European UNIX® systems User Group

CONFERENCE
PROCEEDINGS

“UNIX® GROWS UP”
SPRING 1987 Conference
Finland & Sweden

®UNIX is a Registered Trade Mark of AT&T in the USA and other Countries

EUUG

European UNIX® systems Use

SPRING’87

CONFERENCE PROCEEDINGS

On board M/S Mariella sailing between
Helsinki and Stockholm

May 12-14 1987

This volume is published as a collective work. Copyright of the material in this document remains
with the individual authors or the author’s employer.

IFurther copies of the proceedings may be obtained from:

EUUG Secretariat
Owles Hall
Buntingford
Herts

SG9 IPL

United Kingdom

UNIX is a registered trademark of AT&T in the USA and other countries.

ACKNOWLEDGEMENTS

Many people have contributed to the production of this volume. It is not possible
to thank them all individually, but the following deserve special note:

Programme Chair:
Ms Jean Wood
Digital Equipment Europe

Local Organisers:
Mr Bjorn Eriksen (Sweden)
Mr Pekka Nikander (Finland)

Programme Committee:
Mr Kim Biel-Nielsen
Mr Johan Helsingius
Mr Hans Albertsson
Mr Neil Todd

These proceedings have been produced with the kind help of i_s_I London.

Thanks to all the authors who submitted their paper in time and in the proper
format to allow complete typesetting with troff and the associated processors and
macros.

Finally it is appropriate to thank the many authors who submitted very good
papers, but were not selected for this conference.

Due to the nature of the venue it was impossible to fit every paper into the
programme. This meant that the Programme Committee had to perform a task
that, as the standard of submitted papers rises, becomes harder each year.

The committee would have accepted more papers, had the time to present them
been available. We hope that the unsuccessful authors will consider submitting
further papers to future EUUG conferences.

CONTENTS

UNIX Conferences in Europe 1977-

Technical Programme Timetable
Mike Forsyth cieceeeeccaccacesns
ROD P1KE cseseesonssccssesocnase
David J. Brown and

Jonathan P, BOWEN ceeeceoseccsas
DominicC DUNlOP eeceececonccccas
Pascal Beyls & Bertram Halt ...
Dr. G. KruS€ ..c.veecesscscsasas
Peter S. Langston ..cecacecsscsascs
Dale Shipley seeecesccccscsccsss
Douglas V. LAYsSOn eeseseccsccees
Andrew S. TanenbauM e.esececsss
Brian E. Redman .ecececccscscsss
R. Grafendorfer ..ceceecesscecss
Osmo Hamalainen and

Markus ROSensStrom secececececeecss

Alan Chantler ...ececesscccssccse

Philip He DOYN teceeecaceconsses

Ernst JaniCh eiceecccccccscecnces

Doug Michels .ieceeeceeconcnces

Bjarne StroOUStruUP ceecssceceoecss

Christian TriCot .eeeeesecccsces

Martin D. BEEYr .eeeecececscossse

Dr. Rolf Strothmann .ececeeceesees

RESERVE PAPER

NIick NE1l teeeecscoccacnancnnnes

NAMES AND ADDRESSES OF SPEAKERS

1987 & EUUG Meetings

Vorlich - A Regular Expression Processor

Structural Regular Expressions

The Event Queue

I Come to Bury UnixX.... And to Praise It
Now UNIX Talks to Me in My Language
UNIX in Manufacturing

UNIX and Entertainment Why and How?
Distributed UNIX in Large-Scale Systems
UNIX for Real Time

MINIX: A UNIX Clone with Source Code

A User Programmable Telephone Switch

UNIX in Banking

A Digital Selective Calling System for
Use in the Maritime Mobile Service (DSC)
Using the UNIX Operating System to Market
Selected Information

Is There a Future for UNIX in the world
of Commercial Computing?

Automating Administration of UNIX-Systems
with Thousands of Users

The Development of a Standard UNIX System
for Intel-based Microcomputers: A
Technical Perspective

Multiple Inheritance for C++

MuX: A Lightweight Multiprocessor

Subsystem Under UNIX

Using a UNIX Engine as an Intelligent
Information Server

A UNIX SVID Compatible System Based on
PXROS

Integrating the Apple Macintosh in a UNIX

Environment

UNIX Conferences in Europe 1977—1987

1977 May

1977 September
1978 January
1978 September
1978 November
1979 March

1979 October
1980 March 24th

1980 March 31st
1980 September

UKUUG/NLUUG meetings

Glasgow University

University of Salford

Heriot Watt University, Edinburgh
Essex University

Dutch Meeting at Vrije University, Amsterdam
University of Kent, Canterbury
Brian Kernighan & Ken Thompson
University of Newcastle

Vrije University, Amsterdam

Steve Johnson

Heriot Watt University, Edinburgh
University College, London

1981 April

1981 September
1982 April
1982 September
1983 April
1983 September
1984 April
1984 September
1985 April
1985 September
1986 April
1986 September
1987 May

EUUG Meetings

CWI, Amsterdam, The Netherlands

Dennis Ritchie

Nottingham University, England

CNAM, Paris, France

University of Leeds, England

Wissenschaft Zentrum, Bonn, Germany

Trinity College, Dublin, Eire

University of Nijmegen, The Netherlands
University of Cambridge, England

Palais des Congres, Paris, France

Bella Center, Copenhagen, Denmark

Centro Affari/Centro Congressi, Florence, Italy
UMIST, Manchester, England

On board M/S Mariella sailing between Helsinki and Stockholm

TECHNICAL PROGRAMME TIMETABLE

Access to cabins

A study of portability problems arising
in software development for optimised goods

(ruil-road) traffc
1700 Grafendorfer
UNIX 1 Bunking
17:30 Dunlop Osmo Hamalainen
I come to bury UNIX... A Digitad Selective Calling System lor use in
and to praise it the Manitime Mobile Service (DSC)
18:00f Beyls & Halt BREAK
Now UNIX talks to me
in my language
18:30f Kruse Chantler
UNIX in manufacturing Using the UNIX operating system
to market selected information
19:00 BREAK Dorn
Is there a future for UNIX in
the world of commercial computing ?
19:30! Langston
UNIX in entertainment
0.0 DINNER
20:30 DINNER
£1:00
P1:30 PANEL
“‘Has UNIX grown up ?
2200 BOF
System V issues
P2:30 BOF
C++
2330}

Tuesday Wednesday Thursday
09:00 Cray EUUG business
Title to be announced
)9 30 Shipley Janich
Distributed UNIX in Automating administration of UNIX
large scale systens systems with thousands of users
10:00 Larson Michels
UNIX for real(time) Standard UNIX System tor Intel-based Micros
10:30) Coaches leave Hotel Dipoli BREAK BREAK
11:00f Embarkation Tanenbaum Stroustrup
MINDX: A UNIX Clone Multiple inheritance for Gi+
for the IBM PC
11:30 Tricot
muX: a lightweight multiprocessor
subsystem under UNDX
12.00| Free Beer
Using a UNIX machine as an
intelligent information server
12:30 Strothmann
A UNIX SVID Compatible Sysiem Based on PXROS
13:00 Official Opening' Time LUNCH
13:30] * Bill Joy'
“omputer workstation architecture: 1082-1994
14:00 Disembarkation starts
14:30) BREAK in Coach 1 to Hotel Dipoli
15 00 Forsyth Coach 2 to Hotel Dipoli
Vorlich - A regular expression
processor for UNIX systerms
15:301 Pike Stockholm
Structural regular expressions
16:00; Brown & Bowen Redman
The Event queue - An extensible A user programmable
input system for UNIX workstations telephone switching syst
16:30] BREAK I{utscha

All events are in the main auditorium except those marked t which are in the nightclub.

* Paper not included

Vorlich - A regular expression processor

Paul Cockshott, Mike Forsyth and Patrick Foulk
MEMEX
Edinburgh, Scotland (UK)

ABSTRACT

Vorlich is custom designed hardware to perform serial searching using regular expressions, similar to the utility
GREP under UNIXY, at disk transfer speeds. The searching is thus offloaded from the host processor of the
system. The hardware has a defined instruction set which makes it programmable for a wide set of applications.
This paper describes the use of regular expressions in searching and the architecture and instruction set of the
Vorlich processor.

*+UNIX is a Trademark of Bell Laboratories.

Vorlich - A Regular Expression Processor

Introdyction

Vorlich is a programmable regular expression processor with the functional ability to -

Search free text for words - the OR of 40 to 50 terms
Perform range, proximity and ordered searches
Wildcard searching

Fixed and free format records or structured searching.

The processor board sits on the bus of the host system, scans data sent to it for a given regular expression and
returns the byte addresses of hits within the data.

Whereas GREP, and UNIX utilities using regular expressions, delimit their search area by a newline, Vorlich
may be programmed to allow a regular expression to define the bounds of the search area. Thus a lexical area such
as sentence or paragraph, rather than a single line, may be used to delimit where the query may be satisfied.

The problem of searching is that of recognising a language, the query, in an input stream, the database. Linguistic
science provides us with a well established theory of language and from this we examine grammars.

Grammars.

A language can be defined formally as below. Note that a Symbol is not formally defined, it is an abstract entity
similar to Point and Line in Geometry.

An alphabet T is a finite set of symbols.
A finite sequence of symbols t1,t2,t3... from an alphabet T is called a string.
The length of a string is the number of symbols in the string.

Concatenation is the operation of writing one string after another, thus
ala2a3 concatenated with b1b2b3

forms
ala2a3b1b2b3.

The null string has length 0 and is denoted by Nil. Any word concatenated to Nil is equal to
the word.

T* is the set of all strings over the alphabet T including the empty symbol. This is known as the
Kleene Closure.

A language L, over the single alphabet T, is a subset of T*.

A language consisting of a finite number of strings can be defined by simply exhaustively listing those strings.
However infinite languages cannot be defined as such and are defined by using a grammar.

A grammar consists of:

A finite set of Non-Terminal symbols N (variables)
A finite set of Terminal symbols T (note thatNn T = g)
A start symbol S which is a Non-Terminal.
A set of productions of the form
u->v
where u and v can be Non-Terminal and Terminal symbols and v may be empty.

10

Vorlich - A Regular Expression Processor

There are four classifications of grammars, introduced by Chomsky [5], these are classified by restrictions on
their productions -

Class 0 - Unrestricted

No restrictions on productions, this is the most powerful and is equivalent to the general type of computational
mechanism known as the Turing machine. Languages generated from this grammar are those whose sentences
can be generated by any deterministic computational machine.

Class 1 - Context Sensitive

Productions are of the form u -> v with the restriction that the length of u must be less than or equal to the length
of v.

Note that u and v can be either Non-terminal symbols or Terminal symbols. Languages generated from this
grammar are those whose sentences can be recognised by a deterministic computational machine using an amount
of storage proportional to the length of the input - this is known as a Linear Bounded Automaton.

Class 2 - Context Free

Productions have the form A -> v where

A is restricted to be a Non-terminal symbol.
v may be either a Nonterminal or Terminal symbol.

This is more familiar in computer notation as Backus-Naur Form (BNF), which is used for defining some
programming languages for a compiler and forms the basis of the Syntax Analysis stage of the compilation
process. A Push-Down Automaton or Stack is required.

Class 3 - Regular

Productions may take one of two forms -

1. Right Linear
A->tB or A->t

2. Left Linear
A->Btor A->t

where t is a terminal symbol and A and B are non-terminal symbols.
We are particulary interested in the Regular grammar because it is the simplest machine for the searching

application. The regular language can be defined with a regular expression and can be easily represented using state
transition diagrams or finite state machines. The state transition diagram is simply a directed graph.

Regular expressions are the basis of the Lexical Analysis stage of a compiler and they are the method employed for
string searching by UNIX utilites such as GREP, AWK and the editors VI and ED. Finite state machines have
been used in a branch of mathematics known as Automata theory, this has been used as the basis of much of the
theory of computation. The state transition network provides the frame of a recogniser in that it describes a
language, this can be restricted to that of a specific pattern providing a query.

A Regular language satisfies the properties of a context free language thus a regular language is also a context free
langauge. They are a simple but non-trivial subclass of context free languages.

Regular grammars are conveniently represented by the use of transition diagrams. The construction of the
transition diagram is described at length elsewhere [6],|7]. It is to be noted that there is a fault in the algorithm
given in [7], it does not handle backtracking correctly and will not, for example, find the string "mississippi"
when given "issip".

Vorlich - A Regular Expression Processor

The transition diagram produced represents a Non-Deterministic Finite State machine (or automaton) - the nodes
are known as states and the arcs as transitions. The number of nodes is finite hence the name Finite State.

The Non-Deterministic description refers to the operation of the machine in that at certain points when traversing
the graph non-deterministic choices must be made - there are several possible traverses from a given state.

Instead of using the transition diagram to represent a regular language one may more conveniently use a Regular
Expression.

A regular expression over the Alphabet T and the language denoted by that regular expression is defined as-

1. ¢ is aregular expression denoting the empty set.

2. Q is a regular expression denoting { Q2 }.

3. a where a is a Terminal symbol is a regular expression denoting {a}.

4. If P and Q are regular expressions denoting the languages Lp and Lq
then -

(P+Q) is a regular expression denoting Lp U Lq. (Alternation)
(P.Q) is aregular expression denoting Lp.Lq (Concatenation)
(P*) is aregular expression denoting

{Q}ULpULpULp... (Kleene Closure)

A regular expression denotes a language - but there may be several regular expressions that denote the same language.
For example the regular expressions (a+b)* and (a*b)*a are equivalent as they both describe a set of strings
containing a's and b's.

Examples of regular expressions may be seen by using the UNIX utility programs, for example the EGREP
program searches for strings in text, thus

EGREP "example" database (using Concatenation of e.x.a.m.p.l.e)

EGREP "jackljill" database (Using both Concatenation and
Alternation of j.a.c.k and j.i.L.])

EGREP "t*" database (Using Closure to match O or more t's)

D inistic R ition witt " |

With a Non-Deterministic machine we are faced with several solutions to the problem of multiple transitions from a
given state. The solution we took was to convert the network into a Deterministic machine so that there is no choice.
This conversion is performed using software before the recogniser is presented with its input stream. The

conversion algorithm is described elsewhere [6],(7]. Thus the Deterministic machine is performing the recognition and
the Non-Deterministic machine is only a step in the conversion process.

Another approach would be to use the Non-Deterministic machine for searching and to perform Parallel searching.
Thus on reaching a state with multiple transitions the processor takes all of the transitions at once. On reaching the
final state the other searches may be terminated. This solution is more appropriate to a parallel processing
environment.

The second strategy is to follow one of the transitions and on failing to Backtrack taking a different alternative.
Although the work done by the Parallel search is linearly proportional to the sentence being recognised, the
processing is never larger than the number of states in the network, the backtracking algorithm is exponentially
related to the length of the sentence.

The solution we chose was that of converting from a Non-Deterministic machine to the Deterministic machine. The
time taken to perform this conversion is dependent on the length of the query but the search time is constant. It is the
least expensive solution from the hardware costs, simplifying the hardware significantly. The hardware implements
what is known as a Moore machine - a finite automata with output on states. Qutput is given on reaching final
states otherwise a NULL output is performed.

Vorlich - A Regular Expression Processor

Architecture of Vorlich,

The Vorlich board sits on the host system bus reading data from disk or memory under control of an application
program and driver. All searching is done outwith the host CPU as Vorlich acts as a searching co-processor on the
system.

System Bus

VORLICH

It may connect to the system bus via an interface board or directly onto the system bus allowing DMA from disk to
Vorlich direct. It is not built into a disk controller to ease portability between different systems and to take advantage
of faster disk controllers as they become available, without redesign.

The Vorlich board itself consists of three functional units - BIU, REXP and RAM.

datain PROGRAM RAM

REGULAR EXPRESSION
PROCESSOR (REXP)

1. Regular Expression Processor (REXP)
A PAL programmed to execute a defined instruction set and
alter the data path.

Vorlich - A Regular Expression Processor

2. Bus Interface Unit (BIU)
Handles communications between system bus
or bus interface and the REXP. This also holds a FIFO
for buffering the results from the REXP.

3. Program Memory
64K RAM holding program for REXP to execute.

Instruction Set,

Itis simpler to describe the architecture and operation of the REXP by providing a description of the instruction set.
The following register set of the REXP is referred to

C - Hold current character
PC - Program Counter
CNT - Character Counter
HL - Hit Latch

FIFO - Hit Memory
The output of the regular expression compiler is normally the machine code for the machine. For ease of testing and
to provide diagnostics for the board an assembler was written. This may also provide an application interface at a lower

level than the regular expression.

The instruction set as provided for the assembler is described below.

MUSTBE operand address

The operand field contains the character that the input stream must match. If it matches with C then the
PC is incremented otherwise the PC is set to the address field, equivalent to a Jjump on failure. On success a
character is read from the input stream into C.
MUSTNTBE operand address

The operand field contains the character that the input stream must not match. If it does not match with

C then the PC is incremented otherwise the PC is set to the address field. On success a character is read from the
input stream into C.

JUMP address
Set PC to address.

FIRST

Latch current character count CNT in HL - this is used to set the hit address. This extends the bounds
of a search area as compared with GREP which uses the newline.

OUT operand address

The FIFO status byte, operand and latched character counter HL are put into the FIFO, in that
sequence. A character is read from the input stream into C and then the PC is set to the address.

READI
Read a character from the input stream into C and increment PC.

HALT
Halt the processor.

14

Vorlich - A Regular Expression Processor

CLASSJUMP operand address

This is a class jump instruction. The operand field holds the class table number (0-255) and the address is
to the start of a jump table. The jump table is a sequence of contiguous locations in program RAM filled with
JUMP instructions to other areas of the program. The class tables are located at the fixed address 8K -16K. They
contain an offset in the jump table. The jump table is located at the address given in the address field and the PC is
setto classtables[operand][{C] + address.

This implements the character class construct, notationally equivalent to a multiple OR.
CTS opcode

Signifies the start of the class table given in the opcode. This corresponds to the opcode field in a
classjump instruction naming the table. Any cte instructions which follow will be associated with this table.

CTE opcode classnumber

Class Table Entry sets character entry given by opcode with classnumber. The classnumber provides
the address in a sequence of jump instructions as described in the CLASSJUMP instruction.

Memory Allocation,

There is 64K of 32 bit words of program memory on the board. There is however 8K of this pre-allocated for class
tables at 8K - 16K.

Program 48K

Class Ram 8K

Program 8K

Vorlich - A Regular Expression Processor
Example program: grep 'issip' US_Rivers

0 readi read in a character

1 mustbei ifitis not an 'i' goto 0

2 classjump 0 16 many way branch on input character
3 readi

4 classjump 0 32

S readi

6 mustbeiO

7 classjump 1 48

8 readi

9 first mark current character position

10 out 'H' 1 output to FIFO with token 'H' and goto 1
11 halt

16 jump 1 Jump Table at location 16
17 jump 2
18 jump 4

32jump 1 Jump Table at location 32
33 jump 2
34 jump 6

48 jump 1 Jump Table at location 48
49 jump 2
50 jump 9
51 jump 4

cts 0 Start of class table definitions
cteil These provide offsets within a jump table
ctes?2 for the given character - 0 is the default

cts 1

cteil
ctep?2
ctes3

Note that the jump table for the classjump must start on a 16 instruction boundary and consequently the addresses for
the jump table must be
16,32,48,64.......

The program memory is 1/4 Megabyte which provides 56K instruction programs. Note that the class jump
instruction uses up 17 instructions by having to preallocate 16 entries in a jump table. These entries can be
re-used by the compiler when it discovers they are free. The class tables are preallocated 8K which cannot be
reclaimed.

16

Vorlich - A Regular Expression Processor
r n han n

Currently Vorlich can search at disk transfer rates, from a Berkeley 4.2 system it searches at about 600K/s. The board
itself is capable of searching in excess of 1 Megabyte per second.

To speed up disk transfers we developed a Contiguous Filesystem under UNIX which allows several cylinders to be
the minimum allocation unit on the system. This resides along with the UNIX filesystem on the host machine. With
this filesystem we can effect a transfer rate of 1 Megabyte per second from the disks.

Depending on the host machine data may have to be transferred into buffers in memory. In this case double buffering
is found to be effective in hiding this delay. On other machines the board may be interfaced directly to the bus and we
can DMA direct to the board.

The board has the capability of handling multiple users/queries by segmenting the program RAM and class tables. A
scheduler in the host computer can allocate the users/queries program space and reload the Program Counter of
Vorlich. The hits returned from the board can be tagged using the operand field of the QUT instruction to allow an
application program to sort out which hits belong to which user.

Although programs for searching free text tend to consume little program space, other applications may require more
than the 56K instruction space. The successor to Vorlich will have extendible memory boards and wider
registers, for applications in Linguistics that require very large state machines.

s pplications of resul ;

We have programmable hardware capable of searching at disk transfer rates for regular expressions, here we describe
some simple applications which can use the speed of searching through free and structured text. Taking the UNI1X
syntax for regular expressions as an example we can use regular expressions in free text searching -

Concatention c.o.m.p.u.t.e searches for the text "compute"”
It will also find any words with compute embedded
within such as "microcomputers".

Alternation ald searches for the characters 'a’ or 'd’
Combinations computer|crime will use both concatenation and
alternation to search for the strings

"computer” OR "crime".

Closure 3450* searches for the number 345 with or
without trailing zeroes.

Character Class [A-Za-z] searches for alphabetic characters. The character class may be used to
identify the delimiters of the terms searched for, so that by concatenating these
delimiters to the text string the word "compute” would be found and not
the word "microcomputers".

Numerics >1985 can be represented by the regular expression -

198[5-9] | 199[0-9] | [2-91[0-91[0-9][0-9] |
0*[1-9](0-9][0-91[0-91[0-9][0-9}*

Similarly a range such as 1976-1994 can be represented as
197[6-9] | [198[0-9] | 199[0-4]

Word delimiters have been omitted for readability.

Vorlich - A Regular Expression Processor

Structured Searches,

For record based data we can identify 3 general methods of structuring data - Fixed length field records, variable length
fields using unique tags and variable length fields using non-unique tags. These can all be handled using regular
expressions.

For example given a fixed field record structure of the following

struct name { char surname[20];char initials|5];char first[20]};
struct address { char street{20];char city[20];char zipcode[8]; }

struct personnel {
struct name Name;
struct address Address

b

and a query looking for all personnel with the surname of "MacBeth" who live in the city of "Edinburgh" we could
construct the following regular expression -

"MacBeth.+13.+45Edinburgh.+11.+28"

where . represents a character class of every character (dont care) and +N represents the fixed number N of the
preceding character. The .+13 after MacBeth for example simply skips the remainder of the surname field. On failure
of the regular expression Vorlich assembler can be written to read in the remaining characters in the record to
synchronise the search.

If the fields of a record are not fixed then tags may be inserted which let a program know the start or end of a
particular field. For the record structure name this may be of the form

RS FS surname FS initials FS first RS

where RS is a record seperator and FS is a field seperator. The field seperators may or may not be unique. A regular
expression for searching concatenates the seperator to bind the search to the particular field it is looking within.

Conclusion,

Vorlich was designed as a programmable tool for free text searching allowing flexibility in searching without the
need of inverted files. It can be thought of as a hardware GREP searching at disk transfer rates and freeing the host
CPU for other applications.

The hardware provides a performance enhancement to many applications which use searching and is not restricted to
free text. Application program writers have access to Vorlich via both the regular expression

interface and an assembly language. Although employing serial searching gives a linear search time for a file, that
search time becomes prohibitive for GigaByte files. A coarse index may be built upon the system cutting down the
search space considerably.

It has proved useful as a tool to speed up GREP on our UNIX systems and can provide the mechanism of similarly
speeding up other applications.

18

Vorlich - A Regular Expression Processor

References,

1. Aho, A.V and M.]. Coraisick "Efficient string matching: An aid to bibliographic search" - Comm ACM, 18,
333-340 (1975)

2. Boyer, R.S and J. Strother Moore "A fast string searching algorithm"
Comm ACM,20, 762-772 (1975).

3. Knuth, D.E, J.H. Morris and V.R. Pratt "Fast pattern matching in strings”
SIAM Journal of Computing,6,323-350 (1977).

4, Thompson K, "Regular expression search algorithm”
Comm. ACM, 11, 419-422 (1968)

Books;

5. Language as a cognitive process - T. Winograd : Addison-Wesley.
6. Syntax of Programming Languages - R.C. Backhouse :Prentice-Hall.
7. Principles of Compiler Design - Aho, Hopcroft , Ullman : Addison-Wesley.

20

Structural Regular Expressions

Rob Pike

Bell Laboratories
Murray Hill
New Jersey 07974
US.A.

ABSTRACT

The current UNIX text processing tools are weakened by the built-in
concept of a line. There is a simple notation that can describe the ‘shape’
of files when the typical array-of-lines picture is inadequate. That
notation is regular expressions. Using regular expressions to describe the
structure in addition to the contents of files has interesting applications,
and yields elegant methods for dealing with some problems the current
tools handle clumsily. When operations using these expressions are
composed, the result is reminiscent of shell pipelines.

The Peter-On-Silicon Problem

In the traditional model, UNIX text files are arrays of lines, and all the familiar tools
—— gTep, sOort, awk, etc. — expect arrays of lines as input. The output of 1s (regardless
of options) is a list of files, one per line, that may be selected by tools such as grep:

ls -1 /usr/ken/bin | grep °rws.*xroot’

(I assume that the reader is familiar with the UNIX tools.) The model is powerful, but it
is also pervasive, sometimes overly so. Many UNIX programs would be more general, and
more useful, if they could be applied to arbitrarily structured input. For example, diff
could in principle report differences at the C function level instead of the line level. But if
the interesting quantum of information isn’t a line, most of the tools (including diff)
don’t help, or at best do poorly. Worse, perverting the solution so the line-oriented tools
can implement it often obscures the original problem.

To see how a line oriented view of text can introduce complication, consider the
problem of turning Peter into silicon. The input is an array of blank and non-blank
characters, like this:

Structural Regular Ezpressions

HAH#IHH#
H#HHRHHHH?
R#UHH Hl
#it##t #HH #
#iH# #U###

##tH# #iH
##A# R HERHH
RURH RHR#H#ABHH®
HitH® # # #HHH
#it # Hu# ##
#it# # o HH#

#it

#it#
#i# #
HiH#
#

H## # HH#

The output is to be statements in a language for laying out integrated circuits:

rect minx miny maxx maxy

The statements encode where the non-blank characters are in the input. To simplify the
problem slightly, the coordinate sysiem has z positive to the right and y positive down.
The output need not be efficient in its use of rectangles. Awk is the obvious language for
the task, which is a mixture of text processing and geometry, hence arithmetic. Since the
input is an array of lines, as awk expects, the job should be fairly easy, and in fact it is.
Here is an awk program for the job:

BEGIN{

y=1
}
/=74

for(x=1; x<=length($0); x++)

if (substr($0, x, 1)=="#")
print "rect", x, y, x+1, y+1
y++

}

Although it is certainly easy to write, there is something odd about this program: the
line-driven nature of awk results in only one obvious advantage — the ease of tracking y.
The task of breaking out the pieces of the line is left to explicit code, simple procedural
code that does not use any advanced technology such as regular expressions for string
manipulation. This peculiarity becomes more evident if the problem is rephrased to
demand that each horizontal run of rectangles be folded into a single rectangle:

BEGIN{
y=1
}
/=74
for(x=1; x<=length($0); x++)
if (substr($0, x, 1)=="#"){
x0=x;
while (++x<=length($0) && substr($0, x, 1)=="#")

.

print "rect", xO0, y, x, y+1

y++

}

Here a considerable amount of code is being spent to do a job a regular expression could

22

Structural Regular Ezpressions

do very simply. In fact, the only regular expression in the program is =, which is almost
irrelevant to the input. (Newer versions of awk have mechanisms to use regular
expressions within actions, but even there the relationship between the patterns that
match text and the actions that manipulate the text is still too weak.)

Awk’s patterns — the text in slashes // that select the input on which to run the
actions, the programs in the braces {} — pass to the actions the entire line containing
the text matched by the pattern. But much of the power of this idea is being wasted,
since the matched text can only be a line. Imagine that awk were changed so the patterns
instead passed precisely the text they matched, with no implicit line boundaries. Our
first program could then be written:

BEGIN{
x=1
y=1

}

/ /<
X++

}

/#/4{
print "rect", x, x+i, y, y+1
X++

}

/\n/{
x=1
y++

}

and the second version could use regular expressions to break out complete strings of
blanks and #’s simply:

BEGIN{
x=1
y=1
}
/ +/{
x+=length ($0)
}
/#+/{
print "rect", x, x+length($0), y, y+1
x+=1length ($0)
}
/\n/{
x=1
y++

X

In these programs, regular expressions are being used to do more than just select the
input, the way they are used in all the traditional UNIX tools. Instead, the expressions
are doing a simple parsing (or at least a breaking into lexical tokens) of the input. Such
expressions are called structural regular expressions or just structural expressions.

These programs are not notably shorter than the originals, but they are
conceptually simpler, because the structure of the input is expressed in the structure of

Structural Regular Expressions

the programs, rather than in procedural code. The labor has been cleanly divided
between the patterns and the actions: the patterns select portions of the input while the
actions operate on them. The actions contain no code to disassemble the input.

The lexical analysis generator lex uses regular expressions to define the structure of
text, but its implementation is poor, and since it is not an interactive program (its output
must be run through the C compiler) it has largely been forgotten as a day-to-day tool.
But even ignoring issues of speed and convenience, 1lex still misses out on one of the most
important aspects of structural expressions. As the next section illustrates, structural
expressions can be nested to describe the structure of a file recursively, with surprising
results.

Interactive Text Editing

It 1s ironic that UNIX files are uninterpreted byte streams, yet the style of
programming that most typifies UNIX has a fairly rigid structure imposed on files —
arrays of not-too-long lines. (The silent limits placed on line lengths by most tools can be
frustrating.) Although the awk variant introduced above does not exist, there is an
interactive text editor, sam, that treats its files as simple byte streams.

The sam command language looks much like that of ed, but the details are different
because sam is not line-oriented. For example, the simple address

/string/

matches the next occurrence of “string”, not the next line containing ‘‘string’’. Although
there are shorthands to simplify common actions, the idea of a line must be stated
explicitly in sam.

Sam has the same simple text addition and modification commands ed has: a adds
text after the current location, 1 adds text before it, d deletes it, and ¢ replaces it.

Unlike in ed, the current location in sam need not be (and usually isn’t) a line. This
simplifies some operations considerably. For example, ed has several ways to delete all
occurrences of a string in a file. One method is

g/string/ s///g

It is symptomatic that a substitute command is used to delete text within a line, while a
delele command is used to delete whole lines. Also, if the string to be deleted contains a
newline, this technique doesn’t work. (A file is just an array of characters, but some
characters are more equal than others.) Sam is more forthright:

x/string/d

The x (‘extract’) command searches for each occurrence of the pattern, and runs the
subsequent command with the current text set to the match (not to the line containing
the match). Note that this is subtly different from ed’s g command: x extracts the
complete text for the command, g merely selects lines. There is also a complement to X,
called y, that extracts the pieces belween the matches of the pattern.

The x command is a loop, and sam has a corresponding conditional command, called
g (unrelated to ed’s g):
g/pattern/command

runs the command if the current text matches the pattern. Note that it does not loop,
and it does not change the current text; it merely selects whether a command will run.
Hence the command to print all lines containing a string is

24

Structural Regular Ezpressions

x/.*\n/ g/string/p

— extract all the lines, and print each one that contains the string. The reverse
conditional is v, so to print all lines containing ‘rob’ but not ‘robot’:

x/.*\n/ g/rob/ v/robot/p
A more dramatic example is to capitalize all occurrences of words ‘i’
x/[A-Za-2]+/ g/1i/ v/../ c/1/

—— extract all the words, find those that contain ‘i’, reject those with two or more
characters, and change the string to ‘I’ (borrowing a little syntax from the substitute
command). Some people have overcome the difficulty of selecting words or identifiers
using regular expressions by adding notation to the expressions, which has the
disadvantage that the precise definition of ‘identifier’ is immutable in the implementation.
With sam, the definition is part of the program and easy to change, although more long-
winded.

The program to capitalize ‘i’s should be writable as
x/[A-Za-2]+/ g/~1$/ c/1/

That is, the definition of = and $ should reflect the structure of the input. For
compatibility and because of some problems in the implementation, however, ~ and $ in
sam always match line boundaries.

In ed, it would not be very useful to nest global commands because the ‘output’ of
each global is still a line. However, sam’s extract commands can be nested effectively.
(This benefit comes from separating the notions of looping and matching.) Consider the
problem of changing all occurrences of the variable n in a C program to some other name,
say num. The method above will work —

x/ [(a-zA-Z20-9]1+/ g/n/ v/../ c/num/

— except that there are places in C where the ‘identifier’ n occurs but not as a variable,
in particular as the constant \n in characters or strings. To prevent incorrect changes,
the command can be prefixed by a couple of y commands to weed out characters and
strings:

y/*. %"/ y/* %’/ x/[a-zA-Z0-9]1+/ g/n/ v/../ c/num/

This example illustrates the power of composing extractions and conditionals, but it
is not artificial: it was encountered when editing a real program (in fact, sam). There is
an obvious analogy with shell pipelines, but these command chains are subtly — and
importantly — different from pipelines. Data flows into the left end of a pipeline and
emerges transformed from the right end. In chains, the data flow is implicit: all the
commands are operating on the same data (except that the last element of the chain may
modify the text); the complete operation is done in place; and no data actually flows
through the chain. What is being passed from link to link in the chain is a view of the
data, until 1t looks right for the final command in the chain. The data stays the same,
only the structure is modified.

More than one line, and less than one line

The standard UNIX tools have difficulty handling several lines at a time, if they can
do so at all. Grep, sort and diff work on lines only, although it would be useful if they
could operate on larger pieces, such as a refer database. awk can be tricked into

Structural Regular Expresstons

accepting multiple-line records, but then the actions must break out the sub-pieces
(typically ordinary lines) by explicit code. sed has a unique and clumsy mechanism for
manipulating multiple lines, which few have mastered.

Structural expressions make it easy to specify multiple-line actions. Consider a
refer database, which has multi-line records separated by blank lines. Each line of a
record begins with a percent sign and a character indicating the type of information on
the line: A for author, T for title, etc. Staying with sam notation, the command to search
a refer database for all papers written by Bimmler is:

x/(.+\n)+/ g/%A.*Bimmler/p

— break the file into non-empty sequences of non-empty lines and print any set of lines
containing ‘Bimmler’ on a line after ‘%A’. (To be compatible with the other tools, a ¢.’
does not match a newline.) Except for the structural expression, this is a regular grep
operation, implying that grep could benefit from an additional regular expression to
define the structure of its input. In the short term, however, a ‘stream sam,’ analogous to
sed, would be convenient, and is currently being implemented.

The ability to compose expressions makes it easy to tune the search program. For
example, we can select just the titles of the papers written by Bimmler by applying
another extraction:

x/C.+\n)+/ g/%A.*Bimmler/ x/.*\n/ g/%T/p

This program breaks the records with author Bimmler back into individual lines, then
prints the lines containing %T.

There are many other examples of multiple-line components of files that may
profitably be extracted, such as C functions, messages in mail boxes, paragraphs in troff
input and records in on-line telephone books. Note that, unlike in systems that define file
structures a priori, the structures are applied by the program, not the data. This means
the structure can change from application to application; sometimes a C program is an
array of functions, but sometimes it is an array of lines, and sometimes it is just a byte
stream.

If the standard commands admitted a structural expression to determine the
appearance of their input, many currently annoying problems could become simple:
imagine a version of diff that could print changed sentences or functions instead of
changed lines, or a sort that could sort a refer database. The case of sort is
particularly interesting: not only can the shape of the input records be described by a
structural expression, but also the shape of the sort key. The current bewildering maze of
options to control the sort could in principle be largely replaced by a structural expression
to extract the key from the record, with multiple expressions to define multiple keys.

The awk of the future?

It is entertaining to imagine a version of awk that applies these ideas throughout.
First, as discussed earlier, the text passed to the actions would be defined, rather than
merecly selected, by the patterns. For example,

/#+/ { print }

would print only # characters; conventional awk would instead print every line containing
characters.

Next, the expressions would define how the input is parsed. Instead of using the
restrictive idea of a field separator, the iterations implied by closures in the expression

Structural Regqular Expressions

can demarcate fields. For instance, in the program
/C.+\n)+/ { action }

the action sees groups of lines, but the outermost closure (the + operator) examines, and
hence can extract, the individual lines. ed uses parentheses to define sub-expressions for
its back-referencing operators. We can modify this idea to define the ‘fields’ in awk, so $1
defines the first element of the closure (the first line), $2 the second, and so on. More
interestingly, the closures could generate indices for arrays, so the fields would be called,
say, input(1] and so on, perhaps with the unadorned identifier input holding the
original intact string. This has the advantage that nested closures can generate multi-
dimensional arrays, which is notationally clean. (There is some subtlety involving the
relationship between input indices and the order of the closures in the pattern, but the
details are not important here.)

Finally, as in sam, structural expressions would be applicable to the output of
structural expressions; that is, we would be able to nest structural expressions inside the
actions. The following program computes how many pages of articles Bimmler has
written:

/C+H\m)+/{ # break into records
input = /%A.*Bimmler/{ # is Bimmler author? (see text)
/%P . *([0-9]+)-([0-9]1+)/{ # extract page numbers
pages+=input [2]-input [1]+1
}

}
END{
print pages

Real awk uses patterns (that is, regular expressions) only like sam’s g command, but our
awk’s patterns are X expressions. Obviously, we need both to exploit structural
expressions well. This is why in the program above the test for whether input contains a
paper by Bimmler must be written as an explicit pattern match. The innermost pattern
searches for lines containing two numbers separated by a dash, which is how refer stores
the starting and ending pages of the article.

This is a contrived example, of course, but it illustrates the basic ideas. The real
awk suffers from a mismatch between the patterns and the actions. It would be improved
by making the parsing actions of the patterns visible in the actions, and by having the
pattern-matching abilities available in the actions. A language with regular expressions
should not base its text manipulation on a substr function.

Comments

The use of regular expressions to describe the structure of files is a powerful and
convenient, if unfamiliar, way to address a number of difficulties the current UNIX tools
share. There is obviously around this new notation a number of interesting problems,
and [am not pretending to have addressed them all. Rather, I have skipped
enthusiastically from example to example to indicate the breadth of the possibilities, not
the depth of the difficulties. My hope is to encourage others to think about these ideas,
and perhaps to apply them to old tools as well as new ones.

Structural Regular Expressions

Acknowledgements

John Linderman, Chris Van Wyk, Tom Duff and Norman Wilson will recognize
some of their ideas in these notes. I hope I have not misrepresented them.

28

The Event Queue
An Extensible Input System for UNIX Workstations

David J. Brown

Cambridge University Computer Laboratory
Corn Exchange Street, Cambridge CB2 3QG, England
djb@uk.ac.cam.cl
&

Digital Equipment Corporation
Workstation Systems Engineering
100 Hamilton Ave, Palo Alto California 94301, USA

Jonathan P. Bowen

Oxford University Computing Laboratory
Programming Research Group
8-11 Keble Road, Oxford OX1 3QD, England
bowen@uk.ac.oxford.prg

ABSTRACT

A design is given for an event-based input system for use on graphics workstations
that overcomes some problems associated with earlier designs. An interface is specified
that allows a client to select events to be queued from the set of those available, read
events from the queue, put events into the queue, flush the queue, and connect a set of
events to a queued event. The system has been designed with the intention of being
implementable on a number of systems and has also been formally specified using the Z
specification language developed at Oxford. The current implementation effort focuses
on UNIX{ workstations

Motivation

Many existing input systems have been based on the design of a particular device or subsystem
and/or have been specialized to the needs of a particular window system. This approach has several prob-
lems that are discussed toward the end of the paper. The event queue system is independent of any particu-
lar application or window system, and is not committed to any particular physical device or subsystem. It
provides a set of general purpose interfaces and is extensible to accommodate new input devices and event
types. This design results in a system that is useful in a diverse range of applications.

Formal Specification

The Z ("zed") specification language [Morg84, Sufr86, Spiv86a, Spiv86b, Wood86, King87,
Haye87], based on set theory and developed at the Programming Research Group in Oxford, has been used
o formally describe the operation of the system [Bowe87]. A condensed version of the formal
specification is included as an appendix of this paper. This notation is sufficiently readable to be used in

1 UNIX is a registered trademark of AT&T in the U.S.A. and other countries

documentation for those familiar with it. The approach is to present the abstract state of the system and to
describe the initial state. The effect of individual operations (library routine calls in this case) on the state
is then described. In a Z specification, the formal text is mingled with informal prose. These should com-
plement each other, reinforcing the reader’s concept of how the system works. For readers unfamiliar with
Z, the informal text should be sufficient to describe the system. If desired, the formal text can be removed
from a final copy of the formal documentation to give an informal presentation. Should any ambiguity
exist however, the formal description is the final arbiter in the operation of the system,

In general, even if the formal specification of a system is not included in the final description, the for-
mal specification process can only be beneficial to designing and documenting a system. The formal treat-
ment helps to ensure that areas which may have otherwise been ignored are covered, and to detect incom-
pleteness or inconsistency in an informal design. The event queue system took only a day to formally
specify from the original informal description [Brow86]. The exercise highlighted a number of points
which have subsequently been improved and clarified in the system described here.

Ideally, formal specification should be used as a design tool rather than as a post-hoc description
language. Formal specification encourages the design of simple well-understood systems which can be for-
mally reasoned about before the implementation stage. Having a more rigorous and better understood
design before beginning implementation helps to reduce the number of iterations around the expensive
development loop: design-implementation-testing.

The Event Queue

An event queue is a FIFO buffer of events between the system and the client. Activity on an input
device or an action by a client can cause an event to be entered in the event queue. The Event Queue Sys-
tem under UNIX implements a number of such event queues, as there may be several independent applica-
tions that each require an event queue, or a single application which requires more than one. The succeed-
ing few sections describe the client’s interface to an event queue. The system implementation is described
in a following section.

Event Types and Value Semantics

An event is very simple. It contains a device identifier and a value;

typedef unsigned short qDevice
typedet short qValue

The device identifier: qDevice refers to the object that generated the event or equivalently to the type of
event.! The qDevice field provides a namespace for event types. An action by a client or an activity on an
input device in the system can cause an event. When this occurs, the source of the event uniquely identifies
the type of event with qDevice. A client which generates events may use the device identifier namespace
in an application specific way. However, we reserve certain device identifiers in order to define a number
of system-provided devices that we expect will be useful in many applications. The event value is the
value associated with the device (object) at the time the event occurred. The meaning of the value depends
on the event type. The value has fixed size.2

VIt is important not to confuse the use of the term ‘device’ in the context of the Event Queue with what is meant by a
UNIX device. The choice of the term ‘device’ is unfortunate in this respect.

2 In this design the goal was 10 keep events very small, simple and of fixed length. The qValue type could be made
larger if it were decided that there was a need for additional range. However, it is possible to obtain additional precision
within the scope of this design by using multiple events and connectevent() (see below). Variable length events will be
considered in a subsequent design.

30

At the present time a qDevice is in one of three classes: button, valuator or keyboard. Button devices
have boolean values. The qValue associated with a button event will be either 0 indicating that the button
went up, or 1 indicating that the button went down. Valuator devices have a range value associated with
them. For example MOUSEX, TABLETY, KNOB15, or CLOCK are valuator devices. Valuator devices may be rela-
tive or absolute. For example we might have a Mousex device which provides absolute mouse x positions,
or a MOusepx device which provides relative mouse x positions (deltas), or we might have both. Keyboard
devices return character code values. For example, the device ASCIKEYBOARD is a device which returns
ASCII values in the low order 7 bits of qValue.

All events contain a device identifier. It is possible to determine the class of the device that caused
the event from this identifier with the following requests:

boolean Isbutton(device)
qDevice device;

boolean isvaluator{device)
gDevice device;

boolean Isrelative(device)
qgDevice device;

boolean isabsolute(device)
gDevice device;

boolean Iskeyboard(device)
qDevice device;

The class of the device that caused the event is important to the client since the event value semantics
depend on this. The client will know how to interpret the event value based on the class of the device or
perhaps the specific event type. Detailed knowledge of event value semantics is deferred to the client, The
Event Queue System itself has minimal knowledge about value semantics. The extensibility of the system
derives in part from this fact.

Selecting and Deselecting Events
The client can select a device to have its events queued {entered in the event queue) with a qdevice()
request.

int qdevice(device)
gDevice device;

When the value associated with a selected device changes, an event is entered in the event queue. We also
refer to a selected device as an ‘active’ device. One qdevice() request must be issued for each device we
wish to make active, but any subset of the available devices may be active at once. A device must be
selected by qdevice() for events associated with it to be placed in the event queue. Devices that have not
been selected (inactive devices) will not cause events to be entered in the event queue.

Devices that are presently selected to enter events in the queue (active) may be deselected (made
inactive) with the unqdevice() request.

int unqdevice(device)
qDevice device;

Event Filtering

Certain valuator devices such as a knob, mouse x or y position may be ‘noisy’ (i.e. frequently have a
small change of value) and others such as a time of day clock may be very high resolution. Devices of
these sorts may thus generate more events than the client actually wishes to see. The threshold() interface
allows the client to specify that a minimum change must occur in a device’s value before an event is
entered in the queue.

int threshold(device, delta)
gDevice device;
int delta;

If the device device has been selected by qdevice() then a change of at least defta must occur on its associ-
ated value before an event will be placed in the queue3.

Reading Events

The client obtains the next input event from the event queue with the getevent() request.

qgDevice getevent(pValue)
gValus *pValus;

Recall that an input event consists of two values: one identifying the device that generated the event, and
one giving the value associated with the device at the time of the event. getevent() returns the device
identifier, and places the value associated with the device for this event in the location pointed to by pValue.
The client’s usage is:

qValue value;
qDevice device;

device = getevent(&value);

For efficiency we are often interested in reading a number of events in one procedure invocation. The
getevents() request performs this function.

qDevice getevents(EventArray, count)
int count;
struct {
qDevice Device;
qValue Valus;
} EventArray[/* count */);

getevents() returns the device associated with the first event and returns an array of count events in Even-
tArray. getevents() does not return until all count requested events have been returned. The usual applica-
tion of this interface is to acquire a set of events at once when we expect them to be entered contiguously in
the event queue. (See the Binding Events section below).

3 This interface makes sense only for valuator type devices. It returns an error code if device is an inapplicable type.
For a relative (vs. absolute) valuator device the system accumulates relative changes until the absolute value of the total ac-
cumulated change exceeds defta. (For implementation purposes this implies that state must be kept in the system perntaining
to the present value of active valuator devices).

32

Posting Events
Events may be "posted’ (i.e. placed) at the end of the event queue with the postevents request.

int postevents(EventArray, count)
int count;
struct {
gDevice Device;
qValue Value;
} EventArray[/* count */];

count events are entered in the event queue with device id’s and values taken from EventArray (passed in by
the client). postevents() allows a client to simulate physical or virtual events generated by some other dev-
ice, or to implement a pseudo-device to synthesize some new class of events (e.g. for a window manager or
other software process). It is important that the client be able to enter several events into the queue as an
atomic action. postevents() assures that the list of events passed in will be placed contiguously in the event
queue, uninterrupted by other events that may occur on physical devices during the call.

Testing the Queue

Since the getevent() request is synchronous (i.e. it will suspend the caller until there is an event in the
input queue to be read), the client may not wish to use it. The qtest() request allows the client to determine
whether there is an event in the queue before issuing a getevent().

gDevice qtest()

qtest() returns the device id associated with the first input event in the queue, or O if the queue is empty.
The client may use qtest() to provide a non-blocking use of the input queue. This is implemented by using
qtest() to see that there is an event and only then performing a getevent() or getevents() if input is avail-
able.

Binding Events

At the time a particular event occurs it is often necessary to observe the state (present value) of
several other devices. Use of the connectevent() request allows us to annotate an event on an active device
with an event containing the value of another device.

int connectevent(active_device, bound_device)
qDevice active_device, bound_device;

Whenever active_device generates an event, an event associated with bound_device will also be placed in
the event queue. The event queue system produces an event from the bound device by examining its value
at the time the active device generates an event. We refer to the event produced from the bound device as
an ‘annotation’ event. The annotation event is an event just like one we would get if bound device was
itself active and generated an event. The only distinction drawn by an annotation event is the manner in
which that event was caused to be entered in the queue: The device was bound to an active device which
changed value. This caused the event queue system to examine the value of the bound device and syn-
thesize this event.

A device must be active before devices can be bound to it with connectevent(). If an attempt is
made to bind a device to an inactive device (i.e. a device not presently selected to enqueue events) with
connectevent(), no binding is made and an error code is returned. An active device may have any other
device bound to it, and the bound device may be either active or inactive. That is, bound devices them-
selves do not have to be selected to enqueue events.

Multiple Bindings

The connectevent() request may be issued more than once to bind more than one device to a
specified device?. When an event occurs on active_device, one event for that device will be placed in the
event queue, and one event for each device bound to it by connectevent(). Annotation events are entered
contiguously in the event queue immediately after the event for active_device, without any intervening
events. Annotation events appear in the event queue in the order established by the invocations to connec-
tevent(). Each annotation event contains the value of a bound device at the time the event from the active
device occurred. connectevent() returns O as an error code if it was unable to honor the request, non-zero
if successful.

The Binding Relationship
The association created between active_device and bound_device by connectevent() is directed. That
is, if we bind TABLETX to BUTTON156 with:
connectevent(BUTTON156, TABLETX);

the system will produce a TABLETX event when BUTTON1s6 changes value, but not the converse. This rela-
tionship is illustrated in figure 1.

BUTTON186 TABLETX
(Active) (Bound)

Figure 1 - Binding Relationships are Directed

We may of course establish the other relationship with:
connectevent(TABLETX, BUTTON156);

The binding relationship is a directed graph. Each active_device is the root node of a linked list of zero or
more bound devices.

Binding Example

An example of the use of connecteventy() is as follows: we wish to note the cursor’s x and y position
whenever the mouse’s left button is depressed. We do not wish to know the cursor’s position at any other
time but when the left button is depressed, and therefore do not wish to select CURSORX or CURSORY to
enqueue events. As a result we will select to enqueue mouse left button events and then bind the cursor x
value and cursor y value to them with connectevent():

4 There is an implementation limit on the number of devices which can be bound to another device with connec-
tevent(). This is based on the fact that there is a limited amount of storage available for data structures used to maintain the
binding information and by the performance considerations of examining a large number of bound devices. An error code
is returned if the request fails due to such a limit. These static implementation limits of the event queue system may be
changed as application requirements and system performance direct. This is a compile-time parameter in the present imple-
mentation.

34

qdevice(MOUSELEFT);
connectevent(MOUSELEFT, CURSORX);
connectevent(MOUSELEFT, CURSORY);

The relationship established is shown in figure 2. Notice that since the first invocation of connectevent()
referred to cURsORX and the second to CURSORY the CURSORX precedes CURSORY in the list of devices bound
tO MOUSELEFT.

Figure 2 - Cursor Bound to Left Mouse Button

Subsequent to these requests, events containing the cursor x value and cursor y value will also appear in the
event queue whenever there is a left mouse button event. The cursor x and cursor y events will appear
immediately after the left mouse button event in the event queue and will contain the values of CURSORX
and CURSORY at the time the mouse button event occurred. This arrangement is quite useful when the
mouse button is being used to make a selection and the cursor x and y positions locate the selection. The
mouse button is the device we want to have notify us (cause an event) so we can execute the procedure
associated with selection. The cursor location is the annotation we need on the event so we can decide what
was selected when the mouse button was pressed.

Another useful application of connectevent(), is that of timestamping certain events (i.e. the time of
day clock is bound to a device). This can be used to note the absolute time that an event occured, or the

duration between successive events. This can be used to implement the mouse button "double click” inter-
face popular in some systems.

Unbinding Devices

It may be necessary to undo the binding between two devices. The disconnectevent() request per-
forms this function.

int disconnectevent(active_device, bound_device)
qDevice active_device, bound_device;

The request returns non-zero on success, and 0 for failure. Failure will be due to the fact that the
bound_device referred to was not bound to the device.

Bindings are only maintained while a device is active. If an active device is made inactive with the

unqdevice() request, all its bound devices are unbound. Bindings must be reestablished if an active device
is made inactive and then reactivated.

Cursor

A cursor is a two dimensional locator, typically used to mark a point of interest on a display device.
Although we may more readily think of the cursor in the output context, the cursor is also a subject closely
related to the event queue mechanism. The cursor’s two dimensional location is formed from a pair of
valuator devices. These devices (CURSORX and CURSORY) are abstract devices which derive their current
values from two concrete devices of valuator type (e.g. tablet x and y, knobs, mouse x and y, or the like).

The attachcsr() request allows the client to determine which pair of valuators will be used to determine the
cursor position.

int attachesr(xdevice, ydevice)
qDevice xdevice, ydevice;

CURSORX and CURSORY are devices in their own right and may be queued with qdevice like any other device.
The distinction between these devices and certain other cnes is that there is no physical device which gen-
erates events of type CURSORX or CURSORY. They uare effectively an abstraction of a chosen pair of valuators,
and have additional special output semantics associated with another (the display) subsystem>.

Overview of Implementation

The event queue system is implemented as a pseudo device. It is a system module analogous to the
UNIX tty subsystem or the Berkeley line disciplines. It presents a standard UNIX device interface at the user
level, but is not a driver for any particular physical device. Instead, UNIX device drivers which work with
the event queue system can be caused to dispatch their low level physical input to the event queue module
with the quelnput() interface. The higher level semantics of the event queue are implemented centrally - in
the Event Queue system module, rather than in the physical device drivers. This guarantees a uniform and
consistent behavior to the client across the range of devices which work with the Event Queue System,
The system structure is illustrated in figure 3.

Client
w
Processes @ CPI \Pz mgr

User
Kernel
Event
/dev/que0 /dev/quel /dev/que2 /dev/que3
Queues

UNIX Device Drivers

Figure 3 - Event Queue System Implementation Structure

The relationship of a physical device which works with the event queue to the event queue subsys-
tem is highly similar to the relationship of a serial line multipiexer to the UNIX tty subsystem. In both cases,
higher level uniform semantics are imposed across a variety of different physical devices in a common

5 The cursor involves the interaction of twe subsystems: the event queue and the display. This interaction is an interest-
ing topic but is outside the scope of the present paper.

36

system module, not the device driver. In the same way that we do not wish to reimplement the terminal
semantics of the tty system in the driver for each new serial line multiplexer, or the semantics of a network
protocol in the driver for each new ethernet controller, we wish to avoid reimplementing the semantics of
the event queue in each relevant physical device driver.

The event queue differs from the UNIX tty system and the line disciplines in that there is a many to
one relationship between physical devices and an event queue. Multiple physical devices can cause events
to be entered in a single queue. One event queue coalesces the input from many physical devices. How-
ever, it also imposes a uniform structuring (events) on the typically unstructured physical input as well as
filtering and the other event queue system features described above in the design based on this structured
input. In the tty system, there is a one to one relationship between a physical device at the bottom (the ter-
minal), and the device interface that the client sees. In the event queue, there are many physical devices
which enter events in the queue, and the client sees a single device interface (the event queue) at the top.

The event queue subsystem provides a set of procedures and data structures which a device driver, or
client (user process) may access. An event queue provides a set of logical devices with fixed semantics. A
given logical device abstracts from the large variety of physical devices which may possibly implement it.
The event queue subsystem implements several pseudo devices - each an independent event queue. These
are implemented as different minor devices of the event queue major device. The event queue system has
been implemented in the Ultrix system on a large VAX® system (11/785) with a large variety of attached
input devices and more recently on MicroVAX II workstations.

Extensibility

The Event Queue is easily extensible to accommodate new types of devices and events. New event
types can be added to the queue either by adding a new physical or ‘virtual’ device which puts these events
in the event queue. This is described in the following sections.

New Physical Devices

The Event Queue System provides a single canonical interface by which device drivers dispatch
input to it. This interface: quelnput() is analogous to the ttylnput() routine in the UNIX tty system module.
With queinput() however, an event is dispatched to the Event Queue System. Recall that ASCII characters
are dispatched to the UNIX tty system with ttylnput(). The usage of queinput() in a driver or device depen-
dent module which dispatches input to the Event Queue System is very similar to the way that a serial line
driver dispatches a character to the Unix tty system.,

If a new input device can be attached to a serial line interface which works with the UNIX terminal
system it requires no change to the existing standard device driver. Instead a simple line discipline for the
new input device is written. This discipline understands the protocol sent by the input device over the
serial line and dispatches events to the event queue by calling quelnput(). The line discipline for an input
device is activated in the usual way using the loctl(2) interface. In the case of an input device connected
via a special hardware interface board, a device driver must be written. This driver dispatches input
directly to the Event Queue System with quelnput().

6 VAX, MicroVAX and Ultrix are trademarks of Digital Equipment Corporation.

New Virtual Devices

A ‘virtual device’ is a client process that synthesizes one or more event type. Such a client uses the
postevent() request for this purpose. This client interface resolves to the same function within the Event
Queue System as the bottom end interface queinput().

