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ABSTRACT

In the Preface to the Eighth and Ninth Editions of the Programmer’s Manual for
the UNIX Time-Sharing System, Doug Mcliroy says that the volumes describe the lineal
descent of the original operating system pioneered by Ken Thompson and Dennis
Ritchie. Distributed computing proved to be the distinctive theme of the landmark
Eighth Edition: Dennis Ritchie’s coroutine-based stream IO system, and the Datakit
virtual circuit switch realisation by Lee McMahon and Bill Marshall, provided the basis
for networking, Peter Weinberger’s remote file systems made it painless, and Rob Pike's
software for the Teletype 5620 moved system action right out to the terminal.

Users distributed around the world is the theme of the Spring 1988 EUUG Conference.
The Conference Chairman discusses here why users around the world have demanded to
use UNIX, why UNIX has proved successful around the world, and the future of the UNIX
system in the world marketplace.

The paper finishes with a citation of the original and innovatory contributions made by
many of the speakers who travelled from all over the world to be at the the EUUG's
Conference held at the Queen Elizabeth I Conference Centre, London in April 1988.

1. The Worldwide Demand for UNIX

In an AT&T Bell Laboratories Technical Report, Doug Mcllroy says that the UNIX system has brought
great honour to its primary contributors, Ken Thompson and Dennis M Ritchie, and has reflected respect
upon many others who have built on their foundation [Mcllroy 1987]. Without the vision of Ken
Thompson, UNIX would not have come into existence; without the insight of Dennis Ritchie, it would not
have evolved into a polished presence; without the imagination of Michael Lesk, and the popularising
touch of Brian Kemnighan, it would not have acquired the extroverted personality that commands such
widespread loyalty.

Globally, technical and professional users in the software engineering and information technology sectors —
drawn from such diverse backgrounds as computer manufacturers, end-users, software houses, universities
and research centres — have demanded to use the UNIX system. This privileged community can stand on
the shoulders of the intellectual giants who have gone before. By building on the work of others, a
generation of software engineers has been spawned who have become practitioners of the philosophy that
has characterised and underpinned the UNIX programming environment.

The UNIX system has proved to be a grassroots product. There was no market research and no glossy sales
campaign to bring it to the position it enjoys today. From the beginning, UNIX was released to an ever
widening circle of users only because those users demanded it. AT&T Bell Laboratories, it appears, was
dragged kicking and screaming into providing UNIX to the world.

Ken Thompson and Dennis Ritchie wanted to build something they would enjoy using [Mohr 1985]. They
succeeded, and other users want to share this enjoyment. Users realised that UNIX was not Utopia, but it
did provide, and still does provide, the best set of software tools around.

The UNIX system provides a clean, flexible interface to the programmer, which is available on various
different computers because UNIX is relatively portable. This is a great advantage to the user who wishes
to move his skills, programs and data between different computer systems without learning a new
command interpreter and system conventions. One is reminded of Fortran’s great achievement in the
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1950’s which provided a convenient-to-use and easily-understood notation usable on different
manufacturer’s hardware [Holt 1983]. It is tempting to call UNIX the ‘‘Fortran of operating systems’’,
destined to become the standard operating system for various application areas!

UNIX was designed to be easily understood, used and modified by software designers. For users and
software buyers, UNIX means spending less on software. For end users, UNIX means cheaper, more timely,
and more portable software applications, and shorter development times.

Hardware gets cheaper by the month, while software design times have become steadily more expensive.
There is greater pressure than ever before for more powerful operating systems and languages. Users
know that UNIX and C make good economic sense.

UNIX is in wide use on micros, minis and mainframes and is now even spoken of as an industry standard.
Even with its shortcomings, UNIX is an excellent base for personal computers and business applications.

2. The Success of UNIX

There were sociological forces which helped in the success of UNIX [Ritchie 1985]. The 1970s was the
decade of the minicomputer of which the most successful range was that of the PDP-11. Until then,
timesharing systems had only been developed for big machines. In 1970, Bell Labs’ Legal Department
needed a word processing system, and a newly announced PDP-11/20 was eventually purchased. The
UNIX project needed more computing power, and these two needs complimented each other. By 1971, the
first real users of UNIX were three typists entering patent applications. Thus, from the outset, UNIX had to
satisfy researcher and ordinary users alike. Unexpectedly, word processing has become the single most
commonly used computer application, and the tools for this were provided from the outset.

Portability was on the horizon by 1973; applications could continue to run while the hardware underneath
changed. In addition, UNIX enjoyed an unusually long gestation period (10 years) under the control of its
designers, with feed back from users (i.e. Universities).

Technically, UNIX is a simple, coherent system which pushes a few good ideas to the limit. The greatest
intellectual achievement embedded in UNIX is the success Thompson and Ritchie had in understanding
how much you could leave out of an operating system without impairing its capability [Vyssotsky 1985].
Being a modular operating system, UNIX positioned at the command layer, many utilities which had
previously been included in the kernel.

Much of the success is due to UNIX being written in a high level language [Kernighan and Pike 1984].
First, UNIX is relatively portable because it is written in C. A strong commercial advantage is that it runs
on a range of computers from micros, to minis to mainframes. Second, the source code is available, and is
easier to understand than other operating systems because it is written in C. This makes it easy to adapt to
particular requirements. Third, it provides a pleasing work environment, especially for programmers. It’s
a “‘good’’ operating system!

The UNIX System comes with a rich set of software tools; in excess of 300 on some UNIX systems.
Moreover, it excels at enabling small programs to be combined with others to do more complex tasks. The
UNIX system introduces a number of innovative programs and techniques, but there is neither a single
program nor an idea that makes it work well. What makes UNIX effective is an approach to programming,
a philosophy of using a computer. The ‘“‘power’” of UNIX comes from the relationships that can be
generated between programs, not from the programs themselves. Many UNIX programs do quite trivial
tasks in isolation, but combined with other programs they become general purpose and useful software
tools {Kernighan and Pike, 1984].

3. The Marketplace

The future for the UNIX system has been addressed before [Das and Farmer 1988]. The commercial
acceptance of UNIX as a product is on the rise, in particular with small and medium sized businesses.
Market research predicts that UNIX applications will grow from $2.8 billion in 1986 to $10 billion in 1990.
Much of the commercial interest in UNIX centres around its portability which allows customers to escape
from being locked in to any one supplier’s hardware and software. It also allows them to grow from low
end micros to Cray super-computers with one operating system.

UNIX is traditionally very strong in certain sectors and is gaining in popularity in others. Almost all
workstation suppliers offer some version-of UNIX. These include Apollo, DEC and Sun as well as
newcomers such as Apple, IBM and TeleVideo. Emerging graphics standards, such as X-window and
PHIGS (Programmer’s Hierarchical Interactive Graphics Standard), are already available on UNIX
systems. Over the past three years, minisupercomputers have carved out a fast-growing market niche.
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UNIX is highly visible in this area which means it is a viable alternative to VMS in the scientific computing
market, with C becoming more widely used.

The favourable qualities of UNIX are that it contains multi-tasking, networking, a mature development
environment, vendor independence, and over 250,000 trained programmers in the USA alone - more than
any other operating system can claim. Conversely, there are too many flavours of UNIX, and currently
UNIX is poor on graphics, windowing, and end-user applications. Some feel it has an unfriendly user
interface for the non-programmer.

Standardisation will prove important in the future. The draft ‘‘Portable Operating System Interface for
Computer Environments’™ (POSIX), represents the culmination of several years of intensive effort to
develop a standard operating system interface to support the portability of applications software at the C
language source code level, and is designed to be used by both software application developers and system
implementors. POSIX will provide further, the basis of an evolving environment for new standards which
specify the interface bindings for functional areas such as graphics, data bases, communications, file
systems, user interfaces, and other languages.

POSIX is expected to be adopted by the IEEE as a full use standard in March, 1988 and has been approved
for consideration as an ISO standard. The National Bureau of Standards in the USA intends to adopt
POSIX as a Federal Information Processing Standard (FIPS) and therefore is developing a suite of software
which will test conformance of an operating system environment to the POSIX FIPS.

4. The EUUG Conference Speakers

The Conference, entitled ‘‘UNIX around the World™’, has attracted the very highest quality technical
papers, thus affording an international forum for the presentation of current work on a wide variety of
topics related to the UNIX and C programming environments. The global nature of the Conference stresses
the importance of standards, portability, security and communications. Technical presentations concerning
standards like SVID, X/OPEN, POSIX and ANSI C were submitted to the Programme Committee, as well
as talks on Secure UNIX, UNIX Networking and real-time UNIX.

Sunil K Das (UK}, City University London.

The Conference Programme Chairman and Chairman of the UKUUG has borrowed freely in the
descriptions below, thanks in particular go to Doug Mcllroy [Mcllroy, 1987]. Any factual inaccuracies or
misleading statements are unintentional, but the Chairman acknowledges complete responsibility. He is
particularly pleased that Dennis M Ritchie and Stephen R Bourne will be attending the Conference.

An impressive array of present and past members of AT&T Bell Laboratories’ Computer Science Research
Centre (CSRC) will be participating in and/or speaking at the Conference. All of these world famous
researchers made original and innovative contributions to the UNIX programming environment. Without
any one of the people whose contributions are cited here, neither UNIX nor the work of others in the CSRC
would be the same.

Dennis M Ritchie (USA), AT&T Bell Laboratories.

Ken Thompson began the construction of the UNIX system from the ground up based on a file system
model worked out with Dennis Ritchie and Rudd H Canaday. Dennis, best known as the father of C,
joined Ken very early on. He contributed notions such as fork-exec and set-userid programs. Jointly, they
wrote the fc compiler for Fortran IV. The first debugger db and the definitive ed were Dennis’, as was the
radically new stream basis for 1O in v8, and much networking software. Datakit and streams made
possible Peter Weinberger’s network file system, and Dave Presotto’s connections to diverse networks. As
a result the research machine is no longer identifiable; users can - and do - work on one or more of two
dozen computers simultaneously. With Steve Johnson, Dennis made UNIX portable, moving the system to
an Interdata machine (v7).

Stephen R Bourne (UK), Digital Equipment Corporation.

Steve arrived at the time of v6, bringing Algol 68 with him. His definitive programs, the debugger adb,
and the ‘‘Bourne shell”’ sk, although written in C, looked like Algol 68: Steve wrote BEGIN and END,
and DO and OD instead of { and }. The Bourne shell almost overnight drove out the simple old shell. A
PWB shell had made programming useful; the Bourne shell made it an essential part of UNIX programming
(v7). Steve also contributed macro constructs to the UNIX Circuit Design System.
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Stephen C Johnson (USA), Ardent Computer Corporation.

Witn vacc Steve reduced to practice Al Aho’s expertise in language theory (v3). Upon that base, he built
the portable C compiler pcc (v7) that was used to port the UNIX system, and to evaluate candidate
instruction sets for unbuilt machines. Yacc, abetted by Mike Lesk’s lex (v7), stimulated an entire language
industry. Yacce, by eliminating much drudgery of compiler-writing, made possible the extensive
experimentation that underlies many novel languages. Steve also made the first spell , worked on computer
algebra, and devised languages for VLSI layout.

Michael E Lesk (USA), Bell Communications Research.

With a prescient market instinct, Michael made text formatting accessible to the masses with the generic
macros -ms , which were to troff what a compiler is to assembly language. He rounded out -ms with the
preprocessors rhl for typesetting tables and refer for bibliographies. He also made the /ex generator for
lexical analysers. Eager to distribute his software quickly and painlessly, Michael invented uucp , thereby
begetting a whole global network. Uucp gave operational meaning to the phrase ‘‘UNIX community’’
(v7). News now travels electronically among users all over the world; and technical collaborations proceed
between distant locations almost as easily as within one building. Over the years, often helped by Ruby
Jane Elliott, he initiated fascinating on-line audio, textual, and graphical access to phone books, news wire
apnews (v8), and weather (v8). With Brian Kernighan, he was responsible for the UNIX computer-
assisted instruction software, learn (v7).

John R Mashey (USA), Mips Computer Systems.

Well known for his hardware, software and CPU design skills, John was a co-author of the BSTJ paper
““The Programmers Workbench’’. During the 10 year period spent at AT&T Bell Laboratories, he worked
on command languages, text processing, computer-centre UNIX issues and various features of v7, followed
by management of applications projects and exploratory projects with bitmapped displays and
programming environments.

M Douglas Mcllroy (USA), AT&T Bell Laboratories.

Author of the papers *'The UNIX Success Story’’ and ‘*A Research UNIX Reader’’, Doug exercised the
right of a department head to muscle in on the original two-user PDP-7 system. Echo, seemingly the
simplest of utilities, originated with Multics, where it was used to test the sanity of the shell. The present
version arose as a finger exercise for Doug in C programming (v2). Then it turned out to be useful, a
mainstay of shell scripts. His observations and interest in echo led to his parable *“The UNIX and the
Echo’’ (Kernighan and Pike, 1984], which goes to show that research computer scientists are not so ivory
towered that we don’t peek at Greek mythology from time to time!

The basic redirectability of input-output made it easy to put pipes in when Doug finally persuaded Ken
Thompson to do it. In one feverish night Ken wrote and installed the pipe system call, added pipes to the
shell, and modified several utilities, such as pr and ov, to be usable filters. The next day saw an orgy of
one-liners as everybody in the CSRC joined in the excitement of plumbing. Pipes ultimately affected the
CSRC’s outlook on program design far more profoundly than had the original idea of redirectable standard
input and output.

Later Doug contributed an eclectic bag of utilities: t (v4) which was deliberately designed to follow the
stream transformational model, tmg for compiler writing, based on Bob McClure’s compiler-compiler,
which originally supplemented the assembler on the tiny PDP-7, speak for reading text aloud, diff, and
Jjoin . He also collected dictionaries and made tools to use them: look (v7), dict (v8), and spell (v7).

Robert Morris (USA), National Computer Security Centre.

Bob stepped in whenever mathematics was involved, whether it was numerical analysis or number theory.
Bob invented the distinctively original utilities rypo, and dc—bc¢ (with Lorinda Cherry), wrote most of the
mathematics library, and wrote primes and factor (with Ken Thompson).

His series of crypr programs fostered the CSRC’s continuing interest in cryptography. Bob’s first file
encrypter appeared in v3 with the explicit intent to stimulate code breaking experiments. Stimulate it did!
Bob himself broke crypt by hand. Later Dennis Ritchie automated the cryptanalysis using methods of Jim
Reeds (Berkeley). Complete with an editor interface, a new ¢rypt went public in v7. It also succumbed to
an attack by Jim Reeds and Peter Weinberger — and fortunately, too: more than one person who locked data
in crypt and threw away the key was rescued by code breakers.

But the still arduous process of code-breaking is not the easiest way to attack crypr. A simpler gambit is to
catch a system administrator off guard and install a Trojan horse in crypt itself to snatch every new secret.
Thus the very presence of ¢rypr may have just the opposite effect on security from what was intended.
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David L Presotto (USA), AT&T Bell Laboratories.

Dave tamed networks! His upas brought some order to a Babel of mail addresses and his ipc primitives
provided a common basis for communication and remote file access via Internet, Ethernet, and Datakit.

Electronic mail was in the UNIX System from the start. Never satisfied with its exact behaviour, everybody
touched it at one time or another: to assure the safety of simultaneous access, to improve privacy, to
survive crashes, to exploit uucp, to screen out foreign freeloaders, or whatever. Not until v7 was the
interfaced changed (by Ken Thompson). Later, as mail became global in its reach, Dave Presotto took
charge and brought order to communications with a grab-bag of external networks (v8).

Despite the turbulent evolution of mail, to this day a simple postmark is all that it adds to what you write.
Old UNIX hands groan at the monstrous headers that come from latter-day mailers and at the fatness of
their manuals.

Andrew G Hume (Australia), AT&T Bell Laboratories.

Andrew wrote proof to put troff on your screen (v8), parts of the UNIX Circuit Design System (v9), mk to
supplant make , and a remote backup service (v9). His most recent research has been to speed up the grep
family of programs, as will be discussed in his paper **Grep Wars™".

With a Conference title *‘UNIX around the World”’, the Conference Chairman sought internationally
known speakers from all over the globe. He has found in the people cited here, innovative researchers who
have contributed novel software to the UNIX environment created by Ken Thompson and Dennis Ritchie,
and others.

Maurice J Bach (Israel), IBM Haifa Scientific Centre.

While with AT&T Maury wrote the much praised book ‘“The Design of the UNIX Operating System’’.
This unique, authoritative text documents the internal algorithms and structures which form the basis of the
kernel, and analyses their relationship to the programmer interface. Much of the material was based upon
courses Maury taught for AT&T.

Robert Gingell (USA), Sun Microsystems.

Rob is Manager of New Systems at Sun Microsystems. His areas of interest include operating systems and
network architecture, and programming environments. Prior to coming to Sun, he was at Case Western
Reserve University from which he received a B.S. in Computer Engineering.

Samuel J Leffler (USA), PIXAR.

Sam is employed by Pixar to carry out research and development in computer graphics. He is currently
working on tools for the development of graphics algorithms that operate in parallel processing
environments. Previous work focused on the use of computers in 3-D animation and modeling. Recently
he has been grappling to produce a public domain version of Sun’s NeWS system which means he’s one of
those rare breeds who has a fair amount of experience with PostScript. Prior to joining Pixar, he was
employed at Lucasfilm, and before that was responsible for the 4.2 release of Berkeley UNIX for the VAX.

John Lions (Australia), University of New South Wales.

When John received his 5th Edition UNIX system, UNIX was a noun and was not a trademark! The original
licence was dated 15th December, 1974 and the arrival of the tape/manuals proved to be a timely
Christmas present. By July 1976, John had published ‘A Commentary on the UNIX Operating System™
and formatted the accompanying ‘“V6 PDP-11/40 Source Code Book'’. He said that nroff yielded some of
its more enigmatic secrets so reluctantly, his gratitude was indeed mixed. However, without John’s book,
many of us would not remember that UNIX was once less than 10,000 lines of code and transportable in a
student’s brief case. And perhaps that immortal comment on line 2238 might have escaped us:

/* You are not expected to understand this */

Jun Murai (Japan), University of Tokyo.

Architect and designer of the Japanese UNIX Network (JUNET) which uses tcp/ip protocols over dial-up
telephone lines, Jun has a hard time explaining that his name really is Jun and JUNET is not named after
him!
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David Turner (UK), University of Kent.

David is well known for his research into the design and implementation of functional programming
languages. He has designed a series of functional programming systems, all running under UNIX, of which
“*Miranda’’ is the most recent. He invented a new implementation technique for functional languages
based on compilation to combinatory logic. He holds the Chair in Computation at the University of Kent at
Canterbury.
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UNIX Past, Present, and Future: Changing Roles, Changing
Technologies

John R. Mashey

MIPS Computer Systems
Sunnyvale, CA 94086

1. Introduction

The UNIX operating system seems to defy the laws of physics by remaining in perpetual motion. This
paper takes a brief look at where it’s been, where it is, and where it might be going. In particular, UNIX
stands as a major beneficiary of the the current developments in RISC microprocessors.

2. History
For years I'd used used the following model of UNIX history:

Roots (Pre-1969)

Birth (1969-1973)
Childhood (1973-1977)
Adolescence (1977-1981)
Maturity (1981-)

Lately, I've added the following:

Maturity (1981-1985)
Second Adolescence (1985-1989), or Here We Go Again

Of course, this is an over-simplification, as anyone would know who’s ever seen UNIX version history
charts, even partial ones. However, it still seems to offer a useful model of events. I don’t know why the
eras all ended up 4 years long; perhaps there is a natural periodicity to such things. Important events (new
UNIX versions or major technology changes) tended to happen near the end of each period, then spread
rapidly. This lets us choose the year just after each boundary (1974, 1978, etc) as an interesting sample
point, although the particular choice needs explanation.

Let us look at the process by which new technology spreads. In step 1, some new technology is developed
in some research lab or by some other small group of people. For a few years, it may be that nothing is
even published about it. In step 2, other groups (usually called "early adopters” in marketing parlance)
begin applying the new technology. This may take years, during which the originators and early adopters
run about trying to sell the ideas to others, and are somewhat successful, but are often ignored or classed as
lunatics. ("You call these minicomputers computers? You can’t be serious!") In step 3, exponential
growth takes over, and many more people get on board. By step 4, even the most conservative people are
finding uses for it, and it becomes an expected part of the environment. The sample years chosen were
ones where some technology was in middle-to-late step 2. This is an interesting phase: new technology is
strong enough that you know it is successful (unlike things that never make it past step 1), but it can be
expected to grow much further.

This model leans more towards the programming and technical uses of UNIX, and also reflects my own
biases and experiences.

2.1. 1974

UNIX users were mostly programmers working on UNIX-based projects, mostly in small, tightly related
groups, using the recently-available UNIX V5. Most people were using, or moving to the DEC PDP 11/45,
about .5 Mips, with a maximum of 248KBytes of memory. A typical configuration cost about $250K.
With a minimum (typical) maximum user load of 1(16)24 simultaneous users, each user’s average share of
CPU and memory was .50(.03).02 Mips, and 248KB(25KB)10KB of memory. People used 300-Baud
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hardcopy terminals. Support of 24 simultaneous users was accomplished by heroic system administration
coupled with the the patience of users desperate to accomplish at least a little work. Nevertheless, such
systems were both useful and cost-effective in comparison with mainframe time-sharing, and hence were
attracting interest. Addition of space-consuming features to any important program was viewed with
extreme suspicion. Acquisition of a new ‘‘release’” of software was accomplished by driving to Murray
Hill to see what new things could be found on the research machine.

2.2. 1978

Many more users were programmers and others that might be using UNIX as a general utility, or to support
non-UNIX programming projects. UNIX was UNIX V6, or the USG or PWB versions thereof. People most
often used a PDP 11/70 (.8Mips, IMB memory), with 1(32)48 simultaneous users. This gave each user
.80(.03).02 Mips and 1024KB(32KB)21KB. Although computing power had not increased tremendously,
the larger memory was quite helpful, since programs shared space efficiently, and both kernel and user
processes remained squeezed into 64KB text plus 64KB data. Adding features had certainly become
thinkable. People continued to use 300-Baud hardcopy terminals, but more terminals were running at
1200-Baud, and 24X80 CRTs were becoming widespread, sometimes running at higher speeds. A useful
system could still be bought for about $250,000, a cost that happened to be low enough that a Bell Labs
Director could sign for it with minimal bureaucracy. The result was a proliferation of systems bought by
organisations voting with their feet. At least somewhat in response to this trend, PDP 11/70s had begun to
appear inside most computer centers.

An important milestone had been reached: porting of UNIX to another hardware architecture.

2.3. 1982

The user community now included many non-programmers, and they most likely used a 4-8MB DEC VAX
11/780. so that 1(32)48 people received 1.0(.03).02 Mips and 4096KB (130KB) 90KB apiece. However,
although they sti// hadn’t gained much CPU power, many more were using CRTs at speeds high enough to
allow routine use of screen editors, and once again, hardware design helped software by letting us throw
more memory at the problem. UNIX variants abounded, including 4.1BSD, System III, USG 4.0 (inside
BTL), and various V7 offshoots. Many people inside Bell Labs had learned portability lessons from
painful experiences of porting PDP-11 code to other machines. UNIX kernels and user processes were
permitted to grow beyond 64KB text plus 64KB data, thus removing the major technical barrier to creeping
featurism. People were busy porting UNIX V7 to microprocessors, and the IBM PC had Happened,
although most true UNIXers looked down upon the primitive facilities available thereon. Local networks
were beginning to be used, albeit haphazardly, and people were looking at bitmapped displays for UNIX.

2.4. 1986 (NOW — really 1988)

1986

It is much more difficult to paint a dominant mode of usage, even in the technical area alone. People may
still share a mainframe, mini-super, or large supermini. For example, 1(32)80 might share a 20MB, 4.2
Mips VAX 8600, so that cach receives 4.2(.13).05 Mips, and 20MB(.7MB).25MB. A super-micro may be
be shared by a smaller number of people, so that a 2 Mips CPU with 4MB memory is shared by 1(8)16
people, giving each 2(.25).12 Mips, and 4MB(.5MB).25MB of memory. Finally, single-user UNIX
machines are much more common, ranging from PCs to technical workstations, which give the individual
user 1-2 Mips and 4MB or more of memory. Much computing is now done in heterogeneous networks.
Options and features have proliferated, but the improved user interfaces offered by higher-bandwidth
displays help mitigate this effect upon the user. Companies tolerating, using, or owing their existence to
UNIX have also proliferated. UNIX versions have consolidated around System V Release 2 or 4.2BSD, with
SVR3 and 4.3BSD beginning to appear.

1988 (REALLY NOW)

What’s changed mostly is the availability of 3-4-mips PCs and workstations. Pointing the way towards
1990, inexpensive, but high-performance (10 mips) VLSI RISC microprocessor systems started appearing
in 1987, and 20-mips ones are imminent.

UNIX versions have been updated to 4.3BSD and SVR3, and many combined versions have appeared, are
appearing, or are being promised to appear.
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2.5. 1990

We can safely assume that the computing environment will have diversified even more than it has already.
Some groups of people will always seek minimal-cost solutions, and will therefore either use low-cost PCs
with file servers or divide a larger computer. Presumably applications will grow, so that most people will
get (and need!) at least .5Mips and .5SMB apiece. Anyone who needs more power will be able to buy a
10-20 Mips, 16-64MB single-user workstation for entry costs of less than $1,000 / Mips, and such things
will be in widespread use, meaning that they better have started to appear by 1988. [1988 note: 10-mips
ones started shipping in late 1987.] Small servers (i.e., still not necessarily in the computer room) will
offer 30-50 Mips and 64MB-512MB, at costs of $1,000-$2,000 / Mips. High-end single-user workstations
should offer similar performance. Mini-supers will have gotten more super.

Almost anything that is not currently networked will be, ranging from inexpensive low-speed nets for the
office to high-speed fibre-optic nets among bigger workstations and servers. Almost every new computer
architecture will run UNIX. However, kernel underpinnings may have changed to ones like V (Stanford) or
Mach (CMU) that are more directly aimed at distributed systems. There will still be no standard UNIX,
although many will have incorporated SVID, X/Open, and POSIX. As always, there will be a horde of
UNIX variants that differ in those areas nearest the state of the art. Thus, there will probably be several
competing standards for graphics and especially windowing, although that area should have improved from
today’s current disaster area. (X11 and/or X11/NeWS at least offer some hope.) Networking should
improve in a similar fashion. There will probably be hordes of competing representations for complex
documents, image, and voice.

Note that the speed and cost predictions are conservative ones, based on reasonable technology trend
analyses. However, applications will have grown to consume this power, just the way they jumped from
11/70s to VAXen, and immediately gobbled everything. It is safe to predict that some people will expect
much more. VLSI designers will still want CRAY's on their desks.

Now, let’s go back and look at different areas in which UNIX has evolved. In each section I offer a
summary, setting 1974 UNIX to 5, then rating the rest of computing and later UNIX systems on that scale.
Bigger numbers are better; the scale is arbitrary; all opinions are my own; they’re mainly meant to stir
discussion on where we might go.

3. Individual Programming
The earliest place to look in UNIX for leverage is for the individual programmer, i.c., in aspects that
improve an individual’s productivity.

3.1. Editors, Interfaces, and Data

Here we cover the fundamental leverage area of the energy required to make the machine do something,
specifically in terms of the immediate human interface [editors, command languages] and file system.

Leverage Summary

1974 1978 1982 1986 1990
UNIX  Rest  UNIX Rest UNIX Rest UNIX Rest UNIX  Rest
3-5 0-6 5-7 0-8 5-8 0-10 8-12 0-15 8-20 0-20

Even early UNIX offered the programmer working leverage by simply suppressing unwanted details of disk
allocation and access, and by offering simple, inexpensive, and relatively powerful human interfaces.

In 1974, the typical UNIX programmer used a 30-character-per-second hardcopy terminal, unendurable by
current standards. However, 300 baud. ¢d, and sh were often thought wonderful <5> when compared with
the alternatives. Those who have never had the experience of allocating tracks of disk space via IBM JCL
cards <0> might try this once to appreciate just what a wonderful improvement UNIX was at that point.
Many programmers still submitted decks of punched cards for batch processing, or used expensive,
restricted line editors that lacked even regular expression pattern matching. In fact, many were pleased to
be able to edit such decks as UNIX files and run them via Remote Job Entry <3>.

By 1982, most people expected to use CRT terminals running at 1200 baud, Screen editors, such as vi or
emacs became widely available<8>, and remain so today. Shells also improved, offering (early) more
programmability and (later) more powerful terminal interfaces.
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Although the above mode of interaction remains dominant <8>, use of bitmap displays as terminals or
workstations has now become more common <10-12>, with noticeable improvements starting around
1983-1984. Such use clearly changes the potential modes of interaction to include much heavier use of
display bandwidth, pointing devices, and graphics.

UNIX has certainly been a better host to advanced interfaces than have many older operating systems:
many technical workstations are based on UNIX. On the other hand, UNIX is still plagued by a lack of
standards for graphics window-management, although the widespread support for X-Windows promises
some hope here. Finally, compared to workers in Computer-Aided Design, software engineers are
woefully under-served.

To summarise, for many years UNIX had one of the most convenient interfaces, when compared with
mainframe and other minicomputer systems. For a while, others have surpassed it in some areas by
running on personal computers too small for UNIX. As microprocessor system costs have dropped, UNIX
has become available on single-user workstations, and is starting to catch up in immediate interfaces.
Hopefully, by 1990, it will have interfaces as good as the best of the rest, and perhaps advantages over PC
operating systems that have been extended beyond their natural design points.

3.2. Text Processing
““Why can’t be more like my Mac, and vice-versa.”’

This has long been a strength of UNIX, but has, unfortunately, not progressed as fast as one might like.
This area is quite important to programmers and most other users. In the early life of the Programmer’s
Workbench, it was often noted that people justified their usage by predicting programming productivity,
but what they really did was documentation.

Leverage Summary

1974 1978 1982 1986 1990
UNIX Rest UNIX Rest UNIX Rest UNIX Rest UNIX Rest
5 0-4 8 0-6 8-10 2-12 8-12 2-20 8-30 2-30

In 1974, what most people got was raw nroff<5>, although a few lucky groups had phototypesetters and
access to troff. By 1978, many people used thl, egn, and powerful formatting macro packages <8>.
Larger typesetters became widely available through computer centers. In general, the UNIX toolkit was as
good, and usually better, than other widely-available systems. Some new tools have been added since then
<10>.

By 1986, inexpensive laser printers are widely available. By 1988, they’re cheap.

This area has supported continual engineering improvements, but has seen few real breakthroughs. For
example, troff externals have changed little in 10 years, and several of the still-popular macro packages
(-MS, —-MM, for example) were written 10-12 years ago. Ease-of-use of troff and related programs is
nowhere near that of some of the current desktop publishing systems <20>, although troff and its friends
can still do some things the others cannot. The others are catching up fast. At least UNIX is also host to
systems like Interleaf or Frame. An ideal system <30> would combine the convenience and ease of use of
these with the expressive power and control of the rroff complex, and research versions of this nature are
starting to be seen. Unfortunately, the ideal is nowhere near in heavy use yet, and it probably awaits the
more powerful workstations alluded to above, i.e., 10 Mips on the desktop. | do have hopes that the
desktop publishing system I've always wanted will be available by 1990 on UNIX if only because more
systems are being written in C.

3.3. Programming Languages and Level of Work

This is intended to measure the amount of work it takes to write new programs, debug them, and maintain
them. Since there exist many problem domains and languages to handle them, this section is of necessity
an over-simplification focused on systems programming and related activities.

Leverage Summary

1974 1978 1982 1986 1990
UNIX Rest UNIX Rest UNIX Rest UNIX Rest UNIX Rest
2-5 0-4 5-10 0-12 7-12 0-15 8-15 0-20 8-30 0-25
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In 1974, being able to use C instead of assembler for systems programming was wonderful <5>.

By 1978, shells had long since become programmable, other useful tools, like make, awk, and SCCS were
in use <10>.

During 1977-1981, I remember a great deal of experimentation and creation of special-purpose languages,
but somehow, it didn’t seem like there was that much clearly-observable widespread progress in this area
<12>.

By 1986, many more special-purpose languages exist, including the application generators and 4GLs that
now routinely accompany database systems. Also, object-oriented ideas have now infiltrated UNIX, by
way of C++, or Objective-C, for example <15>. However, many people still write in the same C that
existed in 1978.

In 1990, one can safely assume that raw C (in the form of ANSI standard C) will still be popular, although
languages like C++ should be in heavy use. I'd hope that we’ll be able to move to more highly-leveraged
languages (SMALLTALK, LISP, PROLOG), constraint-based systems (like van Wyk’s ideal), better
debuggers, and other tools that burn Mips to provide expressiveness <25>. The soon-to-occur jump in
performance and cost/performance should make this possible.

4. Group Programming

These attributes measure programming as a group activity. Note that minicomputer-based operating
systems have often done better than either mainframes or personal computers in this area.

4.1. Shared Data

This attribute measures the ease of sharing data.

Leverage Summary

1974 1978 1982 1986 1990
UNIX Rest UNIX Rest UNIX Rest UNIX  Rest UNIX  Rest
5 0-6 7 0-8 10-12  0-12 10-15  0-16 10-25 5-25 _

In 1974, UNIX was much stronger than most systems in offering convenient sharing of files <5>.

By 1978, some modest improvements had been made in areas of protection and ease-of-use when multiple
groups shared machines <7>.

By 1982, various groups had implemented networked filesystems of various ilks; that they existed was
good; that they remained of various ilks was bad <10-12>. Various vendors (Apollo, Prime, DEC, for
example) had implemented some good homogeneous networked filesystems.

By 1986, there exist several vendor-supported proprietary UNIX-based network filesystems. AT&T’s RFS
has been released, and Sun’s NFS is widely used <10-15>.

By 1990, most UNIX systems will support some network file system, probably either NFS or RFS, or both.
Performance improvements in both CPUs and networks should help this process be more cost-effective.

4.2. Shared Environments

Sharing work means more than sharing data conveniently; it includes the use of maintenance tools (like
SCCS), communications tools (like E-mail), and any other meant to help programming as a group activity.
This attribute measures the efficiency of this activity.

Leverage Summary

1974 1978 1982 1986 1990
UNIX Rest  UNIX Rest  UNIX Rest UNIX Rest UNIX Rest
5 0-5 5-10 0-10 5-15 0-15 5-20 0-20 10-30  0-30

In 1974, UNIX had the basics for a good group programming environment <5>.

By 1978, many groups had built coordination tools to support larger groups of people, SCCS was widely
used, and uucp at least existed to provide some minimal communication facilities <5-10>.

By 1982, a number of groups had built much more extensive programming environment systems (such as
SOLID or MESA inside Bell Labs), and mailers had become more sophisticated <5-15>.
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In 1986, more powerful distributed system facilities are becoming available <20>, including some good
non-UNIX ones by Apollo and DEC, and a good UNIX-based one by Sun Microsystems.

By 1990. we can assume that the best UNIX-based group programming environments will be as good <30>,
and maybe better, than the best available otherwise. mainly by catching up with the graphics that it does
not yet support consistently.

4.3. Bigger Problems

Another way to measure leverage is to look at the maximum number of people that could work together
using UNIX as a development base. This mostly derives from the size of machines and the internetworking
thereof. The numbers below give approximate maximum sizes.

Leverage Summary

1974 1978 1982 1986 1990
UNIX Rest UNIX Rest  UNIX Rest  UNIX Rest  UNIX Rest
25 200 100 400 400 500 500 500 1000 1000

In 1974, project size was pretty much limited to a group of people who could fit on one PDP 11/45.

In 1978, a project could survive the use of several close-linked 11/70s. Some large projects simply could
not fit onto the available UNIX boxes.

By 1982, larger projects used linked groups of VAXen. Really large projects (like #5 ESS) were moving
onto large mainframes, using UNIX/370.

In 1986, UNIX runs on the largest computers. Even the largest projects can use UNIX for their development
support.

In 1990, I assume that truly immense projects can be UNIX-based if they so desire. I would hope that other
areas of leverage have improved enough that we could do immense projects with fewer people. but I
suspect that people will simply try to do even larger projects.

5. Reusability of Code
Not writing new code is the ultimate in programming leverage. Reusability has 2 separate aspects. First,

there must be something to reuse. Second, you have to be able to find it.

This is so subjective that I've omitted the numerical ratings. However, I'd observe that the common
wisdom of 1974 was to re-read the UNIX Programmer’s Manual once a month. You always learned
something new, and besides, it didn’t take very long to read it.

By 1978, this was harder, and it's unthinkable today. Our ability to organise software and make it
available has lagged behind our ability to write it, and we’ve yet to achieve Doug Mcllroy’s vision of
software component catalogues |"Mass Produced Software Components", NATO Software Engineering
Conference, 1970].

Another way to say this is to paraphrase Maslow’s comment on tool-poor environments:
**To the person with only a hammer, all the world looks like a nail.”™”
Unfortunately, in a tool-rich environment that has not kept its tools superbly organised:

**For the person with a giant workshop, it may take longer to find the right screwdriver. than to take the
hammer, rip the screw out, and be done with it.”’

I hope to see substantial progress by 1990, using high-bandwidth interfaces and tools akin to Smalltalk
browsers.

6. Portability

This may be the most important area of leverage, but is also the easiest one to describe. Quite simply, no
other general-purpose operating system comes close to matching the portability of UNIX to different
hardware architectures. Although UNIX has often sacrificed short-term performance for portability, it has
often prospered in the longer run by being able to quickly move to new architectures. Consider how few
other previously-existing operating systems have been able to shift to microprocessors.
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In fact, in the next few years, we’re likely to see an ironic payback to UNIX in return for its portability.
Most older operating systems are tied to specific hardware architectures, whereas the existence of UNIX
makes possible the creation of new architectures without requiring huge efforts to develop new operating
systems. Thus, most new machines will run UNIX, and many may run nothing but UNIX. If it happens that
big jumps in performance and cost/performance occur via new architectures, then UNIX will have a
substantial advantage in gaining access to especially effective machines. Many people believe that RISC-
based microprocessors are going to offer such big jumps over the next few years. (Since I work for a RISC
microprocessor systems company, I might be accused of bias on this!) However, many companies are
betting the success of major projects, or even their whole existence, on this possibility. Every one of these
machines runs UNIX. This leads to one last prediction.

By 1990, the most cost-effective machines in the 5-50Mips range will all run UNIX or some closely-related
variant.

7. Conclusion

In 1988, I think UNIX most needs to more widely incorporate the improvements in human interface that
have appeared on personal computers. (This means that people who can spend $1000 on the desktop get
graphics also, not just people who can spend $5000.) Next, we desperately need to regain the degree of
reusability we once had, i.e., where you casily could find and re-use anything there was.

Finally, UNIX portability will offer an exceptional source for leverage over the next few years, as people
will be able to move masses of software to much more cost/effective machines.

The result should once again show the wisdom of investing in long-term portability, rather than short-
sighted optimisation.

Acknowledgements
This paper is an updated version of one that appeared in the USENIX Winter 1987 Proceedings.

EUUG Spring 88 - 13- London. 13-15 April 1988




London, 13-15 April 1988 - 14 - EUUG Spring 88




Plan 9 from Bell Labs — The Network

Plan 9 from Bell Labs — The Network

David Leo Presorto

AT&T Bell Laboratories
Murray Hill, New jersey 07974
research!presotto
presotto@att.arpa

ABSTRACT

This paper describes a new computing environment and the networking that
underlies it. We expect the environment to accommodate either a small group or a large
organization. Although our initial implementation is targeted at 100 researchers, our goal
is a system that can encompass all of AT&T’s research and development.

Our design runs counter to the popular trend in computing environments, workstations
connected by local area networks. We have found this solution to be both expensive and
awkward. This is especially apparent in large organizations. Instead, we propose a
system based on clusters of file servers and execute servers connected by high speed
networks. User interfaces, similar to workstations, access the servers via lower speed
distribution networks. Among other things, this simplifies administration and allows the
home and work computing environment to be the same.

1. Introduction

About a year ago, Rob Pike and Ken Thompson started designing a replacement for UNIX. Several of us
have since joined in. Our objective is to provide a system that can provide the computing resources for an
organization the size of AT&T’s R&D community. This translates into supporting approximately 20,000
users at dozens of sites across the United States. Currently this community is served by a number of
different systems. Although they come from many manufacturers, they can be broken into two broad
categories; large time sharing systems and workstations. It would be convenient if one of these categories
could be used for our community wide environment. Unfortunately, there are problems with both
solutions.

The large timesharing systems were built to centralize administration and maximize sharing of both
equipment and information. When the cost of user terminals was cheap relative to the rest of the system,
this was a very cost effective arrangement. Unfortunately, the need for graphic interfaces has driven the
cost of the terminals up while visi has driven the cost of processors down. For little extra cost, processors
can be added to the user terminals creating personal computers or workstations.™ This has made it, in
many cases, more cost effective to abandon the time sharing system in favor of the workstation. Since the
market factors forcing the change continue, the percentage of systems to which this argument applies
increases every year.

Users who have migrated to workstations face the problem of sharing their more expensive resources.
Those most often shared are long term storage and hard copy devices, the former because information
sharing is a goal in itself, the latter because of financial reasons. The obvious solution is to join the
personal computers via cheap local area networks (LAN) providing a medium over which the storage and
printers can be shared. These network systems are normally pieced together from off the shelf parts
(UNIX!, TCP/IP, ethernet, whatever micro is currently in fashion, a remote file system, ...). Using
broadcast algorithms and cheap media (e.g. ethernet) these networks can be comfortably grown to 100 or
more workstations.

The disadvantages of workstation networks are less obvious. Because of the small incremental cost when
getting started, the workstation LAN seems rather inexpensive. However upgrade costs can become

+ We consider personal computers and workstations to be essentially the same thing.
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astronomical. Since the model tends to couple the processor with the graphic interface, each user is
trapped in his own little box. Although the processor in most of our current boxes is more than adequate
for the graphic interface, we have to constantly upgrade each box to deliver more computing power. Our
time between upgrades for AT&T 3B’s, Sun’s, and DEC microvax’s seems to be about 2 years. The
upgrade cost of each system runs from $10,000 to $20,000. That means an expense of $500,000 to
$1,000,000 a year for a 100 person laboratory.

A second and more fundamental problem stems from the bandwidth needed by the traditional workstation
environment. It has already become difficult to take our diskless workstations home with us. The
bandwidth available over LAN’s (typically 10 megabits) is unavailable to the home. This means that our
home and work computing environments cannot be the same. The typical solution is to add disks to the
home systems. Unfortunately, this increases cost and reduces the possibilities of sharing. The same
argument also applies to the newer high speed workstations. Systems as fast as SUN 4’s are already too
fast to run diskless on ethernets without being disk starved. This too requires a faster network or private
disks.

The only way around these problems is to provide a few execute servers that anyone can use. By
upgrading these servers often, we can avoid upgrading a much larger number of workstations.
Unfortunately, few of the available networked systems allow graceful access to execute servers. The
environment in which a program executes on a remote server is almost always different than on the local
system. This is true both in commercial systems like the various Unix’s (Sun, AT&T, BSD, Ultrix) and
even in research systems (Stanford’s V-kernel2, Xerox PARC’s Pilot?, Wisconsin’s Arachne?). File names,
variables (like the shell environment variables), or devices can be different. Only systems like Sprite’,
Locus®, and the Newcastle Connection’-# which offer a true global name space seem to avoid the problem.
Unfortunately, a large global name space can become rather difficult to navigate. A clear indication of this
can be seen in the pseudo device mechanism in TOPS and the path variables used by UNIX shells. Both
mechanisms are attempts to shape the name space seen by the user. Unfortunately, both are awkward in
that they don’t really change the name space but actually provide search paths available to some, but not
all, applications.

The rest of this paper gives a birds eye view of an alternative being developed at Bell Labs. The project is
in its infancy and most of what is described here is still under development.

Overview

Figure 1 depicts the topology of Plan 9. The Plan 9 system consists of a three tiered network with
communal servers at one end and terminals at the other.

The servers are multiprocessor machines acting as either file or execute servers. The execute servers can
be clustered together to replace what are now computer centers or can be owned by individual departments.
Each cluster is connected by a local area network that provides 24 megabits/sec simultancously between
each execute server and file server in the cluster. The speed was chosen to approach that of the disks on
the file servers in order to keep from starving the execute servers.

The terminal hardware is the equivalent of what most would call a diskless workstation. Our initial
implementation is a 3 MIP machine with a 512x512 grey scale, screen, network interface, and mouse. By
performing all the data intensive work on the execute servers, the speed of the terminal network can be
kept low. Our terminal network is a | to 2 megabit/sec distribution network for our long haul network.
The bandwidth to a single terminal is about .8 megabits/sec. Our experience with Blit terminals” indicates
that this speed is adequate for host to terminal communications. At speeds as low as 1200 baud our Blits
perform bit-mapped graphics equivalent to that of a diskless workstation. The limitation is the painfully
long times need to transfer program and pictures over RS-232. A typical example of a large Blit program
is our window based cut and paste editor, sam. Sam is 51000 bytes long and takes a little less than a
minute to load over a 9600 baud line. A 512x512x2 grey scale picture is 64k bytes and takes about the
same time to load. To make the response acceptable, we need a network that will bring these times down
to a second or less. This means a bandwidth at least 60 times 9600 bits/sec or .6 megabits/sec, well within
the bandwidth of our terminal network.

Finally, a wide area network connects the terminal and server networks. If we are to serve a nation-wide
community, we need a network that spans the country. Our current long haul network provides 8

+Of course, we could (and do) just upgrade the ‘important’ people and let everyone else make do with the dregs. However.
the ‘less important’ people don’t seem very satisfied with this approach.
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Figure 1. Plan 9 Topology

megabit/sec service locally (within a campus) and T1 trunking, 1.54 megabit/sec, for long distance. This
should be a good first solution to our long distance networking. A higher speed, 125 megabit/sec, version
is being planned with T3 trunking, 45 megabits/sec.

Plan 9 melds the advantages of time sharing systems and workstation networks without their disadvantages.
Like a timesharing system, the file servers and execute servers can be shared by all users but are
administered centrally by a computer center. Like a workstation environment, any user or group of users
can attach their own execute and file servers to the network and reserve it for their own use. In addition,
each user can choose to run processes either in their own terminals or in the execute servers. A versatile
name space makes all this possible.

Name Space

In Plan 9 all named objects are in the same global name space. Processes, files, environment variables,
network connections, and devices all look like files or directories of files. The only interface to these
objects is via mount, unmount, open, close. read, write, and seek. This is a direct descendant of UNIX
device files and the ninth edition UNIX file system switch.

The structure of the object name space is a forest. Any resource connected to the network (e.g. terminals,
file servers, or print servers) implements a tree of the name space. The resources themselves are named in
a separate network name space described below. Whenever a user logs into Plan 9, he first creates a
personal name space on his terminal by attaching to his terminal’s tree whole trees or subtrees from other
network resources. The first subtrees he must attach are his home directory and standard utilities. This is
performed by the login process when he authenticates himself with the network. Other parts can be
automatically added (or removed) by a profile in his home directorv.

Once the user has a name space created, he accesses objects in that name space by reading and writing
them as if they were files, as they may indeed be. Objects like the user’s environment variables, screen,
keyboard, mouse, and processes are implemented by the terminal itself. Objects like his home directory

EUUG Spring 88 -17- London. 13-15 April 1988




Plan 9 from Bell Labs — The Network

are actually being remotely accessed.

New processes inherit the name space of their parent. Any changes made to the name space are visible to
other processes in its process group. If a process wishes, it can start a new process group. That process
group starts with a clone of the old name space. Changes made to a process group’s name space are not
visible to other process groups on the same machine. Therefore it is possible for a number of users to be
executing on the same machine with totally disjoint name spaces. This is especially important for execute
serves. When a user creates a process on another resource (e.g., if a user opens a window to an execute
server), a description of the parent process’s name space is sent to the new processor. Before starting the
child process an analog of the parent’s name space is built for the new process. Since all accessible objects
are in the name space, the child process will act exactly the same on the remote machine as it would have
on the local one.

The reason we say that the child will have an analog of the parent’s name space is because we may wish to
perform some changes in the sequence of mounts defining the name space. For example, if the local
system mounted /bin.68020 onto /bin the remote may want to mount /bin.cray2 onto /bin. This would be
one way to provide for a heterogeneous processor environment.

Long Haul Network

Plan 9's networking is based on our own long haul network, Datakit'?. Datakit provides the protocols and
name space to be used on all three tiers. Datakit is a virtual circuit switched network of the same vintage
as ethernet. The network consists of nodes (the switching elements), external devices (hosts and
terminals), and trunks. All devices attach directly to nodes which are joined together by the trunks. The
network provides virtual circuits between any two devices, a hierarchical name space for devices, and an
authenticated source identifier for all calls.

Our choice of Datakit as a long haul network is essential to the design of Plan 9. Our remote file access
protocol, like most other such protocols, is based on send/reply semantics. For Plan 9 to work across long
distances, message latency must be kept down. At the moment only virtual circuit networks can guarantee
low latencies at distance. This is due, in part, to the ability of a virtual circuit network to turn away offered
load when the delay through the network becomes too high. For example, round trip delays across the
United States on Datakit are consistently 55 to 65 milliseconds. The delay for the equivalent path on the
DOD Arpanet varies from 250 milliseconds to 10 seconds. If packet networks are to begin to provide
latency guarantees, they will need to develop much more stability.

contention/transmit bus

| l

controller 000
switch
clock
/ receive bus /
to host to terminal

Figure 2. Datakit Node Architecture

Figure 2 depicts the architecture of a datakit node. Devices and trunks connect to the node via interface
modules which plug into each of the two 8 megabit busses. All modules transmit on one bus and listen on
the other. Packets are kept small (18 9-bit bytes) to reduce transmit latency and increase bus sharing. As
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Figure 4. Trunking
figure 3 shows, each packet contains a source field containing a module number and channel number. As
the packet passes through the switch on the way to the receive bus, the switch looks up the source field in a
local ram and replaces it with a destination field. Trunking is accomplished by making the destination in
the switch memory a trunk module. A packet that trunks across one hop is shown in figure 4.

In order to set up a call in switch memories for a virtual circuit, a terminal or host has to communicate with
the node controller. For this, each interface has one virtual circuit permanently attached to the controller
on its local node. When setting up a new circuit, the device making the call informs the controller of the
channel to be used and the name of the destination. Then, communicating with other controllers, the local
controller determines a path in the network. Finally, the switches are then set up in all relevant nodes and
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both caller and callee are informed that the call has been made.

The names space is a fixed height tree with all the devices at the leaves. Device names look like UNIX file
names. They are variable length strings with components separated by slashes, e.g., att/nj/astro/research.
Unlike file names there is no root and all names are relative. A name is resolved by walking up the tree
from the current location as many elements as specified in the name and then using the name as a path
through the tree from that point.

It is important to note that the physical topology of the network and the name space are completely disjoint,
i.e., connectivity in the network is not related to the hierarchy of the name space. The former reflects the
administrative structure of the network and the latter the flow of information in the network. That means
that trunks can and are placed between any two nodes which need the bandwidth independent of their
relation in the name space. However, in practice, the structure of the network usually coincides with that
of the name space since administration and information flow often coincides.

Since all the switching is done in hardware, delays through the network are very low. Ignoring high load
queuing delays, the time through a node is on the order of a millisecond. Also, since the path for a call is
fixed, packets cannot pass each other. Together these properties make it easy to build very lightweight
transport protocol. The transport protocol used in the network is the Universal Receiver Protocol (URP).
URP provides grades of service ranging from uncorrected character streams to flow controlled corrected
delimited streams.

Terminal Network

The terminal network is a distribution system for Datakit called INCON, for intelligent connector '1:12.
INCON serves up to 15 stations over a balanced copper pair for 1000 feet at bit rates of 1.54 to 2
megabits/sec. Connection to incon is via connectors that convert the link level protocol of the connecting
device to the link level protocol of INCON. For example, a standard ascii terminal connects via an RS-232
connector or a telephone via a digital phone connector. Hence the name, intelligent connector.

One or more INCON networks are connected to a Datakit via a breaker box. the breaker box can be either
a module plugged directly into a datakit or a free standing module connected to a distant Datakit via a
trunk. In essence the INCON network is a low cost, low speed extension of the Datakit busses. Therefore,
the breaker box must map between INCON and Datakit addresses when transferring packets between the
two. It does this using a map which is configured by the datakit controller and it is functionally equivalent
to the Datakit switch with similar low packet delays.

In Plan 9, an INCON network will serve a single office utilizing the current telephone wiring. The INCON
wires run to a telephone closet where they terminate in a breaker box which trunks over fiber to a Datakit.
Home INCON’s connect to a breaker box in the house with a 56kbs, 144kbs or 1.54Mbs trunk back to a
company Datakit.

High Speed Network

Currently Datakit has no usable high speed component. A 125 megabit/sec version, called Hyperkit, exists
in prototype form. However, we are still waiting for chips to be built to provide a high speed interface
between it and our servers. The Hyperkit’s architecture is the same as a Datakit’s. It’s speed is derived
from making the busses wider and by performing transmit contention for cycle N+1 during cycle N of the
bus.

Luckily, for the near future there will only be one cluster of servers containing only a handful of
multiprocessors. As a stopgap, we are directly connecting all or our execute servers to all of our file
servers. The connections use parallel DMA interfaces and provide 24 megabit/sec transfer speeds. In
addition, each server has a datakit interface to connect to the terminals.

Status

The country wide Datakit network has been in place for some years. We have connected a dozen INCON
networks to it, each carrying one of our Plan 9 terminals. The terminals are running an operating system
with a VAX 11/750 is currently acting as their file server. A new multiprocessor is being installed as our
first execute server.

We are starting experiments with home service to see what bandwidths will be necessary to the home. A
number of us now connect to Plan 9 from home via dedicated 9600 baud lines. Rob Pike has just had a
1.54 megabit/sec trunk installed in his home and will soon be using that to trunk an INCON network to one
of our company datakits. Soon we will install some 56k baud lines to get sample points in between. By the
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time this paper is presented, we should have some feeling for which speeds are good, which acceptable,
and which useless.

It is too early for any conclusions. We are still feeling our way. If we’ve learned anything so far, it has
been that networked UNIX is not the solution.
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Help! I'm Losing My Files!

Help! I’m Losing My Files!

John Lions

University of New South Wales
Kensington 2033
Australia

ABSTRACT

Managing large collections of miscellaneous files can present a problem for
individual users of a UNIX system. Keeping track of files that are still wanted and useful,
finding and eliminating files that are no longer needed, and reorganising the file hierarchy
from time to time may not be trivial if the set of files is large. Outlines are drawn for a
partial solution involving index files, embedded keyword lists, a procedure for revising
file pathnames and the implementation of a daemon secretary to keep everything tidy.

“*Old programmers never die; they slowly file away”’

1. Introduction

This paper is a personal call for help. I’ve been suffering from a familiar problem for years, and lately it’s
been getting worse. 1'm losing files — not because of malicious hardware, or overzealous administration
— I'm simply losing track of what are where, and it’s getting harder to find them again.

Of course I’m not the first person to have this problem — for example, Dick Haight wrote find many years
ago — but these days find takes 2-3 minutes of real time (35 seconds of cpu time) in my main account.
Given that it takes so long, that I can’t always remember enough of the name of the file I'm looking for,
and that find doesn’t help me browse, it is only a partial solution.

Experiences that have influenced this paper include:

1. I have been collecting files for a long, long time. In particular, I have been collecting files on UNIX
systems for more than ten years. They are of diverse types (predominantly ASCII text) and currently
reside under several user names on five different machines. There are many duplicates and near-
duplicates (which is worse), and we are about to experience a major equipment upgrade.

For several years I have been pondering why the commercial success of UNIX systems has been less
than many pundits have been predicting. Obviously the pundits have been naive: they simply got
caught up in the enthusiasm of programmers for the UNIX system and extrapolated that to the
environment of application users — not the samé thing. But why? Part of the answer may be that
the system supports the creation of many small files, many of which would be treated as single
records in a standard database system. However it does not always provide a clear model for how to
implement a workable, working application and perhaps there are still software tools waiting to be
invented. It seems the UNIX system model may yet be incomplete(?).

Until recently, for nearly five years, in my tidier moments I was editor of the Australian Computer
Journal. During this period I used my local UNIX system to maintain records of correspondence and
work-in-progress. In the process | developed specialised solutions to what can now be perceived as
just subproblems of a more general problem. Last August I gave a paper (Lions, 1987) describing
these solutions to the AUUG meeting in Sydney. What emerged from the discussion was that the
problem, particularly in its more general form, was more interesting than the particular solution
techniques I had been using, so I decided to extend them.

2. The Problem

How does one manage a large assemblage of files that has been created somewhat haphazardly over a long
period of time. (I am thinking particularly of my own personal collection. Suppose, for point of argument,
one has 5000 files that can be ‘‘browsed’” at the rate of 30 per hour. How long will it take?) Each of these
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files was valuable for at least part of its existence, and may be so still. Some may still have archival or just
sentimental value. I still want to keep many of them, and to be able to find them easily. How does one
keep the collection “*properly ordered’’? How does one cull the collection efficiently and effectively?

This problem will not be news to anyone who owns a filing cabinet. One tends to store things indefinitely
as long as the marginal cost of keeping them is less than the cost of disposal. The cost of keeping computer
files is now very low, and is still decreasing rapidly (so it is most probably already less than for paper files).
For me the cost of culling online files, measured in terms of my time, is already greater than for paper files.
Hence I can already assume that my file collection is likely to keep growing for some time yet. (A rate of
1000 new files per year will almost certainly be conservative.)

This will be acceptable as long as the clutter does not obscure those files that I really want. 1 have
colleagues who strongly recommend the “*rm -r *** approach for all such questions but that’s not my kind
of solution. (Besides, it may not be appropriate if, for example, files are stored on non-erasable storage.) 1
want to be able to:

1. locate files efficiently using keywords or phrases that may or may not be embedded in the file name;

2. devise ways to rearrange the hierarchy for all or part of my files with little or no direct intervention
from me;

3. find efticient ways to locate files that are no longer needed and should be deleted.

There are well-known database management system solutions for some of these problems, but they seem
often overly rigid and constraining. Even if they support collections of text files, they usually want to
impose structures and constraints on the files’ internal structures. There already exist UNIX tools for
rearranging the file hierarchy (especially mv, ¢p, rm, etc.) but they are time-consuming to use, potentially
error-prone and too primitive for the problem now confronting me. 1I'm looking for a better way that will
be consistent with basic UNIX philosophy: perhaps not perfectly general, but neat, tidy and effective. I'm
happy to describe my solution in the hope that someone else has an even better idea.

3. A Partial Solution

The main problem associated with my editorial role was to navigate efficiently around a reasonable sized
(c. 1600) collection of files. A typical morning’s work might involve locating and interactively editing
twenty or thirty scattered files to record events and changes, and to append commands for generating letters
to be produced later by a background batch process. Such navigation problems arise frequently in office-
style computer applications and conventional data base systems explicitly address these (for example see
Bachman, 1973).

By offering good support for large assemblages of small files. the UNIX system provides a viable
alternative to conventional data base systems for many purposes. If it is used properly, in many cases there
is no need to use a proprietary database systcm.

I do believe that UNIX has a problem with supplying a wide enough range of role models. Although the
standard system offers a strong, firm model for program developers, I submit that its implementation
models do not offer broad enough guidance for application developers in specifying and organising large
assemblies of small files.

I am more than happy with the solution that I have developed because it works well. This is not because it
uses all the latest mouse/window technology (it doesn’t) but because it works well without the latest
rodents on a heavily loaded VAX system. In broad terms the method I have used is:

I Establish a set of domains within the file hierarchy. Each domain corresponds to a broad category of
files. (I formerly used the word **area’” for the same idea, but ‘*domain’’ now seems better.)

2. Associate each domain with a separate directory in the directory hierarchy. This directory becomes
the domain’s home directory. It can serve as the repository for all sorts of administrative files
(including specialised commands) associated with the domain. It may also contain subdirectories.

3. As far as possible, locate the files that will be associated with the domain “*close’ in the directory
hierarchy to the domain’s home directory.

4. As far as possible, ensure that the set of domains completely covers the file hierarchy, i.e. each file
belongs to at least one domain.

S. Establish a name server for each domain.

Various exotic possibilitics can be conjured up for the name server, but as I currently see it (and certainly
as I have implemented it) the service is provided via procedures applied to an index file that has one record
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for each file in the domain (including itself) and, for each such file, relates the file’s pathname (relative to
the domain’s home directory) to a string of keywords and phrases that *‘characterise’’ the file in some way.
For example:

relative_path_name: list of keywords
index:

current/bills1: gas water electricity utilities
current/bills2: dr smith boots medical

Finding a file involves searching the index file (using grep or sed is fine in my application) to find a record
that matches a search string. The search string can match any part of a record. Matching the file name (the
part before the “*:*") is usually better because it is more likely to result in a single match. But using a more
general term may often be the only available alternative. If more than one index record is matched, then a

further selection can be made from the information returned to the user.

Creating the index files involves deciding which files belong to the particular domain, and obtaining a
string of keywords to characterise each individual file. One way to do this is discussed below.

Once the initial version of name service was working, finding files for editing became much easier. For
example, if I needed to change the file for an article whose title included the word ‘‘concurrent’’, then,
knowing that ‘‘article’’ is the name of the relevant domain, and that the keywords are taken from the title
and the author’s name, I could start by executing the command ‘‘edit article concurrent’’. My version of
edit is a shell script that:

l. changes directory to the home directory of the domain named by the first argument;
searches the index file for the domain for occurrences of the string named by the second argument;

if the standard output is to a terminal, displays all the matching records. If there is more than one,
the user is then asked to supply a further search string that can be used for making a second choice;

extracts the file name from the beginning of the index record, expands the file if it has been
compressed, and starts an editor (v/) for it.

Edit provides a convenient way for moving around the directory hierarchy and explicit use of ¢d has been
greatly reduced as a consequence.

Similar commands were devised for other purposes. The command fs simply searches the index file
denoted by its first argument and returns the records matching the string that is its second argument. Both
commands are useful. Although it would be possible to use e.g. “‘vi “fs article concurrent’’’ in place of
‘‘edit article concurrent’’ the lack of the implied current directory change makes the former much less
attractive.

Edit offers an attractive way to find and access all the other files as well. In particular, interrupting one
editing task to perform another e.g. to revise the text of a standard acknowledgement letter, is frequently
desirable, and so executing commands like ‘‘edit letters acknowl’’ becomes desirable. But such
commands wouldn’t work unless a domain for ‘‘letters’” has been established with its own index file. To
do this, a new way of creating index file records is needed, since the previous way, using a sed script to
munch on standard record types in the data file, no longer applies.

4. Index File Records

Creating an index file was quite straightforward initially. The original domains coincided with selected
major subtrees of the file hierarchy; a file was in the domain if and only if it was part of the subtree. The
relevant files in each domain had a well-defined internal structure (in fact might have been a database
record in a more conventional system), and was given its own index file record. These records could be,
and were, derived mechanically using sed to search for and combine titles and author names.

When the concept of a domain was widened, purely mechanical means for generating index records
became impractical (if not entirely impossible). My solution was to introduce a new type of record into
each standard letter file, and the other files as well. One or more records of this new type need to be
included in each relevant file. This can still be done mechanically for the standard file types, or by hand
otherwise. The record type needs to be distinctive, so that it can still be found and trimmed easily using
sed. The convention for the record type that I have established is:

° It consists an arbitrary initial string ending in the special, unlikely combination ‘‘#@$:"" followed by
the list of keywords to be associated with the file.
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. It can appear embedded as a comment in all sorts of files, even an executable binary program (e.g. by
including **‘char blah [ ] = \n#@$: keywords\n";"" in the source file).
° It can be generated by hand, or mechanically for data files in a prescribed format. In the latter case

even though it does not strictly need to be embedded in the file, it is a good idea that it should be, so
that it can be ‘*hand tuned’ later if desired.

) It lives near the end of the file, front or back, so it can be found easily. (If this can be enforced, then
a special variant of grep/sed could be usefully devised for extracting such records quickly.}

The string “*#@$:"", which was chosen for its expected rarity, is unpronounceable (except in comic strips)
so the new type has been called a blah record. It carries information that many would regard as a file
attribute, i.c. **out-of-band’’ information that should be represented outside the file itself. (One can safely
assert that to do this would be inconsistent with general UNIX philosophy and hence should not be
considered a possibility.)

Blah records usually have to appear as comments in their host file. This is no problem for types of files
where “*#'7 is already used to introduce comments e.g. shell scripts. Alternatively, the record may be
prefixed by **\"*’ if the file is troffable, or surrounded by **/*’* and ***/°" if it appears in a C program.

The need for variant types of blah records depending on the file category is an irritant when records are
being installed manually. Conventions for comment record types in most situations are firmly established
and cannot be revoked. However it would be useful if a ‘*super comment type’” could be established to be
recognised in addition to the already established comment types for a wide variety of file categories. (I put
this forward as a suggestion for consideration by standardisation committees.) Since the C preprocessor
already recognises records beginning with **#°’ it would seem to be relatively simple to introduce *‘hash-
led’” comments into C programs, for instance.

I have embarked on a campaign to include blah records in many of my existing files. Since the collection
of files is far from systematic, the blah records have to be hand-crafted. To aid this process, I defined a
blah program with several options which can generate the substring “‘#@$:"" reliably on request. I have
also modified a ‘‘browsing’’ program to invoke hlah to add the extra lines at the end of the file and then to
restore the previous modification date (very pertinent ‘‘out-of-band’’ information).

Blah records need to be derived using a restricted, standardised vocabulary or thesaurus. 1 do not
underestimate the difficulty of doing this, since there are well-known problems in developing and
maintaining list of indexing words (for example see Judge and Gerrie, 1986, p.107 & p.149ff).

If we can suppose that the problem of associating list of keywords with files has been solved satisfactorily
(e.g. using blah records), then the problem of creating index files for domains can also be solved, provided
the association between files and domains has also been defined. This association may be defined by the
relative positions of files and domain directories in the file hierarchy. Or it may be defined in some other
way.

5. File Pathnames

An idea that has more than just a passing attraction is to derive some or all of a new pathname for a file
from its keyword list. Such a derivation may be complex, and subject to idiosyncratic rules in particular
cases. It may also need to change as the directory structure changes, as old directories are removed and
new ones added. This suggests new possibilities for automatic filing i.e.:

- moving a new (or newly imported file) from a general location to a more appropriate location: or
- rearranging files in an existing subtree among the directories in a new subtree.

There is an emphasis here on moving files i.e. on assigning appropriate pathnames. It could be suggested
that once a full set of index files is implemented real file names will be of little significance, and can be
assigned arbitrarily. There are several counters to this: most files need only one name at a time, so why
devise an alias and then support a mapping between the two? When the time for *‘browsing files'” arrives,
the most natural collection to choose is usually the set of files in a particular directory.

The rules for the mapping **{keyword list} — {pathname}’’ for a file are potentially intricate and
complex. At present [ am experimenting with a simple program (called rename) to generate an alternative
name for a file. It uses the following rules to generate a new name P for an existing file F:

1. Obtain the set of keywords for F and preserve their order.

2. From the beginning of the list, look for the first keyword K that corresponds to a domain name. If
successful, set P to be the pathname for the domain corresponding to K; otherwise set P to the file’s
current domain pathname.
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From the beginning of the list, let K be the first keyword that names a subdirectory of P. Replace P
by P/K.

Repeat the previous step until no further changes to P are possible.

Replace P by P/B where B is the basename of F.

If F and P are the same, then exit.

While a file already exists with the name P, replace P by M(P) where M transforms a pathname in a
suitable manner (e.g. by concatenating or modifying a numerical suffix).

This is sufficient to deal with imported files whose place in my file hierarchy has not yet been properly
established, and to move files from an overfull directory down into a set of newly established
subdirectories.

It also allows the reorganisation of subtrees when the attribute hierarchy is changed. For example, suppose
a domain exists for recipes with two levels of subdirectories. Initially the primary classifier is cooking style
so there are three level-two directories (baked, fried and microwave), and each of these is classified by
flesh type, i.e. it has four level-three directories (beef, fish, lamb and pork). To reorganise the classification
so that flesh tvpe becomes the major classifier, the recipes directory is renamed e.g. skip and loses its index
file. Then a new recipes directory is established with an incipient index file and four level-two directories
(beef, fish, lamb and pork), each with three level-three directories, (baked, fried and microwave). The
reclassification is then achieved by renaming all the data files below skip to move them back into the (new)
recipes domain.

The mapping generated by rename is potentially multi-valued and and rules are needed for selecting among
alternatives. It is also conditioned by the existing domain/directory structure and, in general, it will change
if this structure changes.

Initial rewriting of the keyword list is needed in general. The components of the pathname F can be placed
at the beginning of the list (this will ensure that once a file enters a domain, it will remain in there until the
domain is abandoned). Other rules may be used to replace particular keywords or combinations of
keywords by preferred alternatives, etc. In time, the keyword list transformer may come to resemble a
major rule-based expert system, and be replaced by one.

6. The Secretary

Rearranging sets of files is a relatively slow and error-prone process. It is best performed at a time when
other activities have been suspended. For my application where rapid action is not usually required, the
obvious time is “‘overnight™". I plan to implement a daemon secretary that will run at prearranged times.
For each file that is designated to be moved, it will calculate the new file name and perform the move.
Also, it will look for recently changed and/or moved files and make the appropriate changes to the index
files.

A good secretary needs to know both what tasks should be done, and what should nor be done. In this
context, this means new conventions for directory hierarchies: that files in some directories should never be
moved, and that any files in some other directories are essentially “‘in transit™” and should be moved as
soon as possible. (In deference to Dijkstra, I call the latter class of directories **skip™).

7. Living With Imported Files

Even if indecision with how to classify particular files is a personal matter only, not to be replicated
elsewhere, the problem of classifying files (records, data, etc.) is universal. Many of the files that concern
me as [ write this paper are imported, transported into my environment by mail or news. No one I know
can possibly keep up with the vast flood of information that comes in over the news network, but only 90%
of it is pure garbage. I would like a better way to cope, to select, store and manage more news items from
the remaining 10% more efficiently.

Once 1 have proper keyword lists for imported files, I know I can do a better job of filing them. Mail
handlers and news handlers should be adapted to facilitate the inclusion and editing of keyword lists
(represented by blah records or whatever) for both incoming and outgoing items, and users should be
encouraged to use them. An adequate keyword list should be required as part of every news item.
Unfortunately Furnas er al. (1987) have recently confirmed the earlier experience of librarians that
keyword selections by individuals may vary very widely when no standard thesaurus is enforced.
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8. Other Relationships

Many of the matters discussed here have clear analogues in the problems that arise with addressing users
across a large complex mail network. | borrowed the terms ‘‘domain’’ and *‘name server’ deliberately.
because I believe many of the present distinctions may largely disappear in time.

There is obviously a close relationship between index files and existing directory files. No suggestion is
made here that their functions be merged, but perhaps index files might achieve some special status in
future releases of UNIX systems.

Progress usually involves many small steps, not a few large ones. The solution described is designed to
help me manage my personal set of files better without going to a full-blown database management system.
It does not address issues such as concurrency, locking and recovery. I quite agree with Birrell, Jones and
Wobber (1987) that the implementation has not been difficult.

9. Conclusions

This paper has canvassed the problems with managing a /arge set of personal files, a comparatively new
problem for most computer users. A possible solution consistent with general UNIX philosophy has been
outlined. This involves: the establishment and use of index files and domains to aid in locating particular
files using keywords rather than precise file names; embedding a generalised class of comment records in
files to record keyword lists; and implementing a daemon process that, like a good secretary, will keep
everything tidy by moving files into appropriate clusters. Once I have finished implementing this solution
for myself, I expect to stop losing files and to start finding them again!
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ABSTRACT

A tool-based system for 3-D modeling and animation is presented. Each ool is a
separate program that operates as an independent UNIX process. Tools utilize a
window-oriented display package, an event-based input system, and a large graphics
database that resides in shared memory in providing interactive and non-interactive
functions. The system described here is being developed for use in the production of 3-D
animated sequences and as a testbed for research in 3-D modeling and animation. The
architecture of the system and the motivation behind the tool-based approach is
described.

1. Introduction

The Animation Research and Development group at Pixar is interested in the problem of creating realistic,
computer-generated, moving imagery. In particular, we are interested in using computers to model,
animate, and render life-like 3-dimensional characters in a feature length film. Many of the problems that
must be solved to reach this goal are monumental. Aside from the computational difficulties associated
with generating the pictures for a feature length film, the techniques required for modeling and animating
life-like 3-D characters and scenery are either non-existent or extremely primitive. Present approaches to
modeling and animation are typically very tedious, requiring so much human intervention as to make even
short films extremely time consuming. Advanced techniques for improving the animation and modeling
processes, such as dynamics and constraints are, at present, too computationally expensive to be considered
for use in an interactive setting.

This paper describes an ongoing research effort to provide a framework within which production-quality
modeling and animation systems can be constructed. These systems are constructed by combining
individual programs termed tools that provide limited, but well-defined, facilities. This tool oriented
approach provides users with a flexible and extensible system in which to model and animate. While one
goal of this effort is to provide a production-quality environment in which to model and animate. a
secondary goal is to create a testbed for experimenting with advanced techniques for modeling and
animation. Techniques such as constraints and physical simulation are understood to be important in
modeling and animation and it is important that it be possible to integrate them into our modeling and
animation facilities.

The remainder of this paper describes the modeling and animation workstation being developed at Pixar.
Section 2 presents, in reasonably simple terms, the typical process by which we create computer-generated
3-D imagery. In section 2 we discuss the goals of our system. Section 4 provides an overview of the
system, including the hardware base on which the modeling and animation software operates. Section 5
describes the important components of the software structure that make up the foundational software layer
we call the modeling environment . Section 6 discusses some of the tools that have been developed on top

of the prototype system and, finally, in section 7 we summarize the work and describe future directions.
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2. The Modeling-Animation-Rendering Process

The creation of realistic, computer-generated, moving, imagery is a difficult and time consuming process.
Logically this process is divided into three steps: modeling , animation, and rendering . (We ignore the
non-trivial tasks of designing a scene and the actions of the characters in the scene, and of creating the final
film.) The first step in the process, modeling, creates a database describing the objects that are cast in a
scene. These objects are usually constructed from simple geometric primitives such as cones, cylinders.
and spheres; as well as from less familiar primitives such as patches and splines. Modeling is carried out
either with interactive systems or through a programming language interface. In either case, the result is
the same: a database of geometric primitives is generated describing objects to be placed in the final
imagery.

The second step, animation, defines the motion of the objects modeled in the first step. Various methods
are used to bind a database of time-varying values (the motion database or cue sheet) to the model. In
some systems, each transformation node in a model is associated with from one to six channels of time-
varying data; the binding is then implicit in the structure of the model. In other systems, the animator or
modeler has control over which aspects of the model may be animated. In our system, time-varying
variables, termed articulated variables , are incorporated in the model description. These variables may be
used in expressions that are passed as arguments to geometric primitives or transformations. Each
articulated variable corresponds to one channel in a database of time-varying values; with each channel
independently specified by the animator. To minimize this specification effort, our system describes these
channels as splines. Control points for the splines are termed keyframes, and the spline-fitting procedure
used to determine control values at intermediate points in time is termed in-betweening. The in-
betweening of keyframes is analogous to the techniques used in conventional cel animation.

Once modeling and animation have been completed, the user has a 3-D scene from which 2-D pictures can
be generated. A camera specification is formulated to describe the position and field of vision of a
simulated camera, as well camera-related parameters such the focal length of the camera’s lens. Given a
camera specification, images are then rendered at every 1/24th (for film), or 1/30th of a second (for video)
during the time a scene plays. Scene information such as light sources and texturing are also provided to
the rendering process.

As one might expect, the process just described is iterative in nature. For example, it is common for
animation to show up weaknesses in a model, requiring alterations to the model that, in turn, require re-
animation of portions of a scene. Typical 3-D graphics systems split the above process into three entirely
separate steps. Furthermore, the programs used in each phase commonly utilize different, sometimes
incompatible, databases. This can cause significant time delays when one must violate the pipelined nature
of the modeling-animation-rendering process.

Of the three tasks described above, the process of rendering is by far the most advanced. Techniques for
the realistic rendering of very complex scenes constructed from geometric primitives have been
formulated. While the rendering of phenomenon that are not casily modeled with geometric primitives is
less well understood, it is still advanced enough to permit the generation of very convincing images.
Furthermore, with rapid advances in hardware technology, the time required to render images is quickly
shrinking. Unfortunately, while the cost of rendering is dropping precipitously, the costs for modeling and
animation have changed little. As a result, we are faced with the possibility that very soon almost all the
time devoted to the creation of computer-generated imagery will be spent modeling and animating.

3. Design Goals

Interactive 3-D modeling and animation systems are computationally intensive. The manipulation and
display of 3-D geometric primitives can, by itself, be very expensive. Combining this with database-
oriented tasks and the handling of real-time input devices such as tablets, often swamps even powerful
computers. While it has always been attractive to partition modeling and animation systems into multiple
processes, the size of the geometry databases and the requirements for sharing this information have rarely
made this feasible. Consequently, previous modeling and animation systems have usuaily been constructed
as independent monolithic programs that are used sequentially and which communicate through data files
that are defined with compatibility, rather than efficiency, in mind. Because the need for a common data
format is at odds with the need for efficient access to the geometry database, programs are forced to
convert input data to an internal format that is most efficient for their needs. This conversion can be very
expensive, sometimes requiring hours for sizable ASCII databases.

Our previous systems for modeling and animation,[1,2], exemplified these problems. Models were
typically specified in ASCII using an aigorithmic modeling language. Models and cue sheets were then
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interactively manipulated by the animation system to generate the motion database for the rendering
system. If a model needed to be changed, users were required to exit the animation system, edit the model
specification, and then restart the animation program. Similarly, many alterations to the cue sheet were not
possible from within the animation program. Instead an ASCII representation of the cue sheet had to be
edited off-line. While the text-oriented nature of these data files permitted the use of normal UNIXtext
processing tools, their format resulted in lengthy delays in the startup of individual programs when sizable
models and/or cue sheets were involved.

In designing our new system we wanted to address all of these issues as well as insure that the systems
were extensible both for users and for developers. The overwhelming complexity of the previous
monolithic programs led us to consider a tool-based approach similar to the scheme we had successfully
used for raster framebuffers. In this scheme a central modeling and animation framebuffer is kept in stable
storage. This database is manipulated with simple tools that can be combined in arbitrary ways to perform
complex tasks. While tools in our raster toolkits have typically been used in a serial fashion, we envisioned
the concurrent use of modeling and animation tools due to the interactive nature of the work.

The following sections discuss some of the important goals in our design.

System Extensibility

The system must be easily extensible both in terms of software and hardware. Since tools operate as
independent processes, new facilities can be added through new tools rather than by altering existing tools.
Even when existing tools must be altered, their simplicity and independence makes them easier to modify.

Hardware extensibility refers to the ability to support various input and output devices. In our environment
it is common to have 2-D digitizing tablets of varying sizes, 3-D digitizers, knobs, mice, and so on. For
performance reasons, our previous systems typically read directly from the input devices and were aware
of the characteristics of the underlying hardware. We wanted tools to be shielded from the physical
characteristics of input devices.

With regard to output devices, we were cognizant of the changes occurring in display technology. While
raster polygon based display systems are still not fast enough to satisfy our performance requirements, they
are improving at a rate that will soon make them usable. To shield programs from the details of the display
device our graphics library is designed to be device independent.

Operational Flexibility

The system must be flexible to use. By partitioning facilities into independent tools a user may instantiate
or combine tools in any way that suits them. For example, one of the most important tools is the camera
tool , a tool used to display the contents of a scene on an output device. In most integrated systems, the
camera control facilities are not under complete control of the user. That is, a user can not obtain multiple
camera views of a scene unless the application expressly supports this. With our approach however,
multiple views are created simply by running multiple instances of a camera tool.

A second consequence of using 1ools is that users can configure their operating environment as they see fit.
Unwanted or unneeded tools can be iconified or removed from the screen. With only a limited amount of
space on a display this turns out to be a substantial benefit.

User Interface Consistency

The user interface must be consistent across tools. This is a well understood notion that nonetheless
requires careful thought. Simply specifying common menu packages is not sufficient. Interaction
techniques in a 3-D workspace are not easily generalized to be applicable to all tools. We set forth certain
ground rules for user interaction. For example, rather than have tools interactively support modal behavior,
we expected users to simply startup another tool that provided the desired operating mode. Any modal
behavior, of course, is expected to be accompanied by reasonable user feedback.

High Scene Complexity

The system must be capable of supporting scenes of extreme complexity. Complexity in our environment
can appear in many forms. Scenes can be composed of many objects. Objects can be comprised of many
graphical primitives. The display of a scene can require many lines or polygons. Models can be
constructed with many graphical transformations. Animation can require many controls.

Our intent was to decouple display issues from those associated with the underlying models. That is, our
design allows us to support models that are significantly more complex than we can comfortably
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manipulate in an interactive fashion. This allows us to be one step ahead of the display technology. In the
meantime we can view overly complex models and scenes in two ways: either by reducing the detail with
which objects are presented, or by displaying only part of a scene.

Procedural and Non-procedural Interfaces

The system must support both procedural and non-procedural interfaces. We believe, based on previous
experience with modeling languages, that pure database-oriented approaches to modeling are severely
limited. The ability to specify a model procedurally permits a concise and exact specification technique
that is usually very difficult to achieve with non-procedural interfaces.

Central to our system is a graphical modeling language. Models are described with either textual
descriptions (programs), or via interactive systems that generate model language descriptions. Internal to
the modeling environment the modeling language is maintained in a more database-oriented structure.
This internal form permits us to efficiently interface non-procedural system such as constraint solvers and
simulation programs. There is, of course, the possibility of losing significant information, such as
comments, when converting between an external procedural description and an internal database-oriented
representation.

Interactive Performance

The system must be provide reasonable response for interactive tasks. This is a limiting factor in almost
everything done in our system. As mentioned previously, we wanted to include physical simulation
systems and constraint solvers in the interactive portions of the system; however, due to the limited
compute power available it was not expected that this would be possible. Nonetheless, we have tried to
insure facilities of these sorts can eventually be integrated with the interactive parts of the system. In the
meantime, we plan to integrate non-interactive systems by using them to generate data that is manipulated
interactively. For example, a physical simulation system might be used to generate motion descriptions
which are then used as the basis for animation.

4, System Overview

The modeling and animation facilities provided to a user are built up from multiple applications that
operate concurrently. Each application, termed a fool , provides a limited but well understood service to a
user. Tools may be instantiated multiple times and combined in an arbitrary fashion.

Each tool is provided access to the workstation’s displays and input devices, as well as access to a large
shared database termed the workspace . The workspace is intended to hold all the information related to an
animated scene; this includes:

e scene composition (models, cue sheets, cameras),

e model representation,

e symbol definitions,

e animation controls,

o display state,

e camera controls, and

e rendering controls (such as lighting styles and locations).

Since the workspace is potentially very large (many megabytes) and applications need immediate access to
large portions of the data, a shared memory region is used to hold the workspace. A workspace is a long-
lived object; it is possible to save the current contents of the workspace in a file and restore it at a later
time.

Dividing information and state along the lines of a scene turns out to be worthwhile and has been
developed as a general abstraction. Tools are designed to save and restore their operating state on a scene
by scene basis. This facility, combined, with saving and restoring the workspace from a file permits users
to easily checkpoint and resume work on a scene by scene basis.

The modeling and animation tools are constructed on top of a foundational layer of software termed the
modeling environment . This software includes:

e a graphics package for drawing on calligraphic display devices,

e a package that provides event-oriented input facilities,
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e several packages for the support of user interfaces,
e amodel specification system,

e implementations of graphical primitives,

e a package for manipulating splines,

e a library for working with cue sheets,

e support for various styles of cameras, and

e a symbol table management package.

The graphics and input packages have been explicitly designed to support multiplexed access to resources.
Thus, users are presented with an interface that looks much like a conventional window system; see Figure
4-1.
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Figure 4-1. Display with multiple tools.
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Hardware Base
Our prototype system is constructed from the following equipment (see Figure 4-2):
e 5-6 MIPS CPU with floating point accelerator,
e 16 megabytes of main memory,
o calligraphic display device capable of drawing 25,000 2-D vectors at 24 frames/second,
e monochromatic bitmap display,

o digitizing tablet for interaction.

Evans & Sutherland
Picture System 350

19" Monochrome \\\ Extended VMEbus \\\\

Monitor ‘
CCI Power 6/32 tablet
keyboard Sun-3 w/ FPA ]
8 MB memory

AN ANRARANY AN

10 Mb/s Ethernet

Figure 4-2. Workstation hardware configuration.

The hardware was selected almost three years ago. The CPU, reasonably powerful by todays standards,
was selected because of the significant computational needs of modeling and animation. Our previous
CPU, a VAX-11/750, severely limited the capabilities of our old systems. The replacement CPU was
selected to be approximately 10 times as powerful (both in integer and floating point computation). We
could, in fact, use unlimited amounts of CPU power. In animation, for example, the real-time solution of
arrays of partial differential equations would permit animators to utilize physical simulation and rules of
constraint.

The primary display device, an Evans and Sutherland PS350, is connected to the host via a special purpose
hardware interface that we designed. This interface provides memory-mapped access to the internals of the
PS350. In addition, the interface supports the capture and real-time playback of images,[3,4]t. Our
selection of the PS350 as a display device was based on its high performance (it is capable of displaying
nearly 25,000 2-D vectors a second at 24 frames/second). We would have preferred to utilize one of the
raster polygon systems, but were unwilling to settle for their relatively limited performance. We expect
that, in the near future, the performance of these systems will improve to the point that we can **step up™
from calligraphic displays. This will be a significant move as the presentation of complex graphical models
is severely limited on line-oriented display devices; clipping and shading significantly reduces the
ambiguity inherent in a vector display and increases the ‘‘information content’’ of an image.

