Documents for the PWB/UNIX
Time-Sharing System

Edition 1.0

T. A. Dolotta
R. C. Haight
E. M. Piskorik

Editors

October 1977

The enclosed pwB/UNIX documentation is supplied
in accordance with the Software Agreement you
have with the Western Electric Company.

Bell Telephone Laboratories, Incorporated

UNIX is a Trademark of Bell Laboratories.

The enclosed documents were set on a Graphic Systems, Inc.
phototypesetter driven by the TROFF formaiting program.
Their text was prepared using the ED text editor.

Documents for the PWB/UNIX Time-Sharing System

Annotated Table of Contents

Each item carries|the date of its latest revision; most items also give the number of their last page.

General:

G.1

G.2

G3

G4

PwBIUNIX—Overview and Synopsis of Facilities (6/77)

T. A. Dolagtta and R. C. Haight (p. 18)

Summarizés the salient features of Programmer’s Workbench/uNIx, a program development
and text processing facility.

The UNix| Time-Sharing System (1/74)
D. M. Ritchie and K. Thompson (p. 16)
Reprinted from Comm. 4CM. Good overview of UNIX, but written long ago.

The UNIx| Time-sharing System—A Retrospective (1/77)
D. M. Ritchie (p. 14)
A more recent discussion.

PwBIUNIX Papers from the Second Intern. Conf. on Sofiware Engineering (10/76)

T. A. Dolotta er al. (p. 25)

Reprinted [from that conference’s proceedings. Four papers that describe various aspects of
PWB/UNIX.

Basic User Information:

B.0

B.1

B.2

B.3

B.4

B.5

B.6

B.7

PwBiUNIX User’s Manual—Edition 1.0 (5/77)

T. A. Dolotta, R. C. Haight, and E. M. Piskorik, eds.

Describes |all commands, subroutines, and system calls. Furnished as a separate volume.
Available on-line.

PWBIUNIX Documentation Roadmap (5/77)
J.R. Mashey (p. 7
A terse, up-to-date outline of useful documents and information sources. Available on-line.

PwBIUNIX Beginner’s Course (12/77)
M. E. Peafiman and S. H. Strauss
An outline with view graphs.

A Tutorial Introduction to the UNIx Text Editor (10/74)
B. W. Kernighan (p. 10)
Expectedly elementary, but very useful for beginners.

Advanced Editing on UNix (8/76)

B. W. Kernighan (p. 16)

Meant to t\elp secretaries, typists, and programmers make effective use of UNIX facilities for
preparing and editing text.

PWB/UN/,i Shell Tutorial (9/77)
J. R. Mashey (p. 25)
Describes [the PwB/UNIX command interpreter.

UNix for |Beginners (10/74)
B. W. Kernighan (p. 14)
A slightly |dated tutorial.

UNIY Programming (10/75)

B. W. Kernighan and D. M. Ritchie (p. 17)

Introduction to programming on UNix. The emphasis is on how to write programs that
interface with the operating system. Does nor cover material in 4 New Input/Ouipur Package
(item B.10 below).

October 1977

T.

B.8

B.9

B.10

B.11

B.12

B.13

Text Processing,

T

T.2

T3

T4

TS

T.6

T.7

T8

C Referencd Manual (5/77)
D. M. Ritchie (p. 32)
Terse, but complete.

Programming in C—A Tutorial (5/75)
B. W. Kernighan (p. 27) A
Should be read before tackling the C Reference Manual (item B.8 above).

A New Input-Output Package (1/77)
D. M. Ritchie (p. 6)
Should be used for all new C programs.

urpose Subroutine Library for PWB/UNIX (1/77)
(.7
Complements A New Input/Output Package (item B.10 above).

Guide to 1BM Remote Job Entry for PWB/UNIX Users (9/77)
A. L. Sabsevitz (p. 7)
Describes thie RJE facility between a PWB/UNIX system and an IBM System/370.

Sccs/ipw User's Manual (11/77)
L. E. Bonanpi and A. L. Glasser (p. 22)
Describes the Programmer’s Workbench Source Code Control System.

ormatting, and Typesetting:
NROFFITRQFF User’s Manual (5/77)

NROFF and [TROFF are text processors. NROFF formats text for a variety of typewriter-like
terminals. TROFF formats text for a Graphic Systems, Inc. phototypesetter.

PwBIMM— Programmer’s Workbench Memorandum Macros (10/77)

D. W. Smith and J. R. Mashey (p. 56)

User's guide and reference manual for PwB/MM, a general-purpose package of text
formatting macros for use with NROFF and TROFF.

Tvping Documents with PwB/MM (10/77)
D. W. Smith and E. M. Piskorik (p. 16)
A fanfold cdrd that fits into a pocket(book).

Pwims Turorial (12/77)
N. W. Smit

Introduction] to PWB/UNIX text processing.

Tbl—A Program to Format Tables (9/77)

B. W. Kernighan (p. 13)
Introduction to the most basic use of TROFF (and, by implication. NROFF).

Tvpesetting |Mathematics— User’s Guide (Second Edition) (6/76)

B. W. Kernighan and L. L. Cherry (p. 11)

Describes lnge EQN and NEQN preprocessors for TROFE and NROFF, respectively. They allow
one to typedet complex formulae, equations, arrays, etc.. both in-line and displayed.

New GrapHic Symbols for EQN and NEQN (9/76)

C. Scrocca |(p. 8)

Defines a spt of special characters frequently used in technical documents. Shows how to
use them and discusses what is involved in making a special character in NROFE and TROFF.

Ocrober 1977

T.9

Additional Facilit

Al

A2

Al

A4

A5

A6

A7

PWBIUNIX
T. A. Dolo
Greatly eas

Bc—An A
L. L. Cherr
A language

DC—An It
R. Morris a
Interactive

Yacc—Ye
S. C. Johns
Generates |

LEX—Lext
M. E. Lesk
LEX helps 1
in the inpu

RATFOR —
B. W. Ker

IF-ELSE, Wi
The M4

B. W. Kern
A general-
Make—A
S. 1. Feldm
Make prov
result from

-3-

View Graph and Slide Macros (12/77)
ta and D. W. Smith
es the task of making transparencies with TROFF.

ies:
rbitrary Precision Desk Calculator Language (5/75)

y and R. Morris (p. 14)
and a compiler for doing arbitrary-precision arithmetic.

wteractive Desk Calculator (5/75)
nd L. L. Cherry (p. 8)
desk calculator program that does arbitrary-precision integer arithmetic.

t Another Compiler Compiler (5/75)
on (p. 30)
parsers from context-free language specifications.

cal Analyzer Generator (4/77)

and E. Schmidt (p. 13)

write programs whose control flow is directed by instances of regular expressions
stream.

A Preprocessor for a Rational Fortran (1/77)
ighan (p. 12)
iLE, and other useful control structures.

acro Processor (4/77)
ighan and D. M. Ritchie (p. 6)
urpose macro language; can be used as a preprocessor for RATFOR, C, etc.

rogram for Maintaining Computer Programs (4/77)

n (p.9)

des a simple mechanism for maintaining up-to-date versions of programs that
many operations on a number of files.

Internals, Operations, and Administration:

1.1

[.2

[.3

1.4

Serting Up
R. C. Haig
Procedures
regenerate

Administra
R. C. Haig
Hints for a
PwBIUNIX
M. E. Pearl

PwBIUNIX (9/77)

t, W. D. Roome, and L. A. Wehr (p. 16)

used to install PWB/UNIX on the PDP-11/45 or /70 and the steps necessary to
Il of the PWB/UNIX programs.

ive Advice for PWB/UNIX (10/77)
t (p. 8
proaching operational serenity.

perations Manual (9/77)
an (p. 36)

Describes the daily routine at the console. Text (but not pictures) available on-line.

Repairing Damaged PWBIUNIX File Systems (11/77)
P. D. Wandzilak
Comes in handy after a power failure, etc.

PWwBIUNIY RIE Administrator’s Guide (12/77)
A. L. Sabsevitz
What to do|when it breaks.

October 1977

1.6 The UNIX I/O System (6/74)
D. M. Ritchie (p. 9)
Describes| how to write device drivers for UNIX.

1.7 On the Security of UNIX (6/74)
D. M. Ritchie (p. 4)
A short, but enlightening, discussion.

1.8 UNix Assembler Reference Manual (6/73)
D. M. Ritchie (p. 12)
As a last resort ...

1.9 PwB/UNIX Manual Page Macros (8/77)
E. M. Piskorik (p. 7)
Tells how to make pwB/UNIX User’s Manual pages.

Recommended Reading—not Included:

R.1 Software|Tools
B. W. Kefnighan and P. J. Plauger (p. 338)

Addison-Wesley, Reading, MA; 1976.

R.2 The UNix Command Language

K. Thompson
In Structyred Programming— Infotech State of the Art Report. Infotech International Limited,

Nicholson House, Maidenhead, Berkshire, England; 1976; pp. 375-84.

October 1977

®

PWB/UNIX—Overview
and

Synopsis of Facilities

T. A. Dolotta
R. C. Haight

June 1977

Bell Telephone Laboratories, Incorporated

G.1

PWB/UNIX
Overview and Synopsis of Facilities

CONTENTS

OVERVIEW

1. UNIX TIME-SHARING SYSTEM

2. PWB/UNIX COMMAND LANGUAGE .o
3. DOCUMENT PREPARATION AND TEXT PROCESSING .
4. REMOTE JOB ENTRY

5. SOURCE CODE CONTROL SYSTEM

HARDWARE .
SOFTWARE, FACILITIES, AND DOCUMENTATION

1. BASIC SOFTWARE

. Operating System 4

Access Control 4

Manipulation of Files and Directories 4

Execution of Programs 6

Slalus Inguiries 7

Inter-User Communication 8

Program Development Package 8

Utilities 9

Operations, Maintenance, Backup, and Accounting 10

2. PROGRAMMING LANGUAGES 1
2.1. The Programming Language C 11
2.2. FORTRAN 12
2.3. Other Algorithmic Languages 12
2.4. Muacroprocessors and Compiler-Compilers 13

3. TEXT PROCESSING v v v v v . . 14
3.1. Formatters 14
3.2. Other Text Processing Tools 15

BW W NN N = -

I.
1.
1.
1.
1.
1.
1.
1.
1.

\Om\lO‘LhJBWN-—

4. REMOTE JOB ENTRY TO IBM SYSTEM/370 16
5. TYPESETTING ... 16
6. DEMONSTRATION AND TRAINING PROGRAMS 1
7. PWB/UNIX USER'S MANUAL 1
8. DOCUMENTS FOR PWB/UNIX 18

PWB/UNIX—Overview and Synopsis of Facilities

T. A. Dolotta
R. C. Haight

Bell Laboratories
Piscataway, New Jersey 08854

OVERVIEW

The Programmer’s Workbench (pwB) is a computing facility that provides a convenient working
environment and a uniform set of tools for computer program development, as well as for text
processing. PwB was developed at Bell Laboratories. As of mid-1977, it supports in excess of
1,000 users. It is based on Bell Laboratories’ UNIX* time-sharing system, so that it is more
properly known as PWB/UNIX.

. UNIX TIME-SHARING SYSTEM

The UNIX time-sharing system is a general-purpose, muiti-user, interactive operating system
specifically engineered to make the designer’s, programmer’s, and documenter’s computing
environment simple, efficient, flexible, and productive. PWB/UNIX contains features such as:

e A hierarchical file system.

¢ A flexible, easy-to-use command language; can be ‘‘tailored’’ to meet specific user needs.

e Ability to execute sequential, asynchronous, and background processes.

e A powerful context editor.

e Very flexible document preparation and text processing systems.

e Access to all the facilities of other (‘‘host’’ or ‘‘target’’) computer systems, such as the IBM
System/370.

e A high-level programming language conducive to structured programming (0).

e The programming languages Basic and FORTRAN.

e Symbolic debugging systems.

e A variety of system programming tools (e.g., compiler-compilers).

e Sophisticated ‘‘desk-calculator’ packages.

The central processing units (CPUs) for PWB/UNIX are the Digital Equipment Corporation’s
(pECt) PDP-11/45 and /70 computers. These computers, because of their price and word size
(16 bits per word), are really large minicomputers. Although PWB/UNIX can run on hardware
costing as little as $60,000, a typical PWB/UNIX system costs about $120,000 and can support 24
simultaneous users with ease. Larger systems can support twice that number. The cost per
user-hour of PWB/UNIX is significantly lower than that of most other interactive computer sys-
tems. PwB/UNIX typically runs unattended.

The pwB/UNIX file system consists of a highly-uniform set of directories and files arranged in a
tree-like hierarchical structure. Some of its features are:

e Simple and consistent naming conventions; names can be absolute, or relative to any direc-
tory in the file system hierarchy.

Mountable and de-mountable file systems and volumes.

File linking across directories.

Automatic file space allocation and de-allocation that is invisible to users.

A complete set of flexible directory and file protection modes; allows all combinations of
read, write, and execute access, independently for the owner of each file or directory, for a
group of users (e.g.. all members of a project), and for all other users. protection modes can
be set dynamically.

* UNIX s o Frademark/Service Mark of the Bell System.
 DEC and PDP are registered Trademarks of the Digital Equipment Corporation, Maynard, MA.

2 PwBiunix

o Facilities for creating, accessing, moving, and processing files, directories, or sets of these in

- a simple, uniform, and natural way.

e Each physical I/0 device, from interactive terminals to main memory, is treated like a file,
allowing uniform file and device 1/0.

2. PWB/UNIX COMMAND LANGUAGE

The pwB/UNIX command language utilizes an extended version of the UNIX Shell (command
language interpreter), as well as commands designed mainly for use within Shell procedures '
(command files). These PWB/UNIX extensions to the UNIX Shell have been aimed at improving

its use by large programming groups, and at making it even more convenient for use as a high-

level programming language. In line with the philosophy of much existing UNIX software, a

very strong attempt has been made to add new features only when they were shown to be

necessary by actual user experience, in order to avoid contaminating a compact, elegant system

with unnecessary frills that would destroy the inherent simplicity of the design of UNIX. By uti-

lizing the Shell as a programming language, PWB/UNIX users have been able to eliminate a great

deal of the programming drudgery that often accompanies a large project. Many manual pro- ‘
cedures have been quickly, inexpensively, and conveniently automated. Because it is so easy to

create and use Shell procedures, each project that uses PWB/UNIX has tended to customize the

general PWB/UNIX environment into one tailored to its own requirements, organizational struc-

ture, and terminology.

3. DOCUMENT PREPARATION AND TEXT PROCESSING

In a software development project of any appreciable size, the production of usable, accurate
documentation may well consume more effort than the production of the software itself.
Several years of experience with many projects that use PwWB/UNIX have shown that document
preparation should not be separated from software development, and that the combination of a
flexible operating system, a powerful command language, and good text processing facilities
permits quick and convenient production of many kinds of documentation that might be other-
wise unobtainable, impractical, or very expensive.

In PWB/UNIX, one also obtains a very useful “‘word processing’” system—an editing system, text
formatting systems, a typesetting system, and spelling and typographical error-detection facili-
ties. The document preparation and text processing facilities of PwB/UNIX include commands
that automatically control pagination, style of paragraphs, line justification, hyphenation, multi-
column pages, footnote placement, generation of marginal revision bars, generation of tables of
contents, etc., for specialized documents such as program run books, or for general documents
such as letters, memoranda, legal briefs, etc. There are also excellent facilities for formatting
and typesetting complex tables and equations. This document was produced in its entirety by
these facilities.

4. REMOTE JOB ENTRY

The pws/UNIX RIE facility provides for the submission and retrieval of jobs from an IBM host
system (e.g.. a System/360 or System/370 computer using HASP, ASP, or JES2). To the host
system, RJE appears to be a card reader/punch and line-printer station. At the request of a
PWB/UNIX user, RJE gathers the job control statements to be sent to the host system and. subse-
quently, retrieves from the host the resulting output, places it in a convenient PWB/UNIX file for
later perusal, and notifies the user of the output’s arrival.

5. SOURCE CODE CONTROL SYSTEM

The pwB/UNIX Source Code Control System (sccs) is an integrated set of commands designed
to help software development projects control changes to source code and to files of text (eg..
manuals). It provides facilities for storing, updating, and retrieving, by version number or
date, all versions of source code modules or of documents, and for recording who made each
software change, when it was made, and why. Sccs is designed to solve most of the source
code and documentation control problems that software development projects encounter when
customer support, system testing, and development are all proceeding simultaneously.

Overview and Synopsis of Facilities 3

Some of the main characteristics of SCCS are:

e The exact source code or text, as it existed at any point of development or maintenance, can
be recreated at any later time.

e All releases and versions of a source code module or document are stored together, so that
common code or text is stored only once.

e Releases in production or system-test status can be protected from unauthorized changes.

e “Enough identifying information can be automatically inserted into source code modules to
enable one to identify the exact version and release of any such module, given only the
corresponding load module or its memory dump.

HARDWARE

PWB/UNIX runs on a DEC PDP-11/45 or /70 with at least the following equipment:

96K words of memory (2 bytes/word), with memory management.
Disks: RP03, RPO4, RPOS, RP06, or equivalent.

Console typewriter terminal.

Clock: KWI11L or Kwllp.

Tape: TU10, TU16, or equivalent,

Floating point: FP11B or FP11C.

The following equipment is strongly recommended:

DH11 communications controller(s) with full modem control.
Full-duplex 96-character Ascll terminals.

Extra disk drive for system backup.

DQs11B communications controlier(s) for RIE.

The minimum memory and disk space specified is enough to run and maintain PWB/UNIX.
More will be needed to keep all source on line, or to handle a large number of users, big data
bases, diversified complements of devices, or large programs. PwB/UNIX does swapping and
sharing of reentrant user code in order to minimize main memory requirements. The resident
PWB/UNIX operating system uses 40-48K words, depending on the configuration.

A large PWB/UNIX configuration (pDP-11/70, 256K words of main memory, fixed and moving
head disks) can generally provide reasonable service to between 40 and 48 simultaneous users.

SOFTWARE, FACILITIES, AND DOCUMENTATION

The most-often-used PWB/UNIX commands are listed below. Every command, including all
options, is issued as a single line, unless specifically described below as being ‘‘interactive.”
Interactive programs can be made to run from a prepared ‘‘script’” simply by redirecting their
input. All commands are described in the PwB/UNIX User's Manual (see Section 7 below).
Commands for which additional manuals and tutorials are provided are marked with [m] and
[t]. respectively. All manuals and tutorials are listed in Section 8 below.

File processing commands that go from standard input to standard output are called ‘‘filters”
and are marked with [f]. The ‘‘pipe’’ facility of the Shell may be used to connect filters directly
to the input or output of other filters and programs,

Almost all of pwB/UNIX is written in C. PWB/UNIX is totally self-supporting: it contains all the
software that is needed to generate it, maintain it, and modify it. Source code is included
except as noted below.

The system is distributed on three 9-track, 800 BPI magnetic tapes. The programs listed in Sec-
tion 5 below (Typesetting) are distributed on a separate tape at an additional cost.

4 PWBIUNIX

1. BASIC SOFTWARE

It includes the time-sharing operating system with utilities, an assembler, and a compiler for the
programming language C—enough software to regenerate, maintain, and modify PWB/UNIX
itself, and to write and run new applications.

1.1. Operating System

® UNIX [m,t] The basic resident code on which everything else depends. Executes the
system calls, maintains the file system, and manages the system’s
resources; contains device drivers, 170 buffers, and other system informa-
tion. A general description of UNIX design philosophy and system facilities
appeared in the Communications of the ACM (see Section 8 below). Further
capabilities include:

e Automatically-supported reentrant code.

e Separation of instruction and data spaces.

o Timer-interrupt sampling and interprocess monitoring for debugging and
measurement.

s Devices All /0 is logically synchronous. Normally, automatic buffering by the sys-
tem makes the physical record structure invisible and exploits the
hardware’s ability to do overlapped 1/0. Unbuffered physical record 170 is
available for unusual applications. Drivers for the following devices are
available (others can be written easily):

e Asynchronous interfaces: pH11, DL11; provide support for the most

common interactive ASCII terminals.

Synchronous interfaces: bull, DQsl11B.

Automatic calling unit interface: DN11.

Line printer: LP11, or equivalent.

Magnetic tape drives: TU10 and TU16, or equivalent.

Fixed head disks: RSO3 and RS04, or equivalent.

Removable-pack disks: RPO3 (recommended only for pbp-11/45) and

RP04-5-6, or equivalent, with one or more logical devices per physical

device and minimume-Ilatency seek scheduling.

Physical memory of PDP-11, or mapped memory in resident system.

¢ Phototypesetter: Graphic Systems, Inc., System/1, connected through a
DR1IcC.

1.2. Access Control
® LOGIN Signs on a new user:

e Adapts to characteristics of terminal.

Verifies password and establishes user’s individual and group (project)
identity.

Establishes working directory.

Publishes message of the day.

Announces presence of mail.

Starts command interpreter (Shell) or other user-specified program.

® PASSWD Changes a password:

e User can change own password.
e Passwords are kept in encrypted form.

1.3. Manipulation of Files and Directories

8 CAT [fi Concatenates one or more files onto standard output. Mostly used for
unadorned printing, for inserting data into a ‘‘pipe.”’ and for buffering out-
put that comes in dribs and drabs.

= PR I[f}

® ED [f,m,t]

SED [f]
REFORM [f]
SPLIT
CSPLIT

SUM

DD If]

CP
RM

LN
MV

CHMOD

CHOWN
MKDIR
RMDIR
CHDIR
FIND

Overview and Synopsis of Facilities 3

Prints files with title, date, and page number on every page:

e Multi-column output.
e Parallel column merge of several files.

Interactive context editor. Random access to all lines of a file. It can:

e Find lines by number or pattern (regular expressions). Patterns can
include: specified characters, ‘“‘don’t care’’ characters, choices among
characters, (specified numbers of) repetitions of these constructs, begin-
ning of line, end of line.

Add, delete, change, copy, or move lines.

Permute contents of a line.

Replace one or more instances of a pattern within a line.

Combine or split lines.

Combine or split files.

Escape to Shell (PWB/UNIX command language) during editing.

Do any of above operations on every line (in a given range) that
matches a pattern.

A stream (one-pasé) editor with facilities similar to those of ED.
Reformats a file, especially source code from another computer.
Splits a large file into more manageable pieces.

Like spLIT, with the splitting controlled by context.

Computes the check sum of a file; often used to verify that all of a file can
be read.

Physical file format translator, for exchanging data with non-uUNIX systems,
especially 0s/360, vs1, Mvs, etc.

Copies one file to another. Works on any file regardless of its contents.

Removes file(s). If any names are linked to the file, only the name being
removed goes away.

Links another name (alias) to an existing file.
Moves a file. Used for renaming files or directories.

Changes access permissions on file(s). Executable by owner of file(s), or
by the super-user.

Changes owner of file(s).

Makes one or more new directories.
Removes one or more (empty) directories.
Changes working (i.e., current) directory.

Searches the directory hierarchy for, and performs specified commands on,
every file that meets given criteria:

File name matches a given pattern.
Modified date in given range.

Date of last use in given range.

Given permissions.

Given owner.

Given special file characteristics.

Any logical combination of the above.
Any directory can be the starting ‘‘node.”

8 DSW

® AR

m CPIO

® SCCS [m]

PwBIUNIX

Interactively steps through a directory, deleting or keeping files.

Maintains archives and libraries. Combines several files into one for house-
keeping efficiency:

Creates new archive.
Updates archive by date.
Replaces or deletes files.
Prints table of contents.
Retrieves from archive.

Copies a sub-tree of the file system (directories, links, and all) to another
place in the file system. Can also copy a sub-tree onto a tape, and later
recreate it from tape.

Sccs (Source Code Control System) is a collection of PWB/UNIX commands
(some interactive) for controlling changes to files of text (typically, the
source code of programs or text of documents). It provides facilities for:

e Storing, updating, and retrieving any version of any source or text file.
Controlling updating privileges.

o Identifying both source and object (or load) modules by version
number.

¢ Recording who made each change, when it was made, and why.

1.4. Execution of Programs

® SH [f.l

8 WHILE

The Shell, or command language interpreter, understands a set of con-
structs that constitute a full programming language; it allows a user or a
command procedure to:

Supply arguments to and run any executable program.
Very easily redirect standard input and/or standard output.
Compose compound commands using the following operators:
; for sequential execution,
| for simultaneous execution with output of one process
~ “piped’’ to the input of another.
& " for asynchronous operation.
O parentheses for grouping.
|| and && for left-to-right conditional evaluation.
Use 26 string variables (a-z), and a set of string and integer operators.
Control the order in which directories are searched for commands.
Trace execution of commands for debugging.
Execute Shell procedures, which are command scripts with substitutable
arguments.
e Construct arguments that denote all file names that match a specified
pattern (regular expression).
Use the Shell itself as a command (recursively).
Collect command usage statistics.
Tutorial covers most of the commands in this section.

Conditionally executes commands on basis of:

String comparison.

File existence, type, and accessibility.
IF-THEN-ELSE-ENDIF contro! constructs.
Return code of a process.

Shell procedure looping, END shows end of loop. BREAK terminates loop:
CONTINUE requests next iteration, condition testing as in IF.

Overview and Synopsis of Facilities 7

1.5.

SWITCH
SHIFT

= (equals)

EXPR

GOTO
EXIT
NEXT
PUMP ([f]

ECHO

ONINTR
SLEEP
WAIT
NOHUP
NICE
KILL

CRON

TEE [f]

RSH

HELP

Status Inquiries

LS

FILE

DATE

DF

(91V]

Multi-way branch; ENDSW shows end of switch; BREAKSW ends each choice.

Shifts Shell’s arguments one argument to the left; allows a Shell procedure
to iterate over its arguments.

Assigns values to Shell variables.

Evaluates expressions containing Shell variables; knows about arithmetic,
logical, and string operators.

Goes to a label in a Shell procedure.
Terminates a Shell procedure; useful with IF.
Names a new standard input for the current Shell procedure.

Creates an instance of the current Shell to substitute Shell arguments and
variables into the standard input.

Prints its arguments on the standard output. Useful for diagnostics or
prompts in Shell procedures, or for inserting data into a *‘pipe.”

Traps terminal interrupts.

Suspends execution for a specified time.

Waits for termination of processes that are running asynchronously.
Runs a command immune to ‘‘hanging up’’ the terminal.

Runs a command in low (or high) priority.

Terminates named process(es).

Performs actions at specified times:

e Actions are arbitrary Shell procedures or executable programs.
e Times are conjunctions of month, day of month, day of week, hour, and
minute. Ranges are specifiable for each.

Passes data between processes (like a ‘‘pipe’’), but also diverts copies into
one or more files.

Restricted Shell; restricts a user to a subset of PWB/UNIX commands.

Explains error messages from other programs.

Lists the names of one, several, or all files in one or more directories:

e Alphabetic or chronological sorting, up or down.
e Optional information: size, owner, group, date last modified, date last
accessed, permissions.

Tries to determine what kind of information is in a file by consulting the
file system index and by reading the file itself.

Print current date and time. Has considerable knowledge of calendrical and
horologic peculiarities; can be used to set PWB/UNIX's idea of date and time.
(As yet, cannot cope with Daylight Saving Time in the Southern Hemi-
sphere.)

Reports amount of free space in file system.
Prints a summary of total space occupied by all files in a hierarchy.

Prints the ‘‘name’ of your terminal (i.e., the name of the port to which
your terminal is connected).

a WHO

s PWD

® TABS

PwBIUNIX

Tells who is logged into the system:

e Lists logged-in users, their ports, and time they logged in.
e Optional history of all logins and logouts.
e Tells you who you are logged in as.

Reports on active processes:

o Lists your own or everybody’s processes.
Tells what commands are being executed at the moment.

e Optional status information: state and scheduling information, priority,
attached terminal, what the process is waiting for, and its size.

Prints name of your working (i.e., current) directory.

Sets up options for optimal control of a terminal. In so far as they are
deducible from the input, these options are set automatically by LOGIN:

Parity.

Mapping of upper-case characters to lower case.
Carriage-return plus line-feed versus new-line.
Interpretation of tab characters.

Delays for tab, new-line, and carriage-return characters.
Raw versus edited input.

Sets terminal’s tab stops. Knows several ‘‘standard’ formats: FORTRAN,
PL/1, COBOL; eases preparation of input for various RJE host systems.

1.6. Inter-User Communication

8 MAIL

| WRITE

| WALL

8 MESG

Mails a message to one or more users. Also used to read and dispose of
incoming mail. The presence of mail is announced by LOGIN.

Establishes direct, interactive terminal-to-terminal communication with
another user.

Writes to all users who are logged in.

Inhibits or permits receipt of messages from WRITE and WALL.

1.7. Program Development Package

A kit of fundamental programming tools. Some of these utilities are used as integral parts of
the higher-level languages described in Section 2 below.

8 AS [m]

a Library

Assembler:

o Creates object program consisting of’

— Code, possibly read-only.

— Initialized data or read-write code.

— Uninitialized data.

Relocatable object code is executable without further transformation.
Object code normally includes a symbol table (that can be deleted).
Several source files can be assembled together.

Local labels.

Conditional assembly.

“Conditional jump” instructions become branches or branches plus
jumps, depending on distance.

The basic run-time library. It is used freely by all system software:

Number conversions.

Time conversions.

Mathematical functions: sin, cos, log, exp, aran, sqri, gamnid.
Buffered character-by-character 1/0.

Overview and Synopsis of Facilities 9

1.8.

s 0D If]

a8 SIZE

a STRIP

® PROF

Utilities
m CREF

& SORT [f]

s UNIQ {f]

s TR [f]

e Random number generator.
e An elaborate library for formatted 170 [m].
e Password encryption.

Interactive post-mortem debugger. Works on core dump files produced by
program aborts, on object files, and on arbitrary files:

o Symbolic addressing within files that have symbol tables.
e Qctal, decimal, or ASCII output.

e Symbolic disassembly.

e Octal or decimal patching.

Dumps any file:

¢ OQutput options include: octal or decimal by words, octal by bytes, AscH,
operation codes, hexadecimal, or any combination thereof.
e Range of dumping is controllable.

Linkage editor. Combines relocatable object files. Inserts required routines
from specified libraries; resulting code:

¢ Can be made sharable. v
¢ Can be made to have separate instruction and data spaces.

Prints the namelist (symbol table) of an object program. Provides control
over the style and order of names that are printed.

Reports the main memory requirements of one or more object files.

Removes the relocation and symbol table information from an object file to
save file space.

Constructs a profile of time spent in each routine from data gathered by
time-sampling the execution of a program; gives subroutine call frequencies
and average times for C programs.

Makes cross-reference listings of a set of files. Each symbol is listed
together with file name, line number within file, and text of each line in
which it occurs:

Assembler or C language files can be cross-referenced.
Gathers or suppresses references to selected symbols.
Various ways to sort output are available.

Allows selective printing of uniquely occurring symbols.

Merges and/or sorts AsCII files line-by-line:

In ascending or descending order.

Lexicographically or on numeric key.

On multiple keys located by delimiters or by position.

Can fold upper-case characters together with lower-case into dictionary
order.

Deletes successive duplicate lines in a file:

e Prints lines that were originally unique, duplicated, or both.
e (Can give redundancy count for each line.

Does character translation according to an arbitrary code:

e (Can “‘squeeze oul’’ repetitions of selected characters.
e Can delete selected characters.

10

1.9.

s DIFF {fl

s COMM (f]

8 CMP
® GREP [f]

s WC [f]

® GATH If]

& MAKE [m]

s TIME

Pwaiunix

Reports line changes, additions, and deletions necessary to bring two files
into agreement; can produce an editor script to convert one file into
another.

Identifies common lines in two sorted files. Output in up to 3 columns
shows lines present in first file only, present in second file only, and/or
present in both.

Compares two files and reports disagreeing bytes.

Prints all lines in one or more files that match a pattern of the kind used by
ED (the editor):

e Can print all lines that fail to match.
e Can print count of ‘‘hits.”

Counts lines and ‘‘words’’ (strings separated by blanks or tab characters) in
a file.

Gathers real and virtual files, including the output of other commands; per-
forms keyword substitution, expansion of tabs, nested file inclusion, etc.

Provides a general mechanism for keeping up-to-date large programs that
are created by performing many operations on a number of files.

Runs a command and reports timing information about it.

Operations, Maintenance, Backup, and Accounting

s MOUNT

8 UMOUNT

8 MKFS
s MKNOD

s TP

e DUMP

8 RESTOR

8 VOLCOPY

8 CHECK

Attaches a device containing a file system to the tree of directories. Pro-
tects against nonsense arrangements.

Removes the file system contained on a device from the tree of directories.
Protects against removing a busy device.

Makes a new file system on a device.

Makes an i-node (file system entry) for a special file. Special files are phys-
ical devices, virtual devices, physical memory, etc.

Manages file archives on magnetic tape:

Collects files into an archive.
Updates archive by date.

Replaces or deletes archived files.
Prints table of contents of an archive.
Retrieves from an archive.

Dumps the file system on the specified device, selectively by date, or
indiscriminately.

Restores a dumped file system, or selectively retrieves parts thereof.

An alternate file backup arrangement; system should have a spare disk
drive. Protective labeling of disks and tapes is included.

Temporarily allows one to become the super-user with all the rights and
privileges thereof. Requires a (distinct) password.

Together with DCHECK, ICHECK, and NCHECK, is used to check the con-
sistency of file systems and directories, among them. these programs can:

e Print statistics: number of files, number of directories, number of spe-
cial files, space used, free space.
Report duplicate use of space.

e Retrieve lost space.

Overview and Synopsis of Facilities 11

@ CLRM

B SYNC

8 CONFIG

s LASTCOM

B DCAT

s Operations

Report inaccessible files.

Check consistency of directories.

List names of all files.

Reorganize free disk space for maximum operating efficiency.

