenthetical remark that there are many more addressing modes possible on the 80386 than are shown in
Table 19.

It should come as no surprise that the predominant addressing modes used by the 80386 compilers are (yet
again): immediate, register, absolute, and offset. Combined, these four modes account for 99% of all
instruction addressing in the sample code suite.

5. Comparing Object Code Size

What we have seen so far is that CISC instructions and addressing modes are used inefficiently, and that
RISC architectures are used much more efficiently. The question then arises “if RISC architectures require
multiple instructions to execute what is done in a single CISC instruction, won’t the program size on a
RISC architecture be concomitantly larger?” The answer is quite surprising. Comparing the total
instructions in Tables 1, 4, 7, 10, 14, and 17, we see that the number of instructions on the RISC
architectures is generally much larger than the CISC architectures. This might lead us to believe that the
RISC architectures are less efficient in storing programs. However, the number of instructions is not the
true measure of program size. Rather, it is the number of bytes of memory that the instructions occupy that
is of concern.

Each instruction on the R2000, SPARC and MC88100 occupies 4 bytes of memory, and generally executes
in a single machine cycle.t Although each instruction on the VAX typically occupies a single byte in
memory (the g and h format floating point instructions take two bytes each), the operands for the
instructions may require many bytes each. Each operand requires at least one extra byte of memory, and
some complex addressing modes on the VAX require an extra six bytes to store. The execution speed on a

and cmpsd instructions, all of the different call instructions, rotate instructions, shift instructions, etc. Without this
consolidation, the instruction count (and the fraction of unused instructions) for the 80386 would be much larger.

+ Some instructions, such as the multiply or divide instructions of the R2000, always take multiple machine cycles. On
the 88100 and the SPARC, instructions can take multiple cycles when the scoreboard register indicates a need to “stall” the
pipeline. These instructions are the exception, and not the rule.

EUUG Autumn 89 — Vienna, 18-22 September 125

RISC vs. CISC From the Perspective of Compiler/Instruction Set Interaction

VAX depends on the instruction, but generally the more complex an addressing mode, the longer the
execution time. On the 68020, each instruction occupies two bytes of memory. Depending on the
instruction and the addressing mode, between zero and four extra bytes of memory are needed per operand.
The 80386 instructions are either one or two bytes long, the complex addressing modes can take as many
as ten extra bytes. The instruction execution speed in the 80386 varies considerably, and can range from
one clock cycle to well over a hundred for some types of procedure call instructions.

When we compare program size in bytes (as in the following table), we see some surprising results.

Number of | Size in Fraction Bytes per

Architecture Compiler Instructions Bytes of VAX pcc | Instruction
R2000 Mips 127108 508432 1.70 4.00
88100 Green Hills 106192 424768 1.43 4.00
Gnu 80834 323336 n/at 4.00
SPARC Sun 98694 394776 1.33 4.00
Gnu 68748 274992 n/at 4.00
Berkeley 67104 297928 — 4.43
VAX Tartan Labs 69377 313384 1.05 4.51
DEC (VMS) 77769 280876 0.94 3.61
Sun 89335 337024 1.13 3.77
68020 Gnu 84751 248828 0.83 2.78
Sun 93464 7 7% 1%
80386 Gnu 76794 7% n/at ??j:.

Table 20: Program Size Differences

As can be seen, the difference in program size is not so pronounced when we measure the actual number of
bytes that the program occupies in memory. To be sure, the 30-60% increase in program size on the RISC
architectures is of some concern. However, there are a number of issues to consider other than just
instruction size.

1) The size of the instructions does not account for the total size of the program — statically and
dynamically allocated data must also be considered. By examining the contents of the
directories /bin, /usr/bin, /usriuch, and /etc on a uVAX, it was found that the number of bytes
of instructions (i.e., fext size) accounted for only 39% of the total number of bytes (i.e.,
text+data+bss) in the program. The percentage increase in program size becomes even smaller
when dynamically allocated data (e.g., that allocated with malloc) is counted in the total.

2) Some compilers (e.g., the MiPs R2000 compiler) perform routine inlining and interprocedural
optimizations. These techniques can lead to larger executable images, which nonetheless
execute much faster than those generated without this technique. All compilers used for this
paper were run with the highest levels of optimization available, and should not be penalized
for generating efficient code that happens to be larger than inefficient code.

3) Most UNIX systems, especially the newer RISC architectures, have demand paged executable
files, so an increase in program size is not necessarily reflected in a larger memory image.

4) In spite of the extra instructions that need to be executed, RISC processors execute programs
much faster than comparably priced CISC processors (the Mips M/500 executes integer
applications 6-10 times faster than the HVAX; the more recent models — the M/1000 and
M/2000 - perform even better).

¥ Because the Gnu compilers for the Sparc, 88100, and 80386 were untested. and because they occasionally dumped
core and were unable to completely process some files, the ratio of code sizes between these compilers and pcc are not re-
ported in this table.

i Unfortunately, we were unable to determine the size of the 80386 object code.

126 EUUG Autumn 89 — Vienna, 18-22 September

RISC vs. CISC From the Perspective of CompileriInstruction Set Interaction

Memory density is increasing and memory costs are decreasing at breakneck rates. People
nowadays think nothing of a {VAX personal workstation with 8 Mbytes of memory, when only
10 years ago some of the most powerful timesharing mainframes had only 1| Mbyte of
memory. Any extra cost incurred in memory with the new RISC processors is well worth the
benefit of increased throughput that the faster RISC processors provide.

As an aside, it is also interesting to note that the DEC (VMS) compiler produces smaller code than either
the Berkeley or Tartan Labs compiler, in spite of having a higher instruction count. This is accomplished
through an efficient use of the smaller sized addressing modes of the VAX.

6. What do the Results Tell Us?

Tables of figures are interesting in their own right, but what this paper sought to do was to provide insight,
and not just statistics. A number of things can be inferred from the tables. The first is that within each
architecture (where multiple compilers were evaluated), the instruction coverage and address mode
coverage of the different compilers did not vary substantially. This tells us that although the different
compilers were written by completely different groups, who at times had completely different goals (e.g.,
speed vs. space optimization), the overall functionality of the instruction set architecture was utilized in the
same way by each group.

The addressing mode usage was nearly identical for every compiler within an architecture. Although they
were not called out explicitly in any of the tables presented here, the individual instruction coverage (and
not just the instruction class) was also very nearly the same within an architecture. From this statistic we
may infer that if a feature of the instruction set architecture was valuable (i.e., a particular instruction or
addressing mode), it was used. Conversely, if it was not valuable, it was not used.

The second point worthy of note is an observation that crosses architectural boundaries. Although the
actual instructions differ between architectures, the use of the different classes of instructions (i.e., move,
compute, and control) is also very similar.t This indicates that the test suite that was selected was a valid
one — that although the programs and hardware varied, the compiler’s use of the hardware for the programs
was consistent.

Finally, when we examine the difference between the RISC and CISC architectures in this paper, we
observe three things.

1) The reduced instruction sets are as adequate to the task of implementing (in assembly
language) the test suite as are complex instruction sets.

The size of the resultant programs on the RISC architectures is not substantially larger than
that on the CISC architectures, and

Generally speaking, this study showed that roughly 70% of RISC instructions are used by the
compilers and 30% are not. For CISC compilers, the statistic is reversed — roughly 30% of the
instructions are used, and 70% are not.

4) The “extra” instructions available on the CISC architectures are simply not used, and provide
trills that cannot be taken advantage of by the compilers considered in this evaluation.

To be tair, we must point out that the tests only evaluated C compilers, and did not examine FORTRAN,
Pascal, or Ada. It is entirely possible that compilers for these languages might generate slightly different
code (especially in the case of Ada and Pascal, which would almost certainly use the “bounds check”
instructions — the chk and chk2 instructions of the 68020, the tbnd instruction of the 88100, and the
bound instruction of the 80386 — to test the validity of array indices). However it is also the case that
many compiler writers (Berkeley, MiPS, and Tartan Labs included) use the same (or substantially the same)
code generator for different language front ends. In these cases, we feel that it would be unlikely that
different language compilers would produce substantially different results than those we have seen here.

+ The shight deviations (i.e.. between Vax and other architectures) can be attributed to ditferent number of registers (re-
quiring more data motion where fewer registers are available), and to the difticulty of classifying an instruction such as
“subtract one and branch if less than zero”. We classified it as a conditional branch instruction, but it also could be con-
sidered a compute or comparison instruction.

EUUG Autumn 89 - Vienna, 18-22 September

RISC vs. CISC From the Perspective of Compiler/instruction Set Interaction

7. Conclusions

In all the machines examined in this report, the more complicated the instruction set architecture, the less
utilized were the features of that architecture. While attractive to assembly language programmers, the
complex features of CISC architectures are simply not used by compilers. Since the great majority of
programmers write in high level languages (and not in assembly language), we feel that new architectures
should be kept simple, to allow compilers to make full use of their features.

It has been amply shown in the past few years that RISC architectures execute faster than comparably
priced and comparably sized CISC architectures. With the advent of GaAs technology, this speed
differential will become even more pronounced. Since GaAs technology is currently limited by the size of
the chips that can be produced, RISC becomes even more attractive, as it requires a smaller “footprint” to
implement.

The term reduced has in no way implied restricted, nor has it caused the major increases in code size that
CISC proponents claim will occur to support their cause. The slight increase in program size on the RISC
processors is more than offset by a substantially faster execution speed. If UNIX hopes to be the system of
tomorrow in addition to that of today, manufacturers of UNIX systems should concentrate their efforts more
on RISC machines, than on CISC machines.

8. Acknowledgments

I would like to gratefully acknowledge the invaluable assistance of Tony Birnseth, Mike O’Dell, and John
Devitofranceschi for gathering statistics on compilers to which I did not have direct access, and to Robert
Firth for his usual scathing (and technically brilliant) suggestions and commentary.

9. Bibliography

Mario Barbacci, William Burr, Samuel Fuller, and Daniel Siewiorek, Evaluation of Alternative Computer
Architectures, Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, February 1978,
Technical Report no. CMU-CS-77-EACA

C. Gordon Bell, “RISC: Back to the future?,” Datamation, 32(11), June 1986

Mark Himelstein, et. al., “Cross Module Optimization: Its Implementations and Benefits,” In Usenix
Conference Proceedings, June, 1987

Daniel Klein and Robert Firth, Final Evaluation of MiPs M/500, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, PA, November 1987, Technical Report no. CMU/SEI-87-TR-25

Veljko Milutinovic, et. al., “Architecture/Compiler Synergism in GaAs Computer Systems,” IEEE
Computer, 20(5):72-93, May 1987

Marvin Minsky, The Society of Mind, Simon and Schuster, NY, 1986, p.127
David Patterson, “Reduced Instruction Set Computers.” Communications ACM, 28(1):8-21, January 1985

Daniel Sieworick. C. Gordon Bell, and Alan Newell (eds.), Computer Structures: Principles and Examples,
McGraw Hill, New York, NY, 1982

UNIX Assembler Reference Manual, AT&T Bell Laboratories, Holmdel, NJ, 1979
VAX Architecture Handbook, Digital Equipment Corporation, Maynard, MA, 1981

MC68020 32-bit Microprocessor User's Manual, Second Edition, Prentice-Hall, Inc., Englewood Cliffs,
NJ, 1985

Assembly Language Programmer’s Reference Guide, Mips Computer Systems, Inc., Sunnyvale, CA, 1986
The SPARC Architecture Manual, Sun Microsystems, Inc., Mountain View, CA, 1987

MC8810 User’s Manual, Motorola Microprocessor Group, Austin, TX, 1988

80386 Programmer’s Reference Manual Intel Coporation, Santa Clara, CA. 1986

128 EUUG Autumn 89 — Vienna, 18-22 September

On the Evaluation of the Performance of RISC Systems

On the Evaluation of the Performance of RISC Systems

Kurt P. Judmann

Technical University of Vienna

ABSTRACT

Modern computer systems from the PC-level up to Supercomputers claim to gain
performance from using of a “Reduced Instruction Set”. From the users and system
analysts point of view it is hardly visible whether increased performance over other
systems results from a reduced instruction set or from other design features. Such
features can be cache hierarchies, parallel processing, pipelining or different
implementation of the memory interface. This paper describes a model which can be
used to calculate an average instruction execution time for instruction groups, and mixes
of instruction groups of a given processor. It allows comparisons of different processors
by using a code substitution method and helps in evaluating the effects of the different
architectural features used in RISC systems. Although the model can be used for
processors in general it is tailored to describe the techniques used in RISC processors.

1. Introduction in RISC concepts

Although there is no definition of the concept of Reduced Instruction Set Computers one can find certain
common strategies in the processors which claim to be of RISC nature. Since the concept calls for a
reduction of the instruction set it is obvious that the number of instructions in such a processor is limited.
This does not necessarily mean that the semantic level of the instructions, which is also frequently
characterized by the term complexity of the instructions needs to.be lower than in other processors.
However the basic RISC concept which is demonstrated in the development of the Berkeley RISC I and the
Stanford MIPS uses both the reduction of the number and of the complexity of the instructions. The goal is
to have a simple instruction set which can be executed fast by a relatively simple control unit. The gain in
speed achieved can be higher than the loss caused from the possible necessity of executing more
instructions to solve a given problem. Following this idea one could see Reduced Instruction Set
Computers in a way that they represent a subset of the Complex Instruction Set Computers but simply run
on a faster clock cycle. RISC Processors however take more advantage of other effects than of the simple
reduction of the instruction set. These effects include mostly the effective use of pipelining within the CPU
and the implementation of large register files on the CPU chip. Examples for these basic RISC concepts
are the Berkeley RISCs [Dit80a, Pat§82a, Pat85a], MIPS [Hen82a] and SRISC [Jud87a]. In other RISC
concepts like Transputers one may find communication support which is targeted to support
multiprocessing as well as floating point support. Modern microprocessors like the M88100 or the Intel
i860 which claim to be RISC processors combine standard CISC features with basic RISC ideas like fixed
instruction length, pipelining or register files on chip. Therefore these processors could also be seen as
even more complex CISCs with some simplifications in regard to the number and complexity of the
instructions. Therefore basic RISC processors which have few and simple instructions are furthermore
called “Simple” Reduced Instruction Set Computers. Processors having either few but dedicated and
complex instructions or more instructions above the basic semantic level are called “Complex” Reduced
Instruction Set Computers.

EUUG Autumn ‘89 — Vienna, 18-22 September

On the Evaluation of the Performance of RISC Systems

2. The execution time of a RISC instruction cycle

2.1. Von Neumann type instructions

Current RISC systems still follow some of the most important principles of the von Neumann concept
[Bur63a]. These principles describe a main storage which contains the instructions which are at least
partially stored in the same sequence in which they are to be executed. They have an address reference
included in the instructions which refers to the data to be processed. Because of the fact that RISC
processors tend to have bandwidth problems at the CPU ~ Memory interface some follow the so called
“Harvard Architecture™ with separated memories for data and instructions. This can be considered as an
extension to the “von Neumann” concept. According to the timing sequence in von Neumann machines
one can split an execution cycle into three main parts:

e Instruction fetch
e Operand fetch

. Execution

2.2. Instruction cycles of RISC processors

Although following general von Neumann rules RISC processors generally do have some of the listed
extended features:

e Three address architecture within the register file, one address architecture when referencing the main
memory. (Frequently restricted to Loads and Stores.)

e Harvard Architecture

e Integrated Cache memories for instructions and data

e Pipelining within the CPU with a fixed pipeline cycle aimed at synchronous operation of the pipeline
e Special multi-register management instructions on a built in register file (window management).

For the purpose of calculating the execution time of a cycle, its actions are described separately as related
to executing hardware units like ALUs, interfaces, data paths, etc. This enables the modeling of a given
architecture which is partially reflected in the hardware layout.

The execution time of any instruction is represented in (1):
t=tf +ta ++te +1ts)

tf instruction fetch

ta address calculation
to operand fetch

te instruction execute
ts result storage

To be able to build a relationship between the execution time of the different stages of instruction
execution and a program, each of the stages is described using parameters which can be derivated by
measurements or calculation for instructions and groups of instructions. The importance of the execution
time of a single instruction or a group of instructions for a given application can also be determined by
measurements or statistics so tha an average instruction time including all instructions with weight factors
can be calculated.

To represent the execution time of a simple RISC processor we use the SRISC [Jud87a],which has a
Load/Store architecture, Harvard architecture and the usual register file with window management. In a
first step the effect of the four stage pipeline is not considered to show the effect of pure reduction of
instructions.

The following description of the execution phases can be made:

if =tm)

tm main memory access time

130 EUUG Autumn ‘89 — Vienna, 18-22 September

On the Evaluation of the Performance of RISC Systems

ta=tc* (pol+po?) 3)

tc CPU base cycle time
pol, po2 probability of the presence of operands 1 and 2

to=(pr * tc +(l—pr)* tm)* (po 1+po?2)
pr probability of working on an operand contained in a CPU register

te =tc (5)
ts =pr * tc +(1-pr)* tm (6)

For any given instruction poi is evident, for an instruction mix it is the weighted average of the instructions
within the group.tm and pr describe the given environment.

2.3. Pipelined execution

In a pipelined processor the execution cycle is divided into phases which are independent from each other
by using different hardware resources within the processor and the environment for execution. These
phases are executed in parallel for subsequent instructions as described in detail for RISC I in [Pat85a]. If
a time frame is chosen so that all phases can be executed within the same time slot, the pipeline is working
synchronously. SRISC for example splits the execution cycle into four phases which can be executed
within the pipeline cycle time. Considering full synchronism the execution time for an average instruction
equals the phase cycle time tp, and is four times lower than in an equivalent non pipelined processor.
Pipelines however are mostly designed in a way that most, but not all cycle activities can be performed
within the cycle time. Activities which take much longer to execute than the average action, like extensive
address calculation or activities which cause a hardware conflict with other pipeline stages, cause the
execution of an extra cycle and a delay. There are even more reasons for delaying a pipeline which can be
found in software dependencies [Dit80b]. For SRISC the average execution time of an instruction can be
described as follows:

ti =tp + (po 14po 2)* tm* (1—pr)) + 3*pj*tm + pd*ip @)
The first term represents the synchronous cycle.

The second term represents the fact that SRISC will delay the pipeline for one memory cycle, if an operand
is accessed in the main memory.

The third term reflects the so called instruction dependency with the probability pj for the performance of a
jump instruction which causes the reorganization of the pipeline.

The fourth term reflects the so called data dependency with the probability pd for the occurrence of an
ALU instruction using a result which is produced by the previous instruction. This causes a delay of one
pipeline cycle to correctly pass the result to the next instruction.

The delay caused by terms 2 and 3 can be eliminated either by software regrouping or the implementation
of additional hardware features in the architecture like a cache memory and a second prefetch buffer for
the alternative jump sequence.

2.4. Cached memories

Pipelined RISC processors execute one instruction every pipeline cycle. With higher processor clock
speeds on one hand and lower memory access speed due to multiprocessor capabilities of modern
processors on the other, the use of cache memories becomes essential. According to the cache organisation
one would have to distinguish between cache hits and misses in tm and also between instruction and data
accesses. Concepts for the organisation of caches are described in detail in [Smi82a].

3. Performance evaluation using instruction groups

Performance analysis based on instruction groups requires knowledge about the statistical instruction usage
of a given application on one hand and a model for calculating the execution time for average instructions
as described in this paper on the other. Once one has focussed on an instruction mix which is believed to
represent a specific task, the average execution time for each group in the mix and finally for the whole mix
can be calculated. One could either use common instruction mixes like the Gibson Mix [Gib70a] or define

EUUG Autumn 89 — Vienna, 18-22 September

On the Evaluation of the Performance of RISC Systems

ones own mix as well. To be able to compare different processors and even different system architectures
one would still be able to use instruction mixes and groups when modeling the executing hardware
according to chapter 2. The instruction mix however has to be uniform for the processors to be compared,
so that the need appears to include groups which a given processor may not have implemented. Common
samples are floating point operations on simple RISCs or register file manipulation in CISC processors.
Since one is not able to model these instructions in some processors the average execution time has to be
represented through constructions using other instructions (subroutines).

4. Results

4.1. Instruction Mixes

Using a specific mix which distinguishes between transfer operations, jumps, arithmetic operations, test
operations and input output, the motorola M68020 and the SRISC processor have been compared. For
Pascal and C code which has been generated with compilers the following instruction group usage and
code substitution factors have been found:

Group p of group usage substitution factor SRISC/CISC
Transfer 0.41 0.6
Jump 0.30 1.1
Arithmetic 0.18 1.6
Test 0.09 2.1
1/0 0.02 1.2

This gives an overall factor for the average code length of a SRISC program compared with a M68020
program of:

Code SRISC/M68020 = 1.03

It appears that an average SRISC program is practically of equal length as the corresponding CISC
program.

4.2. Execution time

Using the simple model developed in 2.2 one can easily evaluate the effect of reducing the instruction set
and implementing other features such as a large register file. Provided both SRISC and M68020 run on the
same clock cycle the relationship between the execution times is:

tSRISC/AM68020 = 2.1

This shows that, ignoring the pipeline effect and not using a cache with the SRISC the M68020 is double as
fast as SRISC.

Considering the more detailed model and the four stage pipeline as well as modeling a simple cache
memory with a hit rate of 60 % the relationship between the execution times is:

tSRISC/tM68020 = 0.23

This shows that the gain af a factor 4 the RISC provides over the CISC is mostly due to the undisturbed
operation of the pipeline. This effect is lately also brought into CISCs with the sacrifice of some
addressing modes and some complex instructions.

S. Further investigations and designs

The advantage of evaluating processors by representing cycles according to their execution hardware can
be found in the fact that the architectural influences on the system level can be investigated separately from
the software and application issue. Current work focuses on modeling cache hierarchies for multiprocessor
systems, parallel processing as well as on the design of such systems.

EUUG Autumn 89 — Vienna, 18-22 September

On the Evaluation of the Performance of RISC Systems

References
[Hen82a] J. Hennesey et al., “The MIPS Machine,” Proceedings of the Spring Compcon 1982, pp. 2-7,
1EEE, Feb 1982.

[Bur63a] Burks, Goldstine, and von Neumann, Preliminary Discussion of the Logical Design of an
Electronic Computing Instrument, pp. 34-79, McMillan, New York, 1963. In A. H. Taub:
Collected Works of John von Neumann

[Dit80a} D. R. Ditzel and D. A. Patterson, Retrospective on High Level Language Computer
Architecture, pp. 97-104, 1980.

[Dit80b] D. R. Ditzel and D. A. Patterson, “The Case for the Reduced Instruction Set Computer,”
Computer Architecture News, vol. 8, no. 6, pp. 25-33, 1980.

[Gib70a] J. C. Gibson, “The Gibson Mix,” IBM Technical Report TR-00.2043, June 1970.

[Jud87a] Kurt P. Judmann, “On the Influence of the Reduction of the Instruction Set on the Architecture
of Microprocessors.” Ph.D. Thesis, Technical University of Vienna, 1987.

[Pat82a] D. A. Patterson and C. H. Sequin, “A VLSI RISC.” IEEE Computers, no. 9;, pp. 8-21, 1982.

|Pat85a] D. A. Patterson, “Reduced Instruction Set Computers,” Communications of the ACM, vol. 28,
pp. 8-21, January 1985.

[Smi82a] Alan J. Smith, “Cache Memories,” Computing Surveys, vol. 14, no. 3, Sept 1982.

EUUG Autumn 89 - Vienna, 18-22 September

134

EUUG Autumn 89 — Vienna, 18-22 September

SPARC — Scalable Processor Architecture

SPARC - Scalable Processor Architecture

Dr. Martin Lippert

Sun Microsystems GmbH
Bahnhofstrasse 27
D-8043 Unterfoehring
mlippert@sunmuc.uucp

ABSTRACT

This paper gives an overview over the technical concept of a new RISC architecture,
called SPARC, developed by Sun Microsystems. SPARC stands for Scalable Processor
ARChitecture — the design specification is published and licensable. Sun has licensed
SPARC processors to several semiconductor vendors and over 50 computer
manufacturers.

Its well known that RISC based microprocessors offer substantially more cpu power than
systems with processors based on a traditional architecture with complex instruction sets.
The term “scalable” refers to the size of the smallest lines on a chip. As lines become
smaller, chips get faster. However, some chips designs do not shrink well — they do not
scale properly — because the architecture is too complicated. Because of it’s simplicity,
SPARC scales well. Consequently, SPARC systems will get faster as better chip—making
techniques are perfected.

In combination with efforts of unifying UNIX, SPARC based systems will allow binary
compatibility among systems from different vendors like in the PC world today.

1. Introduction
This paper covers the evolution of RISC and the ideas behind SPARC very briefly in the beginning.

After this introduction an overview over the technical concept of the new RISC architecture, called
SPARC, is presented. SPARC is an acronym for Scalable Processor Architecture, which was developed by
Sun Microsystems between 1984 and 1987.

After that some competitive information is provided together with the status, what of SPARC’s vision is
reality today.

2. Evolution of RISC

The term RISC entered the lexicon in 1980, but the earliest designs similar to today’s RISCs were done by
Seymour Cray in the late 1960s for supercomputers. More recently, John Cocke led a group at IBM in the
early 1970s that worked on a simple architecture for nonscientific codes that resulted in the 801
minicomputer. This minicomputer was not very successful as a product. So RISC principles were
superceeded by other designs for quite a while.

Current RISC concepts didn’t crystalize until 1980 or 1981. Back then, UC Berkeley professor Dave
Patterson and his students were developing RISC microprocessors, while at Stanford, John Hennessy was
also working in RISC.

This historical vignette comes from RISC pioneer Patterson, who served as a consultant on Sun’s SPARC
project. Sun borrowed from Patterson’s work at Berkeley. The emphasis was on a simple architecture on a
single chip. They were particularly interested in UNIX and C because Bill Joy was working on Berkeley
UNIX at the same time.

EUUG Autumn 89 — Vienna, 18-22 September

SPARC — Scalable Processor Architecture

At Stanford, Hennessy was advancing the state of the art of compilers, with particular emphasis on Pascal,
while also building a VLSI chip. Although UNIX and C predominate in RISC, the IBM, Berkeley, and
Stanford research led to commercial machines based on RISC processors. See Figure 1.

CDC 6600 IBM 709
IBM 801
Berkley///7 Stanford
RISC 1 Ridge Pyramid MIPS
RISC II HP Spectrum MIPS-X

SOAR SPARC

Figure 1: RISC Architectures

3. The SPARC Vision

In 1964 Intel founder Gordon Moore was at a conference. Someone asked him how many transistors it
would be possible to put on a chip. Moore said that the answer to that question was a formula: 2 raised to
the power of the current year minus 1964. For example, in 1980, the number of transistors on a chip was
65,000. The formula became known as “Moore’s Law™ and it held true for about 20 years. Twenty years
later, Bill Joy was at a conference and predicted that the number of MIPS that could be squeezed from a
microprocessor in a given year would be “2 to the current year minus 1984".

This is, in other words, the SPARC vision. See Figure 2.

SPARC is a RISC microprocessor architecture, that is believed to be a leading standard for high
performance computing in the 90s. Due to the scalable architecture multiple binary—compatible SPARC
processors can be made by using different semiconductor process technologies, such as Gate Array,
CMOS, ECL or based on GaAs or superconductors.

SPARC processors will cover a broad range of performance points according to semiconductor technology
used, starting with PC’s and workstations, minicomputers and mainframes up to supercomputers.

4. SPARC and UNIX

SPARC and UNIX are highly complementary. SPARC can power a wide range of fast, flexible, low—cost
computers from the high to low end. Meanwhile, UNIX lets these machines offer important capabilities,
such as networking and windowing, linking all SPARC computers together through their common
Application Binary Interface (ABI).

Perhaps the most important element of a SPARC/UNIX system is a broad universe of software
applications, all compatible, all interchangeable between different SPARC computers from different
vendors. The key is standards. Specifically, UNIX System V, Release 4, which is endorsed by far more
leading companies than any other UNIX operating system. The other standard is SPARC, rapidly
becoming the CPU solution for tomorrow’s fast computers. See Figure 3.

136 EUUG Autumn ‘89 - Vienna, 18-22 September

SPARC — Scalable Processor Architecture

Performance
(Mips)

Multiprocessors or
Superconductors

Gate Array /
/ Supercomputer
Mainframes
Minis

Workstations

I
50

Figure 2: SPARC-Vision

Applications

UNIX System V Release 4

Windows X.11/NeWS
Networking NFS/RFS

Figure 3: SPARC and UNIX

EUUG Autumn'89 — Vienna, 18-22 September

SPARC - Scalable Processor Architecture

5. SPARC Architecture Features

In general a reduced instruction set computer maximizes speed of the processor by making it perform only
simplest and most used functions. Software performs infrequent functions minimizes instruction count and
data transaction count.

The SPARC architecture provides the following features:
e Simple instructions — Most instructions require only a single arithmetic operation.

e Few and simple instruction formats — All instructions are 32 bits wide, and are aligned on 32-bit
boundaries in memory. There are only three basic instruction formats, and they feature uniform
placement of opcode and register address fields.

Register—intensive architecture — Most instructions operate on either two registers or one register and
a constant, and place the result in a third register. Only load and store instructions access storage.

A large “windowed” register file — The processor has access to a large number of registers configured
into several overlapping sets. This scheme allows compilers to cache local values across subroutine
calls, and provides a register—based parameter passing mechanism.

Delayed control transfer — The processor always fetches the next instruction after a control transfer,
and either executes it or annuls it, depending on the transfer’s “annul” bit. Compilers can rearrange
code to place a useful instruction after a delayed control transfer and thereby take better advantage of
the processor’s pipeline.

One—cycle execution — To take maximum advantage of the SPARC architecture, the memory system
should be able to fetch instructions at an average rate of one per processor cycle. This allows most
instructions to execute in one cycle.

Concurrent floating point — Floating—point operate instructions can execute concurrently with each
other and with other non—floating—point instructions.

Coprocessor interface — The architecture supports a simple coprocessor interface. The coprocessor
instruction set is analogous to the floating—point instruction set.

Al support — The tagged arithmetic instructions can be used by languages such as Lisp, Smalltalk and
Prolog.

multiprocessor support — SPARC has two special instructions to support tightly coupled
multiprocessors.

6. SPARC Architecture Overview

A SPARC processor logically comprises an integer unit (IU), a floating~point unit (FPU), and an optional,
implementation—defined coprocessor (CP), each with its own set of registers. This organization allows
maximum concurrency between integer, floating—point, and coprocessor instructions. All of the registers,
with the possible exception of the coprocessor’s, are 32 bits wide. Instructions operate on single registers,
register pairs, or register quads. See Figure 4.

A typical system that uses the SPARC architecture is organized around a 32-bit virtual address bus and a
32-bit instruction/data bus. Its storage subsystem consists of a memory management unit (MMU) and a
large cache for both instructions and data. The cache is virtual-address—based. Depending on the storage
subsystem’s interpretation of the processor’s address space identifier bits, 1/O registers are either addressed
directly, bypassing the MMU, or they are mapped by the MMU into virtual addresses.

The SPARC Architecture does not specify an I/O interface, a cache/memory architecture, or an MMU.
Although the instruction set has no intrinsic bias favoring either virtual- or real-addressed caches, most
systems are currently based on virtual-addressed caches in order to minimize the cycle time.

SPARC does not specify an MMU for the following reasons: An MMU definition is best established by the
requirements of particular hardware and operating systems, is not visible to application—level programs,
and is not a performance bottleneck with virtual-addressed caches because it is not in series between the
processor and the cache. Sun has defined a “reference” MMU, which is included in the latest Sun
Sparcstation products.

The SPARC reference memory management unit supports multiple contexts, 4 GByte virtual address space
and upto 64 GByte physical address space.

EUUG Autumn 89 — Vienna, 18-22 September

SPARC - Scalable Processor Architecture

Floating
Point Integer Unit Coprocessor
Unit (optional)

A yma vy A A
-atl- o5 s ’
. * Data Bus + * »

Virtual
Cache A Control Bus A
- ' ' v v Physical Address Bus »>
Memory
Management Memory Subsystem
Unit

A Complete and Open RISC Architecture

Figure 4: SPARC Architecture Overview

7. SPARC Integer Unit

The IU is the basic processing engine of the SPARC architecture. It executes all the instruction set except
floating—point operate instructions and coprocessor instructions. See Figure 5.

Regi Wind Svst CW Pointer
egister-Windows System |«g —— Floating Point
i 2
Config Registers (32)
outs (8) Floating Point Status
locals (8) Floating Point Queue (3)
| ins (8)
globals (8)
Window Invalid Mask Coprocessor Registers
Processor State Reg (32)
Trap Base Register
Multiply Step Register
Program Counter Coprocessor Status
Next Program Counter Coprocessor Queue (3)

Figure 5: SPARC Register Structure

EUUG Autumn ‘89 — Vienna, 18-22 September 139

SPARC — Scalable Processor Architecture

The register structure forms an important part of the overall architecture. The integer unit has two types of
registers associated with it; working registers and control/status registers. Working registers are used for
normal operations, and control/status registers keep track of and control the state of the IU. The IU’s
working registers are divided into several windows, each with twenty—four 32-bit working registers, and
each having access to the same eight 32-bit global registers. The current window pointer (CWP) field in
the processor state register (PSR) keeps track of which window is currently “active”.

In addition to the window registers and global registers, the SPARC architecture provides several control
and status registers, and a non-windowed working register file for the FPU and the optional COProcessor.

The 1U’s control/status registers are all 32-bit read/write registers. They include the program counters (PC
and nPC), the Processor State Register (PSR), the Window Invalid Mask register (WIM), the Trap Base
Register (TBR), and the multiply—step (Y) register.

The Processor State Register holds a user/supervisor bit, MC68000—compatible integer condition codes
(negative, zero, overflow, and carry), the 4-bit processor interrupt level (PIL), FPU and CP disable bits, the
CWP, and an 8-bit version/implementation number. The Trap Base Register (TBR) holds a programmable
base address for the trap table and an 8-bit field that identifies the type of the current trap. Like the WIM,
the PSR and TBR are only accessible by the operating system.

The Program Counter (PC) contains the address of the instruction currently being executed by the IU, and
the nPC holds the address of the next instruction to be executed (assuming a trap does not occur).

In delayed control transfers, the instruction that immediately follows a control transfer may be executed
before control is transferred to the target. The nPC is necessary to implement this feature.

8. SPARC Register Windows

The U may contain from 40 to 520 general-purpose 32-bit registers. This range corresponds to a
grouping of the registers into 2 to 32 overlapping register windows, where the actual number of registers
and windows depends on the implementation. The number of windows in a particular chip is not visible by
a compiler or application program.

At any one time, a program can address 32 integer registers: the 8 ins, 8 locals, and 8 outs of the active
window and the 8 globals that are addressable from any window. The 8 outs of one window are also the 8
ins of the adjacent window. Note that global register 0 is always zero, making the most frequently used
constant easily available at all times.

The active window is identified by the 5-bit Current Window Pointer (CWP) in the Processor Status
Register (PSR) and is invisible to the user. The save instruction decrements the CWP, making the next
window become active and, due to the overlapping, making the outs of the old window addressable as the
ins of the new window. Incrementing the CWP with the restore instruction makes the previous window
active. See Figure 6.

Programs nearly always use more windows than a particular chip provides. An overflow trap to the
operating system occurs if all the windows are full before a save; an underflow trap occurs if they are
empty before a restore. In SunOS, windows are saved in the memory stack.

Although the overlap of adjacent ins and outs provides an efficient way to pass parameters, the principal
benefit of windows is their cachelike behavior. As a program calls and returns procedures, control moves
up and down the execution stack but generally fluctuates around particular levels in the execution stack.
The register windows are effective when the average size of these fluctuations is less than the number of
windows.

Register windows have several advantages over a fixed set of registers. By acting like a cache, they reduce
the number of load and store instructions issued by a compiler because register—allocated locals and return
addresses need not be explicitly saved to and restored from the memory stack across procedure calls. A
consequence is a decrease in the chip/cache and cache/memory operand bandwidth — that is, fewer loads
and stores and fewer data cache misses. This benefits chips with multicycle load or store instructions by
executing fewer of them and serves tightly coupled, cache—consistent multiprocessors by reducing the
memory bus traffic.

Windows perform well in incremental compilation environments such as Lisp and in object-oriented
languages such as Smalltalk. On the average, register windows are better than a fixed register set
architecture because windows respond dynamically to the runtime behavior of programs.

140 EUUG Autumn 89 — Vienna, 18-22 September

SPARC — Scalable Processor Architecture

WIM (oldest window)

CWP (newest window)

Restore

locals

Figure 6: SPARC Register Windows

This representation of the register windows assumes eight windows. Assume W7 is the oldest window,
and WO is the newest and corresponds to a procedure that attempted to execute a save instruction and
generated a window—overflow trap. The trap handler cannot use W7's ins or W1’s outs, but it is always
guaranteed WO’s locals.

The number of windows ranges from 2 to 32 depending on the implementation. Implemented windows
must be contiguously numbered from 0 to NWINDOWS — 1.

The windows are addressed by the CWP, a field of the Processor State Register (PSR). The CWP is
incremented by a RESTORE or RETT instruction and decremented by a SAVE instruction. The active
window is defined as the window currently pointed to by the CWP.

The Window Invalid Mask (WIM) is a register which, under software control, detects the occurrence of [U
register file overflows and underflows.

The registers in each window are divided into ins, outs, and locals. Note that the globals, while not really
part of any particular window, can be addressed when any window is active. When any particular window
is active, the registers are addressed as follows:

ins are r{24] to r[31]
locals are r[16] to r[23]
outs are r [8] tor[15]

globals arer [0} tor [7]

Each window shares its ins and outs with adjacent windows. The outs from a previous window (CWP + 1)
are the ins of the current window, and the outs from the current window are the ins for the next window
(CWP —1). The globals are equally available from all windows, and the locals are unique to each window.

EUUG Autumn 89 — Vienna, 18-22 September 141

SPARC — Scalable Processor Architecture

9. SPARC Instruction Set

SPARC defines 55 basic integer instructions, 14 floating—point instructions, and 2 coprocessor
computational formats. All instructions are 32 bits wide.

Functionally, SPARC architecture instructions fall into 8 categories:
load and store

arithmetic/logical/shift

control transfer

read/write control register

floating—point operate

COprocessor operate

tagged arithmetic

PN A WD~

atomic instructions for multiprocessor support.
Instructions may also be classified into three major formats, two of which include subformats.

The three instruction formats are called format 1, format 2, and format 3. Figure 7 shows each instruction
format, with its fields and bit positions. It also lists the types of instructions that use that format.

Format 1 (call):

op displacement
; 30

Format 2 (sethi):

op rd op immediate
2 3 3 R)
Format 2 (Branch instructions):

opj/aj cc | op displacement
2 I 4 3 by

Format 3 (Remaining instructions, i=0);
op| rd op rs1 | i| asi or fp-op
Z 3 6 3] 3

Format 3 (Remaining instructions, i=1);

op| rd op rs1 |i immediate
2 3 8 3 I 13

Figure 7: SPARC Instruction Formats

Format 1 has a 30-bit word displacement for the call instruction. Thus, a call or branch can be made
to an arbitrarily distant location in a single instruction.

Format 2 defines two instruction types: sethi and branch. The 22-bit word displacement defines a +—
8—Mbyte distance for the PC—relative conditional branch instruction.

Format 3, which has specifiers for two source registers and a destination register, encodes the
remaining instructions. As in the Berkeley RISC architectures, when i = 1, a sign—extended 13-bit
immediate value substitutes for the second register specifier. For the load/store instructions, the upper
8 bits of this field are used as the address space identifier (ASI) and, along with the i bit, as an opcode
extension field for the floating—point and coprocessor instructions.

EUUG Autumn ‘89 - Vienna, 18-22 September

SPARC - Scalable Processor Architecture

Unused opcode space is reserved for future expansion. Unimplemented instructions trap, and reserved
fields must be 0.

10. SPARC Floating Point Details

The FPU has 32 32-bit registers. Double—precision values occupy an even—odd pair ot registers, and
extended—precision values occupy an aligned group of four registers. The floating—point registers can hold
maximum of either 32 single—, 16 double—, or 8 extended—precision values. The FPU’s registers are
accessed externally only via memory load and store instructions; there is no direct path between the IU and
the FPU. Floating—point load and store double instructions improve the performance of double—precision
programs.

Although the user—level floating—point architecture conforms to ANSI/IEEE 754/1985, some nuances of
the standard, such as gradual underflow, may be handled by software. An implementation indicates that it
cannot produce a correct ANSI/IEEE 754-1985 result by generating a floating—point unfinished or
unimplemented trap. System software then simulates the missing functions. The operating system must
also emulate the entire FPU if it is not present in a particular system.

SPARC allows floating—point arithmetic operations, such as multiply and add, to execute concurrently with
each other and with integer instructions and floating— point loads and stores. For example, it is possible to
preload a floating—point value while executing a floating—point multiply and a floating—point add. The
degree of concurrency is implementation—dependent — for example, an FPU can have several multipliers
and adders. In all current system implementations, floating—point arithmetic instructions execute in parallel
with cache misses.

The FPU performs all the required register interlocks, such as not beginning another floating—point
instruction until all its operands have been computed, so concurrency is hidden from the user. Programs
generate the same results including the order of floating—point traps as if all instructions ran sequentially.
To handle traps properly, the FPU maintains a floating—point queue (FQ). The first=in, first-out queue
records all pending floating—point arithmetic instructions and their memory addresses at the time of a
floating—point trap. The depth of the queue depends on the FPU microarchitecture. In the SunOS,
software emulates all the instructions found in the queue at the time of a floating—point trap.

The user—accessible Floating—point State Register (FSR) contains mode and status information: in
particular, there are trap—enable control bits. current—exception bits, and accrued-exception status bits for
the five ANSI/IEEE 754—1985 trap types.

11. Load and Store Instructions

The load and store instructions move bytes (8 bits), halfwords (16 bits), words (32 bits), and doublewords
(64 bits) between the memory and either the [U, FPU, or CP. These are the only instructions that access
main memory, which, to user application programs, is a byte—addressable, 32-bit (4—gigabyte) memory
space. Because the CP is implementation—dependent, it can load/store data of other sizes, such as
quadwords.

For the floating—point and coprocessor loads and stores, the [U generates the memory address, and the FPU
or CP sources or sinks the data. /O device registers are accessed via load/store instructions.

As with most RISCs, the load and store halfword, word. and doubleword instructions trap if the addressed
data are not aligned on corresponding boundaries. For example, a load or store word instruction traps if the
low—order two address bits are not 0. If necessary. the operating system can emulate unaligned accesses.

The load and store instructions assume Motorola 68000— and IBM 370—-compatible byte ordering: Byte 0 is
the most significant byte, and byte 3 is the least significant byte in a datum. To preclude possible
incompatibilities between SPARC application binaries that can access common data, only one byte
ordering has been defined.

SPARC defines interlocked delayed loads: The instruction that immediately follows a load may use the
loaded data, but if it does, the load may slow down, depending on the implementation.

Special load and store alternate instructions, usable only by the operating system, allow access to a number
of 32-bit address spaces defined by a particular hardware system. An 8-bit address space identifier (ASI)
is supplied by the load/store alternate instructions to the memory, along with the 32-bit data address. The
architecture specifies four alternate spaces — user instruction, user data, supervisor instruction, and
supervisor data — and leaves the remainder to be defined by the external hardware system. These ASIs can
be used to access system resources that are invisible to the user, such as the MMU itself.

EUUG Autumn ‘89 — Vienna, 18-22 September

SPARC - Scalable Processor Architecture

12. Tagged Instructions

The tagged arithmetic instructions can be used by languages such as Lisp, Smalltalk, and Prolog that
benefit from tags. Tagged add (taddcc) and subtract (tsubcc) set the overflow bit if either of the operands
has a nonzero tag or if a normal arithmetic overflow occurs.

The tag bits are the least significant two bits of an operand, so that integers are assumed to be 30 bits wide
and left—justified in a word with a zero tag. The tsubcc instruction with global O as its destination is the
tagged compare instruction.

Normally, a tagged add/subtract instruction is followed by a conditional branch, which, if the overflow bit
has been set, transfers control to code that further deciphers the operand types. Two variants, taddcctv and
tsubcctv, trap when the overflow bit has been set. These trapping versions can be used for error checking
when the compiler knows the operand types.

13. Multiprocessor Instructions

Two special instructions support tightly coupled multiprocessors: swap and “atomic load and store
unsigned byte” (ldstub). ‘

The swap instructions exchange the r register identified by the rd field with the contents of the addressed
memory location. This is performed atomically without allowing asynchronous traps. In a multiprocessor
system, twO Or more processors issuing swap instructions simultaneously are guaranteed to get results
corresponding to the executing the instructions serially, in same order.

These instructions cause a mem_address_not_aligned trap if the effective address is not word—aligned.
If a swap instruction traps, memory remains unchanged.

The atomic load-store instructions move a byte from memory into an r register identified by the rd field
and then rewrite the same byte in memory to all ones without allowing intervening asynchronous traps. In
a multiprocessor system, two or more processors executing atomic load—store instructions addressing the
same byte simultaneously are guaranteed to execute them in same serial order.

14. Architectural Comparison
The comparison between SPARC—, 88000—, mips— and i860—RISC architecture is summarized in figure 8.

SPARC 88000 mips 1860
Instruction Set
64-bit load/store yes no no no
Multiprocessor supp. atomic I/'s xmem no lock/unlock
instruction next instruc.
Register Set register fixed fixed fixed
windows register set register set register set
register sophisticated sophisticated complex
windows compilers compilers compilers
ease burden required required required
on compilers to handle
complexity
of chip
does not N/A N/A N/A

preclude interprocedural
reg. allocation techniques

Figure 8a: Architectural Comparison

144 EUUG Autumn 89 - Vienna, 18-22 September

SPARC — Scalable Processor Architecture

SPARC 88000 mips 1860

Implementation
integration flexible fixed fixed fixed
cache, MMU, FP, MP flexible fixed fixed fixed
bus structure implement. split i/d bus multiplexed split i/d bus
issue (split/ i/d bus
comb. i/d bus)
external coprocessor yes no yes

Business
Volume shipping 3 vendors 7 1 vendor (alpha vers.)
MH:z 16,20,25,33 ? 20,25 15-20

Application SW 500+ ? 50 (2) 2

Figure 8b: Architectural Comparison (contd.)

15. SPARC Vision today
If you look at the status of SPARC vision today, you will realize, that part of it has become already reality.

SPARC microprocessor chips are available from 4 different vendors using gate array, CMOS or ECL
semiconductor process technology, as shown in Figure 9.

Following figure shows several semiconductor vendors, who licensed SPARC and related technology.
First licensee was Fujitsu. Their Gate—Array implementation of the SPARC architecture was available in
April 1986. A stable SunOS was running on a prototype system in June 1986, only two month after the
first chips arrived. The first customer shipment of a Sun 4/200 was about 1 year later in August 1987.

LSI-Logic implemented the SPARC architecture in their HCMOS process. The performance is between
12.5 and 16 mips. The processors are used in the latest Sun 4 products, the Sun 4/60 and the Sun 4/300
series.

SPARC processors with 20 mips and 65 mips are available today from Cypress Semiconductor and Bipolar
Integrated Technologies respectively.

Two other companies are working on single processor implementations reaching 100 or 200 mips.
Chips have been announced, but are not available today in volume.

The World of SPARC is not only the SPARC architecture itself but also a powerful operating system
SunOS and optimizing compilers.

Among the SPARC system software products being offered by Sun, Phoenix, and Interactive Systems are
optimizing compilers that allow the development of efficient application software in languages such as C
and FORTRAN, with CH, Pascal, Lisp, and Ada soon to follow. There is also a growing list of software
companies such as Wind River Systems, JMI, and Ready Systems who offer products that support SPARC
in realtime markets.

For hardware and software design, Sun offers several useful tools. The SPARC Architectural Simulator
(SPARCsim TM) eases the development task by allowing designers to emulate an entire SPARC system
architecture before building a prototype. Information can be fed into other analysis tools such as the
SPARC Trace Analyzer. The SPARC Remote Debugger has full source—code symbolic debugging
capabilities for debugging processes on remote SPARC systems.

EUUG Autumn ‘89 — Vienna, 18-22 September

SPARC — Scalable Processor Architecture

Performance
(Mips)

Multiprocessor or
Superconductors

1000 Q

100"G§ | /

| Supercomputer
N / Mainframes
Minis
1 Workstations
PC’s
| | | | Cost
5 50 500 5000 (&)
Figure 9: SPARC-Vision and Reality Today
® SPARC Architecture ® 500+ Applications Programs
® SunOS§, Optimizing Compilers ® Five Semiconductor Vendors
® Real-Time Operating Systems @ Multiple Architecture Licensees
® SPARC Based Systems ® Board-level Products
® SPARC Development Tools ® SPARC International

A Complete Solution available today to support your
product development needs for fast time to market

Figure 10: The World of SPARC

Application software is the fuel that enables a computer system to achieve broad success in the
marketplace. Without it, any machine quickly descends into obscurity. For example, one of the chief
factors helping the IBM PC standard to proliferate was an enormous base of compatible software that ran
on any DOS PC.

146 EUUG Autumn 89 - Vienna, 18-22 September

SPARC - Scalable Processor Architecture

SPARCware is the identical solution for the 1990s, It is the shrink—wrapped software approach for
high—performance computer users. SPARCware is already the largest base of RISC software in the
industry. There are now more than 500 SPARCware applications. More are being added daily as the
packages in Sun’s 2300—plus Catalyst program are ported to SPARC.

SPARC is the only RISC architecture that is openly licensed. Enhancing this openness is a rich base of
development tools and system software that is beyond anything found in the UNIX industry.

Sun licenses its operating system, SunOS (a merge of UNIX System V and 4.3/4.2 BSD), as well as its
other essential system software. Products designed around SunOS will automatically run under AT&T’s
UNIX System V Release 4 when it becomes available. Another approach is for developers to acquire these
software elements through Phoenix Technologies Limited and Interactive Systems Corporation, the leaders
in the UNIX systems porting business.

EUUG Autumn 89 - Vienna, 18-22 September

148 EUUG Autumn 89 — Vienna, 18-22 September

TeamSo: Team Software Development Support System

TeamSo: Team Software Development Support System

Eva Strausz & Janos Szel

Department of Electronics Computer and Automation Institute
Hungarian Academy of Sciences

ABSTRACT

A software tool is introduced to help software development in team-work. This paper
provides an overview of this package called TeamSo, and describes some of the most
important design and implementation decisions.