The secondary display device, a Sun-3/50, provides a monochrome bitmap display that is used primarily
for the presentation of auxiliary menus and for text. Sun’s Network Extensible Window System
(NeWS™) [5], is used for several reasons, not the least of which is that it was easy to *‘drive it’” from a
remote input device. In our situation the primary input device is a tablet located on the main CPU. The
tablet is logically divided into multiple regions, each of which is assigned to either the main (PS350) display
or to the alternate (Sun) display. When the stylus is in a region mapped to the Sun, tablet events are
transmitted to the NeWS server and converted to NeWS events which are then dispatched as if they had

+This interface is designed to also work with the newer PS390 device.
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occurred locally. This permits us to manage both screens through a single input device.

The Sun keyboard is similarly managed with a split-screen event distribution facility. Keyboard events are
distributed according to the position of the primary input device. When input is focused on the PS350,
keyboard events are passed from the Sun to the event distribution system on the CCI where they are then
distributed.

5. Support Software

The system was developed on top of 4.3BSD. Two simple facilities were added to the kernel specifically
for our needs: a shared memory facility that is used to hold the workspace, and a device driver for the
PS350. Tools are written using a layer of software that forms the foundation for the whole modeling and
animation system. This software was designed to support our needs in each of the following areas:

Shared memory. A single shared memory region is used by all tools. This region is located at a fixed
address in each process’s address space permitting tools to exchange pointers to data structures resident in
the shared memory region. The support for shared memory includes memory allocation routines and
synchronization primitives. One server process initializes shared memory and then remains active to insure
the shared memory region is allocated (shared memory is reclaimed on last reference.) A second server
process manages semaphores, reaping held semaphores from processes that terminate abnormally.

Graphics display support. The main display system is an Evans and Sutherland PS350 device. This display
is supported by the CPAC2 graphics package, a device independent display list-oriented graphics
package,[6]. CPAC2 is notable for its support of independent drawing surfaces termed canvases.
Canvases provide an encapsulated drawing environment for each application and are organized in a
hierarchy that is used in the distribution of input events. Canvases are allowed to overlap, but they are not
clipped (on the PS350.) Finally, canvases may be mapped or unmapped . Mapped canvases are visible on
the screen, while unmapped canvases are not. The latter is particularly useful for maintaining the display
state of tools that are made iconic (with their icon displayed on the bitmapped display.)

Input handling. Input devices are managed by a server process that converts hardware events into software
events that are dispatched to clients according to interests they have expressed. Processes may also
generate software events to be distributed to other processes. Events are passed by reference through
shared memory. The design of the event handling facilities was heavily influenced by the event handling
facilities provided by NeWS|[7].

User interface. There are several areas in which packages have been developed to provide a common user
interface across applications. The common window management functions are provided by a window
manager process. Each application identifies a region of a canvas in which the window manager should
listen for input events. Using this mechanism, the window manager provides standard functions such as
changing the shape and/or position of a canvas through a pop-up menu.

Interactive graphical widgets such as buttons and sliders are provided by an item library . Four basic items
termed buttons, toggles, sliders, and messages are provided. These items can be combined to form
familiar objects such as menus through the use of composition items termed choices and panels. The item
library is widely used by applications resulting in a consistent interface.

The item library is commonly used in conjunction with the lavout library. The layout library provides two
facilities that are layered directly on top of items: an ASCII specification file and placement algorithms
reminiscent of the pic and th! programs. One useful aspect of the layout library, which is not yet fully
exploited, is the ability to write out layout specification files according to an existing set of items. This
permits applications to exactly save a large portion of their display state automatically.

Model language. The model language interface is available to all applications through the model language
library. Tools have been written, using this library, to read and write models in an ASCII format. The
model language is a fairly vanilla programming language oriented towards the specification of graphical
objects. Basic control constructs and expression operators are provided as well as APL-like data structuring
facilities. Graphical operations and primitives are not part of the model language per-se. Instead graphical
primitives such as sphere or torus, are treated as opaque objects and treated in an object-oriented fashion by
the model language library. A formal specification has been developed for the interface between graphics
primitives and operators, and the model language. This interface definition permits primitives to be treated
independently of the language.

The model language interpreter is one of the central components of the modeling and animation
environment. Models are managed internally as interpreted data structures. Each time a model is executed
the resultant calls to the graphics primitives that make up the model cause the model’s representation on
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the display to be updated. Since the execution of large models can be extremely expensive, the model
language library maintains dependency information that indicates which model language statements
depend on which articulated variables. This information is used to optimize updates when articulated
variables are altered.

Graphics primitives. As mentioned above, models are described in terms of graphics primitives, or
gprims . Gprims are the foundation of the modeling facilities. Models can be described only in terms of
the gprims supported by the system. Gprims may have multiple representations. Each representation
reflects the characteristics of an output display or process. For example, a line representation is supported
by all gprims and used for displaying gprims on the calligraphic display device. Other representations
support the conversion of gprims to polygons, bicubic patches, and to micropolygons (an object used in the
rendering system).

Splines. The spline library supports the manipulation of various -types of spline curves used in the in-
betweening process (e.g. Hermite, Catmull-Rom). Routines exist for constructing and editing splines, as
well as for performing partial evaluations and updates. Timestamps are used to minimize the cost of
updates when used in interactive systems. The spline library is also used to support a package of routines
that implement 3-D splined space-curves.

Cue sheets. Cue sheets are used to specify the values for articulated variables. A typical cue sheet
specifies a set of articulated variables by name. For each variable a spline type and set of knots is given
along with the time span over which the values are to be applied to the model. Programming facilities are
also supported by the cue sheet interface so that common cue sheets can be included, and so that data can
be replicated and cycled. These facilities provide a crude mechanism for reusing existing motions — this is
the start of a **motion library.™

Cameras. A camera describes a view onto a scene. It is described by its position, orientation, field-of-
view, and the aspect ratio of the view. Cameras are treated as special purpose graphics primitives in
models. They are special because of their non-standard requirements for update notification and for their
specialized interaction controls. By incorporating cameras in models it is possible to have cameras that
present views that are affected by local transformations and also to have animated cameras (e.g. a camera
that follows an object along its path of motion.)

Scenes. A scene is composed of a model and a cue sheet. The scene library is responsible for managing
the state of the resources that comprise a scene. Updates to a scene must be synchronized so that, for
example, multiple tools can not simultaneously modify the internal representation of a scene.

Matrices. The matrix library provides a complete package of routines for the manipulation of matrices,
vectors, and quaternions. This library is sort of the graphics person’s —Im.

Symbol table. A central component of the modeling environment is a symbol table that resides in shared
memory. The symbol table is used to record variables declared in models, articulated variables defined for
animation, the names of objects in the workspace (e.g. the scene name, the names of models), and more.
Symbols are defined within a tree of name scopes. Name scoping is necessary to handle name clashes.
Names in the symbol table are heavily used for rendezvous between tools. For example, each camera
registers its name in a special scope and programs that need to ‘‘attach’’ to cameras locate the camera by
consulting the symbol table.

Selection. Information can be passed between tools through a selection service. This service manages a
simple repository of data that is implemented on top of the symbol table package.

NeWS Clients. The final package of interest is a library of routines used by programs that communicate
with the NeWS server managing the bitmap display. The library supports the basic NeWS facilities as well
as some local additions that provide for sophisticated text manipulation. The library is described in[&].

6. Tools

As described previously, users interact with the modeling and animation facilities through tools. Tools
typically cooperate with each other by sending and receiving events. For example, updates to the display
are managed by a display tool. Programs that need to be notified when all or part of a scene changes do so
by expressing an interest in an update event . Each time the state of the scene is updated an update event is
broadcast and any tools that have expressed interest will be notified.

In this section we present some of the tools that have been created on top of the prototype system.
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I/0 Tool

The input/output tool is used to read and write scenes, models, and cue sheets. The length of a scene, in
frames, can also be adjusted through this tool.

Display Tool

The display tool manages display list updates for a scene. These updates are typically delayed so that
multiple changes to a model result in only a single display update. Users interact with the display tool to
alter the level of detail and complexity with which a scene’s models are presented on the display device.
Level of detail is a value that controls which parts of a model are displayed. Each object within a model is
assigned a level of detail. This assignment is completely under control of the modeler. Only those objects
within a model with a level of detail greater than or equal to the current level of detail are incorporated in
the presentation of the model. Complexity is a parameter that controls the detail with which graphics
primitives are rendered. For calligraphic displays, for example, this controls the number of lines used to
draw a primitive. In addition to the interactive facilities just described, the display tool also acts as a
“‘server’’ for the back-face cull and quick rendering facilities.

Camera Tool

The camera tool displays a model on the display device. (See the two cameras that appear on left hand side
of Figure 4-1.) Cameras come in two forms: animated and static. A static camera remains fixed in space,
while an animated camera may be moved about interactively or through articulated variables. Users
normally setup one primary camera that represents the point of view that will be used for filming and bring
in additional cameras when debugging motion. The camera tool provides an interface to two facilities that
are implemented in the display tool: the ability to generate an image with back-facing sides culled and the
ability to generate a quick and simple rendering of the image using the Pixar Image Computer (PIC).

Many programs atfach themselves to a camera in order to provide visual feedback. For example, Figure
6-1 shows a grease pencil tool that can be used to annotate a frame. This tool operates by temporarily
taking over control of input events in the area in which the camera tool places its display.
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Figure 6-1. Grease pencil tool.
Calculator Tool

The calculator tool provides users with a simple numerical entry facility. The calculator is integrated with
other tools through the selection service. Useful numbers that are defined in other tools can be saved in one
of the calculator registers .
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Articulated Variable Spline Editor

The spline tool is an interactive editor for articulated variables, where the variables are edited according to
their underlying splines. The spline editing facilities include adding and deleting knots, and altering the
value, tension and bias (as applicable) at each knot. Splines are displayed as value versus time within a
scene; see Figure 6-2. This presentation can be limited to a specific period of time and/or range of values.
Multiple splines/variables can be displayed and edited simultaneously.
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Figure 6-2. Spline editor tool.

Model Language Viewer

The model language viewer displays an ASCII version of a scene’s model. The model’s internal form is
“‘reverse compiled’ and the result is displayed in a window. Text can be selected from the viewer for use
with other tools. Future plans call for developing this tool so that it supports editing functions with
immediate graphical feedback.

Object and Articulated Variable Selection Tool

The object tool displays the names of objects and articulated variables in a scene. This display is used in
conjunction with the selection service to identify objects and articulated variables that are to be
manipulated by other tools. For example, to edit the values of an articulated variable as a spline, the name
of the variable is selected within the object tool, and then the ““add’” operation is invoked in the spline
editor to add the variable to the set of splines being edited.

Playback Tool

The playback tool implements real-time playback facilities. A range of time is specified over which to play
back the motion of a scene through each of the cameras. Time is then cycled and the model is executed to
force the display to be updated. For playback on the PS350 display, one cycle is executed and, at each
frame, the 2-D vector data in the PS350 refresh buffer is recorded. After the cycle has been recorded as 2-
D vectors, the playback tool then turns off the PS350 graphics pipeline and transmits the refresh buffers
directly to the PS350 display subsystem. By avoiding the PS350 graphics pipeline extended real-time
playback of complex images is possible.

An alternative scheme is also supported whereby a quick render is performed for each frame in a sequence.
These frames can then be assembled in the framebuffer of a PIC and the PIC’s video controller can be
manipulated to provide real-time playback of the rendered images for the scene.,
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Picking Tool

The picking tool is used to interactively select graphical objects that are displayed in a camera’s window.
Users can point at a location on the screen and the pick tool will then map this location to an object in the
model. The mapping process is performed partially in hardware, using the picking facilities of the PS350,
and partially in software. A pick can be resolved not only to an object, but also to a component of an
object; e.g. a point in a patch. Picking is performed according to a pick box whose size is under user
control.

Cue Sheet Editor

The cue sheet editor is used to edit a scene’s cue sheet. The cue sheet is presented as a table with each row
associated with an articulated variable, and each column with a keyframe: see Figure 6-3. Users can
interactively add, delete, and copy articulated variables and keyframes. The keyframe values for
articulated variables can be set either by poking values into a entry in the table, or by manipulating sliders
bound to each location in the cue sheet. Values for poking are typically obtained from the calculator.
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Figure 6-3. Cue sheet editor tool.

7. Summary and Future Work

We have described a tool-based 3-D modeling and animation system. This system has been designed to
serve us both as a production system for the creation of computer generated animation, and as a testbed for
future research. The use of simple tools and a shared workspace permits important flexibility in the
system’s use and in the incorporation of new facilities.

We are currently working on using the system in the production of an animated film. This work will
exercise the extensibility of the system through the addition of new tools required for the production.
Future work is expected to focus on the better integration of the system with rendering facilities being
developed at Pixar, and with the incorporation of dynamics and physical simulation into the animation
facilities.
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ABSTRACT
The JUNET environment consists of various Kanjified public domain utilities and

some original tools providing Kanji capabilities. The design and implementation of this
environment will be described, as well as the current status of JUNET itself.
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ABSTRACT

We describe an analysis of system call activity (particularly file system activity)
made on several UNIX systems in a software development lab. The measurements were
motivated by design work in support of distributed file systems; the intent was to
characterize such things as system call frequencies, file system access patterns, and
caching behaviour, and to identify performance bottlenecks which might have been
missed by existing measurement tools. Among the more important results of the study:

) Most system call activity is file system activity.
° Most reads and writes are not matched to the file system block size.
. Most terminal I/O is done a single character at a time

Operations on directories dominate buffer cache activity even though only a small
part of the cache contains directory data.

Most buffer cache hits result from repeated access by a single process.

1. Overview

We describe the analysis of measurements of system call activity taken on several UNIX systems running in
out development lab, focusing on file system activity. The measurements were motivated by design work
in support of distributed file systems which raised several fundamental questions to which no clear answers
were available.

o What are the relative frequencies of system calls? Current report mechanisms give rates for a few
system calls (read, write, fork, and exec were thought to be high runners) but no numbers were
available for all system calls.

What caching strategies are appropriate for distributed file systems? What data should be cached?
What data appear in the cache of single-processor systems? Can any important benefit be derived
from the caching of file name data?

Existing performance measurement tools were unable to answer these questions. A profiler reports the
relative execution times of operating system routines. Weinberger [4] presents a scheme whereby counters
are inserted into all basic blocks of code and the numbers later tabulated. Both schemes give an idea of
what the system is doing but not why it is doing it. The kernel routine gerblk, for example, allocates a
buffer from the buffer cache for a particular disk block. The available tools report how many times getbik
is called but do not say whether the caller intended to read data from a directory, to write a regular file, to
exec a program, to read file mapping information, etc. Another tool, the System Activity Reporter (SAR),
gives command summaries and selcted counts but its output is not detailed enough for our purposes.

This study covers system calls in general, read and write calls in particular, file sizes, evaluation of file
names, and use of the disk buffer cache.

+ Author’s current address: IBM Israel Scientific Center, Technion City, Haifa, Israel.
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2, Method

Measurements were made on three 3B20’s and one VAX 11/780 in our lab while running their normal
loads; generally the number of users per machine ranged between 10 and 35. All of the machines were
used primarily for software development. We chose to measure time-shared rather than single-user
systems in the belief that a more balanced picture of resource usage would result from a mix of users. The
results are thus applicable to a software development environment but may not apply to other environments
(office automation, factory automation, real-time processing, or engineering workstations).

Counters were inserted at strategic locations in the operating system code. The overhead of this additional
code was less then 5% of system throughput as measured by a standard benchmark. Periodically user-level
programs read the counters, dumped them to a file, and re-initialized them.

Three data samples were collected on each machine every working day for six months. Data samples were
accumulated from 8 AM until 1 PM, from | PM until 6 PM, and from 6 PM until 3 AM, but the third set of
results was inconsistent with the others and was not considered in the study. We thus assume (not
unreasonably) that activity between 8 AM and 6 PM of a work day is ‘‘typical’” of time-shared UNIX
systems and activity at other times is not. Data collection was cumulative so there is no recognition of
spurts of activity.

All systems were running System V Release 2. No attempt was made to analyze other UNIX systems, such
as System V Release 3 or 4BSD.

3. System Calls

These measurements were straightforward; at every occurence of a system call an associated counter was
incremented and the values of the counters later compared to yield the relative frequencies of system calls.

system calls | % of all calls
read 30-40
write 10-20
alarm 6-13
signal 6-10
Iseek 4-6
close 3-5
ioctl 2-3
open 1-2

stat 1-2

Table 1. Frequencies of system calls.

Table 1 shows the frequencies of the most commonly used system calls. read and write together account
for 50-60% of all system calls but the ratio of the number of reads to writes may vary between 1.5 and 4.
Calls related to file system activity comprise 75-90% of the total. fork (create a new process) and exec
(run a new program) together account for less than 1% of all system calls, too low to be listed in the table.
Iseek (seek to a given offset within a file) occurs more frequently than expected, probably because text
editors use it to manoeuver through edited files. Many commands use signal (handle a software interrupt)
to handle asynchronous events gracefully so the high incidence of signal is not surprising. However. the
number of calls to alarm (schedule a timeout) seemed much too high. Some network protocol code runing
at user level on these systems uses alarm and signal to implement timeouts but commands that exercise
the network were not used enough to account for this. Further investigation revealed that the vi text editor
on System V uses alarm to interpret escape sequences arriving from the keyboard: if such a sequence
arrived fast enough it is interpreted one way, otherwise it is interpreted another way. vi is heavily used in
our environment and this could explain the high incidence of alarm.

One other seemingly anomalous result merits explanation: c/ose occurs more than twice as often as open
(even though they might be expected to occur in pairs) because when a process is created it inherits a
number of already-open files.

The results suggest, not surprisingly, that improving file system performance can have a dramatic impact
on overall system performance; this has been demonstrated by others [2]. It could be claimed that fork.
exit, and exec consume a lot of CPU time compared to read and write and that the emphasis given here to
file system calls is thus inflated. But fork in System V is implemented using copy-on-write so its overhead
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is low. exit incurs the overhead of freeing memory for a process, but this is also low in a demand paging
environment. Finally, most executable files on System V now use a file-mapping scheme to demand-page
executable files instead of loading the file into memory on invocation. exec thus interacts with the file
system, so improvements to file system performance should have a direct positive effect on exec and on
overall performance.

4. Read and Write

Special attention was given to the analysis of read and write because of their high frequency. There are
two parts to the analysis: measuring the frequency of calls for particular file types and measuring the
frequency distribution of return values for particular calls. (The return value from read or write is the
number of bytes written.)

file type % of all reads | % of all writes

pipe 5 4
device 35-60 55-80
regular file and directory 35-60 20-45

Table 2. Frequency of read/write calls per file type.

4.1. Regular Files, Directories and Pipes

Table 2 shows the frequency of read and write calls for different file types, including regular files and
directories, pipes (inter-process communication channels), and device files. Access frequencies for regular
files, directories, and devices vary widely across samples. From the data it is difficult to generalize about
the ratio of reads on devices to reads on regular files and directories, but processes generally write devices
more than they write regular files (a ratio of 2 to 1 is typical); it is likely that terminal I/O accounts for
much of this. The frequency of pipe use is low (although pipes have great impact both on system
functionality and on users’ perception of it). We can conclude from this that pipe throughput rates are
insignificant to overall system response time and throughput, assuming the amount of data flow through
pipes is small (as we show below). Processes that use pipes usually operate in pairs (reader and writer) and
thus already incur the added expense of context switches, further mitigating the perceived cost of sending
data through a pipe.

The return values from read and write system calls were tallied in order to measure use of the file system
logical block size in such calls. The return values were categorized into ranges chosen intuitively and are
summarised here.

Return values from read were startling. Depending on machine and sample, only 30-50% of all reads of
regular files return 1024 bytes of data (a file system block) and 35-50% return between 8 and 64 bytes.
Return values from reads of directories are even more striking: over 75% (and sometimes over 90%) of all
such calls ask for and return between 8 and 64 bytes. Each directory entry in System V is 16 bytes long,
and many programs read one directory entry at a time}. Clearly many programs do not use the standard
1/0 package, which gears the size of its reads to the size of file system blocks. **Nibbling’’ files results in
frequent reads, extra system call overhead, and reduced throughput. Similarly only about 25% of all writes
are done in units of the file system block size. It is likely that performance tuning of some commands can
improve overall performance without the need to touch the operating system at all.

Similar results were expected for pipes since they are typically used to pass data between programs which,
if “*well-written’’, have no foreknowledge of the file types with which they will be used. But about 30% of
all reads and writes on pipes transferred between 2 and 7 bytes if data, suggesting that they may be aware
of fixed length records transmitted through pipes. Sets of processes may use pipes to synchronize
execution, transmitting small amounts of information through the pipe.

4.2. Devices

Terminals were by far the most frequently accessed devices (receiving 83% of all device read requests and
96% of all device writes). Very little use of tape or raw disk was detected. A surprisingly high percentage
of all device reads (14%) were for the physical memory device, probably issued by programs such as ps

$ This has changed in System V Release 3, which incorporates a new system call for reading directories.
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and sysmon which read system internal data structures directly to report on system activity and resource
usage.

Only about 3% of all 1/O calls on these systems made use of the high-speed local area network (LAN).
Although the number of reads and writes issued for terminals dwarfs the number of such calls for the
network, the amount of data movement is much higher for the network: the total number of bytes
transferred favours the LAN over terminals by a factor of 2 or 3 to 1*. We conclude that in this
environment network device drivers should be optimized for rapid movement of large amounts of data.

Single byte reads and writes account for about 80% of all such calls on terminal devices. This result is not
too surprising since heavily-used programs such as the screen editor vi read, interpret, and echo characters
one at a time as they are typed. Multi-byte I/O would likely be faster but the instant-response paradigm of
text-editing (using ‘‘raw 1/O’") largely precludes this. Clearly one-byte manipulation is extremely
important for fast terminal response, and terminal hardware and software drivers should be optimized for
this case.

5. File Sizes

Mullender and Tanenbaum [3] report that 85% of all files on their UNIX systems are smaller than 8KB and
48% are smaller than 1KB, but their study didn’t measure actual (dynamic) file use. The measurements
reported here record the sizes of regular files and directories at open time and the sizes of execed files at
the time of exec. The numerical ranges of file sizes (multiples of 4KB) were chosen to simplify the
calculations and so that data would not be lost at the high end. As it turned out, more attention should have
been paid to the low end.

The measurements for regular files support the results of Mullender and Tanenbaum. At least 76% of all
open, regular files are under 10KB (the structure of the file system makes such files cheaper to access). Of
the 75% that are smaller than 4KB a large number are probably smalier than 1KB, although the granularity
of the measurements does not show this. File sizes between 24KB and 64KB appeared to be uniformly
distributed.

Similar results hold for directories: 82% of them were smaller than 4KB. However, 18% of all directories
directly read by user programs were between 4KB and 12KB in length, a disturbing result. A search for
directories larger than 4KB on one machine turned up several dozen, many of them ‘‘spool’” directories of
some sort. Many entries in these directories are empty, but the directory size is huge and the cost of
searching them high because the system does not perform compaction of directories.

The results suggest that file access strategies that concentrate on fast access for very small files (under
4KB) and moderately small files (under 24KB) would yield good results.

The distribution of sizes of execed files tends to grow more slowly than the distribution of sizes for opened
files. More than half of all execed files are smaller than 20KB. 94% of all execed files are smaller than
64KB. When demand paging is done directly from the executable file, the system constructs a linear list of
disk block numbers to avoid the expense of indirect block accesses when a process incurs a page fault. The
small size of execed files suggests that in general the block list consumes very little memory for the
performance gain it provides.

It would be interesting to extend this analysis to compare virtual memory sizes as processes execute. It
might be expected that many programs have a small amount of text but large data requirements that are not
reflected in the size of the executable file.

* At the time of this study network functionality was primitive on the sampled systems compared to services available
on other systems (System V Release 3 and 4.2BSD for example). It would be interesting to investigate the effect of such
features as a distributed file system and remote login on network use.
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6. File Name Lookup

namei is the kernel routine that parses a file name and finds its /node, the system’s internal representation
of a file. namei is called on behalf of such system calls as open, stat (get the attributes of a file) and creat
(create a new file or truncate an old one). Counts were kept of the number of times namei was called on
behalf of each system call.

caller % of all namei calls
stat 30

open 25

access 15

unlink 9

exec 7

other 14

Table 3. Frequency of namei calls.

About 6-10% of all system calls invoke namei. More than half of the calls to namei were on behalf of stat
and open (see Table 3). Although the system calls that use file names are made as frequently as read and
write, namei reads directories internally and has inner loops that make heavy use of the file system.

6.1. Number of File Name Components

3

The file system has a hierarchical structure in which a file is named by a “‘path’’ of several components
identifying the directory structure in which it is contained. namei loops for each component of a path so
measuring the number of components gives an idea of how much work it does. The average number of
components per namei call is 3.2. Users at a terminal probably use file names with fewer components
because they typically change directory to reduce typing. It is not known which programs generate long
file names (except possibly the command interpreter when searching command directories). Further study
in this area may uncover interesting situations.

6.2. Length of directory Searches

Each file system block contains 64 directory entries. About 77% of all directory searches found the target
entry in the first block of the directory and 5-10% found the entry in the second block. 18-23% of directory
searches read more than 2 blocks (2KB) (consistent with our earlier result that 18% of all open directories
have a size between 4KB and 12KB). The number of blocks read during a directory search averages
between 1 and 1.2 per component. Given that at least 1 block must be read, these numbers look good. But
even assuming an average of 1.1 blocks per directory this means that 10% of all directories searched have
more than 64 entries, which seems excessive. On the measured systems some commonly used directories
such as *‘/bin’” and ‘‘/usr/bin’” were found to contain between 100 and 200 entries (2 to 4 blocks worth of
data).

Several performance improvements are suggested. Reduction of the number of multi-block searches could
improve system performance. The system does not sort file names in a directory, so their location remains
constant after creation. It would be easy to determine the most frequently used commands in common
directories by inspection of standard accounting files, and administrative programs could periodically sort
the entries in a directory to achieve better search times. Alternatively the system could sort the directory
automatically or perform compaction (possibly incurring more overhead in the name search). Another
possibility would be to vary the linear search order currently used. Finally, use of a name cache could
reduce the amount of CPU time as well as the amount of disk 1/O required for directory searches (though
measurements of the buffer cache, described below, indicate that a substantial amount of 1/O caching
benefit is already in place for directory data). All of these proposals merit investigation.

6.3. Inode Caching

The system maintains a cache of currently and recently referenced inodes in an attempt to reduce both disk
traffic and use of the buffer cache (analyzed separately below). Between 54 and 62% of all referenced
inodes are found to be already in the inode cache with a reference count of 1 or more (meaning they are
currently in use), another 31-40% are found in the cache with a reference count of 0 (meaning they were
recently in use), and 5-9% are not found in the cache at all. In short the inode cache enjoys a hit ratio of
90% and is effective in “‘protecting’’ the buffer cache; buffers that contain inodes can migrate out of the
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buffer cache and allow other buffers to take their place. The high cache hit ratio indicates high locality in
file references. Inodes tended to incur between 5 and 13 hits while in the cache. The cache size on the
measured systems was between 400 and 600 entries: this was not varied for this study so as not to change
the production environment too radically.

operation % of al! buffer use | % of all hits | % hits/freq of op

namei 25-35 25-40 90+
read regular files 10-20 10 75-85
reading directories 10-15 10 90+
bmap (read) 5-8 10 90+
page faults 5-8 40-50
stat 5 90+
iupdate 5 90+
iread 2-3 5-10 45-60
write 5-7 10-12 90+
alloc 20-30
read pipe 90+
write pipe 90+
other 0-30

Table 4. Frequency of buffer cache usage.

7. Buffer Cache

The system maintains an internal file system buffer cache, keyed on logical block number, to reduce the
number of disk accesses. The four measured systems were configured with 400, 900, 1000 and 1100
buffers. (Again, the sizes were unchanged for this study.) Table 4 shows the frequency of buffer cache
access on behalf of different file system operations:

o namei refers to buffer cache operations performed while parsing file names.

. read regular files refers to operations for reading file data blocks.

) reading directories tefers to operations while reading directory data blocks with the read
system call.

. bmap: cache operations done while reading indirect blocks (which contain the disk ad-
dresses of file data blocks).

° page faults: operations done while handling page faults.

2 stat: operations to extract the access/modification time of a file from an inode.

) iupdate: operations to write the contents of an inode to disk.

° iread: operations to read the contents of an inode from disk.

. write: operations for writing data to files.

. alloc: operations to find free blocks in the file system.

. read pipe and write pipe: operations for reading data from, or writing it to, a pipe.

Although read and write occur with greater frequency than system calls which perform name lookups,
Table 4 shows that more buffer cache operations result from namei because of its inner loops (several
components per file name and several directory blocks per component). In particular, namei is responsible
for most directory accesses. Regrouping operations into broader categories, 30-35% of all buffer cache
operations are caused by namei, 25-30% are caused by file operations (read. write, bmap). 10-15% by
directory reads from user programs, 12% by inode operations, and 10-20% by miscellaneous operations.
These numbers emphasize the particular importance of directory searches to good performance — between
40% and 50% of all buffer cache activity is for directories.
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7.1. Cache Hits

The second column of Table 4 shows the distribution over all operations (for example, 25-40% of all cache
hits in the system are caused by namei), and the third column shows the percentage of hits incurred by each
operation (over 90% of all namei operations induce a cache hit). Blank entries indicate negligible
contribution to the total number of cache hits. Comparison of the first two columns shows that namei is the
most frequent user of the cache and is responsible for a proportionate number of cache hits. Reading files
and directories (read regular, read directoryv, bmap) accounts for about 25-40% of all cache activity and a
similar proportion of cache hits. Writing files accounts for fewer cache operations but a proportionately
larger number of cache hits.

The third column of Table 4 shows that buffer cache hit ratios are extremely high, with many operations
enjoying a 90% cache hit ratio or higher. In particular directory operations (namei and reading a directory)
have a better than 90% hit ratio, indicating that most requested directory data is accessible without the need
for disk I/O. A separate component name cache has been shown to improve performance on other systems
[1] but since a substantial caching benefit is already derived from the buffer cache the additional gain
achievable from a name cache may be less than expected.

The cache hit percentage for reading regular files was in the 75-85% range, still surprisingly high. A lower
hit ratio was expected here; the presumption is that users read many different files without accessing the
same data repeatedly. But since many reads access only a few bytes at a time successive calls are likely to
access the same disk block and produce cache hits on the associated buffer. (If more programs issued large
reads we might expect the hit ratio to drop.)

Cache hit percentages for the allocation of a new block in a file were in the 20-30% range. A high
frequency was not expected here because such blocks are being used for the first time in a file.
Nevertheless there are some cache hits on buffers whose associated blocks may have been recently freed
from a file which was removed; temporary files might be expected to encounter this, suggesting that the
LIFO policy currently used by the system for free block allocation is appropriate. Inode operations in star
and iupdate also have better than a 90% hit ratio because they occur soon after other operations that use
the inode, making it likely that the inode will still be in the buffer cache.

Cache hit percentages for iread were in the 45-60% range: if a file is used often its inode will usually be in
the inode cache so its disk inode will rarely be accessed. Many of these buffer cache hits may result from
references to other inodes which happen to reside in the same disk block. Cache hit percentages for
handling page faults were in the 40-50% range. Because of the discrepancy between page size (2KB) and
file system block size (1KB) on the 3B20, block read-ahead is used whenever there is a page fault. After
the system successfully reads the first block of a page, it probably takes a cache hit for the second block.
On the VAX, where page size is 512 bytes, 2 pages are read when a page fault occurs. there is a good
chance that a process will fault on both pages if the virtual addresses are close to each other, thus causing a
buffer cache hit on the second page fault.

7.2. Cache Hits by the Same Process

Many cache hits result from repeated access by a process without intervening hits by other processes.
More than 80% of the cache hits caused by reading regular files and directories, writing regular files, and
executing hmap operations result from a previous access by the same process. Frequently the ratio
approaches 100%: when a file is accessed by a process there is not usually much concurrent use of that file
by other processes. This is not unexpected in a development environment in which most users access
private files even though there is a large pool of public files that are frequently accessed by all users.
Results might be different in other situations (such as a transaction environment) in which there may be
more access to common data. The implication of the high repeated-hit rate for a process is that the system
could profitably flush data buffers when a process closes a file — an important consideration for data
caching in a distributed file system.

75% to 80% of all buffer cache hits caused by namei (cache hits on directory data) are repeated hits by the
same process; this is higher than expected and indicates that directories tend to be accessed repeatedly by
one process without any intervening access by other processes. There are several ways in which this can
happen. A command such as /s, which lists the names and attributes of the files in a directory, will first
read the target directory (bringing it into the buffer cache) to find the names of the files it contains and will
then issue a stat system call for each file in order to get its attributes; stat invokes namei and will elicit
buffer cache hits. And the shell (command interpreter), for every command typed, searches a set of
command directories and might be expected to hit the same directories repeatedly. These two examples
alone are insufficient to explain the high repeated hit rate for namei (neither operation occurs frequently
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enough). But one implication of the high hit rate is that it is reasonable to optimize the directory search
algorithm based on the predicted behaviour of a single process without being too concerned about the
effect of intermingled references by other processes.

Two other results: page faults exhibited repeated buffer cache hits (80-90%) despite the fact that the system
maintains a separate page cache and it would be expected that pages would migrate out of the buffer cache.
And J/O on pipes elicited about 40% repeated hits with writes consistently producing more repeated hits
than reads; the lower repeated hit rate for pipes can be explained by the interaction between reader and
writer processes which share and interleave accesses to cache buffers.

7.3. Composition of the Buffer Cache

The number of cache misses was counted for every operation. When a buffer was reassigned as a result of
a cache miss it was tagged with the type of the operation that caused it to be in the cache. (Thus it is
possible to speak of ‘‘namei buffers,”” *‘iread buffers,”” etc.) When a buffer migrated out of the cache to
make room for an incoming block the tag was noted and an associated counter incremented. The two sets
of frequencies — cache misses caused by particular operations, and buffer types leaving the buffer cache
— were equal. This implies that the buffer cache achieves a steady state that can be divided between a
fixed set of buffers that never leave the cache and a more volatile set that move in and out. Periodic
sampling found few blocks that remained constantly in the cache; effectively the volatile set of buffers

takes up the entire buffer cache.

The composition of the buffer cache is remarkably consistent. Directories occupy 4% of the cache, inodes
occupy 5-10%, data blocks (read and write) occupy about 40%, and pages of virtual memory occupy about
35%. Comparison of these numbers to those in Table 4 reveals an inverse relationship: operations such as
name! that are used most frequently and that have high hit ratios occupy few buffers in the cache while
operations such as page faults that are infrequent have many buffers of the corresponding type in the cache.

The number of hits accumulated by each buffer type was measured and the distribution of hits across buffer
types was approximately the same as the distribution of hits across buffer operations (Table 4), as
expected. In addition the number of hits taken by individual buffers was measured; a buffer typically
incurred between 6 and 11 hits while in the cache.

Measurements were also made of the number of times each buffer was written while in the cache. These
showed that frequently-accessed buffers, in particular buffers that enter the cache because of reads on
regular files or directories, namei, page faults, and bmap, are rarely, if ever, written.

8. Conclusions and Suggestions for Future Work

We summarize the major conclusions of this work. Some of the following points may seem truisms but
bear repeating. They apply to a program-development environment but may not extend to other
environments. There may also be a three-blind-mice-and-the-elephant syndrome caused by looking at file
system activity without taking process scheduling and memory management into account. However, the
techniques employed in this work can and should be used to measure the characteristics of system
execution in other environments and in other parts of the system kemel, particularly process scheduling,
memory management, and remote file sharing.

. Most system calls deal with the file system. Indeed, most system calls are read and write.

) The ratio of the number of reads of regular files and directories to the number of reads of devices
varies from system to system according to workload. However, devices (especially terminals) are
written more frequently than regular files.

) Most reads and writes do not match the data size to the file system block size (nor use the standard
/O library). Performance would be improved if they did.

. Few reads and writes deal with pipes. Pipe throughput is insignificant to overall system throughput
and response time.

. Most device reads and writes deal with terminals. There is a lot of one-byte terminal traffic; terminal
drivers and hardware should be optimized for this case and programs should avoid one-byte data
transfer because of the system overhead it generates.

° In the environment studied most network traffic requires the transfer of large blocks of data; device
drivers should be optimized for this case. Network traffic dominates terminal traffic in the number of
bytes sent, but the number of I/O system calls on terminals dominates the number of such calls on
network devices.
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76% of all regular files are smaller than 4KB and 96% are smaller than 24KB. The file system
should be optimized for these cases.

Most directories are smaller than 2KB but a few are as large as 12KB. Many large directories have
many empty slots; their size could be compressed to speed up directory search.

94% of all executable object files are smaller than 60KB; 53% are smaller than 20KB. Demand
paging algorithms may be able to take advantage of the small text size.

File names used in system calls have about 3 components on average. Most component names are
found quickly (in the first block of a directory).

The inode cache has a hit ratio of better than 90%. Most system calls that access a file by name
access a file that is already ‘‘in use’’.

Buffer cache hit ratios are close to 100% for directory search operations and between 75% and 85%
for reads of regular files. A separate component name cache would probably improve performance
by reducing the amount of computation required by a name search. It would also help reduce the
amount of disk I/O, although the high buffer cache hit ratio for directories indicates that a high
percentage of requested directory data is already available without the need for disk I/O.

The buffer cache is used more for directory searching (particularly in the namei function) than for
any other activity. Activity for reading files (data blocks, indirect blocks) is a distant second.
However, very few buffers in the cache contain directory data. A relatively large number are
devoted to regular file data and virtual memory.

Although many processes frequently access the same files, their references to the file are localized;
processes frequently produce repeated cache hits in accessing a file without intermittent hits by other
processes.

Buffers that are frequently used are rarely written, particularly directory blocks and regular file data
blocks.

These results suggest a number of areas for future performance work.

A design for caching data in remote file systems has already been implemented based on this work.
The benefits of extending the caching scheme to include remote file name caching should be
explored.

Frequently-used commands should be recoded to reduce the number of reads and writes they issue.
In many cases effective use of the standard 1/O library would suffice. Other commands should be
rewritten to make better use of system resources.

The device subsystem should be examined carefully for performance bottlenecks, particularly the
terminal subsystem and network protocol and driver code. This examination should extend to
hardware and firmware.

New statistics gathering counters should be placed in the system to count all system calls, file type
accesses, etc. Measurement programs should be available to report these statistics and in particular it
should be possible for administrators to compare local system activity to remote file sharing activity.

Processing scheduling and the memory management subsystem should be examined using methods
similar to those described in this paper.
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ABSTRACT

The fundamental notion of attribute grammars [1] is that values are associated with
the components of a grammar rule; these values may be computed by synthesizing the
values of the left component from those of the right components, or inheriting the values
of the right components from those of the left component.

The Yacc parser generator, in use for over 15 years, allows attributes to be synthesized;
in fact, arbitrary segments of code can be executed as parsing takes place. For the last
decade, Yacc has supported arbitrary data types as synthesized values and performed
type checking on these synthesized values. It is natural to think of this synthesis as
associating a value of a particular type to a grammar symbol when a grammar rule
deriving that symbol is recognized.

Languages such as CH support abstract data types that permit functions as well as values
to be associated with objects of a given type. In this framework, it appears natural to
extend the idea of computing a value at a grammar rule to that of defining a function at a
rule. The definition of the function for a given object of a given type depends on the rule
used to construct that object.

In fact, this notion can be used to generalize both inherited and synthesized attributes,
unifying them and allowing even more expressive power.

This paper explores these notions, and shows how this rule-based definition of functions
allows for easier definitions and much more flexibility in some cases. Several examples
are given that are hard to express using traditional techniques, but are naturally expressed
using this framework.

Introduction

When we write a grammar rule such as

expr : expr '+’ term ;

we frequently associate values with the components of the rule and use these values to compute the values
of other components. For instance, in the above example we might wish to associate integer values with
the symbols expr and terni , and include a rule for generating the value of the left-hand expr from the value
of the right-hand expr and ferm. Values associated with the left side of a rule that are computed from the
values on the right are called svnthesized attributes.

In other cases, we wish to use values associated with the left side of the rule to compute values of
components on the right side of the rule. These values are known as inherited attributes. One important
example of inherited attributes involves passing symbol table information into expressions and statements.

Allowing inherited and synthesized attributes to be specified without restriction makes it difficult to
generate parsers automatically from the rule descriptions. For example, it is very difficult even to decide
whether the definitions are potentially circular [2]. Nevertheless, attribute grammars are very expressive,
making them attractive both as a basis for editors and compilers [3] and as a platform for more extensive
computational and database systems [4].

+ Much of this work was done when the author was employed by AT&T Information Systems
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In a parallel development, languages such as Ada |5], Modula-2 [6], and C+ [7] have explored ways of
extending traditional program language type structures in much the same fashion. In Ada and C+, the type
concept is extended to include not just the values and the data but also the actions that may be performed
on these values. The key idea is that an abstract model of the data type, and the operations provided on it,
is presented to the programmer; the details of the implementation are hidden.

Yacc is a parser generator that has been available under UNIX since the early 1970’s. The original versions
of Yacc permitted only one attribute, of integer type, for each grammar symbol. Later versions allowed
other types, including structures, to be computed. However, because the parsing method is bottom up
(LALR(1)), and the actions are executed as the rules are recognized, only synthesized attributes can be
handled directly. More complex translations must be done by building a parse tree, and then walking this
tree doing the desired actions.

In Yacc, a unique datatype may be associated with each nonterminal symbol. In this case, every rule
deriving that nonterminal must return a value of the defined type. Each token may also have a defined
type; in this case, the values are computed by the lexical analyzer. An action computes the value
associated with the left side of a rule; this action depends on the particular rule, and the values of the
components on the right of the rule.

In trying to extend Yacc to handle CH, these two streams naturally came together in a prototype tool called
y+. Since there was already an association of types with nonterminals, it became natural to ask whether
functions could be defined on these types as well, and what meaning this might have. Some examples
proved compelling.

Examples

Given a rule

expr : expr '+’ expr ;
we might choose to define a function print(), on the nonterminal/type expr. In the context of this
particular rule, print() might be defined as

print () { $l.print () ; putchar( "+’ ) ; $3.print() ; }

(As with Yacc, we will use $1, $2, etc. to refer to the components of the right side of the rule, and $$ to
refer to the left side).

We might also choose to define another function, rype, on expr, and this might have a totally different
definition:

type () { exprtype( "+ , Sl.type() , $3.type() ) ; }
Since tokens are only created by the lexical analyzer (and never by rules), functions such as print and expr
can be called implicitly as part of a particular rule, and need no special definition mechanism.

By allowing these rule-defined functions to have arguments and return values, we get many of the effects
of inherited attributes:

type( TYPE t ) { $l.type( t ) ; $3.type( t ) ; }

In C++, a function that is defined as a member of a class can obtain access to the values in an instance of
that class; the keyword this allows such values to be explicitly manipulated. In y+, when a function f is
defined on a nonterminal/type X, not only the value, but also the function definition itself depends on the
rule used to define the instance of X .

A nice example is given by the rule:
expr : expr "+’ expr ;
on which we define two functions, polish and revpolish :

polish () { putchar( "+’ ) ; $l.polish() ; $3.polish() ; }
revpolish () { $l.revpolish() ; $3.revpolish() ; putchar('+’) ; }

These two functions can be similarly defined for other expressions. Two input line types can be defined as
well:
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line : "PRE" expr
line : "POST" expr

and a function, print(), that is defined as
print () { $2.polish() ; }
on the first rule, and
print () { $2.revpolish() ; }

on the second. Then, after a /ine has been recognized, print will print the expression in either prefix or
postfix Polish form, depending on the initial keyword of the line.

The attribute grammar approach to this would require generating and storing both the prefix and postfix
translations, and many intermediate translations as well. The above technique saves both space and time.

To summarize this section: we associate datatypes (C+ classes) with nonterminal symbols and tokens. In
addition to values, these types have functions associated with them whose definition depends on the rule
used to recognize a particular instance of the type. This mechanism generalized both inherited and
synthesized attributes; later sections discuss implementation and other applications.

Implementation

We have prototyped a tool, y+, to explore the semantic and syntactic implications of these ideas. Some
features of y+ are:

1. Every grammar symbol, token and nonterminal alike, is associated with a CH class.
2. Every class has 0 or more values, and 0 or more functions, defined on it.

Every grammar rule may have associated with it O or more functions that may be invoked to access
and change the values accessible to that rule. These functions may access and change values of the
result (left side) of the rule, and the components (right side) of the rule, and invoke other functions
defined on the components of the rule.

In practice, y+ specifications are transformed to CH programs and compiled. yyparse returns a value that
is, in effect, a pointer to the parse tree. After calling yyparse (which causes some input to be read and
parsed), the returned value is used to access the functions that are defined on the start symbol; presumably,
these cause transformations and output to be done.

When yyparse is called, it creates a data structure that represents the parse tree. For tokens, it creates
space large enough to hold the values, if any, included in the token. For nonterminals, the space created
depends on the rule used to create the particular instance of the nonterminal. The rule

A: B C D ;
would cause space to be allocated as follows:

integer rule number

space for the A values
pointer to the B value
pointer to the C value
pointer to the D value

In the case of simple actions, not depending on the rule, we simply index past the value to obtain the
components. In the case where the actions depend on the rule number, we generate a conditional based on
the stored rule number. In the case where B, C, or D is a token, the value returned from the lexical
analyzer is saved instead of a pointer.

There are a number of scope issues not yet resolved. If there are two calls to yyparse, for example, does
the second parse tree overwrite the first, or do both remain active. The issue of default actions and values
is also tricky. There is little point in wasting space on characters and literal keywords returned by the
lexical analyzer when these are implicitly known from the rule number; the questions is how to recognize
this and exploit it.

A similar issue is the treatment of default functions. If a function is called for a rule that contains no
definition for that function, should a default definition be assumed? We currently consider this a semantic
error and produce a message, semantic error, by analogy with the syntax error message of Yacc.
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Another issue is error handling. There is a premium in being able to return a sensible structure for any
input, even those in error, to allow the user to craft special functions that give particularly good error
messages. The exact mechanism by which these error rules might be constructed is still open.

Finally, given a data structure representing a parse tree, it is very nice to be able to rewrite it; y+ should
probably provide such operations through a user interface.

A Simple Example

This section sketches how y+ can be used to make a preprocessor that translates extensions into a base
language. We begin with a function ident, defined on every nonterminal symbol of the base language
grammar; this function, when called, produces a literal text representation of the rule. For example, for the
rule:

stat : expr ;'
we might define ident as
ident () { $2.ident () ; putchar( ;" ) ; }

This grammar can quickly be extended to a preprocessor by simply adding rules for the new constructions,
and defining ident on the new rules to translate into the base definition. For example, suppose we wish to
augment C with the forever statement. After recognizing the keyword in the lexical analyzer, we add the
rule:

stat : "forever" stat ;
and the associated definition of ident :
ident () { printf( "while(1)" ) ; $2.ident () ; }
Clearly, translators that required symbol tables, etc., would be harder, but one could envision a standard C

grammar and lexical analyzer being far more reusable in y+ than in Yacc.

Impressive Example

Giegerich and Wilhelm [8] have discussed the difficulty of generating "short-circuit” evaluation of Boolean
expressions using the usual forms of syntax-directed translations (See also Aho, et. al., [9]). This becomes
relatively straightforward in y+. A function, bool gen( t, f. n ), is defined on the rules involving the
short-circuited operators. ¢ is the label to go to if the expression.is true, f the label for false, and n has the
"preferred” label, either ¢t or f. The rule

expr : expr OR expr
for example would define hool gen as

bool gen( t, £, n )

{
int x = get new label();
Sl.bool gen( t, x, X )i
define label( x );
$3.bool gen{ t, £, n );

}

and similarly for AND and NOT. The definition for those expressions not involving short-circuit
operations would look like:

bool gen( t, £, n )

/* get the value of the expression $1 */

n

{ . . . /* branch if false to label 'f’ */ }

{ . . . /* branch if true to label 7"t’ */ }
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Conclusion

This paper describes a simple extension of parser generators to handle abstract data types; in this way,
some translations can be specified easily that would be more difficult to describe with conventional
attribute grammars.

Moreover, the notions seem to generalize attribute grammars, while at the same time allowing the ideas of
Yacc to be brought to bear on the concepts in C+, or perhaps vice versa.
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ABSTRACT

Mirandat is an advanced functional programming system which runs under the
UNIX operating system. The aim of the Miranda system is to provide a modern
functional programming language, embedded in an "industrial quality” programming
environment. It is now being used at a growing number of sites for teaching functional
programming and as a vehicle for the rapid prototyping of software.

Introduction

The purpose of this short article is to give a brief overview of the main features of Miranda. The topics we
shall discuss, in order, are:

e Basic ideas

e The Miranda programming environment
Guarded equations and block structure
Pattern matching
Currying and higher order functions
ZF expressions
Lazy evaluation and infinite lists
Polymorphic strong typing
User defined types
Type synonyms
Abstract data types
Separate compilation and linking

Current implementation status

Basic ideas

The Miranda programming language is purely functional — there are no side effects or imperative features
of any kind. A program (actually we don’t call it a program, we call it a "script") is a collection of
equations defining various functions and data structures which we are interested in computing. The order
in which the equations are given is not in general significant.

+ Miranda is a trademark of Research Software Ltd. An address for Miranda licensing enquiries is given at the end of
this article.
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There is for example no obligation for the definition of an entity to precede its first use. Here is a very
simple example of a Miranda script:

z = sq x / sqy

sgqn =n*%n
X =a+b

y =a-—->»>
a =10

b =5

Notice the absence of syntactic baggage — Miranda is, by design, rather terse. There are no mandatory
type declarations, although (see later) the language is strongly typed. There are no semicolons at the end of
definitions — the parsing algorithm makes intelligent use of layout. Note that the notation for function
application is simply juxtaposition, as in "sq x". In the definition of the sq function, "n" is a formal
parameter — its scope is limited to the equation in which it occurs (whereas the other names introduced

above have the whole script for their scope).

The most commonly used data structure is the list, which in Miranda is written with square brackets and

commas, eg:
week days = ["Mon","Tue","Wed","Thur","Fri"]
days = week days ++ ["Sat",”"Sun"]
Lists may be appended by the "++" operator. Other useful operations on lists include infix ":" which
conses an element to the front of a list, "#" which takes the length of a list, and infix "!" which does
subscripting. So for example 0:[1,2,3] has the value [0,1,2,3], #days is 7, and days!0 is "Mon".
There is also an operator "— —" which does list subtraction.
For example [1,2,3,4,5] - —[2,4] is [1,3,5].
There is a shorthand notation using ".." for lists whose elements form an arithmetic series. Here for

example are definitions of the factorial function, and of a number "result” which is the sum of the squares
of the odd numbers between 1 and 100 (sum and product are library functions):

fac n = product [l..n]
result = sum([1,3..100]

The elements of a list must all be of the same type. A sequence of elements of mixed type is called a tuple,
and is written using parentheses instead of square brackets. Example

employee = ("Jones",True,False, 39)

Tuples are analogous to records in Pascal (whereas lists are analogous to arrays). Tuples cannot be
subscripted — their elements are extracted by pattern matching (see later).

The programming environment

The Miranda system is interactive and runs under UNIX as a self contained subsystem. The basic action is
to evaluate expressions, supplied by the user at the terminal, in the environment established by the current
script. For example evaluating "z" in the context of the first script given above would produce the result
"9,

The Miranda compiler works in conjunction with a screen editor (normally this is "vi" but it can be set to
any editor of the users choice) and scripts are automatically recompiled after edits, and any syntax or type
errors signalled immediately. The polymorphic type system permits a very high proportion of logical
errors to be detected at compile time.

There is quite a large library of standard functions. There is an online reference manual documenting all
aspects of the system. There is also a good interface to UNIX, permitting Miranda functions to take data
from, and sénd results to, arbitrary UNIX files, and it is also possible to invoke Miranda functions directly
from the UNIX shell, and to combine them, via UNIX pipes, with processes written in other languages.
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Guarded equations and block structure

In a Miranda script an equation can have several alternative right hand sides distinguished by "guards” (a
guard is a boolean expression written following a comma). So for example the greatest common divisor
function can be written:

gcd a b = gcd (a-b) b, a>b
= gcd a (b-a), a<b
= a, a=b
The last guard in such a series of alternatives can be written "otherwise” to indicate a default case.

It is also permitted to introduce local definitions on the right hand side of a definition, by means of a
"where" clause. Consider for example the following definition of a function for solving quadratic
equations (it either fails or returns a list of one or two real roots):

quadsolve a b ¢ = error "complex roots", delta<(
[-b/ (2%a)], delta=0
[-b/ (2*a) + radix/ (2*a),-b/(2*a) - radix/(2*a)], delta>0
where
delta b*b — 4d*a*c
radix = sqgrt delta

Where clauses may occur nested, to arbitrary depth, allowing Miranda programs to be organised with a
nested block structure. Indentation of inner blocks is compulsory, as layout information is used by the
parser.

Pattern matching

It is permitted to define a function by giving several separate equations, distinguished by the use of
different patterns in the formal parameters. This provides another method of doing case analysis which is
often more elegant than the use of guards. We here give some simple examples of pattern matching on
natural numbers, lists, and tuples. Here is (another) definition of the factorial function, and a definition of
ackerman’s function:

fac 0 =1
fac (n+l)

= (n+l)*fac n

n+1
0 = ack m 1
(n+l) = ack m (ack (m+1l) n)

ack 0 n =
ack (m+1)
ack (m+1)
Here is a (naive) definition of a function for computing the n’th fibonacci number:

fib 0 = 0

fib 1 =1

fib (n+2) = fib (n+l1l) + fib n

Here are some simple examples of functions defined by pattern matching on lists:

sum [] = 0
sum (a : xX) = a

product
product : a * product x

reverse
reverse (a : = reverse x ++ [a]

Accessing the elements of a tuple is also done by pattern matching. For example the selection functions on
2-tuples can be defined thus

fst (a,b) = a
snd (a,b) = b

As final examples we give the definitions of two Miranda library functions, take and drop, which return the
first n members of a list, and the rest of the list without the first n members, respectively
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take
take
take

drop

drop

drop : drop n x
Notice that the two functions are defined in such a way that that the following identity always holds —
“take n x ++ drop n x = x" — including in the pathological case that the length of x is less than n.

Currying and higher order functions

Miranda is a fully higher order language — functions are first class citizens and can be both passed as
parameters and returned as results. Function application is left associative, so when we write "f x y" it is
parsed as "(f x) y", meaning that the result of applying f to x is a function, which is then applied to y. The
reader may test out his understanding of higher order functions by working out what is the value of
“answer" in the following script:

answer = twice twice twice suc 0
twice f x = £ (f x)
suc x = x + 1

Note that in Miranda every function of two or more arguments is actually a higher order function. This is
very useful as it permits partial parameterisation. For example "member” is a library function such that
"member x a" tests if the list x contains the element a (returning True or False as appropriate). By partially
parameterising member we can derive many useful predicates, such as
vowel = member [’a’,’e’,’i’,’0',"’u’]
digit = member [707,71',727,73", 747,75/, /67 777,787 ,19"]
month member ["Jan","Feb","Mar","Apr","Jun","Jul", "Aug", "Sep",
"Oct", "Nov", "Dec"]

As another example of higher order programming consider the function foldr, detined by

foldr op k [] = Kk
foldr op k (a : x) = op a (foldr op k x)
All the standard list processing functions can be obtained by partially parameterising foldr. Examples
sum = foldr (+) O
product = foldr (*) 1
reverse = foldr postfix []
where postfix a x = x ++ [a]

ZF expressions

ZF expressions give a concise syntax for a rather general class of iterations over lists. The notation is
adapted from Zermelo Frankel set theory (whence the name "ZF"). A simple example of a ZF expression
is:

[n*n| n€—[1..100] |

This is a list containing (in order) the squares of all the numbers from 1 to 100. The above expression
would be read aloud as "list of all n*n such that n drawn from the list 1 to 100". Note that "n" is a local
variable of the above expression. The variable-binding construct to the right of the bar is called a
"generator" — the "€—" sign denotes that the variable introduced on its left ranges over all the elements of
the list on its right. The general form of a ZF expression in Miranda is:

[ body | qualifiers ]

where each qualifier is either a generator, of the form "var €— exp", or else a filter, which is a boolean
expression used to restrict the ranges of the variables introduced by the generators. When two or more
qualifiers are present they are separated by semicolons. An example of a ZF expression with two
generators is given by the following definition of a function for returning a list of all the permutations of a
given list,

perms [] (1]
perms x = [ a : a € x; y € perms (x—/[a]) ]
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The use of a filter is shown by the following definition of a function which takes a number and returns a list
of all its factors,

factors n = [ i ] i é= [1..ndiv 2]; nmod i = 0 ]

ZF notation often allows remarkable conciseness of expression. We give two examples. Here is a Miranda
statement of Hoare’s "Quicksort™ algorithm, as a method of sorting a list,

(]

x) = sort [ b| b € x; b<a ]
++ [a] ++
sort [ b| b €= x; b>a ]

sort []
sort (a

Here is a Miranda solution to the eight queens problem. We have to place eight queens on chess board so
that no queen gives check to any other. Since any solution must have exactly one queen in each column, a
suitable representation for a board is a list of integers giving the row number of the queen in each
successive column. In the following script the function "queens n" returns all safe ways to place queens on
the first n columns. A list of all solutions to the eight queens problem is therefore obtained by printing the
value of (queens 8).

queens 0 = [[]]

queens (n+l) = [ g : b| b €= queens n; q ¢ [0..7]; safe q b ]
safe g b = and [ ~ checks g b i | 1 €= [0..4b-1] ]

checks g b 1 = g=b!i \/ abs(g — bli)=i+1

Lazy evaluation and infinite lists

Miranda’s evaluation mechanism is "lazy", in the sense that no subexpression is evaluated until its value is
known to be required. One consequence of this is that is possible to define functions which are non-strict
(meaning that they are capable of returning an answer even if one of their arguments is undefined). For
example we can define a conditional function as follows,

if True x y = x
if False x y =y
and then use it in such situations as "if (x=0) 0 (1/x)".

The other main consequence of lazy evaluation is that it makes it possible to write down definitions of
infinite data structures. Here are some examples of Miranda definitions of infinite lists (note that there is a

"o

modified form of the ".." notation for endless arithmetic progressions)

ones = 1 : ones
repeat a = x
where x = a : x
nats = [0..]
odds = [1,3..]
squares = [ n*n | n €= [0..] ]
perfects = [ n| n ¢ [1..]; sum(factors n) = n ]
primes = sieve [ 2.. ]
where
sieve (p : x) = p : sieve [ n]| n é= x; nmod p > 0 ]

One interesting application of infinite lists is to act as lookup tables for caching the values of a function.
For example our earlier naive definition of "fib" can be improved from exponential to linear complexity by
changing the recursion to use a lookup table, thus

fib 0 = 1

fib 1 =1

fib (n+2) = flist!(n+l) + flist!n
where

flist = map fib [ 0.. 1]

Another important use of infinite lists is that they enable us to write functional programs representing
networks of communicating processes. Consider for example the hamming numbers problem — we have
to print in ascending order all number of the form 2"a*3"b*5%c, for a,b,c20. There is a nice solution to this
problem in terms of communicating processes, which can be expressed in Miranda as follows

hamming = 1 : merge (f 2) (merge (f 3) (f 5))
where
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fa= [ n*ta| n € hamming ]
merge (a : x) (b : y) = a : merge x (b : y), a<b
= b : merge (a : x) vy, a>b

a

merge x y, a=b

Polymorphic strong typing

Miranda is strongly typed. That is, every expression and every subexpression has a type, which can be
deduced at compile time, and any inconsistency in the type structure of a script results in a compile time
error message. We here briefly summarise Miranda’s notation for its types.

There are three primitive types, called num, bool, and char. The type num comprises integer and floating
point numbers (the distinction between integers and floating point numbers is handled at run time — this is
not regarded as being a type distinction). There are two values of type bool, called True and False. The
type char comprises the ascii character set (em character constants are written in single quotes, using C
escape conventions, e.g. 'a’, '$’, \n’ etc.

If T is type, then [T] is the type of lists whose elements are of type T. For example [[1,2],[2,3],[4,5]] is of
type [[num]], that is it is a list of lists of numbers. String constants are of type [char], in fact a string such
as "hello" is simply a shorthand way of writing ['h’,’e’.’1’,’I’,’0’].

If T1 to Tn are types, then (T1,...,Tn) is the type of tuples with objects of these types as components. For
example (True,"hello",36) is of type (bool,[char],num).

If T1 and T2 are types, then T1 —> T2 is the type of a function with arguments in T1 and results in T2.
For example the function sum is of type [num] — num. The function quadsolve, given earlier, is of type
num — num — num —> [num]. Note that "—>" is right associative.

Miranda scripts can include type declarations. These are written using "::" to mean is of type. Example

sSqg :: num — num

sgn =n *n
The type declaration is not necessary, however. The compiler is always able to deduce the type of an
identifier from its defining equation. Miranda scripts often contain type declarations as these are useful for
documentation (and they provide an extra check, since the typechecker will complain if the declared type is
inconsistent with the inferred one).

Types can be polymorphic, in the sense of Milner [Milner 78]. This is indicated by using the symbols * #=*
#%* etc as an alphabet of generic type variables. Example, the identity function, defined in the Miranda
library as

id x = x
has the following type

id :: * — *
this means that the identity function has many types. Namely all those which can be obtained by

substituting an arbitrary type for the generic type variable, eg "num — num", "bool — bool", "(* —> **)
—> (* — **)" and so on.

We illustrate the Miranda type system by giving types for some of the functions so far defined in this article

fac :: num — num

ack :: num — num — num

sum :: [num] — num — num
month :: [char] -— bool
reverse :: [¥] —> [*]

fst 11 (*,%¥%x) — *

snd 1 (K, kk) —> sk

foldr :: (% —> %) — &% — [*]
perms :: [*¥] —> [[*]]

*
*

User defined types

The user may introduce new types. This is done by an equation in "::=". For example a type of labelled
binary trees (with numeric labels) would be introduced as follows,

tree ::= Nilt | Node num tree tree
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This introduces three new identifiers — "tree" which is the name of the type, and "Nilt" and "Node" which
are the constructors for trees. Nilt is an atomic constructor, while Node takes three arguments, of the types
shown. Here is an example of a tree built using these constructors

tl = Node 7 (Node 3 Nilt Nilt) (Node 4 Nilt Nilt)

To analyse an object of user defined type, we use pattern matching. For example here is a definition of a
function for taking the mirror image of a tree

mirror Nilt = Nilt
mirror (Node a x y) = Node a (mirror y) (mirror x)

User defined types can be polymorphic — this is shown by introducing one or more generic type variables
as parameters of the "::=" equation. For example we can generalise the definition of tree to allow arbitrary
labels, thus

tree * ::= Nilt | Node * (tree *) (tree *)
this introduces a family of tree types, including tree num, tree bool, tree (char —> char), etc.

The types introduced by "::=" definitions are called "algebraic types". Algebraic types are a very general
idea. They include scalar enumeration types, eg

color ::= Red | Orange | Yellow | Green | Blue | Indigo | violet
and also give us a way to do union types, for example
bool or num ::= Left bool | Right num

It is interesting to note that all the basic data types of Miranda could be defined from first principles, using
"::=" equations. For example here are type definitions for bool, (natural) numbers and lists,

bool ::= True | False
nat ::= Zero | Suc nat
list * ::= Nil | Cons * (list #*)
Having types such as "num" built in is done for reasons of efficiency — it isn’t logically necessary.

It is also possible to associate "laws" with the constructors of an algebraic type, which are applied
whenever an object of the type is built. For example we can associate laws with the Node constructor of
the tree type above, so that trees are always balanced. We omit discussion of this feature of Miranda here
for lack of space — interested readers will find more details in the references [Thompson 86, Turner 85].

Type synonyms

The Miranda programmer can introduce a new name for an already existing type. We use "==" for these

definitions, to distinguish them from ordinary value definitions. Examples

string == [char]
matrix == [[num]]

Type synonyms are entirely transparent to the typechecker — it is best to think of them as macros. It is
also possible to introduce synonyms for families of types. This is done by using generic type symbols as
formal parameters, as in

array * == [[*]]

so now eg ‘array num’ is the same type as ‘matrix’.

Abstract data types

In addition to concrete types, introduced by "::=" or "==" equations, Miranda permits the definition of
abstract types, whose implementation is "hidden" from the rest of the program.
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To show how this works we give the standard example of defining stack as an abstract data type (here
based on lists):

abstype stack *

with empty :: stack *
isempty :: stack * —> bool
push :: * — stack * — stack *
pop :: stack * — stack *
top :: stack * — *

stack * == [*]

empty = []

isempty x = (x=[])

push a x = (a : x)

pop (a : x) = x

top (a : x) = a

We see that the definition of an abstract data type consists of two parts. First a declaration of the form
"abstype ... with ...", where the names following the "with" are called the signature of the abstract data
type. These names are the interface between the abstract data type and the rest of the program. Then a set
of equations giving bindings for the names introduced in the abstype declaration. These are called the
implementation equations.

The type abstraction is enforced by the typechecker. The mechanism works as follows. When
typechecking the implementation equations the abstract type and its representation are treated as being the
same type. In the whole of the rest of the script the abstract type and its representation are treated as two
separate and completely unrelated types. This is somewhat different from the usual mechanism for
implementing abstract data types, but has a number of advantages. It is discussed at somewhat greater
length in [Turner 85].

Separate compilation and linking

The basic mechanisms for separate compilation and linking are extremely simple. Any Miranda script can
contain one or more directives of the form

%$include "pathname"”

where "pathname" is the name of another Miranda script file (which might itself contain include directives,
and so on recursively — cycles in the include structure are not permitted however). The visibility of names
to an including script is controlled by a directive in the included script, of the form

export names

it is permitted to export types as well as values. It is not permitted to export a value to a place where its
type is unknown, so if you export an object of a locally defined type, the typename must be exported also.
Exporting the name of a "::=" type automatically exports all its constructors. If a script does not contain an
export directive, then the default is that all the names (and typenames) it defines will be exported (but not

those which it acquired by a %include statement).

It is also permitted to write a parameterised script, in which certain names and/or typenames are declared
as "free”. An example is that we might wish to write a package for doing matrix algebra without knowing
what the type of the matrix elements are going to be. A header for such a package could look like this:

sfree { element :: type
zero, unit :: element
mult, add, subtract, divide
element — element — element

[

Sexport matmult determinant eigenvalues eigenvectors

|| here would follow definitions of matmult, determinant,
| | eigenvalues, etc. in terms of the free identifiers zero,
[] unit, mult, add, subtract, divide

In the using script, the corresponding include statement must give a set of bindings for the free variables of
the included script. For example here is an instantiation of the matrix package sketched above, with real
numbers as the chosen element type:
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$include "matrix pack"
{ element == num; zero = 0; unit = 1
mult = *; add = +; subtract = —; divide = /
}

The three directives %include %export %free provide the Miranda programmer with a flexible and type
secure mechanism for structuring larger pieces of software from libraries of smaller components.

Separate compilation is administered without user intervention. Each file containing a Miranda script is
shadowed by an object code file created by the system, and object code files are automatically recreated
and relinked if they become out of date with respect to any relevant source. (This behaviour is strongly
analogous to that achieved by the UNIX program "make", except that here the user is not required to write a
makefile — the necessary dependency information is inferred from the %include directives in the Miranda
source.)

Current implementation status

An implementation of Miranda is available for ORION, VAX, SUN, GOULD, Apollo and several other
machines running Berkeley UNIX, and also for the AT&T 3B series under system 5. This is an interpretive
implementation which works by compiling Miranda scripts to an intermediate code based on combinators.
It is currently running at 200 sites (as of January 1988). Licensing information can be obtained from the
net address

(ARPA:) "mira-request%ukc@nss.cs.ucl.ac.uk" or
(UUCP:) "mcvax'ukc!mira-request”
(JANET:) "mira-request@ukc.ac.uk" or by real mail from

Research Software Ltd
23 St Augustines Road
Canterbury

Kent CTI I1XP
England

Ports to some other UNIX machines are planned in the near future. Also under study (to appear on a
somewhat longer timescale) is the possibility of native code compilers for Miranda on a number of
machines, to provide a much faster implementation.
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1. Introduction

Currently under development at the IRISA/INRIA, GOTHIC [6] is intended to be an integrated distributed
system implemented on a network of multi-processor machine BULL SPS7. Since the development of the
GOTHIC kernel is assumed to take a rather long time, it was decided to build on UNIX machines (a Network
of SUN running under UNIX 4.2 BSD) a system which provides the same interface as GOTHIC in order to
start the development of applications. The first release of this system called GOTHIX is currently under
test. This paper first describes the concepts developed in both systems and then discusses some
implementation details of GOTHIX.

2. The GOTHIX concepts

*‘Distributed system’’ suggests distributed computing and therefore the requirement for specific structures
and tools that would allow distributed computation on an object, that is, distributed execution of a single
distributed program on several sites. The GOTHIC system provides a new structuring tool for reliable
distributed computing: the multi-functions [5]. On the other hand it provides objects fragmentation and
replication [1] as a mechanism to distribute the different parts of an object on different sites and to
distribute several instances of an object on different sites.

2.1. The concept of multi-function

The concept of multi-function is the generalisation of the well-known concept of function or procedure
used in conventional progamming language. This is an abstraction (which is a distributed generalisation of
the concept of function or procedure) of the notion of block associated with strict rules for communication
of parameters and results. A multi-function has its own local variables. A multi-function is made of a
certain number of components. Let us consider the following example:

multi-function mf (x, y, z : integer), (u, v, w :integer);

var
<declaration>

cobegin
(x, y)u: begin ... return u end, (1)
(z)v: begin ... return v end, (2)
(y, z)w: begin ... return w end, (3)
coend

Figure /. An example of Multi-function

This Multi-function is made out of three components. The first one uses the parameters (x, y) and returns
u: the second uses the parameter y and returns v and the third uses (y, z) and returns w.

Two kinds of multi-function calls may be distinguished:

— The /-p call where a multi-function is called from a block. Such a call may be pictured as follow:
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mf(a, b, ¢)

(1, m, n):=(u, v, w)

Figure 2. 1-3 multi-function call

The n-p call where a multi-function is called from another multi-function. Provided the previously defined
multi-function mf let us consider the following program skeleton:

cobegin
(integer a, k, 1; ...; (k,1) := mf (x<-a).(u,v); ...)// (1)
(integer b, ¢, m; ...; m := mf(y<-b, z<-c).v; ...)// (2)
(integer n; ... ; n := mf().w; ... ) (3)
coend

Figure 3. Nested multi-function call

The execution of the call is shown in the diagram of the figure 4.

In the first case, synchronisation occurs at the end of the multi-function execution when each component
returns while in the second case, it occurs both at the call (all the components of the calling multi-function
must be ready before the call can occur) and return (all the results must be available before the execution
can resume).

The multi-function main advantages are:

. Procedural control structure: from the user point of view there is only one thread of control,
° Parameter/result communication: same as procedure.
° Possibility of concurrent computation.

2.2. Fragmentation and Replication

A distributed system is a set of cooperating computers working together. Distributed computing must take
advantage of the distributed system topology. That means that a distributed system must be able to execute
distributed programs that operate on distributed data possibly located on different sites. That is the reason
while object fragmentation is introduced in the system. An object may be fragmented, that is, made of
differents fragments, each of them being located on a different site. At the higher level an object is viewed
as an single entity and the fragments are hidden. Once an object is fragmented, each fragment may be
processed in a separate way and, therefore, on a particular site and thus concurrently. In order to allow
concurrent computation, GOTHIC provides the multi-functions that are, themselves, fragmented objects.
Thus, one can develop multi-functions with as many components as the object to be processed has.
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On the other hand, an object may be replicated. Several instances of a same object may exist at the same
time in the system. In the same way as fragments of fragmented objects cannot be reached at the higher
level, users cannot reach a particular instance of a replicated object but only the entire object. It is of the
system responsibility to ensure the consistency of the different copies. A complete definition of these
properties (illustrated by several examples) can be found in [1].

These concepts are introduced in the POLYGOTH programming language which is the GOTHIC
implementation language.

Figure 4. 3-3 multi-function call

3. The Gothix System

The GOTHIX system, built on UNIX, provides facilities to implement objects fragmentation and replication.
It is integrated and distributed. From the user point of view, it looks like a traditional centralized system
mainframe based system and only the application programs developers will take advantage of the
properties offered by the distribution.

3.1. The Gothix object system
Objects provided in GOTHIX are of three types:

1. directories,
2. files or segments,
3. and fragmented files.

All other object are to be built from these kind of objects. For example, a stack will be implemented either
ar a file or a fragmented file according whether it is distributed or not. Like in most of traditional
centralized system, the object system has a tree structure. This logical structure is the same for the whole
system whatever site is considered, that is, the reference to an object does not mention its location. An
object s always referenced in the same way. No mount operation [4] is required to access any object of
the system. The structure is said to be logical because objects are abstractions of objects not real objects
(for example one can read a file, not a specific instance of the file). The organisation of the tree looks like
MULTICS [2] or UNIX one.

The nodes of the tree are directories and leaves whatever object of the three types. In general they may be
replicated and may migrate. Those that cannot are some system objects that contains information relative
to the site (for example the number of the next created file — explained below) The beginning of the tree is
the root directory. It is not a super root like in the Newcastle Connection [3]. Each object is reached by its
relative or absolute pathname. Absolute pathname are unique through the whole system. The notation is
similar to the UNIX notation.
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All traditional operations are allowed, according to the access rights.

Replication is a basic operation of GOTHIX because each object may be explicitly replicated and, on the
other hand, when a object migrate, it is replicated first on the target site and then deleted on the source site.
Further, we have chosen to make objects migrate on the sites they are to be used, that is, each time an
object is referenced on a site it is brought to this site and therefore the replication operation is often used.
Replication means copy (eventually remote copy) and update of some records (described in a later section).

The operations that are provided oh objects are the same as those on traditional systems (create, delete,
read, write for segments), (create, delete, modifv, look_up, change working directory and so on for
directories). Some other facilities deal with access rights.

Userl User2

mydir

Figure 5. Logical structure of the object system.

3.2. GOTHIX implementation

The GOTHIX system is implemented on a network of SUN machines running under UNIX. Thus we use the
facilities provided in the UNIX 4.2 BSD system such as the sockers facility, the interprocess communication
mechanism on UNIX 4.2 BSD. On the other hand all objects are implemented as UNIX files. The basic
characteristics of the implementation are:

° All sites are equivalent. Control is decentralized, no global information is located on a particular site

. All objects are UNIX files and they are all located in the same UNIX directory on a particular site,

° All sites own an instance of the root directory,

) A site owns an instance of the object it currently uses,

. Instances of directories are updated at the same time for each modification that is directory
modifications are atomic

) Instances of files are updated when necessary that is when a process tries to use an obsolete instance,

° Services are implemented via servers that may communicate.

In this section we describe successively three important aspects of this implementation:

. Object naming,
° Directory structure,
. File access and object consistency.

3.2.1. Objects naming

As mentioned in a previous section, the space name in GOTHIX is represented by a tree structure similar to
UNIX one. The beginning of the tree is the root directory. Each object is reached by its relative or absolute
pathname. Thus to find an object is the same as finding the UNIX file that matches the GOTHIX object.

On each site, all the objects are located in the same UNIX directory. Each has an unique internal name
which is the concatenation of the identifier of the site where it is created and a number. The first created
object is given the number zero. This number in incremented each time a new object is created. Objects
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internal name are never modified (even if objects migrate). It is clear that internal identifiers are unique.
The unique name of the very first created object which is the root directory is the concatenation of the first
site identifier and the number 0. Let the site identifier be vierf; the unique name is vierfD.

Example

Let us consider a system with two sites: vierf and sunlight. Let the number of the next file to be created be
45 on vierf and 32 on sunlight. Then if the creation command for the object foro is issued on the first
machine, the object will get vierf45 as unique identifier and the number of the next file to be created will be
incremented (it gets 46 as new value) since if the command is issued on sunlight it will be assigned
sunlight32 and the new value of the number of the next file to be created will become 33.

Note that a number is never assigned twice on same site even if the corresponding file has been deleted.

As there is no site dedicated to specific tasks, every site must be able to locate objects. The information
dealing with location is held in directories. Their structure is discussed in the following section.

3.2.2. Directory structure

Each directory provides access to a certain number of objects and hold the informations that concern these
objects. A directory is a logical entity made of three UNIX files:

1. The directory segment which contains information that cannot be altered.

2. The status segment which contains information that can be altered, for example the site vector and
the token.

3. The access segment which contains sorted access lists of objects located in the directory.

2
CEADER 200[300[400]500
10— NULL]
NULL | 200
: -
600 toto |vierfl5 500 [ NULL
a0 | 500 | | YT TNuC
3 NULL| 2
R
Directory segment Status segment

access segment

Figure 6. Directory structure

Directory segment structure
The directory segment is divided in two parts:

1. A header that contains informations that deal with the organisation of the segment (first free block,
number of free blocks ...)

2. Entries that are C structures that contain:
° The GOTHIX identifier
o The name of the corresponding UNIX file
. The addresses of the next and previous entries

) The index number of the corresponding record in the status segment.

T Access rights are not considered in this paper and, therefore, we will not describe the structure of this segment. The
main difference between GOTHIX and UNIX access rights is that under GOTHIX it is possible to set access 1o users.
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Status segment structure

The status segment is made of an header which is an array of integers. Each item is initialised with the
negative value of the address of the corresponding record. When a record is allocated to an object the
corresponding array element is given the record address value. Blocks that correspond to positive value of
array elements are busy. This is used when allocating a record in the status segment for a new created
object in a directory (i.e. when a new entry is created in the directory or a new instance of a object is
created on the same site). When the record is freed the array element is given back the negative value of
the record.

The second part of the status segment contains records where are registered objects variable informations.
They contains the following fields:

. Unix file name. This field is used when several instances of a objects are located on the same site.
There is only one corresponding entry in the directory segment and as many records in the status
segment as instances on the site.

. Previous and next records number. These fields are used to handle the list of the records that
represent the different instances of the same object on the same site.

o Address of the first element of the access list.

° An integer which is the token associated with each object,

. The site vector,

The roken is an integer that represents the write permission. When a write operation is issued, the site
where this operation occurs must hold the token of the object. The way of getting the token is discussed in
a following section.

The site vector is an array of bits. Each bit corresponds to a site. A site the corresponding bit of which (i.e
the bit index is equal to site number) is set owns at least an instance of the object. If the bit is not set, the
site does not own any instance. For example let a site vector be:

site vector =<1, 1,0, 0, ,1>

if the system has five sites. Then the sites number 0, 1 and 4 own a copy of the object while sites number 2
and 3 do not.

The Figure 6 shows an example of the recording of an object named foto (addresses values are not real
addresses) according to the diagram of the Figure 7. The system has three sites; there is an instance of foto
on the site number 0 and on the site number 2 which owns the token. The following section presents the
way the objects are located and accessed and how the consistency is maintained.

GOTHIX UNIX UNIX PREVIOUS
IDENTIFIER FILE FILE RECORD
PREVIOUS NEXT NEXT
TOKEN
ENTRY ENTRY RECORD
STATUS INDEX SITE VECTOR

ACCESS LIST ADDR

DIRECTORY SEGMENT
ENTRY

STATUS RECORD

Figure 7. Directory Segment Entry and Status Record
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3.2.3. Objects access and consistency

In GOTHIX objects access and consistency are led together. Each site runs the following servers:

. A file server servfich

. A lock handler glock

o A file transfer server transfich
° A token server servjeton

. A remote lock handler glocksd

° A directory modifier mdrep

The location of objects is found in status segment of the father directory which is looked up when a process
issues an request for an access to an object. This operation requires an read access to the directory.

Below is briefly discussed the simplified algorithm for objects access.
An access to an object by a process P may be described as follows:

{
P asks the file server the right to perform the operation;
waits for it;
if (the requested operation is a read operation)
{
performs the operation;
informs the file server when it is finished;
}
else /* Write operation requested */
{
if (the write has just to invalidate obsolete instances)
{
performs the operation;
informs the file server when it is finished;
}
else /* Atomic update */
{
do
send modification to the file server;
while (there is still /* at least */ a pending modification);
issues requests for resetting the locks;

}

Figure 8. Object access algorithm
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The file server executes permanently the following loop:

{
Waits for a request;
creates another process to perform the request;

}

/* Once created the son process performs the following actions */

{
locates the object; /* possibly ask the filetransfer server to bring a
instance of the object on the site */
issues a lock /* Exclusive or shared */ request to the lock server;
Waits for the lock;
if (request is for reading) /* shared lock */
{
gives the right to the process P;
Waits;
Receives the end of operation from P;
issues a request to the lock server to unlock th object;
}
else /* write operation requested (Exclusive lock) */
{
Issues a request to the token server of the site which is supposed
to hold it;
Receives the token;
Issues a request to the lock server to set an exclusive lock on the
target object;

/* for each site that owns a instance of the file */
Issues a request to the remote lock server of the site;

if (the write operation just has to invalidate other instances)
{
delivers the permission to P; /* Invalidation was carried out by the
remote lock server */
Waits;
Receives the end of operation from P;
issues a request to the lock server to unlock the object;

else

{
1

/* the operation must occcur on all the instances */
asks P for the operation(s) and transmits them to the modifiers;
Issues requests to unlock objects;

Figure 9. File server

The lock server algorithm is found in the figure 10. The lock server handles the locks in a table called the
locked files table (One per site). It does not create any son because it must have the exclusive access to
the table.
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{
Recelves a request;
if (It is a request for setting a lock)
{
if (the concerned file is already locked)
{
if (the set lock is exclusive) gueues the request;
else if (the requested lock 1s exclusive) queues the request;
else 1f (number of pending exclusive locks > 0)
queues the reguest;
else
{ increments the number of shared locks;
informs the requesting process that the lock is set;

}

else

find a free entry in table of locked files;
informs the requesting process;
}

else /* request for reseting a lock */
if (the lock to be reset is a shared lock)
{
decrements the number of shared lock;
if (number of shared lock == 0)
{
set the lock for the first pending request ;
/*
all the first requests for shared lock that come before the
first request for a exclusive lock if the first pending request
is a request for an shared lock

Figure 10. Lock server loop

The remotelock server algorithm is shown in Figure 1.

{
Waits for a request;
creates a son process to handle the incoming request.

}

/* Son Process */

Issues a request to the lock server to get an exclusive lock
on the object;
if (the operation just has to invalidate the instance)

{

invalidates the instance;

issues a request to reset the lock;

}

else /* atomic update */
informs the requesting process that the lock is set;

Figure 11. Remote file server algorithm

Figure 12 shows the foken server algorithm of the token server. Issuing an exclusive lock request on the
status segment ensures that the token cannot be given to more than one site.
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{
waits for requests;
creates a son process to handle the incoming request.

}
/* Son Process */

{
issues a request for a exclusive lock on the status segment;
if (the token 1s on the site)

{

gives back the token to the requesting process;

updates the status segment;

}

else
gives back the number of the site it has already given the token;

issues a request to reset the lock;
}
Figure 12. Token server algorithm

4, Current state

The GOTHIX is currently under test on two SUN machines. When it will be considered as reliable, two
other SUNs will be added. Adding a new site is not very difficult. It consists in adding a site in a table
called site_table, creating the GOTHIX directory on the new site and bringing an instance of the GOTHIX
root directory on the newly created site. All the following operations are automatically carried out because
all objects needed on the new site will be copied as we have explained before. A text editor for fragmented
objects has been developed and will be integrated in the system. The design of the POLYGOTH [7]
compiler has begun and the development of a document handling application is scheduled for the next six
months.
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ABSTRACT

In object-oriented systems objects communicate with each other via messages. An
object activates processing by sending a message to another object and waiting for its
termination. Most of the existing implementations (e.g. SMALLTALK 80) have chosen
this procedure. Normally, they are available as stand-alone systems, so that no specific
protocols are required. When offering an object-oriented user interface, integrated in a
conventional command-oriented system, and with tools running in a local or distributed
environment, application protocols are required. This contribution defines a protocol
with a service, comparable to the session-layer of the ISO reference model, suitable for
this application. The characteristics of the protocol are described, and an implementation
is shown within a UNIX system using the programming language C. The concepts are
validated in a distributed software development environment, where system: software for
mainframes is developed using connected workstations based on UNIX.

1. Introduction

Nowadays many systems for PCs and workstations are oriented towards the object-oriented paradigm.
This paradigm allows the construction of user-friendly interfaces, usable in environments, where a graphic
terminal with a mouse have a considerable influence. One of the best known examples of this family is
SMALLTALK 80 ([GOL 80]). Meanwhile, many commercial products (e.g. Apple Macintosh) are
available mainly in the area of office automation, as well as in the area of programming languages this
paradigm gains more and more interest, as can be seen by the recent developments of e.g. CH, or objective
C ([COX 86)).

The fundamental concepts of the object-oriented approach are information hiding, data abstraction,
dynamic binding and inheritance ([PAS 86]). Objects are data structures in which the data visible to the
user are bound together with the allowed operations (called methods) assuring that only semantic
preserving functions are applied to the data. On the other hand, a function is only executed if all data fulfill
certain conditions so that complicated semantic data checking is no longer necessary within that function.
The set of methods applicable to an object is called a class. Classes are ordered into a hierarchical tree,
where nodes on a lower level indicate classes with more specialized semantics.

Objects also have an active aspect besides the abstract data type feature. They act as instances to which
messages are sent in order to do a defined piece of work.

In traditional object-oriented systems, the communication is restricted to ‘‘procedure-oriented’’ behaviour.
This means, that the message containing the name of the method, and the parameters, is sent to the object.
The termination of the procedure is indicated to the waiting client. Interactions between these two pieces
of information are not possible and there is no supported relation between two procedure calls. This
concept is widely used and exists in a lot of systems known as remote procedure call ((TAN 85]).

From a communication point of view, the ISO-Reference-model ({ISO 82]) can be used where the objects
are interpreted as level 7 entities. Using a given session service an application protocol can be defined for
their communication. For a complete ISO support, the message-based communication has to be mapped
onto a session service. The ISO-session-service ([ISO 85]) has performance constraints when supporting
short-term sessions (consisting of only a send-request and a confirmation) because it is based on
connection-oriented point-to-point sessions with full-duplex bulk data-transfer facilities.
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The object-oriented paradigm offers many advantages, so that it should be also used in conventional
command-oriented systems. That is why an object-oriented interface should be offered to the user on top
of an ordinary operating system to allow the integration of already existing tools running in a local or a
distributed environment. An example of this application is the replacing of a *‘simple’’ terminal connected
to a mainframe by a PC or workstation offering a user-friendly unified interface to the complete system.