Peremptorily expunges a file and its space from a file system. Used to
repair damaged file systems.

Forces all outstanding /0 on the system to completion. Used to shut down
the system gracefully.

Tailors device-dependent system code to a specific hardware configuration.
As distributed, PWB/UNIX can be brought up directly on any acceptable CPU
with an acceptable tape drive and disk, sufficient amount of main memory,
a console terminal, and either clock.

Publishes cumulative connect-time report:

e Connect time by user or by day.
e For all users, or for selected users.

Prints Shell accounting report. For each command executed, gives:

Number of times used.

Total system time, user time, and elapsed time.
Optionally, averages and percentages.

Output can be sorted on various fields.

Searches Shell accounting records in reverse chronological order for com-
mands executed by the given user(s), or from the given terminal(s).

Transfers files between two PWB/UNIX systems over a medium-speed, dial-
up synchronous link.

A number of commands and several manuals (see Section 8 below) are
provided for the operations staff.

2. PROGRAMMING LANGUAGES

2.1. The Programming Language C

8 CC {m.]

Compiles and/or link-edits programs in the C language. The PWB/UNIX
operating system, almost all of its subsystems, and C itself are written in C:

General-purpose language designed for structured programming.
Data types:
— Character.
— Integer.
— Long integer.
— Floating-point.
— Double.
— Pointers to all types.
— Functions returning all types.
— Arrays of any type.
— Structures containing various types.
e Provides machine-independent control of all machine facilities, includ-
ing to-memory operations and pointer arithmetic.
e Macro-preprocessor for parameterized code and for the inclusion of
other files.
All procedures recursive, with parameters passed by value.
Object code uses full addressing capability of the pDP-11.
Run-time library gives access to all system facilities.

12

s CDB

s ADB

® CB [f)

2.2. FORTRAN

& FC

8 RC (m]

2.3, Other Algorithmic
B BAS

Pws/UNIX

An interactive debugger tailored for use with C:

e Usable in real time or post-mortem.

e The debugger is a completely separate process from the program being
debugged. No debugging code is loaded with the program being
debugged.

e Prints in the most appropriate notation: characters, integers (octal and
decimal), floating-point numbers, double precision numbers, machine
instructions (disassembled).

o Stack trace and fault identification.

e Break-point tracing.

A more recent, more powerful, but also more complex interactive debugger
than CDB.

C beautifier: gives a C program that well-groomed, structured, indented
look.

Compiles and/or link-edits FORTRAN IV programs. Object code is partially
interpreted.

e Idiosyncrasies:
— Free-form, lower-case source code.
— No arithmetic statement functions.
— Unformatted 10 requires that expected and actual record lengths
agree.
— No BACKSPACE statement.
— No P format control character on input.
e Handles mixed-mode arithmetic, general subscripts, and general DO
limits.
32-bit integer arithmetic.
Free-format numeric input.
e Understands these nonstandard specifications:
— LOGICAL*1, *2, *4
— INTEGER*2, *4
— REAL*4, *8
— COMPLEX*8, *16
— IMPLICIT

Compiles and/or link-edits RATFOR programs. RATFOR adds rational con-
trol structures to FORTRAN:

ELSE, FOR, WHILE, REPEAT ... UNTIL statements.
Symbolic constants.

File inclusion.

Compound statements.

Can produce genuine FORTRAN 1o carry away.

Languages

An interactive interpreter, similar in style to Basic. Interprets unnumbered
statements immediately, numbered statements when given the ‘‘run’" com-
mand:

e Statements include:
— comment
— dump
— for ... next
— goto

Overview and Synopsis of Facilities

8 DC [m]

® BC [m}]

s SNO

13

— if..else..fi

— list

— print

— prompt

— return

— run

— save

All calculations in double precision.

Recursive function defining and calling.

Built-in functions include log, exp, sin, cos, atn, int, sqr, abs, rnd.
Escape to the standard pwB/UNIX editor for complex program editing.

Interactive programmable desk calculator. Has named storage locations, as
well as conventional stack for holding integers and programs:

e Arbitrary-precision decimal arithmetic.
Appropriate treatment of decimal fractions.
e Arbitrary input and output radices, in particular binary, octal, decimal,
and hexadecimal.
o Postfix (‘‘Reverse Polish’’) operators:
+ — =« /
remainder, power, square root
load, store, duplicate, clear
print, enter program text, execute

A C-like interactive interface to the desk calculator DC:

All the capabilities of DC with a high-level syntax.
Arrays and recursive functions.
Immediate evaluation of expressions and evaluation of functions upon
call.
Arbitrary-precision elementary functions: exp, sin, cos, atan.
e Goto-less programming.

An interpreter very similar to SNOBOL 3; its limitations are:

¢ Function definitions are static.
e Pattern matches are always anchored.
e No built-in functions.

2.4. Macroprocessors and Compiler-Compilers

a M4 [fm]

8 YACC [m]

® LEX [m]

A general-purpose macroprocessor:

e Stream-oriented, recognizes macros anywhere in text.

e Integer arithmetic.

e String and substring capabilities.

o Condition testing, file manipulation, arguments.

An LRr(1)-based compiler-writing system. During execution of resulting
parsers, arbitrary C functions can be called to do code generation or take
semantic actions:

e BNF syntax specifications.
e Precedence relations.
e Accepts formally ambiguous grammars with non-BNF resolution rules.

LEX helps write programs whose control flow is directed by instances of
regular expressions in the input stream. It is well suited for editor-script
type transformations and for segmenting input in preparation for a parsing
routine.

14

3. TEXT PROCESSING

3.1. Formatters

Pwarunix

High-level formatting macros have been developed to ease the task of preparing documents
with NROFF, as well as to exploit its more complex formatting capabilities.

® NROFF [f,m,t]

s —MM [m.]

8 NEQN [I.m]

Advanced formatter for terminals. Capable of many elaborate feats:

Justification of either or both margins.

Automatic hyphenation.

Generalized page headers and footers, automatic page numbering, with
even-odd page differentiation capability, etc.

Hanging indents and one-line indents.

Absolute and relative parameter settings.

Optional legal-style numbering of output lines.

Nested or chained input files.

Complete page format control, keyed to dynamically-planted ‘traps” at
specified lines.

Several separately-definable formatting environments (e.g., one for reg-
ular text, one for footnotes, and one for ‘‘floating’’ tables and displays).
Macros with substitutable arguments.

Conditional execution of macros.

Conditional insertion or deletion of text.

String variables that can be invoked in mid-line.

Computation and printing of numerical quantities.

String-width computations for unusually-difficult layout problems.
Positions and distances expressible in inches, centimeters, ems, ens, line
spaces, points, picas, machine units, and arithmetic combinations
thereof.

Dynamic (relative or absolute) positioning.

Horizontal and vertical line drawing.

Multi-column output on terminals capable of reverse line-feed, or
through the postprocessor COL.

A standardized manuscript layout for use with NROFF/TROFF. Provides a
flexible, user-oriented interface to these two formatters; designed to be:

Robust in face of user errors.

Easy to use by all levels of users.

Adaptable to a wide range of output styles.

Can be extended by users familiar with the formatter.
Compatible with both NROFF and TROFF.

Some of its features are:

Page numbers and draft dates.

Cover sheets and title pages.
Automatically-numbered or “‘lettered’” headings.
Automatically-numbered or *‘lettered’” lists.
Automatically-numbered figure and table captions.
Automatically-numbered and positioned footnotes.
Single- or double-column text.

Paragraphing, displays, and indentation.
Automatic table of contents.

A mathematical preprocessor for NROFF with the same facilities as EQN (see
Section 5 below). except for the limitations imposed by the graphic capabili-
ties of the terminal being used. Prepares formulae for display on the
Model 37 TELETYPE*, various Diablo-mechanism terminals. etc.

Overview and Synopsis of Facilities 15

3.2.

= TBL [f,m]

A preprocessor for NROFF that translates simple descriptions of table layouts
and contents into detailed formatting instructions:

e Computes appropriate column widths.

e Handles left- and right-justified columns, centered columns, and
decimal-point aligned columns.

e Places column titles; spans these titles, as appropriate.

For example:

Composition of Foods
Percent by Weight
Food Protein | Fat Eyaéz(:;

Apples 4 5 13.0
Halibut 18.4 5.2
Lima beans 1.5 8 22.0
Milk 3.3 4.0 5.0
Mushrooms 3.5 4 6.0
Rye bread 9.0 .6 52.7

Other Text Processing Tools

a SPELL

a8 TYPO

® DIFFMARK [f]

8 PTX
s GRAPH (]

s PLOT [f]

a GSi 1]

® 450 (f]
& HP [f}

® COL (1)

Finds spelling errors by looking up all uncommon words from a document
in a large spelling list. Knows about prefixes and suffixes and can cope with
such rotten spellings as ‘‘roted.”

Finds typographical errors. Statistically analyzes all the words in a text,
weeds out several thousand familiar ones, and prints the rest sorted so that
the most improbably spelled ones tend to come to the top of the list.

Judiciously combines DIFF, ED, and NROFF/TROFF to produce marginal revi-
sion bars on output.

Generates a permuted index, like the one in the PwB/UNIX User’s Manual.

Given the coordinates of the points to be plotted, draws the corresponding
graph; has many options for scaling, axes, grids, labeling, etc.

Makes the output of GRAPH suitable for plotting on a Diablo-mechanism
terminal.

Exploits the hardware facilities of G$1300, DAsI300, and other Diablo-
mechanism terminals:

e Implements reverse line-feeds and forward and reverse fractional-line
motions.

e Allows any combination of 10- or 12-pitch printing with 6 or 8
lines/inch spacing.

e Approximates Greek letters and other special characters by overstriking
in plot mode.

Like GsI. but for the newer Diablo-mechanism terminals (e.g.. DASI450).
Like Gs1, but for the Hewlett-Packard 2640 family of terminals.

Reformats files with reverse line-feeds so that they can be correctly printed
on terminals that cannot reverse line-feed.

16 Pwsiunix

4. REMOTE JOB ENTRY TO IBM SYSTEM/370

8 SEND [m] User interface to PWB/UNIX Remote Job Entry (RIJE) facility; may be used
interactively. RJE provides for submission and retrieval of jobs from a host
system (e.g., an 1BM System/360 or System/370 computer using HASP, ASP,

‘or JES2). To the host system, RIE appears to be an 1BM 2770 card
reader/punch and line-printer station. At the request of a PWB/UNIX user,
RJE gathers job control and source statements to be sent to the host system,
and subsequently returns to the user output listings and object ‘‘decks” (in
the form of pwB/UNIX files).

® RJESTAT Reports interactively on the status of any job(s) on the RIE host systems, as
well as on the status of the RJE links themselves.

5. TYPESETTING

This software generates output on a Graphic Systems, Inc., C/A/T System/1 phototypesetter. It
is distributed separately as an (extra cost) add-on to PWB/UNIX.

TROFF is much like NROFF (see Section 3.1 above), but provides a number of different charac-
ter styles, a selection of character (point) sizes, and proportional spacing; —MM, TBL, and the
typesetting language for mathematics (EQN/NEQN) are compatible with both NROFF and TROFF,
so that the user-level formatting instructions can be the same for both.

s TROFF [f,m1] Provides facilities that are upward-compatible with NROFF, but with the fol-
lowing additions:

e Vocabulary of several 102-character fonts (any 4 simultaneously) in 15
different point sizes.

e Character-width and string-width computations for unusually difficult
layout problems.

e Overstrikes and built-up brackets.

e Dynamic (relative or absolute) point size seiection, globally or at the
character level.

e Terminal output for rough sampling of the product.

W This entire document was typeset by TROFF, assisted by — MM, TBL, and EQN. W&

s EQN [f.m] A mathematical preprocessor for TROFF. Translates in-line or displayed for-
mulae from a very easy-to-type form into detailed typesetting instructions.
For example:

sigma sup 2 = 1 over N sum from j=1to N (x sub j - x bar) sup 2

e Automatic calculation of point size changes for subscripts, superscripts,
sub-subscripts, etc.
Full vocabulary of Greek letters, such as vy, II.r. a

[J
e Automatic calculation of the size of large brackets.
e Vertical **piling’” of formulae for matrices, conditional alternatives, etc.
o Integrals, sums, etc., with arbitrarily complex limits.
e Diacriticals: dots, double dots. hats, bars, etc.
o Easily learned by non-programmers and mathematical typists.
¢ Formulae can appear within tables to be formatted by TBL (see
Section 3.1 above).
s« —MV [m] A set of easy-to-use TROFF macros for making view graphs and slides.

Intended for use by secretaries and others not trained in *‘graphic arts.”
All facilities of TROFF, TBL, and EQN are available.

Overview and Synopsis of Facilities 17

6. DEMONSTRATION AND TRAINING PROGRAMS

Unless otherwise indicated below, source code for the following interactive programs is not
included:

QuIZ

CHESS

BJ
REVERSI
MOO
FACTOR

CAL

UNITS

CUBIC
WUMP

Tests your knowledge of Shakespeare, presidents, capitals, etc. Source code
included.:

This chess-playing program scored 1-2-1 and 3-0-1 in the 1973 and 1974
ACM Computer Chess Championships.

A blackjack dealer.

A game of dramatic reversals.

A fascinating number-guessing game, rather like Mastermind®.
Computes prime factors of a number.

Prints a calendar of specified month or year between A.D. 1 and 9999.
Source code included.

Converts quantities between different scales of measurement. Knows hun-
dreds of units; for example, how many kilometers/second (or
furlongs/fortnight) is a parsec/megayear? Source code included.

A (traditional, 3x3, two-dimensional) tic-tac-toe program that learns. It
never makes the same mistake twice, unless you make it forget what it has
learned.

An accomplished player of 4x4x4 tic-tac-toe.

Thrilling hunt for the mighty wumpus in a dangerous cave.

7. PWB/UNIX USER’S MANUAL

MAN

Prints one or more specified PwB/UNIX User’s Manual entries on your ter-
minal. Machine-readable and hard-copy versions of that manual are pro-
vided:

System overview.

All commands.

All system calls.

Most subroutines in the assembler, C, and FORTRAN libraries.

All devices and other special files.

File formats for all files known to the system software.
Descriptions of various terminals commonly used with PWB/UNIX.
““‘Boot’’ procedures.

e & 6 ¢ o ¢ o O

18 PwBIUNIX

8. DOCUMENTS FOR PWB/UNIX

In addition to the PwB/UNIX User’s Manual—Edition 1.0, which is a separate volume (see Sec-
tion 7 above), the following are provided with PWB/UNIX:

General:
1. Pwa/UNIX—Overview and Synopsis of Facilities (this document).
2. The UNix Time-Sharing System (reprinted from Comm. acm 17(7):365-75, July 1974).
3. The UNix Time-sharing System— A Retrospective.
4. Pws Papers from the Second International Conference on Software Engineering.

Basic User Information:

Pws/UNIX Documentation Roadmap.

Pws/UNIX Beginner’s Course.

A Tutorial Introduction to the UNIX Text Editor.
Advanced Editing on UNIX.

Pws/UNIX Shell Tutorial.

UNix for Beginners.

UNIx Programming.

C Reference Manual.

Programming in C— A Tutorial.

10. A New Input-Output Package.

11. A General-Purpose Subroutine Library for PWB/UNIX.
12. Guide to 1BM Remote Job Entry for PWB/UNIX Users.
13. Sccs/pw User’s Manual.

W oo No R W

Text Processing, Formatting, and Typesetting:

NROFF/TROFF User’s Manual.

PwB/MM—Programmer’s Workbench Memorandum Macros.
Typing Documents with PWB/MM.

Pws/MM Tutorial.

Tbi— A Program to Format Tables.

A TrOFF Tutorial.

Typesetting Mathematics— User’s Guide (Second Edition).
New Graphic Symbols for EQN and NEQN.

PwB/UNIX View Graph and Slide Macros.

Additional Facilities:
1. BCc—An Arbitrary Precision Desk Calculator Language.
DC—An Interactive Desk Calculator.
YACC—Yet Another Compiler Compiler.
Lex—Lexical Analyzer Generator.
RATFOR— A Preprocessor for a Rational FORTRAN.
The M4 Macro Processor.
Make— A Program for Maintaining Computer Programs.

~N s W

Internals, Operations, and Adnunistration:

1. Setting up PWB/UNIX.
Administrative Advice for PWB/UNIX.
PwB/UNIX Operations Manual.
Repairing Damaged Pws/UNIX File Systems.
PwB/UNIX RJE Administrator’s Guide.
The UNix 1/0 System.
On the Security of UNIX.
UNiIX Assembler Reference Manual.
PwB/UNIX Manual Page Macros.

R R
ok

The UNIX Time-Sharing System

Dennis M. Rirchie
Ken Thompson

Bell Laboratories
Murray Hill, N. J. 07974

ABSTRACT

UNIX is a general-purpose, multi-user, interactive operating system for the Digital Equipment Corpora-
tion PDP-11/40, 11/45 and 11/70 computers. It offers a number of features seldom found even in larger

operating systems, including

1. A hierarchical file system incorporating demountable volumes,

2. Compatible file, device, and inter-process 1/0,

3. The ability to initiate asynchronous processes,

4. System command language selectable on a per-user basis,

5. Over 100 subsystems including a dozen languages.
This paper discusses the nature and implementation of the file system and of the user command inter-
face.

1. Introduction

There have been three versions of UNIX. The earliest version (circa 1969-70) ran on the Digital
Equipment Corporation PDP-7 and -9 computers. The second version ran on the unprotected por-11/20
computer. This paper describes only the pDP-11/40, /45 and /70' system, since it is more modern and
many of the differences between it and older UNIX systems result from redesign of features found to be
deficient or lacking.

Since PDP-11 UNIX became operational in February, 1971, about 100 installations have been put into
service, they are generally smaller than the system described here. Moslt of them are engaged in appli-
cations such as the preparation and formatting of patent applications and other textual material, the
collection and processing of trouble data from various switching machines within the Bell System, and
recording and checking telephone service orders. Our own installation is used mainly for research in
operating systems, languages, computer networks, and other topics in computer science, and also for
document preparation.

Copyright ® 1974, Association for Computing Machinery, Inc. General permission 10 republish, but not for profit, all or part
of this material is granted provided that ACM’s copyright notice is given and thai reference is made 10 the publication, to s date
of issue, and 10 the fact that reprinting privileges were granted by permission of the Association for Computing Machinery.

This is a revised version of an arlicle appearing in the Communications of the ACM, Volume 17, Number 7 (July 1974} pp
365-375. That article is a revised version of a paper presentied at the Fourth ACM Symposium on Operating Sysiems Principles,
18BM Thomas J. Watson Research Center, Yorkiown Heights, New York, October 15-17, 1973

G.2

UNix Time-Sharing System - 2

Perhaps the most important achievement of UNIX is to demonstrate that a powerful operaling system
for interactive use need not be expensive either in equipment or in human effort: UNIX can run on
hardware costing as little as $40,000, and less than two man-years were spent on the main system
software. Yet UNIX contains a number of features seldom offered even in much larger systems. Hope-
fully, however, the users of UNIX will find that the most important characteristics of the system are its
simplicity, elegance, and ease of use.

Besides the system proper, the major programs available under UNIX are

assembler,

text editor based on QED?,

linking loader,

symboilic debugger,

compiler for a language resembling BCPL? with types and structures (C),
interpreter for a dialect of BASIC,
phototypesetting and equation setting programs
Fortran compiler,

Snobol interpreter,

top-down compiler-compiler (TMG*),
bottom-up compiler-compiler (YACC),

form letter generator,

macro processor (M6%),

permuted index program.

There is also a host of maintenance, utility, recreation and novelty programs. All of these programs
were written locally. It is worth noting that the system is totally self-supporting. All UNIX software is
maintained under UNIX; likewise, this paper and all other UNIX documents were generated and format-
ted by the UNIX editor and text formatting program.

2. Hardware and software environment

The pDP-11/45 on which our UNIX installation is implemented is a 16-bit word (8-bit byte) computer
with 112K bytes of core memory; UNIX occupies S3K bytes. This system, however, includes a very
large number of device drivers and enjoys a generous allotment of space for 1/0 buffers and system
tables; a minimal system capable of running the software mentioned above can require as little as 64K
bytes of core altogether.

Our pDP-11 has a 1M byte fixed-head disk, used for file system storage and swapping, four moving-
head disk drives which each provide 2.5M bytes on removable disk cartridges, and a single moving-
head disk drive which uses removable 40M byte disk packs. There are also a high-speed paper tape
reader-punch, nine-track magnetic tape, and DEClape (a variety of magnetic tape facility in which indi-
vidual records may be addressed and rewritten). Besides the console typewriter, there are 30 variable-
speed communications interfaces attached to 100-series datasets and a 201 dataset interface used pri-
marily for spooling printout to a communal line printer. There are also several one-of-a-kind devices
including a Picturephone?® interface, a voice response unit, a voice synthesizer, a phototypesetter, a di-
gital switching network, and a satellite PDP-11/20 which generates vectors, curves, and characters on a
Tektronix 611 storage-tube display.

The greater part of UNIX software is writlen in the above-mentioned C language®. Early versions of
the operating system were written in assembly language, but during the summer of 1973, it was rewrit-
ten in C. The size of the new system is about one third greater than the old. Since the new system is
not only much easier to understand and to modify but also includes many functional improvements,
including multiprogramming and the ability to share reentrant code among several user programs, we
considered this increase in size quite acceptable.

UNix Time-Sharing System - 3

3. The File system
The most important role of UNIX is to provide a file system. From the point of view of the user,
there are three kinds of files: ordinary disk files, directories, and special files.

3.1 Ordinary files

A file contains whatever information the user places on it, for example symbolic or binary (object)
programs. No particular structuring is expected by the system. Files of text consist simply of a string
of characters, with lines demarcated by the new-line character. Binary programs are sequences of
words as they will appear in core memory when the program starts executing. A few user programs
manipulate files with more structure; for example, the assembler generates, and the loader expects, an
object file in a particular format. However, the structure of files is controlied by the programs which
use them, not by the system.

3.2 Directories

Directories provide the mapping between the names of files and the files themselves, and thus in-
duce a structure on the file system as a whole. Each user has a directory of his own files; he may also
create subdirectories to contain groups of files conveniently treated together. A directory behaves ex-
actly like an ordinary file except that it cannot be written on by unprivileged programs, so that the sys-
tem controls the contents of directories. However, anyone with appropriate permission may read a
directory just like any other file.

The system maintains several directories for its own use. One of these is the roor directory. All files
in the system can be found by tracing a path through a chain of directories until the desired file is
reached. The starting point for such searches is often the root. Another system directory contains all
the programs provided for general use; that is, all the commands. As will be seen, however, it is by no
means necessary that a program reside in this directory for it to be executed.

Files are named by sequences of 14 or fewer characters. When the name of a file is specified to the
system, it may be in the form of a path name, which is a sequence of directory names separated by
slashes /" and ending in a file name. If the sequence begins with a slash, the search begins in the
root directory. The name /alpha/beta/gamma causes the system to search the root for directory alpha,
then to search alpha for beta, finally to find gamma in beta. Gamma may be an ordinary file, a directory.
or a special file. As a limiting case, the name *“/" refers to the root itself.

A path name not starting with **/"" causes the system to begin the search in the user’s current direc-
tory. Thus, the name alpha/beta specifies the file named beta in subdirectory alpha of the current
directory. The simplest kind of name, for example alpha, refers to a file which itself is found in the
current directory. As another limiting case, the null file name refers to the current directory.

The same non-directory file may appear in several directories under possibly different names. This
feature is called linking; a directory entry for a file is sometimes called a link. UNIx differs from other
systems in which linking is permitted in that all links to a file have equal status. That is, a file does not
exist within a particular directory; the directory entry for a file consists merely of its name and a
pointer to the information actually describing the file. Thus a file exists independently of any directory
entry, although in practice a file is made to disappear along with the last link to it.

“won

Each directory always has at least two entries. The name ““." in each directory refers to the directo-
ry itself. Thus a program may read the current directory under the name *.” without knowing its
complete path name. The name “..” by convention refers to the parent of the directory in which it
appears, that is, to the directory in which it was created.

The directory structure is constrained to have the form of a rooted tree. Except for the special en-
tries * .” and **.."", each directory must appear as an entry in exactly one other, which is its parent.
The reason for this is to simplify the writing of programs which visit subtrees of the directory struc-
ture, and more important, to avoid the separation of portions of the hierarchy. If arbitrary links to
directories were permitted, it would be quite difficult to detect when the last connection from the root
to a directory was severed.

UN1x Time-Sharing System - 4

3.3 Special files

Special files constitute the most unusual feature of the UNIX file system. Each 1/O device supported
by UNIX is associaled with at least one such file. Special files are read and written just like ordinary
disk files, but requests to read or write result in activation of the associated device. An entry for each
special file resides in directory /dev, although a link may be made to one of these files just like an ordi-
nary file. Thus, for example, to punch paper tape, one may write on the file /dev/ppt. Special files ex-
ist for each communication line, each disk, each tape drive, and for physical core memory. Of course,
the active disks and the core specia! file are protected from indiscriminate access.

There is a threefold advantage in treating 1/0 devices this way: file and device 1/0 are as similar as
possible; file and device names have the same syntax and meaning, so that a program expecling a file
name as a parameler can be passed a device name; finally, special files are subject to the same protec-
tion mechanism as regular files.

3.4 Removable file systems

Although the root of the file system is always stored on the same device, it is not necessary that the
entire file system hierarchy reside on this device. There is a mount system request which has two argu-
ments: the name of an existing ordinary file, and the name of a special file whose associated storage
volume (e. g. disk pack) should have the structure of an independent file system containing its own
directory hierarchy. The effect of mount is to cause references to the heretofore ordinary file to refer
instead to the root directory of the file system on the removable volume. In effect, moun: replaces a
leaf of the hierarchy tree (the ordinary file) by a whole new subtree (the hierarchy stored on the re-
movable volume). After the mount, there is virtually no distinction between files on the removable
volume and those in the permanent file system. In our installation, for example, the root directory re-
sides on the fixed-head disk, and the large disk drive, which contains user's files, is mounted by the
system initialization program; the four smaller disk drives are available to users for mounting their own
disk packs. A mountable file system is generated by writing on its corresponding special file. A utility
program is available (o create an empty file system, or one may simply copy an existing file system.

There is only one exception to the rule of identical treatment of files on diflerent devices: no link
may exist between one file system hierarchy and another. This restriction is enforced so as to avoid
the elaborate bookkeeping which would otherwise be required to assure removal of the links when the
removable volume is finally dismounted. In particular, in the root directories of all file systems, remov-
able or not, the name *'.." refers to the directory itself instead of to its parent.

3.5 Protection

Although the access control scheme in UNIX is quite simple, it has some unusual features. Each user
of the system is assigned a unique user identification number. When a file is created, it is marked with
the user ID of its owner. Also given for new files is a set of seven protection bits. Six of these specify
independently read, write, and execute permission for the owner of the file and for all other users.

If the seventh bit is on, the system will temporarily change the user identification of the currenl
user to that of the creator of the file whenever the file is executed as a program. This change in user
1D is effective only during the execution of the program which calls for it. The set-user-ID feature pro-
vides for privileged programs which may use files inaccessible to other users. For example, a program
may keep an accounting file which should neither be read nor changed except by the program itself. If
the set-user-identification bit is on for the program, it may access the file aithough this access might be
forbidden to other programs invoked by the given program'’s user. Since the actual user 1D of the in-
voker of any program is always available, set-user-1D programs may take any measures desired to satisfy
themselves as 10 their invoker's credentials. This mechanism is used to allow users to execute the
carefully-written commands which call privileged system entries. For example, there is a system entry
invokable only by the “super-user” (below) which creates an empty directory As indicated above,
directories are expected to have entries for **." and *..". The command which creates a directory is
owned by the super-user and has the set-user-ID bit set. After it checks its invoker’s authorization to

UNix Time-Sharing System - §

) “ LY

create the specified directory, it creates it and makes the entries for **. " and

Since anyone may set the set-user-ID bit on one of his own files, this mechanism is generally avail-
able without administrative intervention. For example, this protection scheme easily solves the MOO
accounting problem posed in [7].

The system recognizes one particular user ID (that of the “super-user™) as exempt from the usual
constraints on file access; thus (for example) programs may be written to dump and reload the file sys-
tem without unwanted interference from the protection system.

3.6 1/0 calls

The system calls to do 1/0 are designed to eliminate the differences between the various devices and
styles of access. There is no distinction between “random’ and ‘‘sequential” 1/O, nor is any logical
record size imposed by the system. The size of an ordinary file is determined by the highest byte writ-
ten on it; no predetermination of the size of a file is necessary or possibie.

To illustrate the essentials of I/0 in UNIX, some of the basic calls are summarized below in an
anonymous language which will indicate the required parameters withoul getting tnto the complexities
of machine language programming. Each call to the system may potentally result in an error return,
which for simplicity is not represented in the calling sequence.

To read or write a file assumed to exist already, it must be opened by the following call:
filep = open (name, flag)

Name ndicates the name of the file. An arbitrary path name may be given. The flag argument indi-
cates whether the file is to be read, written, or ““updated,” that is read and written simultaneously.

The returned value filep is called a file descripror. 11 1s a small integer used to identify the file in sub-
sequent calls to read, write or otherwise manipulate the file.

To create a new file or completely rewrite an old one, there 1s a create system call which creates the
given file if it does not exist, or truncates it to zero length if it does exist. Creaie also opens the new
file for writing and, like open, returns a file descriptor

There are no user-visible locks in the file system, nor is there any restriction on the number of users
who may have a file open for reading or writing. Although it is possible for the contents of a file to
become scrambled when two users write on it simultaneously, in practice difficuities do not anise. We
take the view that locks are neither necessary nor sufficient, in our environment, to prevent interfer-
ence between users of the same file. They are unnecessary because we are not faced with large,
single-file data bases maintained by independent processes. They are insufficient because locks in the
ordinary sense, whereby one user is prevented from wriling on a file which another user is reading,
cannot prevent confusion when, for example, both users are editing a file with an editor which makes
a copy of the file being edited.

It should be said that the system has sufficient internal interlocks to maintain the logical consistency
of the file system when two users engage simultaneously in such inconvenient activities as writing on
the same file, creating files in the same directory, or deleting each other’s open files.

Except as indicated below, reading and writing are sequential. This means that if a particular byte in
the file was the last byte written (or read), the next 1/0 call implicitly refers to the first following byte.
For each open file there is a pointer, maintained by the system, which indicates the next byte to be
read or written. If n bytes are read or written, the pointer advances by n bytes.

Once a file is open, the following calls may be used
n = read (filep, buffer, count)

n = write (filep, buffer, count)

UNix Time-Sharing System - 6

Up to counrt bytes are transmitted between the file specified by filep and the byte array specified by
buffer. The returned value n is the number of bytes actually transmitied. In the write case, n is the
same as count except under exceptional conditions like 1/O errors or end of physical medium on special
files. in a read, however, n may without error be less than counr. 1If the read pointer is so near the end
of the file that reading count characters would cause reading beyond the end, only sufficient bytes are
transmitted 10 reach the end of the file; also, typewriter-hike devices never return more than one line
of input. When a read call returns with n equal 1o zero, it indicates the end of the file. For disk files
this occurs when the read pointer becomes equal to the current size of the file. It s possible 1o gen-
erate an end-of-file from a typewriter by use of an escape sequence which depends on the device used.

Bytes writien on a file affect only those implied by the position of the write pointer and the count;
no other part of the file is changed. If the last byte lies beyond the end of the file, the file is grown as
needed

To do random (direct access) /0 it is only necessary 1o move the read or wrile pointer 10 the ap-
propriate location in the file.

location = seek (filep, offset, base)

The pointer associated with filep is moved to a position offser bytes from the beginning of the file, from
the current position of the pointer, or from the end of the file, depending on base. Offset may be nega-
tuve For some devices (e.g paper tape and typewriters) seek calls are ignored The actual offset from
the beginning of the file to which the pointer was moved is returned in location.

3.6.1 Other 1/0 calls

There are several additional system entries having to do with 1/0 and with the file system which wili
not be discussed. For example: close a file, get the status of a file, change the protection mode or the
owner of a file, creale a directory, make a link to an existing file, delete a file

4. Implementation of the file system

As mentioned 1n §3.2 above, a directory entry contains only a name for the associated file and a
pointer 1o the file itself This pointer is an integer called the i-number (for index number) of the file
When the file 1s accessed, i1ts i-number 1s used as an index into a system table (the i-list) stored in a
known part of the device on which the directory resides. The entry thereby found (the file’s i-node)
contains the description of the file:

iIts owner,
1Its protection bits.
. the physical disk or tape addresses for the file contents;
LS s1ze,
time of last modification,
6 the number of links 1o the file; that is, the number of times it appears in a directory.
7 a bitindicating whether the file is a directory:
8 a bit indicating whether the file 1s a special file:
9 a bitindicaing whether the file is “‘large™ or “small.”

N o v N —

The purpose of an open or create system call is to turn the path name given by the user into an i-
number by searching the explicitly or implicitly named directories. Once a file is open, ils device, i-
number, and read/write pointer are stored in a system table indexed by the file descriptor returned by
the open or create. Thus the file descriptor supphed during a subsequent call to read or write the file
may be easily related 1o the information necessary to access the file.

When a new file is created, an i-node is allocatec for 1t and a directory entry is made which contains
the name of the file and the i-node number. Making a link to an existing file involves creating a direc-
tory entry with the new name, copying the i-number from the original file entry, and incrementing the

Untx Time-Sharing System - 7

link-count field of the i-node. Removing (deleting) a file is done by decrementing the link-count of
the i-node specified by its directory entry and erasing the directory entry. If the link-count drops 1o 0.
any disk blocks in the file are freed and the i-node 1s deallocated.