An example of a virtual device is a window manager which enters events in the input queue relating
to windows: window entry/exit, exposure, iconization, and the like. The event queue allows any client pro-
cess to enter a sequence of events in the queue as an atomic operation. This ensures proper synchroniza-
tion of these events with events being generated by other devices in the system.

Retrospective

The UNIX terminal system

The designers of UNIX recognized the value of modularizing and abstracting fundamental system
components. A successful system component is high level enough to be independent of the various physi-
cal devices that it can support, but low level enough to serve the needs of a variety of clients and applica-
tions. In UNIX a large part of the terminal input system is implemented as a general purpose system module
which layers on top of serial line device drivers. The terminal system then extends a higher level interface
to clients which they may then build further upon to meet specialized application needs.

The UNIX system addresses the traditional problem of interactive timesharing. The associated termi-
nal input system addresses the problem of interactive terminal handling for ASCII character cell displays.
Device drivers reconcile their input to a simple canonical interface provided by the bottom end of the tty
system, and more sophisticated high level semantics are imposed by the same code independent of the
hardware device involved. This design separates device function from the higher level terminal input
abstraction nicely: The device driver’s job is kept simple, and consistent terminal semantics are guaranteed
across devices by sharing the implementation of the higher level functions in the tty module.

Workstation Input Systems

On contemporary workstation systems, the input problem is more general than that on traditional
timesharing systems. There is a greater diversity of input devices, and this makes it somewhat more
difficult to get a unifying abstraction for input. Although most workstation input system designs have
embraced the event queue paradigm at some level as a unifying paradigm, none have effectively isolated
this subsystem from a particular set of physical devices on the one hand or a high level application (typi-
cally a window system or manager) on the other, or both.

On many workstations to date it has been possible to escape with a specialized input system whose
design or implementation is committed to a particular hardware subsystem or high level application. This
is design approach is motivated by workstations where a limited number of input devices are possible and
they are all attached to the system via a single hardware interface. This approach however, has the
significant problem that it does not decouple the important component of the system - the event queue,
which provides the unifying abstraction for input, from the low level device-specific components. Much of
the value of the event queue abstraction is lost if this function must be duplicated or modified each time we
wish to implement the system on a new physical device.

Principal Problems and their Resolution

The Event Queue System is based on the premise that interactive input is a fundamental system func-
tion, and that as such, a general purpose system component should be available to address this function.
The principle problems of many previous designs are their specialization to the needs of a given

38

application, committment to a particular hardware interface or subsystem or their presumption of a
predetermined set of input devices. The Event Queue System overcomes these problems by separating out
a large general purpose component of the input system - the event queue itself, and a set of abstract func-
tions relating to the handling of events and the queue. The separation of application specific function from
the Event Queue System allows it to be used in many different applications. The exclusion of device
specific function and the provision of an abstract bottom-end interface that devices call, means that the
Event Queue System need not be changed either to incorporate input from new input devices or to accom-
modate new hardware interfaces.

The event queue system has been implemented in the way described above, with the vast majority of
the event queue code in a system module, and a small amount of preprocessing/interface code in device-
specific modules. As a result it has been possible to incorporate new physical input devices with minor
effort and without modification to the event queue system module. Device-specific modules for a new dev-
ice fabricate events which they dispatch to the bottom end event queue input interface. Device dependent
modules do not implement the event queue itself or support the associated client level functions directly.

Related Work

An event queue of some form is found in any respectable workstation system. We have looked in
varying detail at those in X version 10 [Gett86], Sun Windows version 2 [Sun 85}, MS Windows [Micr85a,
Micr85b, Micr85c], the Apollo Domain release 8 [Apol84], and the Silicon Graphics Iris version 2 [Sili84]
to mention some. The design presented here derives a great deal from the input system on the Iris worksta-
tion’. That design was in turn based on ideas developed still earlier by Bob Sproull [Newm79] and used in
the Alto and subsequent D machine workstations at the Xerox Palo Alto Research Center. Some close
exposure to the input system in the X window system (versions 7 through 10) raised several problems. A
desire to resolve these problems was the principal stimulation for this design.

Acknowledgements

We are indebted to a number of people for designs that motivated the present one, and for the ideas
which it derives from them. The software engineering group at Silicon Graphics was principally responsi-
ble for several interfaces which have been absorbed with little change in the present design. The present
design however, extends that design in several ways, and the implementation context and strategy is funda-
mentally different.

This work was started at the DEC Workstation Systems Engineering lab in Palo Alto. Ray Drewry,
Brian Kelleher and Mike Bidun of that group provided valuable early discussion of the ideas. John Dans-
kin used the first prototype implementation of the system and made helpful suggestions for its improve-
ment. We are especially grateful to Paul Haeberli of Silicon Graphics, who has provided an enduring
interest in this and related work and given us many valuable systems ideas. Special thanks to Steve
Boumne, also at DEC, for creating an environment for this sort of work, and for continued support and
encouragement.

7 Iris is a trademark of Silicon Graphics Inc.

References

[Apol84] Apollo Computer Inc., Programmer’s Guide to DOMAIN Graphics Primitives, Apollo Com-
puter Inc., Chelmsford, Massachussetts USA, April 1984.

[Bowe87] Jonathan P. Bowen and David J. Brown, Formal Specification of the Event Queue: An Extensi-

ble Input System for UNIX Workstations, Programming Research Group, Oxford University, Oxford,
England, March 1987.

[Brow86] David J. Brown, Input: Workstation Systems Technical Memo No. 2, DEC Workstation Systems
Engineering, Palo Alto, California USA, March 1986,

[Geu86] J. Gettys, R. Newman, and A. DellaFera, XIib - C Language X Interface, Protocol Version 10,
MIT Project Athena, Cambridge, Massachussetts USA, January 1986.

[Haye87] 1. J. Hayes, Specification Case Studies, Prentice-Hall International Series in Computer Science,
1987.

[King87] 8. King, 1. Sorensen, and J. Woodcock, Z: Concrete and Abstract Syntaxes Version 1.0, Pro-
gramming Research Group, Oxford University, Oxford, England, January 1987.

[(Micr85a] Microsoft Inc., Microsoft Windows Programmer’'s Guide, Beta Release, Microsoft Inc.,
Bellvue, Washington USA, May 1985.

[Micr85b] Microsoft Inc., Microsoft Windows Reference Manual, Beta Release, Microsoft Inc., Bellvue,
Washington USA, May 1985.

[Micr85c] Microsoft Inc., Microsoft Windows Adaptation Guide, Beta Release, Microsoft Inc., Bellvue,
Washington USA, May 1985.

[Morg86] C. C. Morgan and B. A. Sufrin, ‘‘Specification of the UNIX file system,’’ JEEE Transactions
on Software Engineering, vol. 10, no. 2, March 1984,

(Newm79] W. M. Newman and R. F. Sproull, Principles of Interactive Computer Graphics 2nd Ed.,
McGraw Hill, New York, N.Y. USA, 1979.

[Sili84] Silicon Graphics Inc., Iris Workstation Programmer’s Guide, Silicon Graphics Inc., Mountain
View, California USA, 1984,

(Spiv86a] J. M. Spivey, Understanding Z: A Specification Language and its Formal Semantics, Program-
ming Research Group, Oxford University, Oxford, England, 1986. D Phil Thesis

[Spiv86b] J. M. Spivey, The Z Library - A Reference Manual, Programming Research Group, Oxford
University, Oxford, England, August 1986,

(Sufr86] B. A. Sufrin, Z Handbook Draft 1.1, Programming Research Group, Oxford University, Oxford,
England, March 1986.

[Sun 85] Sun MicroSystems Inc., Programmer’s Reference Manual for SunWindows, Sun MicroSystems
Inc., Mountain View, California USA, April 1985.

[Wood86] J. Woodcock, Structuring Specifications - Notes on the Schema Notation, Programming
Research Group, Oxford University, Oxford, England, October 1986.

40

EUUG conference, May 1987, Helsinki.

Title of paper:

THE EVENT QUEUE: An Extensible Input System for UNIX Workstations

Names and addresses of authors:

Jonathan P. Bowen

Oxford University Computing Laboratory
Programming Research Group

8-11 Keble Road, Oxford OX1 3QD, England
Tel: +44-865-273852 (Sec: +44-865-273840)
bowen@uk. ac.oxford.prg (JANET)

David J. Brown

Cambridge University Computer Laboratory

Corn Exchange Street, Cambridge CB2 3QG, England
Tel: +44-223-354606 (Sec: +44-223-354600)
djb@uk.ac.cam.cl (JANET)

&

Digital Equipment Corporation

Workstation Software Engineering

100 Hamilton Avenue, Palo Alto, California 94301, USA
Tel: +1-415-853-6723 (Sec: +1-415-853-6700)
djb@decwr].dec.com (ARPA)

41

APPENDIX

The Z specification language is used throughout this appendix to formally describe the
operation of the system. An abstract state of the system is presented, and then the
effect of individual library routines on the state is given. The corresponding C
declarations in the main part of the paper may be compared to aid those familiar with
the C programming language. The amount of English description which would
normally be included in a typical Z document has been reduced here on the
assumption that the reader will have read the main part of the paper first.

Basic Concepts

Activity on input devices can cause entries to be made in the event queue. An event is
represented by a device identifier and an associated value.

Event

device : gDevice
value : qValue

At present there are three types of device: button, valuator and keyboard. Valuators
may be absolute or relative.

Button, RelValuator, AbsValuator, Keyboard : qType

Valuator 2 { AbsValuator, RelValuator }

The system includes a number of devices, each of which has a type and a value.
There is also a delta resolution which is only meaningful for valuator devices.

Device
type : qType
value : gqValue
delta : short

All devices return a qValue. Button devices return boolean (true/false) values.
Valuator devices (e.g. a mouse or clock) have a range value associated with them.
They may be relative or absolute. For example a mouse could have two associated
devices returning relative and absolute positions respectively. Keyboard devices return
character code values.

42

Abstract State

The state of the system includes a finite number of devices. These devices may be
enabled and disabled. A sequence of events awaits processing by the client. A number
of devices may be bound to a device. A pair of devices may be associated with the x
and y coordinates of the cursor. Zero is used to indicate an invalid device.

— State
devices : gDevice -» Device
enabled : F gDevice
events : seq Event
bindings : gDevice » seq gDevice
cursor : qDevice X gDevice

0 ¢ dom devices
enabled € dom devices
dom bindings = dom devices

After initialization, much of the state is zero or empty. A number of devices are

configured in the system, but there are no enabled or bound devices.

_ InitState
State’

devices’ # @
enabled’ o
events’ <O
ran bindings’ = {<>}

Operations change the state of the system. However the device types always remain
the the same. They are set at initialization time.

_ AState
State
State’

dom devices’ = dom devices
V dev:qDevice | dev € dom devices -
devices’(dev).type = devices(dev).type

Some operations do not affect the state. (Note that in practice the actual device values
change asynchronously but this does not affect the abstract specification).

=State 2 AState | 6State’ = 6State
For most operations, only a small part of the state is changed. The following framing

schemas are useful of the definition of subsequent operations, by specifying that all
but one of the state components is unaffected.

¢Device & AState A =Stateldevices
¢Enable & AState A =State\enabled
¢Event & AState A =State\events
$Binding & AState A =State\bindings
¢®Cursor & AState A =State\cursor

Asynchronous Events

Device values may change asynchronously. Button values flip between 0 and 1. For
valuator devices, the change is not less than the delta resolution of the device.
Keyboards only return ASCII characters.

~ AsyncChange
Mevice
device : gDevice
Device

Device’

Device = devices(device)
type’ = type

delta’ = delta

type = Button = value’
type = AbsValuator =

not (value)

abs(value’-value) > delta
type = RelValuator = value’ > delta
type = Keyboard = value’ € char

devices’ = devices @ {device + Device’}

If the device is enabled, this causes an event. This is added to the end of the event
queue together with any associated enabled bound device events. The corresponding

current device value is recorded in each event.

44

_ QueueEvent
¢Event
Event
bound_devs : seq gDevice
bound_events : seq Event

device € enabled

value = devices(device).value

events’ = events <Event) bound_events

bound_devs = bindings(device)l'enabled

#bound_events = #tbound_devs

V i:N| i € dom bound_devs -
bound_events(i).device = bound_devs(i) A
bound_events(i).value =

devices(bound_devs(i)).value

An asynchronous event consists of an asynchronous change in a value of a device
followed by the addition of the event and bound events if the device is enabled.

AsyncEvent ¢ AsyncChange 3 (=State ® QueueEvent)

The notation AsyncEvent” is used to denote an arbitrary number of consecutive
asynchronous events connected using schema composition. We can define

=State
AsyncEvent

AsyncEvent®
AsyncEvent !

n m n

AsgncEvent2 AsyncEvent 3 AsyncEvent

and so on. Using these definitions,

A

AsyncEvent® & AsyncEvent® V AsyncEvent! V AsyncEvent? V ..
These asynchronous events may be considered to occur in sequence with requests
invoked by the client. Each schema operation may be considered as being atomic.
Device Types
Each device has an associated type identifier. It is possible to determine the type of a

device using of a number of requests. A framing schema may be used to capture the
general features of these requests. Then each request is defined in terms of this

schema.

~ ¢Is
=State

device? : qDevice
aqtype : F qType
is : boolean

devices(device?).type € gqtype = is

devices(device?).type ¢ qtype = is

¢ls[isbutton!/is]
¢Is|isvaluator!/is] | qtype = Valuator

| qtype = {Button}

|
¢ls|isrelative!/is] | qtype = {RelValuator}

|

|

isbutton

isvaluator
isrelative
isabsolute

i skeyboard

¢Is[isabsolute!/is] | qtype = {AbsValuator}
¢Is[iskeyboard!/is] | qtype = {Keyboard}

n m mw un w

Queuning & Dequeuing Input Events

When a device value changes, an event is entered in the input event-queue if this
device has been selected for queueing by the client with a qdevice request.

_ qdevice
¢Enable
device? : qDevice

enabled’ = enabled U {device?}

Once a device has been selected by qdevice, an event will be placed in the event
queue whenever the device changes value. Devices which have not been queued will
not cause events to be entered in the event queue. Device events which are currently
being queued may be disabled.

_ unqgdevice
¢Enable
device? : qgDevice

enabled’ = enmabled \ {device?}

Event Filtering

Certain devices (such as a clock or mouse) may be high resolution or ‘noisy’ and can
thus generate more events than the client actually wishes to see. The threshold
request allows the client to specify that a minimum change must occur in the device’s

value before an event is entered in the queue.

— threshold
¢Device
device? : qDevice
delta? : short
Device

Device’

Device = devices(device?)

type’ = type

value’ = value

delta’ = delta?

devices’ = devices ® {device? V> Device’}

Reading Events

The client obtains the next input event from the event queue with the getevent
request.

GetEvent
F ¢Event
pValue! : qValue
getevent! : gDevice
Event

Event = head events
pYalue! = value
getevent! = device
events’ = tail events

This blocks until an event is available. Hence at least one event must be available in
the queue.

A

getevent 2 [AsyncEvent® | #events’ > 1] s GetEvent

For efficiency we are often interested in reading a number of events in one procedure
invocation. The getevents request performs this function.

_ GetEvents

dEvent

count? :int
EventArray! : int -» Event
getevents! : qgDevice

EventArray! = succ 3 (1..count? { events)
getevents! = head(events).device
events’ = (count?+1..#events) 1 events

Getevents returns the device associated with the first event and an array of events.
The request does not return until all count? requested events have occurred. Hence,
similarly to getevent, a number of events may be necessary beforehand.

A

getevents 2 [AsyncEvent™ | #events’ > count?]s GetEvents

Posting Input Events

Events may be ‘posted’ (i.e. placed) at the end of the input queue. A list of devices
and associated values must be supplied. These are added atomically and in the order
given.

_ postevent
¢Event
count? :int

pDevice? : int - gDevice
pValue? : int -» gValue

events’ = events {s: seq Event | #s = count? A
Vi:l..count? -
s(i).device = pDevice(i-1) A
s(i).value = pValue(i-1)}

Testing the Input Queue

Since the getevent request is synchronous (i.e. it will suspend the caller until there is

an event in the input queue to be read), the client may not wish to use it. The qtest
request allows the client to determine whether there is an event in the queue.

~ gtest
=State
qtest! : qgDevice

events # <) = qgtest! head(events).device
events =) =2 qtest! =0

Qtest returns the device id associated with the first input event in the queue, or 0 if
the queue is empty. The client may use qtest to provide a non-blocking use of the
input queue. This is implemented by using qtest to see that there is an event and
only then performing a getevent or getevents if input is available.

Grouping Input Events

It is often desirable to observe the state of several devices when a particular event
occurs. With the connectevent request the client directs the system that another
input event is to be placed in the event queue when a particular event occurs.

~ connectevent
Mindings
device?,

bound_device? : gDevice

connectevent! : int
bound_devs : seq qDevice

bound_devs = bindings(device?)
#bound_devs < MaxBindings =
bindings’ = bindings @
{device? - bound_devs ~ <bound_device?>} A
connectevent! < 0
#bound_devs > MaxBindings =
bindings’ = bindings A
connectevent! > 0

When an event occurs on device?, an event will be placed in the event queue for that
device, and for each bound device in the order that the devices were originally bound
by successive calls to connectevent. connectevent returns an error code less than
0 if it was unable to honor the request and positive non-zero if successful.
Subsequently, it may be necessary to undo the binding between two devices.

_ disconnectevent
¢Bindings
device?,

bound_device? : gDevice
disconnectevent! : int
bound_devs : seq gDevice

bound_devs = bindings(device?)
bound_device? € ran bound_devs =
bindings’ = bindings @ {device?
bound_devsl (qDevice\bound_device?)} A
disconnectevent! # 0
bound_device? € ran bound_devs =
bindings’ = bindings A
disconnectevent! = 0

The request returns non-zero on success, and 0 for failure, if the bound_device? was
not bound to the device? given.

Cursor Position

The cursor is closely related to the event queue mechanism. The cursor must derive its

current position based on two input devices (e.g. the x-y coordinates of a mouse). The
attachcsr request allows the client to specify which pair of valuators will be used to

determine the cursor position.

_ attachcsr
¢Cursor
xdevice?,

ydevice? : gDevice

cursor’ = (xdevice?, ydevice?)

Function Definitions

The following non-standard functions are assumed in the specification given:

not,
abs : Z & 1

V i:Z -
not (i)
not (i)
abs(i)
abs(i)

Type Definitions

The types used in this Z specification are all ranges of integers and are currently
implemented as follows:

FALSE
TRUE
boolean

0
1
{ FALSE, TRUE }

0..2°-1
-21%, 2151
231,231

0..28-1
0..216-1
0..232-1

w w mw

char
short
int

n w

unsigned_char
unsigned_short

m w1

unsigned_int

unsigned_short
short
unsigned_char

qDevice
qValue

qType

n m

A more flexible approach would be to allow qValue to either be a single value, or a
sequence of values. We could define qValue as a labelled disjoint union and update
the specification given accordinging.

qValue ::= val <<short>> | str <<seq char>>

In practice, this could consist of boolean flag followed by either a single value or a
length and a string.

Z Glossary

a, b
%y
P, q
A B
Q,R

identifiers
terms
predicates
sets
relations

A UB
A\B
#A

A e B
a—b
dom R
ran R
d A

WV A A v
a0 0V VD

i
Q
A
A
A
A
R

52

(A)

(Not comprehensive)

f,g functions
m, n numbers
s,t sequences
S,T schemas

Syntactic definition

.. Data type definition

Logical negation

Logical conjunction
Logical disjunction

Logical implication (-pVvq)
Logical equivalence
Universal quantification
Existential quantification

Equality of terms
Inequality (~(x=y))

Set membership of a set
Non-membership (~(x€y))
Empty set

Set inclusion

Strict set inclusion

Set of elements

Set comprehension
Ordered tuple

Cartesian product

Power set (set of subsets)
Set of finite subsets

Set intersection

Set union

Set difference

Size of a finite set

Relation (& P AxB)
Maplet (2 (a,b))
Domain of relation
Range of relation
Identity function
Foward relational composition
Domain restriction
Domain corestriction
Range restriction
Range corestriction
Relational image

+

2 A0 D
*

A+»B
A—B
A®»B
f(x)

Slp..
S;a:A..
S[a/b, ..}

SAT
SVT
S\(a,..)
pre S
SeT
ST

Inverse of relation
Reflexive transitive closure
Transitive closure
Relation composed n times

Partial function

Total function

Finite partial function
Function application
Overriding ((dom g4f) U g)

Set of natural numbers
Set of integers

Function {01, 12, ..}
Addition (succ” m)
Subtraction

Greater than or equal
Range {i:N|n>i>m}

Set of finite sequences
Empty sequence

Sequence {1—a, 2b, ..}
Sequence concatenation
First element (s(1))

All but head of sequence
Index restriction (N&N)
Sequence restriction

Vertical schema
definition. New lines
denote “;” and “A”.
Name and predicates
are optional.
Horizontal schema
Schema inclusion
Selection (given z:S)
Tuple of components
Decoration (after state)
Extra predicate(s)
Extra declaration(s)
Renaming (new/old)
Schema negation
Schema conjunction
Schema disjunction
Hiding of component(s)
Precondition of schema
Overriding ((SA-preT)VT)
Schema composition

I Come to Bury UNIX...
And to Praise It

Domanie Dunlop

Sphinx Ltd.

ABSTRACT

The UNIX™ operating system is being used increasingly as a vehicle for
the delivery of application software. As such, it is usually almost
completely buried: only when a user answers the login: prompt are
they responding to a UNIX utility — all other interaction is with an
application layered on top of UNIX.

But how deep and impervious should this layering be? What aspects of
UNIX can form a useful part of an application while still avoiding the
need to expose the user to such self-evident command strings as

lp -dletter -onb -oletenv -n2?

This paper, using examples taken from actual applications packages,
explores a range of responses to this question.

THE CHANGING ROLE OF UNIX

UNIX has come a long way since all its users were so pleased to get a slice of a
computer to play with that they were prepared to put up with its terse — not to
say obscure — command language because of the power that it put at their
fingertips. And it’s come a long way since users who found that terseness and
obscurity too much could be sure of ready access to a guru who could solve their
every problem with a few esoteric keystrokes. These days, the majority of UNIX
systems are sold to users who expect a computer to solve their problems, not
present them with new ones. Show these users a dollar-sign prompt, and they’ll be
on the phone to their supplier demanding assistance. That dollar sign can be taken
as an indicator of support costs!

Thus, although UNIX is an excellent vehicle for the delivery of many types of
application system, it must be buried in order that it does not frighten users. This
paper takes a number of products which are successful in the UNIX environment
and examines the methods they use to hide UNIX, and how successful those
methods are. Table 1 lists the products, and summarises their functions. Note
that almost all of them are available in several environments, decreasing the
reliance that their authors can place on the availability of UNIX tools.

I Come to Bury UNIX...

TABLE 1. Example Products
Operating
systems

Informix-4GL PC-DOS C-like language for the development of data-
UNIX based applications requiring menus, screen
vMs! forms, and report generation

Informix-SQL PC-DOS Data base manager with subsystems for screen
UNIX forms, report generaticn, and simple menus
vMs'
Q-Office PC-DOS* Office automation package providing word-
UNIX processing, and many (sometimes optional)
extras such as menu and forms handling,
electronic mail, free text retrieval...

Package Description

Tetraplan Reasonably comprehensive British accounting
package (seventeen modules, and growing fast)
Uniplex-2 Plus Office automation package incorporating
word-processing, database management,
spreadsheet, electronic mail and configurable
menus

APPLICATIONS AREN’T LIKE UTILITIES

The first problem that all of these applications have to face is that, unlike most
UNIX utility programs, they are screen, rather than line oriented. What’s more,
they have to be terminal-independent because no package that assumes it’s talking
to one particular type of terminal is going to get very far in today’s diverse
markets. Of course, UNIX has a means of solving this problem. It’s called termcap.
Or maybe terminfo. And it’s seven bits wide, and can’t do colour or draw lines,
whatever it’s called. Faced with these uncertainties and shortcomings, and with
the fact that smart-looking screens are a selling point, it’s not surprising that most
application writers have supplemented the system’s basic facilities. Table 2 shows
how.

Of the example products, only Informix-SQL confines itself confines itself to the
capabilities described by termecap. As a result, Informix-SQL’s screen displays are
less attractive than those of Unify, a major competitor with its own screen handling
library, and sales have been lost as a result. Perhaps this is why Informix-4GL, a
more recent product, requires that the termcap database is augmented in order
that additional display features can be accessed.

1. Under development
2. Word-processor only

I Come to Bury UNIX...

TABLE 2. Screen-Oriented Features
Description source Additional features
termcap| termz'nfo| Other | Colour | Boxes | Other

Additional source

Product

Informix-4GL . . . termcap tweaks
Informix-SQL . —
Q-Office —

Tetraplan “box files”,
termcap tweaks

Uniplex-2 Plus Configuration file

Like most products, Informix-SQL does not yet use termcap’s successor, terminfo.
While terminfo undeniably improves start-up time, the fact that description entries
must be compiled threatens application writers with headaches that they’d rather
avoid if at all possible. Among the listed products, only Uniplex-2 Plus uses
terminfo where it is provided. Q-Office, the other office automation (OA) product,
dispenses with UNIX solutions entirely, using a private database which describes
terminals in considerable detail, but which is totally incompatible with either
termcap or terminfo. In general, the “enhancements” which allow different
products to access additional terminal capabilities are all mutually incompatible,
making system maintenance tricky if more than one product is installed.

Where does this leave us? UNIX has been the target of standardisation efforts for a
number of years 1 (2] [3], yet we’ve only examined one relatively minor aspect of
UNIX, and already we’re faced with a situation where real software products need
facilities which are years away from being standardised?®.

APPLICATION INTERFACE TO UTILITIES

There are other areas where, at first sight, UNIX provides standard tools which
should preclude the need for application writers to reinvent wheels. It usually
turns out that real life isn’t that simple. Print spooling is a case in point.

a. It used to be done by Ipr, which was woefully inadequate (unless you had the
Berkeley version)

Now it’s done by Ip, which is competent, if limited

There is no standard way of describing printers’ capabilities in the way that
termcap describes terminals’ capabilities (printcap never caught on), meaning
that each application has to incorporate a back-end which worries about the
details of printer control

3. In fact, by the time two-dimensional screen handling is standardised, most software products will
probably want two-and-a-half — windows...

I Come to Bury UNIX...

d. Some manufacturers ship proprietary print spoolers of greater or lesser
competence with their systems, but these can’t be relied upon by portable
applications.

TABLE 3. Access to Print Spooler
Spooler Configurable Multiple Back

Own [System by destinations | ends
Informix-4GL None Required Programmer Maybe None

Product

Informix-SQL None Required Administrator Via shell None

Q-Office Prefered With Administrator Yes Many
difficulty

Tetraplan None Required Administrator Via shell None

Uniplex-2 Plus | Optional Prefered Programmer Yes Several

Table 3 shows that there’s a fair degree of agreement among software products on
how this problem should be addressed. They simply punt, leaving the job of
tuning the interface between the product and a system’s spooler to the person who
gets to install the product. Only the OA products acknowledge the issues of
multiple destinations and of printer capabilities. Indeed Q-Office is delivered with a
complete spooling subsystem, which works well on dedicated OA applications, but
which rapidly becomes unsupportable if Q-Office is co-resident with other packages
which expect the print spooler to be called Ip and to behave appropriately.

ESCAPING FROM APPLICATIONS

If you want to get fancy with printing from the other products, it may be possible
to enter a shell command line to get the desired effect, but this flexibility allows
users them to shoot themselves in the foot — or the system in the back.

This brings us on to the matter of shell escapes. It’s very nice for programmers to
be able to enter something like !ps -ef in response to a prompt from a menu-
driven program, dropping temporarily into shell command language to have a quick
poke around the system. Many software products allow an escape to the shell —
indeed, some require it in order that they can kick off subordinate programs®. It’s
here that the problem arises: an open-ended shell escape can expose timorous users
to things they don’t want or need to understand, and can allow malicious users
unintended access to things they know only too well. Table 4 shows that, of the
products which offer a shell escape, only the OA products allow it to be inhibited
by the person who configures the system. With Informix-SQL and Tetraplan,
you’re stuck with the shell escape whether you want it or not. (Informix-4GL is a

4. You discover this when you try to inhibit the shell escape by setting SHELL=/bin/true (or
something even more creative) in the environment, and everything stops working.

I Come to Bury UNIX...

TABLE 4. Applications as Self-Contained Environments

Escape to UNIX Suitable Menu
Allowed] Required [Optional | as shell? facility
Informix-4GL Yes No Yes Yes Tool kit

Informix-SQL Yes Yes Yes Limited
Q-Office Yes Yes Full language

Product

Tetraplan Yes Yes Limited

Uniplex-2 Plus Yes Yes Full language

programming language, so it’s up to the programmer whether applications built
with it have a shell escape.)

The table also shows that many products can themselves be used as shells.
Generally, this means that they must be invoked from a .profile which sets up an
environment for the product, and has as its last line something like

exec Qoffice

This works very well until a word processing operator, browsing through the list of
documents in their main folder, notices something strange called .login, and
corrupts it in the process of trying to find out what it is. The next time that
person tries to log in, the system won’t work for them.

Of course, possibility of this type of error can be minimised if the package follows
the UNIX convention for hidden files (both OA products do this), and avoided
completely if some tricks are played in .profile:

HOME=/somewhere/else
export HOME

cd

exec Qoffice

KICKING OVER THE TRACES

The point is that the user must be prevented from tripping over little bits of UNIX:
it must be completely buried. With many application products, UNIX is only half-
buried by the package as delivered: it still takes somebody who knows what they’re
doing to complete the job.

This is particularly true for back-up strategies. As table 5 shows, few applications
suppliers even address the issue.

Instead, they tacitly assume that back-ups are somebody else’s problem. A
reasonable excuse for this state of affairs is the total lack of agreement among
system suppliers about back-up methods. Some manufacturers put forward (more
or less hacked versions of) tar or cpio, while others favour dump®, volcopy, or

I Come to Bury UNIX...

TABLE 5. Provisions for Security Back-Up and Recovery

Back-up method Recovery method
Product . .
provided provided
Informix-4GL None Transaction replay
Informix-SQL None Transaction replay
Q-Office Various Various
Keystroke replay
Tetraplan tar tar
Uniplex-2 Plus None None

something proprietary of their own devising. And there’s even less agreement
about device names. Consequently, it’s usually up to a UNIX programmer to
implement a back-up strategy and, if necessary, tie it into a menu system so that a
turn-key system’s users can run it themselves. This is even true for Q-Office and
Tetraplan, the two listed products which include a back-up method. Such is the
diversity of system configurations in the field that the person installing the software
generally has to fill in some blanks on a menu, or hack a small shell script before
back-ups work properly.

UNIX GETS IT RIGHT

So far, we’ve explored areas where application developers have addressed real or
perceived shortcomings in the facilities that UNIX implementations can be relied
upon to offer. What about areas where there should be little argument that UNIX
can do an adequate job? How well do software products take advantage of such
facilities?

An example concerns file access permissions and system security. If the idea is that
each file or program should have exactly those permissions which allow selected
users to do their job, while preventing others from accidentally or maliciously from
treading on their toes, table 6 indicates that most products do a pretty poor job.

(Notice that system utilities Ip and mail have been slipped into the table, showing
that it’s easy to make mistakes.)

A two-pronged strategy seems to be at work:
1. If you need to get around permissions, use set-uid root: it’s bound to work!

2. If there’s a chance that restricting permissions may stop users from doing
anything, leave everything wide open.

5. The old dump that dumps file systems, not the new dump which displays segments of COFF
modules...

58

I Come to Bury UNIX...

TABLE 6. Security Characteristics

Product User for| User for Approach File permissions
rocuc set-uid | set-gid PP installed user

Informix-4GL root informix Selective Correct Safe

Informix-SQL root informix Selective Correct Safe

lp 1lp sys Dumb - Fairly safe

mail - mail Smart — Safe

Q-Office root various Shotgun Affected by Determined by
root’s umask user’s umask

Tetraplan ~ - — Affected by Wide open
root’s umask

Uniplex-2 Plus root informix Selective Affected by Determined by
root’s umask user’s umask

This is a recipe for creating unsafe and insecure systems, as has been pointed out in
4l and {5], but application developers seem to keep right on doing it. Only the
Informix products break out of this sloppy mould®, using set-uid root briefly to
push System V’s annoying umask file size limit out of sight, then set-gid informiz to
create database files accessible only to their owner or users running Informix
programs. (These programs check the data dictionary for further access
restrictions.)

BUT FIRST, YOU’VE GOT TO INSTALL IT...

It’s also interesting to note that Informix products are among the small minority
which incorporate a script to perform comprehensive checks of file ownership and
access permissions when they are installed. Almost all products have to be
installed by the super-user, and too many tacitly assume that the umask in effect is
sufficiently lax to allow the creation of files with general read and execute
permissions.

As with back-up procedures, some of the blame for this situation can be laid at the
doors of system manufacturers. While many suppliers have supplemented their
UNIX implementations with (more or less friendly, and more or less bomb-proof)
methods for installing software packages, there’s very little incentive for software
authors to use them, unless they’re working on a fat OEM contract for a particular
manufacturer’. The problem is that recommended methods differ so much from

6. Uniplex-2 Plus uses the back-end from Informix-SQL for database services, and /bin/mail for
mailbox access.

7. Even then, Informix Software’s implementations for the 3Bl use AT&T’s recommended
installation procedure, whereas those for the 3B2 don't...

59

I Come to Bury UNIX...

system to system that most software authors don’t think it worthwhile to work out
how to use them, or to educate their support staff on recovery from problems in a
dozen different procedures. Instead, most packages rely on tar or epto, and assume
that the person installing the product can enter something like

mkdir /usr/informix

cd /usr/informix

cpio -ivcBd < /dev/rfdOssdd
./install

without making too many mistakes®.

Inevitably, mistakes are made, the phone is picked up, and support is demanded,
but that represents a cost suppliers have decided, for the moment, to live with.

CONCLUSIONS

This paper has concentrated on the problems of building real applications on top of
UNIX, and so could depress or frighten those who aren’t aware of the power of the
tools that UNIX provides. In fact, it’s that power which gives rise to some of the
problems; UNIX presents reasonably complete solutions to many problems not even
addressed by other operating systems. As a result, smart programmers build on
the foundations that UNIX provides, saving themselves the trouble of implementing
subsystems from the ground up.

It’s clear that further standardisation of certain aspects of UNIX would greatly aid
application developers. Areas highlighted in this paper are

e Access to advanced terminal features

o Multi-stream spoolers with support for printer capabilities
e Back-up methodologies

o Installation procedures for optional software

But developers too must play their part by educating themselves about the
facilities that UNIX can provide, and the correct way to use them. Above all, they
must bury UNIX deep if users are to see it as a fertile base for applications, rather
than as something they’d prefer to avoid.

REFERENCES

1. IEEE Trial Use Standard 1003.1, Portable Operating System for Computer
Enuironments, Wiley-Interscience, 1986

2. UNIX System V Implementation Definition, second edition, Volumes 1-2, AT&T,
1986

8. It is left as an exercise for the reader to pinpoint the several pitfalls in even this short sequence

I Come to Bury UNIX...

3. X/OPEN Portability Guide, Volumes 1-5, Elsevier Science Publishers BV, 1987

4. UNIX System Security, Patrick H Wood & Stephen G Kochan, Hayden, 1985

5. How to Write a Setutd Program, Matt Bishop, ;login: vol. 12, no. 1
(January /February, 1987)

Trademark acknowledgements:

Informix-SQL, Informix-4GL: Informix Software; PC-DOS: International Business Machines
Corporation; Q-Office: Quadratron; Tetraplan: Tetra Business Systems; Uniplex-2 Plus: Redwood

International; UNIX: AT&T; VMS: Digital Equipment Corporation.

62

Now UNIX! Talks To Me In My Language

Pascal BEYLS Bertram HALT
BULL SIEMENS
1, rue de Provence Charles de Gaulle Strasse 2
38432 Echirolles D8000 Munchen 83
FRANCE GERMANY

ABSTRACT

BULL and SIEMENS, 2 major European companies, have jointly achieved the
internationalization of UNIX, as defined by the X/OPEN? group. This document
describes the choices and the implementation.

An approach similar to TERMINFO makes it possible for the user to define his own sets
of characters and sort sequences easily and comfortably. The characters are now 8 bits
long and encompass all the national characters. Compliance with local conventions such
as printing the date, is also provided.

An original solution, based on a new section in the COFF, has made it possible to
eliminate any multilingual problems, so that the user may now work in his own
language. Naturally, progress still remains to be made in this field.

It is noteworthy that it is two European, non-English companies which are offering a
truly European, if not international, UNIX.

1. Unix is registered trademark of AT&T in the USA and other countries.
2. X/OPEN is a licensed trademark of the X/OPEN Group Members.

1. Introduction

UNIX quickly finds certain limitations when used in a non-English environment, such as
that found in most European countries.

For example, a French user is immediately bothered by the use of (or rather the
absence of) accents. He can either ignore this problem (the most common solution), or
try to find a make-shift work-around. The documentation, the print-outs, the error
messages are all in English. Even if this does not bother our friends the hackers too
much, the same thing cannot be said of the end user, especially when he has bought a
machine from a computer manufacturer from his own country. It is a hard pill to
swallow that a national constructor does not supply its machines with a user interface
in its own language.

Let's take the example of a beginner wanting to print out his first message:
"Bonjour, Héléne"
as others might print out "hello, world". This unlucky person would have enough
problems finding a keyboard with accented letters on it, and when he did, he would
have problems programming in C, as the two letters é and é take the place of the
standard ASCII characters | and |. If he was using nroff, he would have to write:
"Bonjour, H*(e’l\ *(‘ene”
He would soon decide that those letters really aren’t all THAT important and would
give up the idea of using them.

Nothing is provided to help the translation process, either. Any software sold in
another country must have the source massaged in order to change the messages and
then recompiled. Not to mention the fact that date and decimal formats change
between countries also. The American 03/10/87 (March 10 1987) is not the same as the
German 03/10/87 (October 3 1987). In France, the equivalent of the American

$12,345.67 is ¥12.345,67. (note that the characters "." and "," have opposite meanings!!)

All this contributes to slow down development of UNIX in non-English speaking
countries. And yet, there is enormous potential in some of these countries, such as
Japan, Europe and the Middle East.

There are 3 principle areas where research is being done.

— enlarging the character sets to include accented characters

— taking into account each language’s particularities (word sorting with ’special’
characters, for example).

-— printing out messages in the user’s language
Although the ASCII character set is universal, the same cannot be said of extended
character sets (especially 8 bit character sets). Several are already in use:
o+ ISO 8859/1 for Western Europe
o ISO 8859/2 for Eastern Europe
o [SO 6937 used by the CCITT
o the IBM-PC has 2 character sets

« etc...(let’s not forget the Japanese character sets)

These character sets are evidently not compatible and the ordering of the letters
(collating sequence) is not ascending, as one would hope. For example, ¢ is not between
e and f, which means that sorting of text can no longer use stremp(3X) which sorts by
ascending bit value, but must use a sort algorithm based on tables, where the order of

each character is given. Sorting should also take into account other particularities,
such as the double letter Il in Spanish (the order is I, I, m).

The way of handling messages in several languages is a group of tools made available to
the programmer that lets him build international software. The text printed out by the
program can be translated, without modifying the original program. This toolbox to
help the programmer must fill the following conditions:

— The work of internationalizing an application should not change the way of
implementing a program and should be limited to a small number of new things to
do. Thus, a software house should be able to internationalize its products in many
languages without having to modify extensively the program source.

The way of printing out messages in several languages should be transparent to
the user.

Several people on the same system should be able to speak to the computer in
their own language simultaneously.

The toolbox should make it easy to manipulate and translate messages, as well as
to exchange message "databases” between users.

1.1 What impact will this have on UNIX ?

The internationalization should be seen as a set of tools and databases that are added
on top of UNIX. Several modifications are still necessary to fully implement
internationalization:

— the masking of the 8th bit. Since the ASCII codeset uses only 7 bits for encoding
characters, utilities use the 8th bit for internal purposes (e.g., sh(1) uses this 8th
bit to keep track of single quoted strings to prevent evaluation. This work is
known as "8th bit clean up".

Multiple codeset support : New codesets are now available and intend to cover all
the possible characters and signs. These are often based on 8 bits.

Support for national or cultural conventions: the major areas are:
« Collating sequence
¢ Date and time format
« Printout of numbers and currency units.

o Hyphenation.

Message presentation : The message presentation is a mechanism which permits
program messages to be stored separately from the logic of the program,
translated into different languages and retrieved at runtime according to the
language of the user. An environment variable LANG defines the language,
territory and codeset used.

1.2 The X/OPEN definition

The X/OPEN group has defined and published a set of interfaces, defined as "XVS
INTERNATIONALIZATION", which contains mainly an enhanced interface definition
for standard C library functions and an announcement mechanism [XOPENS87]. This
important specification was the basis of the common implementation realised by BULL
and SIEMENS. As the X/OPEN group is only committed to defining programming
interfaces, the implementation is left up to the individual companies.

2. The Database INTLINFO

The INTLINFO database contains information on the following topics in order to
provide the necessary functionality:

Information on the code set used,

Information on the properties of every code in the code set (character
classification),

Information that allows a program to correctly sort/collate user data,

Information on how to do conversions, for example, the standard conversions
toupper and tolower,

Information that can be accessed by some library routine to correctly interpret
things like date formats, number representation, and so on.

In order to allow access to all this information in an efficient manner, it is desirable
that the database be organized in some fashion and that a program accessing the
database has to do as little interpretation of data as possible.

It is therefore necessary to design a language that allows easy entry of all this
information and to design and implement a compiler that will translate this source into
a binary that fulfills the requirements of fast access and compact storage.

2.1 The Data Base Source

The following general considerations were followed in the design of the language for the
database:

1. The database source should, as a first step, only contain ASCII characters because
currently UNIX systems supporting any code set other than ASCII are very hard
to find. At a later stage, when tools like editors to edit non ASCII source files are
commonly available, this restriction may be dropped allowing for a more
comfortable entry of data into the database.

The database source should be free format. This especially means that "white
space” shall have no significance other than as separator for tokens in the input
language. This requirement comes mainly from the bad experiences that every
UNIX user has had with languages where this is not the case (for example: make,
termcap and terminfo sources!).

Comments should be allowed wherever possible. This is one of the reasons why the
C language pre-processor is used in the current implementation: it gives the user
the freedom to intersperse his source with C-style comments and imposed no
additional workload on the compiler designer /implementor.

4. The source should be as self documenting as possible.

The source for this database consists of two major parts:
1. The definition of the code set used.

2. The definition of property tables, collation sequences, string tables and conversion
tables.

2.1.1 The CODESET section

The definition of the code set used is introduced by the keyword CODESET or
EXTENDED CODESET followed by a name for the code set. CODESET implies

an eight bit codeset with the possible extension of some special, non contiguous sixteen
bit codes named double letters. EXTENTED CODESET implies a sixteen bit
codeset with no double letters. The name given to the codeset will become the name of
the binary file once compilation has succeeded. It must therefore adhere to some
convention on the system so that the runtime routines can find the database. As the
runtime routines expect the database to be named
"SLANG_fTERRITORY_$CODESET" this should be the name given here. Optionally
the name of the codeset may be given on the command line using the -o option. This
command line name will override the name of the codeset in the database source.

Following this introduction each code is defined by assigning the code’s value to an
identifier, which may be used to reference the code from then on. This assignment has
the form:

Identifier '=" value_list " "’ Properties | ’;’

The value_list is a comma separated list of values, a value may be given as C-style
character constant, in octal, hexadecimal, decimal or ISO notation, or by giving the
name of a previously defined code.

Codes may be subdivided in two classes: simple and combined codes. There are
several restrictions that have to be observed when defining codes in the CODESET
section:

1. The list of simple codes must contain all codes from code value 0x0 up to and
including the code with the highest value defined. This is necessary because the
simple codes are not stored in the INTLINFO data base and che runtime access
routines assume the existence of all simple codes for speed reasons. The order of
definition is free because all values are sorted into ascending machine collation
order when the whole code set definition has been read.

The list of simple codes may not contain codes with duplicate code values. This is
necessary for the same reasons as above.

If the codeset is not an EXTENDED CODESET there may be an arbitrary
number of definitions for multi-byte codes up to 2”15 or memory limit, whichever
is smaller. Combined codes need not have contiguous code values and will be
sorted in ascending machine collation order and construct the "double letter
table” in the INTLINFO database binary.

If the codeset is an EXTENDED CODESET there may be no combined codes (i.e.,
double letters) and all codes defined are simple codes. (This especially means that
rule 1) and 2) apply!)

As the generation of a valid database without the afore mentioned restrictions is not
possible all these conditions are thoroughly checked by the compiler and abort
compilation after the codeset section has been parsed.

The optional properties part in the above code definition serves to assign default
properties to a code. If it is not given, the code is assumed to be defined but illegal.
(This is useful for languages that do not know about some letters defined in a standard
code set.) Properties take the form of a comma separated list of keywords.

There is a third kind of statement allowed in this section: the (re-)assignment of
default properties to an already defined code. This statement takes the form of

1.7

Identifier '’ Properties ’;

The CODESET section is terminated by the two terminal symbols END ..

The use of the ’#include’ facility provided in the language because of the use of the C
pre-processor is strongly recommended as most of the codes considered contain common
code (for example, ASCII or IS 646 or IS 8859) in their lower half and therefore using a
common include file will reduce the risk of errors and provide a common name basis for
the remainder of the source.

There may only be one definition of a code set and the definition must be the first item
in the source file.

2.1.2 The Data Table Section

The data table section consists of a sequence of property, collation, string and
conversion tables, containing at least:

1) a default collation table,

2) a default string table,

3) the two code conversion tables "toupper” and "tolower".

2.1.2.1 The Property Table

A "property” is the membership in a character class and can be accessed at runtime by
the nl_ctype(3C) library functions.

There can be more than one property table. Each property table is introduced by the

keyword PROPERTY. The default property table, built along with the code set, has
the predefined name PROP_DFLT. It is an error to redefine this property table. Names
of property tables must be unique throughout the source.

A statement in the property table takes the form of:

b

Ident ’’ Properties ’;’

where Ident designates a defined code and Properties is a comma separated list of
properties.

Some properties also have effects on the interpretation of characters by various other
International UNIX library routines. For example, the property DIPHTONG must be
set for diphtongs to collate correctly as diphtongs, the property DOUBLE must be set
to correctly recognize the first of a double letter sequence.

The following properties are known:

ILLEGAL The corresponding code is defined but is not a legal code.

CTRL The corresponding code is a control code.

NUMERAL The corresponding code is a number.

UPPER The corresponding code is an upper case letter.

LOWER The corresponding code is a lower case letter.

HEX The corresponding (letter) code represents a hexadecimal digit.
PRINT The corresponding code is printable.

PUNCT The corresponding code is a punctuation mark.

68

SPACE The corresponding code is a character that prints as space.

DIACRIT The corresponding code is a diacritical sign. If combined with either
UPPER or LOWER: the corresponding code is a diacriticalled letter.

ARITH The corresponding code is an arithmetic sign.
FRACTION The corresponding code represents a fraction.

DIPHTONG The corresponding character is a diphtong. The meaning of diphtong here
is somewhat different from the definition used in the grammar of
languages having diphtongs. Diphtong for the purposes of the
international UNIX database is a defined as a character for which "one to
two" collation must be used. (This implies an interdependence with the
collation tables.)

DOUBLE The corresponding code is constructed from two other single byte codes
but is to be treated as a single code. (Note: This allows two things: one is
the expansion of 8 bit character sets to include double letters (e.g. LI, Il in
Spanish) that collate two to one and the other is the handling of 8/16 bit
codes like IS 6937/1.). This property may only be used if the codeset is not
a true sixteen bit (EXTENDED) codeset.

GRAPHIC The corresponding code prints as a graphic symbol. (e.g. arrows, playing
card symbols, ...)

CURRENCY The corresponding code is a currency symbol.

The two most interesting properties in the list above are the properties DIPHTONG
and DOUBLE and their combinations for normal and extended codesets. To clarify the
interdependence here are some examples (both assuming an underlying 8 bit codeset
with extensions, i.e., [S 6937):

1. Definition of a double character
Assuming the underlying codeset is IS 6937, the German umlaut will be
represented by two eight bit codes: The nonspacing diacritical mark "diaresis”

followed by the code for the character "a". If this "character” should be collated
“two to one" e.g. for standard German dictionary order the correct definition is:

dia_a = diaresis, a : LOWER, DIACRIT, DOUBLE, PRINT;

which means that the code "dia_a" has the 16 bit value "c861" (diaresis == ¢8, a
== 61), is a lowercase diacriticalled letter that collates "two to one" and is
printable.

Definition of a double diphtong character

Again taking the IS 6937 codeset and the German umlaut , assume that this
character should be collated as the letter "a" followed by the letter "e" (German
telephone book ordering). Now we have the case that a double letter should
collate as two simple letters, essentially a "two to two" collation. The correct

definition for this code now is:
dia_a = diaresis, a : LOWER, DIACRIT, DOUBLE, DIPHTONG, PRINT;

IS 6937 is the typical example of an eight bit codeset that needs to be extended by a
noncontiguous range of pseudo sixteen bit characters (not all combinations of diacritical
marks and other codes are defined!).

A code with no defined property will be listed as ILLEGAL in the resulting property
table.

2.1.2.2 The Collation Table

A collation table starts with the keyword COLLATION followed by the name of the
collation table. Exactly one nameless collation table must exist. This is the default
collation table bearing the internal name "COLL_DFLT". Names of collation tables
must be unique throughout the source file and there can be more than one collation
table.

The order of statements in the collation section is significant, as every statement
(except the last in the list of forms below) opens up a new class of codes with the same
primary weight and the primary weight (starting at 1) increases with each statement
encountered. This way for example, the fourth statement in the collation section assigns
the primary weight four to all the codes named therein.

A statement in the collation section may take one of the following forms:
PRIMARY ’’ Ident_list ’;
PRIMARY " Ident -’ Ident ’;’
PRIMARY 2’ REST)
Ident '=""(’ Ident ’," Ident)’ '}
PROPERTY '’ Property_table_name ’;’

The meaning of the first construction is to assign the codes designated in the identifier
list the same primary weight and ascending secondary weights from left to right. If the
identifiers are to be sorted in machine collation order the second form of the collation
statement may be used, which will assign ascending secondary weights for ascending
machine collation order.

The third type of statement will set the primary weight of codes not explicitly named in
the collation section to the ordinal number of the statement in the collation section, the
secondary weight will ascend in ascending machine collation order. This is a convenient
notation for defaulting unspecified codes to collate after or before all others.

The fourth form of the collation statement is reserved for the collation of diphtongs
(one to two collation) and implies the following: The left hand side code collates as if it
were the first right hand code followed by the second right hand code. Please note that
in order for the diphtong collation to work correctly, the code named on the left hand
of the statement must be marked as DIPHTONG in at least one property table and
that this property table, if it is not the default table must be given by means of the
fifth statement which allows the runtime routines to load a collation only property
table if this collation is chosen.

If a code is not given weights in the collation section this code is treated as if it had the
(otherwise illegal) primary and secondary weight zero. The net effect of this is that
such a code will collate as if non existent. (For example, if -’ is such a code then "abc"

and "a-b-c" will collate equal!)

To solve the problem of two to one collation (i.e., two letters collate as one) the double
letter must be named in the code set and then can be given a weight in the collation
section.

2.1.3 The String Table

There can be more than one string table in a source file.

A string table starts with the keyword STRINGTABLE followed by the name of the
string table. Exactly one nameless stringtable must exist. This is the default string
table, internally named "STRG_DFLT". Names of string tables must be unique
throughout the source.

Each statement in a string table looks like

Ident '=’ value_list 'y

where Ident is an identifier, i.e., the name of the string and the value list is a comma
separated list of strings, character constants and Identifiers designating codes. This
allows inclusion of non ASCII codes in any string table value by giving the name of the

code in the value_list.

The compiler will check the existence of all codes in the value list, compiling escaped
characters in string constants in the process.

If the advice of using include files in the code set section was followed and the names for
characters are the same in the include files, the string table can be copied (or again
included) in several sources.

2.1.4 The Conversipn Tables

In an environment where more than one code set is supported the possibility to convert
from one codeset to another becomes of prime importance.

There are essentially two types of possible conversions:

1. conversion within the codeset itself. This type of conversion will hereafter be
called a code conversion. Examples are the standard conversions "toupper™ and
"tolower".

conversions from one code set into another. This type will hereafter be caiied a
string conversion. Examples include the conversion from ASCII to EBCDIC or
from IS 8859/1 to IS 6937 and more.

A conversion table either starts with the keywords CODE CONVERSION or
CONVERSION, or STRING CONVERSION. The first two are equivalent. Each
conversion must be given a name with which it will be accessed at runtime. The two
code conversions toupper and tolower are mandatory. Names of conversions must be
unique throughout the source file.

2.2 The Compiler ic
The ic compiler was realised using the powerful tools available in UNIX

— C-like comments, file inclusion and defining as well as conditional compilation are
handled through use of the standard C pre-processor (usually /lib/cpp) which can
be called either as a separate pass or connected to ic via a pipeline (-DPIPE
compile time option).

The lexical analyser was written using the lez lexical analyser generator.

The parser was written using the UNIX tool yacc. This assures that changes in
the syntax of the compiled language can be easily accommodated, which is of
great value for a prototype compiler.

The C subroutines doing the actual work are distributed over thirteen source files (one
for each section [cod.c, prp.c, col.c, frm.c, cnv.c], three for message/error handling
[message.c, yyerror.c, yywhere.c|, one for [/O [io.c], generally used subroutines [subr.c|,
symbol table handling [sym.c] and value handling {val.c]) all collected in a library
libic.a].

The main program main.c] does the necessary initialisations and then calls the yacc
generated parser yyparse.

The general strategy employed to construct the INTLINFO data base is the following:
To enable the compiler to run even on small machines, each section, except for the
CODESET, is written to a temporary file as soon as it is completely parsed. Identifiers
and values only used locally in the table are deleted.

This results in a uniform structure throughout the parser: Each section has its own
initialisation routine, some functions that are called for each statement to build the
table and a finish-up routine that writes the table to the temporary file and does the
cleanup necessary.

If no errors have occurred during compilation the final routine in the compiler then
writes out the database header and the code set and appends all intermediate files
generating the indices for the sections in the process.

Generally the error handling ih yacc generated parsers is quite unsatisfactory (as can
be seen in pcc, make, awk..). To improve on the error messages the technique
described in ‘SCH84! was used, which resulted in a fairly stable and reliable product,
which usually will give quite concise messages ([warning], lerror nn) for the most
common errors and recover well from almost any error. One class of errors (fatal
errorj} intentionally leads to a premature termination of the compilation: Specific errors
like missing or duplicate codes in the CODESET section would result in so many follow
up errors in the other sections that termination seems appropriate. There also is a
“this cannot happen” error type ([fatal bug|) which also results in a premature
termination of the compilation process, leaving temporary files in /tmp that then may
be used for debugging.

Special attention was given to the debugging facilities in the compiler. There are
several global variables which when set will give tracing/debugging information up to a
very deep level. The debug code is included by setting -DEBUG and/or -DYYDEBUG at
compile time. The routines necessary for debugging are found in the file dbg.c and, for
specific subsections in the appropriate file for the section.

2.3 Example of the input to the database
/*
* partial example of source for
* an International UNIX database
*
CODESET CH_ASCIIPLUS :
/* * This will be the name of the INTLINFO file */
#include "[SO646"
/* * include predefined ASCII code definition */

*
* additional definitions for demonstration purposes:
*
*

first we have a range of secondary control codes.

72

* This is not enforced by the ic compiler nor by

* the language but is a common IS 2022 style

* code set extension technique. Note that because

* there are no properties defined below all these

* codes are defined but not legal.

E 3

sc00 = 0x80; sc01 = 0x81; sc02 = Ox82; sc03 = 0x83;
sc04 = 0x84; sc05 = 0x85; sc06 = 0x86; sc07 = 0x87;
sc08 = 0x88; sc09 = 0x89; sc0a = 0x8a; scOb = 0x8b;
scOc = 0x8¢; sc0d = 0x8d; scO0e = 0x8e; scOf = 0x8f;

/*

* now come some more useful code definitions. These
* definitions are taken from the IS 8859/1

* definition. Note the convention of writing upper
* case letters in all upper case, lower case

* letters and special codes in all lower case.

* Here the codes are defined directly from their

* ISO notation.