1. Introduction

Most software is too large to be built by one person, on the other hand many problems arise when it is
developed by a team. The team work can cause inevitable confusion, like double maintenance,
simultaneous update etc. To avoid these, standards and co-ordination is needed between staff members to
avoid a fall-off in productivity.

TeamSo is a software tool designed to solve team productivity problems. It manages the software
development process by taking over the communication between team members.

The operation of the TeamSo system is based on a so-called PROJECT_DATABASE which contains the
design and implementational information for the given project. It is a shared project-database containing
all the information necessary to produce the target software and the appropriate of documentation.

2. Short description

TeamSo leads the user in a compulsory direction; in this way it helps to find the best solution for the target
software. This guide does not mean a necessity but rather a helpful control, where the choice among the
possibilities are at the user’s disposal.

During the work different images appear on the screen always having the structure shown in Figure 1.

Information area

I/O area

Command area

Figure 1

The information area lets the user know the type of manipulation and the level of competence.

Actually in the I/O area a questionnaire appears. After answering the questions TeamSo controls them and
— if correct — maintains/updates the database. If there are any problems, the user is forced to repeat. The
answers can be typed in or chosen from a menu.

The command area consists of menu items. The user can choose any element with the cursor-keys or by
entering the first character of the command. To confirm the desired action the user presses the <ENTER>
key. Changing between the I/O and command areas is possible whilst preserving the previous input state.
A help facility is always amongst the available menu items. Having chosen it, all necessary information is
available concerning the state appearing in the information area.

EUUG Autumn'89 — Vienna, 18-22 September

TeamSo: Team Software Development Support System

The rest of the paper gives a detailed description of TeamSo.

3. How to get started
Let us show the main milestones of the team productivity coordination.

From the UNIX Shell one can enter in the TeamsSo with the “tea” command. The greeting picture is
displayed and the cursor is on the work menu item. See Figure 2.

Welcome to TeamSo COMMON LEVEL

work help exit

Figure 2

Approving the work menu item the image shown in Figure 3 appears.

COMPONENT DEFINITION COMMON LEVEL

C.definition
list help back init exit

Figure 3

Now it is time to give the component definition. What does that involve? A component is a defined part of
the task to be solved. TeamSo defines three types of components each of which represent a competence
level in the team organization. The work is shared as follows:

e Project Manager level

e System Manager level

e Module Manager level

The Project Manager is responsible for the final acceptance of the product.

The System Manager maintains and controls a logically self-contained part of the project.

The Module Manager is the programmer; he writes the program (code) on the basis of the skeleton
automatically generated from the System Manager’s database realm.

Returning to the component definition, syntactically it is built of component names according to the
following rules:

e Project definition: P-name
e System definition: P-name/S-name
e Module definition: P-name/S-name/M-name

Entering a component definition, the system determines its type and informs the user about the actual level
and examines whether the component already exists. If so, it checks the validity by asking for the secret
identifier. After typing the correct identifier the system opens. In case of any mistyping or illegal attempt
the system rejects the user.

150 EUUG Autumn 89 — Vienna, 18-22 September

TeamSo: Team Software Development Support System

A new project-entry can be made at this level. The future Project Manager has to define his own identifier.

After having successfully logged into the system, the questionnaire appearing on the screen is the same
concerning the three components. Therefore only a project definition process will be shown. See Figure 4.

Project 'P-name’- header questionnaire PROJECT LEVEL

name
full name
version

date

author
testing mode

save mail help back init exit

Figure 4

If it is a new project, the questionnaire is blank and the Project Manager is forced to fill each item. If not,
the previous state (retrieving from the database) is viewable and can be modified. Finally the filled
questionnaire is saved. If it is an existing project, the database is updated, otherwise a new database is
created.

4. Project decomposition

The next step is the decomposition of the project into logical parts. The Project Manager determines the
number of systems, assigns the System Managers, and defines their tasks.

Having defined the second level in the component-hierarchy TeamSo forces the Project Manager to
determine the connections among the systems on a new screen image where the system-names are already
defined and the possible connections are displayed. The Project Manager co-ordinates the systems by
choosing from the following connection types:

e active data communication between processes
e passive function calling
e inclusive one system belongs to another in case one of them is a data file.

A manager at any time can modify all his statements. The TeamSo informs the team members concerned
and ensures the integrity of the system. In addition a mail feature can be used for “verbal” messages.

5. System decomposition

However the System Manager’s task is not yet finished. Besides the above mentioned general
administrative actions he has to define the programming environment for the Module Managers. He can do
it by filling the questionnaire shown in Figure 5.

'P-name/S-name/M-name’ environment SYSTEM LEVEL
Name

Purpose

Language

Algorithm

Debug/test
Abnormal termination

save data subr mail ... exit

Figure 5

EUUG Autumn 89 — Vienna, 18-22 September 151

TeamSo: Team Software Development Support System

Saving the fulfilled questionnaire the program skeleton is automatically generated. It forms the comment
part of the source code written in the given language.

Since each module is a single file of source code containing a number of related subroutines and data
definitions, now the System Manager should describe them. The filling mechanism is similar in both cases.
We show an example data definition in Figure 6.

’P-name/S-name/M-name’ data structures SYSTEM LEVEL
Name

Type

Number

Storage

Code(s)

save prev next crea dele type exit

Figure 6

The data definition follows the rules of the previously defined programming environment. This mechanism
is provided by TeamSo to avoid any semantical problems. It also takes into consideration their common
usage by the co-operating modules.

The generated code — deriving from the given definition — is immediately displayed on the bottom of the
I/0 area. The definition can modified at any time; naturally the output follows the change.

Besides the default types of the given language the System Manager can construct his own ones too.

The result of the System Manager’s action is not only a set of skeletons, but a “makefile” is generated also
containing the dependencies and the compilation instructions.

The detailed design for a module is finished; it is now time to introduce the Module Manager level where
the effective code is to be written.

6. Writing code

When a Module Manager (i.e. the programmer) successfully enters into TeamSo, the list of source file
names assigned to him appear on the screen, See Figure 7.

"P-name/S-name/M-name” Source directory MODULE LEVEL
prog.1]
prog.2
prog.n
mail help , exit
Figure 7

This file contains comments concerning the task to be solved, data definitions and empty subroutines
derived from the System Manager’s decomposition action.

Having chosen one of this files, a mechanism becomes active to prevent simultaneous access of different
programmers. This is the so-called “check-in" and “check-out” facility based on the UNIX SCCS feature.
Technically a copy is made in his private workspace (“check out”) where he can use the shell with
restricted rights (rsh) and do his task (editing, compiling, debugging, etc). Having finished his work the
result is returned to the source directory (heck in”). The System Manager can run his “makefile” at any
time to check the status of the system, and to produce the output for the Project Manager.

152 EUUG Autumn 89 — Vienna, 18-22 September

TeamSo: Team Software Development Support System

7. Documentation

One of our goals in the design of TeamSo was to support the programming staff in producing software
documentation in an easy way. Certain parts of the filled questionnaire are built in the future
documentation, so the TeamSo user is freed from the tiring and boring but inevitable work.

The documentation of each level can be reached and enlarged optionally using an editor. The user can
place metacharacters in his document, to mark arbitrary text parts for different kinds of documentation (e.g.
user, designer, programmer, etc).

When certain documentation is needed, TeamSo collects the respective information stored on different
levels and creates a comprehensive text. Naturally this text can be stored in a file, or on different media
and can be printed out at any time.

8. Hardware/software environment
- CPU: IBM PC/AT
I Mb memory, FPP, 2 serial lines, 2 ST225 Winchester, 1.2 Mb floppy driver
—Op. sys: SCO XENIX System V Ver. 2.2.1
— Language: C
— Code size: 200 kbytes

9. Conclusion

The basic concept of TeamSo was developed two years ago in our Institute. F. Sipos and T. Sztano
implemented their system on PDP/RSX, on PC-DOS and on VAX/VMS.

Our solution has partly adopted the main features of the previous realizations, however we took advantage
of the possibilities provided by UNIX so we could produce a much more compact and faster software tool.

Concerning our future plans we are to implement TeamSo on a multiprocessor VME system. Since we
made efforts to produce portable code, we hope the implementation will be easy and successful.

EUUG Autumn 89 - Vienna, 18-22 September

154 EUUG Autumn 89 - Vienna, 18-22 September

A SQL Programming Interface for the Relational Database Systen Db++

A SQL Programming Interface for the Relational Database System
Db++

Ralph Zainlinger
Thomas Hadek

Technical University Vienna
Institut fiir Techn. Informatik
Treitlstr. 3/182/1
A-1040 Vienna
Austria
ralph@vmars.at
tom@vmars.at

ABSTRACT

Database systems in the UNIX world are still a controversial topic splitting the research
community. Today’s users can choose between systems such as ORACLE, well known,
broadly accepted, and expensive, or typical UNIX databases, such as the relational
database system db++, integrated into the UNIX framework at a reasonable price but with
rather low capabilities compared with the first group. The major shortcomings of db++
are the low-level programming interface, the lack of mechanisms for concurrent multiple
access (multi-user) and the neglect of transaction based processing. This paper describes
various extensions of the relational database system db++ based upon a high-level SQL
programming interface. The main purpose is to maintain the obvious advantages of db++
by simultaneously increasing its functionality and general applicability with standardised
mechanisms and concepts.

1. Introduction

With Oracle, the UNIX world relies upon a very powerful and sophisticated relational database
management system (RDBMS), so why should we spend efforts in extending a rather low-level database
system named db++ [Agn86a]? The reasons are as follows: First, Oracle is a rather costly solution and
thus very often not attractive, especially for universities and small software companies. Second, db++ fits
extremely well into the UNIX framework, thus allowing the application of a number of standard UNIX tools
for processing, e.g. cp, mv, diff. Third, db++ is centered around a very powerful query language.

Our work was originally motivated by the lack of a high-level C-programming interface for db++ which
made it very difficult to build applications with reasonable efforts. Discussing the various alternatives, it
turned out that building a SQL programming interface is the most useful and thus appropriate solution.
Although SQL was used exclusively as an interactive query language in the past, recent trends show that
SQL tends to become “the” standard for programming interfaces of RDBMSs.

The organisation of the paper is as follows: Section 2 evaluates the relational database system db++ with
respect to a number of basic requirements that should be met by a RDBMS. Section 3 compares the
traditional approaches for programming interfaces of database systems. In section 4 the major concepts of

EUUG Autumn 89 — Vienna, 18-22 September

A SQL Programming Interface for the Relational Database Svstem Db++

our extensions are described. Implementational aspects are detailed in section 5.
2. Db++ — A Critical Review

2.1. Db++

Db++ is a relational database system especially developed for UNIX systems. In contrast to other UNIX
database systems db++ does not impose a new working environment on the user. Db++ behaves like a
standard UNIX tool and can thus be combined with a variety of other UNIX utilities.

Data storage is not transparent to the user. All information pertaining to a single relation is contained in a
single UNIX file. Therefore, standard UNIX commands like ¢p(/), chmod(1), and rm(1) can be applied to
db++ relations.

Db++ consists of a family of programs supporting the typical database activities (creation, modification,
query and report generation). These programs are built around the “UNIX philosophy™ thus allowing
perfect cooperation with the existing UNIX environment.

Database queries can be formulated in two ways. First, db++ offers a command language interface based
on an algebraic query language. This database interface is a high-level interface in the sense that it is not
necessary to write complex programs in order to retrieve information. The second possibility to extract
information out of the database is to write C programs which make use of the special db++ C library
functions (raccess, simple [Agn88]). These library functions provide a rather low-level access mechanism;
basic as well as sophisticated operations such as union and join are not available.

2.2. Db++ — A Database Management System?

The term “database management system” (DBMS) refers to a database system fulfilling a number of basic
requirements as detailed in [Ans86a, Cod85a], and [XPG87a]. Since db++ neglects several of these
requirements, we avoided speaking of a DBMS when we mentioned db++. We will now examine db++
with respect to the most important requirements.

Data Types

Db++ supports all important data types. The fact that db++ has been written in C leads to a broad
correspondence between db++ data types and C data types [Con86al].

Indicators, NULL Values

Indicators are used to represent at the logical level the fact that the information is missing (i.e. not yet -
specified). Besides the logical representation, the DBMS must support manipulative functions for these
indicators and these must also be independent of the data type of the missing information.

Db++ does not support indicators nor does any available programming interface support indicator
variables.

Database User

The concept of a database user in db++ is realised through the traditional UNIX file permissions. The
ownership facilities of database objects (i.e. relations) are thus equivalent to the well known UNIX
mechanisms. It is for instance impossible, that a database object belongs to more than one group.

Views

Views are virtual (i.e. not physically existent) relations resulting from the evaluation of a query
specification. The basic idea of views is that they can be treated as a logical unit behaving exactly like a
conventional relation.

Db-++ does not support views.

Transaction Processing

A transaction is a sequence of operations, including database operations, that is atomic with respect to
recovery and concurrency [XPGS87].

156 EUUG Autumn ‘89 — Vienna, 18-22 September

A SQL Programming Interface for the Relational Database System Db++

Although [Agn86] claim that db++ is capable of dealing with transactions, we found, that their notion of a
transaction slightly differs from the definition given above. A db++ transaction is restricted to a single
relation. The concept used is that of “flushing”, i.e. all written information becomes visible to succeeding
read operations after an explicit "flush* call (in fact flushing defines the point of commitment). Since only
one relation can be flushed at a time this mechanism is inappropriate for transactions spanning more that
one relation, because it cannot be guaranteed that a sequence of “flushes” is atomic. Rollback of such
restricted transactions is done implicitly if the program crashes.

Explicit rollback can be achieved by a preserving mechanism which is applied to a relation before
modifications are initiated. If the modifications are to be rolled back the previously frozen state of the
relation can be restored. Again this mechanism is restricted to a single relation.

Multi-User Operation, Consistency, and Concurrency

The original version of db++ did not support multi-user operation. In the meantime an extension (simple
provides additional services supporting multi-user applications. This enhancement is client/server based,
i.e. the application (client) communicates with a server process which directly accesses the database via
raccess library functions.

The system allows single tuple locking even in different relations, but most of the problems in connection
with concurrent transaction processing are left to the application task:

(1) Deadlocks occurring due to tuple locking have to be resolved by the client process, there is, however,
no hint how this could be effectively done, since the required knowledge about the competitive
processes cannot be obtained.

(2) Transaction anomalies occurring due to interleaved transactions are not considered. The application
has to handle these effects autonomously, i.e. serialisability issues as well as appropriate usage of
shared and exclusive locks have to be carried out in the application domain.

3. Programming Interfaces for RDBMSs — A Comparison

This section compares the most important approaches of programming interfaces for RDBMSs.
Shortcomings and advantages are discussed.

3.1. Self Contained Languages

Some databases are based upon a self contained database language used to program the database, e.g.
Cobol, dbase3 plus. These languages additionally support the generation of masks, menus, etc., but the
range of application areas is restricted due to the languages’ inherent limitations. Building for example
applications manipulating a high-level window-based user interface and concurrently accessing a relational
database is impossible.

Among this class of languages we can distinguish between nonprocedural and procedural languages.
Nonprocedural languages are capable of expressing what kind of information shall be obtained while
procedural languages focus on the specification of a detailed retrieval algorithms, i.e. how information can
be obtained. Nonprocedural languages are often termed fourth-generation languages (4GL), procedural
languages are known as third-generation languages.

Practical experiments have shown that 4GL code tends to be smaller and can be obtained faster than 3GL
code. However, the improvements are not significant [Mis88a]. Besides, many 4GLs suffer from the
inefficiencies of the underlying retrieval algorithms, a serious problem, since the programmer has no
influence on the performance [Cas89a].

3.2. Host Language Dependent Approach

In this approach the interface of the database is totally adapted to a certain host language. The programmer
cannot distinguish between regular programming constructs (e.g. I/O calls) and calls representing the
interface to the database. The currently available db++ C programming interface (raccess, simple) is a
typical example.

Usually these interfaces are library extensions of a conventional programming language. From the
conceptional point of view this approach is best suited because the declaration of database related and
“regular” data as well as the treatment of database data and program data can be done uniformly.

EUUG Autumn 89 — Vienna, 18-22 September

A SQL Programming Interface for the Relational Database System Db++

However, these interfaces suffer from some major deficiencies. Since database operations have very
special characteristics (e.g. the result of a query cannot be stored in a single variable) the mechanisms
available through the host language are often insufficient or at least troublesome. For the same reason the
readability of the programs is dramatically decreased thus making maintenance difficult and expensive.
Another origin of the reduced readability stems from the procedural nature of these interfaces.

Figure 1 contains an illustrative example based on the raccess library: A database is used to handle
hierarchically related graphical objects. To keep the example clear and simple we confine ourselves to
rectangles represented by the relation RECTANGLE (rec_id, x_coord, y coord, width, height). The
father-child relationship is reflected in the relation IS_CHILD (father_id, child_id). The purpose of the
sample procedure is to extract all the child rectangles (more precisely their position and dimension) of a
given parent rectangle.

#include <stdio.h>

#include "raccess.h"

int get_children(father)
long father;

long x, y, w, h;

relf * rp_child, * rp rec;
tupleproto_child, proto_rec;

tuple * result_child, * result rec;
fieldf child, f_rec;

attribute * a_child, * a_father;

attribute * a_rec_id, * a_x, * a_y, * a_w, * a_h;
rinit (0, 0);

if ((rp_child = ropen ("is child", 0, 0)) == (relf*)0)
return db_err();
if ((rp_rec = ropen ("rectangle”, 0, 0)) == (relf*)0)

return db_err();

rtupinit (rp_child, &proto_child);

rtupinit (rp_rec, &proto_rec);

a_father = attno (rp_child, "father id");
a_child = attno (rp_child, "child_id");

a_rec_id = attno (rp rec, "rec_id");
a x attno (rp_rec, "x_coord");

a_y attno (rp_rec, "y coord");

aw attno (rp_rec, "width");

a_h attno (rp_rec, "height");

f child.f_long = father;
afput (a_father, &proto child, &f_child, (char*)0);
result_child = rfindtup (rp_child, 0, &proto_child, 1);

Figure 1a: Sample procedure using raccess

EUUG Autumn 89 — Vienna, 18-22 September

A SQL Programming Interface for the Relational Database System Db++

while (result_child != (tuple*)0)

{
long r father, r_child;

r father = AFGET (a_father, result_child) -> f_long;
if (r_father != father)
break:

r_child = AFGET (a_child, result_child) -> f_long;
rfindall (rp_rec, 0);

f rec.f_long = r_child;

afput (a_rec_id, &proto_rec, &f_rec, (char*)0);

result_rec = rfindtup (rp_rec, 0, &proto_rec, 1};
while (result rec != (tuple*)0)
{

long r_rec_id;

r_rec_id = AFGET (a rec id, result rec) -> f_ long;

if (r_rec_id != r_child)

break;
x = AFGET (a_x, result_rec) -> f long;
y = AFGET (a_y, result _rec) -> f long;
w = AFGET (a_w, result_rec) -> f_long;
h = AFGET {(a_h, result_rec) -> f long;

printf ("x = %1d, y = %1d, w = %1d, h = %1ld\n",
X, Y, W, h);
result_rec = rget (rp_rec);

result child = rget (rp_child);

rclose (rp_rec);
rclose (rp_child);
return (0);

Figure 1b: Sample procedure using raccess (cont'd)

3.3. Host Language Independent Approach

The programming interface is totally independent of the host language, i.e. whatever language is used, the
programming interface has the same appearance. In the literature these interfaces are referred to as
embedded programming interfaces. The most popular representative of this kind of interface is “embedded
SQL”. The annex of [Ans86] contains formal definitions of embedded SQL for various programming
languages (e.g. Cobol, Fortran, Pascal).

The obvious advantage of such embedded languages is that their syntax does not depend on the host
language. If the concepts and syntax of the language are known to the programmer then applications can
be written in different host languages without additional efforts for learning a new database programming
language. In the special case of embedded SQL the major advantage is, that SQL is a well known and
broadly accepted interactive query language. Embedding this language into a host language results in an
effective combination of the advantages of a procedural with a non procedural language.

EUUG Autumn 89 — Vienna, 18-22 September 159

A SQL Programming Interface for the Relational Database Svstem Db++

#include <stdio.h>

int get children(f)

'

long f;

EXEC SQL BEGIN DECLARE SECTION;
long x, y;
long w, h;
long father;

EXEC SQL END DECLARE SECTION;

father = f;

EXEC SQL WHENEVER SQLERROR GOTO db_err;
EXEC SQL CONNECT 'demo’ IDENTIFIED BY ’secret’;

EXEC SQL DECLARE CURSOR rec_cursor FOR
SELECT x_coord, y coord, width, height
INTO :x, :y, :w, :th
FROM rectangle, 1is_child
WHERE father id = :father
AND child id = rec id;

EXEC SQL OPEN rec cursor;
EXEC SQL FETCH rec cursor INTO :x, :y, :w, :h;

while (SQLERROR '= SQL_NO DATA)
{
printf ("x = #1d, y = %id, w = ¢ sld\n", x, y, w,

EXEC SQL FETCH rec cursor INTO :x : : thy;

EXEC SQL CLOSE rec cursor;
EXEC SQL COMMIT WORK RELEASE;

return (Q0);
dberr:

return (1);

Figure 2: Sample procedure in embedded SQL

From the conceptional point of view embedded systems reveal several problems. The uniformity of the
language disappears, database and program variables are treated differently (e.g. declaration). Another
conceptional deficiency is brought about by the fact that generally, the result of a SQL query is a relation
(i.e. a sequence of rows in a table) and that in a conventional programming language only one item can be
processed at a time. To combine these contrary principles, the concept of a cursor has been introduced. A
cursor is declared in conjunction with a transaction and can be used to reference the single rows of a
resulting relation.

Compared with the host language dependent approach as presented in the previous section, programs
written in embedded SQL tend to become much shorter and easier to read than their host language
dependent analogies. Figure 2 contains an embedded SQL procedure with the same functionality as the
procedure described in Figure 1. Reduced program length and improved readability are evident.

EUUG Autumn'89 — Vienna, 18-22 September

A SQL Programming Interface for the Relational Database System Db++

4. SQL for Db++

In this section the major concepts of our extensions are presented. We realised the host language
independent approach as detailed in section 3.3. The unique “db++ approach” reveals numerous problems.
Thus fundamental decisions and compromises are discussed and justified.

Data Types

As mentioned in section 2.2 there is a high correspondence between db++ data types an data types in C.
Since SQL is independent of any programming language, which also applies to the data types, we had to
establish a mapping of SQL data types to db++ data types. This mapping is defined in Table 1. The upper
half comprises all the SQL data types as specified in [XPG87], the lower half contains additional data types
supported in our extension.

SQL data type

db++ data type

CHAR (number)

FT_STRING

SMALLINT

FT_SHORT

INTEGER

FT_LONG

DECIMAL(precision,scale)

FT_SHORT,
FT_DOUBLE

FT_LONG,

FT_FLOAT,

FLOAT

FT_DOUBLE

DATE

FT_LONG

LONG

FT_STRING

NUMBER (precision {,scale])

FT_SHORT,
FT_DOUBLE

FT_LONG,

FT_FLOAT,

RAW(number)

FT_STRING

VARCHAR(number)

FT_STRING

Table 1: Mapping of SQL data types to db++ data types

One of these special data types is the SQL data type LONG permitting storage of information with
“unlimited” variable length. Since dbi++ does not support such data types we had to introduce a new
mechanism. The basic idea was to combine db++ with the UNIX file system thus transforming db++ to a
hybrid database [Pen87a]. An entry in a relation of type LONG (respectively FT_STRING) represents the
name of a UNIX file (a unique name for each entry), whereby the UNIX file contains the essential
information. This storage technique remains totally transparent to the user provided that he accesses the
database through the SQL interface.

Inspecting Table 1 it becomes clear that the mapping defined is not reversible. In other words, it is
impossible to determine the appropriate SQL data type if merely the db++ data type is given (e.g.
FT_LONG can stand for INTEGER, DATE or NUMBER). But exactly this knowledge is required if data
is extracted from the database and converted to a corresponding SQL data representation.

To overcome these problems we adopted the concept of a centralised data dictionary.

Data Dictionary

A data dictionary is part of the database and used to store information relevant for maintaining and
managing the database. A data dictionary contains the names of all existing relations, views, and detailed
descriptions of the relation’s and view’s columns. Besides, this dictionary could be used to define the
access rights of each user to each relation.

EUUG Autumn 89 — Vienna, 18-22 September

A SQL Programming Interface for the Relational Database System Db++

Transactions, Multi-User Operation, and Locking

To allow bounded transactions (begin, commit and rollback) each relation is extended by default with two
additional but hidden columns. This enhancement supports single tuple locking and thus transparent
multi-user operation. The semantics of the two additional attributes is as follows:

(1) OID (owner identity) defines by which process the row is currently owned (zero indicates that the
row can be accessed by any process).

(2) MID (modifier identity) determines the process currently modifying the row (zero indicates that the
row can be modified by any process).

Figure 3 contains a symbolic excerpt of our sample database as it could appear during a transaction
updating a single row. The snap shot is taken immediately before a transaction commit respectively
rollback. A process A is updating the rectangle number 1(rec_id = 1), however the update has not yet been
committed. Thus, the corresponding row is contained twice in the table (as indicated by the two right
hands in the first column of the table). For each process except process A the original row (the one with
OID equal to zero) is visible, only process A "sees” the modified one. As long as process A has not
finished its transaction, the original row has the status read only for the remaining processes.

A detailed description of this algorithm is contained in [Had89a].

rectangle || rec_id | x_coord | y _coord | width | height || OID MIF
= 1 20 30 45 45 0 A
2 13 18 22 16 0 0
3 27 91 79 35 0 0
= 1 30 30 45 45 A 0

Figure 3: A relation during update

Database User

The question whether the UNIX file permissions are adequate to realise the database user concept is
equivalent to the question whether our implementation should adhere to [XPG87] in that point or not.
Since [XPG87] requires that granting privileges to other users can take place at the level of a single column
(at least in the case of an UPDATE privilege), it becomes obvious that the conventional UNIX file
permissions are insufficient.

As suggested above, the data dictionary is appropriate for the realisation of the more sophisticated user
privilege mechanisms. There remains, however, one open question: How should the conflict between the
UNIX file permissions and the newly introduced and more granular privilege mechanisms be resolved? In
other words: The overall system still remains an open system in the sense that all the relations (represented
by UNIX files) can be accessed using different UNIX tools. Can UNIX file permissions be abused to
supersede privileges defined in the SQL context?

A reasonable solution is that all relations belong to a virtual UNIX user, say db++, and, that access to these
relations is granted exclusively through the server. From the viewpoint of security this solution is best
suited. The usage of the db++ tools is then restricted to the user db++, i.e. to some kind of database super
user. A database object is still possessed by a database user but this database user does not correspond to
the real UNIX user.

Server

Consistently managing a database in multi-user mode can be effectively achieved by establishing some
kind of server. In our approach each database (i.e. a collection of interrelated relations stored in a UNIX
directory) is associated with one database server. Each application operating on the database is connected
with that server. The server is automatically generated by the first application that intends to access the
database. After the last application has closed the connection to the server, the server exits.

162 EUUG Autumn 89 — Vienna, 18-22 September

A SQL Programming Interface for the Relational Database System Db++

The server is responsible for:

(1) Performing elementary database requests (i.e. read, write, update, etc.)
(2) Locking tuples and controlling multiple access

(3) Managing and updating the data dictionary

(4) Detecting and resolving deadlocks

Static vs. Dynamic Command Processing

The processing of SQL commands can either be carried out statically, i.e. the command is interpreted
during compile time, or dynamically, i.e. the command can be generated at run time and is then interpreted
by the application.

Our approach supports both methods. If the special SQL statements for dynamic commands are used the
command is interpreted at run time otherwise the command is transformed to an internal statement tree at
compile time.

5. Implementation

Conformance with the Standards

[Ans86] distinguishes between two levels of conformance. Level 2 conformance implies level 1
conformance. Thus level 1 conformance is much easier to achieve. Even [XPG87] has not adopted all
requirements necessary to conform to level 2. One of the major problems at level 2 is concerned with the
serialisability of transactions that guarantees avoidance of transaction anomalies. Thus [XPG87] excluded
this requirement.

Our implementation is designed to fully conform to [XPG87]. There is only one discrepancy which is not
yet eliminated: Db++ demands that the key fields determining an index file have to be unique for each tuple
(i.e. it is not possible to insert two tuples with the same index), whereas [XPG87] is not that restrictive. In
our extension indices are forced to be unique.

Development Process

Figure 4 describes the development process of a program written in embedded SQL. The precompiler
converts the embedded SQL program (prog.pc) into a conventional C program (prog.c), i.e. all embedded
SQL statements are reformulated to regular C procedures. The resulting C program is then compiled and
linked with the special SQL library. The bold boxes in the figure indicate the newly introduced
components.

The Precompiler

The principal functionality of the precompiler is as follows: Each line in prog.pc containing an embedded
SQL statement is parsed and transformed to an internal statement tree. The parser has been developed with
lex and yacc.

For each type of statement (e.g. SELECT, DROP) we provide one executing function. All these functions
are part of the library (as depicted in Figure 4) and will be invoked in the resulting program prog.c.
Parameters passed to these functions are the corresponding statement tree and the actual variables.

Building the statement tree at compile time permits syntax checking before run time.

At run time the statement tree is interpreted by the application, i.e. merely basic requests are passed to the
database server which accesses the database through the raccess library. The main reason for this approach
is to keep the server as simple as possible and to avoid complicated scheduling mechanisms which would
be necessary if an application request consumed a larger amount of time.

6. Summary

This paper presented various extensions to the relational database system db++. The main goal was to
combine sthe obvious advantages of sophisticated database management systems like ORACLE with the
UNIX oriented and thus much better integrated database system db++.

EUUG Autumn 89 — Vienna, 18-22 September

A SQL Programming Interface for the Relational Database Svstem Db++

Figure 4: Developing an embedded SQL program

Db++ has been enriched with a variety of new features (transaction processing, data dictionary, multi-user
operation). The central point is an embedded SQL programming interface for C, which closely adhere to
the X/Open standard [XPG87] for embedded SQL and Oracle’s PRO*C [Nev87al.

The major benefit of our extension is the reduced effort for program development and maintenance under
db++.

7. Acknowledgements

The authors wish to thank Guenter Gruensteidl, Heinz Kantz. Gernot Kunz, Karin Schneider, and Wemner
Schuetz for valuable comments on an earlier version of this paper. We also want to acknowledge the
support of Concept ASA providing us with useful informations about db++ internals.

References

[Con86a] Concept ASA, Db++ Relational Database Management System — User Guide, Frankfurt-Main,
1986. Second Edition

[(XPG87a] X/Open Portability Guide — Relational Database Language (SQL), January 1987.

[Ans86a] American National Standard for Information Systems, “Database Language — SQL,” ANSI
X3.135-1986.

[Agn86a] M. Agnew and R. Ward, “The Db++ Relational Database Management System,” Proc. of the
European UNIX User Conference, pp. 1-15, Florence, Italy, April 1986.

[Agna] M. Agnew and R. Ward, Db++ Relarional Database Management System — The Raccess
Library Routines — The C Language Interface Reference, Concept ASA, Frankfurt-Main $D
April 1988. Third Edition

EUUG Autumn'89 — Vienna, 18-22 September

[Ber81a]

[Cas89a]

[Cod85a])

[Had89a]

[Mis88a]

[Nev87a]
[Pen87a]

A SQL Programming Interface for the Relational Database System Db++

P. A. Bemnstein and N. Goodman, “Concurrency Control in Distributed Database Systems,”
ACM Computing Surveys, vol. 13, no. 2, pp. 185-221, June 1981.

R. J. Casimir, “Fourth Generation Problems,” Sigplan Notices, vol. 24, no. 5, pp. 83-86, May
1989.

E. F. Codd, “Is your DBMS really relational,” Computerworld, October 14, October 21, 1985.

T. Hadek, “Eine hochwertige Programmierschnittstelle fiir das relationale Datenbanksystem
Db++,” Master Thesis (in German), Technical University Vienna, Vienna, Austria, to be
published December 1989.

S. K. Misra and P. J. Jalics, “Third-Generation versus Fourth-Generation Software
Development,” IEEE Software, vol. 5, no. 4, pp. 8—14, July 1988.

D. Neville, PRO*C User’s Guide, April 1987. ORACLE Part No. 3504-V1.1

M. Penedo, “Prototyping a Project Master Database for Software Engineering Environments,”
Proc. of the 2nd Software Engineering Symposium on Practical Software Engineering
Environments, ACM Sigplan Notices, vol. 22, no. 1, pp. 1-11, January 1987.

EUUG Autumn 89 — Vienna, 18-22 September

EUUG Autumn 89 — Vienna, 18-22 September

Processable Multimedia Document Interchange using ODA

Processable Multimedia Document Interchange using ODA!!

Jaap Akkerhuis
Ann Marks
Jonathan Rosenberg
Mark S. Sherman

Information Technology Center
Carnegie Mellon University
Pittsburgh, USA
jaap+@andrew.cmu.edu
annm+@andrew.cmu.edu
jr+@andrew.cmu.edu
mss+@andrew.cmu.edu

ABSTRACT

The EXPRES (Experimental Research in Electronic Submission) project promotes the
electronic interchange of multi-media documents among the scientific research
community. For this project we concentrate on the problem of effective interchange of
processable multi-media documents. In particular, we are ignoring the transfer method.
Instead we concern ourselves with the question of how a multi-media document created
on one system can be viewed and edited on another system.

The obvious technique of performing translations between each pair of systems is
impractical. In order to attack the problems efficiently, we make use of a standard
representation. We have settled on the international standard Office Document
Architecture (ODA) [ISO88a] as the intermediate format. This paper discusses how we
implemented ODA for interchange.

Introduction

In the last decade there has been an explosion in the number of multimedia document processing systems.
These range from simple batch text processors systems to fancy WYSIWYG multimedia editors; these are
used by professional typesetters, computing professionals and administrative personnel. Most systems
have “multimedia” facilities, which range from the ability to use different fonts, inclusion of drawings, and
mathematical equations, up to sound and video. The term “multimedia document” is most of the time
actually a misnomer. Basic facilities such as non-proportional spacing, different fonts, etc. have always
been part of a document. We will use this term however to discriminate from the typewriter and lineprinter
style documents.

The introduction of these systems has generated a new problem. To interchange a document from one
system to the other is hardly possible given the number of systems in use.

The National Science Foundation (NSF) receives yearly a considerable number of proposals for research
grants. Most of these are actually prepared on the above mentioned systems. This observation leads to the
question of whether it would be possible to receive these proposals in electronic form, so that the amount a
paper involved could decrease. Ideally, the electronic form should make it possible to process the
documents, without requiring the submitters to standardise on a single system. This led to start of the
Experimental Research in Electronic Submission (EXPRES) project, whose goal is to investigate the
problems of document interchange for dissimilar systems. Main participants are the Information

[1] This work was funded by the US National Science Foundation under grant ASC-8617695. The views and conclu-
sions contained in this document are those of the authors and should not be interpreted as representing the official policies,
either expressed or implied. of the National Science Foundation or the US Government.

EUUG Autumn 89 — Vienna, 18-22 September

Processable Multimedia Document Interchange using ODA

Technology (ITC) Center at Carnegie Mellon University (CMU) and the Center for Technology Integration
(CITI) at the University of Michigan (UM).

As part of the Andrew project [Mor86a], the ITC developed a multimedia toolkit, the Andrew Toolkit
(ATK) [Pal88a], which supports objects such as multi-font text, line drawings, equations, spread sheets,
and raster drawings. At the University of Michigan, the Diamond multimedia system [Tho85a] is the base
for their collaboration in the project. Although Diamond and the Andrew systems are quite similar in their
capabilities, they were independently developed and quite different in their underlining implementations.
This provided an ideal environment for the EXPRES project.

1. Translation fidelity

When translating a document from one system to be viewed and edited on another, it is necessary to
decided on the fidelity required. We distinguish three major fidelity categories for document interchange.
These are imagining fidelity, structural fidelity and editing fidelity. Below we briefly discuss what these
entail. An more thorough discussion may be found in [Ros89a].

1.1. Imaging fidelity

Imaging fidelity can defined by how close the translated document matches the original in appearance
when printed or on the screen. For certain types of document this is a primary requirement, as for instance
legal documents where changes in the layout are often unacceptable. This type of fidelity is also what
naive users want from a translation system.

To achieve this, one can use a standard page description language, such as PostScript, Interpress or DVI, as
produced by TeX. Of course this assumes that the implementation of these language on the receiving end
will produce the the same result. This might not always be the case. For example, if the more or less
standard Computer Modern Roman fonts for TeX are not used, this scheme will fail.

1.2. Structural fidelity

Normally a document is highly structured. A document consists of paragraphs, figures with legends,
footnotes etc. Maintaining the structure of the document allows the receiver to format the document
differently than the originator. This way one can retain the general appearance of an document.

1.3. Editing fidelity

Editing fidelity requires structural fidelity, but, in addition, the document must be editable in a way similar
to the originating system. This is particularly important for the EXPRES project since we are concerned
with allowing collaboration on multimedia documents from dissimilar systems.

A prime example of an editing feature to be retained during translation is style sheet or property sheet
information. A lot of document systems provide a mechanism for defining styles. For example, one can
define a quotation style where the right and left margin are indented and the font changed to italic. This
style can then be applied to various parts of the text. The important fact is that when this style’s definition
is changed, this will take effect on the parts of the text where the style is applied. To elaborate, let’s
assumne that we have a document on system A, and that the document includes a definition for a quotation
style which is applied several places in the document. Let’s assume that we now interchange the document
to system B, and that the interchange preserves editing fidelity. On system B, an edit is made to change the
quotation style. Now all applications of the quotation style will appear different in the document on system
B. Of course it must be possible to interchange these changes to the quotation style when sending the
document back to the original system or to any other system.

2. The Office Documentation Architecture

It is obvious that it is impractical to build nx(n — 1) translators for n document processing systems. We
decided to translate in and out a common format for all translators. For the this format we choose the
Office Documentation Standard (ODA), an international standard designed for interchange of multimedia
documents. One of the main reasons is that it doesn’t only specify the logical structure of a document but
also includes full semantics to specify the layout of a document. We felt that this was necessary in the
interchance, since users would insist on the ability to specify the appearance of the document. In addition,
ODA is an international standard that has a following in Europe. This offered us the possibility of
extending our interchange to others.

168 EUUG Autumn 89 — Vienna, 18-22 September

Processable Multimedia Document Interchange using ODA

Report

text2

textl

Figure 1: The sample document

ODA defines a document architecture, several content architectures and two data stream formats. The
document architecture is the means by which the structure of a document, independent of its actual
content, is represented. In general, an ODA document is represented using two sets of structures.t The
logical structure is based on the meaning of various divisions of the document. For example, the logical
structure of a document might consist of chapters, sections and paragraphs. In the layout structure, the
document is structured on the basis of presentation. For example, the layout structure of a document might
consist of pages and, within the pages, frames and blocks that define headers, footers and paragraphs.

In addition, each structure may exist in two forms: generic and specific. A generic structure may be
thought of as a template or macro that allows structure information to be collected and referenced. For
example, the generic logical structure of a document might indicate that the document consists of a title,
followed by one or more sections, followed by a set of references. Correspondingly, a generic layout
structure for the same document might indicate that the title is a block that appears two inches from the top
of the first page and is centered.

If the generic structures of a document can be thought of as macros, then the specific structures represent
invocations of those macros. The specific logical structure is, thus, the actual structure of a document. For
example, the specific logical structure might show that a particular document consists of a title, five
sections and a set of seven references. There is a specific layout structure , corresponding to the generic
layout structure, but it is used only for the representation of a final form document (one that may be
imaged). Since we are concerned only with editable documents, our translation schemes do not use any
specific layout structures. The actual content of an ODA document consists of instances of content
architectures . Each content architecture defines its own internal structure, which may consist of logical
and layout structures. There are currently three content architectures defined within ODA. Character
content architecture defines the presentation and processing of characters and allows the specification of
graphic character sets, multiple fonts, ligatures and formatting directives such as indentation and
justification. Raster graphics content architecture defines pictorial information represented by an array of
picture elements. Geometric graphics content architecture defines picture description information such as
arcs and lines.

A data stream is an out-of-memory representation for a document that is suitable for storage in a file or
transmission over a network. The ODA standard defines an ASN.1 binary data stream format known as the
Office Document Interchange Format (ODIF).%

t It is possible for an ODA document to consist of only one of these sets of structures. For our purposes, this is imma-
terial and we will only consider documents containing both sets of structures.

1 ODA defines another data stream representation, the Office Document Language (ODL), which is a clear text
representation that conforms to the Standard Generalized Markup Language standard (SGML). Note that this does not im-
ply that there is a direct relationship between an ODA document and the equivalent document marked up using SGML.

EUUG Autumn ‘89 — Vienna, 18-22 September 169

Processable Multimedia Document Interchange using ODA

Documents represented in ODA are graphs, the nodes of which are known as constituents. Each
constituent has a set of attribute-value pairs. The values of attributes are used to represent the structure of
the document. Attributes have values that control the presentation and layout of the document. For
example, the value of the attribute “Separation” at a constituent will control the distance between blocks of
text when the document is displayed or imaged.

Figure 1 displays a small example of a two page document. It consists of two pages. The first page
contains a title “report” that is centered and bold-faced, and a centered paragraph, “textl”. The second
page contains a left justified paragraph “text2”.

Logical Root

£

Composite Composite ‘

RN

Basic Basic
(Block (Block
Alignment=| | Alignment=
centered) centered)

Figure 2: The ODA specific structure

The corresponding specific logical and layout structures are shown in Figure 2. The logical structure
consists of a composite object for each section and a basic object for each paragraph. The centering of the
text is accomplished by attaching the attribute “Block Alignment” with the value “centered” to two of the
basic objects. The specific layout structure consists of two page objects each of which contains a frame
and a block object to position the paragraph.

3. The CMU ODA Tool Kit

To make it easier to build translators we developed a subroutine library for manipulating ODA documents.
The Tool Kit [Rosa], written in C, includes C language definitions for the objects that occur in ODA, such
as constituents and sequences. The Tool Kit also includes data type definitions of all the data used in ODA,
for example construction expressions and font information. The Tool Kit provides subroutines for
manipulating ODA structures. For example, the Tool Kit permits the creation of documents and
components; it allows the user to associate an attribute value with a constituent; subroutines for reading and
writting the binary ODIF interchange format are also included.

EUUG Autumn'89 — Vienna, 18-22 September

Processable Multimedia Document Interchange using ODA

The Tool Kit performs a number of useful functions for dealing with ODA. When setting an attribute
value, the Tool Kit performs full semantic checking to ensure that the attribute can be associated with the
given constituent, and that the value specified for the attribute is legal. This is extremely useful because
some attributes are only allowed on certain kinds of constituents, so the Tool Kit will prevent the creation
of illegal combinations. The ODA standard also specifies a complicated scheme for defaulting of attribute
values. These defaulting rules are fully supported by the Tool Kit. The Tool Kit includes subroutines for
reading and writing of the ODIF data stream, operations which are complex given that the ODIF stream is
a context sensitive binary representation. For debugging purposes it is possible to create a human readable
representation of the binary data stream. Service routines are also included to support the ISO 9541
standard for fonts which is used by ODA.

The subroutine library is designed to be highly portable, therefore it is written in a subset of C which we
carefully specified with portability in mind. The Tool Kit will compile and run on various operating
systems and hardware platforms. By carefully separating the operating system dependencies, such as 1/O,
into separate modules, it is easy to port to other systems. In addition, hardware dependencies are localised
to a short set of type definitions. Currently there is support for:

1 UNIX (System V and BSD flavors) on Vaxes, IBM-RT, Sun

2 VAX VMS

3 Macintosh under MPW

4 IBM PC running MS-DOS

We estimate that it is less than a day’s work to bring it up on a new machine.

Although the Tool Kit is very useful, there are many capabilities that it does not currently include. For
example, there is no capability for interpreting content. The actual content of the document, be it text or a
raster, is a sequence of bytes. Translator implementors must examine content sequences to extract
formating information such as font changes. The Tool Kit does not include any of the conventional
document notions such a paragraph or left margin. Such higher level document constructs must be built by
creating the appropriate ODA structure and attaching the required attributes. There are some document
operations that would make nice additions to the Tool Kit. For example, it would be convenient to be able
to have a single operation for instantiating a generic object when constructing an ODA document. Some of
the information required by ODA is very cumbersome, e.g. construction expressions and font information.
It would be nice to be able to specify these concisely. The Tool Kit does not perform the layout or imaging
processes included in ODA’s document reference model. Both could be built on top of the Tool Kit.
Finally, there is no support for the ODL SGML based interchange format.

4. Examples of Tool Kit Use

In this section, we present four examples illustrating the use of the Tool Kit to construct translators. These
four examples are paired to show similar processing operations when translating from a native document
format to ODA and when translating from ODA back into a native format. The first pair of examples
shows how a part of the specific logical structure is created or examined. In the second pair, we show how
to associate attribute values with constituents or how to retrieve attribute values. Throughout, we use a C-
like notation to present program segments. We omit checking of Tool Kit return values to keep the
examples uncluttered.

4.1. Example of Document Structure

In this example, we assume that the document being interchanged is to contain processable information. In
ODA, this is represented using the logical structure. We further limit ourselves to the specific logical
structure to illustrate how the structure is built up when translating to ODA, and how the structure is
interpreted when translating from ODA. Figure 3 depicts the ODA structure. Here we assume that there is
a parent component that is a composite logical object. The children of this parent are also to be composite
logical objects.

+ Although the binary ODIF representation of a document is cryptic and unreadable by a human, it is also much easier
to parse and unparse than ODL. In addition, all other ODA implementations of which we were aware were using ODIF and
we would, thus, have some chance of interchanging with other systems. For these reasons, we have only implemented
reading and writing of ODIF within the ODA tool Kit.

EUUG Autumn 89 - Vienna, 18-22 September

Processable Multimedia Document Interchange using ODA

Composite
Logical Object

Subordinates

Composite Composite
Logical Object Logical Object

Figure 3: ODA Structure for Examples 1 and 2

At this point, a parent composite logical object is
to be created.

The children, also composite logical objects, are also

to be created.

The subordinates attributes is to connect the parent to
the children.

document is assumed to be of DOCUMENT type and created by
a call to the Tool Kit MakeDocument routine.

* Ok R % % ok ¥ X

~

INT_type ReturnCode; /* for Tool Kit returns */
CONSTITUENT parent; /* the parent */
CONSTITUENT child; /* one of the children */
SEQUENCE_CONSTITUENT type Subordinates;
/* the value for the subordinates attribute */

/* create the parent */
Parent = MakeComponent (document, SPECIFIC_COMPCNENT,
at_OBJECT_TYPE_comp_logical obj);

/* create the empty sequence for the subordinates attribute */
Subordinates = MakeSequence(SEQUENCE CONSTITUENT_ tag, (INT type) 0);

/* loop to create the children and add to the subordinates */
for (each child needed) {
/* make the child component */
Child = MakeComponent (document, SPECIFIC_COMPONENT,
at_OBJECT_TYPE_comp_logical obj)

/* expand the subordinates sequence */
ReturnCode = ExpandSequence(Subordinates, (INT type) 1);

/* add the Child at the end of Subordinates */
Subordinates->sequence value.constituents[Subordinate->length-1]
= Child;

/* now set the subordinates attribute */

ReturnCode = SetAttr(parent, at_SUBORDINATES,
(POINTER_type) Subordinates,
(PARM MASK_ type) 0);

Example 1: Creating Components and adding the Subordinates Attribute

4.1.1. Translating into ODA

To translate into ODA, the native document must be traversed, and the appropriate ODA structures con-
structed. We assume in this example that the traversal has reached a point where the parent component is

EUUG Autumn 89 - Vienna, 18-22 September

Processable Multimedia Document Interchange using ODA

to be built, the children are to be created, and the subordinates attribute is to be associated with the parent.
The code for accomplishing this is given in Example 1.

In this example, we see calls to the Tool Kit MakeComponent routine which creates a component.
MakeComponent creates the component in the given document; the component will be of a given type, a
specific component in this example; the component will be of a given kind, a composite logical object in
this example. The Tool Kit MakeSequence routine is used to create a sequence of constituents to hold the
value of the subordinates attribute. Initially, this sequence has length zero, but the length is increased by
one as each child is created. Finally, the SetAttr routine is used to set the value of the parent’s subordinate
attribute. Because the subordinates attribute does not have parameters (as does the offset attribute, for
example), a null value is passed as the last parameter.

4.1.2. Translating out of ODA

When translating out of ODA, the ODIF data stream will first be read from a file by calling the ReadODIF
Tool Kit routine. This will result in the creation of a document with type DOCUMENT _type. This
example shows how the data stream is read, and how to examine the children encountered during the
traversal. As the traversal is performed, the native form of the document is constructed; we omit code for
doing this. The code is shown in Example 2.

In this example, we see that the entire ODIF data stream is read by a single call to the Tool Kit routine
ReadODIF. This creates a DOCUMENT_type object that is the document contained in the ODIF data
stream. To locate the root of the specific logical structure, the FindDocumentRoot is called. At this point
the recursive traversal begins. To traverse each constituent in the specific logical structure, each
constituent is processed; this processing will entail the creation of the appropriate native document format
piece. To continue the traversal, the value of each constituent’s subordinate attribute is obtained, and
traverse is called for each subordinate.

The Tool Kit provides an alternate way to traverse document structures using the Tool Kit
ITERATOR_type object. In Example 3, we outline how an ITERATOR_type can be used for this purpose.

Note that this example begins like the previous one with the reading of the data stream and the locating of
the document’s specific logical root. The iterator is then created, and the iteration is performed. This
iteration will result in the entire specific logical structure being traversed. Note that the traversal will be
parent first, like the previous example, but, here the traversal is breadth first where the previous example is
depth first. Finally, this example illustrates an iterative way to traverse document structure in contrast to
the previous example which used recursion.