A tool is defined here as a stand-alone program loaded by commands of the operating system. There are
interactive tools with user interface and tools which are acting in the background. The tools can reside in
one computer system but it should also be possible that different (also heterogeneous) systems are
involved. It should be possible to integrate arbitrary tools in the system without modifying the behaviour
of these tools or its user interfaces.

For methods using tools during execution, interactive control possibilities must be provided. This
cooperation between objects can be supported by a protocol for object-object communication on which the
different application-protocols can be based. In this article such a protocol is described on an abstraction
level comparable to the session-layer. The basic service is built in a way that the requirements for object-
oriented systems are fulfilled and a mapping to the ISO-session-service is possible.

2. Application model

In this approach the smallest data unit which is interpreted as an object is that piece of information which is
conventionally put in a file. This is a restriction to SMALLTALK 80 but it allows tools and users to work
with the same data having only different views of them. The change of context between object and file is a
task which can be done easily by the system. Further, the restriction mentioned earlier has the advantage
of being able to overcome performance constraints for low cost machines because a method can be
implemented in a direct way with processes.

Objects are instances of a certain class determining the set of applicable methods. The classes are
organized hierarchically with the concept of inheritance to make the implementation of the methods
reusable. A method is activated by sending a message to the object. This message contains the name of
the method and current parameter values. On receiving such a message the object itself decides which
actions have to be taken and which tools (already existing or newly written ones) have to be called.

In order to execute complex methods, interactions between different objects must be supported. A method
can initiate the execution of methods of other objects with or without waiting for their completion. The
technique allows the definition of new methods by using already existing ones assuring the same kind of
semantic checking before a specific tool is executed.

Each object forms a building block with defined connectors. The connectors allow the combination of the
objects in different ways. The structure of an object for one method (restricted to its communication
behaviour) is given in Figure 1:

T0 °='=:l Tool ... || Toot = T~ o TO
e —IL 1 _ _
Tl € =r = ’; F o TI
1T tool call interface 1T
MI o ) method _ S S 1 MO
MO o | (server) ) (client) [ 4 o MI

Figure 1. Communication structure of an object

For each of the methods belonging to an object, the method interface MI (message input) and MO
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(message output) is defined. Via this interface the method acting as server accepts the message for
execution. Within a method execution one or more tools can be called, with or without offering an user
interface (TT and TO). A method can activate other methods for which it acts as client. For each called
method the connectors MO and MI are provided. For efficiency reasons only one MI for all server
methods is used, but there exist as many MO as server methods.

When a method is interactively executed all the connectors TO, TI (if available) and MI, MO (of the
server part) are bound to the user interface.

When using object-object communication different connections can exist. With two objects, where object
1 is activated by the user, object 2 by object I, the following possibilities must be supported:

- The tool interfaces of both objects are part of the user interface (Figure 2).

MO TO TO
MI TI TI

14, L
0| objectl o= object 2

o) (Client) =) O ————) (Server)
o6 € 06— MO

L

Figure 2. Objects with interactive tools

The tool interface of the server object (object 2) is used for carrying out a specific application proto-
col. An example is a file transfer which transfers a file from object 2 to a tool operating within object
1 (Figure 3). It is not necessary that all the connected tools are stand-alone programs, they can also
be realized as a function. This allows methods to use defined specific protocols.

MO TO

T0 —) o)l TI
object 1 TI |[&== o6& T0 object 2
(client) MO = 0 =——— (server)
MI || € 0 &=——=| MO

Figure 3. Objects with program interface

Because the tool interfaces are optional, this connection type must also work with tools without any
user interface.

A client object can activate several methods just as any server can act again as client, so that a
hierarchy of executed methods is supported. The individual methods are independent whereby the
client decides if the termination of a subordinated server should be waited for or not. This allows a
high degree of parallel processing.

The interactions between objects are determined by specific application protocols which have to be defined
depending on the tasks performed by the methods. A basic data-exchange service is required which can be
used by all objects for the method-dependent communication. This basic service, enabling synchronized
interactions between objects, requires the following characteristics:

- A connection is supported between two objects, one acting as a client (the initiator of a method), the
other acting as a server (the executor of a method). The connection exists between the beginning of
a method and its termination.
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The management of the information about different method activations is carried out by the
application, so that this concept corresponds in principle to a “‘session’’ in sense of ISO. To have a
unique term, such a connection is called method-session.

A control-service for influencing the activities of the server must be supported. This includes
primitives for aborting a method, assigning of tokens to the partners (e.g. for suspending and
resuming the processing) and sending messages to inform the client about the status of the
processing.

The service must include a name server, which allows an application-oriented identification of the
objects. The addressing mechanism must also be able to detect non existing objects.

Each object must be able to act as a server as well as acting as a client. In both cases, several
method-sessions must be supported simultaneously.

The definition of this protocol presumes a transport service with reliable end-to-end flow control,
independency of the communication media (including low speed communication lines), full-duplex
connections and expedited data-flow.

An efficient and conformant implementation should be possible. For PCs and workstations, UNIX
plays an important role, so that an implementation on that operating system is selected rather than
other operating systems (like MS-DOS or mainframe operating systems).

3. Service and protocol for method-sessions

With the command to execute a specific method, a method-session will be established by the client. It is
the responsibility of the server to confirm the start of the execution. One confirmation at most is possible.
Within one method-session up to four different data channels will be established, each with its own
independent data-flow control and sequencing.

1. The first channel is used for sending control information from the client to the server. The client has
the ability to ask for abortion of the server and to resume a suspended method processing.

The second channel is used for sending control information from the server to the client. This
control information includes the confirmations of the receipt of the establish indication and of
method termination (normal or abnormal). The server can suspend its interactive processing by
sending a suspend message. This feature enable a method to be sent to the background and suspend
the interactive processing. (If a user has a dialogue with a tool at the server side he can interrupt the
tool session. That is why the suspended-request is a service primitive of the server).

Structured messages with user defined data (e.g. for status information) can be sent to the client.
Additional message types can be introduced for further development.

The third channel is used to send the tool data from the client to the server. All messages are sent
transparently without adding protocol information. Therefore, this channel can be used directly by
the tools without changing their data flows.

The fourth channel has the same characteristics as the third one, but is directed from server to client.
In the last two channels (3 and 4) messages can be sent independently of each other.

The sequence of messages is preserved for all channels (there is no need to do so for the first channel). The
last two channels are optional and can be chosen dynamically when installing the method-session.

If the transport service fails, an abort-message will be generated and sent to all application entities
concerned.

For one method-session, the protocol between one client and one server is given in Figure 4. The protocol
behaviour is defined with a petri net, whereby each message is given a transition. The circles indicate the
preconditions. Thus the causal structure of the protocol is described without side effects due to time
dependencies (cf. [SCH 83}).
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exXecute method
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struct. message
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resume
from client
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receive-conf. method-end/aborted
from server from server

TT
l

-

Figure 4. protocol for object-object communication

The following comments illustrate some peculiarities of the protocol:

. Not more than one confirmation of the establish-request can be given and this is not necessarily the
first message of the server.

The end-message terminates the method-session.
The server is responsible for the reaction to the abort message.
The suspend-function can only be initiated by the server.

After sending a suspend message, no unstructured messages (via channel 3 and 4) are sent until the
resume message from the client is received.
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The entity which opens a method-session is automatically the client, its partner is the server. An entity can
support an arbitrary number of method-sessions. For some of them it acts as client and for others it acts as
server. This role cannot be changed within one method-session.

The usual processing at the client’s side is the waiting of a response from any of his servers. To avoid (in
some systems expensive) scheduling, the response channel (number 2) is built as a special multipoint
connection (cf. [SCH 80]). The client controls one endpoint for reading and each associated server
controls one endpoint for writing. When the client reads a message it could be sent by any of its servers.
To identify the sender of a message, an additional header information in the structured messages is defined.
This parameter is set by the client with the establish-request and has to be used by the server when sending
a structured message. The service guarantees that all messages from one server are received in sequence.

The format of the most important protocol primitives is given in a Backus Naur similar syntax:

<client msg> ti= <execute method>|<abort_request>]
<resume request>.

<client id><object id><o_ id>
<method><parameters>.

<execute method>

<abort_request>.
<resume request>.

<server msg> ti= <o _ild><type><m id><text>.

The components of the messages have the following semantics:

<client-id> ::= identification of the client
<object id> ::= network-wide unique name of
the obiject
<o id> S id of the order (provided
by client) and used by the
server for struct. messages
<method> RS name of the method
<parameters>::= parameter values for a method
<type> HEES type of server message:
C confirmation
M user defined message
E method terminated
A method aborted

S method suspended
<m_id> ::= 1d of the message
(user defined)
<text> ::= content of the message
(user defined)

4. Implementation concept for using UNIX

UNIX is an operating system with many important concepts like hierarchical file system, multitasking or
multiuser facilities. Therefore, this operating system is offered on most workstations. Furthermore, due to
the availability of many tools, UNIX is usable as a programmer’s workbench as well as a system for
developing experimental software. For this reason this operating system has been used to provide a first
interface of the service for object-object-communication.

Initially, when implementing a communication service, it has to be decided, which system concepts are
meaningful and how they are to be used. In UNIX the following concepts are relevant:

input/output control via stdin and stdout

process (system calls fork and exec)

pipe

signal.
As the method specific processing is based on UNIX commands (arbitrary tools should be used) an
individual process is used for each method activation. Methods executed by the same object do not
necessarily belong to the same process-family (e.g. processes activated by different users belong to
different process-families). If the methods must synchronize themselves, this must be done with object-
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internal data, if not special UNIX-features (e.g. named pipes) are used. In case of executing interactive
tools the method-processes have to belong to the process-family of the user. Therefore, any server is
generated as child of a client, so that the common pipe mechanism can be used for the implementation of
the channels for the object-object communication.

The object-object-communication primitives are provided as a set of C-functions for the client and another
set of C-functions for the server. After the establish-request at the client’s side, the function checks if the
partner object is available and creates the child process with the program of the server method.

For the information exchange the following UNIX-features are used:

- The establish-request results in a fork (create a new process) and an exec-call (load the program and
pass the parameters).

To submit the control information from the client to the server (channel 1) two signals are used. One
to send the abort-request, the other to send the resume-request.

To send structured messages from the server to the client (channel 3) a pipe is used. At the server’s
side it always has the file-identification 3, while the client’s file-id is determined dynamically. Using
the same file-id at different server sites, the multipoint facility is available without additional effort.
This simplifies waiting in UNIX for reactions of any of the children.

With every structured message an additional signal is sent to the client, so that an event driven
message processing is possible. The client can ignore the appropriate signal.

Optionally, the server file-ids for stdin and stdout can be redirected to the client and are used as
channels for the unstructured messages (channel 3 and 4). Adding no protocol information to these
messages enables the implementation of all functions at user level without enhancement of UNIX
kernel functions (e.g. device driver).

If the objects are located in different connected computers a level 4 transport service has to be used. In this
case, at least one additional process is required at the server’s side managing the transport connection to the
network and the pipes to the user process. Depending on the implementation of the transport service, an
additional process may also be required at the client’s side. Nevertheless, this dependency only influences
the internal behaviour of the function and is not visible on the user interface.

If a ISO-session-service is available it can be used by mapping the first two channels onto one session and
the last two channels onto an additional session. The second session is only necessary if the connection of
the tool-interface has to be supported.

5. Utilization in a distributed software development environment

The object-object communication service was implemented as prototype and validated within SAST ([GEF
871). SAST is a distributed software development environment offering an object-oriented user interface
for using development tools on different operating systems. SAST has been implemented for BS2000
system software developers, to whomn the variety of tools on a workstation running under SINIX (which is
the Siemens specific variant of UNIX) should be provided without exposing them to two totally different
system environments.

An object in SAST is a hidden data structure, mainly resident on a workstation. It is used to describe
entities which are relevant in the developer’s universe like program sources, documents, tables or
configurations. An object consists of a content, describing the user visible data and a frame, representing
the applicable methods as a reference to its object class. The object content can consist of different
versions of data, including all versions redundantly distributed on a workstation and mainframes ([GEF
86]). Objects can only be addressed by messages. A method refers to a (or a combination of) special tool
only in combination with an object. The binding of data and methods make it possible to reduce the
number of parameters because of its semantic uniqueness. Besides, objects are able to learn their
parameter values.

The communication between user and object is mediated by a dialogue monitor. From the object’s point of
view this monitor looks like a client to whom the object maintains the same connections as to other client
objects. The service primitives allow the monitor to act as administrator of method processes e.g. to
manage the change between foreground and background processing, or to control the parallel execution of
different methods. The capability for the communication via unstructured messages is not used, so that
interactive tools can also be called.

In SAST there are different logical levels for objects. The low level objects are used as windows to
externally defined information like a BS2000 as subsystem. The method ‘‘dialog’’ for example calls the
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terminal emulation. The next level includes objects built on text or source files inheriting basic methods
for managing versions and distributing them within a network. The high level objects represent relations to
other objects like ““to be part of”’ or ‘‘to be associated with’’.

Depending on the semantic complexity of an object, the methods can use the functionalities of the object-
object communication. Within the the prototype the methods for high level objects are able to initiate the
execution of methods of the referenced objects by sending messages to them. Examples of this application
could be:

- the linear automatic execution of methods at a defined time to achieve better load balancing (e.g.
compilation of sources at night).

- tree-structured methods with serial execution to prepare folders where each addressed object
(chapter or text) has to return its page number.

- tree-structured methods with parallel execution for software configuration with automatic conditional
compilation of sources.

6. Final remarks

For the service of object-object communication an approach was chosen different to the session service of
the ISO reference-model:

- Instead of directly using the ISO session synchronization primitives, more simplified mechanisms are
used and therefore more data channels are provided. The advantage is that additional application-
specific extensions of the protocols can be used beside the defined ones, so that no interference to
already existing protocols (and therefore to input/output operations of already existing tools) appear.
Nevertheless, it is possible to control the data flow of the additional channels or use application
specific primitives.

- An additional feature is the usage of multipoint-connections which help to simplify the
implementation. With an adapter-function the multipoint feature can also be mapped onto a point-
to-point connection.

The enhancement of the message principle of the traditional object-oriented systems offers some new
features:

- Objects with complex semantics require interactive methods which allow the integration of existing
tool environments.

- The location of objects is not restricted to only one computer system.

- The usage of existing methods to implement new methods with higher semantics, enables an object-
oriented programming. Due to the communication service this is possible in conjunction with a
conventional programming technique.

N With help of the service for object-object communication the objects can control the parallel
execution of methods also within the object-oriented programming. Due to the constraints of the
existing hardware solutions the parallel execution should only be used with strong discipline today.
However new hardware technologies using multiprocessors or dedicated processors will support
efficient parallel processing which can be utilized in a better way.

The experiences with SAST have proved the protocol’s operationality. The object-object communication
opens a wide range of applications without too much effort in performance and implementation
complexity.
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ABSTRACT

The X.25 Packet Layer (ISO 8208) and Class II of LLC (ISO 8802/2) are both
implemented in the kernel of Berkeley UNIX 4.2BSD on a VAX 11/750 as a new
communication domain (AF_XLAN). It is accessible using the IPC primitives provided
by 4.2BSD. X.25 PLP’s stream services are accessible via stream sockets. Class II of the
LLC’s datagram services are accessible via raw datagram sockets and stream services via
raw stream sockets.

1. Introduction

The standardization work done by the IEEE 802 committee corresponds to the Physical and Data Link layer
of the OSI reference model. The need for internetworking LANs with the packet switching data network
(PSDN) have resulted in adopting X.25’s Packet Layer Protocol (PLP) as the Network Layer (of the OSI
reference model) for the LAN protocol stack (x/ar). Berkeley UNIX, 4.2BSD provides the user with sockets
[7] for accessing communication protocols. It also provides structures for creating new protocol domains.
Fundamental amongst them is a structure called the protocol switch. This is used in defining the interface
between the protocol modules — elements of the protocol stack. What follows is a description, based on
[1], of our implementation of the x/an protocol stack on the Berkeley UNIX 4.2BSD.

2. User Interface

The user accesses the xlan protocol stack thru sockets and the IPC (inter process communication)
primitives provided by 4.2BSD UNIX [6]. The domain AF_XLAN provides access to the protocols on this
stack. The PLP element [2] provides only virtual circuits. Each end point of the virtual circuit is mapped
into a stream socket. To use the PLP, a socket is created using the socket system call:

s = socket (AF_XLAN, SOCK_STREAM, 0);

The format of the names bound to PLP sockets is derived from the fields of the X.25 Call request packet. It
essentially contains the X.121 address of the host machine and a 16 byte user data field. The LLC protocol
element provides both connectionless-mode services (Type 1) and connection-mode services (Type 2) as
specified in [3]. Access to it is thru raw sockets i.e sockets of type SOCK_RAW][6]. If connectionless
service is requested then the raw socket created is datagram oriented. The socket is created by the system
call

s = socket (AF_XLAN, SOCK RAW, XL LLC1);

On the other hand, if connection-mode service is requested then the raw socket behaves as a stream socket
as it is now an endpoint in a virtual circuit. Accordingly 4.2BSD IPC system calls must be used for setting
up a connection before data is sent or received. A raw stream socket to access LLC Type 2 services is
created by

N
s = socket (AF_XLAN, SOCK RAW, XL LLC2);

The format of the names (addresses) bound to raw sockets is given by the sockaddr xlan structure. They
are formed by the concatenation of the host’s Ethernet address and the LSAP port as shown below.
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struct sockaddr_xlan {
u_short family;
char mac_addr[6];
u_short port;

i

LLC provides 63 LSAP ports which can also be addressed as groups (multicasting).

3. Implementation

In UNIX, an acceptable performance of protocols dictates that it be implemented within the kernel itself.
Berkeley UNIX provides several abstractions and utility routines to help create a protocol stack in the
kernel {5]. A uniform user interface dictates that one also use the 4.2BSD Socket Manager. The following
sections describe the x/an protocol stack elements and the interfaces they conform to.

3.1. Medium Access Control (MAC) Level

Our networking environment consists of an Ethernet driven by the InterLan interface. The Ethernet carries
DIX (Digital, Intel, Xerox) frames used to implement the IP and ARP suite of protocols. These frames
contain a 6 byte source and destination field, a 2 byte type field and the data and CRC fields. The type field
indicates the type of data it encapsulates and is used for demultiplexing within the receiving host. IP uses
the value 0x800 and ARP uses 0x806 in its type field. The Interlan interrupt routine ilrint(), called when a
packet is received, uses this field to direct the packet to the appropriate protocol stack. ISO 8802/3
CSMA/CD standard [4], which defines a MAC level protocol, differs from DIX only in its interpretation of
the type field. This field now contains the length of the data field. The data field is between 46(0x2c) and
1500(0x5dc) bytes. The fact that this type range is beyond that used by IP and ARP, makes it is possible to
differentiate DIX frames from I1SO 8802/3 CSMA/CD frames on the Ethernet. This is illustrated in the
figure below.

0x2d < type

< 0x5dd 0x806

checker

To use the 1SO 8802/3 standard as our MAC level protocol, we need only modify the ilrint() routine to
direct all packets with a type between 46(0x40) and 1500(0x600) to the xlan protocol stack. To do this we
define a queue in the kernel, Llcintrq, onto which ilrint() will enqueue received ISO 880G2/3 frames. The
memory buffers or mbuf’s provided by 4.2 BSD is used as the mechanism for data storage . The
networking code runs off software interrupts. To this end we define a bit in the kernel defined netisr status
word, NETISR_XLAN, which is set by ilrint() on receiving an ISO 8802/3 frame. An assembly instruction
is added to the kernel assembly code to associate the setting of this bit with calling the /lcintr() routine to
process frames on the Llcintrq. Similar structures exist for the IP protocol stack. Thus the setting of
NETISR_IP bit in netisr will activate ipintr() routine which will process frames on the ipintrq. For
outputting an ISO 8802/3 level frame we use Interlan’s output routine. 4.2BSD uses struct ifnet to describe
all its network interfaces. Each interface has a name. The name of the Interlan’s interface is "il0".
Handles exist in this structure for the interface’s initialization, output, ioctl routines etc.. Thus to call the
output routine, one need just map the name to the interface structure pointer and access the output
procedure handle. This is shown by the below code.
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Ifllc = ifunit ("il0"); /* mapping routine provided by 4.2 BSD */
(*Ifllc->if output) (Ifllc, m, dst); /* il output() */

m is a pointer to an mbuf chain containing the data field and dst contains the destination and length field of
the ISO 8802/3 frame to be transmitted.

3.2. Logical Link Control (LLC) level

The LLC element of the xlan protocol stack, is the Upper Data link Sublayer of ISO’s OSI reference model
shown below. Note that while the Network layer (NL) multiplexes NSAPs (Network Service Access

Point) onto a single LSAP (Link Service Access point), LLC multiplexes LSAPs onto a single MSAP (MAC
Service Access point).

Network

— ()

e O —/() e V]

O MAC 0) MAC

()

PhySical O Physical

Physical

Medium medium

LSAP MSAP

In the context of the OSI model, the services of a layer are the capabilities it offers to the next higher layer.
Services are specified by describing the service primitives and parameters which characterize each service.
A service is implemented by one or more related primitives which constitute the interface activity. These
primitives are of the 3 generic types - Requests(R), Indications(I) and Confirms(C). While R is directed by
NL to the LLC layer, I and C are directed by the LLC to the NL. From the standpoint of the NL, R is
synchronous while I and C are asynchronous. The relation between the primitives used to support a
service is illustrated by a time sequence diagram.
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(a) (b)

(d (e) N

Figure 2. sets of services are provided by the LLC to the NL.

Unacknowledged Connectionless Services which comprises of Point to point, multicast or broadcast Data
transfer service(e).

Connection Oriented Services are all point to point. They are: Connection Establishment service(d), Data
transfer service(c), Connection reset service(d), Connection termination service(d), Connection flow
control service(a) and Report connection status service(b). The references are to the time sequence
diagrams above. This scenario is specific to our implementation. To provide these services, the LLC is
logically divided into components each characterizing a set of protocol operations defined by a protocol
state machine. These components are illustrated below.

Station
component

SAP #0
component

SAP #n
component

SAP #1
component

connect #m
component

connect #0
component

connect #0
component

connect #0
component

1. Station component. Essentially this has an UP state and a DOWN state indicating the enabling
conditions for the operation of the Service Access Point (SAP) components. This is implemented as a
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boolean indicating the existence of the /nterlan interface.

2. Service Access Point (SAP) component . There exist 63 SAP components within the LLC entity. The
SAP component has the form:

struct sapcd {

int local; /* SAP address */
grouplist{8]; /* Bit map indicating group */
/* membership */

/* head of ccd list */

unsigned

struct ccd *ccd_head;

b

The bits in grouplist are numbered O to 255. The bit number is the group number. Consequently a 1 bit in
the ath position indicates that the SAP is a member of group number n. The SAP component dedicates a
ccd structure for each data link connection from other LSAPs’ to itself. These ccd ’s form a linked list with
the header in ccd head .

3. Connection component: This component is described by the ccd structure. A data link connection
between 2 SAP’s is supported by 2 complementary ccd’s — one at each SAP. A ccd contains a pointer to
its LSAP (sapcd structure) in sapcd . Further all connections terminating at an LSAP are linked together
with ccd_bef and ccd_next. The standard [3] specifies a maximum window size of 128. Local and remote
window sizes need not be the same. They are available in local_modulus and remote_modulus of the ccd
structure. This implementation sets the local window size to 7 and defaults the remote window size to 7.
The latter is negotiable by exchanging XID frames. An abbreviated form of the ccd structure is given
below.

struct cced |
struct ccd
struct sapcd
struct timer node

*c_next, *c bef; for linking ccd specific to a LSAP */

*sapcd; back pointer to parent */

address of an array indexed by */
timer type */

buffer for assembling the FRMR */
info field */

for data retransmission. Each */
mbuf contains 16 pointers to mbuf */

*timerpool;

struct frmr_data *frmr_data;

struct mbuf *retxpool([8];

/

data chains */

local modulus;
remote_modulus;
link_state;

vs;

vr;
last_recvd_nr;

last transmitted nr;

lbusy;
rbusy;

local window size + 1 */

remote window size + 1 */

state of the finite state machine */
v(s)y */

V(R) */

lower window edge of local end */
lower window edge of remote end */
size 128 maintained by retxpool */
local LSAP busy flag */

remote LSAP busy flag */

}:

The ccd has a timer _node for each timer type (Ack timer, P timer etc.). These are maintained as an array
of timer node structures in the m_dat field of an mbuf. A pointer to this array is available in timerpool.
Starting a timer puts the corresponding timer node onto a chain which is manipulated by timeout routines.
The fields vs, vr, last recvd_nr and last transmitted_nr maintain the sliding window. Data is buffered
until its acknowledgement is received or connection is reset or disconnected. Data is buffered by storing its
mbuf pointer in retxpool. retxpool is a logical table of size 128. It is maintained by 2 indices — the primary
index points to the m_dar field of an mbuf. The m_dar field has space for 16 data pointers. The number of
mbuf’s allocated to hold data pointers (max 8) is (local_modulus/16). In 4.2BSD, protocol modules use the
‘*protocol switch’’ to interface with each other. The protocol switch is defined by struct protosw in [5].
Fields in this structure define the type of sockets the protocol module supports, the protocol family and
handles to the module’s routines. Each LSAP, besides LSAP 0 [3], can be used to support a protocol
module or can interface directly to the socket manager providing raw sockets. Based on the destination
LSAP in the received packet the appropriate protocol switch is used. Presently LSAP #63 is reserved for
the PLP. Remaining LSAPs are available to the user for raw sockets. Network layer protocols make the
connect, disconnect, reset service request to the LLC by using their pr_ctloutput handles. Indications and
confirms are channelled to the Network layer by the LLC by using its pr_ctlinput handle.
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The below calls show how protocol switches are used by level 3 to request services of the LLC.

(void) (*protosw(].pr_output) (0, m, src, dst); /* Connectionless Data transfer service */
struct mbuf *m;
struct sockaddr *src, *dst;

m is the mbuf chain containing the data.

ccd = (*protosw(].pr ctloutput) (req, src, dst, 0);: /* if req = X_CONN then this */

int reqg; /* is a Connection Establishment service */

struct ccd *cced;

struct sockaddr *src, *dst;

err = (*protosw[].pr_output) (ccd, m); /* Connection oriented data transfer service */
struct ccd *ccd;

struct mbuf *m;

ced refers to the link connection, and m is the mbuf chain containing the data. Also, this conforms with
the time sequence diagram c. The LLC passes data up towards the user by using the pr_input handle of the
protocol switch belonging to the destination LSAP. We use the convention

(void) (*protosw[].pr_input) (0, m, src, dst); /* Connectionless data transfer service */
struct mbuf *m; /* This is an Indication */
struct sockaddr *src, *dst;

m is the mbuf chain containing the data.

(void) (*protosw[].pr input) (ccd, m); /* Connection oriented data transfer service */
struct ccd *ccd;
struct mbuf *m;

ccd refers to the link connection, and m is the mbuf chain containing the data. Indications and Confirms
travel up towards the user. Calls to this purpose are

(void) (*protosw(].pr ctlinput) (ccd, primitive, ic, arg):
struct ccd *ccd;
int primitive, ic, arg;

where primitive can take values X_CONN, X RESET, X_STATUS, X_DISCONNECT and ic can take
values X_INDICATION, X_CONFIRM. arg contains the status specific to primitive and ic. Besides the
protocol switch, Berkeley UNIX defines additional structures for using the raw socket interface. Every
socket has a data structure given by struct socket [5]. In addition, every raw socket has a protocol control
block given by structrawcb [5]. A pointer to this rawch is stored in the field so pch of the socket
structure. The field rch_pch in rawch contains a pointer to the corresponding ccd for connection oriented
raw sockets and contains a O for connectionless sockets. All the rawcb’s are kept on a doubly linked list by
the kernel and used for packet dispatch. The LLC provides counterparts to the routines raw_usrreq,
raw_ctlinput, raw_input, provided by 4.2BSD, to support connection oriented raw sockets. These routines
are entered in the protocoi switch for LSAPs supporting raw sockets.

3.3. Network level

X.25 is a standard drafted in 1976 by the CCITT for standardizing the interface between a packet-switching
data network (PSDN) and the user’s data terminal equipment, or DTE. It consists of three protocol levels —
the physical level, LAPB, and the Packet Level protocol (PLP). It describes the interface almost entirely
from the network’s viewpoint and leaves open many issues the DTE must take into account. These issues
occurring at the packet layer include DTE timers, cause and diagnostic codes DTE state transitions and
DTE-DTE communication without an intervening PSDN. In 1980, a standard, ISO 8208 was introduced to
resolve these issues. With the prevalence of both Local Area Networks (LANs) and X.25 equipment, the
need for internetworking prompted the adoption of X.25 PLP as the protocol for ISO’s Network Layer. The
standard 1SO 8881 [2], a specialized version of ISO 8208 was introduced to address the special needs of the
packet layer in a LAN. X.25 PLP provides the OSI Connection-mode Network Service (CONS) in a LAN
station. Each LAN station acts as a DTE. The PLP operates one Packet Level Entity for each DTE/DTE
interface in which it is involved, i.e., for each station with which it communicates. The Packet Level entity
is identified by the pair of MAC addresses of the two LAN stations associated with the interface.

The Packet Level Entity described by struct plp entity (abbreviated form given below) are all chained
together
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struct plp entity {
struct plp entity *next entity; list of entities on this LAN station */
char state; states of the finite state machine */
bool mode; Is this entity a DTE or DCE */
struct lcd *channels; head for list of logical channel */

descriptors */

struct sockaddr xlan remote; identifies the PLP entity */
struct ccd *ccd; the LLC’s ccd used by the entity */
bool fast select; per entity facility */

i

using the next_entity field. If the entity is using connection-mode services of the LLC the ced field contains
the corresponding ccd pointer. If connectionless-mode services of the LLC are used the ccd field is zero.
Other fields of this structure define the per entity X.25 facilities used by the entity, for example, extended
packet sequencing, incoming/outgoing calls barred, etc.. PLP entities multiplex virtual circuits, each
described by the struct lcd (logical channel descriptor) below.

struct lcd |
struct lecd *next_lcd;
/* chained together on this field */
struct plp entity *entity; /* back pointer to PLP entity */
struct socket *s0;
struct x25_addr *local, *remote;
int channel; /* logical channel number */
int state;
struct timer node *timerpool; /* array of X.25 timers */
int packetsize; /* max packet size of incoming packet */

}i

4.2BSD sockets are the end points of the virtual circuits. Each lcd contains a pointer to the socket it
supports in so. The /lcd structure contain fields for maintaining the sliding window and fields for
supporting the X.25 per channel facilities, for example, flow control negotiation, fast select, reference
numbers, etc. At connection time the PLP tries to use LLC connection-mode procedures. If this fails it uses
connectionless-mode procedures. The mapping of an X.121 address to a MAC address is done by using a
static table. The use of Reference numbers allows a more elegant algorithm to be used. In this case if the
remote’s MAC address is unknown, a CALL is sent in broadcast mode. All LAN stations will receive the
packet and the one having a user listening for the X.121 address will respond a CALL ACCEPTED
carrying the desired MAC address.

4. Acknowledgements

This work was sponsored by The Norwegian Telecommunications Administration and Research
Establishment (NTARE).

5. References
1. T.Grimstad, J.Qlnes, S.A.Hussain. Implementation of X.25 PLP in ISO 8802 LAN environments. TR
801, Norwegian Computing Center. 1987
1SO/8881 — Use of X.25 Packet Layer protocol (ISO 8208) in ISO 8802 LAN. 1985
ISO/DIS 8802/2 — IEEE Std. 802.2 Logical Link Control. 1985
1SO/DIS8802/3 — IEEE Std. 802.3 CSMA/CD. 1985
S.J. Leffier, et. al, 4.2BSD Networking implementation Notes. 1983
S.J. Leffler, et. al., 4.2BSD Interprocess Communication Primer. 1986
UNIX Programmer’s Manual 4.2BSD, Virtual VAX Version. 1983

EUUG Spring 88 London, 13-15 April 1988




London, 13-15 April 1988 EUUG Spring 88




UNQ: USENET News on Optical Disk

UNO: USENET News on Optical Disk

A. Garibbo,
L. Regoli,
G. Succi

University of Genoa
Italy

1. Introduction

The size of a WORM optical disk is greater than a Gbyte and it is likely to grow fast within few years;
moreover storing and retrieving USENET news is becoming tedious and difficult: at present time a user has
easy access to news if he knows exactly which ones he wants to consult; besides reading daily news takes
little time using standard read-news tools.

Troubles arise when one wants to find some news only knowing few features because the help he has is
merely a hierarchical organization of the news supplied by the USENET system: actually, such a tree-
shaped framework seems to be quite unsuitable as long as :

i) the structure is not strongly enforced
ii)  quite different leaves lie in the same directory

Owing to the high rate of news traffic, lots of space is needed, and usually each local network connected
with USENET either devotes too much space to archiving or it needs frequent backup on tape.

UNO — USENET News on Optical disk — attempts to solve this kind of problems, since more than four years
of full news, at the present rate, can be archived on a WORM disk.

All facilities provided by standard readnews tools are enclosed in UNO; moreover it supports an
incremental knowledge driven search, which allows interactive data retrieving without either knowing
exactly the wanted news or having to deal with all the news of a USENET directory.

UNO provides easy interaction through a smart query language, remote query and intelligent programmable
selection of relevant news.

UNO was developed an a workstation named Arianna, based on a National 32032 processor, which runs
UNIX System V.3. A WORM disk is fully integrated in the global file system; UNO is designed in CH
according to object oriented programming and software engineering criteria.

2. Object Abstraction in UNO

As written above, UNO is designed in object oriented programming style, which means:

2.1. Fully modularity
Four are the big independent modules that build up the skeleton of UNO:

° database

[} remote query system
. user interface

. archiving mechanism

They interact with one another via message passing, e.g. calling member functions and storing data on files.
In the pictures below the data flow through the system is shown
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USER INTERFACE

MECHANISM

V

QUERY SYSTEM

As can easy understood such a modularity allows substitutions and improvements in each module without
having to be concerned with the global system consistency.

2.1.1. Data abstraction

Data abstraction implies easy definition of modules global architecture and clean code where errors can be
easy detected, the use of C+ programming language, in a such a context, sounds as a natural choice: C+
indeed supports single and static inheritance rules often useful, e.g. in ordering access lists.

3. Database Structure

USER HQUERY PARSER

CORE

Two different levels are identified in our database, as it is shown in the picture above
L) Query parser

. Core

3.1. Query parser

Its aim is to provide the user a simple interface with database: its input is an understandable request while
its output is a query easy to be processed by the database core.

In other words, the query parser translates the query into a core input format through an interaction with the
user kernel interface.

The structure of the core query is really simple, as can be argued by its class definition and by the
following example:

class query {
char *arg[max-key];

void set subject id(char *c);

void set author (char *c);

void set keyword (char *c);

istream& operator >> (istream& s);
ostream& operator >> (ostreamé& s);
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Example: mapping of request of news with author Ritchie and subject "pic"

Query.arg
date -
country -
author Ritchie
subject pic

Once the core query is compiled, a pattern matching with the news header is fired.

3.2. Core structure

DATABASE Tables
MANAGEMENT
MODULE “HARD DISK
WORM
news.hd
news.txt

News headers and news are stored in different files to supply a more flexible structure. Several tables —
one for each key-field — are used to build a virtual associative memory with which the query parser
interacts.

key

selector @

Because of their size, those tables are dynamically loaded in RAM only when it is needed, during query
processing.

Tables data structure follows with an example.

class couple ({
friend class table;
char *c;
header ptr;
couple *next, *previous;

}i
class table {

couple *head, *index;

virtual list *read table (char *expression);
)i

Example: table for "NAME" field
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NAME FILE
Kemigan 123428.hd
Sinatra 8875.hd
Ritchie 2012.hd

Tables are sorted in increasing order of specificity, for example, the field "author" is more specific than the
field "country" (several authors come from the same country!).

The query processing mechanism acts as follows:

° Table for the most specific field set by the user is loaded in RAM.

. A first pattern matching is performed on this table to create a list of news including the required
ones.

° The previously loaded table is removed from RAM.

. Pattern matching, on the other fields specified by the user, in decreasing order of specificity, is

performed on news header files pointed to by header field of class couple instances belonging to
the previously made list.
The relational database is designed with a smart splitting of data between hard and optical disk. Headers
and news are saved on the optical disk, while tables and several other suitdble information are stored in the
hard disk both because such data need to be update (a Write Once Read Many disk is used!) and because of
the frequent access to them (the access time to the WORM disk is about five times greater than to the hard
disk).
When the optical disk is nearly full and it has to be substituted, the tables are automatically saved on it,
whereas at installation of an already used WORM disk (e.g. for consultation) the database in the hard disk,
copies them from the optical one, if they exist.

4. User Kernel Interface

Our aim was to make the search through the database nice and so provided a series of masks the user has to
deal with according to one of two possibles custom files, which can be enclosed in the home directory of
the user: .uno_db and .uno_su ; the file called .uno_db must be written following the guidelines of a
template provided by the designers, it has a higher priority than the other .uno_su which can be defined at
runtime using one of the options of the system main menu.

Example 1: Structure of .uno_db if user wants to select
° author field
) dept field

but not one country one.

# if you want to select author, write it below
author
# if you want to select country, write it below

# if you want to select dept, write it below
dept

Example 2: Structure of .uno_su (the situation is the same as the example 1)

author
dept

Be careful of the fact that this file acts as internal form, so the user is never request to edit it: UNO allows
the user to see and to update it runtime.

London. 13-15 April 1988 - 100 - EUUG Spring 88




UNO: USENET News on Optical Disk

The screen is structured in windows as can be argued from the following picture

EUUG Spring 88
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menu
window

- 101 -

London, 13-15 April 1988




UNO: USENET News on Optical Disk

5. Remote Query System

remote
request

refusal
request

CT

/\

database DB interfacel

The remote query system consist of two parts: the first one is the account checker that checks the validity
of the user request, updates accounting tables and sends warning messages to behindhand users; the second
one is the database interface that processes the requests and sends the answers.

The account checker policy is the following:

. Each uwser has an initial amount of resources which decrease whenever he requires a transaction,
proportionately to the size of the interchanged information packed.

. A credit — up to 5% of the starting quota is granted.

° Warning messages are sent when the resources amount becomes less than 10%, 5%, 2% of the
starting one. Moreover a warning message is sent for each request as long as credit is not exhausted.

) All the requests are refused when the credit is exhausted.

Database interface works in three steps: first it translates the requests from the user format in a one suitable
for the database, then sends a message to the account checker and it creates a query instance that it submits
to the database and finally returns data files to the remote user.

Remote requests can be performed using a supplied mail tool, similar to the user kernel interface, but
written in C language instead of CH to make it fully portable, such a tool can also mail a query, via UNIX
system call, to a receiver, whose address is specified in one of the custom files; in our implementation the
receiver is

The user can write the query by himself, anyway, taking care of the fact that badly formed requests are
rejected.

Example 1: well formed request

author : Ritchie
subiject : pic

Example 2: badly formed request

Dear Mr. UNO,
would you like to send me all
Ritchie’s news about "pic"?

Yours faithfully,
LOUIS GHIROUS
6. Archiving mechanism

Archiving of news is performed by a self activating time driven daemon which works once a day.

News are stored in files by the mail system, so the daemon recognizes them by reading the date field of the
file descriptor. If the date is greater than the date of the last activation of the daemon — previously stored in
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a global variable — the system processes the news. In this case a pattern matching is performed between
news and system custom file, that contains directives about interesting keys.

If the news results interesting, they are archived into the database, according to the mechanism described in
section 3.

The custom file,which contains selection directives, can be updated runtime by the superuser without
editing it by mean of a specific command provided by UNO package.

7. Conclusion

We think UNO is quite remarkable both because of the idea of building a big and user-friendly database
where news that otherwise could be lost can be saved and because it can be further improved e.g. using
sockets to perform remote query in a local network and applying A.L techniques in the selection task.

Unfortunately it is more than an year that no news arrives in Italy, so at present time our system cannot
offer the prehaps most interesting news.
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ABSTRACT

A UNIX tool is presented that permits to write documented code in a text oriented
fashion, looking for humans that have to read, understand, and maintain it, rather than
thinking for language processors that have to compile it. The tool permits handling any
text processing system, as well as any target language. Several files may be documented
and maintained as a single unit, thus helping in keeping them coherent. The tool may
easily and productively interact with standard UNIX tools. The design criteria, basic
features, and some real examples of utilization are presented.

---surely nobody wants to admit writing an illiterate program. D.E. Knuth, Literate
Programming.

1. Introduction

Software’ documentation is quite a big problem in educational and research institutions as universities. A
strong temptation to laziness on documenting creeps around software that is not to be seriously maintained,
nor has to pass severe acceptance tests. Laboratory assistants waste plenty of time decrypting programs
written by novice students with very peculiar structuring ideas. Plenty of good pieces of software are lost
due to lack of good documentation. On the other hand, students get bored with standard text editors after
moving bunches of code around, restructuring the program one thousand times, and so on. In actual
practice, resource availability is always below the desires, and there is a finite time for editing before
deadlines. In the end, there is a badly presented stuff.

While well documented pieces of software may undertake maintenance, undocumented ones can just be
thrown away and rewritten.

All these problems may be overtaken with proper methodology and tool support. Proper tools favour
powerful methodologies. While text editors are useful, something more is required for proper
documentation. A documentation methodology is required that provides easy and flexible input, as well as
fast and beautiful output. Tools promote the use of a methodology for high quality programming.

D.E. Knuth {Knuth, 84] proposed a language, WEB, that mixes TgX [Knuth, 84a] and Pascal, as
documentation and target languages respectively. Following his pioneering work, a documentation
methodology has been devised, a more flexible tool has been developed to support it. It permits mixing
any number and class of languages, either text processing or programming ones, as well as the tool
language itself. Among its features there should be highlighted its ability to cope with many (coherent)
output files, smooth interfacing with make , easy coupling with standard macroprocessors, linking with
language processors and debuggers, and so on. The tool may be easily parameterized to fit peculiar user’s
tastes or just the text processing language conventions. The tool becomes a valuable filter that may be
fruitfully combined with many other UNIX tools.

The paper shall present the design criteria of the tool, features, several applications (mainly using it in
combination with other tools)
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2. Working Methodology

Let’s start the presentation with a historical step by step approximation. There are many users that start
having a piece of code that works well enough. After plenty of struggling against the problem and the
compiler, there is something ready to be shown to your instructor/manager. Of course, nobody will accept
that nasty looking pile of statements, with very peculiar indentation criteria. Then rises the need to
normalize the source code for other people to be able to read it. OK, go and use a pretty printer. Readers
will appreciate your code a little bit more.

Very quickly the need for more complete information arises. It is not enough to have an easy to read
program. You need to inform potential readers of your design choices, problems and solutions, efficiency
constraints, weaknesses, and so on. You need to add natural language explanations. No problem, you have
a nice syntax for (* embedded comments *). If you are careful enough, you’ll come with a piece
of thoroughly commented code. Your instructor/manager will start appreciating your work, and accept
passing it into the maintenance phase.

If you are really willing to provide a document, part of which is the code of your program, you’ll quickly
look for using a text processor in order to typeset a high quality document. Of course, there is always the
opportunity of having separate documentation. One file for the code, another for the natural language
explanations. Actual experience shows that this structure is hard to maintain, and error prone. You have to
edit two different files simultaneously. Thus, the two files model is rejected.

Accepting that we want to keep together code and documentation, there are some new problems. If you are
lucky the programming language will interact with your text processor, and you can embed text processor
commands as comments. There will be some noise with hanging (* and *) (for instance, if using
Pascal), but you get something that can be sent to a laser printer. Maybe you are less lucky. For instance,
if your programming language is Ada, it will require one comment per line starting with two hyphens. If
your text processing language is troff, it will require one command per line starting with a dot. Clearly
incompatible requirements.

In these situations you have to invent your own criteria and use some tool to make the compiler and the
formatter compatible. For instance, you may use a simple sed filter to drop every line starting with a dot
before passing the file to the compiler.

Still now, there are more subtle problems. It happens that there is a very important procedure in line 1256.
You would like to move it to the very first sections of your document, but the target language scope rules
forbid it. And the other way round, you would like to send the first one thousand lines of house-keeping
procedures, back to the seventh appendix. But, once again, the scope rules are too rigid.

If your target language accepts modules, you may run into new problems. You have separate files, but
between some of them the relationship is so strong that you would really want to document them
altogether. It’s likely that the maintainer will greatly appreciate this kind of documentation clustering.

Conclusion: you need something that permits intermixing programming statements for a language
processor and formatting orders for a text processor. Even more, you need something flexible enough as to
escape rigid ordering of the pieces of software.

We think that many programmers have found themselves in the previous story. It’s really our own
situation. And when we think back over it, we have the strong feeling that there is something very basic
that is wrong. More concretely, programmers should not start having a bunch of statemer:ts that run. Just
the other way run, programmers should start with a textual description of the system that they have to make
run. Once you have the document, you start refining it, partly adding more explanations, new algorithms,
reporting of errors, possible efficiency bottlenecks, etc, partly adding actual code. In other words, design
should precede coding, design reasoning should be stated on a document before there exist the
implementation statements.

To end this part, let us present a trivial, yet prototypical example. It will permit a first approach to the
pieces we are dealing with. CIA is the name of the tool we are about to present. Let’s have a sorting
program sort.cia partly written for troff, partly for pascal .
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sort doc

sort.cia ———= cia troff = document

sort.p

pc E— sort

To get the document, you filter it through the CIA and the text processor

..> cia sort.cia | troff -ms
cia: -> sort.p

As a side effect, a Pascal file sort.p is produced, that is processed as usual

pc -0 -o sort sort.p

3. Design Criteria

Main desire is to have a tool to write programs that are documents and/or write documents out of which
programs may be extracted. Code and text must be kept together for editing, and will be split apart with
the help of a tool. The tool must permit flexible documentation of program files, and keep coherence
between files.

The tool we are using is named CIA. It is just a pun on the very well known U.S. Agency. We chose the
name to reflect that the tool is able to cope with many files keeping information coherent. From other point
of view, the tool is able to extract a whole history starting from a seed and pulling out a thread of
reasoning. That idea is what D.E. Knuth calls tangling. As a final consideration, the name is short and
easy to remember.

The CIA accepts an input file that is basically text oriented, embedding text processing commands. In this
file, pieces of code may be named , and be referred to from other parts of the file. Input files include CIA
commands that are interpreted for the extraction of the code in the proper order. The CIA has been
developed in a UNIX environment with standard text processors in mind, e.g. nroff, troff, TEX, LATEX
[Lamport, 86], etc. The CIA is independent of the target language, e.g. C, Pascal, Modula-2, Ada, shell
scripts, makefiles, other CIA files, etc.

In UNIX jargon, the input file (or the concatenation of several input files) is filtered onto the standard
output , processing only those lines that are CIA commands. The standard output is the basic document
output.

Other files may be generated as side-effect. The overall idea is to mark pieces of text being able to recall
them as many times as you wish, in any order you like. Thus, you can write a program intermixed with
explanations, top down or bottom up, as you think it is more readable, and then dump it in the peculiar
format required by the corresponding target language processor.

The CIA is line oriented. That means that CIA commands cannot be interspersed with the rest, but must be
in lines of themselves. Line breaks in the source file are preserved in the generated files. That means too
that no attempt is made to pretty print anything. A Pascal program will be output with the same line
breaks, and the same relative indentation as in the source file. This decision has several benefits. First, it
makes the tool language independent. You may still pretty print the code using any pretty printer you have
around. If you have languages with fussy syntax, say makefiles, you may easily cope with them, nobody
changing your tabs and so. Usually the code will be enriched with information to permit the compiler to
refer to the correct line in the original file when an error is detected. For instance, for most UNIX
processors, #line lines. But not every language permits this information to be added (e.g. yacc, lex,
shell , make, ---). In this cases you need to read the generated file and then go to the original file for
making corrections. It is clumsy, but possible.
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4. Features

This section presents the kind of commands the CIA will accept. It is a simplification of the user’'s manual
[Minas, 87] that just pretends to provide the flavour of the tool.

4.1. Basic Definitions

Pieces of code are put together and given a name by means of a couple of bracketing commands

“define [count] key
body

end

The key is any string of characters up to the end of line. The optional count is the expected number of
times this definition will be used. Default is 1, and a warning is emitted if the actual number of
instantiations doesn’t agree with that count. Main use of this feature is to check that every definition is
used somewhere, unless it is explicitly stated otherwise.

In order to use a definition, there is a replace command
“replace [indent] key

The interpretation of the replace command differs upon being generating the standard output or a
secondary file. For the standard output, the definition is not expanded, but there will be a line showing in
some format selected by the user, that a replacement is to be made there. On the other hand, while
outputting to a secondary file, the body of the corresponding definition is expanded on line.

The optional indentation parameter specifies a relative ([+|-]number) or absolute (number)
indentation of the body to be expanded. The number is measured in tty-character units. Relative
indentation is done with respect to the last non-empty line read from the source file. Command lines are
not considered for indentation measures. Absolute indentation is done with respect to the left margin. The
first line of the body of the corresponding definition is indented so much. The other lines of the body
preserve their indentation relative to the first line. Thus, the body is shifted as a block. If no indentation is
provided, the definition is expanded as it was written, without any shifting.

Secondary files are generated as side-effects

“file filename
body

end

The bhody is copied onto the specified file. Usually, "“replace commands will appear in the hody
forcing the unthreading (or tangling) of the code.

4.2. Output Fine Adjustment

Usually, outputs generated by means of ~file commands are just written onto the specified file. The
only extra processing the CIA will do is checking whether the output is a modification of an alrcady
existing file. That is, when a file is to be written, the CIA will check if it already exists. If so, it will check
whether they are equal. If both checks succeed, the file isn’t actually overwritten. This trick stops make
from regarding the file as modified, stopping any further processing. This feature is usually required when
several files are generated as a result of running the CIA. Modifications may not affect to all of them, and
make should be instructed about actual modifications, not only rewrittings.

Furthermore, the output may be send to a shell as standard input. The CIA will not care the result of the
execution of the shell, whatever it may be. There are many uses of this feature. First, as an example, the
basic behaviour may be emulated as

“file | cat > /tmp/cias$s;
cmp -s /tmp/cia$$ filename || cp /tmp/cia$$ filename;
rm /tmp/cia$$

As another usual situation, let’s consider the case of using vgrind to pretty printing the code. While in the
standard output you wish to have .vS .vE commands, these should not go to the code file. Deleting
these controls is pretty simple

“file | sed '/".v[SE]S$/d’ > filename

Other frequent applications are handling of text processor escape characters (using sed once again),
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sending mail, sending to a printer, etc.

Name expansion of the shell may be fruitfully applied as in the following typical examples,

“file | cat ~/filename
“file | /lib/cpp -DOPTION > S$SPROJECT/src/file.c
“file | rsh host cat ">’ ' “pepe/file’

4.3. Name Substitution

It has proved very convenient to have access to the name of the source file in several formats.

key means example

9oF full pathname | /usr2/pepe/src/file.c
%Z | path Jusr2/pepe/src/

9N | full name file.c

%P prefix file

%S suffix .c

%% | percent %

This permits having standard patterns as CIA files. Eg.

...> cat “someone/file.cia

“define code for file %P.a

end

“file %Z%P.a
"replace code for file %P.a
“end

Further flexibility may be achieved by running a macroprocessor before the CIA, eg. m4 or cpp,

...> /lib/cpp -DOUTFILE=/usr/et/earth

4.4. Tailoring

Most CIA commands are given a visible representation in the standard output. In order to make the tool
independent of any text formatter, the default printing may be customized. Let’s start with the most
common case: a source command line as

“define this is a sample definition
is echoed to the standard output as a line
<< 24. this 1s a sample definition >>:=

The number is automatically provided by the cia reflecting the list of definitions as they appear in the source
file.

This default format is specified as
“fdefine << %D %K >>:=%n

where %D stands for the definition number, %K for the key, and %n for a carriage return. %R is also
accessible as a list of numbers of definitions and files that use this definition.

If you are using troff, you may wish to get finer control of the layout. One of the easiest forms is to
generate a macro

“fdefine .°D "%D" "$K" "SR"%n

And the macro "D shall be defined somewhere else, either being present in the source file for the CIA, or
loaded from a macro file (via .so commands), or any other procedure. The definition of the macro is up
to the user, and will usually refer to other macros for direct access to standard packages (e.g. ms). A
frequent application is to embed in the macro the required commands to generate a table of definitions at
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the end of the document. Standard packages as -mm may greatly simplify it. Here is a simple definition
that provides an -ms display ,

.de "D
.DS L
<< >>=

Usually, the ~fdefine command is used to generate a macro according to the intended text processor
conventions, macro that is later on expanded. But, of course, the CIA may expand more complex formats.
As an example, consider the case of vgrind that must be run before troff, implying that .vS .vE
commands cannot be the result of expanding a troff macro. A nice format for troff and vgrind, without
cluttering the files, may be achieved as

"fdefine .DS L%n<< %D %K >>:=%n%n.vSsS%n
A similar situation will arise around ~end commands,
“fend .vE%n%n<< end of %D %K’ >%n[[ used in %R ]]%n.DE

Same format tailoring may be applied to ~replace commands (default "<< %D %K >>%n"), and to
" file (default "empty").

These formats control the printing on the standard output. There is another command for controlling
printing on the secondary files. Here the problem isn’t pretty printing or text processor controlling, but
keeping track of positioning of the pieces of code in the source file. By default, when a file is dumped,
there is no information about the structure of ~replace commands that generated it. Most languages in
UNIX accept #1ine directives to keep track or original source lines. The CIA may optionally provide this
link. But other language processors do not. In either case, it is sometimes desirable to have that
information for the case the generated file must be read by humans. The trick uses to be writing a
comment. For instance, if the target language is C,

“infile (* %D %K *)%n
Or in sh files,

“infile # %D %K%n

4.5. Miscellanecus

A “copy key command is provided to emulate the definition of a key. It is usually applied to the
production of slides from a document. In the document there are ~define commands. These generate a
nice output for the standard output. Then you wish to generate a secondary file that contains a copy of
those definitions intermixed with text processing commands to get big letters and all the stuff for slides.
Since you are not normally willing to repeat the “~define, nor allowed by the CIA, nor willing a
“replace that would unwind the nested structure, you may use the ~copy and get the effect of having
the “define again.

Another useful command is one that prints on the standard output the skeleton of a nested structure of
definitions. This is better explained by means of an example. Where in the source file you have
“skeleton key, you'll get an output as
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<< 1. Entire program >>

<< 2. Global constants >>

<< 3. Global variables >>
<< 6. Global variables 2 >>
<< 8. Global variables 3 >>
<< 12. Global variables 3 >>

<< 4., The random number generation procedure >>

<< 5. The main program >>
<< 7. Establish the values of M and N >>
<< 9., Initialize set S to empty >>
<< 10. If T is not in S, insert it and increase size >>

<< 11. Insert T into the ordered hash table >>

<< 13. Print the elements of S in sorted order >>

The example is inspired in that of D.E. Knuth [Bentley, 86].

This completes a sharp presentation of the features of the CIA. There are some more commands for file
inclusion, comments, and that’s all.

4.6. What the CIA doesn’t do

When designing a language it is as important what it provides and what it doesn’t provide. Of course, there
are plenty of features that it doesn’t provide and nobody will reasonably complain about. But there are a
few features that are more or less frequently required and, despite users request, we have left out. We have
seriously tried to make the CIA as simple as possible. If there is a UNIX tool that provides some facility,
use it in connection to the CIA rather than providing it again. Tools must combine. Repeated work is not
only tedious, but error prone and harder to maintain.

Most frequent request is for typical macro language commands as text replacement, conditional expansion,
and so on. The answer is given in two steps. First, which macro processor would you like the CIA to look
like? Second, ok, go and use it as a filter before or behind the cia! Personally, we are used to ¢pp and do
extensively use it either before or behind or, with some care, even twice.

Sometimes we get requests for accessing environment variables as sh or ¢sh do. Usually, the syntax for
" file permits passing control to the shell, and nothing more is required. Alternatively, you may use
make to instantiate the CIA and write things as

/lib/cpp -DOBJECT=$VAR file | cia | troff -ms

echo "define (OBJECT,S$SVAR)" | m4 - file | cia | troff -ms

There is a feature of web-tangle that is sometimes requested for the CIA, namely the facility for extending
a “define, what in web appears as ‘‘+="". That seems to be a very Pascal oriented feature for coping
with pseudo-global variables. Our point of view, and not everybody agrees, is thata “define is both a
piece of code and a proper name. As a piece of code, it may be acceptable to extend it later on, although
there are two counter arguments. First, if the main CIA activity is combining via “replace, why do we
need another notation? Second, in which order do extensions combine? Probably in the same order as they
appear in the source file, but that’s plainly against CIA conventions of being ordering independent. There
may be problems if the ordering of the definitions is modified (e.g. defining a variable of a type that is not
yet defined), and you may easily modify the ordering by, for instance, moving a few definitions onto an
appendix.

As a proper name, we would strongly force users to put the name and the code together and not splitting it
over. Editing of a split specification is hard if you do not have a multiwindow editor and you have to
navigate around to find each piece.

For the case of Pascal pseudo-global definitions, there are much better solutions as preparing a definition
for each block of variables, and combine them by means of ~replaces. The result is better documented,
since there is a proper name for each proper thing, and it is more robust, since permits you to move the
definitions around.
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5. Sample Applications

The CIA was first designed upon a wonderful presentation in the Communications of the ACM in June
1986 [Bentley, 86]. We found the ideas extremely useful for our actual problems in software teaching and
development, and started the production of a first implementation. It took less than one month. Later on
(about February 1987) we got the other main paper on the subject [Knuth, 84] We kept on with our tool
that was starting to evolve upon wide experience within the department. Lastly, early in 1988, we have the
Donald Knuth’s tools web and tangle , but still small experience with them.

Our experience with the CIA starts with prototypical cases of Pascal programs. There is one source file that
produces the document and a Pascal file as a side effect. That case was presented in the introduction and
doesn’t deserve more attention.

5.1. Multimodule

There is more fun when you come into C language and wish to organize your application as a set of files.
Sometimes, you wish different files just for reasons of object scopes. Then you may wish to use the CIA to
generate them by means of two ~file commands, while keeping only one source file and a common
documentation. It is likely that you will wish to have the building specification (the makefile) as an
appendix of the common document.

If the target language is Modula-2 or Ada, then every piece of software is split into a public interface and
a private implementation . If the project is small, you may wish to keep both together in order to have a
common up-to-date documentation, and preserving coherence by sharing the same ~defines.

If the project grows bigger and several people become involved, then software engineering practices will
change the file organization. Several interfaces may be documented altogether with the architectural
design of the application, and the implementations will be documented separately. Still coherence may be
achieved by including the interface ~defines in the implementation documentation. Once again, there
may be a makefile described at and generated from the Architectural Design Document.

5.2. Small Changes

More sophisticated use permits generating slightly different versions of the same program. That is a very
usual situation in teaching. You write a program and then start applying small variations. You would like
to have a single document for everything, and yet have executable code for each of them. A similar
situation arises when generating code for different target machines.

Here there are two problems. The first one, generating several files, is simply resolved by using several
“file commands. The second one is getting the correct pieces into each one. If all the definitions are
made at the same level, it is a children game to build the correct puzzle for every file. But if we wish to
distinguish the versions by changing some deeply nested definition without changing the common
environment, then it is not so easy.

Let’s work on a small example. We have two slightly different definitions
"aefine version 1: code "define version 2: code

body 1 ... ... body 2
end “end

That are used in a common definition. In order to distinguish, we shall use the ¢pp preprocessor. Of
course, any other tool could be used (e.g. m4, ank , etc.)

Main document: Appendix:
“define common definition “define version #: code
#ifdef VERSTIONI
"replace version #: code "replace version 1: code
.. #endif
“end #ifdef VERSIONZ
“replace version 2: code
#endif
“end

When the actual files are output, one or the other version is chosen
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"file | /lib/cpp -DVERSION1l > versionl.c
"replace common definition

“end

“file | /lib/cpp -DVERSIONZ2 > version2.c
“replace common definition

“end

There are many ways of getting the desired effect. Here we just intend to show the easy interaction with
other UNIX tools.

5.3. Many Coherent Qutputs

Another powerful application involving different filters is test generation. In teaching environments we
often have the need of producing tests for students examination. A nice tool may be developed that
generates from a single source a set of test questionnaires, answer sheets, test documentation, etc. For the
same exam we wish to have several permutations of the same answers for the same question. Each student
receives one model and an answer sheet for that model. When they leave the examination room, there shall
be a document showing the correct answer to each questien, and the (positive or negative) weight of each
choice. Thus, students may fastly evaluate themselves. There shall be too a short file relating each answer
and each weight for each model. This last file shall be read by an automated correction tool.

source . correct
. . awk troff — =
specification answers

i/ evaluation table

(n) answer sheets

(n) test models

The single source contains single command lines to start questions, and answers with its corresponding
weights. A simple awk program is enough to translate questions and answers into ~defines, deleting
the weight from them. Lastly, a standard collection of “file and “replace commands is appended,
yielding a random permutation of answers. Thus, the CIA will output all the necessary files, with the same
answers but different ordering.

5.4. As A Macroprocessor

The CIA may be scen as a specialized macro processor. Pieces of code may be given a name and then
expanded on line in several places. Run time efficiency increases without function call overhead. While,
source code is still split within small chunks of information. In other words, it is not required to invent
procedures for documentation purposes: just invent ~de £ initions.

Some methodologic considerations should be followed by users. It has proved a good criterion to write
bodies of about 12 lines. Giving a name to smaller pieces of code uses to introduce too many “defines.
On the other hand, ~defines should be smaller than a normal screen (24 lines) for on-line editing.
Nevertheless, 20 lines of code will surely deserve a name by themselves.

Most users will naturally provide svntactic definitions. That means that the same “define will
encompass both the begin and the end. The alternative is to start a block in one “define and finish
it in another. We strongly recommend the first method. You keep syntax brackets together and then refine
the contents in another ~define. Users that do not follow this thumb rule use to produce extremely
confusing documents.
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5.5. Make Integration

Makefiles may be easily adapted to automatically operate on CIA based applications. The default rules for
file production must be extended in the natural manner. Here follow a few of them.

.SUFFIXES: .cia

.cia.c:
cia $(CIAFLAGS) $*.cia > $*.doc

.cia.o:

cia $(CIAFLAGS) $*.cia > $*.doc

$(CC) S (CFLAGS) -c $*.c
.cia:

cia S$(CIAFLAGS) S$*.cia > S$*.doc

$(CC) $(CFLAGS) S$(LDFLAGS) -o S$S@ S$*.c
.cia.doc:

cia S(CIAFLAGS) S$*.cia > S$*.doc

5.6. Source Code Distribution

Lastly, we would like to mention the opportunity of distributing undocumented source code. That is the
case when the distributor doesn’t have access to the target machine in order to compile the code at home
and distribute just the objects. Since he is forced to send out sources, the CIA may be used to distributed
fully undocumented code, in fact useless but for remote compiling. At the same time, a fully documented
source is kept at home for maintenance and further releases.

6. Related Tools

There is a tool clearly related to ours. It is the web-tangle package from D.E. Knuth. We shall shortly
highlight its differences.

Perhaps the most fundamental difference is in objectives. While Knuth’s tools are intended for high
quality typesetting of Pascal programs, the CIA is intended for documenting any code. Both tools may
productively interact. The wonderful Pascal pretty printer embedded in web may still be used on the
output of the CIA for high quality typesetting of Pascal programs. Surely you’ll need filtering out @-
commands, but that’s easy. Even, the change file facility may be used to generate customized files to be
processed by the CIA, although a simple program for awk would normally suffice. Personally, we would
prefer the classic ¢cpp conditional compiling. And there finishes the interaction.

Another deep difference may be found in the role of the tools in a UNIX environment. While web and
tangle are self-sufficient tools, embedding a macro processor, a pretty printer, and a peculiar version of
Pascal; the CIA is expected to work as one filter more, thus simplifying its behaviour. Whatever another
tool may do, let it do it!

From a user point of view, we have our own experience. After a small introduction people start using the
CIA very quickly. Say one hour. We provide some standard macro packages either for configuring the CIA
(" fdefine commands, for instance), and for customizing the text processor (usually troff or LATEX
macros). Of course, the user must know of the target language and of the text processor.

We lack of a similar experience with Knuth’s tools, but we are distressed by a phrase of the web user’s
manual: *“--- WEB users must be highly qualified, but they can get some satisfaction and perhaps a
special feeling of accomplishment when they have successfully created a software system with this
method.”’. We have actually appreciated a quick satisfaction on CIA users.
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Multilevel Security with Fewer Fetters
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ABSTRACT

We have built an experimental UNIX system that provides security labels
(document classifications), where the security labels are calculated dynamically at the
granularity of kernel activity, namely, at each data transfer between files and processes.
Labels follow data through the system and maintain the lowest possible classification
level consistent with the requirement that the labels of outputs dominate the labels of
inputs from which they were computed. More rigid control is exerted over the labels of
data passing out of reach of the system to and from tapes, communication lines,
terminals, and the like. Necessary exceptions to the security rules (as for system
administration, user authentication, or document declassification) are handled by a
simple, but general, privilege mechanism that can restrict the exceptions to trusted
programs run by “‘licensed’™’ users. Privileges are subdivided; there is no omnipotent
superuser. Carefully arranged data structures and checking algorithms accomplish this
fine-grained security control at a cost of only a few percent in running time.

Dynamic labels should help mitigate the suffocating tendencies of multilevel security. At
the same time dynamic labels admit covert channels by which dishonest, but authorized,
users can leak data to unauthorized places at modest rates. The system is still highly
resistant to other kinds of threat: intrusion, corruption of data by unauthorized users,
Trojan horses, administrative mistakes, and joyriding superusers. In most real settings,
we believe, worries about potential leaks will be far outweighed by these latter concerns
and by the overriding consideration of utility.

The standard security mechanisms of the UNIX system are, in military parlance, *‘discretionary’’:
protection depends primarily upon the individual owners of data taking care to set permissions on files.
Some automatic help is offered. the owner/group mechanism, umask, and clean files uncontaminated by
old trash from shared disks. The responsibility for further precautions, such as setting owner-only
permissions on files in the shared temporary directory, is delegated to programs.

A carefully administered UNIX system can be quite resistant to penetration. But careful administration is
not easy. Great reliance is placed on the probity, accuracy. and vigilance of superusers. It is all too easy
for a busy superuser inadvertently to misset permission bits, to execute a Trojan horse!'!, to make
temporarily unprotected copies of secrets, or to promote unvetted files to trusted status.

Because UNIX systems are simple enough to be administered by amateurs, whose first interest is in use, not
operation, security holes are the rule, not the exception, in real life. A few famous security holes have been
distributed in major software. And some add-ons, such as Berkeley's network file system, seem to have
been deliberately designed for insecurity.

Is there, then, hope of running a UNIX system securely? Of course. Lots of systems are run quite soundly
today. Raising the question a notch, is there hope of making a UNIX system that conforms to government-
style security policies?

! The hoariest of all: a bad guy feigns trouble, and asks a superuser for help. The first thing the superuser does is od
badguy; 1s. The game is up. The bad guy’s own program named 1s has been exccuted by the superuser; it has
silently bugged some setuid root program, removed itself, and then called the real 1s.
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In a sense the answer is yes; UNIX systems need less fundamental patching than most to achieve
government security goals. But the yes must be qualified. In almost any production system it is difficult, if
not impossible, to guarantee that many megabytes of code do not contain one fatal crack that can topple the
whole edifice. Such guarantees are especially elusive in environments that change frequently, as do so
many typical UNIX installations. How can one be sure that no flaws are inserted by any of the software
tools—shell, editor, compiler, assembler, library—that touch new code as it is being installed?

In another sense the answer is not so clear. Rigid security measures must surely damage the plasticity that
attracts users to the UNIX system. Is the conflict so fundamental that a ‘‘secured’ system will lose its
appeal? The possibility is very real under ordinary security models; hence we have undertaken a somewhat
more flexible approach.

We have built an experimental system with mandatory controls: security classification automatically
follows data through the system. At the same time we have blunted the vulnerability of the system to
mistakes by the superuser. In our system all data files have security classification labels, with ‘‘higher”
labels designating more sensitive data. The normal flow of data must be up : output labels must in general
dominate input labels. A security system also needs escape hatches for declassifying data that is no longer
sensitive, or extracting nonsensitive parts from sensitive documents. For this purpose we allow certain
carefully designed trusted programs to violate the rules and produce output with labels lower than input.

We have attempted to provide mandatory controls without utterly destroying the basic feel and productivity
of the system. To obtain early warnings of snags caused by the controls, we are doing our development
work under the system itself. At the time of writing we are working quite honestly and relatively
comfortably within the confines of the system.

The main idea

Each file or process has a label, shared by all data in it!?!. Terminals and other devices such as tapes have
labels that reflect the system’s understanding of the clearance of the source to which the device is currently
connected. The labels form—almost—a mathematical lattice. Whenever a system call causes a transfer of
data, the labels are checked to ensure that data flows only up the lattice.

The security of data explicitly passed among labeled entities is safeguarded. Examples of protected
transfers are bytes transmitted by read and write and bits set by chmod . Implicitly set inode data, such as
file modification times and link counts, are also protected as far as possible without making the system
unusable.

Other ways of communicating information, including but not limited to arguments of exec, error returns
from system calls, file access times, the identity of open files, and otherwise inferred knowledge, we
declare to be ‘‘covert channels.”” We have studied covert channels and arranged to throttle or stop
completely covert channels of significant bandwidth. In effect we have divided information transfers into
““lawful’* transfers, which honor the US Department of Defense ‘‘Orange Book’’*!, and covert channels.
Just which covert channels to leave unplugged we have decided by balancing risk versus utility and
compatibility.

We attempt to minimize ‘‘label inflation’’ by keeping all processes and files at their minimum allowable
labels as long as possible. The label of a process will increase only when necessary and only as far as
needed to allow reading of inputs. Similarly when the label of a process exceeds the labels of its output
files, the file labels will rise.

A few system programs must be exempt from the usual label checking. Such programs are granted special
privileges—for instance to set the label on a user’s terminal at login time, to read foreign tapes, or to
perform backups. These privileges are zealously guarded: no program can pass its privileges intact to
another, alter a privileged program in any way (aside from removal of privilege).

Thus we have three kinds of security mechanism in our system: (1) the usual UNIX permission scheme,
based on userid and groupid and the familiar rwxrwxrwx bits, but with the superuser stripped of the

2 For technical reasons, seek pointers also have labels of their own. Seek pointers are shared between processes; infor-
mation can flow through a shared seek pointer (via {seek ) at a substantial rate—thousands of bits per second. Since a seck
pointer is “‘written’’ into by read as well as by write, the contents of a seek pointer, unlike the regular contents of a file
open for reading, must have a label as high as that of the reading process. Hence the separate label.

3 Department of Defense Trusted Computer System Evaluation Criteria, Department of Defense Computer Security
Center, Fort Meade, MD, 15 August 1983. This bible has set the terms of discussion for most current work in computer
security.
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right to ignore permissions, (2) the label scheme, which strives only to maintain correct label relationships,
and which pays no attention at all to userid or groupid, not even superuser, and (3) the privilege scheme,
which guards the administration of labels and of the privilege scheme itself.

Labels

A label can be any element of a given finite lattice. In addition there are two nonlattice labels, NO and
YES. No data may flow to or from a file or inode labeled NO; it is effectively blocked out of the system,
and can only be readmitted by special arrangement. ‘‘External media,”’ such as terminals, tape drives, and
raw disks, where labeling is beyond the control of the usual mechanism, are normally marked NO. Label
YES, on the other hand, is universally permissive. Only one file, /dev/null, is marked YES. At the
moment no other file can gain such blessing, but it might also be appropriate for an append-only audit file.

Our lattice is the lattice of subsets of 480 items, represented by 60-byte bit vectors. How these bits are
used is arbitrary. For example, the first three bits might represent the customary classification levels—
unclassified, confidential, secret, top secret—encoded as 000, 001, O11, 111 respectively. Further bits
might represent compartments: 000 100 for Iran, 000 010 for Nicaragua, etc. Oliver North would have
been cleared for 111 110. A possible history of a process initially labeled secret (011 000) is:

Create a new file north/contragate; itis labeled (000 000) by default, but writing in directory
north causes the label of north to become at least secret (011 000).

Read iran.data, which, say, is confidential and compartmented (001 100). The process label
rises to (011 000)u(001 100) = (011 100).

Read nicaragua.data, top secret and compartmented (111 010). The process label rises again
to (111 110).

Write north/contragate. The file label rises to (111 110). The directory label is unchanged.

Not all labels can change automatically. A label may be ‘‘frozen’’, which stops operations that would
normally require a label change. In particular, labels of terminals are guaranteed to be frozen, typically at
the value determined by login. Suppose cur example process had been initiated from a terminal that had
been cleared only for top secret Iran data (111 100) and attempted finally to write to the terminal. The
write would fail, thus keeping Nicaragua data from a user not known to be cleared for it. Further attempts
to launder the label, perhaps through a pipeline like cat north/contragate | grep ., would
meet the same fate. Only a properly authenticated fresh login (or subsession) can authorize the terminal for
the higher label.

The idea of a lattice of labels is well known. Our deviation from the strict model, with NO and YES,
answers needs to regulate entry from places where labels are not under control of the system, and to deal
with the important special case of /dev/null.

Privileges

Our privilege mechanism is simple, but flexible. It allows policies of placing trust solely in particular
programs or solely in particular users. It also allows much stronger policies that restrict special powers to
trusted users using trusted tools.

To some extent the privilege mechanism may be understood as partitioning the supreme powers once
accorded to the superuser. Superuser status itself is diminished. The superuser is fully bound by security
labels and cannot ignore write permissions. Largely to avoid rewriting masses of code, the superuser
retains most other powers. Thus the superuser can still do damage (to data he is cleared for), but mainly by
tedious methods that leave tracks—changing modes and owners. Superuser status must be augmented by
privilege to execute powerful restricted system calls such as setting the userid or mounting a file system.

We have identified five distinct privileges, each governed by one-bit /icenses and capabilities, which are
separate from labels. A trusted process or file is one with nontrivial capabilities or licenses. In the strictest
policy regime each privilege of a process p is determined by the intersection of the process’s license for
that privilege and the capability for that privilege of the program file f it is executing:

Priv(p)=_Lic(p)n Cap(f).

Process licenses are assigned at login, are inherited across exec, and may be relinquished at will, never to
be regained. Licenses effectively identify trusted users, while capabilities identify trusted programs.

For more liberal policies, it is possible to grant a default *‘system capability’’, Cap (s), to every file by the
rule
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Priv(p)=_Lic(p)n(Cap(f)uCap(s)).

By setting Cap (s)=true, we can make Priv(p)=Lic(p), which means that any program to do magic
provided its user is licensed. In such a regime a superuser possessing licenses for all privileges could act
with the same impunity as a standard superuser.

It is also possible to give a program file a license, Lic (f ), making the program *‘self-licensing’’ for one or
more of its capabilities. Then the effective license of a process p executing program f is Lic (p ) Lic (f ).
Self-licensing is limited by another policy constant, the *‘system license’’, Lic (s ), which is used as a mask.
The full formula for determining each privilege of a process is

Priv(p)= (Lic(p) v (Lic(f YN Lic(s))) N (Cap (f yw Cap(s)).

In a typical self-licensing case, where Cap (s) = false, Lic (f ) = Cap (f ), and Lic (s ) = true, this reduces to
Priv(p)=Cap(f). In this regime a self-licensed program gets power in much the same way as does a
setuid-root program in standard systems, except that the power is not inherited across exec.

With appropriate settings of the two (compile-time) system policy constants, Lic(s) and Cap(s), our
privilege model is able to mimic the disparate privilege features of most current operating systems. In our
experimental system we have set Cap (s) = false for every privilege. We have also also set Lic (s) = false
for the most powerful privilege, **set privileges’. Thus privileges can be set only by trusted users using
trusted programs.

We have identified five privileges:

Mount. The right to make new data sources or sinks available to the system.- One way is by changing a file
label away from NQ; a second is by the mount system call; a third is by changing the label on an external
medium. A process with mount privilege would normally execute an authentication protocol before
actually performing any of these operations.

Nocheck. The right to read or write data without regard to security label (but still respecting the standard
permission scheme). Although mount and nocheck both provide extraordinary access to data, they are
qualitatively different. Nocheck handles (and may censor) every suspect bit. Mount opens resources to the
whole system—a much more sensitive responsibility.

Set licenses. The right to increase the license or ceiling of a process. The principle use for this is in setting
up “‘sessions’’, where a user entitled to play more than one role wishes to suspend one role temporarily and
switch to another. Sessions are merely a refinement of su, which changes rights by the crude expedient
of changing identity.

Set privileges. The right to change file capabilities and licenses. We expect not more than one or two
programs to be given this most powerful of all capabilities. In a thoroughly security-conscious installation,
only an identified security administrator, different from the system administrator, would be licensed to set
privilege.

Write uarea. The right to change values, such as userid, that are remembered by the system for the benetit
of the process and its offspring. This peculiar capability arises because a child process need not be as
highly classified as its parent. Without some control, uarea items (especially BSD group permissions)
would provide a covert channel of significant bandwidth.

By dividing privileges we promote safety from errors by an omnipotent superuser. At the same time we
introduce complexity, which can cut the other way. Thus we have deliberately kept the number of
identified privileges small. We have refrained from defining new special roles (for example system
administrator, operator, or security administrator) in the superuser tradition. Notions of such roles did
influence our choice of privileges and will guide the design of administrators’ tools. But the notions seem
inappropriate to build in at the ground level: no single administrative model makes sense across the
spectrum of real installations.

System features
To implement the above facilities relatively few new system features are involved:

New system calls get and set file labels. Another new system call sets the process label. Privileges and
frozenness are set along with labels. Unless executed by a trusted process, the system calls permit only
safe changes: labels may not decrease; process privileges may not increase; file privileges may not be
changed.
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A special system call allows nocheck processes to confine their powers to certain files. For example,
consider df . which needs nocheck privilege to read the file system device. Its outputs, however, should
be subject to ordinary security checks to prevent a mole from getting his message through!*!.

Every process has an inherited ceiling label, above which the process cannot do any business. This has
little to do with stopping ordinary leaks: if a lowly process raises its label high, its output will be high and
thus protected anyway. It does, however, cut off some possibilities for mischief with covert channels. And
it prevents unauthorized userids from injecting noise in high places.

Mounted file systems also have ceilings, both on labels and privileges. File system ceilings may be used to
restrict the content of file systems being prepared for export, or to prevent contamination, especially by
unknown privileged files, from imported file systems.

A directory may be “‘blinded.”” Untrusted processes cannot open a blind directory for reading, and every
new file created in such a directory is assigned a random name. A new system call retrieves the name.
Blind dircctories are immune to automatic label changes and thus provide a convenient way to gather, yet
keep hidden, data of disparate labels, as for the temporary directory /tmp.

Implementation

Dynamic label changing involves considerable overhead of implementation. It is insufficient simply to add
label checks at file open. In principle. labels must be checked on every read, every directory search, and
every write, including writes of new entries into directories. When a write check fails. the file label is
raiscd if possible: for a read the process label is raised. Every other process dealing with the ftile must
become aware of the change on a fine time scale: in the worst case a label may change between disk blocks
of a long IO transaction. A carefully designed data structure for intra- and inter-process notification of
label changes has accomplished this with only a few percent time overhead.

Space overhead is another matter. A production-size kernel is considerably bigger than before: about 16K
of extra text and nearly 400K extra data for a 500-process system. In partial compensation, uareas are
smaller. To accommodate labels, inodes on disk have been doubled 1o 128 bytes.

In effect labels flow along with data. Upon exec a process begins with the lowest label possible: the least
label that dominatcs both that of the executed file and that of the arguments. The arguments. of course.
have the label of the parent process. However, if no arguments are supplied. as for an ordinary filter, the
argument label is taken to be the minimum, or bottom element of the lattice. Thereafter the label of a
process changes to keep up with the data that it reads. (Notice that the open system call does not read: stat
does.) In particular labels may propagate through pipes.

Similarly files are created with the bottom label. (We accept a nariow covert channel through the mode
field.) However. the label of the directory in which a new file’s name is recorded must dominate that of the
creator; the name could bear secrets.

Covert channels

Having classified many communication paths as “*covert channels.”” we have an obligation to recognize
generic classes of covert channels and to characterize their effectivencss. This we have done. Aside from
very narrow ‘‘timing channels.”” most of the covert channels in our system involve unusual behavior:
forking enormous numbers of processes or opening enormous numbers of files”. Thus any extensive use

HIf At is exempt from all security checks. the mole can get a message 1o the standard output this way:
dt Sdev/diceD dev ozl odev o alskl o »unclassiiled

which produces binary code in the last character of the file names:

hoytes tre
ik 5044 N
diskl 4984 < =
Aiskl A 24l b [

or. much more quickly. in the clear on the standard error:
dr secret news Zrunclassified

oy

Cantiot

3 One example: create a collection of files named A. 1, *, .. each containing one letter. a. b. ¢, .. A high pro-
cess opens files to spell out a message and does an exec with no arguments. The resulting low process reads from the open
file descriptors to receive the message at several hundred bits per second. The channel can be throttled by refusing to
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of covert channels should be detectable from audit records.

A mole could certainly use such covert channels to smuggle out precious small secrets to unauthorized
users; however an unauthorized user could not exploit them unaided, except by planting a Trojan horse.
We supply a special featureless shell to holders of the most powerful licenses to help keep them away from
horses. We have also designed audit tools along familiar lines to monitor the stability and safety of
security settings.

We undertook this project because we believe it is desirable to try other models than those implied by
thoroughgoing adherence to the Orange Book. In particular we suspect that a faithful Orange-Book UNIX
system would sacrifice much of the system’s productive flavor, with security barriers surprising users at
every turn. Dynamic labels should help alleviate the surprises. Moreover, faithful Orange-Book security
may be inappropriate in applications where security breaches do not entail risks as final as military defeat.
(Commercial users, for example, may recoup damages in court.) In such a setting security priorities are
more likely to concern keeping outsiders out, preventing inadvertent leaks by insiders, limiting the chance
for mistakes by superusers, frustrating attempts to plant Trojan horses, and reducing the vulnerability of the
overall system to a single disaffected superuser—all while maintaining high productivity. Procrustean
solutions to curtail covert channels are not so critical.

reduce the label across an exec with too many open files.
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ABSTRACT

Making UNIX suitable for a multiprocessor system is a logical step because of the
wide acceptance of UNIX and the decreasing cost of hardware. The multiprocessor
adaptaiion, however, is not trivial because of some of the assumptions the UNIX kernel is
based on. This paper illustrates, on a high level, the performance considerations which
guided the design of a UNIX multiprocessor, and it describes specifically the
modifications required to implement the I/O kernel layers on dedicated I/O processors.
This implementation was based on the concepts of horizontal and vertical data sharing.

1. Introduction

During the last few years the price of microprocessor components has dropped rapidly, while the demand
for computer performance has continued to grow. Additionally, the acceptance of UNIX, as an operating-
system standard, also increased. A logical conclusion of these observations is that there is a potential need
for low cost UNIX multiprocessor systems.

In 1984 a project was started, at Delft University of Technology, with a complete UNIX multiprocessor
computer as goal. Both hardware design and UNIX modifications were part of the project.

To be able to run UNIX in a multiprocessor environment the processing load has to be distributed over
several processors. Our MP UNIX achieves this through two types of adaptations:
L. UNIX was adapted to be able to run several processes in parallel.

2. The low level 1/O functions of UNIX were transferred to 1/O processors (I0Ps) to relieve the other
processors from handling 1/O interrupts and buffering.

This article mainly discusses the second type of adaptation. Only the second section touches on the
performance aspects of distributing processes over multiple processors; implementation details can be
found in [Ja86]. More details on the transfer of 1/O to separate processors can be found in [Mo85].

One of the objectives was to adapt UNIX to the multiprocessor environment while making as few
modifications as possible. This was necessary because only a limited amount of time (ten months) was
available.
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Three types of processors are used in the system: the kernel processor or KP, the user processors or UPs,
and the I/O processors or 10Ps. The kernel processor is physically identical to a UP, but is the only
processor which runs kernel code. When the kernel load is low, KP can also run user code. KP delegates
UNIX tasks to the user processors and delegates 1/O tasks to the 1/O processors. On the 1/O processors the
tasks are executed by a small, UNIX-like, kernel. A remote calling mechanism implements the
communication between both kernel and I/O, and kernel and user processors.

A method based on horizontal and vertical data sharing guided the decisions which 1/O tasks needed to be
transferred from the KP to one of the IOPs. This method is based on [Pa71] and is described in [Mo85].
Despite the complexity of the UNIX kernel. the method helped to keep the number of modifications to a
minimum.

Section 2 illustrates some of the performance aspects which were taken into account. Section 3 describes
the 1/O structure of UNIX and applies the concepts of horizontal and vertical data sharing to determine the
appropriate transfer level.

2. Performance considerations

When designing an MP system, it is essential to realize where the weak performance links are to take the
appropriate steps for resolving these bottlenecks. The performance considerations presented in this section
do not involve complicated models and are not necessarily accurate. They are intended as an illustration.
Accurate and more realistic models require advanced queuing models, with parameters obtained through
measurements on UNIX systems with realistic workloads.

This section presents some performance considerations when moving from a single processor system via a
multi user-processor system to a more complex multiprocessor system with additional 1/O processors. The
last subsection assesses some of the simplifications and assumptions applied in the first three subsections.

2.1. A single processor system

The total time a set of n processes spends in a single processor system is simply #,,, =t +t;+t;, or, in words,
the total of user, kernel, and idle time. If sufficient processes are available, then ¢; approaches zero and the
t, {3
1+ b+
of p, and p;. for a VAX 750 running 4.3 BSD, are 0.9 and 0.1 for a mix of background, interactive, and
system jobs on a lightly loaded system, and 0.6 and 0.4 when some kernel (but not I/O) intensive programs

are active (e.g. socket-intensive programs like the game hunt).

probability of finding the processor in user mode is p, = . and in kernel mode is p;= . Examples

The time to run a specific job j is 1;=u;+k;+i; +wn;, or, in words, the user and kernel time, the time waiting
for 1/O devices and the time spend waiting in the processor or I/O queues. f; reduces on a lightly loaded
system to u;+k;+i;, but, as can be observed quite easily, increases in a non-linear fashion when the load
rises.