*
A_GRAVE =12/0 : UPPER, PRINT;
A_AIGU =12/1 : UPPER, PRINT;
A_CIRCON = 12/2 : UPPER, PRINT;
A_TILDE = 12/3 : UPPER, PRINT;
DIA_A = 12/4: UPPER, PRINT;
A_CIRCLE =12/5 :UPPER, PRINT;

*

* The below declaration of AE as a diphtong enables
* the correct treatment of diphtongs (one to two

* collation!) in the default collation.
*

AE =12/6 :UPPER, DIPHTONG, PRINT;
/*

* lower case equivalents of the codes defined
* in the last block

*

a_grave = 14/0 : LOWER, PRINT;
a_aigu = 14/1: LOWER, PRINT;

a_circon = 14/2 : LOWER, PRINT;
a_tilde = 14/3: LOWER, PRINT;

dia_a = 14/4 : LOWER, PRINT;

a_circle = 14/5 : LOWER, PRINT;

ae = 14/6 : LOWER, DIPHTONG, PRINT;

*

* special double letters for Spanish
* Note that these "characters” are not defined by
* any standard! They represent an extension
useful to handle the following problems:

- two to one collation

- conversions toupper and tolower

*
*
*
*

I =L,1: DOUBLE, UPPER, PRINT;

I =1,1: DOUBLE, LOWER, PRINT;

/*
“ Collation table that shows most of the possible
* problems in collation but does not make very much

* sense in the real world:
*

* Upper and lower case letters are intermixed and
* within one letter the upper case comes before the
* lower case letter.
3
* Accented characters sort after their corresponding
* non accented base character.
*
COLLATION :
PRIMARY : A, A_GRAVE, A_AIGU, A_CIRCON, A_TILDE,
DIA_A, A_CIRCLE;
PRIMARY : a, a_grave, a_aigu, a_circon, a_tilde,
dia_a, a_circle;
PRIMARY: B; PRIMARY: b; PRIMARY: C; PRIMARY: c;
PRIMARY: D; PRIMARY: d; PRIMARY: E; PRIMARY: ¢;
PRIMARY: F; PRIMARY: f; PRIMARY: G; PRIMARY: g;
PRIMARY: H; PRIMARY: h; PRIMARY: I; PRIMARY: i;
PRIMARY: J; PRIMARY: j; PRIMARY: K; PRIMARY: k;
PRIMARY: L; PRIMARY: |;

*

* TWO TO ONE COLLATION:
*

* For Ll and 1l Spanish collation rule says that

* this has to be collated after L or 1.
*x

PRIMARY: L]; PRIMARY: lI;
PRIMARY: M; PRIMARY: m; PRIMARY: N; PRIMARY: n;

*

* ONE TO TWO COLLATION:

*

* The following two codes are diphtongs, that is
* codes that collate as two characters.

*/

AE = (A, E); ae = (a, e);
/*

* The rest of the codes defined in the codeset will
* collate as if they were non existent.

*/
END.

STRINGTABLE :
END.

E'3

* The next two sections are the required code conversions
* tolower and toupper. For both conversions the manual for
* ctype(3) says that a code with no lower /upper case

74

* equivalent will be returned unchanged.
*

CONVERSION tolower :
DEFAULT -> SAME;
A-Z->a-7z;
A_GRAVE - AE -> a_grave - ae;
Ll ->1I;

END.

CONVERSION toupper :
DEFAULT -> SAME;
a-z->A-27;
a_grave - ae -> A_GRAVE - AE;
Il -> Lk

END.

STRING CONVERSION to ISO6937 :
END.

75

3. Message Presentation

The basic requirement is that the mechanism should not modify the way a programmer
writes programs, nor their associated makefiles. It should limit the amount of extra
work necessary for a programmer to make a multi-lingual program.

3.1 Basic principles

The mechanism of message presentation is integrated with the development utilities:
cc(1), as(1), and ld(1). 1t is made up of:

— an evolution of some of their constituent parts

—- or a set of pre/post processors inserted into the development chain.

The mechanism of internationalization is invoked by an option to cc. The programmer
does not need to manipulate an intermediary work file.

+ All the messages in the program in the same language are grouped in the same
section as defined in an extended COFF format. The message section is included
in the executable (a.out) file. There are STYP_NL types (a flag in the header of
the a.out(4) section)

» An extension to the loader erec(2) only reads into memory the message section
associated with the user’s declared language (environment variable LANG).,

o There is a translation tool that helps the programmer (or a professional
translator) associate the program’s messages with messages in other languages, to
facilitate the translation into multiple languages, without modifying the program
source.

There are two distinct ways of integrating messages into the programs :

« dynamic selection of the appropriate messages: The executable image contains
messages in many languages; when the program is called, only the messages in
that user’s language are loaded into memory.

o static selection of messages: A software house might want to have an in-house
copy of each of its applications in every language, but wish to sell copies with
messages in only one language. A tool allows this sort of manipulation by
transforming the binary into a standard (non-extended) binary format.

The following criteria must also be taken into consideration.

o the message presentation mechanism must work properly for applications that are
developed using separate compilation.

o library functions (libe, libm, user libraries ..) must also provide multi-lingual
messages so that the same library can be used in many different language
environments. Thus :

— the .o files must be translated and be able to contain several different
message sections, one for each language.

— the link editor (linker) must be able to link these multi-lingual .o files,
correctly combining the proper language sections to each other.

o the recognition of a particular language by the linker is done using an eight-letter
(maximum) string.

» the message presentation mechanism collects both printable and non-printable
strings (which should NOT be translated) in the source. We plan on having such
strings marked by the programmer (in a .o or library) so that they will thus not

76

be translated. This could be proposed as an extension to the C language.

« this implies changes in the tools that manipulate the .o files, particularly : sdb(1),
dump(1), strip(1), nm(1),...

3.2 Our Solution

The objective is to isolate the strings and put them in a special section of the COFF file
called the "message section”. The translation will then be made easier; all the messages
will thus be in the same a.out, with a separate section for each language. In order to
reduce the modifications necessary to the existing program development cycle (cpp, C,
as, 1d), these tools are complemented by independent pre/post processors:

— a compilation pre-processor : nl_cpp

— an assembler pre-processor : nl_as

These pre-processors are called optionally from the cc command. Thus one can still use
the "old" set of development tools. The relationship of the different parts of the
international development tools is:

cpp — nl_cpp — ccom — nl_as — as — Id

3.2.1 The nl_cpp pre-processor

In a C program, we want to find all the strings in order to easily print out their
translation in any given language during execution. We must be .ble to change the
references to a string without having to change the .text section, only the .data section.

The nl_cpp pre-processor modifies the C program source in order to isolate all the
strings in a module and to generate indirection when it does not already exist. The
pre-processor nl_as modifies the assembler source in order to generate a structure in
the message section. Il transformes all the "section 15" instructions into "section .nl",
working from the structure declaration.

The assembler was modified to take into account the message section ".nl".

The .o files made by the assembler will now have four sections: Some of these modules
could be translated before the link phase (as would be the case for libraries). This
translation would create other message sections in the file, one section for each added
language.

3.3 a.out format

1. ld normally knows how to treat a certain number of sections. By default, it
places the .test and .data sections at pre-determined addresses (the bss section is
added to the end of the .data section) and inserts the other sections in unused
addresses in the virtual memory space. The loading mechanism and the execution
of an a.out demand that the .data and .bss sections be placed at the end of the
virtual address space. The message sections will thus be put between the .text
and .data sections. So as to not waste space in the virtual address space, and
because only one of the (possibly) many different message sections is loaded by
exec, the message sections in a.out all have the same virtual address.

2. The .o from an application can be translated (i.e. several versions of every string,
each in a different language) before the link phase. It can thus contain several
message sections, and there are three possibilities for the a.out after the link

7

3.

editing phase (see figure one):

a. ld only keeps the message sections for one (specified) language. the linking is
refused if any module does not contain that language’s module. (— rather
restrictive).

ld keeps the message sections found in the .o files. (— the a.out will not be
executable in every language)

Id keeps only the message sections that are defined in all of the modules.
(— some translations will be lost)

For the moment, only solution a) has been implemented.

modl.o mod2.0
nl nl

French Frenc

German

1d

V

ni nl
French French
German

case b case ¢

Figure 1

In order to satisfy the static message presentation, messages are put at the end of
the data section.

3.4 1d modifications

1.

Putting message sections between the .text and .data sections can be implemented
by giving directives to ld (modification of those given by default). To be able to
put all the message sections at the same virtual address, we create a new type of
section: the message section.

A procedure independent of the link phase is added to Id so that it will only keep
complete message sections. (this procedure could constitute a post-processor to
Id) The translation tool should, during the creation of a message section in a .o
file, add relocation information for this new section (this information is made from
those available in the native language). Since the message sections all have the
same virtual address, we must modify the relocation calculation.

Putting messages at the end of the data section means that we must translate
references to the bss section. ld, using a specific option, keeps the relocation table
concerning the bss section, so that it will be available when needed.

Normally, sdb only knows how to handle .text and .data and .bss sections. The options
-g and INTL of the ccf1) command are incompatible. On the other hand, the tools
dump(1), size(1), and nm(1) can handle these new sections without problems.

3.5 Loading an executable file

The solution consists of:

o ezec(?) only loads into memory the message section corresponding to the LANG
environment variable.

— the kernel does not usually know anything about the user environment; we
have added a field (u_lang) to the user structure inherited from the parent.
During loading, if ezec finds message type sections in the executable file, il
uses the u_lang field to decide which message section to load.

char u_lang'8 can be changed by a system call (setlang(2) and getlang(2)).

the kernel might not know the process causing an error; the error message
should be printed on the system console in the system’s language (the system
administrator only knows one language)

ezec(2) recognizes each section by the name written at the beginning of each
section. char s_name|8|;

« memory location of the message section between the .text and .data-+bss segments
— the sharing of messages between different processes is a possibility.
the different message sections should all have the same virtual address.

memory constraints for message translation : the translation process should
not take up more than 256K over the initial message section. (256 K seems
a reasonable size for a message section)

o address initialisation for strings contained in the data segm-nt is done by the
runtime routine crtO (updated according to the information contained in the
structures in the message section).

3.6 The translation utility

A translation aide works both on .o files and a.out files. The translator is a message
validation tool (an a.out file can not be executed if it has not been validated).

Services provided by the translation tool(s) are:

o marking of strings that the programmer does not want translated. This makes
the strings invisible to the translator program.

destruction of the message section associated with a given language.

insertion of a new message section (for a given language) in the compiled binary
file.

listing the languages of messages in the binary. (similar to dump -h)
extraction of the message section associated with a given language.

a screen-based, highly interactive translation tool to help translate catalogues of
messages easily and speedily.

compilation of a message section and its insertion in the binary file.

transformation of an internationaled a.out into an "normal” a.out. This "normal”
a.out is made from the .bss relocation table left by the linker. The
transformation tools installs the messages at the end of the data section and
resolves the references to the bss. This tool does a lot of the same things as ld(1),
and is fairly easy to make.

[XOPENS7]

[SCH84!

[GELDS6]

80

4. References
The X/OPEN Portability Guide, Issue 2, January 87.

Elsevier Science Publisher bv, Amsterdam.

Introduction to Compiler Construction, A UNIX tutorial
Axel T. Schreiner, Sektion Informatik, University of Ulm (West Germany)
and H.George Friedman Jr., Department of Computer Science, University
of Illinois at Urbana-Champaign, Urbana IL 61801, 1984.

[c : An International Compiler
Wolf G Geldmacher, Communicon AG, Rorscharch, 1986, Unpublished.

UNIX in Manufacturing

By Dr G Kruse, Root Business Systems Limited, London

Computers in Manufacturing

Manufacturing companies have, after a relatively slow start,
over the 1last few years increasingly automated their
business environment, using computer assistance wherever
applicable.

The work done has predominantly been based on three separate
development strands:

i. CNC - Computerised Numerical Control

This involves the control of machine tools by
numerical means, moving machine elements such as work
tables and tools in synchronised conjunction to
generate a desired component geometry. The work on
numerical control goes back to the early 1960's and
has increasingly moved away from largely analogue to
totally digital controls, making the use of standard
computers as control units more common.

CAD/CAE - Computer-aided Design/Computer-aided
Engineering

Computers are today widely used in CAD/CAE
applications to develop and design products.
Originally based on single-user machines, multi-user
workstations are now common, with many systems using
UNIX. The need for independent workstations was
promoted by:

- the need for "unusual" peripherals such as
graphics terminals, digitising tables and
plotters, and

the high processor usage of certain scientific
processes which would at times load the processor
to a degree where it could not be used by other
applications within constrainst of reasonable
transaction response times.

Other stand-alone solutions were derived from the
above to deal with specific manufacturing tasks such
as N.C. tape preparation and computer-aided process
planning. The whole area 1s generally referred to
today as CADCAM (Computer-aided Design, Computer-aided

Manufacture).
MIS - Management Information Systems

These systems represent the traditional computing
functions in a business, often mainframe-based and
even in a mini-computer environment operating in a
main-frame mode of individual systems residing on one
machine and competing for a common resource.

Integration between CNC, CAD/CAE and M1S sub-systems
generally did not exist, and even today integration of
computer systems is still a relative rarity.

Until recently, when communications between different
computers became easier, two extreme alternatives tended to
exist.

i. stand-alone "islands of automation”, ie specific
localised solutions to problems, but with no data
availability to wusers outside of each area of
automation.

the quest for a large monolithic "corporate database"
which due to the size of the project and the changing
needs of a business rarely achieved a significant
level of implementation.

The current view on the resolution of this dilemma is CIM
"computer-integrated manufacturing".

CIM

CIM is today understood in its broadest sense as the total
integrated computerisation of the technical, administrative
and management activities of a manufacturing business, and
as such covers all business activities from design and
development through to process control, manufacturing
resource planning, business planning and financial control.

The ultimate strategic objective is the "automated factory".
Clearly any business system breaks down into many sub-

systems, each with its own functional needs, 1its own
boundaries and connectives to other sub-systems.

CIM implies a set of task-specific ccmputer applications,
each automating a process or set of processes and each
linked through datalinks to one or more other computer
applications. Each application may have (normally will
have) one or more human interfaces.

Yesterday's islands of automation failed to bring real
benefits since:

suboptimisation at local level was accepted as a goal
in its own right

data had to be entered independently into each sub-
system and users had no data access across sub-systems

management had no ready access to the bulk of company
data and could not wuse it for company-wide decision
making

local changes of plans and local problems were not
automatically reflected in the plan execution of other
sub-systems

Only integration of sub-systems could bring real business
systems benefits from computerisation; thus it is
INTEGRATION that is so important in CIM.

The other difficulty was the proliferation of different
manufacturers' equipment and software systems in a highly
automated system. Different suppliers had (and still have
of course) different communications protocols, different
operating systems, different high level language computers.
True 1integration was only a reasonable aim within one
supplier's range of equipment and solution (and in most
cases not even then). This appeared to protect a supplier's
user base and was therefore popular with hardware
manufacturers, but 1in practice only benefitted one or two
major international suppliers.

International Standards

An increasing effort has taken place over the last few years
to establish international standards for computer systems to
enable companies to build truly integrated business systems.
Manufacturing companies have probably the greatest need for
diverse systems within one company and in manufacturing
companies the need for standards is probably most pressing.
The essentials are

- communications standards

- software portability

In both areas great strides have been made; in
communications the extensive use of Ethernet-type links and

the General Motors initiative in the promotion of MAP
(Manufacturing Automation Protocol) make data comnunication
a relatively routine activity in modern multi-machine
computer systems.

General Motors have also done much to further the cause of
UNIX 1in manufacturing by establishing internal policies for
the selection of all future computerised manufacturing
systems to be based on UNIX. The lead has been followed by
many other government and commercial ogranisations.

Software portability has been a more difficult problem and
individual efforts such as the initiative by the X-OPEN
Group, provided the real breakthrough. UNIX is clearly now
emerging as the only universal platform for software
portability. SVID and POSIX are moves to formalise that
portability and provide a "guarantee" of mobility across the
range of UNIX-based operating systems.

Business Applications under UNIX

Business systems can be broadly split into two area:
- Management Information Systems
- Engineering Systems

In engineering systems UNIX is very well established. Some
of the early weaknesses of the UNIX environment are not
relevant and have not been a barrier to development.

In manufacturing information systems, the situation has been
more critical. Record 1locking and full dynamic recovery
from failure are essential in a multi-user transaction
processing environment. There is no doubt that UNIX is now
emerging as a business systems environment. Three
development strands can be observed:

i. upgrading of P.C.-based systems, possibly re-written
in 'C', usually cheap, but often with poor security
and data protection.

ii. new systems written within the development environment
of a 4GL, using the security and resilience provided
by that environment, but possibly with a penalty on
development flexibility and processing efficiency.

iii. systems from other environments integrated to UNIX,
emulating the transaction processing environment of
its source and providing within the UNIX
implementation the resilience and security normally

84

available in say an IBM/CICS or DEC/VAX environment.

The latter approach involves initially a high-cost
development project since effectively the writing of a
UNIX-based operating environment is required which surrounds
the application code such that application code and T.P.
harness are jointly and totally portable within SVID/X~-OPEN
standards. It 1is, however, technically the most rewarding
approach, since it provides in a UNIX environment standards
of transaction processing efficiency, data security and
resilience which are taken for granted in other,
transaction-orientated data processing environments. The
lack of such facilities in the past was doubtless a key
reason for the slow rate of acceptance of UNIX in the
business systems world.

Example of a High-Functionality Manufacturing Control System

In 1984 Root Computers made a strategic decision to extend
their activities into high quality application software.
Such a move was seen as essential for the promotion of UNIX
itself as a serious business system environment.

The ROOT objective was to provide high quality software to
cover integrated business systems from finance to operations
with a strong emphasis on manufacturing. Such software was
intended to be of a sufficiently high level of
functionality, flexibility and quality to rival existing
mainframe application products and to offer

a. UNIX-based solutions with a high appeal to mainframe
users

b. distributed systems with a level of functioconality
which would be acceptable to companies who had
experienced the use of sophisticated application
packages in the past.

There was in Root's view not one product in the UNIX market
place which could reasonably satisfy these requirements.
Writing such a system was unacceptable in terms of cost and
development timescales, and a commercial collaboration with
a current supplier of a state-of-the-art product was deemed
to be most appropriate.

Extensive market analysis led to discussions with Hoskyns
Group PLC, a subsidiary of U.S. aerospace and defence giant,
Martin Marietta Corporation.

As a result of these discussions, ROOT took on the Hoskyns
MAS Modular Application Systems and ported them to UNIX to

89

create a range of products jointly owned by Hoskyns and
Root, consisting of:

Manufacturing Control System
Financial Control System

The Hoskyns contribution was the COBOL-based application
programs and Root supplied a transaction processing harness
and security environment emulating the functionality of CICS
within the simpler, more user-friendly operating world of
UNIX and written in 'C'.

The result was a product, offering a well-proven, advanced
mainframe functionality of established pedigree running
efficiently and without any reduction in facilities wunder
UNIX V. For the first time did the UNIX world have an
attractive application software option for larger companies,
thus opening up for UNIX the large market of sophisticated
and complex operations and justifying the claim that UNIX
can be a true competitor with existing mainframe systems,
enabling large companies to consider seriously a migration
to UNIX, not only for its technical systems, but also for
its business applications. At the other end of the
spectrum, the cost/performance effectivity of the UNIX based
MAS system is offering mainframe systems at a price
attractive to much smaller users.

A significant by-product of migrating the Hoskyns MAS range
of products to UNIX and setting up within UNIX a transaction
processing system which emulates the mainframe environment,

was the development of a range of programming tools to
automatically migrate CICS based applications to UNIX.
Where during the early work significant manual effort was
involved, the tools have now been refined to such a degree
that under 10% of conversion time deals with manual
adjustments to the converted source code. The significance
of such work will be obvious to all members of the UNIX
"fraternity": The tremendous barrier to a migration to UNIX,

ie the enormous investment in existing applications,
especially in the IBM/CICS world, can now be overcome by
means of relatively simple, automatlc conversion tools.

This has been a major breakthrough in the future growth
potential of UNIX and 1is so significant that Root have
decided to make these tools available to other companies as
a packaged software product to enable the UNIX world to take
advantage of this opportunity for real UNIX penetration into
the traditional mainframe business.

Distributed Business Systems

A manufacturing company or manufacturing "system"
traditionally visualised as a series of sub-systems.

Complex systems problems are generally resolved using the
"Systems Engineering" approach. The concept has it birth in
advanced engineering environments such as the aerospace
industry, where technological problems became so complex,
that problem solution was very difficult or even impossible
by conventional means.

Systems Engineering views a system as a conglomerate of
separate, but interrelated elements. By defining each
element and its interface relationship to other systems
elements, it 1is possible to resolve each element in turn,
whilst still accounting for its effect on the overall
systems behaviour.

A reasonably sized manufacturing business is, of course, a
most complex system, requiring the control and co-ordination
of a vast number of activities in such a way that the
composite objective performance of all elements yields an
overall systems optimisation.

Progress to date has largely concentrated on the fundamental
aspects of individual sub-systems in 1solation and has
failed to clearly identify, firstly, the interfaces between

functional areas and, secondly, constraints imposed by other
sub-systems which must be observed to ensure that sub-
systems optimisation does not lead to overall systems sub-
optimisation.

Sub-systems in a manufacturing company deal generally with
departmental activities such as

design

production planning
inventory control
process planning
financial ledgers
costing

sales order processing

The concept of the "departmental computer" is gaining wide
acceptance. Each department can have 1its own computer,
either real in the form of a separate small machine, or as a
"logical" machine within a large mainframe.
In the past "logical" machines were required for financial
reasons and economies of scale favoured mainframes. Today
independent departmental machines are very cost-effective
and score highly in a number of ways, ie
- 1nitial cost of acquisition

motivational (department "owns" its system and data)

feasibility

expandability

ease of use

ease of maintenance

security

cost of software
A typical departmental system consists of

- a computer
a database
a set of maintenance programs

a set of terminals and other peripherals

The communications needs tend to be simple

i. data from one departmental data base must be
accessable from other departmental system, reading
data only.

a departmental database can be updated from another
department, but only by passing transactions through
the programs maintaining that database. Such a
"constraint”" 1is invariably desired by users to ensure
that any external maintenance of their own database is
validated properly by the normal update programs and
audited on the audit file of the department whose
database is updated.

Thus, the architecture and the communications needs tend to
be simple.

A departmental system, which can of course consist of
multiple workstations and a file-server will tend to have
one single departmental database. This is also in line with
most commercial offerings.

Databases can be accessed from any other system via simple
communications links such as Ethernet for example.

Database update from external systems 1is wvia transaction
passing, ie one program outputs a suitably formatted
transaction, which is fed to another program which may well
be resident on another machine. Again Ethernet is perfectly
adequate as the link.

Within UNIX such a process is of course particularly easy.
Transactions can be generated by one application program and
piped to another program on another machine.

On mainframe applications such a process can be very
difficult, requiring often special programs to create such a
link, or requiring traditional batch processing to transfer
data.

In a UNIX environment the building of database systems is
truely simple, particularly in the case of manufacturing
systems, where sub-systems are clearly defined.

Root have done some useful work in this area to promote UNIX
as a basis for distributed manufacturing systems design. 1In
one instance, Hoskyns Group, Root and a leading UK machine
tool builder designed a system to integrate a supervisory
production control systems (MAS) with an automated flexible
manufacturing systems (FMS). The objective was for the MAS
system to provide the FMS cell with a view of available work
and let the supervisor "release" such work for manufacture.
Work progress was automatically fed back to the MAS system
to indicate the work status at all times. Hoskyns chose the
UNIX version of the MAS system and Root implemented the
system by accepting formatted transactions from the FMS cell
through an Ethernet 1link. In a mainframe application,
several man months of work would have been involved. 1In the
UNIX environment the work was trivial.

In a similar exercise, an automatic weighing machine with
its own processor was linked to the same MAS system with
minimal effort.

Integration at that level is particularly easy in a UNIX
environment and opens up a new world in distributed business
systems.

Root now confidently offer the range of MAS application
products on distributed departmental UNIX machines,
requiring merely a standard Ethernet-type of communications
link. True integration is assured within a totally flexible
implementation. Such a flexible approach, based around UNIX
as a common standard has provided a new level of freedom in
strategic systems planning and could not easily be achieved
in a non-UNIX environment.

Implications for Manufacturing

Returning to the general theme of this paper, it 1is now
fairly clear that UNIX will find rapid expansion within the
manufacturing industry.

Technical systems are already to a significant degree UNIX-
based. With current standardisation efforts, and true
software portability, UNIX will no doubt more rapidly become
the accepted standard for business applications.

Business Systems have lagged behind in the past, but there
is growing pressure from users to supply UNIX solutions so
that UNIX can become truely a company-wide standard.

Root are finding increasingly that major corporations are
attempting to build a business systems strategy around one
operating environment with open systems capability, and are
looking to UNIX as the only currently available vehicle to
put that strategy into place.

The lack of business application software has doubtlessly
been a serious shortcoming in the past, but after the recent
Root initiative, it is likely that a number of other major
software vendors will migrate existing well-established
quality products to UNIX.

There is no doubt that UNIX can provide very cost effective
solutions. Large, traditional suppliers of computers have
provided low risk, high quality products and charged a
premium; a policy epitomised by the old cliche that "nobody
gets fired for buying IBM". Full portability of software
reduces that risk dramatically and provides a high level of
insurance against

-~ supply problems

- growth requirements
- technical obsolescence
Portabilitiy allows the user a high degree of freedom over

his selection of systems components to progressively build
up the optimal business systems for his needs.

Now and in the future UNIX can and must become a true
corporate computing standard for manufacturing companies
striving towards Computer Integrated Manufacture.

What I want as a manufacturing man is
- a flexible, unconstrained strategy
- full software portability
- a common technical environment

Only UNIX can give me all that to enable me to confidently
develop my CIM strategy.

92

UNIX & Entertainment
Why & How?

Peter S. Langston

Bell Communications Research
Morristown, New Jersey

ABSTRACT

This paper seeks to answer three questions. The first, ‘“‘why
entertainment?”, might be asked by a venture capitalist looking for a
profitable investment area or by a software engineer looking for an
interesting application area. The second question, “why UNIX?” is meant
to uncover the advantages inherent in using the UNIX Operating System
(and the philosophies expressed in it) in an entertainment project. The
third question, “how uniz & entertainment?”’, serves as a jumping off point
for describing ways in which the UNIX Operating System has already been

used in the entertainment industry.

INTRODUCTION

The UNIX Operating System has found its way into a multitude of application areas
ranging from software engineering to accounting to artificial intelligence. Orthogonal to
these application disciplines are the industries that use computing in one way or another.
Some industries have, for many years, profited from one or two predictable and fairly
narrowly defined computing disciplines (e.g. banking & finance). Other industries, such as
entertainment, have much less narrowly defined needs and are just beginning to profit
from the use of computers and computer science in a broad range of disciplines. The
juxtaposition of these observations, while hinting at a connection between UNIX® and
industries like entertainment, may also raise questions like “what does UNIX have to offer
the entertainment industry?”’, “why isn’t UNIX being used in entertainment now?”’, and
“who cares about entertainment, anyway?”’ The following sections develop answers to
(paraphrases of) these questions.

WHY ENTERTAINMENT?

Why anything? To put it another way: what criteria should we use to choose one
industry over another? Several possibilities spring to mind: money (i.e. financial profit),
challenge (i.e. intellectual profit), and something which we shall call “quality of life” (i.e.
societal or spiritual profit). An industry like banking meets our first criterion quite well,
but requires a fair amount of creative rationalization to score well on the other two
criteria. An industry like education scores well on the last two criteria, but fails
miserably on the first. How does entertainment score on these three criteria?

O “UNIX” is used here to mean “‘the UNIX Operating System and the philosophies expressed in it’.
Try to think of it as a shorthand rather than a noun.

UNIX & Entertainment - Why & How ?

Money

In a single year, 1981, video game companies took in over one billion dollars
(4,000,000,000 quarters!) in revenues with only minor operating expenses. That qualifies
well as a financially profitable industry. While video games companies have experienced a
meteoric fall matched only by their meteoric rise, other segments of the entertainment
industry have shown consistently high profits for many years. Steven Spielberg and
George Lucas have not only made themselves millionaires, but have made quite a few
other people rich with movies that make millions of dollars of profit'. The Consumer
Electronics Show, (a trade show that deals primarily with entertainment hardware),
represents hundreds of vendors and draws close to one hundred thousand participants
twice a year. Entertainment is a large and profitable industry. With the advent of new
technologies (e.g. we can expect to see inexpensive, two-way, broad-band communication
in the home soon) the market for entertainment products will grow further.

Challenge

From the point of view of a computer scientist, the entertainment industry is an
interesting testing ground. Entertainment products require solutions to problems in many
diverse subfields — algorithmic efficiency, human interface design, simulation, and real-
time computing, among others. Approaches that are barely adequate in entertainment
applications are often orders of magnitude better than those used in other, “real world”
applications. Video games, as an example, require solutions to problems in:

e real-time computing — Real-time response must be provided, often on hardware that is
only marginally more sophisticated than a Turing machine.

e human interface design — The human interface, even in a bad video game, must be
orders of magnitude better than that provided by most data-base management
systems.

e human perception — The difference between a believable scenario and an unconvincing
one often hinges on an understanding of human perceptual mechanisms; for
instance, when a sound has to be louder than the equipment can produce, making
1t more distorted will give the needed effect.

e ‘“real” world physics — Often the only convincing way to simulate two Atomic
Frannistans colliding in outer space is to give them familiar physical
characteristics (mass, elasticity, spin, etc.) and treat them as familiar physical
objects (e.g. billiard balls). The accurate simulation of the familiar objects lends
credibility to the entire fantasy.

e code optimization — As mentioned earlier, the target machine for a video game is often
tiny and slow. Well-designed video games are often startlingly good examples of
optimization in both space and speed.

e data compression — Video games often depend heavily on data-intensive features -
graphics, dictionaries, etc. An arbitrary image to be displayed in color on a
512x480 screen could take a quarter of a million bytes. Extreme data compression
is needed to store a dozen such images in the 32,000 or so bytes available in even
the largest video games.

! The ticket sales on George Lucas's films alone amount to more than one billion dollars. Even
‘Howard the Duck”, which is viewed as a financial failure, may end up showing a few percent (of
its $32,000,000 production cost) profit.

UNIX & Entertatnment - Why & How ¢

Quality of life

Quite separate from the questions of monetary profit derived from entertainment
industries and the intellectual challenge of an area that is truly sensitive to improvements
in the state of the art, is the question of improving the quality of life for the consumer.
This may take the form of education, amusement, reduction of stress, strengthening of
family ties, or simply appreciation of another’s craftsmanship or creative vision.

Entertainment provides an opportunity for all these activities. The dictionary associates
entertainment with amusement and pleasure®, but if we look at individual instances of
entertainment, we find further associations. Music is one form of entertainment that can
be described as an art whose goal is aesthetic’. Games can not only be explicitly
educational (spelling games, arithmetic games, etc.) but they also function as one of the
mechanisms for teaching societal goals and mores. Further, playing games can provide
relaxation and escape from tensions. Finally, almost all forms of entertainment can be
used as a social framework in which friendships and family ties can be explored and
strengthened.

In a society obsessed with “progress”, anything as intangible as the “quality of life”” may
be viewed with some skepticism. This lofty criterion is certainly the hardest to measure
of the three — one can’t count dollars earned or papers published to determine the success
of an eflort — nonetheless, only the most cynical would deny its importance to society.

WHY UNIX?

Although there are many possible reasons for preferring the UNIX Operating System for
tasks in the entertainment industry, I will focus on a few that seem particularly
important.

Software Development Tools

The UNIX Operating System makes software technology more accessible by reducing the
start-up costs for a project. Often a prototype for a system under consideration can be
assembled from existing software ‘“tools” in a matter of hours or minutes. Dead ends can
be abandoned early in the design cycle and more fruitful approaches found before any
“real code” has been written. UNIX systems are not the only ones that provide software
development tools; other systems can, and some even do;

Software Development Atmosphere

Entertainment requires innovation. The production of a new movie, for instance, requires
a new script, new plot devices, new insights into people’s interactions, or whatever.
(There are a few series of movies that seem to pride themselves on their penchant for
telling a single story over and over in different ways; but at least they tell it in different
ways each time.) The more presumptions a tool makes about its use, the more narrowly
it defines what can be done with it. UNIX operating systems consciously attempt to stay
out of the user’s way and make no fixed assumptions about what he/she wants to do, and
in so doing establish an environment in which software can be used in ways that the
creator could not have foreseen. This potent ‘“open’ arrangement has its dangers. Such

2 “eneteretainement n. 1. The act of entertaining. 2. Something that entertains, esp. a show

designed to amuse. 3. The pleasure afforded by being entertained; amusement.” American Heritage
Dictionary

® “muesic n. 1. The art of organizing sound so as to elicit an aesthetic response in a listener.”
American Heritage Dictionary

UNIX & Entertainment - Why & How ?

a system is exceedingly vulnerable to user stupidity or malice; by a simple typographic
error, such as inserting an extra space into an otherwise innocuous command’, hundreds
of vital files can be destroyed. It’s not surprising that operating systems designed for
novice or casual users can’t afford such openness and consequently make innovation more
difficult whereas more open systems tend not to appear outside the computer science
rescarch community.

Portability

The advantages of portability are manifold and have been discussed (to death) in
technical journals and the popular press. Most of the advantages don’t need to be
elaborated here; but a few are particularly pertinent to the entertainment industry.

The technique of developing a piece of software on one system for use on another can pay
big rewards when the target hardware is small or slow (or both as in the case of home
video games). An elaborate development system can provide hundreds of tools for
monitoring, debugging, quick prototyping, and documentation, while the system on which
the result will actually be used (perhaps owned by the consumer) need only support the
display of the result. It is instructive to contrast the simplicity of the home video
cassette player with the immense production machinery necessary to produce a movie. In
the case of movies, a conversion step is required (the “film chain” which converts 24
frame-a-second film into 30 frame-a-second video). With UNIX operating systems now
available on microcomputers, minicomputers, and mainframe computers, very little, if
any, conversion is needed to develop programs on big machines to run on little ones.

The ability to use the same or similar development programs on a variety of different
computers without having to make special plans ahead of time to do so can be a godsend.
When Lucasfilm Ltd.’s graphics group decided to produce a completely computer-
generated cartoon to show at Siggraph 85, they used their in-house computing facilities
(a D.E.C. Vax 11/780 running BSD 4.2 UNIX) for storyboarding, animation, image
rendering, and previewing. Since this project was breaking ground in a number of areas
it was difficult to be sure of the film’s timetable. As deadlines approached, it became
obvious that the 2500 (or so) frames would not be done in time. Fortunately, the
graphics software was written to run on a UNIX operating system, using standard
compilers and utilities. Not only did this mean that parts of the project could be run on
other such systems (about 30 Vax UNIX systems ended up helping out) but, since the new
Cray supercomputer system also used a UNIX operating system, it meant that parts of
the image rendering could be run on that very fast system also.

Portability will become less and less an advantage for UNIX systems as more and more
operating systems and software products are designed with portability in mind.
Meanwhile, it’s amazing how much “new’ software can only run on one specific kind of
hardware or can only read files written in one specific format or by programs running
under one specific operating system. As an example, a myriad of programs are available
to support music synthesizers using MIDI communications.® Some programs aliow you to
compose music, others are used to edit it, others generate or modify sound synthesis
parameters, while still others provide database management functions for storing and

4 E.g. “rm junk*”, you can probably guess where the extra space goes.

® MIDI is an acronym for ‘‘Musical Instrument Digital Interface”, and is a hardware and data
format standard established by the MIDI Manufacturers Association, a group of synthesizer
manufacturers and others. [MIDI85] MIDI allows synthesizers, sequence recorders, home computers,
“real” computers, thythm machines, etc. to communicate through a standard interface, and has
spawned an entire subindustry.

UNIX & Entertainment - Why & How ¢

retrieving voice parameter data or note sequences. Typically each program provides one
or two of the dozen or so operations needed to do any serious work with MIDI equipment.
Unfortunately, each program runs on a single specific home computer; to put together a
reasonable set of software to support the music demonstration described later in this
paper would require an Apple Macintosh, a Commodore C64, an IBM PC (or comparable
clone), and an Atari ST. Even then, the file formats for the various programs are
different, so exchange of data could only be carried out through MIDI wiring between
computers; disks written by each system would need to be kept separate, etc. The only
thing portable in a set of software to support the MIDI standard is the MIDI data itself.

HOW UNIX & ENTERTAINMENT?

In the following paragraphs I will describe some ways in which the UNIX Operating
system has contributed to efforts in three subfields of the entertainment industry —
games, movies, and music. There are many more examples than those given, but these
should provide an idea of the range of interactions between ‘“UNIX” and “‘entertainment’’.

Games

The first example is Ken Thompson’s chess playing machine, “Belle”. Ken’s parental
involvement with UNIX is, hopefully, well known, as is his chess playing machine which
has several times been the world’s champion, beating much larger programs running on
much larger machines. It should come as no surprise then, that the software for the chess
playing machine was developed under the UNIX Operating system. It also stands to
reason that the principal architect of the UNIX Operating system would make sure that
the system provided as much support as possible for the development of games software.
As it happens, the first version of the UNIX operating system was written by Ken so he
could have a system on which to write a space travel game®.

The direct predecessor to the global simulation computer game, “Empire’”’ was written
on a time-sharing system that provided only a Basic interpreter; there were no software
tools to aid in development and the use of a non-structured language made reading the
code a Herculean task. As a result, that game was almost impossible to modify or
maintain and, despite the thousands of hours of work lavished on it, never gained
widespread distribution. The game flowered when it was rewritten in C on a system
running the UNIX operating system. It grew tenfold in depth and subtlety while
becoming easier to maintain (with maintenance being provided, albeit sporadically, by
one person rather than half a dozen). The current version of “Empire” has run on
hundreds of systems, has been used in a government course at Harvard University, has
been studied by the institute that awards the Einstein Peace Prize, and was used by its
creator to get a job as a data base management expert.

The computer game ‘“Oracle” grew out of a simple idea about human interaction.
Computer-naive people often ask very subtle or complex questions of computers, not
realizing the complexity involved. ‘“Ask the computer why the sky is blue””, “can it tell
us who’s going to win the election?”’, or even ‘‘computer, do you know what time it is?”
have been the downfall of many demonstrations. A human would have no trouble
hedging on the first question, explaining why the second is unanswerable, or
understanding the implicit question in the third, but all three of these are very

% “its true about games. most of the stories are well known. the pdp-7 days were dominated by

;ames." [THOMPSONSS)
Not to be confused with the space war game ‘“‘Empire’’ on Plato.

UNIX & Entertainment - Why & How ?

sophisticated responses. The idea in Oracle is best described by an example:

Oracle: Hi, 'm the Oracle, ... blah, blah, ... What’s your question?

User Joe: Why is the sky blue?

Oracle: Gee, that’s a toughie! I’ll think it over and mail you an answer. Bye for now.

Oracle: i, I'm the Oracle, ... blah, blah, ... What’s your question?

User Amy: Who’s going to win the election?

Oracle: Hmmmm ... tricky! I’ll have to think it over and mail you an answer,

Oracle: Meanwhile, perhaps you could answer this question for me:

Oracle: Why is the sky blue?

User Amy: The sky is blue because of refraction through water droplets.

Oracle: That’s right! Nice going. Bye for now.

The Oracle has calculated the answer by using a human peripheral processor; it now
mails the answer to Joe and lies in wait for someone to tell it how the election will come
out. This silly idea was very easy to implement under a UNIX operating system because
all the necessary communications tools were already present and made no particular
assumptions about how they were going to be used (e.g. the mail program was perfectly
happy to accept mail from another program).

The paper “The Influence of UNIX on the Development of Two Video Games”
[LANGSTONS5a] describes, in some detail, how the UNIX operating system and tools
made possible the development of the video games “Ballblazer” and “Rescue on
Fractalus”. That paper concludes:
We were heavily influenced by the software, philosophies, and concepts associated
with the UNIX operating system. The UNIX environment was perfectly suited to
our task. We didn’t have to fight with programs that almost did what we needed
but had made some limiting assumption. Nor did we have to trick the operating
system into letting us do something that it thought we shouldn’t do.
In short, these innovative games profited greatly from the tools and philosophies
manifested by the UNIX operating system.®

Movies

Lucasfilm Ltd., the company responsible for the “Star Wars” movies, the “Indiana
Jones” movies and others, has been a leader in finding high-tech solutions to film industry
problems. The Lucasfilm Graphics Group (now a company known as “Pixar”’) introduced
the UNIX operating system to the company and, using it, has produced film graphics
never before feasible.

The Genesis Demo from the movie “Star Trek Il — The Wrath of Khan” was completely
computer generated and pioneered the use of several new image rendering techniques.
The images produced were an extremely realistic portrayal of a fantastic event involving
the terraforming of an entire planet.

The mini-movie “The Adventures of Andre and Wally B”, also completely computer
generated, used many computers running the UNIX operating system to produce a
cartoon that retains the feel of high-quality human animation. The cartoon makes no
attempt at realism, but rather strives to evoke the fantastic cartoon atmosphere in which
a bee chasing you with mayhem on its mind becomes as ominous as a P-38 on a strafing

8 At the time, we considered using a Symbolics “‘Lisp machine’” whose strengths were similar to
those for which we chose a UNIX system. The UNIX system won out largely because we could
program in both C and Lisp on it.

UNIX & Entertainment - Why & How ?

run.

The single frame (micro-movie?) from the proposed movie “1984” that appeared on the
cover of “Science 84’ magazine was indistinguishable from a photograph of billiard balls
in motion, even to the motion-blur, soft shadows (motion-blurred), and reflections in the
balls (with pool hall beer signs, soft shadows, motion-blur, etc.) The images in this frame
are entirely realistic.

The short movie “Luxo Jr.”, while combining the realism of the 1984 frame and the
whimsey of Andre & Wally B, adds an emotional aspect in which the characters (spring
armed drafting lamps) take on human personas, displaying joy, sadness, and even
emotions as complex as parental sympathy.

All four of these movies were produced on computers running the UNIX operating system
and embody many of the philosophical underpinnings of that system. Although the single
1984 frame took many hours of computer time and many, many programs to produce, it
was assembled out of individual ‘““tool” programs each of which did a single task well. It’s
a testimonial to the acceptance of this tool concept that a subject of heated debate
around the graphics group at one time was whether or not one of the programs, “reyes’”’,
wasn’t really doing more than a single task and shouldn’t be broken up into smaller,
simpler pieces.

Musie

Some of the techniques used by the Lucasfilm Graphics Group to produce complex
computer imagery from very simple programs fall into a class of algorithms known as
“graftals”'®. One technique in particular, ‘“L-Systems”, was originally conceived to
imitate the form of growth systems, e.g. plants. The Graphics Group used L-Systems to
produce images of plants, grasses, and trees. It occurred to me that the forms produced
were very much like the structural form of musical compositions. Using the new
generation of inexpensive consumer music synthesizers and a few additional programs I
was able to listen to the plants produced instead of looking at them. Again, the
modularity of the graftal concept made the reinterpretation of these supposedly graphic
entities as musical entities a simple (and relatively graceful) exercise even though the
designers of the original L-Systems had no idea that they would be used to produce
sound.

Similarly,

In two papers, [LANGSTONS86a] and [LANGSTONS6b|, I describe the music
demonstration that grew out of the L-Systems experiment in conjunction with some other
algorithmic composition experiments and a telephony project that provides a computer-
controlled telephone switch attached to a machine running Eighth Edition UNIX
[REDMANS7|. The music demonstration uses software from multiple independent
projects, running under three different versions of the UNIX operating system''. In
assembling the demonstration only two special purpose programs had to be written (one
to interconnect the two principal computer systems and one to provide a running
commentary on the music being played); the rest of the software was written for other
projects and is used intact. The ease with which these elements were integrated into the

% This name is not a reference to Pt. Reyes in California (nor to the well-known computer graphic
“The Road to Pt. Reyes”). It's an acronym for ‘‘renders everything you ever saw”.

' For more information on graftals consult “‘Plants, Fractals, and Formal Languages’ [SMITHS84|.
11 To hear the demo being described, call +1 201 644-2332. If you have U.S. touch-tone you can
select which of three demos you will hear.

UNIX & Entertainment - Why & How ?

music demonstration owes much to the flexibility of the operating system under which
they were all being developed (the UNIX operating system) and to the networking tools
already available in UNIX operating systems. Had these projects been developed under
some other operating system then that operating system would have been favored for the
music demonstration; as it is, UNIX operating systems are common in software R & D
facilities.

Experimentation with sound synthesis equipment connected as peripherals to computers
running the UNIX Operating System is currently going on at numerous locations including
AT&T Bell Labs [5620/MIDI paper reference], Bell Communications Research, Lucasfilm
Ltd., the MIT Media Lab [HAWLEY86|, Northwestern University, SDCARL at UCLA
San Diego [LOY87|, Sun Microsystems Inc., the University of Washington, and others.
While no hit records have yet been produced on these systems,'? thousands of people have
listened to the telephone demo', and many thousands have played a videogame whose
music is produced by ‘“riffology”’ (Ballblazer).

WHY NOT UNIX?

So far the picture is pretty rosy, what are the disadvantages?
14

UNIX, as provided by AT&T, is likely to become less “‘open” and more ‘“‘user-friendly
as time goes on. The transformation from research tool to commercial product will,
almost inevitably, include an increase in the presumptiveness and protectiveness of the
system, all in the name of “bullet-proofing.”

The UNIX operating system is a time-shared system that gains many efficiencies through
optimization for humans working at terminals. It can’t provide “real-time” response
without giving up these efficiencies or other advantages. Many entertainment uses do not
require real-time response, but for those that do, it is not a good choice. My $100 Atari
home computer can give better motion to animated graphics than can my $50,000 Sun

workstation running UNIX'®

Other operating systems have much to recommend them and are getting better all the
time. The UNIX operating system is just one implementation of a set of ideas and
philosophies that are gaining wider and wider acceptance. With few exceptions, those
ideas and philosophies are not proprietary, and will doubtless appear in other operating
systems if they haven’t done so already.

SUMMARY

Entertainment is an area worthy of attention, whether for profit, intellectual challenge, or
improving the quality of life. The UNIX operating system owes a debt to entertainment
(sames, in particular) and appears well able to pay that debt. UNIX & Entertainment not
only can work well together, but they already have.

12 yet,
13 As of February, 1987 the telephone demo has received just under 5, 000 calls.

Unfortunately, software marketers seem to think that the ‘‘user’ in ‘‘user-friendly”’ is an
acronym for “'untrainable stooge eating raisins "’ (‘‘untrainable sap, easily rattled?")

® Not entirely a fair comparison, since the Atari has five or ten dollars worth of special purpose
graphics hardware built in.

UNIX & Entertainment - Why & How ¢

REFERENCES

HAWLEYS86 Michael Hawley, “MIDI Music Software for UNIX,” Usenix Summer ’86
Conference Procedings, (1986)

LANGSTONS5 P. S. Langston, ‘“The Influence of UNIX on the Development of Two
Video Games”, EUUG Spring '85 Conference Procedings, (1985)

LANGSTONS86aP. S. Langston, ‘“(201) 644-2332 e Eedie & Eddie on the Wire, An
Experiment in Music Generation,” Usenix Summer ’86 Conference
Procedings, (1986)

LANGSTONS6bP. S. Langston, “+1 201 644-2332 e Eedie & Eddie Make Beautiful Music
in a Distributed Computing environment,” EUUG Fall '86 Conference
Procedings, (1986)

MIDI85 “MIDI 1.0 Detailed Specification.” The International MIDI Association,
11857 Hartsook St., N. Hollywood, CA 91607, (1985)

LOYS87 Gareth Loy, “Compositional Algorithms and Music Programming
Languages”, Manuscript in preparation, (1987)

REDMANS87 B. E. Redman, “A User Programmable Telephone Switch’’, EUUG
Spring '87 Conference Procedings, (1987)

SMITHS84 Alvy Ray Smith, “Plants, Fractals, and Formal Languages” Computer
Graphics Proceedings of the Siggraph ’84 Conference, vol. 18, no. 3, pp.
1—10 (July 1984)

THOMPSONS5 Ken Thompson, private communication, (January 1985)

162

Distributed UNIX in Large-Scale Systems

Dale Shipley
Vice-President, Technology.

Tolerant Systems, Inc.
81 East Daggett Drive
San Jose
California 95134
US.A.

Introduction

The need for computers that support features such as dynamic expansion and
continuous operation is increasing rapidly, as more on-line applications are implemented.
According to International Data Corporation (IDC) in its 1985 report, “The Transaction
Processing Market”, shipments of on-line transaction processing (OLTP) systems will
reach $8.5 billion in 1990 - up from $3.7 billion in 1984. Typical OLTP applications
included automated teller machines in banking, on-line order entry and inventory control
in manufacturing, and reservation systems.

Tolerant Systems chose to address the dynamic expansion requirement by
implementing a transparently distributed system based on the UNIX standard. Tolerant’s
loosely coupled multicomputer architecture provides the user with a single computer
image, regardless of the actual number of computers included in a given configuration.
With Tolerant’s Transaction Executive (TXQ) operating system, the distributed system
has no effect on the application interface. Standard system calls function as though the
application is operating in a single processor environment. No additional naming
convention is required to access resources connected to other computers in the network.
The UNIX-compatible TX file system also supports consistency and mtegrity by providing
file and block level locking across the network, plus distributed
BEGIN/ABORT/COMMIT transaction control. For those applications requiring high
availability, continous processing facilities are provided.

This paper describes the system architecture, and facilities of a transparently
distributed UNIX based system.

System Architecture

The Eternity® Series architecture is based on a loosely coupled, symmetrical
transparent network model. The network may include from two to 40 or more System
Building Block (SBB) processing modules. This limit has been set for practical reasons
rather than being imposed by the architecture. It is entirely dependent on the processing
requirements of a particular application.

TX® is a registered trademark of Tolerant Systems, Inc.
Eternity® is a registered trademark of Tolerant Systems, Inc.

Distributed UNIX in Large-Scale Systems

A high-speed, dual bus is used to interconnect the SBBs. Regardless of the number
of SBBs, the configuration appears to the user and application programs as one large
machine.

The SBB itself contains two 32-bit VLSI microprocessors, one or two 3 megabyte per
second 1/O channels, the high speed inter-SBB bus controllers, and a main memory
subsystem. Disk, tape and communications interfaces are supported by intelligent
controllers connected to one I/O channel. Peripherals and controllers are dual-ported to
provide interconnections with two SBBs. In this way, the architecture eliminates all single
points of failure. In addition, some form of error detection and/or error correction is
implemented on all data paths and storage to provide fault detection and isolation.

Each board contains circuitry that identifies the board by type, serial number, ECO
(Engineering Change Order) revision level, and firmware revision level. In addition to
using this data for maintenance purposes, the TX operating system scans the hardware
during boot and automatically configures itself. This eliminates the need to generate the
operating system to match a given hardware configuration.

The TX operating system is functionally distributed across the two 32 bit processors
in the SBB. One processor - The User Processing Unit (UPU) - implements a UNIX-
compatible, time-sliced, demand-paged virtual memory environment for executing
application programs. The second processor - the Real-Time Processing Unit (RPU) - is
dedicated to the TX operating system and supports preemptive, event-driven, real-time
scheduling. The UPU operating system component implements the system call interface
and all operating system functions which execute synchronously. The RPU operating
system component implements all asynchronous functions (I/O) and all distributed
operations. Functions that may be either synchronous or asynchronous, depending on the
system state at the time the system call is executed, are tightly coupled across the two
processors. For example, the buffer cache is tightly coupled because the data requested by
a READ system call may be in the buffer cache or a physical I/O may be required. In the
first case, the call is synchronous and therefore is completely processed in the UPU. If a
physical 1/O is required, the function will be processed by the RPU because the operation
is asynchronous. Following the rule for functional distribution, the buffer cache is an
example of tight coupling across the two processors.

Communications and network support have been off loaded from the SBB to an
intelligent Communications Interface Processor (CIP). This provides an event driven
environment ideally suited for real-time terminal handling and network protocol support.
For example, the UNIX teletype (TTY) driver and the first three layers of X.25 execute on
the CIP. A standard interface is provided for CIP based protocols to communicate with
the SBB. Protocols appear to the application program as standard devices in order to
retain the inherent simplicity of the UNIX programming interface. Each CIP can handle
up to 12 ports, operating to speeds up to 56 kilobaud per second. Each port can be
dynamically configured to support a given protocol, so that different protocols can
operate on a CIP simultaneously.

The Eternity Series loosely coupled system architecture provides a foundation for
fault tolerant continuous operation and on-line expansion of processing power,
communications power, and storage capacity. As SBBs are added to a system, the users
and application programs continue to view the configuration as though it were one large
machine. This single-computer image is achieved by Tolerant’s UNIX-compatible TX
operating system, which implements the transparently distributed system. In this system,
standard system calls function as though the configuration consisted of a single computer.
No new naming conventions have been added to implement access to the resources of the

104

Distributed UNIX in Large-Scale Systems

distributed system.

Transparently Distributed Operation

The Eternity Series supports transparent access to all resources by providing a
uniform global name space. The name space consists of all addressable objects. These
include file systems, directories, files, devices, interprocess communications nodes, and
data communications protocols. Application programs gain access to objects via the
OPEN system call. Distributed NAME resolution is implemented to locate and open the
requested object.

Distributed Name Resolution

Name resolution has been distributed to provide transparent location of any object.
When an OPEN system call is executed by an application, the local name resolution
function resolves the name to the extent possible. When further resolution is impossible
because the necessary portions of the file system hierarchy are stored remotely, a message
is passed to a peer level name server running on the computer that can proceed with
name resolution. This process is repeated as necessary until the requested object is located
and OPENed. A direct linkage is then established between the computer running the
application and the kernel level I/O servers on the computer managing the object. All
subsequent operations (e.g. READ/WRITE/CLOSE/etc) are handled by passing messages
between the requesting computer and the I/O servers on the managing computer. This
results in a completely transparent, distributed file system.

The distributed file system name space is composed of a global root file system and
all other mounted file systems. The global root is managed by one of the computers in the
network. All other computers locate the global root when they are initialised (cold boot)
by creating an inode for the global root in a local file system. Because the computer that
manages the global root, or any other resource, can change dynamically during system
operation, a second level of internal naming is used to logically identify the location of the
global root computer. This name is a 64 bit unique address (UID). There is one UID for
each resource. The MKNOD (make node) function uses the visable name of the global
root to obtain the UID for the global root and stores this in the inode. During the boot
process, the operating system switches from a local root to the global root by requesting
the network embedded in TX to resolve the UID for the global root to a physical network
address. The global root, having been located, makes all objects visible through the
distributed name resolution mechanism described earlier.

Distributed name resolution has been optimised by implementing a cache containing
path names and their associated UIDs. Entries are made in the cache during name
resolution and whenever a file system is mounted. This allows name resolution to skip
intermediate nodes during resolution if the path has been seen before.

The Embedded Network

The embedded network or connection system provides linkage between major
functional components of the TX operating system by directly linking to the requested
function or by sending a message to a server queue on another node. The servers likewise
use the connection system to return the result.

As mentioned previously, all objected in the system are identified by UIDs. Of
course, file systems and devices are objects. When a file system is mounted, name
resolution passes through a file system object or when a device comes on-line, the
connection system’s routing tables are updated with the UID and network address of the

Distributed UNIX in Large-Scale Systems

node that is currently managing that file system or device. Internally, the OPEN function
returns the UID to the file system that contains the file being OPENed. TX functions then
use this UID through the connection system for all subsequent operations on the OPENed
object. This mechanism provides for completely transparent access to all system
resources, regardless of the network configuration.

Other distributed System Services

To complete the transparently distributed system, TX provides distributed process
management and distributed signal delivery. Process management supports distributed
process creation via a new RUN system call which is a combined FORK/EXEC. When
used, the new process is created on the node that currently has the lowest load average by
default. The most sophisticated user may specify a variety of other site selection criteria
to aid load balancing. Signals are also transparently distributed in order to maintain the
single computer image for the user.

Summary

Tolerant’s Eternity Series provides a fully transparent distributed system. From the
user’s point of view, the configuration appears as a single computer, regardless of the
actual number of computers in the network. The multicomputer environment has no
effect on the application interface. Standard system calls function as though the
application is operating in a single computer environment. No additional naming
convention has been added to support access to resources on other computers in the
network.

The system supports dynamic expansion without affecting the application programs.
Fault tolerant continuous processing is supported through on-line reconfiguration and
process recovery facilities. Transaction processing constructs have been embedded in the
file system to provide data consistency and data integrity. All of these features combined
make the FEternity a very powerful UNIX-compatible base for on-line transaction
processing and data communications applications.

106

*UNIX for Real Time

Suzanne M. Doughty
Sol F. Kavy
Steven R. Kusmer
Douglas V. Larson

Hewlett-Packard Company
19447 Pruneridge Avenue
Cupertino, CA 95014
hplabs!hpda!{sol, kusmer, dvl, suzanne}

ABSTRACT

Adapting UNIX operating systems to real-time markets is a lucrative challenge. By
adding a little new functionality and a lot of performance tuning, UNIX systems
can support more demanding real-time applications such as those found on the fac-
tory floor. tapping into a muiti-billion dollar market demanding a portable software
environment such as System V. Most of the needed real-time functionality is al-
ready found in System V and 4.2BSD. Performance tuning is needed in the area
of response time, especially process dispatch latency, which on typical UNIX sys-
tems is measured in seconds rather than milliseconds. This paper presents what
functionality is needed to adapt UNIX systems to real-time markets, how to acquire
the needed performance, and how this combination satisfies real customer needs.