The space on all fixed or removable disks which contain a file system is divided into a number of
512-byte blocks logically addressed from 0 up to a limit which depends on the device. There 1s space
in the i-node of each file for eight device addresses A small/ (non-special) file fits into eight or fewer
blocks: in this case the addresses of the blocks themselves are stored. For large (non-special) files.
seven of the eight device addresses may point to indirect blocks each containing 256 addresses for the
data blocks of the file. If required, the eighth word is the address of a double-indirect block containing
256 more addresses of indirect blocks. Thus files may conceptually grow to (7+256)256:512 bytes. ac-
tually they are restricted to 16,777,216 (2**) bytes. Once opened, a small file (size 1 to 8 blocks) can
be accessed directly. A large file (size 9 to 32768 blocks) requires one additional access to read below
logical block 1792 (7-256) and two additional references above 1792

The foregoing discussion applies to ordinary files. When an 1/0 request is made to a file whose 1-
node indicates that it is special, the last seven device address words are immaterial, and the first s in-
terpreted as a pair of bytes which constitute an internal device name. These byles specify respectively «
device type and subdevice number. The device type indicates which system routine will deal with 170
on that device: the subdevice number selects, for example, a disk drive attached to a particular con-
troller or one of several similar typewriter interfaces.

In this environment, the implementation of the mount system call (§3.4) is quite straightforward
Mount maintains a system table whose argument is the i-number and device name of the ordinary file
specified during the mounr. and whose corresponding value is the device name of the indicated special
file. This table is searched for each (i-number, device)-pair which turns up while a path name 1s being
scanned during an open or create: if a match is found, the i-number is replaced by 1 (which 1s the 1-
number of the root directory on all file systems), and the device name 1s replaced by the table valuc

To the user, both reading and writing of files appear to be synchronous and unbuflered That 15, 1im-
mediately after return from a read call the data are available, and conversely after a write the user’s
workspace may be reused. In fact the system maintains a rather complicated buffering mechanism
which reduces greatly the number of 1/O operations required to access a file. Suppose a wrire call 15
made specifying transmission of a single byte. UNIx will search 1ts buffers to see whether the affected
disk block currently resides in core memory. if not, it will be read in from the device Then the
affected byte is replaced in the buffer and an entry is made in a hst of blocks 10 be written The return
from the write call may then take place, although the actual 1/0 may not be completed unui a later
time. Conversely, if a single byle is read, the system determines whether the secondary storage block
in which the byte is located is already in one of the system’s buffers: if so, the byte can be returned
immediately. If not, the block is read into a buffer and the byte picked out.

The system recognizes when a program has made accesses 1o sequential blocks of a file, and asyn-
chronously pre-reads the next block. This significantly reduces the running time of most programs
while adding little to system overhead. -

A program which reads or writes files in units of 512 bytes has an advantage over a program which
reads or writes a single byte at a time, but the gain is not immense. it comes mainly from the
avoidance of system overhead. A program which is used rarely or which does no great volume of 170
may quite reasonably read and write in units as small as it wishes.

The notion of the i-list is an unusual feature of UNIX. In practice, this method of orgamzing the file
system has proved quite reliable and easy to deal with. To the system itself, one of its strengths is the
fact that each file has a short, unambiguous name which is related in a simple way to the protecuon.
addressing, and other information needed to access the file. It also permits a quite simple and rapid al-
gorithm for checking the consistency of a file system, for example verification that the portions of each
device containing useful information and those free to be allocated are disjoint and together exhaust
the space on the device. This algorithm is independent of the directory hierarchy, since it need onl

UNix Time-Sharing System - &8

scan the linearly-organized i-list. At the same time the notion of the i-list induces certain peculiarities
not found in other file system organizations. For example, there is the question of who is to be
charged for the space a file occupies, since all directory entries for a file have equal status. Charging
the owner of a file is unfair in general, since one user may create a file, another may link to it, and the
first user may delete the file. The first user is still the owner of the file, but it should be charged to the
second user. The simplest reasonably fair algorithm seems to be to spread the charges equally among
users who have links to a file. The current version of UNiIx avoids the issue by not charging any fees
at all

4.1 Efficiency of the file system

To provide an indication of the overall efficiency of UNIX and of the file system in particular, imings
were made of the assembly of a 8848-line program. The assembly was run alone on the machine; the
to1al clock time was 32 seconds, for a rate of 276 lines per second. The time was divided as follows:
66" assembler execution time, 21% sysiem overhead, 13% disk wait time. We will not attempt any in-
terpretation of these figures nor any comparison with other systems, but merely note that we are gen-
erally satisfied with the overall performance of the system.

S. Processes and images

An image is a computer execution environment. It includes a core image, general register values,
status of open files, current directory and the like. An image is the current stale of a pseudo-computer.

A process 1s the execution of an image. While the processor is executing on behalf of a process, the
image must reside in core. during the execution of other processes it remains in core unless the ap-
pearance of an acuive, higher-priority process forces it 1o be swapped out to the fixed-head disk.

The user-core part of an image is divided into three logical segments. The program text segment be-
gins at location 0 in the virtual address space. During execution, this segment is write-protected and a
single copy of it 1s shared among all processes executing the same program. At the first 8K byte boun-
dary above the program text segment in the virtual address space begins a non-shared, writable data
segment, the size of which may be extended by a system call. Starting at the highest address in the
virtual address space is a stack segment, which automatically grows downward as the hardware’s stack
pointer fluctuates

5.1 Processes
Except while UNIx is bootstrapping itself into operation, a new process can come inlo exislence only
by use of the fork system call

processid = fork (label)

When fork 1s executed by a process, it splits into two independently execuling processes. The two
processes have independent copies of the original core image, and share any open files. The new
processes differ only in that one is considered the parent process: in the parent, control returns directly
from the fork, while in the child, control is passed to location label. The processid returned by the fork
call i1s the identification of the other process.

Because the return points in the parent and child process are not the same, each image existing after
a fork may determine whether it 1s the parent or child process.

5.2 Pipes

Processes may communicate with related processes using the same system read and write calls that
are used for file system 1/0. The call

filep = pipe ()

returns a file descriptor filep and creates an inter-process channel called a pipe. This channel, like other

UNix Time-Sharing System - 9

open files, is passed from parent to child process in the image by the fork call. A read using a pipe file
descriptor waits until another process writes using the file descriptor for the same pipe. At this point,
data are passed between the images of the two processes. Neither process need know that a pipe, rath-
er than an ordinary file, is invoived.

Although inter-process communication via pipes is a quite valuable tool (see §6.2), it is not a com-
pletely general mechanism, since the pipe must be set up by a common ancestor of the processes in-

volved

5.3 Execution of programs
Another major system primitive is invoked by

execute (file, arg,, arg,, ... , arg)

which requests the system (o read in and execute the program named by file, passing il string argu-
ments arg,, arg,. ..., arg. All the code and data in the process using execute is replaced from the file,
but open files, current directory, and inter-process relationships are unaltered. Only if the call fails, for
example because file could not be found or because its execute-permission bit was not set, does a re-
turn take place from the execute primitive; it resembles a ‘“‘jump’ machine instruction rather than a
subroutine call

5.4 Process synchronization
Another process control system call

processid = wait ()

causes s caller to suspend execution until one of its children has completed execution. Then wair re-
turns the processid of the terminated process. An error return is taken if the calling process has no des-
cendants. Certain status from the child process is also available.

5.5 Termination
Lastly,

exit (status)

terminates a process, destroys its image, closes its open files, and generally obliterates it. When the
parent 1s notified through the wair primitive, the indicated starus is available to the parent. Processes
may also terminate as a result of various illegal actions or user-generated signals (§7 below).

6. The Shell

For most users, communication with UNIX is carried on with the aid of a program called the Shell.
The Shell is a command line interpreter: it reads lines typed by the user and interprets them as re-
quests to execute other programs. In simplest form, a command line consists of the command name
followed by arguments to the command, all separated by spaces:

command arg, arg, ... arg

n

The Shell splits up the command name and the arguments into separate strings. Then a file with name
command 1s sought; command may be a path name including the **/” character to specify any file in the
system. If command is found, it is brought into core and executed. The arguments collected by the
Shell are accessible to the command. When the command is finished, the Shell resumes its own exe-
cution, and indicates its readiness to accept another command by typing a prompt character.

If file command cannot be found, the Shell prefixes the string /bin/ to command and allempts again
to find the file. Directory /bin contains all the commands intended to be generally used.

UNix Time-Sharing System - 10

6.1 Standard 170

The discussion of 1/0 in §3 above seems 10 imply that every file used by a program must be opened
or created by the program in order to get a file descriptor for the file. Programs executed by the Shell,
however, start off with two open files which have file descriptors 0 and 1. As such a program begins
execution. file 1 1s open for writing, and 15 best understood as the standard output file. Except under
circumstances indicated below, this file is the user’s typewriter. Thus programs which wish to write in-
formative or diagnostic information ordinarily use file descriptor 1. Conversely, file 0 starts off open for
reading, and programs which wish to read messages typed by the user usually read this file.

The Shell 1s able to change the standard assignments of these file descriptors from the user’s type-
wniter printer and keyboard. If one of the arguments to a command is prefixed by >, file descriptor
1 will, for the duration of the command, refer to the file named after the *>". For example,

Is
ordinarily hsts, on the typewriter. the names of the files in the current directory. The command
Is >there

creates a file called there and places the histing there. Thus the argument * >there™ means, “‘place oul-
put on rhere”” On the other hand,

ed
ordinanly enters the editor, which takes requests from the user via his typewriter. The command

ed <script

.

interprets script as a file of editor commands. thus © <script™ means, “take input from script”™

Although the file name following <" or > appears to be an argument to the command, in fact 1t
i anterpreted completely by the Shell and is not passed to the command at all. Thus no special coding
10 handle 1/0 redirection is needed within each command; the command need merely use the standard
file descriptors 0 and | where appropriate.

6.2 Filters

An extension of the standard 1/0 notion is used to direct output from one command to the input of
another A sequence of commands separated by vertical bars causes the Shell to execute all the com-
mands simultaneously and to arrange that the standard output of each command be delivered 1o the
standard input of the next command in the sequence. Thus in the command line

Is| pr—2|opr

Is hists the names of the files in the current directory; its output is passed to pr, which paginates 1ts in-
put with dated headings. The argument =2 means double column. Likewise the output from pris
mput to opr This command spools its input onto a fite for off-line printing.

This procedure could have been carried out more clumsily by

Is >templ
pr =2 <templ >temp2
opr <temp2

followed by removal of the temporary files. In the absence of the ability to redirect output and input, a
sull clumsier method would have been to require the /s command 1o accept user requests 0 paginate
1S output, to print 1n multi-column format, and to arrange that its output be delivered off-line. Actual-
Iy 1t would be surprising, and in fact unwise for efficiency reasons, to expect authors of commands
such as /s to provide such a wide variety of output options.

UNix Time-Sharing System - 11

A program such as pr which copies its standard input to its standard output (with processing) is
called a filter. Some filters which we have found useful perform character transliteration, sorting of the
input, and encryption and decryption.

6.3 Command Separators; Multitasking
Another feature provided by the Shell is relatively straightforward. Commands need not be on
different lines; instead they may be separated by semicolons.

Is; ed
will first list the contents of the current directory, then enter the editor.

A related feature is more interesting. If a command is followed by &, the Shell will not wait for
the command to finish before prompting again; instead, it is ready immediately to accept a new com-
mand. For example,

as source >oulput &

causes source 10 be assembled, with diagnostic outpul going to oufput; no matter how long the assembly
takes, the Shell returns immediately. When the Shell does not wait for the completion of a command,
the identification of the process running that command is printed. This identification may be used to
wait for the completion of the command or to terminate it. The “&" may be used several times in a
line:

as source >output & Is >files &

does both the assembly and the listing in the background. In the examples above using “& ", an out-
put file other than the typewriter was provided: if this had not been done, the outputs of the various
commands would have been intermingled.

The Shell also allows parentheses in the above operations. For example
(date; Is) >x &

prints the current date and time followed by a list of the current directory onto the file x. The Shell
also returns immediately for another request.

6.4 The Shell as a Command; Command Files
The Sheli is itself a command, and may be called recursively. Suppose file tryout contains the lines

as source
mv a.out testprog
testprog

The mv command causes the file a.our to be renamed rtestprog. A.out is the (binary) output of the as-
sembler, ready to be executed. Thus if the three lines above were typed on the console, source would
be assembled, the resulting program renamed fesiprog, and testprog executed. When the lines are in
tryout, the command

sh <tryout
would cause the Shell sh to execute the commands sequentially.

The Shell has further capabilities, including the ability to substitute parameters and (o construct ar-
gument lists from a specified subset of the file names in a directory. It is also possible to execute com-
mands conditionally on character string comparisons or on existence of given files and to perform
transfers of control within filed command sequences.

UNix Time-Sharing System - 12

6.5 Implementation of the Shell

The outline of the operation of the Shell can now be understood Most of the time, the Shell 1s wait-
ing for the user to type a command. When the new-line character ending the line is typed, the Shelf's
read call returns. The Shell analyzes the command line, putting the arguments in a form appropriate
for execute. Then fork is called. The child process, whose code of course is still that of the Shell, at-
tempts to perform an execute with the appropriate arguments. If successful, this will bring in and start
execution of the program whose name was given. Meanwhile, the other process resulting from the
Jfork, which is the parent process, wairs for the child process to die. When this happens, the Shell
knows the command is finished, so it types its promptl and reads the typewriter 10 obtain another com-
mand.

Given this framework, the implementation of background processes is trivial; whenever a command
line contains “&", the Shell merely refrains from waiting for the process which it created to execute
the command.

Happily, all of this mechanism meshes very nicely with the notion of standard input and output files
When a process is created by the fork primitive, it inherits not only the core image of its parent but
also all the files currently open in its parent, including those with file descriptors 0 and 1. The Shell, of
course, uses these files to read command lines and to write its prompts and diagnostics, and in the ordi-
nary case its children—the command programs—inherit them automatically. When an argument with
“<™or “>" is given however, the offspring process, just before it performs execute, makes the stan-
dard 1/0 file descriptor 0 or 1 respectively refer to the named file. This is easy because, by agreement,
the smallest unused file dascriptor is assigned when a new file is opened (or created); it is only neces-
sary to close file 0 (or i and open the named file. Because the process in which the command pro-
gram runs simply terminates when it is through, the association between a file specified after * <™ or
“>" and file descriptor 0 or 1 is ended automatically when the process dies. Therefore the Shell need
not know the actual names of the files which are its own standard input and output, since it need nev-
er reopen them.

Filters are straightforward extensions of standard 1/0 redirection with pipes used instead of files

In ordinary circumstances, the main loop of the Shell never terminates. (The main loop includes
that branch of the return from fork belonging to the parent process; that is, the branch which does a
wait, then reads another command line.) The one thing which causes the Shell to terminate is discov-
ering an end-of-file condition on its input file. Thus, when the Shell is executed as a command with a
given input file, as in

sh <conifiie

the commands in comfile will be executed until the end of comfile is reached; then the instance of the
Shell invoked by sh will terminate. Since this Shell process is the child of another instance of the
Shell, the wair executed in the latter will return, and another command may be processed.

6.6 Initialization

The instances of the Shell to which users type commands are themselves children of another pro-
cess. The last step in the initialization of UNIX is the creation of a single process and the invocation
(via execute) of a program called init. The role of init is to creale one process for each typewriter chan-
nel which may be dialed up by a user. The various subinstances of inir open the appropriate tlypewrit-
ers for input and output. Since when init was invoked there were no files open, in each process the
typewriter keyboard will receive file descriptor 0 and the printer file descriptor 1. Each process types
out a message requesting that the user log in and waits, reading the typewriter, for a reply. At the
outset, no one is logged in, so each process simply hangs. Finally someone types his name or other
identification. The appropriate instance of inir wakes up, receives the log-in line, and reads a password
file. If the user name is found, and if he is able to supply the correct password, init changes to the
user’s default current directory, sets the process’s user 1D to that of the person logging in, and performs
an execute of the Shell. At this point the Shell is ready to receive commands and the logging-in proto-

Unix Time-Sharing System - 13

col is complete.

Meanwhile, the mainstream path of init (the parent of all the subinstances of itself which will later
become Shells) does a wait. If one of the child processes terminates, either because a Shell found an
end of file or because a user typed an incorrect name or password, this path of inir simply recreates the
defunct process, which in turn reopens the appropriate input and output files and types another login
message. Thus a user may log out simply by typing the end-of-file sequence in place of a command to
the Shell.

6.7 Other programs as Shell

The Shell as described above is designed to allow users full access to the facilities of the system,
since it will invoke the execution of any program with appropriate protection mode. Sometimes, how-
ever, a different interface to the system is desirable, and this feature is easily arranged.

Recall that after a user has successfully logged in by supplying his name and password, init ordinarily
invokes the Shell 1o interpret command lines. The user’s entry in the password file may contain the
name of a program to be invoked after login instead of the Shell. This program is free to interpret the
user’s messages in any way it wishes.

For example, the password file entries for users of a secretarial editing system specify that the editor
ed is 1o be used instead of the Shell. Thus when editing system users log in, they are inside the editor
and can begin work immediately; also, they can be prevented from invoking UNIX programs not in-
tended for their use. In practice, it has proved desirable to allow a temporary escape from the editor to
execute the formatting program and other utilities.

Several of the games (e.g., chess, blackjack, 3D tic-tac-toe) available on UNIX illustrate a much more
severely restricted environment. For each of these an entry exists in the password file specifying that
the appropriate game-playing program is to be invoked instead of the Shell. People who log in as a
player of one of the games find themselves limited to the game and unable to investigate the presum-
ably more interesting offerings of UNIX as a whole.

7. Traps

The pDP-11 hardware detects a number of program faults, such as references to non-existent
memory, unimplemented instructions, and odd addresses used where an even address is required. Such
faults cause the processor to trap 1o a system routine. When an illegal action is caught, unless other ar-
rangements have been made, the system terminates the process and writes the user’s image on file core
in the current directory. A debugger can be used to determine the state of the program at the time of
the fault.

Programs which are looping, which produce unwanted output, or about which the user has second
thoughts may be halted by the use of the interrupt signal, which is generated by typing the “delete”
character. Unless special action has been taken, this signal simply causes the program 1o cease execu-
tion without producing a core image file.

There is also a quir signal which is used to force a core image to be produced. Thus programs which
loop unexpectedly may be halted and the core image examined without prearrangement.

The hardware-generated faults and the interrupt and quit signals can, by request, be either ignored or
caught by the process. For example, the Shell ignores quits to prevent a quit from logging the user out.
The editor catches interrupts and returns to its command level. This is useful for stopping long prin-
touts without losing work in progress (the editor manipulates a copy of the file it is editing). In sys-
tems without floating point hardware, unimplemented instructions are caught and floating point in-
structions are interpreted.

UNix Time-Sharing System - 14

8. Perspective

Perhaps paradoxically, the success of UNIX is largely due to the fact that it was not designed to meet
any predefined objectives. The first version was written when one of us (Thompson), dissatisfied with
the available computer facilities, discovered a little-used pDP-7 and set out to create a more hospitable
environment. This essentially personal effort was sufficiently successful to gain the interest of the
remaining author and others, and later to justify the acquisition of the pDP-11/20, specifically 10 support
a text editing and formatting system. When in turn the 11/20 was outgrown, UNIX had proved useful
enough to persuade management to invest in the PDP-11/45. Our goals throughout the eflort, when ar-
ticulated at all, have always concerned themselves with building a comfortable relationship with the
machine and with exploring ideas and inventions in operating systems. We have not been faced with
the need to satisfy someone else’s requirements, and for this freedom we are grateful.

Three considerations which influenced the design of UNIX are visible in retrospect.

First: since we are programmers, we naturally designed the system 1o make it easy to write, test, and
run programs. The most important expression of our desire for programming convenience was that the
system was arranged for interactive use, even though the original version only supported one user. We
beheve that a properly-designed interactive system is much more productive and satisfying to use than
a “batch™ system. Moreover such a system is rather easily adaptable to non-interactive use, while the
converse is not true.

Second: there have always been fairly severe size constraints on the system and its software. Given
the partially antagonistic desires for reasonable efficiency and expressive power, the size constraint has
encouraged not only economy but a certain elegance of design. This may be a thinly disguised version
of the “'salvation through suffering” philosophy, but in our case it worked.

Third: nearly from the start, the system was able to, and did, maintain itse!f. This fact is more im-
portant than it might seem. If designers of a system are forced to use that system they quickly become
aware of its functional and superficial deficiencies and are strongly motivated to correct them before it
is too late. Since all source programs were always available and easily modified on-line, we were willing
to revise and rewrite the system and its software when new ideas were invented, discovered, or sug-
gested by others.

The aspects of UNIX discussed in this paper exhibit clearly at least the first two of these design con-
siderations. The interface to the file system, for example, is extremely convenient from a programming
standpoint. The lowest possible interface level is designed to eliminate distinctions between the vari-
ous devices and files and between direct and sequential access. No large “‘access method™ routines are
required 10 insulate the programmer from the system calls; in fact all user programs either call the sys-
tem directly or use a small library program, only tens of instructions long, which buffers a number of
characters and reads or writes them all at once.

Another important aspect of programming convenience is that there are no “‘control blocks™ with a
complicated structure partially maintained by and depended on by the file system or other system calls.
Generally speaking, the contents of a program’s address space are the property of the program, and we
have tried 10 avoid placing restrictions on the data structures within that address space.

Given the requirement that all programs should be usable with any file or device as input or output,
1L 1s also desirable from a space-efficiency standpoint to push device-dependent considerations into the
operating system itself. The only alternatives seem to be to load routines for dealing with each device
with all programs, which is expensive in space, or to depend on some means of dynamically linking to
the routine appropriate 10 each device when it is actually needed, which is expensive either in over-
head or in hardware.

Likewise, the process control scheme and command interface have proves both convenient and
efficient. Since the Shell operates as an ordinary, swappable user program, it consumes no wired-down
space in the system proper, and it may be made as powerful as desired at little cost. In particular,
‘given the framework in which the Shell executes as a process which spawns other processes to perform

UNix Time-Sharing System - 15

commands, the notions of 1/0 redirection, background processes, command files, and user-selectable
system interfaces all become essenually trivial to implement.

8.1 Influences

The success of UNIX lies not so much in new inventions but rather in the full exploitation of a care-
fully selected set of fertile ideas, and especially in showing that they can be keys to the implemenia-
tion of a small yet powerful operating system.

The fork operation, essentially as we implemented i1, was present in the Berkeley time sharing
system®. On a number of points we were influenced by Multics, which suggested the particular form
of the I/0 system calls® and both the name of the Shell and its general functions. The notion that the
Shell should create a process for each command was also suggested to us by the early design of Mul-
tics, although in that system it was later dropped for efficiency reasons. A similar scheme is used by
TENEX',

9. Statistics

The following numbers are presented to suggest the scale of our operation. Those of our users not
involved in document preparation tend 1o use the system for program development, especially ianguage
work. There are few important “‘applications’ programs

Overall, we have

100 user popuiation

14 maximum simultaneous users

380 directories

4800 files

66300 512-byte secondary slorage blocks used

There 1s a “*background™ process that runs at the lowest possible priority; it i1s used to soak up any
idie CPU time. It has been used to produce a million-digit approximation to the constant e—2, and 1s
now solving all rook-and-pawn vs. rook chess endgames. Not counting this background work, we aver-
age daily

2400 commands
55 CPU hours
100 connect hours
32 different users
100 fogins

Acknowledgements. We are grateful to R.H. Canaday, L.L. Cherry, and L.E. McMahon for their contn-
butions to UNIX. We are particularly appreciative of the inventiveness, thoughtful criticism, and con-
stant support of R. Morris, M.D. Mcllroy, and J.F. Ossanna.

References

1. Digital Equipment Corporation. PDP-11/40 Processor Handbook (1972), ppp-11/45 Processor Hand-
book (1971). and PDpP-11/70 Processor Handbook (1975).

2. Deutsch, L.P., and Lampson, B.W. An online editor. Comm. ACM 10, 12 (Dec. 1967}, 793-799,
803

3 Richards, M. BCPL: A tool for compiler writing and system programming. Proc. AFIPS 1969
SICC, Vol. 34, AFIPS Press, Montvale, N.J., pp. 557-566.

4. McClure, R.M. TMG—A syntax directed compiler. Proc. ACM 20th Nat. Conf, ACM, 1965,
New York, pp. 262-274.

5. Hail, A.D. The M6 macroprocessor. Computing Science Tech. Rep. #2, Bell Telephone Labora-
tories, 1969.

6. Ritchie, D.M. C reference manual. Unpublished memorandum, Bell Telephone Laboratories

UNix Time-Sharing System - 16

(1973).

Aleph-null. Computer Recreations. Software Practice and Experience 1, 2 (Apr-June 1971),
201-204.

Deutch, L.P. and Lampson, B.W. sps 930 time-sharing system preliminary reference manual.
Doc. 30.10.10, Project GENIE, Univ. Cal. at Berkeley (Apr. 1965).

Feiertag, R.J., and Organick, E.I. The Multics input-output system. Proc. Third Symposium on
Operating Systems Principles. Oct. 18-20, 1971, ACM, New York, pp. 35-41.

Bobrow, D.G., Burchfiel, J.D., Murphy, D.L., and Tomlinson, RS. TENEX. a paged ime sharing
system for the PDP-10. Comm. ACM 15., 3 (March 1972) 135-143.

The Unix Time-sharing System — A Retrospective*

Dennis M. Ritchie

Bell Laboratoriss
Murray Hill, New Jorsey 07974

ABSTRACT

Unix is a general-purpose. interactive time-sharing operating system for
the DEC PDP-11 series of computers. Since its deveiopment about five years
ago, it has become quitc widely used. This paper wili discuss the strong and

weak points of Unix and some areas where we have made no effort.

lowing points are touched on.

The fol-

° The structure of files: a uniform:, ran*omly addressable sequence of bytes.
The irrelevance of the notion of ‘reenrd.” The efficiency of the addressing

of files.

space.

The environment of processes:

Reliability: crashes, losses of files.

The structure of file system devices: directories and Alk:s.

[/0 devices are integrated into the file system.

The user interface: fundamentals ¢f the shell, 1/Q redirection, and pipes.
systeri calls, signals, and the address

] Security: protecting data from corruption and inspection; proiecting the

system from stoppages.

Use of a high-level language - the benefits and the costs.

What Unix does not do: ‘real-time’, inierprocess communication, asyn-

chronous 1/0.

L] Recommendations to system designers

Unix is a general-purpose, interactive
time-sharing operating system for the DEC
PDP-11 series of computers. Since its
development about five years ago, it has
become quite widely used, although publi-
city efforts in its behalf have been minimal,
and the license under which it is made avail-
able explicitly excludes mainienance.
Currently it is used by more than 150
universities, fifteen commercial and govern-
ment organizations (most running several
systems), and at about 250 Bell System
installations. It is useful on a rather broad

*This paper was presented at the Tenth Hawaii
International Conference on the System Sciences,
Honolulu, January, 1977.

range of configurations, ranging from a large
PDP-11/70 supporting 50 users. to a single-
user £SI-11 svstem.

Some general cbservations

In most ways Unix is a very conserva-
tive system. Onlvy a handful of its ideas are
genuinety new. In fact, a good case can be
made that it is in essence a modern imple-
meatation of MIT's CTSS system [Cris-
man). This claim is intended as a compli-
ment to both Unix and CTSS. Today, more
than fifteen vears after CTSS was born, few
of the interactive systems we know of are
superior to it in ease of use: many are infe-
rior in basic design.

G.3

Unix was never a ‘project;’ it was not
designed to meet any specific need except
that felt by its major author, Ken Thomp-
son, and latterly by the author of this paper,
for a pleasant environment in which to write
and use programs. Although it is rather
difficult, after the fact, to try to account for
its success, the following reasons seem most
important.

[It simple enough " to be
comprehended, yet powerful enough
to do most of the things its users want.

5

L The user interface is clean and rela-
tively surprise-free. It is also terse to
the point of being cryptic until under-
stood.

° It runs on a machine which has
become very popular in its own right.

. Besides the operating system and its
basic utilities, a good deal of interest-
ing software is available, including a
sophisticated text-processing system
which handles complicated mathemati-
cal material [Kernighan and Cherry],
producing output on a typesetter or a
typewriter terminal, and a LALR
parser-generator [Aho and Johnson].

This paper discusses the strong and
weak points of the system and lists some
areas where no effort has been madé. Only
enough design details are given to motivate
the discussion; for more see [Ritchie and
Thompson].

The structure of files

The Unix file system is simple in
structure; nevertheless it is more powerful
and general than those often found even in
considerably larger operating systems.
Every file is regarded as a featureless, ran-
domly addressable sequence of bytes. The
system conceals physical properties of the
device on which the file is stored, such as
the size of a disk track. The size of a file is
the number of bytes it contains; the last
byte is determined by the high-water mark
of writes to the file. It is not neressary, or
in fact possible, to preallocate snace for a
file. The system calls to read an« write each
come in only one form, which specifies the
local name of an open file, a buffer to or
from which to perform 1/0, and a byte
count. 1/0 is normally sequential, so the

first byte referred to by a read or write
operation immediately follows the final byte
affected by the preceding operation. ‘Ran-
dom access’ is accomplished using a ‘seek’
system call, which moves the system’s inter-
nal offset for the instance of the open file to
another location which the next read or
write will implicitly address. All 1/0 appears
completely synchronous;, read-ahead and
write-behind are performed by the system.

This particularly simple way of viewing
files was suggested by the Multics 1/0 sys-
tem [Feiertag and Organick].

The addressing mechanism for files
must be carefully designed if it is to be
efficient. Files can be large (16 million
bytes), are grown without preallocation, and
are randomly accessible. The overhead per
file must be small, since there can be many
files (we have 7922 on the disk storing most
user’s files); many of them are small (77 per
cent have eight or fewer 512-byte blocks,
and 37 per cent are only one block long).
The details of the mechanism are given in
[Ritchie and Thompson]. Briefly, for each
file up to eight disk addresses are stored. If
the file is small enough, they are the physi-
cal addresses of up to eight 512-byte blocks;
if the file is large, they are the addresses of
up to seven ‘indirect blocks’ each of which
contains the addresses of up to 256 data
blocks. If the file is ‘huge,’ the eighth basic
disk address points to a double-indirect
block with 256 addresses of indirect blocks;
each of these in turn contains the addresses
of 256 data blocks. The eight basic
addresses are always kept in memory while
the file is open. Thus from one to three
disk accesses per block must be made to do
1/0 on a file, depending on the size of the
file. The system, however, maintains a
cache of recently accessed blocks; when a
file of any size is read or written sequentially
the expected number of disk accesses per
data block is nearly unity.

No careful study has been made of the
efficiency of disk I/0, but a simple experi-
ment indicates that the efficicncy is compar-
able to two other systems, DEC’s IAS for
the PDP-11, and Honeywell’s GCOS TSS
system running on the H6070. The experi-
ment consisted of timing a progiam which
copied a file which, on the PDP-11"s, con-
tain~d 480 blocks (245,760 bytes). The file

Input and output are ordinarily syn-
chronous; programs wait until their 1/0 is
completed. For disk files, read-ahead and
write-behind are handied by the operating
system. The mechanisms are efficient
enough, and the simplification in user-levei
code large enough, that we have no general
doubts about the wisdom of doing things in
this way. There remain special applications
in which one desires to initiate 1/0 on
several streams and delay until the operation
is complete on only ore of them. When the
number of streams is small it is possible to
simulate this usage with several processes.
However, the writers of a Unix NCP (‘net-
work control program’) interface to the
ARPANET [Chesson] feel that genuinely
asynchronous 1/0 would improve their
implementation significantly.

Memory is not shared between
processes, except for the (read-only) pro-
gram text. Partly to alleviate the sometimes
severe restrictions on the virtual address
space imposed by the PDP-11, and partly to
simplify communication among tightly-
coupled but asynchronous processes, the
controlled sharing of writable data areas
would be valuable to some applications.
The relatively limited virtual address space
available on the PDP-11 turns out to be of
particular importance. A number of projects
which use Unix as a base desire better inter-
process communication (both by means of
messages and by sharing memory) because
they are driven to use several processes for
a task which logically requires only one.
This is true of several Bell System applica-
tions; as its description makes clear, it is
also true of INGRFES [Stonebraker et al.].

Unix does not attempt to assign non-
sharable devices to users. Some devices can
only be opened by one process, but there is
no mechanism for reserving devices for a
particular user for a period of time or over
several commands. Few installations with
which we have communicated feel this to be
a problem. The line printer, for example, is
usually dedicated to a spooling program, and
its direct use is either forbidden or managed
informally. Tapes are always allocated infor-
mally. Should the need arise, however, it is
worth noting tiiat commands to assign and
relcase devices may be implemented without
changing the operating system. Since the

-13 -

same protection mechanism applies to dev-
ice files as to ordinary files, an ‘assign’ com-
mand would operate essentially by changing
the owner identification attached to the
requested device to that of the invoker.

Recommendations

The following points are earnestly
recommended to designers of operating sys-
tems.

There is really no excuse for not pro-
viding a hierarchically-arranged file system.
It is very useful to maintain directories con-
taining related files, it is efficient because
the amount of searching for files is
bounded, and it is easy to provide.

The notion of ‘record’ seems to be an
obsolete remnant of the days of the 80-
column card. Files should consist of a
sequence of bytes.

The greatest care should be taken to
assure that there is only one format for files.
This is essential for making programs work
smoothly together.

Systems should be written in a high-
level language which encourages portability.
Manufacturers who build more than one line
of machines and also build more than one
operating system and set of utilities are
wasting money.

Acknowledgement

Much, even most, of the design and
implementation of Unix is the work of Ken
Thompson. My use of the term ‘we’ in this
paper is intended to include him; I hope his
views have not been misrenresented.