Given the modification-complexity constraints mentioned in the introduction, the most obvious way of
increasing the system throughput is by implementing the kernel on a dedicated processor (KP = kernel
processor), and run the user code on a set of user processors (UPs).

2.2, Multiple user processors and a single kernel processor
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Figure 1. Multiple user processors and a single kernel processor.
The first approach to a multiprocessor is illustrated in Figure 1. To execute a system call the UP calls the
KP remotely by placing its request in the KP queue. The UP is free to continue with another user process;
after completion of the system call the suspended user process is, again, placed in the UP queue. The exact
mechanism, which replaces the system call and return. is not important for the following performance
analysis.
Figure | already foreshadows that the bottleneck is to be found in the kernel processor. It is useful,
however, to estimate how many user processors and processes this system can support, while maintaining
sufficient single job throughput and response time.
n_ . n
ot T
processor is required to find the total execution time. If sufficient user processors and processes are
available then 1,,=1; and the kernel processor is fully utilized. If the kernel is not fully utilized. the
r” :n% jobs/second. where p is the utilization of KP (0<p<1).

1or

The system throughput (n jobs)

jobs/second. because only observation of the kernel

throughput becomes

The single-job execution time ¢;=u; +k;+i;+w, +uy +0,., or, in words. the user, Kernel, jo-wait, user-wait,
and kernel-wait time. and the overhead introduced by remote calls. The minimum single-job execution
time is u;+k;+i;+0,. , which is longer than the time to exccute the same job on a single processor. The
advantage of using an MP system for the single-job throughput is the reduced waiting time. or
Wy AWy 0, <wy

The problem arises, however. when optimizing both system throughput and single-job throughput.
Elementary queueing theory shows that when both the arrival and the service time distribution are poisson,

the waiting time for the kernel processor wy = . where p is the utilization of the kernel processor,

O
_ k(1-p)
and 4 is the average time a job spends executing in the kernel. This queucing model (M/M/1, ¢.g. see
Kleinrock Vol I and I1) does not completely apply. it is better to leave the exact model in the middle and
approximate the utilization by wy :pﬁ, where ¢ is a constant, which depends on the distribution of the

kernel-execution times (M/G/1 queucing model).
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average kernel time
x| plus idle time
average kernel time
plus waiting time

KP utilization ( ek)

Figure 2. Tradeoff between system and single-job throughput.

The tradeoff between system throughput and single-job throughput, shown in Figure 2, is contradictory.
When the utilization increases the system throughput in creases, but the single-job throughput reduces
because the queue waiting times become very long. A rule of thumb, used, generally, in interleaved
memory design, is a p of 0.6 for the utilization of the shared bus. Applying the same rule to the MP design
yields an KP utilization of 0.6, which implies that KP is active 60% of the time, or that the probability of
finding KP idle is 0.4. By means of p; and p, one can calculate the number of fully utilized user processors

N=;% (px is defined in section 2.1). Fully utilized user processor, however, yield high user-queue waiting

times (w, ). Under the assumption that process migration is penalty freet , the probability that an arriving

user process finds at least one free user processor is Prowair=1—pi, where p, is the average individual
utilization of the UPs. Requiring that p,,uwe, equals 1—p; yields p=0.6=p}. Introducing p, in the

calculation of N yields N:pp—;, which combined with calculation of p, yields

wf’k
N-1
Py = Pr _ Pk _
Np. = NpiV N

+ When processes migrate without penalty from processor to processor, then it is not necessary to schedule a process al-
ways on the same processor. This assumption is, generally, not valid, because moving the complete state of a process is ex-
pensive.
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Figure 3. py as function of the number of UPs (V).
Figure 3 shows the maximum allowable p; as function of N, when p;=0.6. Referring to the examples of
pi mentioned in section 2.1, 6 processors yield 10% and 2 processors yield 40%.

Obviously, the kernel time needs to be reduced to allow both a higher system throughput and to reduce
waiting times in the kernel queue. The most obvious way of reducing kernel time, which also requires the
least amount of kernel modifications, is the transfer of I/O specific functions from KP to dedicated /O
processors (10Ps).

2.3. Addition of I/O processors

A logical step in improving the system throughput, is reducing the kernel load by offloading the 1/O code to
dedicated 1/O processors (I0OPs). Figure 4 shows the resulting model; instead of included in the kernel node
of the model of section 2.2, the I/O bottleneck appears explicitly with a set of processing nodes (IOPS) each
with its own queue. Addition of 1/O processors, however, requires an investment which need to “be
justified. In this section some conditions are layed out for this justification.

In the previous section the silent assumption was made that the resource which limits the performance of
the kernel is KP itself. However, creating a system with, for example, 6 user processors automatically
yields a significant increase in 1/O when compared with a single processor system. To be more exact, the
Npll

i

average 1/O requirements increase with a factor over the, fully utilized, single processor

requirements (6 times when N=6, p,=0.9, and p,=0.9). The average 1/O system throughput needs to be
increased by at least that factor to keep the KP busy. This section assumes that the total bandwidth of all
I/O devices is more than sufficient to process the increased demand. Note, however, that, in a more
realistic MP performance model, the /O bandwidth in general and the disk/network bandwidth specifically
appear as performance limitations. Using very large caches (24 Mbyte) for local and remote disks may be
necessary to resolve this I/O bottleneck [OD85].
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Figure 4. MP organization with one KP and multiple UPs and IOPs.

By means of the simple model explained in section 2.2, and shown in Figure 3, the number of user
processors can be calculated for the reduced kemel activity, py. For example, when removing 1/O
processing from the KP reduces p; to 4%, the maximum allowable number of user processors increases to
15. The average I/O bandwidth — when compared with, fully utilized, single processor system —
increases also with a factor 15 (p,=0.9 and p,=0.9).

Similarly to the increase of single-job execution time when distributing the user and kernel code over
different processors, this execution time increases again when the kernel is distributed over the KP and
IOPs because of the overhead incurred when calling remotely. The reduced load on the KP and the
possibility to increase the number of UPs, however, compensate the introduced overhead by reducing the
both user and kernel waiting times.

2.4. Conclusion

The main drawback of the performance model presented in the previous sections is the assumption that
processing power is the bottleneck. This assumption is valid when few UPs are available, which
communicate only with the KP. Many UPs together with substantial interprocessor communication will
undoubtly clog the bus and memory system before the system runs out of processors. Keep this in mind
when interpreting these simple calculations; they are meant to illustrate the potential performance of very
simple and low-cost UNIX MP systems.

Relieving the KP from its I/O functions is potentially a powerful way of boosting the system performance
when the following conditions are met.

1. pi should reduce significantly. Note that calculating the kernel-execution time now includes the
remote-call overhead incurred for every transferred 1/0 call.

The potential increase of the system throughput should not move the bottleneck to the bus and
memory system or the 1/O devices.

As long as the kernel processor is not the system bottleneck, introducing I/O processors will improve
neither average system nor average single-job throughput.

The following section assumes that these conditions are met, and describes the transfer of 1/O functions to
dedicated 1/O processors.
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3. UNIX I/O transfer

Sections 2.3 and 2.4 presented the motivation for separating 1/O from the kernel processor, and outlined
some conditions to be satisfied before separate 1/O processors become useful. This section describes the
process of transferring the I/O system to separate processors. First, the section introduces the UNIX 1/O
system, and, second, determines the level of transfer for the two main I/O sub systems (block and character
1/0).

The section refers regularly to the concepts of vertical and horizontal data sharing [Mo85].

Vertical data sharing.
When I/O functions, which are transferred to an IOP, share data with functions which remain on the
KP.

Horizontal data sharing.
When 1/O functions, which are transferred to different IOPS, share data.

This section starts with an overview of the I/O subsystem of UNIX, after which the transfer level of the two
main 1/O parts (block [/O and character I/O) are discussed.

3.1. UNIX I/O layers

There are many ways to group the 1/O functions of the UNIX kemel. The one presented employs a
hierarchical model, much like the one used by Peppinck [Pe84]. In this model the I/O is divided into four
layers. A function in one layer uses functions in the same layer and functions of lower layers. The uses
relation is defined by the following rule:

Function A uses function B if A invokes B and depends upon the results of that invocation.

As an example, suppose there are three layers. The functions in the highest layer may use all three layers;
the functions in the middle layer may use the lower two layers, but will not use functions in the highest
layer. In general, the uses relation merely means that one function invokes another function. But on some
occasions this can yield problems in building a hierarchical model. Suppose function A invokes function
B, which invokes function C, which invokes function A again. It is not possible to determine a hierarchy
from these invocations. But if one knows that function C does not depend on the results of function A, we
can say that function A lies above function C in the hierarchy.

The separation between 1/O layers is not always as clear as it should be. This is due to the fact that the
UNIX kernel was not written in a hierarchical way. However, when considering I/O transfer, the following
four layers will suffice, see Figure 5 (for more details [Pe84] page 111):

1. the system call layer
2. thei-node* layer

3 the buffer cache layer
4 the device driver layer

‘ system call layer \

\

I i-node layer |

|

ﬁuffer cache layer |

device driver layer

block I/O character I/O

Figure 5. UNIX 1/O layers.

The system call and i-node layers will be called the higher layers, by virtue of the fact that these two layers
implement the UNIX file system. The lower layers, buffer cache and device driver, merely transport data

+ This definition is based on the original definition of the uses relation by Parnas [Pa78].

* An i-node is the internal representation of a file. It is a data structure that contains all attributes of a file (length, crea-
tion date. ownership, pointers to the contents of the file, etc.), except for the name.
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and do not project a structure on this data.

In the lower two layers a distinction is made between block I/O and character 1/O. These two parts are
kept completely separate. Block I/O is done with blocks of data with a fixed length (e.g. for disk transfers)
and character 1/O with sequences of bytes of any length (e.g. for communication with terminals). The
buffer cache is used for block I/O only. Buffering for character I/O is carried out at the device driver layer.
The global definitions for the 1/O layers are listed below:

system call
The functions in this layer translate the I[/O service requests (system calls) to operations on the actual
files in the file system. To allow for this, a data structure is maintained for each process, containing
information about all files opened by that process.

i-node The functions in this layer execute the operations on files (which in fact are operations on i-nodes),
which result in operations (I/O requests) on devices. It is figured out which device is associated with
the file. Data controlled in this layer is the i-node cachet .

buffer cache
In this layer the buffer cache is controlled. The buffer cache is a software cache mechanism which is
used to speed up the access to block I/O devices. It contains the most recently used data of the block
[/O devices.

device driver
This layer contains all the device drivers. A device driver forms the interface between the device
independent part of the kernel and a device. There is one device driver for cach type of device.

3.2. High transfer level

To relieve the master, as many /O functions as possible should be transferred to I0Ps. But the device on
which the 1/O will be performed is not known until in the i-node layer (the system call layer doesn’t know
about devices, it merely uses files). So when the i-node layer is transferred to 10Ps, the master does not
known which IOP should handle the /0. Two methods to solve this problem will be considered.

The first method is to add a file processor. This processor executes the i-node layer and possibly the
system call layer. It calls the IOPs to execute the lower layers. This new architecture is illustrated in
Figure 6.

+ The i-node cache is a software mechanism that speeds up the access to the file system by storing the i-nodes of all
open files (i.e. files which are opened but not closed yet).
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master file proc.

I/O devices I/O devices

Figure 6. Multiprocessor configuration with file processor.

A significant disadvantage of this system is that the file processor could become another bottleneck in large
systems. In addition, the system gets more complicated and the path from a slave to an IOP gets longer,
which introduces extra delays. Because of these disadvantages and because simplicity was one of the
goals, the file processor was not used.

The second method is to choose an IOP at random, let this IOP handle the I/O down to the i-node layer and

then, depending on whether it controls the device or not, continue with the I/O or hand it over to the 10P
that does control the device. There are some disadvantages to this method:

1. The i-node layer will be executed by all IOPs. Therefore, the data used in this layer, the (software)
i-node cache, will be accessed by all IOPs and must be placed in global memory. And because the
IOPs, unlike UPs, do not have a (hardware) cache, this will increase the bus load.

The 1/O will first be handled by one IOP and then possibly handed over to another I0P, which entails
extra delays.

User address space is accessed in the i-node layer. It is quite difficult to access user space from IOPs.
It is certain to cause complexity and may even introduce extra delays.

In light of these reasons the i-node layer was not transferred. The system call layer will not be transferred
either, because it is highly illogical and unpractical to transfer the system call layer when the i-node layer is
not transferred. The question of whether the lower layers should be transferred or not will be handled for
block and character 1/O separately in the next two sections.

3.3. Block I/O transfer level

There are two 1/O layers involved in block [/O: the buffer cache layer and the device driver layer. The
device driver layer will certainly be transferred, as otherwise there would be no transfer at all. In order to
decide whether the buffer cache layer will be transferred, the horizontal and vertical data sharing must be
considered. In Figure 7 the main data structures for block 1/O are depicted.
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Figure 7. Block 1/O transfer levels and data.

Vertical data sharing
As can be seen in Figure 7, the buffer cache is accessed in both the i-node layer and the device driver layer.

This implies that the vertical data sharing of the buffer cache cannot be avoided. because the device driver
layer will be transferred and the i-node layer will not.

Because of this vertical data sharing, the buffer cache should be protected via mutual exclusion.
Fortunately. there is already some form of mutual exclusion for the buffer cache. The functions in the i-
node layer must first request a buffer before they can use it, and they will release the buffer afterwards.
This mechanism can be utilized for mutual exclusion of the buffer cache. There is yet another mechanism
which can be used. Between the buffer cache layer and the device driver layer. buffers are '“handed
over’’. The device drivers are invoked to perform 1/O on a buffer and when the /O is complete this is
signaled back to the invoking function. This is a very primitive mutual exclusion mechanism.

Because of the two existing mutual exclusion mechanisms, the transfer level could be at the buffer cache
layer or at the device driver layer. However, the mutual exclusion mechanism between the i-node layer
and the buffer cache layer is more advanced. When vertical data sharing is considered. the buffer cache
level is somewhat simpler to implement than the device driver level.

Horizontal data sharing

Another problem occurring when transferring the buffer cache layer is horizontal data sharing. The device
driver data should not cause problems. because this data is device dependent, meaning that each 10P can
have its own device driver data. The buffer cache could be a source of problems. The buffer cache is a
pool of buffers. which are not associated with a specific device. As mentioned in the section on data
sharing. this pool could be split into several pools. one for each 10P.

When one butfer cache is used for the whole system, buffers are not statically associated with any device.
When one buffer cache is used for each IOP, buffers will always be associated with a group of devices. To
what extent the performance is affected by this is hard to tell. Tt depends on the sequence of accesses to the
block /O devices. It is even possible for performance to be improved. because each 10P could have its
buffer cache in local memory. thereby decreasing the bus load. Whatever the performance change, it can
always be compensated by moditying the size of the buffer cache (at the cost of some memory, which is
assumed to be of minor importance). Therefore the performance aspect will not be taken into consideration
when deciding at which level block 1/O should be transterred.

When only the device driver layer is transferred, there are two possibilities:
1. Using one buffer cache for each IOP. The buffer cache layer will then have to be modified, because
not one but several buffer caches exist. one of which must be selected.

(%]

Using one buffer cache. The buftfer cache layer will then not have to be moditied to accommodate
the multiple buffer caches, but the access from the device drivers to the buffer cache must be
moditied at some points for mutual exclusion.

Although it is difficult to choose between these two possibilities, 1t 1s clear that modifications cannot be
avoided.

When the buffer cache layer is transferred there should be one bufter cache for cach 10P, because having
onc common, system wide, buffer cache entails quite a lot of modifications. The number of modifications
involved in multiple instances of the buffer cache (one per IOP) is quite small. This stems from the fact
that the higher layers don’t know where the buffers of the buffer cache are placed and consequently have to
ask this from the functions in the buffer cache layer by requesting a bufter.
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When the decision about transfer level is based solely on horizontal data sharing, the buffer cache level is
the best choice.

Conclusion

Transferring block I/O at the buffer cache level is a good choice, as it serves both vertical and horizontal
data sharing the best.

3.4. Character I/O transfer level

The device driver layer for character 1/O is quite large. This allows for a split up into several other layers.
So one could consider to transfer only a part of the device driver layer. First an important decision has to
be made: from which processors can the tty structurest be accessed? This decision is important because the
tty structures are used by almost all functions in the character I/O layer. There are three possibilities:

1. If only the master is allowed to access the tty structures, only the functions which don’t access the tty
structures can be transferred, which are only a few.

2. If both the master and the IOPs are allowed to access the tty structures there is vertical data sharing.
Therefore mutual exclusion has to be added, causing a lot of modifications.

3. If only the I0Ps are allowed to access the tty structures, then the character I/O layer must be
transferred completely. This causes horizontal data sharing. But because the tty structures are each
related to a specific device, this horizontal data sharing can easily be avoided.

Clearly the third possibility is the best. Transferring the tty structures implies that all character 1/O code
must be transferred to I10Ps. At first glance this might seem to invoke a great deal of work (about 2400
lines of source code are involved), but it actually doesn’t. The main advantage is that the module, which is
formed by the character 1/O code, is not split up by the transfer. As a result it does not matter how
character I/O works internally. Oniy the interfaces between the character 1/O part and the rest of the kernel
have to be examined, of which there are fortunately only a few.

4. Conclusion

With simple hardware means and with little software modification UNIX can run on a multiprocessor
system. This MP organization is modeled strongly after the internal structure of UNIX, by allowing
multiple processors to run user processes, but to allow only one single processor to run the kernel.

When performance is mainly limited by the processing power of the kernel processor, the transfer of I/O
functions to separate [/O processors improves the performance, creates a potentially device-independent
kernel, and improves the functional separation within the UNIX kernel. Note, however, that both I/O
devices and bus/memory system are potential bottlenecks which are much harder to relieve than limited
kernel processor power.

It is possible to transfer some of the 1/O functions of the UNIX kernel to 1/O processors and make only a
small number of modifications. To do this, the transfer level has to be chosen in such a way that data
sharing between processors is avoided. The lower I/O layers can be transferred easily with only a small
number of modifications, because the data which is used in these layers is related to a device, or can be
made to be related to a (group of) device(s), so that this data is used by only one IOP. The higher I/O layers
cannot be transferred easily, because the data which is used in these layers is not related to a particular
device, so this data would be shared between several processors.

The transfer of the character I/O part is easy to accomplish because there is hardly any data sharing
between the character I/O part and the rest of the kernel. One could say that the character 1/O part is one
module, which contains all the design decisions for character 1/0. Once again, this illustrates the
advantage of the modularization as proposed by Parnas [Pa71].

The transfer, as presented here, has only been implemented partially. The IOP kernel was designed and
tested. The communication mechanism was designed but not tested. All modifications which have to be
applied to the kernel when the block 1/O part is transferred have been identified [Mo85}, so no problems
should arise during implementation. The modifications which are necessary for the transfer of the
character [/O part are not listed, but all areas where problems could arise have been examined and solutions
to these problems have been given.

i A tty structure contains all information about a terminal: pointers to the input and output buffers, status, associated

processes, ¢t
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ABSTRACT

Online public access catalogs are often plagued with very short queries and very
short document descriptions. As a result performance may be poor and the users are
dissatisfied. To improve recall, in particular to deal with query terms not found in the
collection, a machine-readable dictionary can be used to identify related terms by overlap
of defining words. To improve precision, phrases can be retrieved and the user asked to
pick the appropriate ones. A demonstration system is running on 72,000 records from the
British Library Eighteenth Century Short Title Catalog.

A UNIX system is a good way to implement this software, because of its advantages of
easy programming, availability on small machines, and advanced data base routines.

Introduction.

‘‘Libraries for books will have ceased to exist in the more advanced countries except for a few which will
be preserved at museums’’ — so wrote Arthur Samuel in 1964, predicting the world of 1984 for the New
Scientist.! Although this schedule has slipped, we are finding more and more libraries with online catalogs
and many online full text data bases are routinely accessed around the world. Unfortunately sometirhes
users are not happy with the resulting systems.? This paper describes techniques for improving searching in
retrieval systems, particularly OPACs (Online Public Access Catalogs). To summarize, retrieval is
suffering because searching is inadequate, being based on very few terms, and because browsing
capabilities are inadequate, offering too few retrieved documents and too little chance to decide which are
relevant. By using the flexible software environment on UNIX, it is possible to experiment quickly with
software to help.

First, let us consider the problems caused by searching too few terms. Queries typed by users to OPACs
are often very short; in one experiment an average length of 1.5 words was seen.’ Users who are
accustomed to traditional catalogs, of course, will expect that they can look up only one heading at a time.
Simultaneously the document representations, the catalog records, are also very short: a title plus perhaps a
few subject headings. The combination of short queries and short representations means that there is only a
small chance of overlap. Many relevant documents will not be found, either because the terms used in
them are not ones the user thought of, or because the user neglected to enter the terms even after thinking
of them. Or, too many documents may be found, due to the large size of library catalogs and the great
frequency of some words. Thus automated retrieval suffers, and users who think that an online catalog is a
good way to do subject access searching may be frustrated.

' A. L. Samuel, The banishment of paperwork, 21, pp. 529-530, New Scientist, 27 February 1964.

2 C. Borgman, ‘‘Why are online catalogs hard to use? Lessons learned from information retrieval studies.,”” J. Amer.
Soc. for Information Science, vol. 37, no. 6, pp. 387-400, November 1986.

' V. 1. Geller and M. E. Lesk, ‘*An Online Catalog Offering Menu and Keyword User Interfaces,”’ Proc. 4th National
Online Meeting, pp. 159-166, New York, April 1983.
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Browsing may also be frustrated by some kinds of online catalogs. If the catalog presents only the exact
items found, it may be difficult to know what was nearby, or almost found. By contrast it is not possible to
look in a printed catalog without seeing the whole page, or to flip through cards without seeing the adjacent
cards. An OPAC is more useful if there is some ability to see what was near the sought items, as well as
the exact matches to the query.

It would also be useful to have more information about each item. Ideally. there would be a complete
gradation of available information from the title to the full book complete with all graphics and
illustrations. In reality any addition to the title and subject headings (e.g. the table of contents) would be
helptul, but it is not clear when we might get such information.

To return to the problems of short queries, they may be either recall problems (not enough relevant
material is found) or precision problems (too much irrelevant material is found).* Recall failure normally
manifests itself as "no hits" or some such diagnostic indicating that the user’s query hasn’t matched
anything. Precision failure normally represents a huge amount of retrieved material. Efforts have been
made to deal with both, since the program can tell which problem exists by counting the number of
retrieved documents it is going to display. If that number is zero, it tries to improve recall; if the number is
greater than 100, it tries to improve precision.

Traditionally, recall improvement involves a thesaurus.’ These are made by hand, and involve signiticant
effort to keep up to date.® Traditional thesauri, by replacing a variety of synonyms with a single term,
permit the detection of overlap between concepts originally phrased in different words. Thesauri also help
the user adjust a query by displaying the various possible indexing terms in the vicinity of those used to
start with, allowing the user to select additional terms or phrases {from the query.

Efforts have been made to construct thesauri automatically from a dictionary, e.g. the work done with
Merriam-Webster's 7th New Collegiate at IBM.” However. it is not necessary, and possibly not even
desirable, to make a traditional printed thesaurus for retrieval purposes. Thesauri have the disadvantage
that they have to be consulted. and often the users do not wish to take the time to do that; nor do end users
often have the expertise to understand how and why the thesaurus should be employed. Finally, for some
queries the forced combination of subjects may impede retrieval (by folding together concepts the user
might wish to keep separate). although in a competently made thesaurus this problem is anticipated and
generally avoided during the construction of the indexing language described by the thesaurus,

To improve recall without a thesaurus, dictionary definitions in machine-readable form can be used to
expand queries into words. which although not synonyms. are often useful. For example. augmenting
"tuberculosis” with "consumption” is sensible with older books; and even adding "native” to a query for
"kangaroo"” turned out to be valuable (because of books with titles such as "A voyage to New South Wales
with a description of the country, manners ... of the natives ..." Dictionaries have not been used much for
retrieval, although in many ways a dictionary is merely a thesaurus sorted on the alphabetical words rather
than their meanings.

This program employs dictionaries to provide vocabulary expansion. There are also various other
vocabulary devices, including phrase searching, relevance feedback, and the like. To help with browsing,
the system uses a bitmap screen to provide a graded interface from one-line listings. full citations. possibly
images of title pages or dust jackets. and complete text where available. It is hoped that this additional
information about books will ease the task of the reader. and require fewer books to be scanned by eye.
although so far insufficient data is available to perform any experiment.

Demonstration Program.

At present the catalog program runs with a subset of 72,000 book records from ESTC. The ESTC office
provided a tape of every other record from the file (for security reasons) and I extracted those items which
were held by the British Library (so that any book that was in the file would be relatively easy to find. and
in an effort to remove some items of low importance).

+ G. Salton and M. McGill. Introduction to Modern Information Retrieval, McGraw-Hill, 1983,
S Inspec Thesaurus, IEE, London, 1985,

® S. M. Humphrey. *'File Maintenance of MeSH Headings in MEDLINE. " J. Amer. Soc. Inf. Sci.. vol. 35, no. 1. pp.
34-44, 1984,

7 M. Chodorow. R. Byrd. and G. Heidorn, **Extracting Semantic Hicrarchies from a Large On-Line Dictionary.” Proc.
23rd Annual ACL Meeting, pp. 299-304. Chicago. 1985,
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The program resembles a traditional OPAC, except that it does not prompt for "kind of search”. It merely
asks you to type words, and then it does a coordinate index search through the entire file, for whatever it
can find. Thus, for example, the input kangaroo produces the following citation:

T: The voyage of Governor Phillip to Botany Bay;; with an account of the
establishment of the colonies of Port Jackson & Norfolk Island;
compiled from authentic papers, ... embellished with fifty five
copper plates.

[21,6,[2],viii, [12],%,298,1xxiv, [2]p.,plates; maps; 4
The titlepage is engraved

#: Bound in Kangaroo skin

C: London

I: printed for John Stockdale
D: 1789

O:

O:

It is possible, by using suffixes, to select particular fields. For example, suppose the query word typed is
Bromley:; this finds 37 items, the first few titles of which look like this:

Ao osormon vroacieer g0 Fitz-Roy chapel, on cocasion ot Jernier L oy, b e olbony ol
neostate of Hroamley Tollege In Kent . Bromley Joll-oneg N
mon on the nature of su t slialong; Burnaby, Androw, 1732-181. L
The mayor, baylifis, and oo cierocity 0f Cowverntry, [/ Coventry; Warwliokshive P
An accourate desorirt Don T o Evamley,; in Fent, crnamentod with views of 7 Wi, Thoamas, Bocomce ey, Fromley

Note that these are a mixture of items about the place, those written by someone named Bromley, and those
published in Bromley. By specifying bromley/A one requests Bromley in the author field, and gets only
16 items of the 37, some of which are:

An addre: trom man Y “is parishioners, by William Bromioy Wi 1 . -1 -]
A sermon, vreached at Fitoroy Chapel, 1o London: on Thursday the Jied, 2y 2y, Eoreert Anthony /1798

A prnilosoanioal oana critical history of the fine arts,; paiatina, tron ey, Robert Anthony /0 1793-9%

Trne way o tne Sabbath of rest:; or the soul’s poosgress o “he work ot Bromiey, Thoman / 1744

Alternatively, one can use multiple query words, which are searched by coordinate indexing (as many
words as possible) to produce a ranked output. For example, to find items on Dick Whittington's cat, one
may search for Whittington cat, which yields the following titles:
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An cold ballad of Whittington and his cat. / / [17507]
The famcus history of Dick Wnittingten and his cat: shewing, how frem / / 1738
The history of $ir Richard Whittingten, thrice Lord Mayor of London. / /117907

The history c¢f Sir Richard Whittington, thrice Lord Mayor of Londeon. /  / [177072]

The advantages of a good name, and godly end.; A sermon, occasioned by / Wright, Paul / 1773
The lcrd’s lamentation; cr, the Whittington defeat / / 17477]

An act for rendering effectual an act, made in the seventeenth year of / Great Britain;
Whittington reviv’d cr the city in triumph: on Alderman Parson’s being / 174¢C)

A sermon preached at Lancaster,; 7 Ravald, Robert, Rector of Whittington / 1766

Hell upon earth: or the most pieasant and delectable history of / Tuus inimicus / 1703

A comical and diverting dialogue, ketween a Spanish devil of the / / 17297]

Select poems from the works of Thomas Gray :; viz. An ode c¢n spring. / Gray, Thomas / 1795

A brief histery of the Kings of England, particularly those of the / Weldorn, Sir, Anthony / 1755
The Jacokite cat and parson. / / [17857?]

The Ki:-Cats. A poem. Blacxmore, Sir, Richard, d. 172% / 1708

The eagle and the robin.; An apclogue. Translated from the original of / H. G. / 1709

The courtship of the cats. / /17857

Tre fable of the shepherd and his dog, in answer to the fable of the / / 1712
Hush cat from under the table. To which are added II. Tweed-side. III. / / 1787
A scrrowful ditty; or, the lady’s .amentation for the death of her / / 1748

The wandering young gent [l]ewoman; or, cat-skin’s garland. ... / / 18007]
When the cat’s away, the mice may play. A fable, humbly inscrib’d to / / [1712
The wonder of wenders: or, a true and perfect narrative of a woman / / 1726

Spanish amusements: or, the adventures of that celebrated courtezan / Castillo Solborzano,

Recuell pr'ecieux de la Maconnerie Adonhiramite.; Centenant les / Guillemain de Saint-Victor,

The pole-cat;; or, Charles Jennings, the renegadc schoci-master, of / Shebbeare, John, 1709

Note that the first two items contain both ‘‘Whittington’’ and *‘cat;’’ the remaining items have only one of
these words. Term coordination can also be used as a way to disambiguate. If one searches lamb, for
example, one finds a mixture of cookbooks, sermons on the ‘‘lamb of God’’, locations specified relative to
a pub named the Lamb, various individuals named Lamb as authors, subjects, and publishers, a song
entitled “*“Tommy Lamb’s cure for a drunken wife’’ and other such. But searching for lamb sheep pasture
wool yields as the first two citations:
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T: Report from the Committee appointed to consider the several laws now
in being, for preventing the exportation of live sheep and lambs,
wool, wool fells,

A: Great Britain; Parliament; House of Commons

#: B.S.[vol.38]187

O: Proceedings. 1788-03-05

C: [London]

I: Printed in the year

D: 1788

O: 54p.; 2

O: Issued as a Parliamentary paper

T: Observations on the different breeds of sheep, and the state of sheep
farming, in the southern districts of Scotland: being the result of a
tour through these parts, made under the direction of the Socliety for
Improvement of British Wool. By Mr. John Naismyth at Hamilton

A: Naismith, John, Writer on Agriculture

C: Edinburgh

I: printed by W. Smellie

D: 1795

O: [4]1,75,[1]p.; 4

O: Half-title: A tour through the sheep pastures in the southern parts

O: of Scotland’

Levels of Display.

As shown above, the program has various levels of display that it can show. Titles and citations are clearly
the most useful. As a investigation of the use of graphics, the ability to display dust jackets or covers, to
show book appearances, was included. Figure | shows a sample display (abbreviated for legibility).

Type some kind of search query, one line:
Query: hanff upfield

T: B84 Charing Cross Road ™% ¥ 1 lelene T: The battling prophet|EERIIEEN
A: Helene Hanff 1 E,Q?S' A: Arthur Upfield Sieom™
I: Futura ‘ [an I: Penguin L s
D: 1976 | C: Harmondsworth D mpaey
C: London khﬁ) s D: 1969 .
P: 220 4 ; d
CHARINGY = | mmmeee
) | Prophet
] R ] -
b Arthur Upfield
Figure 1.

Attempting to use this feature for items such as maps, where it might be thought that some indication of
appearance would be useful, failed because of the inability to represent enough detail on the screen; see
Figure 2.
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Type some kind of search query, one line:
Query: coxwold counties

T: Map of British counties
I: Ordnance Survey
D: 1874

Map Lo region

- .‘nﬂv‘.“\"'”
. v —ad
T
' AP .

" o

- wP " 0a s OBASY
* oD S

Figure 2.

On balance the comment that the dust jacket pictures use 75% of the screen space and 95% of the disk

space to display no extra information over the book citation seems valid. A sample full screen with
graphics is shown in Figure 3,
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Type some kind of search query, one
Query: stking garden watt viiet

Dictionary of English Phrasal
Yerbs and their ldioms

: Beryl Atkins

: Tom McArthur

: London & Glasgow

: Collins

11974

: 256

—

. The Ordnance Survey Guide to
Gardens fn Great Britain
. Robert Pearson T ou.glmbé%ﬂmm
: Susanne Mitchell
: Candide Hunt
1986 7
Newnes Bocks (Country Life Books )Jl
. Ordnance Survey
: Twickenham
328

DO~ OMmMMM

LR N P
Vs dnc. ol B rwem rodf s d

frepaduint)
AR 1r sOKE W

: Text Processing end Document Manipulation LSNC 5= 1078 €3y mi Suk : The life and opinions of
Proceedings of the International Conference & i Tristram Shandy, GentlamangiVBSEIMNIeRWRILSTT" ]
University of Nottingham, 14-16 April 1085 g Yext Processing and 1 : Laurence Sterne risleam Slnm(l
2 3. C. van Viiet Document Mankulatics | Tan Watt ¥e
: Cambridps University Prass Poowd: g e f Houghton Mifflin Gentluman
: Cambridge v : Boston by Lousence Strne
: 1986 1 1965
1 276 | 1 512
Fcimdiy. Comnt &'
1

S

Figure 3.

and a sample screen with a more normal display (in this case items relating to Hogarth) is shown in Figure
4.

Type some kind of search query, ono 1ine:
Quary: hogarth

T: Anecdotes of Mr. ﬂlm * Hudibras.; In three parts. Vritten in the tine of the late vars.
A Nichels, Jedn, 1743-X Corrected and enended: with additions. Io which is added,

§: [London sentaticns, vith an extact index to the vhole. Adom'd vith 4 new
0: Ppi-64; 8 set of cuts, design'd engrov'd by Mr. NEEER.

0: Anomywous. By Joha mchol- - With sdditions by T. Reed and Q. : Dutler, Sewusl, 1612-1600

O: Steevens. - Dontai: ,of the first draft of ‘Blographical t:f:ﬁ-“‘ﬁ

0f anecantes of ¥iilien ( publizhed 1n 1701. - Orop-head title printed for D. Midvinter, A. Bottesuortk and C. Hitch, J. and J.

Pelber\a!\ R. Robinsom, R. Ware [and 15 others in Lonoen]

i 24.2:~u2|x,-.xu].[3].125-uu(1.-.168].167400[:..Anz].[m]p..nlnor; vort.;
: Tha text 1s continuous despite pagination. - With a final
: advertisement leaf. - With aa index

oooc_——n:»

T: 0° the roast beef of old Bngland, &c. T: The progress of a harlot. Ar she ir described in six prints, by the
g: ”:26:'1(“2) ingenious Mr. w .. with several other entertaining
1+ printed for Robt. r o gg;;tc;\énﬁ to [sic] tedious to be inserted here.
0! 1”;0 L € London
sheet; 2
. .3 N 1. printed for E. Rayner
o: at the gate of Calois, DA tells,”. . Titlo and | |p; 14593

- *Tuas
1npriat taken from the Sngraved caption plate at head of pags

01 [4],48p.; 8

©: ¥1Thaut the prints. - Drop-hesd titla: 'The progress of a harlot: or,
O: the Mstory of & Norfelk-lady.” - With an 1aitial leaf of

O: edvertiseneats priated on the verso only

T: The harlot’s progress. Reing the life of the noted Noll Backebout, in T: Ut pictura poesis' or, the enraged wusician.j A musical emtertainwent.
six hudibrastick canto’sz.; With a curious print to each canto: Founded on | + Perforned at the Thoatre-Royal in the Hay-Market.
ingrav’d from Nr. RO« originals. ... Vbereunto is prefix‘d, Vritten by beorge Coluan. Cowposad by Dr. Arnold.
never before printed, a wost excellent ballad ... intitl'd, Satan’s A: Colwan, Casrge, 12732-1794
defeat; or Jack Presbyter triumphant. C Londen

C: London I: priated for T. Cadell

T: printed for and sold R. Montagu; likewise sold by C. Corbett D: 1769

D: ‘;760 i © 4 0: 17(1.0.33],[1)p.; ®

0: [2].64p..plates; € Ot Interleaved

0: Wath sn engraved frontispiece. - The plates are imitations of the

0: originals. - A differsat vork fros the Marlot's progress’ by

0: Joseph Cay, 1.s. John Durant Breval

T: The rake’s progress: or, tho Tomplar‘s exit.; In ten cantos, in T1 The rake’s
budibrastick verse. ... By the author of The herlot’s progress. hudﬂ:unic

A: Asthor of “The Harlel’'s Pregress”

#: Tab.603.3.22(2)

0: Progress of a rake

rogress: » the Tenplar’s exit.; Io ten ceates, in
wverse. ... By the author of The harlot’s progress.
A v of ‘The Iul’lll c Progress”
»: uen Tbon.2901 )
L 01 Progress of a rake
€1 Londen
L= printed tor J. Dourse Lt printea tor d. buwisc
e 1769

Uiea, ey RN EOre
0: First pub ished'1n 1732 31 "The progress of a rake'. - “Sosstires 0: Farst publisned in 1752 as: “Ines progress of a raks’. - *Sowetines
0 gatrivited in error to J. D. Breval vho erote s verse sccsont of m attributsd in error to J. D. Breval vha wrote 2 verss account of

m‘s "Harlot 3 progress’ as ‘The lwre of Venus’ . ‘s ‘Harlot’s progress’ a5 ‘The lure of Venws’, 1733, umder the
O pseucdonyn of Joseph Qay. This 13 by (ke author of * . o prevdonyn of Joseph Cay. TA1S 13 by the avthor of ‘The Rariot’s
0 progress’, 1732° (Foxon P1106). - The plates ars 1sitations of the : progress’, 1732° (Foxon P1106). - Horizontal chaim lines, gathered inm

,g&n originale i

Figure 4.

With a high resolution Sun screen even more detail can be produced: here are two more sample tigures
showing the results. Compare. for example, the covers of the books by Sterne and Van Vliet which are in
both figures 3 and 5. Note that even with the 1500x1200 screen, there is still a noticeable lack of
readability for fine print in the display. For example, in the London Underground map the detail to read the
labels is simply not there in a 75 dpi digitization of this well printed original: similarly the 18p postage
stamp (originally in color) is not clear enough. Displaying only one dust jacket at a time solves that
problem (by permitting use of a 150 dpi digitization). but makes scanning the catalog so slow that it is
undesirable.
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Typo come kind of ooarch quory, ono 1ino:
Query: watt viist underground 18pnevton

T: Tho 1Mfo and opintana of

T: Text Processing end Document Maniplatier
Tristram Shaxdy, Gentlems P

Az courwce Sterne TheLifaand Opinions of . Itvrety of Nonlioghem, 16-18 AoriT 1668 Be 1 n Con il oo y ok hop Soee
& ity Tristram Shandy, It Gabetgge Lntvaceity Pross Text Processing and

o 5 > .
P2 Centlesnan ey Document Manipulation

Praccedings of the
Intesrauunal Conte ence
University of Notngham,
14-10 Apuil 198L

Fauted by
lanWatt

Fehted by J Covan VEIET

T: Pcatage stamp, 180, Isssc Newt
A Reyal Mafl
0: 1687

vEa==

1104 RRE 108 i iy

Figure 5.

And here is the amount of catalog that can be displayed using a high resolution screen and relatively small
fonts. This is almost as much of an eye test on the screen as in this paper but note that in real life the
British Library catalog does include this much information on each page; of course the pages are somewhat
larger, and the formatting more elegant.
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Figure 6.

It is also possible, where the full text of the book is stored, to go directly to reading the text. Thus, for
Pride and Prejudice the possible levels of output might be:

Pride and Prejudice / Jane Austen / 1972

: Pride and Prejudice
: Jane Austen

: Penguin

1972

: 398

: Harmondsworth

[@ TR RN I =

then the picture of the book (see Figure 7),
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Type some kind of search query, one line:
Query: austen

T: Pride and Prejudic

: Jane Aust PRIDE
I: gen uigS e rENGUlN@CLASSlCS o
D: 197 y
E: 398 g ) JANEALiSTEN PREJUDICE:
: t 2 :
armondswor PRIDE AND PREJUDICE A NOVEL
Dt TAREE FOLUMEL

»y oo
AUTUOR OF * SCMAE AND SSXATBILITY.”

g

Yots X

Eonbens

PRINTIED TOR T. 3OSRTOX,
BITazs LAY, WL

B8

and finally the text:

<T PRIDE AND PREJUDICE><V I><C I>

IT is a truth universally acknowledged, that a single man in
possession of a good fortune, must be in want of a wife.
However little known the feelings or views of such a man

may be on his first entering a neighbourhood, this truth is so
well fixed in the minds of the surrounding families, that he is
considered as the rightful property of some one or other of
their daughters.

"My dear Mr. Bennet,’ said his lady to him one day, "have

you heard that Netherfield Park is let at last?’

Two works are available for demonstration in this form.

Search Vocabulary Improvements

Two specific features of the new software not commonly found in online catalogs seem to work well: term
expansion and phrase presentation. Term expansion is aimed at the problems of low recall. Should the
user type a word that is not found, the system looks in its dictionaries and tries to find overlapping words.
For example, cider is defined as fermented apple juice. Looking for other words defined with ferment,
apple. and juice, the program finds that wine is defined as alcoholic drink made from the fermented juice of
grapes and mead is defined as alcoholic drink made from fermented honey and water. So when there are
not enough items found using the word cider the program expands it to

Query: cider
Expanding to: apple ciderpress ferment juice sour tartar wine mead perry pulque

and then retrieves, for example:
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T: A treatise on the culture of the apple & pear, and on the manufacture
of cider & perry. By T. A. Knight

A: Knight, Thomas Andrew

#: 988.c.27

C: Ludlow

I: printed and sold by H. Procter; sold also by T. N. Longman, London;

I: the booksellers in Hereford, Leominster, Worcester &c. &c.

D: 1797

O: 162,XXIII,[3]p.; 8

O: With a final errata leaf

T: The true amazons:; or, the monarchy of bees. Being a new discovery and
improvement of those wonderful creatures. ... Alsc how to make the
English wine or mead, ... By Joseph Warder

A: Warder, Joseph

C: London

I: printed for John Pemberton; and William Taylor

D: 1722

O: 16,v-xiii, [3],120p.,plate; port.; 8

O: A reissue of the fourth edition, with a new titlepage followed by

O: l4pp. section ’'To the booksellers’

The other problem, that of low precision. is dealt with by suggesting phrases. Suppose, for example, one
types the word heart as the search term. This would retrieve 145 items. The program prints out a table of
adjoining words and asks if you like any of them:

Here are some words that abut the word you used
Can I interest you in or in..

loyal heart (2) heart lover (2)
broken heart (5) heart ache (3)
simple heart (2) heart intend (3)

) heart woman (2)
2) heart trouble (2)
2) heart written (5)
3)

true heart (4
light heart (
bleed heart (
sweet heart (
own heart (3)
hard heart (2)

Mark (with right mouse button) or type the words you want added,

then hit return

Suppose you mark broken heart, hard heart, heart ache and heart trouble. This retrieves 11 items. Some
of them are what you would expect:
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The broken hearted lover’s garland; containing five new songs. I. The
broken hearted lover. II. The young man’s earnest request to fair
Cloie. ... III. The batchelor’s lamentation, ... IV. Nell’s
constancy. V. The seaman’s answer.

11621.b.60(5)

[Newcastle?

17507])

8p.; 12

A cure for the heart-ache;; a comedy, in five acts, as performed at
the Theatre-Royal, Covent-Garden. By Thomas Morton,

Morton, Thomas, 1764-1838

643.f.7(6)

London

printed for T. N. Longman

1797

87,[1]p.; 8

but others are perhaps a bit surprising:

A rueful story or Britian in tears, being the conduct of Admiral B-g,
in the late engagement off Mahone, with a French fleet the 20. of
May. 1756

T.1070(1%*)

London

printed by Boatswain Hawl-Up. a broken hearted sailor

[1756]

[1],6-15,[1]lp.; 8

Implementation

The UNIX system was particularly useful for implementing this system for several reasons. The most
important was the existence of many of the utilities needed. For example, some of the large data files (in
particular the catalog itself and the dictionaries) need access by each word. So a database library is needed
to record the locations in the file of each different word. For this Peter Weinberger’s B-tree library® was
suitable, since it handles very large files efficiently, is easy to use and robust, and provides fast retrieval.
Other databases, however, did not require quite such flexibility in storage: e.g. the file of the number of
occurrences of each word, used to decide on the weighting factor in expansion. So that file was stored
using an extensible hashing package by Michael Hawley of MIT, which is more compact than a B-tree.
Other experiments were made also: for example, if storage space had been even tighter, there was a system
for using compressed bitvectors to provide slower retrieval with less storage overhead. In practice,
however, the price of disk space is declining fast enough to make the B-tree system practical. What was
particularly convenient about UNIX is that all three of these retrieval systems existed with sufficiently
similar interfaces and sufficiently small implementations that all could be loaded and the code switched
easily from one to another as space or time became critical quantities.

8 P. J. Weinberger, UNIX Programmer’s Manual, Eighth Edition, AT&T Bell Laboratories, Murray Hill, New Jersey,
February 1985. See section cbt(3).
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Similarly, it was necessary to have a window manager which could display graphics and multiple fonts on
a large screen. Readability is much better on large screens, particularly with a library catalog where one
wishes to display as many items as possible. Steven Uhler’s MGR manager was very convenient for this.
Again, it was not necessary to spend weeks studying the manuals for this system to just get simple pictures
of dust jackets and multiple font displays working. And again, there were other window managers that
could have been used had this not been available.

From the standpoint of eventual use by a final customer (not yet established, as this is a research project not
yet adopted by anybody), it is also an advantage to have implemented this on UNIX because of the wide
availability of UNIX systems on different size hardware. Some libraries prefer large mainframes for their
OPACs (often they have them, or have access to them, already for other reasons); some prefer
minicomputers; and some hope to implement their catalogs on micros. UNIX runs in all these environments
and thus eliminates the need to argue about equipment scale.

Comments

There were other features tried with less success. These included relevance feedback (it will be necessary
to stipulate whether the feedback is on all fields of the citation, or only on the title field), not suffixing the
words, and attempting sense disambiguation. The greatest disappointment was that I expected to be able to
use the BL pressmark field for searching; having identified one book in a given subject, it would seem
reasonable to then browse the shelflist. But the pressmark system was changed over time, and has so many
idiosyncrasies, and is so unfamiliar to the average user, that would be difficult to explain how to use these
pressmarks as subject searches.

It is more important than I originally thought to consider in which field of the record the words appeared.
There were a surprising number of strange retrievals caused by comments on binding, printers names, and
the like. This is, [ suspect, a property of the loquacity of eighteenth century title pages and would be less
serious with modern records.

The lessons from this work are that (a) it ign’t all that difficult to produce a demonstration of an online
catalog; (b) it is useful to try term expansion; (c) it is useful to dynamically present possible phrases; and
(d) dictionaries can help with the problems of vocabulary shifts over centuries. And, it is convenient to use

a UNIX system for developing this sort of program. For possible next steps, it would be very valuable to
have more information about individual books; it would be interesting to compare the effectiveness of term
expansion with a thesaurus to the dictionary program used here; and I await the OED in machine-readable
form to help with the changes in vocabulary over time and to give more information about word uses.

Acknowledgments: My thanks to the Oxford Text Archive, Collins Publishers, Oxford University Press,
the British Library, the Eighteenth Century Short Title Catalog (ESTC), and the University of Waterloo for
assistance and tapes of dictionaries and catalogs.
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1. Introduction

Described here is the evolution of a small suite of programs for the composition and performance of music.
They started life as a personal interest, inspired in part by Peter Langston’s work [Langston 86]. As they
developed, however, a use for the programs was seen as an unusual and illustrative aid for exhibiting
computing equipment.

At the Systems Development Group, we are involved variously in developing systems which address the
problems of UNIX and DOS communication, in developing software for a graphics workstation, and
generally in improving the flexibility and usability of Siemens range of UNIX and DOS machines. Would it
not then be a good idea if an ‘*earcatching’’ package could be built which combined all this?

As such a system is to receive close scrutiny, the musical ideas must have a reasonable foundation: the
computer should not be seen as simply a glorified tape machine.

The aim of this paper, then, is to present several facets of the music system: of course, the musical ideas are
central, but there are also other lessons to be learnt. There are two central foundations of the design of the
system: the first is the Musical Instrument Digital Interface, or MIDI: there will not be much said about it,
as there isn’t much to say — the standard itself is only about one-third the length of this paper! What
should become clear is not only the way MIDI allows the system to function but also how such a useful
standard can make writing other music programs so much easier and more effective. The second
foundation is the legacy of the UNIX operating system: it is that legacy which makes the whole thing fit
together.

Why music? The composition of music is generally thought of as one of the most abstract of human
activities. While not ever hoping to replace the human musician, the computer can be used to experiment
with music, as well as providing a base for a diverting exercise in analysis and programming. Also,
computer music is strangely attractive, like high-quality intelligent speech systems.

For many people it is summed up by Dr. Johnson’s comment [Johnson]: **...[it] is like a dog walking on
his hinder legs. It is not done well; but one is surprised that it is done at all.””

2. Music Tools for UNIX

We will now focus on the musical problems; the consequent generalities about programming and
communication are best discussed once the specific tasks have been presented. That is, where now the
music side is the point of view, later the UNIX and communications side will provide a standpoint (**UNIX
Tools for Music’’).

2.1. A Little History

There have been many experiments and products over the years which combine computers and music. The
computer has been used as a sound generation system (eg MUSIC V, Music 360) and as a compositional
tool. Admittedly the widest audience has been for computers as performers, but nevertheless some modern
computer-composed music has had general acceptance. In particular lannis Xenakis has composed several
works with computer-generated sections.

The main problem of old was either the great cost of hardware, or, as costs reduced, the lack of any
commonly accepted means of defining and producing something that could be played or heard. If the
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computer was a composition tool, then suitable output had to be produced for human players or for some
other program to use. On the other hand, performance programs (like MUSIC V) had their own language,
and no ready means of accepting direct input, say, from a piano keyboard. In the case of microcomputers
direct calculated digital sound was impractical and special hardware had to be used: usually the limitation
here was that the number and quality of the sounds producible was severely limited.

Alongside the computing community, the musical world was getting increasingly frustrated by the growing
plethora of different electronic instruments and the corresponding difficulties in using them together. Even
five years ago, it was not unusual for audiences of some rock bands to see two or three stacked banks of
different keyboard instruments and a hyperactive player leaping between them. Clearly something had to
be done.

2.2, MIDI

Some musical instrument manufacturers (mostly Japanese) had invented means of interconnecting their
own instruments, thereby easing some burdens on the musician. It seemed that the ‘‘video standard’
problem was about to repeat itself, but in 1985 [MIDI 1985], several US and Japanese manufacturers buried
their differences and agreed on a communications standard for music. What was more, the standard had to
define a system that could be used by self-confessed mechanical idiots: only some musicians take pride in
their electronic prowess — most baulk at having to insert more than a handful of plugs!

The Musical Instrument Digital Interface (or MIDI) standard defines everything from the electrical
characteristics, through the wiring of plugs to the data formats to be used. There are even basic circuits
supplied in the definition! The standard itself runs to about 6 pages. The first release of MIDI (1.0) has
been proved eminently practical and successful'. What other inter-manufacturer standard consistently
allows one to buy any two pieces of equipment, plug them together using a lead bought from the corner
shop, and immediately to start using them?

It was the existence of MIDI which encouraged the present work — indeed without it, it is safe to say
nothing would have been done! MIDI not only provided a means of controlling a high-quality synthesiser,
but also gave a solid basis for the internal storage and data structures used by the composition programs.
Since a finite set of controllable parameters is defined by MIDI, then aspects of composition and
performance outside these bounds need not be addressed: a large chunk of design and planning was
rendered unnecessary.

2.3. Music Hardware

What machinery is used for this work? There is an absolute minimum set and there is the set actually used
by the demonstration package.

In both cases the total hardware involved is relatively simple: the demonstration set is listed below. Only
the OP-4001 and the TX81Z are directly concerned with music with a total cost of about 600 pounds.
Cheaper synthesisers are available.

1. Siemens X20 graphics workstation (UNIX OS)

2. Siemens PC-D2 (PC AT clone)

3. Voyetra Technologies OP-4001 midi card for IBM PC
4. Technics SX-PX7 Digital Piano

5. Roland MT-32 Synthesiser Module

6. Yamaha TX81Z Synthesiser Module

Of the computing equipment, perhaps the X20 is the least familiar: it is an NSC32016-based UNIX
workstation, running a multiple-universe version of UNIX. It supports NFS.

The Voyetra OP-4001 is an intelligent MIDI interface, taking responsibility for filtering and timing
messages onto the MIDI bus.

The synthesiser modules both have the advantage that they can act as if they were in effect several
synthesisers: each is capable of playing different sounds simultaneously. In addition the MT-32 has a drum

1 Of course, like any new system, users rapidly try 1o drive it to its limits and then want the next version when they find them.
Cries for MIDI 2.0 have been heard, but little seems to have happened! New functionality has been added recently (eg MIDI
Time Code), but never at the expense of complete compatibility with existing equipment.
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machine and reverberation unit.

The minimum set on which the original work was done consists of items 2, 3 and 6, with the PC-D2
replaced by an IBM PC Portable. However, all the programs (except one) were written to run on UNIX , but
with DOS in mind. With the exception of the (crazy) need to distinguish ‘text’ from ‘binary’ on DOS they
were completely source compatible with the X/Open standard. The one exception was the program to
drive the OP-4001, which was and still is DOS-resident. There was no budget to develop an interface for
UNIX.

The demonstration system mentioned above also incorporates an Ethernet. Music is composed on the X20,
and then shipped using FTP or NFS to the PC which acts as a clever peripheral and plays music on the
specified synthesisers. The X20 can be used to display conventional musical notation. All this will be
expanded on later.

2.4. Music Software

The basic programming principle of the music software was ‘keep it simple’. Because at times work had to
be done on a PC, programs needed to be kept as small and conservative in programming style as possible.

The answer was to adopt the time-honoured UNIX principle of ‘do just one thing and do it well’.

But in the case of music, what are those ‘one things’? Isn’t music an organic whole? Probably not: at least
five different components can be identified:

1. melody — the sequential organisation of pitches
harmony — the simultaneous organisation of pitches

rhythm — the organisation of events in time

2
3
4. texture — the way simultaneous sequences of events interact other than harmonically
5

form — the large-scale sequential organisation of music.

Form could be seen as a type of rhythm: the main distinction is that ‘rhythm’ per se is heard as a single
entity with little conscious use of memory, while ‘form’ requires the recognition of longer-term movement
and repetition.

The intention of this project was to develop programs that gave the computer some control of these
components. However, it was not clear at first which areas should merit closest attention. More questions
needed asking and answering.

2.4.1. Musical Structure

First of all, it had to be decided what sort of music was going to be produced. If complex avant-garde
music was the aim, then the scope for design was broadest, as it is really only a minority of listeners who
can distinguish good from bad. However, it was decided to try to produce moderately pleasant and
reasonably varied music suitable for background listening. To this end a guiding musical principle was
proposed: ‘‘Keep at least one component (melody, harmony, rhythm, texture, form) of your music readily
acceptable by most listeners.”” Before starting to develop programs to generate these musical components,
there were these questions to be answered:

. why can computer music sound so boring?
o what is necessary to catch a listener’s attention?
. how much should be left to the computer and how much predetermined?

The last question is easiest to stait to answer: there seems little to discover or develop if the computer just
plays back some pre-recorded music. The degree of control must lead to a feeling on the part of the
listener that each composed piece is different in some way from the others, but still retaining some
coherence and interest. What that degree should be can only be quantified by trying to answer the first two
questions.

In a sense these questions are the same: by answering one, an answer is suggested for the other. Let us ask
just one question, then, and suggest some answers.

What makes a piece of music start to be interesting? There are many things to consider, including the taste
of the listener, but in general some rather coarse conclusions can be drawn.

° Completely unpredictable music is as unsatisfactory as completely predictable music.
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. Keeping either or both of melody and rhythm completely predictable is unsatisfactory.
° Melody with unpredictable harmonic structure is unsatisfactory.
. Completely predictable harmony, form and texture can be satisfactory — witness the 12-bar blues,

the classical passacaglia, the standard Verse-Chorus form of many folk songs, and the texture of the
heavy metal band. Predictable harmony is only satisfactory if it has over about seven bars in the
sequence.

. Unless great compositional care is taken, single-timbre music is less satisfactory than multiple-timbre
music®.
From this a basic recipe can be constructed:

1. Use static large-scale forms and textures. Since no piece is likely to exceed about two minutes in
length, a standard *A-B-A’ structure will do.

For texture, use a 4-player model (percussion, bass, accompaniment and solo) — this can be cut
down if the musical style demands it: for example a pseudo-classical piece might not use the
drummer!

2. Allow some variation in smaller-scale forms and textures: for example allow an introduction to an
A’ section in which the drummer starts, followed by say, the bass player.

3. Generate chord sequences randomly but according to constraining rules of progression. Some
transitions could otherwise sound very strange! Realisation of the harmony as sound should not hide
the progression: that is the basic notes of the chord must predominate.

4. Constrain rhythm to use an easily recognised metre and subdivision. In fact, all the music so far
composed uses 4/4 time with no triplets!

5. Allow non-deterministic melody lines, but make it fit the current harmony and rhythm.

2.4.2. Music Tools

The current toolset presently consists of the following programs. Note that all except those for actual
performance can run on any system with a suitable command interface and C compiler. Performance tools
depend on the hardware available, but are probably partly portable across DOS-type microcomputers. A
UNIX-based ‘play’ program would require a special device to cope with the timing constraints,

Performance

play send MIDI file to MIDI controller
Composition

ddm stochastic melody and rhythm generator

cgen transition-matrix chord generator

flow ‘choral’ chord realiser

strum *guitar’ chord realiser

cread chord symbol reader
Structuring

mrepeat repeat bits of MIDI data

fixmidi general MIDI transformation

mjoin merge several MIDI tracks

Song Assembly

trkmerge construct multitrack song file
mksong make complete song from description
2 A timbre is a sound colour: for instance a guitar and a trumpet have different sounds even if they play the same music.
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Debugging and Display

dumpmidi display MIDI file as text
scribe display MIDI file as musical score
chshow display chord file as text

How did rhis set in its various categories come into being?

The first program was a driver for the OP-4001. This in turn demanded the design of a suitable file format
to represent the music information: the note and dynamic information is MIDI-timing information is based
on bars, beats and ‘ticks’ and interleaves with the MIDI messages. The playing program strips out the
timing before sending the messages out on the MIDI bus.

The first composition program was an implementation of Peter Langston’s ‘Stochastic Binary Subdivision”
(ddm) method of producing rhythms[1986]. This was used to fine-tune the MIDI file format as well as a
first step in computer composition. Next came its extension to generate melodic lines also as defined by
Langston. In both cases the music produced was insufficiently predictable to hold any lasting attention —
only item 4 and part of item 5 of the recipe are being used’.

It was time to impose some further structure: item 3 of the recipe demands some harmonic movement
based on rules. Two programs were produced: one, ‘cgen’, uses a first-order transition matrix to generate
harmonic progressions; the other, ‘cread’, simply translates chord symbols into a MIDI-based chord file.
The matrix for egen is a text file, and uses chord symbols and percentage probabilities. The user input to
cgen defines not only the starting chord, the ending chord and the length of the sequence, but also
intermediate ‘milestones’. This allows users to have a little more control over context. Consideration has
been given to (but as yet no use made of) higher-order transitions, but using contexts other than the
preceding harmony, such as position in time or phrase structure.

Two new realisation tools came out of cgen. One (‘flow’) plays the chords as if sung or played on an
organ, while the other (*strum’) models a guitar and ‘strums’ the chords. To complete item 5 of the recipe,
the ddm program was modified to understand the chords from cgen or cread and generate melodies to fit.
This was done by restructuring the scale as defined in a ddm description file, to ensuring that the notes
generated fitted the harmonic context. A further discovery was that if a ddm description contained little or
no scope for relative melodic movement, the result was an animated but otherwise accurate realisation of
the harmony itself. Slightly different contents in the ddm file are used to produce remarkably effective
bass guitar lines.

Combination of harmonic realisation (of whatever form) and a ddm style melody increases musical interest
dramatically. Three-part segments are even more appealing.

By now item 3 in the recipe has been achieved, and item 5 fully satistied. The problem remaining is that
the musical segments just start and stop without any further structure: once two or three have been heard,
their appeal quickly diminishes. What is needed is form. Small-scale form can be achieved in various
ways and at various levels: first to be addressed was a means by which complete multi-part segments have
beginnings and ends. By modifying flow, strum, and ddm to accept the definition of where in time and in
the harmony they were to start staggered entries and exits could be achieved. This allows texture to define
an aspect of form. This goes some way to realising item 2 of the recipe.

In order to improve smaller-scale form the capability for structural constraint was introduced into ddm.
Instead of inventing a fresh pattern for each bar, ddm was given a mechanism 1o repeat patterns and also to
have empty bars. Because of the scale transformation algorithm, repeated bars have the same rhythm but
do not necessarily repeat the exact melodic shape: this provides an interesting musical unpredictability.

The internal interest of musical segments has increased considerably, by restricting the variation and
introducing longer rests. The problem remains that the bar/rest structure is fixed: a future project is to
make the structure rule-derived.

So far only the generation of single segments of music has been described: better pieces will result if item 1
of the recipe is realised. As suggested, a basic *A-B-A" structure has been used as the skeleton for larger-
scale form. The second "A’ section will be an exact repeat of the first: subtle variations have been avoided
as too difficult. The A-B-A structure may be refined in the medium-scale by introducing so-called

3 Some time later. a further facility was given to ddm 1o allow some form of syncopation to occur. The description file was ex-
tended to allow probabilities of omission of the first of a pair of beats, and between what subdivisions such omissions were (o
be allowed.
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‘bridges’: thus a coarse A-B-A might become on closer inspection I-A-T-B-A-E where ‘I’ denotes
‘introduction’, ‘T’ denotes ‘transition’, and ‘E’ denotes ‘ending’. Each segment can be generated in the
same way as the main A and B: what is missing is a means of specifying how the segments are to be joined
in time. A possible tool for this purpose would be a MIDI ‘cat’ program: however, because a MIDI file
contains timing information, the cat operation would have to modify such values in the data stream before
writing it out. Also, time-driven concatenation needs to know how to concatenate non-contiguous
segments: section A might only have two bars of actual music in it, but actually need to last twenty: a
section B must know where in time it is to be placed.

If we also consider form in a greater scale than that of the ddm ‘form’ specification but smaller than the
‘A-B-A’ under discussion we can see that each A or B might itself have an *A-B-A’ (or whatever) form.
What is needed here is a) a tool which can repeat parts of a musical segment at some point in time, and b) a
tool which can relocate the time location of a whole musical segment. The first tool, called ‘mrepeat’,
allows the user to specify that a portion of the input file is to be replicated a number of times at a specified
target point. Using this we can make a single ‘A’ become an ‘A-?-A’. or even change the shape of A itself.
We might be able to make some subtle variation between the first and second instances of A. The second
tool ‘fixmidi’ is a general purpose transformation tool which can move the time, pitch and timbre base of a
single MIDI file. There is obviously some overlap between the function of mrepeat and fixmidi in the
realm of time adjustment when the whole MIDI file is being manipulated: only mrepeat can move sections
of a MIDI file. Fixmidi started life as a simple time-shifter, but was extended to allow fixed-interval pitch
shifting and the insertion of MIDI program change messages. Since the basic action is always of copying a
stream in, modifying it in some way and writing it out, it was thought more efficient to breach the ‘single-
function’ guideline. Indeed fixmidi might be thought of as a precursor of a MIDI ‘tr’ or ‘sed’ program.
Other transformations might be to modify the pitch of selected note values, to transpose in a given key, or
to embed or filter MIDI controller messages.

We now have realised all of the items on the recipe except part of item 1. Although larger-scale forms can
be imposed on single MIDI lines (or ‘tracks’) some means is needed to combine them; there are two
possibilities: one is to merge two or more MIDI tracks into a new single-track file; the other is to collect a
number of track files into one new multi-track file. Each has its uses, and in the end has the same effect on
the set of MIDI instruments. The MIDI merging tool is called ‘mjoin’ and is like cat but ensures that all
events are properly ordered in time. and significantly at the same time as they were in the unmerged files.
The multi-tracking tool (called ‘trkmerge’) simply collects each specified MIDI file and stores then
sequentially, with the addition of some header information. The difference is that a multitrack (or ‘song’)
file allows track-by-track specification of MIDI information, such as basic channel. If a new routing is
desired, then a simple modification of the headers can be undertaken.

What is left? We can construct musical segments with sufficient structure, and with sufficient interest to
bear more than one listening — indeed they have a rather insistent memorability even if the musical
content is not very inspired! The only difficulty is that much of the input is supplied by the user. The chord
progression milestones have to be supplied and the matrix written, the ddm files have to be written and
selected and the form has to be defined and constructed. In many respects this is a good state of affairs, as
it ensures that the user exercises some musical influence. However, it is possible to leave more to the
computer by having tools which generate the user input to the original set. Only one has been written at
the time of this paper: it is a Bourne shell script which takes a user-written description file and produces a
song file from it. No modification of the composition tools was necessary.

2.4.3. Summary and Future Work

From the work detailed above, it has become clear that more musical effect can be achieved by suitable
structuring than by complex melody or rhythm generation. In fact, all melody and rhythm has been
generated by a program based on Langston’s ‘Stochastic Binary Subdivision’ principle, extended by chord
following, constraints on structure, and syncopation. Although other mechanisms have been considered
and experimented with, the most success has come from the tools for musical structuring.

What is to come? The ‘scribe’ program needs more work to be more than a graphics demonstration.
Different style melodies and rhythms might be interesting: a fruitful path would be to separate the rhythmic
structure from the pitch structure and then to ‘fill in’ the missing details using a separate tool. Indeed the
flow program already has a handle for such information. There are also aspects and effects of ddm and
cgen descriptions yet to be discovered.
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3. UNIX Tools for Music

Having presented the rationale and development of a suite of programs for musical composition, it is
reasonable to look at things from the other side: what is it that makes such a tool-based approach work, and
what can be learnt?

First, let us consider what of the UNIX system has been used that makes the whole thing work.

3.1. The UNIX Legacy

As was mentioned before, all but two (at worst two) of the music programs described could run on . UX ,
DOS, VMS or indeed any operating system with a C compiler *‘worth its salt’’. The only programs which
have any real dependency are play, which uses special hardware, scribe which depends on suitable
graphical interface, and mksong which uses all sorts of features of the Bourne shell. However mksong
should be capable of running on DOS or VMS if one of the implementations of the Bourne shell were used.
What is clear is that this suite of programs does not depend on the UNIX operating system itself, but on the
influence it has had on the computing world. Very few C compilers now offer a library which does not
emulate the UNIX system. Most even allow UNIX -style command line interpretation and I/O redirection.
Some even implement the semantics of pipes.

It is the author’s contention that for most users, it is perceived behaviour which determines their model of
the underlying system, rather than any intellectual understanding of its workings.[Keeffe 1984] It doesn’t
matter whether the programs here are running on DOS or UNIX : they were written to be portable across
UNIX systems, and because of the UNIX legacy of a model of system behaviour, they work on other
systems too. Again, the UNIX philosophy of small software tools forming an ‘intersection’ model of an
operating system rather than than a ‘union’ model led to the almost inevitable design of a number of tools
capable of working with each other in a number of ways [Atkins 87].

The original cgen program combined playable MIDI output with the calculation of chord layouts and the
generation of suitable sequences. Very quickly an intersection was taken and cgen and flow were born.
Because cgen produced a simple chord description, it could be used anywhere it was needed: similarly flow
could accept chords from any file or program which produced the correct output. By using the cread
program, even programs which produced text could be used.

Programs like ddm have a close interdependency between internally generated structures and external
influences: it has been hard to separate out single functions. Still, by using ddm as a simple rhythm
generator, other programs could be developed to add other components like pitch or harmony to the ‘blank
sheet’ made available to them.

It is clear, then, that while little or none of the system described depends on the actual presence of a UNIX-
based machine, without its existence the system would very likely have never been developed, or if it had
beeri, it would have been in a far more restricted and less flexible form.

3.2. The Communications Legacy

3.2.1. MIDI as a Useful Standard

If the UNIX model determined the overall structure of the music system, it was a communications standard
which determined much of how it worked. Because MIDI is a standard for use by completely non-technical
people, it cannot have any part which even vaguely requires technical interpretation. How many times has
a breakout box been needed to connect a simple VDU to a simple computer? MIDI does not need or even
have breakout boxes.

Besides the ‘‘plug and play’’ benefits of MIDI, its strict range of values for a well-defined set of
performance options saves the programmer the need to define such limits, and frees them for other work.
The MIDI values are used from start to finish of the whole process, giving a constructional appeal to the
music system due to the lack of any requirement to filter or transform the musical information. Yes,
transformations are available, but they are information changers, not information preservers.

For example, chord descriptors use MIDI note numbers from the bottom octave (0-11) with octave offsets
(multiples of 12) used to distinguish types of chord. This means that the realisation of chords simply uses
the type information to choose a set of intervals, which are used to determine the actual notes of the chord.
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3.2.2. Communications Problems

If MIDI provides an ideal base for the musical aspects of the system, what of non-musical communication?
Will it prove as straightforward as connecting the synthesiser? Consider the demonstration package which
uses the music system. Its aim is to present the following aspects of Siemens equipment:

1. the graphics capability of the X20 workstation
2. the flexibility of UNIX
3. communications between UNIX and DOS

A constraint on the demonstration is that it be operable by visitors to the stand at the show. To this end, it
was decided that the DOS machine would operate automatically when a music demonstration was running.

The graphics workstation is eminently illustrated by converting MIDI information to musical notation using
the ‘scribe’ program mentioned above. To many visitors, it is the actual presence of music which displays
the flexibility of UNIX: they want applications flexibility, and are not interested in the underlying structure
which makes combining of programs easy and successful. The ‘‘hook’’ is that they can actually hear what
is produced. The problem to be solved was how the music files are made available to the PC for
performance.

Several choices were available: if an Ethernet were available (which it was), then the DOS machine could
run a control script which waited for FTP messages from UNIX , before running the control file so
transferred — this depended on the provision of an FTP daemon and therefore on a particular supplier of
Ethernet equipment; PC-NFS could be used if it was available, but would require some means of informing
the DOS machine of the presence of a valid music file, and depended on a different supplier of Ethernet
equipment. Without an Ethernet, a serial interface using a suitable communications package could be used:
something like ‘kermit’ would do, albeit at a cost of speed, and at the cost of ensuring the cables actually
worked properly. In the end, because suitable Ethernet facilities were available, both the FTP route and the
NFS route were prepared: at the time of writing this paper one had not been selected.

The moral of this part of the tale is that if a standard like MIDI had been available, then the PC could have

been connected to the UNIX machine with little effort: we are all told that such standards are coming ‘real
soon now’ but when? and will they work so well?

4. Conclusions

It has been shown that a simple toolset addressing the problems of musical structuring can produce short
“*songs’” of quite reasonable interest. By following a simple recipe attention has been given to the most
important areas. It has also been shown that it is the UNIX legacy of programming and programming style
rather than the presence of any particular UNIX system which has made the development of such a toolset
relatively rapid and successful.

The existence of a single working music communications standard has made the whole thing take off: it
has been contrasted to the continuing difficulties of connecting together two well-understood pieces of
hardware.
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My first contact with the details of numerical software was in 1960 when a colleague came to me with a
sad story asking for my help. It seemed that he had been doing some Fourier analysis and getting some
unexpectedly noisy results. He tried some experiments to try to discover the cause of the problem and
finally did what amounted to a Fourier transform of the library sine routine. He encountered a forest of
high-frequency noise and came to me for help. Since, he said, the sine function does not have any high-
frequency components, there must be something wrong either with his programs or with his mathematical
understanding.

I took a look at the source code for the library sine routine, coded in 7090 machine language, and
discovered that it used two separate approximations, one for angles less than 30 degrees, and another for
larger angles. The discontinuity at 30 degrees was substantial and completely explained my colleagues
anomalous results.

I have essentially never recovered from this friendly visit. I was surprised that such sloppy arithmetic had
been tolerated so widely and for so long. I took a careful look, just for curiosity, at the other widely used
mathematical library functions, and discovered that the problem with the sine routine was just the tip of the
iceberg. For example, the routines for the Bessel functions returned the wrong sign for negative arguments
and in some ranges, the values returned by the error function had no correct bits whatever.

Viewing this as a potentially very interesting problem, I recoded the entire math library for the 7090 to
considerably higher standards of accuracy, a task that required some months, and then turned my attention
to other matters, thinking that this problem was well under control.

It was, for the time, but over the years, as one computer environment was replaced by another, the same
problem recurred. As these machines were supplied with essentially all system software supplied by the
manufacturer, I did not have enough of the system under my control to do the job cleanly and correctly.
For example, no part of the math library could in general be written in a high-order language, because the
input conversion routines used by the compilers were themselves not accurate enough. The alternative was
to write assembly-language routines and embed the necessary constants in machine floating-point
representation. This approach would provide the required accuracy but it ensured that there would be
absolute no possibility of porting all of this work to the next computer that came along.

With the development of the UNIX system, I had, for the first time, sufficient control over all of the
arithmetic software to be able to do a decent job of providing accurate arithmetic and mathematical
functions. I can take some of the credit for the mathematical software on UNIX, and, in some measure, my
attempt to provide an accurate base of good arithmetic and accurate library functions was successful. At
the same time I can take most of the blame for the ways in which UNIX software helps to provide
inaccurate answers and other mathematical surprises.

One of my goals was to take as much of the magic as possible out of the construction of math library
functions. Part of this was to find ways of coding the functions in a high-order language rather than in
assembly language; another was to find a generic pattern for such programs which would make the
programs as similar as possible to each other. The generic pattern has never emerged and there seem to be
a large number of different patterns, almost equal in number to the number of basic routines. The sine and
cosine routines, for example cannot be made to look anything like the logarithm and exponential routines.
The square root function can easily be implemented with extreme accuracy and runs like the wind. The
error function, on the other hand, is almost impossible to implement to any standard of accuracy whatever.
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The other part of the attempt to take the magic out of math functions, that of coding them in a high-order
language was considerably more successful. That depended on finding a small number of auxiliary
functions to handle the few places where direct access to the machine floating-point registers was
absolutely necessary. I finally settled on three auxiliary functions, called MODF, FREXP, and LDEXP.
The first of these, MODF, was needed in some cases where there was a way to do the job in a high-order
language, but there was no way to do it accurately enough. The latter two, FREXP, and LDEXP, were
need to manipulate the exponent and fraction of the floating-point word separately, as required in the
logarithm and exponential function. This choice has turned out to be a successful one, and is much more
obviously correct in retrospect than it was at the time the decision had to be made.

It has also turned out to be possible to port the math library from machine to machine with considerable
ease with little or no program modification. There are cases where the only changes that were need were to
rewrite the three auxiliary functions to match a new instruction set or a different floating-point format.

One of the components that I needed in order to write accurate math library functions was some means of
computing the necessary constants and coefficients to considerably greater accuracy than could fit in the
registers of the target machine. It turns out to be roughly the case that to generate coefficients for an
optimal polynomial or rational approximation to a function, you need to do the computation to about twice
the number of digits as those available on the target machine.

Of course, this means either that the computation of coefficients must be done on some other machine with
larger registers (not typically available) or that you write a set of extended-precision routines. This, not
surprisingly, is the genesis of the BC and DC commands on UNIX, which I certainly did not write for the
general public, but for my own use in creating the math library. I am still surprised to find so many people
as addicted to the use of these programs as to any habit-forming drug.

I am also surprised that some almost inadvertent choices that I made in the design of DC and BC has
resulted in almost complete portability from machine to machine. One of these choices was to use bytes as
the fundamental data unit in BC. This seemed even at the time to be a curious choice, but it turns out that
any other choice, including the obvious choice of using the machine floating-point registers, would have
resulted in serious portability problems.

I would like to make some comments on the current state of mathematical software on UNIX systems as
they have evolved since I stopped working on the problem about eight years ago.

One of the most annoying places for inaccuracy to creep into machine arithmetic is in input conversion. If
numbers are not accurately converted when read into programs or into a compiler, the whole task of
providing accurate answers becomes essentially impossible. Even trying to run tests to find the source of
the problem becomes perplexing, since both the argument and the result are suspect. This was the most
serious and most time-consuming problem that I encountered back in 1960 and in many versions of UNIX it
still persists. In some cases, this inaccuracy is due tc ordinary carelessness, but in most cases it depends on
an unwise design choice by the designer of the input routines. One might think that if your machine has a
57-bit fraction in its floating point representation (as in the PDP-11 or VAX), then it is not necessary to
specify a decimal input number to more than the 17 digits that correspond in accuracy to the 57 bits. It
then follows (one might think) that you need not and perhaps ought not even read any digits past the 17th
or 18th significant digit of an input number, but can discard thein. This is quite wrong, as analysis will
show that if this is done, then constants cannot be input that are accurate to the last bit. I and my
customers, however, are often interested in the last bit. This problem has become widespread, and, in fact,
the majority of complaints that I have received in the last decade about inaccurate math library functions
were traced to inaccurate input conversion in the compiler that was used to compile the routines.

Back in the bad old days of the early 60’s, I observed that all machines had reasonable mechanisms for
detecting floating-point overflow and underflow and divide check. The facilities for reporting these events
to the machine-language programmer were also reasonably designed. On the other hand, the operating
system for the 7090 and for other contemporary machines did not provide a well-designed mechanism fo: a
FORTRAN (or other high-order) language programmer to do anything reasonable about the occurrence of
such an event. I have given this problem a good deal of thought, but I came to no solution, and the
provisions for handling arithmetic anomalies in UNIX are barely usable and are in fact little used.

I hoped for a time that the careful design of the exception conditions in the IEEE floating-point standard
would cure these problems, but events to date indicate that looked at from the high-order language point of
view, the provisions that undoubtedly exist at the machine- language level are not available in useful form.
I certainly would appreciate being able to take the numerical data output from a program and feed it into
another program. I have yet to encounter a machine that uses the IEEE standard on which this can be done.

London, 13-15 April 1988 — 158 - EUUG Spring 88




Adventures in UNIX Arithmetic

I am disappointed at the recent trend to distributing UNIX without source code. That trend, combined with
the relative carelessness of software in implementing arithmetic has two effects. The users are stuck with
software that does not provide the accuracy that their hardware is capable of, and, in addition, there is very
little that they can do about it unless they are willing and able to reimplement the necessary functions from
scratch. Another effect is to stifle innovation. I can assure you that it is extremely difficult to write these
small but intricate programs without adequate models to work from. You find yourself standing on your
predecessors toes rather than on their shoulders, to use the simile of Isaac Newton.

I also notice with some surprise that the collection of math library routines that I decided, in moments of
madness in addition to moments of sanity, has not been changed. In all versions of UNIX that I have
encountered, not a single member of the library has been added or removed.

To sum up, I have been both a major provider and a major user of numerical software for nearly thirty
years, and despite some successes, the principal goals have not been reached. I urge those of you that care
about numerical software to rise up and take action.
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ABSTRACT

The object of this paper is to provide an overview of the current state of the UNIX
Operating System environment with specific reference to the latest release (V.3) from
AT&T. As UNIX has been selected as the basis for a portable operating system by a
number of standards bodies, the work being done by these groups is also reviewed.
Finally, the paper highlights possible and likely future developments of UNIX that are
designed to improve its commercial viability.

1. What Has Gone Before

“Where shall I begin, please your Majesty?'’ he asked. ‘‘Begin at the beginning,’' said the
King, gravely, “‘and go on till you come to the end: then stop.”’ (Alice in Wonderland)

UNIX has its beginnings back in the middle sixties in the development of the MULTICS operating system —
a collaboration between GE (USA), MIT and Bell Labs. The objectives of the MULTICS project were to
provide simultaneous interactive computer access to a large community of users, to supply ample
computation power and data storage and to allow the users to share their data easily. Although an early
version of MULTICS did run, it became clear that it would not meet its goals, and so Bell withdrew from the
project.

After Bell Labs withdrew, some members of the Bell team sought to create a computing environment for
facilitating programming research and development. Starting with the development of simulation
programmes on a GE645 mainframe, this work eventually led to the production of UNIX on a PDP-7.

The requirement for a text processing system within Bell Labs provided the spur to further develop UNIX.
These developments included the transfer from the PDP-7 to a PDP-11 in 1971, the development of the C
language and the re-write of the kernel in C in 1973. During this time, the number of installations at Bell
grew to approximately 25. With the spread of UNIX thorough Bell Labs came the development of a wide
variety of utilities and kernel enhancements as each lab evolved UNIX to meet their specific requirements.

Because of a Consent decree signed by AT&T with the US government, AT&T could not market computer
products. However, it did provide UNIX to universities and colleges who requested it. To conform with
the requirements of the decree, AT&T did not advertise, market or support UNIX. Despite this, its
popularity grew, particularly because of the popularity of PDP-11 series, the availability of the sources and
the low licence fee for research institutions. By 1977, there were approximately 500 system sites world-
wide. Licences for commercial institutions now began to appear along with the first commercial software
(an office automation package). This year also saw the first port to a non-PDP machine.

Between 1977 and 1982, Bell combined the various variants of UNIX that then existed into a single
commercial system known as System IIl. This progressed by way of further enhancements to System V
which became the first officially supported release in 1983.

1980 was a watershed year for UNIX. Two decisions by AT&T where responsible for this: 1) the
introduction of binary sub-licences; and 2) the port of UNIX to a VAX.

1.1. Binary Sub-licences

After the release of the 7th Edition in 1979, AT&T took a major step which led to the appearance of UNIX
in the commercial field — the introduction of binary sub-licences. These allowed systems developers to
purchase a UNIX source licence, port and develop the system for their particular hardware and market
requirements and then sell the complete system in the commercial market. Prior to this, commercial UNIX
licences came packaged with a number of unattractive provisions: no warranty; no support; and no
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maintenance.

Binary sub-licences allowed commercial system developers to port UNIX and sell the binaries to the
commercial world with their own warranty and support. It also provided system developers with a
relatively easy method of providing a multi-user, multi-tasking operating system on their equipment.

Probably the most successful commercial version was Xenix developed by Microsoft for 16-bit micro-
processors and in particular the Intel chip set. Microsoft added a number of enhancements which included:
improved and simplified system administration, configuration and set up; improved file system resilience
and recovery; power fail recovery; and improved inter-process communications.

These developments and the popularity of Intel’s chip set has led to Xenix representing 70% to 80% of the
commercial UNIX licences. Early this year, an agreement with AT&T has resulted in a work programme
that will result in the convergence of Xenix 5 (the latest version) with System V for the Intel 80386.

Another major development in the UNIX field has been the appearance of 32-bit micro-processor systems
and in particular the Motorola 680x0 series. This has led to the development of UNIX for the high
performance workstation market and more recently the commercial market with the delay in the
announcement and release of a 32-bit chip from Intel. These workstations, each more powerful than a DEC
VAX (the traditional equipment for the scientific market) have also helped the commercial acceptance of
UNIX.

1.2. VAX Port

When AT&T released their VAX port in 1979, it was little more than a straight transfer of the PDP-11 code
to the VAX. The VAX version (32V) took little notice of the new features that the DEC 32-bit machine had
over the old 16-bit PDP-11s. However, given UNIX's and DEC’s acceptance in the academic world, 32V
and VAXs appeared in a number of colleges and universities. The University of California at Berkeley was
one of these sites. Berkeley proceeded to develop 32V and convert it to a true VAX version (BSD) which
made use of all the new features on the VAX. These included virtual memory, a fast file system and a
number of performance enhancements.

The first addition to 32V was virtual memory, demand paging and page replacement. This memory
management work convinced Defence Advanced Research Projects Agency (DARPA) to fund Berkeley for
the later development of a standard UNIX system for government usage (4 BSD). One of the goals of this
project was to provide support for the DARPA Internet networking protocols TCP/IP. This was done in a
generalised manner, and it is possible to communicate among diverse network facilities ranging from local
networks (Ethernet) to long-haul networks (ARPANET). BSD UNIX rapidly gained acceptance in the VAX
community and later with the advent of the 32-bit micro-processor in the workstation market. As a result,
BSD represents the third major variant of UNIX and has come to dominate the DEC and workstation
markets.

2. AT&T System V.3

“Mr Greenslade! Stop taking those naughty elderly men’s get fit hormones.”” (The Mighty
Waurlitzer)

In 1983, AT&T released their first fully supported version of UNIX — UNIX System V. Initially, this release
consisted of little more than some performance enhancements over the earlier version and some new
utilities. AT&T continued to develop System V in the following years and releases 1 and 2 appeared.
Once again, these releases consisted of performance enhancements and new utilities.

By the time System V.3 appeared in 1986, a number of major changes had taken place. System V.3 is the
most radical change in the UNIX kernel in the past 5 years (since 7th Edition). In addition to completely
restructuring the kernel and cleaning up utility interfaces, AT&T have added the following new features:

. Remote File Sharing

. Streams

° File System Switch

° Transport Layer Interface
. Internationalisation

. Demand Paging
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Shared Libraries
File & Record Locking
Signal Enhancements.

2.1. Remote File Sharing

UNIX has been criticised for its lack of support of networking services. Previously, networking packages
have been developed in an ad hoc manner using the traditional character I/O sub-system. Each package
defined its own interfaces to the available networking services and its own family of protocols, thus
creating a large number of incompatible, inconsistent network protocols and utilities. System V.3 attempts
to resolve some of these problems by providing a framework for networking.