4.2. Example including an Object Class and a Style

The next pair of examples is based on the ODA structure shown in Figure 4. Here we have three
constituents: a basic logical object, a basic logical object class and a presentation style. The basic logical
object indicates that it is an instance of the basic logical object class by the object class attribute. The basic
logical object class has an associated presentation style as indicated by the presentation style attribute. The
presentation style has one attribute associated with it, the character content architecture attribute
indentation. The indentation attribute has value 5 which, according to ODA semantics, is in standard
measurement units.

4.2.1. Translating into ODA

This example illustrates how the structure shown in Figure 4 can be created. The native format document
is being traversed. At some point, in this traversal the structure shown in Figure 4 needs to be created to
represent the native format document. The code for doing this is shown in Example 4.

Note that each constituent is created by a Tool Kit call. The two components are created using
MakeComponent, but the presentation style must be created using MakeStyle. The attribute values are set
using various flavors of the SetAttr routine. To set the object class attribute for the basic logical object, and
to set the presentation style attribute for the basic logical object class, the SetAttr routine is used. To set
the value of the indentation attribute on the presentation style, we have used the SetIntAttr routine. This
permits us to pass the value of the attribute rather than the address of an INT_type variable with value 5
which SetAttr would require.

EUUG Autumn 89 — Vienna, 18-22 September

Processable Muitimedia Document Interchange using ODA

/*
* A data stream is read.

*

* The document specific logical root is located.

*

* A depth first, parent first traversal is performed on
* the specific logical structure.

*/

INT_type ReturnCode; /* Tool Kit return value */
DOCUMENT_type document; /* the document */
CONSTITUENT LogicalRoot; /* the root of the specific logical structure */

/* first read in the document */
document = ReadODIF(fileno(stdin));
/*
* Here we assume that this is running on UNIX
* and that the data stream is on the standard input.
*/
/* now locate the document logical root */
LogicalRoot = FindDocumentRoot (document, SPECIFIC DOC LOGICAL ROOT);

/* call subroutine traverse to examine the root */
traverse(LogicalRoot);

void traverse(constituent)
CONSTITUENT constituent;
{
/*
* Traverse the given constituent.
*
* The appropriate part of the native format would
* Dbe created but this is not shown.
*/

INT type i; /* for looping through the children */

/* the constituent’s subordinates */
SEQUENCE_CONSTITUENT type Subordinates;
INT type ReturnCode; /* return code from the Tool Kit */

process the parent;

/* now get the parent’s subordinates attribute */
ReturnCode = GetAttr(constituent,
at SUBORDINATES,
(POINTER type) &Subordinates,
BOOL_false, ' /* do not use the ODA defaulting rules */
(PARM MASK_type *) 0) ;

/* now start the iteration over the children */
for(1 = (INT_ type) 0; i < Subordinates->length; i++){
/* recursively traverse the child */
traverse(Subordinates->sequence_value.constituents[i]);

Example 2: Reading a Data Stream and Traversing the Document

4.2.2. Translating Out Of ODA

To translate out of ODA, the ODA document is traversed. Presumably, at some point the basic logical
object is encountered, and the value of the indentation attribute is needed. Example 5 shows how to obtain
the value of the indentation attribute.

EUUG Autumn 89 — Vienna, 18-22 September

Processable Multimedia Document Interchange using ODA

DOCUMENT_type document; /* the document */
ITERATOR_type iterator; /* the iterator */
CONSTITUENT constituent; /* a constituent */

/* first read in the document */

document = ReadODIF(fileno(stdin));

/*
* Here we assume that this is running on UNIX
* and that the data stream is on the standard input.
*/

/* now locate the document logical root */
constituent = FindDocumentRoot (document, SPECIFIC DOC_LOGICAL_ROOT);

/* make the iterator */

iterator = MakeSubgraphIterator(constituent,
PARENTS FIRST, /* the parent goes before the children */
BREADTH_FIRST); /* the traversal is to be breadth first */

/* now begin the iteration */

for (constituent = NextConstituent (iterator);
constituent != ERROR_CONSTITUENT
&& constituent != NULL_CONSTITUENT;

constituent = NextConstituent(iterator)){

process constituent;

Example 3: Reading a Data Stream and Traversing the Document using an Iterator

Basic object Basic Logical presentation Presentation
Logical Object class Object Class style Style
Character
Indentation

Figure 4: ODA Structure for Examples 4 and 5

We see that only one Tool Kit routine is called, GetAttr. The value of indentation for the
BasicLogicalObject can be obtained easily by using the ODA defaulting mechanism which is implemented
by the Tool Kit. Without Tool Kit support for ODA defaulting, it would be necessary to look for styles,
object classes, resource documents, default value lists, document application profile defaults, and to know
the ISO 8613 default values for all attributes that have default values.

5. Conclusions and Status of the CMU ODA Tool Kit

The ODA Tool Kit enabled us to interchange documents between different platforms and between different
document processing systems in timely fashion. Having the ODA Tool Kit as a common base permitted us
to interchange much sooner than we would outwise have been able done otherwise. In addition, many
difficulties were eliminated because we were all using the same Tool Kit.

We plan to release the Tool Kit on the next MIT X tape, which is currently scheduled for release in
December 1989, although MIT is controlling the date of the release. We are also investigating the
possibility of releasing the Tool Kit through other publically available channels, possible the ISODE
distribution. On release the Tool Kit will be largely complete. The functionality that we presently expect
to be missing or limited includes: limited support for ODIF, most notably the document profile and specific
layout structure will be largely incomplete or missing; the Tool Kit will include no support for swapping of

EUUG Autumn 89 — Vienna, 18-22 September 175

Processable Multimedia Document Interchange using ODA

/*
* First create the constituents, then set the appropriate
* attributes.
*
* document is a DOCUMENT_ type object created by a
* call to the Tool Kit routine MakeDocument.
*/

CONSTITUENT BasicLogicalObject;

CONSTITUENT BasicLogicalObjectClass;

CONSTITUENT PresentationStyle;

INT type ReturnCode; /* Tool Kit return code */

/* make the basic logical object */

BasicLogicalObject = MakeComponent (document,
SPECIFIC COMPONENT, /* in the specific structure */
at_OBJECT TYPE bas_logical obj):;

/* make the basic logical object class */

BasicLogicalObjectClass = MakeComponent { document,
GENERIC_COMPONENT, /* in the generic structure */
at OBJECT TYPE bas _logical obj);

/* make the presentation style */
PresentationStyle = MakeStyle(document,
PRESENTATION STYLE);

/* now associate the basic logical object with the object class */
ReturnCode = SetAttr(BasicLogicalObject,
at OBJECT_CLASS, /* the attribute to be set */
(POINTER type) BasicLogicalObjectClass,
/* the value of the attribute */
(PARM MASK type) 0);
/* the object class attribute does not have parameters */

/* now associate the basic logical object class with the style */
ReturnCode = SetAttr(BasicLogicalObjectClass,
at_PRESENTATION_STYLE, /* the attribute to be set */
(POINTER_type) PresentationStyle,
/* the value of the attribute */
(PARM_MASK_type) 0);
/* the presentation style attribute does not have parameters */

/* now add the indentation style value to the style */
ReturnCode = SetIntAttr(PresentationStyle,
cc_INDENTATION, /* the attribute to be set */
(INT_type) 5, /* the value of the attribute */
(PARM MASK type) 0); °
/* the indentation attribute does not have parameters */

Example 4: Building the ODA Structure shown in Figure 4

parts of the ODA document, a feature important for machines with limited memory, or when working with
huge documents; no ability to evaluate the expressions included in ODA, e.g. string expressions, numeric
expressions etc.; the Tool Kit only supports text and raster content. At present, the Tool Kit is about
80,000 lines of C.

References

[ISO88a] 1SO, Office Document Architecture (ODA) and Interchange Format (1SO 8613), International
Organization for Standardization (ISO), 1988.

[Mor86a] James H. Morris, Mahadev Satyanarayanan, Michael H. Conner, John H. Howard, David S. H.
Rosenthal, and F. Donelson Smith, “Andrew: A Distributed Personal Computing
Environment,” Communications of the ACM, vol. 29, no. 3, pp. 184-201, March 1986.

176 EUUG Autumn 89 — Vienna, 18-22 September

Processable Multimedia Document Interchange using ODA

/*

* BasicLogicalObject is the basic logical object as
* shown in Figure 4.

*/
INT_type ReturnCode; /* Tool Kit return value */
INT_type Indentation; /* value of indentation */

ReturnCode = GetAttr(BasicLogicalObject,
/* the attribute whose value is sought */
cc_INDENTATION,
/* where to return the value of indentation */
(POINTER_type) &Indentation,
BOOL_true, /* use the ODA defaulting rules */
/* do not return the parm mask */
(PARM MASK type *) 0);

Example 5: Extracting the Value of Indentation for the BasicLogicalObject

[Pal88a] Andrew. J. Palay, Wilfred J. Hansen, Mark Sherman, Maria G. Wadlow, Thomas P.
Neuendorffer, Zalman Stern, Miles Bader, and Thom Peters, “The Andrew Toolkit—An
Overview,” Proceedings of the USENIX Winter Conference, pp. 9-21, USENIX Association,
Berkeley, CA, February, 1988.

[Ros89a] Jonathan Rosenberg, Mark S. Sherman, Ann Marks, and Frank Giuffrida, “Translating Among
Processable Multi-media Document Formats Using ODA,” Proceedings of the ACN
Conferenrence on Document Processing Systems, pp. 61-70, ACM, New York, December 5-
9, 1989.

[Rosa] Jonathan Rosenberg, Ann Marks, Mark Sherman, Paul Crumley, and Maria Wadlow, “The
CMU ODA Tool Kit: Site Installation Guide & Application Programmer’s Interface.”
Technical Report CMU-ITC-071, Information Technology Center, Carnegie Mellon.

[Tho85a] Robert H. Thomas, Harry C. Forsdick, Terrence R. Crowley, Richard W. Schaaf, Raymond S.
Tomlinson, and Virginia M. Travers, “Diamond: A Multimedia Message System Build on a
Distributed Architecture,” IEEE Computer, vol. 18, no. 12, pp. 6578, December 1985.

EUUG Autumn 89 — Vienna, 18-22 September

EUUG Autumn 89 - Vienna, 18-22 September

TCP/UDP Performance as Experienced by User-Level Processes

TCP/UDP Performance as Experienced by User-Level Processes

Josef Matulka

Department of Applied Computer Science
Institute of Information Processing and Information Economics
Vienna University of Economics and Business Administration
Augasse 2-6,
A-1090 Vienna,
Austria
matulka@awiwuwl I .earn

ABSTRACT

This paper is concerned with the presentation of empirical data on the performance of the
internet protocols TCP and UDP as experienced by a distributed application. After a
short summary of the main services provided by the internet protocols IP, UDP, and
TCP, an abstract data type built on top of the well-known Berkeley IPC sockets is
presented, which has been used to implement a benchmark experiment. The
experimental design of this experiment is described and performance data are given for
UDP and TCP under two different environments (‘‘loaded” hosts and “‘unloaded” hosts).

1. Introduction

The era of the dominance of big mainframes with all the computing power concentrated into one
computing center is over. The PC revolution has brought local computing power on to each desktop,
workstations have found their way into business. At the company level, local area networks (LANs)
connecting all computing devices become more and more common while national and international
networks enable the communication between the local communities and are themselves brought together
by the internetworking approach.

These decentralized hardware configurations demand distributed applications, and to a very large extent
computer science research reflects this need. Apart from artificial intelligence distributed and parallel
computing are probably dominating more conferences and journals than any other area of computer
science. And indeed, there is a lot to discover. The subject of designing and implementing effective
parallel and distributed algorithms on real machines is far from being “cut and dried”, and the question of
how to make the best use of the often impressing amount of MIPS scattered over numerous workstations is
all but settled.

One line of research at the Department of Applied Computer Science is concerned with applying statistical
and decision theoretical methods to the problems of designing (optimally) distributed algorithms and of
adaptive task allocation in distributed systems. If one adopts this framework, basically three components
are needed in order to succeed:

1. a mathematical model
2. anobjective function (minimization of run time, etc.)
3. empirical datu (to quantify the cost of communication)

Other research is concerned with more theoretical issues (cf. [Tau89a]), this paper sets out to deliver some
of the empirical data needed for filling in communcation cost by benchmarking a small server-client-type
distributed application. Section 2 first provides a short summary of the communication protocols used,
namely the internet protocols TCP and UDP+, and the interface used to access them (Berkeley IPC
sockets). Secondly, a simple abstract data type is described, which simplifies distributed programming, and
is used to implement the benchmark. Section 3 describes the experimental design of the benchmark in

+ For a thorough discussion of these protocols see [Com88a].

EUUG Autumn 89 — Vienna, 18-22 September

TCPIUDP Performance as Experienced hy User-Level Processes

detail: programs used, messages exchanged, environment conditions, measurements taken and performance
indices calculated. Section 4 reports on the results of the experiments, the conclusions of which are listed
in section 5.

A similar experiment has been performed by [Cab88a}] but in general network benchmarks are far more
frequent for lower layers. They allow a “cleaner” experimental design and an easier identification of
factors influencing performance. Unfortunately, the figures relevant for distributed applications are those
measured at the user-level.

2. Distributed Computing Under HP-UX

The computing facilities of the Department of Applied Computer Science consist of 16 HP 9000/330 and
one HP 9000/350 workstations. All of them are running HP-UX 6.2, a System-V.2-type UNIX version
with ARPA and Berkeley extensions, and are connected by a 10 megabit/second Ethernet.

Distributed applications in this environment usually make use of the internet protocols TCP and UDP.
These two transport-level protocols are often referred to as TCP/IP and UDP/IP respectively, in order to
stress that both make use of the underlying (network-level) 1P protocol which in turn is built on Ethernet
servicesy.

The Internet Protocol (IP) enables the upper-layer protocols to send Internet datagrams, which may be lost
or duplicated, from one host to another which may belong to another physical net. In order to shield the
upper layers from the different maximum transfer units (MTUs) imposed by different nets the protocol has
built into it the capability of dividing large datagrams into smaller fragments which — in most cases — travel
independently from source to sink where they are reassembled.

This connectionless and unreliable host-to-host protocol is only slightly enriched by the User Datagram
Protocol Adding individual process identification, UDP datagrams are sent from process to process instead
of host to host. UDP still remains unreliable and connectionless. TCP, on the contrary, builds up a virtual
connection between the communicating processes, includes flow control, and adds reliability using a
sliding window technique.

In order to access the services provided by these protocols in a program, an interface is needed. The
Berkeley IPC socketst are probably the most well known interface, suitable for TCP as well as UDP.
From a programmer’s point of view, they are just a set of additional system calls, allowing him to open a
connection with a remote process, send and receive messages, and finally shut down the communication.
This communication is defined uniquely by a five-tuple, called association = (protocol, local host address,
local port, remote host address. remote port). Port refers to an address within a host which is used to
distinguish different processes from each other. Frequently, service names are assigned to special ports,
thus making them more comfortable to handle. Hosts have names besides their addresses, anyhow.

This paper introduces a simple abstract data type (ADT) built on the Berkeley system calls which has been
used in the implementation of the benchmark. The main advantages of this ADT are the acceptance of
names instead of addresses for identifying hosts as well as ports and the optional availability of exhaustive
logging of all events useful for debugging purposes. The key idea of the implementation is to summarize
all information identifying an association in a C structure, the so-called ComBox structure.

Two versions of this ADT exist, for TCP and UDP respectively; the TCP functions are shown in Figure 1.
The Berkeley calls used by it are given in brackets below each function.

With the aid of this ADT a TCP communication between a server and a client} is simple: The server calls
TCPcomListen to indicate that it is ready to accept communication wishes. Then it calls TCPcomAccept
and waits until a client invokes TCPcomlnit and the virtual circuit can be established. Now both
processes can send (TCPcomSend and receive (TCPcomReceive) an arbitrary number of bytes until
finally the communication is closed (TCPcomClose).

} This describes the actual situation at the department. Being internet protocols, TCP and UDP are used with non-
Ethernet technologies as well.

t 1PC denotes Inter Process Communication.
T Only this special case is described, as this is the only one needed for the benchmark.

EUUG Autumn 89 — Vienna, 18-22 September

TCP/UDP Performance as Experienced by User-Level Processes

int TCPcomlnit (comBoxPtr, localService, remoteService, remoteHost)
[socket, bind, connect]

int TCPcomListen (comBoxPtr, localService)
[socket, bind, listen]

int TCPcomAccept (listenComBoxPtr,comBoxPtr)
[accept}

int TCPcomSend (comBoxPtr,message,len)
[send]

int TCPcomReceive (comBoxPtr,message, len)
[recvfrom]

int TCPcomClose (comBoxPtr)

{shutdown, close]

Figure 1: ADT ComBox (TCP version)

With UDP, the same communciation is more symmetrical. Each process calls UDPcomlnit to begin
communicationt, then packets are exchanged by UDPcomSend and UDPcomReceive and eventually the
communication is ended by UDPcomClose. Thus, in the UDP version the functions listed in Figure 2 are
needed.

int UDPcomlnit (comBoxPtr, localService, remoteService, remoteHost) (5)
[socket, bind]

int UDPcomSend (comBoxPtr,message, len)

[sendto]

int UDPcomReceive (comBoxPtr,message, len)

[recvfrom]

int UDPcomClose (comBoxPtr)

{shutdown, close]

Figure 2: ADT ComBox (UDP version)

The use of this ADT in the benchmark definitely adds some overhead, but if the sockets are used in a
distributed program, they are likely to be isolated in specific procedures, thus adding very much the same
kind of overhead.

3. Experimental Design

3.1. Environment

The benchmark experiments were performed on two of the Department’s HP-UX 9000/330 workstations.
Two different scenarios were analysed: “unloaded” hosts and “loaded” hosts.

The term “unloaded” host refers to a workstation on which no other user program except the benchmark
process is running. There was no attempt made to reduce the “ordinary” system processes running on the
UNIX system save that the crontab entry which would have invoked the syncer in 15 minute intervals was
removed for the duration of the experiments.

In the “loaded” hosts scenario each of the two hosts was compiling a C program as a background process.
In fact, it was the UDP echo server used for the benchmark, a C program of 30 lines source code, which
was compiled and linked again and again.

As the tests were performed during night hours, the net was considered “unloaded”, this means relatively
free of user traffic.

3.2. Test Programs Used

Four small programs were written for the benchmark, all of them making use of the functions provided by
the ADT ComBox. Two of these programs are just very simple echo servers, for TCP and UDP
respectively. They are started before the experiments begin and are continually waiting for incoming
messages. Each message is received (this entails a copying in main storage) and sent back immediately
(meaning a second copying of the message).

+ No UDP pseudo-connecitions are used.

EUUG Autumn 89 — Vienna, 18-22 September

TCPIUDP Performance as Experienced by User-Level Processes

The remaining two programs, called clients for short, are concerned with the collection of data by
exchanging messages with the above described echo servers.

for (3 = 0; j < 40; J++) {
TCPcomlnit (scomBox, "bench", "bench", rhost) ;
elapsedTime (0] = times(&timeval[0]);
for (i = G; 1 < 100; i++) |
bytesToRec = len;
if (TCPcomSend (&§comBox,message, len) != len)
exit (-2);
do {
bytesRec = TCPcomReceive (&comBox,
&message[len - bytesToRec],

bytesToRec) ;
} while ((bytesToRec -= bytesRec) > 0);
}
elapsedTime[l] = times(&timeval(l]);

TCPcomClose (& comBox) ;

Figure 3: TCP Client

The code given in Figure 3 illustrates how the benchmark works. A TCP connection is opened 40 times
and 100 messages of a certain length are exchanged before the connection is closed again. The message
length len is specified in an outer loop, executing the code given for different message sizes. The reason
for the selection of these two repetition counts 40 and 100 as well as the actual message lengths chosen will
be given in the next section.

The loop around TCPcomReceive is required as TCP uses a stream concept without any record
boundaries. Several receive calls might thus be necessary to get all the bytes sent at once.

The timing results are obtained by invoking the times system call twice: before entering the inner for-loop
and after leaving it. Thus, what is actually measured is how long it takes for the client to exchange 40
messages with the receiver in terms user time, system time, and elapsed time.

As the loop almost entirely consists of system calls, user time will turn out to be neglectable compared with
system time (typically at least fifty times smaller than system time). System time and user time are
measured for test purposes only and are not reported in this paper.

The client part of the UDP benchmark program given in Figure 4 is very similar to the TCP version. It
uses the UDP version of the ADT ComBox. A loop around UDPcomReceive is not needed, as all packets
sent at once are bound to be received at once. (Of course, IP fragmentation takes place for message sizes
above 1469, but the protocol hands over to the user process only the reassembled packets.)

As UDP contains neither secured transmission nor flow control. it is possible for the packets to be lost due
to failure of the underlying layers or due to desynchronisation (when a process sends data before its peer
has arranged for reception, the packet is lost). Furthermore, it is possible that UDPcomSend fails, this
means that UDP is not ready to accepr a packet at a that point of time. Therefore a timeout, set via an
alarm system call, is necessary. If the client does not receive a packet within the timeout period (4
seconds in the experiments) the receive call is interrupted by the alarm signal, the packet simply is
retransmitted and this round is cancelled. When the attempt to send fails, the client waits for 4 seconds
before trying to send again.

Of course, this timeout mechanism makes a correction of elapsed time necessary. For each send and
receive error 4 seconds are subtracted from the time obtained via times system call. It is this adjusted
elapsed time which is used in the calculation of the performance indices.

The provisions for possible send and receive problems are taken at the client side only. The UDP echo
server has neither of them. It just consists of a simple receive-send loop. If it cannot send, it just goes on
and waits for the next datagram. If a datagram sent to it is lost, it has not even a chance to take notice of
this event. UDPcomReceive just waits till the next datagram arrives.

182 EUUG Autumn 89 — Vienna, 18-22 September

TCP/UDP Performance as Experienced by User-Level Processes

for (j = 0; J < 40; j++) {
UDPcomlnit (& comBox, "bench™, "bench", rhost) ;
elapsedTime[0] = times (&timeval[0]);
for (i = 0; 1 < 100; i++) {
if (UDPcomSend (scomBox,message, len) != len) {
errno = 0;
sendError++;
i--;
sleep(delay) ;
continue;
}
alarm(delay);
if (UDPcomReceive (¢comBox, message, len) !'= len)
if (errno == EINTR) {
errno = 0;
receiveError++;
i--;
} else
exit (-1);
alarm(0) ;
}
elapsedTime[l] = times (&timeval(l]);
UDPcomClose (& comBox) ;

Figure 4: UDP Client

3.3. Message Length and Repetition Count

Both pieces of code presented in the previous section include two loops. Though we are interested in
round trip time for one message, not this value is measured, but the time needed for 100 round trips. This
has been done because it is somewhat meaningless to measure elapsed time for just one round trip with the
aid of the times system call which reports the elapsed time in units of 20 milliseconds in our environment,
whereas the values of interest are typically even below this number for smaller message sizes.

The second loop, responsible for another 40 repetitions of these 100 repetitions, has been established in
order to estimate a standard deviation for round trip time.

Both loops have been executed for a number of different message lengths. 1 byte is a fairly obvious
message length, it is the smallest user message one can possibly transmit. The other extreme is given by
9216 bytes, being the largest UDP message allowed by the specific implementation.

Though the basic endeavour of the paper is not to present a detailed analysis of TCP and UDP, but to
provide empirical data useful when designing distributed algorithms, an attempt was made to use
knowledge of [P fragmentation for explaining performance. The values chosen between the boundaries 1
and 9216 partly reflect this attempt. The largest number of UDP user bytes that can be transmitted with
one link-level packet is 1469. This value is calculated by subtracting the lengths of link-level, IP, and UDP
headers (17, 20, and 8 bytes) from the maximum Ethernet packet length used by the implementation (1514
bytes). Therefore, 1469 and 1470 bytes were reasonable choices. In order to get the other values
representing fragmentation boundaries one has to consider two facts: First, 1514 bytes as maximum length
of link-level packets are somewhat an exception. All other fragments travel inside packets with a
maximum length of 1509 bytes. Second, only the first IP fragment has to include a UDP header. With this
knowledge, one gets, with calculations such as 1464 + (1464 + 8) = 2936, the message sizes 2936/2937,
4408/4409, 5880/5881, 7352/7353, and 8824/8825. The values in the middle between two fragmentation
boundaries namely 2200, 3672, 5144, 6616, and 8088 were included as well.

Added to these sizes were the lengths 112, 256, 512 in order to obtain increased information for smaller
messages. Besides, 112 happens to be the smallest message that can be stored in one mbuf (a data structure
used for memory management inside the kernel), and 512 the common size for a UNIX disk block.
Eventually 1015, 1017, 1020, 1022 and 1024, 1026, 1028, 1030 were included to test whether the
singularity uncovered by [Cab88a] for messages of size 1024 can be reproduced.

EUUG Autumn ‘89 — Vienna, 18-22 September

TCPIUDP Performance as Experienced by User-Level Processes

Though the fragmentation boundaries reported above are valid for UDP only, these message sizes were
used for TCP as well, in order to be able to compare between UDP and TCP.

3.4. Performance Indices Calculated

Two performance indices are calculated for the different message sizes used: round trip time and round trip
throughput.

In the diagrams of the next section, round trip time is given in milliseconds and denotes the time needed for
the exchange of one message of a given size. What one actually gets from the experiment, however, are 40
values of elapsed time, each of them representing the time needed for the exchange of 100 messages. By
taking minimum, mean, and maximum of these 40 values and deviding them by 100 one gets the values of
minimum, mean, and maximum round trip time reported. The variance of these 40 values is devided by
100 as well and used as an estimate for the variance of one round trip.

Round trip throughput is calculated from round trip time by deviding message length by round trip time
and multiplying by 8, as throughput will be given in kilobit per second. We are defining round trip
troughput, a value of for examples 1000 kilobit/sec means that 1000 kilobit are sent to and fro in one
second. Thus, if one wants to compare the figures given with the 10000 kilobit/sec valid for raw bits, one
has to double them.

4. The Results of the Benchmark

In Figure 5 four functions are charted, all showing throughput as varying with message size. The top line
shows UDP throughput as observed in case of unloaded hosts. The next line shows the corresponding TCP
throughput, and the last two lines are the throughput functions for the loaded hosts scenario.

[Round Trip Throughput (Klobm/ucﬂ

2888888
[~

~]

g
———y
ST
4
]

0 } + t + + + + + + +
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Message Length in Bytes

Figure 5

184 EUUG Autumn ‘89 — Vienna, 18-22 September

TCPIUDP Performance as Experienced by User-Level Processes

In principle, if one disregards local low and high points, all functions can be regarded as convex functions
of message length. In general it therefore holds that the larger the message size the higher the throughput.
The highest throughput, namely 1000 kilobit/sec, was reached when exchanging UDP packets of 8824
bytes between two idle hosts.

The major decrease in throughput from 1469 to 1470, from 2936 to 2937, from 4408 to 4409, from 5880 to
5881, from 7352 to 7353, and from 8824 to 8825 obviously is accounted for by IP fragmentation. 5880, for
example, needs only four Ethernet frames for transmission, whereas the single additional byte of 5881
requires an additional frame which causes the decrease in throughput.

The measured throughput for TCP (also in Figure 5) shows that the same influence of IP fragmentation
cannot be observed when the TCP protocol is used. In most cases, the two values are too close together to
be distinguished as different points. This is not surprising, as the message sizes were carefully chosen to
reflect the fragmentation points valid for UDP, and different message sizes would be the relevant IP
fragmentation boundaries for TCP. Yet, the paper of [Cab88a] as well as own experiments confirm that IP
fragmentation is not suitable for explaining TCP performance anyhow. Flow control and reliability entail
the exchange of small packets containing control information; compared to this overhead, IP fragmentation
is neglectable.

It is this overhead that causes, not surprisingly, a slower functioning of TCP in comparison to UDP. In
general, TCP throughput ranges between 70 and 90 percent to that of UDP for message sizes above 2200
bytes, with the exception of 3672 where TCP throughput reaches 94 percent of the corresponding UDP
value. The discussion of smaller message sizes is deferred to the discussion of Figure 6. There, the
throughput values for the loaded hosts scenario, shown in the last two lines of Figure 5, will be commented
on as well.

Before turning to Figure 6, however, some words on two special points: The TCP throughput values for
8088 (unloaded scenario) and for 8825 (loaded scenario) reflect the impossibility to guarantee an idle net
even during night hours. As communication with other network users indicate, this effect is most likely to
have been generated by a backup daemon. Other runs have shown a much higher troughput for these
message sizes, namely 820 instead of 654 kilobit/sec for 8088 (unloaded scenario) and 389 instead of 323
kilobit/sec for 8825 (loaded scenario).

The data provided by Figure 6 are TCP and UDP round trip times for small message sizes only (the
smallest message size charted being | byte, of course, though the chart might give the impression of it
being 0 byte). In the UDP functions, one finds the expected fragmentation gap between message sizes
1469 and 1470. The most eminent impression, however, is the singularity observed between message size
1022 and message size 1024 for TCP as well as UDP. There, a decrease in round trip time from 25 ms to
22 ms has been observed in the UDP case, and an even larger decrease from 28 ms to 23 ms in the TCP
case (unloaded scenario). Additional data collected for 1015, 1017, 1020, and 1026, 1028, 1030 support
that 1024 is not just an outlier; round trip times for the former are typically close to 25 ms (UDP) and 28
ms (TCP), whereas for the latter they range at about 22 ms (UDP) and 23 ms (TCP).

Interestingly enough, the data published by [Cab88a], show a singularity at the same very point 1024. The
explanation given there is [Cab88a, p.45]:

The throughput “singularity” observed in the TCP/IP curve for the 1024 byte message size is due to
savings in copy operations and to the better use of mbufs. As datagrams have well known
boundaries, UDP/IP always allocates mbufs in optimal way. In UDP/IP the only savings in data
copying are for 1024 byte datagrams, which are sent using trailer protocols.

As this paper does not investigate into the matter of network buffer management, it is beyond its scope to
determine whether the same applies to the obervations made here. It can be stated, however, that 1024
bytes are transmitted by TCP in a very efficient way. For that message size, TCP reaches 97% of UDP
performance (unloaded scenario) and is even faster in the loaded scenario (103%).

In general, for the small messages charted in Figure 6 the difference between TCP and UDP performance is
reduced when there is extra load on the hosts; for message sizes below 1040, in particular, TCP is
frequently even faster than UDP. The same, however, is not true for message sizes beyond 2200 for which
the gap tends to become broader rather than smaller when extra load is imposed on the hosts.

Up to now, only mean values have been reported. The most eminent differences between loaded and
unloaded scenario, however, are to be found in the variances of the performance indices. The majority of
estimated standard deviations for round trip time are below 16 ms in the loaded scenario. When there is
load on the hosts the deviations are about 5 to 20 times larger. It seems that the standard deviations for
TCP are larger than those for UDP in cases of message sizes above 4000.

EUUG Autumn 89 — Vienna, 18-22 September

TCPIUDP Performance as Experienced by User-Level Processes

[Round Trip Time (ms)|

Message Length in Bytes

Figure 6

The extraordinarily high standard deviations for the two message lengths 8088 (TCP, unloaded scenario)
and 8825 (TCP, loaded scenario), namely 258 ms and 256 ms support the statement already made above:
most likely they are outliers.

Figure 7 shows, as an example, minimum, mean and maximum values as well as standard deviations for
UDP round trip times in the unloaded scenario. The mean value tends to be very close to the minimum.

5. Conclusions

The paper set out to deliver empirical data useful in the context of distributed programming. Empirical
data showing user level performance for TCP and UDP in two different environments (loaded and
unloaded hosts) were presented and compared. The following facts and rules are confirmed by the data:

I. Sending small messages is inefficient. In general, throughput increases with message size. Try to wait
and send larger blocks of data whenever possible. If the nature of the problem inevitably seems to
require sending only a few bytes at a time, consider sending some bytes more, even if the probability
that they are of any use for the receiver is a very low one. Their transmission does induce hardly any
extra cost.

Anomalies might be used for improving performance. As can be seen from the tables presented,
sending 1022 bytes is very different from sending 1024 bytes. In a time-critical application it makes
sense to look for such anomalies — which can be detected for example with the aid of the programs
presented in this paperf — and make use of them.

t The programs are available from the author at request.

EUUG Autumn'89 — Vienna, 18-22 September

TCP/UDP Performance as Experienced by User-Level Processes

UDP Round Trip Time (ms)|

;

NV Ent

} 4 I + } 4
T ¥ T T T T

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Message Length in Bytes

e

4
+

Figure 7

UDP allows faster communication than TCP. If one considers that the time needed for establishing
communication (which is typically much higher for TCP) is not included in the figures given, the gap
is even broader. Thus, if there is no need for a session-like connection, for example if only a few
messages are sent to the same receiver, UDP should be chosen. It might pay to implement an
application-specific protocol upon UDP. This is especially true, when UDP/IP is built on Ethernet
technology which is known to provide relatively secure transmission (cf. [Nem88a]).

Busy hosts mean slow communication. There is an important influence of host load on network
throughput. Just one additional user doing C compilations, not too unusual a case in a UNIX
environment, might cause a 40 percent decrease in throughput. Thus, in many cases not network
capacity but host processing power will be the bottleneck.

Busy hosts mean higher variance of round trip time. The delivery of single messages might be
delayed by even more than 40 percent, as the additional load results in major increases of the standard
deviation of round trip time.

Whereas it was possible to explain a good deal of UDP performance variation by IP fragmentation, the
same was not possible for TCP. As the paper of [Cab88a] indicates, an analysis of network memory
management is probably needed for a detailed explanation of TCP performance. Furthermore, it would be
interesting to collect data for the case of loaded network (cf. [Cab88a]) and for hosts running not only one
C compilation but many of them. Stastical estimation and test procedures could then be used to estimate
and test the influence of different factors on performance.

EUUG Autumn 89 —~ Vienna, 18-22 September

TCPIUDP Performance as Experienced by User-Level Processes

References

[RFC768a] J. Postel (ed.), User Datagram Protocol, 1980. Request for Comment (RFC) 768
[RFC791a] J. Postel (ed.), Internet Protocol, 1981. Request for Comment (RFC) 791

[Cab88a] Luis-Felipe Cabrera, et al., “User-Process Communication in Networks of Computers,” IEEE
Transactions on Software Engineering, vol. 14, no. 1, pp. 38-53, January 1988.

[Com88a] Douglas E. Comer, Internetworking with TCP/IP: Principles, Protocols, and Architecture,
Prentice Hall, Englewood Cliffs, 1988.

(Nem88a] Martin A. W. Nemzow, Keeping the Link: Ethernet Installation and Management, p. 222,
McGraw-Hill, New York, 1988.

[Tau89a] Alfred Taudes, Optimal and Adaptive Communication Strategies in Distributed Decision Tree
Problems, To appear in Proceedings of the International Symposium on Approximation,
Optimization and Computing, Dalian, China, 1989.

EUUG Autumn'89 — Vienna, 18-22 September

Interconnection of LANs, using ISDN, in a TCP/IP architecture

Interconnection of LANSs, using ISDN, in a TCP/IP architecture

Philippe Blusseau

OST-DRD/CMC
CNET LAA/ITP/RIC
Route de Trégastel
B.P. 40
22301 LANNION CEDEX
blusseau@cnetlu.uucp

ABSTRACT

Network interconnection is not really a recent problem: network architectures currently
used, or planned, specify a level structure, inside which one can insert new wide or local
area networks. Of course, ISDN is one of these networks that can be included in those
architectures.

In this paper, we will point out which interconnections can be done between LANs and
ISDN. We will then focus on the new services offered by the ISDN, especially the basic
“S0” access, and how they can be efficiently used in this context.

1. Introduction

Since 1983 France Telecom (The French Telecommunication Administration) has been involved in ISDN
implementation, with the RENAN (Réseau des Entreprises pour de Nouvelles Applications Numériques)
project. This experiment led to a commercial offering, called NUMERIS, with more than 300 accesses at
the end of 1988. The covering of the whole country is planned by 1990.

OST, founded in 1980, well known in data communication field, owing to its packet switchers, PADs, and
multiplexers, has set up a communication boards department, whose main products are X25, X21, and
ISDN *S0” boards. This department, with the support of the CNET (the French PTT’s research center),
initialized a study about LAN’s interconnection through ISDN.

In the UNIX environment, TCP/IP is currently the standard for local data communication. This network
architecture was designed to allow interconnection between several local and wide area networks, the
whole then forming a global internetwork.

As far as wide area communications are concerned, the TCP/IP architecture mainly uses leased lines, or
X25 networks. Network interconnection is carried out by “IP-routers”, which act as gateways between an
Ethernet network, and (for example) an X25 network.

The interface currently offered by NUMERIS, is the basic “SO0” access [Dic87a], which provides two B-
channels (64Kbit/s), and one D-channel (16KBit/s). Therefore, the main interest of ISDN, is to allow
faster communications, in an internetwork including WANs. Moreover, ISDN offers “supplementary
services”, primarily designed in a telephone point of view, that can be very useful in the design of an
“ISDN IP Router™.

In the first place, we will remind the main TCP/IP features, especially those dealing with network
interconnection (§ 2). Afterwards, we will underline the ISDN characteristics likely to be of interest in our
context (§ 3). At last, we will describe software and hardware implementation of our router (§ 4). In
conclusion, we will mention the possible future developments of this study (§ 5).

EUUG Autumn 89 — Vienna, 18-22 September

Interconnection of LANSs, using ISDN. in a TCP/IP architecture

2. TCP/IP and network interconnection

2.1. The TCP/IP architecture

TCP/IP [DDN82a] is the common name of a set of protocols, defined within the context of ARPA project.
Those protocols, specified in “RFC” (Request For Comments), are parts of a four-levels architecture
(Figure 1).

The A level represents the real networks used in the communication. As far as Local Area Networks are
concerned, TCP/IP mainly uses the Ethernet technology. Wide Area communications take generally either
leased lines, or X25 networks.

This level fits with the Physical, Link layers, and the lower part of the Network layer, of the OSI reference
model [ISO84a].

The B level corresponds to the upper part (sub-level “3¢™) of the OSI Network layer. This level specifies
the Internet Protocol [RFC791a], which have, on the one hand, to standardize the services offered by the
real networks, and on the other hand, to manage routing. Those functions will be described on the next
chapter.

The C level fits with the Transport layer of the OSI reference model. The two main protocols specified at
this level are:

e TCP (Transmission Control Protocol), which performs end-to-end flow and error controls, and offers
a connection-oriented service.

e UDP (User Datagram Protocol), which offers a connection-less service.

The D level, specifies several protocols, which offer user’s services. This level corresponds to the three
upper layers of the OSI reference model. The main application protocols are FTP (File Transfer Protocol),
Telnet (Virtual Terminal), SMTP (Simple Mail Transfer Protocol), and TFTP (Trivial File Transfer
Protocol).

NFS (Network File System) is not an “ARPA” protocol. However, this set of protocols was designed to
operate on the top of a connection-less transport level. The current implementation of NFS is based on top
of the service offered by UDP.

D FTP Telnet SMTP TFTP . (NES)
l | |
C TCP UDP
B Ip
A Ethernet
Levels Architecture

Figure 1: The TCP/IP architecture

190 EUUG Autumn 89 — Vienna, 18-22 September

Interconnection of LANs, using ISDN, in a TCP/IP architecture

2.2. The Internet Protocol

As we have already said, the B level manages routing between the real networks. The C and D levels deal
with end-to-end communications, and thus are implemented only in end-systems. Intermediate systems,
called IP-routers in the TCP/IP architecture, may only implement the A and B levels (Figure 2).

The Internet Protocol is connection-less: the C-level entities don’t have to open a connection, before
exchanging data. Each data message, called “datagram”, is supposed to be independent from the others.
Therefore, this datagram has a header, which includes the necessary control information for routing
functions, and especially source and destination addresses.

Internet Protocol entities, implemented in each (end and intermediate) system, when receiving a datagram,
analyse the datagram header. Information in this header helps the entity to find the next real network to
use, and the ‘“‘real address” (in this real network) of the next system to pass the datagram through.

The Internet Protocol also manages fragmentation and reassembling of datagrams. A datagram larger than
the maximum size of a real network unit, will be fragmented by the IP entity. Fragments will be
reassembled on the destination end system.

ARPA End
levels System

D FTP

router router

IP IP

Ethernet Ethernet X X Ethernet Ethernet
Protocols Protocols

Network

Figure 2: IP routers

2.3. Convergence Function

When the real network, chosen by the IP entity, offers a connectionless service, the datagram is merely
fitted into a real network unit (for example, an Ethernet frame). The next system will then have to extract
the datagram, and to analyse its header, in order to continue the B-level’s work.

On the other hand, if the real network offers a connection-oriented service, as in X25, X21, or ISDN
networks, one must implements a function, whose aim is to offers the connection-less service to the IP
entity, while the service used is connection-oriented. Such a function is generally called a “Convergence
Function”.

The first convergence function specified in the ARPA project, was “A standard for the Transmission of IP
Datagrams Over Public Data Networks” (in accordance with the X25 protocol) [RFC877a]. Some points in
this document, give indications dealing with the connection-oriented aspects of X25. Therefore, those
points will be naturally suitable to all connection-oriented networks.

EUUG Autumn 89 — Vienna, 18-22 September

Interconnection of LANs, using ISDN, in a TCP/IP architecture

When receiving a datagram, the convergence function must verify if there is already some open connection
to the next system. If not, the convergence function calls for a connection set-up.

This connection may be cleared, when it has been idle for some period of time. The value of this period
may be a compromise between many parameters, among which we can quote:

e the connection set-up and clearing delays;
e the connection set-up cost;

the connection duration cost.

In order to allow protocol demultiplexing, the convergence function defines a specific value, that can be set
in the first byte of the call user data field.

The X25 convergence function also uses X25-specific aspects,such as using the M-bit, in order to manage
datagrams whose length is greater than the X25 packet-size, accepted by the real network.

3. Using ISDN

3.1. The ISDN convergence function: basic principles

As far as we are concerned, ISDN offers a connection-oriented service: before any data transmission, one
must open a B-channel. Therefore, an “ISDN-Router” (Figure 3) must implement a convergence function,
that we will call “S-DCF” (sz Dependent Convergence Function), described as follows.

The basic principles of our S-DCF are identical to those explained in the previous chapter. A B-channel
will be opened, only when necessary, then closed after an idle-period time.

The first difference occurs in this idle-period choice, because of the ISDN-specific parameters. In France,
ISDN costs essentially depends on B-channel’s open-time duration. The implementation of X25
Convergence Functions, using timers of about five minutes, is not suitable here.

ARPA

Levels Router

Internetwork Protocol

Local Area
Network
Protocols

Local Area D-channel B-channels

Network [.S.D.N.

Figure 3: S0 Router

EUUG Autumn 89 — Vienna, 18-22 September

Interconnection of LANs, using ISDN. in a TCP/IP architecture

The S-DCF also uses more than one B-channel, if others are available, and tries to make a compromise
between communication rates, and ISDN costs. When communication needs an ISDN path between two
routers, only one B-channel is open first. Other B-channels will then be opened, if it seems that one 64
Kbit/s connection is not sufficient. This decision is taken, according to waiting-datagrams file length.

As we can see in Figure 3, data transmissions use X25 Packet Level Protocol. X25 Packets will be
transported in B-channel. But the S-DCF also manages ISDN signaling (D-channel), in order to ask for B-
channel set-up, and to use supplementary services described below. Figure 3 shows a “S0-Router”, with its
D-channel signaling protocols 1.430, 1.440, 1.450 (the S2-Router layers should conform respectively to
1.431, 1.441, 1.451 recommendations).

3.2. Supplementary Services

ISDN, and NUMERIS’s implementation of it, offer supplementary services (SS), which can be seen as
facilities in current communication services. Many of these SS have been primarily specified in a
telephone point of view, but we can see that some of those may allow simplification of the router
specifications; other SS may be useful in security or network management areas.

In the basic specifications, we will use the User-to-User Signaling Supplementary Service, to allow
control data to be exchanged between two systems, before opening a B-channel. These data are defined at
the S-DCF layer, and has information giving reasons why the system should accept, or refuse, a
communication (priority of the communication, etc ...).

In the communication area, security aspects are more and more important. ISDN supplementary services
facilitate the implementation of security at the S-DCF sublayer:

e the Calling Access Identification will be required by the router. Only incoming calls, coming from
well-known ISDN subscribers (that is to say, declared in an “incoming” table) will be accepted.

o the Identification of Malicious Call should be asked, if someone often tries to have non-authorized
access to the router.

Network management implies many functions, among which are those dealing with communication-costs
control. ISDN offers the following supplementary services, that should be very useful:

o the Charge Advice Supplementary Service regularly informs the router, during the communication, of
the cost of the latter.

e the Indication of Total Cost Supplementary Service gives information about the total cost of a
communication, at the end of the latter.

e the Detailed Invoicing Supplementary Service may also be used by the router manager.

Some applications require high availability and “fault-tolerant” networks. In this case, one must consider
to make use of two (or more) routers, taking a similar action. When some problem occurs on one router,
one can ask for:

e the Call Forwarding Supplementary Service: The router is considered as a terminal, from an ISDN
point of view. Therefore ISDN will re-route future communications to another router.

e The Portability Supplementary Service allows the router to suspend a current communication, and to
transfer it to another router. This SS may also be used, for the same reasons as the previous
supplementary service.

EUUG Autumn ‘89 — Vienna, 18-22 September 193

Interconnection of LANs, using ISDN, in a TCP/IP architecture

4. Implementation

4.1. The Prototype

The different aspects pointed out in this paper have been implemented in a prototype, shown in Figure 4.
This prototype allows interconnection between TCP/IP-based LANS, using basic rate “S0™ ISDN access.
The TCP/IP architecture has been chosen, because of its availability both in OST company and CNET
research center of Lannion.

The prototype is based on an IBM PC or compatible, with one Ethernet board, (3 COM 505), and one
ISDN board (OST PCSNET), whose characteristics are discussed further. It was more advisable to choose
a multitasking operating system. The operating system is SCO-Xenix 286, because of the availability of
both drivers for the two communication boards. In order not to decrease efficiency, there are only two
main processes. Those latters may however create other processes for some reason.

The first process deals with user-interface facilities, such as:
e starting and stopping router:;

e routing tables view and/or modification;

e access control filters view and/or modification;

e statistics view and/or reset.

The second process manages:
e protocols not handled by PC boards, that is to say the S-DCF and the Internet Protocol;
. Statistics collection;

e Access Control verification.

SCO-Xenix 286

AT Bus

Ethernet ISDN S0
Board Board
3 COM 505 OST PCSnet

Figure 4: Router Prototype

EUUG Autumn 89 — Vienna, 18-22 September

Interconnection of LANs, using ISDN, in a TCP/IP architecture

4.2. The OST ISDN PC board

The OST ISDN PC board [Dav88a] conforms to the CCITT recommendations 1.430 (layer 1), 1.440 (layer
2), and 1.450 (layer 3). The D-channel signaling is handled as required for the NUMERIS implementation
of those recommendations.

The hardware design is built around a 68000 Motorola puP. with up to 512 KBytes of dynamic RAM. The
SO interface is managed by the AMD 79C30 DSC. Five interface connectors are provided for:

e SO interface;
e telephone handset (or microphone plus speaker);
° V24 interface;
external bus access, allowing specific-use peripheral board connection;

internal PC bus access.

The software is read from the PC hard disk, and manages:
e full management of ISDN signaling;

full X25 protocol support (level 1 to 3);

optionally OSI Transport and Session levels;

“transparent” service, allowing data transmission over one of the two B-channels.

5. Conclusion

With this study, we proved that using ISDN to interconnect LANs was, not only possible, but also
interesting from a cost point of view. Now, we have to continue both study and implementation.

The first implementation handles only basic SO-ISDN services. Further studies and developments may
include:

e supplementary services management;

e specification, in the OSI “Estelle” language [Bud87a], of the S-DCF, allowing it to be validated with

the VEDA tools set, available in CNET-Lannion;

implementation of an OSI router, as required by MAP/TOP specifications [GMT84a]: those OSI
profiles use the ConnectionLess Network Protocol [ISO87al, which is similar to the Internet protocol;

the European S2 Interface, and its 30 B-channels. seems to be an interesting way to increase global
internetwork communications. This consideration requires a more accurate study of the dynamic
allocation of those channels.

References

[RFC791a] Internet Protocol Specification, DDN Network Information Center, September 1981. RFC 791

[DDN82a] DDN Network Information Center — SRI International, [Internet Protocol Transition
Workbook, Menlo Park, CA 94025, March 1982.

[REC877a] A Standard for the Transmission of IP Datagrams Over Public Data Networks, DDN Network
Information Center, September 1983. RFC 877

[ISO84a] ISO/TCI7/SC6, Information Processing Systems — Open Systems Interconnection — Basic
Reference Model, 1984. 1SO/IS 7498

[GMT84a] MAP specifications, Manufacturing Engineering & Development — General Motors Technical
Center °, Warren, MI 48090-9040, September 1984.

[ISO87a] ISO/TC97/SC6, Information Processing Systems — Data Communications — Protocol for
Providing the Connectionless-Mode Network service, May 1987. 1SO/DIS 8473

[Bud87a] S. Budkowski and P. Dembinski, “An Introduction to ESTELLE: a Specification Language for
Distributed Systems,” Computer Networks and ISDN Systems, vol. 14, pp. 3-23, 1987.

[Dav88a] Y. David, “Interface Board for PCs, providing SO Interface with voice and data
communications capabilities,” ICCC '88 Proceedings: Computer Communication
Technologies for the 90's, Elsevier Science Publishers B.V. (North-Holland), 1988.

EUUG Autumn 89 — Vienna, 18-22 September

Interconnection of LANs, using ISDN, in a TCP/P architecture

[Dic87a] G. Dicenet, “Design and Prospects for the ISDN,” Artech House Telecommunication Library,
1987. ISBN 0-89006-269-2

196 EUUG Autumn ‘89 — Vienna, 18-22 September

System Administration of UNIX Networks: Two Approaches

System Administration of UNIX Networks:
Two Approaches to Supporting the Management of Large,
Distributed, Multi-Vendor Networks

Georg-Michael Raabe
Carol J. Rosenstock

Apollo Computer GmbH
Hahnstrasse 37-39
D-6000 Frankfurt 71
West Germany
raabe_g@apollo.com

ABSTRACT

This paper discusses two aspects of the support of large, distributed, multi-vendor
networks. First we will address user account management and show how a single system
can manage a heterogeneous network. Second we will address file system backup and
restore and present a system designed to coordinate backup for an entire network.