References

Aho, A. V., and Johnson, S. C. LR
Parsing. Computing Surveys 6, 2 (June
1974). pp. 99-124.

Bayer, D. L., and Lycklama, H.
MERT A Multi-environment Real-time
Operating System. Proc. Fifth Symposium

on Operating System Principles. Nov. 19-
21, 1975. ACM, New York, pp. 33-42.

Crisman, P. A. (Ed.). The Compatible
Time-sharing System. MIT Press, 1965.

Chesson, G. L. The Network Unix
System. Proc. Fifth Symposium on Operat-
ing System Principles. Nov. 19-21, 1975.

ACM, New York, pp. 60-66.

Dolotta, T. A., and Mashey, J.R. An
Introduction to the Programmer’s Work-
bench. Proc. Second International Confer-
ence on Software Engineering. Oct. 13-15,
1976. IEEE, New York. pp. 164-168.

Kernighan, B. W., and Cherry, L. L.
A System for Typesetting Mathematics.
Comm. ACM 18, 3 (Mar. 1975), pp. 151-
156.

Kernighan, B. W., and Mashey, J. R.
Software Reliability. To appear.

Feiertag, R. J., and Organick, E. L
The Multics Input-output System. Proc.
Third Symposium on Operating Systems
Principles. Oct. 18-20, 1971. ACM, New
York, pp. 18-20.

Mashey, J. R. Using a Command
Language as a High-level Programming
Language. Proc. Second International
Conference on Software Engineering. Oct.
13-15, 1976. IEEE, New York, pp. 169-176.

Ritchie, D. M., Kernighan, B. W., and
Lesk, M. E. The C Programming Language.
Comp. Sci. Tech. Rep. #31, Bell Labora-
tories, 1975.

Ritchie, D. M. and Thompson, K.
The UNIX Time-sharing System. Comm.
ACM 17, 7 (Jul. 1974), pp. 365-375.

Stonebraker, M., Wong, E., Kreps, P.,
and Held, G. The Design and Implementa-
tion of INGRES. ACM Trans. on Database
Systems 1, 3 (Sep. 1976). pp. 189-222.

- 14 -

and between actual and formal function
arguments) are detected. In some cascs this
is due to laziness on the part of the com-
piler, but in others the ability to pun is used
explicitly. For example, it is possible to
write a general storage allocator which
accepts a number of bytes and retwurns a
pointer to an area of the requested size,
then an object of appropriate type may be
stored in the space referied to by the
pointer.

Some way of escaping from the rigor
of a strongly typed language is necessary at
times in a system programming language,
but C is clearly too permissive. The prob-
lem lies not only in the possibility of pro-
gramming errors which could potentially be
detected at compile time; almost as impor-
tant, the portability of programs written in
the language suffers. For example, in
current C implementations, it is possible to
assign a pointer to an integer and then back
to a pointer without diagnostics and in fact
without changing the value of the resulting
pointer. But for this to be possible implies
that integers and pointers are the same size,
which is an unwarranted assumption in gen-
eral.

To gain the benefits of a strongly typed
language without losing the ability to cheat
occasionally and escape the type rules, we
have implemented a verifier program which
reads a collection of C programs and reports
not only on syntax errors but also on viola-
tion of type rules which are not checked by
the compiler itself. Since the verifier will
treat many program files simultaneously, it
also checks consistency of usage of
separately-compnicd procedures, which the
compiler itself would be hard-pressed to do.

The Unix system and its central
software were originally written in assembly
language, before C was invented, and have
since been rewritten in C and extended con-
siderably. Thus we are in a better position
than most to gauge the effect of using a
higher-level language on writing systems.
Briefly, the effects were remarkably
beneficial and the costs minuscule by com-
parison. The effects cannot be quantized,
since we do not measure productivity by
lines of code, but it is suggestive to say that
Unix offers a good deal of interesting
software, ranging from parser-generators

-11 -

through mathematical equation formatting
packages, which would never have been
written at all if their authors had had to
write assembly code; many of our most
inventive contributors do not know, and do
not wish to learn, the instruction set of the
PDP-11.

The C versions of programs which
existed before C became available are much
more easily understood, repaired, and
extended than the old versions. This applies
especially to the operating system itself.
The original system was very difficult to
modify, especially to add new devices, but
even to make minor changes. The C ver-
sion is readily modifiable by comparison,
and not only by us; more than one univer-
sity, for example, has completely rewritten
the typewriter device driver to suit their own
design.

One of the most exciting possibilities
for a system written in a higher-level
language is transportation of the system to
another machine. C programs tend to be
portable, despite the problems mentioned
above, and we are already reaping benefits
from this fact. C compilers (written on
Unix) are available at the major Bell Labs
computation centers, which have equipment
both from Honeywell (running GCOS), and
from IBM (running OS, TSO, and TSS).
Many major programs written on Unix,
including the C compilers themselves, the
typesetting software, the equation formatter,
the parser-generator, and the text editor,
have been moved to one or both of the
Honeywell and IBM machines. It has
become clear that the most difficult problem
in moving this software i> not in expressing
the algorithms in portable C, but in the sys-
tem interface. Thus, if the operating system
itself were portable, the portability of
software would at 2 stroke be improved con-
siderably. It appears that the job is not so
difficult as it might seem. The bulk of the
system consists, in fact, of machine-
independent code expressing policies and
algorithms. Even the file system is quite
machine-independent, given a few primi-
tives for communicating with user programs
and with devices.

The transportation of Unix itself has
not been accomplished, but is the subject of
our current research. 1t successful comple-

tion will free us from dependence on a par-
ticular manufacturer or machine architec-
ture. We hope to produce an operating sys-
tem and set of software which runs on
several machines and whose expression in
source code is, except for a few modules,
identical on each machine. The payoff from
such a system, either to an organization
which uses several kinds of hardware or to a
manufacturer who produces more than one
line of machines, should be evident.

Compared to the benefits, the costs of
using a higher-level language seem negligi-
ble. Certainly the object programs written
by the compiler are somewhat larger than
those that would be produced by a careful
assembly-language coder. It is hard to esti-
mate the average increase in size, because in
rewriting it is hard to resist the chance to
redesign somewhat (and usually improve).
A typical inflation factor would be about
20%. The decrease in speed is likely to be a
bit larger, mainly because subroutine linkage
tends to be more costly in C (and other
high-level languages) than in assembler.
However, it is by now a matter of common
knowledge that a tiny fraction of the code of
any program is likely to consume most of
the time, and our experience certainly
confirms this belief. A profiling tool for C
programs has been useful in making those
programs that need to be efficient acceptably
fast.

The cost of the compilations them-
selves has to be considered. This too we
deem acceptable. For example, to compile
and link-edit the entire operating system
(‘sysgen’) takes a bit over nine minutes of
clock time (of which seven minutes are
CPU time). the system consists of about
12,000 lines of C code, leading to a rate of
about 22 lines per second from source to
executable object on a PDP-11/45 with
Fabritek cache mermory. The cooapiler is
faster than this figure would indicate; the
system source makes hedavy use of “include’
files, so the number of lines processed by
the compiler is actually 31.718 and the rate
is 57 lines per second

the best

These days
advocate the use of o oigh-level language, so
Unix can hardly be accused of starting a
revolution with this as goal. Stll, not all of
those who actually produce svstems have

a4l authorities

-12-

leaped on the bandwagon. Perhaps Unix
can provide the required nudge. In its larg-
est configurations, it serves 50 simultaneous
users (which is about twice the number the
manufacturer’s most nearly comparable sys-
tem handles); in a somewhat cut-down ver-
sion, still written in C and still recognizably
the same system, it occupies 8K words and
supports a single user on the LSI-11 micro-
computer.

What Unix doesn’t do

A number of facilities provided in
various other systems are not present in
Unix. Many of these things would be use-
ful, or even vital, to some applications, and
we do not necessarily view their lack as one
of the strengths of the system. A good case
can be made for the inclusion of several of
the following ideas in standard Unix, if only
because they have in fact been implemented
by others, often in incompatible ways.

Unix is not a ‘real-time’ system in the
sense that it is not possible to lock a process
in memory so as to guarantee rapid response
to events, nor to connect directly to I/0
devices. MERT [Bayer and Lycklamal,
which is in a sense a generalization of Unix,
does allow these operations and in fact all
those mentioned in this section. It is a
three-level system, with a kernel, several
supervisor processes, and user processes.
One of the standard supervisor processes is
a ‘Unix emulator, so that all the ordinary
Unix software is available.

There is no general inter-process mes-
sage facility, nor even a limited communica-
tion scheme such as semaphores. It turns
out that the pipe mechanism mentioned
above is sufficient to implement whatever
communication is needed between closely-
related, cooperating processes. ‘closely-
related’ means processes with @ common
ancestor which sets up the channels. Pipes
are not, however, of any use in-communi-

cating with daemon processes set up (o
serve scveral users. At one of the sites at
which Unix is run a scheme of ‘named

pipes” has been implemented. This involves
a named file read by a single process which
delays until information messages are writ-
ten into the file by anyone (with permis-
ston) who cares to send a message.

The discussion under the heading of
Security points out that overconsumption of
resources other than swap space occurs, but
generaily does not cause a crash, although
the system may not be very useful for a
period. In most such cases a really general
remedy is hard to imagine. For example, if
one insists on using almost all of the file
storage space for storing files, one is certain
to run out now and then, and a quota sys-
tem is unlikely to be of much help, since
the space is almost certainly overallocated.
An automatically enforced file-space quota
would help, however, in the case of the user
who accidentally creates a monstrous file.

Hardware is by far the most frequent
cause of crashes, and in a basically healthy
machine, the most frequent difficulty is
momentary power dips, which tend to cause
disks to go off line and the processor to
enter peculiar, undocumented states. Other
kinds of failures occur less often. It does
seem characteristic of the PDP-11, particu-
larly in large configurations, to develop tran-
sient, hard-to-diagnose Unibus maladies.

A reliable system should not lose or
corrupt user’s files. The operating system
does not take any unusual precautions in
this regard. Data destined to be written on
the disk may remain in an associative
memory cache for up to 15 seconds.
Nevertheless our own machine has ruined
only three or four files in the past year, not
counting files being created at the time of a
crash. The rate of destruction of files by the
system is negligible compared to that by
users accidentally removing or overwriting
them. Dumps 2t near-daily intervals guard
against disaster (which has occurred—in his-
torical memory we have had head crashes,
and twice a sick disk controller began writ-
ing garbage instead of what was asked.)

The reliability of user-level software
provided with the system is aiso good.
Many of the reasons for this are related to
the positive aspects of the system discussed
elsewhere in this paper. Almost all software
is written in a high-level language, it tends
to be relatively simple and modular with
clean interfaces to the operating system and
to the outside world, and it tends to be
small. For example, the only prngrams
which exceed 5,000 lines of code a:: the
resident operating system itself, the C com-

piler, and the phototypesetter formatter. Of
the system ‘utilities’ (editor, command
interpreter, debugger, file maintenance, etc.,
but not compilers) the upper quartile in
number of source lines is 409; the median is
205. The total number of lines in all these
programs is about 50,000.

Kernighan and Mashey discuss Unix
software reliability more fully than can be
done here.

Security

‘Security’ means the ability to protect
against unwanted accessing or destruction of
data and against denial of service to others,
for exaraple by causing a crash. Because we
have always wanted to run a fairly open sys-
tem, the continuous, close attention
required to maintain a secure system has not
been paid; as a result there are several secu-
rity problems.

The weakest area is in protecting
against crashing, or at least crippling, the
operation of the system. The standard ver-
sion lacks checks for overconsumption of
certain resources, like file space, total
number of files, and number of processes
(they are limited on a per-user basis in vari-
ant versions). Running out of these things
does not cause a crash, but will make the
system unusable for a period. When
resource exhaustion occurs, it is generally
evident what happened and who was respon-
sible, so malicious actions are detectable,
but the real problem is the accidental pro-
gram bug.

The theoretical aspects of the situation
are brighter in the area of information pro-
tection. Each file is marxed with its owner
and the ‘group’ of users te which the owner
belongs. Files also have a set of nine pro-
tection bits divided into three sets of three
bits specifying permission to read, to write,
or execute as a program. The three sets
indicate the permissions applicable to the
owner of the file, to members of the
owner’s group, and to all others.

For directories, the meaning of the
access bits are modified: ‘read’ means the
ability to read as a file, that is find out all
names in the directory; ‘execute’ means the
ability to search a directory for a given name
when it appears as part of a qualified name;

‘write’ means ability to create and delete
files in that directory, and is unrelated to
writing of files named.

This classification is not fine enough to
account for the needs of all users, but is in
general adequate. In fact, most installations
do not use groups at all (all users are in the
same group), and even those that do would
be happy to have more possible user-IDs
and fewer group IDs (there are currently
256 of each).

One particular user (the ‘super-user’)
is able to access all files without regard to
permissions. This user is also the only one
permitted to exercise privileged system
entries.

An unusual feature of the protection
system is the ‘set-user-ID’ bit. When this
protection bit is on for a file, and the file is
executed as a program, the user number
used in file permission checking is not that
of the person running the program but that
of the owner of the file. In practice the bit
is used to mark the programs which perform
the privileged system functions mentioned
above (such as creation of directories,
changing the owner of a file, and so forth).

In theory the protection scheme is ade-
quate to maintain security, but in practice
breakdowns can easily occur. Most often
these come from incorrect protection modes
on files. Our software tends to create files
accessible, even writable, by everyone. This
is not an accident, but a reflection of the
open environment in which we operate.
Nevertheless, people in more hostile situa-
tions must adjust modes frequently; it is
easy to forget, and in any case there are
brief periods when the modes are wrong. It
would be better if software created files in a
default mode specifiable by each user. The
system administrators must be even more
careful than the users to apply proper pro-
tection. For example, it is easy t¢ wrile a
program which interprets the contents of a
special file referring to a ik and reads or
writes the files stored on ‘i, if it is not pro-
tected. If a set-user-1D file is wrilable,
another user can copy his own program on
top of it.

It is also possible to take advantage of
bugs in privileged set-user-1D programs.
For example, the program which sends mail

10

to other users might be given the ability to
send to directories which are otherwise pro-
tected. It must be carefully written in order
to avoid being fooled into mailing other
people’s private files to its invoker.

There are thus a number of practical
difficulties in maintaining a fully secure sys-
tem. However, the operating system itself
seems capable of maintaining data security.
The word ‘seems’ must be used because the
system has not been formally verified, yet
no security-relevant bugs are known (except
the ability to run it out of resources, which
was mentioned above). In some ways, in
fact, Unix is inherently safer than many
other systems. For example, 1/0 is always
done on open files, which are named by an
object local to a process. Permissions are
checked when the file is opened. The 1/0
calls themselves have as argument only the
(local) name of the open file, and the
specification of the user’s buffer; physical
1/0 occurs to a system buffer, and the data
is copied in or out of the user’s address
space by a single place in the system. Thus
there is no need for a complicated, bug-
prone verification of device commands and
channe!l programs supplied by the user.
Likewise, the absence of user ‘data control
blocks’ or other control blocks from the
user’s address space means that the interface
between user processes and the system is
rather easily checked, since is conducted by
means of explicit arguments.

Use of a Higher-level Language

Essentially all of Unix and its software
are written in the C language [Ritchiel,
which was developed under Unix. C incor-
porates most of the modern facilities for
imposing good structure on control flow and
on data and has a rich set of operators. It is
a typed language; its fundamental types con-
sist of characters (bytes), integers, long
integers, unsigned integers, and single and
double precision floating-point quantities.
Derived types consist of functions which
deliver objects of a given type, arrays of
objects of the same type, structures
(recorus) of objects of various types, and
pointeis to objects of 1 given type. Standard
C is not, however, a strongly-typed
language, in that not all type mismatches (as
might occur, for example, in assignments

an open file connecting two processes; infor-
mation written in onc end of the pipe may
be read from the other, wiith synchroniza-
tion, scheduling, and buffering handled by
the system. A linear array of processes (a
‘pipeline’) thus becomes a set of coroutines
simultaneously processing an I/O stream.
The shell notation for a pipeline separates
the names of the various programs by a
vertical bar, so for example

anycommand | sort | print

takes the output of anycommand, sorts it,
and prints the result in paginated form. The
ability to interconnect programs in this way
has substantially changed our way of writing
and thinking of utility programs in general,
and especially those involved with text pro-
cessing. As a dramatic example, we had
three existing programs which would respec-
tively translate characters, sort a file casting
out duplicate lines, and compare two sorted
files and publish lines which were in one but
not the other. Combining these with our
on-line dictionary gave a pipeline which
would print all words in a document not
appearing in the dictionary; in other words,
potential spelling mistakes. A simple pro-
gram to generate plausible derivatives of
dictionary words completed the job.

The shell is discussed further by
{Mashey] and by [Kernighan and Mashey].

Other aspects of the system, less
closely tied to a particular program, are also
important. One thing which seems trivial,
yel makes a surprising difference once one is
used to it, is full-duplex typewriter 1/0
together with read-ahead. Even though pro-
grams generally communicate with the user
in terms of lines, not single characters, full-
duplex typewriter I/O means that the user
can type at any time, even if the system is
typing back, without fear of losing or gar-
bling characters. With read-ahead, one need
not wait for a response to every line. A
good typist entering a document becomes
incredibly frustrated at having to pause
before starting each new line; for anyone
who knows what he wants to say any slow-
ness in response becomes psychologically
magnified if the information must be
entered bit-by-bit instead of directly.

Both input and output of Unix pro-
grams tends to be very terse. This can be

disconcerting to the becginner especially.
The editor, for example, has essentially only
one diagnostic, namely ‘?’, which means
‘you have done something wrong.” Once one
knows the editor, the error or difficulty is
usually obvious, and the terseness is appre-
ciated after a period of acclimation, but cer-
tainly people can be confused at first. How-
ever, even if some fuller diagnostics might
on occasion be appreciated, there is much
noise produced in other systems that we are
happy to be rid of. The command inter-
preter does not remark loudly that each pro-
gram finished normally, or announce how
much space or time it took; the former fact
is is whispered by an unobtrusive prompt,
and anyone who wishes to know the latter
may ask explicitly.

Likewise, commands seldom prompt
for missing arguments but instead, if the
argument is not optional, give at most a
one-line summary of their usage and ter-
minate. We know of some systems which
seem so proud of their ability to interact
that they force interaction on the user
whether it is wanted or not. Prompting for
missing arguments is an issue of taste which
can be discussed in calm tones; insistence
on asking questions may cause raised voices.

Although the terseness of typical Unix
programs is to some extent a matter of
taste, it is also connected with the way pro-
grams tend to be combined. A simple
example should make the situation clear.
The command ‘who’ writes out one line for
each user logged into the system, giving a
name, a typewriter name, and the time of
login. The command ‘wc’ (for ‘word
count’) writes out the numkter of lines, the
number of words, and the number of char-
acters in its input. Thus

who | wc

tells in the line-count field how many users
there are. If ‘who’ produced extraneous
verbiage, the count wouid be off. Worse, if
‘wc’ insisted on reading from its input which
of lines, words, or characters was wanted, it
could not be used in this pipeline. Now
clearly every command which generates a
table should not omit headings; nevertheless
we have good reasons to interpret the phrase
‘extraneous verbiage’ rather liberally.

The process environment

The virtual address space of a process
is divided into three regions: a read-only,
shared program text region, a writable data
arca which may grow at one end by explicit
request, and a stack which grows at its end
automatically as information is pushed on it.
The address space contains no ‘control
blocks’ used by the system.

New processes are created by a ‘fork’
operation, which creates a child process
whose code and data are copied from the
parent. The child inherits the open files of
the parent, and executes asynchronously.
The fork mechanism is essential to the basic
operation of the system, since each com-
mand executed by the shell runs in its own
process. This scheme makes a number of
services extremely easy to provide. 1/0
redirection, in particular, is a basically sim-
ple operation; it is performed entirely in the
subprocess which executes the command,
and thus no memory in the parent command
interpreter is required to rescind the change
in standard input and output. Asynchronous
(background) processes likewise require no
new mechanism; the shell merely refrains
from waiting for the completion of a com-
mand specified to be asynchronous. Finally,
recursive use of the shell to interpret filed
sequences of commands is in no way a spe-
cial operation.

Communication by processes with the
outside world is restricted to a few paths.
Explicit system calls, mostly to do I/0, are
the most common. A new process receives
a set of character-string arguments from its
parent upon creation, and returns a byte of
status information when it terminates. It
may be sent of several ‘signals,” which ordi-
narily force termination, but may, at the
choice of the process, be ignored or cause a
simulated hardware interrupt. Interrupts
from the typewriter, for cxample, cause a
signal to be sent to the processes attached to
that typewriter; faults such as addressing
errors are also turned into signals. Unas-
signed signals may be uscd for communica-
tion between cooperati~ rocesses. A final,
rather specialized, rcchanism allows a
parent process to trace the actions of its
child, receiving notification ol faults
incurred and accessing tiic memor: of the
child. This is used for debugging

There is thus no general inter-process
communication or synchronization scheme.
As discussed below, this is a weakness of
the system, but it is not felt to be important
in the uses to which Unix,is generally put.
Semaphores, for example, can be imple-
mented by using creation and deletion of a
known file to represent the P and V opera-
tions. Using a semaphore would certainly
be more efficient if the notion were made a
primitive, but here, as in other aspects of
the design, we have preferred to avoid put-
ting new mechanisms in the system which
can already be implemented using existing
mechanisms. Only when serious and
demonstrable inefficiency results is it worth
complicating the basic interfaces.

Reliability

The reliability of a system is measured
by the absence of unplanned outages, its
ability to retain filed information, and the
correct functioning of its software.

First, the operating system should not
crash. Unix in its present state is commend-
able in this regard. The six ‘Programmer’s
Workbench® Unix systems [Dolotta] at Bell
Laboratories have not had a system failure
(outside of announced test periods) attribut-
able to software since November, 1975.
Our own system, which changes much mere
often, has a slightly less perfect record, but
crashes are still unusual; it has run for five
weeks without being rebooted for any rea-
son. In the past year, about five crashes
occurred because of traced, and subse-
quently repaired bugs; about five more were
examined but could not be definitely attri-
buted either to hardware or software.

Two events—running out of swap
space, and an unrecoverable 1/0 error dur-
ing swapping—cause the system to crash
‘voluntarily,’ that is, not as a result of a bug
causing a fault. It turns out to be rather
inconvenient to arrange a more graceful exit
for a process which cannot be swapped.
Occurrcnce o' Lwap-space exhaustion can be
made arbitrarily rare by providing enough
space, and [/O errors in swapping are usu-
ally a signal that the hardware is badly
impaired, so in neither of these cases do we
feel strongly motivated to alleviate the
theoretical problems.

stored on another device. It is common for
the totality of user files to be too volumi-
nous for a given device. It is then impossi-
ble for the directories of all users to be
members of the same directory, say ‘/usr’.
Instead they must be split into groups, say
‘/usrl’ and ‘/usr2’; this is somewhat incon-
venient, especially when space on one dev-
ice runs out so that some users must be
moved. The data movement can be done
expeditiously, but the change in file names
from ‘/usrl/..’ to ‘/usr2/..’ is annoying
both to those people who must learn the
new name and to programs which happen to
have names built into them.

A final problem is not inherent to the

basic design, but does aggravate the
difficulty just mentioned. Disk block
addresses for files are stored as 16-bit

numbers, so a particular file system device
can use no more than 65,526 blocks. This
does not mean that the rest of a larger phy-
sical device is wasted, since there can be
several logical devices per disk drive. But
drives available today are an order of magni-
tude larger than 65K blocks, and chopping
them up into eight or ten devices is unat-
tractive.

1/0 devices

Unix goes to some pains to efface
differences between ordinary disk files and
I/0 devices such as typewriters, tapes, and
line printers. An entry appears in the file
system hierarchy for each supported device,
so that the structure of device names is the
same as that of file names. The same read
and write system calls apply to devices as to
disk files.

Moreover, the same protection
mechanisms apply to devices as to files.
Besides the traditionally available devices,
device files exist for disk devices regarded as
physical units outside the file system, and
for absolutely addressed memory. The most
important device in practice is the user's
typewriter, since the standard input and out-
put streams are attached to it. Because the
typewriter channel is treated in the same
way as any file (for example, the same [/O
calls apply), it is easy to redirect the input
and output of commands from the type-
writer to another file, as explained in the
next section.

Some differences are inevitable. For
example, the system ordinarily treats type-
writer input in units of lines, because
character-erase and line-delete processing
cannot be completed until a full line is
typed. Thus if a program attempts to read
some large number of bytes from a type-
writer, it waits until a full line is typed, and
then receives a notification that some
smaller number of bytes has actually been
read. All programs must be prepared for
this eventuality in any case, because a read
operation from any disk file will return
fewer bytes than requested when the end of
the file is encountered. Ordinarily, there-
fore, reads from the typewriter are fully
compatible with reads from a disk file. A
subtle problem can occur if a program reads
several bytes, and on the basis of a line of
text found therein calls another program to
process the remainder of the input. Such a
program works successfully when the input
source is a typewriter, because the input is
returned a line at a time, but when the
source is an ordinary file the first program
will have consumed input intended for the
second. At the moment the simplest solu-
tion is for the first program to read one
character at a time. A more general solu-
tion, not implemented, would allow a mode
of reading wherein at most one line at a
time was returned no matter what the input
source.*

The user interface

The command interpreter, called the
‘shell,” is the most important communica-
tion channel between the system and its
users. The shell is not part of the operating
system, and enjoys no special privileges. A
part of the entry for each user in the pass-
word file read by the login procedure con-
tains the name of the program to run ini-
tially, and for most users that program is the
shell. This arrangement is by now common-
place in well-designed systems. but is by no
means universal. Among its advantages are

*This suggestion may seem in conflict
with our earlier disdain of ‘records.” Not
really, because it only affects the mode
of reading information, not the way it is
stored. The same bytes would be ob-
tained in either read mode.

the ability to swap the shell even if the ker-
nel is not swappable, so that the size of the
shell is not of great concern. It is also easy
to replace the shell with another program,
either for testing purposes or to provide a
non-standard interface.

The full language accepted by the shell
is moderately complicated, because it per-
forms a number of functions. Nevertheless
the treatment of .individual commands is
quite simple and regular: a command is a
sequence of words separated by white space
(spaces and tabs). The first word is the
name of the command, where a command is
just an executable file. A full pathname,
with */° characters, may be used to specify
the file unambiguously, otherwise an
agreed-upon sequence of directories is
searched. The only distinction possessed by
a system-provided command is that it
appears in a directory in the search path of
most users. (A very few commands are
build into the shell.) The other words mak-
ing up a command line fall into three types:

(] simple strings of characters

° A filename preceded by ‘<’, *>’, or
>0

] A string containing a filename-

expansion character.

The simple arguments are passed to
the command as an array of strings, and
thereafter are interpreted by that program.
The fact that the arguments are parsed by
the shell and passed as separate strings gives
at least a start towards uniformity in the
treatment of arguments; we have seen
several systems in which arguments to vari-
ous commands are separated sometimes by
commas, sometimes by semicolons, and
sometimes in parentheses; only a4 manual
close at hand or a good memory tells which.

An argument beginning with ~<' is
taken to be a file which is to be opened by
the shell and associated with the standard
input of the command, which is the stream
from which programs ordinarily read input;
in the absence of <’ it is attached to the
typewriter. Correspondingly. a4 file name
beginning with “>" :-ceives the stundard
output of commands. *>>" designates a
variant in which the cutput is appended to
the file instead of replacing 1it. For this
mechanism to work it is necessary that 1/0

to a typewriter be compatible with I/0 to a
file; the point here is that the redirection is
specified in the shell language, in a con-
venient and natural notation, so that it is
applicable uniformly and without exception
to all commands. An argument specifying
redirection is not passed to the command,
which must go to some trouble even to dis-
cover if redirection has occurred. Other sys-
tems support 1/0 redirection (regrettably,
too few), but we know of none with such a
convenient notation.

An argument containing a file name
expansion character is turned into a
sequence of simple arguments which are the
names of files. The character “*’, for exam-
ple, means ‘any sequence of zero or more
characters;” the argument ‘*.c’ is expanded
into a sequence of arguments which are the
names of all files in the current directory
whose names end with the characters ‘.c’.
Other expansion characters specify an arbi-
trary single character in a file name or a

range of characters (the digits, say).

Putting this expansion into the shell
has several advantages: the code only
appears once, so no space is wasted and
commands in general need take no special
action; the algorithm is certain to be applied
uniformly. The only convention required of
commands which treat files is to accept a
sequence of file arguments even if the ele-
mentary action performed applies to only
one at a time. For example the command
which deletes a file could have been coded
to accept only a single name, in which case
argument expansion would be in vain: in
fact it accepts a sequence of file names

(however generated) and deletes all of
them. Only occasionally is there any
difficulty. For example, suppose the com-
mand ‘save’ transfers each of its argument
files to off-line storage. so ‘save *° would
save everything; this works well. But the
converse command ‘restore’ which might

bring all the named arguments back on-line
will not in general work as desired: ‘restore
** would bring back only the files which
currentlv exist (match the **7), rather than
all files saved.

One of the most important contribu-
tinns of Unix to programming is the notion
of pipes and especially the notation the shell
provides for using them. A pipe is in effect

on the Honeyweil had the same number of
bytes (each of nine bits rather than eight)
but there were 1280 bytes per block. With
otherwise idle machines, the real times to
accomplish the file copies were

system sec.

Unix 25 26.0*
1AS 19 19.8
H6070 9 234

The machine on which the 1AS test was run
had newer disks, with essentially the same
seek time, but with an average rotational
latency of 8.3 ms. instead of 12.5 for ours.
Also the time to transfer one block was .6
ms. instead of 1.9 for ours. If one corrects
the Unix time for this hardware difference,
the transfer rates become essentially the
same, and the Honeywell rate is not far off
when measured in blocks per second. No
general statistical significance can be
ascribed 1o this little experiment. Seek
time, for example, must surely dominate the
times measured, and there was in no case
any attempt to optimize the placement of
the input or output files. The results do
seem lo suggest, however, that the very
flexible scheme for representing Unix files
carries no great cost compared with at least
two other systems.

The real time per block of 1/0
observed in the little test mentioned above
was 26 milliseconds. Since the system over-
head per block is 6 ms., most of which is
overlapped, it would seem that the overall
transfer rate of the copy might be nearly
doubled if a block size of 1024 bytes were
used instead of 512. There are some good
arguments against this step. For example,
space ulilization on the disk would suffer
noticeably; doubling the block size would
increase the space occupied by files on our
system by about 15 per cent, a number
which increases in apparent importance
when we consider that the free space is
currently only S per cent. Increasing the

* For fair comparisons with the other
systems the copies were timed on a par-
ticular file. The figure of 26 ms. per
block is hcwever quite close to the
number obtained as an average for all
1/0 on the device over a period of hours
or days.

ms/hardware block

block stze would also torce a deciease the
size of the system’s builer cache and lower
its hit rate. However, this effect has not
been reliably estimated.

Moreover, the copy program is an
extreme case in that it is totally I/O bound,
with no processing of the data. Most pro-
grams do at least look at the data as it goes
by. Thus to sum the bytes in the file men-
tioned above requires 12 seconds of real
time, five of which are user time spent look-
ing at the bytes. To read the file and ignore
it completely requires 11 seconds, with
negligible user time. It may be concluded
that the read-ahead strategy is almost per-
fectly effective, and that a program which
spends as little as 50 microseconds per byte
processing its data will not be significantly
delayed waiting for 1/0.

The basic system interface conceals
physical aspects of file storage, such as
blocks, tracks, and cylinders. Likewise the
concept of a record is completely absent
from the operating system proper and nearly
so from the standard software. (By the term
‘record” we mean an identifiable unit of
information consisting either of a fixed
number of bytes or of a count together with
that number of bytes.) A text file, for exam-
ple, is stored as a sequence of characters
with new-line characters to delimit lines.
This form of storage is not only efficient in
space when compared with fixed-length
records, or even records described by char-
acter counts, but is also the most convenient
form of storage for the vast majority of
text-processing programs, which almost
invariably deal with character streams. Most
important of all, however, is that there is
only one representation of text files. One of
the most valuable characteristics of Unix is
the degree to which separate programs
interact in useful ways; this interaction
would be seriously impeded if there were a
variety of representations of the same infor-
mation.

We recall with a certain horrified fasci-
nation a system whose Fortran compiler
demanded as input a file with variable-
length records each of which was required to
be 80 bytes long. (The prevalence of this
sort of nonsense makes the following test of
software flexibility (due to M. D. Mcllroy)
interesting to try when meeting new sys-

tems. It consists of writing a Fortran (or
PL/I, or other language) program which
copies itself to another file, running the pro-
gram, and attempting to compile the result-
ing output. Most systems eventually pass,
but usually only after an expert has been
called in to mutter incantations which con-
vert the data files generated by Fortran pro-
grams to the format expected by the Fortran
compiler. In sum, we would consider it a
grave imposition to require our users or our-
selves, when mentioning a file, to specify
the form in which it is stored.

For the reasons discussed above, Unix
software does not use the traditional notion
of ‘record’ in relation to files, particularly
those containing textual information. But
certainly there are applications in which the
notion has use. A program, or self-
contained set of programs, which generates
intermediate files is entitled to use any form
of data representation it considers useful. A
program which maintains a large database in
which it must frequently look up constant-
sized entries given an index number may
very well find it convenient to store the
entries sequentially, in fixed-size units,
sorted by index number; with some changes
in the requirements, other file organizations
become more appropriate. It is straightfor-
ward to implement any number of schemes
within the Unix file system precisely because
of the uniform, structureless nature of the
underlying files; the standard software, how-
ever, does not include prewritten mechan-
isms to do it. As an example of what is pos-
sible, INGRES [Stonebraker et al.] is a rela-
tional database manager running under Unix
which supports five different file organiza-
tions.