Remote File Sharing (RFS) is a software package that allows computers running UNIX V.3 to share
resources selectively and transparently across a network. Both files and peripherals (printers, terminals,
etc.) can be shared, providing the same functionality on both the host and remote systems. Sufficient
security mechanisms are provided to assure local System Administrators of the confidentiality and integrity
of their own data.

The main goals of RFS are:

. Transparent Access. The standard UNIX interfaces are preserved. The functionality of the UNIX file
system under RFS is independent of location

Semantics. The UNIX semantics are preserved. All file types including special devices (printer,
terminals) and named pipes can be accessed across the network. Both file and record locking is
supported

Binary Compatibility. Existing applications do not require modification or re-compilation to make
use of the networked resources

Network Independence. RFS is independent of the underlying network. It operates without
modification over a variety of networks that range from LAN’s to large concatenated networks

° Portability. Code is machine independent and localised in the kernel
° Performance. Minimal network access.

RFS is implemented using Streams and File Systern Switch (FSS) and a client/server architecture. The
Streams mechanism provides Network independence and the FSS mechanism provides transparency.
Security is provided via user/group mapping between machines on the network.

During start up, a UNIX system advertises the file systems which can be shared. This information is
maintained by primary and secondary name servers. Advertised file systems can be then be mounted in a
similar manner to local file systems. Additional security features can be used to restrict access to remote
file systems.

The Server is a kernel process which is not associated with a particular client machine/process whose
function is to receive and execute requests from client machines. The requests are processed as if they
were initiated from a process on the server machine. On completion of the request, any requested resource
is returned along with any error indication. The server is a transaction based process.

Client state information is recorded by the server and this allows recovery in case of a machine crash. The
recovery mechanism restores the state of the server in the case of client failure and cleans up the client in
the case of server failure. On the client side, in addition to cleaning up the kernel information, a user
defined daemon is started to perform user level recovery.

The problems which result from networking machines which may have different time of days that will
cause an inconsistent view of a file age are resolved using a time delta approach. Any system time-based
information is modified by this delta prior to its return to the user application.

2.2. Streams

The nature of the software and hardware communications environments existing in the early 1970s when
UNIX was initially developed, influenced the functionality of the character I/O mechanism present in UNIX.
However, the emphasis on modularity and performance that is to be found else where in the system does
not appear here.

The origina: character /O mechanism, designed for supporting terminals and which processes one
character at a time, made the development of software to support a broader range of devices, speeds and
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protocols difficult. The lack of standard interfaces in UNIX created additional problems when attempting to
implement the current generation of protocols with their diverse functionality, layered organisation and
various feature options. Attempts to compensate for these problems led to numerous, ad-hoc
implementations with protocol drivers inextricably intertwined with the hardware configuration. As a
result, software portability, adaptability and re-use have suffered.

In an attempt to resolve these problems, the STREAMS facility was developed. It defines standard
interfaces for character I/O within the kernel and between the kernel and the user which are simple, open-
ended and network architecture independent. Using these interfaces, the user can create, use and dismantle
a stream. The stream is a full-duplex processing and data transfer path between a device driver and a user
process. It consists of three parts: a head which handles the interface with the user process; zero or more
modules which process the data passing between the head and the end; and an end which is either a device
or an internal software driver.

The stream modules, which are kernel resident, can be dynamically selected and interconnected to provide
any rational processing sequence. This modularity allows:

° User level programmes that are independent of underlying protocol layers

) Network architectures and higher level protocols that are independent of the lower levels

. Higher level services that can be created by selecting and connecting lower level services and
protocols

o Enhanced portability of protocol modules resulting from the well-defined structures and user
interfaces.

2.3. File System Switch

File System Switch (FSS) provides for the simultaneous support of different file-system implementations
without the application being aware of the difference. It also allows different types of file system to co-
exist on the same machine. The main use of this functionality is in RFS; but it is also used to support the
1K file system introduced with System V as well as the older 512 byte file systems, thus making upgrading
to System V.3 considerably easier.

The FSS code intervenes between kernel and file system code, isolating different file system
implementations. To do this, the generic file system information is separated from file system specific
information by dividing the inode structure into 2 parts. Whenever inode specific information is to be
processed, the FSS switches the operation to relevant file system implementation. Below that, the standard
disk cache functions can be used to transfer blocks.

2.4. Internationalisation

UNIX has progressed in many ways from its original design. However, it is still essentially American with
in-built assumptions about character sets, collation sequence, date representation, time zones etc. AT&T
have determined the direction UNIX will go in order to internationalise it.

. Removal of dependence on 7-bit US ASCII character set. In System V.3, a subset of the utilities and
the kernel have been converted to support 8-bit character sets. The main problem in converting to
8-bit sets is that of sign-extension when converting 8-bit character values to integers

. Removal of System Messages and Text that are hardcoded in English. Messages are no longer
hard-coded and are stored separately from the programme At run-time the appropriate message
catalogue is accessed depending on the current language. New languages can then be introduced
without rebuilding software. This is defined as the future direction by AT&T and no action has been
taken in V.3 to implement this

. Expansion of support for non-US habits and conventions. A local customs database provides
date/time formats, day/month names, currency formats, radix characters and yes/no strings. Once
again, the appropriate database is accessed at run-time. This is defined as future direction by AT&T
and no action has been taken in V.3 to implement this.

2.5. Transport Layer Interface

In System V.3, AT&T have taken the first step towards defining networking environment for System V. At
present, there are a large number of protocols (OSI — Factory and International; TCP/IP — Scientific and
Defence; XNS — Office automation; SNA — Back Office) and communication media (PSS, SDLC, ISDN,
CSMA/CD, Token Bus, Token ring, etc.). Each protocol has its own user interface, set of applications and
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specific media. This has created a number of problems with system connectability leading to user
confusion.

AT&T has chosen STREAMS as the mechanism by which the problems of the various protocols and media
will be resolved to provide consistency; they have also defined a Transport Layer Interface which provides
a standard user interface to network services.

The Transport Laver Interface provides the user with access to standard protocol services in the ISO
Transport Service Interface. The Transport Provider Interface specifies the capabilities that must be
provided by a STREAMS based transport provider and the interface to those capabilities required in order to
maintain consistency with the Transport Laver Interface. Taken together, they provide the means by which
network independent applications can be written. Examples in System V.3 are Remote File Sharing and
UUCP (UNIX to UNIX Copy facility).

Future directions defined for standard user interfaces include the support of CASE (ISO level 7) and IBM’s
LU6.2.

2.6. Demand Paging

System V.3 has introduced demand paging including file mapping into AT&T standard version of UNIX to
replace the original segmented architecture. This functionality provides performance improvements for
large programme applications as the complete programme no longer requires to be in memory in order to
execute. This provides the user with a better start-up response time and allows processes which are larger
than the physical memory to be executed. In addition, processes with large amounts of infrequently used
code make more efficient use of the system.

2.7. Shared Libraries

Shared Libraries allow a binary application to be dynamically linked to an executable library function at
runtime. Significant disk and memory savings can result from the use of shared libraries. Functions in the
library are stored once on disk and once in memory where they are shared by all applications using them.
In addition to space savings, the effort required to update a library is reduced as only the library need be
rebuilt; the new version of a function can then be used automatically by applications accessing that
function.

2.8. File & Record Locking
System V.3 provides two types of File and Record locking:

. Advisory: This type of lock allows the user to lock/unlock a region of a file. Any other process
attempting to lock a locked region will either go to sleep until the region is unlocked or receive an
error notification. The locks are advisory in the sense that I/O to a region locked by another process
is not inhibited.

° Mandatorv: This type of lock has the same functionality as advisory locks with the exception that 1/O
to a region locked by another process is inhibited.

The type of locking is selected on a per file basis depending on the setting of the group access permission.

2.9. Signal Enhancements

The signal processing in System V.3 has been enhanced to resolve some problems with processes missing
signals. New signal services have been provided to allow the suspension of signal processing during
critical sections of code and the timing windows have been removed to prevent processes missing signals.

3. UNIX and Standards
“‘The nice thing about standards is that there are so many to choose from.”” (Anon.)

Portability is an attractive attribute of UNIX. Just about every UNIX supplier has tinkered with the system
in some way: tuning up the kernel or adding enhancements. The number of variants is large as can be seen
from the list below:

° AT&T external releases: V6, V7, System 11, System V, System V.2, System V.2.1, System V.2.2,
System V.3, ...

) Berkeley: BSD 2.8,2.9,4.1,4.2,4.3, ..
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IBM: CPIX, PC/IX, VM/IX, Xenix, Series/l IX, 1X/370, AIX, ...

Others: 1S/1, 1S/3, IN/ix, Xenix (many variants), Ultrix (many variants), UniPlus, Unity, Venix,
HP/UX, ...

. UNIX look-alikes: IDRIS, Coherent, UNOS, CTIX, CTSS-UNIX, ...

Because of the increasing number of variants of UNIX, the need for a standard version became apparent for
a number of reasons: users want a standard UNIX so that they have the advantages of a standard operating
system (portability, protection of hardware and software investments); vendors want the security of an
operating system that will remain constant, adhering to established definitions; and both users and some
vendors want to be free from proprietary operating systems — a vendor independent standard. As a result
of these requirements, work started on standards in various groupings, all of which are interrelated in some
way.

3.1. System V Interface Definitions (SVID)

The purpose of the SVID is to serve as a single reference source for external interface to UNIX System V
systems. In the SVID, AT&T specify the complete operating system environment. Its function is to allow
the development of applications for UNIX, independent of particular hardware environment. It defines the
operating system components for end users and applications. As with all the standards, it is the
functionality and not the implementation method which are defined.

AT&T attempted to make conformance to the SVID mandatory in the licencing of System V.3. However,
this condition met with strong resistance from the UNIX community (particularly the major manufacturers)
and AT&T backed down. It should be noted that conformance is still required for the use of the phrase
derived from AT&T UNIX V 3.

The SVID consists of three volumes: 1) base system and kernel extensions; 2) utilities (basic, advanced,
software development and administration) and terminal interface; and 3) various extensions to volumes | &
h

L.

In order to provide implementation independence, all implementation specific information has been
removed and symbolic constants have been introduced where necessary. The SVID provides for various
levels of support in terms of the Base system which is mandatory and various extensions to that Base
system which are optional. It also defines the method by which a component evolves from one level to
another.

Based on the SVID, AT&T have written a System V Validation Suite (SVVS) which checks for compliance
with the SVID.

3.2. POSIX and IEEE

Back in 1981, the US UNIX User Group began the drive towards a standard version of UNIX. A standards
committee was formed to formulate, adopt, publish and promote a portable system interface based on
UNIX. Their proposed standard was adopted and published by the User Group in 1984. It was based on
subset of UNIX System IIT with removal of machine dependent and non-symbolic constants.

When the IEEE P1003 Working Group began preparing the Portable Operating System for Computer
Environment standard, they took the User Group’s standard as a first draft. They also adopted the User
Group’s goal of producing an interface standard rather than a UNIX standard. However, the parentage of
the standard is expressed in its name — POSIX. The IEEE Working Group refined and enhanced the User
Group’s work and included the later developments in the various flavours of UNIX. The other major
activity of the Working Group has been to gain wider acceptance for the POSIX standard, initially from
ANSI and ultimately from ISO.

The work of the P1003 committee is divided into four sub-committees:

1. Svstem Interface group. The goal of this group is to define the external characteristics and facilities
of system interface to provide source level portability based on the ANSI X3J11 C standard

Shell and Tools group. The goal of this group is to define a standard interface and environment for
application programmes that require the services of a shell command interpreter and a set of
command utility programmes or commands. The Svstem [nterface is not a requirement for this
standard

Test Methodology group. The purpose of this group is to define the standard for test methods for
measuring conformance to the POSIX standard. The US National Bureau of Standards has agreed to
develop a reference implementation of the conformance test suite which will be placed in the public
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domain.

Real Time group. This sub-committee was formed from the US User Group Real Time sub-
committee in mid 1987. Its function is to explore and evaluate the minimum set of changes and
enhancements necessary to allow POSIX to support real time applications. Such changes under
consideration include priority scheduling, shared memory, contiguous files and asynchronous event
notification.

The work of the System Interface group started in 1984 and resulted in a trial use document which was
published in April 1986. The full standard is expected to the released early in 1988. The work of the other
two committees only started fairly recently and the final standards are not expected to be ready before
Easter 1988.

The work of the POSIX committees has received major support from all major computer corporations and
from many government bodies. A number of government bodies have Declared their intention to require
POSIX conformance for new systems when it is a full IEEE standard.

After acceptance by IEEE, the standard will probably proceed to ANSI who generally accept IEEE standards
without ballot or amendment. Once accepted by ANSI, it is likely that a number of US government bodies
will back the standard: National Bureau for Standards, Department of Defence, Federal Information
Processing Standards. Beyond ANSI is ISO and in particular Sub-committee 22 of Technical Committee
97. The POSIX committees are currently working with the ISO Sub-committee 22 to review the trial use
document with the aim of moving it into the international arena.

3.3. X/OPEN

Early in 1984, ICL and other European manufacturers recognised the difficulties of selling proprietary
operating systems into new markets at the low end. Increasingly, systems were being sold on the basis of
applications software rather than hardware and the high investment needed in applications software would
restrict its ability to penetrate new markets. The lack of a large installed base in those markets was also
discouraging third parties from building applications. As a result of discussions ICL had with other
European Computer Manufacturers (ECMs), the X/Open group was set up to resolve some of these
problems. The X/Open group initially consisted of five major ECMs (Bull, ICL, Siemens, Olivetti and
Nixdorf). Since then it has grown to include all seven major ECMs and six manufacturers from the US -
DEC, Unisys, Hewlett-Packard, AT&T, NCR and Sun. The major missing manufacturer is IBM.

3.4. X/Open Objectives

““To define a complete environment for portable applications, it is also necessary to satisfy the

requirement for data management, distributed systems, the use of high level languages and the

many other aspects involved in providing a comprehensive applications interface. X/Open

intends, therefore, to publish progressively definitions covering these areas.”’
The group has a charter to invest business, technical and marketing resources in development of a
multivendor Common Applications Environment (CAE) based on de facto and international standards. CAE
includes base services (OS and library interfaces), source transfer, the C, Fortran, Pascal and Cobol
languages, OS extensions, data management including relational database, commands and utilities, native
language system (internationalisation) and interprocess communications. The result of this charter has
been the production of a Portability Guide, the first release of which was published in 1985 which was
followed by a fully revised and expanded version in 1987.

At present, the group has initiated work in a number of new technical areas which they believe lack a
degree of coherence and have a significant future. These areas cover verification procedures, transaction
processing, security, graphics (windows), real time and networking.

3.5. Portability Guide

The Portability Guide currently consists of 5 volumes: commands and utilities; system calls and libraries;
supplementary  definitions, including internationalisation and terminal interfaces, interprocess
communications, and source code transfer; definitions for C, Fortran, Pascal and Cobol languages; and data
management items.

The guide was originally based on the SVID which has been extended in some areas: some future directions
indicated by the SVID have become requirements and the use of symbolic names has been extended. The
differences from the SVID are clearly marked. All the SVID base interfaces are maintained as mandatory.
There are some optional system calls and library functions. Some of the interfaces are affected by
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internationalisation and some are still subject to change in the future. The full SVID terminal I/O interface
is not supported in the guide because of the requirements of the European market. Other definitions have
been affected by standardisation work going on outside the guide.

The first conforming systems are now available and by the autumn of 1987, the then group of eleven
members were expected to deliver compliant systems.

The benefits to the user of the guide are independence from a single source of supply, protection of
investment in software through increased portability and simplified integration of heterogeneous
environments.

In the autumn of 1987, the X/Open group incorporated itself into a independent non-profit making
company to make its independence tangible, and to encourage greater participation in X/Open activities
from independent software vendors and users. The benefits of this later goal have yet to be realised in the
light of recent suggestions that the Portability Guide is not being used as it was intended by these
independents.

3.6. Convergence

From the above discussion, it would appear that UNIX is being pulled in three difference directions by the
various standards groups. However, two major strategy announcements earlier in the summer of 1987
should result in the convergence of these standards:

. The first announcement was the membership of AT&T in the X/Open group with a commitment to
conform to the CAE

. The second announcement was the convergence of X/Open with the POSIX initiative when it
achieves full-use standard in early in 1988.

These announcements mean that the operating system definition in the SVID will be a subset of the X/Open
CAE and that the mandatory parts of POSIX will be a subset of both.

4. To Boldly Go - Beyond V.3
“America was thus clearly top nation, and Historv came to a .’ (1066 and all that)

In this section, some of the most common/popular areas of UNIX development within the commercial field
are examined. These are:

o Transaction Processing
. Networking

. Internationalisation

. User Interface

° Real Time

. MS-DOS/UNIX Convergence

° Security.

4.1. Transaction Processing

One of the major areas for growth in the UNIX market is that of departmental/distributed transaction
processing. Such systems will need to operate in large networks in a peer to peer and node to mainframe
context. The software infrastructure needed to surround UNIX to support this role is fairly sophisticated.
In addition to the provision of a distributed file and database system, several additional layers of logical
control are required to provide transparency, integrity and security.

The fundamental purpose of a Transaction Processing (TP) system is to carry out transactions. A
transaction which is typically performed against a file system or database is known as a database
transaction. It is performed via the execution of application-specified sequences initiated by a start
transaction operation and terminated by a commit, in the case of successful termination or rollback in the
case of unsuccessful termination. The commit operation makes all the changes to transaction resources
permanent; the rollback operation restores the transaction resources to their state at the time of the start
operation — effectively rolling back the changes. Thus the transaction unit is atomic — either the
transaction is committed and all the changes have been made or the transaction is rolled back and no
changes are made.
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The transaction processing system provides a framework for the application programmes to effectively and
concurrently share the resources support within the system. Online Transaction Processing (OLTP)
systems are those which are optimised to support interactive applications in which transactions submitted
by users at terminals are processed as soon as they are received, with the results being returned to the user
in a relatively short time. In addition to interactive applications, batch applications can also be supported
by an OLTP system and these may be initiated by an interactive application or some system event such as
time of day.

Distributed transactions are those which are processed via the co-operative execution of multiple
application programmes. When OLTP systems are linked, they can share their resources with one another,
thereby facilitating the implementation of distributed transaction processing applications.

Application programmes operate upon local resources (terminals, databases, queues, etc) and co-operate
with other programmes by exchanging data and co-ordinating their state. The initiate/terminate operations
need to be applied to all the co-operating programmes involved in the transaction. In order that these
operations may be applied across a distributed transaction, the local resources that are updated by the co-
operating programmes during the execution of the distributed transaction must be protected at the local
level by similar initiate/terminate operation. Only protected resources can be reliably managed with the
distributed transaction.

The application programmes which co-operate during the execution of the transaction can be located
remotely from the terminal which originated the transaction. In this event, the programmes, each of which
is managed by its own local OLTP system, communicate together to form a Distributed TP Environment.

The resources managed within this environment can be classified as follows:

) User File/Database resources. The user file and database management systems are concerned with
the security and consistency of the physical and logical structure of the user’s data

. Transaction Processing resources. The system is responsible for the scheduling and management of
application programmes supported by the OLTP, and the conversations between them

° Network resources. The individual OLTP systems which make up the distributed TP environment
must be connected by a network

o Peripheral resources. The OLTP is responsible for the allocation of peripherals, for terminal
emulation and all I/O functions. Form management and the security employed by these devices
should also be managed with the OLTP system.

In order to support transaction processing environments, there are a number of areas in which UNIX kernel
modifications may be required. These areas are listed below. The first two are be regarded as essential for
effective implementation. The rest provide ease of implementation and operational efficiency.

. Synchronous Input/Output. This ensures that on completion of an 1/O operation, the data has been
transferred to the physical medium

. Concurrent Input/Output. This allows one process to support multiple terminals, changing the
normal UNIX architecture of one process per terminal

) High Performance Files. These provide faster access to data because of the high demand that OLTP
systems normally place on disk sub-systems

o Process In-Memory Locking. This is a performance enhancement for high-priority processes to
reduce swapping or paging

) Improved Scheduling Strategy. This provides for process bias and pre-emptive scheduling as another
aid to performance improvement

) Concurrent Read Performance. At present, UNIX restricts the number of reads outstanding on a
given file to one even if the data for the other requests is in the cache. Increasing the number of
outstanding reads will improve the performance

. Multi-Volume Files. Users with large data volumes often require more filestore that can be handled
by one physical disk volume. The provision of multi-volume files makes the support of large data
volumes easier.

The provision of these features under UNIX is eminently feasible. At present, X/Open’s consultants in this
field, Data Logic, have produced a white paper describing the transaction processing model proposal. It
provides a open architecture that should be able to incorporate disparate vendor products. It also presents
in detail the protocol boundaries associated with each functional level, within different application
architectures. This paper is currently under review by X/Open members and other interested parties.
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4.2. Networking

In today’s data processing world, system and product diversity are common place as well as the links
between these systems. However, one of the major problems is to provide access to data on other
machines without having to write special software to access the remote data or to transfer the data between
machines. The main goal of developing a distributed file system is to provide the illusion of a single file
system whilest distributing access to this data across a network.

To provide this illusion, it is necessary to have:
. Transparent Access

. Reliability

° Concurrent Access Control

) Security Access Control.

AT&T’s solution, RFS, has already been discussed earlier in this paper. There are, however, two other
products on the market which attempt to provide heterogeneous distributed file access, Sun’s Network File
System (NFS) and The Newcastle Connection.

Of the two, NFS is of more interest since it has gained wide acceptance with the UNIX community and is
competing directly with RFS. The salient idea behind the Newcastle Connection is the concept of a super-
root directory which exists above the normal root directory of all systems on the network. Complex
network topologies can be generated using a hierarchy of super-roots. However, this concept has not been
widely adopted.

NFS is similar to RFS, particularly in the use of servers and clients. The areas where the design goals differ
from RFS are:

° Machine and Operating System Independence. The protocols used should be independent of UNIX
so that an NFS server can supply files to many different types of client. The protocols should be
simple enough that they can be implemented on low end machines like PCs

Crash Recovery. When clients mount remote file systems from many different servers, it is very
important that clients be able to recover easily from server crash.

The other major different between NFS and RFS is the starting base for development. NFS is based on BSD
UNIX, whereas RFS is based on System V.3.

One of the problems Sun faced when developing NFS was distinguishing between local and remote files.
RFS resolves this problem using the File System Switch (FSS). Sun altered the kernel to support a Virtual
File System (VES) which replaces all the parts of the kernel involved in the access of files. This compares
with FSS which only replaces those parts which process inodes. If a file is located on a remote system, the
VES uses the NFS protocol to access and manipulate the file. This protocol is a set of primitives that define
the operations which can be performed on a distributed file system. In contrast to RFS, NFS uses a stateless
protocol. No state information is maintained making recovery very easy. The nature of the
implementation is such that a client cannot distinguish between a slow server and one that has just
performed recovery.

NFS uses a remote procedure call to execute a primitive on the remote machine. Both these procedure calls
and the protocols are implemented in terms of a lower level protocol known as the External Data
Representation which defines byte ordering, size and data type alignment in a machine independent
manner. Thus data is transferred in a common format.

The main strengths of NFS are error recovery, system independence and availability. NFS has been
available under licence from Sun for the past three years. During that time, it has built up a wide
acceptance in both the commercial and academic fields and has become the de facto standard.

NFS is currently available under UNIX, VMS and MS-DOS whereas RFS is currently restricted to AT&T’s
3B series. However, since RFS is part of System V.3, it is likely to be available from all manufacturers
who support V.3.

The main weaknesses of NFS are:

° UNIX Semantics. NFS fails to maintain all UNIX operating system semantics for remote files.
Append mode and file/record locking are not supported. Although the locking problem appears to
have been resolved recently via the use of a lock server to handle file/frecord locking. Remote files
can be deleted whilst in use by another user. However, it should be remembered that NFS attempts to
support non-UNIX file systems so a complete mapping should not be expected
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Security Control. Although the actions for the super-user are limited across the network, there are no
similar restrictions on user. A user id on one system maps directly onto the same id on another
system, potentially providing access to restricted files. The facility, Yellow Pages, provides the
ability to define one password file across the network. Since this is a voluntary mechanism, security
can be compromised by the least secure system

° Time skew. No attempt is made to resolve time-skew problems across machines.

At present, Sun are working to improve NFS in the areas of diskless systems, time-skew, remote file
locking, support of other file systems, performance enhancements, improved security and improved
portability of the server.

A recently announced collaboration between AT&T and Sun may result in the merger of the two systems
such that a system running NFS can be attached to an RFS network and visa versa.

4.3. Internationalisation

The objective of the internationalisation effort is to provide a system-wide framework to enable application
software to be adapted for use in any country or local environment. This implies the support of character
set specifications, classification tables, message catalogue, functions to manipulate characters and
messages, and a local customs database. In addition to converting applications to support
internationalisation, work is also required on the development of the message catalogues and library
functions.

The X/Open specification is based on Hewlett Packard’s Native Language Support (NLS) software was
originally developed for their MPE operating system. The design goals of this system are: integrity of data,
support of multiple extended character sets, local language user interface, local conventions support, one
version of software for all languages, capability of extension for new language/culture/code set and
minimal kernel level changes. In addition to the work already done or defined by the SVID, NLS also
covers:

o Extended character set support. At present, UNIX supports 7 bit ASCII externally and 8-bit quantities
internally. Many Roman characters and all middle/far Eastern characters are not supported. Full 8
bit external support will provide additional characters. X/Open specify the 8-bit 1S8859/1 code set
which supports all the European languages and is compatible with ASCII. The X/Open specification
for NLS allows for multiple 8-bit characters sets to be supported simultaneously on the same machine

Language Announcement. This function allows the user or programme to switch between languages
as and when necessary

Character Identification. Character class, conversion (up/down shift) and collation tables for each
language are required to determine character attributes. Collation functions are defined to handle 1
to 2, 2to | and don’t care mappings.

The NLS has been implemented by Hewlett-Packard and is now available to other manufacturers under
licence.

The future directions specified by X/Open include:

. The extension of number of 8-bit clean programmes. At present, only 22 programmes are specified
as 8-bit clean

The resolution of the regular expression c/ass metacharacter problem. This metacharacter allows the
matching of a range of characters: for example an alphabetic match is expressed as [a-zA-Z]. This is
correct in English but not in Swedish (for example)

Convergence with ANSI X3J11 C standard

16 and 32 bit code sets for Far eastern languages. This includes the support of mixed code set and
character size (8 and 16 bit).

4.4. User Interface

Windows systems are becoming an indispensable part of UNIX and until recently, X-Windows (from MIT)
and NeWS (from Sun) were vying for acceptance and supremacy.

The development of Window systems was started in the early 70°s by Xerox at their Palo Alto Research
Centre (PARC) and this work has been the basis for all subsequent Window systems. PARC were
responsible for the development of most if not all the basic ideas that are now mandatory parts of a window
system: overlapping windows; icons; menus; and scrollbars. In 1980°s, a number of proprietary systems
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began to appear. However, these systems had serious limitations, particularly in the areas of portability
and networking.

At the same time, research projects in US at CMU and MIT were developing systems which attempted to
solve these problems. In 1984, ANSI also began to look at requirements of window systems which resulted
in the formation of X3H3.6 Technical Sub-committee to develop a standard for Window Management
Systems.

The main issues for Window systems are:

° Stability. No commercially available window system is more than five years old and no system has
remained unchanged for more than one year. This is of particular importance since it is through the
windows that an end user interacts with their applications

. Portability. Window applications are difficult to build and require a non-trivial amount of time to
lean how to use. Therefore, a consistent programmer interface is important. X-Windows has been
ported to a wide variety of machines from PCs to supercomputers and most of the major
workstations. However, NeWS is based on PostScript which drives a variety of printers making
picture printout easy and has been ported to a number of PCs. ANSI’s purpose is to provide a
standard environment for developing window applications.

° Toolkir. Panels, buttons, scrollbars and other tools have become an essential part of most modern
window-system applications. Most proprietary systems offer them as standard. The latest version of
X-Windows (X.11) contains a composite toolkit based on those developed by a number of
organisations for earlier versions. A NeWS toolkit supporting Sun’s SunView toolkit is expected in
the near future.

The toolkit does not lock the system into a given user interface. Functions are hidden behind
interactive items (icons etc.) which can be made to look like almost anything. Thus, the integration
of a standard system into existing user interfaces can be done without too many problems

. Graphics. The emergence of window systems does not preclude already established graphics
standards from fitting into the window standard. It has not yet been established how a graphics
standard such as GKS or PHIGS would fit in with the window environment. But both NeWS and X-
Windows provide hooks to allow additional commands to be added to the base set, allowing
GKS/PHIGS calls to be supported in the same manner as the standard windowing functions

. Performance. At present there are no independent comparisons of X-Windows and NeWS. In
theory, NeWS should be faster in complex situations as it communications via a language rather that
procedure calls. Unlike previous ANSI standards, performance is an integral part of the window
system.

Both NeWS and X-Windows have a client-server architecture which allows access to applications from
remote intelligent terminals. The server is specific to the capabilities of a given hardware device, but has a
common interface on the network side. This interface communications with the client application and
informs the client about the capabilities of the hardware. Window calls issued by the client are translated
into the desired display or the best approximation to it.

The two key differences between the two systems are a) the attitude to pixels; and b) the interface to the
server. Under X-Windows, the fundamental concept is the pixel. The client manipulates these pixels via a
procedural interface. Whereas, under NeWS, the fundamental concept is the path (a set of curves defined
in the coordinate system and rendered on the device by stroking or filling). The client manipulates the path
via a programming language which is transferred to the device. The use of a programming language has a
significant effect on the communications bandwidth needed to operate a display remotely in cases of fast
interactive feedback or large numbers of repetitive operations.

During 1987, the development direction for windows became more clear. In January of that year, eleven
leading manufacturers (including DEC, HP and Apollo) endorsed the X-Windows approach. This was
followed by an announcement by the X/Open group that it was looking to standardise on X-Windows. In
September, the latest version of X-Windows (V.11) was shipped by MIT. Late in the year, the ANSI sub-
committee on Window Management agreed to a request to investigate X-Windows as a basis for a future
standard. The committee is currently developing reference models and documentation for X-Windows as a
standard as well as determining the relationships between X-Windows and the various graphics standards
(GKS, PHIGS. etc). Other developments at the end of the year included a proposal from DEC and Sun on
the method for including of 3-D graphics in X-Windows and the formation of an industrially sponsored
consortium to continue the development of X-Windows which is expected to include 98% of all
workstation manufacturers. As a result, X-Windows has almost become the de facto standard with little
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support outside Sun for NeWS.

However in the long term, it is likely that NeWS or something similar will supersede X-Windows,
particularly as device resolution increases from the current 50 to 90 dpi to 200 or more dpi.

4.5. Real Time

A Real Time O/S (RTOS) differs from a general purpose system in being deterministic — i.e. it responds to
external events with a set time limit. UNIX was designed as a general purpose, interactive time-sharing
operating system and lacks many RTOS features.

Two questions arise as a result: 1) what functions are features are required for an RTOS; and 2) how can
UNIX be extended or re-designed to provide these capabilities? The later gives rise to one further question:
is it worth the effort to provide Real Time on UNIX? This arises because standard UNIX incurs overheads to
support resource sharing. Resource sharing is inherently non-deterministic. As a result, UNIX may not be
able to deliver real-time response times.

At present, a number of large manufacturing companies (Hughes Aircraft, Chrylser, General Motors, IBM,
HP, AT&T, DEC, et al.) are looking at real time extensions to UNIX. The RTOS requirements under
consideration by the various UNIX standards groups are:

. Event and IPC mechanism

. Shared Memory

° Memory control (resident locking, access to physical 1/O)
Priority scheduling and pre-emption concerns
Asynchronous 1/0 facilities
Synchronous files (write through files) and physical I/O completion
Reliable signal mechanism
High Performance file access
Privilege allocation

. High precision clock

. Metrics and terminology.

These shortcomings in UNIX are not insurmountable. However, the primary question to be answered is
whether trade-offs involved in resolving these shortcoming make UNIX a practical base to start from. It
should be noted in this context that General Motors and Chrysler have both developed versions of real-time
UNIX controlling manufacturing plant.

Three major methods have currently been used to provide real-time facilities under UNIX:

) Real-Time Kernel Extensions. Under this method real-time extensions are added to the kernel in
addition to a number of other modifications to the kernel to give the user more effective control. A
typical example is UNOS developed by Charles Rivers with extensions for priority interrupts and
scheduling, contiguous files and enhanced performance and interprocess communications. Vanilla
UNIX only allows pre-emption and context switching to take place at the start or end of a kernel
service. This can cause interrupt latencies in the range of 1 second or more. Hewlett-Packard have
developed a real-time kernel by adding additional pre-emption points in addition to other real-time
features.

The modification/extension of the kernel is compatible with the current standards because the real-
time services are transparent to them and run underneath.

Real-Time Kernel. Under this method, the kemnel is completely re-written to provide a UNIX
interface on top of a real-time kernel. This technique provides application portability by fooling
UNIX applications which think that they are running on UNIX and have no idea of what really exists
behind the kernel interface. Examples of this technique include Alcyon’s Regulus and AT&T’s
Mert.

In general, these systems use a two layer approach to implementing the real-time functionality. The
lowest level provides the real-time services which are the most difficult to implement in the standard
kernel. These include pre-emptive and priotity scheduling mechanisms, asynchronous /O,
synchronisation and contiguous files. On top of this low level kernel (but still part of the kernel) sits
a UNIX supervisor which interfaces with the low level services. The supervisor provides the UNIX
environment and functionality to applications which run on top of the supervisor in user mode.
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° Distributed Executive. An alternative architecture integrates UNIX with a dedicated real time
executive via distributed processing techniques. A host processor supports an environment for
developing applications and for execution of traditional applications and parts of real time
applications. The satellite processors run dedicated real-time executives. The satellite processors
may or may not be UNIX systems as they do not require compilers and debuggers and may not even
require file systems and schedulers. These satellite systems may have customised versions of UNIX
with features specific to the task they have to perform.

For example, an individual real-time process may be specific to the sensor or device it is collecting
data from or controlling, but the rest of the application can be running under UNIX.

4.6. MS-DOS/UNIX Convergence

Despite their version of Xenix, Microsoft’s major success has been in the single user PC market with their
MS-DOS operating system and its associated products. The success of the PC and MS-DOS has resulted in a
large number of commercial packages being available for these systems, ranging from word processing to
database, spreadsheets to graphics. Since MS-DOS first appeared on the Intel 8088 based 1BM PC, the PC
market has progressed first to full 16-bit support and now to full 32-bit support with the advent of Intel’s
latest chip, the 80386 which has a raw CPU speed of 3 to 4 MIPS. However, MS-DOS itself has changed
little since its original version and is viewed in some parts of the industry as a toy operating system.
Although support for large disks, international versions and UNIX file semantics have been added, the
operating system remains restricted in the original 8088 environment - 640K bytes of memory and single
task/single user. It has not evolved to take advantage of the features of the later generation of Intel chips.
These include: virtual memory, linear address space, configurable protection and task control functions.

In particular, the new Intel 80386 is probably the most ludicrously overpowered engine ever to be crammed
under the bonnet of a single user machine, given that its raw CPU speed approachs that of a CDC6600.
Current predictions suggest that it should be able to support a 20 user UNIX system with full memory
protection. Intel themselves have aimed the 80386 at the multiuser market currently led by Motorola with
the 680x0 series.

A multi-user version of MS-DOS should have pre-empted much of the current interest in UNIX. But
Microsoft has not produced this. Even the new OS/2 cannot truly be said to be multi-user/task and is
unlikely to be ready and stable for some time. Most of the current interest in the 80386 is UNIX based
which can take full advantage of the chip’s paging and large address space (64T byte). In this area, Intel
are likely to profit from their commitment to compatibility that has been much criticised in the past.

Until the advent of the 80386, there were three methods of providing MS-DOS under UNIX: software
emulation of Intel’s 8086; a hardware co-processor; or using a PC/AT under Xenix and MS-DOS. All of
these suffered from the problems of cost, system overheads, badly behaved programmes (with the first two
methods) which directly addressed the hardware by-passing MS-DOS, and single user access to MS-DOS
(with the latter two method). In addition, under Xenix, the user has to re-boot the system as although
Xenix can read and write MS-DOS disks, MS-DOS applications have to be run under MS-DOS. In addition,
UNIX workstation (which are mainly 680x0 based) manufacturers have recognised the importance of
providing access to UNIX s technical and MS-DOS’s commercial software on the same box.

The design of the 80386 allows it to run in one of several modes on a per-task basis and to switch rapidly
between these modes. Of the available modes, two are of importance to UNIX: protected mode; and virtual
8086 mode. Virtual 8086 mode is a sub-set of protected mode which provides the protection and demand
paging of protected mode and 8086 programme execution in the same manner as an 8086. This allows the
chip to run UNIX in protected mode and MS-DOS in virtual 8086 mode at the same time, switching between
modes on a per-task basis which gives multi-user access to MS-DOS.

With the arrival of the 80386, two major products have appeared which allow multiple versions of MS-DOS
to run under UNIX: VP/ix from Interactive Systems; and VM/Merge from Locus. The functionality of the
80386 allows the host operating system to detect and process interrupts and direct access to the hardware
allowing even badly behaved applications to run. A user under UNIX can start up an MS-DOS application o
MS-DOS itself and when working under MS-DOS can initiate a UNIX application as if they were running
under UNIX directly. The development of Window systems allows the user to have MS-DOS and UNIX
applications active concurrently on the same terminal. Even badly behaved MS-DOS programmes are
supported by these products, something that cannot be said of OS/2 under some circumstances.

MS-DOS files are integrated with the UNIX file system to avoid the need to partition the disks or add
filename prefixes. An 1/O re-director translates the files into the appropriate format when reading from or
writing to the disk. Thus UNIX and MS-DOS files are interchangeable. Each MS-DOS application sees 1M
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byte of accessible memory; however, the programmes are paged in and out of 64k byte pages along with
the rest of the system.

4.7. Security

Until recently, highly secure systems have existed almost exclusively in defence establishments. However,
since deregulation of the City and the rise in computer related crime, interest in security has surged in the
commercial sector. Much of this interest is based on work already done in the defence field. Although
most defence establishments have their own criteria for defining and selecting secure systems, only the US
Department of Defence (DoD) has published its criteria and classification. As a result, much of the
discussion on secure systems is based on the system security classification described in the DoD’s Trusted
Systems Evaluation Criteria (TCSEC), also called the Orange Book.

In the TCSEC, the collection of system elements responsible for implementing the security policy is called
the Trusted Computing Base (TCB). Only the TCB is analysed to assess its security provision. In the case
of UNIX, this means as a minimum the kernel and the utilities init, getty, and login. Because security
depends on the hardware as well as the software, both are evaluated and the complete system receives a
classification. The TCSEC bases its classification on four criteria:

1. Security Policy. This criterion specifies how the TCB must control access between subjects and
objects. It area covers: discretionary access control; object re-use; label integrity including
exportation of label information to multilevel devices and human readable output, subject sensitive
labels and device labels; and mandatory access control.

Accountability. This criterion defines the rules for how the TCB must keep a record of security
related events. These first two criteria specify the visible security features. This field defines two
areas: a) identification and authentication including trusted paths; and b) audit trails.

Assurance. This criterion specifies the attributes of the TCB’s design and/or structure that ensure that
the security features are implemented securely. It covers two areas: a) operational and b) life-cycle
assurance. Operational assurance covers system architecture, system integrity, convert channel
analysis, trusted facility management and trusted recovery Life-cycle assurance covers security
training, design specification and verification, configuration management and trusted distribution.

Documentation. This criterion defines the documentation that must be provided in order to operate a
secure system. This field covers four areas: a) security features user’s guide; b) trusted facility
manual; ¢) test documentation; and d) design documentation.

TCSEC defines four divisions of security (A to D) within which there can be a number of sub-divisions or
classes (numbered from 1 — lowest). Each class has a specific set of criteria (based on the general criteria
mentioned above) which fall into four groups. The divisions in order of increasing security are:

D Minimal protection (1 class). It denotes systems that have been evaluated but but fail to meet the
requirements for higher levels

C Discretionary protection (2 classes).
The system provides users with controlled access to data on an individual basis. It also requires
some auditing of actions performed by a user in the area of system security.
UTX32/S (Gould) and VMS4.2 (DEC) are classified as level C2 (highest in division C).

Mandatory protection (3 classes). The system provides qualitatively stronger protection than level
C. It requires mandatory access control that enforces a systemwide classification of data according
to the system security policy. Enter positive vetting. New requirements are added over and above
level C.

MULTICS is classified as level B2.

Verified protection (1 class). The principle addition is the requirement under Design Specification
and Verification for a Formal Top Level Specification that describes the TCB in a formal language
(usually a form of first order predicate calculus). This must be shown to be consistent with the
Formal Model of Security Policy (also described in the same formal language) which is a
requirement for the highest division B class and with the source code for the TCB.
SCOMP(Honeywell) is classified as level Al.

At the lower end of the classification (C1 to B2), the emphasis is on additional security features. At the
higher end (B2 to Al), the emphasis switches to assurance. However, nothing is discarded in moving to
higher security levels as the TCSEC is structured such that the requirements of a particular level apply to
that level and all higher levels.
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As well as recognising that security is a new selling feature, manufacturers have been spurred on by a
change in US law which came into force in late 1987 which requires that all computers purchased by the
government must be classified at level C2 and that the top 25% need to be level B1 or above.

Vanilla UNIX is almost at level C1. Most of work required to raise UNIX to full CI level is in the area of
security documentation. Other features which need to be addressed include: login; password usage, aging,
generation and allocation; obtaining super-user privileges; secure distribution channels; and writable shared
resources.

For UNIX to move to high levels, in addition to the work required to introduce mandatory access control,
work is required in the areas of Accountability (vetting of user access and audit trails) and Documentation
(provision of adequate security documentation). Level B3 and above will require a complete re-write of
the kernel in addition to any new functionality.

At present, work is currently under way by X/Open, the UNIX user group and POSIX committees to define a
standard more secure UNIX.

The appearance of networked systems has raised more problems for the security of a system which the
Orange Book does not address, in particular the security of messages on the network. There are two
projects currently under way, one in the UK and one in the US which are attempting to address networking.
Both projects are based on the current Orange Book. The UK DoTlI is expected to publish its networking
criteria by 1988. In the US, a semi-classified document known informally as the Brown Book which
addresses the problems of networked systems is currently available on limited circulation. The US DoD is
also currently evaluating the security criteria for Database system, but no date is available for the issue of
these criteria.

5. The Future
“What are we going to do now?"' (Spike Milligan)

UNIX has grown and matured over the past twenty years from a small in-house project to one of the major
vendor-independent operating systems. Given the current developments outlined earlier in this paper,
UNIX is certainly the most mature of the vendor-independent systems and is as feature-rich as many
proprietary systems.

The three major changes that are likely to place in the UNIX field in the next five years are a) the rise of
POSIX standard; b) the development of the secure UNIX systems; and c) the increased use of LAN based
networked systems linking UNIX and MS-DOS & OS/2 systems. During this time, the POSIX standard will
become the main starting base for the development of UNIX-like systems, replacing AT&T UNIX. This
will allow vendors to keep their proprietary operating systems with any competitive advantage this may
give and as well as provide their users with access to a broader range of software applications. These
include the developments of newer operating systems which are POSIX conformant, yet provide features or
scope not available under standard UNIX. Examples include: OS/9 and TRON (currently under development
in Japan).

These developments are being driven by the commercial requirements of, in particular, the US government
and these requirements place a number of constraints on the technical development by forcing it down a
number of paths — minimal kernel changes, compatibility with other versions etc. It is questionable
whether this is the right approach in view of the requirements of transaction processing, security and real-
time processing.

The networking of UNIX and MS-DOS systems is a very recent development, given the large number of
personnel computers in the commercial field. A number of manufacturers are developing integrated office
products which allow these PCs to share information and resources with a central host. Indeed, X/Open
have set up a working group to look into the question of networking PCs and UNIX systems via LANs.

The other area which is attracting considerable attention is that of RISC architecture. A large number of
RISC machines are now available from major manufacturers such as IBM and HP, through others like Sun,
to the smaller manufacturers such as Immos and Acorn. RISC machines are also expected from the
traditional micro suppliers Intel and Motorola. The common feature of all these machines it that they run
UNIX under one version or another. Part of the recently announced relationship between AT&T and Sun is
to develop an Applications Binary Interface standard to allow binary portability across machines. Much of
this work is based on Sun’s new RISC chip (SPARC).

There are a number of uncertainties on the immediate horizon which arise from the failure of the major
corporate developers of UNIX to clearly indicate their future directions. In particular, the relationship
between AT&T and Sun and the position of IBM with respect to UNIX give cause for concern. Whilst the
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AT&T/Sun relationship will bring benefits to both the protagonists and UNIX, the relationship is causing
concern in the industry over benefits Sun may gain over its competitors. The benefits to UNIX include the
re-writing of the kernel to merge System V.3 and SunOS which is 4.2 BSD based. IBM’s position with
respect to UNIX is more complex. UNIX is now available in one form or another across the complete IBM
range with the recent announcements of AIX on the 9370 and the PS/2. However, questions arise¢ over
IBM’s commitment to UNIX in the commercial market as they have not made their position clear with
positive actions instead of just words. It does look, however, that even IBM realise that UNIX has and will
continue to have an important role in certain markets: workstations, graphics, government.
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ABSTRACT

This paper describes the features of NCR’s General Purpose Transaction Facility
(GPTF), an extension to NCR’s implement-ation of UNIX System V for the TOWER
supermicrocomputer. Timer signals with millisecond resolution are presented.
Performance of process synchronization and interprocess communication is improved via
a set of semaphore primitives which executes in the user program environment and
operates on structures which exist in standard UNIX System V shared memory. A
scheduler is described which reduces process switching latency and provides process
scheduling among both realtime and timesharing priority classes.

Additionally, a mechanism is provided to lock a process in memory so that it is immune
to paging. Scheduling latency is reduced through voluntary preemption within the
kernel. A novel disk I/O scheduler provides the ability to schedule disk requests
according to process priority, seek distance, or some configurable combination of both
parameters.

User access to the transaction processing facilities is provided via a set of system calls
and shell commands. A user friendly interface is provided to allow a superuser to control
such access.

1. Introduction

The UNIX Operating System provides interprocess communication, timer signals, and a process scheduler
which are well-suited for time-sharing applications. Applications which control automatic teller machines,
cash registers, and other response oriented devices, however, require more efficient and predictable
processing of the "transactions” which they service.

An example of a transaction oriented application is one which controls point of sale terminals handling
sales of goods to customiers in a department store. Such an application could be part of a system which
also performs other functions relating to the store’s daily operation such as maintaining inventory,
ordering, and price data bases; generating sales reports; and updating payroll information.

A typical terminal control system might use a standard relational data base, such as UNIFY, to maintain
information pertaining to goods for sale in the store. While the point of sale terminals will issue queries to
the data base for price information, other processes might also be accessing the data base. An inventory
control application, for example, could be updating inventory levels as items are sold, a data collector
might be retrieving retail and wholesale prices for end-of-day report generation, and a data capture process
could be recording all events occurring in the system. Each request for access to the data base might be
directed by a request router to an appropriate queue. One queue would be maintained for each type of data
base request. In many UNIX systems, these request queues would be implemented using System V
message queues. When there is one or more requests on the request queues, a semaphore could be set
indicating to a request server that there is an access pending.

A point of sale terminal control system such as this is transaction oriented. The time required to service a
transaction, such as the price lookup request from a terminal, directly translates into wait time for the
customer. The lower bound on this wait time is defined by such things as the processor speed and disk
driver throughput. The upper bound, however, depends upon the number of other processes in the system
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and, due to the scheduler implementation in many UNIX systems, this could exceed acceptable limits for
transaction oriented processes.

Transaction oriented applications require predictable response times. GPTF provides a modified process
scheduler, a unique disk I/O scheduler, and improved system features which provide an environment for
development of transaction oriented applications.

2. Process Management

UNIX was designed to provide a "fair" time-sharing environment in which all user processes would receive
an equal opportunity at using system resources. The scheduler and memory management schemes which
achieve this prevent UNIX from being an effective environment for transaction oriented applications. The
difference between the time the CPU stops executing one process and thie time it begins executing the next
is referred to as switching latency. Switching latencies in typical UNIX systems tend to vary so much that
process run time is no longer predictable to within reasonable limits. While system resources such as
processing power and disk throughput are fixed, the way these resources are allocated is dependent on the
system scheduler. Transaction oriented applications require a scheduler and system features which can
reduce switching latencies and order disk accesses to provide bounded, and thus predictable, response
times.

2.1. Residency

A typical UNIX system utilizes paging for memory management. If available memory runs low, the kernel
will free up memory by writing pages to secondary storage. Any time a reference is made to a page which
is not resident in memory, a page fault results and the kemel retrieves the associated page from secondary
storage. The length of time required to page in enough memory to begin execution of a process is one
component of switching latency. In many UNIX systems, the system call plock() provides the ability to
lock a process in memory, thereby avoiding the delays involved in paging memory to disk. There is,
however, no way to specify a limit on the amount of memory which must be reserved for non-resident
processes. This means that enough processes could invoke the plock() system call to lock all available
memory, preventing initiation of additional processes.

GPTF provides a system call to make a process resident which provides a major advantage over plock() .
When a process is made resident via the GPTF system call, the pages associated with that process are
touched. This means that if they are paged out at the time the system call is executed, those pages will be
paged and locked into memory at that time. If the process expands, the new data is also made resident.
The key advantage of GPTF residency is the ability to specify, via a parameter in the system configuration
file, a lower limit on the amount of memory which must be reserved for non-resident processes. This helps
to ensure that there will be enough memory available to begin execution of other user processes.

2.2. Priorities and Process Scheduling

In all UNIX systems, every process has an associated priority. For many systems, this priority is a
numerical value from 0 to 127 where a lower numerical value corresponds to a "better” priority. Processes
with priority s+ the range O through 39 are kernel processes, while those with priority in the range 40
through 127 are user processes. A process which is suspended waiting for a resource which is controlled
by the kernel will receive a kernel priority when it resumes. Processes are subject to aging algorithms,
which means that as a process runs, its priority is degraded. The limitation inherent in such a scheme is
that there is no way to distinguish a process, such as a transaction oriented process, as being significantly
"more important” than any other process. Some UNIX systems permit the superuser to issue the nice()
system call with a negative argument to assign a better priority to a process. This priority will still be aged.
however, eventually becoming degraded beyond its original value. Transaction oriented applications
require a system which allows the specification of the importance of one user process relative to another.

When the scheduler selects the next process for execution by the CPU in typical UNIX systems, it searches
the run queue for the process with the highest priority. In such an implementation, the time required to
search the run queue becomes a component of switching latency. This search time varies widely
depending upon the number and priority of processes awaiting execution. Transaction oriented
applications require a scheduler which reduces to a predictable value the time required to search the run
queue.

The GPTF scheduler maintains a traditional UNIX time-sharing environment while simultaneously
providing a responsive transaction oriented environment. This is achieved by breaking user processes into
two classes: real-time processes and time-sharing processes. The priority of real-time processes is fixed
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over the range 40 to 59, where 40 is the "best" user priority in the system. A real-time process will run to
completion unless either it becomes blocked waiting for a kernel resource or another process of better
priority becomes scheduled. The time-sharing process group has a priority range from 60 to 127 and these
processes are subject to the typical UNIX time-sharing strategy of CPU allocation. Time-sharing processes
are further broken down into two classes: time-sharing processes with fixed priorities (fixed time-sharing
processes), and time-sharing processes with priorities which are aged (dynamic time-sharing processes).

Because the priority of real-time processes and fixed time-sharing processes are static, the nice() system
call has no effect on these types of processes. For dynamic time-sharing processes, nice() can be used to
adjust a process priority. For instance, the superuser can use nice() with a negative argument to give a
time-sharing process a priority in the real-time priority range (40..59). If, for example, a dynamic time-
sharing process of priority 65 is the subject of a "nice --15" call, this process will then have a dynamic
time-sharing priority of 50 and will compete with real-time processes for system resources until its priority
is degraded back into the 60 to 127 range.

The scheduler changes are designed to favor real-time processes and to provide more predictable switching
times. While many UNIX systems maintain only one run queue, the GPTF scheduler maintains four run
queues, one for each of the following four types of processes:

1 real-time priority processes in kernel mode

2 real-time priority processes in user mode

3 time-sharing/fixed priority processes in kernel mode
4 time-sharing/fixed priority processes in user mode

Inserting a ready process into the run queue in typical UNIX systems involves merely placing that process
at the head of the run queue. In GPTF, however, the queues for the first three process types listed above are
ordered based on process priority. When a process is placed on one of these run queues, it is inserted in
that queue relative to its priority, with processes of better priority placed toward the head of the queue.
This reduces latency by making selection of the next ready process more efficient. The queue for the
fourth process type listed above is not ordered because the necessary overhead would be too large (recall
that dynamic time-sharing processes may have their priorities recalculated while they are on the run
queue).

When choosing a process to run, the order in which the run queues are searched depends upon whether one
or more real-time processes are waiting for resources in the kernel. Instances occur when time-sharing
processes using kernel resources must be allowed to finish execution to free resources for waiting real-time
processes. If no real-time processes are waiting for resources in the kernel, the queues are searched 1-2-3-
4. If one or more real-time processes are waiting for resources in the kernel, the queues are searched 1-3-
2-4. Also, among several real-time processes, the one with the best priority will be selected but the system
will not preempt between real-time processes having the same priority because this would be a waste of
CPU time.

2.3. Process Switching

The scheduler provided in typical UNIX systems operates on a time-slicing principle. This means that the
scheduler allocates the CPU to a process for a specific, pre-determined time interval (called a quantum),
preempts the process when the time quantum is exceeded, and reschedules the process for subsequent re-
execution by placing the process back on the run queue. When the process is rescheduled, a new priority is
calculated based upon how long the process has been running in order to ensure that all processes get equal
treatment in using the CPU and other system resources. Such an implementation adds two components to
switching latency: the length of time required to recalculate the priority when a process is rescheduled, and
the time quantum for which the CPU is allocated to a process. This last element becomes a factor because
the scheduler in many systems has only one preemption point. Because this preemption point resides at the
point where a process stops executing or becomes blocked, the system will only check the run queue for a
better priority process after either the current process has exceeded its time quantum, the current process
has completed, or the current process has blocked waiting for a resource. Transaction oriented applications
require a system which can reduce the latency due to changing priorities and can provide more timely
switching when a better priority process becomes scheduled [1].

In addition to the new scheduling algorithm, GPTF implements a new CPU management scheme which
further reduces the switching latency for high priority processes. Recall that the priorities of real-time
processes and fixed time-sharing processes are static. This means that when such processes change from
kernel to user mode, time is not spent calculating a new priority. Moreover, when any process changes
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from kernel to user mode, a preemption check is made. If a better priority process is on one of the run
queues, the current process is preempted and execution of the better priority process begins. Preemption
points have been placed in lengthy kernel operations, such as when a pathname is resolved to its
corresponding inode in nami() or when a process executes a fork() system call. If a better priority process
is found on any run queue at the check point, the current process is preempted. This helps to prevent the
CPU from being inaccessible to a better priority process for any significant amount of time.

3. 1/0 Scheduling

Disk accesses in many disk driver implementations are prioritized according to the seek distance with
respect to the current direction of head motion. Consider the following example. A process generating a
monthly report of sales figures may be requesting a price lookup from a data base. This data may
physically reside on the disk two cylinders "in front of" where the head is currently positioned. A better
priority process controlling a point of sale terminal may be requesting a price lookup from a data base to
generate the cost of a sale. If the data for this second request is four cylinders in front of the head, the first
request will be honored first, even though the second request is, in a response time sense, more important.

For a transaction oriented process, it is sometimes desirable to forsake the strict seek distance ordering of
disk requests. GPTF provides the ability to schedule disk 1/O according to the requesting process’s priority,
the relative seek distance required to service the request, or some combination of the two. The value of a
disk priority parameter in the system configuration file determines how disk I/O requests are scheduled. A
value of 0 specifies that all disk I/O is to be considered to be of equal priority, and therefore all requests are
sorted by seek distance only. A value other than 0 specifies the number of process priority queues to be
created for disk requests. For example, if 4 is specified, four queues will be created: one for disk requests
issued by processes with priorities in the range 0 through 31, one for requests by processes in the range 32
through 63, one for requests by processes in the range 64 through 95, and one for requests by processes in
the range 96 through 127. Within each queue, requests are sorted by seek distance. Requests in the first
queue are honored first, followed by requests in the second, etc.

4. Event Synchronization

Some environments require tight control over closely cooperating processes. Two or more applications, for
example, may be sharing system resources such as memory buffers or data bases and must interact
frequently, communicating synchronously or asynchronously. System V interprocess communication
(IPC) facilities were designed to satisfy this need, but they suffer from poor performance and a baroque
programmer interface [2]. GPTF addresses these System V shortcomings by providing a new set of timers
which have millisecond resolution, and by supplementing IPC facilities with faster semaphores and an
alternate message queuing scheme. Implemented in shared memory, the GPTF semaphores and message
queues provide more efficient synchronization, enhanced performance, and greater flexibility.

4.1. High Resolution Timers

UNIX provides timers via the sleep() and alarm() system calls. While these have resolution measured in
seconds, transaction oriented applications typically require timers with resolution in milliseconds.

The timer services provided by GPTF are a supplement to UNIX System V timers. The GPTF timers may be
single-shot where the timeout occurs only once after the timer is set; or periodic where the timer is made
active again each time a timeout occurs. The GPTF timers may be further specified to be maskable or non-
maskable. If a timeout occurs on a maskable timer while the process is in a timer-disable state, the
process’s timeout routine is not called until the process enters the timer-enable state. If a timeout occurs on
a non-maskable timer, the process’s timeout routine will be called independent of the timer enable/disable
state.

The GPTF timers allow transaction oriented applications to request a timeout with an accuracy down to one
"tick" of the clock driver. The number of GPTF timer structures in the system is regulated by a parameter
in the system configuration file. While the alarm() system call will set at most one alarm request per
calling process, the number of GPTF timers which may be set by a process is limited only by the number of
free timer structures in the system. Although multiple GPTF timers may be set by a process, any of those
timers may be cancelled individually.

While the GPTF timers provide greatly enhanced timer services, such features are useful to transaction
oriented applications only if they do not exact a heavy performance cost. Processing of GPTF timers
induces no overhead on other system services, and the overhead involved in updating the timers is
negligible and independent of the number of outstanding timers. The overhead involved in processing a
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timeout signal is similar to the overhead in processing signals in typical UNIX systems.

4.2. Shared Memory Semaphores

Because semaphores in typical UNIX systems reside in and are maintained by the kernel, any operation on
the semaphore requires entry into the kernel. This kernel entry is very time consuming and can be too
costly for transaction oriented applications.

GPTF semaphores are counting integers residing in memory which is shared between the processes using
them. A process attempts to lock a shared resource via a call to a C runtime library routine. This routine
decrements the semaphore counter and if, after the decrement, the semaphore counter is non-negative, the
routine returns without entering the kernel. If, however, the semaphore counter is negative, the kernel is
entered to queue the process on a chain of processes waiting for that resource (redundant code in the kernel
serves to ensure the integrity of the semaphore structure). Thus, processes which lock a shared resource do
not require entry into the kernel if the resource is available. The result is that GPTF semaphores are up to
12 times faster than semaphores in typical UNIX systems in this non-blocking caset. Because the non-
blocking case is the most common for many applications, use of GPTF semaphores results in a significant
performance improvement over typical UNIX semaphores.

4.3. Shared Memory Message Queues

The System V IPC message queuing scheme is implemented as a linked list of message queue headers.
The message queue structure pointed to by each header contains an integer indicating the message type and
an array of characters containing the message. While this implementation is suitable for some needs, it is
not perfect for every application. Transaction oriented applications require a message queuing scheme
which is flexible enough to be worked into that application and efficient enough to not severely impact
performance.

GPTF provides the ability to tailor a message queuing scheme to the individual needs of an application.
GPTF message queues reside in memory which is shared between the processes using them and they utilize
GPTF shared memory semaphores to manage certain variables. Messages take the form of an integer
address of a message structure. This structure is designed by the application designer and may take the
form of a character array, an array of buffers, another integer pointer, or any other form limited only by the
imagination of the application designer. The result is that GPTF message queues are extremely flexible and
very fast, especially in the common, non-blocking case where only one process is performing an operation
on the message queue at a time.

Another feature of the GPTF message queues is that much of the queue management is handled by a C
library interface. GPTF library routines lock and unlock the semaphores which control access to the queues
and increment and decrement the indices of messages in the queues. In this way, GPTF provides an
efficient message queuing scheme without burdening the user with management tasks.

5. Real-Time Attributes

If plock() is used to make a process resident in many UNIX systems, a subsequent fork() will create a child
process which is not resident. In GPTF, however, it is possible to specify that transaction oriented features
such as residency and priority are to be inherited by child processes. Thus, for example, if a process with
this inheritance privilege is made resident in memory and that process does a subsequent fork(), its child
process will also be resident in memory.

Residency in memory and the priority at which a process is specified to run are examples of real-time
attributes. GPTF allows real-time attributes to be bestowed upon applications via shell commands as well
as through C library calls. Providing shell commands which bestow real-time attributes enhances
portability by allowing an application to use transaction oriented features without requiring any code
changes to the application itself. This means, for instance, that a transaction oriented application such as
the point of sale terminal control system described earlier can use an off-the-shelf data base manager such
as UNIFY to maintain store information. Providing C library calls which bestow real-time attributes
allows the programmer to code his or her application to take advantage of GPTF's transaction oriented
features without having to use special shell commands.

+ Based upon a comparison of UNIX System V semaphores and GPTF semaphores on a TOWER 32/600. Test results
represent 100 operations on a resource whose access is controlled by a semaphore. Test system was run with a charac-
teristic system load.
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6. Control of Access to Real-Time Functions

The features provided by GPTF can have a profound impact on the performance of a system. As a result,
user access to such features must always be carefully monitored and controlled. GPTF provides the
superuser with a user-friendly mechanism to strictly regulate the use of GPTF system calls and shell
commands.

The superuser may always utilize GPTF functions. For non-superusers, however, GPTF maintains a
permissions file containing the user and/or group id’s of processes allowed to use GPTF functions. If this
file is not present, only the superuser has access to GPTF functions. If this file is present, then any attempt
by a non-superuser process to bestow real-time attributes upon any process will result in a scan of this file
for the user and group id of the process issuing the call. If such an entry is found and the function
requested is within the bounds specified for that id, the action is performed. A shell command permits the
superuser to add and to remove id’s to and from this file.

7. Future Directions

There are a number of areas which may provide opportunity for increased performance and functionality
for transaction oriented applications. Modifications to the file system to support contiguous files would
enhance performance and synchronous writes, closes, etc. would provide significant improvement in data
integrity for some transaction oriented applications.

Additional places may be identified in the kernel to place preemption checks, which would further reduce
the switching latency for high priority processes.

User access to 1/O devices, possibly through a shared memory create/attach syntax, and a mechanism to
attach user processes to hardware interrupts would provide enhanced functionality for real-time process
control applications.

The Institute for Electrical and Electronics Engineers (IEEE), as part of its efforts to define a POSIX
standard, has formed the P1003.4 real-time subcommittee. P1003.4 has currently identified eleven areas
which should be addressed in a real-time extension to the POSIX standard. GPTF currently addresses nine
of these and the other two are addressed by the future directions described above. NCR is a member of
1003.4 and will support the real-time extensions to POSIX and the real-time extensions AT&T is planning
for SVID [3].
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ABSTRACT

For almost ten years, Make has been a most important tool for development and
maintenance of software systems. Its general usefulness and the simple formalism of the
Makefile made Make one of the most popular UNIX tools. However, with the increased
upcoming of software production environments, there is a growing awareness for the
matter of software configuration management which unveiled a number of shortcomings
of Make. Particularly the lack of support for version control and project organization
imposed a hard limit on the suitability of Make for more complex development and
maintenance applications.

Recently, several programs have been developed to tackle some of the problems not
sufficiently solved by Make. shape, the system described in this paper, integrates a
sophisticated version control system with a significantly improved Make functionality,
while retaining full upward compatibility with Makefiles. shape’s procedure of
identifying appropriate component versions that together form a meaningful system
configuration, may be completely controlled by user-supplied configuration selection
rules. Selection rules are placed in the Shapefile, shape’s counterpart to the Makefile.

The shape system consists of commands for version control and the shape program
itself. It is implemented on top of the Attribute File System (AFS) interface. The AFS is
an abstraction from an underlying data storage facility, such as the UNIX filesystem.
The AFS allows to attach any number of attributes to document instances (e.g. one
particular version) and to retrieve them by specifying a set of desired attributes rather
than giving just a (path—) name. This approach gives an application transparent access to
all instances of a document without the need to know anything about their representation.
So, it is also possible to employ different data storage facilities, as for instance dedicated
software engineering databases.

The project organization scheme of shape provides support for small (one man),
medium, and large projects (multiple programmers/workstation network).

1. Background

For almost ten years, Make [6] has been a most important tool for development and maintenance of
software systems. Its general usefulness and the simple formalism of the Makefile made Make one of
UNIX" most popular tools. However, with the increased upcoming of software production environments,
there is a growing awareness for the matter of software configuration management which unveiled a
number of shortcomings of Make. Particularly the lack of support for version control and project
organization imposed a hard limit on the suitability of Make in more complex development and
maintenance applications.

The notion Configuration management has been introduced by US military and government institutions for
a set of management techniques dealing with the complexity (and costs) of very large development and
maintenance projects. Triggered off by the surge of interest in programming environments during the last
few years, the term software configuration management (SCM) made its way from the management
domain towards the software engineering and development domain. Configuration management has been
triedt to define as “the process of identifying the configuration items in a system, controlling the release
and change of these items throughout the system life cycle, recording and reporting the status of

1 well, if you consider an ANSI standard a try
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configuration items and change requests, and verifying the completeness and correctness of configuration
items. It is a discipline applying technical and administrative direction and surveillance to (a) identify the
functional and physical characteristics of a configuration item, (b) control changes to those characteristics,
and (c) record and report change processing and implementation status” [9]. Major subtopics included in
configuration management are change control, configuration identification, configuration control,
configuration status accounting, and configuration audit.

In the UNIX domain, Make and source control systems as SCCS [13] or RCS [15] are in widespread use
as configuration management tools. When designing a new configuration management toolkit for UNIX,
one has to have a very close look at what is already there. In the categories given above, the areas
addressed by these tools are configuration identification and change control, the mainly technical aspects
of SCM (in contrast to the other, more management related disciplines). The configuration management
toolkit described in this paper stays in the technical area and attempts to solve some of the problems not
sufficiently covered by existing tools, while at the same time laying the groundwork for further
developments that implement support for managing software projects. The toolkit consists of a dedicated
version control system, and shape, a significantly enhanced Make program. shape has full access to the
version control system, and allows the user to specify configuration rules, to control the selection process
for component versions during identification, build or rebuild of system configurations. For the time being,
we choose to be upward compatible with Make and thus to retain its concept of openness and versatility.
Besides, this helps to make a new — potentially complex — tool easy-to-learn and easy-to-use for the large
developer community who is familiar with Make.

Since integration of version control was a major objective for our system, we had to face the need for a
document identification scheme that goes beyond the usual way of specifying name and type of a
document. As a consequence, we began to design an attributed filesystem (AFS) introducing a much more
generalized scheme for document identification. The AFS comprises concepts for version control, support
of variants or status models for example. Furthermore, it helps to abstract from the particular underlying
data storage system in such a way that it makes no difference whether it is an ordinary filesystem or a
dedicated database system.

In the following section we make a serious effort to use Make and RCS effectively for configuration
management purposes and give an impression of some typical SCM related problems that are not (or at
least very hard) adequately to control with Make and existing source control systems. Section 3 takes a
closer look at how things are improved by shape. We explain the new concepts of shape and how it
works internally. In section 4 we conclude the discussion and and outline the prospects for future work.
Samples for a Makefile and a Shapefile that support the discussed activities can be found in appendix A and
B respectively.

The paper assumes that you are familiar with the concepts of Make and the Makefile.

2. Doing it with Make

Although the full power of Make’s basic concept takes effect only in the UNIX environment, the program
has been ported to or reimplemented on a considerable number of systems. Without Make, UNIX wouldn’t
be what it is today. However, in the last years a number of attempts have been made to improve the
program in a number of ways, complete reimplementations have been done, and quite a lot of criticism has
(respectfully, though) been expressed, of what is considered weaknesses of Make (2,3,7,8,10,14, 16].
Often, the discontent is related to some kind of specialized new task that Make is put to work on, which it
wasn’t originally designed to perform. So, this kind of criticism can also be interpreted as some
compliment for a very flexible tool.

In [16] it is argued that one of Make's more serious drawbacks lies in the lack of standards and differences
between versions. Makefiles are frequently written in an ad-hoc fashion rather than carefully designed, as
they should be. An ambivalent issue about Make is that one tends to use it without having to think about it.
This situation is supplemented by a lack of education. There are only few tutorials and guides that explain
how to make the right use of Make. Even experienced Make-users happen to be unaware of some of
Make’s features and abilities.

Despite proven deficiencies, there are only few absolute no-no’s with Make. An experienced and
sufficiently stubborn practitioner will (almost) always be able to invent some workaround that serves her
particular need. This results from a consequent concept of openness and extensibility. The combination of
Make with tools as sh, awk, sed, grep, cpp ... makes Make really a devil of a fellow. Nobody said that all
the power is easy to use, though.
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In the subsequent discussion we present quite a hard try to (well, kind of) integrate Make with RCS, one of
the finest available source control systems, intending to create a tool environment suitable for basic
software configuration management tasks.

We’re addressing three common application scenarios that relate to basic SCM tasks:

1) cooperating developers: a number of programmers independently working on different parts of the
same targeted system.

2) system integrator: a functional role that gathers the work results of cooperating developers and creates
official configurations (releases). The integrator has read-only access to all sources.

3) maintenance: backing up formerly saved system configurations for the sake of bug fixing or
incorporating customer specific modifications while development goes on at head the system
components’ main lines of descent.

2.1. A Sample Project Setup

For the first scenario we assume that every programmer has a dedicated directory where the workfiles (we
call them busy versions) of those components, she is in charge of, are kept. During component
development these busy-versions undergo frequent changes. In order to test a work result, the programmer
needs to build a complete system configuration from these privately modified components and all
remaining components, possibly controlled (owned, reserved, locked) by other programmers. To avoid
interference by temporarily inconsistent components, taken care of by other programmers, it is necessary to
maintain consistent (or milestone) versions of these components and make them available. Making use of
RCS, it’s quite simple to organize mutual access to saved, (hopefully) consistent versions of all system
components. RCS allows to store document revisions in archive files residing in a special subdirectory,
RCS. To circumvent confusion with lots of different pathnames (of all the programmers’ work directories)
and to provide shareability of the Makefile, it is a good idea to create one single directory as repository for
all the RCS archive-files, and let all members of a project have a symbolic link (named RCS) to that
directory. Unfortunately, this works only with the BSD flavor of the operating system.

To arrange Make and RCS, a couple of new transformation rules, handling dependencies of sources from
source archives must be added to the Makefile. A sample Makefile that does the job described here can be
found in appendix A. These rules in conjunction with the setting of special macro VPATH which extends
the scope wherein filenames (in this particular case their suffixes) are looked up, cause all .o files which’s
source is not present in the current directory to be generated from the corresponding, latest saved .c-source
in the archive file. Temporarily retrieved sources are deleted immediately after the compilation is finished.
The resulting object files, however, are kept and only regenerated when the corresponding source archive is
touched, i.e. a new source version becomes available.

An important point in this approach is that cooperating developers have to trust each other in that new
module versions are made available with care. The described scenario works quite well in preventing
programmers from accessing components that are under immediate construction. This does not imply
however that functional changes or interface modifications are properly advertised. In fact, herein lies a
much more severe problem, because programming languages like C don’t provide detection of these cases.
Usage of lint would be advised here but for obvious reasons, routine use of lint is — to say the least —
unpopular. Some mechanism for either accepting/rejecting of newly submitted versions or incremental
testing with associated status control would be helpful.

Eventually needed include files must remain checked out, because Make doesn’t allow to express that a
derived object depends on (possibly multiple) sources stored in an archive. This might be considered
harmless in the context of C but causes considerable overhead when applied to programming languages as
Modula-2 or Ada, where each compiled object depends on at least two sources.

Another problem for cooperating developers is to keep their Makefiles consistent. Each programmer needs
her own copy of the overall Makefile which should be identical for all programmers. Changes to
Makefiles, e.g. introduction of new system components, new dependencies or different compiler options,
should be published as soon as possible in order to maintain a common level of information. However,
most of the changes made by a programmer will be very small, and therefore it is unnecessary to force her
to edit — and maybe damage — the entire Makefile, a possibly huge, complex and extremely sensitive piece
of information. For cooperative projects, it would be highly desirable to have such things as distributed or
modular Makefiles providing localization of information while at the same time maintaining consistency
with the whole of the project.
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2.2. Making Releases

The creation of releases is the system integrator’s job. Releases are system configurations, intended to be
passed to the outside world or representing internal milestones. Releasing a product includes taking the (at
least moral) responsibility for its functional integrity and to be prepared to react on maintenance requests.
Establishing a release baseline means to synchronize the development stages of all components that are part
of it and creating a checkpoint where all independent lines of development intersect and are bound together
(i.e. make sure that all program modules work and cooperate properly, and all the documentation is up to
date). We’re talking testing and reading here, things that require a consciousness of responsibility, and
mostly have to be carried out manually. The release process can be fairly complex: work results of
programmers and writers might have to be reviewed or evaluated against specifications, unsatisfying results
have to be rejected, corrected, evaluated again a.s.o. There is a complex relationship between software
configuration management activities such as version control, version status accounting, and configuration
auditing and systematic software quality assurance. An in-depth discussion of this matter can be found in
[4].

To fix a release requires precise identification of the product configuration. For the sake of maintainability
any given release should be exactly reproduceable. This comprises looking up all the source document
versions and rebuilding any derived product under the same prerequisites as has been done originally.
Although it is impossible to do this a 100% perfect, this can be accomplished to a certain degree by logging
all characteristics of a configuration in a configuration identification document (C/D). To meet minimal
requirements, a CID should contain the following information:

e acomplete list of the system components with version identification

e the version of the Makefile

o the current date, and the identification of the programmer in charge for the configuration

e identification of all tools and their versions that were involved in building the configuration.

Doing this with Make and RCS is not the easiest thing to do. When dealing with these requirements, it
becomes obvious that the functionality of RCS and Make should be truly integrated rather than artistically
woven. RCS provides for marking document revisions with state attributes (e.g. “released”) and
furthermore allows to associate unique symbolic names (e.g. “release2.1”) with a revision. Such a
symbolic name would typically be shared by all component revisions that are part of a given configuration.
The problem is, that RCS is concermned with individual documents rather than (complete) sets of related
documents and offers no way to make use of the information stored in the Makefile. Also, the question
comes up, how to define the version number of a configuration, i.e. a set of programs, each composed from
a number of modules, all with different revision numbers. It would be nice if RCS operations as c¢1i could
be applied to entire configurations, i.e. targets in the Makefile.

Make on the other side, having no idea what release building is all about, has its problems assuring that all
components are at least saved and properly marked. Flexible handling of variants, be they implemented as
conditional compiles, separate files hidden in subdirectories, or variant branches in RCS archives is also a
nightmare with Make. When subsequently building different variants of a system, Make either doesn’t
detect that some files have to be recompiled due to change of compile-flags, or it recompiles all sources
from scratch because it is unable to figure out if a particular module is actually affected by such a change.

In the sample Makefile from appendix A, when making the target “release”, it is made sure, that all
components are saved and systematically marked+ before the programs are built and the CID is generated.
To understand how the complete mechanism works in detail is left as an exercise to the reader.

2.3. Maintaining releases
The third scenario comprises the functions involved when modifications on releases shall be done. These
are typically bug fixing, or customer specific tailoring of the released system.

The maintenance engineer begins her work with recovering all source versions belonging to the release in
question. In order to avoid collisions with the current development versions, this has to be done in a
directory especially created for that purpose. This directory should have an RCS subdirectory holding
copies of the system master source archives. With the two added rules for handling RCS archives, Make is
able to check out the appropriate source file versions for a given release name.

+ marking accounts for unnecessarily compiling the complete system, because the archives are touched.
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During reconstruction of the system it becomes evident, whether the system integrator has done a good job.
If not all source versions belonging to the release are properly marked, the maintenance engineer is really
in trouble. In this case, reconstructing of a formerly consistent configuration will be extremely time
consuming. Obviously, a reliable release rebuilding mechanism is essential for the maintainers work.

The process of maintaining an old release causes forking of a new line of development on the basis of
obsolete component versions. Depending on the complexity of the change request, a maintenance phase
might last quite a while and involve a number of developers. The workspace for the maintenance process,
however, should be separated from the main development area to avoid mutual interference. Following the
described approach withour copying the master source archives would cause unnecessary check out
operations and recompilations in the main development area, each time a new revision is appended to the
maintenance branch (RCS file is touched). Even worse, recompilations with the latest main stream revision
would occur in the maintenance area, each time a new revision is checked in on the main line of
development.

Besides the need for physical separation of the maintenance and development archives (resulting in
organizational and diskspace overhead), the check out rule in the Makefile (. c, v.c:) has to be rewritten
in a way that the latest revisions from the maintenance branch are checked out instead of the latest revision
on the main line of descent, which is RCS’ default. Although it is possible to write such rules, this would
further increase the complexity of the Makefile while decreasing the performance of the Make process.
Creating completely new maintenance archives with the components of the maintained release as initial
revisions, would result in inconsistent numbering between maintenance and development versions. A later
reincorporation of maintenance branches into the master archives would be impossible.

Although this gives an idea of what can be done with Maked, we believe that it also becomes obvious why
the do-it-with-Make approach comes to its limits here. Makefiles of the given kind become extremely hard
to write and maintain, are error-prone while the implemented function is still unsatisfying, and react very
fragile to any kind of exception. While the first described scenario is still comparatively well supported by
the presented approach, the introduction of more complex SCM activities puts a heavy load on Make and
an even heavier burden on the Makefile writer.

For professional software production, SCM should be applied on a routine basis. Taking this into
consideration, the described scenarios are everything but exotic. Things have to be much easier to use,
more systematic, and much more robust.

3. How things can be improved

One of the most frequently denounced drawbacks of Make is its inability to react effectively on changes in
the transformation environment, e.g. if a compile flag is changed. In discussing this matter, it has often
been argued, that Make’s restricted understanding of dependency as time dependency is the reason for this
unsatisfying behavior. However, a second — closer — look at the problem leads to the conclusion that this is
a mere symptom for the real problem, lying in the inability of the UNIX filesystem to handle more file
attributes than those stored in the inode and the directory.

For the realization of shape, we tried to overcome the limitations imposed by the UNIX filesystem by
creating the attribute filesystem interface (AFS) that provides an extended view of documents to application
programs. This view comprises the concept of document historiest+, as well as the possibility of tagging
any number of user-defined attributes to document versions or complete document histories. Interpretation
and use of these attributes is left to the application that uses them. Each document instance (i.e. one single
version) is understood as a complex of content data and a set of associated attributes. Document attributes
have the general form name=value, where name represents the attribute name, and value a possibly empty
attribute value. There are a number of implicitly defined standard attributes for every document instance.
Some of the standard attributes (e.g. name, size, owner, or protection attributes) are inherited from the
UNIX filesystem, others (e.g. revision number or state) are AFS specific.

With AFS, documents are retrieved by specifying an attribute pattern. An AFS retrieve operation results
in a — possibly empty — set of document keys, each of which representing a unique document instance that
matches the specified attribute pattern. For the identification of documents, all attributes are considered
equally suited. For instance, it is possible to retrieve all documents with an attribute name=xyz:zy, or all
documents with the attributes author=andy and state=published. The attributes that together form the

1 I forgot to mention that some minor modifications had to be made in rlog (= "newrlog") and ident.
newrlog -y returns nothing but the latest revision number of the given file.
t+ represented as sequences of changes (deltas) [12].
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version id guaranteeing the unique identification of one document instance, are under strict control of the
AFS. These attributes are document name, document type, generation number, revision number and the
variant name. Generation numbers are used to indicate major development steps that are common to all
components of a configuration or subconfiguration. The revision number serves as an update sequence
number for individual components within a generation. Generation number and revision number together
are often referred to as version number (e.g. 3.0, 18.49).

The data presented and accessed by means of the AFS is stored in a data storage system such as the UNIX
filesystem or some database. In the current implementation, the AFS abstracts from a set of archive files
used to host contents and attributes of stored objects. Every regular file can be viewed as an AFS
document, even if it has never been touched by an AFS application. In this case, it will be treated as a busy
version without AFS specific or user-defined attributes. If such a file is checked into the version control
system for instance, a source archive file will be created, and the missing standard attributes will be
supplemented in a meaningful manner.

The fundamental difference between Make and shape is that Make is naive about versions of objects and
shape is not. Make assumes that any object it deals with is a UNIX-file and therefore has only one version
— the current. When evaluating dependencies, Make looks just at name and modification time of files.
This is as good as Make can be on the basis of the UNIX filesystem. The fact that auxiliary tools like RCS
had to be introduced in order to provide for multiple revisions of documents without creating name
conflicts is another symptom, pointing at the same deficiency of the filesystem. RCS supplements a limited
number of attributes such as revision number or state to the set of standard file attributes. Most of RCS’
functionality is controlled by these attributes. However, there is no way to use these attributes to extend
Make’s idea of dependency, and integration of both tools has the character of a ‘hack’.

shape has an understanding of source versions and possibly multiple instancest of derived objects that
exist at the same time (e.g. objects compiled from different versions of the same module). When producing
a target, shape associates a number of derivation attributes with the resulting derived objects that
sufficiently describe the current transformation. To describe a transformation sufficiently means to record
all prerequisites that are needed to reproduce an identical copy of the derived object. Currently, these
attributes are the version ids of all source-objects and the flag definitions that were in effect for the
transformation.

While Make bases its decision whether to fire a transformation on the build-in time-dependency-relation
between the target and its dependents, shape checks the target’s derivation attributes against the attributes
that a new transformation would generate. This causes shape to recompile a system if for instance
compile flags have been changed, or other but the default (e.g. newesr) source versions shall be used (for
example in case any of them doesn’t work as expected and couldn’t be integrated). Also, recompilations
can be avoided if an instance of a derived object can be found that already has the attributes that would be
assigned to a newly produced one. This becomes interesting when more than just one instance of a derived
object is kept and a different, previously saved (therefore immutable) source version shall be used. The
shape toolkit offers support for multiple instances of derived objects stored in a cache-fashion
administered derived object pool. The concept of derived object pools is borrowed from DSEE [1], a
highly sophisticated software engineering environment running under Apollo’s AEGIS operating system.

3.1. Elements of the toolkit

Besides facilities for keeping multiple instances of source— and derived objects, the shape toolkit provides
programs for

— basic version control, such as save for creating inalterable versions, retrv to replace the
current busy version by some formerly saved version, vl1, vinfo, and vcat to browse
information about document histories and view particular versions.

— project interaction that are used to organize and control the document submission process.
resrv (developer) attempts to reserve the update privilege for a document history, sbmit
(developer) submits a work result to be included into the next release of a system, accpt (system
integrator) accepts a subitted document version and gives it an official, publically accessible state,
and rject (system integrator) denies a submitted work result the official state and sends a
corresponding message to the submitting programmer.

t it should be noted that only source-objects are subject to version control and bear version ids. Derived objects do not
have version attributes. Multiple instances of them are solely kept for the sake of efficiency, i.e. to prevent recompilations.
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— building configurations, namely the program shape which builds a system configuration from a
Shapefile or a Makefile.

All programs of the toolkit are implemented on top of the AFS interface and share the same basic concept
of document identification. The version control commands can be applied to entire configurations or
subconfigurations, because they use the information stored in the Shape— or Makefile (actually, some of the
version control programs are links to shape). In the remaining part of this article we will fully
concentrate on the way configurations are built by shape.

3.2. The Shapefile

As it is the case with Make, everything that shape may do is controlled by a description file, the Shapefile.
The shape program is upward compatible with Make and thus understands Makefiles, which are taken as
system description, if no Shapefile can be found in the current execution context (which can be more than
just the working directory if a project context is active). shape behaves identical to Make if a conventional
Makefile is interpreted. Significant improvements with respect to Make are the introduction of selection
rules and variant definitions into the description file to control the interaction with the attribute filesystem.
Selection rules and variant definitions are expressed differently from the Makefile syntax. The formalism
for the definition of default transformation rules has also been extended.

Selection rules control the selection process for component versions during identification, build or rebuild
of system configurations. Variant definitions help to deal with the complexity of variant administration.

The Shapefile consists of four main components:
system description
e selection rules
e transformation rules and
variant definitions.

The syntax for the system description part is the same as for Makefiles. The remaining Shapefile sections
have a slightly different syntax from Makefiles and must be preceded and ended by special comment
sequences (#% RULE-SECTION, #% VARIANT-SECTION, #% END-RULE-SECTION a.s.o.).

3.3. Configuration Selection Rules

A selection rule is a named sequence of alfernatives, separated by semicolons, which form a logical OR
expression. Each alternative consists of a sequence of predicates, separated by commas, which form a
logical AND expression. A selection rule succeeds if one of its alternatives succeeds (i.e. leads to the
unique identification of some document instance).

A selection rule that — when activated — would cause the configuration of an experimental system (“select
the newest version of all components that I am working on; select the newest published version of all other
components”) might look like:

exprule:
*.c, attr (author, $(LOGNAME)), attr (state, busy);
*.c, attrge (state, published), attrmax (version).

Another example illustrates how known versions of particular modules could be configured into otherwise
experimental systems:

special rule:
afs def.h, attr (version, 8.22);
afs hparse.c, attr (version, 8.17);
*.c, attr (author, $(LOGNAME)), attr (state, busy);
*.c, attrge (state, published), attrmax (version).