1. Introduction

The UNIX operating system has undergone many changes. Equally signification have been the changes to
the networks incorporating UNIX-based machines. They have changed in size, from small single-user
establishments to large networks. They have changed in terms of geography. from centralized networks to
dispersed networks. And they have evolved in terms of composition, from predominantly single vendor
networks to collections of heterogeneous computers.

To accommodate these new, distributed networks methods were needed to support easy data and resource
sharing. While UNIX provided individual users with significant performance improvements over time-
sharing systems it also removed some of the benefits, most notably in the area of cooperation and sharing.
Distributed file systems like Apollo’s DOMAIN and file-sharing protocols like Sun’s NFS provided the
first step by allowing the easy sharing of data around the network. A significant breakthrough came with
the introduction of Apolio’s Network Computing System (NCS), which allows for the sharing of compute
resources around the network.

With these facilities users can now take full advantage of the resources located around their multi-vendor
networks. Users and applications can access data located anywhere on the network and the most
appropriate computer resource can be applied to each part of an application. This change in the nature of
UNIX networks can result in more powerful and robust applications and products.

But this change to UNIX networks can also result in an unexpected burden on the system administrator.
Advances have not been as great in the area of system administration. As a rule, the tools were designed
for single workstations. Few recognize or accommodate the distributed, heterogeneous nature of the
networks. Some can be massaged to handle distributed networks. but they often break down in large
networks and rarely work in multi-vendor networks.

To manage their networks, system administrators are often forced to: operate different programs for each
hardware platform, coordinate their own activities for the different platforms, and coordinate their activities
with other system administrators managing linked networks. New products and approaches are clearly
needed to address system administration functions in these new networks.

Some of the key areas for consideration include: file system backup, data archival, software distribution,
user account management, software installation, and software licensing. In this paper we will consider
unique approaches to two problems: user account management and file system backup.

EUUG Autumn 89 — Vienna, 18-22 September

System Administration of UNIX Networks: Two Approaches

A user account management system coordinates login and password information. This task is complicated
in large, distributed, multi-vendor networks because it requires a unified naming system to ensure
assignment of unique names across network. In the interests of data integrity there needs to be a way to
coordinate and possibly limit update privileges. And for ease of use there should be a single system across
all platforms. With a single system a user could choose to have the same or different login and password
on each platform. System administrators would no longer need to explicitly coordinate and unify their
activities.

File system backup enables the backup and restore of files resident on disks around the network, using
storage devices located around the network. This task is also complicated by the introduction of
heterogeneous machines. For expediency, a single program should be able to backup from or restore to
any disk around the network, regardless of the type of computer to which it is attached. In addition, the
system should be able to utilize any storage device on the network, again regardless of the associated
computer. To minimize administrative effort and training, the backup system should be consistent across
all platforms.

Apollo has taken a network perspective to the needs of heterogeneous system administration and has
developed new approaches to specific problems. This paper will address two of these new approaches.
Passwd Etc, a network-wide user account management system, maintains a single logical database of all
login and password information, ensuring uniqueness and consistency of information at all machines.
OmniBack, a network-oriented backup and restore system, enables the backup of an entire network with
single command, supports the easy restoration of files and directories, and allows the utilization of storage
devices located around the network.

2. User Account Control

2.1. Introduction

A major requirement for networked computers is the assignment of unique user identifiers. A secondary
requirement is the coordinated management of account data associated with these users and user identifiers.
This account data is ultimately used to provide and deny access rights to users and to set up users’
environments. User account management systems have been developed to provide a single, consistent
representation of user identification information (user names and user [D’s).

When networks are small and handled by a single administrator, user account management is a manageable
tasks. However, as networks evolve from small work groups into larger, distributed networks these tasks
become increasingly cumbersome and difficult to coordinate. Multiple administrators, each responsible for
a portion of the user community, are required to share overall control of network-wide user account
management. They are forced to either: create artificial naming conventions (and trust that people adhere
to them), institute unnecessarily strict communication procedures. or accept conflicts and deal with them as
they arise. These options are frequently not acceptable. To further complicate the problem, users can also
get involved in user account management. Standard UNIX facilities allow individual manipulation of
account files. Therefore, work and coordination done by administrators can still be negated by individual
activity.

2.2. Summary of Existing UNIX Account Management Facilities

The standard method for managing user account information on UNIX machines is through the /etc/passwd
and /etc/group files. They are independent, private, non-replicated text files that reside on each machine.
These files are simple lists that associate user names with passwords (in the case of /etc/passwd) and group
names with membership lists (in the case of /etc/group). Both administrators and users are free to make
changes to local copies of the files.

To achieve network-wide coordination of the information in these files users must either coordinate their
changes or relinquish control to administrators. These administrators must then develop a formal
management procedure. In most cases this involves: designating one machine as the administrative center,
identifying the /etc files on that machine as the master copies, making all changes to the master copies, and
manually overwriting all files around the network with the newly changed master copy. Since each update
requires administrative intervention and imposes a burden on the network (by forcing a complete copy to
go out to every machine), administrators frequently choose to collect requests for changes and periodically
execute one batch of changes. While this minimizes administrative effort and network traffic it also means
that user account information can be out of date (which could represent a security infraction).

198 EUUG Autumn 89 — Vienna, 18-22 September

System Administration of UNIX Networks: Two Approaches

Sun Microsystems attempted to address user account management with the development of Yellow Pages
(YP). YP is a simple data lookup facility that provides replicated data service for data sets (including
Jetc/passwd and /etc/group). It collects information into ‘maps’ that run on designated YP servers around
the network. These maps are meant to serve as focal points for queries and updates. However, both
queries and updates still, in some cases, go through the local /etc files, negating the benefits of
centralization. YP also recommends, but does not enforce, the designation of a master map. Without the
introduction of additional controls, updates can be made and then copied to different combinations of /etc
files and YP maps around the network. When maps are updated they are completely overwritten by new
copies. Since this, again, requires administrative effort and adds significant traffic to the network,
administrators are likely to save up changes, rendering the information in the maps obsolete.

2.3. High Level Requirements for User Account Management

For a user account management system to be truly effective and administrable it must meet certain
requirements:

e Manage a single set of information for networks of any size
e Guarantee assignment of unique user identifiers
Ensure consistency of information and updates
Be highly accessible for queries and updates from all machines around the network
Provide security over information and updates
Support real time updates

Enable management of independent administrative domains by different administrators

Only by addressing these requirements can a management system be useful in supporting the
administration of user account information.

2.4. Passwd Etc Architecture

Apotlo has developed a user account registry system, Passwd Etc, that manages user account data (login,
password, home directory, default shell, etc.) as well as general policy information. It utilizes what is
logically a single database, encompassing all data for a heterogeneous set of computers. Passwd Etc is
built on NCS, which provides the foundation for interoperation between all machines in the multi-vendor
network. Passwd Etc consists of the registry database and two sets of routines, server software and client
software.

2.4.1. Database Structure

While the registry is conceptually one logical database, it is actually implemented as replicated databases
located around network. This improves performance, reliability, and response time. Passwd Etc uses a
master/slave model, with the requirement that one database server be designated as the master. While
queries can be handled by any server, updates are automatically routed to the master. All slave servers are
automatically amended as part of the update process. This protects against inconsistent changes and
security infractions through delayed updates and ensures that all servers contain accurate, up-to-date
information. Passwd Etc utilizes a weakly consistent replication scheme. To minimize the information
being transmitted over the network it propagates only the incremental changes to the database.

The database consists of three types of data: naming information for people, groups, and organizations;
login information for people; and general system properties and policies. Groups and organizations are
collections of people. Groups maintain the conventional UNIX semantics, and provide the means for a set
of people to share privileges to system objects Organizations provide another means for sharing privileges,
and would typically be used to divide the user community into administrative groups. The property and
policy information sets guidelines for system usage (e.g. minimum password length, account lifespans).

EUUG Autumn 89 - Vienna, 18-22 September

System Administration of UNIX Networks: Two Approaches

2.4.2. Database Contents

The database consists of two types of entities, PGOitems and accounts. A PGOitem (for person-group-
organization) relates to the naming information and establishes a binding between a name and a set of
credentials (consisting of a unique identifier and a UNIX id). Each PGOitem has a full name field, an
owner field, and properties. Group and organization PGOitems also have associated membership lists. An
account provides login information for a particular user (including login name, password, home directory,
default login shell, creator of account, account expiration date, etc.). Property and policy information can
be associated with PGOitems and accounts.

The use of owner fields in PGOitems and registry policies allows the partitioning of the database into
separate administrative divisions. Only the person designated as owner can manipulate that entity, e.g.
create accounts for people, alter group and organization membership lists, modify properties, etc. By the
assignment of ownership rights, the database can be logically partitioned and securely administered by
mutually suspicious system administrators.

2.4.3. Database Security

Update and server administration operations must pass through an authentication interface. The process
involves a series of authentication challenges that require the use of multiple secret keys in the encryption
and decryption of bit patterns. This mechanism ensures that the database is not altered by an unauthorized
user.

2.4.4. Registry Server Software

The server software consists of a database editing tool, a server administration tool, and the server itself
that, together, support the maintenance of the registry database. The editing tool is an interactive editor
that is used to manage the naming, account, and policy information in the database. It provides users and
administrators with a structured interface to the data. The editor is aware of the semantic constraints of the
database entries and the registry policies in effect. It uses this information to ensure that the changes are
consistent, syntactically and semantically correct.

The server administration tool allows an administrator to control and monitor server activities. These
include: changing which server is acting as the master, stopping servers, starting replica reinitializations,
listing server sites, and checking the state of any or all servers.

The servers handle three types of activities: database operations (query and update), management of server
sites. and database update propagation. The database is kept in virtual memory as a forest of balanced
binary trees, resulting in efficient query and update operations. Updates are first applied to the in-memory
data structures and are then recorded in a stable storage log. Periodic checkpoints are made of the in-
memory data structures. In the event of a system crash the system automatically recovers the database by
reloading the last checkpoint state and reexecuting each operation recorded in the stable storage log.

The master registry server manages the initialization of new slave replicas; the tracking of added, deleted,
and moved replicas; and the propagation of updates to the replicas. When a slave site first starts running it
locates the master site through the NCS Global Location Broker (which maintains information about NCS
services available around the network) and announces its existence. For new sites, the master initializes
the slave and informs all other slaves of its existence. For existing sites with new locations, the master
records the change of address and again alerts the other slaves. When a server site receives a
decommission request it purges its database and terminates execution.

During update propagation, the master applies a monotonically increasing time stamp to each update it
records. In transmission of an update, the master sends the incremental change along with the current and
the previous update time stamps. In this way slaves can detect when they are out of date and will then
request to be reinitialized. Database reinitialization is accomplished through a series of propagations of the
database to the target slave replica. Reinitializations are also performed on slaves that return to operation
after having been out of communication for too long.

200 EUUG Autumn 89 — Vienna, 18-22 September

System Administration of UNIX Networks: Two Approaches

2.4.5. Registry Client Software

The client software is composed of a subroutine library of remote procedure calls that enable remote access
to the database. This software runs on each machine in the network. The first time a registry operation is
performed on any machine the client software contacts the Global Location Broker, which provides a list of
the registry servers on the network. The client selects a database server for that operation and directs all
subsequent operations to the same server. This alleviates the need to access the location broker more than
once. If that server becomes unavailable the client references the list already received from the Global
Location Broker and chooses another server.

2.4.6. Local Controls over Operations

A local registry, resident on each machine. provides a cache of user account data. It is used in the event
that all database servers are unavailable. This mechanism can also be used to manage a Yellow Pages
installation.

Individual machines can be configured to override information coming from the central registry. This can
be used to provide stricter access control to a particular machine (e.g. exclude people, groups, or
organizations from getting access) or tailor account attributes for a user of a different machine (e.g.
provide a local home directory).

3. Network Wide Backup

3.1. Introduction

Every computer installation should execute frequent backups to guarantee the availability and reliability of
one of its most valuable assets — its electronic data.

The UNIX operating system contains numerous backup and restore commands that enable a user or
administrator to write copies of files to and retrieve files from some storage medium. Unfortunately, this
has traditionally been a time-consuming and costly task. The standard UNIX tools (cpio, dd, dump, and tar)
are relatively primitive, and require work to tailor them to the needs of the local site.

It is the responsibility of the system administrator to decide which of the commands best addresses the
needs of the site, taking into account the number of users, amount of data to be backed up, storage devices
available, and frequency and type of restore requests. The administrator will usually write shell scripts
around the backup commands to automate backup and to coordinate backup for multiple machines.

As networks get larger and more distributed, backup becomes more difficult. First, if backup is to be
automated for many machines across the network, scripts must know about and reflect all the many file
systems partitions. Second, this causes the backup scripts to become longer and more complex, to address
the needs of all users across several machines. Finally, most installation have a limited number of mass
storage devices suited for backups. Unfortunately, they are not always attached to the type of machine
being backed up. As networks become heterogeneous new problems are introduced, especially when
system administrators are obligated to learn and operate different backup systems.

Due to these difficulties some organizations do not perform backups at all or else do not run them
frequently enough, thereby taking significant risks with their data. These problems are further compounded
by difficulties in retricving data from storage media. UNIX tools tend to be even less robust on the restore
side, adding to the administrative burden.

3.2. A Summary of UNIX Backup Tools

Many books and articles [Kolstada] have been written on how to manage backups on UNIX systems. We
therefore will not add another lesson about UNIX backups. We do think, however, that a quick comparison
of UNIX tools available for backups should be made here.

The table below lists some of the advantages and disadvantages of UNIX commands available for backup
purposes:
tar

+ simple syntax

EUUG Autumn 89 — Vienna, 18-22 September

System Administration of UNIX Networks: Two Approaches

— dangerous simplicity (e.g. tar x)

+ recursive descent through file system

)

does not allow incremental backup

can not handle multiple tapes

dump/restore
+ up to nine levels of full/incremental backups
— may become obsolete/unsupported
— doesn’t recognize end of tape

cpio

+ most versatile

knows only about files — not directories

System V only
dd

+

copies whole file system partitions (including sysboot)

allows data conversion

+

knows only about files or devices

restores only whole file system partitions

3.3. Higher Level Requirements for Backup

We will specify requirements for a comprehensive backup system where backups and restores are
performed by the system administrator. We differentiate administrative backups from user backups, data
archiving and software distribution, because of different needs, different key players, different time
schedules, etc.

We define backups as being time driven, generally nonselective and performed primarily for disaster
recovery. This is very distinct from data archiving, which is event driven and may be used to recover space
from the primary storage media. In a heterogeneous environment data archiving might also require data
conversion to a canonical form, for later restoration to a foreign system.

A backup system should provide the following features:

e A method which allows a user to specify (describe) exactly which objects to backup. It should
allow for distinguishing:

— file system partitions on individual machines
— directory trees in particular file systems

— files in particular directories.

e A scheduling system which contains a sufficiently fine level of granularity for scheduling (based on
days, weeks, hours, etc.). Also the ability to define different schedules for different sets of
machines is critical.

e A complementary facility that supports the three key stages of restore:
— an easy method of defining objects (i.e. files, directories and/or entire file systems) to be restored
— means to identify the backup media where such objects are kept

— efficient restore mechanism.

e A journaling facility to automatically track all results of backup procedures:
— generate and maintain journals of status of backup sessions

— generate and maintain journals of backup media contents.

202 EUUG Autumn 89 — Vienna, 18-22 September

System Administration of UNIX Networks: Two Approaches

A robust mechanism for detecting and correcting for various types of errors:
check labels of backup media, to prevent administrator from using the wrong media
automatically reschedule filesystems that were not available for backup
recover from error situations during a backup session

retry locked files.

Support for backup storage devices:
— support for a variety of devices
— ability to easily add support for new devices.

Support for unattended backup:
— start backup procedure automatically

— report to system administrator on the success of the backup process.

Ability to work in a heterogeneous network of workstations and other computers

Note that one should not require that the machines which are networked together share a common file
system via NFS or, for example, Apollo’s DOMAIN. Neither should it be assumed that these machines use
the same methods for naming objects.

3.4. OmniBack Architecture

Apollo’s product for file system backup and restore, OmniBack, was designed to address the above
requirements. OmniBack is made up of three cooperating programs (see Figure 1): the Operator Interface,
the Disk Agent, and the Media Agent. The Operator Interface acts on the part of the user to control the
backup and restore procedures across the network. The Disk Agent manages the disk during backup and
restore, and the Media Agent manages the backup storage devices. These three components can
simultaneously execute on the same or different machines on the network. With this modular architecture,
the work performed by OmniBack can be distributed across multiple machines on the network for
increased performance. The scheduling and journaling facilities are other important components of the
OmniBack architecture. The scheduling facility eases the administrative job of controlling backup
scheduling in a network. The journaling facility provides extensive feedback to the user and system
administrator on the current and previous backup runs. Both of these features contribute to OmniBack’s
ease of use.

3.4.1. Scheduling Facility

OmniBack uses a simple ASCII text file called the work-list (an example of which is shown in Figure 2) to
determine which volumes to back up and when. The system administrator is responsible for setting up the
work-list, which is written once and is easily maintained thereafter. Once a user or administrator initiates a
backup session OmniBack automatically references the work-list to determine the files and directories due
for backup.

In its simplest form, the work-list need only specify the names of the volumes to be backed up. If nothing
more is specified, the system defaults dictate that full backups be performed once a week, incremental
backups be performed every day, and the entire volume be backed up. The administrator may choose to
specify alternate backup schedules for one or more volumes listed in the work-list. This can be done by
specifying days of the week or a relative frequency (e.g. every 3 days). The work-list can also be tailored
in terms of the contents of the backup. Files and directories can be included in backup (with the -trees
option) or excluded (with the -exclude option). Thus, the work-list has the flexibility to be used in either a
simple default way, or it can be tailored to the needs of a particular computing facitity.

In some sites, it is the individual machine owner, rather than the administrator, who determines what
should be backed up or what should be excluded from backup. OmniBack supports this by providing a
simple way for the administrator to selectively delegate these decisions to machine owners. Using work-
list capabilities, the lists specifying what is included or excluded from backup can be redirected to other
files (using the ‘<’ symbol). These files can then be written by the user to control what he/she wants
backed up. Only the file name of the redirection files need to be shared between the user and administrator.

EUUG Autumn'89 — Vienna, 18-22 September

System Administration of UNIX Networks: Two Approaches

SCHEDULING

default

volume

volume

default

volume

OPERATOR
INTERFACE

JOURNALING

Figure 1: OmniBack Architecture

-full sched
-incr_sched

//maple
//elm

-full sched
-incr_sched
//ash

-incr_sched

monday
wednesday friday

-trees //maple/user }

-trees //elm/demo
-exclude //elm/demo/*.bak }

friday
every 4 hours

-trees < //admin_node/tree list
-exclude < //ash/user/exclude list }
tuesday thursday

Figure 2: OmniBack Work-List Example

The administrator maintaining the primary work-list has ultimate control, but can share control with users

as desired.

As each volume is successfully backed up, OmniBack records the date and time in a ‘dates’ file that it
maintains. The next time OmniBack runs, it uses information from this file and the work-list to determine
which volumes are currently due for backup, and whether a full or incremental backup is needed on each.
Exactly those backups are then performed.

EUUG Autumn'89 — Vienna, 18-22 September

System Administration of UNIX Networks: Two Approaches

3.4.2. Journaling Facility

The OmniBack journaling facility offers administrators and users detailed information about backup runs.
Log files are used to track the backup media and their contents. They serve as a mechanism for checking
on the result of backup sessions and for identifying specific media required for file restores.

The ‘detail log’ documents, in detail, the backup information for a particular volume. One log is produced
for each volume backed up in each OmniBack session. The level of detail is controlled by the
administrator. The ‘volume history log’ contains cumulative historical information about all backups of a
particular volume. These logs list the date and type of each backup performed on that volume. A
‘summary log’ is produced for each backup session, providing an overview of all aspects of the session.
An ‘error log’ is generated if any errors occur with the storage device or in backing up an individual
volume.

3.4.3. Operator Interface

The Operator Interface manages the overall session, acting as an interface between the user and the other
OmniBack components during backup or restore. It controls backup and restore operations, initiates the
Media Agent and Disk Agent programs, records information in log files, and monitors backup and restore
progress. These programs run on the machine from which the backup or restore command is issued.

Once a work-list has been created for a network, execution of the OmniBack backup operation is initiated
from the shell command line. Command line options can be specified to control: schedule adjustments,
alternate log and work-list files, output listings, etc. OmniBack can be run with or without the window-
based user interface.

Likewise the restore options allow the user to specify: the volume being restored, specific directories or
files to be restored, alternate restore destinations, etc. If omitted from the command line, restore prompts
for the required information. Other options allow the user to monitor ongoing progress as files are restored.

3.4.4. Disk Agent

The Disk Agent manages the reading and writing of files from and to disk. The Disk Agent program
usually runs on each machine being backed up or restored, for efficiency and reliability. However, data
can be pulled from or pushed to the disk from another machine. Typically there will be multiple Data
Agents running simultaneously during an OmniBack backup session for improved performance.

The Disk Agent design was driven by performance and operation constraints of large network computing
environments. It was designed to operate through the file system rather than the raw disk. Because of this,
no system shutdown is required during backup.

3.4.5. Media Agent

The Media Agent manages the backup storage media, be it magnetic tape, disk, or 8 mm cassette tape. The
Media Agent program runs on the node where the storage device is resident. The Media Agent does not
look at the actual data sent by the Disk Agent. No conversion or interpretation is performed, so this data is
private to the Disk Agent. The Media Agent only prepends a header and adds some bookkeeping
information for its own purposes.

3.5. Performance

The most logical way to maximize the performance of the network backup operation is to exploit the
parallel computing resources of the network and the individual machines. In most backup products running
on networks, performance is limited by the transfer time in getting the data off the disk and over the
network to the machine controlling the storage media, since these are sequential operations. In these
systems, the utilization of the tape drive is a very low percentage of the backup time. Thus, the tape is idle
for most of the backup procedure.

By exploiting the parallelism inherent in a network, OmniBack can run multiple Disk Agents
simultaneously. The Media Agent program interleaves data coming from the multiple Disk Agents, and
can thus keep the media device running a much greater percentage of time during the backup procedure.

EUUG Autumn’89 - Vienna, 18-22 September 205

System Administration of UNIX Networks: Two Approaches

Since the OmniBack user interface can execute on a separate system from the Disk Agents and Media
Agent, setup and control operations are done in parallel with reading data from the disks and writing data
to the backup media. In this way, data writing is running more regularly to maximize performance.
OmniBack has been designed to also exploit the concurrency available on multiprocessing systems; all
three components run multiple processes in parallel on their host machines. By capitalizing on the
multiprocessing and parallelism of individual machines and the network, OmniBack enables disk access,
network transfers, and media I/O to run in parallel, thereby pushing the performance of the entire system.

3.6. Heterogeneous Operation

OmniBack was designed to accommodate heterogeneous operation. Built on NCS, OmniBack has the
mechanism at the lowest level to operate in multi-vendor networks. NCS, a de facto industry standard,
allows processes on one machine to execute procedures on other machines.

The OmniBack framework supports the scheduling, initiation and management of backups for a
heterogeneous set of machines. In such an environment, some operating systems may have a different way
of naming files and directories than is used in the UNIX operating system. They may even have some file
system concepts that do not have an equivalent in UNIX. Because of this, OmniBack makes no
assumptions about the format of object path names, wildcard conventions, or even what options are
required. Specification of backup parameters can be different for various heterogeneous systems without
affecting the base OmniBack implementation. This approach allows OmniBack to easily operate in a
heterogeneous network of systems, with a minimal amount of additional development work.

3.7. Reliability

System backups represent a large investment in computer, financial, and human resources. A backup
system must be persistent in the face of network errors, since networks are prone to temporary failures.
NCS provides the framework for detecting errors during communication between systems. If noise on the
network disrupts communication, for example, OmniBack detects it and retries the disrupted operation.

If a machine is not available at the time a backup request is made by the user interface, an error message is
printed on the screen and entered in the appropriate logs. This backup request will then be automatically
rerun during the next backup session, without a specific request from the operator.

If a system goes down during the backup operation, OmniBack will detect it. It will attempt to regain
communication with the failed system for a reasonable period of time. If the system responds within the
time period, the backup operation is continued. If not, error messages are entered into the log files and
OmniBack continues with the next system due for backup. The failed backup request will then be
automatically rerun during the next backup session.

If a particular file is locked during backup, OmniBack will retry the backup operation at the end of the Disk
Agent session. If it still unavailable OmniBack will flag this is in a log file, providing the name of the file
not backed up.

4. Conclusion

Passwd Etc provides a powerful facility for addressing the issues involved in user account management. It
is the first product specifically designed to accommodate large, distributed, heterogeneous networks. It
provides a single, scalable system for consolidating and managing user account information. Passwd Etc
ensures the assignment and use of unique user names and passwords across all platforms, guarantees the
accuracy and consistency of this information at all sites, and provides security for updates and changes. In
addition, it allows the management to be centralized or decentralized amongst administrators with complete
control over their user communities. Passwd Etc offers a robust and easy way to manage user account
information across heterogeneous platforms.

OmniBack is the first truly network-based backup system. Its modular architecture allows it to take fuil
advantage of the computing features inherent in a network of machines. It goes beyond the standard
backup and restore functionality by offering sophisticated scheduling and journaling capabilities. It
enables an administrator to coordinate backup and restore operations for an entire network. It allows
flexibility in the location of components, taking advantage of the full compute power of the network. It
offers a robust user interface geared towards minimizing the administrative nightmare a network of
systems often presents, yet simple enough for novice users. OmniBack provides a complete backup
management system for computer networks.

EUUG Autumn 89 — Vienna, 18-22 September

System Administration of UNIX Networks: Two Approaches

References

[Kolstada] Rob Kolstad, “Daemons and Dragons: Backing up files,” UNIX Review, vol. 7, no. 3, 4.

EUUG Autumn 89 — Vienna, 18-22 September

208 EUUG Autumn 89 — Vienna, 18-22 September

Resource Management System for UNIX Networks

Resource Management System for UNIX Networks

D. Schenk, G. Reichelt, A. Pikhard

UNISYS Austria
Mariahilferstrasse 20
A-1070 Vienna
Austria

ABSTRACT

Although there are comfortable tools for UNIX administration on single, i.e. non-
networked systems, there is a lack of such tools for (large) UNIX networks.

File sharing utilities such as RFS or NFS offer file-sharing and, in the case of NFS,
automated updating of distributed data. A tool for central resource administration is
missing.

UNISYS RMS (Resource Management System) allows central maintenance of
distributed resources. A resource is any part of any component of the network that may
be (re)configured, e.g. a user-id, a terminal port or a software product.

The “heart” of RMS is a relational data base which runs on one specific node in the
network called the RMS Server. The database application generates requests which are
forwarded to the other systems in the network called the RMS Clients. Every update to
the data base causes a chain of actions to be started on the clients.

A prototype of RMS is currently evaluated; it runs both on LAN (Ethernet) and WAN
(X.25). The full RMS is currently under development at UNISYS Vienna.

1. Introduction

In the beginning of UNIX there were no tools for system operation. UNIX was “the system designed for

programmers by programmers”, so there was no use for an operator.

In the meantime, UNIX has become a platform for a lot of end-user applications. UNIX systems no longer

are programmer’s systems only but are used anywhere.

This situation made operating tools necessary. Such tools offer easy ways for backup, restore, adding or

deleting user id’s, printers, etc.

Examples of such tools are sysadm or sa (which is an extension by UNISYS). While these tools are

convenient for single installations, they have (at least) two severe restrictions:

(a) The only documentation on the state of the system is the system itself, so you have to look up in the
system tables, e.g. /etc/inittab or fetc/passwd if you know where you have to look for what.

(b) They fail completely in UNIX networks as they are not designed for that purpose.

Decreasing hardware costs have, on the other hand, lead to distributed solutions. Networked systems are
used more frequently instead of larger single systems for cost and environmental reasons.

A printer, for example, may be used by any user independent of the system the user works on, although the
device is physically attached to one specific computer.

The Yellow Pages mechanism of NFS is a first step towards maintenance of distributed UNIX systems.
But, as discussed under (a) above, there is no explicit documentation on the state of the network and this
mechanism can only handle automated file updates. So the Yellow Pages can only handle items which are
completely bound to file updates where the configuration files are identical on all systems in the network.

EUUG Autumn 89 — Vienna, 18-22 September 209

Resource Management System for UNIX Networks

This may be sufficient for adding or deleting user id’s or groups, but it is not sufficient for peripheral
devices like terminals or printers, as they are described in a different way on different systems.

Therefore, RMS has been designed. RMS offers
(a) full documentation on the state of the network and also on the state history

(b) dynamic distributed resource management which allows orthogonal assignment of resources to
systems.

This paper describes the principles of RMS operation together with the existing prototype. It will not
discuss implementation details of RMS.

2. Definitions

2.1. Resource

Any software part on the network, i.e. of any system in the network, that may be (re)configured.
In the current prototype, resources are

e user and group entries

e user profiles

e terminal definitions

e printer definitions

e software products (add on to the operating system)

2.2. RMS Server

One dedicated system in the network that keeps the global state (see below) and which triggers changes to
this state initiated by some network superuser. The RMS database is residing on the RMS Server.
Currently, there may be only one Server in the network.

2.3. RMS Client

Any other system in the network. The client’s configuration may be changed only by the RMS Server.

2.4. RMS Source Node

A system (client or server) that keeps a base of software products which may be installed on any other
client. Source Node does no mean that the software is stored in source code. The file structure of the
software base is defined by the installation process. The software base cares for different processor
architectures in the network. There may be several source nodes in the net.

2.5. RMS Subserver

A system which accepts network changes from the server and forwards them to several clients. This
allows a tree-like network management structure. Subservers are not implemented in the prototype.

2.6. Request

A request is a set of environment variables with associated values which are forwarded from the server to
the client an which define an action.

2.7. Action

The actual change of a local system configuration on a client. The action together with its parameters is
defined in the request.

210 EUUG Autumn'89 — Vienna, 18-22 September

Resource Management System for UNIX Networks

2.8. RMS Trigger

A program running on the RMS Server which is invoked by the DBMS on changes to the global system
configuration and which initiated actions on the clients by building and sending a request.

2.9. RMS Monitor

A program which runs on each client and which initiates local system changes on receipt of a request by
starting an action.

2.10. Global system state/change
The state/any change to the state of the entire network, i.e. of any client, from the view of the RMS Server.

2.11. Local system state/change

The state/any change to the state of one client from the view of the client’s local operating system.

3. RMS Structure

3.1. The RMS database

The heart of RMS is a relational database which stores the global state of the network. Network operation
is accessed via a user oriented database application.

It is important to mention that the network administrator has not to know much about UNIX internals. The
DB application is screen oriented. There exist entry/update screens for every resource type (e.g. user,
terminal, printer, etc.) and also for inter-resource relations.

Appendix A shows some of the entry/update screens of the RMS database application.
The RMS database contains three types of data:

(a) tables describing the resources

(b) tables describing inter-resource relations

(c) auxiliary tables

Tables describing resources are for example the user table or the printer table. They contain information
which is related only to the resource described.

Tables describing inter-resource relations contain information about combination of resources, e.g. a user’s
access to a certain software product (both the user and the software product are resources) or a host
emulation (software product) via a terminal line (peripheral resource).

Auxiliary tables contain standards or defaults such as printer model names, default stty parameters, .profile
entries, etc.

The RMS database is used in three ways:

(1) The global state of the network can be retrieved easily from the tables; several report facilities offer a
fine system documentation.

(2) The history of all changes is also logged as every change to the global state must be done via the
database.

(3) All changes to the global network state are actually performed by the DBMS on correct entry of all
items.

Any change must be given an activation timestamp. This timestamp defines when a change is due to
become active. Imagine installation of a new release of some software component. For operational
reasons this changes is scheduled for Sept. 12, 1989, 12:00 p.m. This is the activation timestamp.

If the current date and time indicate that a change is due to become active, a request is generated and the
required actions are invoked.

EUUG Autumn 89 — Vienna, 18-22 September

Resource Management System for UNIX Networks

3.2. RMS Operation

3.2.1. RMS Trigger

As soon as the user (the network administrator) has entered all data needed for a change, RMS runs without
user interaction.

The database application generates a request that consists of a set of data.
o The first item of the set contains a list of all clients affected by the change.

e The second item contains some update sequence to the database. At the time the request is initiated,
this is only a template. It will be completed and then applied to the database on termination of all
actions associated with the request,

e The remaining items contain parameters for the action associated with the request and data for RMS
trigger.

For all clients affected by the change, RMS trigger build the request data set and sends it to the client.

As the request may contain a lot of data (e.g. in the case of installation of a software product), it is planned
in a future version of RMS to send bulk request to RMS Subservers which forward copies of the request to
several clients.

3.2.2. RMS Monitor

As soon as the request has arrived at the client, RMS trigger activates RMS Monitor on the client (only in
the case of correct delivery of the request).

RMS Monitor interprets the request and starts an action. The action itself together with its parameters are
stored in the request.

The RMS Client Package, this is the part of RMS which must be installed on every client, contains a set of
programs which apply actions th the real UNIX system (e.g., for adding a user, update /etc/passwd, make
$HOME, chown ... SHOME, create .profile, etc.).

These programs return an exitstatus which is passed back to the server via RMS Monitor and RMS Trigger.
Depending on this state, the change is marked as

e OK. if it could be applied successfully to all clients
e FT (failed totally) if it could not be applied to any client due to possible network problems

e FL (failed) if it could not be applied to some clients (maybe because the were not up at the time of the
attempt). In this case, a simple recovery is tried for those clients on which the action failed.

4. Sample RMS actions
For the following examples, assume a network consisting of four systems:
(a) The RMS Server, named “‘s”.

(b) Three clients named “c1”, *¢2”, and “c3”. The structure of the network is sketched in Figure 1.

4.1. Adding a user

A user ‘userl’ has to be added to client c2. Adding a user is an operation which has affect only to one
client. Therefore, RMS Trigger invokes the action “add user ‘userl’” only on client c2. There is no action
on s, cl, and c3 (note that the RMS Server may also be client at the same time).

4.2. Adding a printer

A printer named ‘Ip2’ which is physically attached to ttyl100 on ¢3 is to be generated. Note that all
physical (hardware) changes have to be done before the (software) change is done via RMS.

Contrarily to adding a user, definjtion of the printer shall lead to a (virtual) device which is accessible on all
clients. Therefore, RMS Trigger send requests to all clients (Ip -dIp2 shall work on all systems).

212 EUUG Autumn 89 - Vienna, 18-22 September

Resource Management System for UNIX Networks

Client Client Client

cl c2 c3

Figure 1: Sample RMS network

The action “add printer” invoked by RMS Monitor (on the client) runs in two different ways depending on
the actual nodename of the client:

e If the client’s nodename matches the destination nodename in the request, it performs “add local
printer”. The local printer is added to the system via standard Ip tools using the parameters defined in
the request.

If the client’s nodename does not match the destination, the client performs “add remote printer”; this
installs a printer which does not use a physical device but uses the printer on a remote system by
network mechanisms.

4.3. Installation of a software product

Usually, software add ons are installed by tape using a special tape format and an easy-to-use utility for
installation. The tape does not only contain the pure data but also some programs for auto-installations,
checksums, etc.

RMS installation uses a similar mechanism, but instead of real tapes is uses “virtual tapes”, i.e. a
bytestream which is transferred over the net.

Figure 2 shows how installation of a software product works; it shows the function of server, client and
sourcenode.

Put Product is an action which runs on the sourcenode (which is a client) and which is invoked by a client.
The data volume transferred via the Virtual Tape may be large so the use of subservers should bring an
improvement.

EUUG Autumn’89 — Vienna, 18-22 September

Resource Management System for UNIX Networks

Server Client Sourcenode

(user enters change)

RMS Trigger RMS Monitor
) request)
Add Product Put Product
Get Product Make Install
INSTALL Virtual SEND
) Tape
(RESULT) RMT Monitor
update DB

Figure 2: Software product installation

5. RMS implementation aspects

5.1. What you need from UNIX

All RMS programs are, as far as possible, written in Bourne Shell. Therefore, RMS is highly portable and
runs on different processor types without change.

C programs are used only for performance and copy protection reasons, but they make only 5% of the
entire RMS code.

5.2. What you need from the network

Currently, RMS uses the “r"-commands of BSD for data interchange and invocation of processes. Further
releases should tend to uucp for several reasons:

e Better recovery
e Store and forward

e More flexibility in network architecture

5.3. What you need further

RMS requires a relational database management system. In the current version, this is ORACLE(TM).
The user interface is an ORACLE application (SQL*FORMS) that starts requests by the trigger function of
ORACLE.

214 EUUG Autumn 89 — Vienna, 18-22 September

Resource Management System for UNIX Networks

6. Conclusion

In UNIX networks administration requires documentation on the state of the system. Current administrative
tools, if they can handle networks at all, do not contain documentation support.

As a network with all aspects of local information is a complex structure, a relational database has been
chosen for description of the state of the network.

The database offers the possibility of automatic invocation of change procedures to the systems of the
network. Therefore RMS combines documentation with actual distributed operation.

A client-server model has been chosen to concentrate responsibility in the network. Although there are
distributed database systems, this may have not only technical but also administrative advantages
(security).

This paper described the design and some implementation aspects of RMS. It showed how RMS works,
using examples of common administrative tasks. RMS is currently under evaluation in a prototype version.
The restrictions of this prototype were also discussed in the paper.

Appendix A — Sample RMS entry/update screens

This appendix shows sample entry/update screens of the RMS database application. These screens are
filled by the user and then committed. Upon commitment, the change request will be stored and activated
when the activation time is reached.

As RMS is designed in German in the current version, input prompts are also in German.

Please note the bottom part of the user/printer/terminal entry screens; it contains activation timestamp and
return status (updated automatically by RMS and not by the user).

RMS main menu

ttyp0l RMS PTMENU 11/07/89

Anfangsbuchstabe oder NXTFLD / NXTREC
Berecntigungen verwalten
Systeme
Drucker

Terminals

Benutzer

Produkterklarung

Produkte

Produkt / System

Produkt / System / Benutzer
Installation der geplanten Anderungen_
Ubersicht

Hilfstabellenwartung

Ausdruck der Konfiguration

Wdhlen Sie mit <NXTBLK> den Menupuhkt!

Einfugen: NEIN Bi Anzahl

£ T T £ e T

EUUG Autumn ‘89 — Vienna, 18-22 September

Resource Management System for UNIX Networks

Terminal entry/update screen

ttyp0l RMS Terminals 11/07/89_

Nodename ()

Name

Parameter fur INITTAB
Runlevel Status Terminal Gettydefs

Gettydefs-Typ + Login

Parameter fur OFIS
Terminaltyp N Deskset J/N N
OFIS Text

Kommentar

Aktion / am _ / durchgefuhrt am __ Status
angelegt am B letzte Anderung am von _
Einfugen: NEIN Bild 1 Anzahl *0

ttyp0l RMS Benutzer 11/07/89_

Nodename (R)

Username . Numme r

Usergrp. ()
Text

Home
Shell

Profil
Abteilung
Telefon

Kommentar _

Aktion / am / durchgefthrt am . Status
angeleqgt am letzte Anderung am von

216 EUUG Autumn ‘89 — Vienna, 18-22 September

Resource Management System for UNIX Networks

Printer entry/update screen

ttyp0l RMS Drucker 11/07/89_

Nodename ()
Name Model

Feature

TTY-Port Type
Stty

OFIS: Nr Model Text

Kommentar

Aktion / am _ / durchgefuhrt am Status

angelegt am letzte Anderung am von

Systeme fur Eintragung des Default Druckers: NXTBLK, ENTQRY, EXEQRY

Node Type Location

Def.Printer

Einfugen: NEIN Bild 1 Anzahl *0

ceypol mMs Ausdruck der Kontiguration
1. Systemliste
2. Benutzerliste
3. Druckerliste
4. Terminalliste
5. Produktliste
6. Produkt/Systemliste
7. Produkt/System/Benutzerliste
8. Alle Listen 1 - 7

Ihre Auswahl:

Einfugen: NEIN Bild 1 Anzahl *0

EUUG Autumn 89 — Vienna, 18-22 September

217

218 EUUG Autumn'89 - Vienna, 18-22 September

Porting Applications to the XVIEW Toolkit and the OPEN LOOK Graphical User Interface

Porting Applications to the XVIEW Toolkit and the OPEN LOOK
Graphical User Interface

Nannette Simpson

Sun Microsystems
2550 Garcia Avenue
Mountain View
CA 94043
nannette@sun.com

ABSTRACT

The OPEN LOOK Graphical User Interface Functional Specification has evolved over
the past two years with the final draft, Revision 18, becoming available for review May
1989. Sun has implemented several prototype toolkits which captured the progress of the
user interface design through it’s infancy and adolescence. With the impending maturity
of the design, Sun offers product toolkits and a suite of applications built on those
toolkits. This paper details the issues of transforming existing tools that run on SunView
(Sun’s kernel-based window system), into integrated applications running on XView,
Sun’s first OPEN LOOK, X toolkit.

1. Introduction

The X View toolkit is a server-based, object-oriented user interface toolkit designed for Version 11 of the X
Window System and X11/NeWS. Based upon the feature set of Sun’s kernel-based, SunView tooikit,
XView has been redesigned and extended to take advantage of the capabilities of a networked window
system, while maintaining much of the Application Programmer’s Interface of its parent. After years of
being seen as a powerful operating system for developers, but demanding for users, UNIX has a new user
interface, the OPEN LOOK Graphical User Interface (GUI), developed jointly by Sun and AT&T. The
OPEN LOOK GUI provides a consistent, easy-to-use front-end for UNIX applications. Developers with
existing UNIX software can retain the core of their packages while adding a new layer of the OPEN LOOK
user interface. Developers with existing SunView applications can port with relative ease 1o XView. To
make the system truly usable, Sun provides a suite of personal productivity tools (many of which have been
ported from SunView, some of which are new).

2. XView Architecture

XView can be viewed from two perspectives: the system architecture and the application architecture
[Jac89a]. In general, the application writer need not be cognizant of the system architecture when
developing tools. However, it is worthwhile to have a working knowledge of the system architecture when
making fundamental design decisions to avoid shipping data across the server connection repeatedly.

2.1. XView System Architecture

The system architecture of XView differs significantly from that of SunView. SunView is implemented for
SunWindows, Sun’s original window manager. SunWindows, like most kernel-based window systems, is
hardware and operating system specific. XView is implemented for the X11 server which addresses the
problem of utilizing networks populated by heterogeneous machines, operating systems, display resolutions
and colour capabilities. Figure 1 shows the structure of an XView application running on a network.

EUUG Autumn ‘89 — Vienna, 18-22 September

Figure 1: XView System Structure

2.2. XView Application Architecture

The application architecture of XView is quite similar to that of SunView. The programmer specifies
objects (such as windows, buttons, menus) to be created using variable-length attribute-value lists and
call-back procedures, which the toolkit calls to notify the application of events or user actions. The
Application Programming Interface (API) diverges somewhat from that of SunView to reflect XView’s
client/server model and enhancements made to implement the OPEN LOOK GUI. Many of the features
from SunWindows are now available in the toolkit. The details of changes to the API are documented in
the XView Reference Manual: Converting SunView to XView The following discussion provides a glimpse
into four toolkit changes. This list is not exhaustive by any means, but is representative of areas which may
entail significant effort for the porting programmer.

e generic creation of objects
® canvases
e fonts

e icons, cursors, glyphs

2.3. Generic Creation of Objects

The use of clean, attribute-value lists has been extended to all packages. Calls to create objects take the

form:

XView object object;

object = (XView_object) XVv_create (xview_owner,

®view attribute, xview_value,

SunView

/* Vanilla creation of objects in SunView */
Frame frame; Panel panel;
Panel item button;

frame = (Frame) window create (NULL, FRAME,
0):

panel = (Panel) window create (frame, PANEL,
WIN X, 0,
WIN_ Y, 0,

WIN_HEIGHT, 400,
WIN_WIDTH, 400,
0);
button = (Panel item) panel create_item(panel,
PANEL_BUTTON,
PANEL ITEM X, ATTR ROW(1),
PANEL_ITEM_Y, ATTR COL(1)
0):
window_main_loop(frame);

220

0);

xview object c¢lass,

XView
/* Vanilla creation of objects in XView */
Frame frame; Panel panel;
Panel item button;
frame = (Frame) xv_create (XV_NULL, FRAME,
0):
panel = (Panel) xv create(frame, PANEL,
XV X, 0,
Xv_Y, 0,

¥V _HEIGHT, 400,
XV_WIDTH, 400,
0);

button = (Panel item) xv_create(panel,

PANEI, BUTTON,
XV_X, xv_row(panel, 1),
XV Y, xv_col(panel, 1),
0);

xv_main _loop(frame);

EUUG Autumn ‘89 — Vienna, 18-22 September

Porting Applications to the XVIEW Toolkit and the OPEN LOOK Graphical User Interface

2.4. Canvases

The model of the generic drawing surface, the canvas, is modified in XView. The drawing surface is
actually a separate window, the paint window, which is clipped to another window, the view window, so
that only the part of the paint window “on top” of the view window shows through. This allows
applications to draw on areas larger than the visible window. Figure 2 shows the XView canvas model.

Canvas Subwindow

View Window

PemtWindow

Figure 2: XView Canvas Model

The Pixwin library has been rewritten in XView with X graphics primitives. For compatibility, a window’s
pixwin can be requested and used as before, but the pixwin returned is actually the window handle, strictly
an opaque object whose fields cannot be accessed. Interposing is now done on the canvas paint window
rather than on the canvas itself.

According to the X11 Specification, an application must be prepared to repaint itself at any time. The
attribute, CANVAS_RETAINED which asks the server to maintain a copy of the bits on the screen from
which it can automatically repaint, is only a Aint to the server. The server retuns a backing store when
asked, but the canvas will not be retained when the server runs low on memory.

For practical reasons, XView exposes some of the Xlib drawing routines to the programmer. An efficient
method of drawing on a canvas is to set the new attribute, CANVAS_X_PAINT_WINDOW, and provide
an X repaint callback procedure. A complete programming example using Xlib directly is found in
Appendix A.

3. Fonts

A handful of fixed-width fonts of limited point size is provided in SunView. Programmers who desire a
more sophisticated look or a large point size must create a font of their own with a font editing tool. The
SunView Pixfont routines, which are part of the Pixrect library are replaced entirely with the XView Font
package. Sun’s Folio font technology enables XView to offer a wealth of new variable-width fonts which
are created like all other XView objects:

SunView XView

Pixfont *font; Xv_font font;

font = (Pixfont *) pf open("/../../screen.r.7"); font = (Xv_font) xv_create(XV_NULL, FONT,
FONT_FAMILY, FONT_FAMILY_SCREEN,
FONT SIZE, 7,
0):

It is possible to query the font about its dimensions in order to calculate text placement:

SunView XView

int fontx, fonty; int fontx, fonty, fontsize;
struct pr_size fontsize; ’ fontsize = (int) xv_get (fon:,
fontsize = pf_textwidth(l, font, "m"); FONT STIZE);
fontx = (int) »=v_get (font,
fontx = fontsize.x; FONT_DEFAULT_CHAR_WIDTH) ;
fonty = (int) xv_get(font,
fonty = fontsize.y: FONT_DEFAULT_CHARgHEIGHT);

The FONT_DEFAULT_CHAR_HEIGHT attribute actually yields “taller” than expected dimensions

EUUG Autumn'89 — Vienna, 18-22 September

Porting Applications to the XVIEW Toolkit and the OPEN LOOK Graphical User Interface

because this attribute includes the added height for international character sets. If exact measurements are
desired, the font must be queried on a per character basis using the FONT_CHAR_HEIGHT attribute.

It is no longer possible to obtain a font’s pixrect, change it, and expect an altered character to display on
the screen. Fonts are owned by the server and are not available for dynamic manipulation.

3.1. Icons, Cursors, Glyphs

Imaging is now done by the X11 window server rather than through the Pixrect library. The server does
the drawing for XView and any client programs. In order to take advantage of the data format conversion
provided in the X11 protocol, XView provides server image objects. A server image is an X11 Pixmap
which is represented in the client as a pixrect to maintain SunView compatibility. Icons, cursors, and
glyphs are created as server images. The font package represents fonts as server images, also. As with
fonts, it is no longer possible to manipulate the internal data structures of these objects to obtain special
effects. Instead, calls are made to the particular package with the appropriate object handle and attribute
list. The following code initializes an odd-sized+ icon for a calendar program:

SunView XView

struct icon sched icon; Server image sched image;
sched icon.ic_width = 128; Icon sched icon;
sched_icon.ic_height = 64; sched image = (Server_image) xv create(
sched_icon.ic_gfxrect.r_width = 128; XV NULL, SERVER IMAGE,
sched icon.ic gfxrect.r height = 64; XV HETGHT, 64,
sched_icon_mpr = mem_create (sched icon.ic width, XV _WIDTH, 128,
schedicon.ic_height, 1); SERVER_IMAGE_DEPTH, 1,
0):
sched _icon = (Icon) xv_create (XV_NULL, ICON,
XV_HEIGHT, 64,
XV_WIDTH, 128,
ICON_1IMAGE, sched_ image,
0y

4. OPEN LOOK Productivity Tools

4.1. File Manager

The File Manager is a graphical front-end to the Unix file system. Similar to Apple’s Finder, Xerox's
ViewPoint, and NeXT’s Browser, the File Manager provides direct and intuitive ways to manage files as
alternatives to grep. ¢p, mv, and Is.

The original SunView desktop is process-oriented where icons represent running programs. Alternatively,
Apple, Xerox, and recently Sun offer “direct-manipulation™ systems based on having the user interact with
pictures on the screen as if they actually are the objects they represent. The focus is on the data, typically a
file, being manipulated rather than on the engine used to drive the data. The OPEN LOOK GUI defines a
set of features and capabilities designed to support a wide range of applications. However it is not a
complete desktop metaphor in the MacIntosh sense. The UNIX shell is very much alive and well in the
XView Workspace.