The structure of the filing system

On each file system device such as a
disk the accessing informoion for files is
arranged in an array starting at a known
place. A file may thus be identified by its
device and its index wi.hi device. The
internal name of a file is., nowever, never
needed by users or their rrograms. There is
a hierarchically arrangec directory structure
in which each direciv.y contains a list of
names (character strings) anu the associawed
file index, referred implicitly to the same
device as the directory. Since dires’ s ‘es ure

themselves files, the naming structure is
potentially an arbitrary directed graph.
Administrative rules restrict it to have the
form of a tree, except that non-directory
files may have several names (directory
entries).

A file is named by a sequence of direc-
tories separated by /’ leading towards the
leaves of the tree. The path specified by a
name starting with ‘/° originates at the root;
without an initial ‘/’ the path starts at the
current directory. Thus the simple name ‘x’
indicates the entry ‘x’ in the current direc-
tory; ‘/usr/dmr/x’ searches the root for
directory ‘usr’, searches it for directory
‘dmr’, and finally specifies ‘x” in ‘dmr’.

When the system is initialized, only
one file system device is known (the ‘root
device’); its name is built into the system.
More storage is attached by ‘mounting’
another device, which contains its own
directory structure. When a device is
mounted, the root of its directory tree is
attached to a leaf of the currently accessible
hierarchy. For example, suppose a device
containing a subhierarchy is mounted on the
file ‘/usr’. From then on, the original con-
tents of /usr are hidden from view, and in
names of the form ‘/usr/...’ the ‘..." specifies
a path from the root of the newly mounted
device.

This file system design (described in
detail in [Ritchie and Thompson]) is cheap
to implement, is general enough to satisfy
most demands, and has a number of virtues;
for example, device self-consistency checks
are straightforward. It does have a few
peculiarities. For example, instantaneously-
enforced space quotas, either for users or
for directories, are relatively difficult to
implement (it has been done, but is not in
the standard system). Perhaps more seri-
ous, duplicate names for the same file
(‘links’) while trivial to .rovide on a single
device, do not work across devices; that is, a
directory entrv car~ot point to a file on
anotner device.

The implementation of mounted file
systems .5 generally adequate, except for the
vroblam, mentions. .o . that links can-
not be made across devices. Another limita-
tion of the design is that an arbitrary subset
of members of a given directory cannot be

PwB/uUNIX Papers
from the
Second International Conference on Software Engineering

CONTENTS

An Introduction to the Programmer’s Workbench
T. A. Dolorra and J. R. Mashey

Using a Command Language as a High-Level Programming Language
J. R. Mashey

Documentation Tools and Techniques
J. R. Mashey and D. W. Smith

A User’s Viewpoint on the Programmer’s Workbench
M. H. Bianchi and J. L. Wood

Copyright « 1976 by The Institute of Electrical and
Electronics Engineers, Inc. Reprinted, with permission,
from the Proceedings of the Second International
Conference on Software Engineering, October 13—15,
1976 (76 CH 1125-4 C).

G.4

. 14

.19

An Introduction to the Programmer’s Workbench

T. A. Dolotta
J. R. Mashey

Bell Laboratories
Piscataway, New Jersey 08854

Keywords: Program development facility, UNIX.

Abstract: The Programmer’s Workbench (pwB) is a specialized
computing facility dedicated to satisfying the needs of developers
of computer programs. The pwB might well be called a
“human-end” computer; like “front-end” and “back-end” com-
puters, it improves productivity by efficient specialization. It pro-
vides a convenient working environment and a uniform set of
programming tools to a diverse group of programming projects.
These projects produce software for various “‘target” computers,
including IBM System/370 and UNIVAC 1100 systems of much
greater size than the PwB machines. The projects range in size
from several people up to several hundred. The first PWB
machine was installed in October, 1973; usage, acceptance, and
interest have grown rapidly since that time. The pwB currently
supports about 110 time-sharing terminals, utilizing a network of
four DEC PDP-11 computers, all running the UNIX Time-Sharing
System. The pwB adds tools 10 UNIX to support large projects.
This paper gives an overview of the PwB and its development;
further details appear in the five following companion papers
[BIA76A, DOLT6B. KNUT6A, MAST6A, MAST6B).

1. INTRODUCTION

The Programmer’s Workbench (pwB) is a specialized computing
facility dedicated to supporting large software development pro-
jects. Although it performs many of the functions that have
been suggested for projects such as the Program Support Library
(LUP74A]l, the Development Support Library [BAaK75al, the
Automated Project Management Information System [BRA7S8I, or
the Software Factory [BRA75A), some of its goals are quite
different, and its implementation is even more so. Each of these
systems may be categorized as a program development facility
(PDF), ie.. a system or package of programs meant specifically to
support software development.

The pwp is a production system that has been used for
several years in the Business Information Systems area of Bell
Laboratories. It supports a user community of about 700 people,
and can handle 110 simultaneous on-line users. Aithough the
pPwH is stll growing and evolving at a rapid rate, accumulated
cxpericnce provides strong support for the viability, economy,
and effectiveness of its approach.

This paper cxplains the rationale for the existence ot the PWB
and describes its history and current status. [t also serves 10
supply the background for five companion papers, which, in
turn, supply examples and evidence that support the assertions
and opinions presented here.

2. THE PWB CONCEPT

The pwB concept embodies the following 1deas:

. e Program development and execution of the resuiting pro-

grams are two radically different functions. Much can be
gained by assigning each function to a computer best suited
tor it. Thus. as much of the development as possible should
be done on a computer dedicated to that task, while execu-
tion should occur on another computer, called a “host™ or
“largei | system

e Although there may be several target systems, possibly sup-
phied by different vendors, the PDF should present a single,

uniform interface to its users. Existing Pw8 targets include
IBM System/370 and UNIVAC 1100 computers; in some
sense, the PWB is a target also, in that it is built and main-
tained with its own tools.

e A PDF should be implemented on several computers of
moderate size, even when the target machines consist of very
targe systems. The rationale for this idea is given in sections
4.1 and 4.6. The pws currently is implemented as a network
of four large DEC PDP-11's (three 11/45’s and one 11/70), all
operating under the UNIX Time-Sharing System [RIT74Al.

Although the PWB is a special-purpose system in the same sense
as a “frunt-end” or “back-end” {CAN74A] computer, its goal is to
be a ‘*human-end” computer. As shown in Figure 1, it provides
the primary interface between program developers and their tar-
get computer(s) Unlike a typical “front-end,” the PWB supplies
a separate, uniform environment in which people perform their
work.

Users at

.

hardcopy and

CRT terminals

Figure 1. PWB Interface for Users

3. DISADVANTAGES—REAL AND IMAGINARY

The pwB approach of using small computers to build a PDF for
use with much larger targets has both good and bad points. For-
tunately, many of the potential disadvantages that caused con-
cern at the outset of the PwB project have not materialized. and
the actual disadvantages are far outweighed by the benefits
{Ivi7sal. The follewing points apply mainly to our implementa-
tion of the PWB; some may have little relevance for other PDFs.

3.1 Additional Hardware Costs

The first disadvantage is that cf requiring more computer
hardware and communications gear. This is a real disadvantage
only if one has target systems with excess capacity. In our case,
the reverse was true: overall hardware costs were probably
decreased by using several minicomputers instead of obtaining
additional large systems or upgrading those already installed. An
associated (and real) problem is that of the overhead of separale
contracts, maintenance, training, elc.

3.2 Increased Complexity of Total System

The second disadvantage is the increased number of nodes and
links in the resuliing network. There is a potential for disaster i
failure of a few components can make the rest unusable. This
can (and has sometimes been) a real problem, but is lessened. if
not completely eliminated, by providing appropriate redundancy.
and by configuring the overall system so that individual com-
ponents can perform useful stand-alone work. As an example,
when the PWB is up, users can edit programs and queue jobs for
fater transmittal to a target, even if that target or the communica-
tions links to it are down.

3.3 Data and Function Splitting

The third problem is that of splitting data and capabilities
between machines Communication links must be fast enough
to avoid unacceptable delays. Fortunately, it turns out that many
types of data need exist only in one place. For example, the PwB
concentrates on the handling of text files containing source pro-
grams, control stdtements, and documentation. A target only
keeps such things temporarily, but it does keep its own object
programs, which are seldom, if ever, seen by the PWB. :

3.4 Incompatibilities

Incompatible character sets and the resulting data conversion
costs are the fourth problem. In practice, this has been at most a
minor irritation. It may not be a problem at all if target and PDF
computers are chosen to use the same character sets.

3.5 Load Balancing

The fifth disadvantage is the possible loss of flexibility in load
balancing, because some resources are dedicated to specific tasks
and cannot be used for others.

3.6 Limits on Size and Speed

Large systems are capable of many actions far outside the range
of small ones. For example, as currently implemented, the PWB
does not offer interactive debugging on the target systems.

1.7 Duplication of Software

The final problem is that of the duplication of software, not only
between the larget and PWB, but between separate PWB proces-
sors. For example, each pwB CPU has an independent copy of
the system software. However, this software is relatively small,
and consumes much less space than user files and programs.

Another aspect of the problem is the need to distribute and
coordinate the installation of software on separate systems. One
compensation is the ability to test new or modified programs
Gncluding the operating system) on one system before installing
it on all the others.

4. ADVANTAGES

The pws approach is no panacea for many of the problems fac-
ing the software industry today. However, it appears to be very
cffective in the presence of certain conditions, each making the
pwit approach advantageous. It is hardly accidental that the pwB
onginated at an installation where a// these conditions exist.

4.1 Gain by Effective Specialization

The computer requirements of software developers often diverge
quite sharply from those of the wusers of that software. This
observation seems relevant to many kinds of software projects,
but is especially true in the production of large, interactive, data-
basc-oriented systems. In our opinion, the following are some of
the primary needs of software developers:

o Convenient, inexpensive, and continually available interactive
, computing services.

e A file structure oriented to interactive use, as opposed to one
grafted as an additional layer onto a batch-oriented structure.
The overall structure and individual files must be quickly
changeable, should avoid unnecessary involvement with
hardware details, and should never require explicit allocation
of storage. This observation derives from watching program
developers waste much effort on managing disk space, rather
than doing their work.

e Powerful, human-engineered, and surprise-free tools for scan-
ning and editing text files. Much programming activity con-
sists of manipulation of text

e A floxible and easy-to-use command language. 1t should be a
programming language in its own right, but still simple
enough to allow quick learning,.

¢ LExtensive document preparation facilities.

e Facilities to help solve small data base management problems
quickly and cheaply.

e Adaptability to rapid organizational and personnel changes.

e Guarantced service during normal working hours. PWR users
can survive more casily the temporary loss of a target
machine or commumcation hnks than the loss of the pws
itself.

On the other hand, users of the end product may have any or all
of the following needs:

e Hardware large and fast enough to run the end product, pos-
sibly under stringent real-time and deadline constraints.

e File structure and access methods that can be optimized to
handle large amounts of data.

e Transaction-oriented teleprocessing facilities.

e The use of a specific type of computer and operating system,
in order 1o meet any one of a number of possible, externally-
imposed requirements.

Although, in principle, it is possible to conceive of a system that
satisfies both of the above sets of requirements in a cost-effective
way, we are not aware of the existence of such a system. If it is
necessary to choose one set over the other, the developers often
lose the battle because the end users are usually paying for the
system. Given the fact that software costs already exceed
hardware costs, and are expected to do so to an even greater
extent in the future [BOE73A. DOL76C], this may be a very unwise
approach in the long run.

Given the prevailing costs and natures of large and small
computers, it would appear that small ones are much more suited
to the usual needs of program deveiopers. Furthermore, assum-
ing that a PDF should have duplicated systems in order to
guarantee service, it seems logical to duplicate small, cheap com-
puters instead of large, expensive ones.

4.2 Multi-Vendor Installations

It is desirable to have a uniform set of tools in order to ease
training and to permit the transferral of personnel between vari-
ous projects. The creation of such a set of tools is made difficult
by the differences in file structures, command languages, and
communications protocols of the various targets. These
differences are very troublesome; they are qualitatively different
from problems encountered in transferring, say, COBOL pro-
grams between various target systems. Nevertheless, they must
be dealt with. As a result, a few PWB tools are target-specific,
but, wherever possible, they possess target-independent user
interfaces.

4.3 Changing Environments

Changes to hardware and software occur and cause problems
even in single-vendor installations. Such changes may be disas-
trous if they affect both development and production environ-
ments at the same time. This problem is at least partially solved
by using a separale program development system. The approach
also helps programmers “'get going™ on a project before the pro-
duction hardware becomes availabie.

As an example, over the last year, there have been major
reconfigurations in both the hardware and software of all of our
target systems, and in the geographic work locations of all of our
users. Because of the “‘insulation™ that pwB provides, most of
our users were relatively unaffected by these changes.

4.4 Effective Testing of Terminal-Oriented Systems

It is difficult enough to test small batch programs; effective test-
ing of large, interactive. data base management systems is far
more difficult. It is especially difficult to perform load testing
when the same computer is both generating the load and run-
ning the application program being tested. It is much simpler
and more realistic to perform testing with the aid of a separate
computer.

4.5 Ayailability of Better Software

Many time-sharing systems for large computers often retain
significant vestiges of batch processing. Of necessity, some of
them have evolved over a long period of time, and may contain
design elements that would not exist if they were redone in the
hght of current knowledge. Separation of support functions onto
an appropniale minicomputer may offer an casy way 0 gamn
access to more up-to-date software. For example, much of the
stimulus for the PWB arose from the desire to make use of the
simple, elegant, and powerful UNIX Time-Sharing Sysiem.

4.6 Human Orientation and Sizing

In many cases, operating systems, especially interactive ones,
have become incredibly complex and incomprehensible. Small
systems can be made more comprehensible, friendly, and adap-
tive, and an individual user can have more impact on their
development. Many people welcome any movement in the
direction of simplicity: “*Small is Beautiful”” applies to this area, as
well as many others [SCH73Bl.

S. CURRENT STATUS

This section represents a snapshot of the status of the pwB as of
June, 1976. Due to the continuing, rapid growth in its usage,
this snapshot will soon to be obsolete.

5.1 Hardware Configuration

Figure 2 displays the current structure of the pwB and of its tar-
get computers.

ELECTRO- XDS
STATIC Ts5
PHOTO- PRINTER
TYPE-

SETTER [
\ RJE
PWB A 1BM

POP TEST 370/
11/45 158
)
% .
\DMA
N &
DMA N Y
PWB D IBM
PP RIE 370/
11170 168
560 Mb
160 Mb
DISK §: DMA Q} DISK
\
N\
PWB B
Nop RJE | UNIVAC
11/45 TEST 110
40 Mb
DISK

Figure 2. PWB Hardware Configuration

Several notes are in order regarding Figure 2:

e Systems A, B, and D are all interconnected wvia direct
memory-to-memory (DMA) links.

e The communications links between PwB and targets consist of
a number of 4 8kb, 9.6kb, and 48kb channels; these links are
actually implemented as sub-channels of several multiplexed
230kb hines

e Fach PP has 124K words of memory (248K bytes). Sys-
tems A, B, and D are located in one building (Piscataway,
N J). the IBM and UNIVAC systems are in another

building a few miles away; System C is located about 20 miles
away (at Murray Hill, N. J)), as is the XDS SIGMA 5.

e System A is used primarily by the people who develop and
support the PWB, by users of some testing facilities (DOL76BI,
and by vsers of the phototypesetter.

e System B is primarily used by the developers of a very large,
UNIVAC-based system, and also supports additional docu-
mentation activities.

e System C supports a large 1BM-based project, as well as some
members of a project using XDS and other computers.

e System D (a PDP 11/70) is used by developers of other
IBM-based systems. Some additional text processing (typing
pool) is also done here.

e Systems B and D share disk drives and each can easily be
used as backup for the other.

e Temporarily, System C has no convenient backup. This situa-
tion will be rectified in the near future. In the next upgrade,
Systems A and B will become PDP 11/70's, and a PDP 11/45
(System E) will be moved to join System C.

e FEquivalent monthly lease & maintenance costs total approxi-
mately $26,000 for these four systems, exclusive of terminals
and communicattons lines.

5.2 Sample Usage Data
Figure 3 displays data obtained at the end of June, 1976.

Prime

Login Direc- Dial Connect

System Names Files tories Ports Hours/Day
A 134 16266 1334 16 71

B 160 27924 1828 26 124

C 156 10430 872 20 121

D 224 32254 2016 48 312
Totals 674 86874 6050 10 628

Figure 3. PWB Usage

In many cases, the same login name is used by many people who
work together. In a few cases, a single person possesses several
such names. Some login names exist for training new users and
for experimental use, and are used only occasionally.

The connect times are for 8-hour prime shifts only and
represent averages computed from one month’s totals. Of the
880 possible prime connect hours, 71% were actually consumed.
[t is difficult to raise this percentage significantly: during some
parts of the day, a// ports are in use. The prime shift accounts
for approximately 75% of all connect hours. Usage during other
shifts includes stand-alone and other testing, maintenance pro-
cedures, and execution of some extremely time-consuming user
programs that need no human interaction.

6. CURRENT FACILITIES
6.1 UNIX

Much of the impetus tor the development of the pwB arose from
the desire to utilize the UNIX environment. Although the basic
flavor of UNIX has been maintained as much as possible within
the pwg, extensions have been necessary to make it more suit-
able as the operating system for the pwB. The PWB is currently
the largest known UNIX installation, in terms of number of sys-
tems, disk space, and number of users: some changes were
needed to support such an atypically large user community. In
particular, much effort has gone into improving the robustness
and efficiency of the operating system itself. 1t is a tribute to the
clarity and adaptability of UN1IX that it can be easily adjusted to a
wide range of configurations.

Various UNIX commands were changed in significant ways.
The editor was modified to better support users dealing with
tixed-format source programs and data. Many additions and

modifications were made to increase the performance of the
command interpreter, improve it for use by multi-person teams,
and upgrade its capabilities as a programming language [MAS76A].

6.2 Remote Job Entry (RJE) Facility
The Remote Job Entry (RIE) facility includes the following:

e A command used to generate job streams for target systems:
it performs nested file inclusions, keyword substitutions,
prompting, and character translation (e.g.. ASClI to EBCDIC).
It also includes a generalized interface to other PWB com-
mands, so that all or parts, of job streams can be generated
dynamically from the output of other UNIX commands.

e Transmission subsystems used to handle all communications
activity: these are target-specific, but are not visible to the
users.

e Status reporting: users may inquire about the status of jobs
on the target systems, and can elect to be notified in various
ways (e.g.. on-line or in absentia) of the occurrence of major
events in the processing of these jobs.

e Output retrieval: users may route the targel’s output to
remote printers, or may elect to have all or part of it returned
into PwB files. These files can be examined by various
scanners, or manipulated using many different commands.

e Supporting tools: some users need to create their own job
streams. Others want only (o transfer files among systems or
print PWB files on target system printers. Various utility pro-
grams exist to simplify these functions. Other utilities are
used to aid in converting existing target source programs 1o
formats more appropriate for the pwB. In particular, sequence
numbers and trailing blanks are eliminated, and other strings
of blanks are converted to tabs if possible.

IBIAT6A] includes a brief description and examples of RJE usage
as seen by the users

6.3 Source Code Control System (SCCS)

The Source Code Control System permits unusually powerful
control over changes to modules (ie., files of text—source code,
documentation, data, etc.). It records every change made to a
module, can recreate a module as it existed at any point in time,
controls and manages any number of concurrently existing ver-
sions of a module, and offers many useful audit and administra-
tive features. SCCs is described in [ROCT5A).

6.4 Modification Request Control System (MRCS)

Any extensive software project usually evolves mechanisms for
requesting changes, reporting crrors, and tracking the progress of
muodifications. Many projects have created systems for handling
these items, but the systems are often specific to one project.
MRCS 18 a generalized system intended for use by many projects,
and it s described in [KNUT6A)

6.5 Document Preparation

UNIX has traditionally provided good documentation tools. Addi-
tuonal commands have been added, and the existing tools put to
usc in various novel ways. The pwB currently supports a great
dcal of documentation work, for programmer and non-
programmer alike. Many of the documentation efforts are
difficult to distinguish from data base applications. Descriptions
for the tools and techniques of document preparation are given
1N {MAST68].

6.6 Test Drivers

The pwB is often used to run various kinds of tests of IBM and
UNIVAC data base management systems and of data base appli-
cations implemented on these systems. The PWB contains two
test drivers that can generate repeatable tests for very complex
interactive systems; these drivers are used both lo measure per-
formance under well-controlled load and to help verify the initial
and continuing correct operation of these systems and applica-
tions while they arc being built and modified. One driver

simulates a Teletype® clustier controller of up to four terminals,
and is used 1o test programs running on UNIVAC 1100 series
machines. The other driver (LEAP—(DOL768]) simulates an 1BM
3270 cluster controller managing up to eight terminals.

7. HISTORY AND DESIGN PHILOSOPHY
7.1 Brief History

The PwB concept was suggested in April, 1973, and the first PDP
11/45 was installed in October, 1973. This machine was used at
first by the development department for its own education and
experimentation, while the original RJE, SCCS, and LEAP com-
ponents were constructed. Additional systems were installed in
October, 1974 and in May, 1975, The PDP-11/70 arrived in
October, 1975; further upgrades are planned for 1976.

At first, the PWB was an experimental project that faced con-
siderable indifference from a user community heavily oriented to
large computer systems, working under difficult schedules, and a
bit wary of what then seemed like a radical idea. However, as
word spread about the system, demand for service began 1o
outrun our ability to supply it. When forced to make six-month
usage forecasts, users consistently underestimated the extent of
their usage, because they kept discovering unexpected applica-
tions for PwB facilities. New hardware was (and is) continually
being acquired to meet the demand.

Several large projects are awaiting the arrival of additional
hardware before they can completely convert to the PWB. We
expect the growth of PwB facilities at Bell Laboratories to con-
tinue in the foreseeable future.

7.2 Design Philosophy

Early in the pwB development cycle, many spirited discussions
were held regarding the nature of the overall design approach to
be taken. One proposed approach was that of first designing the
pPWB as a completely integrated facility, then implementing it, and
then obtaining users for it. A much different approach has actu-
ally been followed. Its elements are:

e Get users on the system quickly, and let their needs and
problems drive the design.

e Build software quickly, and expect to throw much of it away.

e Build many small, independent programs, rather than large,
interrelated ones. This fits well with the nature of UNIX.

e Use as few different file formats as possible, and keep them
simple. This avoids the need for a plethora of “‘utilies™
needed to deal with a wide variety of formats, and maximizes
the use of existing commands.

e Monitor user problems and rearrange functions or add new
ones as needed.

e Design each new feature to be as consistent with existing
ones as possible. in order to maintain an c¢nvironment that is
simple, coherent, and conducive to productlive use

e When incompatible changes are necessary, let them denve
from user demands, or make sure they offer so much benefit
that users will be glad to have them.

This approach may appear chaotic, but evidence to support 1ls
desirability can be found in [BRO7SA, p. 116] and [NAUGIA pp 19.
2232, 40. 41, 47, 73. 95), for example. In praclice, it seems 10 work
better than designing “perfect” systems that turn out to be
obsolete or unusable by the time they are implemented. Of
course, we are lucky in being able to utilize an operating system
that both permits and encourages this kind of approach.

8. CONCLUSIONS

We have given a brief summary of the rationale for the PWB, s
advantages and disadvantages, its current status. and the philoso:
phy behind the approach taken. No claim is made that the Pwt
can solve everyone's programming problems. We do claim tha
the pws approach is quite appropriate for many problems

cxisting today, that the directions of change 1n the computer
imdustry IDOL6CE may make it even mare applicable in the
future, and that 1t does handle many real problems, as evidenced
by cansiderable ive expenence

ACRNOWILEDGEMENTS

The pwis concept wis fiest suggested by B L Tvie fivizsal. The

authors of the five compamion papers, as well as many of our

other colleagues, have contributed to the design, implementation,

and continuing improvement of the pwg. UNIX itself, without

which pwB could not have been built, was developed by

members of the Bell Laboratories’ Computing Science Research

Center. Finally, much of the success of the PwB can be atiri-

buted to a user population willing to try new things and to give

us the feedback necessary to make these things useful.

REFERENCES

All references for this and the five companion papers [BIAT6A,

DOLToH, KNUT6oA, MASTOA, MAST6B] are given below.

ADRT7IA Apphed Data Rescarch. The LIBRARIAN- User Reference
Manual. Report P112L, Applied Data Research, Inc., Prninceton,
N J., 1973

BAKTSA Baker. F. T. Structured Programming in a Production Program-
ming Enviconment. Proc. Int. Conf. vn Reliable Sofiware, April
21-23. 1975, 172-85.

BIATOA Bianchi, M. H., and Wood, J. L. A User's Viewpoint on the
Programmer's Workbench. Proc. Serond Int. Conf. on Software
Engineering, Oct. 13-15, 1976

BOET3A Boehm, B. W. Software and us Impact: A Quantitative Assess-
ment. Datamation 19, 5 (May 1973), 48-59.

BRATSA Bratman, H. and Court, T. The Sofiware Factory. Compurer 8. 5
(May 1975), 28-37.

BRATSB Bratman, H. Automated Techmques for Project Management and
Control. In Pracnical Strategies for Developing Laree Software Sysiems,
ed. E. Horowiiz, Addison-Wesley, Reading. Mass.. 1975, 193-211.

BROISA Brooks, F P, Jr. The Mvyihical Man-Month. Addison-Wesley,
Reading, Mass . 1975

BRUT6A Brunt. R F.and Tufls, D £ A User-Oniented Approach to Con-
trol Languages Software — Practice and Experrence 6, 1 (Jan. 1976),
93-108.

CANTIA Cunaday, R H., Harnson, R D, tvie, E L. Rvder. J. L. and
Wehr. L. A A Back-End Computer for Data Base Manuagement
Comm_ 4C M 1710 (Oct 1974), 575-82.

COLT6A Colun, A W Fxpenments with the KRONOS Control Language.
Software — Pracnice and Experience 6.1 (Jan. 1976), 133-36.

COMI6A COMTEN HyperFASTER Concepts and Facitities Manual COM-
TEN. Inc . 2 Research Court, Rockville, Md.

COWTSA Cowan, R M Burroughs B6700/B7700 Work Flow Language In
Command L anguages —Proc. 1FIP Working Conference on (ommand
{ anguages. ed. C Unger, North Holland, Amsterdam, 1975, 153-66.

NDECT4A Digiial kEguipment Corp - Option Description, DQS11-A/B Com-
munications Controller Form CSS-MO-F-32-3A, Digital Equip-
ment Corp . Maynard, Mass., 1974

DOLOYA Dolota, T A, and Irvine, C. A. Proposal for a Time Sharing Com-
mand Structure. In Jaformation Processing 68— Proc. [FIP Congress
196K, vol. 1, North Holland, Amsterdam, 1969, 493-98

DOLT6A Dolotta, T A, and Mashey,] R An Introduction to the
Programmer’s Workbench. Proc. Second [m. Conf on Software
Engmeerne, Oct 13-15, 1976

DOL76B Dolona, T A, Licwinko, 1. S, Menninger, R. E., and Roome, W,
> The LEAP Load and Test Driver. Proc. Second Int. Conf. on
Software Engineering, Oct. 13-15. 1976,

DOLT6C Dolotta, T A, et al Dara Processing in [19X80-1985. Wiley-
Interscience, New York, 1976

GREGOA Greenbaum, H) 4 Semularor of Muluple Interactive Users 1o Drive
a Dime-Shared Computer System. M 1T, Cambndge, Mass., 1969
Cavarld from N IS, AD 686 988)

IBM72A

IBM71A

IBM /iy

1WM74A

IBM75A

IBM758

IBM75C

IBM76A

IVITSA

JAMTS5A

KER75A

KER75B

KER76A

KNU76A

LUPT4A

MAST6A

MAS76B

NAU69A

0S574B

PUL68A

RIT74A

RIT75A

ROC75A

SCH73B

SIM74A

THO75A

THO75B

UNGT75A

IBM OS/VS Utihities Form GCIS-0005, 1BM Corp., White Plains,
N Y 1972

IBM Intinduction 1o Programnmng the 1BM 3270 Form
GO 2T 6999 1BM Corp . Whine Phuns, N Y 1973

IBM IBM 1270 Tatanmation Display System Component Descnp
ton boan GAR2Z 2149 TBM Corp . White Plisns. N Y 1973

IBM IMS/VS Svstem Operator s Reterence Manual Form
SH20-9028 IBM Curp . White Plains, N Y 1974

IBM. IMS/VS System Programnmung Reterence Maaual. Form
SH20-9027, IBM Corp.. White Plains, N Y 1975

IBM. IMS/VS General Information Manual. Form GH20-1260,
IBM Corp . White Plains, N Y. 1975,

IBM. DB/DC Dnver Sysiem General [nformation Manual Form
GH20-16139, IBM Corp., White Plains, N. Y, 1975

IBM. Teleprocessing Network Simulator (TPNS) Program Refer-
ence Manual. Form SH20-1823. IBM Corp, White Plains, N Y,
1976.

Ivie, E. L. Thc Programmer's Workbench—A Maichine for
Software Development. Unpublished Report, Bell Laboratones,
May 19, 1975,

James, D L. and Lamben, D. W. Remote-Termmnal Emulator
(Desiga Verrhcanon Mode!)—introduction and Summary. Mitre Corp.,
Bedford, Mass., 1975 (avail from NTIS: AD A007 827).

Kernighan, B. W._ and Plauger, P. j. Software Tools. Proc. First
Narionai Conterence on Software Engineering, Sept 11-12, 1975, 8-13
Kernighan, B. W., and Cherry, L. L. A System for Typesetting
Mathematics. Comm. 4CM /8.3 (Mar. 1975), 151-56

Kernighan, B. W. and Plauger, P. J Software Tools. Addison-
Wesley, Reading, Mass . 1976

Knudsen, D. B, Barofsky, A., and Satz, L. R. A Modification
Request Control Svstem. Froc. Second Ini. Conf. on Software
Engineering, Oct. 13-15. 1976

Luppino. F M. und Smuth, R. L Prcgramming Support Library
{PSL.) Functional Requiremenis. Siructured Programming Series, vol.
5. IBM Federal Systems Div., 1974 (avail. from NTIS;
AD A003 33%)

Mashey, J. R. Tlsing a Command Language as a High-Level Pro-
gramming Language. Proc. Second Ini. Conf. vn Sotiware Engineering.
Oct. 13-15, 1976.

Mashey, J. R.. and Smith, D. W. Documentauon Tools and Tech-
niques. Proc. Second Int. Cont. on Software Engineenng. Oct. 13-15.
1976

Naur, P. and Randell. B., eds. Sotrware Engmeering. Scienutic
ARairs Division, NATO, Brussels 39, Belgium, 1969

Ossanna, J. F. NROFF User's Manual. 2nd ed. Unpublished
Report. Beil Luboratories, September 11, 1974

Pullen. E W, and Shuttee, D. F. MUSE. A Tool tor Testing and
Debugging a Muiti-Terminat Programming System Proc. 4FIPS
Spring Joint Computer Conference. vol. 32, 1968, 491-502.

Ritchie, D. M., and Thompson, K. The UNiX Time-Sharing Sys-
tem. Comm. 4CM 177 (Julv 1974), 365-75.

Ritchie, D M. C Reference Manual. Unpublished Report, Bell
Laboratories, February 1. 1975,

Rochkind, M. J. The Source Code Controt System. [EEE Trans. on
Sottwore Engineerin; SE-1. 3 (Dec 1975), 364-70

Schumacher, £ F Small s Beauntul. Harper & Row, New York.
1973

Simpson, D ed. Jod Control | unvuage, — Past. Present, and Future
National Computing Centre Ltd. Quay House, Quay St., Manches-
ter, England, 1974.

Thompson, K. The UNIX Command Language. In Structurcd
Programming —Intemanional Computer State of the drt Report,
Infotech Information Ltd.. Maidenhead. Berkshire. England. 1975,
375-84.

Thompson, K., and Ritchie, D M. UNIX Progrummer’s Manual
6th ed. Unpublished Report, Bell Laboratories, May. 1975.

Unger, C..ed. Command Languages - Proc 1FIP Waorking Conference
on Command Languages. Norih-Holland, Amsierdam, 1975

Using a Command Language as a High-level Programming Language
J. R Mashey

Bell Laboratornies
Piscataway, New Jersey 08854

keywords: Command languages, command interpreters, UNIX.

Abstract: The command language for the Programmer’s Work-
bench (pwB) utilizes an extended version of the standard UNIX
shell program, plus commands designed mainly for use within
shell procedures (command files) Moditications have been aimed
at amproving the use ol the shell by large programming groups,
and making 1t even more convemient to use as a high-level pro-
gramnung language. In line with the philosophy of much exist-
ing UNIX software, an atticmpt has been made to add new
features only when they are shown necessary by actual user
experience 1n order to avoid contaminating a compact, elegant
system through “creeping featurism.” By utihizing the shell as a
programming language, PWB users have been able to eliminate a
great deal of the programming drudgery that often accompanies a
large project. Many manual procedures have been quickly,
cheaply, and conveniently automated. Because it is so easy 1o
create and use shell procedures, each separate project has tended
to customize the general PWB environment into one tailored 1o its
own requirements, organizational structure, and terminology. A
summuary is given of the usage patterns revealed by a survey of
1.725 existing shell procedures.

1. INTRODUCTION

A good operating system command language (CL) is an invalu-
able tool for large programming projects. A common occurrence
in such projects is the diversion of significant resources from
building the end product to creating internal support programs
and procedures. I1f a cL 1s a flexible programming language, it
can be used to solve many internal support problems, without
requiring compilable programs to be written, debugged, and
maintained. Its most important advantage is the ability to do the
Job now-.