Customer Requirements for Real-Time Systems

The UNIX operating system is found in many marketplaces. It is the operating system for scientific
supercomputers and PCs, and it is on desks of software professionals and CEOs. However. one of

the final frontiers for the acceptance of UNIX systems is in the real-time marketplace, and for good
reason: the real-time customer is the most demanding customer there is. The real-time customer’s
demands fall within three categories:

Performance

Reai-time applications are primarily measured by their performance. Therefore. real-time cus-
tomers will expect to squeeze the last ounce of performance out of a real-time system to meet
their needs, and they will sometimes take measurements their computer vendor never expected.
The performance characteristics they measure are typically in terms of response time or through-
put. An example of a response time measure is “How long after the receipt of an interrupt from
my parallel [/O card can the system run my process which was waiting for that interrupt?”. An
example of a real-time throughput measure is "How long will it take for me to push my two
gigabytes of data from my device to the file system?”. The real challenge is that both questions
will often be asked by the same customer!

Determinism

Customers expect that a real-time system will react in a deterministic manner. For example. it is
not enough to have good response most of the time — you must provide good response all of the
time. Real-time customers often build a computer into a system that has unforgiving constraints,
which is usually because the system is controlling or monitoring other devices or machinery. As
an example, a real-time computer built into a steel mill whose steel travels at 30 mph will be ex-
pected to respond quickly to an alarm condition. If the computer unexpectedly becomes busy
for a whole second, the steel in the steel mill will have traveled 44 feet. and could possibly be
strewn over the steel mill floor.

* UNIX is a trademark of AT&T.

107

Flexibulity

In the end. it is real-time customers who truly know best how a rea!-time computer can solve
their applications’ needs. Customers must be provided with tools for writing their own drivers
and for measuring system performance. They must be provided with source code, because they
choose to understand in-depth how a system performs and they might want to tune it for their
application. On the other hand, vendors of real-time computers must be humble, because real-
time customers are glad to tell them how to build their systems!

The remainder of this paper presents a definition of a real-time system and then explains the real-
time features implemented on the HP 9000 Series 800 Mode! 840. The HP 9000 is HP's computer
family for engineering and manufacturing, and it runs HP-UX. a superset of AT&T SVID I[ssue 1.
The Model 840 is the first of HP's new Precision Architecture computer line.

This paper focuses on meeting the above performance and determinism requirements of real-time cus-
tomers.

What Is a Real-Time System?

A real-time system is a system that can respond in a deterministic and timely manner to events in the
real world. Events in the real world could mean either large amounts of data that must be processed
fast enough to prevent losing the data (data throughput), or discrete events that must be recognized
and responded to within certain time constraints (response time).

Specific time requirements depend on the real-time application. For example, in an airlines reserva-
tions system, a customer calls an airlines representative and requests a seat reservation on a certain
flight. The customer waits on the phone while the real-time system processes the customer’s transac-
tion and then responds to the request either with a confirmation or a “flight-is-already-booked”
message. The response time requirement for this application is on the order of a second or so. while
the customer waits on the phone. If the system fails to meet this requirement, we are left with frus-
trated customers and perhaps loss of business.

An example of a more demanding real-time application is process monitoring and control in a steam-
powered electric plant. Sensors are used to measure variables such as pressure and level of water in
the boilers. and speeds of turbines and generators. If, for example, the boiler pressure gets too high,
a real-time system must respond immediately with the appropriate action (either reducing the heat
source oOr initiating some cooling action). The response time requirement for this application is on the
order of tens of milliseconds. If the system fails to meet this requirement, we could be left with in-
correct electrical output or perhaps extensive damage caused by an exploded boiler.

The above applications are just two of the many and varied examples of real-time applications in the
world today. Table 1 presents and categorizes additional real-time applications. It is important to
note that this list is by no means comprehensive; its purpose is to show the variety and pervasiveness
of real-time applications.

Table 1. General Real-Time Applications and Some Examples

General Real-Time Applications Examples

process monitoring and control petroleumn refinery
paper mill
chocolate factory

data acquisition pipe-line sampling . _
data inputs from a chemical reaction

communications monitoring and controlling satellites
telephone switching systems

transaction-oriented processing airlines reservation systems
on-line banking (automatic tellers)
stock quotations systems

flight simulation and control autopilot _
shuttle mission simulator

factory automation, factory floor control material tracking, parts production
electronic assembly
machine or instrument control

transportation traffic light systems
air traffic control

interactive graphics image processing
video games
solids modeling

detection systems radar systems
burglar alarm systems

Adding Real-Time Capability to the UNIX Operating System

Given a definition of real time and some sample real-time applications, the next question is “How can
the UNIX operating system be augmented to meet the requirements of real-time applications?”.

While using System V as a base, HP-UX answers this question in two parts: 1) by incorporating func-
tionality from 4.2BSD and adding new functionality from HP, and 2) by doing performance tuning on
the kernel and file system. To better understand this approach, it is helpful to be familiar with HP's
goals for adding real-time capability to the UNIX operating system:

Any real-time features implemented must not prevent SVID compatibility.

Wherever possible, real-time features should be adopted from either System V or 4.2BSD. Only
where a needed real-time feature does not exist should HP add a new feature.

Real-time features must be portable.
Performance tuning must be transparent to user processes.

Real-time response must be comparable to real-time response on the HP 1000 A900 (HP's top-of-
the-line real-time A-Series computer).

HP-UX on the Model 840 has met these goals. In addition, HP is lobbying through standards-setting
bodies to encourage their adoption of HP-UX's real-time features as part of an existing or evolving
standard such as SVID or [EEE P1003.

Real-Time Features in HP-UX

This section introduces the real-time features of HP-UX on the Model 840, explains their ongn
(either System V., 4.2BSD or HP) and also explains how each feature addresses certain concerns
about the real-time capability of UNIX systems.

The following features provide real-time capability to HP-UX:

Added Functionality
® Priority-based preemptive scheduling
Process memory locking
Privilege mechanism to control access to real-time priorities and memory locking
Fine timer resolution and time-scheduling capabilities
Interprocess communication and synchronization
Reliable signals
Shared memory for high-bandwidth communication
Asynchronous [/O for increased throughput
Synchronous I/O for increased reliability

Preallocation of disk space

Powerfail recovery for increased reliability
Performance Tuning
e Kernel preemption for fast, deterministic response time
e Fast file system [/O

® Miscellaneous performance improvements

The functionality additions are discussed first and the performance improvements are discussed later.

Priority-Based Preemptive Scheduling

Priority-based preemptive scheduling lets the most important process execute first, so that it can re-
spond to events as soon as possible. The most important process executes until it sleeps voluntarily or
finishes executing, or until a more important process preempts it. Priority-based means that a more
important process can be assigned a priority higher than other processes, so that the important (high
priority) process will be executed before other processes. Preemptive means that the high priority
process can interrupt or preempt the execution of a lower priority process, instead of waiting for it to
be preempted by the operating system when its time slice is completed or it needs to block.

The scheduling policy of traditional UNIX systems strives for fairness to all users and acceptable re-
sponse time for terminal users. The kernel dynamically adjusts process priorities, favoring interactive
processes with light CPU usage at the expense of those using the CPU heavily. Users are given some
control of priorities with the nice(2) system call, but the nice value is only one factor in the schedul-
ing formula. As a result, it is difficult or impossible to guarantee that one process has a priority
greater than another process. Therefore, each process in a traditional UNIX system effectively has to
wait its turn, no matter how important it might be to the real-time application.

HP-UX presents a solution to this problem by adding a new range of priorities, called real-time pri-
orities. Priorities in the real-time range do not fluctuate like priorities in the normal range. and any
process with a priority in the real-time range is favored over any process with a priority in the normal
range, including those making system calls and even system processes. Important as real-time proc-
esses are, interrupt processing is given priority over them. [f several real-time processes have the
same priority, they are time-sliced.

110

Processes with real-time priorities are favored not only for receiving CPU time, but also are favored
for swapping and for file system accesses. Real-time processes are the iast to be swapped out (except
for locked processes: — see below), and the first to be swapped in. File system requests for real-time
processes go to the head of the disk request queue. All of this preferential treatment gives real-time
processes very good response, but at the expense of the rest of the system. (There is no free lunch!)

Real-time priorities are set by the user either programmatically with HP's new rtprio(2) system call,
or interactively with the rtprio(1l) command. By default. processes are time-shared and continue to
be executed according to the normal scheduling policy. Aside from setting a process to a real-time
priority, the rtprio(2) system call and rtprio(l) command can be used to read the priority of a
real-time process and change the priority of a real-time process to be time-shared.

Process Memory Locking

A second important feature in a real-time system is the ability to lock a process in memory so that it
can execute without waiting to be paged in or swapped in from disk. In the UNIX and HP-UX oper-
ating systems, processes are not normally locked in memory; they are swapped and/or paged in from
disk as needed. The time required to swap in a process or page in one or more pages of a process
can range from several milliseconds to several seconds, which violates the response time requirements
of many real-time applications.

HP-UX has adopted a solution to this problem from System V. The plock(2) system call allows a
process to lock its executable code and/or its data in memory to avoid unexpected swapping and pag-
ing. Also, a process can lock additional data or stack space with the datalock(3C) subroutine, and
lock shared memory segments as needed with the shmct1(2) system call.

Privilege Mechanism to Control Access to Real-Time Capabilities

Because the priority scheduling and memory locking features of HP-UX are quite powerful, it is desir-
able to allow only certain users to access them. If, for example, all users had access to these
capabilities, they couid potentiaily set all of their processes to a high real-time priority and try locking
them in memory, which would defeat the purpose of the real-time system. Or, a novice user could
assign a real-time priority of 0 to a process that happens to execute in an infinite loop, thus locking
up the entire system.

To prevent scenarios such as these, HP-UX created a feature called privilege groups. Privilege groups
enable certain users (other than just the superuser) to access the powerful real-time priority and mem-
ory locking features of HP-UX. A privilege group is a group to which the superuser assigns privileges.
Existing privileges are real-time priority assignment (RTPRIO), memory locking (MLOCK) and a third
privilege which is not related to real-time functionality. The superuser assigns one or more of these
privileges 10 one or more groups with HP's setprivgrp(2) system call or setprivgrp(1l) command.,
and assigns certain users to become members of these groups with the 4.2BSD-based setgroups(2)
systemn call. You can retrieve the groups you belong to with 4.2BSD’s getgroups(2) system call or
groups(1l) command. and retrieve the privilege groups you belong to with the getprivgrp(2) system
call or getprivgrp(l) command.

Fine Timer Resolution and Time-Scheduling Capabilities

Another important feature in a real-time operating system is fine timer resolution and time-scheduling
capabilities. For high-resolution clock-based applications. both repetitive and nonrepetitive, it is im-
portant to be able to execute a process or subroutine at a precise time. For example, a real-time
application might require various sensor readings at 20 millisecond intervals.

Standard features in System V that deal with time, such as alarm(2) which has a resolution of one

second. and crontab(1l) and at(1) which have a resolution of a minute, are not precise enough for
many real-time applications. Therefore, HP-UX has adopted a solution from 4.2BSD, known as in-
terval timers. Each process can enable its own interval timer to interrupt itself once or at repeated
intervals, with whatever precision the underlying hardware and operating system can support. The

interval is defined in units of seconds and microseconds 10 keep the timer interface portable despite
the system-dependent resolution. For HP-UX on the Model 840, the system clock resolution is 10
milliseconds.

Interprocess Communication and Synchronization

A real-time operating system must provide interprocess communication and synchronization facilities.
Interprocess communication and synchronization is important because real-time applications often in-
volve several asynchronous processes that need to exchange information. For example, in a
manufacturing environment there might be several dedicated computers on a production line, where
cach executes a process that controls the movements of parts and actions on those parts (such as sol-
dering, molding or welding). A supervisory process that runs on a more powerful computer might
monitor the activities of the controller processes. If some type of alarm condition occurs on the pro-
duction line. the supervisory process can initiate a slowdown or shutdown action. A second process
that runs on the supervisory computer could keep track of the inventory levels of each part and in-
form a third process when more parts must be retrieved and sent to a particular dedicated controller.
As you can see, the processes in the supervisory computer must communicate with each other and
with the dedicated processes on the production line computers. This is just one example of a group of
processes involved in a real-time application that must communicate with each other to get the job
done.

Pipes and signals are common interprocess communication facilities in the UNIX operating system. A
pipe is essentially an [/O channel through which data is passed with the read(2) and write(2) system
calls. An advantage of using a pipe is that it provides synchronization by blocking reader processes
when the channel is empty and blocking writer processes when the channel is full. The disadvantages
of using pipes are 1) they require the communicating processes to have a common ancestor process
that sets up the channel. and 2) they are often slow because the kernel has to copy the data from the
writer process to the system buffer cache and then back again to the address space of the reader
process. Many UNIX systems including HP-UX support named pipes, which overcome the first prob-
lem, but still have the performance penalty of copying the data.

A signal is essentially a software interrupt sent to a process by the kernel or by a user process. A

process can install a handler for almost any signal, and the handler will be executed when the signal is
received. Signals can be a good event or alarm mechanism because one process can send a signal 10
inform another process that an event occurred. and then the other process can immediately enter its
handler to respond to the event. The disadvantages of using signals are 1) they pass little or no data
{not even who the sender process is), and 2) they are traditionally unreliable when sent repeatedly or
when a process tries to wait for a signal.

HP-UX has therefore adopted a reliable signal interface from 4.2BSD, in addition to the System V
signal interface. The 4.2BSD signal interface solves the reliability problems of the System V interface,
but it is more complicated to use. HP-UX has modified its signal interface to completely emulate
both the standard System V interface and the 4.2BSD interface.

HP-UX has also adopted three IPC facilities from System V: shared memory. semaphores and mes-
sages. These facilities allow communication and synchronization among arbitrary unrelated processes.
An elaborate semaphore facility allows solutions to both simple and complex synchronization prob-
lems. A message-passing facility allows transfer of data, along with the ability to prioritize messages.
The most important IPC facility for real-time applications is the shared memory facility. Two or more
processes can attach the same segment of memory to their data space and then write to and read
from it. Shared memory allows the highest communication bandwidth, since data does not have to be
copied to be communicated. Recall that a shared memory segment can be locked in memory to pro-
vide optimal performance for the communicating processes.

Asynchronous I/O for Increased Throughput

Asynchronous [/O is 1/0 that overlaps with process execution or other [/O. typically resulting in in-
creased throughput. Both the UNIX and HP-UX operating systems implement system asynchronous
[/O to centain drivers, but HP-UX allows you to communicate with some drivers that do system asyn-
chronous I/O, so you can take advantage of their asynchronous abilities.

System asynchronous 1/0 occurs when the system does asynchronous [/O for a process while the
process continues to execute. Two examples where the UNIX and HP-UX operating systems do sys-
tem asynchronous /O for user processes are writing to the file system and reading from a terminal
when there are enough characters already in the terminal buffer to satisfy the read(2).

HP-UX implements system asynchronous facilities for terminals, pipes, named pipes and sockets. The
system asynchronous [/O facilities that HP-UX provides for terminals are:

1. The nonblocking 1/O facility: Before launching an [/O request. a user process can set a flag to
inform the driver that the driver should cause the [/O request 10 return immediately if the re-
quest cannot be performed without blocking the user process.

The SIGIO facility: Before launching an [/O request, a user process can set a flag to enable the
driver to send the SIGIO signal to the process when data has arrived in the driver’s input buffer.

The select(2) facility: A user process can call select(2) to check if an I/O request should
be issued to one or more devices. The driver sets a bit in a user-supplied bit mask for each file
descriptor that the user asked about and on which I/O can be performed.

The FIONREAD facility: Before launching a read(2) request, a user process can ask the driver
to tell it how many characters in the driver’s input buffer are available for reading.

These facilities can be used individually or together. For example, suppose you want to read from
several terminals and you are not sure which terminal will send you data or when to expect this data.
if any. You do not want to launch a series of read(2) requests to each terminal, because you might
end up missing data from one or more terminals as you try to read from some terminal that will never
send you data. Instead, you could enable the SIGIO facility for each terminal so that each can in-
form you when data has arrived in its input buffer. When SIGIO is sent, you could cail select(2)
to find out which terminal(s) are ready for reading.

Synchronous 1/0 for Greater Reliability

A real-time application sometimes prefers to do synchronous [/O operations to make sure that its I/O
request actually completed. [n synchronous [/O. a process initiates an [/O request and then suspends
until the [/O request completes. As mentioned above, the file system normally does asynchronous
writes, which means that a write(2) returns when the data has been written only to the buffer cache,
not to the disk. The data is written from the buffer cache to disk later. while the process continues
to execute. Although this asynchronous disk write increases your process’'s throughput. the disadvan-
tage is that you cannot be sure that your data has actually been written to disk. Therefore. HP-UX
provides a flag called O_SYNCIO that lets you perform a synchronous disk write. This ensures that
your data actually was written to disk.

Powerfail Recovery

Recovery from a power failure is important to real-time applications that cannot afford to lose current
data or miss I/O transactions. When power fails. HP-UX saves the CPU state and flushes the data
cache to battery-backed up memory. When power is restored, all I/O devices are reset, the CPU
state is restored, the cache is reinitialized, 1/O transactions in progress at the time of the power failure
are restarted if possible, and a signal (SIGPWR) is sent to each process informing it of the power fail-
ure. Each process can then take appropriate recovery actions.

113

Summary of Real-Time Functionality Added to HP-UX

The following table summarizes the functionality that was added to HP-UX. [t presents the system
call associated with the particular feature and the origin of the system call (either System V, 4.2BSD
or HP).

Table 2. Real-Time Functionality in HP-UX

Real-Time Function

Associated
system call

Priority-based preemptive scheduling

Process memory locking

Privilege groups

Fine timer resolution and
time-scheduling capabilities

Reliable signals

Shared memory for
high-bandwidth communication

Other interprocess communication
and synchronization facilities

Asynchronous 1I/0 for increased
throughput

Synchronous [/0 for increased
reliability

Preallocating disk space

Powerfail recovery

rtprio(2)
plock(2)

getprivgrp éZg
setprivgrp(2

setitimer(2)
gettimeofday(2)

si%vmtor(2)
other calls

3222?.3%2;’

shmop

pipe(2) ,msgop(2)
msgget(2),msgcti(2)
semget(2),semcti(2)
semop(2)

iocti(2) flags,
select(2)

fcntl(2) with
O_SYNCIO

prealioc(2)

signal(2) with
SIGPWR

HP
System V

HP and 4.2BSD

4.2BSD

4.28SD

System V

System V

HP and 4.2BSD

HP

HP

HP and System V

The performance tuning that HP has implemented in HP-UX on the Model 840 is as important as the
added real-time functionality. The following features, kernel preemption, fast file system [/O. and
miscellaneous performance improvements comprise the main part of HP's performance tuning efforts.

Kernel Preemption for Faster Response Time

An important requirement for a real-time system is quick and deterministic response time. One of
the main concerns about the real-time capability of UNIX systems is that a process can execute in
kernel mode for long periods of time (more than 1 second) without allowing a higher priority process
to preempt it. Instead, the process keeps executing in kernel mode until it blocks or finishes. while
the high priority process must wait. (A process executing in user mode gets preempted much more
quickly.)

HP-UX on the Model 840 solves this problem by impiementing a preemptable kernel. At certain

safe places in the kernel called “preemption points™ or “preemption regions”, HP-UX keeps kernel
data structures at a consistent state, so that a higher priority real-time process can get control of the
CPU at that point. Kernel preemption is “on” at all times and is invisible to user processes, but it

only affects other processes when real-time processes are executing.

The goal of implementing kernel preemption was to significantly decrease the amount of time the ker-
nel executes before it gives up the processor to a waiting higher priority real-time process [1]. This
time is known as process dispatch latency. Process dispatch latency was measured with a set of soft-
ware tools that captured stack traces at every preemptable point, along with the time since the last
preemptable point. The data was used to add preemption points and regions until the typical meas-
ured time was less than a millisecond, and the maximum measured time was a few tens of
milliseconds. In other words, the improvement in process dispatch latency was 20 to 100 times better
than without kernel preemption. (These measures depend on workload.)

Fast File System 1/O

Fast file system performance is important to real-time applications that log data to disk files or read
the data logged by other processes. For many of these applications that need quick file access, the
traditional file system of the UNIX operating system is not acceptable for e following reasons:

Data blocks are often scattered randomly throughout the disk, resulting in large disk seek times
for sequential reads.

The data block size is 512 or 1024, which can be inefficient for large read and write requests.

There is only one superblock, which, if damaged. can make recovery of the file system very diffi-
cult or impossible.

The HP-UX file system has adopted its solution from the McKusick or 4.2BSD file system. Two im-
portant features in the HP-UX file system are the implementation of cylinder groups, which reduce
file seek time and add reliability, and the addition of two block sizes which allow increased speed
without wasting space on small files.

The HP-UX cylinder group organization reduces seek time because many or all of the data blocks of
a given file are on the same cylinder. The file system is composed of one or more cylinder groups.
Each is similar to a self-contained file system, as each contains a superblock, a contiguous area of
inodes and a contiguous area of data blocks. The data block allocation policies attempt to allocate
space from a given file on the same cylinder group, while placing unrelated files in different cylinder
groups. Thus, many or all of the data blocks of the file are on the same cylinder. which reduces disk
seck time.

A second advantage of using cylinder groups is that having a superblock in each group means
redundant copies of the superblock are maintained in case a disk head crash occurs. Also, each
superblock on a particular cylinder group is allocated in such a way that destruction of all the copies
of the superblocks will not occur if a single disk platter or cylinder is damaged.

The HP-UX file system uses a hybrid block size to deal with the time and space tradeoff of big ver-
sus small size blocks. There is a block size which is 4K or 8K bytes. and a fragment size which is
1/8, 1/4, 1/2 or the same size as this block size. Large file I/O requests are allocated and accessed a
block at a time, while smaller requests are allocated and accessed a fragment at a time. The block
and fragment size, along with other file system parameters, can be set by the superuser at file system
creation time.

The file system of the UNIX operating system normally allocates file space only as data is written.
However. HP-UX allows users to preallocate file space before ever writing, either programmatically
with HP's prealloc(2) system call or interactively with the prealloc(1) command. Although this
preallocated space is not necessarily contiguous. it is allocated in the best possible manner for sequen-
tial reading (without moving other data blocks). Also, the time required to do the initial write
operations will be reduced, because the space has already been allocated.

Miscellaneous Performance Improvements

HP UX on the Model 840 is tuned for both real-time response and system throughput. System
throughput was increased in two ways. Benchmarks such as the Aim [l Benchmark (1) were run,
along with HP-produced benchmarks. to track and improve the performance of specific paths in the
operating system. Workloads were developed by HP to simulate real-time and other environments.
GPROF dynamic call graph measurements were made to justify actions to increase overall system
throughput. Other measures. such at time from interrupt to driver, were measured with a logic ana-
lyzer interface to the hardware.

This systematic approach to performance tuning led to very significant results, with many performance
measures improving by a factor of two or more during product development. Also, this approach led
to justifiable returns, including support for two-hand clock replacement algorithm and conversion of
various kernel data structures from linear lists to hashed lists. Along the way HP also found a per-
formance bug or two in the ported code, including a bug in the read-ahead mechanism of the buffer
cache, which when fixed increased maximum file system throughput by approximately 20%.

Conclusions

The functionality additions and performance improvements described in this paper form the founda-
tion by which HP is enabling its version of the UNIX operating system to successfully enter the

real-time marketplace. The features described are rather simple to implement, and in fact. most of
them are already in System V or 4.2BSD. HP is working with the [EEE P1003 committee and the
real-time subcommittee to help forrn a common standard by which any vendor can gain the needed

functionality.

Acknowledgements

The following people from Hewlent-Packard contributed to this paper: Gary Ho, Bob Lenk and Dave
Lennert. Many other individuals at HP and elsewhere have contributed their time, ideas and efforts
to the design and implementation of real-time features in HP-UX.

References

[1] David C. Lennert. “Decreasing Realtime Process Dispatch Latency Through Kemel Preemption™,
USENIX Conference Proceedings, Summer 1986, pages 405-413

[2] Robert M. Lenk, “Real-Time Functionality in HP-UX", TC /nterface, January/February 1986,
pages 36-41

(1) Aim II Benchmark is a trademark of Aim Technology.

i16

MINIX: A UNIX clone with source code

Andrew S. Tanenbaum

Dept. of Mathematics and Computer Science
Vrije Universiteit
Amsterdam, The Netherlands

ABSTRACT

MINIX is a complete rewrite of UNIX. Neither the kernel nor the
utility programs contains any AT&T code, so the source code is free of the
AT&T licensing restrictions and may be studied by individuals or in a
course. The system runs on the IBM PC, XT, or AT, and does not require
a hard disk, thus making it possible for individuals to acquire a UNIX-like
system for home use at a very low cost.

Internally, MINIX is structured completely differently from UNIX. It
is a message passing system on top of which are memory and file servers.
User processes can send messages to these servers to have sy.tem calls
carried out. The paper describes the motivation and intended use of the
system, what the distribution contains, and discusses the system
architecture in some detail.

1. INTRODUCTION

When AT&T first licensed UNIX outside of Bell Laboratories, it was widely studied
In operating systems courses at universities (and in industry). Prof. John Lions of the
University of New South Wales in Australia even wrote a little booklet providing a
commentary on the source code, which for the most part was comment-free. Lions’
booklet plus the UNIX source code made it possible for students to get hands-on
experience working with, and modifying the code of a real operating system.

With the advent of Version 7, AT&T decided to put an end to the teaching of UNIX
to students, and added a clause to the standard university contract prohibiting use of the
source code in the classroom. Since that time, professors and students have largely had
to be content with operating systems theory because no system that was small enough to
be understandable yet large enough to be realistic has been available in source form.

To remedy this situation, several years ago I decided to write a new operating
system from scratch that would be system-call compatible with UNIX but completely new
inside. In addition to eliminating the licensing problems, this system would be written
using modern software concepts such as structured programming, modularity, and file
servers. UNIX itself was begun in the early 1970s when the main design issue was
squeezing it onto a PDP-11, rather than making the code easy for others to read.

That work is now complete and has resulted in a system called MINIX (mini UNIX)
because it leaves out some of the more esoteric system calls in an attempt to make the
system smaller and easier to understand. MINIX was originally written for the IBM PC,
XT, and AT, but work is currently under way to port it to the 68000 and other

MINIX: A UNIX clone with source code

computers. The system is written in C and some care has been taken in the design to
make the port to small computers without memory management hardware as
straightforward as possible. This point will be discussed in detail later in the paper.

To avoid confusion, it is worthwhile stating explicitly who MINIX is aimed at. There
are two potential groups of users.

1. Professors, students, and others who are interesting in legally obtaining and
studying the source code of a UNIX-like operating system.

2. People who would like to run a UNIX-like system (especially at home), but have not
been able to afford it. Since MINIX does not require a hard disk and the complete
system, including both the binaries and the sources costs under $80, the set of
potential users is much larger than for UNIX.

Thus MINIX does not really compete with UNIX. Rather, it fills a niche that is currently
unoccupied.

For the first category (i.e. educational) users, several options have been provided.
The system can be modified and maintained on an IBM PC with or without a hard disk,
using itself, a version of UNIX, or even MS-DOS. It can also be cross compiled on a VAX
or other time-shared computer running UNIX. Furthermore, the software distribution
contains an interpreter for the IBM PC (including I/O) so that the resulting system can
be run on a VAX or other computer, preferably a fast one, in case no real IBM PCs are
avallable for students. The MINIX file system can also be modified and run on almost any
computer, since it is structured as a free-standing file server. The file server can also be
used in a network of diskless workstations.

For the second category (i.e. impoverished) users, several versions of the system
have been configured. The normal ones run on 640K PCs with two floppy disks or 512K
ATs with one floppy disk, but a special version has also been configured for 256K PCs
with only one floppy disk. This version does not contain the C compiler, but is otherwise
complete.

MINIX is system-call compatible with Version 7 UNIX for both practical and
ideological reasons. On the practical side, I was unable to figure out how to make either
4.3 BSD or System V run on a 256K IBM PC with only 1 floppy disk. On the ideological
front, many people (myself included) strongly believe that Version 7 was not only an
improvement on all of its predecessors, but also on all of its successors, certainly in terms
of simplicity, coherence and elegance. Users who prefer features to elegance should
program in Adat on a large IBM mainframe running MVS.

MINIX implements all the V7 system calls, except ACCT, LOCK, MPX, NICE,
PHYS, PKON, PKOFF, PROFIL, and PTRACE. The other system calls are all
implemented in full, and are exactly compatible with V7. In particular, FORK and
EXEC are fully implemented, so MINIX can be configured as a normal multiprogramming
system, with several background jobs running at the same time (memory permitting), and
even multiple users.

The MINIX shell is compatible with the V7 (Bourne) shell, so to the user at the
terminal, running MINIX looks and feels like running UNIX. Over 70 utility programs are
part of the software distribution, including ar, basename, cat, cc, chmem, chmod, chown,

t Ada is a Registered Trademark of the U S. Dept. of Defense

118

MINIX: A UNIX clone with source code

cmp, comm, cp, date, dd, df, echo, grep, head, kill, In, login, lpr, Is, make, mkdir, mkfs,
mknod, mount, mv, od, passwd, pr, pwd, rev, rm, rmdir, roff, sh, size, sleep, sort, split,
stty, su, sum, sync, tail, tar, tee, time, touch, tr, umount, uniq, update, and we. A full-
screen editor inspired by Emacs (think of it as nano-emacs), a full K&R compatible C
compiler, and programs to read and write MS-DOS diskettes are also included. All of the
sources of the operating system and these utilities, except the C compiler source (which is
quite large and is available separately), are included in the software package.

In addition to the above utilities, over 100 library procedures, including stdio, are
provided, again with the full source code.

To reiterate what was said above, all of this software is completely new. Not a
single line of it is taken from, or even based on the AT&T code. I personally wrote from
scratch the entire operating system and some of the utilities. This took about 3 years.
My students and some other generous people wrote the rest. The C compiler is derived
from the Amsterdam Compiler Kit (Tanenbaum et al.,, 1983), and was written at the
Vrije Universiteit. It is a top-down, recursive descent compiler written in a compiler
writing language called LLGEN and is not related to the AT&T portable C compiler,
which is a bottom-up, LALR compiler written in YACC.

2. OVERVIEW OF THE MINIX SYSTEM ARCHITECTURE

UNIX is organized as a single executable program that is loade into memory at
system boot time and then run. MINIX is structured in a much more modular way, as a
collection of processes that communicate with each other and with user processes by
sending and receiving messages. There are separate processes for the memory manager,
the file system, for each device driver, and for certain other system functions. This
structure enforces a better interface between the pieces. The file system cannot, for
example, accidentally change the memory manager’s tables because the file system and
memory manager each have their own private address spaces.

These system processes are each full-fledged processes, with their own memory
allocation, process table entry and state. They can be run, blocked, and send messages,
just as the user processes. In fact, the memory manager and file system each run in user
space as ordinary processes. The device drivers are all linked together with the kernel
into the same binary program, but they communicate with each other and with the other
processes by message passing.

When the system is compiled, four binary programs are independently created: the
kernel (including the driver processes), the memory manager, the file system, and inii
(which reads /etc/ttys and forks off the login processes). In other words, compiling the
system results in four distinct a.out files. When the system is booted, all four of these are
read into memory from the boot diskette.

It is possible, and in fact, normal, to modify, recompile, and relink, say, the file
system, without having to relink the other three pieces. This design provides a high
degree of modularity by dividing the system up into independent pieces, each with a
well-defined function and interface to the other pieces. The pieces communicate by
sending and receiving messages.

The various processes are structured in four layers:

4. The user processes (top layer).
3. The server processes (memory manager and file system).
2. The device drivers, one process per device.

MINIX: A UNIX clone with source code

L. Process and message handling (bottom layer).

Let us now briefly summarize the function of each layer.

Layer 1 is concerned with doing process management including CPU scheduling and
interprocess communication. When a process does a SEND or RECEIVE, it traps to the
kernel, which then tries to execute the command. If the command cannot be executed
(e.g., a process does a RECEIVE and there are no messages waiting for it), the caller is
blocked until the command can be executed, at which time the process is reactivated.
When an interrupt occurs, layer 1 converts it into a message to the appropriate device
driver, which will normally be blocked waiting for it. The decision about which process
to run when is also made in layer 1. A priority algorithm is used, giving device drivers
higher priority over ordinary user processes, for example.

Layer 2 contains the device drivers, one process per major device. These processes
are part of the kernel’s address space because they must run in kernel mode to access I/0
device registers and execute I/O instructions. Although the IBM PC does not have user
mode/kernel mode, most other machines do, so this decision has been made with an eye
toward the future. To distinguish the processes within the kernel from those in user
space, the kernel processes are called tasks.

Layer 3 contains only two processes, the memory manager and the file system.
They are both structured as servers, with the user processes as clients. When a user
process (i.e. a client) wants to execute a system call, it calls, for example, the library
procedure read with the file descriptor, buffer, and count. The library procedure builds a
message containing the system call number and the parameters and sends it to the file
system. The client then blocks waiting for a reply. When the file system receives the
message, 1t carries it out and sends back a reply containing the number of bytes read or
the error code. The library procedure gets the reply and returns the result to the caller in
the usual way. The user is completely unaware of what is going on here, making it easy
to replace the local file system with a remote one.

Layer 4 contains the user programs. When the system comes up, tnit forks off login
processes, which then wait for input. On a successful login, the shell is executed.
Processes can fork, resulting in a tree of processes, with init at the root. When CTRL-D
is typed to a shell, it exits, and init replaces the shell with another login process.

3. LAYER 1 - PROCESSES AND MESSAGES

The two basic concepts on which MINIX is built are processes and messages. A
process i1s an independently schedulable entity with its own process table entry. A
message Is a structure containing the sender’s process number, a message type field, and a
variable part (a union) containing the parameters or reply codes of the message. Message
size 1s fixed, depending on how big the union happens to be on the machine in question.

On the IBM PC it is 24 bytes.

Three kernel calls are provided:

- RECEIVE(source, &message)
- SEND(destination, &message)
- SENDREC(process, &message)

These are the only true system calls (i.e. traps to the kernel). RECEIVE announces the
willingness of the caller to accept a message from a specified process, or ANY, if the
RECEIVER will accept any message. (From here on, “process” also includes the tasks.)

120

MINIX: A UNIX clone with source code

If no message is available, the receiving process is blocked. SEND attempts to transmit a
message to the destination process. If the destination process is currently blocked trying
to receive from the sender, the kernel copies the message from the sender’s buffer to the
receiver’s buffer, and then marks them both as runnable. If the receiver is not waiting for
a message from the sender, the sender is blocked.

The SENDREC primitive combines the functions of the other two. It sends a
message to the indicated process, and then blocks until a reply has been received. The
reply overwrites the original message. User processes use SENDREC to execute system
calls by sending messages to the servers and then blocking until the reply arrives.

There are two ways to enter the kernel. One way is by the trap resulting from a
process’ attempt to send or receive a message. The other way is by an interrupt. When
an interrupt occurs, the registers and machine state of the currently running process are
saved in its process table entry. Then a general interrupt handler is called with the
interrupt number as parameter. This procedure builds a message of type INTERRUPT,
copies it to the buffer of the waiting task, marks that task as runnable (unblocked), and
then calls the scheduler to see who to run next.

The scheduler maintains three queues, corresponding to layers 2, 3, and 4,
respectively. The driver queue has the highest priority, the server queue has middle
priority, and the user queue has lowest priority. The scheduling algorithm is simple: find
the highest priority queue that has at least one process on it, and run the first process on
that queue. In this way, a clock interrupt will cause a process switch if the file system
was running, but not if the disk driver was running. If the disk driver was running, the
clock task will be put at the end of the highest priority queue, and run when its turn
comes.

In addition to this rule, once every 100 msec, the clock task checks to see if the
current process is a user process that has been running for at least 100 msec. If so, that

user is removed from the front of the user queue and put on the back. In effect, compute
bound user processes are run using a round robin scheduler. Once started, a user process
runs until either it blocks trying to send or receive a message, or it has had 100 msec of
CPU time. This algorithm is simple, fair, and easy to implement.

4. LAYER 2 - DEVICE DRIVERS

Like all versions of UNIX for the IBM PC, MINIX does not use the ROM BIOS for
input or output because the BIOS does not support interrupts. Suppose a user forks off a
compilation in the background and then calls the editor. If the editor tried to read from
the terminal using the BIOS, the compilation (and any other background jobs such as
printing) would be stopped dead in their tracks waiting for the the next character to be
typed. Such behavior may be acceptable in the MS-DOS world, but it certainly is not in
the UNIX world. As a result, MINIX contains a complete set of drivers that duplicate the
functions of the BIOS. Like the rest of MINIX, these drivers are written in C, not
assembly language.

This design has important implications for running MINIX on PC clones. A clone
whose hardware is not compatible with the PC down to the chip level, but which tries to
hide the differences by making the BIOS calls functionally identical to IBM’s will not run
an unmodified MINIX because MINIX does not use the BIOS.

Each device driver is a separate process in MINIX. At present, the drivers include
the clock driver, terminal driver, various disk drivers (e.g., RAM disk, floppy disk), and
printer driver. Each driver has a main loop consisting of three actions:

MINIX: A UNIX clone with source code

1. Wait for an incoming message.
2. Perform the request contained in the message.
3. Send a reply message.

Request messages have a standard format, containing the opcode (e.g., READ, WRITE,
or IOCTL), the minor device number, the position (e.g., disk block number), the buffer
address, the byte count, and the number of the process on whose behalf the work is being
done.

As an example of where device drivers fit in, consider what happens when a user
wants to read from a file. The user sends a message to the file system. If the file system
has the needed data in its buffer cache, they are copied back to the user. Otherwise, the
file system sends a message to the disk task requesting that the block be read into a buffer
within the file system’s address space (in its cache). Users may not send messages to the
tasks directly. Only the servers may do this.

MINIX supports a RAM disk. In fact, the RAM disk is always used to hold the root
device. When the system is booted, after the operating system has been loaded, the user
is instructed to insert the root file system diskette. The file system then sees how big it
1s, allocates the necessary memory, and copies the diskette to the RAM disk. Other file
systems can then be mounted on the root device.

This organization puts important directories such as /bin and /tmp on the fastest
device, and also makes it easy to work with either floppy disks or hard disks or a mixture
of the two by mounting them on /usr or /user or elsewhere. In any event, the root
device is always in the same place.

In the standard distribution, the RAM disk is about 240K, most of which is full of
parts of the C compiler. In the 256K system, a much smaller RAM disk has to be used,
which explains why this version has no C compiler: there is no place to put it. (The Sfusr
diskette is completely full with the other utility programs and one of the design goals was
to make the system run on a 256K PC with 1 floppy disk.) Users with an unusual
configuration such as 256K and three hard disks are free to juggle things around as they
see fit.

The terminal driver is compatible with the standard V7 terminal driver. It supports
cooked mode, raw mode, and cbhreak mode. It also supports several escape sequences,
such as cursor positioning and reverse scrolling because the screen editor needs them.

The printer driver copies its input to the printer character for character without
modification. It does not even convert line feed to carriage return + line feed. This
makes it possible to send escape sequences to graphics printers without the driver messing
things up. MINIX does not spool output because floppy disk systems rarely have enough
spare disk space for the spooling directory. Instead one normally would print a file f by
saying

lpr <f &
to do the printing in the background. The lpr program insert carriage returns, expands

tabs, and so on, so it should only be used for straight ASCII files. On hard disk systems,
a spooler would not be difficult to write.

I
(V)

i

MINIX: A UNIX clone with source code

5. LAYER 3 - SERVERS

Layer 3 contains two server processes: the memory manager and the file system.
They are both structured in the same way as the device drivers, that is a main loop that
accepts requests, performs them, and then replies. We will now look at each of these in
turn.

The memory manager’s job is to handle those system calls that affect memory
allocation, as well as a few others. These include FORK, EXEC, WAIT, KILL, and BRK.
The memory model used by MINIX is exceptionally simple in order to accommodate
computers without any memory management hardware. When the shell forks off a
process, a copy of the shell is made in memory. When the child does an EXEC, the new
core image is placed in memory. Thereafter it is never moved. MINIX does not swap or
page.

The amount of memory allocated to the process is determined by a field in the
header of the executable file. A program, chmem, has been provided to manipulate this
field. When a process is started, the text segment is set at the very bottom of the
allocated memory area, followed by the data and bss. The stack starts at the top of the
allocated memory and grows downward. The space between the bottom of the stack and
the top of the data segment is available for both segments to grow into as needed. If the
two segments meet, the process is killed.

In the past, before paging was invented, all memory allocation schemes worked like
this. In the future, when even small microcomputers will use 32-bit Cl Js and 1M x 1 bit
memory chips, the minimum feasible memory will be 4 megabytes and this allocation
scheme will probably become popular again due to its inherent simplicity. Thus the
MINIX scheme can be regarded as either hopelessly outdated or amazingly futuristic, as
you prefer.

The memory manager keeps track of memory using a list of holes. When new
memory is needed, either for FORK or for EXEC, it searches the hole list and takes the
first hole that is big enough (first fit). When a process terminates, if it is adjacent to a
hole on either side, the process’ memory and the hole are merged into a bigger hole.

The file system is really a remote file server that happens to be running on the user’s
machine. However it is straightforward to convert it into a true network file server. All
that needs to be done is change the message interface and provide some way of
authenticating requests. (In MINIX, the source field in the incoming message is
trustworthy because it is filled in by the kernel.) When running remote, the MINIX file
server maintains state information, like RFS and unlike NFS.

The MINIX file system is similar to that of V7 UNIX. The i-node is slightly different,
containing only 9 disk addresses instead of 13, and only 1 time instead of 3. These
changes reduce the i-node from 64 bytes to 32 bytes, to store more i-nodes per disk block
and reduce the size of the in-core i-node table.

Free disk blocks and free inodes are kept track of using bit maps rather than free
lists. The bit maps for the root device and all mounted file systems are kept in memory.
When a file grows, the system makes a definite effort to allocate the new block as close as
possible to the old ones, to minimize arm motion. Disk storage is not necessarily
allocated one block at a time. A minor device can be configured to allocate 2, 4 (or more)
contiguous blocks whenever a block is allocated. Although this wastes disk space, these
multiblock zones improve disk performance by keeping file blocks close together. The
standard parameters for MINIX as distributed are 1K blocks and 1K zones (i.e. just I
block per zone).

MINIX: A UNIX clone with source code

MINIX maintains a buffer cache of recently used blocks. A hashing algorithm is used
to look up blocks in the cache. When an i-node block, directory block, or other critical
block is modified, it is written back to disk immediately. Data blocks are only written
back at the next SYNC or when the buffer is needed for something else.

The MINIX directory system and format is identical to that of V7 UNIX. File names
arc strings of up to 14 characters, and directories can be arbitrarily long.

6. LAYER 4 - USER PROCESSES

This layer contains init, the shell, the editor, the compiler, the utilities, and all the
user processes. These processes may only send messages to the memory manager and the
file system, and these servers only accept valid system call requests. Thus the user
processes do not perceive MINIX to be a general-purpose message passing system.
However, removing the one line of code that checks if the message destination is valid
would convert it into a much more general system (but less UNIX-like).

7. DOCUMENTATION

For a system one of whose purposes is teaching about operating systems, ample
documentation is essential. For this reason I have written an ample textbook (more than
700 pages) treating both the theory and the practice of operating system design
(Tanenbaum, 1987). The table of contents is as follows:

CHAPTERS
1. Introduction
2. Processes
3. Input/Output
4. Memory Management
5. File Systems
6. Bibliography and Suggested Readings

APPENDICES
A. Introduction to C
B. Introduction to the IBM PC
C. MINIX Users Guide
D. MINIX Implementers Guide
E. MINIX Source Code Listing
F. MINIX Cross Reference Map

The heart of the book is chapters 2-5. Each chapter deals with the indicated topic in the
following way. First comes a thorough treatment of the relevant principles (thorough
enough to be usable as a university textbook on operating systems). Next comes a
general discussion of how the principles have been applied in MINIX. Finally there is a
procedure by procedure description of how the relevant part of MINIX works in detail.
The source code listing of appendix E contains line numbers, and these line numbers are
used throughout the book to pinpoint the code under discussion. The source code itself
contains more than 3000 comments, some more than a page long. Studying the principles
and seeing how they are applied in a real system gives the reader a better understanding
of the subject than either the principles or the code alone would.

Appendices A and B are quickie introductions to C and the IBM PC for readers not
familiar with these subjects. Appendix C tells how to boot MINIX, how to use it, and how

MINIX: A UNIX clone with source code

to shut it down. It also contains all the manual pages for the utility programs. Most
important of all, it gives the super-user password.

Appendix D is for people who wish to modify and recompile MINIX. It contains a
wealth of nutsy-boltsy information about everything from how to use MS-DOS as a
development system, to what to do when your newly made system refuses to boot.

Appendix E is a full listing of the operating system, all 260 pages of it. The utilities
(mercifully) are not listed.

8. DISTRIBUTION OF THE SOFTWARE

The software distribution is being done by Prentice-Hall. Four packages are
available. All four contain the full source code; they differ only in the configuration of the
binary supplied. The four packages are:

- 640K IBM PC version

- 256K IBM PC (no C compiler)
- IBM PC-AT (512K minimum)
- Industry standard 9-track tape

The 640K version will also run on 512K systems, but it may be necessary to chmem parts
of the C compiler to make it fit. The tape version is the only one containing the IBM PC
simulator and other software needed for classroom use on a VAX or -~ther time sharing
machine. The software packages do not include the book.

If there is sufficient interest, a newsgroup net.minix will be set up. This channel can
be used by people wishing to contribute new programs, point out and correct bugs,
discuss the problems of porting MINIX to new systems, etc.

9. ACKNOWLEDGEMENTS

I would like to thank the following people for contributing utility programs and
advice to the MINIX effort: Martin Atkins, Erik Baalbergen, Charles Forsyth, Richard
Gregg, Michiel Huisjes, Patrick van Kleef, Adri Koppes, Paul Ogilvie, Paul Polderman,
and Robbert van Renesse. Without their help, the system would have been far less useful
than it now is.

10. REFERENCES

Tanenbaum, A.S., van Staveren, H., Keizer, E.G., and Stevenson, J.W.: “A Practical
Toolkit for Making Portable Compilers,” Communications of the ACM, vol. 26, pp.
654-660, Sept. 1983.

Tanenbaum, A.S.: Operating Systems: Design and Implementation, Englewood Cliffs,
N.J.: Prentice-Hall, 1987.

126

A User Programmable Telephone Switch

Brian E. Redman

Bell Communications Research
Morristown, New Jersey 07960, USA

ABSTRACT

The basic function of a telephone switch is to allow subscribers to place
calls among one another. The basic service provided is Plain Old
Telephone Service (POTS). There were relatively few changes in POTS
since telephone switching was introduced in 1880. In 1919 dial service
became available alleviating the need for operator assistance on many
calls. Direct Distance Dialing (DDD) in 1951 expanded this to long distance
calls. In 1964 touch-tone service provided faster and easier dialing. It
wasn’t until 1972 that Vertical Services were offered to residence
costumers. These were services such as Speed Calling, Call Waiting and
Call Forwarding.

When you rented a pair of telephones in 1887 there was only one option
available. For an additional $5 installation charge they were equipped
with “thumpers”, the predecessor of the bell. Otherwise you could simply
yell into your telephone and hope the other party was close enough to
theirs to hear you. When you subscribe to telephone service today you are
offered a number of enhancements to POTS. Unfortunately the precise
behavior and control of these options is quite limited.

Nowadays telephone switching systems are controlled by computers.
There is the capacity to do more than switch calls among subscribers. It is
both practical and attractive to have telephone services controlled
dynamically by the subscriber, either via direct input to the telephone
switching system or by exercising customer designed control algorithms.

The telephone switching system which will be described provides several
interfaces to the subscriber. At the highest levels, the user can activate or
deactivate preprogrammed algorithms and modify their behavior to the
extent that such modification has been allowed for in their design. This is
achieved with touch-tone input or by issuing commands from a computer
terminal. At the intermediate level the user can incorporate program
library functions and implement control algorithms with their own
computer programs. At the lowest level users can claim total control of
their assigned circuits.

This system has been in use for over a year, providing essential telephone
service to twenty subscribers. Although the basic design has remained
intact, the emphasis on utilization of the different layers is shifting
markedly.

A User Programmable Telephone Switch

1. Introduction

The BerBell user programmable telephone switch places into the hands of its customers
the responsibility of determining how their telephone should behave beyond a basic
standard service. There are so many options available in modern systems that it is not
reasonable for their designers or installers to predict or restrict the desires of each
individual. By providing a powerful set of primitives and a clean interface, the
subscribers themselves or their agents can dictate the functionality of their service. Thus
service definition is open-ended, evolving with the needs and imagination of the system’s
users. The exploitation of BerBell's capabilities has resulted in a continually growing
library of user programs and services. These include placing calls from an on-line
directory and scheduling calls from an on-line calendar. Users with computer access can
take somewhat greater advantage of BerBell. Whenever possible, the telephone touch-tone
interface provides similar capabilities to the computer terminal interface. However more
complex features are more easily manipulated with the use of textual input and output.
Although rotary dialing cannot be fully supported, BerBell will function well with all
types of touch-tone telephones and computer terminals. Putting the data bases and
features within the system or within reach of the system through computer networks
obviates the need for expensive special purpose accessories.

The work described involves the use of a general purpose operating system, UNIX, and its
associated program resources to support the development and application of a telephone
switch. The system as a whole is referred to as BerBell. Its software consists of a core
program, bellerophon, a number of programs varying in their degree of independence
from bellerophon, the UNIX operating system and its tools. The hardware which realizes
the system is composed of a host minicomputer, a Redcom Modular Switching Peripheral
providing the basic electrical interfaces and switching capabilities required for telephony
applications, speech synthesizers and an assortment of ancillary audio sources and
recorders. These components together provide flexible and comprehensive telephone
service.

2. User Level

How is BerBell different from other telephone offerings from the end-user’s point of view?
What new capabilities are there? There are no significant differences between the basic
service provided by BerBell and that provided by other vendors. The default BerBell
dialing plan is designed to look like CENTREX since most subscribers use it at work.
However, dialing plans are associated with the telephone line, so home subscribers can use
the standard residence dialing plan. Basic service implies that when the subscriber lifts
the receiver, they hear dialtone. They then dial a valid number and a call is placed to
their party. On the receiving side, if the telephone is in use callers get a busy tone.
Otherwise the telephone is rung. If the receiving party answers, a talking connection is
established.

BerBell and most other vendors provide more interesting services upon request. BerBell
subscribers can activate and disconnect these features using a touch-tone telephone or by
issuing shell level commands from a computer served by the BerBell host. Although the
fundamental concepts of these features are similar, BerBell advances their applications.
First, we present a discussion of those features that are typically provided by most
vendors.

128

A User Programmable Telephone Switch

2.1. Call Forwarding

Subscribers can arrange to have their calls transferred to another number. Typical
residence service only allows unconditional call forwarding. Most PBX and CENTREX
vendors provide call forwarding when the called line is busy as well as after the line has
rung some number of times (no answer). These functions are available to BerBell
subscribers with some improvements. Most importantly, the parameters of each of the
call forwarding operations are conveniently changeable by the subscriber. From a touch-
tone telephone, the user enters ‘*’ (non-call dialing), then ‘2’ indicating a feature setting,
followed by ‘1’ (call forwarding) then various codes to set parameters. The feature
dialing syntax is designed to be consistent and hierarchical. It is simpler to use the
computer interface to describe these parameters. In all cases the command is

setforward <extension> <option>.

The basic call forwarding options are:

rings <n> -
the number of rings after which no-answer forwarding will be effected. If <n>
is zero unconditional forwarding is activated.

busy/nobusy -
activate/deactivate forwarding when the line is busy.

noanswernumber <number> -
the number to transfer the call to if no-answer forwarding is active and the call
is not answered after the specified number of rings. The name of a program
can be substituted for <number>.

unconditionalnumber <number> -
the number or program to transfer the call to if rings is set to zero.

busynumber <number> -
the number or program to transfer the call to if the line is busy and busy
forwarding is activated.

Some new call forwarding operations are implemented to allow callers and recipients
of forwarded calls to be made aware that call forwarding has been invoked. The
terms ‘inform’ and ‘announce’ are used to indicate messages to the caller and
ultimate recipient respectively. The following options involve speaking a text
message synthetically or playing a recorded message.

inform/noinform -~
enable/disable calling party notification that the call is being forwarded.

announce/noannounce -
enable/disable recipient party notification that the call has been forwarded to
them.

For each of the forwarding conditions described a different message can be specified
with <file> which contains text to be recited or binary audio data.

busyannounce <file>
noanswerannounce <file>
unconditionalannounce <file>
busyinform <file>
noanswerinform <file>

129

A User Programmable Telephone Switch

unconditionalinform <file>

A ‘continueringing’ option allows the originally called line to continue ringing even
after it has been forwarded. It can then be answered at any time. This is disabled
with ‘stopringing’.

Finally, the ‘on/ofl” option will activate/deactivate all forwarding without modifying
the parameter settings described above.

2.2. Call Waiting

A call to a party whose line 1s busy causes audible ringing to be heard by the caller and a
short tone by the recipient. The recipient may then talk to the calling party by
hookflashing, placing the current conversation on hold. In the BerBell implementation
call waiting can be enabled or disabled from the telephone by pressing ‘*20’ then ‘1’ or ‘0’
respectively. FFrom a terminal the command

setcw [on | off] <program name>

1s used to specify a program which is executed when the caller encounters a busy line with
call waiting enabled. As in call forwarding and most other services the program can be
supplied by the user. A popular program in use for this purpose informs the caller that
their party will be responding shortly, then connects them to silence, music or an
answering program, at their option. The recipient, having heard a high-pitched tone
when the new call arrived will hear a low-pitched tone if the new caller should hang up. In
fact the new call is simply a held call and the subscriber will hear a low-pitched tone any
time a held caller hangs up. Many calls can be on hold simultaneously.

2.3. Call Transfer

A call in progress can be forwarded to another number. This is a fairly common feature
but BerBell provides a slight twist. In the normal case a call is transferred using the
telephone by first placing it on hold, then dialing ‘*12°, then the slot number or ‘# for
the oldest held call, then the destination number. From the terminal the user issues

xfer <extension> <destination number>.

In this case the call in progress, not a held call, is transferred. The twist mentioned is
that calls can be temporarily transferred. That is to say that the call is transferred but
still remains on hold. This means that the user can still pick up the call, etc. This feature
conveniently implements services on hold such as music, advertising, games, or
information. Each of these services is implemented as a program which can be designed
by the subscriber. Programs exist which give the caller the option to select a preference
(including silence). In any event the options are dictated by the subscriber and the choice
1s made by the user, not the system. To invoke the temporary transfer from a telephone,
place the call on hold then dial ‘*16#*, then the number to call. The command to issue
from a terminal is

txfer <extension> <number>.

Like ‘xfer’ the current call is transferred, not a held call.

The more common features found in most telephone systems have been covered. The
discussion now turns to some less common services.

A User Programmable Telephone Switch

2.4. Editing

BerBell incorporates some editing facilities similar to those used for computer terminal
interfaces. These are ‘*##', erase the last keypress; ‘**# erase all dialed digits; and ‘***’
recite the digits dialed so far.

2.5. Call Announcement

A program can be executed when a subscriber receives a call. The command

setcallfor [on | off] <program>

is used to control the option. From the telephone, ‘*221’ and ‘*220’ are used to activate
or deactivate the feature. The default program utilizes a switched public address system
to announce to subscribers that their telephones are ringing. The user can provide a text
or data file to be spoken by a speech synthesizer or played by a digital sound device.
Another file specifies at which locations the announcement is to made. Users can answer
their calls from any BerBell extension.

2.6. Additional Manipulations of Calls

It 1s possible to pick up a call that is ringing on another telephone, or to redirect it to
another number. Other functions can be performed on held calls. By dialing ‘*14#¢ the
user invokes ‘hold-on-hold’. This program, dubbed ‘revenge on hold’ and designed on a
whim, causes the held call to repetitively receive a message advising the party to dial ‘*’
when they return to the telephone. The user’s line is freed for incoming or outgoing calls.
When the held party does dial ‘*’ the user’s telephone is rung just as if they were
receiving a call, and upon answering they are connected to their party.

Two additional features which apply to held calls are held retrieval and held transfer.
Held transfer allows a user to transfer a held call to another extension while in the held
state. Thus the call appears, still on hold, on another extension. The code is ‘*15#, then
the destination extension. Held retrieval permits a user to pick up a call which is on hold
on another extension. The code for this is ‘*184, then the extension from which the held
call will be retrieved.