In alternatives, the first predicate (e.g. *.c) is usually a pattern against which the name of a document that
has to be retrieved is matched. The patterns used by shape have the same structure as those used by
ed (1). The other predicates allow to express certain requirements with respect to the attributes of
documents. Attr and attrge are predefined predicates that require a specified attribute to be equal or
greater-than-or-equal (with respect to a defined or narural order) a given value. The similarly predefined
predicate attrmax requires documents to have a maximal value in the specified attribute. To provide a
limited support for handling of variants, shape also has build-in predicate atrrvar which affects the setting
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of some special macros, described later. In order to identify exactly one document instance by evaluation
of a selection rule, the alternatives must be sufficient to single out one element from a possible set.
Usually, the last predicate of an alternative should guarantee a unique selection. Predicates like attrmax
(revision), attr (state, busy), or attr (version, 4.2) are examples of such selections.

shape checks whether the target already exists and is current, or tries to produce it from its dependents. A
target is considered current if neither the source nor the production context have changed. A principal role
for the retrieval of documents is played by their name attributes. In order to check whether a given target is
current, both the target document itself, and all of its dependents, must be configured. A nameT that has to
be configured is passed as implicit parameter to the active selection rule. During the evaluation of the rule,
the name is sequentially matched against the name pattern of the rule alternatives. If a pattern matches a
name, shape attempts to complete the following predicate sequence. If an alternative fails, shape will go
on and try the next alternative until the rule is completed.

After a name match, shape performs an AFS retrieve to initialize an internal Ait set. The subsequent
sequence of predicates will be applied to the set of found AFS objects. An alternative fails if one of the
following conditions is true:

o the pattern does not match
e a predicate of the alternative fails
e the cardinality of the hit set is not equal to one, i.e. no unique name resolution was possible.

The application of predicates to the hit set results in the removal of all AFS objects that do not conform to
the specified requirements from the hit set. A predicate’s evaluation fails if the cardinality of the hit set
becomes equal to zero. After the target and all of it’s dependents have been configured, the source version
ids and the transformation environment are evaluated against the derivation attributes of the derived objects
(if present) that would have to be produced.

Selection rules can be activated on a per production basis by simply giving the name of the rule as the first
dependent of a production. Thus, it is possible to define targets for the configuration of e.g. test systems
and releasable systems within the same shape-file.

test: exp rule prog

release: rel rule prog

prog: x.0 y.o z.0

A selection rule remains active until it is superseded by activation of another selection rule or until the
target that caused the activation is produced. If no selection rule is specified, the default rule, which is the
same as Make’s (“‘select the busy version in the current directory”), is active.

The following pictures give an overview of the shape process.

shape \ selection
I

file rules

parse
rule . AFS

shape . required .

. interpreter 3 retrieve

file attributes

Fig. 3.1: Identification

After having uniquely identified the system’s components, the necessary transformation actions can be
performed.

+ Conceptually, name and rype of a document are passed as implicit parameters. In this discussion, name stands for the
concatenation name.tvpe
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source
attributes

AFS
produce set
attributes

attributed
target

target
attributes

Fig. 3.2: Production

The search space for retrieve operations is either defined by the current project (an explicitly selected work
context), or by an environment variable that describes the search hierarchy in a fashion that depends on the
underlying data storage system. If shape cannot find a document.in a programmers workspace, it tries to
connect to a project server, whose address is also defined by the current project. The project server might
reside locally or somewhere in the network. It provides controlled access to the project’s database. Thus,
if a particular document could not be tracked down locally, it might still be somewhere in the project
library.

3.4. Transformation Rules

It is part of Make's philosophy, that a transformation produces exactly one target at a time. As long as all
instances of source and target objects are versionless, there is no big problem with side effects (creation of
additional objects not specified by the transformation rule — TEX for example, creates a transscript and an
auxiliary file along with the dvi-file), because resulting files are automatically updated. Make, just looking
at name and modification time wouldn’t reproduce these files, if subsequently any dependency on them
should be encountered. shape, however, basing its decision whether to activate a transformation on a
bigger set of attributes, has to explicitly mark each produced object with the attributes describing the
characteristics of the transformation. In order to avoid overhead transformations, shape needs to know the
complete set of resulting objects.

To give shape a chance to find out about a transformation’s significant characteristics, it was necessary to
change concept and syntax of transformation rule definitions with respect to Make. In particular, shape
needs information about the flag— (macro-) definitions that affect the transformation, and names of all
objects that are going to be produced. Make’s syntax for specifying a default transformation rule doesn’t
provide for either information. For shape, we choose to employ a definition syntax, similar to that used by
cake [14]. Cake’s transformation specifications are based on name variables. For example, a possible rule
for compiling C programs is

ccC

with ‘%’ as variable symbol. Transformation specifications are actually templates for an infinite number
of dependencies, each of which is obtained by consistently substituting a string for the variable ’%’.
When an object has to be produced, shape determines which transformation rule applies, by matching the
object’s name against all tokens to the left of the colon. In this matching process, %’ is treated as
wildcard character. Once a matching token has been found, the ‘%’ character is consistently substituted
throughout the transformation rule. In the example above, a request to produce an object matchit.o would
result in a virtual Shapefile entry

matchit.o: matchit.c
cc -c matchit.c

The resulting set of source and object names is taken to be the specification of the transformation carried
out by the shell script associated with the rule. shape doesn’t know, what is actually done by the shell
script, but assumes that all specified objects will be produced by the transformation, each depending on all
source objects and relevant flag— and macro definitions. Another element of transformation rule definitions
that hasn’t been mentioned yet, is the specification of the macros that are applied in the rule’s shell script.
To specify them, the rule specification is extended by another, optional colon which separates the flags and
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macro names from the source names. Thus, a complete transformation rule definition to create a .0 object
from a yacc source looks like

$.0 1 %.y : $(YFLAGS) $(CFLAGS)
$ (YACC) S$(YFLAGS) %.y
$(CC) $(CFLAGS) -c y.tab.c
rm y.tab.c
mv y.tab.o %.0

3.5. Configuration Identification and Reproduceability

shape can, for the purpose of configuration identification, be asked to produce a configuration
identification document (CID). CIDs as produced by shape include:

o all components’ version identification (composition list)
e the components’ variant identification (if present)
e the version of the Shapefile

e the project domain, in particular the projectname and the next-higher domain name in which the
projectname can be resolved (e.g. a network-, host- or pathname)

e identification of all tools and their versions that were involved in building the configuration (this
applies — of course — also to shape)

e all macro definitions that were imported from the environment
e the current date, and
e the identification of the programmer who created the configuration.

In order to provide for large configurations that consist of more or less independently maintained
subconfigurations, CIDs may also contain references to corresponding sub-CIDs. CIDs are the ultimate
and most precise description of a configuration. They are designed to describe the circumstances of the
configuration identification and build process completely. CIDs are themselves derived objects containing
more information than the derivation attributes described above are able to hold. Because this information
is crucial for the maintenace of releases, CIDs are subject to version control. The version id of the CID
defines the version id of the described product configuration.

Complete reproduceability of system releases is a goal that is hard to achieve. To rebuild old
configurations as identically as possible does not only require to keep all document versions that have ever
been part of a release, but also a straight history of all tools (e.g. compilers) that have ever been used to
produce releases. The cost for this might be considerable administrative overhead, because every project
needs a current resource registry, where all production tools are logged.

shape has a built-in rebuild function. Rebuilding of system configurations is a prerequisite for product
maintenance, in particular bug-fixing and customization. For the rebuilding of a release, shape may be fed
with a CID. It will retrieve the identified shape file version and start the system build based on the
component versions specified in the CID and the system architecture described in the shape file. Whether
shape will complain about mismatching tool versions, will depend on the grade of accuracy to which a
rebuild is done. We believe that this — like a couple of other aspects — should be subject to customizations.

3.6. Controlling variants

There is a common understanding of variants as alternative realizations of the same concept. Each
alternative has its own revision history, and so there is not necessarily a temporal relationship between
them. The typical example for the genesis of variants is porting of software products to different
architectures. The idea of variants sounds quite simple, but to actually handle them can be an extremely
difficult task.

In C, the concept of variants is most frequently implemented by marking code sections to be conditionally
compiled, depending on definitions supplied in a special header file or as command line flags from within
the Makefile. For other programming languages, such as Modula-2, variant modules have to be physically
separatedt and must be stored in different directories. Both techniques are understood by shape. To
provide means for systematic variant control, shape allows to define variant names. These are associated

+ you can, of course, also use cppor m4 ...
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with variant-flags that will be passed to the transforming tool, and a variant-path that extends the search
space by directories which could host a document variant. The following example illustrates the use of
variant definitions:

#% VARIANT-SECTION

vclass system ::= (vaxbsd, munix)

vaxbsd:
vflags="-DUNIX -DBSD42 -DSTDCC -DPSDEBUG"
vpath="sys/vaxbsd"

vilags="-DUNIX -DSYS5 -DPCSCC -DNOVAX -DPSDEBUG"
vpath="sys/sys5"

debug:
viflags="-g -DDEBUG"

#% END-VARIANT-SECTION

Variant names, as defined in the variant section, can be applied in selection rules by using the predefined
selection predicate attrvar. They provide a unified concept for the administration of variants within the
version control system, with preprocessor technique, and with physical separation. Configuration selection
rules making use of shape’s variant handling might look like:

fsexp:
afdelta.*, attr (state, saved), attrvar (munix),
attrmax (revision);
af*.*, attr (state, busy), attrvar (debug),
attrvar (munix), attrvar (unixfs);
make*.*, attr (generation, 4);
*.*%, attrvar (munix), attr (state, busy).

shape uses the special macros vflags and vpath to hold preprocessor options, and extensions to the default
document search path. Locations specified by vparh are searched for documents prior to the default
location. If a document with the specified attributes is found in a vparh-directory, the default directory will
not be searched.

Initially, both macros have an empty value. When variants are selected in an alternative of a selection rule,
the associated macro values are added to vflags and vpath. In our example, during evaluation of the second
alternative of rule fsexp (af * . *, ), vflags would become:

vilags="-g -DDEBUG -DUNIX -DSYS5 -DPCSCC -DNOVAX -DPSDEBUG -DFS"

and vpath would be:
vpath="sys/sys5:data/unixfs".

Upon completion of each alternative both macros are reset.

The construct velass system ::= (vaxbsd, munix) defines a variant class. Variant classes define mutually
exclusive variant names. Variant classes can usually be given meaningful names, because they mostly
correspond to certain properties, in which the particular variants vary. A variant class cputype for instance,
with element names /IBM438/, VAX630, VAX7XX, m68k a.s.o. might be defined in order to prevent the
selection of different cpu-specific modules with mismatching cpu attributes. shape will complain if such a
condition is detected. shape encourages systematic description of variant properties in the variant section
of the Shapefile. Flag— or macro definitions that are related to variants should be defined in this section
rather than places like CFLAGS. So far, this is the only concept in shape for ensuring semantic
consistency across variant system components. In this area, more work needs to be done.

4. Conclusion

At first glance there seems to be no big difference between the functionality of shape and a reasonable
integration of Make and RCS. However, by integrating version control and system building, we were able
to eliminate a number of problems that are extremely difficult to handle with Make and RCS. Each
element of the shape toolkit utilizes the available data (e.g. “save” operations can be performed on whole
systems; production steps can be described more precisely). Furthermore, the implementation of the AFS
interface provides a well defined entry point to the version control system that can also be used by other
than the toolkit’s application programs. In fact, we believe that the AFS facility is general enough to be
used in completely different contexts but-version control.

EUUG Spring ‘88 London, 13-15 April 1988




A toolkit for software configuration management

The most visible difference between shape and Make/RCS is the enriched Makefile — now called Shapefile
— with special syntax for the definition of system variants and version selection rules. With the simplicity
but expressiveness of its version selection rules, shape makes it easy to build and maintain consistent
system configurations from a possibly huge number of different source document versions.

Nevertheless, there are still many edges where further work has to be done.

shape does not support dynamic dependencies; a feature that Make users often miss. Because inter-
module dependencies can change between versions, the problem of version control and system building
had to be tackled first. When adding support for dynamic dependencies, it is important to do this in a
programming language independent way in order to maintain the openness and generality of the Make
concept. We are thinking about a well defined interface to application supplied, language dependent
closure operators. Some interesting results in this area have been presented with the Adele system [5].

Another important feature that shape still lacks, is a concept for modularity of Shapefiles. As this implies
language concepts that go way beyond what current Shapefiles are able to express, we will discuss the
issue in the context of a complete review of the concepts we choose for the first implementation of shape.

The variant support which is described more detailed in [11] has also only rudimentary character as it
primarily aims at practical life support for the software developer. However, we feel that in this area a lot
more work is due.
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Appendix A: A sample Makefile

# Transformation rule definitions and
# configuration management related rules and macros

@-if [ -s $(SRCDIR)/S$*.c ] ; \

then : ; \

else \

echo temporarily checking ocut $*.c --- $(VID); \

(cd $(SRCDIR); $(CO) S$(COFLAGS) $*.c) > /dev/null; \
$(CC) -c $(CFLAGS) S$*.c; \

rm $*.c; \

fi;

@-if [ -s S$(SRCDIR)/$@ 1 ; \

then : ; \

else \

echo checking out $@; \

(cd $(SRCDIR); $(CO) S$(COFLAGS) S$S@) > /dev/null; \
fi;

SRCDIR = /u/shape/apps

VPATH = RCS

USERID = ‘/usr/ucb/whoami‘\@‘hostname’ # should e.g deliver ’axel@coma’
TMPNAME = .scm-stuff

# Tool definition & location part
# (these macros might be site and/or system-dependent)

SHELL = /bin/sh
RCSPATH = /usr/local

CC = cc -DCFFLGS='"$$Flags: $(CFLAGS) $S$"'
CI = ${(RCSPATH)/ci
CO = $(RCSPATH) /co

RLOG = $(RCSPATH)/newrlog # added option ’'-y’ - print only revision number
IDENT = $(RCSPATH)/ident
RCS = $(RCSPATH) /rcs

NGFLAGS = -f -1 -gq -m"New System Generation" -s"Stable"

NRFLAGS = -q -1 -m"This version is part of a release" -s"Release"
NRCIDFLAGS = -1 -s"Frozen"

COFLAGS = -g $(VID)

LOGFLAGS = -h

# Configuration definition part

CFLAGS = -g -DUNIX -DVAX -DUNIXFS -DJOBCONTROL -I$(AFSINC)
# Installation specific part

INSTALDIR = /u/shape/bin

# Product definition part

COMPONENTS = save.c dosave.c retrv.c doretrv.c mkattr.c project.c sighand.c \
util.c save.h retrv.h project.h afsapp.h save.l retrv.1l

PROG = shapetools

PRODUCTS = save retrv
VERSION = version
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MYINC = save.h project.h

SAVEOBJS = save.o dosave.o

RETROBJS = retrv.o doretrv.o mkattr.o

COMMON = project.o sighand.o util.o version.o
ALLOBJS = $(SAVEOBJS) $(RETROBJS) $ (COMMON)

AFSLIB /u/shape/lib/libafs.a
AFSINC /u/shape/src/inc

# Component dependencies

all: save retrv

save: $(SAVEOBJS) $(COMMON) $ (AFSLIB)
cc -o $@ $(SAVEOBJS) $(COMMON) $(AFSLIB)

$ (SAVEOBJS) : save.h project.h afsapp.h
dosave.o: $(AFSINC)/afs.h

retrv: $(RETROBJS) $(COMMON) $ (AFSLIB)
cc -o $@ $(RETROBJS) $(COMMON) $(AFSLIB)

S (RETROBJS) : $(AFSINC)/afs.h retrv.h project.h afsapp.h
$ (COMMON) : $(AFSINC)/afs.h afsapp.h

project.o: project.h

$ (ALLOBJS) : Makefile

install: all
install -c -o axel -g unib save $(INSTALDIR)
install -c -o axel -g unib retrv $(INSTALDIR)
(cd $(INSTALDIR); rm -f Save; 1ln save Save)

These rules are all configuration management related, and serve to
prepare system generations and releases. It should not be necessary
to modify them for different products, as long as certain conventiocns
are obeyed: Define the main-product name in the PROG macro. List

all components’ names (i.e. each revisable entity) in COMPONENTS.
Names of individually produced subtargets should be listed in PRODUCTS.
The main target should be "all’.

This Makefile sample is intended for ’single Makefile systems’.
To apply the proposed SCM scheme to more complex systems, some
more rules and conventions have to be defined.

B SE T S S T G

release: preprel logconfl all logconf2

logrelease: logconfl logconf2

generation: # assumes that all COMPONENTS have a busy version
@incr $(SRCDIR)/.genno
@/bin/echo Declaring generation ‘cat $(SRCDIR)/.genno' for \
$ (PROG) system
@rm -f .relno
@-(cd $(SRCDIR) ; \
$(CI) $(NGFLAGS) -r‘cat .genno‘'.0 $(COMPONENTS))

preprel:
@incr .relno
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@/bin/echo Preparing release ‘cat .relno‘ in generation \
‘cat $(SRCDIR)/.genno' of $(PROG)

@-(objdir="pwd"' ; cd $(SRCDIR); $(CI) $(NRFLAGS) Makefile \
$ (COMPONENTS) > /dev/null 2> .diag ; \

awk ‘{ if ($$2 == "warning:") print $$6; \

if ($$2 == "error:") print $$5 }’ .diag > .ddiag; \
for i in ‘cat .ddiag‘'; \

do \

v="$ (RLOG) -y $51i'; \

echo marking $$i\[$$SvN] ; N\

S (RCS) -n"$ (PROG) v'cat .genno'‘r‘cat $$objdir/.relno*":$5v \
$$i > /dev/null 2> /dev/null ; \

done ; \

for i in $(COMPONENTS); \

do \

if grep $$1 .ddiag > /dev/null ; \
then : ; \

else \

v="$(RLOG) -y $$i'; \

echo marking $$i\[$S$vN] ; \

S (RCS) -n"$ (PROG) v'cat .genno'r‘cat $$objdir/.relno'":$$v \
$$1 >  /dev/null 2> /dev/null ; \

fi; \

done ; \

rm -f .ddiag .diag )

logconfl:
@/bin/echo Conf-ID: $(PROG) version ‘cat $(SRCDIR)/.genno' \
release ‘cat .relno' of ‘/bin/date‘, > $(PROG) .cid
@/bin/echo ‘char *version () { static char ConfID[] = \
" ‘cat $(SRCDIR)/.genno'.'‘cat .relno‘ ' (’‘date’ by $(USERID)’)"; \
return ConflID; }’ > $(VERSION).c
@S (CI) S$(NRFLAGS) -n"$(PROG) v'cat $(SRCDIR)/.genno'‘r‘cat .relno'" \
$(VERSION) .c > /dev/null 2> /dev/null;
@/bin/echo by $(USERID) >> $(PROG).cid;

@(cd $(SRCDIR) ; S$(RLOG) $(LOGFLAGS) Makefile $(COMPONENTS)) > \
$ (TMPNAME) ;
logconf?2:
@/bin/echo Logging configuration in $ (PROG) .cid;
@ (cd $(SRCDIR); S$(IDENT) $(PRODUCTS).| awk ’'{ 1if ($S$1 == "S$SHeader:") \
printf (" Header: %s %s %s %s %s %s\n",$$2,$$3,5$%$4,5$5,$%6,5$87); \
else print $0 }') >> $(PROG) .cid;
@-$ (IDENT) Makefile | awk ’'{ if ($$1 == "S$SHeader:") \
printf (" Header: %s %s %s %s %s %s\n",$$2,$$3,5%4,5$5,$8%$6,$57); \
else if (($$1 !'= "S$SFlags:") && ($$1 != "$SLog:")) \
print $$0 }’ >> $(PROG).cid;
@cat $(TMPNAME) >> $(PROG) .cid;
@echo
@echo "***’/ DESCRIBE PURPOSE OR DESTINATION OF THIS RELEASE \
"[" *cat $(SRCDIR)/.genno'.‘cat .relno‘’ ]’ f*xxx/
@echo ’ (terminate with "D or single """/ .'"")'

@$(CI) $(NRCIDFLAGS) -r‘cat $(SRCDIR)/.genno'.‘cat .relno' \
$ (PROG) .cid > /dev/null 2> /dev/null;
@rm $(TMPNAME)
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Appendix B: A sample Shapefile

#
# Tool definition & location part

SRCDIR = /u/shape/apps
INSTALDIR = /u/shape/bin

SHELL = /bin/sh
CC = cc

#% RULE-SECTION

fsexp:
af*x.c, attrge (state, published), attrmin (state),
attrvar (unixfs), attrvar (debug);
*,c, attr (state, busy), attrvar (unixfs), attrvar (debug);

fsrelease:
*.c, attr (state, frozen), attrvar (unixfs);

dbexp:
af*.c, attrge (state, published), attrmin (state),
attrvar (damokles), attrvar (debug):;
*,c, attr (state, busy), attrvar (damokles), attrvar

#% VARIANT-SECTION

vclass database ::= (damokles, unixfs)

damokles:
vflags="-0 -DDAMO -DUNIX -DVAX -DJOBCONTROL"
vpath="data/damokles"

unixfs:
vflags="-0 -DUNIXFS -DUNIX -DVAX -DJOBCONTROL"
vpath="data/unixfs"

debug:
vilags="-g —-DDEBUG"

#% END-VARIANT-SECTION
CFLAGS = -I$(AFSINC)
# Product definition part

COMPONENTS = save.c dosave.c retrv.c doretrv.c mkattr.c project.c sighand.c \
util.c save.h retrv.h project.h afsapp.h save.l retrv.1l

PROG = shapetools

PRODUCTS = save retrv

VERSION = version

MYINC = save.h project.h

SAVEOBJS = save.o dosave.o

RETROBJS = retrv.o doretrv.o mkattr.o

COMMON = project.o sighand.o util.o version.o
ALLOBJS = $(SAVEOBJS) $(RETROBJS) $(COMMON)
AFSLIB /u/shape/lib/libafs.a

AFSINC /u/shape/src/inc

# Product dependencies
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all: fsexp save retrv
release: fsrelease save retrv
dball: dbexp save retrv

save: $(SAVEOBJS) $(COMMON) $(AFSLIB)
cc -o $@ $(SAVEOBJS) $(COMMON) $ (AFSLIB)

$ (SAVEOBJS) : save.h project.h afsapp.h
dosave.o: $(AFSINC)/afs.h

retrv: $(RETROBJS) $ (COMMON) $(AFSLIB)
cc -o $@ $(RETROBJS) $(COMMON) $ (AFSLIB)

$ (RETROBJS) : $(AFSINC)/afs.h retrv.h project.h afsapp.h

$ (COMMON) : $(AFSINC) /afs.h afsapp.h

project.o: project.h

install: release
install -c¢ -o axel -g unib save $(INSTALDIR)
install -c -o axel -g unib retrv $(INSTALDIR)
(cd $(INSTALDIR); rm —-f Save; 1ln save Save)
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ABSTRACT

The design and implementation of the Optical File System (OFS) is described. It
was conceived to run under UNIX and to deal with Optical Disks. We explain our view
on how to develop a file system, at UNIX user level, with a WORM (Write Once—Read
Many) device. OFS manipulates multiple file versions automatically. It also works upon
an implementation of atomic transactions: fault tolerance implications are studied.
Finally, we describe our experience using the OFS by means of a backup utility, that has
been used by our software research team since October 1987,

1. Overview

The continued development of Optical Storage Media encouraged our work on this subject during the last
few years at GIPSI-SM90. Having worked with the OFS for some time, we describe our view on how to
use an Optical Disk and develop a UNIX file system (UFS).

The Optical Disk (OD) is a new and powerful tool. Being very different from a magnetic disk, it offers,
among other characteristics, the random access to fixed size blocks (of indelible storage), slow head
movement, and fast continuous read/write. Another important characteristic is the reliability it gives, for a
relative large period of time (10 years), on stable storage. We wanted to integrate this tool under UNIX,
taking advantage of this last obvious strong point, and overcoming the weakest ones. Perhaps the most
difficult problem we had to cope with was the impossibility of updating already written blocks.

Ideally, one would like to connect an OD to a system and begin working, just as if it were an ordinary disk.
The physical connection is obvious: one only needs a SCSI interface and a driver that knows how to work
with it. If we don’t need any special commands (like WRITE-AND-VERIFY) the normal SCSI disk driver
can be used. We can have immediate access to the OD as a "raw device", but that’s all. Unfortunately
there is no possibility of having a virtual connection over the OD because traditional file systems are
unsuitable to work on indelible storage and they must be modified somehow.

Various solutions have already been found. A first idea is the development of some specitic applications
that meet with immediate needs (back-up, mass storage, image archival etc.). We could program a set of
basic operations to list (Is) or copy (cp) arbitrary data on the OD, but each one would have to know the
internal details of OD data organisation. This isn’t our approach because it doesn’t maintain the usual
UNIX transparency and simplicity. If we had ten different devices, we would also have ten different names
for the same command. No, what we need is to extend the semantics of the 'mount’ command for this new
device.

+ GIPSI-SM90 is sponsored by the French Ministry of Research and Technology under the contracts 83-B1032 84-
E0651 85-B0524
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Figure 1

The *mount’ operation always works upon a file system, we will have to use a real one. We could start
using a modified UNIX file system, by mapping the data blocks onto an Optical Disk. All inodes,
superblock etc. would remain in magnetic media, thus overcoming the major difficulties of an indelible
storage. Nevertheless, we measure the reliability of a global system by the reliability of each link. Among
other things, if a magnetic disk is always to be used, the system will be less reliable.

Our proposal is to design a file system using an OD only. That’s what the OFS actually is. In this way,
applications can be programmed neat and transparent. Moreover, existing applications could be
immediately used, provided that they work with a standard file system, and that the OFS exists inside the
UNIX kernel (or an equivalent and better solution).

We decided to develop the OFS outside the kemel in an user process. This has several advantages
including debug facilities. After, we would program some useful applications which work upon it, and
which would test OFS. We show the actual implementation of OFS and its interaction with UNIX in
figure 1.

To implement the integration the OFS in UNIX, we could use a ‘‘file system switch’’ like the one provided
by the VFS (Virtual File System designed by SUN) that has already been ported on our own UNIX (SMX)
[ROGADO-86]. Another approach is to work with an NFS compatible interface to the network, and
implement the OFS in a complete independent module, at user level. We are presently working on this last
solution. A scheme of a future OFS integration in UNIX is shown in figure 2.

We are not going to detail this last item here because it is not completely finished yet. For now, we will
concentrate on OFS internals and its applications.

After describing the OFS’s general characteristics and data structures which handle indelible storage, we
give an overview of atomic transaction implementations in the OFS. Finally, we describe the OFS’s recent
use by means of a back-up application and a file system debugger.
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Figure 2

2. OFS General Characteristics

User level compatibility with traditional UNIX file systems is our major concern. The OFS implements a
hierarchical directory structure, as usual. Taking advantage of the WORM characteristic of the Optical
Disk, we can maintain the successive versions of a file in a natural manner, thus adding a new concept:
multiversion files. A file is in fact a directory of historical versions.

Example:

/users/gipsi/paulo/dummy:2
/users/gipsi/paulo/dummy
/users/gipsi/paulo/*:*

The first path represents the second version of the "dummy" file, the second one, the last version of
"dummy", and the last path represents all files and versions of the directory /users/gipsi/paulo. In order to
implement this, we need a way to map directories, files, versions, data and superblock (or its equivalent),
onto an Optical Disk. All of this without losing the usual flexibility. We thus have to overcome the main
difficulty that we mentioned above: the little flexibility of a Write Once storage device.

2.1. Main Goals

Interactive work with the OD is desired. Main applications are somehow related to mass storage (Optical
Storage). We are looking towards a file system where:

. files are not deleted frequently

. access to any version must be fast

. adding a version must be inexpensive
° large version handling is a must

. directory access should not be slow

. reliability is fundamental

No space for damaged files. The philosophy here is: Once Written Never Lost (OWNL). If trade-offs are
to be taken into account this will be a major one.

2.2, A dynamic Data Structure for the OFS

Most traditional UNIX file systems see directories as simple files storing file names and corresponding
inode numbers [BACH], Although this view is changing due to remote file system implementations. Such
a directory implementation is unpractical to operate on an OD. The read/write head movements, back and
forth, from directory inode to directory data, are too\slow. Furthermore, each time we change the directory
contents we would have to replicate all directory data. Clustering the directory’s inode block with
directory contents avoids excessive OD head movements. At the same time once we get a directory’s inode
we get also its data. OFS doesn’t implement traditional inodes but has equivalent structures which we
simply call as "nodes".
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As far as we know, the solutions pointed out for OD data handling, used severai methods for organising
information, like Write Once B-trees (WOBT; [MAIER-82] [EASTON-86)), to offer fast random access of
data. But with a WOBT data structure space overhead can be substantial due to directory data replication.
Besides, directory data can span over several disk blocks in a highly dependent way, which is a major
inconvenience for us (as we will see in section 3).

Our solution is a ‘ointer fill-in data structure’ for the OD [RATHMANN]. Space on disk is assigned in
advance by allocating empty tables. This open structure expects to be filled step by step, and is built upon
this simple update basis. Each update action does not need to replicate data: it just fills a precise bucket
within a precise table.

For determining where to fill the tables, we use external hash coding on file names [GONNET]. We think
it fits the strengths and weaknesses of the OD very well. It gives us a way to know in advance where a
certain file is placed, and it compensates us for not being able to make updates afterwards. It requires only
one access to retrieve a file node with a well studied hash function, and a carefully dimensioned hash table.
Individual files or versions can also be accessed without retrieving all the directory’s contents. The only
static elements of this solution are table sizes, and we have to be careful with them. It seems logical to use
bucket size tables [STAVROS-87]. Although, this is only important if we really want to save disk space or
improve listing speed for sparse directories.

Overflows are not chained. We simply reallocate several hash tables for file name storage in directories. A
directory is seen by OFS as a set of hash tables (a set as little as possible; there is a trade-off between
wasted space and speed). The hash function is a direct conversion between file names and integer values,
followed by a modulo division of a prime number. We took a large group of commonly used file names to
study a well behaving hash function.

We also use tables for version management. Each table can be seen as a dynamic allocated array. With an
infinite array, we can always get an arbitrary version with only one access. As we don’t want to lose space,
we allocate an array by buckets. Bucket dimension can be arbitrary. Due to OD’s characteristics it seems
logic to have track size buckets (track dimension depends on the OD). A bucket holds a set of version
nodes and a node is hold in a block (the minimal amount of write once data). And so, version nodes are
grouped in these buckets, which are linked as binary trees to allow search functions of O(log2): a file with
1000 versions will never require more than bucket 6 accesses!

Finally, we could gather complete file path names, in hash tables also. Although, in this case, directory
data clustering seems hard to perform, because we can’t predict how many directories will overflow in the
same bucket.

2.3. Access Policies

During the development of the OFS we tried to formalise the number of accesses needed to perform a
particular task, mainly: file or version retrieval, path traversing and directory listing. They guided our
research towards an efficient OD indelible data structure. Each modification to the structure would
correspond to a new formula, which would then be analysed. We present the formulas obtained (at the
time of this writing) for each operation.

We define a short access as the time of head displacement added to the time of one bucket reading (one
track normally). A long access is also the time of a head displacement, but added to the time spent on a
continuous read of contiguous buckets (several tracks). This long access is a function of the amount of
directory data clustering. This is highly dependent on the machine we are using and cache memory size for
data interchange with secondary devices. They depend also on the disk we are using, and they have to be
studied accordingly.
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Directory data retrievpl (DR)
DR = I(F /Bt )+1 long accesses
Directory path retrievial (DD)
DD = I(Dn Bd )+1 short accesses
Path traversing (PT))
PT = _[(E DD )*PI)+E(Kd) short accesses
Version retrieval (VR)
VR = PT+DR +j(2xlog 2((Vn—Kc)/Bv)) short accesses
E() = average
Fl = Number of files in directory
Bt =  Directory table dimension
Dn =  Number of directory names in directory
Bd = Directory bucket dimension
Pl = Path length
Kd = Constant of accesses for root node retrieval
Vn =  Version number
Kc = Directory constant (always less then Bv)
Bv Version bucket dimension
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. attempt to perform the operation
) validation
o file unlocking

An interrupt on the normal sequence before validation implies a return to the previous state of the file. This
is done by simply forgetting the uncompleted operation. A system crash just after validation will have the
same effect as file unlocking, causing no harm. These atomic operations (or transactions) remain atomic as
long as validation is also considered to be atomic. As validation takes place by writing a single block to
disk (and this is atomic as we saw), we achieve also this upper level of atomicity.

This simplicity is only possible by the use of our ‘‘pointer fill-in data structure’’, already detailed. If we
had to write several blocks to perform a validation, like complete directory data updating for example,
things would be much more complicated. This would be the case with other kinds of data structures, where
we would have to preserve state in a non trivial manner. It would also be much harder to deal with the
“‘intentions list’’ (see next section) and the commit phase of a transaction [SVOBODOVA-84].

3.3. Global Transactions
We adopted the expression ‘‘global transactions’’ as a collection of atomic transactions on files.

A global transaction starts by writing a ‘‘begin transaction mark’ on stable storage. Then, atomic
transactions are performed as requested. An intentions list is built upon already completed atomic
transactions. Each atomic validation corresponds directly with an entry to the intentions list, and they will
be committed at the end of the global transaction. This is tricky, but at the same time a simple method (we
dare say that simple is beautiful!). We end up with three different data components in a single atomic
block, which are therefore written in a single atomic operation:

. new version descriptor
. directory entry
. intentions list entry

This clustering is done by careful mapping of each virtual table structure:

. directories are maps of several files,
. files are maps of versions and
° the intentions list is also a map of file versions.

As we will see, everything above has a tremendous impact on fault tolerance. We also studied clustering
of OFS data structure blocks, as suggested by [STAVROS-87], very carefully. This in order to improve
performance, but keeping priorities on directories.

At the end of a global transaction, the commit phase is done by writing an ‘‘end transaction mark’’ to disk,
and forgetting the intentions list, thus committing finally all atomic entries. Free space on disk is saved at
the same time. As this deserves also some reflection, the next section explains it in detail, at the same time
that we will explore the measures taken against faults.

4. Free Storage Management and System’s Fault Tolerance

It may seem rather strange to associate such different things in the same section. It just reflects our aim to
cluster different operations in single atomic ones, thus avoiding the need for preserving intermediate states.

4.1. Tricks

The state preserved on stable storage is of fundamental importance. As we said, we overcome the need of
complicated algorithms to keep state coherent, by clustering of operations and data. State is updated when
validation of atomic operations takes place, (it is in fact the same operation). A crash at any time will
forget any uncompleted operations, and the intentions list will then be used (it memorises all completed
atomic transactions).

At the beginning of every global transaction, OFS verifies if it is recovering from a crash (it searches for an
end transaction mark), and we get the free space on disk at the same time as well (we can’t have a
superblock). To do so, we adopted the following solution: there is a special file that contains transaction
marks, free space information, and others.

This file is special because, once again, there is a clustering: data is embedded in file descriptors. Data and
descriptors are written also in a single atomic write. There is one version of this file for each global
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transaction. On the dther hand, this file is treated by OFS as an ordinary one, being a simple matter of data
mapping. Using the fata structure that we have already described, many versions of this file should not be
a problem. Finally, by writing this file to disk at the end of a global transaction, we can write in a single
atomic operation:

. Special file version descriptor

° Special file dath containing free space management
° End transactiops mark (end of commit phase)

. Special file dir¢ctory entry

Once again, only a ‘|pointer fill-in’’ data structure can achieve such a degree of clustering, thus obtaining
this extreme simplicity. This is at least as important as fast file search.

4.2. Recovery Algorithms

We use state restoration as the recovery method [ANDERSON]. Upon a detection of a recovery state, at
the beginning of a global transaction, a file system check is started automatically. Structural errors are
eliminated from syst¢m’s state by:

. recomputing fiee space,

. getting already| validated part of intentions list and

. appending it tq the current transaction.

Now we have everjthing we need and operations can continue normally. OFS forgets uncompleted
transactions thus losipg already written space on disk. This lost space, added to the time that we lose in the
file system check, ar¢ the price we have to pay for this reliability.

If an error occurs (luring the writing of a file structure block (mainly validations) things could be
dangerous. Such errprs are treated as crash errors. OFS tries to replace badly written blocks by new ones
on a special place of| the corresponding table. If it doesn’t work, it just forgets the operation signaling an
error.

What we can say abqut OFS’s fault tolerance is:
. if there is a crash it stops working
those crashes dre tolerated since there are no corrupted files
° time and space| is lost to get this reliability (upon a crash, only)

We think that users jare prepared to pay this little price for having, for example, a reliable mass storage
system. That’s why they are working with an Optical Disk anyway.

5. Using OFS

As we already said, PFS complete integration in UNIX is not part of this paper. We offer access to OFS by
library routines that fnake the development of specialised applications possible. Among these, we have a
backup utility and a]debugger that has been used to test and improve it. Everything runs at user level,
including OFS.

5.1. A UNIX command Simulator

Big name for a littlg thing. This was programmed to give a helpful file system debugger. We called it
“‘mount_glasses’’, t¢ see this Optical thing differently. Its commands are those supplied by UNIX (Is, pwd,
cp. cat, etc...). It gives us the funny feeling of working directly under UNIX (and through the SHELL).

There are various leyels of entry commands. It has a very low level, similar to fsdb, and the highest one
explained above. In|between, we have several routine calls to test each file system’s layers. It allows us to
do a very powerful debugging that has been extremely useful. Any modification to the OFS is intensively
tested without much trouble.

5.2. A User-friendly Optical Back-up System

This is a serious application for a change. It has been working regularly at GIPSI-SM90 since October 87.
It has given us a way to study the behaviour of OFS under heavy load: the terrible hands of a UNIX software
research team.

We picked up cpio’y interface, added file name expansion (as made normally by the SHELL), file version
number expansion, and applied the whole on OFS. The result: this extremely simple back-up tool that
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everybody uses easily. It provides multiple version file access and automatic incremental back-up over
standard UNIX paths.

Although far from a real file system, this application satisfies all our basic back-up needs. It is also used by
our graphic research team to store images on the Optical Disk.

5.3. OFS future as a Network Server

This is our current work. We want to provide network access to the OD in a completely transparent way.
This means that users will be able to ‘*‘mount’’ an OFS file system over a network. This will be developed
as a user-level network server that will provide full compatibility with a standard protocol for remote file
systems.

By standard protocol we mean a currently used one, like NFS. It means that machines working with NFS
will have access to your server without any modification. Working over file systems on the OD will then be
as transparent as NFS.

We avoid the necessity of really embedding OFS in UNIX kernel, which is already too big. Besides, this
gives us a complete modularity and much better debug facilities. Compatibility with very different kinds of
machines is also a main issue.

We expect to be able to say more on this in a near future.

6. Conclusion
This is mainly an implementation work.

A new file system for working with Optical Disks was presented here. Key features, like dynamic data
structures for multiversion file system implementation on the Optical Disk were analysed. Moreover,
internal important issues, like clustering of multiple data update operations in single atomic ones, were also
presented. .

Some applications based on this file system are presently running at GIPSI-SM90. We are going to
develop the OFS further, towards a completely transparent UNIX network file system working with Optical
Disks.
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Software Re-engineering using C+

Bruce Anderson
Sanjiv Gossain

Electronic Systems Engineering
University of Essex
bruce@ese.essex.ac.uk ,
goss@ese.essex.ac.uk

The plan for our expériment was to take a piece of software and rewrite it in CH. We wanted the program
in question to be locglly-generated, written in C, widely used and to be a generic program, one which was
typical of a class of |programs that were either actually written or likely to be needed. Our idea was to
proceed in small steps and to reflect on each step.

Enquiries soon prodyced a program from our CAD group, one in constant use to take output data from the
Berkeley SPICE circyit simulator and output it on either of two HP four-colour plotters. Typical simulation
results are tabular data:

* TEST FILE *

.PRINT TRAN V(102) Vv (101)

*SIGNAMES VOUT1 VOUT2

*** TRANBIENT ANALYSIS TEMPERATURE = 27.000 DEG C
TIME V(102) V(101)

.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.50e+00
.50e+00
.50e+00

.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.10e+00
.10e+00
.10e+00
.10e+00

.00E-07
.50E-07
.00E-07
.50E-07
.00E-07
.50E-07
.00E-07
.50E-07
.00E-07
.50E-07
.00E-07
.50E-07

Lo WwWw NP PP OO
O O O O O O OO o O o o
O OO O P P

with a corresponding
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TITLE : Test Plot Version 1 OUTPUTL..... v1

Copyright 8G | OUTPUT2..... v

FILE : Test .out

Temp.27.0 Deg.C
DATE : ,19th May 1987

1 — V1
- -
pel
s
¢}
> -
e —
-0

- v2

AMPLITUDE
1 1.1

- 17
rrrrirrrrerir1rrrerrrrrvrrrrrriorrtTld UL P
1 10 iJ 40

Time ( in seconds) ultiplying factor : 1.0e-07

The code’s generic nature was clear, as members of the group warted to be able to make different plots and
to use other plotters and possibly other simulators.

The idea underlying the reprogramining in C+ was to produce a ‘‘kit of parts’’ from which modified,
extended or similar programs could be produced. Thus we were testing out some of the features of object-
oriented programming:

. encapsulation (via the object/message mechanism) to control access to representations
. inheritance (via subclassing) to allow modification and extension as construction methods
. automatic storage allocation to encourage safe use of dynamic structures

We took the plotting program and looked at it. It was the first C program written by an experienced but
self-taught BASIC programmer, and perhaps that is the key to its construction. The plotter is driven via a
serial port (UNIX file) with character sequences. The overall style of the program took the form of *‘this-
then-this’’, a long sequence of low-level operations; somehow focussed on the production of these
character sequences. The mental model associated with it seemed to be very flat, with no hierarchy of
concepts.

In particular we noted:

) poor layout
. few meaningful subroutines/functions
) several large functions with no arguments
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poor choice of
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hard to follow:

Software Re-engineering using C++

riables: too many unregistered connections between functions and between sections
ds widely scattered: over 100 of them, many being repetitions

brage: all the storage that could be needed was reserved at the beginning, so that the
be much smaller if dynamic allocation from stack and heap were used

variable names
nt: repeated calculations

very flat, no structure

lots of magic fumbers: not just a lack of symbolic names (via #define) but no indication of the

derivation of si

poor locality:

reading anythir

° size — reduced

Many of these obset
extremely difficult. ]

be less necessary.

It became clear that
output format and th

had to impose our ow

At this stage the prog
ends, looking both af
presentation). One o
and tutor to the othe
most important point
design. We talked aj
was almost no progr
processing. The filey
having such files in
After some iteration \

The classes we decidé

graphi

data

plotter

plot r

A key decision was I
contains a single grap
which divides the bo
So we have chosen t
the same level. This
simple and powerful
sizing. As an examph

EUUG Spring 88

y.cS

huestions to the user about data and formatting were spread around the program;
g required jumping around the listing

from 1600 to 1200 lines

vations are about modularity, so that for example altering the program would be
[here is also an issue about documentation, but if the structure were clearer it would

we should rewrite the program completely, that although we would use the same
s the same scaling calculations, there was no inherent structure to be extracted; we
m.

ramming proper (which we take to include the design) began. We worked from both
the input (the structure of the data) and at the output (the structure of the graphical
[ us (Bruce) was experienced in object-oriented programming and acted as consultant
r (Sanjiv) who was responsible for the detailed design, coding and compiling. The
in this process was that the class structure provided a focus for the discussions of the
out classes and protocols. Although there was code in the machine at this stage there
hm — we talked about the objects and their relationships and properties, not about
of class definitions provided the medium of communication between us. Somehow
compilable form was much more powerful than having a specification in English.
ve came up with the following structure.

td to use form a rather flat hierarchy:

fal object

box

division
vertical division
horizontal division

log axis
lin axis
graph

bquest

ow to deal with the concept of space. In our system a box has a visible outline, and
hical object. In order to divide the space inside a box, the box must contain a division
Kk into two parts either horizontally or vertically, each containing a graphical object.
b describe the layout with a hierarchical binary tree rather than say a set of things at
is somewhat more complex for the programmer, and rules out some layouts, but is
, and relieves us from manipulating constraints about overlapping, adjacency and
e, the graphical output shown above is described as:
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aBox
in: aHorizontal Division
top: aVertical Division
1ft: aVertical Division
1ft: aHorizontal Division
top: aText in Box
btm: aHorizontal Division
top: aText in Box
btm: aText in Box
rgt: aHorizontal Division
top: aText in Box
btm: aText in_ Box
rgt: aVertical Division
1ft: aText-in-Box
rgt: aText in Box
btm: aGraph

A simple extension to this would allow divisions to contain any number of objects, making the description
of the graph flatter — but the software engineering point we want to make is that this kind of discussion is
easy to have in an object-oriented language.

What is a plotter? Our plotter object abstracted from many of the details of the HP7225A and HP7475
plotters that were actually used, so that it could draw lines and points and print numbers and strings in a
given colour. We retained the plotter’s idea about ticks on axes, so that a plotter has big and small tick
sizes set, and a member function to draw them.

Who does what? Decisions have to be made about the distribution of responsibility for formatting, scaling
and drawing. In our program objects know how to draw themselves on a plotter. They have sizes, and the
sizes are set as they are created. For example, putting a graph in a box would involve creating a box of a
certain size, and then creating a graph of a corresponding size and putting it in the box. It would of course
be possible, though more complex, to allow objects to scale themselves based on the size of the space they
were contained in. The drawing itself is straightforward, since every object just draws its own structure, if
any, and then requests its contents to draw themselves.

For example, an Axis has an orientation, a legend and a style of marking; it is the subclasses which contain
the base and end point, the regular increment and the axis length.

Unlike Smalltalk, everything (for example, data points) isn’t an object in our program. This has not
seemed to pose any problems, but it might when we try to create programs that are more different than the
ones we have considered so far — for example with different kinds of plots.

The coding phase followed. The code was easy to generate in small lumps, using some of the same
algorithms as in the original, though many procedures could be simplified or generalised. An example of
this was the writing of text within the border of the plot; whereas the original code specified strings and
co-ordinates absolutely, the re-engineered code used a general routine with the text string specified
separately. The position of the text was calculated according to the box’s co-ordinates.

The details of the coding are are not important, but what is important is that the details were easy to take
care of because questions arose naturally from the structure and the structure provided a framework for the
answers. Thus we discussed *‘boxes containing text’’ rather than "how to place strings".

The program worked. The only part omitted was the code to interrogate the user as to the data to be used
and the plot format, but this was encapsulated into a plot-request object; for our tests we generated a few
by hand. This is yet another example of the good structure possible in, and encouraged by, Ct.

We attempted to quantify some of the differences between the original and re-engineered software:

) 10 functions with an average of 1.4 arguments and 131 lines of code became 36 functions with an
average of 2.9 arguments and 22 lines of code.

. global variables — reduced from 81 to 44

. plotter command distribution — 106 commands spanning 492 source lines reduced to 14 commands

spanning 53 source lines

o static storage — 315K reduced to 32K (with dynamic maximum of 282K)
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— we removed 12 repeated calculations
— 114 reduced to 25

questioning — 529 lines for 21 questions reduced to 60 lines

bm 1600 to 1200 lines, 5750 to 4000 words
the same

e of the difference was the cost of modification. It was straightforward for us to alter
ut, for example moving the headings and showing separate rather than overlaid plots
thought of doing this in the original terrified us both.

this work so far as a straightforward investigation of programming and design
a careful use of object-oriented programming allowed us to produce a much better
wever, a major output of the project was the learning experienced by one of us who
fience of object-oriented programming or CH.

pen C and CH is primarily in the degree of emphasis on types and structure.
t better one knows C, the harder it seems to avoid writing C++ in C style, and thereby

lose some of the pote
and apprehension tha

Having learnt the co
simple classes and t
confidence.

A great deal of my t
various aspects of th
almost naturally di
modularity’” could o
in the mind changes
being exposed to objg
I found that I spent a
and it’s possible soly
design stage permittg
understood complete
solution by creating td

tial benefits of CH’’. As a result of this comment it was with a feeling of excitement
I approached this problem.

cepts behind object oriented programming and after experimenting with a few small
eir subclasses, 1 felt I could approach the matter in hand with some degree of

e was spent thinking about a possible solution and considering more carefully the
program. The approach taken allowed me to break the problem into sections which
ded the program into classes and their subsequent subclasses. This ‘‘natural
ly be ascribed to the concepts of object oriented design and C+, which when instilled
he view one has of problems and their solutions never previously considered before
ct oriented programming.
greater part of the time in considering the various aspects of the problem concerned
tions than I had done previously when programming in C. This emphasis on the
d less room for major errors as all the fundamental features of the program were
y. 1 found myself being able to explore more thoroughly any possibilities for a
st classes and their member functions; I could easily assess their feasibility and could

then reject or accept them as candidates for inclusion in my final program. This new approach, I feel gave

me a better understari
better all round soluti

An important aspect

completion, and hend
development. These
perspective due to hi
result, it was possil
complications at a md

ding of the underlying concepts behind the problem and I think it produced a much
bn than | could hope to produce had I written my program in C.

bf the re-engineering design was a critical review with Bruce of each stage upon its
e any required changes could be made before proceeding on to the next step in our
consultations also allowed me to view the problem in hand from a different
b greater experience and they proved to be invaluable in my learning process. As a
le for me to prevent any major errors, at an early stage, therefore avoiding
re advanced stage of the program.

The idea of reusability was always present in my mind when giving consideration to any thoughts or ideas I
had during my design because of it’s importance to modern software engineering methods. Keeping
reusability in mind sgemed very natural after having learned object oriented design methods and I find 1
can forsee ways of retusing code for alternative applications much more easily than before due to this new
awareness in my thipking. This new awareness can only lead to my writing more practical software
solutions than I have done in the past.

Of course learning togk place on both sides:
Bruce:

I learned a great deal pbout C++, and about learning too. I will never forget Sanjiv saying one day ‘‘I never
knew programming was like this’’.

Our final step was to take the new program to the original author. He had been keen to have us work on his
code, wanting very much to improve his C programming. But when faced with our product, his reaction

was that he could no
““‘much easier’’. We
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conceive of writing programs ‘‘that way’’, and that writing them Basic-style was
would like to undertake a more detailed study of the effort required to achieve a shift
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towards a more structured approach to software, but this must wait for further work.

However, I do have some speculations on the effort required, based on this project and on experience with
other object-oriented languages. Designing good software is difficult, and object-oriented programming
puts design up front, so that bad designs are more obvious. Designing good software modules for re-use is
even more difficult, and likely to become the domain of special experts. Not everyone can do it, nor can
they always afford to hire others, and so makeshift software will continue to be produced and used.
Organisations will need to decide where on this spectrum they want to be. Retraining and restructuring to
recognise and use this are very difficult.
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ABSTRACT

hg an operating system on an open machine, implies the use of development

methods. This report describes the way chosen to implement the kemel of the GOTHIC

distributed s|
system whig
that method

1. Introduction

Development method
written and compiled
machine. This methg

However we decided
incremental method
version of the kerng
independent program
the first one, V0. Thi

This paper consists 0
and the development
section 5 gives a brief

2. Structure of the
GOTHIC [BANA-86]

ystem and a well suited environment. Our goal is to design a development
h can run on the successive versions of the kernel. The major advantage of
s to intensively test the kernel for programming and design errors.

s are needed to build an operating system on a bare machine. Programs are usually
on a host operating system while execution and tests are performed on the final target
d is called cross-development.

to use a different way to set up the kernel of the GOTHIC distributed system. The
ive have chosen adds at each new step a new component to the kernel. The Vi+l
| uses the Vi version as its operating system. To achieve this, we provide an
ing environment which can run on every version of the GOTHIC kernel including
method is expected to keep us off using any host system as soon as the V0 is built.

five sections. Section 2 describes the structure of the GOTHIC kernel. Our method
system are presented in section 3. Section 4 details implementation aspects and
review.

GOTHIC kernel

is a fault-tolerant distributed system. This is based on the notion of fragmented

objects and multi-functions provided to express parallel computation. Each primitive of the kernel is

atomic (multi-functio|
either at the kernel Iq

ns are here for) and prevents the propagation of errors in case of problems occurring
vel or at the user level. Multi-functions solve two main problems for designers of

fault-tolerant distribufed applications :

errors are confi

global analysis
cooperating prd

To allow the develoj
atomic execution for
board [BANA-87] wh
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hed in case of bugs in the system,

of applications is made easier. Because a multi-function represents a set of
cesses, it is easier to understand and ‘‘master’’ the control structure.

pment of applications where speed is critical, the kernel must provide an efficient
multi-functions. To achieve this, implemented protocols use a stable storage memory
ich offers atomic primitives (create, read, modify, delete) to access stored objects.
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Application 1 Application 2 oee Application n
Distributed objects Distributes execution
management of multi-functions
GOTHIC
KERNEL
stable virtual inter-machine .
process . drivers
storage memory communication
management management
management management management
SPS7 Stable storage
Multiprocessor Machines Memory boards

Figure I. structure of the GOTHIC kernel

The structure of the GOTHIC kernel is made out of the following elements:

- several SPS7 multi-processor machines [BULL-85] compose the bare machine, on which we add a
stable storage to each processor.

- on this bare machine the first software layer includes hardware managers (stable storage manager
[COQU-87], communication manager [LUCA-87], drivers managers, ...) and those dealing with
virtual memory and process management. This layer is built on a real-time system named SPART
[BULL].

- the second layer is distributed on the whole set of machines. It executes multi-functions and
messages objects. We are presently specifying and developing this layer.

3. Development strategy

The GOTHIC kemel is progressively built. If we are forced to use a host system and cross-development
methods to produce the initial version (V0) of the GOTHIC kemnel, it is no longer the case afterwards. In
fact, we find it interesting to build each Vi+1 version of the GOTHIC kemnel using the last Vi version; this
means that any potential design or programming error will be rapidly detected. The resulting operating
system is thus a true working/usable system and not just a ‘‘model’’.

Of course, this is only possible if a proper programming environment is available on this kernel.
Programmers should have the possibilities to log-in (!), to write, compile and test programs. This
environment can be seen as an application running on the current Vi version of the GOTHIC kemel.

Each Vi version of the GOTHIC kernel plus the environment constitute a stand-alone operating system
which can run on the bare machine. This independence keeps us from using a host system for development
or tests. The GOTHIC kemnel is not slowed down by any lower software layer, and no constraint appears on
the design nor the development.

The initial Vo version of the GOTHIC kemel comprises only the SPART operating system and the stable
storage and communication managers. As a result, the programming environment is designed to fit SPART
and its file management system. However the environment is never a definite one : it has to be adapted to
the new elements brought by each new version of the kernel (multi-functions, fragmented objects, ...).
When the whole GOTHIC kernel is built, this programming environment will be modified for the last time
to become a GOTHIC application.
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There are two possib
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programming environment

e ways of producing a programming environment. The first is to create an integral

environment which fits GOTHIC concepts (multi-functions, fault-tolerance, ...) and uses some state-of-the-

art facilities in man
program interfaces of
these libraries.

To implement such §
software release mj
environment will offe

user log-in to a

a general file ar

computer interfaces (multi-windows, mice, ...). The second way is to adapt the
libraries of an existing system, and then to compile the tools and commands using

large project as the GOTHIC kernel, at least a source code control system and a
Inagement tool are highly desirable. A minimal but sufficient programming
r the following features :

h access-controlled working space,

d disk management commands set,

a full-screen editor,

a C-compiler,

a source code ¢

Let us again notice t
concepts of GOTHIC.
the environment, we
environment. Theref]
then new tools can be

pntrol system and a software release management utility.

hat this programming environment will have to be completely re-designed to fit the
A this will require too much time than we can afford now for just the production of
choose the second way ie. the adaptation of the program interfaces of an existing
bre we only have to re-write the program interfaces of the chosen environment, and
added with some modifications.

Many reasons led to the choice of a UNIX System 5.2 compatible environment, including :

UNIX offers all
SPART has aU

of the above facilities,

NIX-compatible file management system (FMS).

/

application
level

General file and
disk management
commands

Text editor

C Compiler .
Versions manager

N\

libraries and
program interface

File Management
System

Version 0 of the GOTHIC kemnel

4.2. SPART syste

The SPART operat
machine. SPART has
to eight processing u
process) is created

concerning a task (
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Figure 2. structure of the programming environment

:Ig system offers supports to real-time applications on the SPS7 multi-processor

been designed according to SCEPTRE principles [BROW-84]. SPART can manage up
hits. Each processing unit possesses its own code of the kernel. A task (or a SPART
n a processing unit and stays there until the end of its execution. All requests
breation, activation, destruction, ...) are local. With the global memory and the
el it is possible for tasks running on different processing units to share memory, to
ynchronize (semaphores). The heart of SPART is its kernel which schedules tasks,
tual exclusion, interruptions, ... and carries inter-processing unis communications.
several agencies which offer higher level devices. These devices constitute the
br applications, as basic functions of the kernel are not directly accessible. The
entity int the SPART kernel (there are task objects, program objects, segment objects,
nages a special class of objects; it offers proper primitives for this class of objects.
in either local or global memory. When in local memory they can only be accesses
Cts stored in global memory are accessible by any processing unit.

S
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The SPART system has ‘an ‘‘operator task’’ allowing users to create and control tasks from the system
console by calls to special primitives.

4.3. Development methods

The programming environment must match the version of the kernel on which it runs. The first version of
the kernel consists mainly of the SPART system. Therefore low-level libraries have to offer a proper
interface to SPART objects; and so they will have to be re-written using the multi-functions concept as soon
as these ones are available.

We have to cope with cross-development methods to produce the first version of the environment.
Programs are edited and compiled on the host system : SPIX (UNIX System 5.2 of the Bull Company). The
machine used is a bi-processor SPS7, with SPIX running on one of the processing units, while SPART runs
on the other. These two systems work independently. It is forbidden to share a logical volume in write
mode because the cache-memory of each file system lies in local memory. That is why communications
between the two systems is achieved by using the same volume but in mutual exclusion. Executable files
produced while SPIX is running are stored on this volume; the volume is un-mounted from SPIX file system
and then mounted on SPART file system. This way, each file system is kept in a coherent state. The
volume is mounted on SPIX file system in a directory called /gcthic. All object files produced for the
environment are copied into this directory in a UNIX-like tree-hierarchy. On SPART, this volume is
mounted as the root of the SPART file system; it is directly accessible by all of the commands of the
environment. With the operator-task it is possible to mount or dismount the shared volume and to run the
environment on SPART.

/dev/gothic

mount /dev/gothic /gothic mount /dev/gothic /
disk

computer
interface
I SPS7
" Global bus
local UT Global uT stable local
memory SPIX Memory SPART storage memory
local bus local bus

Figure 3. development method

4.4. Implementation of the environment

Out adapted programming environment is System 5.2 compatible. This environment is made out of two
parts (see figure 4).

This first part interfaces the kemel and manages UNIX objects such as processes and files. It includes the
modified file management system of SPART (FMS), programs libraries (libc, ...) and UNIX primitives which
create processes : FORK and EXEC. Several tasks have to be carried out here. First, the file management
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be adapted to fit out needs. Second, as SPART processes are different from UNIX
b write UNIX primitives to create UNIX-like processes on SPART. Third, we must
knt the libraries used to line the commands.

mmands and tools available for the user can be found. These two parts are required
ironment. We built them either by adapting existing programs or by re-writing
imitives.

adapted commands:

rewritten commands: Micro-Emacs,

Real time SPART kernel

Figure 4. UNIX-compatible environment

S

The FMS file manage

ent system is a subset of the UNIX System 5.2 one. Some functions such as ‘‘pipes’’

are missing. Moreover FMS has been designed to enable SPART to use or share files with a UNIX system.

This explains why

e found some insufficiences in FMS, especially in the management of serial

input/output lines. L¢t us look at an example : some of the missing functions are those which control the
way the interface depls with special characters (such as erase, carriage-return), the echo, the data-flow

(XON-XOFF), the tra
structure named ‘‘te
associated with the “*
accessible through a
““TCSETA”’ function{
typed-in character tes
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mio’’.
IFCGETA’’ and ‘‘“TCSETA’’ function. (see figure 5). In FMS, each control command is
Epecial “‘ioctl’” function. In order to look like the UNIX interface, **“TCGETA’’ and

smission speed, and so on. In System 5.2, characteristics of a line are stored in a
10”’. This structure can be read or set by an ‘‘ioctl’”” command, respectively

have been added to FMS standard commands as well as other features, including the
, and the transmission of a line-feed with each carriage-return.
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UNIX SPART
ioctl(file-desc, function, arguments) ioctl(file-desc, function, arguments)
int file-desc: int file-desc;
int function; int function;
struct termio *arguments; struct termio *arguments;
functions
TCGETA: Reads the characteristics FDX: The line is put in full-duplex mode.

of the serial line

HDX: The line is put in half-duplex mode.

TCSETA: Sets the characteristics ECHO: Echoes the received characters.

of the serial line.

NO_ECHO: Suppress the echo mode.

XON: The traffic is controlled by XON-XOFF

XOFF: Suppresses the XON mode.

struct termio { Format of the arguments is function dependent.
unsigned short c_iflag /* input mode */
unsigned short c_oflag /* output mode */
unsigned short c¢_cflag /* control mode */
unsigned short c_Iflag /* local mode */
char c_line; /* line discipline */
unsigned char c_cc[8]; /* control char */

Figure 5. Comparison between ioctl commands

4.4.2. UNIX and SPART process management

4.4.2.1. Context of a process

The context of a UNIX process holds a set of informations about the process and its execution environment.
The following informations are available:

uid, gid : real user and group identifiers. These are inherited from the ‘‘father process’” (the process
which created this one).

euid, egid : effective user and group identifiers. These identifiers are used to restrict the access rights
of the process to files and are also inherited from the father process. These effective identifiers are
the same as the real ones (uig, gid) unless access rights have been modified by the process or by one
of its ancestors via the EXEC primitive,

current directory.

the list of currently opened files.

the umask variable (added to the file creation rights).

call parameters : argc, argv of ‘‘main’’, pointing to the command line.

a UNIX environment, described by a set of variables, each being associated with a character string
representing its value. Variables such as terminal type (TERM variable), or search rules (PATH
variable), can be defined in this set. The shell associated to any user enables him to read, modify, or
enlarge the set of variables. The process accesses this UNIX environment via a character string array
pointed to by the **environ’’ variable.

To implement the UNIX context of a process we use three data structures. The FMS context contains the
uid, gid, euid and egid identifiers, the current directory, descriptors of the files opened by the process, and
the umask variable. Two other structures are used for the call parameters (ie. the command line) and the
UNIX environment. These structures are stored in a segment associated to the process. When a process
creates another process or a ‘‘son process’’, this segment is duplicated to let the son inherit the context of
its father.
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Figure 6. creating a new process with UNIX and with SPART
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types in a command, it creates and activates the corresponding SPART task. This FORK-EXEC chain
simulation sonn enabled us to test the UNIX-commands that we had adapted to SPART. Then the other
method (see figure 7) was developed, ensuring working space protection.

Implementing FORK

Father process Son process

A call to fork:

— The program counter of the

concemned code file is incremented.

— A new task object is created.

— A memory block is allocated for

the SPART context of this new task.

— Data, stack and environment segments
are created._

— The SPART context of the new task

is initialized.

— The new task can then run, and is scheduled.
— Copy the stack, data and environment segments of
the father process into those of the son process.
— The code segment is mapped in the logic
space of the task.

— Copy of the file descriptors.

— Identifiers (uid, gid) are copied.

— Current directory is set.

— Umask variable is copied.

— Context switch.

Return the zero value.

Return the identification of the son process. (The son process then really runs by itself

Figure 7. implementing FORK

When a UNIX-like process has created a ‘‘son-process’’, it can wait for this son to terminate and to give its
*‘father’’ a report about its execution. For example, this is the case of the C-compilation-scheduler ‘‘cc’’.
Cc calls many programs successively. Any program in this chan can only run if the previous one has
returned a correct report value. The UNIX primitive to wait for a process to terminate is ‘“wait’’; a process
terminates its execution by a call : “‘exit(code)’’. We added a ‘‘CR’’ variable in the environment segment
of processes for the transmission of this *‘CR’’ report value. When a son process ends by ‘‘exit(code)’’. its
“‘cr’’ variable takes the ‘‘code’’ value. ‘‘Wait”’ is implemented as follows. The father process has to set
an access on its son environment, and then wait for its son to terminate by a call to the SPART primitive
““wait_end_task’’. Then, the father process can read in its son environment segment the cr report value
and deaccess this segment. In the SPART system, a segment can be destroyed only if there is no more
access set on it. In our implementation, each task asks for its environment segment to be destroyed when it
ends. However, if the father process of this task has called the wait primitive, the destruction can only
occur after the father (has read cr and then) has deaccessed the environment segment (because *‘wait’’ sets
an access on the environment segment of the son process). Otherwise, the environment segment of a task
is destroyed at the end of this task.

Implementing EXEC

EXEC just keeps the context of the calling process and re-initializes the code, data and stack segments
according to the argument used to call EXEC. The sizes of the new program segments can of course be
different from those of the calling program. Therefore, it is not sure that the only inherited segment
(environment or context) is mapped at the same address in the logical space of the task (see figure 8).
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Environnement
env base

Environnement
env base Y Code

X Code
user EXEC Y

logical
space X Data

X Stack Y Stack

System
logical
space

Figure 8. mapping of segments before and after EXEC

The environment segment contains a fixed number of pointers to internal variables (to strings containing
the values of the environment variables and to arguments in the command line). These pointers have to be
re-computed to take|into account the new position of the environment segment in the logical space of the
task. Two elements|compose a pointer : the base (mapping address of the segment) and the offset within
the segment. The copversion equation is:

new_pointer 5 (old_pointer - old_base) + new_base,
with(old_poinijer - old_base) = offset.

Here is a simplified mplementation of EXEC :
A call to EXEC implfes the following operations:

- Access and jexecution rights on the new program file are checked.

- Enviroment, code, data and stack segments are un-mapped.

- Stack, data pnd code segments are destroyed.

- The program counter on the old program file is decremented.

- The new program is loaded.

- The program counter on the new program file is incremented.

- The new prpgram is unloaded. This wiil be done only when no task uses it anymore.

- If an **S’" bit is set instead of an “*x’” for this file, the effective identifiers are updates accordingly.
- New siack, fata and code segments are mapped.

- The kept enjvironment segment is mapped.

- Pointers inrﬁe environment segment are converted.

- Return.

Using EXEC, it is popsible to change any effective user identifier : euid, egid of a process. If access rights
on the executable file have an “*S’’ bit set instead of an **x”’ for user or group rights, the calling process
will run this code wjth the effective owner and group identifiers (euid, egid) of the file. Real identifiers
(uid, gid) remain unthanged : they are those of the calling process. So, it is possible to have commands
which need a larger yisibility of the system, such as “‘su’’ (change to system administrator mode), or which
access to a reserved $pace, such as the spooler “‘Ip’’.

4.4.3. Adapting lipraries

Most of the “‘libc’’ ¢an be adapted to SPART only by a re-compilation of primitives. However, machine-
dependent functions pr process-management functions have to be re-written.

Signals are not implemented, but ‘‘empty primitives’ were written to produce error-free links. Signals
primitives are generglly used to prevent the murder of a task when this could disrupt the system.

In UNIX, the functioh ‘‘time’” returns the number of seconds elapsed since the 1% January 1970. The FMS
function ‘‘time’’ is pot the same, but was used to implement a UNIX-lik etime function on our SPART
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system.

When a process just starts running, it is not the ‘‘main’’ procedure which is executed first, but instead, a
“‘startup”’ procedure assigned by the SPART system. Of course, the startup procedure tends to call
“‘main’’, but before, it initializes the heap, standard input/output files and the UNIX environment of the
process. The startup procedure was modified to fit our UNIX-like process management in our programming
environment.

Thus we have simultaneously UNIX processes and ‘“pure’” processes in our SPART system. There are
therefore two versions of the startup procedure, each one integrated in a library (libunix or libnounix).
During the link, we use one or the other library, according to the edited task.

»

Enviroment variables can be accessed through two primitives : “‘getenv’’ and ‘‘putenv’’. Getenv gets the
value of an environment variable and putenv modifies it. These useful primitives are available in our
environment. Finally, the following functions were adapted to our system : libc, libcurses : used to manage
terminals, libld : used to produce objects in the right format (COFF).

4.4.4. Running the environment on SPART

There is a task, named *‘init’’, that the operator must create and start from the system-terminal to start the
execution of our programming environment. This task waits for a user to log-in from a user-terminal. If
the user is recognized, a command process or a shell is attributed to him. In the current state of our system,
two *‘init”’ tasks can be run in parallel and so two users can log-in and work simultaneously.

Shell is a process which recognizes commands typed in by the user and executes the corresponding
programs. Because our environment is a subset of UNIX, we decided to write our own ‘‘mini-shell’’,
which uses only the UNIX facilities implemented in our environment. Another reason for this choice is that
we wanted to test the behaviour of our UNIX-adapted commands whereas FORK and EXEC were not yet
integrated into the SPART kernel. Then, the simulation for FORK and EXEC was performed in our shell.

4.4.5. User interface

Some basic commands (df, du, Is, pr, cat, mkdir, rm, ...) are adapted from UNIX V7. Other available
commands are UNIX System 5.2 modified commands.

A special ‘*hybrid’” case is the C compilation chain. Both V7 and System 5.2 were used to adapt this
chain. The chain is made up of a C-compilation-scheduler ‘*cc’” which successively calls : a pre-processor
“‘cpp’’, a compiler *‘c0’’, *‘c2’’which optimizes the code produced by c0, an assembler ‘‘as’’, and finally a
link editor **1d’’. Our System 5.2 was designed for a DEC/VAX machine. To avoid re-writing a compiler
and an assembler for a 68020 processor, we chose to get the first elements, from *‘cpp’” to ‘“‘as’’, by
adapting V7 sources (because V7 sources are designed for a 68000 processor). Objects produced by these
programs (from ‘‘cpp’” to ‘‘as’’) are then modified and put in the correct format to fit System 5.2. A
“‘convert’” command was therefore inserted in the original compilation chain. Finally, the link editor “‘1d”’
comes from System 5.2. Other commands which manage program objects : load, dump, size, s3, nm, ...
come from System 5.2 too.

Make and SCCS are used to manage respectively program objects and program sources. The available
editor is a reduced version of Emacs : Micro-Emacs 3.7. This editor is practical, not too big, and easy to
adapt.

5. Conclusion

Today we have a UNIX programming environment running on the initial version of the GOTHIC kernel.
This kernel consists of an enlarged SPART system with stable storage and communication facility (it is the
Vo version).

Next versions of the kernel will directly come from this initial version, using the adapted programming
environment. Therefore the final version of our system will have been fully tested.

As soon as multi-functions and GOTHIC objects management system are implemented, the actual
programming environment and the file management system will have to be re-designed according to
GOTHIC concepts. The UNIX-like programming environment will then be a GOTHIC application.
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ABSTRACT

Directly Mapped Files is a file access method implemented under UNIX System V
Release 3.
The entire file appears to the user process like a large byte array in the virtual address
space and may be accessed without any read, write or seek operations. Thus, many
programs, especially those working on data bases, intermediate files, or complex data
structures, may be written much more easily and run faster. The paper describes the
implementation in the UNIX kernel and its direct relationship to the demand paging
algorithms. An example (ar) demonstrates the issues for user programs.

1. Introduction
When I first learned to use UNIX, I read:

In the UNIX system, a file is a (one dimensional) array of bytes.

a statement from the UNIX Implementation by K. Thompson. So why can’t we access a file ‘‘as is’": like a
long array of bytes?

With directly mapped files , a file is mapped into a segment in the virtual address space of a program. Thus
the contents of the file are directly accessible. No read, write or seek is required to access the data in the
file. This simplifies user programs and eliminates all buffer management problems.

This solution is in no way new: already the MULTICS system only allowed accessing files by mapping them
into the virtual storage. Other operating systems had similar implementations.

2. The Open, Close, Read, Write, Seek Interface
Example 1

Copy an array of 100 integers from one record to another.

What we want to do (and this is what can be done with dmf files):

for (1 = 0; 1 < 100; i++)
record2[i] = recordl(i];

What we currently do, if we believe in C and UNIX:

int a;

for (i = 0; 1 < 100; i++) {
lseek (fd, recordl + i * sizeof(a), 0);
read(fd, &a, sizeof(a)):
lseek (fd, recordl + i * sizeof(a), 0);
write (fd, &a, sizeof(a)):;

}

What programmers will do since they feel the overhead:
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int a[100];

lseek (fd, recordl, 0

read (fd, a, sizeof (a

lseek (fd, recordl, 0

write(fd, a, sizeof(
Thus the programmer makes some optimizations to bypass the kernel overhead.

Of course, this is a very simple examples, and there is nothing to say about the latter solution. But what if
the data structures are more complex, e.g. fileds of unknown size, that can only be interpreted by analyzing
the data itself, e.g. strings? In such cases, good programmers will try to transfer data by chunks.

Programmers organize data in memory due to what they feel is the best overhead compromise
between the clean solution — leaving things to the UNIX kernel — and the reduction of overhead.

The kernel does everything for you to optimize your file access, like reading blocks in advance, or keeping
blocks in a buffer cache. If a programmer bypasses these algorithms, or adds his own optimizations, the
kernel optimizations can be lost.

When programmers create their own buffering, cache scheme, or whatever, they are cheating
the kernel! If they do not, their programs become intolerably slow.

The idea of UNIX is that a programmer must not even think about optimization or file access.

The existing UNIX interface to files works well with stream oriented data. This encourages programmers to
organize their data in a sequential manner ~ even on databases or intermediate files, which will never be
sent to a pipe or to a sequential device like a tape.

A disk is a direct access storage medium, but UNIX programmers still write programs that
work well on paper tape readers and punches.

3. The DMF User Interface
After opening a file by

fd = open(path, flags, mode);
another system call
buf = dmfopen(fd, [addr], ([size]);

attaches a new segment to the program.

addr specifies the address where the new segment is to be located in the virtual address space of the user.
If not specified the next free address is used.

size  is the maximum size the file is allowed to grow to. This is needed to claim space in the user’s virtual
address space. If not specified, ulimit is used instead.

buf returns the start address of the data segment — that is where the file begins in memory. If addr was
specified, buf will be equal to addr .

From now on, the program may access the file by any normal memory operations, as explained in Figure 1.

Since the kernel cannot determine the exact length of the data accessed by the file, the size must be
specified in a close instruction:

dmfclose (fd, size);

The user is responsible for keeping track of the size. If the size is not specified or if no dmfclose is issued,
the size is rounded upward to the nearest multiple of the page size.

If several programs open the same file, their segments all map the the same pages frames in memory. If
one program writes to the file, the data is immediately available to all other programs.

Of the file was opened read-only , a write access causes a segmentation fault
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#include <fcntl.h>
char *dmfmap/();

#define Usage { printf("use: %s <file>0, argv[0], argv[1l]); exit(2); }
#define Perror(x) { perror(x); exit(2); 1}

main (argc, argv)

int argc;

char *argv(];

{
register fd, fd2, size, 1i;
register char *ba, *bp;

if (argc !'= 2) Usage

if ((fd = open(argv([l], O RDWR)) < 0) Perror{argv(l]);
size = lseek (fd, 0, 2);

if ((ba = dmfmap(fd, 0, 0)) < 0) Perror ("dmfmap");

for (bp = ba + size, i = size; i; --1)
*bp++ = *bat+; /* copy data */

if (dmfclose(fd, size+size)) Perror("dmfclose");
exit (0);

Figure 1.

The program dup uses dmf to duplicate the contents of a file; i.e. the file has the old contents twice
after execution of dup .

4. The Transparent Solution

The transparent solution allows existing programs to run using dmf with only minor changes: only the open
on files working with dmf has to be changed from open to opendmf. All other operations on the file, like
read, write, seek, close, look as usual. The program will be linked together with a module which replaces
the normal 1/O operations. If these operations pertain to dmf files, they are executed by memory copies,
like the read in Figure 2.

Of course, this does not give the full power of dnf to these programs: they still work with small buffers and
do not access the file directly in the segment. On the other hand, there is no need to rewrite existing
programs, and you can still let them take advantage of dmf. As an example, I took the archiver (ar), a well
known UNIX utility which handles a library of object files. Arneeds replace an object file of 20k in a
library of 100k.

It turned out that ar running with transparent dmf moved lots of its cpu time from system to user mode.
The system call interface was eliminated. Overall the CPU time was reduced and real time dropped by
50%.

Ar runs about twice as fast as before. Better results canbe expected if the entire program is rewritten to
handle the library and the object module as arrays in its virtual address space.

real | user | sys
ar 35.1 05| 28
ar with transparent dmf | 15.3 1.5 1.0
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write (fd, adr, siz)
{
register struct dmfx *dx = &dmfx[fd];
if (£d < 0 || fd >= NOFILES) || dx->dmfy == 0)
return write(fd, adr, siz);
memcpy (dx->dmfy->buf + dx->pnt, adr, siz);
dx->pnt += siz;
1f (dx->»pnt > dx->dmfy->siz)
dx->dmfy->siz = dx->pnt;
return siz;

read (fd, adr, siz)

register int 1i;
register struct dmfx *dx = &dmfx[fd];
if (£d < 0 || fd >= NOFILES || dx->dmfy == 0)
return read(fd, adr, siz);
i = dx->dmfy->siz - dx->pnt;
if (1 <= 0)
return 0;
if (i > siz)
i = siz;
memcpy (adr, dx->dmfy->buf + dx->pnt, 1i);
dx->pnt += 1i;
return 1i;

Figure 2.

The read and write functions of the transparent solution move data from user buffer to file (and vice
versa) using memory copy operations. These functions also support the pointer into the file (dx-
>pnt) and the size of the file (dx->dmfy->siz).

archive magic

archive
symbol table

a.out header

ar header text section

symbol entry

symbol entry

object file data section

symbol table

string section

Figure 3.

A complex data structure like an archive of object files is a typical example of prudent use of dmf.
ar r lib obj needs to access the file more then 2000 times to replace an object in the archive.
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(lib=100K, 20 objects, obj=20k.)

5. Kernel Implementation

The virtual address space of a user program is split into segments. Like text, data and stack, files appear
like long arrays within the address space.

In a demand paging UNIX — like System V Release 3 — text segments are no longer loaded into main
memory before a program starts. When the program tries to access a page that is not available in memory,
this page is faulted in from the a.out file in the file system. Thus nearly all algorithms needed are already
available in the kernel. Kernel functions that had to be changed are:

° When the dmf region is built up, its pages map into the file in the file system.

. If a page fault occurs, the data is read from the file into memory. If the page lies beyond the size of
the file, the page is cleared to zero.

) If the region is freed, all dirty pages are written back into the file.
. The page stealer vhand rewrites dmf pages to the files.

Only 30 source lines had to be inserted or changed in the kernel code. For the implementation of the new
system calls and the read/write of dmf pages, 3 pages of source code were added.

If more than one process accesses the same file by dmf, they share the same segment in memory. As with
text segments, if the sticky bit of the file is set, the region will stay in memory, but its pages may be
swapped out by the page stealer.

segments

disk file

disk file

Figure 4.

The virtual address space of a user program is divided into segments. Like text, data and stack, files
appear like long arrays within the address space.
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6. Suggested Use and Limitations

The size of the file is always a multiple of the page size of the implementation — in our port 2k. Users have
to handle the size of files themselves. They can set the file size in the file system when closing the file.

An access beyond the size of the file results in a segmentation fault, a signal which normally aborts the
program. Even if a program catches this signal, there is no simple way to handle the end-of-file situation
and to continue the program.

Directly mapped files cannot be used with standard input, standard output or pipes. All other data
organized as a stream can be handled well by the standard UNIX I/O interface.

7. Conclusions

Directly mapped files is a powerful access method implemented under a demand paging UNIX system such
as System V Release 3. It simplifies the file access of user programs as files appear as what they are said to
be: just long arrays of bytes. Dmf cannot replace all UNIX files, but it is useful with complex data
structures, data bases, and intermediate files.

Dmf essentially reduces the kernel CPU time. With the transparent solution — which fequires only minor
changes in existing programs ~ most of this reduction is lost to the user CPU time. In any case, the kernel
system call overhead is discarded, context switches are eliminated, and real time reduced drastically.

By moving CPU time from the kernel to the user process, it also makes the implementation of UNIX in a
multiprocessor environment easier!
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ABSTRACT

Subsequent to the Sixth Edition of the UNIX system there have been different
versions of the searching tool grep using different algorithms tuned for different types of
search patterns. Friendly competition between the tools has yielded a succession of
performance enhancements.

We describe the latest round of improvements, based on the fio fast I/O library and
incorporating the Boyer-Moore algorithm. Although grep is now 3—4 times faster than it
was, egrep is now typically 8-10 (for some common patterns 30—40) times faster than
the new grep .

1. Introduction

In the beginning, Ken Thompson wrote the searching tool grep . It selected and printed lines from its file
arguments that matched a given regular expression. In 1975, just after the release of the Sixth Edition of
the UNIX system, Al Aho decided to put theory into practice, and implemented full regular expressions
(including alternation and grouping which were missing from grep) and wrote egrep over a weekend.
Fgrep, specialised for the case of multiple (alternate) literal strings, was written in the same weekend.
Egrep was about twice as fast as grep for simple character searches but was slower for complex search
patterns (due to the high cost of building the state machine that recognised the patterns).

Ever since, each of the tools has sporadically improved its performance, mostly as a friendly rivalry
between the owners of grep (Thompson, and later on, McMahon) and egrep (Aho). We inadvertently
joined this rivalry in mid 1986 by improving grep ’s 1/O management, thus enabling grep to leapfrog in
front of egrep for common (simple) patterns. During August 1987, we improved the performance of grep
by another factor of 2 and that of egrep by a factor of 3. By implementing the Boyer-Moore algorithm for
literal strings within egrep , we further improved its performance (for patterns containing literal strings) by
another factor of 8.

This report describes how these improvements were made. We first describe fio, a fast buffered I/O library
and compare its performance against the standard I/O library stdio. We then describe the changes made to
grep and egrep .

2. The fio library

The fio library is a small, efficient buffered interface to the UNIX file system. For most purposes, it
supplants the older, slower and larger stdio library. A full description of the fio routines is given in the
appendix. A short summary follows in three sections: buffering, input, and output routines. As in the
UNIX system calls, all I/O is referenced by file descriptor.

Buffers are initialised by calling Finit. The user need not explicitly call Finit. Buffers can be written out
by calling Fflush. Input and output streams can be linked by Ftie which causes an output stream to be
flushed whenever the associated input stream is read. Fseek is analogous to the /seek system call taking
buffering into account.

Fread reads a specified block of characters and Fgetc reads a single character. Frdline returns a pointer
to the next (newline terminated) line. It dees not copy the line into a user buffer like the stdio routine
fgets. Fundo undoes the effect of the last Fgetc or Frdline .

Fwrite writes blocks of characters and Fputc writes a single character. Formatted output is done by a new
and slightly incompatible implementation of printf called Fprint.
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2.1. Speed comparison with stdio

The raison d’etre for fio is speed. This is accomplished by eliminating unnecessary copying and by using
the memory routines for copying (memcpy) and searching characters (memchr). The implementation is
straightforward with few surprises. The library totals 263 lines of C source. (The equivalent part of stdio
is 545 lines.) The rest of this section compares fio and stdio routines.

gets/Frdline

This simply tests speed of reading line at a time with no processing. The input had 19883 lines totalling
1024933 bytes.

char buf[4096];
register char *s = buf;

#ifdef STDIC

while (gets(buf) != NULL)
#else

while (s = Frdline (0)
#endif STDIC

library user Sys total
stdio 19.5 32 22.7
fio 3.7 2.6 6.3
stdio/fio 527 | 1.23 3.60

puts/Fwrite

There is no fio analog to puts from stdio. Fwrite must count the number of characters to be output. We
give times for longer lines (with length nrand (4096)) as well.

char buf(4096];
register n;
long nb;

for(n = 0; n < 4096; n++)
bufin] = "X';
for(nb = 0; nb < 1000000; nb += n+1){
buf(n = nrand(128)] = 0;
#ifdef STDIC
puts (buf) ;
#else
Fwrite(l, buf, strlen(buf)); Fputc(l, '\n’);
#endif STDIC

buf(n] = "X’;
b
library smaller longer
user sys total user Sys total
stdio 17.8 4.7 225 15.1 4.2 19.3
fio 7.5 3.7 11.2 2.3 3.8 6.1
stdio/fio 237 | 1.27 2.01 6.57 | 1.11 3.16

fwrite/Fwrite

If the line lengths are known then it might be tempting to use the stdio routine fwrite. Again, we give
times for longer lines (with length nrand (4096))
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char buf[4096];
register char *s =
register n;

long nb;

buf;

for(n = 0; n < 4096; n++)
buf(n] = "X’;

for(nb = 0; nb < 1000000;
n = nrand(128);
buf(n] = “\n’;

nb += n+1) {

#ifdef STDIO
fwrite (buf, 1, n+l, stdout);
#else
Fwrite(l,

buf, n+l);

#endif STDIO
buf[n] = "X’;

}

smaller

library l
tota

304
8.2
3.71

user
25.8

4.3

6.00

Sys
4.6
39
1.18

user

229
0.9

25.44

stdio
fio
stdio/fio

Fwrite is so wretchedly slow that using puts improves things:

smaller

library

sys

total

stdio

4.6

22.1

fio

39

8.2

stdio/fio

1.18

2.70

gets,puts/Frdline,Fwrite
This example reads and writes lines.

char buf[4096];
register char *s =
register n;

buf;

#ifdef STDIO
while (gets(buf) != NULL)

puts (buf) ;

while(s = Frdline(0)) {
n = FIOLINELEN(O);
s[n] = '\n’;
Fwrite(l, s, n+l);
}

#endif STDIO

Note that the length of the last line read comes for free with fio. The input has 5088 lines totalling 313267
bytes.

total

13.5
4.1
3.29

library
stdio
fio
stdio/fio

Sys
2.6
2.1

getc,putc/Fgetc,Fputc

This represents character at a time processing. Fio loses badly because the stdio char 1/O routines are
inline macros. The input has 5088 lines totalling 313267 bytes.
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register char c;

#ifdef STDIC
while ((c = getchar()) != EOF)
putchar (c);
telse
while ((c = Fgetc(0)) >= 0)
Fputc(l, ¢);
#endif STDIC

library user sys total
stdio 8.8 2.3 11.1
fio 34.8 3.5 38.3
stdio/fio 0.25 | 0.66 0.29

2.2. Summary

If we compare libraries on the basis on user CPU time, fio is about 6 times faster than stdio. (The single
exception, single character 1/O, has not been a problem so far but is not too difficult to fix.) For some
programs the speed of 1/O is not important. However, for a large number of programs (including many of
the commonly used UNIX tools), [/O speed is important if not dominant. The case of grep described below
is typical; changing to fio increased the speed by a factor of 3—4.