The Programmer's Workbench (PWB) environment [IVI75A,
DOL76A] supports projects ranging in size from several people to
thosc involving hundreds. The PwB CL is a modified version of
the UNIX shell language [RIT74A. THO75A). Experience with it has
shown it 1o be an effective tool for automating procedures and
climinating programming drudgery. Nearly two thousand CL pro-
cedures have been inspected to observe real-life usage. Many of
the assertions made in this paper are based on the results of this
survey.

Existing ¢is include a wide range of structures and abilities,
ranging from those quite similar to assembly language to a few
having the appcarance and abilities of high-leve! programming
languages IBRUT6A, COWTSA). A diversily of viewpoinls exists
regarding the relative importance of various CL characteristics
IDOL6YA. SIMT4A. UNGTSAL Several years of PWB experience sug-
gests that the following qualities are valuable tn a CL:

e Fase of on-hne use—Many advantages can be gained by
replacing keypunches with terminals, even when jobs are
prepared for batch execution To support this approach, CL
syntax should emphasize simplicity and avoid the need for
redundant typing.

o Convement use of the same language as an on-line CL and as a
programmung language —1t must be possible to build and store
sequences of commands ((L procedures) that can be invoked
at a later time

e Interchangeability of programs and CL procedures—No user

should need to know whether a given command is imple-
mented as a compiled, executable program or as a CL pro-
cedure. Syntactic differences should be avoided.

e Ease of creation and mainienance of CL procedures—It shouid

require very little effort to write a CL. procedure, save it for
later use. and maintain it. The overhead of writing a small
procedure should be especially small; as will be seen later,
many procedures are only a few lines long.

e Organization of CL procedures—It must be possible to share

easily the use of procedures among people in a way consistent
with organizational structure.

e Programming language features—It must be possible to write

procedures with convenient conditional branching, looping
argument handling, variables, string manipulation, and occa-
sional arithmetic. Thus, many of the capabilities of a typica
procedural language are necessary for a good CL. However
they may not be sufficient: a CL. may need additional capabili
ties, a somewhat different syntax, and a radically different se
of priorities concerning the importance of various constructs
For example, a crucial CL capability is that of connecting exe
cuting programs in a variety of ways. Pattern-matching anc
other string manipulation operations are quite useful. Arith
melic operations are also helpful, but seem to be much les
important than the others.

e Separation from operating system—A CL interpreter should nor
mally be an ordinary command, treated like other commands
and definitely nor embedded in the heart of the operating sys
tem. The operating system should nor be viewed as an imple
mentation of the CL, but as an environment that can suppo!
a variety of good cLs. Different users should be able to hav
different CLs if they feel like it. This approach permits expei
imentation and evolution without bothering other users. |
often leads to a “survival-of-the-fittest” behavior. Mutation
occur, live, and die on their merits, and eventually bree
hybrids containing features found useful from actual practice

2. OVERVIEW OF THE UNIX ENVIRONMENT

Full understanding of some later discussions depends on fami
jarity with UNIX. [RIT74A] is a definite prerequisite, and it woul

- be helpful to read at least one of [KER75A, KER76A. THOT5AL. Fc

completeness, a short overview of the most relevant concepts |
given below.

2.1 File System

The UN1X file system’s overall structure is that of a rooted tre
composed of directories and other files. A file name 1s a sequenc
of characters. A path name is a sequence of directory names fo
lowed by a file name, each separated from the previous one by
slash (/™). If a path name begins with a **/”, the search for th
file begins at the root of the entire tree; otherwise, it begins :
the user's current directory. (The first type of name is often calle
an absolute path name because il is invariant with regard to tt
user's current directory.) The user may change current dires
tories at any time by using the chdir command. In general, fi
names and path names can be used in the same ways. Som
sample names are:

/ root of the entire file structure.

/bin directory of c¢ommonly used public com-
mands.

/u0/tnds/tl/jtb/bin a path name typical of multi-person program-
ming projects. This one is a private directory
of commands belonging to person “jtb” of
group “tf”" in project “tnds™.

bin/umail a name depending on the current directory:
it refers to file “umail” found in subdirectory
“bin" of the current directory. If the current
directory is /", it names “/binjumail”. If
the current directory is “/u0/tnas/tf/jtb™, it
names “'/u0/tnds/tf/jtb/bin/umail™.

large projects require the ability to quickly and easily rnodify
directory structures to fit changing needs. In particular, the
“current directory” feature makes it possible for each person to
move around in the file system and work where most con-
venient. This allows simple names to be used. even when the
current directory is many levels deep in the structure. It also
permits individual directories to remain fairly small, lessening the
load on both human and computer; i.e., “locality of reference” is
good for the performance of borh.

2.2 Processes and Their Interactions

AN image 1s a computer execution environment, including core
image, register values, current directory, status of open files,
information recorded at login time, and various other items. A
process is the execution of an image; most UNIX commands exe-
cute as separate processes. One process may spawn another
using the fork system call, which duplicates the image of the
original (parent) process. The new (chuld) process may continue
cxecution of the image, or may abandon it by issuing an exec
system call, which initiates execution of another program.

Processes use independent address spaces and data
segments,! and communicate in a limited number of wavs®

e (Open files—a child inherits the parent’s open files, and can
manipulate the associated read/write pointers thus shared
with the parent. This ability pcimits processes to share the
use of 4 common input stream in various useful ways. In
particular, an open file possesses a pointer that indicales a
location in the file, and is modified by various operations.
Read and write copy a requested number of bytes from (to) a
file, beginning at the location given by the current value of
the pointer. As a side effect, the pointer is incremented by
the number of bytes transferred, yielding the effect of
scquential [/0. Seek can be used to obtain random-access
1/0); 1t sets the pointer to an absolute location within the file,
or to a location offset from the end of the file or the current
pointer location.

e Arguments—a sequence of arguments (character strings) can
be passed from one program to another via exec.

e Retun code —when a process terminates, it can set a numeric
return code that is available to the process’s parent.

e Files—some programs arrange conventions to share files in
various ways, or to use files of specified names.

e Pipes—pipes are interprocess channels that are similar to files
in ways of access, but allow very convenient handling of the
“producer-consumer” relationship between programs execut-
ing in parallel. The “producer™ writes into one end of a pipe,
while the “consumer” empties it by reading from the other
ond. Because UNIX handles details of buffering and syn-
‘hronization, neither program needs explicit information
about the other’s activities.

1 The tent segment of a reentrant program is sharea by all processes
enecuting that program Almost all programs are reentrant.

Limiting interprocess communication to a small number of
well-defined methods is a great aid to uniformity, understandabil-
ity, and reliability of programs. It encourages the packaging of
functions into smal} programs that are easily connected. The
pipe mechanism s especially desirable, both for human
comprehension and for computer performance (THO7SA, KERTS5A,
KERT76A].

3. SHELL BASICS

Most UNIX users utilize the CL provided by a program called the
shell. 1t reads input from a terminal or file and arranges for the
execution of the requested commands. The shell is a small pro-
gram {about 20 pages of C code); many CL functions are actually
supported by independent programs that work with the shell, but
are not built into it. The discussion is adapted from [THOT5A.
THO758).

3.1 Commands

A command is 2 sequence of non-blank arguments separated by
bianks. The first argumen: specifies the name of the command
to be executed; the remaining items are passed as arguments to
the command executed. The following line requests the pr com-
mand te print files a, 0, and ¢:

prabc

If the first argument names a file that s marked as executable!
and is actually a load module, the shell (as parent) spawns a new
(child) process that immediately executes that program. If the
file is marked executable, but is neither a load module nor a
directory, it is assumed to be a command file (shell procedure). A
command file is a file of ordinary text—shell command lines and
possibly liries to be read by other programs. In this case, the
shell spawns a new instance of itself to read the file and execute
the commands includad in it.

From the user’s viewpoint, executable programs and shell
procedures are invoked in exactly the same way. The shell
determines which implementation has been used, rather than
requiring the user to do so. Most operating systems can execute
existing load modules without requiring the user to <tate the
source language used to produce the load module. CL proceaures
are treated in the same way, for several reasons. First, the
existence of two distinct types of commands is confusing to the
novice user. Second, anv user becomes irritated when forced to
type repetitive information, especially when the system already
has it. Finally, the implementation of a given command may
well change with time, typically from shell procedure to compiled
program. This change could cause great pain to the users if it
required the invocation meihod to change also.

3.2 Finding Commands

The shell normally searches for comimands in a way that permits
them to be found in thiee distinct locations in the file structure.
It first attempts lo use the command name without modification,
then prepends the string “/bin/” to the name, and then
“fust/bin/”. If the original command name is a simpie one, the
effect is to search in order the current directory, “/bin™, and
“/usr/bin”. A more complex path name may be given, cither to
locate a file relative to the user’s current directory, or Lo access
one via an absolute path name.

This mechanism gives the user convenient execution of pub-
lic commands and of commands in or “near” the current direc-
tory, as well as the ability to execute any accessible command,
regardless of location in the file structure. The search order per-
mits a standard command to be replaced by a user's command
without affecting anyone else.

2. As shown by a set of flag bits associated with the file.

3.3 Command Lines

A series of commands separated by | make up a pipeline. Fach
command s run as a separalc process connected to ats
neighbor(s) by pipes, ic., the output of each command (except
the last one) becomes the input of the next command in hne. A
filter is a command that reads its input, transforms it in some
wity, then wriles il as output. A pipeline normally consists of a
senes of fillers. Although the processes in a pipeline are permit-
ted 1o execute in parallel, they are synchronized to the extent
that cach program needs to read the output of its predecessor.
Many commands operate on individual lines of text, reading a
linc. processing it, writing it, and looping back for more input.
Some must read larger amounts of data before producing output;
sort 1s an example of the extreme case that requires all input to
be read before any output i1s produced.

The following is an example of a typical pipeline:

nroff —mm text | col | reform

Nroff is a teat formatter whose output may contain reverse line
motions. col/ converts them to a form that can be printed on a
terminal lacking reverse motion, and reform is used here to speed
printing by converting the (tab-less) output of cof to one contain-
ing horizontal tab characters. The flag “—mm” indicates one of
many possible formatting options, and “text” is the name of the
file to be formatted.

A simple command in a pipeline may be replaced by a com-
mand line enclosed in parentheses **()" in this case, another
instance of the shell is spawned to execute the command hine so
enclosed. This action is helpful in combining the output of
several sequentially executed commands into a stream to be pro-
cessed by a pipeline. The following line prints two separate
documents in a way similar to the previous example.

(nrofl —mm textl; nroffl ~mm text2j | col | reform

If the last command in a pipeline is terminated by a semicolon
() or new-line, the shell waits for the command to finish
before continuing execution. It does not wait if the command is
terminated by an ampersand (“&"); both sequential and asyn-
chronous execution are thus allowed. An asynchronous pipeline
continues execution until it terminates votuntarily, or until it is
killed (by one of various means). A command line consists of zero
or more pipelines separated by semicolons or ampersands.

For example, the following command line is used to run tim-
ing tests on an emply system. Makeload is a cyclic shell pro-
cedure used to generate a heavy, repeatable load of disk accesses,
and fest] performs timing tests on various programs. The shell
runs fest] with no load on the system, then starts one makeload
10 create a single unit of disk load for the second test/. Another
makeload is invoked to yield two units of ioad for the last rest].

test]; makeload & testl; makeload & testl

Each makeload runs until explicitly killed by the -user. A
minimum of three processes are active by the time the final resi/
is run (two makeloads and one rest]). 1n this particular case, all
commands are implemented as shell procedures, so there is a
separate invocation of the shell for each of the five commands
on the above line, and each shell may well spawn hundreds of
additional processes. Thus, a single user may consume all sys-
tem resources by creating large numbers of long-lived asynchro-
nous processes.’ More typical uses of “&™ include off-line print-
ing, background compilation, and gencration of large jobs to be
sent 10 remote computers.

3 Lockout of other users in this way occurs several limes per year on PWB
systems, 1t is usually caused by overly enthusiastic beginning users.

3.4 Redirection of Input and Output

When a command begins exceution, at usually expects three files
1o be already open, a “standard mput” o “standard output,” and
a “diagnostic output.” When the user’s ongimal shell s stanted,
all three are opened to the user’s terminal A child process no
mally inherits these files from its parent. The shell peronts them
to be redirected elsewhere before control is passed to an invoked
command.

An argument of the form “<file” or “>file” opens the
specified file as standard input or output, respectively. An argu-
ment of the form *> >file” opens the standard output to the
end of the file, thus providing a way to append data to it. In
either output case, the shell creates the file if it did not already
exist.

These forms of 1/0 redirection complement that of piping:
files and programs can both be used as data “sources” and
“sinks.”

In general, most commands neither know nor care whether
their input (output) is coming from (going to) a terminal, file, or
pipe. Commands are thus easily used in many different contexts.
A few commands vary their actions depending on the nature of
their input or output, either for efficiency’s sake, or to avoid use-
less actions (such as attempting random-access 1/0 on a terminal
or pipe).

3.5 Generation of Argument Lists

Many command arguments are names of files. When certain
characters are found in an argument, they cause replacement of
that argument by a sorted list of zero or more file names
obtained by pattern-matching on the contents of directories.
Most characters match themselves. . The “?” matches any single
character; the “*" maiches any string of any characters other
than */”, including the null string. Enclosing a set of characters
within square brackets “[..]" causes the construct to match any
single one of the characters in that set. Inside brackets, a pair of
characters separated by “~" includes in the set all characters lex-
ically within the inclusive range of that pair.

For example, ** * " matches all names in the current directory,
“*1emp*” malches any names containing “temp”, “la-f]*"
matches all names beginning with “a” through *“f", and
“/u0/tnds/tf/bin/?" matches all single-character names found in
*/u0/tnds/tf/bin™.

This capability saves much typing, and more importantly, pro-
vides convenience in organizing files for various purposes. It
allows convenient use of large numbers of small files.

3.6 Quo(ina Mechanisms

If a character has a special meaning to the shell, that meaning
may be removed by preceding the character with a backslash
(*\): the “\" acts as an escape and disappears. Sequences of
characters enclosed in double (") or single () quotes are in gen-
eral taken literally, except that substitution of shell arguments
and variables is normally performed.

A “\” followed by a new-line is treated as a blank, permitting
convenient continuation of multi-line commands.

4. USING THE SHELL AS A COMMAND: SHELL PROCEDURES
4.1 Invoking the Shell
The shell may be invoked explicitly in various ways:

sh — The new shell reads the standard input, but does
not prompt. This is often used to let the shell
act as filter, i.e., it can be used in a pipeline to
read and execute a dynamically-generated

stream of commands.

A new nstance of the shell s created to begin
reading the file. Arguments can he mantpulated
as descrnibed 1in the next section

Sh tile largs)

As noted in Section 3.1, if the file s marked
executable, and is neither a directory nor a load
module, the effect is the same as “sh file [args]”.

file largs|

4.2 Passing Arguments to the Shell

When a command line is scanned, any character sequence of the
form $n is replaced by the nth argument to the shell, counting
the name of the file being read as $0. A procedure may possess
several different names and can check 30 to determine the
specific name being used, then vary its actions accordingly.

This notation permits up to 10 arguments to be referenced.
Additional arguments can be processed using the shift command.
It shifts arguments to the left; ie., the value of 81 is thrown
away, $2 replaces $1, $3 replaces $2, etc. For example, consider
the file “loopdump” below. Echo writes its arguments to the
standard output; if. exit, and goro are discussed later, but perform
fairly obvious functions.

- loop
i "$1" = " exit
echo $1 $2 $3 $4 $5 36 37 $8 39
shift
goto loop
If the file is invoked by “loopdump a b ¢” it would print:

abc
bc¢

The form “shift n” has no effect on the arguments to the left of
the nth argument; the nth argument is discarded, and higher-
numbered ones shifted. Thus, shift is equivalent to “shift [.”

4.3 Shell Variables

Adding «f and goto commands (described later) to the existing
facilities permits convenient expression of some kinds of pro-
cedures: repetitive ones that perform a given set of actions for
cach argument and those that use simple conditional logic. Clear
expression of many procedures requires at least a few shell vari-
ables.

The pwB shell provides 26 string variables, $a through $z.
Those in the first half of the alphabet are guaranteed to be ini-
tialized to null strings at the beginning of execution and are
never modified except by explicit user request. On the other
hand, some variables in the range $m through $z have specific
initial values, and may possibly be changed implicitly by the shell
during execution. As will be seen later, few shell procedures
¢ver use more than a few variables. A variable is given a value
as follows:

= letter {argument]

It arcument is given, its value is assigned to the variable given by
letrer. As an example of common usage, the procedure below
cxpects 1o be called with a list of file names, optionally preceded
by a flag “-w" If the first argument is “—w", the fact is
recorded by setting $a to “w™, and the argument is shifted off
the argument list, leaving only file names. 1f the first argument
1 not “-w'. $ais left unchanged, ie., it is a null string.

i "$1" = —w then
=aw
shift
endif
_code to process file names, using $a as needed

¥

If no argument follows the letter in the “=" command, a single
line is read from the standard input, and the resulting string
(with the trailing new-line, if any, removed) becomes the value

of the vanable A common usce 1s 1o capture the ontput of o pro-

gram. For example, date writes the current time and date 1o 11
standard output The following hine saves this value i $d
date | = d

Thus, $d would be set to a value such as:
Tue Jul 13 19:06:02 EDT 1976

A second use is in writing of interactive shell procedures, which
are heavily used in pwB work. The following example is part of 4
procedure to ask the user what kind of terminal is being used, so
that tabs can be set, delays changed, and other usectul actions
taken. The *“*</dev/tty” indicates a redirection of the standard
input to the user’s terminal; it is #of seen as an argument to “=",
but rather causes the variable to be set to the next line typed by
the user.

. loop
echo "terminal?"
= a </dev/tly
if "$a" = ti goto ti
if "$a" = hp goto hp
echo "S$a no good: try ti or hp"

goto loop
: hp
... processing for terminal type “hp”

exit
ot
... processing for terminal type “u”

Currently, five variables are assigned special meanings:

$n records the number of arguments passed to the shell, not
counting the name of the shell procedure itself. Thus,
“sh file argl arg2 argd” sets Sn to 3. Shift never changes
the value of $n.

$p permits alteration of the names and order of directory puath
names used when searching for commands. It contains 4
sequence of directory names (separated by colons) that are
to be used as search prefixes, in order from left to right.
The current directory is indicated by a null string. The
string is normally initialized to a value producing the effect
described in Section 3.2: *:/bin:/usr/bin”. A user could
possess a personal directory of commands (e g.
“/u2/pw/bin’) and cause it to be searched before the other
three directories by using:

= p /u2/pw/bin: :/bin: /usr/bin

$r gives the value of the return code of the most recent com-
mand executed by the shell. When the shell terminates.
returns the current value of $r as its own return code.

$s s initialized to the name of the user’s /ogin directory, i.e., the
directory that becomes the current directory upon comple-
tion of a login. Users can avoid embedding unnecessary
absolute path names in their procedures by using this vari-
able. This is of great benefit when path names are changed
either to balance disk loads or to reflect project organiza-
tional changes.

$t is initialized to the user's terminal identification, a single
letter or digit.

fn addition to these variables, the following is provided:

$$ contains a S-digit number that is the unique Process
number of the current shell. In some circumstances, it
necessary to know the number of a process. 1n order o Al
it for example. However, itls most common usc¢ to date has
been that of generating unique names for temporary tiles.

4.4 Extended Order of Search for Commands

The user may request automatic imtiahzation of ecach shell’s $p
by creating a lile named . path™ i the login directory - This hle
howld contan a single line of the form shown for $p Lvery
instance of the shell jooks for this file and imtializes 1ts own $p
trom 1,1l it existy, otherwise *:/bin /ust/bin™ 1s used. Thus,
the . path™ value propagates through all of the user’s shells, but
changing $p 1n one shell has no eflect on the $p of any other.

This facility is heavily used in large projects. It greatly
simphtics the sharing of procedures, and can be quickly changed
o adapt to changing organizational requirements.

4.5 Control Structures

The more complex shell control structures are actually imple-
mented as independent commands that cooperate with the shell,
but are not actually part of it. They are designed specifically for
use n shell procedures, but are treated as ordinary commands.
This separation of function allows the shell to remain a small
program. efficient for on-line use, but still able to support power-
ful control structures in procedures.

»

451 Labels and Goto. The command ;" is recognized by the
shell and treated as a comment. The most common use of ™™
s to define a label 10 act as a target for goto. Goto is a separate
command. Using “goto label™ causes the following actions:

. A seek is performed to move the read/write pointer to the
beginning of the command file.

2 The file is scanned from the beginning, searching for
*- name" on a line, either alone or followed by a blank or a
tab

3 The read/write pointer is adjusted (via the seek) to point at
the hne following the labeled line.

Ihus, the only effect of goro is the adjustment of the shell’s file
read/write pomnter to cause the shell to resume interpreting com-
mands starting at the line following the labeled line.

TN/
i expr command [args)

I/ 1s also a separate command. If the conditional expression expr
is found 10 be true, if executes the command (via exec system
call), passing the arguments to it. If it is false, if merely exits.

The following primaries are used to construct the expression:

-r file true if the file exists and is readable by the user.
-w file true if the file exists and is writable by the user.
sl =42 _true if strings s/ and s2 are equal.

sh'= g2 true if the strings are not equal.

nl —eqn2 true if the integers n/ and n2 are algebraically

equal. Other algebraic comparisons are indicated

g, “_ge”, t—lt”, and “—le”.

ELPYS

by “*—ne”’,

the command is executed; a return code of 0 is
considered true, any other value is considered
false. Most commands return 0 to indicate suc-
cessful completion.

command)

These primaries may be combined with the following operators:
unary negation operator.
—d binary logical and operator.

binary logical or operator: it has lower precedence
than “—-a".

parentheses for grouping. They must be escaped
(as \(or ", for example) to remove their
significance to the shell.

All of the operators, flags, and values are separate arguments
10 4f. and must be separated by blanks The following are tymcal
argument-testing operations

check a file argument to make sure it exsts
if ' —r "$1" echo "can’t 1cad $1°

assure either that $11s aand $3 s either borc¢
: or that: $lisdand $2is e
if"$1"=a —a "(""$3" =b —0 "$3" =¢)"\
—0 "$1" = d —a "$2" = e goto legal
Recall that the effect of the “\" at the end of the line is that of a
blank. It is generally desirable to quote arguments when they
might possibly contain blanks or other characters having special
meaning to the shell.

4.5.3 If-then-else-endif. To improve the readability and speed of
shell procedures, if was extended to provide the “if-then-else-
endif” form. The general form is:

if expr then

. commands
else

. commands
endif

The “else” and the commands following it may be omitted, and
it is legal to nest if’s within the commands.

When if is called with a command, using the form of Sec-
tion 4.5.2, it acts as described there, directly executing (or not)
the supplied command. When called with rhen instead of a com-
mand, if simply exits on a true condition, allowing the shell to
read (and interpret) the immediately following lines. On a false
condition, if reads the file until it finds the next unmatched else
or endif, thus skipping it and the lines in between. Else reads to
the next unmatched endif, and endifis a null command.

These commands work together in a way that produces the
appearance of a familiar control structure, although they do little
but adjust read/write pointers.

4.5.4 Switch-breaksw-endsw. The switch command manipulates
the input file in a way quite similar to if. It is modeled on the
corresponding “switch™ statement of the C language [RIT75A],
and like it, provides an efficient multi-way branch:

switch value

: labell

. commands
. label2

. commands
: default

. commands
endsw

Switch reads the input until it finds:

e value used as a statement label, or
e “default” used as a statement label (optional), or
e the next unmatched endsw command.

Again, from the shell’s viewpoint, the only effect of switch is
adjust the read/write pointer so that the shell effectively skips
over part of the procedure, then continues executing command:
following the chosen label or endsw.

Value is obtained from an argument or variable; if the labe
“default” is present, it must be the last label in the list; ie., i
indicates a default action to be taken if value matches none o
the preceding labels. This construct may be nested; label
enclosed by interior “switch-endsw™ pairs are ignored.

The command breaksw reads the input until the next
unmatched endsw, and commonly ends the sequence of com-
mands associated with a label. Endsw is a null command like
endif.

4.5.5 End-of-file and Exit. When the shell reaches the end-of-file,
it terminates execution, returning to its parent the return code
found in $r. The exit command simply seeks to the end-of-file
and returns, setting the return code to the value of its argument,
if any. Thus, a procedure can be terminated normally by using
“exit 0". The fact that exit is not part of the shell permits
straightforward use of it as an argument for if.

456 The Missing Loop. Conspicuous by its absence is some
form of while or do. All of the control structures described so far
are implemented outside the shell; it appears that any useful
looping construct requires significant changes to the shell itself.
In any case, the most frequently observed kind of loop is that
used to process arguments one at a time. For example, the fol-
lowing applies the first argument as a command lo every remain-
ing argument:

loop
if 032 = 0 exit
$1 32
shift 2
goto loop-
The “2" causes shiff to leave the first argument in place.

4.5.7 Transfer to Another Command File—Next. The command
“next name"” causes the shell to abandon the current procedure
and begin reading from file name. Next with no argume:nts
causes the shell to read from the user’s terminal. The idea of
next is to permit the use of a file to initialize variables for use at
the terminal;

= a /u2/pw/mash/articles

= b "nroff —rT2 —-mm"

next
If this text were stored in file “init”, it could be invoked by
using “next init”, causing the current shell to process it and
return to the terminal. The user can then reference $a and $b

appropnately. The user could of course use =" to accomplish
this directly, but at the cost of more typing.

Nexr is an attempt to obtain an effect like that of a subroutine
call with a shared environment. It handles some problems well,
but will probably be changed somewhat to make it more useful.
Its most common application has actually been in very complex
procedures that analyze their arguments, set up variables, then
pass control 1o one of several successor procedures.

4.6 Interrupt Handling in Shell Procedures

Many PwB users have taken advantage of the ease and speed of
writing shell procedures to automate various operations. In
many cases, such procedures need to be used by clerical person-
nel who have no knowledge of these procedures’ inner workings.
A terminal interrupt (depression of “rubow ™ or “del” key) can
be ignored or intercepled by a compiled program, or can cause
termination of that program. The lack of interrupt-handling
facihiies 1n the shell quickly led to the usual problems:

e No procedure could use a termunal interrupt as a control
mechanism

e Any procedure that created tiles for temporary use left them
in existence if interrupted before it could remove them. In
practice, any provedure .. at prints very much information 1S
likely to be interrupted sooner or later

e Some procedures need to temporanly ignore inte. upts SO
they €an guarantee consistency amony fiies making up dala
bases. The pwB supports a profusion of packages that consist
of file groupings accessed only through shell procedures.

The onintr command was added to solve these problems. It takes
three forms: ‘“‘onintr label”” causes the effect of “goto label” 1o
occur upon receipt of an interrupt; “onintr —" causes interrupts
1o be ignored completely; “‘onintr” alone causes normal interrup
action to be restored. A typical use of ormnir is:

onintr cleanup
: create temporary file
Is —I | tee temp$Sa | grep —c "'d" | = d

grep — =" temp$%a | = f
echo "directories: $d, files: S
: cleanup

rm temp$3a

This procedure displays the numbers of subdirectories and ordi-
nary files in the current directory. The output of the Is com-
mand is a listing of the current directory; it is passed to ree.
which makes an extra copy of it in “temp3$3a”, but also passes it
to grep. which, in this instance, counts the number of lines
whose first character is *'d”. This is the number of subdirec-
tories, and is saved in variable $d. The ordinary files (whose list-
ing entries begin with “—") are counted in a similar way, and
both counts are displayed. If the process is interrupted by the
user, control transfers to “‘cleanup™, where the temporary file is
removed.

4.7 Additional Supporting Commands

4.7.1 Evaluation of Expressions. Expr supports arithmetic and log-
ical operators on integers, and PL/I-like “subst#”, “length™, and
“index” operators for string manipulation. It evaluates a single
expression and writes the result to the standard output, typically
piped into “=" to be assigned to a vanable. Typical examples
are:

increment $a
expr$a + 1| =a

strip off first 2 chars. of $1 and put result in $b
: expr substr abcde 3 999 returns cde
expr substr "$1" 3 999 | = b

: obtain length of 8t
expr length "$1" | = ¢

The most common uses of expr are counting (for loops) and
using “substr” to pick apart strings (such as the output {from
date, as 1n Section 4 3).

4.7.2 Echo. The echo command. invoked as “echo [args]™. copies
its arguments to the standard output, each separated from the
preceding one by a blank, with a new-line appended to the last
argument. It is often used to perform prompting Or issu¢ diag-
nostics in shell procedures, to add a few lines to an outpul
stream in the middle of a pipeline. and to create editing scripts.
“\n" yields a new-line and "\On" yields the ASCIl character
given by the octal number n; "¢ s used to get nd of unwanted
new-lines. For example, the following vode prompts the user for
some input and allows the user (o type on the same line 4s the
prompt:

echo "enter name:‘¢”
= a </dev/uy

4.8 Creation of Shell Procedures

A shell procedure can be created in two simple steps The first
step is that of building an ordinary text file. normaliy using the
UNIN text editor o/ The second step s that of changing tae
mode of the file 1o make 1L execusabie thus permitting it to be
invoked by “name args”, rather than “sh name args.oas dis-
cussed 10 Section 31 The second step may be omitted for 4 pro-
cedure 10 be used once or twice and then discarded. but 1s
recommended for longer-hived procedures

The following shows the enrire user input needed to set up a
simple procedure to format text files according to a standard for-
mat and print the output on a particular type of terminal-

ed

a

nrofl —rTt ~rC3 —mm $1 32 $3 $4 $5 $6 37 $8 $9 | gsi +12
;v drafi

q
chmod 755 draft

In the sequence above, the user called the text editor, entered a
single line of text, wrote that line (creating the new file “draft™),
and finally changed its mode to make it executable. The user
may then invoke this command as ‘“draft filel file2”, for exam-
pie. The procedure calls the formatter with certain fixed argu-
ments and any others supplied by the user: the formatter output
15 passed to gs/ to convert it to a form that is appropriate for the
user’s terminal (in this case. a GSI-300).

If the sequence above were performed in a directory ipcluded
in the user’s “.path™ file, the user could change directories and
still use the “draft” command. Other people might make use of
it also, especially if it were placed in a shared directory of com-
mands.

The command sequence above could itself be stored as a shell
procedure, although this particular sequence is an unlikely candi-
date for such an action. Note that the five lines following the ed
call are processed by ed rather than the shell. It is quite reason-
able 1o include data for other programs inside shell procedures,
as long as those programs are careful in their method of reading,
e, do not read beyond their own data. This method has
beneficial results for performance, because 1/0 buffers can be
shared without need for separate temporary files.

Shell procedures may be dynamically created by other shell
procedures. A procedure may generate -a file of commands,
invoke another instance of the shell to execute that file, then
remove it An alternate approach is that of using nex: 10 make
the current shell execute the new command file, allowing use of
existing values of shell variables and avoiding the spawning of an
additional process for another shell. In some cases, the use of a
temporary file may be eliminated by using the shell in a pipeline.
For example:

Is a* | sed "s/*/cp & x&/" | sh —

The output of /s is a list of all file names in the current directory
whose names begin with “a”, one per line. Sed (a “‘stream edi-
tor”) converts each line of the form “name” into the form
“cp name xname™,* and passes it to a shell to be interpreted. A
copy of each named file is generated under the name prefixed by
.

Implied in the above discussion are several reasons why users
like shell procedures better than compiled code. First, it is trivi-
ally easy to create and maintain a shell procedure, since it is only
4 file of ordinary text. Second, it has no corresponding object
program that must be generated and maintained. Third, il is
casy to create procedures “‘on the fly.” use them. and remove
them, without having to worry about managing libraries or about
allocating disk storage. Finally, because such procedures arc
short in length, written at a high programming level, and kept in
their source-language form, they arc zenerally easy to find,
understand, and modify

4 (p ocopres the file named by s hirs argument onto that named by the
second, creating the Litter, i necessary

12

5. PATTERNS OF USAGE

S.1 Survey Methodology

A survey of PwB shell procedures was conducted, with the fol-
lowing goals:

o Discovery of procedures that could easily be redone in betler
ways, mainly 1o help users learn better ways of using exisling
tools, but also to improve system performance.

e Analysis of usage patterns, in order to improve existing PWg
tools or build new ones. Rearrangements of command func-
tions often occur when people recognize that the functions
should be combined in different patterns. Examining user
code is a good way to discover real needs.

e Determination of overall properties of procedures to help in
redesign or enhancement to the shell and its supporting com-
mands. This is part of an educational process aimed at put-
ting existing tools to better use.

A program was wrilten tc find accessible shell procedures and
print them for analysis by the author. Two facts made this a
simple program. First, shell procedures are easy to manipulate
because they are stored as simple text files. Second, the UNIX
directory structure supports simple methods of traversal that per-
mit easy investigation of alf accessible files.

The files summarized in the next section represent a sample
taken over a user population of more than 500 people. The data
was collected in March, 1976.

5.2 Survey Results

A total of 1,725 procedures was analyzed. Table] summarizes
the different forms of overall structure.

TABLE 1. Control Flow Summary

Category Number Percentage
1. single line 369 21
2. straight-line 935 54
3. argument loop only 83 S
4. branching, no loops 201 12
5. more complex 137 8

Procedures in category 1 consist of a single command line. Pro-
cedures in category 2 possess no control logic, but contain more
than one line of text. The distribution of lines per procedure
clearly favored small files, with a long “tail” of larger ones. This
indicates that users find it helpful to “can™ even one-line
sequences. The large number of small procedures found on the
PWB is at least partly due to the ease of creating them.

Thus, most procedures (75%) contain no control logic, but
consist instead of straight-line scripts. The remaining 25% con-
tain significant use of control logic. This percentage will prob-
ably increase with time, as more people become familiar with the
shell's programming ability. In any case, it does indicate a
significant need for control structures not provided conveniently
1N many CLS.