2.7. Programs

User programs provide a large portion of BerBell’s functionality. The system is designed
specifically to give the programmer flexibility and control over the telephone switch.
Users issue commands from the BerBell host or remotely from any machine the
communicates with the host over the Internet. In the 4.3 BSD implementation, which
uses Internet Datagrams to communicate among processes within BerBell, the programs
that are used locally function identically over the network. What follows is a brief
description of some of the programs in common use now. The list is not exhaustive and
continues to grow. One should also note that many of the functions described above will
be recoded as stand alone programs.

2.7.1. Accessed from the telephone

The following list of programs are services invoked by bellerophon as a subscriber option
or a general service.

bebap
The default answering program. It allows callers to leave a number or a
message, or connect to a message taking persons. Callers can also receive
messages that are left for them.

A User Programmable Telephone Switch

ttda
Touch-tone directory assistance! permits users to look up telephone numbers in
various telephone books. The user can be transferred to the matched number.
Current directories include Bellcore, Seattle, and many New Jersey books.

ttweather
Using touch-tone input, the user gets the National Weather Service forecast for
any desired city in the continental U.S.

ttsh
Using a touch-tone mapping scheme where two keypresses represent one ASCII
character, a user can log in to the BerBell host and execute commands.
demo2332
The audio research laboratory real-time music generation demonstration.

wakeup
The wakeup service calls the user at a desired time, and delivers a message.

ccstatus
Computer Center Status provides information to the caller and permits them
to enter their number to receive updates. When stafl personnel change the
status file, users are called back.

wrong
The wrong-number server randomly executes one of many BERPS scripts to
entertain and confuse callers who dial invalid BerBell extensions. BERPS is
described in a subsequent section. These scripts include simulations of
telephone interfaces to various institutions such as banks, the Federal

Government, the Phone Company, the Defense Department and the
Underworld.

robop
The robot operator recites the list of dial-up services.
help
An interactive program for feature dialing assistance.
htime
Recites the local time, date, and weather.
musak
Connects the caller to an arbitrary audio source.
ph/silence
These services are primarily for testing, connecting the caller to a permanent
high-pitched tone or to silence.
hanna
Simulates the utterances of a three year old child.
newsgen
Assembles an inane scandal sheet news story from a table of phrases and
personalities.

rosary
Recites same.

winner
Announces to the caller that they have won something and asks them to hold
on (indefinitely).

132

A User Programmable Telephone Switch

marge
Simulates the gratuitous utterances of a cashier.

suicide
An irreverent suicide hot-line.

The following programs are issued from the user’s terminal.

call <from> <to>
The <from> number is called. When it is answered, a call is placed from it to
<to> number.

nway <number> <number> <number> [number]
Conference calls are established with this command.

gm [options] <from> <to> [message file]
Getme dials the <to> number and may deliver the optional message contained
in message file. options may be used to elicit a response from the answerer at
<to> number. If a satisfactory response is received or if no response is
required, the call is connected to <from> number.

pa <number> <message file>
<number> is dialed and the contents of <message file> is delivered.

3. The Programmers View

There are several programming interfaces to BerBell. For implementing user level
functions such as the programs described above, there are C language library routines,
the BERPS interpretive language and the UNIX shell. Programs may be invoked
implicitly by a user or by the system or explicitly by typing at a computer terminal. The
system will invoke a program when an inbound call to a number associated with that
program is received (e.g., directory assistance), when a feature implicates a program (e.g.,

recite speed codes) or when a user’s feature settings dictate (e.g., call waiting). In each of
these cases the arguments to the program will include the name of the circuit holding the
call and the number dialed. Programs can then connect auxiliary devices such as tones,
recorded audio, speech synthesizers, answering machines and audio components to the
call, reroute the call, hold or release it.

3.1. C Programming

There are C libraries for manipulating BerBell objects, speech synthesizers, touch-tone
receivers and digital audio input and output channels. The BerBell library contains six
‘system calls’ that allow the programmer to easily connect objects such as trunks and
lines* among one another and to place telephone calls using these objects. It is
straightforward to write C programs using this library. No significant knowledge of
telephony is required to take substantial control over your communications channels.

3.2. BERPS interpreter

BERPS stands for BER Phone Script. It is a simple language that interprets scripts which
manipulate telephones. It is designed to alleviate the need for users to program in C in
order to write application programs. The wrong-number servers are written in BERPS as
well as an answering, call waiting, and call announcement program.

* Trunks connect telephone switches together, lines connect telephone instruments to switches.
Within BerBell, audio equipment is connected to the switch by trunk interfaces.

A User Programmable Telephone Switch

The interpreter itself was written using the library functions. The language provides for
flow control, arithmetic calculations, BerBell operations and operating system services.
The following example implements one of the wrong-number services.

Trans Galactic Phone Network [a comment.|

%h z [jump to label z (:z) when the caller hangs up./

You have connected to the intergalactic communications network.
Please enter galaxy code, use sharp or pound to terminate.

%r g [read a number input by the user into the variable 9./

Now enter planet destination.

%T p

%h 1

%= p 10 [ezecute commands until the ‘%)’ if the variable ‘p’ has the walue ‘10°./
Planet Ten is in the Eighth Dimension.

Please dial the interdimension operator for assistance.

%! p 10 [the ‘not equal’ case.]

We are sorry, planet $Np in galaxy $Ng has been obliterated.
Please check the code and call again.

%}
1

#F /logs/wrong $T: galaxy $ng planet $np ($P) [append to file.]
%e O fexit.]

1z

%F /logs/wrong $T: caller hung up ($P)

Text is simply spoken through a speech synthesizer. $Np expands the value of p to text
as digits separated by spaces. $n expands a variable as a single number. $T is the
current time, $P is the process identifier.

3.3. Shell Programming

The interface between user processes and the core BerBell process uses pseudo-ttys on the
Eighth Edition version and Internet Datagrams on the 4.3 BSD implementation. Thus one
may simply echo commands to a named pseudo-tty or use a special echo which deals with
Datagrams as required. As usual, examples of Shell code look awful.

4. Operators

At the dawn of the telephone business, boys were employed as switchboard operators.
But,

Boys did not last very long as operators. At the time they were often
impatient, rude, and foulmouthed to the subscribers.2

Another set of C library functions exists for programming BerBell operations at a lower
level. Programs written at this ‘supervisory’ level are termed ‘operators’ and are
responsible for complete control of individual circuits in cooperation with the BerBell
kernel program. While user level programs are unaware of system details, operators
require some knowledge of the switching conventions and the hardware functionality. A
program using these functions would receive hardware state changes from and issue
commands directly to the circuit or circuits under its control over IPC channels.

It is likely that all call processing will be done by autonomous operator programs
distributed over several machines. The advantages are clear in terms of processor
utilization, flexibility, customization and prototyping. The operator concept has proven
useful and rewarding, allowing a quick, permanent and elegant solution to several

134

A User Programmable Telephone Switch

unforeseen problems.

5. Software Descriptions

The BerBell software is made up of a number of permanently executing programs and
processes that communicate through pipes and pseudo-ttys or Internet sockets. During
the course of operation new short lived programs are invoked that implement specific
features and services as described previously.

5.1. MSP Protocol Program

The switch used is called a Modular Switching Peripheral (MSP). It is described in detail
in the Hardware section. The communications between the software system and the
hardware switch is done over an RS232 serial port using the ANSI X3.28 protocol. This
program was written at Bellcore in Navesink and trivial changes were made locally to
convert it from UNIX System V to the Eighth Edition and 4.3 BSD. The program consist
of four concurrently executed modules. The first is a parent program which opens the
serial line and sets the appropriate options such as baud rate, parity, etc. It then sets up
communication pipes and invokes the ‘control’, ‘host’ and ‘msp’ processes. Paraphrasing
from the commented C program:

The control process controls both the host and msp processes. It reads from its
input and changes state and takes actions depending on the present state and
the input. This process takes care of all procedural messages for granting
master/slave status.

The host process reads a string from its standard input to be sent to the device
using the ANSI protocol. This process notifies the control process for
permission to transmit. The control process notifies the host process when it is
ready, and the host process transmits the message. The host process informs
the control process regarding the success of the transfer.

The msp process reads from the MSP and forwards any characters to the
control process. It waits to receive a response from the control process before
continuing.

The MSP protocol program is invoked from the core switching process.

5.2. The Core Program

The main, once monolithic, program is named ‘bellerophon’. It sets up communication
pipes and invokes a filtering program that processes all the textual output, a status
program to which hardware state changes are sent, the protocol program as described
above, and a DECtalk server program. These will be described in succeeding sections.
Communication with these processes is implemented using operating system dependent
macros. In the case of Eighth Edition a pseudo-tty is opened by bellerophon, the device
name is linked to a name known to other programs thus implementing a ‘named pipe’.
Under 4.3 BSD a named socket is opened which receives Datagrams. These provide the
input channel to bellerophon.

Bellerophon then initializes the hardware and data structures. There is a structure for
each port and for each telephone number. The status process mentioned previously
maintains the state of each port as represented in an internal data structure in a file. This
file is read by an initialization routine to determine if the port ought to be initialized. It
will not be initialized if it is not idle, thus calls in progress during a software reboot are
not aflected.

A User Programmable Telephone Switch

Bellerophon then enters its main loop gathering data from the MSP or from its input
channel. Input from the MSP is parsed to identify the port involved. The current state is
used to determine the function to be called. This function receives the port’s data
structure and any other data provided by the MSP (e.g., digits received) as arguments.
In the case of data from the input channel, a function is called which acts on the input, a
command and its arguments. A status reply is sent by writing to the device (or file)
named in the arguments. Under Eighth Edition it is typically a pseudo-tty. In the 4.3
BSD implementation the recipient’s address is part of the received message.

5.3. State Information Program

The program statproc maintains a file with the current state of each circuit. Each state
change sends the circuit name and new state through a pipe to statproc. Other reported
data includes dialed digits and circuit connection. As well as maintaining the state file,
statproc also disseminates state information to other programs. By reading commands
on its input stream in a similar manner to that in which bellerophon accepts its
commands, statproc is informed of the appearance of clients who wish to receive status
updates. Clients include programs that display system activity on bitmapped terminals,
monitor the system’s heartbeat (reported every three seconds), and maintain usage
statistics in real time.

6. Hardware

The following sections describe the current hardware compliment, not the minimal or
ideal configuration. Figure 1. is a schematic representation of the major hardware
components.

6.1. Redcom Switches

The Modular Switching Peripheral (MSP) from Redcom Labs has proved a satisfactory
piece of hardware for experimental applications. It provides the electrical interfaces
required for telephone switching and does not interfere with the programmer’s need to
control its functionality.

6.2. Host Computers

For the sake of experimental diversity, two different system configurations are
implemented.

6.2.1. VAX 11/750

The first system was implemented on the VAX 11/750 running UNIX Eighth Edition.
This system supports approximately five full-time users with a general time sharing
environment as well as the experimental telephone switch application. The VAX is
configured with 4 megabytes of memory and 1.4 gigabytes of disk storage on 3 ra8ls and
1 ra60. There are four DZ11s providing 32 serial lines. Thirteen of these lines are
dedicated to BerBell, interfacing DECtalks, the Cytek switch, and the MSPs. The VAX is
also equipped with the DSC-200 connected to the UNIBUS, an Interlan Ethernet
controller, and miscellaneous other peripherals.

8.2.2. MicroVax II

The MicroVax is a relatively new addition to the experimental telephone laboratory. The
operating system is 4.3 BSD. It is equipped with four megabytes of main memory and
140 megabytes of disk storage. There are 8 serial lines and an Ethernet controller. It is

136

A User Programmable Telephone Switch

connected to the single shelf experimental switch which is dependent upon the VAX
BerBell system for access the DDD network.

6.3. Audio Devices

There are 11 DECtalks in use, 8 DTC03s and 3 DTCO0O1ls. The DTCO03 is rack mounted
and functionally superior to the DTCOl stand-alone models. The main functional
improvement is the ability of the DTCO03 to automatically terminate speech when a user
presses a button on the telephone keypad. Providing this needed function in the host’s
software on the DTCOls was a somewhat exasperating exercise. DTCO1s are still in use
because they alone are equipped with terminal interfaces and audio output separate from
the telephone interface. They are also more appropriate for touch-tone signaling of other
devices such as the Watson.

Recording voice messages is an absolute necessity. Users expect at least the capabilities of
a conventional answering machine in their sophisticated telephone environment. The
system utilizes such answering machines principally as backup devices as well as the
Watson, a sort of programmable multiuser answering machine and the DSC 200, a truly
programmable audio record and playback unit.

6.4. Audio

There is an experimental audio lab accessible by BerBell. BerBell serves to provide access
from the DDD network to this lab in order to demonstrate ongoing audio/music

research.3 It consists of a MIDI controlled studio of synthesizers and percussion machines.
The MIDI host is a SUN 3/160.

There are also a number of other audio program sources attached to BerBell to give users
a choice of entertainment on hold or otherwise.

7. Evolution

In April of 1985 an RS232-controlled telephone switch was obtained. The switch,
manufactured by Redcom Laboratories, is described in detail in the Hardware section of
this document. With the switch came two pieces of software: An ANSI X3.28 protocol
handling program to support the low level communications between the switch and the
host was written by colleagues at the Navesink Research and Engineering Center of
Bellcore and remains in use today. A rudimentary call processing program, provided by
the Network Architecture Research Division at Morristown, was useful in bootstrapping
the system.

The initial application for the switch met two requirements. The first was to provide new
and interesting services such as ‘a better answering machine’.4 The second was to
reimplement services found in modern switches, but with enhancements making them
more useful.

BerBell grew naturally and easily from the desire to provide better telephone service for
an individual user to its current power and generality through circumstance and
experlence as well as vision. The requirement to switch telephone calls was initially
fulfilled with a homemade switch consisting of a matrix of relays and a UART. The
author originally built this device to permit several computer terminals to share half as
many computer ports. When port selectors became available the switch was shelved, later
to be resurrected as an ad hoc telephone switch, and subsequently to switch high voltages
to control coin telephone functions. Its use as a telephone switch demonstrated the
desirability of greater capacity for more interesting services. Serendipity provided a
temporarily unused Redcom switch from another laboratory with which to experiment.

A User Programmable Telephone Switch

Its greater capacity suggested providing services to other people. Its wealth of
functionality, the capability to act as a central office, suggested greater service
possibilities. Along with the acquisition of a true telephone switch came the desire to
design truly innovative switching features and services, not Just a better answering
machine.

A crude system was put together in a matter of weeks, providing basic enhanced services.
The immediate desire was to correct the problems experienced with currently available
services, such as the lack of flexibility and feedback from call forwarding functions. As
such improvements were put in place, new offerings were invented and the software was
designed so that new features and services could be implemented quickly. The feature
challenge was popular for a period of time, demonstrating how easily a new idea could be
implemented, tried and perhaps discarded.

Obtaining desired services and interfaces from other telephone companies was not a
speedy process measured by do-it-yourself standards. Answer supervision, an
arrangement which reports back to the originating switch when the called party answers,
took over 18 months to be installed. Mechanisms to report the originating number to the
terminating switch will not be universal for years to come. Interim techniques were
employed pending installation or propagation of such services. Although these techniques
provided less satisfactory results, they demonstrated the objective. For instance, when
people were called without human intervention, a keypress was solicited in place of
answer supervision. This allowed development of automated services to progress even
under restricted conditions.

The initial system was somewhat unreliable. Service was frequently interrupted in order
to install changes or demonstrate bugs. As more users came to depend on the telephone
service, steps were taken to reduce outages. The first of these was the dynamic loading of
structures that mapped telephone numbers to program names. This straightforward yet

subtle tactic reduced downtime considerably because it obviated the need to recompile
and reboot bellerophon each time a new service was introduced. Next, an independent
program checked for the existence of the bellerophon process, reinvoking it if it was
missing. This fell short of the desired goals, since it was not uncommon for bellerophon to
hang. A more robust solution was implemented involving an audit primitive which caused
bellerophon to issue a benign command to the MSP and receive a reply. The independent
verifier issues this primitive and knows with relative reliability if the system is
functioning. The next enhancement was to place a call from BerBell through the DDD
network back to BerBell to verify the external interfaces. (One valuable lesson learned
about the design of automatic auditors is not to sweep away evidence that is necessary for
debugging. This mistake was made with the program described which killed the hung
bellerophon process and invoked another. It was a mystery why the system occasionally
rebooted itself, until the auditor was changed to produce a core dump of the hung
program.)

Greater system reliability attracted more users. At first the mechanism for forwarding a
subscriber’s phone to a service involved the assignment of an additional number which
terminated on the desired answering service program. This was costly in terms of
dedicated telephone numbers. The solution, changing the forwarding algorithm to accept
program names as well as telephone numbers was a simple change which supported the
notion of flexibility as well as eliminating the extra forwarding step and the dedicated
numbers.

BerBell began as a monolithic system. Services were implemented within bellerophon
using a myriad of special structures. The command interface originally supported a

A User Programmable Telephone Switch

different command for each different service. The original idea was to generate
interesting applications. The motivation to provide a clean and general interface came
when other programmers wanted to write applications. The interface was defined
empirically. A new application (call screening) was implemented with primitives that
were defined as needed. Then one by one each application was rewritten using these
primitives and defining new ones if necessary. It was rewarding to find that all but one of
the primitives were defined by writing the call screening program. When all the services
were changed to use the general interface and the old-style commands removed, the size
of the command processing module was cut in half. Service application development
proceeded independently of the switching program development. This started a trend of
decentralization which was enhanced by the advent of operator primitives. New call
processing algorithms are implemented by programs external to bellerophon.

8. Future Work

Decentralization will be pursued with the goal that all call processing be done by
individual processes per port. Bellerophon will simply distribute messages received from
the hardware to the appropriate processes and maintain a database to map extensions to
processes. Processing modules will be distributed among processors communicating over
networks.

There is interest in the artificial intelligence group to design parsers to process log files
and create individual scenarios in English so that event paths can be easily identified and
understood for the purpose of debugging or illustration. It will further be attempted to
learn from these log scripts the events which lead to system errors and to predict and
circumvent such conditions.

Another concrete goal is to provide administrative documentation and to package the
system for distribution to interested parties.

9. Conclusion

The system described provides unconventional as well as conventional telephone service to
a growing community of users. There is no limit in the potential for user programmable
utilities. The next generation of consumers will require and demand to customize their
products and services and they will have the educational background to do so. We expect,
that producers will abandon the current fad of featurism and provide value in terms of
generality and well documented interface specifications. Service industries will provide
end-user software as well as tools for do-it-yourselfers. BerBell has been, is, and will
continue for the foreseeable future to be an extremely fun, captivating and rewarding
project. To quote Louis Fyne, Like the song says, it’s a scientific lifestyle.

Acknowledgements

Credit goes to all the users of BerBell. Their bug reports and design input helped mold it.
['am particularly indebted to Peg Schafer who lived with it, Peter Langston who wrote a
number of fun programs that use it, Don Ford who wrote ttweather and statproc, Adam
Buchsbaum who wrote BERPS, and Stu Feldman for his moral and technical support and
the patient editing of this document.

References

2. An Introduction to the Bell System, pp. 2-4, AT&T Marketing Sales Administration,
1975.

A User Programmable Telephone Switch

3. Peter S. Langston, ‘“(201) 644-2332 or Eedie & Eddie on the Wire: An Experiment in
Music Generation,” in USENIX Associalion Summer Conference Proceedings, pp.
19-27, Atlanta, 1986.

W 644-23..
& bellcore extensions

MORRISTOWN, NJ Central Office

D
CYTEK CLX/512
Experimental
Audio
Lab
, . i 2
(eedie & eddie) ililililililil [ojojD|D|DID
ol n|olnlalel folololoft |1 f |t
elelelelelele DID|D|D|D|D P
a
. y
VAX & h
Iy
11/750 = °
s g 1 22 n
gln ole ififi w|W ¢
2 mimi n|nin alja
e elee y
T
IBM PC
watson
AN
DSC-200 microVAX
DTCo1
DTCo1
DTCo1
DECTALKS 2|2 i {5
Wi W ilifi)i 2
pipip |D|D|D|D |D ala nln[n|n| | |2
TIT|T|T|T]|T{T|T yly eeee2
cljc|c|jcljcleijci|c
0f{o fo |o |o o |o |Jo
3131313 |3 [3 |3 |3

Figure 1. Skematic Diagram of Major Hardware Components.

140

UNIX in banking

R Grafendorfer

ABSTRACT

I want to present two ways of using UNIX for solving specific
problems in banking automation.

The first one is about a very small UNIX lookalike for low cost 8 bit
processors controlling a self service cash dispenser.

The second topic shows one way how UNIX machines can be used for
solving the communication puzzle in a banking enviroment.

1. The Company

KEBA - Elektronikbau is an Austrian systems house and specialized on industrial
automation and on banking automation. We have never solved any commercial EDP
problems like transaction processing. The only things we produce for banks are self
service machines like cash dispensers and self service safes.

About three years ago KEBA decided that UNIX and C are the only ways to a happy
future.

2. UNIX for 8085

Three years ago KEBA developed a cash dispenser based on the very cheap 8085
microprocessor from INTEL. All of the application had been written in assembler.
Everything was fine until the first customer came to buy one. When he wanted some
minor changes the efforts for adapting the existing software soon exceeded the capabilities
of the programmers and, of course, the available memory. When the second customer
asked for changes the estimated efforts for the new adaption exeeded man years and the
available hardware resources. So the project manager decided that something went
wrong:

e The only change to sell the dispenser was to adapt it to the wishes of the customers.

Otherwise the customer buys from the firm who sold the mainframe to him.

e The only change to earn money was to adapt it fast, otherwise the costs for
changing the software would exeed the difference between our costs and the price the
customer was willing to pay.

) The eflorts for changing the software exeeded that difference several times.

Considering this facts we decided to analyze the problem anew. This time we fixed
several requirements:

e A High level Language (C, of course)
e Command interfaces on meta level (yacc,lex)

e The capability to simulate the dispenser enviroment on UNIX

141

UNIX in banking

When we analyzed the application part of the problem we recognized that we had some
very restricted requirements for a system interface:

. Only four tasks, running all the time.

) Very limited communication between them.
e Only raw 1/O.

. No maths, no graphics, no specials.

. No mass storage.

So we decided to code a UNIX compatible layer in 8085 Assembler. All we needed was /0
(open, close, read, write, ioctl) System V msg control, strings and stdio. The drivers for
the used interface chips existed already from an old UNIX port. This layer was finished in
less than one man month. Next we implemented a dispenser simulation on a HP9000/550
mini running HP UX, a system V derivat. We also purchased a 8085 C cross compiler for
this machine. Now we were able to split the team in two parts:

. The first part for analyzing the special wishes of all the customers and for
prototyping on the 9000/550 together with the customer.

) The second part for cleaning the prototype of the first team and for porting it to the
target.

By now we have already sold more than 300 cash dispensers and about every one of them
has an own software release. The turnaround time for a new release was reduced to less
than one week.

As we started to sell a lot of dispensers, soon our customers came and wanted them
connected to the existing machines and networks, most of them to SNA. So we have
reached the second part.

3. UNIX as translator

I guess I don’t have to write about the strategies of some well known EDP
equipement vendors. The effect is that most of the bankers are addicts to some more or
less weird systems and networks and that the cannot get rid of them without collapsing.
Today most of them are aware of that fact. So they don’t want to have another strange
system thats just compatible to itself. They try to use standards wherever they can. So,
when we started discussions about interfacing different machines from different vendors
together with the biggest banks from Switzerland, Germany and Austria one of the main
dictions was portability of software. So we started discussing UNIX.

3.1. The facts

e Most of the nets in European banking are based on SNA.

) Because of the hierarichal structure of a SNA net each connected device must be
known to the host and must have a corresponding session on a cluster controller or
something equivalent.

e All of this software exists on old fashioned machines in old fashioned languages and
is definitely not portable, but must be used.

e Most of this software is programmed for one type of machine (for example just for
the NIXDORF Teller Machine) and cannot be changed without the vendor.

142

UNIX in banking

3.2. The requirements

. Portability.

. Different Machines from different vendors must be connected to an existing net via
one device.

. A lot of interfaces: RS232, RS449, IEEE 488, IEEE 802.3, Manchester Encoding,
X.25, SDLC,...

® The bank must be able to use this software on different machines.

[ts obvious that the requested machine must be a UNIX machine. We decided for a VME
based UNIX System. So we had connected the software standard with a hardware
standard.

On this machine we are currently developing software which is able to compound a
couple of machines from the same type (for example printers, cash dispensers, teller
machines, etc...) on a couple of different interfaces to one logical machine for the existing
net and make this one look like a machine for an existing application. So the bank has no
need for changing software.

All this software is strictly based on the SVID and will be ported to p1003.1 as soon as
the standard is fixed. All protocol dependent stuff is placed into the application.

4. Conclusion

You make bankers very happy if you sell them UNIX based applications. They have
been addicted long enough.

143

144

A Digital Selective Calling System for Use in the Maritime
Mobile Service (DSC)

Osmo Hamalainen

Posti- ja Telelaitos
Radio-osasto (Finnish PTT)
Helsinki, Finland

Markus Rosenstrom

Oy Penetron Ab
Espoo, Finland

ABSTRACT

This paper describes the finnish implementation of the maritime
digital selective calling system specified by the CCIR and the IMO. The
first phase network already offers all services specified, including automatic
calls from ships to the public switched telephone network. The system is
based on a central host computer running UNIX System V. The use of
UNIX as both a developement and runtime environment resulted in a
remarkably short developement time. The use of UNIX in a real-time
environment has not caused major problems, due to careful system design.

1. Introduction

Morse code and voice are still the main calling mechanisms in maritime radio
communication. The continuously increasing radio traffic and, consequently, an increasing
demand for calling channels in all radio frequency bands (HHF, MF and VHF) have made
the disadvantages of these conventional calling methods even more evident. Aural
watchkeeping has always been a difficult task, but today it is nearly impossible with
simultaneous monitoring of 5 to 10 different radio channels. As a result of tle increasing
problems associated with these costly manual routines, an automated Digital Selective
Calling system (DSC) has been specified by the CCIR (Recommendation 493-2) together
with the International Maritime Organization (IMO).

The use of digital selective calling improves the technical performance of maritime radio
traffic, one of the most important improvements being a decrease in radio frequency
loading. In addition to these direct benefits, a DSC system also offers many possibilities to
rationalize the call handling methods at the coast stations. The use of electronic call
handling means considerable savings in employee costs, resulting in an increased
profitability of the maritime mobile services. This is one of the main reasons why the
Nordic countries intend to automate the handling of digital selcctive calls as far as
possible.

Digstal Selective Calling System

2. DSC System Description

The DSC system is based on the use of separate calling channels and working channels.
This implies that special calling channels are reserved for digital selective calls. A DSC
call contains all necessary information about the subsequent working frequency or channel
and the service wanted.

2.1. Transmission Method

The transmission principles of DSC calls is similar to the principles of radiotelex. The
modulation method used is FSK (Frequency Shift Keying) modulation with a frequency
shift of 170 Hz on HF and MF channels and 800 Hz on VHF channels. The data
modulation rates are 100 baud and 1200 baud, respectively.

The data is made up of 10-bit symbols, consisting of 7 information bits and 3 parity bits,
which indicate the horizontal parity of the information bits. Time diversity is provided,
so that each symbol is transmitted twice, the time diversity interval being 400 ms in the
HF /MF bands and 33 1/3 ms in the VHF band.

Every call starts with a phasing sequence, in most call types preceded by a synchronizing
bit pattern. The vertical parity of the call is also computed and transmitted as the last
symbol of the call. The data contents of the DSC call is of variable length and consists of
several different fields, some of which determine the type of the call.

2.2. Call Types

The different DSC call types can be roughly divided into the following categories:
e Distress and distress related calls.

e Manual calls (ship or coast station).

¢ Automatic calls directly to the public switched telephone network.

) Special calls.

The calls in each category can be further divided into subcategories, which consist of
related calls with one or more fields indicating the reason of the call or the desired type of
communication over the working channel. As an example, a call of the basic distress
subcategory includes the following fields:

e Self-identification (maritime mobile identity number).

° Nature of distress (fire, explosion, flooding etc).

° Distress coordinates.

e Time when the coordinates were valid.

e Type of subsequent communication (voice, morse, telex etc).

Other subcategories of distress calls are: distress acknowledgement calls, distress relay
calls and manual calls related to a distress situation.

2.3. Special Processing of Calls

Because of the special nature of distress type calls, they are treated separately from all
other types of calls. The national organisations responsible for handling distress
situations may also be different from those taking care of normal maritime mobile radio-
and telecommunication. Distress call information transfer has thus to be arranged
between the DSC host computer and the national Search and Rescue Centre.

146

Digital Selective Calling System

Another call type to be treated in a special way is the (semi)automatic VHF call. Calls of
this type have a telephone number field, which makes it possible to automatically connect
a calling ship to a public switched telephone network number. The DSC specification
only supports automatic calls in this direction (ship to shore), although certain call types
in category d (poll call, location poll call) can be used to support future automation also
in the shore to ship direction.

Search &
Rescue

Host Operator
Computer Consoles

Trunk Public Switched

Exchange Telephone Network

Figure 1.

3. Finnish DSC Network, First Phase Implementation

The architecture of the preoperational DSC system in the MF and VHF bands, partially
covering the finnish coastal waters, is described in Figure 1. The system will consist of 4
VHF and 1 MF DSC base stations (call channels), using the same work channel base
stations as the existing manual call network.

Figure 2 describes the main hardware and software components involved in the automatic
processing of DSC calls. The following brief descriptions of the functions performed by
the external components give a picture of the tasks left to the host computer.

3.1. Base Station Controller

The DSC base station controllers are the links between the fixed base station transceivers
and the host computer. The controller hardware is based on an 8-bit microprocessor and
the software is written in assembler. Each controller performs the following functions:

Conversion of the incoming DSC call from an analogue FSK signal to a digital serial
CCITT V.24 signal for the host computer.

Conversion of the outgoing DSC call from a digital CCITT V.24 signal to an
analogue FSK signal for transmission.

Conversion of the relative field strength value of the incoming DSC carrier to a
digital format. This information is sent to the host computer together with the base

Digital Selective Calling System

station identification at the beginning of each call sequence.
* Buffering of outgoing calls if the base station is occupied (receiving or transmitting).
e Transmitter keying.

The controller and the host computer communicate over a 1200 bps asynchronous, full
duplex serial channel using a specialised message type protocol.

3.2. Trunk Exchange Controller

The trunk exchange controller is the interface between the host computer, the trunk
exchange and the work channel (voice) base stations (tranceivers). The controller is based
on an 8-bit microprocessor and runs a program written in assembler.

From the host computer’s view, the controller works as a digital parallel I/O device with
some special capabilities such as number dialing and engaged tone generation. The actual
functions performed in order to establish a connection between the telephone network
subscriber (B-subscriber) and the ship station’s voice channel (A subscriber) are:

Transmitter keying.

Engaged signal generation.

Line connection.

Number dialing.

Work channel and trunk monitoring.

The trunk exchange controller and the host computer communicate over a full duplex,
9600 baud asynchronous serial line. The communication protocol used is based on
messages with ACK/NAK handshaking.

3.3. Operator Consoles

Manual and distress DSC calls which need human interaction, e.g. call acknowledgement
editing, are queued for display on the operator consoles. The operators can retrieve
relevant information, such as the name and owner of the ship or available
telecommunication facilities on board ship, from the local host computer database. This
database is also used in the manual call radio traffic.

An operator console is either a normal asynchronous terminal or a Personal Computer
running a special console application, allowing more sophisticated and individually
tallored traffic functions to be performed locally. When properly designed, this
distributed solution naturally reduces the load on the host computer.

Digital Selective Calling System

Search &
Rescue

Host

dat,
Computer ata

DSC Base data Base Station BSC1 Distress Call
Station 1 control Controller 1 Communication Processing

Operator/db
Interface

BSCn Manual Call
Communication Processing

DSC Base data Base Station

. - i
Station N control Controller N Automatic Call Control

Monitoring
and Admin-
istration

Trunk Exchange | Trunk Exchange
Control 1 Control N

TEC Communication

Work Channel voice Trunk Exchange voice Trunk
. -« —————————>»
Base Stations control Controller control Exchange

Figure 2.

4. The Host Computer

The DSC software running in the host computer performs the major share of the tasks in
the system. This centralised approach was considered the appropriate choice for a first
phase implementation, which, undoubtedly, would undergo a series of modifications
before reaching its final state. Also the uniform programming/execution environment and
the extensive set of programming tools offered by the UNIX system combined with the
speed and versatility of the C language contributed to this solution.

A standard supermicro running UNIX System V.2 was chosen as the development and
runtime environment. It was also specified that any further development would be done in
a V.2 compatible environment, which made it possible to use the System V Interprocess
Communication Utilities in the software design. This choice was important because of the
timing requirements in the DSC system specification.

4.1. Software Components

The DSC software consists of the following main components (see also Figure 2):

e Base station controller (BSC) communication processes.
e Processes for preprocessing manual and distress calls.

e A set of operator interface mechanisms, e.g. a database server process.

Digital Selective Calling System

¢ A main automatic call controlling process.

e Control processes for calls through the trunk exchange.

e Trunk exchange controller (TEC) communication processes.
e System monitoring and administration processes.

All processes, except some used for system monitoring and administration, are running
continuously.

The interfaces between the different processes are mostly implemented with message
queues, resulting in a fairly loosely coupled system. Some of the interfaces have been
specified to enable future distribution of the system among several computers in a
network (the message queues can easily be substituted with some other mechanism). In a
few cases, global semaphores are used, e.g. for resource status indication.

As the processes are, in general, fairly simple and straightforward, only the more
interesting parts will be described in greater detail.

4.1.1. BSC Communication

The communication with the base station controllers is based on a quite conventional
asynchronous protocol, that consists of messages (framed DSC calls) and
acknowledgements (a single character). The communication is full duplex and because of
buffer space limitations in the controller, the required response time is about 2 to 3
seconds. If the other station doesn’t answer in a specified time (adjustable), the message is
retransmitted. The maximum number of retransmissions is also adjustable.

The host computer end is implemented completely at user level (no special device drivers
or kernel modifications), in the form of two processes for each serial line. One of the
processes reads the incoming characters, packages them into messages and routes the
resulting DSC calls to the appropriate process, while the other process handles the
outgoing messages and their acknowledgements. Both processes are implemented as state
machines (infinite automata) with only one blocking system call. The two processes
communicate with each other through the output message queue and by using signals.
Signals are also used to control reinitialisation and shutdown of the whole DSC system.

4.1.2. Automnaatic Call Control

All incoming automatic calls and their acknowledgement messages are routed by the BSC
communication processes to a message queue read by a single process. One reason for this
centralisation is the possibility multipath reception of a call, ie. the same call may be
recelved by several DSC base stations and propagate through the system as different calls,
of which all but one must be eliminated at some common point. Another reason for
processing all calls in one process is the use common resources (work channel, telephone
lines).

The common process controls the flow of each incoming call until a free work channel and
a line, with a controlling process, has been allocated or the call has been rejected. The
process also controls the optional ringback procedure, which allows the host computer to
enqueue incoming calls if no suitable work channel is available. The host computer then
calls the ship back when a channel is available.

The somewhat complicated task of simultaneously controlling several incoming calls was
solved by reserving a specific state machine (a data structure) for each active call. The
input to this state machine is any event that matches certain characteristics of the
particular call, e.g. the maritime mobile identity number (self id). When the control of

150

Digital Selective Calling System

the call is transferred from the common process, the state machine of the call is released
(its state set to 0).

4.1.3. Trunk Exchange Control

After allocating a suitable work channel and a telephone line, the common process
transfers the control of the call to one of the trunk exchange control processes (one for
each line). These processes perform the following functions:

Transmitter control.

Work channel carrier control.
Exchange line allocation and control.
Number dialling.

Call accounting.

The control process is implemented as a state machine, which is fed with all events
associated with the work channel and line used by the process. Most of these events are
changes in the logic state of one of the 5 digital input signals connected to each basc
station and exchange line. As many of these signals must be monitored simultaneously,
the input to the state machine is preprocessed by a programmable preprocessor, which
automatically handles specified events. A timing feature is also included, which makes 1t
possible to perform simple digital filtering of input signals. The major advantage of the
preprocessor mechanism is a considerable reduction in the size of the state machine itself
(from about 30 to 12 states).

5. Development Work Experiences

The DSC system was written in C using normal UNIX tools (make, SCCS, yacc, lex etc.).

Part of the administration software is written as shell scripts. The total amount of time
spent on the host computer software, not including the operator console interface, was
about 7 man-months. This includes about 2 months of system planning. Most of the the
programming work was done by a single programmer.

5.1. Performance

The first system was installed in a quite heavily loaded supermicro (Olivetti/AT&T
3B2/400), which made it possible to study the system’s performance under heavy load.
One of the more interesting experiences was the swapping out of one of the
communication processes. This resulted in a series of (harmless) retransmissions and a
longer response time than usual, but no data was lost.

It was also proved that the required response time for automatic calls (3 seconds) can be
maintained even with fairly high system loads and normal process priorities. When the
traffic density increases, it may, however, be necessary to increase the priority of some of
the processes.

8. Future Directions

Currently, the whole DSC system runs on a single host computer, but when the system
evolves, it could be distributed among several computers in a network. Some additional
hardware redundancy will probably be used in the future, particularly for distress call
handling.

More services will probably be added to the system in the future. One natural extension
would be support for automatic calls in the shore to ship direction. This would, however,

Digital Selective Calling System

require up-to-date information about the ships’ locations in the host computer’s database.
This information could be collected at every contact with the ship and could be kept up-
to-date by automatic position polling calls (already specified) at regular intervals. The use
of polling calls should be very carefully planned, as it could easily overload the available
call channels.

Using The UNIX Operating System to Market Selected
Information

Alan Chantler BSc(Eng) FBCS

Department of Computer Science
Coventry Lanchester Polytechnic
Priory Street, Coventry, CV1 5FB
United Kingdom

Mail: alan@covpoly.uucp

ABSTRACT

This paper describes how a small business in the heart of England has
developed a service based upon the use of UNIX and associated software.
The service involves the collection, collation and publication of specialist
information, which is vital to the building and allied trades. Subscribers to
the service are able to retain a competitive edge over their rivals in the
timely provision of all aspects of building services, ranging from site
planning and management to final equipment and decoration of the
building. A specially selected service is also available, which enables
subscribers to home-in on relevant projects without difficulty.

The service is entirely based upon a number of computer systems, which
are used to collect, collate, sort and select the information. The paper
describes how the process of selection, purchasing and installation of the
computer systems was completed. Some detail of the service supplied and
the software which provides it is also given, including the use of laser
technology printers, specailist document preparation and remote data
collection facilities using PCs.

The paper includes a justification for the selection of a UNIX-based
solution, and some warnings which should be heeded by anyone who
intends to choose a computer system for a small business application.

Introduction

Within the United Kingdom the construction industry and allied trades market place has
become very competitive. Large new developments are infrequent, especially glamourous
(and therefore lucrative) projects, and many suppliers of materials and services find it
difficult to locate projects which are suitable for the attentions of their sales staff. Much
valuable time and money can be wasted in searching out new business.

As a consequence of these factors marketing and selling as a professional activity in the
construction industry have received greater prominence. It is no longer enough to have a
well known name, with a long history of fine quality workmanship and successfully
completed projects, and rely upon people with work available to bring it to your
attention.

Using The UNIX Operating System to Market Selected Information

Eighteen years ago a small group of astute pcople spotted a business opportunity which
would enable them to provide an unique service to the building and allied trades. Since
then their new business has grown until its annual turnover is well in excess of one million
pounds.

The Business Opportunity

The methods of seeking business used by the construction industry and suppliers of
building materials and services are many and various, including personal contacts,
information gained from published sources, a well-established Old Pals Network and even
spotting obvious signs of development on the ground. A significant problem highlighted
by this approach is due to the fact that, by the time a development is obvious, most of
the contracts will have already been placed. What was needed was an independent
method of gaining advanced knowledge of proposed developments, so that effort could be
placed in approaching likely prospects.

In the United Kingdom no building development can take place without the necessary
planning permission having been granted by an appropriate planning authority. Since
members of the general public are allowed to raise objections to proposed developments,
on the grounds of unsuitability for example, all planning applications are placed into the
public domain before being considered. In order to find out about any proposed
developments then it is only necessary to pay regular visits to the planning office to study
the applications. In Great Britain there are at least five hundred and thirty such offices!

From the foregoing it is clear that a market should exist for a service which can provide
information about planning applications to the potential suppliers of building services and
materials. It is of course essential that the information provided should be accurate, up to
date and, if possible, available on a regional basis.

The Initial Solution

Once the idea was established a small business was set up, based in Basingstoke,
Hampshire and in Elstree, North of London. The Head Office has since been relocated in
Rugby, in the heart of England. Information about planning applications was gathered by
a team of staff, who visited local planning offices on a regular basis. They soon developed
a method of quickly noting down the salient details of planning applications. This
information was then typed onto special paper using electric typewriters with a very
small typeface. The typists were expected to decipher the information as they typed it!

Once the pages of information had been typed according to the special layout required
they were proof read before being despatched to the printing works in Basingstoke. The
pages were then printed and collated, a printed cover added and the whole lot stapled
together. The resulting document was sold as a Bulletin of contract lead information.
Recipients of the Bulletin were all subscribers who therefore knew that the information
was not generally available. Thus subscribers to the Bulletin had a definite commercial
advantage over their less aware competitors.

As demand for this service grew the business expanded into other regions of the country.
In each region a number of collectors visited the planning offices on a regular basis. The
information was typed up by local outworkers, usually housewives working in their own
homes. The collectors would visit the outworkers regularly, to submit new information
and to check work already typed. Once typed the information was sent to Basingstoke by
mail, ready for printing.

Using The UNIX Operating System to Market Selected Information

In order to simplify the process of error correction a computer system was installed at
Rugby for use, among other things, as a word processor. Once information was entered
into the computer it could be updated if any changes were made either to the planning
application or to the status of the development (eg. moving from being an application to
permission being granted). The computer, which was running the CP/M operating
system, was also used to maintain the list of subscribers and a list of collecting agents.

Due to the need to sell information to national companies, whose business representatives
cover the whole of England, Scotland and Wales, it was necessary to expand. Owing to
the success of the sales and marketing team of the new company (who also organise and
present marketing seminars) the Bulletin business grew to the extent of covering thirteen
regions of the United Kingdom. Each region had its own Bulletin printed once every three
weeks. This has meant processing the Bulletins at a rate of one per day, leaving two days
for contingencies. In order to save some time, and because not all of the information
changed within the three week cycle time, new editions of a Bulletin were produced by
cut-and-stick operations being performed upon previous editions.

Clearly if the business was to even survive, let alone grow, something had to be done to
simplify the production of the Bulletins.

Planning the New Approach

The Managing Director of the company was already convinced that the answer lay in the
proper application of information technology. Having started his businc.s with a shoe-bozx
filing system he had already taken on board the use of a computer based system, both for
accounting purposes and for word processing. Members of his staff, whose knowledge and
interest in computing had grown alongside his, were asked to investigate the possibility of
using a computer to manage more of the Bulletin production processes. Not knowing of
any better way of going about this they contacted a number of potential suppliers to ask
for assistance.

In common with many small businesses finding themselves in a similar position, the
company did not have direct access to sufficient expertise to specify suitable systems,
either software or hardware, but had a very good idea of their functional requirements.
The lack of technical detail was, however, tending to limit their view of what might be
possible in the way of computerisation or even automation of their business practices. A
few of the equipment salesmen had given them general statements of availability of
suitable systems but many of them were unable to adopt a sufficiently detached view of
the business requirements, relying instead on their own understanding of the capabilities
of their wares. In particular it was noticeable that none of the potential suppliers
contacted had much idea about the capabilities of or even the availability of suitable
software. This apparent lack of detailed knowledge was stifling the proper development
of a strategic plan by means of which the business opportunity could be exploited.

At this point a chance encounter led to the involvement of an independent consultant,
whose widespread knowledge and expertise was complemented by an ability rapidly to
assimilate the details of the proposed business development. An outline proposal was
drawn up and discussed in detail with the management and staff of the company.

155

Using The UNIX Operating System to Market Selected Information

The main points of the proposed new system were as follows:

(a) collectors would work as before, visiting the Planning
Offices on a regular basis.

(b) information collected would be entered into a
micro-computer system by the outworker, using some
suitable software which would enable local editing and
printing.

local printing and checking of the data would be
undertaken by the outworkers.

the data would be transmitted to the Rugby office where
it would be entered to a central database. Here the

data would be sorted, edited if necessary and finally
printed in the form of masters for reproduction, for
onward processing at the Basingstoke printing works.

the customer database would be maintained at the Rugby
office; the outworkers would each keep a record of
contacts (known as agents).

In addition to this computerisation of the existing business, it was proposed to develop
and offer a selective service whereby the subscriber would specify particular classes of
information which he required. The use of a suitable database system at Rugby should
enable the automatic selection of such information, based on any of a number of selection
criteria.

Obviously, the key to such a system would be the availability of suitable software. Ideally
a fully integrated system was required, which would enable the processing of large
amounts of information. At the time (summer 1985) there was nothing suitable available
which could be expected to operate on both small micro-computers used by the
outworkers and a much larger central system. It was also noticeable that there were no
truly portable systems available, and that the purchase of an off-the-peg system would
render any local adaptation virtually impossible. Thus the company could either redesign
its business to match available technical solutions, enter into a long lead time associated
with the specification, design and implementation of a fully bespoke system or rethink its
business plan altogether.

Fortunately the consultant had extensive experience with the UNIX operating system,
having held a licence since 1978. He was able to produce a prototype (mock-up) system,
using available software utilities such as grep, awk, sort etc., which was sufficient to
demonstrate to the company management two main points: firstly that their plans were
feasible and secondly that a solution could be formulated based upon the integration of
existing and new software provided that this software was being run within a sensibly
designed operating system; a system which had been designed to support the ideas of
cooperating software processes. Clearly the only sensible system was going to be UNIX
but, at this time, there were not many commercial applications being run under UNIX,
especially not in small businesses. It would be necessary, therefore, to persuade the
management of the company not only that the selection of UNIX was the right thing for

156

Using The UNIX Operating System to Market Selected Information

their business plan but also that the fact that not many other companies of their size had
so far made such a decision would not mitigate against success.

As stated earlier, the managing director was already aware of the potential benefits of
information technology. During the summer of 1985 he had read a one page series of
articles in the Financial Times extolling the potential virtues of the UNIX operating
system based upon the emerging 16/32 bit microtechnology. This meant that he was
already receptive to the consultant’s suggestion that a UNIX based solution was the most
feasible. Once that decision had been made it was comparativel¥ simple to put together
an outline specification of software and hardware requirements’, and eventually a plan
was evolved which would involve the installation of a UNIX system at Rugby to support
the database and to produce the print masters, another similar system at Basingstoke
(the printing works) which would be used to support management functions, including job
costing and scheduling, stock control and sales order processing, and the purchase of a
number of micro computers for use by the outworkers in their own homes.

Selection of Software

Although there is a growing number of applications programs available for running
within the UNIX environment the choice is still not very wide. Clearly any local
requirements could be met by the production of bespoke programs, often preceded by the
rapid development of a prototype system as before. The key problem appeared to be the
database system for storing the details of the planning applications. YWhat was required
was a free text storage system which would enable searches to be made on keywords
which would not necessarily be held in predictable fields within a record—Such a system,
called < <STRIX> >, had been developed a year or two previously and was about to be
launched on the market. Early contact was made with the author of this system who, it
transpired, was in the throes of adapting his software to run in a general UNIX
environment. From the advanced promotional material it was apparent that this software
would meet the requirements of both the current proposals and the foreseeable future
developments. A particularly attractive feature of the software was its ability to optimise
the usage of disc space without any compromise of accessibility of information. In
particular it was noted that a record within the free text database could contain any
number of bytes (characters) from one to the available disc size, that records did not all
have to be the same size and that the database could be searched extremely quickly using
any text as a key. It was also noted that data could be added from a batch file as well as
via the keyboard in interactive mode. This latter point would turn out to be very
important when deciding how to collect the data from the outworkers.

The original specification of this database system included only simple report generation
capabilities of a fairly general nature. The business proposal required that the
information, once selected from the database, could be printed in the same format as had
been used by the manual system. This requirement was due to the perceived conservatism
of existing customers, together with the obvious fact that the current format was what
customers wanted and would therefore sell. Because the software was being developed
under UNIX, the capabilities of which were well understood by all parties concerned, it
was possible to specify and produce a suitable post-processor program which would take
the output from the < <STRIX>> database selection process and format it for the
printing stage. Experience has shown that this kind of do-it-yourself integration is much
easier within UNIX based systems than elsewhere, owing to the regular nature of input

t particular care had to be taken in choosing disc configurations

Using The UNIX Operating System to Market Selected Information

output and file handling.

The choice of software for use by the outworkers was not quite such an easy decision. The
only sensible choice of a micro-computer operating system lay between CP/M and
MSDOS. Since the company already had some experience of CP/M this was their initial
choice. However, subsequent experience with a prototype system written in BASIC
showed up both the inadequacy of the operating system and the unsuitability of BASIC
for a system of this size. At the time there was no BASIC compiler available for a CP/M
based system. The choice was further complicated by the fact that the equipment used by
the outworkers had to be of a compact and portable design, yet capable of supporting
quite large data files (3 to 4 Mbytes each in some cases).

Eventually it was decided that suitable software would have to be written to provide the
editing and storage capabilities required by the outworkers. Since speed of operation and
efficient use of any disc space were of paramount importance, it was decided that this
software should be written in the C programming language. It has to be admitted that
this decision was influenced by the choice of UNIX for the main operating system, as well
as by the preferences of the chosen consultant. It should be noted, however, that the
choice of C for the micro-computer software meant that much of the development could
be carried out on the main UNIX system, making full use of the excellent tools available.

The only software problem not yet addressed was concerned with the method of transfer
of data between the micro-computers and the main UNIX system. The communications
software available for non UNIX systems at the time was very limited. In particular there
was very little available for the sensible transfer of files between systems which were
running different operating systems. Then along came KERMIT! The availability of
KERMIT, which has two' very significant advantages over all of its rivals, meant that the
problem of file transfer had been solved.

And so the development of the software could go ahead, secure in the knowledge that,
because the chosen system would be based on UNIX, the software would be transportable
to whatever hardware was eventually installed.

Selection of Equipment

It soon became apparent that, of the number of potential suppliers of UNIX based micro-
computer systems, very few had any detailed knowledge of the capabilities of either
hardware or software. Many companies appeared to be jumping on the UNIX/MC68000
bandwagon and the only serious offer of applications software was an integrated office
automation system. There were no offers of free text databases or specialised report
formatting programs.

The managing Director of the company had already spent some time visiting exhibitions
and talking to sales staff. He was becoming overwhelmed with promises of what might be
possible. Some suppliers were even able to offer demonstrations of UNIX based systems,
but these demonstrations were often less than satisfactory, owing to the inexperience of
the staff directing them. Detailed technical queries, concerning such things as disc
capacities and speeds, communications capabilities, etc., were often met with blank looks.
There were many offers of systems onto which UNIX was apparently being ported, either
now or soon. Particular difficulty was experienced when trying to determine the support
capabilities of proffered systems, especially in terms of the number of simultaneous active
users.

t firstly it works and secondly it is free

158

Using The UNIX Operating System to Market Selected Information

Eventually a short list was drawn up from which a final choice was made. The chosen
supplier was marketing a British made system, which was important. The system ran a
version of XENIX and should have supported a maximum of eight simultaneous users. A
decision was made to order two systems, one each for Rugby and Basingstoke, and steps
were made to enable the < <STRIX> > text database system to be installed on the
system before and during delivery.

At about the same time the company was introduced to the desk top laser printer. Initial
trials of this device were so impressive that it was decided to base all further development
of the Bulletin system on. the use of a number of such printers. The author of the report
formatting program was also becoming familiar with this technology and so was able to
adapt his software to make full use of its capabilities. Hence it was possible to plan for
the production of camera ready copy directly from the computer system, thus saving at
least one operation later on.

Installation Problems

When the equipment was installed at Rugby a number of problems became apparent. The
performance of the system was far below that expected and was, in fact, totally
inadequate for the purpose.

The system used some non-standard interfacing and so proper connexion of terminals was
not supported in all cases. In particular the system console could not be used as a log-in
terminal! The reason for this appeared to be that the system had not ucen designed with
UNIX in mind but the manufacturer had been forced by the market to arrange for a UNIX
port , without really understanding the implications. Unfortunately these difficulties were
exacerbated by the totally inadequate support staff available from the supplier.

In order to evaluate the system an attempt was made to begin the build up of a database
of potential subscriber names and addresses. Owing to the almost total lack of any
software support for this activity a prototype system was developed, based on a number
of shell scripts. This proved to be perfectly adequate for the purpose of familiarisation
and a large number of records were created. Some difficulties were experienced with the
disc drives and these were made much more serious by the fact that the cartridge based
backup system did not work at all; it went through the motions but there was no data
available on the backup cartridge. At about the same time a standard half-inch magnetic
tape was purchased, containing the names and addresses of approximately 25,000
potential customers. It then transpired that the supplier of the computer system was
unable to read such a tape since he could not attach a suitable magnetic tape drive to his
hardware!

At this point it was decided to give up with this particular system and return it to the
supplier. It was then discovered that the version of tar provided was totally non-standard
and that there was therefore no means available of transferring the existing data from the
rejected system onto any new system. The only exchangeable magnetic medium available
was floppy disc, which used a totally non-standard format the details of which were
unknown by the equipment supplier.

Fortunately it was possible to return the equipment and to recover most of the money. It
is interesting to note that the supplier is no longer in business selling UNIX systems.

A new system had now to be obtained. This was chosen with the aid of the consultant
who, together with the developer of the text database software, was able to select an
adequate, well supported (and British made) system without much difficulty. The
manufacturer of this system was so interested in the application that he entered into
various agreements with the company and the supplier of the < <STRIX> > text

Using The UNIX Operating System to Market Selected Information

database, to ensure that all went well and that he would be able to offer the text database
to his other customers.

The newly chosen system provided a version of UNIX called UNIPLUS+, which is based
upon AT&T System V. The <<STRIX>> text database software was readily
transferred to this system, as was the software for formatting the reports for the laser
printer. The availability of a standard magnetic tape unit, for use as backup and transfer
of remote data, was an added advantage.

Remote Data Collection

It had already been decided to provide each of the outworkers with a micro-computer for
the purpose of inputting, editing and printing the data. They would also use the system
to maintain a database of agents names and addresses. Hitherto the outworkers had been
using typewriters provided by the company. They were therefore familiar with some
keyboard skills but had no experience of information technology. Clearly the chosen
equipment must satisfy a number of criteria:

(a) it must be adequate for the purpose, including the
capability of storing large data files in a secure
fashion.

(b) it must be easy to set up and operate.

(¢) it must be compact and if possible capable of being
packed away when not in use.

(d) it must be supported by a national network of support
stafl since down-time would prove very disabling to the
production of the Bulletins.

(e) it must be capable of running the chosen software.

(f) it must be easy to learn to use.

After a couple of abortive attempts to make progress with CP/M based portables
(KAYPRO and WREN), and realising the potential for a growth in the functionality of
the outworkers, a decision was made to purchase a number of Olivetti M21 portable
computers. This is a very compact system which was available with a choice of either
two floppy drives or a single floppy and a hard disc of some 20 Mbytes capacity. It runs
MSDOS and is completely compatible with the IBM PC. Unfortunately the model has
since been discontinued so a number of the outworkers have been equipped with the M24
instead. This is functionally identical to the M21 but is much larger and not portable.

Software was developed by the consultant to provide a user-friendly system for the
creation, maintenance and printing of a free text database. As the software was being
developed so the users recognised the possibilities of further enhancements. Consequently
the software has displayed a topsy-like characteristic and plans are already afoot to
completely rewrite it!. The software is written in C and the compiler used was the

t It may, in fact, be replaced by < <MINISTRIX> >, a PC based version of < <STRIX> >.

160

Using The UNIX Operating System to Market Selected Information

Lattice C Compiler. Currently the software runs to about 4,000 lines of code in 50 source
files. It was developed on a PC, with a copy being maintained on the UNIX system for
printing and checking with lint. The availability of KERMIT for both the PC’s and the
UNIX system has made the transfer of files extremely reliable.

The software provides the capability of specifying the record structure of a text database,
creating and modifying data using a purpose built screen editor, printing selected records
for checking and creating files on floppy disc in a format suitable for transferring to the
UNIX system for use as batch input files for the < <STRIX>> free text database
system. The software is entirely menu driven and is designed for use by non-computerate
people. The outworkers have taken readily to its introduction. It is used both for
collecting the planning information and for the maintenance of the agents database.

Once a set of newly collected data has been successfully entered into the PC a copy is
sent, on floppy disk, to Rugby by mail. There it is transferred to the UNIX system via
another PC running KERMIT. The free text database is then updated.