4.1.1. Application Developer’s View of the Workspace

The “drag and drop” method is an alternative to using the Copy and Paste function keys. Objects are
selected and dragged to their destinations (which may be the Workspace or other tools). The application
which owns the selection sends an event, ACTION_DRAG_LOAD, to the window under the cursor. The
application which receives this event takes the primary selection and executes client-specific actions. For
example, a text editor may load a file, a print tool may send a file to be printed, or a calendar tool may
schedule an appointment.

t Icons are normally 64x64 pixels.

EUUG Autumn’89 — Vienna, 18-22 September

Porting Applications to the XVIEW Toolkit and the OPEN LOOK Graphical User Interface

() File Manager 1.1 (Pre-FCS)

(Fiie v) (view v) (Edit v) (Home ¥) (Goto: V)q
[HemH

D

]

Release_Notes SampleDocs

2l
EJ

=4
o
S
A
o
<
o
a
®
lad

i
D >
1wl

[al
=
[
o
[*3
[al

[

filemgr_manpage

J

Ik

" g 8
3

o
|
b
s
Al
B |
Al

.,,
&
~r
<
©
®
o
[
=
®
~
L]
3
-
a
=X
Ed
a
S

Introduction

<

Y
| a N
7 8 Py
3
El ‘
3 B
a2
o
3
[Y
3
) 2)
e il
o
»
x
he)
: @
5 Bl

B

pc_resume

orm talk.bak user.dict.1

X

w
®
w
w
<
P
w
~
p=_

=
LJ

[ad

S

Figure 3: The File Manager

4.1.2. Application Responsibility

As a minimum. the application should handle the ACTION_DRAG_LOAD event by interposing on the
window with a callback procedure. The following example from textedit queries the notifier for
ACTION_DRAG_LOAD, requests the primary selection, and loads the window with the file.

static Notify value
textedit load event proc(textsw, event, arg, type)
Textsw textsw;
Event *event;
Notify arj arg;
Notify event "ype type;

char document _name [80];

if (event action(event) == ACTION DRAG LCAD) i
if (textedit get primary_sel (document_name))
return (NOTIFY DONE) ;
xv_sect (textsw,
TEXTSW_FILE, document name,
0):
return (NOTIFY DONE);
}

return notify next event func(textsw, event, ary, type);

}

Additionally, the application should watch for the ACTION_DRAG_MOVE event. This event is raised
when the user tries to move the application’s icon on the Workspace. If the move request is to another
tool’s window, the application should send the destination tool an ACTION_DRAG_LOAD event.

EUUG Autumn ‘89 — Vienna, 18-22 September

Porting Applications to the XVIEW Toolkit and the OPEN LOOK Graphical User Interface

4.2. Calendar Tool

Calendar Tool is a network-based personal time management system. Developed on one of the early
OPEN LOOK prototype toolkits, it can manage several calendars simultaneously. Calendar Tool provides
the standard day. month, and week views and allows users to specify recurring appointments through an
appointment editor. Built-in browsers allow remote calendars to be viewed and updated as long as
permissions are set accordingly.

Dute: Mon July 24, 199

rent
What: Paper DUE 11:00 Staff Meeting

[}
17:08 st

stngle detly
weak 1y b1 ~wsek Ny
santhly | yuerty

Somintor:)) () (21T

(A) (ostets)

srent
9108 00 0

Figure 4: The Calendar Tool and Appointment Editor

5. Help for Porting
In general, SunView attributes fall into five categories with regard to porting to XView [Sun89b]:

Compatibility Attributes: attributes that are not part of XView proper but can still be used in XView
programs. They are retained in XView for minimal conversion compatibility only and may become
unsupported in future releases of XView. These attributes have no XView counterpart and generally
deliver non-OPEN LOOK GUI features.

New XView Attributes: attributes that provide new features and functions or provide old ones under new
names. All new attributes comply with the OPEN LOOK GUI Specification.

Redefined Attributes: attributes that are aliased (#define) to new XView attributes. All redefined attributes
have true functions in XView but have retained their names to support minimal conversion efforts.

Defunct Attributes: attributes that are not carried forward into X View in any form.
Unchanged Attributes: attributes that are carried forward into XView and have the same name and
functionality.

The XView Reference Manual: Converting SunView to XView presents an object-by-object comparison of
the attributes in SunView and XView showing the fate of each attribute. Conversion to XView falls into
two categories: minimal and full. Minimal conversion is probably adequate for low-end investment
applications, not requiring OPEN LOOK compliance such as those limited to in-house use. High
investment, end-products require full conversion.

224 EUUG Autumn 89 — Vienna, 18-22 September

Porting Applications to the XVIEW Toolkit and the OPEN LOOK Graphical User Interface

5.1. Minimal Conversion

Available with XView is a shell script convert_to_xview which uses sed to help automate the conversion
process. This script removes all backward-compatible attributes and makes a complete a translation to the
XView API as possible. It also flags all issues that require programmer attention with references to the
appropriate section of the conversion manual. However, it does nothing to help with issues of user
interface style and it always requires some programmer “post-processing’.

5.2. Full Conversion

Full conversion requires the removal of all SunView compatiblility features and a redesign for OPEN
LOOK compliance. The convert to xview script is a starting point for code conversion, followed by pure
programming manual labor. Fortunately, there’s help for prototyping the user interface design.

5.2.1. OpenWindows

GUIDE (Graphical User Interface Design Editor) is a development tool designed to give programmers the
freedom to create and test user interfaces without having to write a line of code [Sun89c].

"E] GUIDE CUIDE: Elements

(fiew) (view v) (€dito) | edie -
Compose (_button)

Element Controls Trail

Size: 617%0%9 Folder choice [g @ E]

Polnter: X: S0B ¥ =10 Controls message

h,

text

slider maw(}f———"—

Tist E

o ® maikoe!

(ri) (viw) (geie) (omoore) (i)}

Mail file:

*

Figure S: OpenWindows Guide

OPEN LOOK user interface components are generated by dragging visual representations of the
components onto the Workspace. The components can be interactively named and rearranged as the
programmer adjusts his design. When the user interface is assembled, GUIDE writes an interface file
which can be recalled later for modification or generation of XView toolkit code. GUIDE's companion
program, gxv reads the interface file and generates the C source code necessary to create that user interface
in XView. Gxv also generates makefiles, header files, and stub files to help the programmer link the
interface to the main body of the application.

Although GUIDE is primarily a programmer’s tool, it is also useful for non- programmers such as software
designers and project managers. It allows projects to be naturally split along user interface lines to increase
parallelism and team effort.

EUUG Autumn 89 — Vienna, 18-22 September

Porting Applications to the XVIEW Toolkit and the OPEN LOOK Graphical User Interface

6. Conclusion

How hard is it to port to XView? The answer is, “It depends on the goals of the application.” A minimal
conversion can be achieved using the convert to_xview script with some post-processing programming
effort. A full conversion to XView requires a working understanding of the XView architecture, a
commitment to the OPEN LOOK user interface style guidelines and a moderate programming effort.

References

[Jac89a] Thomas W. R. Jacobs, “The XView Toolkit: An Architectural Overview,” The 3rd Annual X
Window System Technical Conference Proceedings, January 1989.

[Sun89a] Sun Microsystems, Inc., XView Reference Manual, Beta2 Release, May 1989.

[Sun89b] Sun Microsystems, Inc., XView Reference Manual, Beta2 Release, May 1989. (Part No: 800-
2483-06)

[Sun89¢c] Sun Microsystems, Inc., OpenWindows GUIDE User's Manual, Alpha Release, July 1989.

Appendix A

In this appendix, “Hello World” has been implemented on the XView Toolkit using Xlib drawing routines.
When compiled with XView and XII include files and libraries, the resulting application will appear as it
does in Figure A.

Hello world Hello World

Hello world

Figure A: Hello World in XView

Listing of “Hello World”

/* Hello World in XView */
#include <xview/xview.h>
#include <xview/canvas.h>
#include <xview/font.h>
#include <xview/scrollbar.h>
#include <xview/xv_ xrect.h>

int str_id;
Font_string dims str_dims;
GC gc;

Xv _font new_font;

main(argc, argv)

226 EUUG Autumn 89 - Vienna, 18-22 September

Porting Applications to the XVIEW Toolkit and the OPEN LOOK Graphical User Interface

int argc; char **argv;

{

/*

/*

/*

*/

/*

*/

/*

>/

/*

/*

/*

Xv_Window root_win;

Rect *root_rect;
Xv font win_font;
Display *display;

XGCValues gcval;

Drawable xid;

Frame frame;

Canvas canvas;
static int my repaint_proc();

Initialize XView and process command-line arguments. */
(void) xv_init (XV_INIT ARGC_PTR_ARGV, &argc, argv, 0);
Create a frame and give it a title. */

frame = (Frame) Xv_create (XV_NULL, FRAME
FRAME LABEL, "Hello World",
0);

Get the root window (parent of the frame, then
get the rectangular dimensions of it.

root win = (Xv_Window) sv_get (frame, XV_ROOT);
root _rect = (Rect *) xv_get (root_win, XV_RECT);

Create a canvas as a child of the frame. The canvas should:
- be reasonably sized (1/4 size of the display)
- have splittable scrollbars, horizontal and vertical
- call my repaint proc() when repainting/resizing

canvas = (Canvas) xv_create(frame, CANVAS,
CANVASAWIDTH, root_rect—>r_width/4,
CANVAS HEIGHT, root_rect->r_ height/4,

CANVAS X _PAINT_WINDOCW, TRUE,
CANVAS_REPAINT_ PROC, my_repaint_proc,
0);

(void) xv_create(canvas, SCROLLBAR,
SCROLLBAR_DIRECTION, SCROLLBAR HORIZONTAL,
SCROLLBAR_SPLITTABLE, TRUE,

0):
(void) xv_create(canvas, SCROLLBAR,
SCROLLBAR DIRECTION, SCROLLBAR_VERTICAL,
SCROLLBAR_SPLITTABLE, TRUE,
0);

(void) window_fit (frame);

Get the default font of the frame. Rescale the font
to the largest sized font in that family-style font group.

win_font = (Xv_font) xv_get (frame, XV_FONT);

new_font = xv_find(win_ font, FONT,
FONT RESCALE OF, win font, FRAME_ SCALE_EXTRALARGE,
0):

Get the dimensions of the “Hello World” string */

(void) xv_get (new font, FONT STRINGS DIMS,
"Hello World", &str_dims);

Get the XID for the XView font object */
str_id = (int) xv_get (newfont, XV_XID);
Display the tool */

xv_main_loop {(frame);
exit (0);

EUUG Autumn ‘89 - Vienna, 18-22 September

227

Porting Applications to the XVIEW Toolkit and the OPEN LOOK Graphical User Interface

/* my repaint proc is called by the canvas whenever the canvas
sustains damage, is split, is joined or is scrolled.
it clears the area of the window in its view and then centers the
string with its view. The first time it is called, a
GC (graphics context) is created and cached.

*/

static int
my_repaint_proc(canvas, paint_window, display, xid, repaint area);
Canvas canvas;
Xv_Window paint_window;
Display *display:
XID xid;
Xv_xrectlist *repaint area; /* ignored in this example */

Rect *rect;
int new_x, new_y;

if (first_time) {
gcval, foreground = BlackPixel (display, DefaultScreen(display));
gcval .background = WhitePixel (display, DefaultScreen(display));
gcval.font = str id;
gc = XCreateGC(display, xid,
GCForeground | GCBackground | GCFont, &gcval);
first time = 0;

rect = (Rect *) xv_get(canvas, CANVAS VIEWABLE RECT, paint_window);
new_x = rect->r left + (rect->r_width/2) - (str dims.width/2);
new_y = rect->r top + (rect->r_height/2) - (str dims.height/2);

XClearArea (display, xid, 0, 0, rect->r_width, rect->rect height, False);

XDrawString(display, xid, gc, new_x, new_y,
"Hello World", strlen("Hello World"));

EUUG Autumn ‘89 — Vienna, 18-22 September

X Display Servers: Comparing Functionality and Architectural Differences

X Display Servers:
Comparing Their Functionality and Architectural Differences to
Diskless Workstations

Timothy L. Ehrhart

Ericsson Telecommunicatie BV
Haansebergseweg |
P.O.Box 8
5120 AA Rijen
The Netherlands
+31 1612 29308
Tim.Ehrhart@ericsson.se

ABSTRACT

X Display Servers are a new generation of computing devices arriving on the scene.
They consist of the now familiar high resolution bitmap screen, keyboard and mouse,
replacing the single font tubes and keyboard as “stdout™ and “stdin”. These devices
contain a powerful microprocessor, local memory, network interfaces, built-in fonts, and
run only the X11 server code (i.e. not running UNIX). They don’t utilise any of the local
compute power in application support. The applications, or clients, in X terminology, all
run remotely on another host-based computer. The output of the remote client is
displayed on the local display, managed by the X11 server. These devices appear to
offer the same functionality as a Diskless Workstation. Can the two be compared in an
apples-to-apples fashion?

Introduction

Up till now the the lowest common denominator into the bit-mapped, window-oriented, mouse-driven user
interface device world had been the Diskless Workstation. With the arrival of X Display Servers the ante
has been lowered. We have been struggling to replace the dumb ASCII terminals as the absolute lowest
common denominator user interface device able to communicate with a computing device. This has been a
difficult task just given the economic implications. The cost of a single Diskless Workstation compared to
the cost of a dumb ASCII terminal has been difficult to justify. We have used arguments such as increased
productivity, ease of use, etcetera, to justify our Diskless Workstation purchases. Even though the cost of
Diskless Workstations has been dropping rapidly, they still are at least an order of magnitude more
expensive than an ASCII terminal. It is not difficult to demonstrate the virtues of window based displays,
it’s just hard to swallow the admission price.

The installation cost of additional user interface devices has also been a significant factor. The ease of just
hanging another ASCII terminal off an existing time sharing system with RS-232 cable is much simpler
and lower in cost than laying coax cable for the connection of a Diskless Workstation.

Slowly. but surely, we are over coming the hurdles. We are retiring our antiquated time sharing systems.
There's a good chance we already have put the coax cable in the ceiling, or have accounted for it’s
installation in next year’s fiscal budget. Our plans for total conversion to bit-mapped display devices are
halfway realised. All the software developers already have their Diskless Workstations, but what about the
rest of the staff? Well maybe next year...

EUUG Autumn'89 — Vienna, 18-22 September 229

X Display Servers: Comparing Functionality and Architectural Differences

ASCII Terminals — Just Say No

Help is on the way. X Display Servers offer a much lower per seat cost into the wonderful world of
windows. Let’s re-evaluate this year’s budget... For every Diskless Workstation we planned to buy, we
can maybe purchase 2.5 X Display Servers. Perhaps we can breath so life back into our not yet retired time
sharing systems by turning them into compute server engines. The new file servers we planhed to purchase
along with our existing file servers can easily support the X Display Servers we can now purchase. Now if
we could just find some convenient way to write off the retirement of the ASCH Terminals. Wait, [know,
let everyone take one home with a modem. Many of us would be foolish enough to work at home in the
evenings and weekends, so the company would easily recoup any costs incurred by giving us a terminal
and a modem at home. How about this for an idea: Why not just give us an X Display Server at home
instead? Maybe we can find some charitable institution to donate the ASCII terminal to and get a nice tax
write off too.

Remote Windows — New Hope

In the past, working remotely in many case meant ASCII terminals. It was impossible to take our windows
with us. Anyhow what good is a Diskless Workstation without being able to communicate with it’s file
server? Take an X Display Server running SLIP over the serial interface and combine it with a fast (9600
baud) modem and what do you get: Remote windows. This is a great breakthrough, no longer will we have
to read NetNews at home on dumb ASCII terminals with 2400 baud modems. Maybe we can even
convince the company to let us work at home a few days out the week. Ah, the future is looking brighter
all the time.

What about Terminal Servers?

Don’t they provide the same kind of functionality as X Display Servers? They allow low cost user
interface devices access to the IP networks of the world. They have the major drawback of only providing
the capability supporting ASCII terminals. We must look for solutions that put efch-a-sketch user interface
devices into all user’s hands.

Evolution or Revolution?

Are we entering a new era of computing, or is this a digression back to the concept of centralised
computing? We have watched the evolution of computing go from batch processing, where several users
shared a single computer in a serial fashion; to time-sharing, with many users having simultaneous access
to one system; to desktop computing, where each user has a dedicated computer, such as a PC or a
Workstation on their desktop. Are we seeing a new revolution in computing emerging or is this just the
next logical evolutionary step? Time sharing with network based window systems accessing centralised
shared resources might be a description of this new trend. Perhaps a more appropriate name would be
network computing.

These products have come about due to the emergence of DoD, industry wide and de facto standards in the
operating system and window system/platform arenas. The adoption of the UNIX operating system,
Ethernet based LANs, and the TCP/IP network protocol suite along with operating system and hardware
independent server based window systems have brought us to where we are today. With the demise of
proprietary kernel based window systems, and the emergence of X Window System and NeWS server
- based window systems, client application no longer need run on the CPU providing the window display
functionality. One is also relieved from the previous requirement of having UNIX running on every user’s
desk because the window system was tied to the kernel.

Mohammed Goes to the Mountain

Network computing can best be described as going to the best suited computer to accomplish a given task.
One runs the application on the computer that controls the desired resource, peripherals or file systems, as
opposed running all applications on the local CPU irregardless of the network resources utilised to bring
the task and required resources to the local CPU. There is no need to do paging over the network or bring
executable images over the network. With X Display Servers, executable images run on the remote host
computer. Any resource accessed is also managed on the remote host computer, only the output of the
remote client travels over the network to be displayed on the local X Display Server.

230 EUUG Autumn 89 — Vienna, 18-22 September

X Display Servers: Comparing Functionality and Architectural Differences

Comparing Apples to Apples

So that we are comparing apples to apples, let’s specify what the minimum configurations for each type of
machine. The Diskless Workstation is a 3 MIPS class machine, has a Monochrome, 1 Mega Pixel monitor,
Ethernet interface, keyboard, mouse, and 8MB RAM. The X Display Server has a Monochrome | mega
Pixel monitor, Ethernet interface, keyboard, mouse, and 2.5 MB RAM. Both are running the full TCP/IP
protocol suite, including support for TELNET, ARP/RARP, BOOTP, TFTP, NES, ICMP/PING, SLIP, and
provide Domain Name Server support.

Minimum Memory Requirements

What is the minimum amount of RAM necessary in each configuration to make them acceptable user
interface devices? Response time is a very important factor in computing. Users will not easily tolerate
slow devices, irregardless of what the reason for the slowness. They can’t see if the network is overloaded,
or if the device is paging and swapping itself silly, or if the file server disk /O bandwidth is all used up.
We tend to try and solve the problem in many cases by simply giving the user more physical memory, and
in some cases faster CPUs. With today’s heavily layered software architectures much more CPU
bandwidth and physical memory is required. Diskless Workstations require, if not demand, at least 8 MB
RAM to be sufficiently fast. The days of Diskless Workstations with 4 MB RAM have come and gone.
That’s all right, the advances we have made have been in the right direction, they have all been made in the
name of portability, modularity, and flexibility.

In the case of X Display Servers most come with a minimum memory configuration of 1-1.5 MB RAM,
expandable up to a maximum of 4-4.5 MB RAM. This is much less than the Diskless Workstation, but it’s
requirements are different. It runs only the X11 server code and the TCP/IP protocol suite. Some of the X
Display Servers run their code out of PROM so they don’t have to give up RAM memory to hold the server
and networking code. Power hungry Diskless Workstation users transitioning over to an X Display Server
will require more than the minimum 1-1.5 MB RAM provided because of the rich set of tools they are used
to running concurrently. Fully loading up a X Display Server with 4.5 MB RAM gives one an almost
inexhaustible resource. [say almost, because the RAM in the X Display Servers is physical memory only,
not virtual memory.

What happens when an X Display Server exhausts it’s supply of physical memory? One of two things,
depending on the severity of the memory exhaustion: It could die a death that is not to be envied, perhaps
crashing the server, causing it to re-initialise itself, along with severing all existing connections it has with
currently running remote clients; or denies the access of the remote client to the local server. In which case
the remote client quietly dies. The local X11 server does attempts to return an error message back to the
remote client that it cannot satisfy it’s request of resources from the server. As of this moment, most
clients don’t know what to do with this error message. The X Consortium is investigating this important
issue.

Only one of the current X Display Server product offerings has a trick to use the virtual memory of a host
based computer. Extension are made to the X11 server code on the host based computer to allow the X11
server running on the X Display Server to use the virtual memory capabilities of the host based computer.

Per Seat Cost

Depending on which vendor purchased from, the quantity one price for the Diskless Workstation would be
about $7-10K, the price for the X Display Server would be about $2-4K. When comparing only the per
seat cost the X Display Sever is cheaper by a factor of at least two.

System Wide Manpower Costs

When integrating Diskless Workstation and X Display Servers into a heterogeneous computing
environment what are some of the costs that need to be looked at on a system wide level? Naturally one of
the most expensive items in a budget is in the staff required to maintain the resources of the network.
Assuming an always present central core of server class machines that must be maintained, be they file
servers or compute servers, much less manpower is required to maintain each additional X Display Server
as compared to additional Diskless Workstations.

EUUG Autumn ‘89 - Vienna, 18-22 September

X Display Servers: Comparing Functionality and Architectural Differences

This is because X Display Servers have no local file systems, and have a one-time-only initial configuration
process. In this initialisation you specify such things as it’s IP address, broadcast address, netmask, boot
server, name server, default gateway, and network font support host. Their IP entity specific information
can be retained in NVRAM, and/or they have the capability to get their configuration information via the
network, allowing it to be updated and maintained in centralised locations.

When looking at Diskless Workstation, each one has multiple file systems that must be maintained on an
individual Workstation basis. Individual Diskless Workstation system backups, host and architecture
specific file maintenance requires more manpower and very sophisticated/automated tools and procedures.

Software Updates

Software updates are also a major issue. With Diskless Workstations, every Workstation specific file
system must be updated. X Display server software updates, when they are required, can be quite simple.
Most have the capability to load their executable image over the network using BOOTP or TFTP, once
again allowing it to be updated and maintained in a centralised locations. Software updates for X Display
Servers should not really be much of an issue, the X11 server code implementations seems to be very
stable, and the networking code is up to BSD 4.3 standards.

It is the clients, toolkits, and User Interfaces toolkits that are always changing and evolving. All that work
will take place on the host based computers, with the result that the server code in the X Display Servers
can remain unchanged and will be able to communicate with and display the output of the new client
applications.

File Servers or Compute Servers?

What kind of computing resources are required to support these two types of devices. Diskless
Workstations typically require file servers to provide boot, root, swap, and file access. All processes run
locally on the CPU of the Diskless Workstation. This means, they must page and swap over the network to
make physical memory available to hold the executabie image they want to run, and any resource accessed
by that process must also be brought over the network to the Diskless Workstation. This can amount to
large number of packets being generated. In comparison, the remote client running on the desired host
simply opens a connection to the local X11 server. The output of the application is the only network traffic
generated.

Let’s assume a typical server class machine has 4-5 MIPS, with approximately 1-2 GB disk, 16 MB RAM.
We know this class machine can easily support about 10 Diskless Workstation without much trouble. Due
to the lighter network and disk activity not required to support root, boot, swap, and file access for Diskless
Workstations, [would draw the conclusion, that the server would be able to support as many, if not more X
Display Servers.

Network Impact

Before attempting to say anything about the network traffic that is generated by these type of devices, one
must always preface it with: YOUR MILEAGE MAY VARY. The factors having an effect on any
conclusions you want to draw are almost to numerous to mention. The biggest factor is the type and mix of
application you run. In general Diskless Workstations generate more network traffic than X Display
Servers because they rely on the network for all file access, whereas X Display Servers transmit only the
graphics portion of an application over the network. The difference is quite clear: Diskless Workstations
implement the disk over the network utilising the NFS protocol, X Display Servers implement the graphics
over the network using the session layer Xwire protocol.

The place where X Display Servers are very weak and network traffic intensive is when they are used in a
remote virtual terminal emulation. Every character typed on the keyboard generates two network packets.
One to send the packet to the remote emulator, and the other is the response packet back used for character
echoing. The Diskless Workstation has a very clear advantage where running normal terminal based
applications. The local CPU takes care of servicing the keyboard interrupts without generating an network
traffic. That is not the fault of the X Display Server, we must start to develop applications that are less
reliant on the dumb ASCII terminal emulation paradigm.

232 EUUG Autumn 89 - Vienna, 18-22 September

X Display Servers: Comparing Functionality and Architectural Differences

With the emergence of graphical user interfaces such as Open Look and Motif, maybe we will begin to see
re-writes or ports of our most popular terminal based application into the windowing world.

Network Worthiness

How robust are the networking protocol suites implemented in X Display Servers? Can they hold their
own against a UNIX based Diskless Workstation? For the most part, yes; they are full players on the
network. They have Domain name server support and network booting capabilities. They speak both ARP
and RARP fluently. Many even have monitoring or management capabilities that keep track of all vital
network statistics. They collect statistics on the transport layer on a per protocol basis, network layer, and
data link layer packet counts, collisions, and re-transmissions.

Font Support for the Bitmap Displays

In order to support multiple fonts on the bitmap displays, fonts are required. How do the two types of
devices get their font support? In the case of a Diskless Workstation, all font support comes via the
network by NFS file access. X Display Server have several ways of getting fonts. In the first case many of
the X Display Servers have built-in PROM resident fonts, further fonts can be gotten from the network via
NFS file access or TFTP transfer. Most X Display Servers have the capability to hold the retrieved fonts in
RAM till the server is reset.

Conclusions

I have observed Diskless Workstations and several X Display Servers that were running in an existing
large heterogeneous environment (subnetted Class B network, 3+ physical cables, 100+ Workstations).
Initial data gathering has shown that in most cases less total network traffic is generated to accomplish a
simple set of tasks which are done on a normal daily basis. These findings are not conclusive nor valid for
everyone. I also did not have a sufficient number of X Display Servers to get a real feel for what their
overall impact on the network would be.

I feel that one has the same functionality at the end user level at a much lower cost when compared to
Diskless Workstations. X Display Servers have many advantages, but are they right class of machine for
every user? Definitely not, there is still a lot to be said for UNIX operating system based host computers as
user interface devices. You have much more control over them and their network interaction. Certain
types of software development demand having control of their own resources for testing purposes. Certain
compute intensive or graphics intensive applications, such as desktop publishing and CAD/CAE, are much
better off being run on powerful single user Diskless Workstations. In these cases it is worth the extra
investment to have access to larger displays and support for colour.

X Display Servers have raised the lowest cost denominator for user interface devices from a line and
character oriented interface up to a window oriented graphical user interface. Sales, Marketing, and
Administrative departments, as well as Technical Editors and Managerial staff don’t often require the
punch offered by today’s Diskless Workstations. The average Diskless Workstation user is for a great
majority of the time under-utilising the available power of his Diskless Workstation. They do still require a
bit-mapped, window-oriented, mouse-driven user interface device, and access to network-based high
performance windowing applications. This class of product is a well suited for these types of users.

Some of the drawbacks or shortcomings of this first phase of X Display Server products are potential server
crashes at resource exhaustion, and limited screen resolutions or dimensions. I am sure future offerings
will come with increased screen resolutions and if the market demands it, support for colour. There is also
one extra added bonus: When all else fails, they can still function used as dumb ASCII terminals.

EUUG Autumn 89 - Vienna, 18-22 September

234 EUUG Autumn 89 — Vienna, 18-22 September

A System for the Redirection of Graphical User-Interaction

A System for the Redirection of Graphical User-Interaction

Robin Faichney

Computing Laboratory
University of Kent at Canterbury
Canterbury
Kent
CT2 7NF
UK
rif@ukc.ac.uk

ABSTRACT

The redirection of user-interaction is complicated in a graphical environment due to the
nature and variety of graphical actions, compared with character stream input/output.
The solution is to redirect at a high level within the application. Accordingly, this system
is designed to allow the redirection of all traffic between the user-interface and the
underlying functionality of an application, to and/or from another program. This facility
is quite flexible and has a variety of uses. These include facilitation of the automatic
testing of the underlying functionality of graphics-interfaced applications, and allowing
extensibility of user-interfaces, via the recording and replay of command macros. A
prototype and some applications which use it have been implemented, demonstrating the
main features of the system.

Introduction

This paper describes one of the fruits of an attempt to tackle a problem which was identified during work
on developing software tools for the UK Science and Engineering Research Council’s EASE (Engineering
Application Support Environments) programme, for which Kent is the Software Tools Centre.

The problem was concerned with the interconnection of highly interactive software modules, and in
particular the possibility of carrying over the benefits of UNIX command line interconnection (input/output
(I/0) redirection) into the WIMPS (Windows Icons Mouse Pointer (or Pull-down menus) Systems)
environment. An analysis was made of interconnection in the graphical environment and this is described
in previous papers. (The earlier paper [Fai89a] contains an abstract analysis, and the later paper [Fai89b] a
more concrete one.) It was concluded that interconnection in this context falls naturally into two
categories, and that two separate systems were required to facilitate such interconnection, one for each
category. This paper describes one of these systems. The other is described in the previous papers. (The
earlier paper contains a more detailed description.)

The first section below is concerned with justifying the development of a high level command redirection
system. Following this some of the concepts which are common to any such system are elucidated. Then
this system is described. The next section discusses some applications built using the system, and that is
followed by a summary of the paper and some acknowledgements.

1. Justification

Previous papers are concermned with the problems of interconnection in a graphical environment and the
need for two systems to facilitate this, one each for data communication and for command (user 1/O)
redirection. [Fai89a, Fai89b]

This section will consist of a brief reiteration of the portions of that argument which are relevant here.

EUUG Autumn 89 — Vienna, 18-22 September 235

A System for the Redirection of Graphical User-Interaction

The general aim of this work is to reintroduce the benefits of UNIX command line interconnection to the
graphical workstation environment. The traditional UNIX tool is not interactive. It takes a stream of data,
performs some transformation upon it and outputs the result, the transformation being constant throughout
the run. Command line interconnection depends upon the simplicity, and especially the uni-directional
nature, of this I/O scheme. If interactive tools are to be interconnected, data I/0 has to be separated from
user 1/O. In this way they could be used in a pipeline — where data is communicated, but user I/O is as
normal — or user I/O alone could be redirected to allow one program to control another. This paper is
concerned with user I/O (or command) redirection (which is the harder of the two).

Traditional 1/O redirection is dependent upon character stream I/O. This can be handled almost equally
easily by people and by programs, so simple switching between terminal, file and program is sufficient.
The reason for the development and popularity of graphics-interfaced programs is that their /O is specially
designed for ease of use by people. Consequently, it has become very much more difficult for other
programs to utilise. Not only has the range of interaction types become much greater — colour changes,
mouse movements, etc., as well as text — but the range of interpretations placed upon any one type by
different programs is much greater too. The obvious solution to such low level diversity is to use a higher
level instead. The interface between user-interface and the underlying application functionality is not only
the highest level at which user /O can be captured, but probably the only level at which it is practical to try
to define the user I/O of any interactive application. Such definition both requires and facilitates the
separation of user-interface from application functionality which is very widely advocated within the
human-computer interface community {Coc88a]. It was therefore decided that any system intended to
facilitate command redirection in a graphics environment should deal with the traffic between user-
interface and underlying application functionality.

2. Command Redirection

This section deals with certain general issues regarding high level command redirection. The concepts
developed here will be used in the description of this particular system, which follows.

2.1. Inter-Program Relationship

The nature of command redirection is such that the relationship between the programs concerned is
inevitably asymmetrical. One has its user I/O redirected, and for the other this is simply data /O, with no
direct relevance to its own user-interface, if it has one. Throughout this document the latter program is
referred to as the “controller”, and the former as the “controllee”; generally the program which is having its
user 1/O redirected, can be viewed as being controlled by the other, though it is not always so.

2.2. Inter-Component Relationship

The controller, and the user-interface and functionality of the controllee, are the “components” of the
redirection arrangement.

Though there are three components, each with an input and an output, the ways in which they might
usefully be interconnected are actually quite limited. The “normal” arrangement — user-interface and
functionality connected — is one obvious requirement. For all redirection arrangements, the controller is
involved, so such arrangements may be considered from its point of view. As the overall aim is the
redirection of the user /O of an interactive application, both input and output must be considered in each
case. As far as the redirection system is concerned, there is no need to distinguish between user-interface
and functionality; the arrangement is symmetrical in this respect. So there are only two main alternatives:

(a) both input and output of the controller connected to one of the controllee components (“one-sided”);
or

(b) the controller input connected to one controllee component, and its output connected to the other
(“two-sided”).

Within these two main alternatives, there are sub-divisions. Generally, wherever the input or output of a
controllee component is connected to the controller,

(1) it may also remain connected to the other controllee component (*“‘teed”); or

(i) it may be cut (“unteed™).

236 EUUG Autumn 89 — Vienna, 18-22 September

A System for the Redirection of Graphical User-Interaction

As in traditional redirection, the controllee components should not be aware of the source/destination of
their communications. From the point of view of the individual controllee component, the controller
simulates the other component. “Simulation” may also take place at a higher level, however: where the
controller is connected to just one controllee component (one-sided redirection), the controller is, from the
application programmers point of view, simulating the other component. *“Simulation” implies
replacement, so the normal interface-functionality connections should be cut (unteed, see Figure 1).

controller

application
functionality

user-interface

Figure 1: Simulation of user-interface

On the other hand, as an alternative we might allow a special type of simulation which allows in effect
“duplication” of a controllee component, by leaving the normal connections intact (teed, see Figure 2).

controller

application
functionality

user-interface

Figure 2: Duplication of user-interface

An analogy can be made with the tee [ATTa] utility in traditional redirection. So the sub-divisions of one-
sided redirection are simulation and duplication of either of the user-interface and the functionality.

To return to the point of view of either of the controllee components (the lower level type of simulation):
under two-sided redirection, the controller simulates different components at different times. For instance,
if controller input is connected to the user-interface, and the output to the functionality, for the recording
and replay of command macros (“taping”), on user-input the controller simulates the functionality, while
on controller output it simulates the interface. For each of the controllee components, the controller
simulates the other, but only for either input or output, not both. At the time of writing the only purpose
foreseen for two-sided redirection is taping. With teed connections, in this context, the functionality
remains connected so that user-input intended for recording is also passed directly to it for immediate
execution, the result of which is passed back to the interface, while on replay the user can interrupt with a
“live action” at any time, and again functionality output is allowed through to the interface. It would seem
not only that the choice between teed and unteed on recording is independent of that on replay, but that
even within these, teed might be chosen for interface-controller and unteed for controller-functionality, or
vice versa (Figure 3).

It perhaps should be reiterated that the difference between simulation at the higher and at the lower levels
is that at the lower level, the controller always “looks like™ the user-interface to the functionality and vice
versa, while at the higher level one of the functions of redirection is to use the controller to replace either
interface or functionality. From this point on, the word “simulation” should be taken to mean the higher
level, component replacement, function of redirection.

EUUG Autumn 89 — Vienna, 18-22 September 237

A System for the Redirection of Graphical User-Interaction

controller

application
functionality

user-interface

Figure 3: Taping of user-interface, connections teed

One other factor regarding the topology of these components has to be considered. Where simulation of a
component is taking place, in principle that component need not exist. In other words, the application
(controllee) may be constructed without either a user-interface or a functionality component, using another
program (controller), through the redirection system, instead.

It should be noted that there is a significant difference between taping on one hand and
simulation/duplication on the other, which may or may not occur also with other two-sided uses of
redirection. Simulation and duplication are relatively monolithic, or single state, arrangements, perhaps in
many cases persisting throughout the life of an instance of the application. Taping, however, consists of a
number of different states: recording and replaying, and a state in which neither of these is occurring
(“normal” operation); there is also a number of ancillary functions.

Automated testing of graphics-interfaced applications has been mentioned as a possible use for command
redirection. The fact that redirection is to occur at a high level, however, restricts the sort of testing which
may be done this way. A testing module would take the form of a controller, and would be connected to
the component to be tested, by simulating or duplicating the other controllee component. So only one of
the components could be tested at a time. Where the user-interface was to be tested, as interactive
programs are normally user-input-driven, a user would still be required, and in general, little if any benefit
over present testing methods would occur. On the other hand, automated testing of the functionality would
seem to be quite practical, and it might be made easier to do certain sorts of user-interface testing, by using
simulation of the functionality to enable an application to be more rapidly prototyped.

The various permutations described here — simulation with or without the presence of the simulated
component, duplication, and taping (or other two-sided uses of redirection) with the teed versus unteed
option on each connection, of each of the user-interface and the underlying application functionality — are
conceived as different “types” of redirection. In order to avoid undue complexity, it was decided that only
one type of redirection should be possible between any two programs at one time. Simulation in the
absence of the simulated component was not considered worth supporting, for similar reasons, especially
the fact that its possible uses would seem to be more easily achievable in other ways. Further restrictions
on types of redirection are built into the present implementation of the system, but may not exist in future
versions; see next section.

3. The Command Redirection System

This section consists of a general description of the Command Redirection System (crs) followed by more
detailed descriptions of various aspects of it.

3.1. General Description

Crs consists of a library of routines through which all traffic between the user-interface and the underlying
functionality of an application is routed.

A certain crs routine is called wherever such traffic is required. Other crs routines are for initialisation,
switching redirection on/off, handling crs input and for a number of functions concerning macros.

When designing a program which may utilise redirection, all controllee routines which deal with the
highest level of user 1/O have to be identified. This means those routines belonging to the functionality
which are called by routines belonging to the interface, and vice versa. The application must be designed
so that, at this level, every routine belongs wholly to one component or the other. See “Defining User
Input/Output”. We term the highest level routines which are called from outwith their own component,

EUUG Autumn'89 — Vienna, 18-22 September

A System for the Redirection of Graphical User-Interaction

“target” routines.

When a target routine is to be called, the application calls a certain crs routine instead. In some
circumstances, crs will then call a routine corresponding to the target in the other program, as well as or
instead of the target itself.

For simulation and duplication, the arrangements at this level for controller and controllee are
approximately symmetrical. A target call at the controllee will result in the corresponding controller
routine being called, and vice versa. Differences are that targets are defined as such relative to controllee
user I/O (that of the controller being irrelevant), and that the controller does not distinguish between
simulation and duplication.

For taping, the situation is somewhat different: if recording has been switched on, a target call at the
controllee results in the appropriate information being stored at the controller. On replay, the functionality
target is called as if from the user-interface (or perhaps vice versa, for some other use of two-sided
redirection — see “Inter-Component Relationship™).

Given the restriction that only one type of redirection is allowed between any two programs at one time, to
further avoid undue complexity controllers are specific to just one redirection type, in this implementation
at least. (For reasons which will become clear below, they are also specific to just one controllee.)

3.2. Target Routines

As the targets have to be called by crs, there are inevitably restrictions on their format. In fact, they must
be of type void and take just one argument, of type caddr_t. The actual type required is simply cast
to/from caddr_t, unless it is too large to fit within it, in which case a pointer is used. In this way any
type can be passed, if necessary using a structure where more than one argument is required.

As target arguments have to be passed between different processes, they have to be serialised and
deserialised. This is done using “conversion” routines.

3.3. Conversion Routines

Sun’s xdr routines [Sun86a] (now available also on many other architectures) are used for de/serialisation
of the target arguments. (There is a standard method for handling user-defined types.) The programmer
provides a conversion routine which is just a wrapper for the appropriate xdr routine. Each xdr routine
does two way conversion, therefore so does each conversion routine. The conversion routines are of return
type int, and take two arguments: an xdr stream pointer and a caddr_t pointer. Xdr takes care of [/O
as well as de/serialisation, and crs takes care of xdr initialisation.

3.4. Initialisation

Crs needs to know about the target and conversion routines. At initialisation, therefore, a certain crs
routine is called for each target, and given pointers to the target routine and the corresponding conversion
routine. It returns a target identifier, for use with the crs target calling routine.

Target initialisation is always required, whether redirection of any type is actually to occur or not. Further
crs initialisation is mainly concerned with making contact with the controller, and is done automatically at
the switching on of simulation or duplication. Initialisation for taping is distinct from the switching on of
recording or replay, for abvious reasons.

The foregoing describes initialisation at the controllee; there are minor differences at the controller which
need not be gone into here.

3.5. Source Code Considerations

Certain aspects of the source code are very important for crs: some parts should be shared between
controller and controllee, and this requires a specific modularisation arrangement.

3.5.1. Controller versus Controllee

In order to guarantee correct de/serialisation of target arguments, conversion routines should be shared by
controller and controllee. In the case of simulation/duplication, the conversion routines for both user-
interface targets and functionality targets are required at the controller, though each set will be used for
one-way conversion only. For taping, the controller requires only the routines for the other component —
the one whose output is not being recorded/replayed.

EUUG Autumn 89 — Vienna, 18-22 September

A System for the Redirection of Graphical User-Interaction

So that crs can match the corresponding controller and controllee targets, target initialisation code should
also be shared between the two programs. The redirection type-specific requirements for targets are as
those for conversion routines (previous paragraph). However, for simulation/duplication the controller
targets for the component not being simulated will never actually be called, being required only for
initialisation purposes, and so may be null function pointers. Similarly, in the case of taping, the controller
targets may also be null function pointers.

Where code is shared, recompilation is only necessary where function pointer declarations are substituted
for function declarations, in order to provide null function pointers for target initialisation at the controller.

3.5.2. Modularisation

In order to allow the appropriate controller/controllee sharing to take place, source code modularisation
must follow a certain scheme: separate modules should be used for the targets, conversion routines, and
target initialisation code for each of the user-interface and functionality, and xdr routines for user-defined
types. Separate header files are also, of course, required.

For applications of moderate size, the user-interface and functionality will usually occupy one module
each, but where this is not the case, the targets should be confined to one module per component with lower
level routines relegated to other modules. There will usually be some sharing of data structures, and
perhaps even routines (though not at the level of the targets), between user-interface and functionality, but
this must be kept to a minimum. See “Defining User Input/Output”.

It will be seen that most if not all of the restrictions imposed by crs conform to what is generally recognised
as good practice.

3.6. Defining User Input/Output

Probably the main difficulty in designing an application to use crs is the definition of user /0. In practice,
this means the design of the targets. The restriction on target routine format — that they be of type void
and take just one argument — is not found to be a major problem in practice, but the questions as to
precisely what each target should do, and what information the argument should carry, require very careful
consideration.

One of the more important factors in this area is that of user feedback. When user-interface and
functionality are separated, each element of feedback must be explicitly allocated to one or the other. As
this is being considered, it must be borne in mind that feedback which is allocated to the user-interface will
not occur when it is being duplicated or replayed and the controller calls a functionality target (i.e. the
functionality “thinks” a user-action has taken place).

As an example of another typical problem, a certain application may send some text, which has been
selectedt, to another application. The user-actions may be recorded as a macro and replayed. So the
question arises as to whether, on replay, the text which was selected when the macro was recorded should
be sent, or that which is selected at the time of replay. The answer depends on the particular requirements
of the application concerned. If the text selected at the time of replay is to be used, communication
between controllee components at a lower level than that of complete user actions, will be required. So
when the functionality target which corresponds to “send text” is called, it calls an interface routine to
discover what text is currently selected. The questions of whether such lower level routines should be
targets, and in general terms whether non-target communications between controllee components should be
allowed, require further work. Of course the use of such routines requires that the component concerned —
in this case the interface — must always be in a valid state, which has implications for the choice between
teed and unteed connections (“Inter-Component Relationship™).

It currently seems that little or no advice, beyond the sort of guidelines contained in this section, can be
given on the definition of user I/O. It can only be suggested that the potential user 1/0 of the application
should be very carefully analysed (which should actually happen in any case), both in normal use and
under any type of redirection which may occur, and the targets designed accordingly. This issue is
probably more urgently in need of further work than any other in this area. However, the benefits of
redirection will probably never be attainable without some significant effort.

t Most interactive graphics systems allow the “selection” of text, and sometimes other graphical objects, using the
mouse. Selected objects are usually either displayed in reverse video, or highlighted in some other way. There can usuaily
be only one selection at a time.

240 EUUG Autumn 89 - Vienna, 18-22 September

A System for the Redirection of Graphical User-Interaction

3.7. Types of Redirection

The types of redirection provided within the current implementation of crs are simulation and duplication
of both user-interface and application functionality, and taping (with both connections teed for both
recording and replay; see “Inter-Component Relationship” and Figure 3). Only one type may be in
operation at any time.

The current implementation is a prototype only, and providing further redirection types is a high priority.
The prevention of user-actions intended for recording from reaching the functionality is obviously a
desirable option. It is unlikely that all possible uses of redirection have been foreseen, and so crs has been
designed to make the addition of further types relatively easy. It would have been possibie to avoid this
problem by giving the application programmer access to crs at a lower level, thus allowing her to program
her own redirection types, but it was decided that this could well create more problems than it would solve.

4. Applications

This section contains descriptions of two applications which have been implemented using crs. In both
cases, an existing application was re-written to use crs. The final subsection discusses experience obtained
through working with the applications.

4.1. Pconf
Pconf is described in a previous paper [Fai89b] and only a brief reiteration of that description is given here.

To appreciate pconf, a prior understanding of vconf [Fai89a] is required. Vconf is a visual conferencing
utility. If a number of users at graphical workstations on a local network are running it, and one of them
types a message into it, that message will be appended to a display of previous messages by all the
instances of vconf. Also displayed at each instance is a list of all the correspondents to which that instance
is connected. The user may remove any correspondent from the list, thus preventing any further
communications with it. This correspondent is then automatically removed from the others list.

Pconf itself is a “pseudo-user” of vconf. Vconf was rewritten to use crs, and to switch on user-interface
duplication if given a certain command-line flag. A controller was then implemented which not only
duplicates the user-interface, but also the user, as it has no user-interface of its own. Pconf is the
controller. As pconf is “wired in parallel with” the actual user-interface, it receives exactly the same
information as the user. Like the user, it watches for anything to which it would like to react, then does so.
Unlike the user, however, pconf does not have to operate through the user-interface: instead it calls the
functionality targets directly. A “conversational simulator” along the lines of ELIZA [Wei66a] was
implemented, and built into pconf. So pconf monitors vconf traffic for certain key words and phrases, and
responds by sending appropriate messages in reply. Pconfs responses are not only textual, however: they
can, in effect, substitute for mouse actions, thus demonstrating the value of high level redirection. For
instance, if pconf is offended by a message it receives, it can remove the offender from its correspondent
list, to do which would require the user to move the mouse pointer over the appropriate list entry and click
the righthand mouse button.

4.2. Dprog

Dprog [Fai89a] was originally designed to demonstrate the system for data communication mentioned
above (“Justification”), and so is usually described as consisting of a “thin-layer” graphical user-interface
to that system. Here, however, the term “user-interface” is being used somewhat more loosely than for the
purposes of crs, and so the line between the controllee components does not quite correspond with the
programmers interface to the system.

The reason for rewriting dprog to use crs was to demonstrate taping. It is quite crude, for instance not
allowing more than one macro to exist at any time. (In fact, at the time of writing crs does not provide this
facility.) However, it is quite capable of demonstrating the principles. A macro can be recorded or played
back by selecting the corresponding item on a menu (a “stop recording” item is also required). The use of
this facility quite neatly shows both the possibilities and the potential problems of taping. Dprog allows a
connection to be made with other instances of itself (and certain other programs) across a network, and
messages subsequently to be sent across that connection. A macro can be recorded which attempts to make
the connection and then sends a message on it. Unfortunately, not only is it possible for the connection
attempt to fail, but even where it succeeds it may take some time to do so. In practice, for one reason or
the other, the message sending attempt usually fails.

EUUG Autumn ‘89 — Vienna, 18-22 September

A System for the Redirection of Graphical User-Interaction

This problem brings out a quite fundamental difficulty: the incompatibility between interactive systems and
recordings. Normally, the user would await confirmation of the connection before any message was sent.

Another problem revealed by dprog was the one described above regarding the sending of selected text
(“Defining User Input/Output™).

4.3. Experience

The problems demonstrated by dprog are genuine and important ones. On the other hand, pconf showed
how powerful crs can be: once user IO had been redefined with duplication in mind, design and
implementation of the strictly crs-related aspects of vconf and pconf were quite trivial. The principles of
crs are at least to some extent vindicated by the fact that, when connected to pconf, vconf is perfectly
happy to “serve two masters” — pconf and the normal user-interface, with none of the three components
experiencing any confusion due to the unconventional arrangement. Similar conclusions may be drawn
from the fact that, presumably due to the well defined high level user I/0, and good modularisation of code,
a non-graphics-interfaced version of vconf rewritten from the crs version, took only 2 — 3 hours to
implement. Further work on crs is certainly required, but there seem very good reasons to believe that it
will be well rewarded.

5. Summary

Previous work {[Fai89a, Fai89b] showed that, in order to facilitate the interconnection of graphics-
interfaced applications, two separate systems were required. One of these would deal with data
communication, and the other with the redirection of user input/output (1/0). This paper concerns the latter.

In order to overcome the problem of the variety of graphical 1/0, redirection must take place at a high level.
A system has been designed, and a prototype implemented, which allows the redirection of traffic between
the user-interface and the underlying functionality of an application.

The Command Redirection System (crs) consists of a library of routines and associated data structures. At
initialisation it is given pointers to any routine belonging to the user-interface which might be called from
the functionality and vice versa. It also requires routines which will convert the arguments of these
routines so that they may be passed between different processes. Subsequently, where a routine requires to
be called across the user-interface/functionality divide, a crs routine is called instead. Normally, this will
result in the routine actually required being called, but where redirection is switched on, communication
will occur with the other program. Depending on the type of redirection occurring, either a routine which
corresponds to the one required will be called at the other program, or the appropriate information will be
recorded for replay at a later time, which in turn will result in the originally required routine being called.

Two applications have been rewritten to use crs, which demonstrate duplication of the user-interface (two
interfaces connected in parallel to the same application), and extensibility of it via the recording and replay
of command macros.

Probably the major difficulty in using crs is in defining user I/O at the level required so that it will remain
valid where redirection is occurring. Work will continue on ways of making this easier for the application
programmer. However, programmer effort should be well rewarded especially as this sort of definition is
good practice in any case.

6. Acknowledgements

The work described here is supported by SERC Research Grant GR/D/80612. P.J. Brown must take much
of the credit for the original concept, and he and other members of the Software Tools Group, Computing
Laboratory, University of Kent at Canterbury, in particular David Barnes, have subsequently made
substantial contributions.

References

[ATTa] AT&T, “tee (1),” in UNIX Users Manual.