3. Tuning grep

The primary motivation for tuning grep was its slow performance on large (> 10MB) files. (In retrospect,
the improvements described below are apparent even for small files.) The limited time available for tuning
precluded work on the pattern matching code so we concentrated on improving the I/O management. In
particular, we wanted to see what improvement we could get by replacing stdio routines by fio routines in
a typical UNIX tool.

The timing examples are searching for the beginning of a line in a file of 13,931 filenames totaling 512,000
bytes. Because our main concern was /O performance, we chose a pattern that was cheap to match, thus
the execution times reflect as little of the matching code as possible. The timing examples differ only in
the amount of output generated. The datafile is 512,000 bytes of filenames of mean length 37 bytes. In
each example, every line in the input is matched. The small output example is

grep -c '’ datafile

which produces 1 line of output (the number of lines). The large output example is
grep '’ datafile

which effectively copies every input line to the output.

The structure of grep is fairly simple. The main program loops over its file arguments processing each one
in turn. The processing of each file is also fairly simple; the file is opened, each line is read, the pattern is
matched against the line and the appropriate action taken on that line. Most often, the action is to print the
line if the pattern matched the line. Thus, the original code (grep./) looks like

while (gets (buf) != NULL)

if (match(pattern, buf))
printf ("%s\n", buf);

By adopting fio input we derive grep.2 shown below. We simply replace the call to gets by a call to
Frdline . Note that the line is stored inside fio ’s buffer, not our buffer.
while (buf = Frdline(fd))
if (match (pattern, buf)
printf ("%s\n", buf);
The final version (grep.3) uses fio for output as well. The call to printf is converted to a simple Fwrite call
(note that the newline character is placed where the terminating null was).
while(buf = Frdline(£d))
if (match({pattern, buf)){
register x = FIOLINELEN (fd);

buf[x] = "\n’;
Fwrite (1, buf, x+1);
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The times for each of these versions reflect the superiority of fio. Times are given in seconds of user time.
As the gains due to improving the output routines will depend on how much output is generated, the times
are given for “‘small’” and ‘‘large’” amounts of output. The speedup is given as a ratio of the time for

grep.1 .

small large

version - -
time | speedup time || speedup

grep.1 12.48 1.0 25.54 1.0
grep.2 4.16 3.0 16.47 1.6
grep.3 4.05 3.1 6.7 3.8

The payoff for using fio is high; grep runs 3.1-3.8 times faster than the original version considering the
small amount of code changed.

4. Tuning egrep

The original implementation of egrep was a deterministic state machine. Performance was often poor
because of the potentially exponential time needed to construct the state machine. In 1983, Aho introduced
lazy evaluation of the (cached) state transition tables by techniques described in [1]. In practice, as few
state transitions are needed, the lazy algorithm ran nearly as fast as the original algorithm (one additional
test inside the inner loop) with zero initialisation time.

As we will be tuning the pattern matching code for egrep as well as the 1/0 code, there is also a timing
example denoted ‘‘matching’’ that executes the pattern matching code for every byte of the input: egrep
abcd input (note that no line contains abcd).

4.1. Tuning I/O
Egrep.2 replaces the stdio output routines (printf) in egrep.l by the appropriate routines from fio (Fwrite).

Next, the input code was changed to use fio routines. The input code was an elaborate double buffer
scheme which complicated the state machine code considerably. The change to fio was intended mainly to
simplify the code and to measure how much difference there was between the fio library and hand-coded
I/O. The input was done by the following code:

if (=-ccount <= 0){
if(p <= &buf[BUFSIZ]) {
if ((ccount = read(f, p, BUFSIZ)) <= 0) goto done;
} else 1if(p == &buf[2*BUFSIZ]) {
p = buf;
if ((ccount = read(f, p, BUFSIZ)) <= 0) goto done;
} else {
if ((ccount read (f, p, &buf{2*BUFSIZ]-p)) <= 0) goto done;
}
1

The fio version (egrep.3) is

if (*p++ == "\n’){

if((p = Frdline(f)) == 0) goto done;

len = FIOLINELEN(f);

pllen++] = "\n’; /* Frdline nulls the \n, put it back */
}

The next version, egrep.4 , had a careful recoding of the inner loop of the pattern matching code.
execution times are

small large matching

version - - -
time | speedup time || speedup time | speedup

egrep.l || 4.75 1.0 13.82 1.0 1595 | 1.0
egrep.2 || 4.59 1.0 7.13 1.9 15.03 | 1.1
egrep.3 || 2.93 1.6 5.31 2.6 16.55 | 0.96
egrep4 || 3.06 1.6 5.28 2.6 999 | 1.6

Given we have to examine every byte in the input, egrep cannot be significantly improved.
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4.2. Tuning the Algorithm

Obviously, the real question is whether we can avoid looking at every byte. The answer (in practice) is yes
if we are looking for literal strings. A literal string is a regular expression with no meta-characters, that is,
every character stands for itself. The Boyer-Moore algorithm{2] performs very fast searches for a literal
string. It tries to match the pattern against the input from right-to-left. Failures can often advance the input
pointer by the length of the search pattern. For example, if we have a 10 character string not containing a
y (say), and the current input character is a vy ; then we can advance over 10 input characters as the vy
cannot match any part of the pattern. In general, we can advance the input pointer by the distance of the
character from the end of the pattern. If the input character matches, we then do a slow character by
character check. The first version of egrep implementing Boyer-Moore detects patterns which are literal
strings and executes special purpose code (about 164 lines of C, a 27% increase in the number of lines of
code) achieving spectacular results, a factor of 8.1 faster.* An unexpected consequence of the efficiency of
Boyer-Moore is that asking egrep to give the line number for lines that match slows egrep down by a
factor of 2 because it now has to look at every input byte to count the newlines.

What about regular expressions (rather than literal strings)? We cannot apply Boyer-Moore directly to the
regular expression matcher. However, we can use Boyer-Moore to filter out lines that can’t match by
extracting the longest (that is, the most effective for Boyer-Moore) literal string in the regular expression
and running the regular expression matcher only on the lines that matcht. The implementation for egrep.5
involves running a stripped down version of the state machine (29 lines, a 3% increase) over the line that
matched the literal string pattern. The times show the improvement over egrep.4 ; as expected, the longer
the literal string, the more effective the Boyer-Moore filtering is.

pattern egrep.4 | egrep.5 | speedup
n.* 3.5s 3.6s .97
na.* 9.7s 3.1s 3.1
nam. * 10.0s 1.8s 5.6
name. * 10.1s 1.7s 5.9
name\ . .* 10.0s 1.2s 8.3
name\.c.f 99s 1.0s 9.9

This improvement is not machine specific; measurements on a Sun III workstation and a VAX 11/750
show similar speedups. In fact, searching for a 30 character string (in our standard data file) takes no
measurable user time on the SUN. Indeed, for the typical use where the pattern includes a literal string
longer than 3 or 4 characters that matches relatively few lines, runtime is determined by how fast the
underlying operating system can do I/O.

5. Conclusion

It seems clear that most programs doing substantial I/O can significantly improve their performance by
substituting fio routines for stdio routines (or even hand-coded 1/0). For example, grep improved its user
(cpu) times by a factor of 3.1 to 3.8. These improvements are straightforward to apply and the payback is
large (provided I/O is significant). Furthermore, fio is highly portable. It provides an invariant user
interface (for example, that doesn’t depend on the size of integers) and the implementation is simple and
easy to port.

In some circles, these changes to grep and egrep would be dismissed as *‘simply engineering.”” It is true
that the biggest gains come from better algorithms such as Boyer-Moore, both for literal string patterns and
as a filter for regular expressions containing literal strings. (The speedup depends on the pattern but factors
of 8-10 are common.) Nevertheless, solving a problem like searching for lines in a file intrinsically
involves problems like managing 1/O. Indeed, once the algorithms are sufficiently good, these problems
dominate.

What is the current state of pattern searching? Egrep is about as fast as it can be for matching regular
expressions (in practice, a runtime of O (linpur 1)), and it uses the Boyer-Moore algorithm (in practice, a
runtime of O (linput 1/| pattern 1)) for literal strings. On the most common patterns (literal strings), egrep

*What is not spectacular is how long this took to come about. The Boyer-Moore algorithm was published in 1977. A
kludgy but workable implementation of Boyer-Moore within egrep was done by Woods at NASA, Ames in 1986.
tWoods’ egrep actually implements this directly by emitting the matching lines into a pipe feeding the normal egrep !
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is about a factor of 10 faster than grep. On regular expressions like d...name, egrep is typically
30—40 times faster. The only reason (apart from habit or loyalty) for using grep is the feature of back-
referencing in the search pattern (referring to the input matched by an earlier part of the search pattern).
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FIO(3) Ninth Edition FIO(3)

NAME
Finit, Frdline, Fgetc, Fread, Fseek, Fundo, Fputc, Fprint, Fwrite, Fflush, Ftie — fast buffered [/O

SYNOPSIS

#include <fioh> long Fseek(fd, offset, ptr)
long offset;
void Finit(fd, buf)

int Fputc(fd, ¢)
char *buf; :

long Fread(fd, addr, nbytes)
int Fprint(fildes, format [, arg ...])  char *addr;

int fildes;
long nbytes;

char *format; int Fwrite(fd, addr, nbytes)

* .
char *Frdline(fd) char *addr;

long nbytes;

int FIOLINELEN(fd)
int Fflush(fd)
long FIOSEEK((fd)
int Fgetc(fd) void Ftie(ifd, ofd)
void Fundo(fd)
DESCRIPTION

These routines provide simple fast buffered I/O. The routines can be called in any order. 1/O on
different file descriptors is independent.

Finit initializes a buffer (whose type is Fbuffer ) associated with the file descriptor fd. Any buffered
input associated with fd will be lost. The buffer can be supplied by the user (it should be at least
sizeof(Fbuffer) bytes) or if huf is (char *)0, Finit will use malloc (3). Finit must be called after a
stretch of non- fio activity, such as close (2) or seek (2), between fio calls on the same file descriptor
number:; it is unnecessary, but harmless, before the first fio activity on a given file descriptor number.

Frdline reads a line from the file associated with the file descriptor The newline at the end of the line
is replaced by a O byte. Lines longer than 4096 characters will have characters deleted. Frdline
returns a pointer to the start of the line or on end of file or read error. The macro FIOLINELEN
returns the length (not including the 0 byte) of the most recent line returned by Frdline . The value is
undefined after a call to any other fio routine.

Fgetc returns the next character from the file descriptor fd, or a negative value at end of file.

Fread reads nbytes of data from the file descriptor fd into memory starting at addr. The number of
bytes read is returned on success and a negative value is returned if a read error occurred.

Fseek applies Iseek (2) to fd taking buffering into account. It returns the new file offset. The macro
FIOSEEK returns the file offset of the next character to be processed.

Fundo makes the characters returned by the last call to Frdline or Fgetc available for reading again.
There is only one level of undo.

Fputc outputs the low order 8 bits of ¢ on the file associated with file descriptor fd. If this causes a
write (2) to occur and there is an error, a negative value is returned. Otherwise, zero is returned.

Fprint is a buffered interface to print (3). If this causes a write (2) to occur and there is an error, a
negative value is returned. Otherwise, the number of chars output is returned.

Fwrite outputs nhytes bytes of data starting at addr to the file associated with file descriptor fd. If
this causes a write (2) to occur and there is an error, a negative value is returned. Otherwise, the
number of bytes written is returned.
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Fflush causes any buffered output associated with fd to be written; it must precede a call of c/ose on
fd. The return is as for Fputc .

Ftie links together two file descriptors such that any fio -initiated read (2) on ifd causes a Fflush of
ofd (if it has been initialised). It is appropriate for most programs used as filters to do Ftie(0,1).

SEE ALSO
stdio (3), print (3)

DIAGNOSTICS

Fio routines that return an int yield -1 if fd is not the descriptor of an open file or if the operation is
inapplicable to fd.

BUGS

The data returned by Frdline may be overwritten by calls to any other fio routine.
Fgetc is much slower than access through a pointer returned by Frdline.
There is no scanf equivalent.
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Formatted I/O in C+

Mark Rafter
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ABSTRACT

The fmitio library extends C+ stream I/O to include formatted I/O in the style of
stdio. This extension is layered on top of stream I/O, and only requires minor changes to
<stream.h>. The key traits of the original stream I/O system, namely extensibility
and type-security, are retained. An example of its use is:

cout|[ "log of %d is:%9f\n" ] << 5 << log(5);
which prints

log of 5 is: 1.609438

The fmitio library is presented as a suitable framework in which to conduct further
experiments with formatted 1/O systems. The methods used in the library are sketched,
and its overall structure outlined. An example is given of how to equip a datatype with
formatted I/O by interfacing it to the fmtio library.

1. Introduction

The C++ stream [/O system is a great approach to I/O — it provides the programmer with a mechanism that
is uniform, extensible and type-secure {1]. Stream I/O stops short of providing acceptable formatted /O —
its formatted output functions, form, dec, hex and oct, are clearly a stop-gap measure [2]. In particular,
form, being a lightly disguised form of sprint¢£, delivers all of the problems that we associate with
sprintf and its stdio cousins.

It was not clear i0 me whether formatted i/O had been omitted from the stream 1/O library because of a
mismatch between the formatted 1/O idiom and the expressiveness of C++, or whether it was a routine piece
of work that just hadn’t got done. After some experimentation, I came to the conclusion that the answer
lay somewhere between these two extremes.

Extensible, type-secure formatted 1/0 systems can be built in CH+ — moreover the operator idiom of
stream I/O, and the format-specifier idiom from stdio can both be retained. An example of such a library,
fmtio, is described here. However, the methods used in its construction probably don’t count as completely
routine.

Is specifying features such as field-width, radix, justification and padding important to people, and if so
why? The formatting facilities of stdio are breeding grounds for bugs, and this makes the real cost of using
them quite high. The fact that people are willing to pay this cost might be taken as evidence that stdio's
formatting facilities are valued. However, it is not the whole story.

The interface to stdio’s formatting facilities can be made much safer. In C+ we could define overloaded
print and read functions which would call printf or scanf in a manner appropriate to their
argument types. This would be type-secure. It is even possible provide a safe interface to stdio in C,
although then there would be an ugly proliferation of function names, read int, read_double,
read_complexelc. .

Why do we not see safer interfaces to the stdio facilities more widely used? It is not just the formatting
facilities of stdio that people value, it is the notational advantages of the formatted 1/O idiom, in particular:
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. The format-specifier notation is compact.

° The formatting information is gathered together in one place, and the data objects are gathered
together in another.

. The format-specifier notation is simple and well-suited to routine tasks.
In effect, the formatted I/O idiom provides a little language [3] for describing I/O.

In developing fmtio, notational convenience was considered as important as both extensibility and type-
security. Notational inconvenience was considered grounds for rejecting a design. Consequently, the
simple to implement approach based on overloaded functions was rejected as too cumbersome.

Although the fmtio library achieves its aims — the demonstration of a convenient, extensible, type-secure
formatted 1/O library for CH — it seems premature to recommend that fmtio be adopted as a standard.
Something much better than stdio-like facilities should be possible — more experimentation and further
work is called for. What the fmtio library does offer is a nice framework for building formatted I/O
systems. This paper sketches the methods used in the fmtio library and outlines its overall structure. Only
formatted output is discussed; formatted input uses the exactly the same mechanisms. The main ideas
underlying fmtio are:

. The COOL assumption

. Control flow based on the COOL assumption

. Making C+ look COOL

Some of these ideas may have applications in other areas.

Throughout this paper the following program fragment will act as an example of the use of fmtio library:
cout ["log of %d is:%$9f\n"] << 5 << log(5);

When executed, our example prints:
log of 5 is: 1.609438

The %d controls the format of the integer 5, and the $9£ controls the format of the double log (5) .

2. The COOL Assumption

The methods used in the construction of the fmtio library take their simplest form in a Completely Object-
Oriented Language (COOL), i.e. one in which there is a type ob3j from which all other types are derived.

double

Of course, CH is not such a language; but, in the interests of the explanation, we temporarily adopt the
fiction that it is. In fact we go further than this and assume that the language has all the features that will
make the implementation of fmtio easy. These are:

. All types are derived from the type ob3j.
. There is automatic coercion from any type to the base type obj.
. The base type obj is equipped with virtual read and print functions.

Each type is has its own redefinition of read and print that handle the low-level details of formatted 1/O
for this type, and this type only. For any given datatype, the provision of these functions is the
responsibility of the datatype designer.

Later we will show how to approximate this ideal situation in real C+. For now, we continue with our
fiction and give the declaration of the obj datatype:
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struct obj
{

virtual void read( ostream & strm, char * fmt );
virtual void print( istream & strm, char * fmt );

};

We illustrate the use of the virtual functions by reference to our example. Its execution should (somehow)
result in the following two calls:

int (5) .print ( cout, "%d" );

double( log(5) ) .print( cout, "$9f" );

The way in which these functions are provided with their arguments, and how they are called, is the subject
of the next section.

3. Control Flow Using the COOL Assumption

The fmtio library is almost entirely concerned with providing a control flow framework for the orderly
execution of formatted 1/O expressions. This framework is built with three main artifacts:

° The types fostream and fistream. These are the formatted stream types. Objects of these
types contain information used in the execution of formatted I/O expressions.

The index operators. These take an unformatted stream and a format-specifier (char *). The
operators bind them together to give a formatted stream object.

The formatted I/O operators. These differ substantially from their unformatted counterparts. There
is only ever a single output operator and a single input operator. These are provided as part of the
fmtio library. Both operators take a right-hand operand of type obj &. This, and the assumed
automatic coercion of all types to the base type ob3j, allows the two formatted I/O operators to be
applied to objects of any type.

The relationships between the above can be illustrated with our example:

cout["log of %d is:%9f\n"] << 5 << log(5):

ostream char * int double

operator| | coercion

fostream

The execution of this formatted I/O expression starts when the index operator binds the unformatted stream
cout and the format-specifier together creating a new formatted-stream object. Then control passes from
left to right through each of the formatted 1/O operators in turn, just as in the stream I/O system. As control
progresses through the operators they deal with successive parts of the format-specifier. The operators
record this progress in the formatted-stream object that was created by the index operator. The job of an
1/O operator is in three parts:

. Process any plain text in the format-specifier up to the next format control character.

. Make a copy of the format control part of the format-specifier. Call the virtual read or print
function for the right-hand operand. Supply the unformatted stream to be used and the copy of part
of format-specifier as the function’s arguments.
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. Process any plain text remaining in the format-specifier.

We can trace the flow of control involved in executing our example. This shows which operators and
functions deal with the various parts of the format specifier, and what they do with them.

S A B C D E
cout[’ log of %d is: %¥9f\n’] << << log(5);

S,ABCDE

Control flow starts with the index operator and passes to the left-hand output operator, which outputs the
leading plain text "log of ". The left-hand output operator calls int : : print with cout and "%d"
as arguments. The function int::print outputs "5" on cout and returns to the left-hand output
operator, which then outputs the trailing plain text " is:". Control flow then passes to the right-hand
output operator, which has no leading plain text to deal with. The right-hand output operator then calls
double: :print with cout and "%9f" as arguments. The function int::double outputs "
1.609438" on cout and returns to the right-hand output operator, which then outputs the trailing plain
text "\n". At this point the formatted I/O expression is complete.

The operators of the fmtio library are entirely concerned with imposing control flow and providing
controlled access to parts of the format-specifier. All of the details of the actual formatted I/O operations
have been delegated to the virtual read and print functions associated with the various datatypes.
Consequently the only formatted I/O modules that are linked into a program are the ones it uses. This
improves on the stdio situation where all or none of the formatting modules are linked in.

Because the formatting information in the format-specifier is decoupled from the data objects to which it
refers, it is possible for the two to be incompatible. This situation does not pose a type-security threat to
fmtio in the same way that it does to form, printf and scanf. In fmtio, the formatting algorithm is
chosen on the basis of the type of the object concerned, not on the basis of data in the format-specifier. The
issue of incorrect data in a format-specifier should not be ignored; just as unformatted input operators
should cope with incorrect data in an (external) data-stream, formatted 1/O operators should gracefully
handle incorrect data in an (internal) format-specifier.

4, Making C+ look COOL

To adapt the above scheme to CH we must simulate a unified type hierarchy and its coercion mechanism.
We don’t attempt to do this in complete generality — that would be too hard — we need only simulate the
unified type hierarchy for formatted 1/O expressions. To do this:

) Take as the base of our hierarchy the type ob3j, declared in exactly the form shown above.

) The obj hierarchy will be a hierarchy of container classes. The objects in this hierarchy will refer to
the right-hand operands in formatted 1/O expressions. Each CH type, T, is injected into the obj
hierarchy by deriving a type obj_T from the type obj.

We would like to hide all of this mechanism from the casual user of the fmtio library by exploiting the C+
implicit type conversion rules. As a (flawed) first attempt:

° Each of the container classes, obj_T, is equipped with a constructor taking an argument of type T.
We want this constructor to automatically inject an object of type T into the obj hierarchy when the
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object occurs as the right-hand operand of a formatted I/O operator.

This realisation of our formatted 1/O expressions is a slight variant of our previous scheme:

cout["log of %d is:%$9f\n"] << 5 << 1log(5):;

ostream char * int double
constructor
operator{] obj_int obj_ciouble
coercion
fostream << obj << obj

In fact this scheme must be modified slightly — the CH implicit type conversion mechanism is not
sufficiently strong. The constructor for obj_T will automatically convert a T into an obj_T, but only in a
context that demands a value of type obj_T. In formatted I/O expressions the *‘generic’’ 1/O operators
demand right-hand operands of type ob3j, not obj_T, so the constructor is not implicitly applied. This is
the case even though an implicit coercion from ob3j_T to obj is allowed. The two stage type conversion
of T to obj_T and of obj_T to obj needs to be supplied more explicitly. To do this:

o Each container class, obj_T, comes together with a formatted 1/O operator that takes a right-hand
operand of type T. The body of this operator does no more than state that the right-hand operand
must have the conversions T to obj_T and obj_T to obj applied before the ‘“*genenc’™” I/O
operator is used.

Although our scheme for COOL simulation in CH may sound a little complicated, it is quite simple from
the point of view of a datatype designer. Apart from the datatype-specific read and print functions a
simple class declaration and an operator definition is all that is required to equip a datatype with formatted
[/O. This class declaration would be unnecessary if type hierarchies could be suitably parameterised;
alternatively the production of the class declaration could be automated with a suitable cpp macro — the
author chooses not to do this.

As an example, here are declarations that are necessary to equip the type complex with formatted 1/O:

struct obj_complex : obj

{
complex & datum;
obj complex( complex & d ): datum(d) ({}
virtual void read( ostream & strm, char * fmt );
virtual void print( istream & strm, char * fmt );
}:
fostream & operator<<( fostream & fstrm, complex & z)
{
return fstrm << obj( obj ccmplex( z ) );
}

A quick and dirty version of complex: :read and complex: :print can be built with stream I/O or
stdio library functions — this is not very interesting, and so is omitted here.

5. Variations

The version of the fmtio library described here has the virtual read and print functions receiving their
part of a format-specification via an argument that has type char *. The author has experimented with
several variants of this mechanism, the most flexible of which is to make this argument an unformatted
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input stream [4]. The details of a format specification can then be read using unformatted, or even
formatted, I/O operators. This makes handling field-widths etc. very easy.

Formatted [/O systems structured in the way we have described enjoy the characteristic that only the
modules actually used in a program will be incorporated into it by the link-editor. Thus, for example,
modules for floating-point formatted I/O will be omitted if only integer formatted I/O is used.

In £mtio there is only a single obj hierarchy; because of this both input and output operations for a data
type will be incorporated even though only one of them is used. An alternative approach is to have two
separate container hierarchies, oobj for output, and iobj for input. The virtual print functions and the
output operators are defined for the oob3j hierarchy. Similarly, virtual read functions and input operators
are defined for the iobj hierarchy. Each datatype T must then be equipped with an oob3j_T type for
formatted output, and an iobj_ T type for formatted input. With this arrangement, input and output
modules will be incorporated independently.

6. Digression

Although not directly concerned with I/O issues, a possible weakness in CH was turned up while
investigating the above. This section deals with this — it is probably only of interest to C+ or OOP
afficionados.

One of the strengths of C+ is that it provides support for object-oriented programming with all type-
checking performed at compile-time. It has been claimed that this removes the run-time phenomenon of
objects being asked to execute a method for which they don’t possess a suitable definition. Such a claim is
too strong.

It is not uncommon to declare a base type, equipped with public virtual functions, for the sole purpose of
defining the common characteristics of a set of related types. The related types will be derived from the
base type and they must redefine all the virtual functions declared in the base. This is what we did with our
obj type and the other obj_T types derived from it.

In such a situation both the base type and the definitions of the virtual function found therein may be
unwanted artifacts. No object of such a base type should ever be created; the base class definitions of the
virtual functions should never be executed (assume they print out ‘‘cannot happen’” and then dump core).

C+ gives us a mechanism for ensuring that a base type object can never be created — we make the
constructors protected. Ensuring that the base class definitions are never executed is not possible because
we cannot enforce the requirement that the virtual functions be redefined in all derived classes. The
compiler is unable to complain if we erroneously forget to redefine one of these functions. For example, if
we forget to declare the print function in the class obj complex, the base class definition
obj: :print will be executed when formatted output of complex numbers is used. So we get ‘‘cannot
happen’ printed and a core dump — i.e. a message saying that an object has been asked to execute a
method for which it possess no suitable definition — precisely the phenomenon that was supposed to be
banished.

Is this a problem with the C+ language definition or with its current implementation? Strictly speaking it
is the implementation that is defective. If the virtual functions were declared in the base class but not
defined, then it would be illegal to create an object of a derived class, if that class were not to redefine all
the virtual functions of the base class. There are two obstacles to this. Firstly, the compiler will need to do
an analysis of the constructors for base types when compiling constructors for a derived type. Secondly,
co-operation from the link editor may be demanded.

CH needs a sophisticated separate compilation system, but the current implementation attempts to use a
minimal one. This has been done for reasons of portability — it is common to have no choice about which
link editor is to be used. Thus the the second obstacle may prove to be the greater.

7. Further Work

Layering the fmtio library on top of the stream I/O library is interesting, but has drawbacks. For example,
it is easy to mix formatted and unformatted I/O operators in a single 1/O expression but this doesn’t work
well. A version of the fmtio system that was integrated with the stream I/O library would solve this
problem.

At the mundane level of the format-specifier syntax, something much better than the stdio style should be
possible. For example, a syntax that defined, in a simple but flexible way, how much of the text following
a %’ character should given to a read or print function would be a big help.
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At a deeper level, we should probably examine more powerful ways of structuring streams of data; Rob
Pike’s use of structural regular expressions [5] looks like an interesting avenue.

8. Summary

The development of the fmtio library has demonstrated that a convenient, extensible and type-secure
formatted I/O library with the best features of both the stdio and stream I/O libraries can be built in C+.
More important than the library itself are the methods used in its construction and its overall architecture
— its framework. What is needed now is further experimentation to see what facilities we want to place
within this framework.
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ABSTRACT

Recent changes to Sun’s implementation of the UNIX operating system (SunOS)
have provided new functionality, primarily file mapping and shared libraries. These
capabilities, and the mechanisms used to build them, have made significant changes to
the programming environment the system offers. Assimilating these new facilities
presents many opportunities and challenges to the application programmer, and these are
explored in this paper.

The new mechanisms also provide the application programmer with a flexibility
comparable to that previously reserved for the operating system developer. Much of this
fiexibility is based on mechanisms for dynamic linking that support interposition. The
future developments and ramifications of these mechanisms, as well as other areas for
similar system refinements, are also explored.

1. Introduction

Several new capabilities have been added to Sun’s implementation of the UNIX operating system (SunOS),
most notably file-mapping and shared libraries. These capabilities not only introduce important new
facilities, they also present new issues with which a programmer must be concerned, while at the same time
enabling new performance and functional opportunities, and sometimes even making new classes of
applications possible.

The manner in which these new capabilities have been incorporated into the system is also of interest.
They are often applications of some more primitive and general underlying facility. These facilities are not
necessarily new in the sense of being ‘‘original”’, all that is new is their implementation in SunOS. Their
utility lies in being general, fundamental abstractions. They are interesting to the system architect because
they provide a basis for a compact and efficient system implementation. However. they may be of more
interest to an application developer, because the ‘‘system’’ functions they provide are but one of many
possible applications for them — application areas now open to more than just **system programmers’’.

An examination of these facilities involves not only a description of how to use and work with them, but
must also include the architectural and implementation decisions made in deciding how the system
provides a given capability. For us, these decisions are driven by a desire to find the fundamental
abstractions common to a group of related problems, and then address those problems uniformly from
those fundamentals.

We do not claim there is anything particularly remarkable about these activities. Some would properly
claim that they simply represent a restatement of precepts of long-standing programming disciplines or the
“*UNIX-philosophy.”” Where we believe we may be particularly successful is in our consistency in
following the abstraction process and in a willingness to reimplement extant parts of a system to maintain
architectural integrity. This approach leads to a particularly powerful system architecture, one that more
easily lends itself to future evolution than if we had provided a specific capability as a closed system
addition. It also transcends arbitrary software boundaries such as ‘‘the kernel’’, instead representing a
systemic philosophy of providing abstractions through basic mechanisms that are applied to create (or
perhaps recreate) a specific system capability. Further, this approach helps retain the *‘essential character’’
of the UNIX system, allowing us to extend it and at the same time provide a powerful and efficient
implementation of standard interfaces and thus gain from the large and growing body of UNIX software.
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The sections that follow will briefly describe the new facilities present in SunOS. For the most part, these
are more completely described elsewhere, and the discussion provided here is simply for background. Also
examined will be the application of these facilities to recreate portions of the system based on new
fundamentals, and the issues and potential difficulties the new facilities can present to application
developers. Then our experiences in applying these facilities will be described, as well as a perspective on
how they will evolve and the opportunities they present for application development. In addition, future
opportunities for the evolution of the system will be explored.

2. New Virtual Memory System

The demands to support different forms of shared memory, mapped file access, shared libraries, and
practical demands of increased system portability have led us to the development of a new Virtual Memory
(VM) system for SunOS. The new system unifies all the system’s operations on memory (including the
“‘memory " in files) around the single notion of file mapping. The following summary covers the system’s
general concepts and how they were used to reimplement existing operations on memory. A more
complete examination of the systems architecture and operations can be found in [GING 87a] and a detailed
treatment of its implementation structure found in [MORA 88]. Conceptually, the system owes much to
MULTICS [ORGA 72] and TENEX [MURP 72].

2.1. General Concepts

The new VM system provides a page-based facility in which the fundamental concept is file-mapping. The
system’s virtual memory consists of all its available physical memory resources, including local and remote
file systems, pools of unnamed memory (swap space), and other random access memory devices. Named
objects in the virtual memory are referenced through the UNIX file system. Previous SunOS work on file
system interfaces permits many different implementations of file objects that are manipulated through an
abstraction of the original UNIX inode, called a vrode [KLEI86]. The object manager for a vnode is called a
Virtual File System (VFS), and is itself an abstraction of the services required to implement a file system.

A process’s address space is defined by mappings onto objects in the virtual memory. The mappings are
constrained to be sized and aligned according to the page boundaries of the system on which the process is
executing. Each page in an address space is independently mappable (or not), and thus the programmer
may treat the address space as a simple vector of pages. A given process page may map to only one object,
although a given object address may be the target of many process mappings. An important characteristic
of a mapping is that the object to which the mapping is made need not be affected by the mere existence of
the mapping. The implications of this are that it cannot, in general, be expected that an object has an
“‘awareness’ of having been mapped.!"! Establishing a mapping to an object simply provides the potential
for a process to access or change the object’s contents.

The establishment of mappings provides an access method that renders an object directly addressable
within an address space. Unlike the access methods provided by read and write that require an application
to operate only on a copy of object data (i.e., a program buffer), this method eliminates the inefficiency of
copying while permitting the object to retain its identity during the access operation. The ability to directly
access an object and have it retain its identity over the course of the access is unique to this access method,
and promotes sharing of common code and data.

The VM system consists of programming that operates as a cache manager for data in the virtual memory.
The physical resources for the cache are the processor’s primary memory. References to VM objects result
in either an access to a **cache entry’” or the fetching of data into the cache, possibly requiring removal of
other data. The latter two functions are simply ‘‘page-in’" and **page-out’".

An important characteristic of the system is the balance between the responsibilities of the VM system as
cache manager, and those of the VFS that obtains data for filling a cache entry and to which data is passed
when flushing an entry. This balance permits different handling of requests based on the object manager,
where the differences may reflect either semantic changes or performance enhancements, or both. For
example, predictive operations such as the old function of *‘read-ahead’" are supported by object managers
that ‘‘page-ahead’’ in response to sequential accesses.

[1] It is not prohibited for an object to be aware of being mapped, it is simply not guaranteed that all objects can have such aware-
ness.
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2.2. Application in System Primitives

The most basic operation is that establishing a mapping between a process address and an object in the
virtual memory. This operation is available through the mmap system call, fully specified in the system’s
architectural description and first described in [JOY 83]. It should be noted that the only memory that a
process can address is that to which a mapping has been established.

mmap provides for two primary “‘types’” of mappings: one, called MAP_SHARED, creates a mapping that
lets store operations change the mapped object (i.e., the result of the **write’" is shared with all users of the
object). The second type of mapping, MAP_PRIVATE, creates a mapping that makes the changes made
by store operations private to the address space containing the mapping. MAP_PRIVATE is often referred
to as copy-on-write, reflecting a common implementation technique of intercepting the first store to a page,
copying the page, and redirecting the original store and successive references to the copy.

The mapping abstraction for accessing memory has been used in a reimplementation of several UNIX
kernel operations. These include exec, fork, and brk. Perhaps surprisingly, these also include read and
write. The reimplemented operations still exist as system calls to retain a compatible interface for old
applications. However, from a memory management perspective there is little motivation to implement
them this way. The common uses of the read, write, and brk system calls in particular can easily be
implemented in application code using mmap. And all of the functions of exec save the implied *‘overlay-
and-jump’” function could similarly be implemented outside of the kernel, a fact used in the development
of shared libraries.

2.2.1. exec

exec overlays a process’s address space with a new program to be executed by performing an internal
version of mmap to the file containing the program.m The process’s stack and uninitialized data areas are
mapped to unnamed, zero-initialized storage. The mappings exec establishes are all the MAP_PRIVATE
type.

The use of MAP_PRIVATE mappings simplifies the system call prrace. Formerly, ptrace would refuse to
deposit breakpoints or otherwise write on the text of a program executing in more than one process. With
the changes to exec, this restriction has been removed: prrace does its work by setting a text page writable,
depositing its breakpoint, and restoring the write-protection. Because the page where the breakpoint is
deposited is mapped MAP_PRIVATE, when prrace stores into it, the store will really access a copy.

2.2.2. fork

Perhaps the most interesting application of the new facilities is in fork. In the new system, fork has been
redefined. Formerly it would copy the address space of the parent to build the child. It now merely copies
the mappings describing the address space. If a mapping was MAP_PRIVATE in the parent, it is
MAP_PRIVATE in the child, and neither sees changes made by the other. Copies of address space data
are made only if necessary, and then only a page at a time. Since most forks are followed immediately by
an exec, this avoids wasting substantial effort in making copies that are never used.

If a parent mapping is MAP_SHARED, then the correspeiding mapping in the child will also be
MAP_SHARED. This provides the capability for parent and child tc share memory after & fork, something
that was not previously possible in Berkeley-based UNIX systems [JOY 83].

The new fork illustrates that it is possible to reimplement and even redefine standard operations while both
maintaining compatibility and improving system functionality and performance. Although the definition of
fork has changed to take advantage of a more general underlying memory management mechanism, its
function to programs not using the new features of the system is completely compatible. And those
programs that take advantage of functions not previously available (e.g.. MAP_SHARED mappings of
files) have a more powerful facility with which to work.

2.2.3. read and write

When mappable objects are accessed through the read or write system calls, the kernel performs the
internal equivalent of an mmap to the kemnel’s address space to gain access to the file. This is followed by
the appropriate copyin or copyout operation to drain or fill the caller’s buffer. The changes to read and

[2] The code and data in this file must be in the (default) ‘‘demand-page’” format. Executables in other formats are handled by
copying them to a paged format in mapped unnamed storage.

EUUG Spring 88 - 257 - London, 13-15 April 1988




Evolution of the SunOS Programming Environment

write unify the system’s 1/O functions on memory objects around the notions of mapping. Mapping access
to files has not been some extra wart added on top of the system. Instead, the right abstraction has been
identified and then used to ensure that comparable system functions could be expressed in terms of it —
thereby simplifying the system and its implementation.

2.2.4. ““‘Segments’’

The new system provides a programmer with an address space that can be viewed as a simple vector of
pages. The old notions of *‘text’’, **data’’, and **stack’’ segments no longer have any real meaning to the
implementation of the system. The system as a whole retains the notions, but they are conventions imposed
by the language tools, rather than a fundamental system-imposed constraint. For compatibility purposes,
exec still establishes a range of memory to use as a heap, another for a stack, and brk adds or removes
mappings to manage a ‘‘data segment’’. However, there is nothing to stop a program from having multiple
non-contiguous heaps, or multiple text and data segments. The latter actually occurs when running
programs constructed with shared libraries.

3. Dynamic Linking and Shared Libraries

The text of a program consists of some body of code that implements the function for which the program
was written and also of code copied from libraries. Although UNIX has long supported sharing code
among processes running the same program, the fact that nearly every program makes use of routines such
as prinf means that at any given time there are as many copies of these routines competing for system
resources as there are different programs. As the body of UNIX programs grows, so does the percentage of
system resources devoted to these copies. The notion of *‘shared libraries’” attempts to extend the benefits
of code sharing to processes executing different programs, by sharing the libraries common to them.

The following sections summarize Sun’s approach to providing a shared library facility; a more complete
treatment can be found in [GING 87b].

3.1. General Concepts

Shared libraries in SunOS are provided through the application of other mechanisms. These are:
) a revised system link editor (/d) that supports dynamic loading and binding;

° use of the file mapping facilities to introduce an object (i.e., a file containing a shared library)
to an address space; and

) compiler changes to generate position-independent code (PIC).

It should be noted that the only one of these mechanisms provided by the UNIX kernel is file-mapping.
This is simply the mmap function. There is no kernel support specific to the support of shared libraries.

3.1.1. ld

Many of the functions relating to shared libraries are embedded in the link-editor, /d. Conceptually, /d has
been transformed from a just a batch utility that combines object files to a more persistent facility, available
to perform link-editing functions at various times over the life of program. Previously /d built all programs
statically — executable (a.out) files contained complete programs, with all code and data bound and
relocated in a single batch operation. The new Id will build “‘incomplete” a.our files, deferring the
incorporation (and binding) of certain object files until some later time (generally program execution). Still
other bindings (procedure calls) are deferred until the object is first referenced.

The object files on which /d defers link editing are added to the address space at execution time using the
system file mapping facilities to address and thus share these objects directly. These *‘shared object™’ (.s0)
files are simply executable files (demand page format) lacking an entry point.

Dynamic link editing is still the same operation as static link editing, all that has changed is the time at
which it occurs. But, what a linker such as /d does is edir: it changes a program reference to resolve it to
something a processor can execute directly. To change something involves writing on it, and to write on it
means that it can no longer be shared. What has really been built with these facilities is not so much
**shared libraries’’, but *‘dynamic libraries’’. *‘Shared’’ becomes a property of code that can be added to a
program directly without any change, rather than a functional characteristic.
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3.1.2. PIC

To make code more sharable, the C compiler was enhanced with an option to generate position-
independent code (PIC). PIC does not require relocation to be incorporated into an address space, and is
thus inherently sharable. This is accomplished by generating references to static storage as indirections
through a linkage table. When Id link edits a PIC module, it builds this linkage table, initializing it with
pointers that will eventually themselves be relocated."! The PIC references to the linkage table itself are
relocated by /d, leaving pure ready-to-execute code behind.

Generally, .so files are built as PIC. At execution time all that need be relocated from these executables are
their linkage tables. These are usually small relative to the entire object file. However, the use of PIC to
avoid dynamic link editing operations is simply a performance optimization, not a functional one. While it
will be shown that this optimization is important for effective system operation, not constraining the
mechanisms to enforce sharing provides an important flexibility advantage.

3.2. Use of Shared Libraries

In addition to supporting static and dynamic linking, /d’s conventions regarding the interpretation of its -1
option were augmented. -1 is the shorthand reference for a library name, implying both a search path
and a name format. For instance, a command line such as

% cc -0 ... —1x

formerly meant search for library x in a file named libx.a, located in one of several directories,
specified explicitly or implicitly. The new /d performs this function as well, but expands on it to allow the
library to have a different name, specifically 1ibx.so. If /d is enabled to perform dynamic linking (now
the default), it will search for either the .a or .so, preferring the .so form if both are present. A *‘shared
library’* is thus simply a .so file containing the objects comprising the library, named according to the
format of library file names, and placed in one of the standard directories.

Since these mechanisms are applied after a program has been compiled or assembled, it follows that
building a program with shared libraries involves no change to either the program nor the manner in which
it is built. All that is required is to install a form of the library suitable for dynamic linking. In our system,
for instance, there are both 1ibc.aand libc.so. The .so form is almost universally used.

3.3. Version Control

To handle the independent evolution of shared libraries and the programs that use them, a version control
scheme has been established. The .so files used as shared libraries really have a more complex name,
involving a suffix that describes the version of the library contained in the file. Interface version **2"" of
the C library, in its third compatible revision would be placed in a .so having the name libc.so.Z2.3.
The suffix may be an arbitrary string of numbers in Dewey-decimal format, although only the first two
components are significant to the operation of the link editors at present.

The first component of the string (often called the ‘‘major version number’”’) describes the library’s
interface, and the second component (*‘minor version number’’) documents implementation revisions to
that interface. When an application is linked by /d, the interface numbers of each of the library .so files /d
processed are recorded in the dynamic linking information retained in the resulting executable. At
execution time, this information is used by the dynamic link editor to determine the **best’" library to use in
an environment that may contain multiple versions of a given library. The rules followed are:

o Interfaces identical: the interface used at execution time must exactly match the version
found at /d-time. If an exact match cannot be found, the dynamic load will fail.

° Most recent revision: in the presence of multiple revisions of a given interface, the one with
the highest revision number will be used. A warning is issued if a revision appears to have
been deleted since the application was built, although execution will continue.

4. Issues

As with most changes in technology, the developments in SunOS bring both benefits and challenges. The
benefits are largely in programmer abstractions that provide improved performance, increased flexibility, or
greater functionality. The challenges are often less clear, and pose subtle (and therefore insidious) issues

13] ld really builds two *linkage tables™", one for data references and the other for procedure calls. The procedure call table 1s
(usually) loaded with code and more properly thought of as a **jump table™".
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that, if ignored. can trap the programmer trying to exercise a newly-available tool. Such issues include:

° Illusions of Compatibility. A pair of implementations are often considered *‘compatible’” if
they present the same *‘interface’’. However, interfaces generally only describe a narrow set
of positive assertions about a facility: what a user can assume about its use. It is rare,
however, for an interface to specify what its users may not assume. Further, interface
descriptions are generally devoid of non-functional issues such as performance.

) Inflation of Responsibility. More powerful programming tools, perhaps paradoxically, often
bring with them the obligation to use increased thought and skill in their application. Correct
and skilled use brings increased benefits, careless use merely brings more spectacular
disasters.

. Threats to Conventional Wisdom. Programming habits are acquired through a series of
experiences that train the programmer in “‘what works’’. However, new tools and facilities,
particularly those that generalize or refine an abstraction or the environment in which they are
applied, threaten those habits. A practice once considered acceptable may no longer be
adequate because the problems to which it is applied may have scaled beyond its applicability.

4.1. Working Set Size

One of the significant side-effects of the availability of shared libraries has been an increase in working set
size [DENN 72]. This effect was expected, and has appeared in other implementations of shared libraries
[ARNO 86]. The effect can be explained by the nature of a shared library: rather than including in the
address space of a program only the library functions actually required during its execution, the entire
library is provided. The (usually proper) subset of the library really needed is likely to be distributed over
more pages, and thus the memory demand imposed by the program is greater.

Although more pages are required, as long as the pages are shared among multiple processes the
incremental cost is decreased. This emphasizes the need to minimize the amount of private working set
size, and suggests that the priorities for minimizing size are to first:

° reduce the percentage of the working set that involves physical memory unique to this process;
and then
) reduce the shared physical memory requirements.

Experience has shown that the system is effective at handling pages that are truly shared, in that they are
rarely removed from memory and thus impose little per-access cost. However, the per-process private
pages must compete for the remaining physical memory resources with a comparable set of pages from
other processes.

Although it has always been important for programs to impose a reasonable resource demand on the
underlying system, the ‘‘working set’” inflation created by shared libraries makes this a consideration not
just of the application builder, but of the library builder as well. Although the functional requirements of
the library have not changed (the interfaces are compatible), the performance side effects of this library
‘‘program’’ are not compatible with previous engineering considerations. It is, for instance, perfectly
acceptable to ignore these issues and create a library that works, however the global impact of something
like a poorly shared C library is potentially devastating.

4.2. Improving Sharing

The programmer can use several tools to increase the degree of sharing in a program or library and thus
address the issues of working set size. Although these tools have always been available, the programmer
may not have been sufficiently motivated to use them. In some (more insidious) cases, the changes to the
system have caused the tools to be “‘broken’’ or otherwise changed in some non-functional way. For
instance, the SunOS C compiler has supported an option (-R) to enter initialized data in the text segment of
an object file. When programs were linked with archive libraries containing such objects, the read-only
data was shared among all the users of a program. However, with position-independent shared libraries,
the use of an option such as -R is no longer as simple: a PIC module built with -R and containing an
initialized array of character pointers will actually worsen the sharing of code, since the pointers in the
initialized data will require relocation when the object is actually added to the program at execution.*!

[4] An alternative to —R is 10 have a C compiler that supports the const storage class: when generating PIC for a const data
definition the compiler could issue the pointers and invariant data under separate relocation counters.

London, 13-15 April 1988 —260 - EUUG Spring 88




Evolution of the SunOS Programming Environment

While it is important to move the truly invariant data to sharable memory, it is also important to recognize
what is really a piece of invariant data.

Invariant data can also be obtained by recoding programs to use position-independent data (PID). Although
a compiler can be changed to emit PIC, the position-dependence of static storage is a function of the
program’s algorithms. Clearly C is a language that favors a coding style using pointers, but often
substantial efficiences can be gained if a data structure is accessed as PID, using relative addresses (array
indices) to describe the desired address. The C treatment of array names as pointers makes this coding
simple, if a little unnatural. Languages such as C++ [STRO 86] that contain support for overloaded operators
such as * [ ] ' can make this more aesthetically satisfying.

The use of PID is also important for databases that are expected to be accessed through mapping operations.
Such databases might include, for instance, character font descriptions for a bit-map display, and be used
by many processes simultaneously. Having the data be PID allows the client applications to structure their
address space around their application, rather than the requirements imposed by a common piece of data.

Finally, private data storage requirements can sometimes be lessened through the use of dynamically
allocated global storage. This can be accomplished by removing static declarations and changing their
references to access lazily malloced data. In a body of code such as the C library, where the average
program uses little of the entire library, this can represent a substantial space savings. Further, the data that
is used is generally allocated contiguously with other used data, often on the same page of the malloc heap.

4.3. Interfaces and Configuration Management

The availability of a version control mechanism for dynamically linked objects places a requirement on the
programmer to recognize and manage library interfaces. The programmer’s responsibilities range from
simply updating version numbers appropriately to designing the interface to be more suitable for dynamic
linking. In addition, the ability to selectively use the dynamic linking facilities may require some decisions
about program configuration management with respect to dynamic linking.

4.3.1. Interfaces

Although the management of library interfaces has always been important, before the availability of
dynamic linking an erroneous or unanticipated incompatibility would not break existing programs. With
dynamically loaded objects, such errors are possible. However, they are also generally easier to detect
earlier in the development cycle. Because the new code can be easily inserted into almost every program
in a system, it becomes easier to perform large-scale testing.

A problem with interface management is that the languages and tools most programmers use do not
provide much support for it. Further, the interface is more diffuse than just the functions, arguments, and
results that one usually associates with a library. Tt extends to the shape (and sometimes content) of data
structures shared by, or defined in, both applications and libraries. For example, if the size of a jmp_buf
(as defined in the file setimp.h) changes, then this constitutes a C library interface change. If the
interface did not change, the extant applications containing instances of jmp buf structures might fail if
run with a C library that expected the differently sized jmp buf. If the size the library expects is greater
than that built in to the program, then the application will most likely malfunction as the library routines
overwrite the area reserved in the application.

4.3.2. Configuration Management

The provider of a given application (or set of applications) may not wish to expose itself to changes made
to libraries on which the application depends. Yet, the application may consist of application-specific
libraries that are dynamically linked to simplify maintenance. Further, when an application does fail, the
problem of determining the environment in which the failure occurred is more complex. Not only must
one determine exactly what version of an application failed, it is important to know what versions of shared
objects were involved. We have found it important to develop tools such as the program /dd (list dynamic
dependencies) that displays the shared objects used to execute a given application. We have also modified
other tools, notably debuggers, to interpret a program’s dynamic configuration.

The apparent complexity of the configuration management issues is not so much a problem as it is a
manifestation of an opportunity: vendors and computing suppliers now have a vehicle that supports
multiple interfaces simultaneously. It has become more practical to ship ‘‘field-replaceable’ software
units as libraries, because a mechanism exists that no longer requires an ‘‘all or nothing’’ form of program
replacement.
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Further, the specification of interfaces at a dynamic linking level encourages innovation. Programmers
modifying or enhancing the UNIX kernel have benefited for years from the ability to replace the code
behind an interface that was dynamically linked with applications. This flexibility has now been extended
to more than just kernel developers — now virtually any programmer producing a general purpose facility
has in the concept of a library much more than ‘‘a related collection of object files’’, there is an interface
that exists independent of its implementation.

4.4. Foiled Assumptions: ‘‘Unexec”’

Some facilities exist that are predicated on old conventions and practices. They presume a limited model in
such a highly constrained manner that any attempt at generality foils them. An example is ‘‘unexec’’
utilities common in the building of programs that are ‘*saved” in a memory-image initialized state. UNIX
examples of such programs include TeX and some versions of the EMACS text editor.

These facilities were built on assumptions that the three segment memory model of a process was all there
could ever be, something the use of shared libraries and dynamic binding invalidates. It is not that this
function cannot be provided, simply that the considerations on which it is based need to be changed. It can
be argued that ‘‘unexec’’ is simply the ability to save a program image, something that /d performs when
finished link editing a program. This suggests that the dynamic abstraction of /d is incomplete, and that
future work to complete it would include the capability for saving a program image.

5. Experiences and New Capabilities

The changes to the system brought about by the new VM and dynamic linking facilities, while creating
sometime subtle changes in the programming environment that require increased programmer vigilance,
have mostly brought about a more flexible environment in which it has become possible to vastly simplify
or improve applications. In some cases, the changes have made it just possible to write a given application.
In this section, we examine a few of these advantages to illustrate both their immediate value and their
potential future impact.

5.1. Address Space Freedom

One of the goals of the new memory management facilities was to provide programmers with an address
space that could be used flexibly. No longer does the operating system enforce any particular structure to
the address space, nor does it impose any semantic requirement on any specific area of it. Requirements on
address space structure have become conventions applied by language tools and utilities.

The resulting flexibility has simplified the implementation of shared libraries. A dynamically linked
program consists of multiple text and data segments: one for each a.out file mapped into the program’s
address space. The notions of a “‘text’” or ‘‘data’’ segments remain useful for describing the assembly of
executable files, but no longer have a system interpretation. Without this generality, the mechanisms might
have required specialized kernel support. We have often found that the imposition of a fixed semantic
interpretation by a lower software layer eventually forms a barrier to flexibility.

Other uses of the unstructured address space have involved disjoint collections of data. Coroutine libraries
creating multiple stacks now create them surrounded by ‘‘holes’ in the address space that form red zone
protection areas. Multiple storage heaps (either to improve locality or to isolate data for placement in
stable storage) can also be easily established. The stable storage heap is simpler still: the stable storage is
simply mapped into the address space for direct access.

5.2. Incremental Maintenance and Development

The dynamic linking of libraries permits easy incremental maintenance. A bug-fix to a library is easily
incorporated into programs that use the library simply by installing the repaired version. This effect can be
extended naturally to the program development process as well.

Developing a complex program involves many compile, link, and debug cycles. If the time taken to
perform any of these operations can be shortened, programmer productivity will be improved. With the
dynamic linking facilities in the new system, a crude form of incremental development is easily practiced.
Consider a program consisting of many individual object files, such that the program is built with

Q

% cc -o prog main.o ... many other .o files

Using shared objects, it is possible to build a ‘‘linking hierarchy’’ such that for any one edit and
compilation of a single object file, only a few objects need be processed by /d rather than the entire set.
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By way of illustration, assume a program built from 100 object files. For the purposes of this example, let
each object file be named from 00.oto 99.0. A possible hierarchy might be to collect the ten .o files
with the same leading digit into a single .so file, such as with:

% 1d -o 0.so0 07.0
The program would then be built with:

% cc -0 prog O.so l.so ... 9.so0

o

that creates prog from 10 .sos dynamically linked at execution. If at some later time, a bug requires the
recompilation of 23. o, then only the modules comprising 2. so (or just 10% of the total number of .0
files) need be relinked to incorporate the change.

Of course, each time that prog executes, it incurs the cost of dynamic linking. However, this cost is often
negligible when compared with static linking, since the dynamic linking process does not require that a
new output file be built and written to the file system. Judicious grouping of .o files may provide further
efficiencies.

Other groupings are possible of course. In the limit, each single object could be built as its own .so file. In
practice, there is most likely some middle ground between the one-to-one extreme and complete relinking.

5.3. Application Performance

The access method provided by mapping has two fundamental performance advantages over its
counterparts read and write:

1.)  a buffer copy operation is avoided, reducing the demand for processing power; and

2.) not having to support access to a second block of memory to contain the same information
reduces the demand on the system’s memory resources.

This suggests that programs in which buffer copying represents a significant fraction of the execution time
can benefit from optimizing out the copy with mapped accesses.

cat and ¢p have been reimplemented to incorporate this optimization, and use mmap rather than read when
accessing a mappable file. This has had the dual advantage of removing both copy overhead and reducing
the number of system calls. These programs map a large section of the file being read (one megabyte) and
write it out in a single operation. A code fragment from a very simplified version of a cat that simply maps
the entire file is:

int fd; /* file descriptor */
struct stat sb; /* file status */
caddr t cp; /* file pointer */
/*

* Take "fd" (opened for read), and map the entire length of
* the file. Write it to standard output with a single write.
*/
(void) fstat (fd, &sb);
cp = mmap (0, sb.st size, PROT READ, MAP SHARED, fd, 0);
if (cp != (caddr t)-1)
(void) write(l, cp, sb.st_size);

An interesting side effect of the use of mapping in these programs is that it provides a useful illustration of
the *‘lazy evaluation’ properties of the VM system. Directing their output to /dev/null will cause the
program to take practically no time to execute, no matter how big the input file is. The reason for this is
that mmap really performs no access on the data mapped, it merely describes to the system the potential for
an access to occur. The driver for /dev/null on the other hand, never performs the access. The above
program, when asked to do nothing, really does nothing!
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5.4. Multithreaded I/0

If an application required the ability to perform multiple I/O operations in parallel, it had to be programmed
using non-blocking I/O facilities and the select system call. Even with this, many I/O operations remained
synchronous, since facilities such as the file systems did not support non-blocking I/O. With mapped files,
the problems of initiating parallel 1/O are even more acute, as I/O is only performed in response to a page
fault, and such faults occur only on a single page at a time.

However, multiple processes can be created that are identically mapped (or have a significant overlap) in
the construction of their address spaces. These processes can each perform their own 1/O requests (or page
faults) by dividing up the work between them. The maximum amount of parallelism is limited by the
number of concurrent processes available.

This illustrates a crude example of multiple processes executing from a single (or heavily overlapped) set
of memory objects. A more refined example is the notion of lightweight processes [KEPE 85, addressed in
more detail further on. However, this example illustrates an important facet of the new system’s
architecture: the independence of address space contents from specific processes.

5.5. Global Performance Analysis

To support the development of the dynamic link editor, it became desirable to profile its execution. The
granularity of the profiling process (generally at a line-clock rate), coupled with the short execution of the
linker, required many samples. The problems of initializing and saving of profile buffers also presented a
number of issues that were easily addressed with mapped files. A special version of the dynamic link
editor was created that would map a specific file into its address space as part of its initialization. The
kernel’s profiling facilities were then directed to the mapped area. Other parts of the link editor
accumulated other statistical information into the mapped area.

By mapping the file into the address space shared, all instances of the link editor in the system (nearly
every process) contributed to the statistics collection in the shared file. At the end of a sample period of
several hours, a significant set of information had been collected, one that almost certainly reflected an
excellent description of how the link editor’s time had been spent. The use of a mapped file obviated the
need for the linker to engage in end-of-program activities to dump and merge the information with previous
execution, and thus avoided any issues of saving the information from programs that did not end normally.
Further, the information collected came from a large variety of programs, summed over the course of a
long period of system execution. Although this example describes an implementation unique to the
dynamic link editor, it suggests a general means of performing global instrumentation of a given piece of
code, one that could benefit the construction of tools to improve the performance of programs on a global
basis.

5.6. Interposition

A powerful aspect of the dynamic linking facilities is the ability to interpose targets for symbolic
references. For example, consider the building of a program that uses a library, libinterpose,
supplied as a .so file:

% cc -o prog prog.o -linterpose

This command invokes /d, and invisibly includes a reference to the C library after libinterpose.
libinterpose defines entry points for read and write that in addition to performing the required system
calls take statistics on the use of these system calls.

In this case, both 1ibinterpose and 1libc define entry points for read and write, the latter being the
standard entry points for the “*stub’’ routines performing the respective system calls. In the presence of
multiple definitions of a symbol, the link editor resolves the issue of which to select by using the ordering
established when prog was linked: since libinterpose was specified first, its entry points are used
for references to read and write. These entry points are used globally, so that read and write references
made internal to the C library (such as from standard I/O routines) also use libinterpose.

‘e LK)

Interposition offers the opportunity for programmers to provide ‘‘added value’” to a ‘‘standard’’ system
function by providing a new implementation of the function. In this respect, the act of interposing is the
control-flow analog to the effect of UNIX /O redirection on data-flow. An example of such a *‘value-
added’’ feature is an instrumented malloc function, used to drive a graphical display termed a
“‘mallometer’’. One approach to implementing this would be to replace malloc and build a new shared C
library. While this would be more than sufficient, it presumes that it is possible to replace a single module
in a shared library, which it is not. Further, the obligation to rebuild the library is unnecessarily
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cumbersome.

An easier approach is to ‘‘insert’” a modified malloc into an already running program. This could be
accomplished by building a .so out of just the modified malloc (say, malloc.so) and providing it to
programs with a sequence such as:

where LD_PRELOAD is interpreted by the dynamic link editor as a list of objects to be loaded before
loading those requested by the program itself. The malloc defined by malloc.so would thus take
precedence over that in the C library.

An even more flexible capability would be to allow a new malloc to simply “‘jacket’” the *‘real’”” malloc,
thereby not requiring any rewriting or reimplementation of the real function. The use of an interposing
routine in this fashion can be viewed as the control-flow analog of a filter [RITC 74].

6. Trends and Future Developments

Development follows cyclical patterns: new developments bring new understanding that in turn brings
further developments. The new facilities have brought with them both new capabilities and new
requirements for their evolution. In areas such as dynamic linking, the application potential has barely
been explored, as shared libraries represent but one potential use of the mechanisms. And, there are yet
other areas of the system beyond memory and binding that can benefit from such evolution.

6.1. VM

Future developments of the VM system are likely to focus on the management policies of the system, such
as the global page replacement algorithms and processor and memory scheduling. The likely outcomes of
these developments include a page replacement policy supportive of a high degree of memory sharing, and
an integrated process and memory scheduler. Support for program-directed performance functions such as
“*advising’’ the system as to expected process behavior (as in ‘‘these pages expected to be needed soon™’),
or “‘commanding’’ the system to have some behavior (as in page locking), are expected to be created from
these efforts.

6.2. A Global View of Binding

Many problems in operating systems and programming languages reduce to issues of ‘‘binding’’. For
example, the VM system implements a per-reference address binding operation using hardware assists such
as memory management units supplemented with software interpretation on exceptional conditions (page
faults). The ‘‘logical name’’ the program uses is simply a process address, and the VM facilities translate
the name to some physical storage address, a binding that occurs on each memory reference. The existing
link-editing mechanisms provide a ‘‘global symbol to process address’” binding. The dynamic linking
facilities have changed this activity from one that is ‘‘compiled’’ to one that is *‘interpretive’’. Finally,
many problems in distributed computing, such load balancing, server selection, and failure containment,
are problems of binding a client to a specific instance of a server.

The binding mechanisms implementing shared libraries do not yet offer any direct functional interface to
the programmer, whose interface is through command-line interaction with /d. When contrasted with the
VM changes, which provided functions to programmers in the form of system calls such as mmap, the
dynamic binding mechanisms have at present but one application: shared libraries. The mechanisms
themselves have not been made directly available — though this reflects product and business priorities
rather than an architectural limitation. The global use of shared libraries suffices to establish the
architecture into which new capabilities and interfaces can be easily introduced.

The existence of an interpretive binding facility in the programming environment architecture presents
many opportunities for innovation not just by UNIX system vendors, but also by independent parties and
individual programmers. These opportunities begin with the availability of a generalized set of link-editing
functions and the definition of a programmatic interface by which they are accessed. Such an interface
would include, but not be limited to functions that supported:

) Object loading: the addition of an object file to an ‘‘address space’’.

. Image saving: the /d function of producing an executable is generalized. This would obviate
the need for special functions such as ‘‘unexec’’ for programs that wish to preserve a running
image.
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Symbol lookup: obtain the value of a given symbol (perhaps syntactically as a pointer), or in
the presence of multiple definitions of a given symbol, the value of any one or all of them.

Object ‘‘unbinding’’: removal of an object from an address space.

Exception handling: programmatic control of link editor exceptions such as references to
undefined symbols.

o Extensibility: programmatic interpretation of link editor functions such as relocation.

In addition to their programmatic availability, such functions might also be invoked implicitly by the
establishment of conditions through environment variable settings. The functions of interpretation could be
enhanced with the (perhaps selective) use of interface descriptions maintained in upgraded object file
formats.

These facilities could vastly simplify the use of link-editor properties such as interposition, thereby
enabling them to be a more useful tool for the application developer. Consider the ‘‘mallometer’” example
described previously. With a function that performs symbol lookup, the *‘value-added’” version of malloc
could be written as:

char *
malloc (n)
unsigned int n;

char *cp;
extern void *1d lookup();

accumulate statistics about n

/*
* Look up and call the "next"™ malloc().
*/

cp = (char *) (*1d_lookup("malloc", " next ")) (n);

accumulate statistics about result
return (cp)

This interposed malloc skeleton is an example of use of interposition to invoke the control-flow analog of a
UNIX filter. 1d lookup is a link editor function that returns a pointer to a (qualified) function name. In
this case, the qualifier was next , a special qualifier meaning the ‘‘the malloc found by searching
dynamically linked objects after this one in the symbol precedence order’’. For the sake of simplicity,
disposition of failures has been omitted from the example.

However, since the link editor is interpretive, the reference to the ‘‘next’” malloc might as easily have been
coded as:

cp = next Smalloc(n)

An unqualified reference to malloc would simply invoke the normal symbol lookup rules. Still other
qualifiers could be used to identify ‘‘absolute’” or ‘‘fully qualified’” function or symbol names. For
instance, if a program wanted to call the C language library routine called malloc, the reference could be:

cp = ¢ Smalloc(n)

Qualifiers need not be exclusively string based of course; these have merely been used in these examples as
a suggestion of possible program references.

The mterpretive nature of the binding process can.also be integrated the activity with other program
development facilities. At present, the exception handling facilities in the dynamic link editing process
handle errors solely through program termination. Consider a program fragment containing an invocation
of printf that is erroneously typed in as pintf. The execution of such a call would today cause the program
to be terminated.’®! An alternative exception-handling facility could be used to intercept such references,

[5] In reality, /4 anticipates this eventuality and reports it at the time the program is link-edited, thus it is difficult for this scenario
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and dispatch them to a debugger, perhaps automatically. The programmer could redirect the erroneous
reference to printf, and with the assistance of sophisticated software-engineering tools update the source at
the same time. In the event that the program referenced some truly undefined (as opposed to misspelled)
symbol, an even more sophisticated software engineering environment could support the incremental
addition of the missing symbol and the code or data it labeled to the program.

The interpretive nature of the binding process not only permits deferred and possibly interactive bindings,
it also provides the opportunity to defer the implementation of the binding. For instance, using information
either supplied through the environment or programmatically, the dynamic link editor could bind
subroutine references not to the final target of the reference, but instead through some intermediate that
performed some instrumentation such as *‘call graph profiling”’.

Alternatively, a function reference could be implemented as something other than a simple subroutine call
instruction. This would allow system calls to be defined entirely as library function interfaces. Or, in a
general network environment, and if coupled with additional support information such as interface
descriptions in object fiies or configuration databases, the call could be implemented with a Remote
Procedure Call (RPC) facility, thereby making the use of distributed resources transparent to the coding of
the application and treating it as a problem in application configuration. In this case, the programming
environment architecture has treated a symbolic reference as an abstraction that has its semantics defined
through execution-time interpretation. In this respect, the symbolic reference is serving the same role for
distributed computation as the UNIX file descriptor played in the implementation of transparently
networked file systems: a handle for interpreted semantics.

6.3. Future Evolution: Asynchrony

UNIX systems have traditionally provided only one form of asynchrony: the process. Although Berkeley-
based systems have introduced a form of asynchronous activity in the support of non-blocking /O
operations and the select system call, these are at best crude approximations to truly asynchronous
operation. Several applications environments, notably those requiring response to multiple input stimuli
(such as window systems or server processes of various kinds) or perhaps requiring real-time constraints,
can profit from full support of asynchronous activities.

The traditional approach to providing asynchronous services in a system is to provide specialized interfaces
that provide asynchronous operation. For instance, the support of asynchronous I/O operations would be
provided by variants on the system calls read and write. The variants would accept additional arguments
describing the disposition of completed 1/O requests, and would return almost immediately after being
called. The actual transfer would complete some time later.

The implementation of such facilities is generally built to capture the parameters of the requested operation
in some form of control block that is used to manage the real I/O activities. On completion, the control
block contains a description of how to notify the invoking process that the operation has completed, and
what its status was. Other asynchronous interfaces would be similarly constructed, each requiring a
specialized control block to capture the required operation and allowing the invoking process to return.

The asynchronous ‘‘control blocks’’ created in support of these interfaces can be viewed as the
representation of an extremely specialized *‘process’’. These specialized entities record the state of such
processes throughout their ‘‘execution’’ (e.g., progress of I/O). Each new form of asynchrony to be added
to the system usually involves the creation of a new form of such ‘‘processes’’. The specialized nature of
their representation often makes each implementation ill-suited to the needs of any later requirement, and
over time the system becomes an accretion of such specialized structures.

A view proving popular is that the notion of a “*process’” in UNIX is excessively ‘*heavy’’: a ‘‘process’’ is
more than just the desired parallel thread of control, it is also an address space, a range of descriptors, and a
description of event handling among other things. An alternative notion is that of lightweight processes
(/wps) [KEPE 85] [TEVA 87], in which the notion of a thread of control is broken out of its UNIX semantics
and treated as a distinct entity in itself. A /wp can be created efficiently, and multiple Mps can coexist in
the address space associated with a single ‘‘heavyweight’” UNIX process.

In an environment supporting /wp constructs, it is not necessary to provide specialized interfaces to
selectively support asynchronous operation. Any operation can be accessed asynchronously with
inexpensively created and managed threads of control. The resulting system is more open to application
expansion, as new asynchronous abstractions do not require the services of a ‘‘kernel programmer’’ or

to occur in the current system.
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clumsy user-program approximations to avoid kernel changes. Note that use of a fwp-facility can be
“*hidden’’ behind implementations of asynchronous interfaces, and thus any present or future standards
requiring the more traditional approach can be easily accommodated.

The programming facilities supported by the /wp model of computing provide additional benefits beyond a
simple abstraction of asynchrony. /wps are “‘lighter’’ than traditional UNIX processes because they share
heavyweight structures such as address spaces. With such sharing comes mechanisms to manage that
sharing, such as monitors for the implementation of critical sections, messages (often using shared
memory) for asynchronous interchange, and condition variables for synchronization. In turn, these
mechanisms enable the building of reentrant and preemptable code, and render the resulting programming
more suitable for execution in a multiprocessor, and more responsive to the preemption demands of real-
time and interactive environments.

7. Conclusion

Several changes to the SunOS programming environment have been described. These changes represent a
functionally compatible reimplementation of standardized or generally accepted UNIX interfaces. In
addition, the changes enrich the environment by providing new capabilities that simplify, and sometimes
even render possible, various applications. In still other cases, system and application performance is
improved.

The architectural approach of providing simple, fundamental, and general abstractions as primitive
mechanisms that are consistently applied has been quite successful. The system has been conceptually
simplified while presenting applications programmers with more powerful facilities. In many cases, these
programmers have obtained a flexibility previously available only to the ‘‘systems programmer’’. The
increased flexibility is demonstrated particularly well with the interpretive binding facilities used to provide
shared libraries. The general abstraction of binding mechanisms promises to provide an architectural
cornerstone for a wide range of new applications.

These changes show that new implementations of standard functions based on new abstractions are both
possible and effective. They also show that the standardizing of clean system interfaces is not necessarily a
barrier to innovation and, in areas such as dynamic binding, even promotes innovative activity. The
resulting and anticipated evolutions have substantially enriched the application programming environment
available under SunOS for both ourselves and our user community.
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ABSTRACT

There are a bewilderingly large number of UNIX systems in existence today. Most
are derived from one of two main ‘‘flavours’” of the operating system - System V and
4.#BSD.

However, these derivatives vary considerably in a variety of ways, both expected and
unexpected. Differences exist in the behaviour of functions, their types, the type and
number of arguments, location and contents of header files, etc; also the commands and
utilities may differ or take different options etc.

These differences provide headaches to authors of portable applications. Although it is
possible to write software that will compile without modification and run correctly on a
large number of existing systems, considerable expertise and knowledge of the different
systems is required to do this. Acquisition of this expertise can be a time-consuming and
costly overhead.

Developing software which is portable across different UNIX operating systems suffers
from a major problem: the software is still likely to need modification when another new
implementation of the system appears.

The POSIX System has been developed to ease this problem. The interfaces (system
calls, libraries and commands) described in POSIX have evolved from those on existing
UNIX systems and, where things differ on existing systems, the POSIX interfaces
represent a compromise or an improvement.

The POSIX interface can be implemented on all existing UNIX systems (and, in fact on
non-UNIX systems too). Porting applications to new systems will be considerably
simplified, if both source and target systems are POSIX compatible.

This paper presents a technical overview of POSIX and looks at areas which differ from
existing systems. The paper takes the view of an Applications Writer, but in so doing,
highlights areas which will be of interest to those responsible for making a system POSIX
compatible .

An overview of the position of POSIX and impact in the market place is also given.

1. What is POSIX ?

1.1. History

Since the creation of the UNIX system by Ken Thompson and Dennis Ritchie in 1969, many different
versions of the system have evolved. Each version provides facilities which improve on previous versions,
or which address specific needs which competing versions do not address.

At the start of 1985, hundreds of varieties of UNIX systems existed, supplied by a large number of
manufacturers. Some of these systems replaced older versions, and added new features. Some systems
from different suppliers looked similar, others did not. For one machine, at least twenty different
commercially available versions of the operating system were available (and still are).

This proliferation of variants on a theme means that a potential user of the system is free to choose exactly
that system which is best able to do the job required of it at the most suitable cost.

Unfortunately, however, during the years over which the development of all these systems has taken place,
many different institutions and many different individuals have influenced the flow of ideas. This has
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naturally lead to systems having obvious differences, even in those areas which are superficially common.
This leads to a very real difficulty: non-portability of applications between systems.

An applications developer would have to spend quite some time converting the application so that it runs
on another version of the system. Now, as anyone who's ever done this knows, porting and re-porting is
time consuming, it is boring, can be very tricky, and consequently it is expensive. In fact, in some cases,
the cost of porting an application to another version of the system can be so expensive, that, even today,
many applications are only available on certain versions of the system.

Now, this is clearly not the best commercial position for application developers. So, in 1984 a group of
system suppliers joined together to form the X/Open Group'. The intention of the group was to specify a
common version of the system so that applications written to that common denominator would be portable
in source code form across all the member’s systems (and any others which were compatible). This
common definition was nothing new — it was a specification of the common parts of all the existing
systems. The definition was published in the X/Open Green Book?, and now forms the basis of the
Common Applications Environment which covers programming languages, data management,
internationalisation, terminal control and source code transfer as well as the operating system interface
definition.

1.2. 1IEEE P1003

In 1985, the Institute of Electrical and Electronics Engineers created the P1003 committee with the task of
specifying a Portable Operating System Interface for Computer Environments. The P1003.1 sub-
committee became responsible for the specification of the base operating system, while other sub-
committees had responsibilities for the command interface, verification, real-time and security aspects, see
Other P1003 Activities.

At the time of writing, the P1003.1 committee has produced a Trial-Use Standard® and now has a document
(Draft 12) which is undergoing Full-Use Ballot. On acceptance, the document will be published, and
becomes an [EEE/ANSI Standard. The Operating System described in the document (POSIX) is then likely
to become the standard interface for computer systems. Many vendors have contributed to the
development of POSIX System, with the result that it contains much that can be found in existing products.
It also contains a number of improvements in areas where existing systems were known to have problems,
and it contains some simplifications.

There is considerable commitment to the Standard. Many vendors have announced intentions to provide
POSIX compatible systems. The X/Open Group has announced that the relevant parts of it’s Common
Applications Environment will be made to comply. Some companies are known to have been tracking the
draft standard in their product development cycles.

So what exactly is the POSIX System?

It is based on the 1984 /usr/group standard® which evolved from v7° and 4.2 BSD®. The P1003.1
committee further developed the 1984 Standard. As it evolved, the behaviour of many suppliers’ existing
systems was taken into account. The specification was adapted so that, where possible, as many existing
products as possible would be compatible’.

The result is a system which will look very familiar to experts in traditional UNIX systems. The remainder
of this paper takes a look at the various concepts and interfaces described in the standard.

1 At formation, the group consisted of Bull, ICL, Nixdorf, Olivetti and Siemens. The group has now been expanded by the
membership of AT&T, DEC, Ericsson, H-P, NCR, Philips, Sun Microsystems and Unisys.

2 Actually. the X/Open Portability Guide.
3 Draft American National Standard, April 1986, ISBN (-471-85027-6.
4 fust/group in the US has many active technical groups which produce various documents. Their UNIX standards work stimu-

lated the formation of the IEEE P1003 group.
5 Developed at Bell Laboratories, the first UNIX to emerge outside was version 5, or v5. Internal Bell versions still use the origi-
nal version scheme; the current version is v9.

6 BSD UNIX is available direct from the University of California, Berkeley and also from many suppliers who have incorporated
it into their products.

7 Many of these were derived from AT&T’s System V product, documented in the System V Interface Definition (SVID). The
SVID referred to throughout this paper is Issue 2, published in 1986, comprising three volumes.
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2. Overview of the Standard
The Standard consists of 10 chapters and 3 appendices.

Chapters 1 and 2 introduce the standard, discuss conformance issues and define global concepts, error
codes and constants.

Chapters 3 to 7 contain descriptions of the system interfaces. They are arranged by functional category,
rather than in alphabetical order — the index is an essential tool to assist in locating something!

Chapter 8 describes the bindings of the system to the C language. Actually, the bindings are described
throughout the standard, making POSIX heavily dependent on the C Language. Bindings to other
languages, and a language-independent description are being developed, and will be published later.

Chapter 9 describes the interfaces to system databases. For security reasons, only interfaces are described
— the location and full contents of such databases is not mentioned.

Chapter 10 discusses data interchange. The format in which data should be written on a media for
transport to foreign systems is described.

Appendix A mentions other Standards, and the relationship of this one to others. Lists of addresses of
relevant bodies are given.

Appendix B is the Rationale. This lengthy disquisition lists many of the reasons why things are the way
they are, and also discusses why many ideas were not included. In some areas it is sketchy, but in others it
is very useful.

Appendix C is a comparison with the SVID. For a number of years, the SVID has been used in the
commercial world as the definition for portable systems. This appendix lists areas where POSIX has
deviated from the SVID.

3. Scope and Conformance

The POSIX Standard describes the interfaces to the operating system which are traditionally known as
svstem calls. In the UNIX world, these have always been published as section 2 of the Programmer’s
Reference Manual.

In addition, the standard requires that (for the C language, at least) a large number of additional functions
are provided. Once ANSI publishes its C language definition®, it will become a requirement that an ANSI
conformant compiler is used for POSIX conformant C language applications. The ANSI definition of the C
language defines functions such as printf(), getchar(), strcpy(), etc to be part of the C language. Until
such compilers are available, all C compilers used for POSIX applications must provide all the functions
which the ANSI definition requires. This amounts to almost all the functions in the traditional standard C
libraries, plus a few others. These are described later, see C Language Functions.

A C language application which uses only the above interfaces (and which does not mis-use the C
language) will be known as a Strictly Conforming Application. This means it should be able to compile
and run (with no modifications at all) on all POSIX conformant systems.

A C language application which uses the above interfaces and, additionally, those described in any other
ANSI standard (e.g., other programming languages, graphics, etc) will be known as a Conforming
Application. Naturally, for it to compile and run, the system will have to conform to all the required
standards.

An application which uses the above interfaces and, additionally, other interfaces which are not described
in any standard, will be known as a Conforming Application Requiring Extensions . It will have to list all
extensions it needs, so that they may be made available on target systems.

As far as a system is concerned, in order to provide a POSIX conformant implementation , all the system
calls and library interfaces documented must be provided. Some interfaces are optional; the system may
provide such interfaces if desired, but they are not obliged to be provided.

There is no requirement for the system to be written in any particular programming language.

8 ANSI X3.159-198x, currently undergoing second public ballot.
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4. Technical Contents of POSIX

The interfaces to the operating system are described in chapters 3 to 7. Additional interfaces are described
in chapters 8 and 9. The Data Interchange Format is described in chapter 10.

Chapter Contents
2 Definitions and General Concepts
3 Process Primitives
4 Process Environment
5 Files and Directories
6 Input / Output
7 Terminal Handling
8 C language functions
9 System Databases
10 Data Interchange Formats

Table I. Technical Chapters in POSIX

Below, the contents of each of these chapters is explained, and some guidelines as to any differences
between the POSIX interfaces and those on existing BSD and SVID systems are given.

It is important to note that, the POSIX being described here is that contained in the Draft 12 document,
currently undergoing ballot. As much up-to-date information as possible has been included at the time of
writing (January 1988). It is possible, and indeed quite likely, that the balloting committee may make
alterations to the definition; the extent of such alterations cannot be predicted.

5. General Concepts

5.1. Errno Values

POSIX specifies errno values for all of the interfaces described. These are values returned in the external
variable errno in the event of failure of a request to the system. Each value indicates a different reason for
failure.

Extreme care was taken during the early stages of design of the standard to ensure that the values returned
were consistent with those values in use on traditional implementations. In some cases conflicts arose, in
which case the ‘‘correct’’ solution was chosen.

The standard does not give the actual numeric values to be used for errno. Rather, it names the values
using symbolic constants, and leaves it to each implementation to define values. This ensures source code
portability of applications which use the symbolic constants.

Implementors of POSIX systems should check all interfaces, as some changes to the errno values may be
needed to most existing systems.

5.2. Limits

There have always been a number of items for which limits exist, such as the maximum number of files a
process may have open simultaneously, or the maximum number of characters in a file or path name, etc.

POSIX recognises this fact, and defines a set of limits by means of symbolic constants. That is to say, the
standard will indicate, for example, that a failure may occur if the action would result in the number of files
open exceeding {OPEN MAX}.

Most of the ‘‘traditional’’ limits exist. Some (the system-wide limits such as {LOCK MAX)}) were
omitted, as they are of no use to an individual process — it may not be able to have up to {LOCK MAX}
locks due to some being in use by other processes. Some new limits exist; these were adapted from the
ANSI C language standard and define the minimum and maximum values for language types which were
previously undefined (e.g., {UCHAR MAX}, {UINT MAX},etc).

The actual values for these constants are not given, but the standard does list minimum acceptable values.
Le., all implementations must support at least the minimum value given for each limit.

It is recognised, however, that on real systems, it is usual for larger systems in the range to provide greater
values for some limits, e.g., {PID MAX} or {OPEN MAX}, etc. For applications, binary-ported to a
larger model of a range, to be able to determine the actual value of a system limit is very useful. To this
end, POSIX defines a new function, sysconf{) which allows this information to be obtained, see Process

London, 13-15 April 1988 —-274 - EUUG Spring 88




POSIX — A Standard Interface

Environment.

Furthermore, some limits are file system dependent, and may vary on one system. For example,
{NAME MAX} (the maximum length of a file name) is 14 on SVID file systems and 255 on BSD file
systems. On a system which allows both types of file system to be networked together in an NFS’®
environment, the value of {NAME MAX} may vary along a path. As this could disadvantage applications
which may wish to optimise their use of system resources, POSIX defines a second new function,
pathconf() which returns the value of a “‘limit’’ for a given path. A further interface, fpathconf(} exists to
allow the information to be obtained for an open file descriptor. See Files and Directories.

5.3. Headers

POSIX requires the existence of several headers, used to declare data types, types of functions and define
structures used by the functions.

These exist as files on most traditional systems, and the POSIX versions do not differ greatly from existing
systems. Nevertheless, some changes will be necessary for POSIX conformance: the location of the file
may need changing, some additional constants may be needed, some additional data types may have to be
added and some structures may need slight modification in line with the amended data types.

5.4. Alternate Behaviours

There are several areas in which traditional systems behave differently. One example is the question of
with which group a file is created. On SVID systems, it is the effective group ID of the process which
creates the file; on BSD systems it is the group ID of the directory in which the file is being created.

In this and other areas, the POSIX system allows either form of behaviour of a system. Applications
wishing to be POSIX conformant must be able to tolerate both forms of behaviour. For some alternates, an
application can predict the behaviour of a system by using a ‘‘flag’’ defined in <unistd.h> or available
from sysconf{() or pathconf(). In other cases, a flag is not provided — in such cases, the application should
assume either style of behaviour, and take steps to ensure that the final result is what is desired.

6. Process Primitives

Chapter 3 describes the following interfaces. Table 2 lists their names, shows the status in POSIX, and lists
whether differences exist between the POSIX interface and that of BSD and SVID.

NFS™ or Network File System, developed by Sun Microsystems, allows file systems on other systems to be mounted into the
local file system tree. To applications, they look almost exactly like local file systems.
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Interface  Status  Changes to BSD  Changes to SVID
fork () Mt — -
execl () M - -
execv () M - -
execle () M - -
execve () M - -
execip () M - -
execvyp () M - -
wait () M - -
wait2 () M new new
_exit() M -
kill () M yes -
siginitset () M yes new
sigfillset () M yes new
sigaddset () M yes new
sigdelset () M yes new
sigismember () M yes new
sigaction () M yes yes
sigprocmask () M yes yes
sigpending () M new new
sigsuspend () M yes new
alarm () M - -
pause () M — -
sleep () M yes -

Table 2. Process Primitives in POSIX order

The wait2()} interface is new in POSIX. It is similar to the wait3() interface of 4.3 BSD, but wair2() lacks
the third argument, the returned resource usage summary. On BSD, it is thus simple to implement wair2()
as a library routine. On SVID systems, implementation is more complex. The routine provides the ability
to return immediately, if no children have exited. SVID systems do not currently provide the ability to do
this, so this will require kernel changes.

From the table it is clear that the signal handling interfaces are not the same as on existing systems. The
traditional signal() interface has been replaced with a set of interfaces which implement ‘‘reliable’’
signals. The interfaces are derived from those on 4.3 BSD, but are not the same. Those interfaces were, in
turn, derived from the 4.1 BSD interfaces which are also in System V.3. ‘‘Reliable’’ signals give the
application the ability to block signals (i.e., prevent their delivery, without losing them), to have signals
automatically blocked on entry to a signal handler, and to manipulate sets of signals together.
Unfortunately, POSIX does not require that blocked signals are queued, i.e., if a second signal of any
particular type occurs, only one need be delivered to the application. However, queuing is not prevented
by POSIX. This issue affects Real-Time, and is being addressed by the Real-Time Group, P1003.4 (see
Other P1003 Activities).

There are some modifications to be made to 4.3 BSD systems to implement these signal routines. More
extensive changes will be needed on 4.1 and 4.2 BSD and System V.3. Considerable work will be needed
on System V.2 and other systems which do not have any code to do blocking and grouping of signals.

Kill() in POSIX has similar semantics to the SVID kill. Specifically, for a process to have permission to
send a signal to another, the receiving process’s real or effective user ID must match the real or effective
user ID of the sending process. This allows a user to send a signal to a setuid process. On BSD, both
sending and receiving processes must have the same effective user ID. Some work will therefore be
needed to adapt BSD systems.

Sleep() has a return value, not in BSD. The value is the amount of unslept time in the event that the sleeper
was aroused prematurely by an incoming signal.