Updates to the software, arising out of requests for new facilities, can be distributed via
the mail. It is not yet thought to be economic to equip outworkers with modem
equipment to enable them to access the UNIX system directly but this would obviously be
possible in future. All outworkers have a copy of KERMIT installed on their machines.

The recent arrival on the scene of Tannenbaum’s MINIX operating system has introduced
the possibility of running all of the computers in a UNIX-like environment. No decision
has yet been taken on this but it must be seen as a definite possibility for the future.

Producing the Bulletin

Once the data for a given region has been updated a copy of the regional Bulletin is
produced. This is done in two main stages. Firstly the selection facilities of the free text
database system are used to produce a list of the items to be included in the particular

issue under production. This is done by using the issue number field as selector. Then, by
running a specially written program, this list is formatted for printing on a laser printer.
A variety of fonts is used, together with special layout features, to produce an acceptable
document. Information is presented by planning authority within county within region.
The output from the laser printer is mailed to Basingstoke! (or sent by courier) where it
is used to create the necessary printing masters.

Once printed the Bulletins are collated and bound, before being dispatched direct to the
customer. The necessary mailing labels are produced at Rugby and sent electronically to
Basingstoke.

Using the computer system to prepare, sort and select the information has not meant
that the time taken to produce each Bulletin has been reduced. In fact the process takes
slightly longer but this apparent disadvantage is more than offset by the advantages of
being able to select information before printing.

Selected Information

Many of the existing subscribers to the service have expressed the need for selected
information. Rather than spend their time searching through several regional Bulletins
looking for, say, contracts involving the installation of lifts they would be happy to pay
for the provision of a list of just those contracts which matched their interests. To meet
this demand it was decided to offer a tailored leads service.

t In fact email is already used for this purpose

Using The UNIX Operating System to Market Selected Information

Subscribers to this new service would be able to specify their own selection criteria, and
would expect to receive regular updates of appropriate information. In addition they
might expect to be able to request such selective information on an ad hoc basis.

In order to gain experience in this new tailored leads service Bulletins were manually
searched for interesting items, which were then cut out and photocopied onto special
Action Sheets. This process was very long winded and labour intensive, but did serve to
prove that a market for such a service existed and could be sustained. What was needed
was a machine based system to provide this service.

The system already in use for the production of the regional Bulletins could be readily
adapted to meet this need. The < <STRIX> > text database system enables a searching
strategy file to be created and run against a database, producing a list of just those
records which match the search criteria. The resulting list can then be printed onto
special stationery, and creates a good impression of the information having been specially
prepared for that customer.

This new service has taken off remarkably quickly. It would not have been possible
without the initial development of the system within the UNIX environment, which has
enabled new software to be integrated within the system with consummate ease. The
possibility of providing direct access to this selected information via dial-up lines is
currently under active consideration. It is likely that such a development would involve
marketing a complete turnkey system, consisting of all of the necessary hardware and
software to enable a customer to access a suitable computer system. Again it is known
that much of the necessary software is already available for running under UNIX.

Communications

The company has for a number of years made use of a privately owned internal telephone
system at each of its offices. This was essential to maintain close contact between the
sales stafl in Basingstoke and the Bulletin production staff in Rugby.

During the saga of equipment selection, installation, removal and installation, some
decisions were made concerning communications between Rugby and Basingstoke. These
were to have an impact upon further business developments, as outlined earlier. In
particular a British Telecom high speed data link was installed, together with some
electronic switching equipment at either end. This made it possible for users of the
computer at Rugby to make direct contact with the similar system at Basingstoke from
their own terminals. It also opened up the possibility of transmitting the finished
Bulletins electronically to the printing works.

Electronic mailing is becoming widely accepted within the company. It is particularly
valuable for maintaining the necessary contacts within an organisation whose personnel
are often out of the office. Questions about the operation of the computer system raised in
one office can often be answered by mailing the requisite software fix directly in machine
readable form, thus reducing the possibility of error. Larger data transfers are managed
by sending magnetic tapes via a courier service or with one of the many inter-site
travellers.

Lessons Learned
A number of valuable lessons were learned during the development of this system.

Firstly it is apparent that there are small business applications for which the UNIX
operating system is ideal. This is especially true when there are specialised software
needs, particularly involving the use of filters. The availability of relatively cheap and

162

Using The UNIX Operating System to Market Selected Information

powerful hardware, together with the growing number of people with the appropriate
level of expertise, means that no-one should be afraid to choose a UNIX based solution. It
also became apparent that the almost total lack of availability of suitable software should
not interfere with the development of new business opportunities.

Secondly, and rather sadly, it became apparent that there are many people trying to sell
UNIX based systems who do not fully understand the underlying philosophy of the
operating system’s development. Consequently they tend to overestimate the capabilities
of their products and to underestimate the problems of adapting non-UNIX software to
the environment. This problem will correct itself as such suppliers will have to wise up or
give up. It is also worth noting that the general level of awareness of potential customers
is rising all the time, particularly now that there is a system which is worth learning
about because it is here to stay.

Thirdly it was demonstrated that, by choosing UNIX as the operating system, true
hardware vendor independence was possible. Not only was it possible to switch machines
in mid stream it will also be possible to add new machines, from any source, as and when
needed without having to re-write software. This will enable the small businessman to
take proper advantage of the marketplace when selecting new equipment. It should also
sharpen up the vendors.

Fourthly it was demonstrated that a number of professionals could cooperate on a joint
venture provided that they had a common basis from which to work and through which
to communicate. This basis was expertise with UNIX. Not only, then, does software
become hardware independent, the same is true of professional personnel. This must lead
to a better quality of advice and assistance, provided that the consultants involved
continue to maintain their independence.

Final Remarks

The company continues to thrive. It is able to offer its customers the service which they
require and can continue to do so for the foreseeable future. Already the printing capacity
of three desk top laser printers has been exceeded in one office and a new, much larger
unit has been installed. The possibility of offering a direct mailing service to industry-
based groups is being actively explored, based upon the large number of names already
stored and the capability of selecting and printing at will.

The high quality of the information provided, as well as its presentation, has led many
customers to subscribe to several additional regional Bulletins.

It is the considered opinion of all involved in this venture that it would not have been
possible without the use of the UNIX operating system.

Acknowledgements and Thanks

Thanks are due to a number of people for the opportunity to produce this paper: to John
and Phil for their continued faith in and enthusiasm for UNIX, to Tony for producing
some useful software, to Ken and Denis for having thought up the idea of UNIX in the
first place and to Margie for things not much connected with computing at all.

Contact Addresses
< <STRIX > > and < <MINISTRIX > > are available from:

Using The UNIX Operating System to Market Selected Information

Tony Kent,
Microbel,

The Loft,

Lord Nelson Yard,
Main Street,
Sutton-on-Trent,
Newark,
Nottinghamshire,
NG23 6PF,
United Kingdom,

Telephone (+44) 636 821722
The company referred to othroughut the paper can be contacted via:

John Rogers,

Managing Director,

Contract Leads (Tailored Services) Ltd
Temple Buildings,

Railway Terrace,

Rugby,

Warwickshire,

CV21 3EJ,

United Kingdom,

?

Telephone (+44) 788 67816

The consultant was:

QSOFT

The Old Bakehouse,
Yelvertoft,
Northampton,

NN6 7LF

United Kingdom

Telephone: (+44) 788 822964

Is there a Future for UNIX in the World of Commercial
Computing ?

Philip H Dorn

Dorn Computer Consultants, Inc
25 East 86th Street
New York
NY 10028
U.S.A.

ABSTRACT

UNIX has reached a crucial stage in its evolution. After many years of
drifting through the scientific and engineering communities looking for a
home, a snug harbour, UNIX has been agreed upon as the operating system
of choice for support of various special purpose systems (CAD/CAM/CAE,
engineering workstations, high resolution graphics), software development
facilities and some types of small multi user systems.

Where UNIX has been unable to make much headway is in the large
scal, high volume, DBMS, transaction processing, heavy communications
applications which are the stock in trade of commercial installations.

UNIX, the operating system, and the UNIX community, a very broad
term covering training, support, documentation, DBMSs, and applications
programs, have failed to impress those who make the decisions in major
installtions. In the commercial world, UNIX is thought of as a toy system
for amateurs and diletantes, far too insecure to be entrusted with really
important data files, and virtually unknown among those who work in
these installations. Perhaps even more devastating, installation managers
are not convinced the highly touted UNIX portability really works in a
world with complex, multi layered applications software systems.

Many of these issues do not really address the questions of UNIX
functionality or performance but rather deal with public perceptions and
the UNIX infra-structure. This paper will discuss some of the reasons UNIX
has been unable to make much headway penetrating major commercial
computing markets.

Introduction

Any paper worthy of presentation at a conference must have a point of view and
represent the thinking within a reasonably large sized group of computer using
installations. The individual speaker cannot help but reflect the views of a constituency.
Few individuals are smart enough to honestly represent the entire data processing
community.

This paper comes from a background of many years experience with very large scale
installations running a variety of main frames. These shops have a number of elements in

Is there a Future for UNIX in the World of Commercial Computing ?

common. A list of the most pertinent characteristics of the critical applications running
at these centres includes the following:

High volume, large database problems.
Heavy communications load.

Mandated security/privacy requirements.
Close relationship to existing applications.

Emphasis on accessibility and reliability.

© oA WD -

Use of generally understood languages and tools.

The problems tend to lend themselves to monolithic solutions with little divisibility. For
example, master policy update (insurance), demand deposit accounting (banking),
granting of individual or corporate credit, or senior management payroll.

This class of installation tends to spend between 65-70% of its software budget
performing maintenance on its large scale application systems. The remaining money
generally is spent developing a mix of add ons to existing systems and on rare occasions, a
completely new system. While installations with these attributes develop a vast amount
of software, when reference is made to “software development’ or ‘“‘software developers”
the terms are not intended to reflect this class of work.

This brief paper addresses some critical questions of the present and future status of
UNIX with this constituency. It is fair to reveal the biases of the author, admittedly not
known to be an enthusiatic supporter of UNIX or any other operating system excepting
the one personally written in 1961-1962. In grander scope of things, what really counts is
keeping the stability of the applications programs. In the view of at least one veteran
observer, hardware and operating system are little more than necessary overhead,
budgetary negatives which, were it possible, would be avoided at all costs. Conversely, it
is the applications upon which the corporations who are paying the bills for computing
(hope to) earn a profit. Therefore, the applications are serious business. Operating
systems are merely rather interesting curiosities about which academics argue. A few may
wish to quarrel with this point of view.

Major Operating Systems

The world is full of operating systems. In reality, only a small number have achieved
sufficiently wide dissemination to have earned prolonged discussion. This says nothing at
all about the quality of the individual system, many have high reliability and broad
functionality. However, in the marketplace this is less important than the attractiveness
of the base machine and the marketing skills of the vendors.

The heavy hitters list is very short. Not surprisingly, IBM leads off with its MVS
and VM pair. DEC’s VAX/VMS is very widely used. Microsoft’s MS-DOS has more
licencees than all the others combined.

Why are the others not on this short list ? There are several explanations including:
too lightly used, only runs on a single processor, minimum functionality, obsolete, or has
been restricted to machines of little influence.

Multics was a first rate piece of work but has been doomed by Honeywell’s
termination of the hardware on which it resided. What the future holds for GCOS, now
under Bull’s control, and the Unisys (nee Burroughs) MCP is anybody’s guess. DRI’s
Concurrent DOS looks good but has not been successful in the marketplace. IBM’s DOS is
heavily used but is of little real interest except to those who still rely upon it continuing
to be available.

166

Is there a Future for UNIX in the World of Commercial Computing ¢

Where in the spectrum of current systems does UNIX fall ? The marketplace has
already clearly established the niches which are open and available to UNIX. whether its
supporters or detractors agree, most customers have made their choices.

The territory in which UNIX seems to have proven itself the operating system of
choice is bounded by the following:

1. Special purpose single user systems, especially for CAD/CAM/CAE.
2. Small multi-user systems supporting mainly local users.
3. Heavy developmental work load.

Where UNIX does not seem to be making any serious progress is in the following
categories:

1. Single user of the conventional ‘“‘Personal Computer’ variety.
2. Large scale, multi-user systems with heavy communications loads.
3. High volume production systems.

Of the major operating systems, MS-DOS continues to dominate low end PC applications,
VAX/VMS is supreme in the multi-user world and IBM’s MVS/XA leads the way in high
volume, heavy production installations. While from time to time each will infringe on the
other’s “turf”’ and VM nibbles at the three of them, by and large the boundries hold up.

The question is not so much which categories are dominated by UNIX, MVS/XA or
GCOS but why one particular system is able to establish itself in a niche.

Apparently, domination stems directly from fit. DEC’s VAX/VMS has a wide range
of consumers from the very small VAXmate up to the newer 25/50 MIPS clusters of 4/8
DEC 8700s. In theory, this is a natural arena in which UNIX ought to be successful. UNIX
was born on DEC machines. UNIX has the same attribute of not being size dependent
which DEC promotes so vigorously. Why is DEC’s product so thoroughly in charge ?
Measurement of the UNIX-using component is a matter of small disagreements about a
percentage point of two. The best guess is no more than 3% of the larger VAX systems
are operating UNIX while at the low end of the VAX series the UNIX or Ultrix penetration
may be as high as 6%.

Without any attempt to be definitive, the answers to the DEC puzzle are a
combination of factors. In no special order, the elements include: quality and
performance of VAX/VMS, functionality supported within VAX/VMS, number and
broad availability of programmers trained under VAX/VMS, amount of software on the
market for various utility functions (DBMS, 4GL, graphics), pressure from DEC
marketing force, better responsiveness from DEC to reported software problems when the
installation is running VAX/VMS, and tight relationship between VAX/VMS and DEC
hardware.

The Current view

UNIX is not a major factor within the defined constituency. Most large scale shops in
North America consider UNIX merely one of the many interesting, researchy
developments which need to be watched and tracked because in the future they might be
important.

Not only do large installations not use use UNIX on their primary production
machines, UNIX is not really involved when software systems are being built in house.
Neither are the independent software vendors who create packaged software bought by
large corporations UNIX users. UNIX is advertised as superior for creating software
products, but the software houses show no special bias towards UNIX. At least one,

Is there a Future for UNIX in the World of Commercial Computing ¢

Cincom, produces some of their packages IBM commercial software using Mantis, their
proprietary 4GL, running on a DEC minicomputer under VAX/VMS.

In large installations in house software is usually created with either a 4GL or (sigh)
COBOL hooked to any of the widely available database management systems. Although
not a very comfortable development environment, because software must be tested under
conditions approximating those in which it will be run, and for connecting to other
programs and data files which already exist, there seems very little choice.

There is only slight UNIX penetration in the commercial world. No matter what
publicists and apologists may claim, few large scale shops are serious UNIX users for their
real work load. Why ? There are a whole flock of reasons:

Lack of high quality commercial software packages in the UNIX market.
Unavailability of commercial programmers trained and productive under UNIX.
UNIX only marginally available on some of the major machines.

At best, primary vendors continue to be quite reluctant UNIX supporters.

Too many existing versions of UNIX for the comfort of installation management.

@ gk W=

The widely advertised UNIX portability does not seem to work except with low level
programs or by paying for carefully (and expensively) orchestrated conversions.

7. Continued controversy over the attempt to create a standardised UNIX and validate
the resulting product.

There is one additional factor, a question of personal and professional attitudes, which
reluctantly must be added to the list. This point is neither provable nor can it even be
quantified. Nevertheless, it is real.

Large users have noted the sneers of disdain with which much of the UNIX
community, especially those primarily affiliated with the academic world, talks to others
who do not agree with them. Being told if you are not using UNIX, you clearly must be
computational moron does not help UNIX to win many supporters in the commercial
world. Nobody likes to be told they are stupid. Yet, this seems a regular feature of many
confrontations between UNIX adherents and the commercial world. There are times when
UNIX would be better served by people keeping silent. (This is apt to prove difficult for
those accustomed to the give and take commonly associated with academic life but it is
worth trying.)

Today, UNIX is a major factor in the world of the engineering workstation, the

software development laboratory, and the university computer science environment. How
far UNIX will move from this base in years to come is very conjectural.

There does appear some differences exist between North American and European
views of the current status of UNIX. From the Western side of the Atlantic, Europeans
seem much too optimistic about the long term future for UNIX. How much does this
reflect a thinly disguised European attack upon IBM and DEC ? Hard to say. Even
though UNIX comes from North America, observers find the case for an increasingly wide
spread use of UNIX in general purpose computing to be quite unconvincing.

The Future for UNIX

Those who expect UNIX to become a major factor with a good deal of impact upon
the commercial side of the industry, together with those who find all present operating
systems less than satisfactory, have quite a number of major issues to address in the near
future. Coming up on the wrong side of any single one of these issues will not cause UNIX
to blow away, but too many wrong answers may cumulatively sink the UNIX ship. Taking

168

Is there a Future for UNIX in the World of Commercial Computing ¢

the issues in no special order:

Issue: Does anyone know how to define UNIX ?

e There clearly is a UNIX V, currently Version 3.0. It is described in a document, SVID
(the System V Interface Definition) and by any legal test is the intellectual property
of AT&T. There are also such interesting derivatives as Xenix, Ultrix, IX/370 and a
multitude of others which have been built. Most use some or all of System V as a
base. There is also POSIX, the Portable Operating System - IX, formally known as
IEEE 1003.1. POSIX seems to represent the U.S. government’s way to snatch
AT&T’s property rights away from the developers and transform UNIX into a public
domain standard. While POSIX and SVID-defined UNIX will move closer to each
other, for the moment it is not clear which is UNIX.

Issue: Is the rejection of the SVID validation test suite by European vendors merely a ploy
to avoid paying licence fees to ATET or a way to weaken the standard so they can
implement whatever they elect to include ?

e This is a tough question. While vendors whine about the fees AT&T is charging,
without formal verification their claims of being System V compatible are only
unproven assertions. Languages such as COBOL and Ada now are verifiable by
independently developed tests. Why are UNIX implementors so nervous about
having their claims tested

Issue: Why do so few major commercial applications packages such as Payables,
Receivables, General/Ledger or Payroll run under UNIX ?

e This is a question of pure economics. When the major independent software houses
sense the presence of a viable market, a critical mass of buyers in the UNIX
community, they will begin to migrate their packages. For the moment, most major
software houses do not see a feasible market for what will be an expensive
conversion. The way out of this “chicken and egg’” dilemma may be to implement
typical commercial applications software using a 4GL which runs under UNIX as
well as one of the existing operating systems.

Issue: Why doesn’t UNIX really understand data structures ¢

¢ UNKX and the C programming language are not oriented to high level data
structures. The origin of UNIX (of and by system programmers whose fundamental
concerns were the manipulation of low level objects) is clearly evident in this
particular area.

Issue: UNIX remains weak in certain features essential to high volume, commercial data

processing including tape drive support, error handling, security and data file handling.
When (if ever) will this be corrected ?

e This is another area in which the origin of UNIX shows in strengths and weaknesses.
an operating system can not be equally strong in every function and feature.
Building an operating system involves a series of trade offs. For example, giving the
users a high degree of command language flexibility may require the omission of
tight security measures.

Issue: UNIX is weak at transaction processing. Can this be corrected ?

¢ Since UNKX is quite strong at dealing with low level objects, one would think it not
impossible to add support for communications, mirroring of data files and high
speed interrupt processing, necessities for transaction processing. The question is:

Is there a Future for UNIX in the World of Commercial Computing ¢

would the resulting operating system still be recognisable as UNIX ?
Issue: Can data tntegrity in UNIX be strengthened by going to mandatory locking ?

e Certainly. However, mandatory locking will slow down a system when many users
are trying to enter the same (system) file. Besides, it is hard to find any real
examples of the need for mandatory locking except within very high security,
cryptographic applications. In these instances, the user’s best move would be to run
on a single user machine.

Issue: If ATET is forced out of the picture by POSIX, who will take over the long term
maintenance, upgrading and enhancement of UNIX ¢

e Probably a committee which would operate under the overall blanket of either
ANGSI, the American National Standards Institute, or the IEEE, and eventually, ISO,
the International Standards Organisation. While AT&T would likely remain chief
developer, their role as “proprietor’ of UNIX would be diminished.

Issue: Will UNIX handle current hierarchical and relational DBMSs 2

) Many popular relational DBMSs are available for UNIX. The older hierarchical
systems, IDMS, Adabase, IMS and Total have never been converted. At this date, it
would seem unlikely this will ever be done. Why go backward ? SQL is widely
available and the distributed DBMSs have started to appear. That’s plenty!

Issue: Are UNIX applications really portable ?

® Yes, if you believe the recent EEC demonstration held in Luxembourg by X/Open of
a modified (to comply with X/Open’s CAE, Common Application Environment,
standards) version of Access Technology’s 20/20 integrated spreadsheet running on
11 systems. Aside from specially rigged demonstrations of CAE versions of UNIX,
portability is not clear. If it was easy, no conversion companies would exist. It is
hard to visualise most vendors giving up their existing proprietary versions of UNIX.
Also, it is not clear if identical results will be obtained when running a complex
program across many systems. At some point, basic architectural differences will
surface. This is especially true if mathematical precision is involved.

Issue: Will UNIX survive if AT&T is forced to get out of the computer business?

) UNIX survived before AT&T was in the computer business and there is no reason to
believe it would not survive AT&T’s departure. Could anything happen to AT&T
much more disasterous than their 1986 financial results ? Being forced to lay off
27,000 employees and managing to lose $3,200 million is not trivial. The AT&T
“UNIX PC” has been something less than a major market triumph.

Issue: What will be the effect on the UNIX market place of a multi tasking, multi user MS-
DOS for the Intel 80386 ¢

) No known impact. All recent gossip out of Microsoft suggests such a development is
at least 8-24 months away, so why worry about it ?

Issue: Can you convert applications which have been running on an IBM System/38 to a
UNIX machine ?

° No more easily than you can convert a System/38 program to any other machine.
The IBM System/38 has the most sophisticated operating system ever created
including a built in relational DBMS. Conceptually it is far, far ahead of any other
operating system.

Is there a Future for UNIX tn the World of Commercial Computing ¢

Issue: Will any two versions of UNIX ever be identical ?

) No, but this is not important. An operating system has two sides, one faces the
machine and the other is the programmer’s interface. So long as the program
interface achieves stability, the machine side can (and will) change to keep up with
the hardware. When a vendor moves from a Motorola 6800 to a 68000 and then to a
68020, what happens on the machine side is not material so long as the applications
continue to run undisturbed. The same process occurs as the hardware goes from a
single processor to multiple processors. To the programmer, it is all immaterial.
This is one of the questions X/Open’s CAE seeks to address.

Issue: What will it take for UNIX to be successful in the end user market place ?

e End users do not really make decisions about operating systems, data processing
professionals call the shots. At least 99% of the end users who sit happily at their
keyboards pounding away on ‘“1-2-3” or “Word Perfect”’ do not understand MS-
DOS. Many do not realise it even exists. Why should anyone expect users ever to
grasp the nuances of UNIX ? Nor should they have to learn UNIX or any other
operating system to do what they have it do.

Issue: What will it take for UNIX to displace IBM’s MVS or DEC’s VAX/VMS ?

e A total rewrite of UNIX adding features orientated to commercial data processing
for which UNIX today lacks support. This cannot really happen. such a task would
destroy the inherent strengths in the UNIX architecture. It would be sheer folly even
to attempt such an effort and it is hard to think of any real reason it should be done.

Concluding Comments

Contrary to what will be said at this EUUG conference, UNIX is not the long awaited
panacea which will instantly solve all accumulated programming problems from the past

two decades. A fair number of practioners, especially those with no sense of history, seem
determined to impose UNIX as the only solution regardless of the situation or problem to
be solved. This is sheer nonsense but the dedication to a cause and single minded devotion
of a true missionary should never be under estimated.

Having seen many, many previous pseudo-panaceas, the true historian of the
computer industry knows there cannot be any single solution. It was not many years ago
when each of the following was being touted as the one and only solution to all data
processing problems: COBOL, PL/1, MIS (Management Information Systems), IRM
(Information Resources Management), DBMS, POLs (Problem Oriented Languages),
APL, and Management by Objectives. Will UNIX join the list ?

UNIX 1s a nice operating system. It has some solid, positive features which can prove
to be very useful in a constrained subset of all problems. It is not a universal solution nor
did anyone with any shred of knowledge ever pretend this was the case. The small group
of zealots really does not know what it is they are talking about.

For UNIX to achieve greater use, a certain amount of major surgery will be required.
Before pulling out the knives, however, it might be wise to think carefully of what will be
left of today’s UNIX if all the changes which have been suggested are made to it.
Wouldn’t this be just another case of propping up the name and sliding a whole new
operating system under it ?

It is better to have a generally useful; even if slightly flawed system, today’s UNIX,
than to create another monster in an attempt to be all things to all people ?

Is there a Future for UNIX in the World of Commercial Computing ?

A reasonably objective look at UNIX reveals a few warts. The system is good but not
great. If the applications to be supported involve high volume data or real time
transaction processing or intensive use of mass storage peripherals, UNIX may not be the
ideal choice. However, there likely is no single pick (not a pun) for all applications, all the
time. This should not be interpreted as disparaging UNIX but rather a slap at those who
constantly try to sell UNIX as the cure for all of data processing’s ills.

While those within the UNIX community are amused by the ongoing battle between
various versions of UNIX deciding which will emerge as standard, management of large
installations does not find it funny. They wish to make their commitment to a system
which has generally wide spread support.

For too long, the adherents of POSIX and System V have been flailing away at each
other in print. Those who believed in Berkeley 4.2 and its successors as the ultimate
version swing freely at all of the others.

While these pleasant, amusing side shows provided ammunition for the press to fill
up empty columns, to those with bottom line responsibility for multi million dollar
budgets, the whole thing sounds like a bunch of spoiled children arguing about who owns
which toy in the playroom. There are no doubts about who is in charge of VAX/VMS or
MVS/XA, today or in the future. While it has not generally been very widely realised,
there are inherent negatives in betting major piles of development money on a system
when there is no single control agent. AT&T’s current financial struggles in the computer
business are not calculated to reassure those who have doubts. Management by ANSI (or
any other committee) is equally suspect in the eyes of senior MIS management.

While IBM and DEC both support versions of UNIX, neither of these two giant
corporations exhibit much enthusiasm for the system. The Armonk/Maynard attitudes
have rubbed off on their major customers who see little reason to move away from the
primary products. Firmer support from IBM and DEC would greatly facilitate UNIX
being able to strengthen its position in the commercial world.

The lack of commercial software, conventional off the shelf packages continues to be
a major UNIX negative. Large shops do not want a brand new Accounts Payables or
General Ledger, they want the versions which have already been marketed by MSA and
McCormick & Dodge, tested out in 1,000 or more other installations, and approved by
their internal and external auditors.

The problem is these packages work only with the standard hierarchical database
management systems and have not yet been adapted to run with relational DBMSs.
While there are some exceptions to this rule of thumb, in the main it remains true. The
conversion work now in progress seems largely to be bounded by IBM’s DB2, not likely to
become a favorite with UNIX users.

There is no easy answer for the package software dilemma. The critical mass of
installations is lacking. Nor has there been very much user pressure for a UNIX
conversion. Until the key 8-10 commercial applications packages come over to UNIX, it
does not seem likely we will see UNIX a major factor in the large scale commercial world.

Conversion and portability remain an unproven case in the eyes of serious data
processing professionals. The simple pragmatic test of observing how long it takes to
bring up new versions of UNIX makes many quite skeptical.

On paper, moving from X’s version of UNIX to Y’s is supposed to be easy. Yet,
outsiders see many programmes available only on one manufacturer’s version and not on
that of their next door competitor. The widely publicised X/Open experiment does little
to quiet lingering doubts since by their own admission both UNIX and the application, a

Ie there a Future for UNIX in the World of Commercial Computing ?

simple one, had to be modified.

The bottom line in the commercial world is UNIX is of some interest for selected
applications but only the U.S. federal government would be stupid enough to consider
mandating its use for general purpose computing. On the other hand, these are the same
people which keep telling us how good the Ada language will be for commercial
computing although how they will run Ada on the 15 year old computers (not to mention
their remaining 1401s) is a most fascinating question. Their credibility isn’t very high.

174

Automating Administration of UNIX-Systems with
Thousands of Users

Ernst Janich

Universitat Ulm
Sektion Informatik
Postfach 4066
D-7900 Ulm
W-Germany

ABSTRACT

On heavily populated UNIX Systems, it is impractical if only one
person can be the super user to manage administrative problems or simply
to do administrative work. Security requirements prevent that the super
user password be available for a even small community. Extensive use of
the group ownership and group protection can help to facilitate security-
sensitive programming.

The problem - to manage a UNIX system with several thousand users
- was once solved at Ulm under UNIX V7 by making extensive changes to
essential UNIX commands. Advantages and disadvantages of this are
discussed.

The former solution is compared with the new attempt that tries to

use a UNIX System V without modifying original sources. The second goal
on the new solution is to make life and administration work as easy as
possible.

Using all the administrative possibilities in UNIX System V helped to
bring up a System automatically after power fail without the need to
touch any key. That is the easiest way for unexperienced users. If
problems arise, experienced users can still manipulate the automated boot.
There was no need to add difficult commands.

Distributing and managing changes on a system over ethernet or
terminal lines, only using uucp respective mail, can be done in a secure
way. On heterogeneous UNIX systems todays standard for communication
is uucp. If some systems are still only V7 compatible or do not have
ethernet hardware, distribution over terminal lines is still necessary.

Even when people are using personal computers with UNIX and
connect to a central line only sometimes, they can automatically
participate in software distribution. It is shown how this can be done,
using only standard software.

The use of special hardware from every site poses protection

problems. A solution is conceivable - even on heterogeneous (binary)
systems. Our solution will be presented and discussed.

Automating Administration of UNIX-Systems with Thousands of Users

I will describe two solutions. The first one was implemented 1984 in Version 7 of UNIX.
The new one is implemented in UNIX System V.

1. High user population

The city of Ulm manages a central computer system for all their schools. There are
about 1800 users on this system. A similar environment might be found at universities or
at sites where people do not need a computer every day. A typical pupil does not work
more than twice per week at this system.

The problem for such a system is not heavy machine load, but a big user population, in
this special case a rapid and often changing population.

The users of this central computer system are often miles away from the machine. The
system manager or super user does not know ‘‘his” users on this machine. Neither has he
the chance to find out, if a request of a new user to be added to the community is legal,
nor the right to refuse such requests.

The teachers of the pupils know their class, the names of their users - but teachers are
nearly regular users.

You cannot not give dozens of teachers super user privileges, just for the case to manage
their pupils, and hope that you can run a secure UNIX system.

Amazingly often, users forget their password (or they manage to enter a password in such
a strange way that they do not remember how to get it again). Another problem is that
you must control the amount of space users keep. If most of them use the maximum
allowed, you probably will run out of disk space.

Managing a limited amount of users, and only those, is desirable. For pupils this should
be done by the teachers. Teachers loose their passwords too. Hence the privileges of a
teacher should be limited to his class.

Teachers are managed by the system manager or super user.
2. A hierarchical user environment

2.1. Password hierarchy

Big password files slow down some essential commands. Managing one big password file
with often changing entries requires long locking. It is hard to control, who is allowed to
change entries or fields of some entries.

The old version was realized with a password directory. The files therein - represented by
group names - kept only password entries for one group. Hence user names had only to
be unique within one group. That is much easier to handle than unique names over a
whole system. Splitting /etc/password into several files means, that all access problems
can be managed by the regular UNIX file protection mechanism.

The login sequence required user name and group name. mail user did send mail to
user in the same group, or mail user/group could send to somebody else. Mailing
privilege could be limited via the password file. We controlled, “who” can send to
““whom”, or “who” can get mail from “whom”. ls -1 reported user and group by default.

One entry in each password file identified the manager of the group. With a password
editor, realized with curses, he could change passwords, eliminate or add users, manage
mail privilege etc. He could “su” to users within his group without knowing their
password.

176

Automating Administration of UNIX-Systems with Thousands of Users

2.2. System manager not super user

The system manager does not have to be identical with the super user. In a similar way
(as shown for group manager) the system manager managed the group manager. He could
“su” to them, add or remove them and their groups. For the system manager there was
a bunch of shell scripts that helped to add or remove groups and to check the integrity of
the management.

Even the weekly backup procedure was based on the group hierarchy.

2.3. No super user password

There was no unique super user password. The system manager could bring users into a
“su” password file. There, every user had to manage his own ‘“‘su’ password. The number
of users who could ‘“‘su” was severely restricted.

Even at the system console there was no way to login as root. Checking the accounting
files could show who “su’’ed where.

2.4. Modifications for hierarchical user management

As mentioned, Is was modified for easier use. password and the getty/login sequence
had to be modified, su was severely restricted.

The biggest change was made for mail. Keeping uucp running with our mail lead to an
unreasonable amount of changes. Caused by the redesign of the jassword file, the
restriction that user names are only eight characters long, was eliminated.

3. Set uid for shell scripts

Most of the programming for system management can be done easier with shell scripts.
The showed hierarchy sometimes poses the need to use the set uid or set gid feature.
Regular shell scripts do not offer this. To facilitate programming, I implemented this
feature in a secure way. The shell scripts are kept in a separate well protected directory
(unreadable for regular users). A special program that was linked to an appropriate
name, cared on executing a shell script with the desired uid or gid.

4. Vanilla System V

Only some months after all these changes, System III and then System V came up. It
showed that it would lead to the same or even more amount of work to port our group
hierarchy to System V.

Because changes to getty/login had been made, based on the knowledge of the original
sources, i1t was not possible for somebody with a binary license to get our changes.

We wanted to meet the goal to keep System V as it is delivered. All changes are add-ons,
based on the original system and commands.

4.1. Administration of population under System V

A hierarchical management of users needs a password editor that takes care on group
privileges, adds and removes a directory for users etc. This leads to a nontrivial
program. It is less elegant than the old solution, is not a good UNIX tool, but is portable.

The idea of putting people into groups was kept. The password file will grow. We now
have more machines, hence this capacity should hide the bigger overhead.

Group managers need to be identified by their uid and gid. A simple trick helps: if uid
and gi¢d are equal, a user will be a group manager.

Automating Administration of UNIX-Systems with Thousands of Users

Allowing ““su to arbitrary group members” for group managers, without knowing their
password, would need to change the su command. The change is simple.

When group managers add new users, a simple algorithm suggests user names by putting
initials and family names together. Unfortunately many German names must be cut. Our
sell made password file with arbitrary long user names was more polite.

4.2. Local environment

Commands are no longer changed to meet local needs. An example: the German
standard for paper size is different from the American standard. We neither want a user
having to specify the paper length each time he uses a command, nor do we want to
change the original commands.

With help of /etc/profile we bring the /u/bin directory in front of the PATH. Correct
settings for the European and local environment are placed at Ju/bin. New and self
made commands reside there too.

5. System management

5.1. Automating booting

Booting a system should bring it up in a desired state. You might specify this state as
initdefault in /etc/inittab. If problems like unrepairable errors for fsck arise, you
might wish that the bootstrap procedure should stop.

To achieve this, I specify state 0 as initdefault. State O is single user mode, and only the
root file system is checked and repaired. Even this can be prevented, if the interrupt key
is pressed while entering state 0. A regular shell will appear for repairs by hand.

As last action in state O init 8 is called to enter state 6 - the desired final state - but only
if no problems arose during state 0.

Be very careful when specifying initdefault. Unless you plan actions for problems, the
default state is entered, and there is no way to prevent this. It is no good idea to let users
login, run spooling and system activity reporting on damaged disks, or to mount bad file
systems.

5.2. /etc/inittab as finite state automata

Depending on what has to be done, different states are necessary to run a machine.
Regular multiuser mode with all network connections active will be the default. This
should be started automatically after booting. If hardware problems exist, multiuser
mode without network might be useful. Another less active mode disables system activity
reporting too.

For backup we want a single user terminal active, but all disks mounted, system activity
reporting disabled. Just for the case of severe problems, the lowest mode has everything
disabled.

States are described in /etc/inittab. For state changes stamp files control which activities
are enabled. The boot procedure deletes all activity stamps. After each state change who
informs which state is entered.

5.3. Disk management

Large disks are logically divided into many pieces of equal size. This helps if changes of
the layout are necessary or when big parts are copied. Several pieces might form a file

178

Automating Administration of UNIX-Systems with Thousands of Users

system. Those parts of the file system that grow or change are mounted on separate,
probably small, file systems. Hence parts that are constant under normal circumstances
are on their own file systems.

Each group of users resides on a separate file system. Exceeding disk limits affects only a
part of the system.

For file systems we create linked device names with a name like the directory name they
are mounted on. This prevents that after spelling errors files systems are mounted at the
wrong place. The better mnemonic makes management much easier and it makes
management procedures portable to various systems.

5.4. Low training of system managers

Managing machines by state changes, automated commands, controlled actions and good
mnemonics helps a lot to save trouble.

Machines can be managed by a group of system managers. There is no need that all of
them get detailed training.

Activities (state changes) like mounting, dismounting or spooling and system activity
reporting, are controlled by careful commands. Mounting is done, only after a file system
is checked. Mounting and fsck are only tried, if not yet mounted. In /etc/fstab we
specify if a file system is used ‘“‘read only” and where it is mounted. mountall mounts all
file systems of /efc/fstab that are not currently mounted.

A command that is called with wrong or no parameters should tell how to use it
correctly. A command should do its work for the regular most common jobs with very
few parameters.

6. Distributed systems

6.1. Preparing a distribution

make install creates correct entries for /etc/inittab and other site dependent files. For
system dependent files, a common header part, a middle part depending on the system
name and a common tail are put together.

File systems are build according to local disk parameters. A manual page for each
supported machine is maintained. It helps an unexperienced user to bring up a system
from scratch. He must not know disk types, number of cylinders or boot block offsets.

6.2. Managing systems on various machines

All system data for all machines are kept at one place, at the master system. Most of the
system files never change. There is no need for weekly backup of such parts. A copy of
them is at every site (or might be brought to it). Parts that change are kept in some
specific directories.

If commands should be site dependent, they contain either code that checks the system
name, or they are made by an installing procedure.

A system manager, who wants to distribute software, must have knowledge of site
dependent features of the systems where he is sending new software to. New commands
are sent to other systems as source, along with makefiles. They are automatically
compiled on the remote system.

System parts, e.g. new kernels, source files, commands for remote execution, etc., are sent
to remote systems via mail. A demon on the remote system looks at a specific mail file,

Automating Administration of UNIX-Systems with Thousands of Users

controls carefully sender and origin, and checks a crypted time dependent password in the
mail. Unfortunately the password has to be kept in readable uncrypted form on each
machine. If somebody imitates my remote mail, knows the password and sequence
number, he may bring Trojan horses into our system.

Decrypt is not available in new European systems. Hence we cannot use it. If we had it,
transmissions would be much saver. Sending new software by mail is an advantage for
those systems that are hooked to a central line only sometimes.

uucp and mail are available everywhere, so every system can participate in software
distribution.

6.3. Restricted use of special hardware

Regular users need only to specify the destination. Access to remote devices is hidden by
commands in the /u/bin directory.

Before spooling output to special files is done, parameters can be set with a model shell
script. The access rights for a special device can be checked there too. This is easy for
users working on the same machine where the special device is connected.

The best way for heterogeneous UNIX systems for remote spooling is uux. Unfortunately
when using uux the senders identification is no longer secure. The login id is uucp and
the originating user is transmitted as uux parameter.

A secure transmission of access rights could be achieved by a similar procedure as in the
last section, but the overhead would be equally high.

7. Future

We want to keep every user with his files on several machines. When he arrives in the
morning he chooses one system. That will be his system for this day. Later login at
another system can be prevented. At night his files are sent to the other machines.

If a system fails, or if it is too heavily populated, each user has the choice of machines
every day.

One of the bigger problems is changing the password file. If a user logs in simultaneously
at two systems, he will disturb the distribution.

8. Conclusions

Automating management not only saves time but also a lot of trouble caused by
unexperienced users. Packing typical tasks makes every day’s work easier and possible to
delegate. On heavily populated systems the establishment of group managers keeps
management clear. By automating software distribution, a single system manager (or a
small group of them) can maintain a similar environment on several machines.

9. References

F.T.Grampp and R.H.Morris, “UNIX Operating System Security”’, B.S.T.J., 63, No. 8,
Part 2, October 1984, pp. 1649-1672

J.A Reeds and P.J Weinberger, “File Security and the UNIX System Crypt Command”,
B.S.T.J., 63, No. 8, Part 2, October 1984, pp. 1673-1684

D.A.Nowitz, “UUCP Implementation Description”, UNIX Programmer’s Manual, Section
2, AT&T Bell Laboratories

B.Lang, “UNIX fur viele Benutzer”, Sektion Informatik, Universitat Ulm, 1985

180

The development of a standard UNIX system for Intel®-
based microcomputers:
A technical perspective

Doug Michels
Vice President

The Santa Cruz Operation, Inc.

ABSTRACT

In just a little more than its first three months, 1987 has already been
a year in which more significant developments than ever before have been
announced that ensure the future direction of the UNIX System for
personal computers.

Particularly significant was the recent announcement that AT&T had
joined with Microsoft Corporation - and its XENIX® development partners,
The Santa Cruz Operation, Inc. and Interactive Systems Corporation - to
establish a standard UNIX System porting base for Intel processor-based
microcomputers, based on merging the latest in XENIX and UNIX
technologies.

There is a clear need to answer specific questions concerning the roles of
the UNIX and XENIX Systems, as well as their prime developers - AT&T

and Interactive, Microsoft® and SCO - in addressing the new and emerging
needs of the multiuser market: the 80386, internationalisation, UNIX
System V Release 3, and beyond.

SCO is proud to be a major contributor to each of the recently announced
developments that pave the way towards a single, standard UNIX System
porting base for personal computers. We offer this background paper in
the interest of clarifying the roles of both the participating developers and
their respective products, explaining the key technical issues involved, and
providing specific answers to what we have found to be the most
frequently asked questions concerning these issues.

Contents

Primary relationships between the major participants through 1986.
Recent major announcements (1987).
The evolution of XENIX System V 386 Release 2.2.

The critical contribution that XENIX 386 2.2 makes to the forthcoming standard
UNIX System porting base.

What will be on the new standard UNIX System porting base?
How will the new SCO packaged product differ from the new porting hase?

Development of a standard UNIX system for Intel-based microcomputers

What does the AT&T /Microsoft agreement mean to developers today?

Primary relationships between major participants through 1986

AT&T originally developed (1969), licensed and distributed the UNIX Operating
System to universities (mid-1970s), and later, to other software developers (1979 to
present).

Envisioning the value of a commercially-enhanced version of the UNIX System for
business applications, Microsoft licensed UNIX source code from AT&T for the
development of its own XENIX System for PDP™11s (1980s).

Realizing the potential of the XENIX System in turning personal computers into
multiuser business systems, The Santa Cruz Operation, Inc. licensed XENIX source
code from Microsoft, and developed the original port of XENIX to the 8088-based
IBM® PC. SCO became Microsoft’s “second source” for XENIX, as well as co-
developer and sole distributor of unbundled packaged XENIX product (1982 to
present).

Recognizing both the emergence of Intel processor-based PCs and the need to
promote the UNIX System on them, AT&T contracted Intel to port the UNIX
System to its own processors (1983 to present).

Intel contracted the actual development work for these ports to third-party
companies such as Interactive Systems, chosen most recently to develop UNIX

System V Release 3.0 for the 80386 and thereby gaining valuable UNIX V.3 expertise
(1986).

As part of this development, Interactive recognized the potential of the 80386 to run
DOS as a process under UNIX, and worked with Phoenix Technologies to develop

VP/ix™, an operating system extension which will provide a bridge between UNIX
and DOS (1986).

In order to provide DOS capability to UNIX users running VP /ix, Phoenix licensed
DOS from Microsoft to bundle with VP /ix. Microsoft, in turn, worked with Phoenix
to provide ‘“hooks” for VP /ix capability in its own XENIX System (1986).

Recent major announcements (1987)

Microsoft and SCO announce merger of their respective XENIX kernels with
introduction of XENIX System V Release 2.2, establishing a standard XENIX System
for all future releases. (UniForum™, 1/21/87)

Microsoft, SCO, and Compaq announce that SCO will assume from Compaq the
distribution and support of XENIX System V for COMPAQ 286- and 386-based
personal computers, with SCO XENIX 286 System V Release 2.2 replacing XENIX
System V/286 by Compaq. (UniForum, 1/21/87)

Microsoft, SCO, and Interactive announce agreement to merge current XENIX and
UNIX technologies in a cooperative effort to develop XENIX as the standard UNIX
System product for computers based on Intel 80386 microprocessors and beyond.
SCO and Interactive would bring to this development effort their respective areas of
expertise - XENIX System V 386 Release 2.2 and UNIX V/386 Release 3.0.
(UniForum, 1/21/87)

Microsoft and AT&T announce agreement to develop a new implementation of UNIX
for the 386 that would be upwardly compatible with AT&T UNIX System V/386
Release 3.0 and XENIX System V 386 Release 2.2. This product would be developed

182

Development of a standard UNIX system for Intel-based microcomputers

by Microsoft under contract to AT&T. For this development, Microsoft would draw
upon the pool of expertise that its partners, SCO and Interactive, had developed.
This new implementation would be the sole UNIX System product for the 386 and
would be distributed under AT&T’s trademarked name, “UNIX”. (New York,
2/19/87)

IBM announces PC DOS 3.3 and Operating System/2 (OS/2) along with its new
Personal System /2 Series, which includes four models: the Model 30, based on the
Intel 8086 microprocessor; the Model 50 and Model 60, both of which are based on
the Intel 80286 microprocessor; and the Model 80, based on the Intel 80386
microprocessor. (Rye Brook, NY, 4/2/87)

Microsoft concurrently announces the availability of XENIX System V Release 2.2
for the IBM Personal System/2 Series (for which SCO will provide packaged
product) to coincide with hardware availability. Microsoft concurrently
demonstrates XENIX 386 System V Release 2.2 on the IBM PS/2 Model 80.
(Redmond, WA, 4/2/87)

The evolution of XENIX system V 386 release 2.2

XENIX has always been ‘‘real’’ UNIX, only a superset. Conceived as a commercially-
enhanced, AT&T-licensed version of the UNIX System, it was only because of prior AT&T
trademark restrictions that the name XENIX was created in the first place; otherwise, in
every sense XENIX could have legitimately been named ‘“Microsoft UNLX.”

XENIX System V 386 Release 2.2 had its origin in the porting hase for AT&T’s UNIX
System V Release 2.0, which AT&T created originally for the VAX. Microsoft and its
development partner, SCO, wanted to create a version of XENIX that performed better on
80386 microprocessor-based machines. Microsoft rewrote the memory management code
to comgensate for the different page size and fault behavior. SCO then added its

PC/AT" drivers, drivers which SCO has been refining continuously since the first XENIX
system (XENIX System III, circa 1983) was developed for the IBM PC.

The XENIX development team then added full backward binary compatibility from all
previous releases of both SCO and IBM XENIX systems, which include IBM XENIX 1.0,
IBM XENIX 2.0, Microsoft XENIX 286 System III and System V, and SCO XENIX 86 and
286 Releases 2.0 and 2.1.

To create the binary code for XENIX System V 386 Release 2.2, the development team
used the Microsoft C 5.0 Compiler. The Microsoft C 5.0 version of DOS will not be
released until later this year, even though XENIX 386 will include it in the first release.

The development team’s next step was to add important XENIX extensions, such as

shared data, semaphores, mapchan, record locking, a compiler-less link kit, exccutable
data, and rdchk.

Beyond this, SCO provided numerous operating system ‘‘add-ons” - such as installation
facilities, administration utilities, and windowing - as well as adaptations for
international use. All of these will be covered in detail later in this paper.

In summary, this is the XENIX System V 386 Release 2.2 that Microsoft and SCO bring
to the UNIX merge effort announced by Microsoft and AT&T.

The critical contribution that XENIX 386 2.2 makes to the forthcoming
standard UNIX system porting base.

The result of the Microsoft/AT&T agreement will be a standard porting base that all
UNIX System vendors will need to port to the 80386 microprocessor. This standard UNIX

Development of a standard UNIX system for Intel-based microcomputers

System porting base - in a very real sense, simply the next XENIX upgrade - will enable
UNIX vendors to build systems that provide backward and forward UNIX/XENIX binary
compatibility and 386 optimization.

The porting base will be created by combining XENIX System V 386 Release 2.2 and UNIX
System V 386 Release 3 (the port developed by Intel and Interactive). AT&T, Microsoft,
SCO, and Interactive will collaborate on the development of the merged product.

What will be on the new standard UNIX system porting base ?

The new standard UNIX System porting base, or source tape, will contain the AT&T
Portable C Compiler, the merged kernel source code, and the standard UNIX utilities, as
found on the original UNIX System Version 3 tape with any modification required to
support the 386 processor or the new kernel. The tape will contain some new utilities,
however, to support the new system calls, such as mapchan, that were derived from
XENIX. Installation and system administration will be based on AT&T’s standard (3B2)
approach rather than the menu based system included in SCO XENIX.

The tape will also include a library interface to provide library support for these new
system calls and the /O controls.

The kernel will contain several important modifications to the “h” files, also to account
for the new system call modes, IOCTL defines, data structures, and memory management
parameters. It will include, of course, the new XENIX system calls, some new memory
management code for the 386 (which will replace the 3B2 regions paging code), and some
example files for the configuration directory. In addition, the kernel will include some
standard “hooks” for DOS subenvironments such as VP/ix.

How will the new SCO packaged product differ from the new porting base ?

The SCO packaged retail product that will be released concurrently with the new porting
base will share the porting base’s binary compatibility and kernel functionality, but will
include value-added features not found on the porting base, such as the Microsoft C 5.0
compiler with DOS cross development support, SCO XENIX’s custom PC/AT drivers for
all standard AT devices and a wide range of add on hardware, and SCO XENIX’s other
add-on features.

A more efficient compiler

The Microsoft C 5.0 Compiler does things that the PCC just cannot do: it consistently
generates smaller and faster code specifically optimized for the 386; it compiles binary
code for hoth DOS and XENIX applications, thus allowing XENIX/DOS cross-development
and use with VP/ix; and it is available for larger systems - SCO has ported it to the
VAX™, for example - to allow enhanced XENIX and DOS development on those machines.
As a result, those applications developed with the Microsoft C 5.0 Compiler will
undoubtedly perform better on 386-based machines than those developed with the AT&T
Portable C Compiler. The Microsoft C 5.0 compiler also utilizes Intel’s standard OMF
(identical with DOS) format designed specifically for Intel processors. This allows for a
high degree of portability to and from DOS languages and applications that rely on OMF.

More drivers

The SCO product also includes a broad continuously expanding range of high-
performance, flexible drivers that have been designed for all standard (and dozens of add-
on) AT peripherals such as multiport cards, lomega removable disks, ESDI high
performance disks, tape drives, serial consoles, non-standard keyboard layouts, and many

184

Development of a standard UNILX system for Intel-based microcomputers

other PC anomalies. These high quality drivers representing hundreds of man-years of
development are already included in SCO’s packaged XENIX products and will continue
to provide the basis of its future offerings and value added features.

Flexible installation features

Installation is another aspect to consider. The new standard UNIX System porting base
will not include the flexible installation and features that SCO product will provide -
features such as selective package installations, auto-configuration of swap and file-system
sizes, dynamic bad-track replacement, and a host of mapping files for 8-bit (European)
printers and terminals. These features go well beyond the standard UNIX porting bhase.

Screen-based administration utility

The SCO product will also provide a sophisticated screen-based administration utility
that includes smart back-up-and-restore facilities, as well as a user-friendly interface for
adding and subtracting peripherals, for formatting media, for recovering lost files from
distribution, and for keeping track of updates.

Europeanisation

As the first of many “internationalisation’ enhancements, SCO XENIX System V Relecase
2.2 provides an 8-bit data path that can support European alphabets, a new data file
mapping facility, and enhancements to various device drivers. This new framework
enables software developers to write applications specifically for the Europcan market.

Specifically, SCO XENIX System V Release 2.2 incorporates a generic tty driver that
supports non-English alphabets which require 8-bit character sets, and simulates dead and
compose keys on 7 or 8-bit terminals so that they generate 8-bit codes. This is further
supported by implementing 8-bit data paths through all of the SCO XENIX 2.2 device
drivers, and by using ‘““‘channel mapping”’.

The channel mapping facility permits both ‘“many-to-one” mapping of system input--
from a European terminal, for example, where two or three keys may be input to actually
produce one language-specific character on the screen - and ‘“‘one-to-many” mapping of
output - to a European printer, for example, where a single 8-bit character in a XENIX file
may be converted to a string of characters that form a constructed character on the hard
copy. This feature enables SCO XENIX System V Release 2.2 to support the greatest
number of European printers and CRT screens possible.

SCO XENIX 2.2 now also supports non-American time zones, northern or southern
hemisphere, with flexible rules for specifying the local time-change laws.

SCO is deeply committed to the international market and has a dedicated team of
software engineers based in its London office who are continuing to add important
features in conformance with the emerging X-Open standard. In addition, translated
software and documentation is being prepared. All of this work will be incorporated into
SCO’s international versions of the new UNIX product.

XENIX - A Unique Value-Added Product

In summary, the significance of the AT&T /Microsoft agreement is that AT&T has taken
a great step forward in providing unity to the UNIX marketplace, but the porting base
that will result from this agreement is the chassis upon which the ultimate UNIX System
product must be built. The new porting base will share binary compatibility with the
XENIX packaged product and even include some important XENIX extensions. SCO has

Development of a standard UNIX system for Intel-based microcomputers

already laid the groundwork and continues to develop those features that will
significantly cnhance the performance and functionality of the ultimate UNIX system
product. SCO XENIX will also offer other operating system extensions such as XENIX-
NET, VP/ix, GSS*CGI, and MultiView™ windowing; all of these value added features
will distiguish the SCO packaged product from the standard porting base to be delivered
to AT&T.

What does the AT&T /Microsoft agreement mean to developers today ?

Software and system developers can rest assured that today’s applications - whether
written for XENIX System Ill, XENIX System V, or AT&T UNIX System V.2 (286) or V.3
(386) - will run on the new standard UNIX System porting base.

However, there are several considerations that point out the advantages of developing
with XENIX today.

Those developers who select XENIX can use its cross-development environment to create a
DOS or XENIX binary today that is fully optimized for 286 or 386 machines. With the
XENIX 386 development system, developers will receive the latest the Microsoft C
Compiler which is by far the most powerful and efficient 386 C compiler available today.
In addition, the 386 development system contains a full 286 Microsoflt C compiler to allow
development of a common executable that will run on either 286 or 386 XENIX. XENIX
applications will run unmodified on the new unified UNIX System when it is released,
while DOS applications will run under VP/ix. XENIX also uses memory management
paging code that has been highly tuned for the 386.

While UNIX System V Release 3 is clearly the future direction of the UNIX System, its
special features - Remote File System (RFS), streams, etc. - are not yet of major
significance to the vast majority of applications. In fact, major organizations that are
concerned with UNIX standards (such as Sigma, POSIX, and IBM) currently endorse
SVR2. Developers can confidently begin writing applications with today’s SVR2-based
XENIX 286 and XENIX 386 and expect full compatibility with the forthcoming unified
UNIX System when it arrives.

Developing with XENIX also ensures that features such as termcap and terminfo,
keyboard and mapping configuration files, 8 bit European device support, custom-based
installation, and a bit-mapped graphics interface will be compatible with all new releases
of the operating system and all new microprocessor generations from Intel. Only XENIX
can provide developers with the kind of stable, but evolving, system they need to
anticipate and meet the requirements of a rapidly advancing computer marketplace.

Summary

In conclusion, SCO applauds this major agreement toward developing a single UNIX
System standard for Intel-based microprocessors. However, this step will in no way
create a ‘‘commodity market’ in the UNIX market, since the result of the agreement will
only be a new standard UNIX System porting base.

It 1s important to remember that this porting base is primarily defined by kernel
functionality and binary compatibility. It does not include the drivers or the many
value-added extensions that SCO XENIX provides, and it does not specify the type of
software generation system with which the code must be developed. There will always be
the requirement, let alone the opportunity and motivation, for vendors to add to this
porting base. SCO fully intends to continue providing the UNIX community with the
leading-edge packaged product available across the widest possible range of popular
hardware and periplerals, one that provides users with the greatest added value available

186

Development of a standard UNIX system for Intel-based microcomputers

in the market.

XENIX and Microsoft are registered trademarks of Microsoft Corporation.

3B2 is a trademark of ATT Technologies, Inc.

PDP-11 and VAX are trademarks of Digital Equipment Corp.

MultiView is a trademark of The Santa Cruz Operation, Inc.

IBM, AT, and XT are registered trademarks of International Business Machines Corporation.
Intel is a registered trademark of Intel Corporation.

UniForum is a trademark of /usr/group.

VP/ix is a trademark of Phoenix Technologies Ltd.

188

Multiple Inheritance for C+

Bjarne Stroustrup

Bell Laboratories
Murray Hill
New Jersey 07974
U.S.A.