[CocB8a] G. Cockton, Interaction Ergonomics, Control and Separation: Open, Scottish HCI Centre,
Heriot-Watt University, Chambers Street, Edinburgh, EH1 1HX, February 1988.

[Fai89a] ~ Robin Faichney, “Dp: a System for Inter-Program Communication,” in Proceedings of the
EUUG Spring 1989 Conference , pp. 207-215, Brussels, April 1989.

EUUG Autumn'89 — Vienna, 18-22 September

A System for the Redirection of Graphical User-Interaction

[Fai89b] Robin Faichney, “Interconnection in a Graphical Environment,” in Proceedings of the
UKUUG Summer Technical Meeting, Glasgow, June 1989.

[Sun86a] Sun Microsystems Inc., “External Data Representation Protocol Specification,” in Nerworking
on the Sun Workstation, Sun Microsystems Inc,. 2550 Garcia Avenue, Mountain View,
California, 17 February 1986.

[Wei66a] J. Weizenbaum, “ELIZA — A Computer Program for the Study of Natural Language
Communication Between Man and Machine,” Communications of the ACM, vol. 9, pp. 36-45,
1966.

EUUG Autumn ‘89 — Vienna, 18-22 September

244 EUUG Autumn 89 — Vienna, 18-22 September

Performance Analysis for Shared Oracle Database in UNIX Environment

Performance Analysis for Shared Oracle Database in UNIX
Environment

C. Boccalini

I & O - Informatica e Organizzazione S.r.L.
Genova
Italy

J. Marino, M. Paolucci

Department of Communications, Computer and Systems Sciences (DIST),
Via Opera Pia 1 A
16145 Genova
Italy
paolucci@dist.unige.it

ABSTRACT

The methodology used in order to execute a performance evaluation in Unix
environment, in a case of concurrent access to a common Oracle database, is presented.
The reason of such an evaluation, as well as the model adopted to structure the
benchmarks, are discussed. Some results obtained are presented, pointing out their
meaning in relation to the different hardware configurations tested and the model itself.

1. Introduction

In this paper the peculiar aspects of a series of benchmarks executed in order to compare the behaviour of
different computers with a Unix operating system in a particular case of data sharing, is presented.

The reason for these tests was a tender made by Regione Liguria (Italy) to buy two types of computer
which should have been installed in two Sanitary Local Units (USL) of the region.

The requirements for the firms which would take part in the tender were to provide a computer with a
software environment able to support Oracle database applications, as well as an hardware configuration
which should be suitable to one specific context of use and should provide good performance.

First we outline the circumstances which led to the development of the benchmarks.

Some years ago, the Regione Liguria, under the coordination of the Department of Communications,
Computer and Systems Sciences (DIST) of the University of Genoa, started a project for the automation of
the booking procedures for sanitary services. The task of analysing the problem, formalising the software
specifications and writing the programmes which implement them, was entrusted to a software firm, the I &
O (Informatica e Organizzazione, Genoa, Italy). The software built, named P.A.S.S. (Prenotazione
Automatizzata Servizi Sanitary, Automatic Sanitary Services Booking), is based on an Oracle database and
has characteristics of high portability. In 1988, the phases of software refinement and experimentation,
executed through the observation of its real use inside an USL booking center, finished and the tender was
announced.

In each USL designed for using the P.A.S.S., a booking center exists; this is composed of several booking-
points which can accept the requests for all the medical services provided by the Unit itself, can appoint a
day on the agenda, for example, of a doctor or of a laboratory and can register the payment of the fees. In
order to avoid long queues of people at the booking-points, the software developed is able to exploit the
capabilities of the Oracle RDBMS, that is, it can manage a shared database containing all the information
about different medical divisions which provide the services; in other words, the problems of the
organization of the booking procedures have been studied in order to avoid deadlock situations or
unacceptable transaction time. The hardware configuration needed must support a minimum load of ten
terminals (corresponding to ten booking-points), must operate with a multi-tasking operating systems and,
finally, must be able to process a queue of contemporary requests avoiding long user waiting time. The

EUUG Autumn 89 — Vienna, 18-22 September

Performance Analysis for Shared Oracle Database in UNIX Environment

objective was to find a trade-off among computational power, dimension of the hardware configuration,
cost of the hardware and software. The firms involved in the tender, offered their best solution for the
problem discussed above. The aim of the tests was to provide one index of the quality of the machines,
under the same workload configuration, from the point of view of the end user, that is, measuring the
average waiting time and estimating how far each computer was from its saturation point.

Most of the firms involved presented a machine with an operating system belonging to the Unix family.
Unfortunately the results of the benchmarks can not be explicitly presented here, since they are the
property of the firms. In a following paragraph, however, some results will be shown, but no reference to
any firm will be made.

In the continuation of the paper the method used to design the tests and to analyse the results will be
presented. Furthermore, in the final part some relative measures, which are particularly meaningful
because of the different configuration involved, will be discussed.

2. The methodology of the tests

2.1. The mathematical model

The general approach used for the benchmarks was to observe the behaviour of the different machines
from the point of view of an end user (an operator of the booking center or a person who wants to book a
service). For this reason all the computers with their different hardware configuration and Unix operating
system, can be thought as one processing module which supports an external workload of tasks which
comes from the ten terminals.

Processing Module

[Processor Unit]

Operating Unit

Disk unit T

Figure 1: A model for the systems

The internal structure of this module is not strictly relevant for the purpose of the tests, but, in order to
analyse some meaningful results, three other parts can be specified: a processor unit, an operational unit
and a disk unit. The comprehensive structure of this simple model is shown in Figure 1. Some theoretical
considerations which came from Queueing Theory [Kle76a] and Operating Systems Theory [Bri73a] , have
to be recalled to describe the behaviour of the model.

The system analysed is an interactive system in which a finite number of users, in particular ten users, can
formulate their requests through one of ten terminals. Each user request enters the processing module and
proceeds to receive service according to the scheduling algorithm used by the operating unit for the time-
shared processor unit.

During this time, the user remains in a waiting state. When the request is complete, the response is fed back
to the terminal and the user can utilise it before making his next request. The time spent by one user in
generating the new request is called “thinking-time”. Periods of thinking and processing alternate for each
terminal in the system. It is generally assumed that the thinking-time is exponentially distributed with a
mean of 1/A sec., where A is the rate of request per second generated by one user; furthermore, another
important measure is the mean service-time, denoted by 1/u where L represents the rate of request served
per second by the processor.

EUUG Autumn ‘89 - Vienna, 18-22 September

Performance Analysis for Shared Oracle Database in UNIX Environment

Set p, the probability of the steady state in which O terminal are waiting for a response, the probability that
the processor is busy is 1-p,. From this fact, the average output rate of response results to be p(1-pg); on
the other hand, the input rate of request to the system is

1/A
1/A+R

where M represents the number of terminals and R the mean response time, that is the interval of time
during which a request remains in the processing module.

MA

Then, invoking the assumption of a steady state where the average input and output rates are equal, the
mean response time R can be derived as

R=M o /A (1)
I-p,
This model shows how the response time varies as a function of the number of terminals, M. It presents a
transaction zone in which the function passes from a very slower rising to a linear slope. In the first case,
this is due to the small number of users that do not keep busy the system because of their rather long
thinking-time, and in the second case, the increased number of users causes the p, to be close to zero, that
is the load of activities does not leave the processing module empty.

For a better interpretation of the results of the tests it is interesting to study the case in which the system
reaches a saturation state. From equation (1) it can be observed that the saturation point the system does
not becomes instable since its mean response time does not grow to infinity. Anyway, a significant
measure of the system saturation was proposed by Kleinrock [Kle76a] as the cycle time, that is the sum of
the mean thinking-time plus the mean required service-time, divided by the mean service-time. This is
shown in the following equation, where M* represents the maximum number of terminals that could be
processed without any mutual interference.

A+I/0 p+A v
1/p A A @)
For a number of terminals beyond M* , each user request could delay all the other requests by a time equal
to its entire processing time (i.e. 1/t sec.). When this happens, the probability that the system is busy

approaches | and the mean response time R given by (1) assumes a linear asymptotic slope.

*

In the last paragraph we will show how the saturation number of terminals provides a very useful index;
indeed, this can point out how far the limit for the workload is from the condition in which the tests have
been performed.

2.2. The model of the workload

During the design of a test, a particular attention must be given to the conditions in which the different
computers have to operate. What is really important in the case examined is to verify how the machines
respond to a workload of requests as those that could be made during peak hours at the booking-points. As
the measurements that have been collected should constitute a relevant index of the behaviour of the
machines, it was adopted the solution of reproducing as well as possible the real workload that the systems
should have to support. So as to obtain such a situation, the part of the software P.A.S.S. which consists of
the Oracle applications dedicated to the booking-point job, was installed on the computers before the
execution of the tests, together with a portion of a database used in the USL where the software was
experimented by a real use. Then, it was asked ten booking-point operators, not particularly skilled in the
use of the programmes, to take part in the tests. It was taught them how to make a booking for medical
exams (these are cases more demanding than others) and, during the three sections of test, it was asked
them to repeatedly execute that bookings.

This strategy should provide a good simulation of the real input and output flow of the system. Instead of
generating a workload by means of a batch procedure, it was preferred to keep busy the different systems
with a statistically equal workload and that would provide more meaningful indication of the capability of
the systems. Indeed, the cost of the response time which the operator has to wait, could be directly related
with the quality of the service that the booking center can offer to the people. Hence, it was not the case of
stressing the tests in order to measure CPU time or response time with an high precision, since the context
of use is real-time, but with the same order of the human being reaction time, that is, of seconds.
Furthermore, the performance measurements represent only one index of the decisional problem, so the
respect of a hreshold of acceptability and the distance from a situation of saturation were the two principal
information collected.

EUUG Autumn'89 - Vienna, 18-22 September

Performance Analysis for Shared Oracle Database in UNIX Environment

Another important consideration involves the way in which the Oracle database was tuned upon the the
different machines. There are three levels of tuning operation:

the nature of the physical installation of the database files on the disks of the systems;

the system kernel parameters, as the maximum size of a single shared memory segment or the
maximum memory per user process;

the Oracle initialising parameters, for example, those that determine the dimension of the system
global area (SGA);

The approach adopted was to ask firms to study their better solution both for the physical installation and
for the Unix tuning, while, with the limits imposed by the different hardware configurations, Oracle was
tuned with the same values for the parameters for all the machines.

3. The structure of the tests

Defined the conditions of “*background” workload that all the machines had to support, the tests performed
were structured during three sections. In each of these, a series of measures was collected in order to
compute average reliable values.

The characteristics of three sections of the benchmarks are described in the following points:

a)

b)

248

in the first section, at least eight measures of the time of cycle were collected; in this case, cycle
means a complete execution of a booking made by one booking-point operator. At the beginning of
the benchmark, an operator whose computer skillness seemed to be in the average, was chosen.
While the other nine operators were loading the system, the time used by the reference operator was
measured. In particular, the time needed to prepare the data for one booking and the time needed by
the system to complete a transaction (to commit). Therefore, the cycle observed consisted of the
entire execution of the Oracle application used to book. The time of a cycle simulated, in such a way
should represent the real time needed by a typical operator to book exactly in the same conditions of
a real booking-center. In this way the values measured for all the machines could be directly
compared with an absolute threshold of acceptability. For this first test, all the operators involved,
both that reference one and the others which keep busy the system, had to book using disjoined
resources. Oracle RDBMS resolves the cases of concurrent access to a shared resource, reserving the
use of such data only to one of the requiring tasks at a time. This fact guarantees to avoid situations
of internal deadlock, but penalises terminal users. Particular expedients can be used to reduce the
number of such a cases to the bare necessary, for example, bounding the critical area to the single
record and not to an entire table. For the characteristics of the application used during the
benchmark, the critical area which could be cause of queueing of user requests, is identified by the
records of the daily agenda of the laboratory which exams were booked. Hence, it was imposed that
all the operators, included that one of reference, did not collide on the same record, trying, for
example, to book for the same day. There are two reasons for such a care. The first is that, as it was
observed during the software experimentation, the cases of collision are in the reality rather
unfrequent; during the benchmarks, on the contrary, because of the simplified and repeated booking
operations, there was an high probability of such collisions. The second reason is to avoid that the
Oracle applications made the user wait, with a warning message, that another user unlock a record;
in such cases the first user does have the possibility to proceed, but he must give up to update the
locked record. As the working conditions should be real as well as possible, and the workload
should be uniform during all the benchmarks, a disjoined resource approach seemed justified.

in the second section, at least six measures of time of commit were collected. This is the case in
which all the operators forced the system to complete a transaction exactly at the same time.
Unlikely the section a), only one type of measure was taken here; indeed, it was asked the ten
operators to input the data of one booking and to wait for a conventional signal that would be given
when all the operators were ready to commit the transaction. In this way, the conditions in which the
system had to operate were forced to be the worst, that is, all the terminals requested the system to
process their data and to write them in the physical memory. This tests, as it will been shown in the
next paragraph, are interesting especially in the case of different hardware configurations, that is,
with different number of disks and with a different location of the database files on the disks. During
this tests, two instants were timed: the first and the last completion among the ten transactions;

EUUG Autumn ‘89 - Vienna, 18-22 September

Performance Analysis for Shared Oracle Database in UNIX Environment

c) the third and last section of the benchmarks was formed by two executions of a batch SQL routine.
This routine contained a series of six sequences of select from the same tables used by the operators,
two requests for update of a table, one cycle composed by a creation, insertion and deletion of data,
and, finally, dropping of a new table. The operations were all studied so as to take up the systems; for
example, a type of select request needed all the records of a large table to be counted. During this
section no particular control was used to avoid collision and the consequent waiting state of some
operators caused by the batch routine. The processing time of the single operations was measured.

4. The analysis of the results

How it was quoted in the preceding paragraph, it is not possible to show in this paper the results of the tests
making a comparison among the different computers. The results shown here are some of the real values
computed, but they are linked not to the real machines or firms but to a set of fictitious machines M |, M,
and so on. In spite of this, some interesting considerations about the meaning of these values connected to
the model used through the tests are discussed.

The Tables 1 and 2 summarise some average values computed after the tests for four machines. The first
table refers to a first offer for an USL of average dimension, while the second table, computed with the
same conditions of test, presents values lower in the average since the supplying firms tried to satisfy the
needs of an USL of larger dimension.

Machine Cycle Commit Batch
before | total diff last | first | 1¥select | update | insert
M, 43,77 | 61.88 | 18.11 3.84 5.2 6.37 39.64 5.06
M, 19.21 | 30.78 | 11.57 | 3.15 | 4.77 14.41 50.10 19.83
M, 20.12 30.5 10.37 | 3.28 | 4.36 11.87 19.3 7.28
M, 25 | 42.54 | 17.54 | 3.76 4 7.76 27.82 6.95

Table 1: Mean values for the first offer

Machine Cycle Commit Batch
before | total diff | last | first | ["select | update | insert
M, 29.33 | 33.44 411 | 269 | 3.92 292 51.62 3.35
M, 20.12 | 30.05 | 1037 | 3.28 | 4.36 11.87 19.3 7.28
M, 26.25 | 34.25 8 | 2.16 | 2.11 13.74 27.64 10.40
M 34 39 51 246 3 7.52 30.61 5.65

Table 2: Mean values for the second offer

LRIEYY

Each table is composed by three sets of columns, labeled as “Cycle”, “Commit” and “Batch”, that are
linked to the three sections of the benchmarks performed. The set “Cycle” shows the data collected from
the first type of test; the column “before” is computed as a mean of the time employed to input the data of a
booking (in the reality, asking people for it or input it from a badge card and reading it from a prescription,
during the benchmark section reading it from a text prepared before), measured during at least eight
executions of the booking Oracle application, made by the operator taken as reference. The column “total”
reports the total time of completion of a booking, that is the column “before” plus the time needed to
commit the transaction, while the column “diff” shows exactly the mean time of commit for the first type of
test. The set “Commit” presents two columns which report respectively the mean last commit time and the
mean first commit time measured during the second section of test. It is to be noted that the column “last”
is computed as mean of the time of the tests divided by the number of terminals involved. Finally, the last
set of columns, labeled with “Batch”, refers to the time of three batch SQL commands used during the third
section. These commands were found more meaningful than the others in order to discriminate among the
machines. They are a query time, “1* select”, and two time of “update” and “insert” in which a physical
writing on the mass memory device is required. All the values presented in the tables are in seconds.

EUUG Autumn ‘89 — Vienna, 18-22 September 249

Performance Analysis for Shared Oracle Database in UNIX Environment

The first consideration that can be pointed out, derives from the computation of the number of saturation
terminals for the four machines. Using the equation (2) for this compute, the first assumption made was the
identification of a parametric value for the thinking-time; the values measured which better approach that
time are those reported in the column “before”. These values do not represent exactly what is generally
indicated as thinking-time in the sense of the theory presented in the second paragraph; indeed, each
“before” time is made by a set of thinking-time and service-time, that is, typing data, for example the
registration number of a person, and retrieving other information from the database, as the address of such
a person. Since the operation that more charges the system is a commitment of a transaction, the “before”
column represents the average time needed to be ready for committing, that is, the reverse of the average
rate of commitment requests. However, the values given for the thinking-time are not taken from this
column, but a fixed length of time (precisely, 40 seconds) is used, since it is a better approximation of the
behaviour of an operator in the real case of bookings, as it was verified during the period of
experimentation. The values for the service-time required to compute the number of saturation terminals is
taken from the column “last” of the set “Commit”. Indeed, this measure represents the time in which all the
requests of commit, each made from one terminal at the same instant, are served, divided by the number of
terminals (requests). This situation is the worst case possible, because all the operators require to the
system to execute a cycle of writing on the physical memory; for this reason, the values in the column
“last™ are considered a good approximation of the service-time.

The results obtained with this computations are reported in the Table 3, where the two columns are relative
to the two configuration offered by the supplying firms. It can be noted from this table that the conditions in
which the benchmarks were made (ten terminals) are beyond the saturation threshold computed.

Saturation Terminals
Machine | 1%offer | 2™ offer
114 15.8
13.6 =
13.1 13.1
11.6 19.5

= 17.8

Table 3: The number of saturation terminals

For sake of precision, to make repeatedly the same booking, as in the case of the benchmarks, does not
represent exactly a typical workload for a system; Oracle RDBMS, in fact, is able to manage requests about
the same data (or area of data) better than a set of random-distributed requests. This fact is another reason
to use a parameter value for thinking time which is a probably more real one, but this problem did not
worry us since the same conditions of tests were forced on all the systems.

The second consideration that could be made is relative to the different configurations tested. The
behaviour of an Oracle application or command derives from the amount of processor time and physical
memory accesses required. Oracle uses a two-steps strategy to commit transactions in order to maintain
consistence of data; each insertion, deletion or update is written on a “before image” database located on
the physical memory, and then, if and only if the total transaction succeeds, the new data are copied on the
real database. This characteristic behaviour must be considered in order to explain the different mean
values computed for those machines, i.e. M| and M,, which in the two offers presented two different
configurations.

So far, the systems involved in the benchmarks were considered from an external point of views, that is,
the point of view of the end user. In order to understand in which way the transactions are processed in the
particular case of different configurations, it is necessary to consider a lower level, that is, that one of the
units contained inside the processing module of Figure 1. The machine M, in the first offer has a single-
processor unit, while in the second one has a two-processors unit. It is clear how the performances of this
machines could be changed. An higher processing power in the second case increased the capability of
serving tasks and, therefore, the mean waiting time in case of concurrent commit decreased of about 30
percent. The performances obtained form the machine M 4, on the other hand, have a more complex cause.
The difference for this machine in the two offers is the number of disks as well as the structure of the
Oracle files on such disks; these files, which correspond to the above-mentioned database (DB) and before
image (BI), are composed by contiguous physical blocks. In both the cases the firms were adviced to use
row-devices to install the DB and the BI on the disk(s) of their computers. This care should improve the
performance of Oracle RDBMS of 2 percent. Moreover, the machine M, presented in the two cases the

EUUG Autumn 89 — Vienna, 18-22 September

Performance Analysis for Shared Oracle Database in UNIX Environment

following configurations:

D disk A with the system and user directories, disk B with DB and BI;

2) disk A with the system and user directories, disk B with the DB, disk C with the BIL.
All the disks had the same characteristics, i.e. the same access speed.

Each time that an operator commits, Oracle forwards to the host system a request of writing the changed
data from the BI into the DB. The time needed to serve the request is due to the physical retrieval of the
data in the BI and to the following writing into the DB blocks. In the first case the system have to move the
heads of the disk B forward, from the BI physical blocks to the DB ones, and backward in the opposite
way, every time it have to copy a physical record. In the second case, the same operation is easier; indeed,
the heads of the disk B, as well as those of the disk C, have to move through physical sectors of disk that
are closer than the first case, since each disk contains only one database file composed by contiguous
physical blocks. The performance improvement observed for the second case is about 40 percent and it is
quite higher than the improvement due to the two-processors configuration of M ,; the values of the column
“last” of the Tables 1 and 2, in fact, refer to a case in which the main workload were composed by a lot of
commit requests.

5. Conclusions

In this paper the characteristics of the benchmarks made to select two computer configurations were
presented. The tender was made by the Regione Liguria (Italy) and the environment of use of the machines
was a booking-centers of two USL. The tests discussed here were designed to measure the performances
of different machines in a situation as closer as possible to the real context of use. For this reason, the
workload of the systems was simulated asking ten booking-point operators to execute their usual job using
a subset of the software P.A.S.S. (Automatic Sanitary Service Booking). In order to estimate the saturation
point of the machines, a mathematical model proposed by Kleinrock [1] was used; with this model the
expected upper bound for the number of terminals that each machines could support maintain the same
performances was computed.

Some considerations were made about the different results observed for two machines which had a
different configuration for the two offers. It was pointed out the way in which Oracle RDBMS requests the

host system to process a transaction and how the performance of this operation cold be improved not only
through an obvious increase of processing power, but especially with an suitable layout of the Oracle files
on the host disks.

References

[Bri73a] H. Brinch, Operating System Principles, Prentice Hall, New Jersey, 1973.

[Kle76a] L. Kleinrock, Queueing Systems, vol.2: Computer Applications, Wiley — Interscience, New
York, 1976.

EUUG Autumn 89 — Vienna, 18-22 September

252 EUUG Autumn 89 — Vienna, 18-22 September

A Transaction Monitor for SINIX

A Transaction Monitor for SINIX

Heike von Liitzau-Hohlbein

GBI
Gesellschaft Beratender
Informatiker mbH
Schieggstr. 9 D
D-8000 Miinchen 71

ABSTRACT

The use of transaction monitors is widespread in the mainframe arena. Information
retrieval-, booking-, warehouse control-, stock control- or personnel administration
systems only work efficiently due to their use. Taking into account that the commercial
EDP market is becoming more and more penetrated by UNIX systems, there is a rising
demand for DB/DC applications. It is in this context that transaction oriented program to
program communication gains importance in both homogeneous and heterogeneous
computer networks including those containing UNIX systems.

The problems of the implementation of transaction monitors in UNIX systems in general
and known implementations in particular are discussed.

As an example UTM (SINIX), Universal Transaction Monitor for SINIX (SINIX is the
SIEMENS derivative of UNIX), is presented in more detail. In particular its interfaces to
the user, interfaces to the system and how it is embedded in the SINIX system.

Connectivity in a heterogeneous environment is explained together with what types of
partner can be addressed and how. It will be shown how UTM(SINIX) can help to
integrate SINIX computers and their users into distributed DB/DC applications, how
mainframes can be accessed and their power used.

1. Introduction

With UNIX gaining a larger share of the market in commercial areas the demand for system support of
transaction oriented type of application processing is growing. The situation is more or less the same as we
had in the mainframe area 20 years ago.

With a growing number of end users using a fixed set of programs processing predetermined tasks and
using a specific database, the system support then available was not adequate. The application programrs
needed more than half their time to implement solutions to problems which should have been available in
such environments, taking into account the so called ACID attributes of a transaction where A stands for
atomicity, C for consistency, I for isolation and D for durability.

Atomicity means that all changes in relevant data that the transaction causes will either be made completely
or not at all.

Consistency means that the global database used by the application, which can be changed by several users
simultaneously, is always in a logically consistent state.

[solation means that changes to the global database made by a not yet terminated transaction only effect
this transaction but not others currently running. Only after successful completion are the changes visible to
other transactions.

Durability means that changes to the global database made by a transaction are not destroyable by
hardware or software failures. When such failures occur, recovery must be reliable and fast.

EUUG Autumn 89 — Vienna, 18-22 September

A Transaction Monitor for SINIX

If we look at UNIX systems in commercial areas which are really used in production environments, for
example information retrieval-, booking-, warehouse control-, stock control- or personnel administration
systems and if we are old enough to remember or well informed in computer history, we recognize the
same situation.

The demand for transaction monitors is there, but seems not to be satisfied as yet.

2. Charateristics of Transaction Monitors

Most operating systems support, what we call “Teilnehmerbetrieb”, but support for the so called
“Teilhaberbetrieb” is much less prevalent.

To characterize “Teilnehmerbetrieb™: Many users use the system in a such way that they have their own
programs and own database, they run their own applications, the application resources belong to the user
(Timesharing).

To characterize “Teilhaberbetrieb”: Many users use the same set of programs, gathered in applications,
which use one database; application resources like files and memory areas belong to the application, the
users share the resources (Resource sharing).

In an environment like this, a transaction monitor is a must.
Other characteristics of transaction monitor applications are:

e Typically the user at the terminal is not an EDP expert but an expert in his own field, he is interested
in doing his predetermined jobs with his well known formats, he is typically not interested in the
configuration of his application.

® A unique transaction is built out of changes to the monitor internal data and the data of the database
controlled by a DB system with ACID attributes.

e A task consists of one or more dialog steps which build one or more transactions, which have to be
terminated within seconds. If there is a failure in between, hardware or software, the user must be
able to resume at a predetermined point in the application.

e The set of programs which form the application are independent of the configuration and have an
interface to the monitor that is easy to learn and handle by the application programr or end user.

e The application must be available around the clock; in case of failure recovery times must be very
short.

3. Transaction Monitors in UNIX Systems

In the mainframe area it is remarkable that many of the more than 30000 instances of transaction monitor
applications are running under general purpose operating systems. There are only a few dedicated
operating systems, which achieve remarkable response times and throughput, whereas for the majority the
services of a general purpose operating system are sufficient.

What is missing in UNIX systems based on System V Release 2 and onwards?
Weak points of UNIX which are normally stated:

e afiling system which is optimized for a number of small files. This is to be considered together with
the DB system used.

e the use of a file system cache which does not give the user a guarantee of the ACID characteristics. In
the X/OPEN portability guide synchronous writing of blocks to disc is defined and is indeed
implemented in some systems, so that this point is no longer relevant.

e signals.

Something which is clearly missing for the implementation of a transaction monitor is a sort of event
managing facility, where from the application point of view all relevant events for the application can be
queued.

Another major issue is the lack of standards for a user interface. The situation is getting better with the
activities of standardisation groups like OSI/TP and especially X/OPEN, the XTP group together with the
activities in the DB area. At least there is clarification about the main components in this environment
which are a transaction manager and resource managers and their interaction with each other.

254 EUUG Autumn 89 — Vienna, 18-22 September

A Transaction Monitor for SINIX

With regard to user interfaces these are still in discussion.

Taking the UNIX system as a base there are a variety of possible solutions. One is the transaction monitor
built at Carnegie Mellon University called CAMELOT (the Carnegie Mellon Low Overhead Transaction
Facility). CAMELOT is based on MACH, which is functionally a UNIX kernel and is compatible to UNIX
4.3 BSD. CAMELOT is built on the client-server model, with both clients and servers implemented as
MACH tasks. In particular, long-lived data objects are contained within data server tasks, which execute
operations in response to remote procedure calls (RPCs). RPCs are issued by applications or other data
servers located at either local or remote nodes. A transaction may include calls to any number of servers.
Transactions may also be nested. The different tasks of the transaction monitor are separated. MACH
divides UNIX processes into two categories — namely tasks and threads. A task provides the environment
required for processing, which may contain several threads, which are independent and may run
simultaneously. Interprocess communication within the MACH operating system can be spread over
distributed systems and network.

4. UTM (SINIX): Universal Transaction Monitor for SINIX

4.1. Development

Another example is what SIEMENS did with its development of UTM (SINIX). Three years ago when
development started the situation was even worse because of the absence of standards. The only standard
application interface to transaction monitors was and is still the German DIN standard, DIN 66265
(KDCS), which is functionally comparable to IBM’s IMS/DC interface. In comparison to the most widely
used transaction monitor, IBM’s CICS, it has advantages with regard to recovery and restart. In the
SIEMENS mainframe area with its operating system BS2000 SIEMENS offers UTM (Universal
Transaction Monitor) which has been installed more than 3000 times. This monitor incorporates the KDCS
interface as a subset and is embedded in BS2000 with very limited interfaces to the operating system.

Architectually UTM consists of a set of homogeneous processes which contain the UTM system code and
the application programs. UTM takes care of messages coming from end users and addressing specific
application programs, starting these and then routing the answer back to the end user. UTM takes care of
logging, resetting in error cases, all what is necessary for transaction processing. UTM is generated and
configured offline and can be modified by means of administration commands dynamically.

This monitor was ported into the other main SIEMENS operating system SINIX. The advantages are
obvious:

e existing know-how, with both system developers and customers
e common user interfaces

e short development time

e future development on a common source base.

The only disadvantage is probably that the concept is not “brand new”, UTM is nearly ten years old, but as
stated before, no standards are available which could serve as guidelines for a new development.

UTM is written in SPL, a SIEMENS internal system programming language for BS2000, a subset of PL1
with extensions relevant to a systems programming environment. A tool was written to convert SPL
modules into C modules. After mapping the structure of BS2000 processes into the SINIX system and
simulation of the relevant BS2000 system interfaces UTM (SINIX) came into being.

4.2. Processes

The monitor and its architecture has been ported together with its homogeneous processes (= utmwork
processes), but to complete the environment other processes are needed to do dedicated work.

The application is started by an overall control process which creates the utmwork processes. These
processes have a common wait point with a common message queue. When one of them is awakened when
a message is to be processed, this message is received from the terminal via a so called dialog terminal
process which serves only one terminal. This process waits for the response at its specific wait point.

Printing service is done by a printer process serving on the one side UTM and on the other the SINIX spool
system.

EUUG Autumn'89 — Vienna, 18-22 September 255

A Transaction Monitor for SINIX

The remote partners are connected via a network process, serving on the one side UTM and on the other
the transport system.

Timer service, a known weak point of UNIX with only one outstanding timer request per process possible,
is implemented in a dedicated timer process, controlling all timers which UTM sets.

4.3. System Interfaces

For interprocess communication UTM uses semaphores for signalling and shared memory segments for
exchanging data between UTM work processes and external processes, shared memory segments are also
used between utmwork processes for applicationwide control.

In general UTM (SINIX) uses only recommended X/OPEN system calls.

UTM uses for connection of remote partners the ICMX transport interface, which is the ISO transport
interface in SINIX. When XTI is available this interface will also be supported.

For applications’ convenience there is a coupled format handling system. UTM has a standard interface to
format handling systems inherited from the original BS2000 environment.

The interface to database systems is also standard so that a connecting DB system has to support this
interface syntactically and semantically.

5. Transaction Monitors and Distributed Databases

Considering nowadays database systems in the UNIX environment the need for a system like UTM lies in
the area where in an environment with different DB systems a controlled distributed transaction processing
is required. Distributed DB systems are only capable of controlling transaction processing in a
homogeneous world.

In the terminology of the model of the X/OPEN XTP group UTM is a transaction manager usable for
controlling heterogeneous database systems.

6. Distributed Transaction Processing

In interconnecting heterogeneous DB/DC systems the possible partners of UTM (SINIX) are first of all
UTM (BS2000) applications with SIEMENS databases like UDS or SESAM and in the IBM world CICS
and IMS applications.

The protocol used for distributed transaction processing is SNA LU 6.1, which was selected because of its
existence and support some years ago and because of the need to connect to IBM’s transaction systems and
to avoid gateways. The protocol support is unchanged in UTM (SINIX).

In the BS2000/IBM environment Distributed UTM is now installed more than 200 times and it is hoped
that with the possibilities presented by distributed transaction processing the advantages discussed will
prove even more advantageous.

256 EUUG Autumn 89 — Vienna, 18-22 September

An Approach to Reliability in Distributed Programming

An Approach to Reliability in Distributed Programming

Giandomenico Spezzano and Domenico Talia

CRAI
Localita S. Stefano
87036 Rende (CS)

Italy
dot@crai.uucp

ABSTRACT

This paper proposes the use of a distributed concurrent language for the implementation
of fault-tolerant distributed systems. In our approach, distributed software systems are
composed of a set of cooperating processes, which communicate using the message
passing model, and are placed on the various hosts of the distributed architecture. The
interesting aspects of our approach are presented in terms of modularity, concurrency,
portability and reliability. This approach is bound to the use of a high-level concurrent
language in contrast to the traditional approaches for the implementation of the reliable
distributed systems.

1. Introduction

The transaction concept was born in the area of database management systems. Distributed computing
systems are an area in which the transaction concept was later utilized. In it a transaction is seen as basic
operation to implement fault-tolerant applications, namely as a programming construct to support
operations on persistent abstract data types. A system that supports transactions (defined as a sequence of
operations on shared data types) must manage concurrent accesses on them by guarantying the following
properties:

) atomicity: either all or none of transaction’s operations are executed;

° serializability: if several transactions execute concurrently, they affect the shared data as if they were
performed serially;

. permanence: if a transaction completes successfully, its results will never be lost.

A distributed computing system is a collection of nodes or sites connected by means of a communication
network without shared memory. In this environment, transactions are facilities for writing programs
which are to be executed on the network’s nodes, by guaranteeing:

Location transparency: the program operates on data as if they were all in the same node;

Concurrency transparency: the system executes many transactions concurrently, but each one of
them performs as if it was alone in execution;

Replication transparency: although the data are replicated in several network nodes the program uses
them as if there were a single copy;

Fault transparency: either all of the transaction’s operations are executed or none, if a failure has
occurred; after the transaction execution its results will survive hardware or software faults.

Presently several implementations of transaction systems exist in different areas: programming languages,
database management systems, and distributed operating systems. They differ in the required functionality,
the models used, the objects manipulated, the granularity of parallelism, and the degree of transparency for
the programmer. The most known of the distributed systems area are: Argus [Bai84a], TABS [Spe85a],
IS1S [Bir86a], and Locus [Mue83a)]. All of these systems support fault-tolerant distributed transactions on
shared data types.

EUUG Autumn 89 — Vienna, 18-22 September

An Approach to Reliability in Distributed Programming

To implement a transaction system in a distributed environment it is necessary to install at each node a
transaction support (transaction kernel). The transaction kernel is the basic component that provides
primitives for supporting the transactions and the shared data types (objects) on which they operate
[Spe83a]. The collection of transaction kernels located on each node of the distributed system that
cooperate for transaction support is named the distributed transaction kernel.

In this paper we neither propose a new transaction system, nor a new programming language which
provides transaction mechanisms. We propose the use of a concurrent language for the development of a
distributed transaction kernel, and in particular the language that we have implemented. Actuaily, it is our
opinion that the fundamental features of a transaction kernel like concurrency, reliability and efficiency can
be exploited in the best way if a high-level concurrent language is used for its implementation instead of
low-level languages with extensive use of system calls. This is the way in which the transaction systems
mentioned above are implemented.

In our approach the transaction kernel is composed of a set of processes in which each process implements
a single function of the system. They perform in a concurrent way, exploiting their inherent parallelism.

In the remainder of the paper, the principal characteristics of the concurrent language and the advantages
that its use offers with respect to the traditional approaches (section 2) are described. Section 3 describes
one example of cooperating processes that are written by our language, and constitute an elementary
transaction kernel.

2. The language based approach

This section is divided into two subsections, in the first the concurrent language utilized to discuss the
proposal will be described. The second subsection discusses some of the advantages that a concurrent
language can offer with respect to the traditional approaches. Although we utilize our language, it is
important to underline that in our opinion any concurrent language which explicitly expresses
communications, control of nondeterminism, and process structuring is suitable for a robust
implementation of a transaction kernel.

2.1. Language outline

The language used to discuss our proposal is the NERECO system language [Spe87a], it is a message-
passing language based on the CSP model {Hoa78a] and in particular on the ECSP language [Bai84a)]. The
NERECO system has been implemented by us on a network of Sun workstations with UNIX 4.2BSD
[Lef83a]. It is a prototype of an environment for the development of distributed concurrent programs. The
principal features of the language are described below.

In the NERECO system, a distributed program is a set of processes cooperating through message passing
that are located on one or more computers. The proposed environment provides a methodology for modular
and robust structuring of distributed programs by:

i) using unidirectional typed channels,

if) expressing communication forms either by point to point (rendez-vous) or by diffusion (broadcast
and multicast),

1ii) controlling nondeterminism in communications,
iv) handling, in a simple and flexible way, error conditions by detection, confinement and recovering.

The language of NERECO has been implemented by adding a set of concurrent mechanisms, with well-
formed syntax and semantics, to a sequential language, extending its static development tools to deal with
the concurrent part. At the moment NERECO is based on Pascal, CHILL and C language.

Inside each process there are the declarations of the process itself and its partners, as follows:
self <process_id> : <process_type id> ;

partners <process_id>,...,<process_id> : <process_type id>;

Like the ECSP language, the processes cooperate through communication channels using input/output
commands. Channels can be symmetric or asymmetric, but generally they are asynchronous. The syntax of
the declaration of an asymmetric synchronous static channel inside a receiver process is:

chan from(<process_id>,......<process_id>) type <constr_id> (<msg_type>);

EUUG Autumn 89 — Vienna, 18-22 September

An Approach to Reliability in Distributed Programming

The <constr_id> is the type constructor with <msg type> constituting the type of message transmitted on
the channel. Channels can be dynamic since in this case the name of the partner process is a variable of
processname type.

To allow dynamic channel management, two constructs are defined: connect(<proc_var>, <process_id>)
(to assign a value and the communication rights) and detach(<proc_var>) (to assign the undefined value
and to revoke whatever communication right).

Communications are implemented by the i/o commands of send and receive. The send construct can have
a symmetric or asymmetric form:

send (<process_id>, <constr_id>(<msg _var>)),
send (all of (<process_id list>), <constr_id> (<msg _var>));

in the first case, only a partner exists, in the second there is a set of partners, defined by a list (send
multicast) or by a process type identifier (send broadcast). The syntax of the receive statement is:

receive(<process_id>,<constr_id>(<msg var>));
receive (<proc_var>: any of (<process_id list>).<constr_id>(<msg_var>));

in the first form, there is only one sender. in the second there is a set of senders, but only one of them
delivers the message.

The nondeterministic constructs are similar to those provided by CSP, namely the repetitive and
alternative commands with input guards and priority.

Additionally, the terminate construct allows a process to terminate itself at any time and informs all of the
process’ partners of the termination.

The language offers fault treatment policies to handle the communication failures caused by a partner
termination, channel disconnection, or physical communication media fault. Failures can be handled by
the onfail, onterm, onprot clauses. They make it possible to execute some recovery actions (forward
recovery) when a failure occurs, as shown in Figure 1. If the first send fails, because of partner termination,
a different process is connected (Sec_server), and the execution can continue.

These facilities are especially useful in a distributed environment where there are many processing element
cooperating with each other. In this environment, when a process or a processor fails, the user can handle
this failure on-line and can avoid propagation to other processes or processors.

connect (Proc_name, First_server);
send (Proc_name,exec(param))
onterm
connect (Proc_name, Sec_server);
send (Proc_name,exec(param));
endrec;
receive (Proc_name,result);

Figure 1: Example of onterm use

2.2. Features and advantages

Low-level languages with a large use of system calls are generally used for the implementation of
transaction systems. This traditional approach as been viewed as efficient, but it presents many negative
aspects in terms of lack of modularity, poor reliability, low parallelism and so on. These problems have
greater effect in a distributed environment where these factors have more importance than in a centralized
one.

EUUG Autumn 89 ~ Vienna, 18-22 September

An Approach to Reliability in Distributed Programming

The approach that we propose consists of utilizing a concurrent distributed language like that presented in
the previous section for the implementation of reliable distributed systems like the distributed transaction
kernel. A similar proposal in a different field (i.e., data base management systems) has been done by Moss
[Mos86a].

According to our approach the transaction kernel is implemented as a virtual machine by a set of
concurrent processes each of which carries out one of the expected functionalities. For instance, one
process deals with the protection of data, another deals with the control of concurrency and another
executes on data the operations specified by the transactions. The data themselves can be kept in the
manager processes and their manipulation can perform concurrently. The virtual machine provides:

1. Location transparency is provided by the concurrent language, because it offers uniform
communication mechanisms both between local and between remote processes.

2. Concurrency transparency is achieved through the process realizing the functionality of concurrency
control, which interacts with the transaction processes that are executed in parallel. The process
controlling the concurrency on data can be also divided in a set of processes working in parallel.

Replication transparency can be simply realized through the contemporary execution of more copies
of the same process that can be addressed through a type.

4, Fault transparency can be achieved using the mechanisms offered by the language to handle
explicitly the faults that can occur.

Another important characteristic offered by the language is the explicit management of the
nondeterminism. It in fact can be utilized for increasing the parallelism in the execution of the transactions.

In addition to the advantages listed till now, it is necessary to add some concepts typical of the software
engineering that are present in our approach and show advantages already known. They are:

° data abstraction: implemented by keeping the data in the manager processes;
) modularity: implemented by isolating particular functionalities inside the single processes;

) portability: supported by the virtual machine which is defined by the run-time support of the
language and allows the re-hosting of the system without rewriting the whole fransaction kernel;

reliability: provided by the language’s strong checks at compile-time and the static checks of
consistency among the processes.

A factor carrying out an important role is the efficiency. Clearly the efficiency of the transaction kernel
implemented by a concurrent language depends on the language efficiency. Overall system efficiency could
obtain benefits deriving from the possibility offered by the language, which allows the exploitation of a
high parallelism in the execution. At last, the benefits which the programmer can achieve in the
development and testing of the system using the tools offered by the development environment of the
language must not be undervalued with respect to the deficiencies of the traditional approach.

3. An example

To illustrate some characteristics of the language in support of the implementation of a transaction kernel,
the following presents a processing transaction system implemented by a collection of cooperating
processes (Figure 2).

The proposed solution does not pretend to solve the distributed transaction problems, or to be an exhaustive
example of a transaction kernel. The aim is to describe how the concurrent language can be utilized to
develop this kind of distributed systems. The system makes it possible to service transaction requests that
are statically defined, entered by users from terminals and operating on shared objects.

Each Trans_proc encapsulates one of the transactions. The User_interface processes communicate with the
Trans_proc processes to ask for the execution of a transaction. In the fransaction kernel case the
transactions will be defined by the user and the processes User_interface will be substituted by the process
that encapsulate the user’s transaction. Objects are encapsulated into processes called Object M, which
serve the requests generated by Trans proc by means of more Executor processes. For brevity, Figure 3
presentes only the code of process Trans proc.

EUUG Autumn 89 — Vienna, 18-22 September

An Approach to Reliability in Distributed Programming

Figure 2: Process network.

The fundamental goal of this system is to exploit the parallelism among the running transactions when they
operate on different objects or when they operate on the same object at the same time. The parallelism on
the same object is obtained utilizing more Executor processes which execute operations concurrently on
behalf of different transactions on object copies.

The generic Trans_proc TRi is activated by the receipt of a request from a User_interface Ulj and tries to
execute the transaction, then returns the result (abort/commit) to Ulj, which if the result is an abort can
redo the request. In the most general case the requests can arrive both from local processes and from
remote Trans_proc. To implement this we only have to declare the channels and to add the remote process
identifiers into the receive statement. Once a request is received from a Ulj the TR sends a message to all
of the managers of the objects to allocate an Executor process to which it will require the operations
execution, if necessary forcing the transaction’s abort, and with it will establish the two-phase commit
protocol. Therefore each Executor is statically devoted to an object and dynamically allocated to a
transaction.

At any arbitrary time many transactions can be executed on each object concurrently. To guarantee the
serializability, a commit of one transaction causes the abort of the others. The concurrency on an object is
provided so that a transaction which aborts does not preclude the object use in the other transactions.

4. Conclusion

The paper presented an approach for the implementation of a distributed transaction kernel. This approach
is based on the use of a distributed concurrent language which allows the exploitation of communication
management, parallelism, data abstraction and modularization.

We have briefly described the syntax of the concurrent language implemented by us on a network of Sun
workstations. After having discussed the advantages of this approach as regards to the traditional
approaches that have been utilized until now, we have presented an example of a processing transactions
system written in the concurrent language.

EUUG Autumn 89 - Vienna, 18-22 September

An Approach to Reliability in Distributed Programming

program TRI1 ();
< Declaration part >

self trans] trans_process;

partners usr_intl, usr_int2 : user_interface;

partners obj_m1, obj_m3 : object_manager;

partners execl, exec2, exec3, exec7, exec8, exec9 : executor;

< channel declaration part >

begin
while true do
receive(U:any of (usr_intl,usr_int2),request);
st := send(all of (obj_m1,0bj_m3),acquire());
alt
receive(E : any of (execl,exec2,exec3),change());
docl
connect(EXE_O1,E);
receive(E : any of (exec7,exec8,exec9).change());
connect(EXE_02.E);

alt
receive(EXE_02, answer3);
docl
receive(EXE_O1, answer2);
endcl;
% receive(EXE_O1, answer2);
docl
receive(EXE_QO2, answer3);
endcl;
endalt;
if answer2 and answer3
then
begin
<COMMIT >
answerl.answer:=1;{committed)
answerl.tid1:=request.tid2;
send(U, answerl);
end
else
begin
<ABORT >
answerl.answer:=0; {aborted}

endcl; answerl.tidl :=request.tid2;
0/:1 relceive(E : any of (exec7.exec8,exec9),change()); send(U, answerl);
oc
end
connect(EXE_O2,E); < end while >
receive(E : any of (execl,exec2,exec3),change()); end.
connect(EXE_OI,E);
endcl;
2;‘::';__ y <ABORT > ::
— begin
S‘(’)’::)‘ifEfo I.code_op) send(EXE_O1,abort())
. onprot
S ASORT> <SKIP>
L . endrec;
::f:::ﬁg?fjfiges"“ i send(EXE_02,abort()):
then < ABORT>:; °""<’S°:(IP>
< operations for other EXECs >
endrec;
send(EXE_O2,ready_to_commit(})) en<diqo fo next request >
onprot ’
< ABORT >
endrec;
send(EXE_O1,ready_to_commit()) <COMMIT > ::
onprot begin)
< ABORT > send(EXE_O1,commit());
endrec; send(EXE_O2,commit());
end;
Figure 3: The Trans_proc process code
References
[Bai84a] F. Baiardi, L. Ricci, and M. Vanneschi, Stating Checking of Interprocess Communication in
ECSP. 19, pp. 290-299, ACM Sigplan Notices, 1984.
[Bir86a] K. P. Birman, “ISIS : A System for Fault-Tolerant Distributed Computing,” TR-86-744, Dep.
of Comp. Sc. Cornell Univ., Ithaca, New York, April 1986.
[Hoa78a] C. A. R. Hoare, Communicating Sequential Processes, 21, pp. 666—-677, Communications of
8 veq pp
the ACM, August 1978.
262 EUUG Autumn 89 — Vienna, 18-22 September

An Approach to Reliability in Distributed Programming

{Lef83a] S.J. Leffler, R. S. Fabry, and W. N. Joy, “A 4.2BSD Interprocess Communication Primer,” in
UNIX Programmer’s Manual Berkeley Software Distribution, Virtual VAX-11 Version, vol. 2,
Univ. of California, Berkeley, CA, August 1983.

[Mos86a] J. E. B. Moss, “Getting the Operating System Out of the Way,” IEEE Database Engineering,
vol. 9, no. 3, pp. 3542, September 1986.

[Mue83a] E. T. Mueller, J. D. Moore, and G. J. Popek, “A Nested Transaction Mechanism for LOCUS,”
in Proc. 9th ACM Symposium on Operating System Principles, pp. 71-89, Bretton Woods,
NH, October 1983.

[Spe83a] A. Z. Spector and P. Schwartz, “Transactions: A Construct for Reliable Distributed
Computing,” Operating Systems Review, vol. 17, no. 2, April 1983.

[Spe85a] A.Z. Spector, “The TABS Project,” CMU-CS-85, Carniege Mellon University, 1985.

[Spe87a] G. Spezzano, D. Talia, and M. Vanneschi, “NERECO: An Environment for the Development
of Distributed Software,” in EUUG Conference Proceedings, pp. 153—167, Dublin, September
1987.

EUUG Autumn 89 - Vienna, 18-22 September

264 EUUG Autumn ‘89 — Vienna, 18-22 September

UNIX and Object Oriented Distributed Systems

UNIX and Object Oriented Distributed Systems

Donal Daly
Vinny Cahill
Chris Horn

Distributed Systems Group,
Department of Computer Science,
Trinity College, Dublin 2,
Ireland.
daly@cs.tcd.ie
vicahill@cs.tcd.ie
horn@cs.tcd.ie

ABSTRACT

UNIX is a well established system interface, as can be seen from the work of POSIX and
X/Open. It has been gradually extended to support distribution and embrace concepts
such as object orientation. Systems like Mach try to make the kernel smaller while
providing increased support for distribution. Object oriented systems promise the
potential for re-usable software, along with higher level data modelling. The Esprit
COMANDOS project is supporting distribution and object orientation. It intends to
provide an integrated platform for the development and online management of distributed
applications. Placing a UNIX interface on top of such a distributed object orientated
kernel is a possible approach to integrating UNIX and distributed object systems, which is
explored in this paper. The motivation for supporting UNIX in an object oriented
distributed environment is presented. We describe then, the main features of the
COMANDOS kernel. Finally, an approach to supporting UNIX with an object oriented
kernel is outlined. Such an approach would provide a migration path for existing UNIX
users towards a fully object oriented system. It would also provide to UNIX users not
interested in object orientation access to the increased functionality available in a
distributed system.