11 In this and subsequent similar tables, M means mandatory and O means optional.
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7. Process Environment

Chapter 4 describes the following interfaces:

Interface  Status  Changes to BSD ~ Changes to SVID

getpid ()
getppid ()
getuid ()
geteuid ()
gelgid ()
getegid ()
setuid ()
setgid ()
getgroups ()
cuserid ()
getpgrp ()
setpgrp ()
Jjesetpgrp ()
uname ()
time ()
times ()
getenv ()
ctermid ()
ttyname ()
isatty ()
sysconf ()

LTELEELELELLEOKEEEOKELEXEEXZEEREX

Table 3. Process Environment Interfaces in POSIX order

There seem to be quite some changes to what are fairly simple interfaces in this section. On closer
examination, the changes are not significant. For all the yeses above, except those noted below, the

“‘change’” is simply that the type of the argument or return value is now a defined type. The types uid ¢,
time_t and clock_t have been defined. It should suffice to add them to <sys/types.h>.

The SVID interfaces cuserid() and uname() need to be added to BSD systems.

Getpgrp() and setpgrp() differ from those the BSD versions in that in POSIX it is not possible to obtain or
change the process group of another process. This change can be implemented as a library routine.

The sysconf{) routine is new in POSIX It provides the application with a means of obtaining the value of a
system configuration limit or behavioural characteristic. For example, the actual value of the ‘‘constant’’
CHILD MAX or UID MAX, etc, or the value of the ‘“‘flags” POSIX JOB_CONTROL or
_POSIX EXIT SIGHUP, etc. The values of the system configuration limits must be equal to or greater
than set minimum values given in Chapter 2; but applications frequently may wish to make use of
additional resources of some systems, rather than to restrict themselves to the known minima.

Implementation can be done in several ways. On systems (or ranges of systems) on which these values are
fixed, sysconf{) could be a library routine which prints out the fixed values from <limits.h> and
<unistd.h>. On systems where the values may vary, the system configuration and/or bootstrap procedures
could create a table of values in a file which is used by the svsconf() library routine. Alternatively,
svsconf{) could be a system call which returns the desired information from the kernel.

Two major areas are worth some extra notes:

7.1. Job Control

Job Control is an option in POSIX. That is, systems do not have to support it, but if they do, they shall
support it as described.

The job control described ‘‘looks’” similar to that of BSD in that processes can be suspended, and later
restarted in the foreground or background. There exists the ability to have background processes
suspended on attempting to write to the controlling terminal. These semantics differ from those of the
SVID’s layered shell, and are not supported on existing SVID systems.
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The interfaces described in POSIX differ in some respects to those of BSD. The reason for the changes was
to simplify implementation on SVID systems. Unfortunately, a recent investigation of the POSIX job
control and process groups by BSD implementors has shown that the POSIX descriptions are very vague
about some aspects: how many process groups exist, what the precise characteristics of a process group
are, and what the exact behaviour of some interfaces should be.

This discovery has lead to considerable debate amongst the POSIX committee and interested parties
concerning the whole area of job control, process groups, sessions and terminals. At this time, the debate
continues. It can be expected that some (major?) clarifications will occur to Draft 12 in these areas before
publication. The exact nature of the interfaces can then be investigated.

SVID systems do not support this job control option.

7.2. Multiple Group Support

The ability for a process to be a member of several groups at once (a la BSD) exists, as an option, in
POSIX.

However, this too, is subject to clarification before publication of the standard, although the semantics of
multiple groups are not expected to differ much from BSD.

SVID systems do not support multiple groups.

8. Files and Directories
Chapter 5 describes the following interfaces:

Interface  Status ~ Changes to BSD  Changes to SVID
opendir ()
readdir ()

rewinddir ()
closedir ()
chdir ()
getewd ()
open ()
creat ()
umask ()
link ()
mkdir ()
mkfifo ()
unlink ()
rmdir ()
rename ()
stat ()
fstat ()
access ()
chmod ()
chown ()
utime ()
pathconf ()
fpathconf()

Table 4. File and Directory Interfaces in POSIX order

yes -

yes yes

new new
new new

LIXLXZXZXLEXZLZEZEEZEEELELZLZLZEZEZELR
5
23
&
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The directory access routines (directory(3)) are included in POSIX. They are derived from the SVID
version. System V.2 does not provide them, but they can easily be added as library routines. On BSD, they
are provided, but the name of the header, and data structure used are different. However, the POSIX
version can be provided with no loss of compatibility.

Open() differs from all existing systems in that it has a new flag, O NONBLOCK, to provide non-blocking
I/O. This differs from the SVID and BSD’s O _NDELAY flag (which are both different) as follows. On
SVID systems, O _NDELAY does not distinguish between the end-of-file and no-data-available conditions
(read() will return zero in both cases). This is a problem for applications wishing to use asynchronous 1/O
techniques. The BSD version does differentiate these two conditions, in that on no-data-available, a read()
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returns —1, and sets errno to [EWOULDBLOCK]. The POSIX O NONBLOCK takes the BSD functionality
as it is more useful to applications. The error value is changed to [EAGAIN] as the BSD value is arguably
“‘wrong’’. SVID systems will therefore need some work; BSD systems need an errno change.

The BSD interfaces mkdir() and rmdir() were incorporated into the SVID for System V.3. They will need
adding to System V.2 systems. Rename() will have to be added to all systems; it comes from the ANSI C
language definition. These can all be implemented as library routines which make use of existing system
calls.

The interfaces pathconf{} and fpathconf() are new in POSIX. Similar to sysconf{), see Process
Environment, these interfaces allow an application to determine the actual value of a path dependent limit.
Pathconf() takes a pathname argument, whereas fpathconf() uses an open file descriptor. An example
would be pathconfipath, PC_NAME MAX) which may return 14 if path were /usr/grp, but may return
255 if path were /usr/grp/jr. This could happen if the latter directory were an NFS mount point. Another
example is fpathconfl0, PC _MAX INPUT) which returns the maximum input line length for file
descriptor 0. This could vary depending on the configuration of a terminal driver, or whether file descriptor
0 references a file or pipe.

8.1. Fifo Files

The concept of a fifo (first-in-first-out file) comes from the SVID. A fifo looks exactly like a pipe, in that
one process writes to it, and another process reads from it; the data being received in the order it was
written. One all data has been read, the file is empty again. The difference between a fifo and a pipe is that
a fifo has a name and looks like a file on the file system. This facility allows anonymous rendezvous of
processes — very useful for some applications.

The interface to these files is mkfifo(). This does not exist on any system, but is implementable as a trivial

library routine on SVID systems. On 4.3 BSD it can probably also be implemented in user space by making
use of UNIX domain sockets. This may not work on 4.2 BSD, due to bugs in the socket code.

9. Input/ Output
Chapter 6 describes the following interfaces:

Interface  Status  Changes to BSD  Changes to SVID
pipe () -
dup () -
dup? ()
close ()
read ()
write ()
fentl ()
Iseek ()

Table 5. 1/O Interfaces in POSIX order

The important change here is to the read() and write() interfaces. BSD systems need simply to add the
new O NONBLOCK flag name and change the errno value returned in the no-data-available situation.
SVID systems will have to change so that an error (rather than 0) is returned in the no-data-available
situation.

The dup2() interface is in the SVID, and is compatible. However, it does not exist in System V.2 systems.
On these systems, it is implementable as a library routine which calls fentl().

Fentl() is included in POSIX for both file control and advisory locking. Earlier versions of POSIX specified
lockf() for locking, but this was dropped as it suffers from some deficiencies. In particular, lockf{) does
not allow multiple read locks on a segment — all locks are exclusive. Furthermore, locks on files only open
in read mode (O RDONLY) are not supported. As this is non-optimal from the point of view of
applications, and as the SVID locking provided in fcntl() already supports the above, it was adopted
instead. Some work will be needed on BSD systems to support this.
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10. Terminal Handling

Chapter 7 describes the following interfaces:

Interface  Status  Changes to BSD  Changes to SVID
cfgetospeed () M new new
cfsetospeed () M new new
cfgetispeed () M new new

cfsetispeed () M new new
tegetattr () M new new
tesetattr () M new new
tesendbreak () M new new
tedrain () M new new
tcflush () M new new
teflow () M new new
tcgetpgrp () 0] new new
tesetpgrp () (0] new new

Table 6. Terminal Control Interfaces in POSIX order

As first glance, this may seem completely new. Itis! Application writers may now be suffering from some
degree of shock at the prospect of recoding all their programs. System implementors may well be
somewhat worried too. But, for implementors, or at least, those from SVID environments, things are not
too bad.

POSIX provides terminal control through a functional interface and a rermios data structure,

10.1. Termios

The termios structure is very similar to the termio structure of the SVID. All the termio features are
supported. The only differences are that certain control characters no longer occupy the same space (which
didn’t matter, as they were mutually exclusive anyway), and that the additional constants B19200 and
B38400 are defined for baud rates.

It is believed that termios can be implemented on SVID systems as a library interface. This is no
consolation for BSD systems, where a new terminal line discipline will have to be provided.

Termios does allow for split speed 1/O (different input and output baud rates). However, support of split
speeds is not mandatory (although it is useful).

The application interface to rermios is through the functional interfaces listed above. The traditional
ioctl() interface is not described in POSIX. Applications should use the first four functions to get and set
baud rates and tcgerattr() and tesetattr() to get and set all other attributes (rather like ioctl(), actually).

Tcsendbreak() sends a ‘‘break’ for a specified period — this functionality seems to be mandatory.
Tcdrain() suspends the process until all output written has been transmitted and rcflush() discards unread
or untransmitted data. Tcflow() is used to implement XON/XOFF flow control.

The two tcXetpgrp() functions are optional, but are needed to support job control. Their purpose is to set
the distinguished process group (i.e., foreground process group). As much concerning job control is still
being clarified (see Job Control), the descriptions of these functions may change prior to publication of the
standard.

11. C language Functions
Chapter 8 describes the interface to the C programming language.

When the ANSI X3.159-198x Programming Language C Standard is published, it will be the basis for a C
language for POSIX conformant C language applications. As the publication of X3.159 seems far removed
at this time, POSIX allows for applications to be written using existing C compilers which support the
standard C and math libraries. It is recognised that the lack of an adopted C language standard negatively
affects the ability of applications developers to write portable applications, but it is suggested that the most
recent draft of the proposed ANSI standard is used as a guideline to maximise future portability.

The interfaces which must be supported are:
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abort ()
abs ()
acos ()
asctime () ¢
asin()
assert()
atan ()
atan2 ()
atof ()
atoi ()
atol ()
bsearch ()
calloc ()
ceil ()
clearerr ()
cos ()
cosh ()
ctime () &
exit()

exp ()
fabs ()
felose ()
fdopen ()
feof O)
ferror()
Jush ()
feets ()
Sfileno ()

floor ()
fmod ()
Jopen ()
fprinif ()
fputc ()
fputs ()
fread ()
free ()
freopen ()
frexp ()
fscanf()
fseek ()
ftell ()
Sfwrite ()
getc ()
getchar ()
getenv ()¢
gets ()
gmtime ()
isalnum ()
isalpha ()
iscntrl ()
isdigit ()
isgraph ()
islower ()
isprint ()
ispunct ()
isspace ()

isupper ()
isxdigit ()
ldexp ()
localtime () ¢
log ()
logl0()
longjmp ()
malloc ()
modf ()
perror ()
pow ()

printf ()

putc ()
putchar ()
puts ()

gsort ()

rand ()
realloc ()
remove ()e
rename () ¢
rewind ()
scanf ()
setbuf ()
setyimp ()
setlocale () ¢e
siglongjmp ()
signal ()
sigsetjmp ()

sin ()

sinh ()
sprintf ()
sqrt()
srand ()
sscanf()
streat ()
strehr ()
stremp ()
strepy ()
strespn ()
strftime (e
strien ()
strncat ()
strnepy ()
strpbrk ()
strrchr ()
strspn ()
strstr()
strtok ()
tan ()
tanh ()
time () ¢
tmpfile ()
tmpnam ()
tolower ()
toupper ()
ungetc ()

Table 7. Required Standard C Library Interfaces

Some of the above interfaces are documented fully both in POSIX and in the ANSI C language document.
This is because there are further specifications or amplifications in POSIX over the ANSI version. These
routines are marked with a ¢ symbol. Others do not exist on traditional systems (marked ), but are in the
ANSI definition. The remaining interfaces are listed in POSIX, but left undefined; however, they should
conform to traditional definitions or be in line with ANSI. Of the remaining interfaces, many have been
more rigorously specified in ANSI than on traditional systems, and so may need improving when an ANSI C
compiler is adopted.

11.1. Internationalisation

The POSIX system has been developed at a time when there is much international interest concerning
support for applications which have to run correctly across international boundaries. In recent years,
various groups'” have been active in developing interfaces for use by internationalised applications.

Most of the impact of internationalisation does not concern the POSIX definition. Two interfaces are
documented, however.

The first is setlocale(). This is used to specify a native environment for the application. The locale used is
under user control by means of environment variables, which an application should read and pass to
setlocale(). Once the locale is set, several other functions will perform in a locale dependent manner. The
extent to which functions pay attention to their locale is not defined by POSIX, but it will be defined by
other groups and manufacturers. Furthermore, POSIX does not specify which locales are supported; only
that one ‘‘standard’’ locale is supported on all systems'?.

12 /usr/group and X/Open, to name but two.

13 Actually. it is the P1003.2 Commands and Utilities standard which specifies that at least the **C’" locale is supported. This lo-
cale defines a minimum character set and a collating sequence; P1003.2 may well additionally specify one language.
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Secondly, POSIX specifies support (via strftime()) for time zone dependencies. As existing time zone
notification mechanisms have proven inadequate, POSIX requires that systems accept a TZ environment
variable containing either of the following forms of data:

TZ=std offset [dst [offset | .start|/time |,end [/time ]]]
TZ=/string

The first form provides a very flexible means of specifying the names of the time zone, offset from GMT,
start and end of daylight saving time, and offset thereof. Start and end times can be specified in various
forms, including ‘*Saturday at 02:00 on the third week of April”’. The second form allows for local
variations.

12. System Databases

The traditional password and group files have been replaced with the User and Group Databases in POSIX,
following input from the Security working party.

The name of the databases are not given, however, applications may access them using the following
routines, described in Chapter 9:

Interface  Status  Changes to BSD  Changes to SVID
getgrent ()
getgrgid ()

getgrnam ()
setgrent ()
endgrent ()
getpwent ()
getpwuid ()
getpwnam ()
setpwent ()
endpwent ()

LTLEELLELEELLE

Table 8. System Database Access Interfaces in POSIX order

These interfaces behave as on traditional systems. The only difference is that for security reasons, the
encrypted password field of traditional systems is not described in POSIX.

13. Data Interchange

The intention of Chapter 10 is to document a Data Interchange format which can be used when writing files
to a transportable media for input on another POSIX system.

The standard mentions that systems should provide as many as possible actual hardware media (e.g., tape,
floppy etc) and lists hardware formats, but it is outside the scope of POSIX to make support of any type of
hardware mandatory.

Chapter 10 includes both the ¢pio and an improved tar format, known as ustar (Uniform Standard Tar).
The intention was that eventually, one of the two formats would be selected as the only required format.
Unfortunately, there were active proponents for each format, and it has not yet been possible to select just
one. It now seems likely that both ¢pie and ustar will be required to be supported!

14. Publication of the Standard

Currently POSIX P1003.1 is undergoing Full-Use ballot. The ballot is now closed (mid-January 1988), and
resolution of objections is in progress. It is anticipated that a list of proposed changes to Draft 12 will be
recirculated to the ballot committee for approval in February.

If they are approved, the changes could be applied to the document and the document submitted to the IEEE
Standards Board for ratification in March or April. Publication as a standard could then occur by June or
July, 1988.

Due to the complex verification and administrative procedures employed by standards people, it is possible
that this prediction is wildly inaccurate.

In parallel with the current Full-Use ballot, the draft standard has been submitted to the International
Standards Organisation (ISO) for approval as a full International Standard (IS). This approval is expected
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to be given, and the document could become an IS within two years.

15. Other P1003 Activities

The P1003 group currently consists of seven sub-committees:

Committee Activity
P1003.1 POSIX, System Calls and Libraries Standard
P1003.2 POSIX, Commands and Ultilities Standard
P1003.3 Verification
P1003.4 Real-Time Extensions to POSIX
P1003.5 ADA Bindings to POSIX
P1003.6 Security Extensions to POSIX
P1003.0 How to use P1003.1 — P1003.6 together

Table 9. P1003 Sub-Committees

Only the P1003.1 activity is nearing completion. The position of P1003.2 is described below.

P1003.3 is producing a document outlining how to test conformance to the POSIX standard. Their work is
tracking P1003.1 and P1003.2.

The P1003.4 and P1003.6 committees working on Real-Time and Security Extensions are expected to
produce documents at some time in the future. It is anticipated that these documents will be of the form
‘*For a Real-Time POSIX system, implement P1003.1 and apply the following changes and additions...™".

The P1003.5 committee is working on ADA bindings. Their work covers two areas, specifying the
interfaces to POSIX for ADA language applications, and secondly, they are attempting to determine if there
could be any problems in implementing a POSIX system in ADA.

The P1003.0 group is expected to produce a short overview document explaining the relationship between
the other documents and how to use them together.

16. The P1003.2 Commands and Utilities Standard
P1003.2 is specifying a standard interface to commands and utilities. They are working along these lines:

1. A list of utilities to be included has been selected. The basis for inclusion was that the utility is
needed for shell scripts, or for installing source code.

2. A description of each utility is being produced. The description contains much more detail of the
behaviour of the utility than traditional documentation. For example, the exact output strings of each
utility are being documented to allow post-processing. (Error messages are not documented.)

3. Options which differ across existing systems, or which are of little use, are being dropped. Only in
circumstances where this would remove important functionality, are they being included.

The work is currently about one third complete. Publication of P1003.2 should not be expected until the
end of 1989.

17. Impact on the Market

Many organisations have already expressed support for POSIX. Many systems suppliers are known to be
working on POSIX P1003.1 compliant systems. It should be expected that some suppliers announce
products very soon after POSIX is published.

One added impetus is the announcement of X/Open (in March 1987), the American National Bureau of
Standards (NBS) (in September 1987) and the British Central Computer and Telecommunications Agency
(CCTA) (in January 1988) that they support POSIX. The NBS specifies purchase guidelines to all Federal
Government Agencies wishing to purchase anything — what they purchase must conform to the NBS
guidelines. As the US Government is the largest customer in the world, the fact that the NBS has endorsed
POSIX is of great importance to many system manufacturers and software suppliers.

Many hundreds of organisations have contributed toward the development of POSIX. It can be expected
that future releases of UNIX based and other systems from most suppliers will be POSIX compatible, or
support a POSIX environment. Systems may offer additional features which do not confilict with POSIX —
that is what will make them attractive to the customer. Such extension would be usable for the specific
purposes which they serve, but obviously, an application requiring maximum portability could not use
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them.
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SunOS Virtual Memory Implementation

Joseph P. Moran

Sun Microsystems, Inc.
2550 Garcia Avenue
Mountain View, CA 94043 USA

ABSTRACT

The implementation of a new virtual memory (VM) system for Sun’s
implementation of the UNIX operating system (SunOS3¥) is described. The new VM
system was designed for extensibility and portability using an object-oriented design
carefully constructed to not compromise efficiency. The basic implementation
abstractions of the new VM system and how they are managed are described. Some of
the more interesting problems encountered with a system based on mapped objects and
the resolution taken to these problems are described.

1. Introduction

In December 1985 our group at Sun Microsystems began a project to replace our 4.2BSD-based VM system
with a VM system engineered for the future. A companion paper [1] describes the general architecture of
our new VM system, its goals, and its design rationale. To summarize, this architecture provides:

. Address spaces that are described by mapped objects.

. Support for shared or private (copy-on-write) mappings.
° Support for large, sparse address spaces.
o Page level mapping control.

We wanted the new VM system’s implementation to reflect the clean design of its architecture and felt that
basing the implementation itself on the proper set of abstractions would result in a system that would be
efficient, extensible to solving future problems, readily portable to other hardware architectures, and
understandable. Our group’s earlier experience in implementing the vnode architecture [2] had shown us
the utility of using object-oriented programming techniques as a way of devising useful and efficient
implementation abstractions, so we chose to apply these techniques to our VM implementation as well.

The rest of this paper is structured as follows. Section 2 provides an overview of the basic object types that
form the foundation of the implementation, and sections 3 through 6 describe these object types in detail.
Sections 7 through 9 describe related changes made to the rest of the SunOS kernel. The most extensive
changes were those related to the file system object managers. A particular file system type is used to
illustrate those changes. Section 10 compares the performance of the old and new VM implementations.
Sections 11 and 12 discuss conclusions and plans for future work.

2. Implementation Structure

The initial problem we faced in designing the new VM system’s implementation was finding a clean set of
implementation abstractions. The system’s architecture suggested some candidate abstractions and
examining the architecture with an eye toward carving it into a collection of objects suggested others.

We ultimately chose the following set of basic abstractions.

) The architecture allows for page-level granularity in establishing mappings from file system
objects to virtual addresses. Thus the implementation uses the page structure to keep track of
information about physical memory pages. The object managers and the VM system use this
data structure to manage physical memory as a cache.

1 SunOS is a trademark of Sun Microsystems.
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The architecture defines the notion of an *‘address space’’. In the implementation, an address
space consists of an ordered linked list of mappings. This level defines the external interface
to the VM system and supplies a simple procedural interface to its primary client, the UNIX
kernel.

A segment describes a contiguous mapping of virtual addresses onto some underlying entity.
The corresponding layer of the implementation treats segments as objects, acting as a class in
the C+ [3] sense!!l. Segments can map several different kinds of target entities. The most
common mappings are to objects that appear in the file system name space, such as files or
frame buffers. Regardless of mapping type, the segment layer supplies a common interface to
the rest of the implementation. Since there are several types of segment mappings, the
implementation uses different segment drivers for each. These drivers behave as subclasses of
the segment class.

The hardware address translation (hat) layer is the machine dependent code that manages
hardware translations to pages in the machine’s memory management unit (MMU).

The VM implementation requires services from the rest of the kernel. In particular, it makes heavy
demands of the vnode [2] object manager. The implementation expects the vrode drivers to mediate
access to pages comprising file objects. The part of the vrnode interface dealing with cache management
changed drastically. Finding the right division of responsibility between the segment layer and the vrode
layer proved to be unexpectedly difficult and accounted for much of the overall implementation effort.

The new VM system proper has no knowledge of UNIX semantics. The SunOS kernel provides UNIX
semantics by using the VM abstractions as primitive operations [1]. Figure 1 is a schematic diagram of the
VM abstractions and how they interact. The following sections describe in more detail the implementation
abstractions summarized above.

Unix System Calls and Services

Address
Space

Segment
Drivers

& .
Pages . Drivers
2 VM routines

Physical Vnode

Machine Independent

Machine Dependent

Hardware Address Translation Physical 10

Figure 1

! Actually, as a class whose public fields are all virtual, so that subclasses are expected to define them.
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3. page Structure

The new VM architecture treats physical memory as a cache for the contents of memory objects. The page
is the data structure that contains the information that the VM system and object managers need to manage
this cache. The page structure maintains the identity and status of each page of physical memory in the
system. There is one page structure for every interesting!?! page in the system.

A page represents a system page size unit of memory that is a multiple of the hardware page size. The
memory page is identified by a <vnode, offset> pair kept in the page structure. Each page with an identity
is initialized to the contents of a page’s worth of the vnode ’s data starting at the given byte offset. A
hashed lookup based on the <vnode, offset> pair naming the page is used to find a page with a particular
name. The implementation keeps all pages for a given vrnode on a doubly-linked list rooted at the vrode.
Maintaining this list speeds operations that need to find all a vnode ’s cached pages. page structures can
also be on free lists or on an ‘‘I/O’’ list depending on the setting of page status flags. The page structure
also contains an opaque pointer that the hat layer uses to maintain a list of all the active translations to the
page that are loaded in the hardware. In the machine independent VM code above the hat layer, the only
use for this opaque pointer is to test for NULL to determine if there are any active translations to the page.
When the machine-dependent hat layer unloads a translation it retrieves the hardware reference and
modified bits for that translation to the page, and merges them into machine-independent versions of these
bits maintained in the page structure.

4. Address Space

The highest level abstraction that the VM system implements is called an address space (as), which
consists of a collection of mappings from virtual addresses to underlying objects such as files and display
device frame buffers. The as layer supports a procedural interface whose operations fall into two basic
classes. Procedures in the first class manipulate an entire address space and handle address space
allocation, destruction, duplication, and ‘‘swap out’’. Procedures in the second class manipulate a virtual
address range within an address space. These functions handle fault processing, setting and verifying
protections, resynchronizing the contents of an address space with the underlying objects, obtaining
attributes of the mapped objects, and mapping and unmapping objects. Further information on these
functions may be found in [1].

The implementation must maintain state information for each address space. The heart of this information
is a doubly linked list of contiguous mappings (termed segments for lack of a better name) sorted by virtual
address. Section 5 describes segments in detail. The as layer implements its procedural interface by
iterating over the required range of virtual addresses and calling the appropriate segment operations as
needed.

In addition, the as structure contains a hardware address translation (hat) structure used to maintain
implementation specific memory management information. Positioning the hat structure within the as
structure allows the machine dependent har layer to describe all the physical MMU mappings for an
address space, while the machine independent as layer manages all the virtual address space mappings.
The hat structure is opaque to the machine independent parts of the system and only the hat layer
examines it. Section 6 describes the hat layer in detail. The as structure also includes machine
independent address space statistics that are kept separately from the machine dependent hat structure for
convenience.

4.1. Address Space Management

The implementation uses several techniques to reduce the overhead of as management. To reduce the time
to find the segment for a virtual address, it maintains a ‘*hint’’ naming the last segment found, in a manner
similar to the technique used in Mach [4]. Any time the as layer translates a virtual address to a segment,
this hint is used as the starting point to begin the search.

Another optimization reduces the total number of segments in a given address space by allowing segment
drivers to coalesce adjacent segments of similar types. This reduces the average time to find the segment
that maps a given virtual address within an address space. By using this technique, the common UNIX
brk (2) system call normally reduces to a simple segment extension within the process address space.

2 Pages for kemnel text and data and for frame buffers are not considered “‘interesting’’.
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4.2. Address Space Usage

SunOS uses an as to describe the kernel’s own address space, which is shared by all UNIX processes when
operating in privileged (supervisor) mode. A UNIX process typically has an as to describe the address
space it operates in when in non-privileged (user) mode". An as is an abstraction that exists independent
of any of its uses. Just as several UNIX processes share the same kernel address space when operating in
supervisor mode, an as can have multiple threads of control active in an a user mode address space at the
same time. Future implementations of the operating system will take advantage of these facilities [5].

Most UNIX memory management system calls map cleanly to calls on the as layer. The as layer does not
have knowledge of the implementation of the segment drivers below it, thus making it easy to add new
segment types to the system. The as design provides support for large sparse address spaces without
undue penalty for common cases, an important consideration for the future software demands that will be
placed on the VM system.

5. Segments

A segment is a region of virtual memory mapped to a contiguous region of a memory object'*!. Each
segment contains some public and private data and is manipulated in an object-oriented fashion. The
public data includes the base and size of the segment in page-aligned bytes, pointers for the next and
previous segments in the address space, and a pointer to the as structure itself. Each segment also contains
a reference to a vector of pointers to operations (an ‘‘ops’’ vector) that implement a set of functions similar
to the as functions, and a pointer to a private per-segment type data structure. This is similar to the way
the SunOS vnode and vfs abstractions are implemented [2]. Using this style of interface allows multiple
segment types to be implemented without affecting the rest of the system.

To most efficiently handle its data structures, a segment driver is free to coalesce adjacent segments of the
same type in the virtual address space or even to break a segment down into smaller segments. Individual
virtual pages within a segment’s mappings may have varying attributes (e.g. protections). This design
allows the segment abstraction control over the attributes and data structures it manages.

Of equal importance to what a segment driver does is what it does not do. In particular, we found that
having the segment driver handle the page lookup operation and call the vrode object manager only when
a needed page cannot be found was a bad idea. After running into some problems that could not be solved
as a result of this split, we restructured the VM system so that the segment driver always asks the object
manager for the needed page on each fault. Having the vrnode object manager be responsible for the page
lookup operation allows it to take action on each new reference.

5.1. Segment Driver Types

The implementation includes the following segment driver types:
seg_vn Mappings to regular files and anonymous memory.
seg_map Kernel only transient <vnode, offset> translation cache.
seg_dev Mappings to character special files for devices (e.g. frame buffers).
seg kmem  Kernel only driver used for miscellaneous mappings.

The seg_vn and seg_map segment drivers manage access to vrode memory objects and are the primary
segment drivers.

5.2. vnode Segment

The seg_vn vnode segment driver provides mappings to regular files. It is the most heavily used segment
driver in the system.

The arguments to the segment create function include the vnode being mapped, the starting offset, the
mapping type, the current page protections, and the maximum page protections. The mapping type can be
shared or private (copy-on-write). With a shared mapping, a successful memory write access to the
mapped region will cause the underlying file object to be changed. With a private mapping the first write
access to a page of the mapped region will cause a copy-on-write operation that creates a private page and
initializes it to a copy of the original page.

3 Some processes run entirely in the kernel and have no need for a user mode address space.

4 Note that the name *‘segment’” is not related to traditional UNIX text, data, and stack segments.
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The UNIX mmap (2) system call, which sets up new mappings in the process’s user address space,
calculates the maximum page protection value for a shared mapping based on the permissions granted on
the open of the file. Thus, the vnode segment driver will not allow a file to be modified through a mapping
if the file was originally opened read-only.

5.2.1. Anonymous Memory

An important aspect of the VM system is the management of ‘‘anonymous’’ pages that have no permanent
backing store. An anonymous page is created for each copy-on-write operation and for each initial fault to
the anonymous clone object!>l. For a UNIX executable, the uninitialized data and stack are set up as private
mappings to the anonymous clone object.

The mechanism used to manage anonymous pages has been isolated to a set of routines that provide a
service to the rest of the VM system. Segment drivers that choose to implement private mappings use this
service. The vaode segment driver is the primary user of anonymous memory objects.

5.2.1.1. Anonymous Memory Data Structures

The anon structure serves as a name for each active anonymous page of memory. This structure
introduces a level of indirection for access to anonymous pages. We do not wish to assume that
anonymous pages can be named by their position in a storage device, since we would like to be able to
have anonymous pages in memory that haven’t been allocated swap space. The anon data structure is
opaque above the anonymous memory service routines and is operated on using a procedural interface in
an object-oriented fashion. These objects are reference counted, since there can be more than one
reference to an anonymous pagel®l. This reference counting allows the anon procedures to easily detect
when an anonymous page and corresponding resident physical page (if any) are no longer needed.

The other data structure related to anonymous memory management is the anon_map structure. This
structure describes a cluster of anonymous pages as a unit. The anon_map structure consists of an array of
anon structure pointers with one anon pointer per page. Segment drivers that wish to refer to anonymous
pages do so by using an anon_map structure to keep an array of pointers to anon structures for the
anonymous pages. These segment drivers lazily allocate an anon_map structure with NULL anon
structure pointers at fault time as needed (i.e., on the first copy-on-write for the segment or on the first fault
for an all anonymous mapping).

5.2.1.2. Anonymous Memory Procedures

There are two anon procedures that operate on the arrays of anon structure pointers in the anon_map
structure. anon_dup() copies from one anon pointer array to another one, incrementing the reference
count on every allocated anon structure. This operation is used when a private mapping involving
anonymous memory is duplicated. The converse of anon_dup() is anon_free(), which decrements the
reference count on every allocated anon structure. If a reference count goes to zero, the anon structure
and associated page are freed. anon_free() is used when part of a privately mapped anonymous memory
object is unmapped.

There are three anon procedures used by the fault handlers for anonymous memory objects.
anon_private() allocates an anonymous page, initializing it to the contents of the previous page loaded in
the MMU. anon zero() is similar to anon_private(), but initializes the anonymous page to zeroes. This
routine exists as an optimization to avoid having to copy a page of zeroes with anon_private(). Finally,
anon_getpage() retrieves an anonymous page given an anon structure pointer.

5.2.2. vnode Segment Fault Handling

Page fault handling is a central part of the new VM system. The fault handling code resolves both
hardware faults (e.g., hardware translation not valid or protection violation) and software pseudo-faults
(e.g., lock down pages). The as fault handing routine is called with a virtual address range, the fault type
(e.g., invalid translation or protection violation), and the type of attempted access (read, write, execute). It
performs a segment lookup operation based on the virtual address and dispatches to the segment driver’s
fault routine, which is responsible for resolving the fault.

5 The name of this object in the UNIX file system name space is /dev/zero.
6 Typically from an address space duplication resulting from a UNIX fork (2) system call.
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The vnode segment driver takes the following steps to handle a fault.
. Verify page protections.
° If needed, allocate an anon_map structure.

[ If needed, get the page from the object manager.
Call the hat layer to load a translation to the page.

If needed, obtain a new page by performing copy-on-write.
Call the hat layer to load a writable translation to the new page.

Some specific examples of vrode segment fault handling and how anonymous memory is used are given
below.

0x30000

0x32000
<vpl, 0x8000>

(As Yet Unallocated)
Segment Private Address Space Contents
Anon_map Array

Figure 2
<vpl, 6000> Mapped Private to Address 0x30000 for 0x4000 Bytes

Figure 2 depicts a private mapping from offset 0x6000 in vnode vpl to address 0x30000 for a length of
0x4000 bytes using a system page size of 0x2000. If a non-write fault occurs on an address within the
segment, the vaode segment driver asks the vnode object manager for the page named by <vp1, 0x6000 +
(addr - 0x30000)>. The vrnode object manager is responsible for creating and initializing the page when
requested to do so by a segment driver. After obtaining the page, the vnode segment driver calls the har
layer to load a translation to the page. The permissions passed to the hat layer from the vnode segment
driver are for a read-only translation since this is a private mapping for which we want to catch a memory
write operation to initiate a copy-on-write operation.

0x30000 0x30000
o <vpl, 0x6000>

0x32000 0x32000

ref cnt
1

<anon pagel>

Segment Private anon structure for

Anon_map Array <anon page!> Address Space Contents

Figure 3
After Copy-On-Write Operation to Address 0x32000

Figure 3 shows the results of a copy-on-write operation on address 0x32000 in Figure 2. The vnode
segment driver has allocated an anon_map structure and initialized the second entry to point to an
allocated anon structure that initially has a reference count of one. The anon _private() routine has
allocated the anon structure in the array, returned a page named by that anon structure, and initialized to
the contents of the previous page at 0x32000. After getting the anonymous page from anon private(), the
vnode segment driver calls the har layer to load a writable translation to the newly allocated and initialized
page.

Note that as an optimization, the vaode segment driver is able to perform a copy-on-write operation, even
if the original translation was invalid, since the fault handler gets a fault type parameter (read, write,
execute). If the first fault taken in the segment described in Figure 3 is a write fault at address 0x32000
then the first operation is to obtain the page for <vpl, 0x8000> and call the har layer to load a read-only

London, 13-15 April 1988 EUUG Spring ‘88




SunOS Virtual Memory Implementation

translation. The vnode segment driver can then detect that it still needs to perform the copy-on-write
operation because the fault type was for a write access. If the copy-on-write operation is needed, the
vnode segment driver will call anon_private() to create a private copy of the page.

0x34000 0x34000
NULL 299

0x36000 0x36000

ref cnt

<anon page2>

Segment Private anon structure for Address Space Contents
Anon_map Array <anon page2>
Figure 4

Private Mapping to /dev/zero for 0x4000 bytes at Address 0x34000
After a Page Fault at Address 0x36000

Figure 4 depicts a private mapping from the anonymous clone device /dev/zero to address 0x34000 for
length 0x4000 after a page fault at address 0x36000. Since there is no primary vnode that was mapped, the
vnode segment driver calls anon zero() to allocate an anon structure and corresponding page and
initialize the page to zeroes.

0x34000 0x34000
NULL m

0x36000 0x36000

ref cnt
2

<anon page2>

anon structure for

Segment | <anon page2> Address Space 1
0x34000 0x34000
NULL m
0x36000 0x36000
<anon page2>
Segment 2 Address Space 2

Segment Private

Anon_map Array Address Space Contents

Figure 5
After the Private Mapped Vnode Segment is Duplicated

Figure 5 shows what happens when the mapped private vnode segment shown in Figure 4 is duplicated.
Here both segments have a private reference to the same anonymous page. When the segment is
duplicated, anon_dup() is called to increment the reference count on all the segment’s allocated anon
structures. In this example, there is only one allocated anon structure and its reference count has been
incremented from one to two. Also, as part of the vnode segment duplication process for a privately
mapped segment, all the har translations are changed to be read-only so that previously writable
anonymous pages are now set up for copy-on-write.

Figure 6 shows the result after the duplicated segment in Figure 5 handles a write fault at address 0x36000.
When the segment fault handler calls anon_getpage() to return the page for the given anon structure, it
will return protections that force a read-only translation since the reference count on the anon structure is
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0x34000 0x34000

0x36000 0x36000

ref cnt
1

<anon page2>

anon structure for

Segment | <anon page2>

Address Space |

0x34000 0x34000
NULL

0x36000 0x36000
<anon page3>

anon structure for

Segment 2
<anon page3>

Address Space 2

Segment Private

Anon_map Array Address Space Contents

Figure 6
After Write Fault on Address 0x36000 in Address Space 2

greater than one. The segment driver fault handler will then call anon_private() to allocate a new anon
structure and page structure and to initialize the page to the contents of the previous page loaded in the
MMU. In contrast to the case depicted in Figure 3, anon_private() is copying from another anonymous
page and will decrement the reference count of the old anon structure after the anon pointer in the
segment’s anon_map array is changed to point to the newly allocated anon structure. Since the reference
count on the original anon structure reverts to one, this means that the original segment will no longer have
to do a copy-on-write operation for a subsequent write fault at address 0x36000. If a fault were to occur at
0x36000 in the original segment, anon_getpage() would not enforce a read-only mapping, since the
reference count for the anon structure is now one.

5.3. Kernel Transient vnode Mapping Segment

The seg_map segment driver is a driver the kernel uses to get transient <vnode, offset> mappings. It
supports only shared mappings. The most important service it provides to the as layer is fault resolution
for kernel page faults. The seg_map driver manages a large window of kernel virtual space and provides a
view onto a varying subset of the system’s pages. The seg_map driver manages its own virtual space as a
cache, so that recently referenced <vnode, offset> pairs are likely to be loaded in the MMU and no page
fault will be taken when the virtual address within the seg_map segment are referenced.

This segment driver provides fast map and unmap operations using two segment driver-specific
subroutines: segmap_getmap() and segmap_release(). Given a <vnode, offset> pair, segmap _getmap()
returns a virtual address within the seg_map segment that is initialized to map part of the vnode. This is
similar to the traditional UNIX bread() function used in the ‘‘block IO system’’ to obtain a buffer that
contains some data from a block device. The segmap release() function takes a virtual address returned
from segmap_getmap() and handles releasing the mapping. segmap release() also handles writing back
modified pages. segmap_release() performs a similar function to the traditional UNIX brelse()/ bdwrite()/
bwrite() | bawrite() **block 10 system’’ procedures depending on the flags given to segmap_release( ).

The seg_map driver is simply used as an optimization in the kernel over the standard vrode driver. It is
important to be able to do fast map and unmap operations in the kernel to implement read (2) and write (2)
system calls. The basic algorithm for the vnode read and write routines is to get a mapping to the file, copy
the data from/to the mapping, and then unmap the file. Note that the kernel accesses the file data just as
user processes do by using a mapping to the file. The vaode routines that implement read and write use
segmap_getmap() and segmap_release() to provide the fast map and unmap operations within the kernel’s
address space.
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5.4. Device Driver Segment

The seg_dev segment driver manages objects controlled by character special (*‘raw’’) device drivers that
provide an mmap interface. The most common use of the seg_dev driver is for mapped frame buffers,
though it is also used for mappings to machine-specific memory files such as physical memory, kernel
virtual memory, Multibus memory, or VMEbus memory. This driver currently only supports shared
mappings and does not deal with anonymous private memory pages. The driver is simple since it doesn’t
have to worry about a many operations that don’t make sense for these types of objects (e.g., swap out).
To resolve a fault, it simply calls a function to return an opaque ‘‘cookie’’ from the device driver, which is
then handed to the machine-specific har layer to load a translation to the physical page denoted by the
cookie.

5.5. Kernel Memory Segment

The seg_kmem segment driver is an example of the use of a machine independent concept to solve a
machine dependent problem. The kernel’s address space is described by an as structure just like the user’s
address space. The seg_kmem segment driver is used as a catch-all to map miscellaneous entities into the
kernel’s address space. These entities includes the kernel’s text, data, bss, and dynamically allocated
memory space. This driver also manages other machine dependent portions of the kernel’s address space
(e.g. Sun’s Direct Virtual Memory Access space [6]).

The seg_kmem driver currently only supports non-paged memory whose MMU translations are always
locked!”!. In the previous 4.2BSD-based VM system, the management of the kernel’s address space for
things like device registers was done by calls to a mapin() procedure that set up MMU translations using a
machine-dependent page table entry. For kernel and driver compatibility reasons, the seg_kmem driver
supports a mapin -like interface as a set of segment driver-specific procedures.

6. Hardware Address Translation Layer

The hardware address translation (hat) layer is responsible for managing the machine dependent memory
management unit. It provides the interface between the machine dependent and the machine independent
parts of the VM system. The machine independent code above the hat layer knows nothing about the
implementation details below the hat layer. The clean separation of machine independent and dependent
layers of the VM system allows for better understandability and faster porting to new machines with
different MMUs.

The hat layer exports a set of procedures for use by the machine independent segment drivers. The higher
levels cannot look at the current mappings, they can only determine if any mappings exist for a given page.
The machine independent levels call down to the sat layer to set up translations as needed. The basic
dependency here is the ability to handle and recover from page faults (including copy-on-write). The hat
layer is free to remove translations as it sees fit if the translation was not set up to be locked. There exists a
call back mechanism from the hat layer to the segment driver so that the virtual reference and modified bits
can be maintained when a translation is take away by the hat layer. This ability is needed for alternate
paging techniques in which per address space management of the working set is done.

6.1. hat Procedures

Table 1 lists the machine independent hat interfaces. All these procedures must be provided, although they
may not necessarily do anything if not required by the Aat implementation for a given machine.

6.2. hat Implementations

Several hat implementations have already been completed. The first implementations were for the Sun
MMU [6]. The MMUs in the current Sun-2/3/4 family are quite similar. All use a fixed number of context,
segment, and page table registers in special hardware registers to provide mapping control. The Sun-2
MMU has a separate context when running in supervisor mode whereas the Sun-3 and Sun-4 MMUs have
the kernel mapped in each user context. The maximum virtual address space for the Sun-2, Sun-3, and
Sun-4 MMUs are 16 megabytes, 256 megabytes, and 4 gigabytes respectively.

Some machines in the Sun-3 and Sun-4 families use a virtual address write-back cache. The use of a
virtual address cache allows for faster memory access time on cache hits, but can be a cause of great

7 This means that the hat layer cannot remove any of these translations without explicitly being told to do so by the
seg_kmem driver.
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Operation Function
hat init () One time hat Initialization.

hat alloc (as) Allocate har structure for as.

hat free (as) Release all hat resources for as.

hat pageunload (pp) Unload all translations to page pp.

hat pagesync (pp) Sync ref and mod bits to page pp.

hat _unlock (seg, addr) Unlock translation at addr.

hat chgprot (seg, addr, len, prot) Change protection values.

hat unload(seg, addr, len) Unload translations.

hat memload(seg, addr, pp, prot, flags) Load translation to page pp.

hat devload(seg, addr, pf, prot, flags) Load translation to cookie pf.

Table 1
hat operations

trouble to the kernel in the old VM system [7]. Since the hat layer has information about all the
translations to a given page, it can manage all the details of the virtual address cache. It can verify the
current virtual address alignment for the page and decide to trade translations if an attempt to load a non-
cache consistent address occurs. In the old 4.2BSD-based VM system the additional support needed for the
virtual address cache permeated many areas of the system. Under the new VM system, support for the
virtual address cache is isolated within the sat layer.

Other hat implementations have been done for more traditional page table-based systems. The Motorola
68030 has a flexible on-chip MMU. The har layer chooses to manage it using a three level page table to
support mapping a large sparse virtual address space with minimal overhead. The Intel 80386 also has an
on-chip MMU, but it has a fixed two level translation scheme of 4KB pages. The problem with the 80386
MMU is that the kernel can write all pages regardless of the page protections (i.e., the write protection only
applies to non-supervisor mode accesses)! This means that explicit checks must be performed for kernel
write accesses to read-only pages so that kemel protection faults can be simulated. Another
implementation has been done for IBM 370/XA compatible main frames. The biggest problem with this
machine’s architecture for the new VM system is that an attempted write access to a read-only page causes
a protection exception that can leave the machine in an unpredictable state for certain instructions that
modify registers as a side effect. These instructions cannot be reliably restarted thus breaking copy-on-
write fault handling. The implementation resorts to special work arounds for the few instructions that
exhibit this problem!®).

7. File System Changes

The VM system required changes to several other parts of the SunOS kernel. The VM system relies heavily
on the vrode object managers, and required changes to the vaode interface as well as to each vrnode object
type implementation. It took us several attempts to get the new vnode interface right.

Our initial attempt gave the core VM code responsibility for all decisions about operations it initiated. We
repeatedly encountered problems induced by not having appropriate information available within the VM
code at sites where it had to make decisions, and realized that the proper approach was to make decisions at
locations possessing the requisite information. The primary effect of this shift in responsibility was to give
the vnode drivers control on each page reference. This allows the vaode drivers to recognize and act on
each new reference. These actions include validating the page, handling any needed backing store
allocation, starting read-ahead operations, and updating file attributes.

7.1. File Caching

Traditionally, buffers in the UNIX buffer cache have been described by a device number and a physical
block number on that device. This use of physical layout information requires all file system types
implemented on top of a a block device to translate (hmap) each logical block to a physical block on the

8 Such instructions are highly specialized and the standard compilers never generate them.
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device before it can be looked up in the buffer cache.

In the new VM system, the physical memory in the system is used as a logical cache; each buffer (page) in
the cache is described by an object name (vnode) and a (page-aligned) offset within that object. Each file is
named as a separate vnode, so the VM system need not have any knowledge of the way the vnode object
manager (file system type) stores the vnode. A segment driver simply asks the vrode object manager for a
range of logical pages within the vnode being mapped. The file system independent code in the segment
drivers only has to deal with offsets into a vrode and does not have to maintain any file system-specific
mapping information that is already kept in the file system-specific data structures. This provides a much
cleaner separation between the segment and vnode abstractions and puts few constraints on the
implementation of a vnode object manager'!.

The smallest mapping unit relevant to the VM system is a system page. However, the system page size is
not necessarily related to the block sizes that a file system implementation might use. While we could have
implemented a new file system type that used blocks that were the same size as a system page, and only
supported file systems that had this attribute, we did not feel this was an acceptable approach. We needed
to support existing file systems with widely varying block size. We also did not feel that it was appropriate
to use only one system page size across a large range of machines of varying memory size and
performance. We decided it was best to push the handling of block size issues into each file system
implementation, since the issues would vary greatly depending on the file system type.

The smallest allocatable file system block is potentially smaller than the system page size, while the largest
file system block may be much larger than the system page size. The vrnode object manager must initialize
each page for a file to the proper contents. It may do this by reading a single block, multiple blocks, or
possibly part of a block, as necessary. If the size of the file is not a multiple of the system page size, the
vaode object manager must handle zeroing the remainder of the page past the end of the file.

Using a logical cache doesn’t come without some cost. When trying to write a page back to the file system
device, the VOP_PUTPAGE routine (discussed below) may need to map the logical page number within
the object to a physical block number, or perhaps to a list of physical block numbers. If the file system-
specific information needed to perform the mapping function is not present in memory, then a read
operation may be required to get it. This complicates the work the page daemon must do when writing
back a dirty page. File system implementations need to be careful to prevent the page daemon from
deadlocking waiting to allocate a page needed for a hmap -like operation while trying to push out a dirty
page when there are no free pages available.

7.2. vnode Interface Changes

We defined three new vnode operations for dealing with the new abstractions of mappings in address
spaces and pages. These new vnode operations replaced ones that dealt with the old buffer cache and the
4.2BSD-based VM system [2]. The primary responsibility of the vnode page operations is to fill and drain
physical pages (page-in and page-out). It also provides an opportunity for the managers of particular
objects to map the page abstractions to the representation used by the object being mapped.

The VOP_MAP() routine is used by the mmap system call and is responsible for handling file system
dependent argument checking, as well as setting up the requested mapping. After checking parameters it
uses two address space operations to do most of the work. Any mappings in the address range specified in
the mmap system call are first removed by using the as_unmap() routine. Then the as_map() routine
establishes the new mapping in the given address space by calling the segment driver selected by the vrode
object manager.

The VOP_GETPAGE() routine is responsible for returning a list of pages from a range of a vnode. It
typically performs a page lookup operation to see if the pages are in memory. If the desired pages are not
present, the routine does everything needed to read them in and initialize them. It has the opportunity to
perform operations appropriate to the underlying vnode object on each fault, such as updating the reference
time or performing validity checks on cached pages.

As an optimization, the VOP_GETPAGE() routine can return extra pages in addition to the ones requested.
This is appropriate when a physical read operation is needed to initialize the pages and the vnode object
manager tries to perform the 1/O operation using a size optimal for the particular object. Before this is
done the segment driver is consulted, using a ‘‘kluster’’ segment function, so that the segment driver has

? We have taken advantage of this and have implemented several interesting vrode object managers that are nothing
like typical file systems.
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the opportunity to influence the vrode object manager’s decisions. The VOP_GETPAGE() routine also
handles read-ahead if it detects a sequential access pattern on the vnode. It uses the same segment kluster
function to verify that the segment driver believes that it would be worthwhile to perform the read-ahead
operation. The I/O klustering and read-ahead conditions allow both the vrode object manager and the
segment driver controlling a mapping onto this object to have control over how these conditions are
handled. Thus, for these conditions we have set up our object-oriented interfaces to allow distributed
control among different abstractions that have different pieces of knowledge about a particular problem.
The vnode object manager has knowledge about preferred /O size and reference patterns to the underlying
object, whereas the segment driver has the knowledge about the view established to this object and may
have advice passed in from above the address space regarding the expected reference pattern to the virtual
address space.

The other new vnode operation for page management is VOP_PUTPAGE(). This operation is the
complement of VOP_GETPAGE() and handles writing back potentially dirty pages. A flags parameter
controls whether the write back operation is performed asynchronously and whether the pages should be
invalidated after being written back.

The VOP_GETPAGE() and VOP_PUTPAGE() interfaces deal with offsets and pages in the logical file.
No information about the physical layout of the file is visible above the vnode interface. This means that
the work of translating from logical blocks to physical disk blocks (the hmap function) is all done within
the vnode routines that implement the VOP_GETPAGE() and VOP_PUTPAGE() interfaces. This is a
clean and logical separation of the file object abstractions from the VM abstractions and contrasts with the
old 4.2BSD-based implementation where the physical locations of file system blocks appeared in VM data
structures.

8. UFS File System Rework

Another difficult issue pertinent to the conversion to a memory-mapped, page-based system is how to
convert existing file systems. The most notable of these in SunOS is the 4.2BSD file system [8], which is
known in SunOS as the UNIX File System (UFS). The relevant characteristics of this file system type
include support for two different blocking sizes (a large basic block size for speed, and a smaller fragment
size to avoid excessive disk waste), the ability to have unallocated blocks (*‘holes’’) in the middle of a file
which read back as zeroes, and the need to hmap from logical blocks in the file to physical disk blocks.

8.1. Sparse UFS File Management

ufs_getpage() is the UFS routine that implements the VOP_GETPAGEY() interface. When a fault occurs on
a UFS file, the segment driver fault routine calls this routine, passing it the type of the attempted access
(e.g., read or write access). It uses this access type information to determine what to do if the requested
page corresponds to an as yet unallocated section of a sparse file. If a write access to one of these holes in
the file is attempted, ufs getpage() will attempt to allocate the needed block(s) of file system storage. If
the allocation fails because there is no more space available in the file system, or the user process has
exceeded its disk quota limit, ufs getpage() returns the error back to the calling procedure which then
propagates back to the caller of address space fault routine.

When ufs_getpage() handles a read access to a page that does not have all its disk blocks allocated, it
zeroes out the part of the page that is not backed by an allocated disk block and arranges for the segment
driver requesting the page to establish a read-only translation to it. Thus no allocation is done when a
process tries to read a hole from a UFS file. However, an attempted write access to such a page causes a
protection fault and ufs getpage() can perform the needed file system block allocation as previously
described.

8.2. UFS File Times

Another set of problems resulted from handling the file access and modified times. The obvious way to
handle this problem is to simply update the access time in ufs_getpage() any time a page is requested and
to update the modification time in ufs_putpage() any time a dirty page is written back. However, this
approach has some problems.

The first problem is that the UFS implementation has never marked the access time when doing a write to
the file!'”). The second problem is related to getting the correct modification time when writing a file.

10 The “‘read™" that is sometimes needed to perform a write operation never causes the file’s access time to be updated.
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When doing a write (2) system call, the file is marked with the current time. When dirty pages created by
the write operation are actually pushed back to backing store in ufs_putpage(), we don’t want to override
the modification time already stored in the inode !''l.

To solve these problems, inode flags are set in the ‘‘upper layers’’ of the UFS code (e.g., when doing a file
read or write operation) and examined in the ‘‘lower layers’ of the UFS code (ufs_getpage() and
ufs_putpage()). ufs_getpage() examines the inode flags to determine whether to update the inode ’s access
time based on whether a read or write operation is currently in progress. ufs putpage() can use the inode
flags to determine whether it needs to update the inode’s modification time based on whether the
modification time has been set since the last time the inode was written back to disk.

8.3. UFS Control Information

Another difficult issue related to the UFS file system and the VM system is dealing with the control
information that the vnode driver uses to manage the logical file. For the UFS implementation, the control
information consists of the inodes, indirect blocks, cylinder groups, and super blocks. The control
information is not part of the logical file and thus the control information still needs to be named by the
block device offsets, not the logical file offsets. To provide the greatest flexibility we decided to retain the
old buffer cache code with certain modifications for optional use by file system implementations. The
biggest driving force behind this is that we did not want to rely on the system page size being smaller than
or equal to the size of control information boundaries for all file system implementations. Other reasons
for maintaining parts of the old buffer cache code included some compatibility issues for customer written
drivers and file systems. In current versions of SunOS, what’s left of the old buffer cache is used strictly
for UFS control buffers. We did improve the old buffer code so that buffers are allocated and freed
dynamically. If no file system types choose to use the old buffer cache code (e.g., a diskless system), then
no physical memory will be allocated to this pool. When the buffer cache is being used (e.g., for control
information for UFS file systems), memory allocated to the buffer pool will be freed when demand for
these system resources decreases.

9. System Changes

With the conversion to the new VM system, many closely related parts of the SunOS kernel required
change as well. For the most part time constraints persuaded us to retain the old algorithms and policies.

9.1. Paging

The use of the global clock replacement algorithm implemented in 4.2BSD and extended in 4.3BSD is
retained under the new VM system. The ‘‘clock hands’® now sweep over page structures, calling
hat_pagesync() on each eligible page to sync back the reference and modified bits from all the hat
translations to that page. If a dirty page needs to be written back, the page daemon uses VOP_PUTPAGE()
to write back the dirty page.

9.2. Swapping

We retained the basic notion of ‘‘swapping’ a process. Under the new VM system there is much more
sharing going on than was present in 4.2BSD where the only sharing was done explicitly via the fext table.
Now a process’s address space may have several shared mappings, making it more difficult to understand
the memory demands for an address space. This fact is made more obvious with the use of shared libraries
[9, 10].

The address space provides an address space swap out operation as_swapout() which the SunOS kernel
uses when swapping out a process. This procedure handles writing back dirty pages that the as maps and
that no longer have any MMU translations after all the resources for the as being swapped are freed. The
as_swapout() operation returns the number of bytes actually freed by the swap out operation. The swapper
saves this value as a working set estimate!'?, using it later to determine when enough memory has become
available to swap the process back in. Also written back on a process swap out operation is the process’s
user area, which is set up to look like anonymous memory pages.

The as and segment structures used to describe the machine independent mappings of the address space for
the process are currently not swapped out with the process since we don’t yet have the needed support in

'I' The inode is the file system private vrode information used by the UFS file system [2].

12 Unfortunately, a poor one; this is an opportunity for future improvement.
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the kernel dynamic memory allocator. This differs from the 4.2BSD VM implementation where the page
tables used to describe the address space are written back as part of the swap out operation.

9.3. System Calls

We rewrote many traditional UNIX system calls to manipulate the process’s user address space. These
calls include fork, exec, brk, and ptrace. For example, the fork system call uses an address space
duplication operation. An exec system call destroys the old address space. For a demand paged
executable it then creates a new address space using mappings to the executable file. For further discussion
on how these system calls were implemented as address space operations see [1].

Memory management related system calls based on the original 4.2BSD specification [11] that were
implemented include mmap, munmap, mprotect, madvise, and mincore. In addition, the msync system
call was defined and implemented. For further discussion on these system calls see [1].

9.4. User Area

The UNIX user area is typically used to hold the process’s supervisor state stack and other per-process
information that is needed only when the process is in core. Currently the user area for a SunOS UNIX
process is still at a fixed virtual address as is done with most traditional UNIX systems. However, the user
area is specially managed so context switching can be done as quickly as possible using a fixed virtual
address. There are several reasons why we want to convert to a scheme where the user areas are at
different virtual addresses in the kernel's address space. Among them are faster context switching!'?,
better support for multi-threaded address spaces, and a more uniform treatment of kernel memory. In
particular, we are moving toward a seg_u driver that can be used to manage a chunk of kernel virtual
memory for use as u-areas.

16. Performance

A project goal for the new VM work was to provide more functionality without degrading performance.
However, we have found that certain benchmarks show substantial performance improvements because of
the much larger cache available for 1/O operations. There is still much that can be done to the system as a
whole by taking advantage of the new facilities.

Table 2 shows some benchmarks that highlight the effects of the new VM system and dynamically linked
shared libraries [9, 10] over SunOS Release 3.2. Dynamic linking refers to delaying the final link edit
process until run time. The traditional UNIX model is based on sratic linking in which executable
programs are completely bound to all their libraries routines at program link time using /d (1).

Kernel Tested SunOS 3.2 Pre-release New VM Pre-release New VM
Binaries Executed 3.2 32 Dynamically Linked

Tests Performed Time (secs) Time (secs) Time (secs)

exec 112k program 100 times 73 33 10.7
Sfork 112k program 200 times 8.8 44 7.7
Recursive stat of 125 directories 4.9 1.4 1.3
Page out 1 Mb to swap space 20 2.0 0.8
Page in 1 Mb from swap space 4.6 3.8 35
Demand page in | Mb executable 1.7 0.9 0.8
Sequentially read 1 Mb file (1st time) 1.6 1.5 1.5
Sequentially read 1 Mb file (2nd time) 1.6 0.4 0.4
Random read of 1 Mb file 5.7 0.7 0.8
Create and delete 100 tmp files 6.3 4.7 4.7

Table 2
System Benchmark Tests on a Sun-3/160
with 4 Megabytes of Memory and an Eagle Disk

13 This is especially true with a virtual address cache and a fixed user area virtual address, since the old user area must
be flushed before the mapping to the new user area at the same virtual address can be established.
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Running a new VM kernel with same 3.2 binaries clearly shows that the new VM system and its associated
file system changes has a positive performance impact. The effect of the larger system caching effects can
be seen in the read times.

One way that the system uses the new VM architecture is a dynamically linked shared library facility. The
fork and exec benchmarks show that the flexibility provided by this facility is not free. However, the
benefits of the VM architecture that provides copy-on-write facilities more than compensate for the cost of
duplicating mappings to shared libraries in the fork benchmark. The exec benchmark is the only test that
showed performance degradation from dynamically linked executables over statically linked executables
run with a SunOS Release 3.2 kernel. These numbers show that the startup cost associated with
dynamically linking at run time is currently about 74 milliseconds. These results are preliminary and more
work will be undertaken to streamline startup costs for dynamically linked executables. We feel that the
added functionality provided by the dynamic binding facilities more than offsets the performance loss for
programs dominated by start up costs.

11. Future Work

The largest remaining task is to incorporate better resource control policies so that the system can make
more intelligent decisions based on increased system knowledge. We plan to investigate new management
policies for page replacement and for better integration of memory and processor scheduling. We believe
that the VM abstractions already devised will provide the hooks needed to do this. SunOS kernel ports to
different uniprocessor and muitiprocessor machine bases will provide further understanding of the usability
of the abstractions and our success in isolating machine dependencies.

Other future work involves taking advantage of the foundation established with the new VM
architecture—both at the kernel and user level. Specialized segment drivers can be used at the kernel level
to more elegantly support various unique hardware devices and to support new functionality such as
mappings to other address spaces. Shared libraries are an example of the usefulness of mapped files at the
user level. We expect to find the features of the new VM system used in various new facilities yet to be
imagined. As new uses for the VM system are better understood, we can refine and complete the interfaces
that have not yet been fully defined.

12. Conclusions
From our experience in implementing the new VM system, we draw the following conclusions.

. Object oriented programming works. The design of the new VM system was done using
object-oriented techniques. This provided a coherent framework in which we could view the
system.

° The balance of responsibility is important. When partitioning a problem amongst different
abstractions, it is critical that the system be structured so that each abstraction has the right
level of responsibility. When an abstraction gets control at the right time it has the opportunity
to recognize and act on events that make sense for that abstraction.

° The layering in the new VM system is effective. For example, the hat layer provides all the
machine dependent MMU translation control and has been found to be easily ported to new
hardware architectures. The use of segment drivers has proven to make the system more
extensible.

° Performance did not suffer. Although the new VM system provides considerably more
functionality, it did so without any performance loss. Performance often improved because the
new VM system better uses memory resources as a cache. By carefully designing the
abstractions with optimizations for critical functions, we reduced the cost sometimes
associated with object-oriented techniques to provide clean abstractions that are still efficient.
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ABSTRACT

Diskless UNIX workstations are becoming a fashionable way of providing users
with high levels of facilities and performance at low cost. To date, most implementations
of UNIX for diskless computers have been based on 4.2BSD. This paper describes some
major modifications made to Motorola System V/68 to produce a version of System V
Release 3 capable of supporting diskless machines.

To make diskless operation possible using Sun’s Network File System (NFS over
Ethernet, the File System Switch feature of System V Release 3 has been replaced with
the Sun Virtual File System (VFS) switching arrangement. However, the Release 3
STREAMS architecture has been retained as a framework for Internet protocol software to
permit a (comparatively) easy switch to OSI protocols in the future. The BOOTP (RFC
951) and TFTP protocols are used for bootstrapping diskless machines.

The paper presents details of the method used to marry NFS and STREAMS, performance
enhancements to the Sun distributed record locking and experiences with BOOTP. It also
lists those awkward places where the requirements of NFS and the System V Interface
Definition (SVID) conflict.

1. Introduction

Until recently, most diskless workstations have been aimed at a specific market sector, that of computer
aided design and engineering. The cost of high resolution graphics hardware, Ethernet connectivity and
ample cpu performance has mitigated against other, more general applications. Now that the cost of the
hardware has come down to more affordable levels commercial uses of such workstations are practical. In
this paper we describe the implementation of UNIX software on a diskless graphics workstation designed to
provide distributed computing in a commercial environment.

The prototype hardware is fairly simple. The processor is a Motorola 68020 with 68851 paged memory
management unit and 4 Megabytes of RAM. 2 serial channels, a SCSI bus interface, 2.5 Megapixels of
video memory and an Ethernet interface are provided.

1.1. Software

The commercial application area and the processor type made Motorola System V/68 Release 3 the
obvious choice for the operating system base (4.x BSD addicts may choose to differ). Several additional
constraints influenced the port:

1 Compatibility with the SVID[1].
ii.  The availability of STREAMS to support a variety of protocols in a consistent way.

iii.  Support for the Network File System (NFS)[2] so that a variety of different machines could be used
as file servers.

System V/68 meets the first two of these, but extensions were necessary in three areas:
1. V/68 supports Remote File Sharing (RFS) but not NFS.

ii.  There is no communications protocol software included in the V/68 distribution. NFS normally runs
over UDP/IP.

ili.  There is no support for diskless operation. This implies work in the areas of bootstrapping, starting
up communications, locating a root file system, and making access to pipes and devices possible.
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2. The Vnode Kernel

NFS in a UNIX kernel is normally supported as a new file system type underneath a file system switching
arrangement. In the Sun operating system this switch is called the Virtual File System (VFS). System V
Release 3 provides a similar layer, called the File System Switch (FSS). The VFS and FSS interfaces are
quite different, the FSS being based on System V Release 2 internal interfaces (iget(), readi() etc), and the
VFS providing more abstract operations (va_lookup(), vn_rdwr() etc) [3]. Two options were open to us: to
rewrite the NFS file system to suit the FSS interface or to rewrite the System V Release 3 kernel to use the
VFS. We chose to use the VFS for the following reasons:

1. The FSS in its present form is not a stable interface. AT&T describe it as ‘‘unpublished’’, and we
believe that it will change in the future.

ii.  Fitting the VFS into a System V kernel, albeit Release 2, is known to be straightforward [4].

iii.  The FSS does not support symbolic links. These are almost essential for diskless operation as they
make it practical for diskless stations to share the unchanging parts of the root file system.

iv.  The NFS is much more difficult to debug than a local file system because a network is involved. One
of our goals in this project was to minimise the changes necessary to the existing NFS software.

V. Replacing the FSS with the VFS does not interfere greatly with the SVID compatibility of the finished
system. In particular, it does not preclude support for STREAMS. The only difficult part of
STREAMS to support in a VFS kernel is clone devices, where ‘‘new’’ devices have to be invented on
demand [5].

vi.  The VFS provides diskless workstations with the specfs, which supports pipe buffering without
reference to disk, and also supports the use of remotely stored special file nodes which refer to local
devices.

Against this, changing to the VFS architecture meant losing support for Remote File Sharing (RFS) in the
prototype system.

3. NFS and STREAMS

NFS operations on a client machine use a Remote Procedure Call (RPC) protocol to pass requests to the file
server. RPC requests are encoded by an eXternal Data Representation (XDR) protocol to resolve byte-
ordering problems between machines. The output of this XDR encoding is placed in message buffers ready
to be given to UDP/IP for transmission. The numbers in the table below show a very approximate
correspondence to OSI layers.

NFS @))]
RPC/XDR  (5/6)
UDP 4)

IP (3)

Table 1: NFS protocol stack

Since NFS operations are entirely managed within the kemel, no user memory is involved in this
processing. User read/write data is copied in or out of the kernel address space by the file system
independent code above the VFS. The two areas where modifications were necessary to the NFS code were
the management of the in-kernel message buffers, and the interface between the RPC code and UDP/IP.

3.1. Message Buffering

In the Sun NFS implementation, XDR deposits the data to be transmitted into buffers called mbufs. This is
the normal communications buffering scheme used by 4.x BSD. Mbufs are not provided in System V.
Instead, System V Release 3 uses a STREAMS buffering mechanism. We chose a simple method to resolve
the differences between mbufs and STREAMS buffering.

When an RPC transaction is started, a contiguous buffer large enough to hold the maximum size of UDP
packet is allocated from a kernel heap for both the sent message and the received reply. The XDR code
assembles the message in the transmit buffer. This neatly sidesteps any complications of message
fragmentation, and simplifies the XDR code at the same time, cince it no longer has to understand mbuf
structures. The complete message is then copied into a single STREAMS buffer and passed to UDP/IP.
When the STREAMS buffer is discarded at the end of transmission, the copy in the heap remains available
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for retransmission if necessary.

3.2. Interface to UDP/IP

The Sun NFS code uses sockets to pass data from RPC to UDP protocol code. Being inside the kernel,
internal interfaces are used:

socreate() create a socket
sobind() bind a port number
ku_sendto_mbuf()  send a UDP message
ku_recvfrom() receive a UDP message
soclose() destroy a socket

The STREAMS mechanism lacks even the concept of a socket, so none of these interfaces exist although
analogues are provided by the Transport Layer Interface [6].

Two alternative methods of providing a socket interface were considered:
i. Devise a new STREAMS module to provide the missing 5 functions.

ii.  Choose a set of TCP/IP STREAMS modules which already include a socket emulation, and explore the
internal interfaces they provide.

The availability of a set of STREAMS TCP/IP modules (from Lachman Associates Inc. of Chicago) which
include a full emulation of Berkeley sockets decided us on alternative (ii). This suite of modules provides
primitives for socket creation, binding and destruction suitable for use from inside the kernel. It also
provides for the transmission and reception of data, but quite reasonably expects the data to be in user
program address space.

Fortunately this limitation turned out to be a disguised opportunity for performance improvements.
Modified versions of sendto() and recvfrom() were prepared which expected data in the kernel virtual
address space, and at the same time left out code for handling out-of-band data or protocols other than
UDP. User level access to UDP/IP is not affected.

user STREAMS

operations
user socket STREAM
operations HEAD

Kernel
RPC SOCKETS UDP
IP
DRIVER

Table 2: Kernel RPC and STREAMS

Thus our kernel RPC uses side-entries to the socket emulation package, which in turn uses side-entries to
the STREAMS protocol stack.
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4. Using the RFC951 Bootstrap Protocol

The diskless workstation, faced with the problem of finding a kernel to load and run, and a root filesystem
to use, needs help: it has somehow to request that a server transfer the relevant file and information. The
BOOTP protocol, described in RFC 951 [7] allows such a workstation, armed only with the knowledge of its
own hardware address, to discover its own IP address, that of a server, and the name of a file to be loaded
and executed. This information can then be used in a second phase to actually transfer the file, typically
using the TFTP protocol (RFC 783 [8]). The simplicity of both these protocols allows them to reside in
PROM, such that the workstation may boot without user intervention.

4.1. BOOTP

The BOOTP protocol involves a single UDP/IP datagram packet exchange, the same packet format being
used in both directions. Both transmissions are sent to the broadcast IP address, and two reserved UDP port
numbers are used: ** BOOTP server’’ (67) and ‘* BOOTP client’’ (68). The essential elements are:

1. an ‘‘opcode’’ field, specifying either BOOTREQUEST or BOOTREPLY,
ii.  the client’s hardware address field, used in its request,

ili.  two fields for *‘your and my IP addresses’’, used in the server’s reply for the client’s and its own IP
addresses,

a field for the filename to be loaded, which may optionally be set by the client to request a particular
file, but which (for security reasons) the server may choose to ignore and reply with a default
filename.

The protocol also allows for optional vendor-specific information, used in our implementation for passing
into the executed kernel the filehandle for its root filesystem, along with the client and server IP addresses.
Implementing BOOTP so that this information is treated opaquely allows changes to be made to the server’s
boot daemon and the kernel without the need to change the boot software in PROM.

Since the workstation probably only knows its hardware (Ethernet) address, its initial boot request has to be
sent to the broadcast IP address. The server must then look this up in its boot database, to find the client’s
IP address to send as ‘‘your address’’ in its reply. If the received hardware address is not found in the
database, the request is simply ignored, since the server cannot do anything useful with it.

- 4.2. Implementation

Variations from BOOTP

An optional part of the protocol is the handling of booting from a server on a different network through a
gateway. Two fields in the request and reply packets can be used to specify the address of a gateway, and
the number of ‘*hops’” a packet can make. Given the likely topology of the network in which the
workstations will be used, this was not thought to be worth implementing.

RFC 951 allows for the case of having a reserve server in case the normal server fails. We did not consider
this, since only the normal server has the diskless workstation’s root filesystem.

RFC 951 does not handle the idea of boot failure. If the server cannot boot the client it simply ignores the
request. The client will timeout and retransmit forever. An addition was made to the protocol to handle
internal server errors. The server returns the opcode BOOTFAILURE and the client can then display a
message and terminate the boot attempt. The user is then aware that the error lies with the server, and not
the client or network.

Boot Options

As described above, the aim was for a workstation which would boot automatically without user
intervention. An ebo (Ethernet boot) command was added to the machine’s existing monitor to allow for a
manual boot.

ebo [server-name:][file] [client-1P-address)
server-name
may be either the actual host name or its IP address. It is passed in the boot request’s sname field,

which is otherwise normally left empty. The server boot daemon ignores any requests that have
sname set to something other than its own name.
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file is the name of the file being requested to be loaded and executed. For security reasons, the boot
daemon may choose to ignore this filename and reply with a default for that client, as specified in the
boot database (see below).

client-1P-address
allows a machine to ask to be booted as a different machine, which is is useful for testing purposes.
It also allows a server whose own root file system has been corrupted to boot as a diskless machine.

Boot Database
The boot daemon (bootd) on the server awaits the receipt of UDP packets on the BOOTP server’s reserved
port. It then does a look-up in the boot database on the Ethernet address from the request.

An example of the format used for this database is shown below. Since information such as the server
name and default file to boot will be common between different clients, they can be specified once in a
DEFAULT section. Client-specific information, such as the Ethernet address, can then be listed
individually.

# sample bootd database

1DEFAULT
internet = usehosts
server = dyadic
default = unix

ritchie
ether = 12.0.fa.ce.9%f.d3
rootfs = /usr/client/ritchie
default = unix.new

kernighan
ether = 12.0.fa.ce.bl.fe
rootfs = /usr/client/kernighan

The ‘‘internet = usehosts'’ entry specifies that the /etc/hosts file is to be used as the default way of
mapping machine-name to IP address.

If the boot file is not an absolute pathname, then it is taken to be relative to the root directory (rootfs) for
that client. For example, the default file to boot the client ritchie is /usr/client/ritchie/unix.new .

Modifications to TFTP
Two modifications were made to TFTP to shorten the time spent loading the kernel:

i. the server’s TFTP daemon was modified to use the size of the UDP data in its first received packet as
the packet size for all its subsequent transmissions.
The TFTP protocol specifies the packet size to be 512 data bytes, but if the client now sends its file
transfer request in a 1400 data byte packet, the server can reply with the same sized packet. During
development, the data size used by the client could be specified by an option to the ebo command,
and empirical evidence showed that the larger packet size resulted in a shorter transfer time.

ii.  the STOP opcode was added to the TFTP protocol so that the client could cleanly cease the transfer
once it had received the COFF header, text and data sections, but avoiding the transfer of the symbol
table. For our kernel, this represents a saving of 16%.

Vendor Information

BOOTP allows for an optional 64 bytes of vendor-specific information at the end of the boot reply packet.
By using the structure defined below, our implementation of the boot code treats the information opaquely.
It only has to ‘‘know’’ about the header, from which it obtains the size of the whole structure.
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/*
* Common diskless boot information structure header.
*/
struct dbihdr {
long dbih magic; /* Magic no. */
long dbih length; /* Size of this struct */

b

struct dbinfo {

struct dbihdr dbi_header;
char dbi_servname [DBISNLEN] ;
struct sockaddr in dbi servip;
struct sockaddr in dbi_clntip;
fhandle t dbi rootfs;

}i

When received in the boot reply, the structure is copied to some safe location before the kernel is loaded.
This location, the magic number and length are passed into the executed kernel via certain registers. The
kernel can then determine whether it is diskless or not, and if it is, obtain the necessary information from
this structure.

5. Diskless System V Release 3

For this project diskless operation must be performed using an NFS remote root filesystem. This introduces
a number of problems, either as a result of deficiencies in NFS, or introduced by the System V environment.

5.1. Getting Started

In the normal NFS environment, some user process involvement is required before an NFS filesystem can be
mounted:

1. Network initialisation
Before any activity involving remote machines may take place the client must be able to access the
network. In our environment the network initialisation is performed by several user programs; slink
ldsocket and ifconfig. These programs access data in files such as /etc/netcf to determine how the
streams and sockets should be configured, and then devices to do the configuration.

ii. Mounting an NFS filesystem
Before the mount request is passed to the kernel, the client mount program contacts the server mount
daemon to obtain the file handle for the remote filesystem root directory. The file handle and the
server name and internet address are passed to the kernel by the mount system call.

In the diskless environment we are unable to do the above as the root filesystem has not yet been mounted
and so are unable to use any configuration files or programs. Here we have the classic chicken and egg
situation

5.2. Managing without Local Disks

The standard UNIX kernel assumes the presence of local disk devices. Problems occur in the following
area:

i. Pipes and clones
Normally the inodes for pipe files and cloned devices, although invisible to the user, are allocated
from the root filesystem. This source of inodes has now disappeared.

ii. Swapping
The kernel expects a local disk on which it can swap. This has disappeared.

5.3. Other Diskless Problems
This problem has disappeared with the release of NFS 3.2 but is included here for completeness.

NFS does not support remote device access, although remote device files may appear to be opened. If your
root filesystem is remote, then how do you talk to local devices such as the console?
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5.4. Network Initialisation

For us the stream and socket configuration will be static, so we are able to hard code into the kernel the
necessary initialisation. Data such as the client internet address is passed into the kernel by the bootstrap,
so it is available when the kernel version of ifconfig takes place.

The kernel initialisation mimics the user version, except that it is able to call functions directly. Close
inspection revealed that most functions can be invoked from the kernel, or that appropriate functions could
be derived where changes only relate to the choice of kernel or user address space for arguments.

The root mounting takes place in Jinif(), so the stream and socket initialisation must have occurred by this
time. In fact we do it as part of afs_mountroot() itself. This also means that a non-diskless system will
initialise the network in the original manner.

From a user process, stream and socket initialisation consists of opening the relevant device(s), and
pushing or linking the modules. The kerne! version needs to do the same so we require a process context in
which to open files. Luckily, by this time we have the first u-area set up, so we are able to call falloc().
We are able to fake up the driver and protocol vnodes.

An important point to remember is that the slink program keeps the initialised streams open, otherwise the
streams will be dismantled by the close. In the diskless case we do not have a user process to do the job so
it must be achieved in a slightly devious manner. After initialisation cleanup code clears out the per-
process file table without closing the files. The result is that the files have file table entries with non-zero
use counts causing the files to remain open forever. The per-process file table must also be cleared out to
stop children from inheriting the streams.

5.5. Mounting the Root Filesystem
The problem of obtaining the root directory file handle, the server name and server internet address has

been solved by passing the task to the bootstrap, which passes it into the kernel when run. With this
information mounting the NFS root becomes simple.

5.6. Pipes and Clones

Pipe vnodes are now created by a call to fakevp() which can be used to create a fake vnode of any type.
This function is also used when vnodes are required by cloning.

5.7. Swapping

We have chosen to allow diskless machines to swap into files held on the server. The file /deviswap is
created in the client’s root filesystem. When the client boots, it can use VOP_GETATTR() to find the
extent of the file. The client never attempts to grow the swap file, so it will not take all of the servers disk
space. The system administrator sets the swap size by creating the swap file. Also note the swap file may
be created as a sparse file, in which case lots of swap may be allocated as long as none of the clients try to
use it.

The vnode swap code uses VOP_STRATEGY() to perform I/O so it will work with a remote file.

5.8. Device Access

If the root filesystem is remote, then some method is required to force remote device nodes to refer to local
devices. This problem may be overcome, and has been in NFS release 3.2, by the use of the specfs. When
the name lookup finds a device node, it uses to create an snode, in which the VOP_XX() entries treat the
device as local. The specfs is used for both local and remote device nodes.

6. Distributed Record Locking

As part of the work on converging the 4.x BSD and System V operating systems, Sun Microsystems has
developed a SVID compatible file and record locking mechanism which works with both local and NFS
files. This code has been released along with the upgrade to NFS release 3.2.1.

Lock requests are handled using a separate protocol which exists along side NFS, the protocol only
allowing for advisory locking.

The Sun lock code seems the obvious place to start when implementing remote locking with NFS.
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6.1. Overview of the Sun Locking Mechanism

The whole of the lock administration takes place at process level. The kernel forwards lock requests, by
RPC, to a local user process called the lock manager.

Lock information for a file resides on the same machine as the file itself. The lock database for a machine is
held by that machines lock manager.

When a lock request is made, the local (client) lock manager determines if the lock refers to a local file. If
so the lock manager can grant or deny the request itself. But in the case of a request for a remote lock, the
client lock manager must contact the remote (server) lock manager, which holds the lock database for all
files residing on the remote machine. The server lock manager will then grant or deny the lock.

Remote file locking is stateful. If either the client or server crash the lock information held by the other
becomes incorrect. In the case of a server crash, the client loses its locks, but can still access the file as
NES recovers. If the client crashes, the server will still retain the locks on behalf of the client. The
statelessness of NFS is not compromised by network locking, as the two exist separately but alongside.

Client Application Server

l

Kernel Lock Requests

|
v

lock lock lock
manager requests manager

status status status
monitor messages monitor

Figure 3: Lock Manager Architecture

Crash Recovery
Crash recovery occurs when the client or server comes back up. It is achieved using two mechanisms:

i. Duplication of lock state information
Both the client and server lock managers hold lock information. The server knows which locks it has
allocated to which client, and the client knows which locks are held or requested on which server.

ii. Status monitor
The status monitor is a process whose task is to monitor the state of other machines. It informs the
local lock manager when crash recovery is required.

Recovery from a client crash is not too difficult. The client will have lost all state and need to restart from
scratch again, so the server just removes all locks held by that client.

Recovery from a server crash is more complicated as its clients require the previous state to be regained.
This is possible because each client knows the locks it was holding. The server lock manager enters a
grace period in which it allows clients to replace old locks. Each client lock manager should attempt to
recover its locks during the grace period. After this time all locks are considered new.
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Complete recovery is not guaranteed, clients may lose locks. When this situation arises the client lock
manager uses the SIGLOST signal to inform the client application of the loss. It is up to the application to
take remedial action.

6.2. Implementation Alternatives

i. Port the Sun lock manager as is, replacing the System V Release 3 locking.
The porting effort here should be lower, but there are disadvantages: every lock request has the
overhead of an RPC call to the local lock manager, the lock manager must be running before any
locks may be attempted, and mandatory locking is not practical.

ii. Retain System V Release 3 locking for local files, and use the Sun locking for remote files.
The advantages of this solution are: no overhead due to the lock manager on local files, mandatory
locks are available on local files, and the lock manager is only required for remote locking. The
disadvantage is that a server lock manager must be able to verify the validity of a remote lock when
it knows nothing about locks placed by local processes.

6.3. Our Solution
We decided to retain System V Release 3 locking and modify the Sun network lock management to fit this.

The vnoding of the kernel provided local file locking which does not need modification to work with the
network locking.

The real change is to the server side of the lock manager, which must now communicate with the kernel
lock database to coordinate local and remote lock placement.

The lock manager attempts to place the lock using a new system call /ockcrl(), which provides locking
facilities similar to fcarl(). The lock arbitration takes place in the server kernel using the System V Release
3 locking. The lock manager accepts the lock if the kernel does. This means that the server lock manager
database is now really only used for client crash recovery.

The lock manager cannot use fentl() because it does not have the filename with which it can open the file,
only the file handle, and also cannot be expected to keep open all files on which it has placed locks. The
locketl() gets around the problem by accepting a file handle, and by modifying the inode count so the file
remains ‘‘open’’ whilst any remote locks are placed.

Although locketl() supports both blocking and non-blocking lock requests the lock manager must never use
a blocking request, as a blocked request will delay all further client locking until the first lock is placed.

The Sun implementation for the client kernel-to-lock-manager RPC request makes use of the portmapper to
find the lock manager port number. This was considered to involve too much overhead and would also
require the addition of portmapper code in the kernel. Another solution is to use a ‘‘well known’” port
number or to have the lock manager register its port number by system call.

System V Release 3 does not have the signal SIGLOST for use when client locks are lost. For this feature to
be used, we either add the signal, or map it onto an existing signal. Part of our project testing consists of
the complete rebuild of the system, so adding the new signal does not cause any problem.

7. SVID Conformance

At the end of the prototype port, the system conforms to the System V Interface Definition as well as
Motorola System V/68 does, with the following restrictions, enhancements and extensions:

7.1. Restrictions

i. The mknod(), link() and unlink() system calls cannot be used to create and remove directories. The
NFS protocol does not support non-atomic operations, so the System V Release 3 mkdir() and
rmdir() system calls must be used.

Mandatory record locking cannot be enforced on remote files.

Fifo files (named pipes) cannot be used to communicate between processes on different machines,
although they work perfectly within a single client. This is because there is no provision in the NFS
protocol for sending SIGPIPE signals across the network. It is also undesirable to have server
processes tied up waiting for data to arrive on a pipe.

A file server cannot distinguish between read accesses from a client made as part of a read() and
read accesses for demand paging. The distinction between read and execute access permissions on
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files is therefore lost.

7.2. Enhancements

System calls now all produce SVID conformant error numbers.

7.3. Extensions
Eight new system calls are added as part of the NFS work:

1. rename() is a new system call which can be used to rename files atomically. /link() and unlink() can
still be used, but are less secure in the event of system failure.

ii.  domainname() allows a Yellow Pages domain name to be written and retrieved on demand.
lii.  vmount() accepts a filesystem type argument and so can be used to mount any type of filesystem.
iv.  vumount() can unmount any type of filesystem.

V. async_daemon() causes the calling process to become an asynchronous I/0 handler. It is only used
by the hiod program.

vi.  nfs_getfh() allows the mountd daemon program to generate an NFS file handle for a named file.

vii.  nfs_sve() tumns the calling process into an NFS file server process. It is only used by the nfsd
program.

viii. lockctl() allows a server lock manager to place a lock on a local file on behalf of a remote client
process.

In addition, the Berkeley mtab and fstab tile formats are used to store details of mounted file systems.
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ABSTRACT

The Andrew Toolkit is an object-orientated system designed to provide a
foundation on which a large number of diverse user-interface applications can be
developed. With the Toolkit, the programmer can piece together components such as
text, buttons,and scroll bars to form more complex components. [t also allows for the
embedding of components inside other components, such as a table inside of text or a
drawing inside of a table, Some of the components included in the Toolkit are multi-font
text, tables. spreadsheets, drawings, equation, rasters, and simple animations. Using
these components we have built a multi-media editor, a mail-system, and a help system.
The Toolkit is written in C, using a simple preprocessor to provide an object-oriented
enviroment. That enviroment also provides for the dynamic loading and linking of code.
The dynamic facility provides a powerful extension mechanism and allows the set of
components used by an application to be virtually unlimited. The Andrew Toolkit has
been designed to be window-system independent. It currently runs on two window
systems, including X.11, and can be ported easily to others.

(This paper was not submitted in time for publication.)
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