ABSTRACT

Multiple Inheritance is the ability of a class to have more than one
base class (super class). In a language where multiple inheritance 1s
supported a program can be structured as a set of inheritance lattices
instead of (just) as a set of inheritance trees. This is widely believed to be
an important structuring tool. I consider this conjecture ‘“‘not proven”,
but provide a few examples where it does appear to be useful.

It is also widely believed that multiple inheritance complicates a
programming language significantly, is hard to implemeu:, and is
expensive to run. I will demonstrate that none of these conjectures are
true. The scheme described is fully implemented.

WARNING: The multiple inheritance scheme described here is still
experimental and not yet considered part of the C++ language".

1 Introduction

This paper describes an implementation of a multiple inheritance mechanism for
C++. It provides only the most rudimentary explanation of what multiple inheritance is
in general and what it can be used for. The particular variation of the general concept
implemented here is primarily explained in term of this implementation.

First a bit of background on multiple inheritance and CH+ implementation
technique is presented, then the multiple inheritance scheme implemented for C4++ is
introduced in three stages:

(1] The basic scheme for multiple inheritance, the basic strategy for ambiguity
resolution, and the way to implement virtual functions.

[2] Handling of classes included more than once in an inheritance lattice; the
programmer has the choice whether a multiply included base class will result in
one or more sub-objects being created.

[3] The concept of delegation through a pointer.
Finally, some the complexities and overheads introduced by this multiple inheritance
scheme are summarized.

189

Muitiple Inheritance for C++

2 Multiple Inheritance

Consider writing a simulation of a network of computers. Each node in the network
is represented by an object of class Switch, each user or computer by an object of class
Terminal, and each communication line by an object of class Line. One way to monitor
the simulation (or a real network of the same structure) would be to display the state of
objects of various classes on a screen. Each object to be displayed is represented as an
object of class Displayed. Objects of class Displayed are under control of a display
manager that ensures regular update of a screen and/or data base. The classes Terminal
and Switch are derived from a class Task that provides the basic facilities for co-routine
style behavior. Objects of class Task are under control of a task manager (scheduler)
that manages the real processor(s).

Ideally Task and Displayed are classes from a standard library. If you want to
display a terminal class Terminal must be derived from class Displayed. Class
Terminal, however, is already derived from class Task. In a single inheritance language,
such as C++ or Simula67, we have only two ways of solving this problem: deriving Task
from Displayed or deriving Displayed from Task. Neither is ideal since they both
create a dependency between the library versions of two fundamental and independent
concepts. Ideally one would want to be able choose between saying that a Terminal is a
Task and a Displayed; that a Line is a Displayed but not a Task; and that a Switch
1s a Task but not a Displayed.

The ability to express this using a class hierarchy, that is, to derive a class from
more than one base class, is usually referred to as multiple inheritance. Other examples
involve the representation of various kinds of windows in a window system5 and the
representation of various kinds of processors and compilers for a multi-machine, multi-
environment debugger2.

In general, multiple inheritance allows a user to combine independent (and not so
independent) concepts represented as classes into a composite concept represented as a
derived class. A common way of using multiple inheritance is for a designer to provide
sets of base classes with the intention that a user creates new classes by choosing base
classes from each of the relevant sets. Thus a programmer creates new concepts using a
recipe like “pick an A and/or a B”. In the window example, a user might specify a new
kind of window by selecting a style of window interaction (from the set of interaction
base classes) and a style of appearance (from the set of base classes defining display
options). In the debugger example, a programmer would specify a debugger by choosing a
processor and a compiler.

Given multiple inheritance and N concepts each of which might somehow be
combined with one of M other concepts, we need N+M classes to represent all the
combined concepts. Given only single inheritance, we need to replicate information and
provide N4+M+N*M classes. Single inheritance handles cases where N==1 or M==1.
The usefulness of multiple inheritance for avoiding replication hinges on the importance
of examples where the values of N and M are both larger than 1. It appears that
examples with N>=2 and M>=2 are not uncommon; the window and debugger
examples described above will typically have both N and M larger than 2.

Multiple Inheritance for G+

3 C++ Implementation Strategy

Before discussing multiple inheritance and its implementation in C++ I will first
describe the main points in the traditional implementation of the C++ single inheritance
class concept.

An object of a C++ class is represented by a contiguous region of memory. A
pointer to an object of a class points to the first byte of that region of memory. The
compiler turns a call of a member function into an “ordinary” function call with an
“extra’” argument; that “extra” argument is a pointer to the object for which the
member function is called.

Consider a simple class At:

class A {

int a;

void f(int 1);
}

An object of class A will look like this

No information is placed in an A except the integer a specified by the user. No
information relating to (non-virtual) member functions is placed in the ¢bject.

A call of the member function A: : f:
Ax pa;
pa—>£(2);
is transformed by the compiler to an ‘“ordinary function call’’:
_A_f(pa,2);
Objects of derived classes are composed by concatenating the members of the classes
involved:

class A { int a; void f(int); };
class B : A { int b; void g(int); };
class C : B { int c¢; void h(int); };

Again, no “housekeeping” information is added, so an object of class C looks like this:

| int a; |
| int b; |
| int c; |

The compiler ‘“‘knows” the position of all members in an object of a derived class exactly
as it does for an object of a simple class and generates the same (optimal) code in both
cases.

Implementing virtual functions involves a table of functions. Consider:

t In most of this paper data hiding issues are ignored to simplify the discussion and shorten the examples.
This makes some examples illegal. Changing the word class to struct would make the examples legal, as
would adding public specifiers in the appropriate places.

191

Multiple Inheritance for CH+

class A {
int a;
virtual void f(int);
virtual void g(int);
virtual void h(int);
};

class B : A { int b; void g(int); };
class C : B { int c¢; void h(int); };

In this case, a table of virtual functions, the vtbl, contains the appropriate functions for
a given class and a pointer to it is placed in every object. A class C object looks like this:

| int a; | vtbl:

| Vptr >

| int b; | | A :f |

| int ¢; | | B::.g |
| C::h |

A call to a virtual function is transformed into an indirect call by the compiler. For
example,

Cx pc,
pc—>g(2);

becomes something like:
(*x(pe->vptr(1])) (pc,2);

A multiple inheritance mechanism for C++ must preserve the efficiency and the key
features of this implementation scheme.

4 Multiple Base Classes

Given two classes

class A { ... };
class B { ... };

one can design a third using both as base classes:
class C : A , B { ... };

This means that a Cis an A and a B. One might equivalentlyt define C like this:
class C : B, A { ... };

Object Layout
An object of class C can be laid out as a contiguous object like this:

t Except for possible side effects in constructors and destructors (access to global variables, input operations,
output operations, etc.).

192

Multiple Inheritance for C++

C part

Accessing a member of classes A, B or C is handled exactly as before: the compiler knows
the location in the object of each member and generates the appropriate code (without
spurious indirections or other overhead).

Member Function Call

Calling a member function of A or C is identical to what was done in the single
inheritance case. Calling a member function of B given a C* is slightly more involved:
C* pc;
pc—->bf(2); // assume that bf i1s a member of B

// and that C has no member named bf
// except the one inherited from B

Naturally, B: :bf () expects a B* (to become its this pointer). To provide it, a constant
must be added to pc. This constant, delta(B), is the relative position of the B part of C.
This delta is known to the compiler that transforms the call into:

_B bf ((B*) ((char*)pc+delta(B)),2);

The overhead is one addition of a constant per call of this kind. During the execution of a
member function of B the function’s this pointer points to the B part of C:

B::bf's this

Note that there is no space penalty involved in using a second base class and that the
minimal time penalty is incurred only once per call.

Multiple Inherstance for Ci+

Ambiguities
Consider potential ambiguities if both A and B have a public member 11:

class A { int ii; };
class B { charx 1i; };
class C : A, B { };

In this case C will have two members called 11, A: :11 and B: :11. Then

C*x pc;
pc—>1i; // error: A::11 or B::11 ?
is illegal since it is ambiguous. Such ambiguities can be resolved by explicit qualification:
pc->A: :ii; // C's A's 11
pc->B::ii; // C's B's 11

A similar ambiguity arises if both A and B have a function £ ():

class A { void £(); };
class B { int £(); };
class C : A, B { };:

C* pc;

pe—>f(); // error: A::f or B::f ?
pc—>A::£(); // C's A’s f

pc—>B::f(); // C's B’s £

As an alternative to specifying which base class in each call of an £ (), one might define
an £() for C. C::f() might call the base class functions. For example:

class C : A, B {
int £() { A::f(); return B::f(; }
};

Cx pc,;
pc—>f(); // C::f 18 called

Casting

Explicit and implicit casting may also involve modifying a pointer value with a
delta:

C*x pc;
Bx pb;

pb = (B*)pc; // pb = (B*) ((charx)pc+delta(B))

pb - pc; // pb = (Bx) ((char*)pc+delta(B))
pc = pb; // error: cast needed
pc = (C*)pb; // pc = (C*) ((charx)pb-delta(B))

Casting yields the pointer referring to the appropriate part of the same object.

194

Multiple Inheritance for C++

pPc >
| |
| A part I
I I
pb ...>
| |
| B part I
| I
I |
| C part I

Comparisons are interpreted in the same way:

pc == pb; // that is, pc == (C¥)pb
// or equivalently (B#)pc == pb

// that is, (Bx)((charx)pc+delta(B)) == pb
// or equivalently pc == (C*) ((char*)pb-delta(B))

Note that in both C and C4++ casting has always been an operator that produced one
value given another rather than an operator that simply reinterpreted a bit pattern. For
example, on almost all machines (1nt) .2 causes code to be executed; (float) (int) .2
is not equal to .2. Introducing multiple inheritance as described here will introduce cases
where (char*) (B*)v!=(char*)v for some pointer type B*. Note, however, that when
B is a base class of C, (B*) v=(Cx*) v==v.

Zero Valued Pointers

Pointers with the value zero cause a separate problem in the context of multiple
base classes. Consider applying the rules presented above to a zero-valued pointer:

Cx pc = 0;

Bx pb = 0;

if (pb == 0) ...

pb = pc; // pb = (Bx) ((char*)pc+delta(B))
if (pb == 0) ...

The second test would fail since pb would have the value (B*) ((char*)0O+delta(B)).

The solution is to elaborate the conversion (casting) operation to test for the
pointer-value O:

Cx pc = 0;

B* pb = 0O;

1f (pb == 0) ...

pPb = pc; // pb = (pc==0)70:(B*) ((char*)pc+delta(B))

if (pdb == 0)

The added complexity and run-time overhead are a test and an increment.

195

Multiple Inheritance for C++

5 Virtual Functions
Naturally, member functions may be virtual:

class A { virtual void £Q); };
class B { virtual void f(); virtual void g(); };
clags C : A, B { void £(Q); };

A* pa
B* pb
Cx pc

new C;
new C;
new C;

Hnn

pa—>fQ);
po—>£Q);
pe>fQ0);

All these calls will invoke C: :£(). This follows directly from the definition of virtual
since class C is derived from class A and from class B.

Implementation

On entry to C: : £, the this pointer must point to the beginning of the C object (and
not to the B part). However, it is not in general known at compile time that the B
pointed to by pb is part of a C so the compiler cannot subtract the constant delta(B).
Consequently delta(B) must be stored so that it can be found at run time. Since it is
only used when calling a virtual function the obvious place to store it is in the table of
virtual functions (vtbl). For reasons that will be explained below the delta is stored with
each function in the vtbl so that a vtbl entry will be of the form:

struct vtbl entry {
void (xfct) () ;
int delta;

};

An object of class C will look like this:

I | vtbl:
| vptr >—— -
| A part | | C::f | 0 |
I I
I I vtbl
l vptr >
| B part | | C::f | -delta(B) |
| | | B::g | 0 |
I I
| C part |
I I

pp—>£ Q) ; // call of C::f:

// register vtbl entry* vt = &pb->vtbl[index(f)];
// (xvt=>fct) ((B*) ((char*)pb+vt->delta))

Note that the object pointer may have to be adjusted to point to the correct sub-object
before looking for the member pointing to the vtbl. Note also that each combination of
base class and derived class has its own vtbl. For example, the vtbl for B in C is

196

Multiple Inheritance for C++

different from the vtbl of a separately allocated B. This implies that in general an object
of a derived class needs a vtbl for each base class plus one for the derived class.
However, as with single inheritance, a derived class can share a vtbl with its first base so
that in the example above only two vtbls are used for an object of type C (one for A in C
combined with C’s own plus one for B in C).

Using an int as the type of a stored delta limits the size of a single object; that
might not be a bad thing.

Ambiguities
The following demonstrates a problem:

class A { virtual void £(Q); };
class B { virtual void £(); };
class C : A, B { void £ ; };

C*x pc = new C;
pe—>£Q);

pc—>A:£();
pe—>B::£();

Explicit qualification “‘suppresses” virtual so the last two calls really invoke the
base class functions. Is this a problem? Usually, no. Either C has an £ () and there is no
need to use explicit qualification or C has no £() and the explicit qualification is necessary
and correct. Trouble can occur when a function £() is added to C in a program that
already contains explicitly qualified names. In the latter case one could wonder why
someone would want to both declare a function virtual and also call it using explicit
qualification. If £() is virtual, adding an £() to the derived class is clearly the correct
way of resolving the ambiguity.

The case where no C: :f is declared cannot be handled by resolving ambiguities at
the point of call. Consider:

class A { virtual void f(); };
class B { virtual void f(); };
clags C : A, B { }; // error: C::f needed

Cx pc = new C;
pc—>£(0); // ambiguous

A* pa = pc; // implicit conversion of C* to Ax
pa—>f(); // not ambiguous: calls A::f();

The potential ambiguity in a call of £() is detected at the point where the virtual
function tables for A and B in C are constructed. In other words, the declaration of C
above is illegal because it would allow calls, such as pa~>f (), which are unambigious
only because type information has been “lost” through an implicit coercion; a call of £ ()
for an object of type C is ambiguous.

Multiple Inheritance for C++

6 Multiple Inclusions
A class can have any number of base classes. For example,
class A : B1, B2, B3, B4, B5, B6 { ... };
It illegal to specify the same class twice in a list of base classes. For example,
class A : B, B{ ... }; // error

The reason for this restriction is that every access to a B member would be ambiguous
and therefore illegal; this restriction also simplifies the compiler.

Multiple Sub-objects

A class may be included more than once as a base class. For example:

class L { ... };
class A : L { ... };
class B : L { ... };
class C : A, B{ ... };

In such cases multiple objects of the base class are part of an object of the derived class.
For example, an object of class C has two L’s: one for A and one for B:

This can even be useful. Think of L as a link class for a Simula-style linked list. In this
case a C can be on both the list of As and the list of Bs.

Naming
Assume that class L in the example above has a member m. How could a function
C: :f refer to L: :m? The obvious answer is “by explicit qualification”:
void C::f() { A::m = B::m; }

This will work nicely provided neither A nor B has a member m (except the one they
inherited from L). If necessary, the qualification syntax of C++ could be extended to
allow the more explicit:

Multiple Inheritance for C++

void C::f() { A::L::m =B::L::m; }

Casting

Consider the example above again. The fact that there are two copies of L makes
casting (both explicit and implicit) between L* and C* ambiguous, and consequently
illegal:

C* pc = new C;

L* pl = pc; // error: ambiguous

pl = (L*)pc; // error: still ambiguous
pl = (L*)(A*)pc; // The L in C’'s A

pc = pl; // error: ambiguous

pc = (Lx)pl; // error: still ambiguous
pc = (C*)(A*)pl; // The C containing A’s L

I don’t expect this to be a problem. The place where this will surface is in cases
where As (or Bs) are handled by functions expecting an L; in these cases a C will not be
acceptable despite a C being an A:

extern f(Lx); // some standard function

f(&aa); // fine
f (&cc) ; // error: ambiguous
f ((A%) &cc) ; // fine

Casting is used for explicit disambiguation.

7 Virtual Base Classes

When a class C has two base classes A and B these two base classes give rise to
separate sub-objects that do not relate to each other in ways different from any other A
and B objects. I call this independent multiple inheritance. However, many proposed uses
of multiple inheritance assume a dependence among base classes (for example, the style of
providing a selection of features for a window described in §2). Such dependencies can be
expressed in term of an object shared between the various derived classes. In other
words, there must be a way of specifying that a base class must give rise to only one
object in the final derived class even if it is mentioned as a base class several times. To
distinguish this usage from independent multiple inheritance such base classes are
specified to be virtual:

class AW : virtual w { ... };

class BW : virtual W { ... };
class CW : AW , BW { ... };

A single object of class W is to be shared between AW and BW; that is, only one W object
must be included in CW as the result of deriving CW from AW and BW. Except for giving
rise to a unique object in a derived class, a virtual base class behaves exactly like a
non-virtual base class.

The “‘virtualness” of W is a property of the derivation specified by AW and BW and
not a property of W itself. A set of virtual derivations from a base class W can be resolved
provided there is at most one non-virtual derivation of W.

Multiple Inheritance for Ct+

Representation

The object representing a virtual base class W object cannot be placed in a fixed
position relative to both AW and BW in all objects. Consequently, a pointer to W must be
stored in all objects directly accessing the W object to allow access independently of its
relative position. For example:

AWx paw = new AW;
BwW* pbw = new BW;
CW*x pcw new Cw;

paw ..>

BW part

W part

A class can have an arbitrary number of virtual base classes.

One can cast from a derived class to a virtual base class, but not from a virtual base
class to a derived class. The former involves following the virtual base pointer; the latter
cannot be done given the information available at run time. Storing a ‘‘back-pointer” to
the enclosing object(s) is non-trivial in general and was considered unsuitable for C++ as
was the alternative strategy of dynamically keeping track of the objects ‘“for which” a
given member function invocation operates.

200

Multiple Inheritance for C+

Virtual Functions

Consider:

class W {
virtual void £Q);
virtual void g();
virtual void h();
virtual void k();

};

class AW : virtual W { void g(; ... };
class BW : virtual W { void £(; ... }:
class CW : AW , BW { void h(); ... };

CWx pcw = new CW;

pew—>£() ;
pew—>g();
pew—>h(Q);
((AWx) pew) —>£ () ;

A CW object might look like this:

AW part

BW part

CW part

delta(BW)-delta(W) |
-delta (W) |
-delta (W) |

0 I

In general, the delta stored with a function pointer in a vtbl is the delta of the class
defining the function minus the delta of the class for which the vtb1l is constructed.

If W has a virtual function f that is re-defined in both AW and BW but not in CW an
ambiguity results. Such ambiguities are easily detected at the point where CW’s vtbl is
constructed.

The rule for detecting ambiguities in a class lattice, or more precisely a directed
acyclic graph (DAG) of classes, is that there all re-definitions of a virtual function from a
virtual base class must occur on a single path through the DAG. The example above can
be drawn as a DAG like this:

Multiple Inheritance for C++

..>W{fghk}<. ..

.. ewWw{n} .. .>. ..

Note that a call “up” through one path of the DAG to a virtual function may result in
the call of a function (re-defined) in another path (as happened in the call
((AW*) pcw) =>f () in the example above).

8 Delegation through a Pointer

One way of understanding inheritance is as an operation that extends the name
space of a class with the names defined for a (base) class and directs the handling of
operations specified (only) in a base class to that base. This “name space extension”
operation is sometimes called delegation’.

Delegation can be extended to apply to objects that need not be members of the

delegating class. In this case, a pointer must be specified denoting the object delegated to.
For example:

class C : *p {
/...
},

This means that C delegates to the object pointed to by p; p must be a global pointer or a
pointer member of C (or a public member of one of C’s delegates). If p is of type B*, the
name space of C is extended to include the names from B exactly as if C had been derived
from B. Operations on an object of class C that are defined for class B but not specifically
for class C will be applied to p. For example:

class B { int b; void f(Q); };
class C : *p { Bx p; int c; };

vold f(C*x q)

q->fQ; // that is, q->p->f()
}

An object of class C will look something like this after C::p has somehow been
initialized:

Casting is affected by delegation; casting a pointer to a class to a pointer to a class it
has delegated to yields the value of the delegation pointer. For example:

202

Multiple Inheritance for C++

void g(C* q)
{

}

(B*)q == q->p; // true

Delegation through a pointer looks promising for defining interfaces without
providing ‘““dummy functions’ as is sometimes done like this:

class B {

// ...
void bf();
// 15 other functions

};

class C {
B* p;
/..
void bf() { return p—>bf(); }
// 15 other ‘‘dummy’’ functions
3

Note that delegation though a pointer specifies a dynamic binding of one object to
another: the value of p in the example above can be changed at run time.

Ambiguities
One can delegate through more than one pointer. For example:

class A { void £Q); };
class B { void £(); }:
class C { void £Q; }:

A% pa;

class D : *pa, B, *pc {
C* pc;
/o

}

The usual ambiguity rules apply:

Dx pd;

pd->£ Q) ; // error: ambiguous
((Ax)pd)->£ () ; // pa—>£0;
((B*x)pd)->£(); // pd->B::f();
((Cx)pd)->£(Q); // pa->pec->£(Q);

Virtual Functions

Delegation through a pointer differs from delegation to an object (that is, inheritance)
in that function declarations in the delegating class do not affect the vtbl of the object
delegated to. For example:

class B { virtual void £(); };
class C : *p { Bx p; virtual void g(); };
class D : C { void £(); void g(); };

Multiple Inherstance for C++

void f(C* q)

{
q->f(); // calls B::f not D::f
// since C has no virtual function f
// except the one inherited from B
// and B is not a base of D
q—>g(); // calls D::g() through C’s vtbl
}

The reason for this is that vtbls are constructed at compile time when it is not known
which object or objects a delegation pointer will point to during the execution of the
program.

An object of class D will look something like this after C::p has somehow been
initialized:

| Vptr D

| | | D::g | O |

I I e

| |

| P - >

[I | vptr D
| | - | B::f | 0|
| D part |\ el
I |

9 Constructors and Destructors

Constructors for base classes are called before the constructor for their derived class.
The order of execution of constructors of multiple base classes is undefined. Destructors
for base classes are called after the destructor for their derived class. The order of
execution of destructors of multiple base classes is undefined.

Arguments to base class constructors can be specified like this:

class A { A(dint); };
class B { B(int); };
class C : A, virtual B {
C(int a, int b) : ACa) , B(®) { ... }
3
When a class has more than one base class all argument lists for its base class constructor

must be qualified with the name of the base class. This rule applies even if only one of
the base classes actually requires arguments.

A virtual base class can be explicitly initialized at most once in a derivation lattice.
If it is not initialized the default initializer is used.

Assignment to this in the constructor of a class that takes part in a multiple
inheritance lattice is likely to lead to disaster. This might be the final proof that a better
way for a user to take control of memory allocation for a class is needed.

204

Multiple Inheritance for C++

10 Visibility
The examples above ignored visibility considerations. A base class may be public,
protected, or private. In addition, it may be virtual. For example:

class D

: Bi // private (by default), non-virtual (by default)
, virtual B2 // private (by default), virtual
, public B3 // public, non-virtual (by default)
, public virtual B4 {
/] ...
};

Note that a visibility or virtual specifier applies to a single base class only. For
example,

class C : public A, B { ... };
declares a public base A and a private base B.

The usual visibility rules applies to objects delegated to through a pointer. For
example:

A% pa;

class D
: *pa // private
, public *pb
, protected *pc {
Cx pc;
protected:
Bx pb;
1

The visibility of the pointer delegated through is determined by the declaration of the
delegation pointer (and not by the delegation specification). For example, in the example

above pa is global and therefore globally accessible, pc is private to D and pb is
protected.

void f(D* pd)
{

pPa = new A; // fine: pa 1s global
((A*)pd)->f(); // error: delegation through pa 1is private

pd->pb = new B; // error: pb protected
((Bx)pd)->f(; // fine: delegation through pb is public

11 Overheads

The overhead in using this scheme is:

[1] One subtraction of a constant for each use of a member in a base class that is
included as the second or subsequent base.

[2] One word per function in each vtbl (to hold the delta).

(3] One memory reference and one subtraction for each call of a virtual function.

[4] One memory reference and one subtraction for access of a base class member of
a virtual base class or of a member of a class delegated to through a pointer.
Note that overheads [1] and [4] are only incurred where multiple inheritance is

Multsple Inheritance for C+

actually used, but overheads [2] and [3] are incurred for each class with virtual
functions and for each virtual function call even when multiple inheritance is not
used. Overheads (1] and [4] are only incurred when members of a second or
subsequent base are accessed ‘“from the outside’’; a member function of a virtual
base class does not incur special overheads when accessing members of its class.

This implies that except for (2] and (3] you pay only for what you actually use; [2]
and [3] impose a minor overhead on the virtual function mechanism even where only
single inheritance is used.

Fortunately, these overheads are not significant. The time, space, and complexity
overheads imposed on the compiler to implement multiple inheritance are not noticeable
to the user.

12 But is it Simple to Use?
What makes a language facility hard to use?
[1] Lots of rules.
[2] Subtle differences between rules.
[3] Inability to automatically detect common errors.
[4] Lack of generality.

[5] Deficiencies.

The first two cases lead to difficulty of learning and remembering, causing bugs due
to misuse and misunderstanding. The last two cases cause bugs and confusion as the
programmer tries to circumvent the rules and “simulate’” missing features. Case (3]
causes frustration as the programmer discovers mistakes the hard way.

The multiple inheritance scheme presented here provides three ways of extending a
class’s name space:

[1] A base class.

[2] A virtual base class.

[3] A delegation through a pointer.

These are three ways of creating/specifying a new class rather than ways of creating
three different kinds of classes. The rules for using the resulting classes do not
depend on how the name space was extended:

[1] Ambiguities are illegal.
[2] Rules for use of members are what they were for single inheritance.
[3] Visibility rules are what they were for single inheritance.

(3] Initialization rules are what they were for single inheritance.
Violations of these rules are detected by the compiler.

In other words, the multiple inheritance scheme is only more complicated to use
than the existing single inheritance scheme in that

[1] You can extend a class’s name space more than once (with more than one base
class).

[2] You can extend a class’s name space in three ways rather than in only one way.

This appears minimal and constitutes an attempt to provide a formal and

(comparatively) safe set of mechanisms for observed practices and needs. I think

that the scheme described here is ‘“‘as simple as possible, but no simpler.”

206

Multiple Inheritance for C++

A potential source of problems exists in the absence of ‘‘system provided back-
pointers’ from a virtual base class to its enclosing object and from an object delegated to
through a pointer to the delegating object.

In some contexts, it might also be a problem that pointers to sub-objects are used
extensively. This will affect programs that use explicit casting to non-object-pointer types
(such as char*) and “extra linguistic’” tools (such as debuggers and garbage collectors).
Otherwise, and hopefully normally, all manipulation of object pointers follows the
consistent rules explained in §4, §7, and §8 and is invisible to the user.

13 Conclusions

Multiple inheritance is reasonably simple to add to C++ in a way that makes it easy
to use. Multiple inheritance is not too hard to implement, since it requires only very
minor syntactic extensions, and fits naturally into the (static) type structure. The
implementation is very efficient in both time and space. Compatibility with C is not
affected. Portability is not affected.

14 Acknowledgements

In 1984 I had a long discussion with Stein Krogdahl from the University of Oslo,
Norway. He had devised a scheme for implementing multiple inheritance in Simula using
pointer manipulation based on addition and subtaction of constants. Reference 3
describes this work. Tom Cargill, Jim Coplien, Brian Kernighan, Andy Koenig, Larry
Mayka, Doug Mcliroy, and Jonathan Shopiro supplied many valuable suggestions and
questions.

15 References
[1] Gul Agha:

An Overview of Actor languages.
SIGPLAN Notices, pp58-67, October 1986.
[2] Tom Cargill:
PI: A Case Study in Object-Oriented Programming.
OOPSLA’86 Proceedings, pp 350-360, September 1986.
[3] Stein Krogdahl:
An Efficient Implementation of Simula Classes with Multiple Prefizing.
Research Report No. 83 June 1984,
University of Oslo, Institute of Informatics.
(4] Bjarne Stroustrup:
The C4+ Programming Language.
Addison-Wesley, 1986.
(5] Daniel Weinreb and David Moon:
Lisp Machine Manual.
Symbolics, Inc. 1981.

208

MuX: a lightweight multiprocessor subsystem under UNIX

Christian Tricot

LGI-IMAG
University of Grenoble

Electronic mail: tricot@imag.uucp

ABSTRACT

MuX is a subsystem which allows the multiplexing of a large number
(thousands) of processes within a UNIX process. MuX has been defined in
order to support the implementation of the OCCAM™ ([5] parallel
programming language on UNIX machines. This OCCAM programming
system developped in our laboratory will be described elsewhere. MuX
applications are developped in C. The small size of each MuX context
allows efficient switching between a large number of MuX processes.
Scheduling is done according to I/O requirement of processes 2nd/or time
slicing. An internal clock is also managed by MuX which allows each
process to wait for a specific delay. MuX processes are blocked by the MuX
kernel, when waiting for input, without blocking the supporting UNIX
process. In this paper a brief overview of the UNIX process management is
presented. Then we present the MuX kernel, some implementation
considerations, and finally a brief description of the application of MuX
kernel to build a run-time system for the implementation of an OCCAM
compiler.

1. INTRODUCTION

The UNIX kernel[l] deals with two main activities: system calls and scheduling. Each
of these, and also the process creation mechanism are sources of troubles when using a
large number of interacting processes.

UNIX system calls

When a user program or a UNIX utility requires a service to the UNIX kernel, a
system call is generated and the corresponding service identification and parameters are
provided to the kernel. Then the processor switches to kernel mode. The user process
becomes a kernel process which executes the requested function. When an I/O operation is
performed, the kernel process has to wait for its completion. The execution of the process
is suspended, and the scheduler allocates the processor to a new process. When the
suspended kernel process is resumed, the end of the system call is executed, the processor
switches back to user mode, and the kernel process back to the user process. When a
kernel process is executed, no interrupt can cause the processor to be switched to the
execution of another process, except if the kernel process itself, explicitly makes a call to

OCCAM is a Trademark of the INMOS Group of Companies.

209

MuX: a lightweight multiprocessor subsystem under UNIX

the scheduler. The effect of any I/O interrupt is delayed until the end of the current
system call. System calls are frequent and costly operations. The overhead is due to trap
mechanism, and context switching. System calls provide services such as process creation,
signal management etc. Process control is performed via the signalling mechanism. Each
time a process wishes to signal an event to another process, it may loose the processor if a
process of higher priority is in the ready queue. So it is impossible to efficiently control
the process ordering.

UNIX scheduler

The UNIX kernel deals with process scheduling and process switching. Runnable
processes share the processor via a time slicing mechanism. The time slicing is performed
by a periodic interrupt. UNIX kernel allows two kinds of interrupts, interrupts initiated
by an 1/O device, or interrupts generated by the system clock. A user process cannot
disable interrupts. When an interrupt occurs, the active user process, is suspended after
the completion of the actual instruction, the processor then switches from user mode to
kernel mode, handles the interrupt. After the completion of the interrupt handler, the
scheduler is entered, it selects for resumption the user process of highest priority. In the
case of a clock interrupt, the current user process is normally placed in a list of runnable
processes, the highest priority process is then chosen by the scheduler. So due to an I/O
device interrupt, a user process can be replaced by another process between any two
instructions. User processes cannot know exactly how long time they will own the
processor, when they will be replaced by another user process, and after a running period,
how long they have been running. Therefore, it is very difficult for a given application to
control in a specified manner the ordering of processes. One cannot build any type of
process ordering on top of UNIX scheduling. Because of its process orientation and time
slicing algorithm, the context switching is frequently performed. It occurs either at the
end of a system call, or in response to interrupts that can occur in user mode. A UNIX
context contains the process descriptor, different segments adresses (user data, user code,
user stack) and an area to save the CPU state. This represents an important cost of
memory space.

The process creation mechanism

A new process can be created by a fork system call which makes a copy of the
invoking process. The child process is an exact copy of the original one, except that it has
a different process identifier. This basic creation mechanism allows any kind of more
complex creation schemes, but it causes system overhead due to memory space and CPU
time for creating the new process memory image.

UNIX kernel overheads

UNIX scheduling, context switching, and system call mechanism are main causes of
UNIX overheads when they are intensively used. Therefore overheads become important
when the number of processes of a given application is very large. The UNIX system
cannot support such a large number as thousands of processes. It allows only a small
number of processes for each user, and some hundreds for the whole system, depending of
the system configuration. It must be remembered that weighty processes cost as much as
light ones. The process creation mechanism cannot support a high rate of process
creation, these processes running for a short time. In this case, the process creation
mechanism introduces an increasing overhead. In addition, if these processes are often
switched, this also would increase the overall overhead. The whole application becomes
totally inefficient. Such applications are more and more frequent with the use of parallel

210

MuX: a lightweight multiprocessor subsystem under UNIX

language compiler in a UNIX environment which requires simulations of parallel execution
on a single processor. We were faced to this problem while building a compiler and a run
time system for the OCCAM parallel programming language. We need a system with a
large number of lightweight processes, and a very high rate of quick context switching,
for instant to be able to implement an efficient message passing and synchronization
mechanism.

A way to solve this problem is to build a lower layer which multiplex lightweight
processes within a UNIX process. We call this multiplexor layer MuX. It has been designed
in such a way that it can be used to resolve other crontrol mechanism for UNIX
application.

2. THE MUX SYSTEM

The MuX subsystem[10] offers process scheduling, input/output facilities, and clock
management services. The primitives of the MuX system have been designed according to
four main principles:

possible explicit ordering of processes.

offer a new model of lightweight processes which is able to support a large number of
processes.

minimize context switching and process creation overheads.

avoid any operation that may block the MuX kernel and therefore causes delays for
other MuX processes.

The MuX subsystem includes about 2000 lines of C code. MuX applications are written in
C. Each process is represented by a small area of memory (used as a running stack), a
process descriptor and a set of shared C functions that defines the process running code.
Process data are represented as local variables placed in the process stack via the C
function data. Global data of the whole C program are shared data between all the
processes.

Process management

Each process shares the MuX ‘“‘processor’’ via a round robin scheduling algorithm:
the process with the highest priority gets the use of the processor first. Process switching
is done according to I/O requirements (specific MuX primitives) and/or time slicing. The
time slicing policy requires a clock that ticks periodically and counts the running time of
the UNIX process. Such a service being available only on UNIX 4.2 BSD, our time slicing
clock mechanism is build as a facility independent from the MuX system clock.

MuX offers two levels of process management services: a basic one, which identifies
processes directly with a process number, and another one, using a list structure. Process
management services are borowed to UNIX. The new_process function creates a child
process with a programming interface similar to the fork() primitive. The child process
receives 0 as return value; the father process gets the child process number. The new
process stack contains only a copy of the frame of the function which has called the
creation primitive: it will be used as initial context of the new process. This mechanism
allows to minimize the process creation overhead. Services such as process killing
(muz_kill), waiting for the completion of a child process (muz_wait), process activation
(muz_activate), and process interrupt define the basic level of MuX. On top of this basic
layer, MuX provides process management by means of process list such as suspending a
process within a list (muz_suspend) or resuming a process from a list (muz_resume).

MuX: a lightweight multiprocessor subsystem under UNIX

Clock management

The MuX clock defines a global time for the whole application. When the application
requires time management, it must first initialize the clock mechanism by a call to
init_clock primitive with the clock period as parameter. The basic period is function of
the host system (100 micro seconds to 1 second). Two different implementations will be
described below. The clock mechanism is performed via a signal handler which receives
clock signals from the host system, and a queue for events. Process can wait for either a
delay or a date. Event is placed in the queue, the process is reactivated when the date is
reached or the delay is over.

MuX system clock also provides another alarm mechanism. A process indicates to
the system by a non blocking primitive (mua_alarm) an upper limit of time for an alarm.
When the clock reaches this limit, the system reactivates the process only if it is
suspended. Such a mechanism is useful for implementing time constraint operations such
as read with time out.

I/0O operation

The MuX kernel manages only the input operations. The output operations are
directly transmitted to the UNIX kernel, any other output mechanism would indubitably
end with a call to the UNIX kernel to write. We just define some new primitives which
write some characters, or a string and leave the MuX processor when terminated. On the
other side, an input operation may suspend the execution of the UNIX process when no
characters are available, a ‘“buffered-read’”’ mechanism has been implemented. A process
requiring for characters adresses the request to the buffer manager, and will be suspended
when no character is available. A specific mechanism fills the buffer when characters are
available in the file. The standard input file (stdin) systematically uses this mechanism.
Applications that require buffered-input files, must inform the MuX system by using the
muz_open primitive with the descriptor of the opened file as parameter. In addition, this
mechanism provides a pre-read primitive (muz_pre_read) which returns true when
characters are available in the buffer, or false in the opposite case. In this later case, the
system will reactivate the process (if suspended) when characters become available in the
buffer. This could be used for example, to provide a mechanism which can read in the
fisrt ready file among several input files.

3. IMPLEMENTATION

The MuX system is based on two levels: user and kernel. A simple mechanism is
provided to switch from user mode to kernel mode (MuX mode) and backward. An
interface librairy defines the user facilities. Other primitives can be used when MuX mode
is set. Two functions allow the processor mode switch (muz—_to_kernel and muz_to_user)
and insure that no external events can interrupt the kernel.

Process definition

The MuX kernel contains a process table describing the state of each MuX process.
The process table defines a maximum number of process which depends on a system
parameter supplied at starting time. A MuX process has four possible states:

e running in user mode.
) running in MuX mode.

. ready to run.

212

MuX: a lightweight multiprocessor subsystem under UNIX

e waiting.

A process descriptor has the following definition:

typedef struct process {
struct proc *suiv,xpred; /* link for list management */
liste_p *head; /* ptr to the list containing the process %/
int *stackadr; /* ptr to stack base */
int st_size; /* process stack size */
short ;idcreat, mypid; /* process number of creator, and pid */
short prio; /* process priority */
short state, motive; /* state and complementary information */
short childnb; /* number of existing child process */
short lastchild; /* most recently child process number
* that has terminated
*/
short stamp; /* process creating time stamp */
int save_area[SAVE SIZE]. /* save CPU state area %/

} proc_typ.

The motive field gives more information on the waiting state (waiting for 1/0,
waiting for delay, etc). The save area size depends of the host processor type and will
contains informations for context switching. The stamp field provides a process ordering
to build a synchronization mechanism based on process termination. Since the process
turnover may be very important, a father process can terminate before a child process
and a new process can be placed in the same descriptor as the father’s one. So when the
child process will terminate, it will compare stamp field and will detect if its own father is
still active or not.

Process context switching

The process switching mechanism involves three MuX functions: muz_save,
muz_restore and muz_switch. The muz_save function stores in the save_area field of the
current process descriptor, the context created by this function on top of the process
stack, and all the informations (Stack pointer register,frame context register, etc) which
are needed to be able to restore this context in the same area within the stack. The
muz_restore primitives switches from the current process stack to a new process stack
using the save_area field provided as parameter. It reads the informations from this
save_area, and build the image of the context of the previous call to the muz_save
function, in the target stack. It updates the stack pointer register. As a result, it runs
with the stack of the new process. The return adress is taken from this new stack and it
returns to the restored process. muz_switch is the function which performs the selection
of a new process and transfers control to that process. It does not save the current process
context. According to process behavior, muz_restore is a function that never returns. On
the other hand, muz_save seems to return twice. In fact, a muz_save call returns 0,
indicating that it is the first return from muz_save. muz_restore simulates the second
return from muz_save, it will return 1. These are the only machine dependent functions of
MuX. Therefore we have implemented them in assembler. The save area structure
depends of the host processor type, and of the context build by the C compiler. Registers
are saved to and restored from the stack at link and unlink time. So the save area buffer
will contains implicitly saved registers. (80 bytes on VAX, and 54 bytes on 68000
processor machine)

MuX: a lightweight multiprocessor subsystem under UNIX

Process scheduling

The switching policy is based on a round robin algorithm. Processes which are able
to run are placed in a list of ready processes (ready_queue). Processes which have already
got the processor, wait for the next time in different list (priolst) according to their
priority. The MuX system defines a new level of scheduling on top of UNIX. A global
system clock (as provided by UNIX) does not allow a fair implementation of a time slicing
mechanism. Due to the processor load, the UNIX process supporting the MuX application
can get less frequently the processor, and each MuX process will not share the processor
for the same period. So a fair time slicing mechanism requires a special clock which runs
only when the UNIX process is running.

The UNIX 4.2BSD system provides mechanisms which allow to build such a process
virtual clock. This system provides each process with two timers which can be
automatically restarted at expiration. The first timer uses real time, and a signal
SIGALRM is generated when the timer expires, it can be useful to implement a global
clock for the MuX system. The second one uses process virtual time which is local to each
UNIX process and a signal SIGVTALRM is delivered when it expires. Two functions allow
to handle both of these two timers. The first one allows to set a timer (setitimer), and the
second one to read the content of a timer (getitimer).

The time slicing algorithm will be based on that virtual timer. It generates a
SIGVTALRM signal after a short period of running time. A signal function handler
(muz_slicing) save the context of the current process and chooses and tranfers the control
to a new process (muz_switch). The muz_switch function has to set a new period of time
for the new process before restarting the process. From the UNIX point of view, the UNIX
process switches stack when it handles a signal. In fact, the UNIX kernel when it start a
signal handler, saves in the user process stack the state of the process and useful
informations for the signal processing but does not modify the process descriptor. Some
MuX primitives such as new_process must save the timer value for the current process
before executing the requested service, and finally restore this value when returning to the
process.

Process creation mechanism

The new_process function creates a new MuX process and switches back to the caller
process. It is called once, and it returns twice, once in the calling process with the new
created process number, and a second time, in a child process, with the value 0. The
creation mechanism is based on the following algorithm.

214

MuX: a lightweight multiprocessor subsystem under UNIX

short new_process(stack_sz, prio)
int stack_sz; /* child process stack size %/
int prio;— /* child process priority */
{
register proc_typ *p.
int 1i;
short npid;
struct itimerval tt;
mux_to_kernel()
timer_virtual_save(&tt); /* save content of timer */
i = mux_save(active->save_area);
if (1==0) { /* creating child process */
/* active process is placed at the top of the ready queue */
add_first(&ready_queue,active):
npid = alloc_process(); /* allocate a free process descriptor */
p = head_process_table + npid.
p-> adrstack = (int *) malloc(sizeof (int)*stack_sz)
if (p->adrstack==0) { /* no more memory space */
mux_error (*memory overflow while creating a new process ");
/* NOTREACHED */
}
else {
p->adrstack = p->adrstack + stack sz -1;
}
p->st_size = stack_sz
initstack(p->adrstack)
/* save the new process state and switch back to the father process */
active = p ; active->state = RUNNING ;
i = mux_save(p->save_area) ;
if (i==0) {
/* _mux_suspend will choose first process in the ready queue */
_mux_suspend(npid, &priolst[active->prio] ,READY NIL)
/* return to the caller process */
}
mux_to_user();
return(0); /% return to child process */
}
else {
/* this is the caller process, the child process is created */
active->state = RUNNING ;
timer_virtual restore(&tt): /* restore process quantum to continue */
mux_to_user() ;

}

The init_stack function creates the new process stack. It copies from the original stack the
frame contexts in order to build a new environment on top of the new stack. Thus, three
frame contexts are copied, and links between these contexts are recalculated for the
update of the new stack:

the frame of init_stack function.
the frame of new_process function.

the frame of the function which has called the new_process function. This
represents the initial environment of the new process.

This function is written in the assembler language.

MuX: a lightweight multiprocessor subsystem under UNIX

Clock mechanism

MuX provides a simple clock management mechanism. It uses a UNIX clock which
periodically generates a signal. The clock signal handler is processed differently according
to the current mode of the running process:

e user mode: 1t increases the global clock, and resume a process after its delay
expiration.

e MuX mode: it does not increase the global clock, but a specific counter which counts
the gap between the MuX clock and the true date. When the current MuX processor
state will return from MuX mode to user mode, the clock moves forward and
recovers the real date.Processes are resumed after the delay expiration.

This provides a mean to prevent any modification of the MuX processor in MuX mode,
and to avoid loosing occurrence of clock signaling. This mechanism introduces some delay
on the MuX clock and delays some critical time management such as process activating
when the waiting period expires. MuX introduce a maximum limit for the clock gap, and
if this limit is reached, the system will warn that the system clock is no more
synchronized, and will possibly stop the execution.

The real timer as described above is useful to implement the clock mechanism on
UNIX 4.2BSD. It allows clock periods from 100 micro seconds to some seconds. On other
UNIX system, these possibilities are not provided, and we use the UNIX alarm system call
which offers periods up to 1 second. So when a signal is received, the MuX clock is
increased differently according to the basic period. The clock period, the clock gap’s limit,
and the clock increment are introduced at initial time with the init_clock call.

Input/Ouput

MuX system offers a “buffered read” file mechanism. It is based on a synchronized
buffer mechanism providing two primitives. The read operation gets a character from the
buffer (read_buffer); the caller process is suspended if the buffer is empty. The write
operation puts a character into the buffer (write_buffer); the caller process is not
suspended if the buffer is full, but the previous character is lost. The buffer structure is as
following:

typedef struct sync_buffer {
char buffer [MAXCHAR]

int head, queue; /* index to put in and get a character
* from the buffer
*/
short option; /* process that requires to be alarmed
* when a character is available
*/
FILE *input; /* NIL or input file associated to
* the buffer descriptor
*/
liste_p reader; /* list of process waiting for characters */

} sync_buffer typ .

The “buffered read’” mechanism opens a synchronized buffer, attaches the opened file
to the buffer and returns the buffer identifier. If a process requires a character from the
file, it calls the muz_getc primitive with the buffer identifier. If no character is available,
the read_buffer call suspends the process. Otherwise, the process receives the character
and leaves the MuX processor. A specific mechanism fills the buffers which are associated
to an open file. Two possibilities have been implemented.

216

MuX: a lightweight multiprocessor subsystem under UNIX

First, on UNIX 4.2BSD, a specific system call (fentl) introduce asynchronous 1/O
facilities for keyboard handling. A SIGIO signal is sent to the process when I/O is possible
(a key has been hit). We use this facility to fill the buffer associated to standard input file.
A signal handler is run each time a character is available on the keyboard input, it reads
and puts characters into the buffer (write_buffer). This primitive activates processes
waiting for characters, then the process waiting for a pre-read operation.

Second, another facility provided on all UNIX system is used on other cases. The
fstatsystem call returns informations on an opened file, a field (st_size) of the returned
structure described the characters available for 1/O operations. The MuX system uses
this facility to poll each buffered input file descriptor at each process switching time.
Then it reads characters on the valid files and put them into the associated buffer
(write_buffer).

4. EXAMPLE OF USE: A KERNEL FOR OCCAM PARALLEL
PROGRAMMING LANGUAGE.

The MuX system provides services that allows synchronization between processes
and asynchronous operations with the environment. The MuX system offers a suitable
process model to build the run time support for the OCCAM parallel programming
language. We present first a brief overview of OCCAM language, a description of our
compiler, and then the description of our OCCAM kernel.

4.1. OCCAM language and OCCAM compiler under UNIX.

The OCCAM language[5] has been defined according to Hoare’s CSP[4] model to be
the language of TRANSPUTER family produce by Inmos[6][2]. The language explicitly
provides primitives for concurrency and non-determinism.

The OCCAM language

The OCCAM language is designed around two basic concepts, the process concept
and the channel concept. Processes are the basic working objects. Channel is the basic
communication element that allows concurrent processes to communicate with each
other. A channel can be shared by only two processes, and is unidirectionnal. The
OCCAM language has only four elementary processes:

. assignment: x:= a

e channel input: chan ? x

e channel output: chan ! x

o delay: TIME ? AFTER exp

Two other basic processes are also available:

e astop instruction: STOP (modeling deadlocks and divergence of a program).

. an instruction that does nothing: SKIP (modeling correct termination).

These processes can be combined in order to construct processes using the three OCCAM
constructors SEQ, PAR, ALT and some more conventionnal constructors as IF and
WHILE.

SEQ
procl
proc2

MuX: a lightweight multiprocessor subsystem under UNIX

The SEQ constructor defines a collection of processes which are executed sequentially one
after each other (if all predecessors of a process terminate).

PAR
procl
proc2

The PAR constructor defines a collection of processes running in parallel and terminating
if all of them do.

ALT
guardl
procl
guard2
proc2

A guard can be a delay process, an input process possibly associated with local conditional
expressions or a SKIP process. The ALT process starts by evaluating its guards, and
wailts for at least one guard to become valid. From the subset of valid guards, one is
randomly choosen, and the corresponding process is executed.

The iterative process:

WHILE expression
proc

defines the classical iterative while statement.

An IF constructor is also provided. It allows only to test sequentially local conditions
on processes and behaves like a STOP if the conditions are all false.

OCCAM compiler on UNIX.

The compiler is divided in two parts, a code generator which translates an OCCAM
program to a C program, and a run-time system which includes scheduling of lightweigh
processes and message passing mechanism. The main decisions to implement the OCCAM
compiler have been how to represent the two basic structures, OCCAM processes and
channels, and how to support the OCCAM model of processes. As UNIX doesn’t provide
efficient process management mechanism, we have given up the idea of mapping each
OCCAM process to a UNIX process, and decided to introduce our own process
management mechanisms. This was the origin of the MuX system. OCCAM processes, as
defined in the model, are grouped together in a single MuX process as often as possible.
OCCAM constructors which provide sequential behavior between part of their
components are mapped to one MuX process. New MuX processes are created only when
dealing with the PAR constructor. All the other constructors are mapped to a sequential
code in a single process. The OCCAM process term is used hereafter in the paper as a
MuX process which describes a sequential behavior of a part of an OCCAM program.

The generated C program is divided in a set of functions which provide either
OCCAM processes code, or OCCAM procedures. A global vector mechanism provides
acces to variables which are not local to the current function [8]. OCCAM process context
is composed of a MuX process context, and an additional vector to allow variable
management. The OCCAM program is translated either into C statements for the
classical definition part of the OCCAM language, or into OCCAM kernel run-time calls.

218

MuX: o lightweight multiprocessor subsystem under UNIX

4.2. OCCAM KERNEL FUNCTION.
The OCCAM kernel [9] on UNIX is divided in four parts:
° OCCAM processes creation and termination mechanism.
e channel managment (initialization/communication/synchronization).
e access to the environment.
e alternative resolution.

All the primitives of the OCCAM kernel are executed in MuX mode by means of the
simple MuX switch mechanism. This allows to use internal MuX kernel functions and
provides an efficient implementation.

OCCAM process creation.

The process creation is based on the MuX subsystem. The create_process primitive
initializes the MuX process supporting the OCCAM process. The MuX process creates the
vector supporting the static links.

Communication on channels.

A channel is identified by a channel number which represents its index in the
channel descriptor array. A channel descriptor is composed of:

e suiv: index of next channel number.

° pid—option: process number waiting for a guard to become valid.

. pid—reader: reader process number.

. pid—writer: writer process number.

e value: transmit value.

e wait_lst: a process list to suspend process when communication is not yet available.

Free channels are placed in a specific list. The channel_alloc and channel_free primitives
allow to allocate and release channels. Two additional primitives provide the message
passing mechanism. Channel_read allows a process to read a given amount of bytes from
a channel and to assign it to a specific variable, and channel_write is used to write an
expression on a specific channel. These two primitives verify that no other reader or
writer process are already arrived. In this case, it will stop the execution and send an
error message to the user. The protocol implementation is quite simple. The writer
process resumes the reader process if it is ready, then it is suspended, and will wait for
the completion of the reader. The reader process waits for a writer process, then reads the
message and resumes the writer process. The ALT resolution introduce alternative
process which may read on that channel. The writer process resume the alternative
process using the process number in the pid—option field. Then it behaves above and will
wait for the resumed process to read on the channel. The alternative process as we will
see later will choose a valid communication and behaves as a reader process (call to
channel_read primitive) and executes the guarded process. A short description of read and
write primitives is as follows.

19

MuX: a lightweight multiprocessor subsystem under UNIX

channel read (....)
{
mux_to_kernel():
/* ptr is a pointer to the channel */
/* place process number in channel pid reader field */
if (No ready writer process on the channel)

{
_mux_suspend(mypid(),&ptr->wait_1st,WAITING, CHANNEL_ READ) ;
/* the process is resumed by a writer */
/* reads the channel value field, and terminates communication step */
/* resumes writer process */
_mux_resume (gptr->wait_1st)
3
else

{ /* a writer process is already present */
/* reads the channel value field and terminates communication step */
/* resumes writer process */
_mux_resume (&ptr->wait_1st);
/* leaves the processor, and suspend for the next round */
_mux_pause() ;

}
mux_to_user();
}
channel_write (...)
{
mux_to_kernel();
/* ptr is a pointer to the channel descriptor */
/* place process number in channel pid writer field */
/* stores the value */
if (a reader process is ready)
{
/* resume the reader */
_mux_resume (&ptr->wait_1st):
}
else
if (a guarded process is waiting for am input
on that channel (using pid_option field))
{
/* activates it and the guard becomes valid */
/* as we do not know in which list it is suspended,
* we activate it by its number
*/
_mux_activate(ptr->pid_option);
}
/* After that, we leave the reader complete the communication */
_mux_suspend(mypid(),&ptr->wait_lst, WAITING, CHANNEL_WRITE) :
/* the reader process resume us, the communication is complete */
mux_to_user () ;
)

Access to the environment.

The outside world is viewed from an OCCAM program as a set of channels which
are mapped to facilities of the host system. These channels allow the OCCAM program:

MuX: a lightweight multiprocessor subsystem under UNIX

° to obtain parameters from the shell command.
° to read from and write to the console.
e to open, close, read and write files.

The Screen channel is a simple buffer mechanism, and allows access to stdout file. The
Keyboard channel allows a single OCCAM process to read stdin file. It uses the stdin
synchronized buffer as provide in MuX system.

Other standard files are accessible to OCCAM via file handlers which handle one file
at a time. Each file handler is connected to the OCCAM program by two specific dual
channels, the first one for reading from (filein), the other one for writing (fileout). The file
handler implements the protocol defined by the Inmos implementation[5]. When the file
is opened for output, the program writes characters or control values on the fileout
channel and reads the return value from the filein channel. When the file is opened for
input, the OCCAM program writes command values on the fileout channel and reads
characters or control values on the filein channel. File acces channels are implemented by
a simple buffer for the fileout channel and by a synchronzed buffer for filein channel.
Control values sent on fileout channel are interpreted and return values are placed in the
filein buffer. The synchronized buffer takes into account the process management and
allows a simple read file mechanism, it is supplied either with the return values by the file
handler, or by the filer mechanism from the input associated file when the file handler is
opened in input mode.

Alternative handling.

OCCAM provides two versions of the alternative constructor|Dij..]. The PRI ALT
constructor gives the priority to its first valid guard. The ALT constructor provides a non
deterministic choice between all the valid guards. These constructors may be nested to
control procedures selection. If no guard is valid, these two constructors have to suspend
the process and have to wait for a guard to become valid. Parts of the optional
mechanism that the MuX system provides are very useful to implement these
constructors. The ALT resolution is build in three phases.

First, we build an pre-evaluated tree. Nodes are either guards, or alternative
contructors. The local condition: are already evaluated and the guard node indicates true
or false, or a channel number where the process waits for a possible communication, or
for a delay. The node contains a pointer to the guarded process function.

Second, the tree is completly evaluated. Each guard is evaluated using the following
method: The evaluation algorithm is divided in two steps:

e o valid guard has been already evaluated.
° a valid guard has been detected.

First from the root of the tree and until a valid guard is detected, OCCAM kernel will
read nodes and place some alarm and optionnal read as provided by the MuX system, or
put an option mark on a channel.

As soon as a valid guard is detected, OCCAM kernel removes all the option marks
already placed and then memorizes the valid guards.

After the evaluation, if no valid guard has been detected, the process is suspended and
will wait for an option to become valid. When the process restarts, it will detect all the
true guards (possibly several guards become valid nearly at the same time).

Third, at the end, it will choose the smallest priority guard among the valid guard list
and executes the function which realises the OCCAM guarded process The priority is

221

MuX: a lightwesght multiprocessor subsystem under UNIX

managed as following: the nodes directly under an ALT construct node are of the same
priority as the constructor node itself. Nodes directly under a PRI ALT constructor get
less and less priority. The first node gets the same priority as the constructor node, and

the following nodes will receive a priority which is increased from the previous node
priority.