1. Introduction

The aim of the Esprit project COMANDOST (COnstruction and MANagement of Distributed Open
Systems) is to provide an integrated platform supporting the development and on-line management of
distributed applications. The COMANDOS platform will provide a range of services including support for
location transparent distributed processing (but with the possibility of overriding location transparency if
required); heavyweight and lightweight concurrency and synchronisation; an extensible, distributed data
management system; support for transaction management and replication, and finally a range of tools to
monitor and administer the distributed environment [Com89a]. COMANDOS will also provide a
programming language to facilitate the programming of distributed data management applications in the
COMANDOS environment [Com89a]. The COMANDOS platform is intended to be vendor independent
and to run on a range of systems from different manufacturers.

The platform is made up of a kernel and a set of system services which run as applications above the
kernel. The COMANDOS kernel provides the minimum functionality required by the applications running
in the distributed environment, and low level support for the system services such as data management and
management tools. The COMANDOS kernel can potentially be provided as a native kernel running on
bare hardware or as a guest layer on top of an existing operating system.

+ This work is partially funded by the Esprit programme under contract 2071

EUUG Autumn 89 — Vienna, 18-22 September

UNIX and Object Oriented Distributed Systems

COMANDOS has chosen to follow the object oriented paradigm as a unifying technology to integrate
programming language, data management system and kernel. As such the platform provides its user with
an interface defined in terms of objects whose behaviour is specified by the application developer. The
COMANDOS kernel provides the necessary low level support for the use of objects.

Three prototype implementations of the COMANDOS kernel have already been undertaken. In Lisbon
Inesc have built a single user version of the kernel as a native kernel on top of PC/AT compatible
machines. In Dublin TCD is implementing the kernel as a native kemnel (known as OISIN i) on Digital
micro VAX II workstations and NS32000 based machines, and also as a guest layer on top of Ultrix.
Finally in Grenoble, Bull and LGI, in conjunction with the French nationally sponsored Guide project, have
implemented a kernel interface on top of SPIX (Bull’s UNIX V2.2 kernel with BSD extensions) and
SunOS. A demonstration of some of these results was given at the annual Esprit week in Brussels in
November 1988.

1.1. COMANDOS in the real world!

An important aspect of the COMANDOS platform is that use of its facilities is not limited to programmers
using the COMANDOS language. Indeed a range of languages are expected to be used to program
COMANDQOS applications: both object oriented — CH [Str86a] or Eiffel [Mey88a] for example — or non
object oriented such as C or Modula-2.

Such languages will be supported by the provision of appropriate libraries giving them access to the
functionality of the COMANDOS environment including the ability to make use of application components
(possibly encapsulated as COMANDOS objects) written in other languages. Clearly, it is important that
existing applications be availabie in the COMANDOS environment.

Existing operating system interfaces should be provided in the COMANDQOS environment. In particular, it
is seen as important that the UNIX system interface be available to COMANDOS application developers.
The importance of UNIX stems from its widespread acceptance as a de facto vendor independent system
interface. Current standardisation [Bol89a] efforts will serve to increase the importance of UNIX as a
standard systems interface.

1.2. COMANDOS and UNIX

Our aim is to provide application developers with a single interface consisting of both the well established
UNIX system interface and the interface provided by the COMANDOS platform.

From the COMANDOS viewpoint, this approach provides COMANDOS application developers with a
wealth of existing applications and tools. On the other hand, UNIX users will be provided with an
integrated set of services, allowing them to access distributed and persistent data in a uniform way as well
as providing support for fault tolerance. Moreover the COMANDOS platform will provide excellent
runtime support for object oriented programming which is rapidly gaining widespread acceptance.

1.3. Implementation approach

Two approaches to the integration of COMANDOS and UNIX are possible. Either the COMANDQS
kernel is provided as a layer on top of the UNIX kernel (e.g. in UNIX user mode) or the UNIX interface is
provided on top of the COMANDOS kernel. We believe that both approaches are feasible and are actively
exploring both possibilities.

Making a decision as to which approach is most appropriate depends largely on what performance is
attainable in each case. Is UNIX a good basis for building a distributed object oriented system? Can OISIN
support a performant implementation of the standard UNIX system primitives?

Previous experience with the implementation of distributed and object oriented systems on top of UNIX
would suggest that the performance of a COMANDOS system implemented above UNIX cannot be as good
as that achieved by a native implementation of the COMANDOS kernel tuned to the needs of the object
oriented distributed environment [Dec88a, Alm85a]. However such an implementation will be more
portable and consequently likely to be more widely used if, as we believe, performance is acceptable.

§ OISIN was a warrior in Irish folklore who was given the gift of etemal youth.

266 EUUG Autumn 89 — Vienna, 18-22 September

UNIX and Object Oriented Distributed Systems

Previous experience with implementing UNIX on top of another kernel suggests that this is a difficult task
[Ras81a]. However we believe that we can provide a performant implementation of the UNIX interface on
top of COMANDOS while providing at the same time good performance for object oriented and
distributed working.

COMANDOS has drawn inspiration from a number of research projects elsewhere, and is attempting to
integrate their respective approaches into a uniform platform. The Apollo Domain system [Lea83a] is
similar to the COMANDOS platform in that it provides a distributed store, and storage objects which can
be accessed independently of their location. Researchers at Purdue [Dew89a] have implemented a pre-
processor and a series of associated libraries to support objects using UNIX. Chorus provides a low level
kernel which supports both heavyweight and lightweight processes [Roz88a]. It also has a basic IPC
mechanism which is transparently extensible over a network. On top of this minimal distributed kernel the
UNIX V interface is provided. The Mach [Acc86a] project has developed a UNIX compatible system with
low level support for distribution. Mach also asserts to supporting a style of object based programming.

In the remainder of this paper we try to motivate this latter approach by showing how UNIX concepts map
on to the facilities provided by the COMANDOS kernel. Section two describes the interface provided by
the COMANDOS kemel — in particular the OISIN implementation. Section three shows how a UNIX
emulation layer (ROISIN t) can be provided on top of OISIN. Section four describes the current state of
our work and outlines future implementation plans. Finally, section five contains a summary of
conclusions from our work to date.

2. The OISIN kernel

At Trinity College, the Distributed Systems Group has undertaken a native implementation of the
COMANDOS kernel on both NS32000 based workstations and Digital Microvax Il machines. The main
aim of this implementation of the COMANDOS kernel, locally known as OISIN, was to experiment with
low level techniques to provide good performance for an object oriented system on conventional demand-
paged hardware. In the following paragraphs we briefly review the main features of the COMANDOS
kernel interface and its implementation in OISIN. Further details can be found in [Mar88a, Dec89al.

2.1. Object Model

In COMANDOS all objects are described by rypes which define any public fields of the object and the
operations available to manipulate the object’s state. The public fields of an object may be read and written
by implicitly defined read and write operations, and provide the basis for associative retrieval of objects
(not discussed further in this paper). All objects are instances of implementations. An implementation
describes the private fields of its instances and the operations defined on them. Note that the relationship
between types and implementations is one to many in both directions: an implementation may implement
many types and a type may be implemented by many implementations.

Each object has a low level location independent identifier (LLI) which serves to identify and locate the
object within the distributed and persistent system. Such “LLIs” are not intended to be used directly by
application programmers or end users, but may be stored within the instance data of an object to refer to a
constituent or related object. An object reference consists of the objects LLI and a location hint, discussed
later in section 2.3.

Most objects are passive (active objects — jobs and activities — will be discussed later in section 2.2) and
execute only as a result of an operation invocation on the object. Moreover, objects may be of any size
from a few bytes (objects also contain a fixed size header) to several megabytes. The size of an object may
be changed dynamically during the lifetime of the object.

Once created an object persists until no more references to it exist in the system or the object is removed by
aging [Com87aa]. Thus all objects are potentially long lived and their lifetimes are not necessarily bound
by, for example, the duration of the creating job.

t ROISIN was a beautiful princess in Irish folklore

EUUG Autumn ‘89 — Vienna, 18-22 September

UNIX and Object Oriented Distributed Systems

2.2. Computational Model

The only truly active entities in a COMANDOS system are jobs and activities. A job may be considered as
a distributed heavyweight process. A job consists of a set of conrexts (address spaces) and a set of
activities. At each node visited by the job, the job has at least one, but possibly several contexts into which
the objects being used by the job at that node are mapped. The contexts of a job are private to that job and
not shared with any other job. Activities are distributed lightweight threads of control i.e. analogous to
lightweight processes but with the possibility of executing in several contexts at the same node or in several
different nodes at different times. Activities of the same job share the contexts of the job at each node that
they visit during their lifetime. In order for an activity to access any object, that object must be mapped
into some context belonging to the job.

Normally activities execute by invoking operations on passive objects synchronously. If the target object
of such an operation invocation is mapped in the same address space as the invoking object then the
operation is carried out immediately, although possibly returning an exception in the event of a failure. If
the target object is not mapped in the current context, then an object fault is said to have occurred which
the kernel must resolve. The kernel must first locate the target object using the reference for the object
passed to it. The object could be located in a context of another job at the current node, mapped at a
remote node or stored (locally or remotely) in the distributed storage system. If mapped locally the object
will normally be shared between the contexts of the two jobs seeking to use it. Otherwise, the object fault
may be resolved either by fetching the object from a remote node and mapping it into a context of the
invoker, or by carrying out a remote invocation on the object. When an activity invokes an operation on an
object at a node which it has not previously visited it is said to have diffused to that node. The decision as
to whether to fetch the target object to the invoking node or to carry out a remote invocation is seen as a
policy decision, which could be based on load balancing criteria, security or heterogeneity considerations.

Invocation is, by default, location transparent (i.e. the invoker does not need to be aware of the location of
the target object) although, it is also possible to override location transparency either by specifying where
an invocation is to take place, or by explicitly positioning an object.

Although, operation invocations on objects are synchronous, an asynchronous invocation is possible if a
new activity is started to carry it out. Furthermore OISIN supports the idea of a channel — analogous to a
UNIX pipe — into which the results of one operation may be deposited to be picked up as the parameters to
another operation. Note that the entities passed along the channel are typed invocation frames as opposed
to raw bytes in the case of a UNIX pipe.

A set of operations are available to control the operation of jobs and activities, including the ability to
suspend or resume a job/activity; Kill a job or activity and finally to retrieve status information for a job or
activity. The latter includes retrieving the results of the invocation which the job/activity was created to
carry out if it has terminated.

Exceptions have already been mentioned and can potentially be raised by any invocation. Such exceptions
are propagated up the activity’s invocation stack (possibly across node boundaries) until an appropriate
handler is located. It is also possible for one activity to asynchronously raise an exception in another
activity. Arrival of such an exception causes the current invocation in the receiving activity to be
suspended, while an appropriate handler is located and executed. Such asynchronous exceptions are
similar to UNIX signals but are arbitrarily typed.

2.3. Clustering

In the OISIN implementation of the COMANDOS kernel the object space is split into a set of clusters. In
OISIN every object is entirely contained within a cluster. A cluster is implemented as a set of contiguous
virtual memory pages somewhat analogous to a segment in some other systems. Each cluster contains a
group of objects which may vary dynamically either by the creation of new objects in the cluster or by
garbage collection of objects in the cluster, or migration of existing objects between clusters.

In OISIN clusters are the units mapping into and sharing between contexts. Each context contains a set of
clusters which may change dynamically as clusters are mapped and ummapped. When an object is
required by a job the entire cluster containing the object is mapped in the appropriate context although not
necessarily loaded i.e. pages of the cluster may be faulted from the storage system (or from another context
on the node if the cluster is already mapped locally) on demand. Note that the mapping of a cluster appears
transparent to application code i.e. there is no explicit primitive to fetch a cluster.

268 EUUG Autumn 89 - Vienna, 18-22 September

UNIX and Object Oriented Distributed Systems

Clusters allow the OISIN kernel to exploit the locality of reference between related objects by allowing
them to be grouped in the same cluster. Thus the number of object faults may be reduced. Moreover
invocations of objects within the same cluster are much cheaper than those of objects in a different cluster.
Note however that it is not a function of the kernel to decide which objects should be grouped together —
rather this is seen as a higher level management function.

A cluster is normally shared between all the contexts using it and written back to the storage system when
no longer required. However, it is possible to specify that a particular cluster is to be copy-on-write so that
every job using it gets its own private image of the cluster. It is also possible to specify that a particular
cluster is to be immutable meaning that it is not written back to disk even if changed. A cluster can be
marked as position dependent so that it is always mapped at a designated virtual address or as meaning that
once mapped it cannot be moved within the context.

In OISIN a reference for an object includes a hint for the cluster in which it is currently contained.

2.4. Security

In OISIN, security is based on the notion of a domain, which is a set of clusters that have a common
ownership. Whenever an attempt is made to execute an operation on an object from a different domain, the
kemnel is invoked and the user’s right to execute the specified operation checked by consulting an access
list associated with the object. Thus every object accessible from outside of its domain has an associated
access list. If the user has the right to execute the specified operation on the target object then its cluster
will be mapped on behalf of the invoking job. However the cluster will not be mapped in the original
(calling) context but in a context created for the job for objects of the target domain. Thus each job has one
context per node per domain accessed i.e. objects of different domains are never mapped in the same
context, and thus all inter-domain calls result in object faults.

This implementation of domains prevents interference between objects from different owners being used
by a particular job. For example if a job executing on behalf of user A is using objects owned both by user
B and user C to which A has access — in particular implementation (code) objects — it is guaranteed that
C’s objects cannot read or maliciously alter B’s objects or vice versa. Likewise neither B nor C can
damage A objects. However, user A must still trust B and C to provide the specified interface correctly.

2.5. Kernel Components

The CISIN kernel is itself structured as a set of co-operating objects. The Virtual Object Memory (VOM)
component is essentially responsible for the handling of object faults including locating the target object;
making the decision as to how and where to resolve the object fault; checking access permissions etc. The
VOM also implements contexts at each node and co-operates closely with the storage subsystem to handle
mapping of clusters and page faults.

The Storage Subsystem (SS) provides for long-term storage of clusters. The SS also supports replication of
clusters for increased availability. Finally, the SS includes low level support for data management services.

The Activity Manager (AM) implements job and activities and the operations on each. It also provides a
remote invocation service in co-operation with the Communications System and low level synchronisation
facilities.

The Communications System (CS) provides the underlying network communications support. The main
service provided by the CS is the inter-kernel message (IKM) service. The IKM currently runs above raw
ethernet and it is intended will eventually run above ISO class 4 connectionless transport and UDP/IP. The
CS will also provide direct access to the underlying [SO and IP protocol stacks.

3. Supporting UNIX with an Object Oriented Kernel

3.1. Introduction

The UNIX emulation (ROISIN) is based on the Berkeley 4.3 distribution [Lef89a]. We term it an
emulation because we do not intend to implement another kernel above ours. What we do instead is use
the facilities provided by OISIN to provide a standard UNIX interface. It is our intent that it will be system
call compatible, albeit with a few exceptions. We chose Berkeley UNIX because we are most familiar with
this version of UNIX and have access to its source code. Current development work being carried out at
Berkeley is of interest to us also. This includes providing a POSIX compatible UNIX and supporting OSI
[McK85a). We felt that if our design proved feasible, we could incorporate these new features quite easily.

EUUG Autumn 89 — Vienna, 18-22 September 269

UNIX and Object Oriented Distributed Systems

ROISIN is structured much like a normal UNIX system. Part of ROISIN will actually reside in the same
address space as the UNIX process. When the user executes a system call, control is transferred to this
code. This may then result in object invocations on other OISIN objects. These would include ROISIN
specific objects such as the Process Manager or File Descriptor Manager or a Name Service. ROISIN is
very much integrated in an OISIN environment. It provides an application programmer with an integrated
environment of a UNIX system alongside a distributed object oriented system.

3.2. UNIX Processes

A Process Manager is used to maintain our “proc’ structure. The Process Manager is implemented as a
regular OISIN object. Naturally, the process manager must support atomic updates to the entries in the
proc structure. Using OISIN low level synchronisation primitives (semaphores) will allow us to provide
this atomic support. The Process Manager will implement the following system calls:-

getdtablesize, getgid, getegid, getgroups, getpgrp, getpid, getppid,
getpriority, setpriority, setgroups, setpgrp, setregid, setreuid, fstat.

3.2.1. Fork, Exec, Wait and Exit

UNIX processes are naturally laid out in memory in the same manner as under a native UNIX system. Each
UNIX process is represented as a COMANDOS job with only one activity. A UNIX a.out file is represented
as an OISIN object. This object is placed in a cluster on its own. On invoking the exec system call, the
cluster which contains the a.out is simply mapped into VOM at a fixed address. The exec call will then
setup the data and stack areas. The arguments and environment are then copied to the top of the stack. The
process is now ready to run. A COMANDOS job is created whose initial activity will call main().

The a.out cluster has a number of important attributes. Firstly it is immutable (as previously described), it
is also position dependent so that the a.out (actually the text area) is mapped in VOM at the correct address.
The cluster is also of fixed size. If we were to increase the size of the cluster (so as to increase the size of
the heap or stack), this could result in the cluster being remapped to another area of VOM. The effect of
this would be that C pointer references, would be invalidated and the process would inevitably crash. In
OISIN, regular objects utilise location independent references so that they are unaffected by a cluster being
moved.

The implementation of the sbrk, and also how the UNIX process may grow its runtime stack, is thus also
limited. Using a fixed sized cluster to hold our UNIX process is not as bad as it would seem. Firstly, we
will create the cluster large enough to allow reasonable growth. This will only involve allocation of virtual
memory, as the whole cluster need not be loaded in. The cluster is faulted as required. We also allow the
user to supply us with hints, using a mechanism similar to the csh(1) limit command so that we can
determine the size of the cluster.

In supporting the fork system call we also make the cluster copy-on-write. Using copy-on-write provides
us with an efficient means of implementing fork, and should significantly improve performance over
traditional UNIX implementations.

With our proposed implementation of fork and exec, we have a number of interesting means to exploit
distribution of UNIX processes. We could implement a scheme so that this distribution would be
transparent to the user. We could decide to execute the process on the least loaded node, or use some more
sophisticated load balancing criterion to determine which node to execute the process. Another approach
would be to extend the existing system calls so that the programmer has the ability to choose on which
node his process should execute. For us to implement these extensions should be quite trivial, and they
serve as a clear example of the powerful underlying distributed system which is available to ROISIN and
the application programmer.

Another area currently of interest is migrating of running processes [Man88a, Alo88a, Hun88a]. Its
exploitation is being considered in the areas of load balancing and reliability. To achieve this you must be
able to take a snapshot of the process stack and data areas. Remember that in our case these are contained,
along with our text image, in one cluster. We hope in the future to be able to provide this facility.

The wait and wait3 system calls are implemented using the facilities provided by the OISIN Activity
Manager. These system calls will use a semaphore maintained by the Process Manager for each process.
When the wait system call is executed the process will block on a semaphore, if there are no zombie
children of the parent process. The exit system call will be invoked on the Process Manager, who will
signal this semaphore and tidy up the “proc” structure. It will also send a SIGCHLD signal to the parent
process. This exit system call will invoke on the File Descriptor Manager so that any open file descriptors

EUUG Autumn 89 - Vienna, 18-22 September

UNIX and Object Oriented Distributed Systems

belonging to that process are cleared.

User domain
" N\
An immunble —ZA4" T >
position -dependent Daia
cluster
UNIX stack
U area

Objects composing = @ —

the UNIX emulation
Users private files —4 o o
) — Name Service domain
\ OISIN stack)

emmulation data —Z—
s @D

OISIN stack J

O

Name service T2 <O

directories
K
O=

— Context
L OISIN stack O

D — Cluster

O - objex

Figure 1: A possible layout for a UNIX process in ROISIN

3.2.2. Use of Domains

Figure 1 show a possible layout of a UNIX process in ROISIN. We have three domains, for reasons of
security. In the user domain we will keep user objects and those emulation objects which can operate
within that domain. These would include the ROISIN signal handler and Process Manager which would
implement such calls like getpid or getppid. In the ROISIN domain we will keeps objects which are shared
by all ROISIN processes. In this way we can protect them. The “proc” structure object in this domain
would implement system calls like setpgrp or setpriority. When a user executes one of these system calls it
will involve a cross context call. Our third domain is the Name Service domain, This domain will hold
directory objects of the Name Service. If we allowed these to be mapped in the user domain, it may be
possible for the user to alter inode information contained within these directory objects. We keep this third
domain so that the OISIN Name service can access our directory objects without crossing into the ROISIN
domain. It will also protect the Name Service from ROISIN. When a user reads a file which he owns it
will be mapped into the user domain, however if he has only group read rights to the file it would be
mapped, for example into his domain as immutable.

EUUG Autumn 89 — Vienna, 18-22 September 271

UNIX and Object Oriented Distributed Systems

3.2.3. Signals

Signal handling facilities in 4.3BSD differ radically from the facilities found in other version of UNIX
[Lef89a]. Some of the main differences include:-

1 Signal handlers are permanently installed with a single sigvec.

2 The signal currently being received is automatically masked from delivery while the application
signal handler is invoked.

3 An alternative stack can be used for delivering signals (sigstack).

4 System calls which are interrupted by the receipt of a signal can be automatically restarted whenever
possible and reasonable.

This provided an interesting problem to solve. One solution is to use a parallel activity to the main UNIX
one. This activity would block on a semaphore until a UNIX signal was sent to its peer. It could then
suspend the UNIX activity, and execute the stipulated handler, or kill both itself and the UNIX activity if the
signal was not caught. We have chosen instead to use the facilities provided by the OISIN exception
model. We would receive asynchronous exceptions which would include an optional parameter. These
exceptions are handled using a special ROISIN signal handler. Its function is to process the exception so
as to maintain the semantics of signal handling in 4.3BSD. It would in turn invoke a user supplied signal
handler if one was specified. Before calling the user supplied signal handler it will create a stack frame on
the users stack, so that executing the signal handler will appear as if the process had called a user level
function, and when it returns from the signal handler normal execution will be resumed. We are confident
using the above mechanism that signals can reliably be handled. The ROISIN signal handler will also
implement the default actions on the receipt of signals.

The kill system call would first ask the ROISIN Process Manager for the activity reference for the process
it wished to send a signal. It would then invoke an operation on the AM and request to which activity an
exception is to be raised, passing in the exception the specified signal number. In the implementation of
the exec system call an exception record is setup, so that the ROISIN signal handler will be invoked
whenever a UNIX activity receives an exception.

3.3. UNIX Filesystem

In the COMANDOS architecture a system service, called the Name Service, is defined [Com87ba]. This
Name Service is implemented by a distributed set of directory objects which provide associations between
object references and symbolic names. The directory objects themselves have names, which implement a
graph structure, somewhat like the UNIX filesystem hierarchy. The Name Service provides an equivalent
to the UNIX internal “namei” routine. Presently we have this Name Service implemented under O/SIN.

ROISIN exploits the underlying facilities provided by an OISIN environment, to obtain a transparently
distributed directory hierarchy. It also needs to change the structure of the hierarchy to make it conform to
the UNIX model, that is there is only one root and all other directories are below this. In doing this it will
choose by default the root directory object of the local node of the user. In performing directory lookups,
valid names will include grainne:/usr2/comandosikernel which will inform the Lookup operation to use
the directory which is located on Grainne. We could however just simply invoke a Link operation on the
Name Service to link this directory to the local file system hierarchy, and use this instead.

ROISIN when possible, will attempt to place UNIX files (objects) into the optimum cluster. To ROISIN
and to an application programmer, dealing with local or remote files is identical. It is of course possible to
find out where files are stored and also to decide where to store your files.

Due to the means by which objects are mapped in Virtual Memory, ROISIN is able to provide support for
memory mapped files {Tev87a]. In fact, this is the means by which files are accessed. Using this
mechanism we intend in the future to implement shared libraries under ROISIN.

We plan to extend the ROISIN Name Service so that the directory objects will contain the inode
information for the objects about which the directory knows. Much like the UNIX namei routine we will
maintain a cache of recent lookups, so as to maximise performance. From profiling studies it has been
found that nearly one-quarter of the time spent in the kemel is spent in namei [McK85a]. It is critical
therefore that we have an efficient lookup operation. We expect also to derive increased performance from
clustering. All Name Service directory objects will be contained in one or more clusters. Because of the
way clusters are mapped into virtual memory we should have efficient access to directory objects.

272 EUUG Autumn ‘89 — Vienna, 18-22 September

UNIX and Object Oriented Distributed Systems

3.3.1. File System Calls

Our extended Name Service will support the following system calls through object invocations on directory
objects

access, chdir, chmod, chown, chroot, link, mkdir,
mknod, rmdir, stat, Istat , unlink , utimes

We do not consider the mount and umount system calls as having any functionality under our extended
Name Service. A possible implementation could extend/limit the Name Service view of the Name Space.

Every UNIX File is defined as a special type called UnixFile. This type will implement a number of
operations which will support the following system calls:

.

creat, close, open, lseek, read, readv, truncate, write, writev

There will be a direct mapping between these system calls and the operations on type UnixFile. For
example, the implementation of the open system call would first invoke a lookup operation on a suitable
directory object so as the LLI for the UNIX file can be obtained. It would then invoke on the File
Descriptor manager so that a file descriptor can be setup. Further system calls like read or write will cause
the file to be mapped into virtual memory. UNIX files (objects) are not loaded at a fixed address like a.out
files. The read and write system calls will therefore interact with the O/SIN runtime so as to find the
current address of the UNIX file. This will then be added to the current file offset so that they will position
themselves at the correct position within the UNIX file. The close system call will invoke on the File
Descriptor manager so as to release the file descriptor for the file. When the process exits, and the O/SIN
job terminates, the file will be written back to secondary storage. The chroot system call will be
implemented as an operation on the Name Service.

Currently the ROISIN file system would only manage files of type UnixFile. This could be extended in the
future to support any OISIN object via a registration mechanism. The OISIN Name Service can deal with
any object, where as our extended version will only deal with objects where a directory object contains
inode information for them. Our initial implementation we will thus have two name services, but we see
no reason why these cannot be merged in the long term.

3.4. UNIX I/O System

The UNIX I/O system will be supported as a layer above the OISIN I/O system. We are considering
implementing this layer using channels. The OISIN 1/O system would pass or receive a byte stream to or
from a channel.. We would have one channel for each serial device available to ROISIN. This channel
would implement simple 1/O processing, and support the following system calls:

ioctl, read, readv, write, writev

More sophisticated 1/O can be accomplished by pushing another channel onto the 1/O stream.

We will implement a File Descriptor Manager to maintain information about active inodes within ROISIN.
It will also support the semantics of the “open file table” as under native UNIX implementations. The File
Descriptor is implemented as an OISIN object and will support atomic updates to file descriptors which it
manages. As such it will support the following system calls

fentl, flock, dup, dup2, ioctl, select

The File Descriptor Manager will also maintain the current file offset into each file so as to support the
Iseek system call. It will interact with the Process Manager so that complete and consistent information
can be kept for each UNIX process. It will also maintain the information relating to file descriptors
contained in the u.area of a process address space. We plan to use semaphores to impiement the flock
system call. The AM provides us with a mechanism to allow us to see if we would block if we tried to do a
wait on a semaphore. Using this feature we are able to implement advisory locking as supported by flock.
We could also quite easily implement enforced locking using the same mechanism.

OISIN channels support typed data, but it is still possible for us to use channels to pass low level byte
streams. With this in mind, we for see few problems in supporting UNIX pipes, with channels.

We will support block oriented devices (like disks) by providing a channel interface much as we support
character oriented devices (serial lines or tape units). This channel would implement a direct interface to
the Device Manager of the O/SIN 1/O subsystem.

EUUG Autumn 89 — Vienna, 18-22 September 273

UNIX and Object Oriented Distributed Systems

The OISIN kernel provides a rich networking environment. The Communications Subsystem will support
both the OSI and IP protocol stacks. To the application programmer we supply a socket interface, so like
the rest of ROISIN the programmer needs not have any knowledge of the inner workings. Presently we see
channels as the appropriate OISIN facility to provide this socket interface.

3.5. UNIX Protection Model

The COMANDOS Security Architecture shares features with the UNIX Protection Model, along with some
extensions of its own [Hor89a]. The UID and GID of QISIN can act as the UID and GID of ROISIN
without change. Effective UID’s GID’s can be implemented in a similar way as well.

The three categories of users in UNIX can be supported as follows:- the user and group categories will map
onto the user and group types in OISIN with the exception that groups may not be nested (In OISIN it is
possible to have nested groups). The implementation of the world category is also supported by OISIN.

The superuser privilege is a difficult concept to support in an “distributed object world”. It will be
supported initially by ensuring that root has the control access right over every object under the control of
ROISIN. A more long term solution needs to be found, and probably lies in splitting the superusers powers.
Work is already being done in this field [Hec87a]. Superuser privilege will not extend across machines and
a check will be made to ensure this.

The main problem in implementing the UNIX Protection Model is to give adequate protection to files, while
at the same time ensuring efficient access to them. As has been stated the finest granularity of protection in
OISIN is clusters. This is due to the way objects are mapped in virtual memory. So in the worst case
under OISIN each UNIX object would have to be placed in its own cluster. What is required is a method or
rule to decide if more than one or two objects can be stored in the same cluster so that the UNIX protection
model is not broken. A possible rule is as follows:

One or more UNIX objects may be placed in the same cluster if and only
if their protection modes are the same otherwise, they must be placed in a
cluster where their protection are the same.

Thus an extra check needs to be placed in the UNIX system calls which deals with protection. These calls
would include:

open, creat, mkdir, chmod, chown.

ROISIN maintains a table of the protection attributes associated with each cluster under her control. This
table will be implemented as an OISIN object on which the system calls that effect security will invoke.
These system calls will then be returned a suitable cluster to place the object, if it needs to be migrated as
the result of a protection mode change. Using this mechanism when multiple ownership, group or
protection changes occur as a result of chmod(1), chown(1), chgrp(l) €¢ommands, objects can still be
clustered together, albeit in a different cluster than before.

For the most part it should be able to cluster UNIX objects. Under a users home directory users files can be
stored together in the one or more clusters. Similarly files under group directories can also be kept together
if they have the same protection. It should be noted that for each individual protection mode a separate
cluster is needed. This is not seen as a problem, as in most UNIX systems a small subset of protection
modes are used.

In an attempt to organise UNIX files, so that we can utilise clustering fully, we introduce a more effective
mechanism for dealing with groups. The association between a group-id and a file is made optional rather
than requiring that each file have an associated group [Car88a]. Using this mechanism the grouping of
objects into clusters is simplified.

4. Current Status and Unresolved Issues

To prove the feasibility of our design we are currently implementing ROISIN in CH. Any utilities making
use of /dev/kmem or /vmunix will have to be re-written. Apart from these we expect that we will only need
to compile utility programs and link in the new system calls in order to make them available to ROISIN.

There are some system calls which we have not considered for various reasons. We do not implement
ptrace or profil, as OISIN does not currently provide any support for this type of operation. Because of the
way in which we have implemented processes, it would be possible to access these active entities as files.
This has already been accomplished in Version 8 UNIX {Kil84a]. Implementing this mechanism should be
straightforward. With this in place, we could implement a debugger for distributed applications using these

274 EUUG Autumn 89 - Vienna, 18-22 September

UNIX and Object Oriented Distributed Systems

files to open or close processes and to read and write their code segments. This has been implemented also
in Version 8 UNIX [Car86a].

We also do not implement sync and fsync directly as there is no equivalent to them under OISIN. We
would implement them in the future, by extending the un-map cluster call in OISIN to maintain the
integrity of disk data structures. We feel however given the facilities of the SS, which includes replication,
that OISIN provides a consistent, reliable environment already to ROISIN. Other system calls which we
currently do not support are those that deal with file system quotas and resource limits. We do make use of
resources limits, so that we can decide on cluster sizes for UNIX processes, but they are not strictly
enforced (i.e. we do not limit the cpu time of a process).

5. Conclusions

The main aim of the COMANDOS project is to provide runtime and linguistic support for the development
and on-line management of distributed applications. To date the project has defined the interface to be
provided by the platform and has demonstrated several prototype implementations running on a range of
machines from different vendors.

We believe that integration of the COMANDOS platform with existing system interfaces is necessary both
to provide a means for existing applications to be used alongside emerging distributed and/or persistent
applications and to provide a migration path for existing systems users towards COMANDOS. Because of
its widespread acceptance, support for the UNIX system interface is considered crucial.

COMANDOS will bring to UNIX users an integrated set of facilities for programming distributed,
persistent applications using an object oriented framework.

We have identified two alternative approaches to the intgeration of UNIX and COMANDOS: either by
building the COMANDOS platform on top of an existing UNIX kernel; or by providing the UNIX system
interface above the COMANDOS platform. Both approaches have their merits and demerits — a basic
tradeoff is between portability and performance - however we believe that both approaches are feasible and
are actively investigating both.

In this paper we have tried to show the suitability of the COMANDOS platform to host the UNIX interface.

Previously reported work has discussed the construction of a COMANDOS like system on top of UNIX
[Dec88al.

6. Acknowledgements

The authors wish to acknowledge the contribution to this work made by all the members of the TCD
COMANDOS kemel team: Edward Finn, Andre Kramer; Annrai O’Toole, Gradimir Starovic, and John
Slattery. We also wish to acknowlegde the input from all the members of the TCD COMANDOS team:
Alexis Donnelly, Sean Baker, Neville Harris, Damien Lynch, Faris Naji, Ahmed El-Habbash, Mark
Sheppard, Brendan Tangney, Bridget Walsh and Iseult White.

References

[Acc86a] Mike Accetta, Robert Baron, William Bolosky, David Golub, Richard Rashid, Avadis
Tevanian, and Michael Young, “Mach: A New Kemel Foundation for UNIX Development,”
in USENIX Summer Conference, pp. 93—112, June 9-13, 1986.

[Dec88a] D. Decouchant et al., “Implementation of an Object-Oriented Distributed System Architecture
on Unix,” EUUG Autumn Conference, pp. 181-193, October 3-7, 1988.

[AIm85a] G. Almes et al., The Eden System: A Technical Review, IEEE Software Engineering, Vol SE-
11, No 1, January 1985.

{Mar88a} J. A. Marques et al., “Implementing the COMANDOS Architecture,” Proc. ESPRIT
Conference 1988 - Putting the technology to use, North Holland, November 1988.

[Alo88a] Rafael Alonso and Kriton Kyrimis, “A Process Migration Implementation for a Unix System,”
USENIX Winter Conference, pp. 365-372, February 9-12, 1988.

[Bol89a] Cornelia Boldyreff, “UNIX Standardisation: An Overview,” EUUG Spring Conference, pp.
151-156, April 3-7, 1989.

[Car86a] T. A. Cargill, “Pi — A Distributed Debugger,” EUUG Conference, pp. 137-141, September
22-24, 1986.

EUUG Autumn 89 — Vienna, 18-22 September 275

UNIX and Object Oriented Distributed Systems

[Car88a]

[Dec89a]

[Dew89al

[Hec87a]

[Hor89a]

[Hun88a]

[Kil84a]

[Lea83a]

[Lef89aj
[Mang8a]
[McK85a]
[Mey88a]
[Com87aa]
[Com87bal

[Com&89a])

[Roz88al

[Ras81a]

[Str86a]
[Tev87a]

276

Scott D. Carson, “Using Groups Effectively In Berkeley Unix,” USENIX Winter Conference,
pp. 171-173, February 9-12, 1988.

D. Decouchant, M. Riveill, C. Hom, and E. Finn, “Experience With Implementing and Using
an Object Oriented, Distributed System,” To he presented at the Workshop on Experiences
with Distributed and Multiprocessor Systems, Sponsored by USENIX, SERC, ACM and
IEEE-CS, October, 1989.

Prasun Dewan and Eric Vasilik, “Supporting Objects in a Conventional Operating System,”
USENIX Winter Conference, pp. 273-285, January 30 — February 3, 1989.

M. S. Hecht, M. E. Carson, C. S. Chandersekaran, R. S. Chapman, L. J. Dotterrer, V. D.
Gligor, W. D. Jiang, A. Johri, G.L. Luckenbaugh, and N. Vasudevan, “UNIX without the
Superuser,” in USENIX Summer Conference, pp. 243-256, Phoenix, AZ, June 8-12, 1987,
Chris Horn, Edward Finn, and Andre Kramer, “Security Facilities in the OISIN Kernel,”
COMANDOS Project Working Paper, May 16, 1989.

Chad Hunter, “Process Cloning: A system for duplicating UNIX Processes,” USENIX Winter
Conference, pp. 373-379, February 9-12, 1988.

Tom J. Killian, “Processes as Files,” USENIX Summer Conference, pp. 203-207, June 12-15,
1984.

P. Leach, P. Levine, B. Douros, J. Hamilton, D. Nelson, and B. Stumpf, The Architecture of an
Integrated Local Network, pp. 843-857, IEEE Journal on Selected Areas in Communications,
Vol SAC-1, No 5, November 1983.

Samuel J. Leffler, Marshall Kirk Mc Kusick, Michael J. Karels, and John S. Quarterman, The
Design and Implementation of the 4.3 BSD UNIX Operating Svstem, Addison Wesley, 1989.
K. I. Mandelberg and V. S. Sunderam, “Process Migration in UNIX Networks,” USENIX
Winter Conference, pp. 357-364, February 9-12, 1988.

Marshall Kirk McKusick, Samuel J. Leffler, Michael J. Karels, and Luis Felipe Cabrera, CSRG
Technical Report, November 30, 1985.

Bertrand Meyer, Object-oriented Software Construction, Prentice Hall, 1988.

ESPRIT COMANDOS Project, Object Oriented Architecture, September 1987.

ESPRIT COMANDOS Project, Kernel and System Service Functional Specifications,
September 1987.

ESPRIT COMANDQOS Project, Oscar Programming Language Reference Manual vi.1, April
1989.

M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien, M. Guillemont, F. Herrmann, C.
Kaiser, S. Langlois, P. Leonard, and W. Neuhauser, “CHORUS Distributed Operating
Systems,” in Computing Systems, vol. 1, pp. 305-370, USENIX, Fall 1988.

R. Rashid and George Robertson, “Accent: A Communication Oriented Network Operating
System Kemnel,” In Proc. 8th Symposium on Operating Svstems Principles (ACM), pp. 6475,
December 1981.

Bjarne Stroustrup, C++ Programming Language, Addison Wesley, 1986.

Avadis Tevaman, Jr., Richard F. Rashid, Michael W. Young, David B. Golub, Mary R.
Thompson, William Bolosky, and Richard Sanzi, “A Unix Interface for Shared Memory and
Memory Mapped Files Under Mach,” USENIX Summer Conference, pp. 53-67, June 8-12,
1987.

EUUG Autumn'89 - Vienna, 18-22 September

XEiffel: An Object-oriented Graphical Library and an OPEN LOOK Based on it

XEiffel: An Object-oriented Graphical Library and an OPEN LOOK
Based on it

Marco Menichetti

UniRel
Firenze
Italy

ABSTRACT

Object-oriented languages can be extended by user-defined classes libraries. In this
paper I present XEiffel. It is a graphical extension of the object-oriented language Eiffel.
It is based on the X Window system but adds to it some interesting object-oriented
features. As XEiffel application I present an OPEN LOOK graphical interface toolkit.
The whole work has been developed using SUN 3/60 workstations at UniRel.

1. Eiffel: an Object-oriented Language

1.1. Introduction

Eiffel is an object-oriented language, created in 1986 by Bertrand Meyer, and evolved in version 2.1 on
July 1988. Most of you know some object-oriented languages or have heard about them and so I only list
the particularity of Eiffel, without explaining the meaning of concepts related with object-orientedness.

1.2. Eiffel Concepts

Eiffel is an object-oriented environment for development of high-quality production software.
Traditionally object-oriented languages are implemented by way of interpreters, as exemplified by small-
talk; by contrast, Eiffel is a compiled language. Eiffel elements, common to other languages too, are: class,
object, inheritance and polymorphism.

. A class is an user-defined type or, using a more formal definition, a class is the implementation of an
abstract data type. In Eiffel a class can be “deferred”. It means that it can only be used as ancestor,
because some features in it are defined but not implemented. Such features must be written in its
descendant classes. If you think to a class as a type, a deferred one can be thought as a frame on
which we can build other types. i.e. other classes.

. An object is an instances of a class. In Eiffel the code can be written only in classes and so the
creation of an object require a client-supplier relation between classes. It’s usually said that an
object belongs to a class for meaning a program entity is declared of an user-defined type.

° Inheritance is the mechanism which allow the incremental software construction. By inheritance a
class can be defined as an extension or a restriction of others. Inheritance is the way by which
object-oriented language increase reusability of software.

Graphically inheritance is represented by an arrow meaning “inherit from”. A class inheriting from
another is said to be a “descendant” and the class from which it inherits is said “ancestor”. Most of
object-oriented languages support only single inheritance, by contrast in Eiffel the programmer can
enjoy multiple and repeated inheritance.

° Polymorphism is the possibility for programs entities to refer to objects of more then one class.
This means that if an entity is declared to be of type A, run-time it can also refers to an object of type
B. In Eiffel polymorphism is controlled by inheritance and so the sentences above is correct only if
the class B is a descendant of class A. Dynamic binding is related with polymorphism, in fact in a
descendant class you can redefine same inherited feature, for example for increasing performances.
Redefinition allows you that the same feature name refers to different actual feature depending on the
type of object to which it is applied. The mechanism implementing this feature is called dynamic
binding.

EUUG Autumn 89 — Vienna, 18-22 September 2717

XEiffel: An Object-oriented Graphical Library and an OPEN LOOK Based on it

In Eiffel there are also some interesting feature, not related with the object-oriented paradigm, useful for
increasing software robustness and correctness. As example I only cite assertion, automatic make and
garbage collector.

2. X Window System

2.1. Overview

The X Window System is a network transparent window system that was designed at MIT and runs under
many operating systems. The X Window System implements a server-client model. The server provides
the basic windowing mechanism. It handles connection from clients, demultiplexes graphic requests onto
screens and multiplexes input back to appropriate clients. The clients are programs which connect to the
screen by some interprocess communication path. The X server and clients communicate by requests and
events: the clients send requests to the X server and the X server sends events to the clients. The events
may be either generated from devices or generated as side effects of clients request. Events are never sent
to the client unless the client has specifically asked to be informed of that type of events. The set of event
types a client requests relative to a window is described by using an “event mask™. The elements handled
under X are called resources. Resources can be:

3 Windows

° Pixmaps

° Cursors

] Fonts

° Graphics Contexts

. Color Maps

These resources can be created and handled by the C functions of the Xlib library.

3. XEiffel

3.1. Introduction

Object-oriented language can be extended by user-written library of classes. XEiffel is an extension of
Eiffel and it allow the Eiffel programmers using most of the X Window System facilities.

3.2. XEiffel Architecture

XEiffel is based on the X Window System, because it uses the Xlib functions to work out low level
graphics, but in it there are also new aspects and so XEiffel is actually an object-oriented graphic
environment. We can think to XEiffel as two layers software package. The lower layer is at a ““low level”
and I mean that classes composing it are near Xlib. The upper layer involves the events and events
management. This layer, solving in an object-oriented way the events management problem, make event-
driven programs much easier to built.

3.3. Low Level Classes

Classes at low level codes the X Window resources and encapsulate in them functions for creating and
handling the resources. Examples of classes at low level are DISPLAY, FONT, G_CONTEST and
DRAWABLE. The classes DISPLAY, G_CONTEXT and FONT are actually type but the class
DRAWABLE, a deferred one, is used as ancestor for building, by inheritance, other classes.

Application programs before using the XEiffel’s classes have to open a connection with the X server; this
problem is solved creating an object of type DISPLAY. It’s easy to guess that classes G_CONTEXT and
FONT provide the programmer with the X resources graphics context and font. In the X jargon the word
“drawable”” means graphical support, on or off screen, i.e. a “drawable” can be a pixmap or a window.

The natural object-oriented way for modelling this subject is the building of a deferred class DRAWABLE
and use it as ancestor for building the classes WINDOW and PIXMAP. The entity of type DRAWABLE
can, run-time, be a pixmap or a window because of the dynamic binding.

EUUG Autumn ‘89 — Vienna, 18-22 September

XEiffel: An Object-oriented Graphical Library and an OPEN LOOK Based on it

We couldn’t obtain directly the class WINDOW from DRAWABLE and so between them we defined
GEN_WINDOW and WINDOW_X. The design of showed classes was not very difficult: we almost
translated the X Window manual in Eiffel classes. The real sticky problem were events and events
management.

3.4. Event-driven Programming and Event Management Problem

The event management problem is common to every event-driven program; we often run into interactive
programs today and so the event management problem need a general solution. We can solve it in two
different way: a traditional one and an object-oriented one.

Traditional Solution
The traditional solution is the great switch:
from
until
loop
event:= display.next event;

if event.type = ButtonPress
then

elsif event.type Expose
then

elsif event.type
then

end;
Listing 1

Referring to Listing 1, we get an event from the the event queue and, depending on its type we run the
correct routine. This solution looks a good one; it seems clear and logically consistent, but it is not so:
usually an application program use many windows and handles at least ten events on every window.

If we use 30 windows and mask ten events on every window, our switch will have 300 cases. Certainly our
code will be complex, hence error-prone. However the worst consequence of using this simple-minded
solution is that it bring us to non-reusable code and this is a great problem because the management of
many events is common to most applications. We have an object-oriented language and, using it, we can
find a better solution.

Object-Oriented Solution

The X server can send 33 different kinds of event. We built a class for each kind of event: some fields are
common to every fields of event so we developed a class EVENT and then we specialized it by inheritance.
Every object-oriented design require an abstraction phase before its implementation.

In the event-management problem we can see three sub-problems:

° window and event masking on them

° the routines to be run when an event is read, called from now on “process”
é a manager of the window and routines.

and we can translate in classes each of these issues.

The events and windows are modelled in the WINDOW_X_EVENT class. Process are put in the
descendant of the deferred class EVENT_PROCESS and the manager is an object of the class
EVENT_MANAGER.

EUUG Autumn 89 — Vienna, 18-22 September

XEiffel: An Object-oriented Graphical Library and an OPEN LOOK Based on it

I am not going to explain all implementation detail but I only show you the difference between the code of
the traditional solution and the object-oriented one. Pay attention to Lisiting 2:

Pl.creare (...)
P2.create (...)

Pn.create (...)

event manager.create

event manager_insert event process(Pl)
event manager_ insert event process(P2)

event manager insert event process (Pn)
event manager.mask;
event manager.get event;

Listing 2
In Listing 2 we have an initializing part; from P/ to Pn are objects of classes descendent trom
EVENT_PROCESS and contain the code to be run in response to events. Listing 3 shows a class inheriting

from EVENT_PROCESS: it knows the kind of event that must be handled, the window in which the event
must be generated and how to process it.

class EXAMPLE PROCESSOR export
event, window, process
inherit
EVENT PROCESS
redefine
event

feature

event: TYPE OF EVENT;
process: BOOLEAN is

do
code to be run when an event
of type TYPE OF EVENT is
generated on window
end; -- process
end; -- class EXAMPLE PROCESSOR

Listing 3
Referring again to the Listing 2, we have the set of instructions event_manager.insert-process(Pi), using
these statements we notify the event-manager the code to be run for responding to the X server events. The
last two lines, event_manager.mask and even: manager.get event, mask the correct events on the
windows and begin reading the event queue.

About an object-oriented solution we can notice that it is very simple. We have only a sequence of
statements, without control or conditional instructions. We have no critical instructions. Of course there
are somewhere critical pads of code, but they are hidden and well framed into EVENT_PROCESS
descendant classes. Closing this paragraph 1 list the necessary steps for building an event driven
application using the XEiffel library.

280 EUUG Autumn'89 - Vienna, 18-22 September

XEiffel: An Object-oriented Graphical Library and an OPEN LOOK Based on it

1. Build, inheriting from EVENT_PROCESS, the classes containing the code for handling events.

2. Create object of type DISPLAY, WINDOW, EVENT_MANAGER and EVENT_PROCESS
descendant.

3. Call the EVENT_MANAGER’s routines insert_event process, mask and get event.

This is neither depending on the type and number of managed events nor on the number of windows.

4. OPEN LOOK Toolkit

4.1. Introduction

Graphical user interfaces for workstations are difficult to built. To help programmers create such interfaces
was born the concept of toolkit. A toolkit is set of pre-cooked modules that allow the easy building of
standard graphical interfaces. OPEN_LOOK is the AT&T standard for graphical interfaces and it suggests
the lay-out and the behavior of what should become the UNIXstandard interface.

From XEliffel to a Toolkit

XEiffel is a general purpose graphical library, so for developing from it our toolkit we used the inheritance
mechanism for specializing the classes. As example we can cite the classes WINDOW and
BASE_WINDOW: WINDOW is a general-purpose class, and it is available in XEiffel, a base window is a
particularly kind of window, used in OPEN_LOOK G.U.L. It has some banners, resize corner, a close
mark etc. By inheritance we built the class BASE_WINDOW adding to WINDOW the necessary features.
It worth to note that XEiffel as an intermediate layer between the toolkit and the X Window System, so we
could for example replace the current version of the X Window System with a new one, or perhaps with
another similar graphics system, without changing a statements in the toolkit.

On the other side at the moment it is difficult to understand which graphical user interfaces will become
actually standard, and so we must be prepared to built a new toolkit (a Motif one?). We can do it at low
cost specializing again the XEiffel classes.

At the end some consideration about object-orientedness and toolkit. In "70 Dijkstra noted that the more
“goto” was used the more error-prone the program was, and so he killed the instruction “goto”. Today we
can say that not only “goto” are dangerous to every day programming, but also “loop™, “if”” and other
control instructions so, walking on the Dijkstra road, we should avoid using them. Of course, somewhere
must be written also control instructions, but as more as possible, they must be written in reusable classes.

A toolkit, in my opinion, is the tool for programming without explicit control instruction. Perhaps this
could be the definition of toolkit. Of course, object oriented languages offer the best environment for
building and using toolkit, as proved by our experience.

Acknowledgements

The XEiffel library and the OPEN LOOK toolkit has been developed by Dott. Marco Crescioli, Ing.
Luciano Papini and myself. 1 would like to gratefully acknowledge Prof. Giovanni Soda of the Universita
degli, Studi di Firenze for his constructive criticism to this paper, MariaTeresa Bonarini and Sabrina
Papucci for their good typing service.

Bibliography
B. Meyer, “Object-oriented Software Construction,” Prentice Hall, 1988.

“OPEN LOOK Graphical User Interface Functional Specification,” February 1989 (Revision 15, prerelease
version).