Procedures in category 3 are those whose control flow con-
sists only of a single loop for processing the argument list, one at
a ume, such as:

. loop

if "$1" = " exit
. commands
shift

goto loop

Procedures in category 4 are those possessing conditional branch-
ing, but no loops. Those in categary 5 thus have at least one
loop and at ieast one conditional branch in addition to the one
implementing the loop

Each entry in Table 2 gives the number of shell procedures
and the percentage of the total in which the specified construct
was found These figures were obtained by visual inspection of
the hles, and should probably be taken as lower bounds on the
numbecer of occurrences

TABLE 2. Occurrence of Shell Constructs

Shell Construct Number Percentage

switch (or obvious use for it) 45 3

non-shell commands in file 5i4 30

pipe into shell 32 2
(command | sh —)

parenthesized commands 39 2
(re., implicit sh call)

explicit sh calls or obvious 170 14
shell procedure calls

=a </dev/uity 81 5
(read line from terminal)

command | = a 124 7
(assign output of
command to variable)

= a string 146 8
(assign string to
variable)

onintr label 35 2
(intercept interrupt)

onintr — 14 1
(ignore interrupt)

expr substr 33 2

CxXpr + or — 24 1

next 13 l

Fhe figures indicate the frequent intermingling (30%) of shell
and non-shell commands in the same file, utilizing the fact that
the shell and other programs share the same input. This inter-
mingling occurs most often in the straight-line scripts. At least
14% ol the procedures invoke another level of shell, in one or
more of the three ways listed. When CL subroutines are avail-
able, people do make use of them, and tend to become
extremely irnitated with any €L that does not provide them. At
least 5% of the procedures expect 1o write prompts to the user
and read from the terminal; the figure would be much higher if
it included prompts issued by programs other than the shell.

Despite the fact that expr supports multiplication and division,
no serious uses of these operations were found.® From observa-
ton of the procedures, it is clear that users are doing much more
string manipulation than arnithmetic. Although i/ can perform
arthmetic comparisons, the bulk of the operations performed by
1/ were string comparisons. Likewise, the string operations of
exprooccurred more frequently than the arithmetic ones. It
appears that L arithmetic i1s a helpful facility, but string manipu-
lation 1s a necessity, an ordering contrary 1o that of some existing
CLS [COLT6A)

S.3 Informal Observations

In many cases, a shell procedure is kept in a directory with the
files that it manipulates, and 15 never used except in that direc-
tory This s convenient in practice, and allows the uscer 1o forget
about possible naning conthets with procedures in other direc-
It also supports the common practice ol packaging related
tiles ana separate directory.

Larnes

NMultphoaton was dsed in two procedures, but they were agnored in the
sutvey because they were obvioushy “play 7 procedures, 1, two versions of

A procedue o compute tactonals, one iteratize and the other recursive

13

Multi-person projects often possess several sets of directories
used to store shared procedures, and individuals may well have
their own directories in addition. For example, project “tnds"
may use “/ul/tnds/bin™ as a repository for procedures needed by
the entire project. Group “tf” within “tnds” may use
“/ul/tnds/U/bin™ for procedures needed only by the group, and
individual “jib™ might use another directory for personal com-
mands. The . path™ file used 1n this case might contain

/ul/tnds/tf/jib/bin:/ub/tnds/t/bin /u0/tnds/bin:/bin-/usct/bin

In general, people use this type of sharing mechanism to adapt
the system to their own organizational needs.

5.4 Command Usage

Although the survey concentrated on static analysis, a few
dynamic usage statistics may be of interest. Each of the larger
PWB computers execute 25,000-40,000 commands per day
Approximately 80% of these commands are executed within shell
procedures. These figures provide clear evidence that people
utilize the shell programming capabilities to a very large degree.

6. AN ASSESSMENT

In the environment described in this paper, advances occur in
three distinct ways: improving old tools, building new ones, and
improving the framework used to put them together. Work is
under way in all three areas, including most of the following:

e Addition of while to the shell.

e Creation of a “high-speed™ shell that includes the bulk of the
control structure code.

e Addition of different methods of manipulating pipes. For
example, one would like to use programs that can have
several input or output pipes, rather than only one of each.

e Cleanup of the overall syntax, which has its ugly aspects

e Better ways of handling variables, including more powerful
default and substitution mechanisms.

e Commands to perform argument processing without loops.

It 1s clearly recognized that the pwB CL does not do everything
that 1ts users would like it to do, so it is likely to continue evolv-
ing at a rapid rate. This paper has attempted to present a con-
sistent view of the PWB CL as it has existed for a relatively long
time (about nine months). It has emphasized the description of
existing facilities whose usage patterns are well known, rather
than the forecasting of things to come.

7. CONCLUSIONS

This paper has descnibed a nunicomputer-based ¢t that is more
poweriul and convenient to-use than many of those available on
much larger systems. 1t s a real ¢t used daily by people doing
production work under tight schedules. Although much work
remains to be done on i1, it has definitely shown its worth as a
programming language tor many applications, and has made
major contributions to the ability ol users to get their work done
with a minimum of effort and irritation.

ACKNOWLEDGEMENTS

The shell was originally written by K. Thompson: that i has
been so adaptable 10 a wide variety of uses and machine
configurations is a greal lribute to its creator. Many of the addi-
tons were implemented by R. C. Haight and A. L. Glasser.

REFERENCES
All references cited in this paper appear at the end ob “4n [niro-

duction 10 the Programmer's Workbench,” by Dolotta, T. A and
Mashey. J R., in these Proceedings.

Documentation Tools and Techniques

J. R. Mashey
D. W. Smith

Bell Laboratories
Piscataway, New Jersey 08854

Kevwords: Text processing, text formatting, UNIX.

Abstract: In a software development project of any appreciable
size, the production of usable, accurate documentation may well
consume more effort than the production of the software itself
Several vears of experience on many Programmer’s Workbench
projects have shown that document preparation should not be
separated tfrom software development and that the combination
of a fiexible operating system, a powerful command language,
and good text processing facilities permits quick and convenient
production of many kinds of documentation which might be oth-
erwise unobtainable, impractical, or very expensive. Our basic
approach has been to develop techniques for effective combina-
tion of existing UNIY facilities. A number of case histories are
given to illustrate the flexibility, convenience, and general useful-
ness of these techmques.

1. INTRODUCTION

The Programmer’s Workbench (PWB) {DOL76A] is a working
example of a system specialized for program development Many
activities performed with the PwB's help can be considered 1o be
in some sense document preparation or lext processing

cditing source code or documents:
e scanning output returned from other systems,
scanning files for certain data (e.g., cross-referencing, data
collection and summarization);
e recording changes to source or document text using SCCS
[ROCTSALL
preparing scripts for load or regression tests [DOL 5Bl
cxamning output from load or regression tests;
preparing input for and producing many kinds of reports;
entening and maintaining information on activities and
schedules

From our observation of actual Pwi usage, it appears that flexi-
ble. mteprated text processing is an absolute requirement for any
mogram development facility. This requirement is nor satisfied
by adding a simple text formatter to an existing system; the
enure system must support text manipulation in a consislent,
convenmient way, Text formatting becomes more flexible and
adaptable when implemented as part of a more general environ-
ment, rather than as an isolated, specialized “add-on™ In addi-
ton, many normal programming activiies are better supported
when they have good text processing facilities available in the
same way as other tools. Specific advantages include

e The same editor is used 10 enter and modify documentation,
source programs, and procedures for manipulating them both
This umification helps lower training and support costs.

e Likewise, it is possible to use existing tools to manipulate
cither source programs or lext without regard for the
intended use of these tools. Obvious examples include file
scanners, sorts, and cross-reference commands. The pPwb
user has access to all the tools provided by UNIX [RIT74A}.
The set of ols is extensive |[KER7SAL and unexpected uses
are constantly found for them.

e When a document must include samples of source programs,
Was casy to assure accuracy of such samples because they can
be autontatically copied from actual source program files.

e No artificial distinctions need exiSt among SOUTCC Programs,
documentation, and data bases. A set of files and command
procedures may appear to be a small interactive data base
management system: viewed another way, it 1s just a
mechanism for producing a large, complex document.
Finally, information from these files may be used 10 automati-
cally generate or verify parts of source programs.

e It is often more important 10 automate the management and
control of text than it is to format it. It is especially necessary
1o be able to do this quickly and cheaply, because procedures
and needs not only differ among projects but change quickly
and often.

In this paper we illustrate some of the facilities one gains by util-
izing a concept unique 1o the UNIX system—that text processing
is an integral part (not an “add-on”) of an effective program
development environment. We first briefly survey some of the
useful tools provided by UNIX. We then show the desirability,
convenience, and (in our opinion) the necessiny of this approach
by examining case histories of several projects implemented on
the PwB in the last few years.

2. BACKGROUND
2.1 Environment

Many aspects of the UNIX environment make it especially suit-
able for text processing.

First, a UNIX file is just a string of characters, whose format
and interpretation are under control of the user, rather than
UNIX. The most common file format is that of an ASCI/ file, e,
a sequence of arbitrary-length /ines terminated by new-line char-
acters. This format avoids any need to worry about blocking or
blank stripping. Explicit allocation or de-allocation of storage is
avoided by the ability of files to grow and shrink dynamically.

Second. UNIX supplies a llexible hierarchical file structure that
is easily adaptable to user needs. Convenience of document
organization is improved by the ease of grouping large numbers
of tiles. Users may share files and commands in various ways.

Third. the UNIX pipe mechanism is particularly desirable for
lext processing because it provides an effective way of manipu-
lating data streams. A pipe coOnNNects two execuling programs,
causing the output of the first to be read as the input to the
second, while all synchronization and buffenng detawls are han-
dled by UNIX itself Two or more programs can thus be con-
nected together to form a pipelme. an object commonly found in
UNIX text processing applications

Finally, although some types ol terminals are more con-
venient than others for UNIx usage, UNIX 1s easily adaptable to
many different kinds of terminals. It is rarely necessary to
modify the operating system to take advantage of some new type
of terminal. All that is usually necessary to take advantage of
any unusual terminal features 1s to write a single, small, non-
privileged command to cater 1o the specific terminal.

2.2 Specific Tools

Although almost all UNIx commands turn out 1o have some text
processing use sooner or later, some are especially useful.

P20 Fdmmg Svstem Fd s the standard editor - A related com-
mand sed s a sieam eduor, whose use s more efhicient and con
verment than that of «d i one pass apphaatons, 1e . when osed
i pipehne

20 et Formattiy: Software The simplest version ol the
Jun ot formatting soltwine s roff. whose formatting power s
toughly cqwivalent to that ot IBM's ATS, although its input
appeatance s radically different. Nroff 1s much more powerful
than rofl. pernutting the use of sequences of formatting codes
thnown as macros) whose behavior may be moditied by argu-
ments specitied when such a macro s interpreted. The typeset-
ung software, roff, 1s sumilar 1o nroff with respect to program-
nuing, but s output s intended for a Graphic Systems, Inc., pho-
totypesetter, which can produce various font styles and character
sizes as well as numerous special characters for mathematical
expressions and for other purposes.

228 Owipur Filters. Most roff and nroff output can be printed on
most terminals, but some output takes advantage of special
features and escape sequences found only on the Teletype®
Model 37. To make certain sequences (such as reverse line feed,
halt-line motion, or extended character sets) function properly
on other output devices, the output of roff or aroff must be pro-
cessed (“Cfiltered™) by other programs before being physically
printed. For example, gst 15 used to make outpul acceptable to
certin terminals that use the Diablo HyType® print mechanism;
hp s used for output on a Hewlett Packard 2640A. (ol is used to
“normalize” such output for terminals facking reverse line feed,
especially when multi-column output s desired.

224 Inpur Filrers. Just as output filters process output before it
15 prninted, put filters can process text before it is formatted.
Such filters often handle complex or unusual requirements
without requinng modification of the formatters. For example,
cgnand negn permit convenient formatuing of mathematical
cxpressions [kERTSBI, and (b helps align and format tabular
matter and s associated headings.

25 Duata Storage Facilities. An archive file is a collection of files
created and maintained via the ar command. It is often used to
store large numbers of small files in an efficient way, and may be
used in some data base applications. The commands that are
part of SCCs [ROCTSAL can be used to maintain control over docu-
ment changes, record such changes, and recreate the document
as it existed at any point in time.

226 Fide Examination Software. The grep program is used (o
extract from text files lines containing a specified sequence of
characters. Cref produces cross-reference histings of the C and
UNIX assembler programming languages. The diff program
reports differences between (wo files, listing the lines that have
heen added, deleted, or changed. The comm program lists lines
that are common to two files. Typo helps the user quickly iden-
uty possible typographical errors.

LI}

22T Command Lanvuage. The UNIX command language is inter-
preted by a program called the shefl. Tt provides a quick, inex-
pensive way to combine other tools into the desired procedures
IMAaseal For example, the procedure in Figure 1 formats a set
of files acvording to a standard nroff macro set “—=mm’, allowing
an optional first argument U-g” 1o request use of the gse filter
and 12-pitch output: otherwise output 1s produced for a terminal
without reverse-hne moton (e g . 2 G F TernmNet 300)

it $1 = —g then

shafl
nroffl —=h —rT1 —mm $1 82 $3 $4 85 $6 $7 $8 $9| gsi +12
exit

endif

nroff —mm $1 $2 $3 $4 35 $6 $7 $8 39 col

Figure 1

3. PROGRAMMER'S WORKBENCH MEMORANDUN AMACKON

Lhe moff and o a0 unaeanadly leable

BILR
ol
st become quite L wathe all the basie formatting, ceaquenr,

sowertul 1o o
However, to ake the best ase thes woltw.are ane
Learning the regquests and the unetul ways ol combumng theng .,
atull e procrampung task - Lo the PWH, we spent consider bl
eflort i cxannming what kinds ol things people would want to Jgao
i manipulating and styhzing their documentation - whether
preparing letters, technical reports, user manuals, or soltwae
documentation. With the design priorities as described below,
we developed the Programmer’s Workbench Memorandum M-
ros (PwB/MM), a unified, consistent, and flexible set of format-
ting codes. PWB/MM minimizes the differences between nroff and
troff. making it easier to enter a document without concern for s
eventual output medium. This package brings much of the
inherent power of the formatters to the user who does not want
to spend a great deal of time learning their intricacies. It is
heavily used by clerks and typists, as well as by technical person-
nel. PWB/MM was used to prepare this paper, as well as the five
companion PWB papers [BIA76A. DOL76A. DOLT6B. KNU76A
MAST6A].

3.1 Design Priorities

The following are the qualities we emphasized in the design and
implementation of PWB/MM, in approximate order of importance:

o Robusmess n the face of error—When the input is incorrect,
cither a reasonable interpretation i1s made of an error, or a
message is produced when an error is detected.

o Ease of use for simple documents —I1 is nol necessary 1o specify
complicated sequences to produce simple documents, espe-
cially those following any reasonable tormat. Defauit values
are provided where at all possible.

e Parameterization —People have many different preferences in
the area of document styling. Many parameters are provided
S0 that users can customize output to their needs over a wide
range of styles. These parameters are set once at the begin-
ning of the document. The formatting codes are entered con-
sistently, regardless of the parameter settings.

e Extension by moderately expert users—We have made a strong
effort to use mnemonic naming conventions and consistent
techniques in the construction of the macros. A user can add
new macros or redefine existing ones if necessary. There 15
also the provision, in certain cases, 10 have user-defined mac-
ros called at appropriate points within the provided macros

o Device independence—The most common use of PWB/MM 1y
prining documents on hard-copy typewriter-like terminals,
using nroff. Output can be printed on either 10-pitch or
12-pitich terminals and can be examined on an appropriate
CRT terminal. Finally, phototypeset output can be produced
using rroff.

o Mimmizanion of mpur—The design of the macros lessens
repetitive, unnecessary typing. For example, to obtamn 4
blank line after all first or second level headings. the user
need only set a specific parameter once at the beginning of a
document. rather than add a blank hine after each such head-
ing. A table of contents, as well as other information derived
from the input text, can be generated automatically

3.2 Features

PwB/AMAM features permit the user to concentrate on the /logial
structure ot the document, not on its eventual appearance. We
feel this s a desirable direction of evolution for text processing
Some spectfic examples include the implementations of headings.
various styles ol hsts, and footnotes

120 Headmy Stvies. The formatung code T specifies 4 new
heading. The arguments 1o this code indicate the fevel of the
heading (Hirst or top level second level, cte) and the text of the
headine itsell For example, the two headings mmmediately
above Lere generated by

.H 2 Features
H 3 "Heading Styles.”

One does not need to specify the number 10 be assigned to a
heading. Headings are automatically numbered when the docu-
ment is formatted. Thus, if sections of text are rearranged
(which is very easy to do with the UNIX editor ed), one need not
worry about renumbering any affected headings.

The default heading style produces numbered headings, as
itlustrated by this paper By setting some parameters before the
first heading. the user can easily modify this style to obtain, for
example

e any of various outline styles, replacing the default sequence
“1.. 1.1, 1.1.1" by, for instance, the sequence “L., A., I.™}

e centered headings in place of left-justified ones;

o different fonts (or underlining style) for each level;

e different choices of pre- and post-spacing.

What must be noted is that although the style may vary, the way
of typing a heading does nor. A few global parameters control
the final overall appearance.

This approach not only contributes to uniformity of style
within a document, but also allows the user to make radical
changes 1n style affer the document has been entered. Finally,
the same text can be included in several documents that must
adhere 10 differing standards, as in the case when an internal
report is submitted to a journal that requires another format.

322 Lisis Various kinds of lists are often needed:

Ordered hsts ltems within the hst (“list items™) are num-

bered or “lettered’ sequentially

Items in the hst are marked in some way,
say, with a dash or a bullet.

Unordered hsts

Each item in the list is a word or a phrase
followed by an explanation or definition.
(This hist is an example of a definition list.)

Definttion lists

Lists of references used in the body of the
text.

Reference lists

As an example of the ease with which such lists can be entered,
Figure 2 shows the input text for the above list.

VL 18

L1 Ordered\ Lsts

Items within the hist (“list 1tems™) are
numbered or “lettered” sequentially.

LI Unordered. lists

Items in the hst are marked in some way, say,
with a dash or a bullet

LI Defimition lists

Each item in the hst s a word or a phrase
followed by an explanation or definition.
(This Bist1s an example of a definition hst.)
L1 Reference: hists

Lists of reterences used in the body of the text
LE

Figure 2

All formatting codes begin with a period 1in column 1. Each kind
of hist in PwB/MM consists of the following three parts—a “hst
begin™ which specifies the type of hst (VL in this case), one or
more “hst items” (L1 followed by the text), and the “list end™
(LF) murking the end of the hst. All information about the
kind of hst appears in the “hst begin © It 1s very simple to add,
delete, or reorder the items within a hst. For ordered lists, the
numbering or lettering 15 handled automatically so that, in insert-
ing or deleting items. one need not manually renumber any of
the items Lists can be nested 10 a depth of six levels.

16

3.2.3 Foonotes. To enter the text of the footnote and to generate
the next footnote number, one need only type *F after the word
to be noted, followed by the text of the footnote delimited by
two formatting commands For example, the following input
text:

This is the word*F

.FS

The text of the footnote
goes here.

FE

that is to have a footnote

will produce the following output:
This is the word' that is to have a footnote.
as well as the footnote at the bottom of this page.

PWB/MM automatically records the footnote for subsequent
inclusion at the bottom of the current page. If there is not
enough room on the current page for the entire footnote, the
remainder of the footnote is saved and printed at the bottom of
the next page. All the mental processes of the typist in handling
footnotes (gauging the length of the footnote tex!, remembering
to bring up the bottom margin by the proper amount, etc.) are
handled automatically.

3.3 PWB/MM Summary

PWB/MM supplies many services in addition to those described
above. The end user obtains the benefits of complex formatting
procedures without having to learn the techniques of their imple-
mentation. Note that PWB/MM represents a favered approach o
text formatting: it is a second layer built on nroff and troff. We
feel that a common formatter design error is that of building 00
much into the formatter itself, rather than using a layered
approach to formatting complex documents. For example, the
fact thal the footnote mechanism was not locked into our for-
matters allowed us much more flexibility in creating variant foot-
note styles

4. CASE HISTORIES

The UNIX environmenl permits quick construction of working
systems from exisling components, easy adaptation of existing
files to new purposes, and inexpensive modification of systems to
meet changing needs. To support these assertions, we describe
very briefly a few applications chosen from the many that have
been built in the last two years.

4.1 A Text Processing Application

One of the Bell System companies had a special text processing
requirement. The company conducts a weekly management
seminar and is required to prepare timely reports describing each
session—what matenal was presented. what comments were
made. a list of any unresolved questions. etc

4.1.1 Text Production and Analvsis. The imitial need of the sem-
inar is a text processing facihity —the ability to enter, update, and
print various kinds of reports for each session The reports are
printed on hard-copy terminals for editing and author review
The final reports are phototypeset for distribution 1o top manage-
ment

4.1.1.1 Report Producnion. The reports are entered using the
UNIX editing system, embedding within the text of the reports
certain formatting codes A precursor 1o PwB/MM, these format-
ting codes were designed to be used for either nroff or wrofi The
iypo program is also utilized to help find typographical errors

Each session closes on a Friday; by the following Wednesday.
a 70-page booklet containing the phototypeset oniginals of all the
material from that session 1s ready for reproduction The staff in

I The text of the foomnole goes here

charge of the seminar has been quite pleased with the docu-
ments produced. They have stated that there would have been
no other way to produce the same high-quality output in the
same period of time.

4112 Analysis of Content. With several weeks' data stored on
the system, the question arose as to possible ways of extracting
portions of that data 1t appeared reasonable 10 use the system to
produce another report consisting o all paragraphs contmning
the word marketing, for examiple

This analysis was accomphished by considening the structure
of the text in the report tiles. Due 1o the use of the formatting
codes, it turned out that all sections of text (paragraphs, items in
hists, ete} were preceded and terminated by specific character
strings. Although a paragraph might contain the context word
(like markenng ot Markenung) several times, such a paragraph is to
appear only once in the output report. Thus, it was necessary to
use the editor and the sorr command to obtain a unique list of
the line numbers of “paragraph beginnings.” Another editor
seript alters this list of unique numbers to obtain yet a third edi-
tor script that causes all the lines of the paragraph to be printed,
taking care of cases such as paragraphs that are followed by lists.
Another pass through the original file using this last generated
senpt produces the desired output.

Once these scripts were developed, it became a very simple
matter to put them together in a shell procedure. All that the
user needs to specify in invoking this procedure is the name of
the file containing the data and the context word by which the
paragraphs are to be selected.

4.1.2 Conferee Roster. Another text processing task is to main-
tain a list of conferees scheduled to attend the seminar. This list
15 periodically updated since persons are often rescheduled due
1o business demands. The roster of conferees for a given session
might not actually be finalized until a few days before the begin-
ming of the session.

The data for all the conferees attending a given session are
entered into the same file, whose name is the week during which
the session is held. The data for each conferee is entered as
shown 1n Figure 3, using formatting macros for each item of
information needed. The “company” data includes special two-
letter codes for all Bell System companies.

last name .LN Smith

first name .FN "Dale W."

ttle .TL "Member of Technical Staff"
company CO *(BL

address .AD "6 Corporate Pl., Piscataway, NJ"
telephone TN "201 981 7315"

department .DP "Support Products and Systems”
level LV 0

name/address flag NA
Figure 3

After several sessions of the seminar, the accumulated rosters
took on added importance. It is possible to scan the data to
determine whether or not a particular person has ever attended
the seminar and, if so, the week of atiendance. For instance:

grep ""\.LN.*name" filenames

will list all files containing an entry for a person whose last name
1s name. Providing this information by manually scanning
printed rosters is time-consuming and error-prone.

With this data. reports listing such information as:

e Who has attended from the marketing division?

e How many ffth level managers from XYZ Company have
attended”?

e What cnginecnng personnel from XYZ Company have
attended”?

17

are very easy lo obtain. What is needed is » way o say “Cive
me all the data about conferees who have this property.” This is
accomplished by having the user specify, 10 a shell procedure,
what the desired property is (utilizing, of course, information
about the structure of the data). To obtain ail the data about the
conferees from any given week who are in the marketing depart-
ment, one would cxecute

ed - filename coutput
/"N DP "Marketing/? 7\ LN A NA/p
q .

By first placing all the conferee data into a temporary file and
then executing the above editor script on that file, one obtains
the data about a// conferees from marketing.

One can further categorize the extracted data by executing a
similar editor script looking for the desired property. For exam-
ple, if the file mk/ contains all the marketing conferees, one could
obtain all fifth level marketing people by

ed — mkt >fifth
8/ \LV.*S/?\LN? /\.NA/p
q

By providing alternate definitions for the formatting macros, one
can generate a data record for each conferee. These records can
then be sorted in various ways (by company, by name. etc.).
Again, the ability to easily combine existing UNIX facilities
proved invaluable in extracting additional information from exist-
ing data.

4.2 A Data Base Application

Any programming project that involves more than a few people
seems 1o generate innumerable small data bases to record infor-
mation needed for documentation and control of the project.
Such data bases are often small (a megabyte or less). need to be
implemented in a timely fashion, and vary greatly in nature from
project to project. To handle this sort of data base, one can
either utilize an existing general-purpose data base management
system (DBMS) or write several programs to implement the
desired application. The former approach often yields a severe
form of overkill, while the latter may require too much program-
ming effort and unacceptable delays.

A third approach is that of building an extremely specialized
DBMS for the specific application. Programming costs and lead
time are minimized by writing command language procedures
that combine existing tools in appropriate ways. The advantages
of this approach are: speed of implementation, satisfaction of
specific needs of the application, small size of code (no compiled
code at all), ease of maintenance, reliability, and good output
appearance (e.g. by using nroff). The main disadvantage is the
possible lack of execution speed. Also, there may be some
inconvenience in handling larger data bases or those whose
structure has a bad match to the UNIX file system. On the
whole, this approach appears to be quite worthwhile; it has been
applied very successfully a number of times

As an example, the first such system known to the authors
was built for a large programming project durring September.
1974, The project had been using an obsolete DBMS 10 store
information regarding error messages produced by the project.
and a better DBMS was desperately necded. The project
includes a group of 400 modules, cach of which can produce
error messages of two different types. Certain information must
be maintained for cach error message, such as the cause of error.
aclual message text, response required, responsible person, etc
There are about 3000 messages altogether, requiring about a
megabyte of disk storage, organized into 550 UNIX files. One
author (Mashey) spent about three work-days (spaced over a
period of two weeks) as follows:

e Discussions were held with project members 1o determine
their requirements.

e Data lormats were designed

e Procedures were witten to add, update, deleteand pont i
vichual items an the data base

o DProcedures were bult 1o produce vanous kinds of sammane,
and Larpe reponts

e Procedures were included 1o mantam logs ol data base
changes

e All ol the procedures were tested and (more o less)
debupped

By using existing tools and by modifying the package according
1o changing user pereeptions, a usable system existed at the end
ol two weeks Over the next few months, the data base was
loaded with information from the old system—the major part of
the time being required for data purification. The total time
spent by the author on this project was about two work-weeks,
of which halt was documentation time. By February 1975, the
entire project had been turned over to a relatively new UNIX
user who has had hittle trouble in modifying and extending it. At
turnover time, the entire package of procedures and formatting
macros consisted of nothing but text files, occupying a total of
30,000 bytes.

This system is used in various ways. In one sense, it is a
small DBMS; in another, it is just a way of manipulating a large,
complicated document. Finally, it 1s also used to venfy the con-
sistency of the actual programs with their documentation. A
selected subset of the information is extracted and sent to the
machine on which the application project executes. It is then
compared with the actual message text

It is intcresting to note that data base management software
per se has not proved popular on UNIX to dale, because more
flexibility can be obtained through the appropriate use of sort, ed,
and other UNIX commands.

4.} Production of Revision Bars

Fxisting tools can often be combined to produce novel results,
although sometimes a new tool must be built to fili a gap
between some others. An example is the process used to gen-
crate automatic revision bars (or other marks) for modified docu-
ments. When manuals are revised and distributed to users. such
revision bars are placed in the margins to indicate the locations
of changed text. The formatters support a mode of operation in
which a specified character is placed in the margin of every line
of output text. This mode may be turned on and ofl by requests
in the formatter input. The only problem is that of determining
where to insert these requests. The following command linc
illustrates the entire process:

difl = old new | difimark temp | ed — old; nrofl temp

Diff compares the two files, and generates an editor script o con-
vert file old into file new. The resulting script is dynamically
piped () into diffimark, which rearranges this script and then
passes it 1o the editor. The editor, in turn, edits the o/d file, but
writes the result into temp. Temp is identical 10 new, except that
formatter change-mark requests are included in appropriate
places. Nroff then formats the result with the needed revision
bars.

Diffinark is a small, simple program written specifically to
bridge the gap between the other commands and was intended

only lor with documentation As commonly
number of people inmediatedy apphicd the Same process 1o othe

kinds of text, e

Hnse happens, a

Csource proprames and data base schene,

A hle
cditing o, pedorme the process dewcnbed and cmoses the ond
and temp Wles alter temp b beens panted and distibated I
morg, extensive control v desied, sSces fRoe sap can be used o
maintain complete control of change history and recreate am
needed version of a file. This s a good example of the unex-
pecled advantages of keeping documentation and source together
in an environment where they can both be handled with the
same (ools.

I some casen a ser sanph makes o copy of et

4.4 Miscellaneous Applications

4.4.1 Viewgraph Production. With the phototypesetting sofiware
troff and a set of formatting macros developed for the PWB, one
can easily prepare viewgraphs for lectures. demonstrations, etc.
The advantages for doing this are as previously stated —the abil-
ity to easily modify the data, the ability to include actual pro-
gramming statements, and the assurance of accuracy during revi-
sion.

4.4.2 Bibliography Management. To avoid wasted effort when
papers are written, especially by groups of people, a bibliography
data base system was built from ordinary text files and a few
shell procedures. A unigue key s assigned to cach reference as
it is added 10 the data buse A document is scanned for keys of
this form, and a list of umgue keys extracted and sorted. The list
is used 1o search the bibliography data base and extract the items
to be included in the reference list. The procedure to perform
all of these actions was written, coded, and debugged in 20
minutes. It was used to simplify the preparation of the refer-
ences for this and the related papers.

4.4.3 Milestones and Scheduling. A need arose for a simple, easy
1o use way of managing schedule dates and activities for individ-
uals and groups of various sizes. [t was an afiernoon’s work to
create a package of formatter macros, text files, and shell pro-
cedures 10 accomplish this. Schedules can be summarized at
various levels, and ordered according to half a dozen sort keys.
The entire package\consists of about six pages of text.

5. CONCLUSIONS

We have stated the opinion that a software development facility
needs a good, integrated set of lext processing tools. We have
summarized the tools most commonly used, and described a few
of their applications to support our opinton. They are but a very
small sample of those available, UNIX makes 1t almost 1oo casy 1o
invent and implement usclul appheations on the spur ol the
moment. From our experience, this a very desirable situation
since many uscful, effective wids have been quickly and cheaply
built this way. In many other environments, they might well be
100 small, too difficult, or too expensive o ever be done.

REFERENCES

All references cited in this paper appear at the end of “An Iniro-
duction 1o the Programmer’s Workbench,” by Dolotta, T. A., and
Mashey, J. R., in these Proceedings.

A User’s Viewpoint on the Programmer’s Workbench

M. H. Bianchi
J. L. Wood

Bell Laboratories
Piscataway, New Jersey 08854

Keywords: Software development, programming aids, UNIX.

Abstract: The Programmer’s Workbench boasts a broad set of
highly useful features aimed at the application program
developer. It claims to be a “human-end” computer providing
tools and services to ease the load on the application system
designer, programmer, documenter, tester, and delivery person-
nel. This paper shows the benefits of using the PWB tools, indivi-
dually and in combination. Through specific examples drawn
from the history of a software project, evidence is given that the
usc of the Programmer’s Workbench can be a major contributing
factor in the successful development of a software project.

1. RELATION OF CDS DEVELOPMENT GROUP TO PWB

The Circuit Design System (CDS) group was getting ready to
write code at about the time that the Programmer’s Workbench
(pwB) was starting to accept customers. An informal arrange-
ment was made to allow the authors to try out the new system.
After about a month of discovering the tools that pwB offered,
the arrangement was made official. For a while, CDS was the
heaviest application development user on the Workbench, and
hence we were the first to ask many questions and make many
comments.

We have seen the Workbench grow and have been users for
over two years. Unlike the developers of the pwB, we are only
users. We will demonstrate through discussion of our experi-
ences that the Programmer's Workbench concepr is viable.
Moreover, we will show that the actual PWB at Bell Laboratories
IS a most important contributor to the successful development of
a project that ultimately runs in an unrelated environment.

Many of the pwg’s facilities can be found on other systems in
some form or other. From the user’s viewpoint, the PWB pro-
vides an unusual variety of program development tools in a sin-
gle, uniform, and easy to manage environment. This paper is nor
intended as a catalog of new or exotic facilities, but as a sum-
mary of one group’s experience in using the tools provided.

We will be talking about pw8 strictly from the viewpoint of a
user who does not see, and is generally unconcerned with, the
details of pws implementation. The reader should be familiar
with [DOL76Al, which provides an overview of the PWB and a
rationale for its existence. {RI1T74A] describes UNIX, the time-
sharing system on which the PWB is based. Finally, the discus-
sions in IMAS76A] may improve the reader’s understanding of
some of the more complex examples presentcd here.

2. CDS—A QUICK OVERVIEW

The Circuit Design System mechanizes certain functions per-
formed in the day-to-day activities of a Bell System operating
telephone company. It uses other software systems written at
Bell Laboratories to provide data base information. but its own
emphasis 15 strongly in the engineering fieild. During the
development cycle, the majority of our personnel were commun-
wations engineers and not data processing professionals.