Part of the evaluation algorithm is as follows:

MuX: a lightweight multiprocessor subsystem under UNIX

node_evaluation(node)
node_typ *node; /* pointer to the node to valuate */
{
switch (node->node_type) /* study of the node type */
{
case GUARD: /* Guard node */
switch (node->expr) /* study of guard contents */
{
case TRUE_EXPR: /* expression evaluated to TRUE */
value = TRUE;
break ;
FALSE EXPR: /* expression evaluated to FALSE */
value = FALSE;
break;
TIMER: /* guard TIME AFTER */
value = (_mux_time() > node->date)
if (time is not already over and still in first step)
{
/* place an option */
_mux_alarm(node->date) :
}
break;
TIME: /* guard with TIME channel:
* always ready to communicate
*/
value = TRUE;
break;
FileInoO: /* Input channel associated with file handlers */
FileIn1:
FileIn2:
FileIn3:
FileIn4:
FileIn5s:
FileIné6:
FileIn7:
/* place an option in the synchronized buffer
* if no character is available
*/
value = _mux_pre_read(node->expr)
break;
default:
/* test valid channel number, otherwise stop */
/* test communication on that channel */
value = communication (node->expr)
if (not ready and first step)
{

/* set option pid in the channel descriptor */

}
break
}
if (first step)
{
/* no valid guard has been evaluated */
if (value)
{
/* first valid */
/* remove all the option mark aready
* placed and memorized in the list
*/

MuX: a lightweight multiprocessor subsystem under UNIX

}

remove_options() ;

/* add this first valid guard in the valid list */
add_valid(node)

step = SECOND ; /* begins the second step */

}
else
{
/* add a option in the option list */
add_option(node) ;
}
}
else
{
/* second step: memorize valid guard only */
if (value) /* the guard is valid */
add_valid(node) ;
}
if (node->guard_suiv != NIL) /* evaluate the next guard */
node_evaluation(node—>guard_su1v)
break;

case PRIALT: /* constructor nodes */
case PRIALREP:

case ALT:

case ALTREP:
/* evaluation of the sub-tree guards */
node_evaluation(node->child);

}

The control evaluation algorithm is simply described by:

evaluation (head)

{

}

mux_to_kernel() ;

/* start evaluation */
node_evaluation (node)

if (valid list is empty */

{
/* suspend the process */
_mux_suspend(mypid(), alternative_list, WAITING, ALTERNATIVE):
/* resumed by a process */
/* detect valid guards (may be several) and
* placed them into the valid list
*/
}

/* choose a valid guard from the list x/
/* and run the function which realises the chosen guarded process */
mux_to_user() ;

This mechanism based on an evaluated tree introduces some overheads in the ALT
resolution, but it allows different schemes of evaluation and choice, as for example a non-
deterministic choice between the valid guards. It may be extend for OCCAM program
observation, and program debugger tools.

224

MuX: a lightweight multiprocessor subsystem under UNIX

5. CONCLUSION.

The implementation of OCCAM described above proves the adequation of the
process management facilities of MuX as well as the management of requests with
temporal features. MuX has also been applied to a quite different domain: the distributed
management of Smalltalk objects. This object manager has been implemented using MuX
on top of UNIX BSD 4.2 [3]. Here, MuX provides the object manager with facilities for
shared data and for process management. Our short term plan is to integrate a debugger
that would allow the implementer to observe the status of his running processes. Our
OCCAM programming system will be extended with a new construct[7] to take into
account the particular case of environmental system programming, and the MuX system
will allow preliminary experiments to show that the new functionnality can be achieved
at a reasonable cost.

Our early experiments show that MuX offers an easy way to program parallel
applications while not degrading execution time too much.

Acknowledgments.

I would like to thank Traian Muntean (Imag/LGI) and Gerard Vandome (Bull
research centre) for their support, guidance and their help with the English syntax and
style.

REFERENCES

[1]. M.J.BACH, 'The design of the UNIX operating system’, ATT Prentice/Hall .

[2]. . M. BARRON, Inmos 'The TRANSPUTER and OCCAM’, IFIP congress,
Information Processing, 259-265, (1986).

[3]. D. DECOUCHANT, 'Design of a distributed object manager for the smalltalk-80
system’, OOPSLA 86 congress, 444-450 (1986).

[4]. C. A. R. HOARE, ’Communicating sequential processes’, Comm. ACM, 21 (8), 666-
677 (1978).

[5]. Inmos Ltd., "OCCAM programming manual’, Prentice/Hall (1984).

[6]. Inmos Ltd., "TRANSPUTER reference manual’, (1985).

[7]. TMUNTEAN, M.RIVEILL, ’An extented OCCAM model for timed parallel systems’,
IAS congress, 470-479 (1986)

8. C.TRICOT, M.RIVEILL, ’Compilateur OCCAM.UX: structure du code C genere’,
research report to be published, IMAG/LGI (1987).

[9]. C.TRICOT, ’Definition d’un noyau OCCAM sur UNIX’, research report to be
published, IMAG/LGI (1987).

[10]. C.TRICOT, 'MuX, un gestionnaire de processus sur UNIX’, research report to be
published, IMAG/LGI (1987).

226

Using a Unix Engine as an Intelligent Information Server

Martin D. Beer

Department of Computer Science,
University of Liverpool,
P. O. Box 147,
LIVERPOOL
L69 3BX.

Electronic Mail: SQMBEER @ UK.AC.LIVERPOOL.CSVAX

ABSTRACT

The philosophy of the intelligent information server is cxplained in the context
of Office Systems. Particular emphasis is given to the sources and organisation of
typical office information, and to the applications to which it is put. The advantages
of using a variety of cheap workstations, connected to a series of powerful servers are
discussed.

Experiences with a prototype server are described, with particular reference to
the first pilot applications implementations:

- a scientific paper generator and
- an improved visual interface to a database.

These pilot implementations have been prototyped using the readily available
Unix toolset at the information scrver end, showing the power and flexibility of the

Unix approach. The initial results of these pilot studies arc fully discussed, and indi-
cations are given as to the future direction of the Intelligent Information Scrver project

1. Introduction

The falling cost of computer hardware allows data processing capacity to be purchased and used wher-
ever it is required in the modern office environment. This has led to the development of checap, but
extremely powerful personal computers. Not only the hardware, but also the software available to the
manager at his desk, allows the manager to build a powerful decison support tool with casc.

There is no need for the typical personal computer user to know how to program, or even how (o
use an operating system. This is because a whole galaxy of software packages are readily available for
all the jobs for which he is likely to want to use his computer. These can be catagorised into the fol-
lowing applications areas:

a) spreadshccts

b) small database applications

¢) word processing and text processing

d) the preparation of graphical and other presentation type displays
e) accountancy and similar specialist applications.

These are usually independent programs which makes it difficult not pass information from one to
the other. The flexibility provided by being able to configure one’s own work environment docs how-
ever compensate greatly for this. Users like the feclings of security and of controlling their own com-

puting resources that the microcomputer revolution has brought them. This is primarily because of the
availability of cheap, mass produced hardware and software for all of the most common office tasks.

It is also awkward to communicatc with other information providers, cxcept in the most primitive
ways. It is still highly desirable however, (o have immediate access Lo the most accurate and up-to-date
corporalc data available. This is best organised by a centralised data proccssing department with all the
staffing and other resources necessary to provide such a service.

The solution usually adopted as a compromisc between these two conflicting requirements is 10
install a computer network which connects distributed microcomputers to central mainframes [1]. Both
the connection and hardware interface costs tend to be quite high, and a sophisticated microcomputer
system is reduced to being a terminal with at best, data capture and file transfer capabilities. There is
no other way of ensuring either the accuracy or currcncy of any data that has been transferred for
storage on the microcomputer system.

This paper describes an alternative which combines the advantages of maintaining effective cen-
tral databascs with the rcquirements of distributed data processing. The physical and cconomic
difficultics of network access can be greatly reduced by connecting the personal computer to local infor-
mation servers by mecans of asynchronous scrial lincs. The information scrvers can then be connected
10 each other by means of the network |2]. Since the information servers arc pcrmanently coupled,
difficultics with communication with workstations that are temporarily disconnected from the network
do not arise [3,4].

Early thoughts werc concerned with the problems associated with the distribution of files required
by students performing practicals on microcomputers [5]. Whilst file management is quite practical on
a typical microcomputer network [6], problems were cncountered in attempting to collect completed
work in from students electronically as it was found impossible to ascertain which student had ori-
ginatcd the material to be marked. The rcquirement was thercfore for a database structure o collect
material presented for marking and to authenticate it. Initial designs for such a system, which has not
so far been implemented, formed the basis for the Intelligent Information Server.

2. The Prototype Information Server

Information has a granularity that is often difficult to represent by splitting it into scparate files.
Sevcral attempts have becn made to organise groupings of information objects [7] so that they can be

accessed in a much more natural way. The most notable examples of this has been the SMALLTALK
project, based at Xerox PARC [8,9]. The Intelligent Information Server allows malerial to be collected
from whercver it is best made available. This docs not have to be in the form of files, but as individual
data cntities that will be collated and prescnted to the user’s application program in the form of a single
file.

The intelligent information server is intended to give a uniform means of accessing all the data
available to the user of the system. This will include data that is stored:

a) on the workstation
b) in the information server and
¢) on other machines on the network.

In many cases information from more than one of these sources requires merging before presentation to
the uscr as if it has been drawn from a single source. It is not sufficient to give the user access to cach
of these information sources scparately. They must be integrated into a single overall workstation
environment. Since this environment must cater for the information processing requirements of many
different users, each with very different capabilitics and cxpectations, it must be extremely flexible.

The intelligent information server has a number of facilities aimed at correlating existing informa-
tion sources and providing common processing:

a) local integration of personal software
b) import/export of data from the workstation in a compatible format

c) afile server locally which can respond to remote requests for data without the need to access per-
sonal workstations.

d) levels of sccurity, for both local and remote data access.

The design of the intelligent information server makes it look like a ’virtual user’ to the worksta-
tion. That is, it reacts in the same way as the real user to requests for data input and instructions. It
may also initiate activity on the workstation, either by reformatting data or fulfilling a remote query.

It is essential for any office system to maintain the security and integrity of the information hcld
within it. The division of functions between the workstation and the information server (and indced
between information servers) does much to assist this. Sensitive information can be separated and
spread as appropriate between servers and workstations. It should then be possible in most environ-
ments to ensure that information is sufficiently separated to ensure that no single part of the sysiem
holds sufficient information to be of use to a third party.

For systems that include particularly sensitive information, the key data can be held on the works-
tation, on exchangeable media such as floppy disks. It can then be removed from the system when it is
not required. The user is then required to make his own backups and maintain media sccurity as with a
conventional system. The particular advantage of the information server in this context is that by
separating data storage, it is only really necessary to take protective action over the rcally scnsitive
data, which is usuvally only a small part of the total data storage requirement [10].

The separation of information management functions from the workstation:

a) increases security, because there is less risk of unauthorised intrusion - the workstation and net-
work servers can act as sentries as well as access points.

b) allows the full power of the workstation to be made available to the user.
c) simplifies the user’s interface to the office system and removes the need for routine housckecping.
d) ensures that the latest available information is always provided to the manager.

e) the information server remains connected to the network whether the associatcd workstations are
in use or not. This allows information to bc transferred to other authoriscd users at any time.
Equally the information server can collect information when it is available and collate it, rcady
for presentation to the manager when he returns.

3. The Results So Far

In the academic environment there is much less emphasis on shared data than is usual in corporatc
environments. Both academic staff and research students do however spend a considerable proportion
of their time in individual document preparation and in managing their own rescarch data. The first
prototypes have therefore been designed for the following applications:

a) scientific document preparation and
b) database administration

where it is anticipated that the information server approach will have major benefits. In both cases
there have been problems in encouraging staff that are not "experts” in the particular software, that is:

a) the standard Unix documentation tools:
- the troff phototypsetting program
- the ms macro set
- the tbl 1able preprocessor and
- the egn equation preprocessor [11]

b) the database pilot study was based on entering and retrieving data from databases maintained by
Ingres.

Since the implementation of each pilot study had to be restricted to what was practical in a single
undergraduate student project, it was decided from the start to concentrate development effort at the
workstation end, and to rely on the standard Unix utilities to implement as many Information Scrver
functions as possible.

A first prototypes have been been implemented using a High Level Hardware Orion (running
Berkley 4.2 Unix) as the information server, and Atari 1040 STs acting as the workstations. All com-
munications are currently over asynchronous lines.

229

Two different approaches were taken in each of the pilot projects, so that different stratcgics for
uscr-workstation-server intcraction could be evaluated. These were:

a) in the case of the document handler, analysis of intended usage, showed that the primary necd
was for a system that was essentially portable, in that drafts for documents could be downloaded
onto a "portable workstation", or more likely, onto a floppy disk that is compatible with a home
workstation. The intcraction between the workstation and the server is therefore restricted to:

- raw documents that are transferred down to be worked on later, and

- final documents that are uploaded to be printed on high quality printers, or t0 be transmitted
electronically.

b) in the case of the database handler, the requirement was to ease the problems associated with for-
mulating queries, and in developing the capability of integrating the results of successful querics
into other documents. To this extent, the database handler, must be expected to interrelate with
the document handler. It therefore became obvious at an early stage in the design that the data-
base handler required online access to the server to function successfully.

These two applications are therefore useful in developing the concept of the information server as
they represent quite different user aspirations.

3.1. The Document Handler

This software was the most urgently required of the two pilot projects, as there were immediately
several potential users. Three problems with the current methods of editing and text processing on a
single computer were quickly identified:
- the need to edit and preview documents on the larger Unix machines, which was often not
convenient, particularly when members of staff needed to work at home, or in parts of the
building which were not directly connected to a particular machine.

- the need to learn yet another different collection of unintelligible hieroglyphics that bchaved
differently, depending on which machine you were using at the time.,

- the inability to obtain draft output whenever required, whether connected to the server or
not.

- most people are now becoming used to editing documents viewed in their final form on-
screen. They do not like having to modify text files that bear no relation to the final out-
put.

Further investigation showed that proofs are used mainly for correcting the content of documents
and their overall look, rather than to sort out particular layout problems. It is therefore unnecessary for
proofs on dot matrix printers and the basic editing screen to show exactly what will appear on the final
printed page, so long as the essential features are present. In the pilot program for instance, no attempt
is made 1o place page boundaries on the editing screen, since these will invariably appear in different
positions in the final document.

The program as it currently stands, allows the user to enter titles and scction headings by mcans
of dialog boxes which control the levels. Information, such as the author’s name and address, which
does not vary very often is collected from a simple database, so that it does not have to be entered for
every paper. Once headings have been defined, text are entered from the keyboard, in the same way as
with a normal wordprocessor. Paragraph starts are selected from pull-down menus.

The document is loaded and saved to disk as a straightforward text file that after transferring to
the server using the Kermit [12] file transfer protocol, can be entered directly into the phototypsetting
program. This simple user interface has proved extremely popular with potential users, as it hides most
of the wizardry required to use the standard system. It is intended to develop the basic system further,
using the same principles, to allow the user to layout tables and mathematical equations in a similar
way.

Recent development have been in the layering of the user interface [13]. This will allow users to
collcct sections of a document from different sources, and collate them into a single document. This
will allow outlining and dynamic reorganisation of the document on the workstation screen.

230

The next stage in development is to replace the document file with a template that indicates to the
workstation and the information server where the various parts of the document are to be found. These
entities can be text, tables or equations which can be stored on either machine. It is also intended to
start work on a diagram and graphics preprocessor which will allow diagrams and figures to be
designed on the workstation and integrated naturally into final documents. There is already limited
capability to convert data objects as they are transferred between machines, and this will be expanded
so that diagrams can be drawn using a standard drawing package, but stored on the information server
in a form compatible with the other data objects that will make up the final document.

3.2. The Database Handler

As already stated, this study involved the development of a different type of application to the docu-
ment handler. Whilst the real requirement is for a distributed database system, it was impractical to
implement this at the pilot stage. The specification for the pilot system was therefore for a database
front end, which although running on the workstation, would manipulate information held within the
information server’s database. The objective was to provide a simple visual interface that would ba
attractive to "naive" users [14].

This program has now been developed and has the following functions:
a) a text editor for queries,
b) a help menu,
¢) predefined queries and

d) output of the results of queries either to the screen, or into files on the workstation. These files
are in a form that can be integrated into a wordprocessed document.

The Query Editor is a full function editor, which includes all the functions you would expect
from a modern screen editor. The query text can be loaded and saved on disk by the workstation, and
is transferred to the server only when it requires evaluation. A macro facility has been included, so that
complex queries can be built up quickly and easily from pre-written sub-queries.

The current database handler will only function with data held within the /ngres databasc.
Further development is required to integrate data held on the workstation into a form that a user can
use. The results of queries are already translated into a form that can be convenicntly by included into
documents prepared using the document handler.

4. Conclusions

The pilot projects have just been completed so that evaluation is still at a very carly stage. It is
intended to make the programs as they are currently functioning available reasonably widely within the
department, over the summer. This should provide a varied (and extremely critical) user base.

The text processing system in particular, is already developing its own user base, even though the
facilities available in the current program are but a small fraction of the design aim. This is extremely
encouraging as it does represent the minimum capability of the Information Server.

The decision to use the standard Unix utilities at this stage has been fully vindicated in allowing
both pilot studies to be completed in the time available. It would be desirable for the workstation to be
integrated more closely with the Information Server so that the user does not need to know on which
computer the information he is currently using is stored. This is likely to be the subject of several
more projects.

5. Acknowledgements

The programming of the document and database handlers described in this paper was undertaken by G.
P. Pagett (the document handler) and M. Laybourne (the database handler) as part of their final year
projects, under the supervision of the author.

Many of the ideas behind the intelligent Information Server were worked out by the author, in
conjunction with his colleague, Brian C. Walsh , who was tragically killed in a car crash last summer
before he could sce the results of his work.

6. References

(11 J-C. Licnard, "Open Networking in a Closed Environment”, Confcrence proceedings, Networks'86,
London, Online, (1986), pp149-162.

(2] H.S. Spurncy, "The Reality of Standards in Local Arca Networking", Confercnce proccedings, Net-
works’86, London, Online, (1986), pp439-447.

(31 M. D. Beer and B. C. Walsh, "An Intelligent Information Server", Intemnal Report No CSR 85/5,
Department of Computer Science, University of Liverpool (1985).

[4] M. D. Beer and B. C. Walsh, "An Intelligent Information Server for Office Computer Networks",
Conference proceedings, Networks’86, London, Online, (1986).

[5] M. D. Beer, "File Management in Practical Classes", Contribution to "Trends in Computer Assisted
Education” R. Lewis and E. D. Tagg, eds., pp169-173, Blackwell Scientific Publications, Oxford (1987).

[6] Acom Computers Ltd., "The Econet User Guide", Acorn Computers Lid. (1982).

[7] R. Filkes and T. Kehler, "The Role of Frame-based Representation in Reasoning”, CACM, 28 (9),
pp 904-920, (1985).

[8] A. Goldberg, "Smalltalk-80: The Interactive Programming Environment", Addison-Wesley, (1983).

[9] J. Dohahue and J. Widom, "Whiteboards: A Graphical Database Tool", ACM Trans. on Office Sys-
tems, 4 , pp24-41 (1986).

(10] M. Shain, "Micro-Mainframe Security", Conference proceedings, Networks’86, London, Online,
(1986), pp473-481.

(111 B. W. Kemighan, "The Unix Document Preparation Tools - A Retrospective”, Conference
Proceedings, PROTEXT I, Dublin, (1984),

[12] F. da Cruz and W. Catchings, "Kermit: A File Transfer Protocol for Universities", Byte, June and
July 1984,

[13] J. Courtin, L. Kowarski and C. Michaux, "MIDOC: An Integrated Interactive System for Structured
Editing", Conference Proceedings, PROTEXT I, Dublin, (1984), pp 120-125.

(14] J. W. Davidson and S. B. Zdonik, "A Visual Interface for a Database with Version Management”,
ACM Trans. on Office Systems, 4 , pp226-256 (1986).

232

A UNIX SVID Compatible System Based on PXROS

Dr. Rolf Strothmann,
HiohTec EDV-Systeme GmbH.,
St. Johanner Str. 38,
6600 Saarbrlicken,

Abstract West Cermany.

It is shown that an efficient UNIX SYSTEM V (SVID) compatible
system can be built using the realtime operating system PXROS.
Because of the portability and modularity of this operating
system, this system is at least as portable as the UNIX system
itself and can easily be implemented on a multiprocessor hard-
ware. While the standard UNIX operating system exhibits a
monolithic architecture PXROS/SV offers a standard SYSTEM V
kernel interface on top of a network of PXROS tasks. The modu-
larity of the system even allows the construction of small
diskless systems offering a reduced set of UNIX compatible

services.

Reduced Operating System Interface

A typical realtime system consists of tasks which can roughly
be divided into +two classes - asynchronous and synchronous
tasks. Some of the tasks deal with external events and the
inherent asynchronism and their structure has to reflect this.
Driver tasks are usually members of this class. The tasks of
the application system itself mostly operate in a synchronous
manner like standard UNIX tasks do. Writing a synchronous task
is much easier than writing a driver and thus less qualified
programmers can do this job. On the other hand hardware speci-
fic tasks have to be tested within the target system while a
typical application task is fully testable within the develop-
ment system itself. The integration of such a task in the
target operating environment is greatly simplified if the
application tasks are be just the same in both environments.

This can be achieved by making their operating environments

233

identical., Further analyzing application tasks one can find

that only a small number of system calls like open, close,

read, write, seek etc and a small number of sequentially acces-

sed files are used - mostly as data channels. Many of these
programs behave like UNIX filters and thus can be written in
such a manner. Integrating the respective system calls into the
target operating system objects generated and tested within the
development system can be moved to the target system without
any modification or linkage. PXROS’s ability to offer arbitrary
operating system interfaces is the basis for the simplification

described.

PXROS Overview

PXROS is a processor-independant multitasking realtime opera-
ting system. It was developed for single-~ or multiprocessor-
systems using 8-, 16- or 32-Bit micro-processors. The
modularity of PXROS allows an individual configuration depen-

ding on the requirements of an user.

Under all system variants the user can apply the same tools to
solve his problems whether these are simple or more complex

realtime problems.

A PXROS system consists of a certain number of more or less
independantly working tasks. PXROS itself is a system of tasks
implementing the operating system’s services. The user can
define tasks, e.g. sequential programs or specific device
driver, and then run them on the system. Tasks may be written
in any suitable high level language, e.g. C or PASCAL. A sample

PXROS system is shown in following figure.

PXROS features:

PXROS is written in the high level language C (except a

few lines of code) to allow portability and easy main-

tenance.

Independant tasks can simultaneously execute under

realtime conditions on one or more processors.

User and system tasks may be written in high level lan-

guages.

Tasks are dynamically configurable.

PXROS offers powerful and efficient +tools for communi-

cation and synchronization.

User tasks can address I/0O-devices via inter task commu-

nication.

Scheduling is efficiently supported by a variable number

of priorities.

PXROS is suited for systems with extremely time-critical

requirements.

A vectorized interrupt mechanism allows very fast reac-

tions to external events.

An universal mechanism is used to control timeout and other

exception conditions.
The memory management provides special services to dyna-
mically allocate and release storage of different sto-

rage classes.

Tasks can use common libraries.

FIGURE 1

TASK TASK

i
|
!
!
!
|
!
]

KERNEL-INTERFACE -

g INTERRUPTS lied KERNEL
- Manufacturer or user supp SUPERVISOR CALLS
- ROMable

HANDLER CALLS

KERNEL SERVICES

ROMable

PXROS
KERNEL

Hardware independent

PXROS KERNEL INTERFACE

236

* A general and easy to handle powerfail mechanism is

supported.

Tasks and Intertask Communication (ITC)

A task is a regular sequential program together with its data,
which can execute independently from other tasks., In this sense

tasks are the fundamental concept of structured programming.

There is no strict separation of user and system tasks per se.
The distinction can be made according to the services the tasks

provide of the capabilities needed.

It is possible to introduce a strict and secure distinction
between user and supervisor. In such a user/supervisor rela-
tionship the supervisor-task is the only interface to the rest
of the system. This kind of communication is implemented by a

special kind of ITC mechanism, the supervisor call.

The calling usertask becomes inactive while the supervisor can

check and execute the demanded services,

Events are a further tool for performing ITC. A task can signal
events to another task or a group of tasks, put together in a

so called event group.

Events are "task-specific" variables. Each task has 16 prede-
fined events. A task is able to ignore events or can perform a
selective break, where the actual calling sequence is regularly

terminated.

PXROS offers a message passing mechanism to send data from one
to another task. It is possible to use both synchronous and
asynchronous message transfer. PXROS also offers a mechanism
which avoids any copying of messages on the same processor,

thus being very efficient in a timecritical environment.

The remote procedure (RPC) call is a very "comfortable" form of
ITC. It is used similarly to a regular procedure call with
parameters. The called task performs the demanded service,
while the calling task remains inactive until the actions are

completed and the remote procedure returns.

Asynchronous initiation of code specified by the target task is
done with the help of a socalled softinterrupt call (SIC). This

mechanism extends the functionality of the RPC.

The PXROS Kernel and Kernel Tasks

The system kernel is a small unit independant of the actual
configuration. It provides the basic operating functions which

allow the implementation of all higher services.

Most of the services of the system kernel are used by system

tasks, the so called kernel tasks.

The system kernel and the kernel tasks form the basic PXROS

system.

The task management under realtime conditions is part of the

system kernel and provides the following services:

create a task

kill a task

change the priority of a task
modify the current state of a task.

wake up a task.

A1l interrupt handling is done by tasks. The system kernel is

responsible for:

interrupt level handling
propagation of external interrupts

scheduling.

238

PXROS offers general tools for timing and exception control. A
task can control actions under specific time conditions. The
time control signals TIMEOUT events in the case of an timeout.
Then the task itself is responsible for error handling. Since
device driver are tasks it is their responsibility to handle
errors or reinitializations where the hardware is not able to
meet the time protocol requirements. The same applies to other

exceptions like power fail handling.

In this way the time control of I/0 operations can be performed

by the driver tasks. Most of these errors produced by hardware
can be handled by the driver task, thus hiding specific
characteristics of a device. This means a complete virtua-

lization of the device.

The memory management provides dynamic generation of data ob-
jects and tasks at runtime. This concept is based on a general
memory management involving storage classes. The definition of
a storage class depends on the individual system. Different

storage classes are managed by different tasks.

Structure of PXROS/SV

On basis of the PXROS kernel a number of tasks provide the
services needed to grant the request of a UNIX System V appli-
cation program. The following figure 2 gives an overview of the

system structure.

USER
PROGRAM USER FIGURE 2
(- PROGRAM
PXROS X T]
TASKS o ﬂ_h_j
usve
17C s oh B sn
ITC, EVENTS(SIGNALS) II, UNIX ANY \\\
cem e e KSVC ! SUPER- OTHER '
— — — _ INTERRUPTS,EVENTS VISOR PXROS !
\ TASK TASK ’
\\ ’I
KSVC = KERNEL SVC
USVC = USER SVC
TC =
ITC = INTERTASK FILE
COMMUNICATION SYSTEM
TASK
J TTY DISK TAPE
! DRIVER DRIVER DRIVER
\‘ TASK TASK TASK
\\~ \\\\ K
> - N P
: \\\ : \\ ’,l ‘
. \\\E \ . |
. :"\\ \,\ |
. v ~ . N l
' S N\ |
. ..ﬁ\\ \ {
1 1 R G N

INTERRUPT
(i PXROS - KERNEL SYSTEM j)

PXROS-SV - a sample PXROS.system structure

240

The figure may only show part of a much larger system which
just contains the UNIX V interface as part of it. Even
different system interfaces may be coexistent. In the following

the functionality of the shown tasks is described.

Supervisor Task

The most important task for the construction of the UNIX Systen
V interface is the supervisor. This task embeddes the user
supplied UNIX program and is responsible for the transformation
of UNIX calls into suitable kernel services or services pro-
vided by other PXROS tasks. The supervisor provides additional
structures and mechanism needed for the PXROS environment. In
fact the supervisor is an extension of the user program running
in a privileged mode. Before the startup of the UNIX progranm
the supervisor is created with the help of PXROS services and
then the supervisor incorporates the UNIX program into its own

address space.

Synchronous UNIX Calls

The communication between the controlling supervisor and the
program controlled by it is normally initiated by a SVC exe-

cuted by the user program. The supervisor code is called after

such a SVC and it has full access to the program’s address

space and resources. The request is transformed into a PXROS
message, sent to the suitable task, i.e. the filesystem task,
and termination is awaited. Because a message is basically a
descriptor of a piece of memory any mapping of virtual address
spaces can be done using this descriptor. The PXROS message
mechanism does not depend on the localization of the communica-
tion partners and thus the filesystem task may run on a
different processor or subsystem. Figure 3 shows the relevant

piece of code for the transformation of a UNIX read SVC.

FIGURE 3

/X
X the supervicor calls the filesyetem interface routine uf_op with parameters

b ST} ¢ points to the structure describing the wuser grogram

x READ ¢ Code for the rezd oreration

x 2001 ! filedescrisptor of read system csll which is locally mapred
x =013 | buffer address of resd

x 5021 ¢ lensth of operation

x/

r0 = uf_op(usyREADymap(3L0))sal1)sal2])
/X

x the interface routine which transforms the system call into 2 messages
x sends the messzae to the filesystem task and awaits the termination.
x/

uf _oge ()
struct ucer xuj
{
char ufs_flags /x flag needed for flaguwait x/
token_t ufs_token /% mezszae descriptor x/
/X
x the set_tb kerrnel service creates 3 mecsage descriptor for the memory
X startina 3t the address of the psrzmeter u with 3 length of S double words,
X no uf_op c2ll in the sumervicor has more tham S parameters,
X/

set_tb(&ufs_tokernr&urSxsireof(int)s&ufs_f1a3,UNCOND)}

/X
X ufe_mb is & ststic varieble containing the id of the filesystems mailbox,
*x the messa3e created by set_tb is sent to this mailbox,.
X/
send(ufs_mbxrufs_token)s
/%
X the freewait kerrnel service waits for release of the dasta structure described
x by wfs_token.
x/
freeusit (Bufe_flag):
/X
X the filecycetem task returns the return value of the request st the a2ddress
X of uw on the stack,
x/
return((int)u);

SUPERVISOR FILESYSTEM INTERFACE

242

Asynchronous UNIX Calls

The PXROS event mechanism together with RPC and SIC is used to
deal with asynchronous events 1like the UNIX signals. In order

to handle those signals the supervisor allocates an RPC handler

on demand of the user program (ALARM SVC), which is executed

when a certain not masked event arrives. Because any handler
may have parameters the UNIX signals can be treated selective-
ly. The termination of a UNIX program due to a killing signal
is easily achieved by executing the program as a procedure
under breakpoint conditions, i.e. the BREAKPT kernel service is
used. Figure 4 shows the piece of code called in the case of

signalling.

FIGURE 4

/%X
x the rouwtine sighnd is activated by traps or 3 call of the tiy task
x the only psrameter is the sign3l number as defined in UNIX V
x/
sishnd(num)
{
if(super_flag) { /x if task in supervisor mode x/
u=x_remflaas = numi /% just store the signal number x/
return;i /% angd return
>
u-xu_remflag = 0f /% reset stored value x/
if(u-Fu_signallnuml == SIG_DFL) /x if default action x/
restore(num) /% restore the defazult handler
c3lluser(u->u_sianalrrnum)i /% c311 the wser handler x/

SUPERVISOR SIGNAL INTERFACE

Filesystem Task

This task is just a normal PXROS task providing filesystenm
services like creation, deletion, opening, reading, writing,
closing etc. of files. As the figure 2 shows it offers its
services not only to supervisors but any other task in the
system, i.e. it is a server task. An incoming request is clas-
sified and eventually sent directly to a driver task, which
carries out the operation and sends it back to the filesysten
task, which in turn sends it back to the requesting task. File
allocation information is held within this task and swapped in
or out by demand, the data itself is only cashed in the
drivers. Thus device specific operation is completely done
within the drivers. This method allows the operation of the
filesystem task on different devices without any knowledge of
the physical structure of the devices. The sync mechanism of
UNIX is achieved by driver operation thus even CMOS-RAM based
filesystems without the requirement of a sync can be built
without changing the filesystem task. Because of the fast
intertask communication (no copy) virtually no overhead arises

by the separation of the filesystem and disk task.

244

Disk and Tape Task

These tasks are responsible for all operations on their respec-
tive device, i.e. reading, writing and buffering of datablocks.
These tasks provide consistent "errorfree" access to their
device data. Because of the message oriented ITC these tasks

can also reside in strong or losely coupled subsystems.

TTY Task

While the other driver tasks do not exhibit specific UNIX
features this driver incorporates the tty relevant features,
i.e. it does all line editing functions required by UNIX as
well as the respective signalling. The latter is done by
activation of the RPC/SIC entry of the supervisor which in turn

completes the signal action.

Efficency of PXROS/SV

We compared the behaviour of PXROS/SV with Nationals ICM3216
running under standard UNIX 5.2 - which is a very fast im-
plementation of UNIX 5.2 - by running a number of tools under
both systems. The disk used in the ICM3216 has similar charac-
teristics as the one we use. While the ICM has 4 MByte our
system has 2 MByte of no wait state RAM. Both systems have the
same CPU NS32016 running at 10 MHz. We found that the ICM
having a separate I/0 - system was just about 20 % faster than
our PXROS/SV in its current version. Because the current
PXROS/SV was generated using the GENIX 4.1 C compiler, which
produces a 30 ¥ slower code than the SYSTEM V compiler does, we
expect that the currently prepared version of PXROS/SV
generated by the SYSTEM V compiler, will show the same perfor-
mance as standard SYSTEM V.

In contrast to the standard UNIX V the PXROS/SV operating
system does not need an MMU, if no more than one UNIX progran
has to run in parallel. In this case the FORK and EXEC systen

calls are still provided, but the programs do not run quasi-

24

[l

simultanously. Even without MMU the number of PXROS tasks is

not restricted, i.e. the full realtime operating system

functionality is available.

Integrating the Apple Macintosh in a UNIX
Environment
Nick Nei
University of Glasgow
Computing Science Department
17 Lilybank Gardens

Glasgow
Scotland

(inei@cs.glasgow.ac.uk)

ABSTRACT

Work is underway in the Computing Science Department of the Univer-
sity of Glasgow to integrate clusters of Apple Macintoshes with clusters of
UNIX machines. The Apple Macintoshes are connected to the AppleTalk local
area network, and the UNIX machines (mostly flavours of 4.2 BSD) are con-
nected to the Ethernet local area network. The challenge arises in integrating
the alien PC environment of the Macintosh with a UNIX environment.

Many configurations are possible. A Macintosh can be used as a host on
the Ethernet and thus behave (when connected) as an intelligent terminal
emulator via its serial port. Files can be transferred between any hosts using
ASCII file transfer or reliable methods like Kermit. More interestingly, a gate-
way between an AppleTalk network and an Ethernet network will allow any
Macintosh to communicate using TCP/IP/UDP protocols with any UNIX
machine on the Ethernet. A Macintosh can then connect to any UNIX host on
the Ethernet using telnet, and transfer files using tftp and ftp. In addition, a
UNIX host can be used as a file server to a cluster of Macintoshes, thus provid-
ing each with an enormous floppy diskette.

In the Department, an experiment is being carried out to use clusters of
Macintoshes integrated into a UNIX environment for student teaching. This
paper will report on some of the experiences and problems, not the least being
infrastructural and logistical ones.

April 10, 1987

UNIX is a trademark of AT&T Laboratories. Apple, AppleTalk, MacWrite, MacDraw, LaserWriter and
MacTerminal are trademarks of Apple Computer, Inc. Macintosh is a trademark licensed to Apple Comput-
er, Inc. IBM is a registered trademark of International Business Machines. FastPath is a trademark of Kinet-
ics, Inc. VersaTerm is a trademark applied for by Lonnie R. Abelbeck. DEC, VT100 and VAX are trade-
marks of Digital Equipment Corporation. Ethernet is a trademark of Xerox Corporation. Tektronix is a
trademark of Tektronix, Inc. D200 is a trademark of Data General Corporation.

Integrating the Apple Macintosh in a UNIX
Environment
Nick Nei
University of Glasgow
Computing Science Department
17 Lilybank Gardens

Glasgow
Scotland

(inei@csglasgow.ac,uk)

When Apple announced the Macintosh and called it “a horse of a different colour”, it
attracted a following that included UNIX developers and users who worked on harnessing the
features of the Macintosh with UNIX. The converse could also be true: the Macintosh exploit-
ing the power of UNIX. Whichever is true, there are clear signs that a symphysis is taking
place.

This paper surveys the growing integration of the Apple Macintosh in a UNIX environ-
ment. Starting from simple communications programs such as terminal emulators, a
panoramic view of file transfer applications, multi-window management systems and file
servers is given.

™. T 22

Red Ryder 9.2 MacTerminal MacKermit VersaTerm

8 2g

uw efs telnet

Figure 1

An abundance of terminal emulation programs are available for the Macintosh. Since
many of them provide more than mere emulation of common terminals like the DEC VT100,
Tektronix 4010 series and ANSI terminals, the looser term “asynchronous communications
program” is better. They all communicate with a host computer via the Macintosh’s modem
serial port or printer port through a local area network, or even connected back-to-back with
another machine. The simplest of these emulate one or two terminal types while the most
sophisticated ones feature window management with different terminal emulations for any
window. Most communications programs provide some sort of file transfer facility. They
range from simple and unreliable ASCII file transfer methods to reliable methods like Kermit.
Some will even upload and download properly encoded applications programs to and from the
hosts.

248

The more sophisticated communications programs exhibit varying degrees of integration
with the host systems. By integration we mean forms of synergy whereby two systems func-
tion co-operatively to provide a service which would not otherwise be available in the absence
of one of the systems. UW (acronym for UNIX Windows) is a good example. It provides up
to seven independant multiple windows using a window manager and server on the UNIX
host. Windows can receive and send input and output independantly of each other. Windows
overlap and can be stowed away, resized and moved around the screen: things an ordinary ter-
minal cannot do.

€ File Edit Window Configure

 CRORRRRYS

% crete
5 alba
alba%rootcsh
lgla crete
9 ge vi chfn.c

readnews

NewS]

creteffinger® make
cc -0 -DCRETE chfn.c
cc -0 -DCRETE -c passwdbyent.c
cc -0 -DCRETE -c io.c
cc -0 -DCRETE -c¢ passwdbyname.c
cc -0 -DCRETE -c passwdbyuid.c
cc -0 -DCRETE -o chfn chfn.o passwdbyent.o io.o pa
creteffingerf

Figure 22 UW - Macintosh and UNIX Synergy

Many communications programs provide text editing and re-input. MacTerminal for
example will allow terminal input and output to be edited in Macintosh mouse click-drag-
and-select fashion and re-input to the host. Thus corrections can be made to long or com-
monly used commands before sending them to the host, saving much prestigidation. Another
communications program that has further honed this method is Dumb Virtue which provides
multi-window text-editing and single-window terminal emulation. It associates one window
for input and another for output. A third window emulates an intelligent terminal. User
input will appear in one window but will not be sent to the host until the carriage-return is
typed. The output from the host then appears in the other window. Dumb Virtue also sup-
ports the Macintosh’s cut-and-paste metaphor. Text can be selected with the mouse from one
window and then saved on the Scrapbook (a temporary file) and later pasted to another win-
dow.

249

This idea of massaging captured data (from the keyboard and the host) can be taken
further. With Red Ryder, for instance, text on the screen can be selected using the Macintosh
mouse and then sent to the printer. Whole screens can also be dumped or archived on a
printer or a text file. Alternatively, incoming data can be stored and/or routed to a printer
and/or a disk file. Similar data manipulation techniques also often feature in graphics termi-
nal emulation programs. For example VersaTerm emulates the Tektronix 4014 graphics termi-
nal but will also create Macintosh MacDraw files.

The ability to transfer files reliably is an important function of any communications
program. Most will support ASCII file transfer which is unreliable, but which may be the
only recourse when other reliable methods are impossible. At the very least, some sort of
flow-control mechanism for tandem ASCII file transfer ought to be available. The common
unofficial standard method of reliable file transfer is called Kermit. The array of communica-
tions programs which support Kermit file transfer include MacKermit, Red Ryder and Versa-
Term. They assume that the host machine also provide a complementary Kermit facility. In
this way, both ASCII and binary files can be transferred reliably.

In addition to mere transfers, executable files and data files can be downloaded (or
uploaded) from the Macintosh. A degree of integration results, which is borne of necessity
because many Macintosh programs and data files arrive at UNIX sites via electronic mail or
network news in encoded and compacted form. The most elegant uploading method uses Mac-
Terminal. A utility called macbin decodes and uncompresses files in preparation for upload-
ing, and produces three files with similar names (but with distinct suffixes), corresponding to
the resource and data forks of a Macintosh file, and an information file. These are then
uploaded using a utility called macput. Reversing the process (using macget), will download
a file from the Macintosh. However, this method works only when flow-control is inhibited
and the Macintosh must be connected back-to-back to the UNIX host. In many situations,
such as in a local area network this arrangement is not possible. When a Macintosh is con-
nected to an Ethernet communications server, 8-bit XON/XOFF cannot be supported and
therefore MacTerminal cannot be used. Two alternatives are available. The encoded (text)
file can be first transferred using Kermit and then decoded (using BinHex) on the Macintosh,
or the file can be decoded and uncompressed on the UNIX host using xbin and macbin and
then transferred in 8-bit fashion using Kermit to the Macintosh, arriving as an executable or
data file.

Kermit file transfers are slow but reliable. However, the efficiency is very dependant on
the implementation. In a benchmark of three communications programs, MacKermit was the
fastest in transferring a file of 10240 bytes to a VAX-11/780. The following table summar-
ises:

Program Bytes/Second
Red Ryder 146
VersaTerm 151
MacKermit 329

Table 1

Kermit File Transfer Benchmark of
3 Communications Programs

Other file transfer methods are usually available: notably the XModem or Ward Christiansen
method, tftp and ftp.

250

Most communications programs allow the Macintosh to automatically integrate itself
into the host system. This is almost essential since serial communications protocols differ
widely from site to site, and even within the same site. A user should at least be able to
configure the baud rate, parity and the number of stop bits, and save the configuration for
subsequent use. But some programs will also allow macros and even small procedures to be
tailored by the user. Red Ryder is most notable for this. Macros and pull-down menus can be
set up and invoked with the mouse. In this way, frequently used commands or key-strokes
can be programmed and fully integrated into the UNIX host system.

Table 2 concludes this survey with a summary of terminal emulators and file transfer
programs.

Program Source Status |Terminal Emulation File Transfer
Red Ryder shareware VT100, VT52 XModem, Kermit, ASCII

VersaTerm Third Party Tektronix 4014, | XModem, Kermit, ASCII
Data General D200

MacKermit public domain VT102 Kermit
MacTerminal Apple VT100, IBM 3278 XModem
Dumb Virtue shareware ANSI, VT100, ASCI ASCII (tandem)

uw shareware ADM 31, VTS2, none
ANSI, Tektronix
4014

public domain VT100 Telnet, TFTP, FTP, EFS

Table 22 Summary of Communications Programs

UW does not provide file transfers although the author intends to at some later date. It will
communicate with any system, but its multi-window facility will only operate under UNIX
4.2 BSD and later systems. MacIP is a collection of 3 programs: telnet, tftp (also ftp) and EFS.
Details on MaclIP are given below.

Several of the programs are either shareware or public domain products, and are more
often subject to new releases and upgrades than proprietary ones, presumably because it will
encourage users to honour the authors pecuniarily.

Whereas these communications programs discussed so far integrate by only providing
terminal emulation and file transfer services, another breed of communications programs per-
mit the facilities of both the Macintosh and UNIX to be exploited. These are: EFS (External
File Service), MacIP and MacNIX which depend on an Ethernet to AppleTalk! gateway. One
such Internet AppleTalk bridge is the Kinetics FastPath. It is a programmable device which
permits AppleTalk networks to be bridged together, or allows a Macintosh to become a
member of an ARPA-defined internet. The latter is accomplished by TCP/IP software to do IP
routing and protocol encapsulation:

® IP packets, originating from the Macintosh, are encapsulated in AppleTalk Data
Delivery Protocol (DDP) datagrams. At the FastPath, the IP is decapsulated from
DDP and routed using IP routing. IP packets originating at an IP host and destined
for a Macintosh are first encapsulated in DDP, then routed on AppleTalk.

1 AppleTalk is the Macintosh local area network.

DDP datagrams originating from an AppleTalk host may be encapsulated in
UDP/IP datagrams and routed to a peer process on an IP host which will decapsu-
late the DDP from within the UDP. DDP datagrams originating from an IP host
will be encapsulated in UDP first, then decapsulated at the FastPath.

Figure 3 illustrates a configuration which uses a FastPath to bridge a cluster of Macin-
toshes on an Ethernet backbone.

Macintosh

LaserWriter

AppleTalk Net

IR neics FastPat

Ethernet

UNIX Host

Kinetics FastPath

AppleTalk Net l l

Figure 3: The Kinetics FastPath Bridge

A great deal of TCP/IP software for the FastPath has emerged in recent years from the
research community. MacIP originated from Carnegie-Mellon University, EFS originated
from LucasFilm and was adapted at Stanford University and CAP (which implements a sub-
set of AppleTalk protocols for UNIX) was developed at Columbia University.

MacIP comprises a set of libraries and programs for telnet and tftp with other TCP/IP
hosts. The FastPath is programmed to perform packet routing by either subnetting or by
direct IP to DDP net mapping. Sites not using Class C Ethernets use the direct net mapping
method. A table is used to describe a specific routing between an AppleTalk net and node
number (which corresponds to a particular Macintosh) to/from an Ethernet Internet address.
The UNIX host must then be told how to get to the AppleTalk network. Under UNIX 4.2,
this is done by route(8C).

With the subnet routing approach, the FastPath is instructed to route packets if it detects
that the packet has originated on a subnet on one side of the gateway and is destined for a
different subnet on the other side. An internet address is divided into a network number and
a host number, and in this scheme, the network number is the same for all internet addresses
on the network. The host number is divided into the subnet number and a node number, and
within each subnet, the subnet part of the host number must be the same. Each AppleTalk

net is a different subnet and the Ethernet is another, different subnet.

The tftp program uses the DARPA trivial file transfer protocol running on top of UDP
to allow reliable file transfer between the Macintosh and an Internet site. Both server and
user modes are supported. There are also four modes to control a file transfer. Three modes:
ASCII, IMAGE and OCTET are used for transfers with non-Macintosh computers, and a
fourth, MACINTOSH, is used for exchange with another Macintosh. This diversity is needed
because of a silly design decision in the Macintosh to store a file in two parts or “forks™ the
data fork and the resource fork. In ASCII and IMAGE modes, only the data fork is sent, in
OCTET mode, only the resource fork, and in MACINTOSH mode, both forks are sent. The
OCTET mode is mostly used when transferring compressed programs over long-haul networks
such as ARPANET and USENET.

The telnet program provides login connections with hosts on the Internet. It emulates a
DEC VT100 terminal and it is also possible to use tftp from inside telnet.

The External File System (EFS) allows a UNIX host to act as a file server for the Macin-
tosh. A UNIX directory containing Macintosh files can be mounted as a volume on a Macin-
tosh and used like any Macintosh file. The effect is to make the UNIX host pretend to be an
enormous floppy disc to the Macintosh.

EFS installs itself in the Macintosh’s operating system the first time it is executed. This
is best done when the Macintosh is started up. Subsequently, executing EFS will prompt for a
connection to the server. A name server (Name Binding Protocol) daemon on the host resolves
the hostname and replies with an Internet address to the Macintosh2. Connection with the
EFS server on the target UNIX host can then be established, and the directory of Macintosh
files mounted. EFS loads its driver portion into the system heap (or in high memory) and
then detaches. It then sets a timer via the Macintosh vertical retrace manager to call the EFS
driver and produce a “disk inserted” event. Once it has been notified of the new drive the
remote volume will be mounted and the EFS driver intercepts all subsequent requests to the
drive. The Macintosh DeskTop should then appear like Figure 4. The mounted volume is
named after the directory’s full pathname. In this example, the two hosts (muck and arran)3
are Whitechapel MG1 workstations networked on NFS (Network File System).

Volumes can be unmounted by placing the volume in the Macintosh trash (or
wastebasket) icon. This will cause the server process on the host to terminate. The shutdown
command on the Macintosh will also unmount EFS volumes properly.

File transfer between the UNIX server and the Macintosh is intuitively transparent
because EFS supports the Macintosh file/folder/DeskTop metaphor. Click and dragging the
source Macintosh file/folder to a destination EFS volume effects the transfer. On the server, a
single Macintosh file is stored as three files each with the same base name and the following
suffixes: “IF”, “DF” and “RF” which correspond to the Information file, the Data fork and the
Resource fork, respectively. Usually, either the Data fork or the Resource fork will be empty.
Downloading files from the UNIX host to the Macintosh is very simple. Using xbin, an
encoded application (say from USENET), is decoded to produce the resource fork in a file
suffixed “rsrc”. Renaming the file with an “RF” suffix and then copying the file to the local
disk on the Macintosh effects the download.

At the Computing Science Department, University of Glasgow, such an integration of
Macintosh and UNIX systems using EFS is used in an experiment to teach 40 undergraduate
students programming in Pascal. A laboratory of twelve Macintoshes are used with two Whi-
techapel MG1 graphics workstations which act as EFS servers. The MG1s operates under a
UNIX 4.2 BSD clone and are networked with 24 other MG1s using NFS. The Macintoshes are
chained together on a single AppleTalk network with the Kinetics FastPath providing the

2 The CAP version of EFS uses the AppleTalk Information Server, atis. Its function is to act as & name
registry for the particular host atis is running on.

3 Muck and Arran are the names of two Scottish islands.

&€ File Edit View Special

/arran/users/inei/mac
4 jtems OK in disk 10240K available

EFS @ @ @_
e

tftp telnet MacPaint

/muck /users/lavelle }

A A AN AN A AN A NN NP NN N NN NN E NN AN NNV 1

[[=———— /muck/users/lavelle E=FiF——=]
11 items OK in disk 10240K available

5 B B #

Lightspeed Pascai®MacPasLib test project MacTraps hello.pas Turboe

R

4t it

MacinTalk Spéak.Pas Speak.R Speak.Rsrc¢c Sample Speech

$& &

Vasteaskt

i

Figure 4:

The Macintosh DeskTop with Several
Mounted EFS.

gateway between AppleTalk and Ethernet. Some expected advantages were:

[1] Administrative ease. Under UNIX, the tutor is able to conveniently control each
student’s files. For example, files and libraries can be easily distributed (and
removed) using UNIX tools. Housekeeping and backups are also easily managed,
using tools already available with UNIX.

Logistic simplicity. Since EFS provided the peripheral storage, external drives for
the Macintosh are not necessary. Without EFS, the logistics of carefully labelling
and storing numerous floppy discs can be a nightmare.

It is easy and safer to loan copyright applications to students if they are stored on
the EFS servers and not on floppy discs. Since there are no external drives (and the
EFS mount floppy disc must be returned at the end of a session), it is difficult to
make illegal copies of copyrighted material

The integration of the Macintosh and the UNIX system using EFS provided an excellent
teaching environment. The students appreciated the Macintosh interface because it was intui-
tively simple. This enabled them to quickly settle into the computing environment and
devote themselves to the laboratory work. This contrasts sharply to the previous laboratory
environment of a single computer with terminal connections. The complexities of the operat-
ing system, the editor and commands were excessive and distracted the student from their
intended laboratory work. From the tutor’s point of view, the use of individual micro-
computers is more satisfactory. In the old environment, when the central machine malfunc-
tions, the entire laboratory is held up. With EFS, should the UNIX server fail, the laboratory
can still continue with the use of floppy discs.

In addition to providing EFS, an Internet host can be used as a spooler. There is no
printer spooler in the Macintosh system software. This is inconvenient and wasteful because
the Macintosh is mostly idle and unavailable while the microprocessor in the LaserWriter does
the hard work during printing. This slavish behaviour of the Macintosh can be remedied by
using UNIX’s own spooling facility.

A commercial product similar to EFS called MacNIX has recently become available. It
provides similar file server and spooling functions. With MacNIX host printers may be
accessed from a Macintosh to print UNIX files. It also works with TranScript to permit print-
ing of PostScript, troff and nroff files on a LaserWriter connected directly to the UNIX host4.

With the release of the Macintosh II, the integration is about to take on a new dimension.
Apple has announced Apple UNIX for the Macintosh I Details are not yet available, but
many UNIX and Macintosh devotees are looking forward to an integration that brings out the
best in the Macintosh and in UNIX.

These are clear signs of growing integration of the Apple Macintosh in a UNIX environ-
ment. From crude terminal emulators and multi-window managers to file servers, this
integration between two apparently dissimilar environments has come a long way. Whether
the symphysis is a credit to the Macintosh or to UNIX is an interesting topic for debate.
Nevertheless, the successful marriage at least attests to the good design of UNIX.

4 There is also a utility called mw2troff which translates MacWrite documents to troff input. In this
way, the data fork of a MacWrite document stored with EFS can be ecasily formatted and printed under
UNIX.

i 4

Red Ryder 9.2 MacTerminal MacKermit VersaTerm virtue

EFS =iIE) =
E Z i 2

X3

uw telnet

€ File Edit Window Configure

e

crete
alba
alba%rootcsh
crete
vi chfn.c
readnetws

New=
e 0]

cretefgfinger®

cc chfn.c

cc passwdbyent.c

cc io.c

cc passwdbyname.c

cc passwdbyuid.c

cec chfn chfn.o passwdbyent.o io.o pa
creteffingers

I, I\ 4

Macintosh

_ﬁ AppleTalk Net

LaserWriter

inetics FastPath

Ethernet

UW’X nOSI

Kinetics FastPath

AppleTalk Net

258

€ File Edit View Special

/arran/users/inei/mac
OK in disk 10240K available

2 @ QLI©

BEwE e ==

*0

tftp telnet MacPaint

/muck/users/lavelle
OK in disk 10240K available

ity /arran/users/inei/mac
@ .

Lightspeed Pascal®™MacPasLib test project MacTraps hello pas Turbo

R

CC

MacinTalk Speak.Pas Speak.R Spéak.Rsrc Sample Speech

NAMLS & ADDRESSES OF SPEAKERS

Mike Forsyth,

MEMEX Research Unit,
9-11 Maritime Street,
EDINBURGH,

UK.

Rob Pike,

Bell Laboratoric¢s,
Murray Hill,

New Jersey 07974,
USA.

David J. Brown,
Cambridge Uni. Comp. Lab.,
Corn Exchange Street,
Cambridge

CB2 30QG.

UK.

Jonathan P. Bowen,

Oxford Uni. Comp. Lab.,
Programming Research Group,
8-11 Keble Road,

Oxford

OX1 3QD.

UK.

Dominic Dunlop,
Sphinx Ltd.,

43-53 Moorbridge Road,
Maidenhead,

Berks SL6 8PL,

UK.

Pascal Beyls,
BULL,

1 Rue de Provence,
38432 Echirolles,
FRANCE.

Bertram Halt,

SIEMENS,

Charles de Gualle Strasse 2,
D8000 Munchen 83,

GERMANY.

Dr. Gunther Kruse,

Root Business Systems Ltd.,
Sauderson House,

Hayne Street,

London EClA 9HH.

UK.

"{M/J\/‘W&A l, Y'O\O

Peter S. Langston,

Bell Communications Research,
Morristown,

New Jersey 07960,

USA.

Dale Shipley,
Tolerant Systems Inc.,
81 East Daggett Drive,
San Jose,

California 95134,

USA.

Douglas V. Larson,
Hewlett-Packard Company,
19447 Pruneridge Avenue,
Cupertino,

CA 95014

USa.

Andrew S. Tantenbaum,
Dept. of Mathematics and
Computer Science,

Vrije Universiteit,
Amsterdam,

THE NETHERLANDS.

Brian E. Redman,

Bell Communications Research,
Morristown,

New Jersey 07960,

Usa,

Rupert Grafendorfer,
Elektronikbau,

Dept. for Systems Software,
Gewerbehof Halle C,

A-4040 LINZ,

AUSTRIA.

Osmo Hamalainen,

Posti- ja Telelaitos,
Radio-osasto (Finnish PTT),
Helsinki,

FINLAND.,

Markus Rosenstrom,
Oy Penetron Ab,
Espoo,

FINLAND.

Alan Chantler,

Dept. of Computer Science,
Coventry Lanchester Polytechnic,
Priory Street,

Coventry,

CV1l 5FB.

UK

Philip H. Dorn,

Dorn Computer Consultants Inc.,
25 East 86th Street,

New York,

NY 10028.

USA.

Dr. Ernst Janich,
Universitat Ulm,
Sektion Informatik,
Postfach 4066,
D-7900 Ulm,

WEST GERMANY,

Doug Michels,

400 Encinal Street,
PO Box 1900,

Santa Cruz,

CA 95061,

USA.,

Bjarne Stroustrup,

Bell Laboratories,
Murray Hill,

New Jersey 07974,
USA.,

Christian Tricot,
LGI-IMAG,

University of Grenoble,
FRANCE.

Martin D. Beer,

Dept. of Comp. Science,
University of Liverpool,
PO Box 147,

Liverpool

L69 3BX.

UK.

Dr. Rolf Strothmann,
HighTec EDV-Systeme GmbH,
St. Johanner Str. 38,
6600 Saarbrucken,

WEST GERMANY

Nick Nei,

University of Glasgow,
Comp. Science Dept.,
17 Lilybank Gardens,
Glasgow,

SCOTLAND.