EUUG Autumn 89 — Vienna, 18-22 September 281

EUUG Autumn 89 — Vienna, 18-22 September

Efficient implementation of low-level synchronization primitives in the UNIX-based GUIDE kernel

Efficient implementation of low-level synchronization primitives in
the UNIX-based GUIDE kernel.

D.Decouchant

Laboratoire de Genie Informatique

E.Paire, M Riveill

Centre de Recherche BULL
Unite Mixte BULL-IMAG Systemes
Z.1. de Mayencin
2, Rue de Vignate
38610 Gieres, France
decoucha@imag.imag fr
paire@imag.imag fr
riveill@imag.imag fr

ABSTRACT

When developing new and complex applications on top of UNIX system, implementors
are usually faced with synchronization problems whose solution is not simple. This is
especially true when such applications are in fact a new system level which defines a
different model of synchronization. Standard mechanisms normally provided are simple,
general but not efficient enough when heavily used. Synchronization implementation
should be of low cost with respect to other system components, but this is not usually the
case. This paper first summarizes the synchronization mechanism required by our
object-oriented environment, then describes the implementation of our final solution,
which was derived in several steps, and finally presents experience and performance
measurements of different progressive improvements.

1. Introduction

The work described in this presentation is carried out in project GUIDE, a joint project of Laboratoire de
Genie Informatique and Centre de Recherche BULL at Grenoble. This group is also part of the
COMANDOS ESPRIT Project. Project GUIDE develops a specific implementation of the COMANDOS
object-oriented architecture [Hor87a]. The first version of this implementation is based on UNIX and is
described in [Dec88al.

A high-level synchronization mechanism has been defined to control access to shared objects [Dec88b].
This paper concentrates on the efficient implementation of this mechanism on UNIX.

2. Synchronization on Shared Objects in Guide

2.1. Object model

Let us briefly remind the main features of our object model.

e Objects are passive entities. An object is the association of a set of data (some of which are visible
attributes, and the others internal variables), and a set of methods.

e Objects are typed. A type specifies attributes and signatures of methods applicable to the objects of
that type.

e A class describes an implementation of a type. It specifies the data internal representation and the
methods code. A type may be implemented by several different classes.

EUUG Autumn ‘89 ~ Vienna, 18-22 September 283

Efficient implementation of low-level synchronization primitives in the UNIX-based GUIDE kernel

Types and classes are organized in a hierarchy; the current version supports single inheritance.

Objects are persistent (the lifetime of an object is independent of that of the program in which the
object was created).

Objects are internally named by references, which allow to locate an object system-wide. References
may be embedded into objects, thus providing the means to build complex structures. These structures
may be distributed, although an individual object is always located on a single node.

Computation is organized into a two-level scheme: jobs and activities. A job may be viewed as a
“distributed virtual machine™: it may spread over several nodes and dynamically diffuse. A job defines
a multi-node address space in which objects may be loaded on demand. Within a job, activities are
defined as sequential threads of control. The execution of an activity is a sequence of (synchronous)
method calls to objects.

Shared objects are the only means of communication between activities, within a job or between
different jobs.

Jobs and activities are special objects for which methods are provided by the operating system.

The motivation for the choice of a passive object model has been derived from the intended use of the
system. We expect to use a large number of fairly small objects, and to build many composite structures.
We therefore preferred to avoid the overhead of associating one or several processes to an object.
However, the model still allows to implement “servers” (or “guardians”) in the form of a job with multiple
activities and shared objects used as interfaces. Such a server may even be distributed on several nodes.

The object model is supported by a language, which is described in [Kra89a] Within the language, support
for concurrent activities within a job is provided by a COBEGIN-COEND construct, in which the “join” is
controlled by a termination condition, which allows (for instance) to wait for the termination of all
activities, of the first activity, etc.

2.2. Synchronization mechanism

Shared objects introduce the need of a synchronization mechanism. In accordance with the object model,
we choose to associate this mechanism to objects, not as separate synchronization primitives within
activities. Thus an object is entirely self-contained, including the specification of synchronization.

Since a class provides a model for the implementation of objects, it is also the natural place for the
description of the synchronization. This is achieved by a CONTROL clause; if this clause is not present in
a class description, the objects of the class have no synchronization constraints.

A CONTROL clause is essentially defined as a set of activation conditions (i.e. guards) associated to the
methods of the object. If an activity calls a method of the object, the guard must be true in order for its
execution to proceed. Guards are expressed in terms of the internal variables of the objects and of internal
counters maintained by the system. These counters are defined as follows for each method m:

invoked (m) # invocations of method m

started (m) # non-blocked invocations of method m
completed(m) #completed executions of method m

current (m) # activities currently executing method m

pending (m) # activities currently blocked on invocation of method m

These counters are not independent since

current (m) = started(m) - completed(m)

pending (m) invoked (m) - started(m)
For example, the “readers-writers” synchronization scheme may be expressed as follows, if writers have
priority:

CONTROL
Write: (current (Write)=0) AND (current (Read)=0):;
Read : (current (Write)=0) AND (pending(Write)=0);

EUUG Autumn ‘89 — Vienna, 18-22 September

Efficient implementation of low-level synchronization primitives in the UNIX-based GUIDE kernel

In this example, an activity which calls the Write or Read method must first evaluate the control clause
associated with method. Each control clause returns a boolean value that indicates the possibility to
execute the requested method. The Write method may be run only if the current number of Write
method calls and Read method calls are both zero. The Read method may be run only if the current
number of Write method call is zero, and the number of pending Write method is also zero. The
Read control clause is not expressed is terms of Read counters, so several Read method calls may be
performed in parallel.

3. Implementation of the Synchronization Mechanism

The current implementation of the GUIDE system is based on UNIX. Activities are mapped on UNIX
processes and shared objects are represented in shared memory (the implementation details are described in
[Dec88a]). We therefore had to rely on the UNIX primitives for an efficient implementation of the high-
level synchronization scheme described in section 2.

Translation and evaluation of the high-level synchronization constraints expressed by a user are performed
in each GUIDE system call by the following code:

/* PROLOGUE: Synchronization expression evaluation */

P (Synchro Eval); .

WHILE (NOT MethodSynchroFuncticn(object)) DO
/* Test the Control clause associated */
/* with the Effective Method Code */

BEGIN
/* Activity must wait on this object */
/* 1) Insert its identification into the object x/
/* waiting activity list */
/* 2) Release the CPU */

Wait On_This Object (object);
V(Synchro_ Eval);
Stop This_Activity():
P (Synchro Eval);
END
V{(Synchro Eval);

/* BODY: Effective call to the requested object method */
EffectiveMethodCall () ;
/* EPILOGUE: Restart of stopped activities x/

P (Synchro Eval);
activity = FirstﬁWaiting_Activity_Oniobject(object);

WHILE (activity != NIL_ACTIVITY) DO
/* BAll waiting activities must be resumed because */
/* they must themselves re-evaluate their own */
/* synchronization expressions. Many resumed */
/* activities may really restart in parallel, while */

/* the others return to wait for a future evaluation. */
BEGIN
Resume Activity(activity);
activity = Next Waiting Activity_On Object (object);
END
V(Synchro Eval};

EUUG Autumn ‘89 — Vienna, 18-22 September 285

Efficient implementation of low-level synchronization primitives in the UNIX-based GUIDE kernel

4. UNIX Methods for Internal Synchronization

4.1. Standard semaphore synchronization

UNIX System V provides a natural way of synchronizing independent processes: these are semaphores
(semget(2), semop(2), semctl(2)), whose characteristics are:

e Their identification is a key whose uniqueness must be handled by applications themselves.

e They are “generalized semaphores”, which means that within one system call, many “atomic”
operations on many semaphores in the same group may be performed, and the global operation is
atomic.

e Their existence is permanent in the system, even after the death of their creating process.
e They provide access rights based on the classic owner-group-other UNIX protection levels.
For our usage, they present two major drawbacks:

e They are very slow because we often use them, and most of the time, the operations involved are
non-blocking (take a look at the final performance comparison table in section 5 of this paper).

e We must provide a mapping between the GUIDE objects to protect and the semaphore keys.

The main advantage of this solution was its simplicity. It was used for the first implementation, and we
decided to change when the performance experiments showed us that synchronization was the most
expensive part of the GUIDE kernel.

4.2. Other kinds of synchronization

The natural way to upgrade performance is to run synchronization operations in user space. We will reach
the perforrance maximum speed depending on the access time of the item used as semaphore counter (a
part of shared memory in our case). The use of “subtract quick indirect” and “add quick indirect”
assembly operations permits the counter management in mutual exclusion because we only use
monoprocessor machines. And this actually works well in most of our tests. The method used was:

o For P(sem):
if (increment (i)) {
push me in the waiting queue(i);
pause() ;

e For V(sem):
if (decrement(i)) {
P = get next process in the queue(i);
kill (p, wakeup):
}

The method is attractive and simple, but provides a big trap due to the UNIX process scheduling which is
appropriate for a time-sharing kernel. In this case, this means that between the “increment(i)” operation,
and the “paise()” system call, the CPU may be preempted and allocated to another process. Unfortunately,
the scheduled process may operate a V(sem) operation on the semaphore, which will produce the deadlock
of this mechanism: The process running the P(sem) operation may receive the signal when rescheduled, go
on into the “pause()” system call, and wait forever since it has already received the signal whose goal was
precisely to make it leaving the *“pause()”.

This mechanism is too coarse and thus needs to be refined.

4.3. The complete mechanism

The goal to reach is to suppress the gap existing between the “increment(i)” operation and the “suspend”
operation initiated by the “pause()” system call. The classic solution is to use the “‘setjmp/longjmp(3)”
library call, whose generic explanation is: “non local goto”. The complete mechanism becomes:

EUUG Autumn 89 — Vienna, 18-22 September

Efficient implementation of low-level synchronization primitives in the UNIX-based GUIDE kernel

e For P(sem):
#include <setjmp.h>
jmpbuf ret;
signal (SIGUSR1, onsig);
if (setjmp(ret) == 0) {
if (increment (i)) {
push me_in_the sem_queue(1i);
pause () ;

onsig (i) {
longjmp (ret, 1)
}

V(sem) is not modified. We thus insure that the process executing P(sem) never falls into the “pause()”, if
rescheduled before executing the “pause()” system call. We want to warn people on a particular point:
when you use a “longjmp()” in a signal handler, the future behaviour of the signal mechanism for the signal
it is used to, is UNIX Version dependent; it depends also on the system call used to associate the handler to
the signal (signal(), sigset(), sigvec(), ...).

The main drawback of this mechanism is the complexity (signal management, number of library and
system calls, ...). The last point decreases the performance of this system, whose main advantage is its
portability on any UNIX system. This is the reason why we decided to develop a different solution. In fact,
we do not implement this complete solution and prefer to examine immediately the following one, which is
more flexible and rich.

4.4. The driver solution

A semaphore is in fact an association between a counter and a queue of waiting processes. The main
problem encountered in the precedent solution is the fact that we do not control the CPU allocation
between the test of the counter value and the insertion of the process into the waiting list.

One way to solve this problem is to develop into the kernel the sequence of mutual exclusion. In fact, UNIX
offers to its users a way to develop pieces of kernel code even if they have no access to the kernel sources:
writing a new driver. In addition, most UNIX kernels are today not preemptible, which means that if a
process runs a part of the kernel, it may be interrupted only by hardware interrupts, and in this case, it will
get the CPU back after return from the interrupt. This solves in a nice manner the problem of mutual
exclusion in a monoprocessor machine.

In UNIX, there are two sorts of drivers: character drivers and block drivers. The latter are used if it is
necessary to pass through a cache (block cache) and are usually reserved for mass-storage drivers. The
link between drivers and other parts of the kernel is achieved through a kernel table (called “cdevsw[]™)
whose index is the major number of device, and elements entry points to the driver functions. There are at
most open, close, read, write, ioctl, ... It is then quite easy (with the help of manufacturer documentation)
to add a driver as a piece of kernel while keeping the kernel independence of the GUIDE system.
Moreover, this piece of kernel will do exactly what we want, and will of course be efficient.

We will use two ioctl commands to support P(sem) and V(sem) operations, while using the “open()” and
“close()” normal operations to deal with initialization and shut-down. One immediate advantage is the
possibility to initialize each time we want the semaphore driver at any “open()”. We notice that the close
driver routine is called only on the last “close()”, while the open routine is called at each “open()”. We
introduce an ioctl function with two commands: GUIDE_SEM_P and GUIDE_SEM_V, and a semaphore
value initialization command: GUIDE_SEM_INIT.

The P(sem) and V(sem) operations automatically becomes ioctl system calls with the right command
(GUIDE_SEM_P and GUIDE_SEM_V). The simplicity and the ability to write our own Pprocess
synchronization are the main characteristics of this solution. The major drawback remains in the fact that
the modification of the driver needs a kernel relinking and a reboot of the system, and that we introduce
GUIDE system configuration parameters at different places in a machine.

EUUG Autumn 89 - Vienna, 18-22 September 287

Efficient implementation of low-level synchronization primitives in the UNIX-based GUIDE kernel

From a performance point of view, the results were better (cf. the final performance table), but still not
sufficient. So we imagined a compromise between the two precedent solutions linking the simplicity of the
kernel driver and the performance of the user level calls.

4.5. The final solution

Our goal is to minimize the number of context changes due to system calls to keep the performance level
reached by the user level synchronization, since the P(sem) operations in our system are most of the time
non blocking. In such cases, system calls are a waste of time and we imagine a system with two levels of
synchronization:

e Atuser level.
e Atkernel level.

The kernel level mechanism is heavier than the user level and is called only when the P(sem) operation is
blocking or when the V(sem) operation requires inter-process communication. The semaphore counter
always contains the number of processes waiting for the resource, while the increment and decrement
remains the “add quick indirect” and “subtract quick indirect” assembly operations on MC68020.

The P(sem) operation becomes:
if (increment (i))
ioctl (fd_driver, GUIDE SEM P, i);

The V(sem) operation becomes:
if (decrement (i))
ioctl (fd_driver, GUIDE SEM V, 1i);

The user level is reduced to the two functions “increment(i)” and “decrement(i)” written in assembly
language and which role is to modify the counter value in an atomic operation. All the needed inter-
process communication and synchronization are implemented as a kernel driver whose listing is given in
annex.

The counter value is a rough approximation of the real and atomic value which is computed in the kernel
IF NEEDED. In fact, the control traps into the driver only on a real mutual exclusion or on a wrong one
generated by a scheduling policy. It is the reason why we call this mechanism a “two-level lazy
synchronization”.

We do not need the UNIX semaphore “undo” flag, because, if a process dies between P(sem) and V(sem)
operations, it is a GUIDE system error on the object locked, and an emergency procedure must be applied
to this object.

4.6. GUIDE implementation details

This final solution is used at two different levels in our synchronization mechanism: first, each object in our
system has an entry in a fixed size array, each entry of which represents a currently mapped object. We use
the object index in this array to index the semaphore array present in the kernel. This semaphore is used as
synchronization evaluation semaphore for one given object and its counter is initialized to 1. When an
activity has to stop, it must use a private semaphore on which it will run a P(sem) to stop, and on which the
resuming activity will perform a V(sem). Since we use an array with the same characteristics as those of
the mapped objects, we will use the same indexing method for activity semaphores which will be initialized
to 0.

One other advantage which appears with such a mapping is the possibility to avoid mapping between
semaphore array entries and semaphores.

5. Experience and Performance

A prototype implementation of GUIDE has -been developed on top of UNIX, on a local area network
connecting Sun3, Bull DPX1000 and Bull DPX2000 workstations [Dec88a] This prototype has been in
experimental use for 6 months, and several medium scale applications have been developed in the GUIDE
language, for which a compiler has been written. The system supports multi-node computations and a
distributed persistent storage. The synchronization mechanism has been used in several applications.

EUUG Autumn'89 — Vienna, 18-22 September

Efficient implementation of low-level synchronization primitives in the UNIX -based GUIDE kernel

The performances of the intermediate solutions, developed for synchronization mechanism
implementation, have been measured with UNIX processes that performed sequences of P(sem) and V(sem)
operations. The following table shows the user elapsed time (in microseconds) to perform a P(sem)
operation followed by a V(sem) operation.

of concurrent processes 1 4 8 16
Standard UNIX Semaphores 850 | 3500 | 9400 | 12800
Our semaphore driver 400 | 1500 | 3100 4800
Our “two-levels” semaphore 10 40 85 140

Figure 1: Performance Comparison Table.

The “increment(i)” and “decrement(i)” parts of P(sem) and V(sem) operations are implementeded as
subroutines. So, we lost a few microseconds to run the “jump to subroutine” and “return from subroutine”
assembly instructions. But the main interest is the scale difference between the three solutions.

It is important to point out that this solution is general enough to be reused by other kinds of UNIX
applications. However, for using such a method in a multi-processor environment, it is necessary to protect
the “increment(i)” and “decrement(i)” parts of P(sem) and V(sem) with operations insuring atomic access
between processors. This may be provided by “Compare And Swap with operand” MC68020 instructions.
We may use them, but we prefer keeping the simplicity of the “add quick™ and “subtract quick”
instructions.

References

[Dec88a] D. Decouchant, A. Duda, A. Freyssinet, E. Paire, M. Riveill, X. Rousset de Pina, and G.
Vandome, “GUIDE: An Implementation of the Comandos Object Oriented Architecture on
UNIX,” Proc. EUUG Autumn Conf., pp. 181-193, Lisbon, October 1988.

[Dec88b] D. Decouchant, S. Krakowiak, M. Meysembourg, M. Riveill, and C. Roisin, “A
Synchronisation Mechanism for Typed Objects in a Distributed System,” Workshop on
Object-Oriented Concurrent Programming, San Diego, October 1988. In SIGPLAN Notices,
1989

[Hor87a] C.J. Hom and S. Krakowiak, “An Object-Oriented Architecture for Distributed Oftice
Systems,” Proceedings ESPRIT Technical Conference, Brussels, September 1987.

[Kra89a] S. Krakowiak, M. Meysembourg, M. Riveill, and C. Roisin. “Design and Implementation of an
Object Oriented, Strongly Typed Language for Distributed Applications,” GUIDE report
number 8, June 1989. To appear in Journal of Object-Oriented Programming

EUUG Autumn 89 — Vienna, 18-22 September 289

Efficient implementation of low-level synchronization primitives in the UNiX-based GUIDE kernel

Appendix: The Driver Source Code

First, we give the driver include file which will be included in user application source code to use the driver
functionalities.

/* _________________________________ */
/* TIoctl block parameter structure */
/K e */
typedef struct {

int semNo; /* semaphore number */

int semval; /* semaphore init value:

only used with GUIDE SEM INIT flag */

} T _guideSemParam;
/* __ */
/* Kernel ioctl () commands */
/* __ */

#1f (defined(sm90) && (!defined(SPS TEST)))
/* Semaphore command introducer */

#define GUIDE SEM ("G’ << 8)
/* Semaphore init */
#define GUIDE SEM INIT (GUIDE_SEM | 1)

/* Semaphore P operation */
#define GUIDE_SEM P (GUIDE SEM | 2)
/* Semaphore V operation */
#define GUIDE SEM V (GUIDE SEM | 3)

#endif

#ifdef sun

/* Semaphore init */

#define GUIDE_SEM INIT = IOW(G,1,T guideSemParam)

/* Semaphore P operation */

#define GUIDE_SEM P IOW(G,2,T guideSemParam)
/* Semaphore V operation */

#define GUIDE_SEM V _IOW(G,3,T guideSemParam)
#endif

290 EUUG Autumn'89 — Vienna, 18-22 September

Efficient implementation of low-level synchronization primitives in the UNIX-based GUIDE kernel

And finally, we present the UNIX driver source code.

#include <sys/types.h>
¥ifdef sun

#include <sys/time.h>
#include <sys/ioctl.h>
#endif

#ifdef sm90

#include <ufs/dir.h>
#endif

#include <sys/proc.h>
#include <sys/param.h>
#include <sys/user.h>
#include <sys/file.h>
#include <errno.h>
#include "driver/guideSem.h"

i */

typedef struct {
int nextProcIndex; /* next waiting process structure */
struct proc *uProcAddr; /* waiting process structure address */

} T procElem;

#define P_NIL INDEX -1

/* __ */
typedef struct {

T long val; /* semaphore value */

int queue; /* queue head of waiting processes */
} T guideSem;
J F e e o —m oo x/
/* Error Return function different between BSD and SV */
/* __ */
#ifdef sm90
#define RETURN (val) { u.u_error = val; return; }
#define RETNUL return
#endif
#ifdef sun
#define RETURN (val) return(val)
#define RETNUL return(0)
#endif
/* ____________________________ */
/* SEMAPHORE DRIVER VARIABLES */
2 it */
int g_procFreeHead;

T procElem giprocTab[MAxiPROC_ELEM];
T_guideSem q_sem[MAXﬁSEM];

static void procElemInit ()

{

int i;

for (i = 0; i < (MAX PROC_ELEM - 1); i++)
g_procTab[i].nextProcIndex =1 + 1;

g_procTab[i].nextProcIndex = P _NIL INDEX; /* Last process element */
g procFreeHead = 0; /* Head of process element free list */

}

/* ______________________________________ */

static int procElemAlloc ()
{

int result;

if (g_procFreeHead == P_NILAINDEX)
return (P _NIL_INDEX);
result = g procFreeBead;
g_procFreeHead = g_procTab[result].nextProcIndex;

EUUG Autumn ‘89 - Vienna, 18-22 September 291

Efficient implementation of low-level synchronization primitives in the UNIX-based GUIDE kernel

return (result);

K */
static void procElemFree (processIndex)
int processIndex;

{

g_procTab{processIndex].nextProcIndex = g procFreeHead;
g_procFreeHead = processIndex;

/* ______________________________________ */
static void addTolist (headAddr, processlIndex)
int *headAddr;

register int processIndex;
{

g_procTab[processIndex].uProcAddr = u.u_procp;

if (*headAddr == P_NIL INDEX) { /* This list is empty */
*headAddr = g_procTab[processIndex]}.nextProcIndex = processIndex;
} else | /* There is at least one element */

g_procTab[processIndex].nextProcIndex = g_procTab[*headAddr].nextProcIndex;
g_procTab[*headAddr] .nextProcIndex = processlndex;
*headAddr = processIndex;

/‘k ______________________________________ */
static vold deleteFromList (headAddr, processIndex)
int *headAddr;
int processIndex;
{
int i,
previousProc;
i = processlndex;
do {
previousProc = iy
i = g procTab{i].nextProcIndex;
} while (i != processIndex);
if (previousProc == processIndex) | /* Cnly one element */
*headAddr = P_NIL INDEX;
} else if (previousProc == g procTab[processIndex].nextProcIndex) {
/* Only two elements in the list */
*headAddr =

g procTabpreviousProc].nextProcIndex =
previousProc;

)} else | /* At least three elements in the list */
g_procTab[previcusProc].nextProcIndex = g procTab[processIndex].nextProcInde:;
if (*headAddr == processIndex)

/* The element to be deleted was the list head */
*headAddr = g _procTab[processIndex].nextProcIndex;

/* ______________________________________ */’
static int extractFromlList (headAddr)
int *headAddr;
{
int result;
if (*headAddr == P_NIL INDEX) /* the list is empty */
return (P_NIL INDEX);)
else { /* the list is not empty */
if (g procTab[*headAddr].nextProcIndex == *headAddr) {

/* Only one element in the list result = *headAddr;

*headAddr = P NIL INDEX;

} else { /* More than one element */

result = g procTab(*headAddr].nextProclndex;

g_procTab|*headAddr] .nextProcIndex = g procTab([result].nextProcIndex;
}

return (result);

292 EUUG Autumn 89 — Vienna, 18-22 September

Efficient implementation of low-level synchronization primitives in the UNIX-based GUIDE kernel

/* ______________________________________ */
guideSemopen (dev, flags)

dev_t dev; /* device to open */
int flags; /* open flags */

{

if (flags & FWRITE) {
printf ("GUIDE semaphore driver initO0);

procElemInit ();

}

RETNUL;
}
J K e e */
guideSemclose (dev, flags)
dev_t dev; /* device to close */
int flags; /* close flags */
{

RETNUL;
}
e e * /
guideSemioctl (dev, cmd, arg, flags)
dev t dev; /* device to control */
int cmd; /* command to apply */
caddr t arg; /* argument */
int flags; /* open flags */

{

T _guideSemParam parameters;
register T _guideSemParam *params;
register int processlIndex;

switch (cmd) |
case GUIDE SEM INIT:
{

#ifdef sun
params = (T_guideSemParam *) arg;

#endif

#ifdef sm90

params = ¶meters;
if (copyin (arg, (caddr_t) params, sizeof (T_guideSemParam)) == -1)
RETURN (EFAULT) ;
#endif
if ((params->semNo < 0) || (params->semNo >= MAX_ SEM))

RETURN (EINVAL);
g _sem[params->semNo].val = params->semVal;
g_sem(params->semNo] .queue = P _NIL INDEX;
RETNUL;
break;
}
case GUIDE_SEM P:

{

#ifdef sun
params = (T_guideSemParam *) arg;

#endif

#ifdef sm90

params = ¶meters;
if (copyin (arg, (caddr_t) params, sizeof (T_guideSemParam)) == -1)
RETURN (EFAULT) ;
#endif
if ((params->semNo < Q) || (params->semNo >= MAX_ SEM))
RETURN (EINVAL);
if ((--g_sem[params->semNo].val) < 0) {
if ((processIndex = procElemAlloc ()) == P_NIL INDEX)
RETURN (EAGAIN); /* No more waiting process structure */

addTolist (&g_sem[params->semNo].queue, processIndex);

EUUG Autumn 89 — Vienna, 18-22 September 293

Efficient implementation of low-level synchronization primitives in the UNIX-based GUIDE kernel

if (sleep (&g procTab{processIndex], (PZERO + 1) | PCATCH)) {
deleteFromList (&g sem[params->semNo].queue, processIndex);
procElemFree (processIndex);
g sem(params->semNo] .val++;
RETURN (EINTR) ;

} .
RETNUL;
break;

\

1
case GUIDE_SEM V:

{
#ifdef sun
params = (T_guideSemParam *) arg;

#endif

#ifdef sm90
params = ¶meters;
if (copyin (arg, (caddr t)
RETURN (EFAULT);

params, sizeof (T guideSemParam)) == -1)

#endif
if ((params->semNo < 0) || (params->semNo >= MAX SEM))
RETURN (EINVAL);
({(++g_sem[params->semNo].val) <= 0) {
if ((processindex = extractFromList (&g_sem[params->semNo].queue))
== P_NIL_ INDEX)
RETURN (ESRCH); /* There isn’t waiting process on this semaphore */
wakeup (&g_procTab[processIndex]);
procElemFree (processIndex);
}
RETNUL;
break;
}
default:
{
RETURN (EINVAL);
break;

EUUG Autumn 89 - Vienna, 18-22 September

Social Aspects of EUUG and USENIX

Social Aspects of EUUG and USENIX

John S. Quarterman

Texas Internet Consulting
701 Brazos Suite 500
Austin, TX 78701
US.A.
Jjsqg@longway.tic.com

ABSTRACT

EUUG and USENIX conferences are quite similar in many ways, but they also differ,
particularly in their social aspects. This paper presents some comments about technical
and social events scheduled as part of the conference proper, and about more informal
activities, The continental network cultures are contrasted. The purpose is not to show
that one conference is better than another; many of the more basic features are not
reproducible (and probably not desirable) in a different environment. But the organisers
of each conference have benefitted in the past by adopting some features of the other, and
still could do so.

1. Introduction

The basic topic of this paper is UNIX communities on the two continents, as reflected in and served by the
organisations, conferences, and networks. Details of the formal EUUG and USENIX organisations are
avoided here.

1.1. EUUG and USENIX

EUUG and USENIX are the major technical and professional associations related to the UNIX operating
system in Europe and North America, respectively. They each draw from a large community of people
who use and develop that system, and they serve similar functions for their communities. The conferences
and communities are similar enough that there is much interaction between them. Messages pass between
the continents over computer networks. People present papers at conferences on the other continent, or just
attend them. The newsletters of each organisation publish material from the other. The two sets of boards
of directors communicate frequently and occasionally fund joint projects, such as the current joint
representative to the ISO/IEC TC22 WG15 POSIX committee.

All this interaction has led to mutual curiousity. Many similarities, such as those just mentioned, are easy
to see. Some of the differences are also obvious, for example, about 400 people attend each EUUG
conference, while about 2000 attend the USENIX ones. Others are not well known, but are clear if
investigated, e.g., EUUG has about 4000 members because all members of EUnet are also EUUG members,
while USENIX has about 2500 members and has never tied itself closely to the USENET or UUCP
networks. Large facts such as these lead to more subtle effects, some of which are discussed in this paper.

1.2. Networks

The computer networks used by these communities are as important to them as these conferences. Some
important similarities and differences between the networks and their services on the two continents are
discussed below.

EUUG Autumn 89 — Vienna, 18-22 September 295

Social Aspects of EUUG and USENIX

1.3. Organisation of This Paper

This paper is arranged in three main parts after this introduction:
e Technical Events

e Social Events

e Networks

Within each of these sections, the presentation starts with the more formal events or aspects and moves to
more informal ones. There is a question at the end, and acknowledgments.

2. Technical Events

The technical events are the reasons people use to persuade their employers to send them to these
conferences, so we’ll discuss them first.

2.1. Formal Technical Agendas

The formal technical agendas of the conferences are their most similar aspects. Each organisation holds
two annual conferences with a formal program chair, a program committee, and three days of presentations
that last about 20 minutes each, usually plus a keynote speaker. Most of these conferences have required
abstracts be submitted for consideration, both publish proceedings, and both reserve the right to cancel
presentations if papers are not received in time for printing in the proceedings. USENIX has recently
experimented with requiring submissions of full papers, and come to the conclusion that this should be
done at most every other conference.

Each conference has two days of full-day tutorials on specialised topics.

Both EUUG and USENIX hold vendor exhibits. USENIX usually only does this at their summer conferences,
because their winter conferences are usually held concurrently with the UniForum conferences, and
UniForum includes a large trade show. EUUG does not have this restriction.

USENIX has a press room and a paid public relations person who publishes a daily conference newssheet.

In addition to their conferences, USENIX also holds frequent small two or three day workshops on
specialised topics. These topics have included graphics, supercomputers, software management,
transaction processing, large systems installation administration, and distributed systems. One workshop,
on the Ct language, has turned into an annual conference series, although there are still attempts to keep a
small workshop associated with it. These workshops are widely liked by the community. But they are also
widely seen as a major reason for the decline in number and quality of papers submitted to the main
conferences in the last few years: people submit papers to a workshop specialising in their topic instead of
to a conference.

EUUG has not held any workshops so far. Discussions between the EUUG Executive and the USENIX
Board about a possible joint workshop on system administration to be held in Europe are planned for the
Autumn 1989 EUUG conference in Vienna.

2.2. Informal Technical Events

Both conferences have panel discussions on the regular technical agenda from time to time. The credibility
and popularity of these waxes and wanes.

USENIX schedules WiP (Work in Progress) sessions, to which anyone can submit a one-page abstract.
Time slots of ten minutes are assigned first-come, first-serve. WiPs seem to be quite popular, and are
useful for work not ready in time for submission of a regular paper. They are also used for various other
purposes, such as to get a feel for interest in a topic. WiPs are normally scheduled on the regular daytime
technical agenda.

BOF (Birds of a Feather) meetings are held at USENIX conferences. A BOF is an informal gathering with a
moderator but no formal agenda, held at the request of conference attendees. Each is traditionally two
hours long and is held in the evening. Some BOFs are scheduled months in advance, and any that are
scheduled by the time the preprinted agenda goes to press are listed in it. Others are scheduled at the
conference, and may be added up until the actual time slot by writing on a board displayed for that purpose.

EUUG Autumn 89 - Vienna, 18-22 September

Social Aspects of EUUG and USENIX

These BOFs have become so popular at USENIX that there are as many as twelve scheduled against each
other on the two evenings traditionally reserved for them, Thursday and Friday. BOFs were also scheduled
on Tuesday and Wednesday at the most recent USENIX conference, but even that does not seem to be
sufficient. It is likely that the next USENIX conference, Winter 1990 in Washington, D.C., will schedule
BOF:s during the day. possibly opposite some technical program items.

Because USENIX supplies meeting space for BOFs, any conference attendee must be admitted, and money
cannot be collected. There is no restriction on topics to be discussed. Most BOFs are technical, but some
are social. Some have led to changes in the networks and the conferences. One, the Women’s BOF,
presented proposals to the Board for most of the new conference events described here.

There has never been a BOF at an EUUG, to my knowledge. Something called that was held at the Spring
1989 meeting in Brussels, but was in fact a series of formal presentations followed by a panel discussion.

USENIX has had a terminal room at each conference starting with Summer 1988 in San Francisco. The
basic service is dialup modem access. Since Winter 1989, it has also included local computers and direct
access to the TCP/IP Internet by means of a dialup SLIP connection. The original problems were finding
equipment to use, volunteers to staff the room, and conference attendees interested in using it. The current
problem is deciding what equipment to accept, because more is being offered than can be used. This
facility has become an accepted and expected part of the conference, and the room also serves as a social
gathering place.

Other recent USENIX innovations include an opening night party (usually Sunday evening, and intended to
allow those who came for the early tutorials to meet), an orientation session for newcomers (usually
Monday evening) a free short tutorial on writing and presenting papers (often Tuesday), and a lounge (with
soft drinks) open throughout the conference. Other possibilities are being considered for upcoming
conferences. Some of these might be useful at EUUG. Others, such as the opening night party, are clearly
not needed (everybody gets together in the bar anyway).

These USENIX events that are not part of the formal technical program have become sufficiently numerous
that the USENIX Board of Directors has appointed a Chair of Informal Programming for each conference
since the Summer 1989 one in Baltimore. The purpose of this position is to allow the Technical Program
Chair to concentrate on organising the technical program, while still ensuring that someone organises the
other events. The Informal Chair is in charge of organising events, especially for finding volunteers to run
them.

3. Social Events

The social events are a large part of why people like the conferences when they go. They are also
invaluable opportunities to meet technical peers.

3.1. Scheduled Social Events

The major scheduled social event held by each organisation is the mid-conference reception, with food and
drink in some attractive local setting. EUUG also includes lunches in the registration fee. USENIX only
does this for tutorials, and supplies only boxed lunches. As mentioned above, USENIX has an opening
party, an orientation session, and a lounge.

An EUUG specialty that USENIX has tried to duplicate without success is the contest. The ermno contest of
years ago is still remembered fondly, even if ENOJOY. The awards presented are also better at EUUG.

3.2. Unscheduled Social Events

Non-scheduled social events and aspects are seldom described in writing, although conference attendees
spend much time discussing them.

3.2.1. Discussions
Technical discussions are more politely phrased in Europe. Some speakers are so reserved as to be boring,
but some speakers in North America are so disorganised as to be incomprehensible.

Papers at EUUG are often about completed projects, with all the conclusions and reasons wrapped up in a
neat package, and little room for further development or question. EUUG papers also tend to be very tightly
focussed on specific projects.

EUUG Autumn 89 — Vienna, 18-22 September 297

Social Aspects of EUUG and USENIX

USENIX attendees are more likely to write about part of a project even before it is finished, or to write
about general subjects that are not limited to a particular project.

EUUG question and answer periods draw fewer questions from the audience. Attendees don’t usually ask
questions unless a topic directly affects them. One almost never says a speaker was wrong.

Questions asked at USENIX conferences tend to be more thorough, and more oriented towards a solution to
a problem. The audience practically competes to show the speaker was wrong.

USENIX is incorporated in the State of Delaware and is thus a U.S. (not-for-profit 501(c)3) corporation, but
it has always been international. Canadians have been involved from the beginning, and there are many
members from elsewhere. However, language is seldom a problem at USENIX.

EUUG is far more international due to the national divisions of Europe itself. Most EUUG conferences have
English as their offical language, but that is not the native language of many of the attendees. Adherence to
presentational caution behooves one in avoidance of obfuscation, cant, and presto prose. (If you didn’t
understand the last sentence, you saw the point illustrated.) This applies no matter what the speaker’s
native language is. A native English speaker speaking quickly and a speaker of another mother tongue
speaking quickly are equally unintelligible to large (though perhaps different) parts of the audience.

The effect of nationalities extends not only to language but also to social conventions and can lead to
miscomprehension. But Europeans who think that the U.S. is all the same will be in for a surprise when
they attend their first USENIX conference.

3.2.2. Eating and Drinking

As already mentioned, there are about 2000 attendees at each USENIX and about 400 at each EUUG. Just
finding someone at a USENIX can be difficult, while most EUUG attendees can be located in the hotel bar.
This difference in size partly accounts for many other things, such as the higher attendance fee at EUUG,
although the inclusion of lunches in the fee also contributes to that.

Everyone at EUUG eats lunch together, and the reception is a sit-down affair. This is impossible at
USENIX, because there are just too many people. There is usually no restaurant list distributed with EUUG
conference materials, but there are usually many restaurants within walking distance.

Drinking is more socially acceptable at EUUG. Wine is served at lunch, and it seems that almost everyone
has wine or beer at dinner and goes to a bar afterwards. EUUG has a semi-official beer for each conference.
Even Americans at EUUG agree that “the beer’s better here.” Mixed drinks and liquors are more popular at
USENIX, but not during the day, and only for some attendees.

There’s no ice tea at EUUG, and no ice for that matter, and fewer soft drinks. There is coffee, and usually
good coffee.

Europeans roll their own cigarettes and use good tobacco. Smoking is far more common in Europe.

3.2.3. Vendor Hospitality

Hospitality suites are common at USENIX. These are suites in the conference hotel that are rented by
vendors so that they can offer free refreshments and access to technical people in hopes of attracting
conference attendees so that they can improve the visibility of their company, find potential employees, or
even sell products. These hospitality suites are a big part of the evening socialising at USENIX. Some are
held at EUUG, but not as many, and people are more likely to just go out to a bar.

Vendors give away free trinkets (“freebies”) at the vendor exhibits and hospitality suites of both
conferences, but they tend to be better at USENIX (although they weren’t in Baltimore). Good examples
include the famous mt Xinu calendar with all three dates that 4.3BSD was released and humorous artwork,
and the Sun Microsystems shoelaces. HCR of Toronto probably is the most consistent, with good items
ranging from their “Sex, Drugs, and UNIX" buttons in Toronto 1983 to their “Condoms, Aspirin, and
POSIX” buttons at Baltimore 1989, not to mention their UNIX Port and their UNIX Founding Fathers plates.

There is a job board at USENIX, where people can advertise jobs wanted and offered.

EUUG Autumn 89 — Vienna, 18-22 September

Social Aspects of EUUG and USENIX

3.2.4. Composition

Conference attendance differs not only in size but also in composition. Perhaps twenty five percent of the
attendees at an EUUG conference are regulars who go to most EUUG conferences. There are such people at
USENIX, but not as large a proportion, and it seems to be more common to go to only one conference a
year. Few EUUG attendees go to a conference without support by their employer, and EUUG tends to be
somewhat more oriented towards organisations.

As someone put it, there are “fewer suits” at EUUG. Both organisations seem to worry about that less now
that they have been around for a while and their favorite software seems to be taking over the world. As
someone else put it “we were hypersensitive to suits in those days.”

The number of women at USENIX continues to increase, and is currently about fifteen percent. The number
of women at EUUG tends to be smaller, and of those seen at conferences, more are non-technical spouses;
the common USENIX phenomenon of couples of people both in the business is very rare at EUUG.
Nonetheless, babies are seen more often at EUUG, and attendees do not seem to expect day care. Many
USENIX attendees have children but do not bring them, complaining instead about the lack of day care;
there are tentative plans to provide this at the next conference.

The proportion of homosexuals at USENIX conferences is generally estimated at about twenty percent. If
there are any at EUUG, they are very inconspicuous.

Unmarried women report that they are “hit on”f almost never at EUUG and almost all the time at USENIX
conferences. If they ever accept at EUUG, they are very discreet about it. Europeans tend to be rather
reticent about discussing sexual habits in general, so I'll change the subject.

3.2.5. Swimming

EUUG meets in places like Portugal, where you could swim in the ocean or a salt water pool. USENIX
meets in places like San Diego, but only in the winter. But USENIX usually has pools (for the synchronised
swim team), and often a jacuzzi (for gossip).

3.2.6. Outside Issues

Public transportation in Europe is generally better than in North America, and there is a continental train
system that works, so getting to conferences and getting around once you get there is generally easier. This
may help account for the higher proportion of regular EUUG attendees.

Americans are more willing to double up in hotel rooms at conferences, but this could be because
European hotel rooms are smaller. Europeans stay with friends more, both at conferences and generally
when travelling. They also tend to travel in groups, and are more likely to stay or travel after a conference.
This may be partly because of the European tradition of six weeks vacation per year, while Americans
usually make do with two.

Telephones in Europe are incomprehensible, at least to Americans, and expensive. But, then, Americans
are also confused by currency exchange.

4. Networks

EUUG and USENIX draw from and influence communities that exist outside of the conferences. The
computer networks used by respective communities are some of the major determinants of the
communities, and differ qualitatively and quantitatively between the communities.

4.1. EUnet

EUUG can be seen as the political arm of EUner, the European UNIX network. All EUner members are
EUUG members. Almost all EUUG members and conference attendees have access to EUnet. So there is
one universal electronic mail service used by the EUUG community, and many newsgroups are also shared.
The continental X.25 infrastructure allows remote login to some extent, although this does not seem to be
widely used. The network is organised heirarchically according to national boundaries, fees are collected,
service is rather dependable, and there are concerted development efforts.

+ An American phrase meaning “propositioned sexually.”

EUUG Autumn 89 — Vienna, 18-22 September 299

Social Aspects of EUUG and USENIX

Some EUUG members may have access to other networks, such as EARN , HEPnet, or the Ean networks
[Karrenberg and Goos 1988], but those other networks do not appear to have a large influence on the
community. Many European countries have national research networks, such as JANET in the United
Kingdom or DFN in Germany. As influential as these may be nationally, they do not usually have much
effect on other nations, and they are not specifically oriented towards UNIX, unlike EUnet and its various
national branches. The European UNIX community has essentially one common network culture, that of
EUnet.

4.2. USENET, UUCP ,and UUNET

The network in North America corresponding to EUnet is two networks: USENET (news) and UUCP
(mail) [Todino and O’Reilly 1988]. These are far more loosely organised than EUnet. There is no
imposed hierarchical structure, and regional divisions tend to be more economic than political. There is no
close formal relationship with USENIX. There are no fees collected, except by the telephone companies.
Development efforts usually occur when people decide they need to be done, sometimes at BOFs at
USENIX conferences.

USENIX has, however, sponsored experiments in improvement of these two networks. For example,
UUNET , originally such a USENIX experiment, has proved to be a technical and financial success, and has
been spun off into a separate non-profit corporation. It performs many of the functions of cwi.nl (mcvax),
the central EUnet host, although it is in some senses more restrictive in what it supplies and in some senses
less. Unlike the average USENET or UUCP host, UUNET charges for access. It also provides authorised
access to the Internet .

4.3. The Internet

The United States is the center of an unusual network, the /nternet. This is a continental research and
academic network supported by many different agencies and companies. Although many of the long-haul
links are still subsidised by the federal government, the National Science Foundation (NSF) encourages
any new regional networks it funds to become self-supporting within a few years.

The Internet is sometimes confused with its predecessor, the ARPANET (named after DARPA, the
Defense Advanced Research Projects Agency). The major distinction is that the Internet connects a
variety networks using media at various speeds. It can do this because it uses a common set of high level
protocols based on the Internet Protocol (IP), and usually called TCP/IP. The ARPANET was one of the
constituent networks of the /nternet until it was retired this year.

This internetwork provides fast mail service and is increasingly used for carrying USENET news. But in
addition to these features it also provides interactive services such as one-to-one conferencing, remote
login, and, perhaps most importantly, file transfer. Various hosts on the network keep archives of large
amounts of software and other useful information. For example, the USENET newsgroup
comp.sources.unix is available from UUNET by anonymous FTP (login as anonymous, password guest).

There are many other computer networks in North America [LaQuey 1989]. Some are analogous to certain
European networks. BITNET in the U.S. and NetNorth in Canada are equivalent to EARN, and are
integrated into a common name and address space. HEPnet in North America and HEPnet in Europe are
essentially one large network. Others are more specialised. SPAN is mostly composed of Digital
machines running VMS. MFEnet caters to the Magnetic Fusion Energy community.

The networks used most by the UNIX community are USENET , UUCP , and the Internet. This produces a
certain social distinction between those who have access to the Internet and those who don’t. This
difference is diminishing as more groups and people join the Inrernet through CSNET or NSFNET , or who
gain access to many of the same archives and facilities through UUNET .

The services provided by the Internet are not widely available in Europe. A common European lament
seen in USENET newsgroups is “don’t tell us it’s available by anonymous FTP, that does us no good!”

4.4. 1ISO-0SI

A major difference between the continents is the wide use of X.25 in Europe. This allows almost any
machine to call almost any other using a packet protocol, rather than having to use modems to go through
the voice telephone system. X.25 is also rather widely used in Canada, but much less so in the United
States.

300 EUUG Autumn 89 — Vienna, 18-22 September

Social Aspects of EUUG and USENIX

The International Organisation for Standardisation (ISO) Open System Interconnection (ISO-OSI) layering
model and protocol suite are often cited as being the future of the networking world. At the moment,
however, there are few continental ISO-OSI networks, other than the European X.25 infrastructure (X.25 is
the basic ISO-OSI network layer protocol). The Ean networks and their succesor RARE Experimental
MHS Networks are widespread in Europe, in the sense that they exist in most countries, but they have few
users. There are national research networks based on 1SO-OSI, such as DFN in Germany. Most other
European networks have 1SO-OSI migration plans. Even the Internet has one. But no network originally
based on other protocols has as yet converted to ISO-OSI, to my knowledge.

The next release of the Berkeley Software Distribution (BSD), perhaps to be called 4.4BSD, and tentatively
scheduled for 1990, will include a complete ISO-OSI protocol suite implementation. The major reason for
the spread of TCP/IP was the earlier implementation of TCP/IP in 4.2BSD. It’s free, and everybody at
least looks at it when doing their own implementations. It runs in everything from mainframes to gateway
boxes. It will be interesting to see what effect the 4.4BSD ISO-OSI implementation will have.

It is worth noting that the ISO-OSI mail protocol, X.400, is more versatile than the SMTP protocol used in
the Internet , and the RFC822 mail format used both there and in EUnet and UUCP . 1t supports structured
documents, multiple human languages, and multi-media mail. But there is no [SO-OSI equivalent to news
and newsgroups.

4.5. The Matrix

Continental and other distinctions in network service are rapidly diminishing. Most networks are
interconnected at least for mail service [Frey and Adams 1989] into one worldwide metanetwork,
sometimes called the Matrix {Quarterman 1990]. Specifically, EUnet, UUCP, and the Internet are so
interconnected, and the two continental UNIX communities make use of this fact constantly. Similarly,
many newsgroups are shared between EUnet and USENET .

EUnet is installing high-speed dedicated links between Amsterdam and Paris, Stockholm, and other places.
These connect various European national and international networks such as FNET in France or
NORDUnet in the Nordic countries into a fast continental network. Since IP is used over them, they form
the backbone of a continental IP network, sometimes called Reseau IP Européen, or RIPE. These links
also interconnect most of the transatlantic links to the Inrernet in North America. Thus the classes of
service available to the EUUG community may soon be the same as those available to the USENIX
community.

5. Summary

USENIX conferences have more things to do, but EUUG conferences are often more fun. The networks
connect the communities regardless of what happens at the conferences.

5.1. A Question

Is EUUG following the development pattern of USENIX? Answers tend to range from “no,” because the
continental backgrounds differ so much, to “maybe,” because it is the same subject matter that draws the
communities together, and many former differences, such as those of network technologies, are dissolving.
What do you think? What will the development paths of the two organisations be? More importantly,
what should they be?

This question is important because many of the decisions that have shaped the paths of these organisations.
conferences, and networks, and thus indirectly the communities they serve, have been intentional. Such a
simple thing as a job board was a major point of contention at USENIX at one time. UUNET was not
invented by the USENIX Board, it was funded by them as the result of a proposal. The interrelations of
EUnet and EUUG are too well known to Europeans to repeat here. There is a major current controversy in
USENIX about what to do about the diminished quality of papers submitted to conferences. EUUG is
considering whether to have workshops. The boards of USENIX and EUUG listen to their attendees and
members, and need suggestions and proposals, not to mention volunteers.

EUUG Autumn 89 - Vienna, 18-22 September 301

Social Aspects of EUUG and USENIX

5.2. Acknowledgments

A structure has been imposed on the paper to make it readable, but in the end it is a compendium of
comments from many people who have attended EUUG or USENIX conferences, including Susanne
Steuermann, Susanne Smith, Debbie Scherrer, David Rosenthal, Marc Nyssen, Sharon Murrel, Dan Klein,
Daniel Karrenberg, Teus Hagen, Anke Goos, Linda Branagan, Eric Allman, Jaap Akkerhuis, and no doubt
others who will remind me. Thanks to all of you. The author is solely responsible for the interpretation
and presentation of the material in this paper.

References

[Frey and Adams 1989]
Donnalyn Frey and Rick Adams, /:/@ A Guide to Electronic Mail Networks and Addressing,
O’Reilly & Associates, Inc., Newton, MA, 1989.

[Karrenberg and Goos 1988]
Daniel Karrenberg and Anke Goos, European R&D E-mail Directory, European UNIX
systems Users’ Group, Buntingford, Herts., England, December 1988.

[LaQuey 1989]
Tracy Lynn LaQuey, Users' Directory of Computer Networks, Digital Press, Bedford, MA,
1989.

[Quarterman 1990]
John S. Quarterman, The Matrix: Computer Networks and Conferencing Systems Worldwide,
Digital Press, Bedford, MA, 1990.

[Todino and O Reilly 1988]
Grace Todino and Tim OReilly, Using UUCP and Usenet, O’Reilly & Associates, Inc.,

Newton, MA, 1988.

EUUG Autumn'89 — Vienna, 18-22 September

For further details, contact
The Secretariat

European UNIX® systems User
Group

Owles Hall, Buntingford, Herts SG9 9PL., UK
Tel: +44 763 73039

Fax: + 44 763 73255

Network address: euug@inset.uucp

SBN 0951318136