The system itsell must coexist with another system that uti-
hzes 1BM's Information Management System (IMS) to provide
hicrarchical data base management and transactional telecom-
munications [IBM758|

The purpose of the first development cycle was to test the
feasibility of the engineering process. Therefore, we had two
secondary objectives. The first was to use the cheapest equip-
ment possible, and the second was to minimize overall experi-
mental costs. Our final product contained 196 PL/l program
modules and 6 data bases accessed from dial-up terminals.

The developers themselves had to perform all the tasks
involved in program maintenance. PwWB allowed us to set up pro-
cedures that drastically reduced the amount of time required to
maintain the system. In many instances, whole tasks, such as
partitioned dataset compression, were made totally automatic.

3. ENVIRONMENT BEFORE PWB

The primary program development tools available at our location
were Applied Data Research’s LIBRARIAN [ADR73A] and IBM's
standard utilities [1BM72a]. The source editing features of these
programs do not lend themselves to making complex updates to
modules. Moving blocks of code from one section of code 10
another is almost prohibitively difficult. Thus, as a program is
modified, it becomes riddled with branches that have nothing to
do with the implementation of the algorithm. Also, it is a baich
system and an error in editing can ruin a half-day’s work.

4. EARLY PWB TOOLS

The first version of PWB to which CDS was exposed was a DEC
PDP-11/45 running UNIX plus a Remote Job Entry (RJE) capa-
bility. Many of the programs that were to enhance the PWB con-
cept were still in development.

But the early support provided by this one system was of
great value to us. We found it relatively easy to use, extremely
reliable, and adaptable to many of our needs with little effort.

4.1 The Text Editor

At first, the major tool used was the UNIX text editor, ed, with its
very terse syntax and surprising flexibility. Previous experience
with the QED style of editor was a definite advantage in learning
about ed The first real work done with ed was to enter two
small PL/I programs for use in the CDS project. These were
thought out and entered at the terminal by the programmer.
This early exercise convinced us that ed was going to be a valu-
able tool. We were impressed by the ease of editing and moving
code around, the time saved by entering code directly into a
computer rather than using coding forms and keypunches, and
the ability to “desk check™ while at the terminal.

4.2 The UNIX File System

UNIX presented us with a true tree-structured file system that
allowed us to build logical relationships between its files and
directories (leaves and nodes).

The CDS directory became the root of our “program tree”
which we present in pait in Figure 1. We built personal direc-
tories (*doug™, “joe™, e¢ic.) and directories that were the reposi-
tories of related modules of source code. Programs that relate to
CDS concepts are found in directories “af01", “cr01”, and
*ed01”. Documentation is found in “doc™. Files of Job Control
Language are in “jcI”. Test data is in *“test”. Directory “r3"
contains directories of CDS Release 3 files. The ability 1o create

/ul/cds

T TIT]

: afo1 crOl ed0?

common doc jel

doug

mike

nancy

martha

| |

comcode dbd entry psb

joe

Figure 1. The CDS File System

meaningful collections of data files, reasonably named, under
directories, also reasonably named, proved to be a major asset. It
was now possible to produce quickly lists of all programs coded,
those related to a particular concept, those which adhered to par-
ticular naming conventions, and those related to a particular con-
cept that adhered to particular naming conventions.

In theory, this type of grouping and classifying of ideas or
programs is possible on other computer systems through naming
conventions. But PwB provided the tools that allowed one to go
right into the file system and make the computer do the search-
ing. By the time CDS consisted of 140 independently compiled
procedures, this feature became invaluable. Our cross-reference
listing procedure is shown in detail later.

4.3 Send—the RJE Program

The send command allowed us to communicate with the IBM tar-
get computer via Remote Job Entry. This is about all that the
first version did. The command line

send jobcard plijcl source

would send the file “jobcard™, followed by the file “plijcl”, fol-
lowed by “‘source”. But send also assigned special meaning to the
“tilde” (-) character. In particular, a line of the form:

- filename

read that file as the source of text, and a line of the form:

read from the terminal, with a prompt of “input:”, for the text.
The **- =", in what came to be called “send-speak”, was put to
work. Rather than have the programmer enter all of the file
names (o be sent on the command line, we had send prompt for
cach input item, and lines like * - plixclg” (for PL/I Optimizer
compile, linkage edit and go) and *-cdsed01” (for the source
code for program CDSEDOL) were the responses.

We used the “-filename” form embedded in our code to
implement the idea of common code, “‘comcode” for short. Our
“comcode” was stored in a directory by that name. Each file
contained one program concept. In the majority of cases these
were PL/I DECLARE statements of structures that represented
data base segments, input formats, and IMS control structures.
There were 200 comcode items averaging eleven lines each by

the time we were operational. Each module has an average of’

4.2 “comcode” references for a saving of 46 lines per procedure.

There was another common directory called “entry” that con-
tained DECLARE statements for each of the external procedures
in CDS. By entering the following lines:

- /ul/cds/r3/comcode/orderno
- /ul/cds/r3/comcode/bodyin
~ Jul/eds/r3/comcode/icferr

- /ul/cds/r3/entry/plitdii

- ful/cds/r3/entry/pridate

the programmer could reference 48 lines of code that declared

20

the ORDERNO and BODYIN segments of our ICF (Incomplete
Circuit File) data base, the code defining the ON CONDITION
ICFERR that handled errors in calls to the ICF, and entry
declarations for the external procedures PLITDLI and
PRTDATE.

4.4 The Text Formatter

Documentation support was provided by the text formatter, roff.
This program made it possible to sit at a terminal and enter a
draft document directly, along with an occasional format com-
mand for paragraphs, headings, etc. When finished, one asked
roff to print the document in formatted form. The raw document
was entered and edited using the same text editor that was used
for entering code, ed. Not only did this save having to learn a
separate editor for use with the text formatter, but we could
easily include sections of code in our documents, and vice versa,
without having to retype them.

We found that the job performed by roff was acceptable for
the documentation and day-to-day business of building a project.
We started preparing program documents, such as explanations
of CDS error messages, with this program and found it fairly easy
to keep them current and available.

Some people question the “‘waste of time” of typing one’s
own documents. We feel that for anyone with a moderate
amount of typing skill, it takes about the same amount of time to
type as to write by hand. Many authors develop their documents
at the terminal from a few notes. So there is no time lost, and
the result is as good as or better than that from a typing pool.

Roff was even more helpful for large documents with several
co-authors. Each author could have an up-to-date and readable
copy of the entire document at all times. Our clerk/typist found
it more rewarding to be able to correct errors or rearrange para-
graphs without having to retype an entire page or ‘“cut and
paste,” because all the time spent working on the document was
productive.

S. RECENT PWB TOOLS

More recently, PWB has increased in potential and CDS has made
use of that potential.

The ed program has not changed significantly in the last two
years, but the few changes have increased the ease with which it
can be used to do the more esoteric editing that the experienced
user inevitably desires.

Send, however, has grown in capability to the point that it is a
major tool in easing the ‘“‘nuisance work™ most programmers
have to deal with.

Early modifications 1o send added the ability to establish “key-
words” that would prompt the user, who would then respond
with appropriate answers. These were substituted into “canned”
Job Control Language files, creating custom JCL for the particu-
lar purpose at hand. The answers to the keyword prompts would
also be displayed prominently in comments, so that if there was

a problem, it was not necessary to try and dig out their values.
At the same time we made the prompts for file input request the
appropriate type JCL, PL/1 source, run data, control cards, etc

The major benefit achicved here was that it was impassible 10
forgel a substitution because you were always asked. The result
was that we had engineers, technical assistants, and clerks who,
by learning the correct responses, repeatedly sent jobs to do test-
ing without ever seeing a JCL statement. Two JCL “gurus”
managed everything; JCL syntax errors became so infrequent as
to be curiosities. Care was taken to make the prompts for both
key words and file input consistent with the intent of the job, and
not the details of the JCL or IBM file setup. The people thought
of whar they wanted to do; PwB performed the actual work of
implementing those intents. By use of these prompts, our non-
JCL oriented users could have great flexibility in sending their
Jjobs and still not worry about the details.

Our early JCL files emulated many of the features normally
provided by catalogued procedures. However, as our experience
increased, we found that we were doing things with our JCL files
that were not easily accomplished in catalogued procedures. In
particular, one keyword could be used to specify fields anywhere
on the JCL statements and in the source text. Also, we could
write JCL which referenced other JCL files, thus avoiding dupli-
cation and easing maintenance.

5.1 The Source Code Control System

Over the years there have been atlempts to provide a means to
store, control, and document code as it is being developed. In
almost every case these systems incorporate the means of editing
the code. The pwB Source Code Control System (sccs) does not
(ROC75A]. The programmer requests a copy of the code for edit-
ing and SCCS locks out any other edit requests. The programmer
then edits the source, which is an ordinary text file, by whatever
means available, usually ed When convinced that the new form
1s what is desired, the user asks SCCS to record the changes and
unlock the master file to other editing. SCCs also records a state-
ment of why those changes were made.

SCCS puts no restriction on what the text is or how it is gen-
erated and edited. Thus, when CDS started using the sCCs, our
programmers had only to learn the initial request, ges, and the
final request to record the changes, delta.

5.2 NROFF —the New Text Formatter

Nroff, the new roff; has actually been available the entire time
CDsS has been on the Workbench. However, its much greater
power was gained at the cost of syntax and features which are
difficult to learn. Recently, the availability of a comprehensive
set of “macros”™ for doing documentation has made nroff as easy
to use as roff (MAS76B). All of the late CDS documentation was
done using nroff, giving superior document appearance and con-
tent in considerably less time than was previously possible.

6. HOW CDS USES PWB

PWB consists of many different processors, some of which per-
form quite primitive functions. It is the user’s responsibility to
put these programs together in imaginative and useful ways. It
takes a while to get used to the idea that most of the work to
accomplish a particular task has been done for you and that your
work consists mostly of piecing together the features and little
programs you need to produce the desired effect.

For example, when we want to produce a sorted list, we call
on sorr to do it. We do not know or care how it gets its job done
or how much machine core or time it takes. We just call it with
arguments that indicate what is to be sorted and by what rules.
1t then goes and does it. The same goes for printing, editing, file
scarching, string searching, etc. The little programs do some lit-
tle thing 1n a rehable and flexible way. We piece them logether
to do what we want.

21

Thus the Workbench becomes a human ¢ iented compater
system. We spend our time working on what we want to do and
how, but on a very high level The implementation details are
not our concern

get—eedit—s-compile—Lelink & test delta —=link & release

Figure 2. The Program Development Sequence

6.1 An Example of PWB Working for CDS

To show just how much work PwWB does and how easy it is to get
it to do that work, we will trace through a basic terminal session
to change a program module, test it via compiles and runs on the
target computer, and then make the changes official and per-
manent. The sequence is shown in Figure 2.

The first step in our example terminal session is to retrieve a
copy of the original program module and to have SCCS restrict
access to that module to non-editing only. The entered com-
mand line is:

get —e /ul/cds/cr01/s.ccanal
3.1
106 lines

That gers the SCCs source module “s.ccanal” for editing. The
computer’s response is printed in bold. A file “ccanal” is created
for the programmer. SCCs tells us that the current release and
level of the module are three and one, respectively, and that the
created file has 106 lines.

We will not show the editing process which is fairly standard.
Suffice it to say that there are no special considerations that the
programmer must make for SCCs while editing the module.

send .. /jcl/mhb a job-card file

CLASS=b “B” class job (sets core and time limits)
JCL: request for job control cards
-../icl/plixc file for basic compile

RELEASE=} release of “comcode” to be used

pl/i source: request for code to be compiled

- ccanal reference to file to be compiled

pl/i source: request for further code to be compiled
-. conclusion of “plixc”

JCL: request for further job control cards

. conclusion of “JCL" prompt and job stream
125 cards. user information from send

Queued as /ul /hasp/xmit120.

Figure 3. User Conversation to Compile for Error Messages

When the programmer wishes to compile this program to
check for compiler messages, the “‘conversation” in Figure 3 is
held with PwB. What the user does nor see is nine lines of JCL
which include customized comments to help identify this job and
116 line of source code.

The “JCL:” and “pl/i source:” prompts are nested and
repeated, allowing multiple compiles in one step and/or multiple
steps in a job. The *“-.” discontinues the current level of nest-
ing.

6.1.1 Compile for T-sting. The edit and *‘plixc™ cycle is repeated
until the program compiles cleanly. The next step is to put it out
where it can be run in a test environment. This is done with the
conversation shown in Figure 4. We use the same job card and
the prompts have the same meaning The file
“../jcl/compile_test™ contains JCL 1o do a compile and linkage
edit into a target machine library, R9411.CDS.R3.TEST.

send jc!/mhb a job card file

CLASS=d “D"” class job (sets core and time limits)
JCL: request for job control cards
-../jicl/compite_test file to compile for testing

FILE=ccanal the file to be compiled

PROC=ccanal the name it will have when released
RELEASE=]} the release it is to be tested in

JCL: more JCL requested

- .. /icl/testlib file to linkage edit into the test library
DIRECTORY=cr01 the directory of the main procedure
MAIN=cdscr01 the main procedure name

RELEASE=} to be tested at this release

JCL: more JCL requested

-../icl/bisbatch execute the test library

d class job a reminder that this must be run class “D”
RELEASE=]} the release of the test library to be used
BTS input: request for input data
~../data/crOl_test input data file

BTS input: request for input data

. conclude test data input

JCL: more JCL requested

. conclude jobstream

406 cards user information from send

Queued as /ul/hasp/xmit590.

Figure 4. Compile and Linkage Edit for Testing

The linkage editor has the ability to identify the load module
with a “stamp™ and to provide aliases for the module. In all
source files, as a convention, there appear lines of the form:

-techo " identify *ccanall ("%R%.%L% %D% %T%')" > ccanal i
-lecho " alias ccnext,cccompi® > > ccanali

The portions within double quotes are linkage edit control cards.
These lines, when read by send, cause a file “‘ccanali” to be
created containing the card images. Then ‘“‘compile_test” reads
that file at the appropriate moment, and the cards become part of
the job stream. The ‘ccanali” file is removed later. The
“%R%”, “%L%", “%D%", and “%T%" are used later for SCCS
release, level, date and time. Since we are not using SCCS here,
but are only compiling for test, they will not be changed and
their presence in the module “‘stamp™ signals that this module is
an unofficial version.

The *../jcl/testlib™ file also contains a linkage edit step. It
links the main module with all of its supportive modules to
create an executable load module in the target machine’s dataset
called “R9411.CDS.R3.TESTLIB”. We also stamp it with the
date and time the job originated.

Finally, we add the file in .. /jcl/btsbatch” to the jobstream
which exercises the test library with the data in
. . /data/crQl_test™,

Both “compile_test” and “testlib” reference the sheill pro-
cedure ‘“‘auto_compress”. This eight line “program™ keeps count
of how many updates have been sent to the partitioned datasets
used by the linkage edit steps. When the count gets to a certain
number, currently eight, a job is kicked off that compresses that
particular dataset. Since we have begun using this technique we
have not had to worry about the problem of doing “garbage col-
lection” on our partitioned datasets. Thus PwB is overcoming a
deficiency of the target computer and relieving us of work we
really should not have to do. The lines listed below are from
“compile_test”. They reference the “identify” file (- PROC.),
remove i, and execute the automatic compress. The same type
of “send-speak™ appears in ‘‘testlib”.

//lkedsysin dd *

- PROC.i

“!'rm —{ PROC_i > /dev/null
-1auto_compress test RELEASE; exit 0

22

send jcl/cds
CLASS=b

JCL:

- jcl/compile
DIRECTORY=xr01
PROC=ccanal
RELEASE=]}

3.2

114 lines

JCL:

* jcl/pgmlid
DIRECTOR Y=cr(1
MAIN=cdscr01
RELEASE=]}

JCL:

job card for administrator

new release and level from SCCS
new line count from SCCS

linkage edit into official program library

238 cards.
Queued as /ul/hasp/xmit088.

Figure 5. Final Compile and Linkage Edit for Release

6.1.2 Compile for Release. When the testing is completed, the
module must be made “official”. We use delta to provide protec-
tion and keep a history of the changes. The user would type the
sccs command line:

delta .. /cr01/s.ccanal

history? Change the choice code analysis — tr 760611
87 unchanged

27 inserted

19 deleted

The final steps are to compile the deltaed module and to link it
into the “official” executable library. This is done by the CDS
program administrator, who sends ihe job stream shown in Fig-
ure 5. The information from SCCs appears because the
“jcl/compile” file contains a ger (without edit) to obtain the PL/I
source for send. The command line within that file is:

~!get /ul/cds/DIRECTORY/s.PROC ~rRELEASE —I —p

The *~1" asks for the complete history of this file to be put in a
file called “1.LPROC” (in this case, ‘“lccanal”) and the “—p”
causes the output of ger to go directly to send without using any
intervening file.

The %R%, %L%, etc. we saw earlier now come into use. SCCS
changes %R% to the release number, %L% to the level, and %D%
and %T% to the date and time the ger was done. This informa-
tion is scattered through the source code on comments to help
the user, and appears on the identify card we saw earlier in the
“PROC." file, ccanal_i:

identify *ccanal1{(’3.2 76/03/13 17:39:09")
alias ccnext,cccompi

So now our load module is stamped with the release, level, date,
and time of our module. We now can easily determine if a par-
ticular version is up to date.

The “jcl/compile™ has an extra step in it to print the history
that sccS provided as part of the compile listing. Since that his-
tory tells when and who did what to this module, the listing pro-
duced is a complete document of this module to date. That's a
handy thing to have, especially if people get into the habit of giv-
ing reasonable histories to defra. Histories that say “debug’ are
not all that useful.

The “jcl/pgmlib™ file is much like the “jcl/testlib™ we saw
earlier. However, the read permission is resticted to the CD¢
program administrator so that only that person is able to send it
It also has an extra step after the linkage edit to create a listing
of all the “identify” stamps that we put on our load modules
Thus the linkage edit listing includes a complete list of all CDf
modules in the executable module, including their SCCS release

Icvel, and the date and time they were retrieved from SCCs,
which was a useful thing to have when we were nol sure what
version was last compiled.

Again, “jcl/compile” and “jcl/pgmlib” both wuse the

“auto_compress” to keep things on the target machine clean.

We would point out that most of the automatic processes we
show would have to be performed by hand or by writing special
programs if we were to use the facilities available on the target
computer. PWB has totally relieved us of the drudgery of the
manual process and even hidden the work being done.

6.2 Using PWB To Analyze Output

The RJE process permits the returning of output to PWB instead
of having it printed. The “'big file scanner”, b5, is used to scan
large files. The authors have used this 10 some advantage. We
have a bfs script that searches PL/I compiler output for the
significant diagnostics, linkage editor complaints, and the printout
from the actual run. When the project goes into “‘panic mode,”
this is very useful for first compiles and test case drivers. We
also use il on a casual basis during the normal work day. Being
able to look at twenty lines of significant diagnostics rather than
twenty pages of oulput is convenient and we still can go back for
details.

7. IS PWB WORTH IT?

That is the real point of all this: is it really worth learning
another system to gain the benefits of PWB?

7.1 Productivity

PWB increases programmer in a number of

significant ways.

productivity

7.1.1 Fewer Steps in Coding. Generally, one step is eliminated in
transferring an idea into the code of a program. The usual
sequence of events for a batch card-oriented system is:

e Rough draft the idea into a flowchart, or some code or short-
hand form.

e Expand into code on a coding form, hand written.

e Keypunch the code (either by the author or by a keypunch
service).

e Wrap the code in a JCL deck and take to the computer center
to be compiled.

In CDS we have observed that the second step is frequently
skipped. The programmer arrives at the terminal with a rough
draft of what is intended and refines it while entering it via the
cditor. So the terminal serves the purpose of the coding form.

Obviously, there is no wait for the keypunch service nor are
any physical cards generated. And finally there is no need to go
to the computer counter to push the deck across. The send com-
mand does that for you

When that first compile comes back with its inevitable diag-
nostic messages, the next savings are realized. The programmer
can log into UNIX and directly add that missing comma, include
the forgotten argument, or move a misplaced statement. There
1S no need to write up another coding sheet, or duplicate cards,
or shuffle cards. Just log in, correct, and send again.

Thus, in terms of the productivity to be gained through
reduciions in duplicated effort and trips to the computer center,
PWB provides significant enhancements relative to the card-
oricnted environment.

7.1.2 “Automatic” Documentarion and File Maintenance. Since the
Source Code Control System keeps both the code and the history
of updates, and since the Job Control files are flexible and yet
always consistent, the Workbench performs all the functions
normally assigned to a Program Librarian. We have a “daily dae-
mon’ which runs every weekday at 5 am. It “mails” reports to
programmers on files added and removed since the previous

23

working day. If something disappears, either through a system
failure (which is rare), or a programmer error (much more com-
mon), we usually know about it within 48 hours and can get it
backed up. On Fridays, it sends a job 10 produce a usage report
on all of our IBM datasets so that we can stay ahead of our
requirements, rather than reacting to crises. Before we built the
*auto_compress” discussed in Section 6.1.1, the daily daemon
also sent a job to compress all of our partitioned datasets.

In terms of the productivity gained by automating the work
associated with staying ahead of the demands that CDS was mak-
ing on the target machine, PWB was again very helpful.

7.1.3 Non-Programer Productivity. As we mentioned earlier, there
was a fair amount of telephone engineering being done in the
CDS project. The people who were involved did not know, and
did not wish to learn, the various intricacies of JCL and IMS
which the programmers live with. By using the Workbench as a
filter, they were not forced to learn these extraneous systems,
and thus could concentrate on designing CDS.

The programmers and those of us providing the JCL and IMS
support also found the layer of filtering helped us concentrate on
getting the programs working. Far less time was spent chasing
down JCL syntax errors, recovering from dropped or misplaced
decks, or counseling people on how to read cryptic messages.

True, there was a price to pay: learning enough about the key
features of the PWB to make it work for us. But relative to the
extraneous education we avoided for eight of our people, the
time spent learning about UNIX was not very significant.

7.2 Better Code?
It is one thing to do a job faster. Does PWB help to do it better?

7.2.1 Program Style and Structure. The popular concepts of pro-
gram structure and style are much touted in the literature, but
we suspect most software shops are finding them difficult to
implement. It is just a pain to have to re-code working code,
“just to make it look pretty”. We found that the use of PWB
helped and even encouraged our programmers to write new code
using the *“good style” concepts. It was also possible to take
existing code and *‘structure’ it without changing a single charac-
ter of actual code. One simply spaced it oul, indented, and
blocked as required. That did not change anything as far as the
final compiled machine code was concerned, but made it much
easier (o maintain.

The ability to plagiarize well written code and modify it just a
little bit was quickly discovered. This technique was used when
a piece of common code could not, be constructed for a particular
purpose. A generalized solution to the problem would be made
available and each programmer would adapt it as needed.

7.2.2 Sharing Code. The “‘comcode™ idea mentioned earlier pro-
vided consistency in naming and usage of CDS concepts every-
where they appeared, and they appeared everywhere. Program-
mers working on opposite ends of the system had no trouble
talking about data concepts that they had to share since they
shared the same “comcode™ for those concepts. The first time
that inter-program communication was attempted via our data
base, it worked! Also, since our “comcode” items were liberally
and intelligently commented, every program thalt used them
benefited.

Just as important was the effort saved. On the average, the
programmer saved ten lines of coding every time a comcode was
referenced. Thus, the naming conventions were easy to enforce
since it was easier 10 use them than not.

7.2.3 Keeping Names Meaningful. Many more times than once in
CDS we were faced with this problem: This variable no longer
means what its name implies. It should really be changed to be
more meaningful. “But it is used all over the place! How can
you be sure you've gotten every occurrence?” Normally that is

a sticky problem. It is even worse when it is not just the name,
but the nature of the data it represents that changes.

With the pwB we could, and did, find every occurrence of a
variable and change its name and nature, without causing the
usual catastrophies. To change the size and structure of the root
segment of our principal data base in 100 independent PL/I pro-
cedures took one evening's worth of work for the authors. We
were up and running the next morning. As we recall, there were
three bugs associated with that change, all due to an oversight on
our part, and they were all found and cleared by the end of the
week. The code to accomplish this is shown in Section 7.3.3.

7.3 Because It’s Only Impossible, We'll Give You Until Tomorrow

In any job there are those aspects which can best be described as
a nuisance. And yet they take up time and effort and must be
dealt with. Sometimes, they are extremely difficult to do, other
times just plain tedious. It was pleasantly surprising to find that
the Workbench could relieve the tedium and ease the difficulties.

7.3.1 How Many Statements in CDS? Programmers will never
understand the fascination that the managers of software projects
have with “statements of code.” Normally when faced with the
request for a count, programmers cringe, as did we. But when
pressured we discovered that it was not all that bad. We found
there were already programs for extracting lines containing par-
ticular characters (grep) and counting lines (wc) and we could
pipe the output of one into the other. We built a shell procedure
that looked at all of our code and counted semi-colons, the state-
ment delimiter in PL/I. Thus the Workbench reduced a tedious
job to a trivial one.

7.3.2 Where Did That Extra Character Come From? In any job, no
matter how hard you try to avoid it, something that you did not
anticipate takes almost as much time as planned activities. In
CDAS, the terminal we selected provided the “diversion.” Simply
stated, the relationships between the cassette tape drive and the
data line o the computer were not as advertised. Characters
which were recorded on the tape would not get to the computer.
Characters which were not on the tape would be transmitted.
Since these were non-graphic and control characters, we had
some difficulty isolating the problem.

But UNIX came to our rescue. By turning off the special
meaning that characters had to UNiX, that is by setting the input
processor to ‘“‘raw’ mode which is within the user’s power, we
were able to record exactly what the terminal sent down the line
in a file. The od program, octal dump, was then used to see
exactly what was present. Through this technique we were able
to determine the specific terminal deficiencies that were causing
our problems. We then provided the manufacturer the
specification for the correction which we required.'

This discussion brings up an important point. We have used
several brands of printing and CRT terminals. In each case we
could tailor the character set and response times from UNIX so
that the terminal could keep up. If the terminal is fast, as in the
CRT types, UNIX can be made faster to save time. It should be
understood that we are not talking about changes to system
code; we mean that the user enters a simple “set teletype™ com-
mand (s7ry) to provide the features required.

7.8.3 Change the World. We talked earlier about finding and
making massive changes reliably. That process is not trivial. It
requires a thorough understanding of what needs to be done.
However, given that understanding, PWB provides the tools to
reliably search out and change what is needed. The keystone of
those tools is the ability to create files of commands to drive the

1 The hinal result of the investigation was that line-feed characters recorded
on the tape cassette did not get sent 10 the computer and every block from
the tape that was transmitied terminated with two carnage-return
characters. IMS teleprocessing required the linc-leed character and could
not tolerate the extrs unwanted carriage-returns,

text editor. Moreover, it is a simple matter to make the files
dynamic, changing according to need. Al of this s done at the
command language level, and s readidy learned af one o willing
to spend the tme to read the programmer’s manual and experr-
ment a little.

For example, the need came up recently o change all
occurrences of the character string "%M%" to the name of the
file in which that string was found. There were 130 files spread
around nine directories. The problem was to create the com-
mands to gef the file out of SCCs, edit it, and delta the result back
in. The following was the heart of the solution.

if ! { get —e $1) exit
gath —s 11I=31 — ; delta §1 "—ychange %M?% to proc name”
-$ed 1ll.a > /dev/tty ; exit O
-8f
~$g/%M%/s//111/gp
-Sw
“$q
What it does is:

e When called with the file name as argument ($1), does a ger
of the file for editing (—e) and if that fails, exits.

o Gath establishes the string “1I1” as the file name and reads
the lines that follow ().

e The “-%" lines are read by gath and “lII" is replaced with
the file name. The resultant lines are given to the shell (sh)
and thus the ed command performs the “f', “g”, “w”, and
“q" commands which edit the file.

e The delta is made on the file with the given history.

A driver already existed for finding all files in the needed direc-
tories. It took about a half hour to develop and test the above
code and about 50 minutes during off-hours for the PwB to per-
form the actual work. We've kept the skeleton around, since
this type of thing comes up about once every other month.

7.3.4 Compile the World. In send, the keyword capability is not
limited just to prompting. The few times it became necessary to
compile everything we had we would satisfy the keywords in
advance, using files of definitions or shell procedures. and then
use the same JCL files as we did every day to do the work. The
result was 100% consistency with day-to-day practice.

rm —f /ul/cds/xrefi
. loop
if $1x = x goto wrapup
chdir /ul/cds/$1
get . —r3 —s
grep " =" ?{0-z]* > > /ful/cds/xrefi
rm —f ?[0-z)*
shift
goto loop
: wrapup
chdir /ul/cds/r3/comcode
grep "~"* >> /ul/cds/xrefi
chdir /ul/cds/r3/entry
grep "~"* >> ful/cds/xrefi
ed — /ul/cds/xrefi
1.8s/:1/
w

q

reform +16 +8 < /ul/cds/xrefi|sort +1 > /ul/cds/xrefs
rm /ul/cds/xrefi

mail jw

xref completed

Figure 6. Shell Procedure for Cross-Referencing Comcade

7.2.5 Crass-Reference the World. The Programmer's Workbench
gave us the tools that allowed us to build a shell procedure to
find all occurrences of the “tilde rclerences™ and tell us the

program module they ogcurred in sorted by the order of the
comcode files. Time from conception to tested procedure was
one day. We list it in Figure 6 to show its size. Briefly, it:

o Removes the temporary file xrefi.

e From *: loop™ to ‘‘goto loop™ gers all programs in the direc-
tories specified. All the lines which have “-™ in them are
put into “xrefi” along with the file name.

e From *: wrapup” to “grep "-"* > > /ul/cds/xrefi” does the
same for the “‘comcode” and “entry” directories.

e From “ed” 1o “reform” produces a formatted, sorted list of all
the references and puts it into ““xrefs”.

e Remove the temporary file “xrefi”.

e Mail to the login “jw” the message *‘xref completed™.

It is a bit complicated. But this was created when we were still
novices. A newer version, which produces identical output, is
faster, more robust, and the user does not have to provide the
list of directories to be used.

The “xref” has proven valuable time and time again, when a
CDS system concept was changing and we wished to see what
modules were impacted. More importantly, we do not feel it
would have been feasible, with the development schedule we
had, to build a similar system for use with LIBRARIAN or any
of the other tools available on the IBM machine. Certainly, it
would have been difficult to do it in one day.

8. DEFICIENCIES

8.1 Education

When the authors first started using the PWwB we were told that
our login code would be “cds” and were handed a copy of the
UNIX Programmer’s Manual. This eight part volume was all the
education that was initially provided. It soon came to be known
as "The Book", a phrase taken from the expression often heard in
our office, “It's in The Book.” Truly all the information required
to properly use the system was in the book but in an incredibiy
terse format intended for reference only. The entire writeup on
ed consists of four pages A part of the probiem is that in almost
any software project, PWB included, the paperwork comes after
getting the product out the door.

Recently the user community has expanded to such an extent
that the pwB developers do not have enough time to answer all
the user’s questions individually. This has led to a series of use-
ful tutorials, memoranda, and classes.

8.2 File System Management

As we have seen in our example, use of the full path name of a
file aids in adding robustness to the code. The shell procedure or
tilde reference will always work. However, the amount of space
that exists in a file system such as “/ul™ is limited and some-
times 1t becomes necessary 10 move a project Lo another file sys-
tem Currently. there is no support for such a move, and we
were stuck with the job of finding all occurrences of “/ul™ and
changing them 1o “/u9” It was not all that difficult 1o do, but
the PwB “super-user’™ (system administrator} could have done it
for us in much less time

In pwB all storage 1s on-line. Although daily backups are
taken. there i1s no convenient way for users to archive old
material Source code files in sC¢s format can have a lot of
built-up fat. Oid releases which are not currently in the field
could be “crunched” out from the bottom if there were some
way 1o store the historic copy offline.

8.3 Independent PWB versus On-Line

For most of the users of PwB, it 1s an interface to a lar, ¢ target
machine. This immediately brings up the objection that PwB is
no better than being in a batch environment. There is no gen-
eral capability for on-line compilation and testing. These func-

25

tions might be gained if the target provided a time sharing sys-
tem, such as 1BM’s Time Sharing Option (TSO).

But would it be worth while to build a pwB facility under TSO
(or other target operating system)? Certainly the ability to do
on-line compilation and testing would exist. This approach may
be appropriate at some installations. The general issues involved
in using an independent PWB are discussed at length in [DOL76A).

If CDS were developed on a TSO Workbench, we would be
sharing the target machine with a large batch environment and
an on-line IMS environment which is already having difficulty
servicing its terminals adequately. With PWB serving a strictly
on-line environment, and the vast majority of its customers
using its editing, RJE, and documentation facilities, we feel it is
doing a better than adequate job. From our particular experience
with CDS, the lack of on-line compilation and testing seems
more than compensated for by the other advantages of the PwB.
Also, in our installation (as in others possessing finite resources),
we have often seen contention for priority of use between batch
and on-line applications, and we welcome PWB'’s ability to provide
service without getting involved in such contention.

9. RELIABILITY

The reliability of the PwB system has been very good. In over
two years of use, only one file of CDS source code was damaged.
It was restored to the previous day's version an hour later.

File space availability 1s a recurring problem. Unlike other
systems in which users have a fixed allocation, PwB shares the
available space across a group of users. Some users are not as
nice about staying under their “paper” allocations as others:
about every six months a file system runs out of space.

Because our location currently has four PwB machines, if any
one malfunctions files can be switched to an alternate machine
giving a degree of “‘fail-soft.” Thus even when a machine is bro-
ken the users have service, though admittedly degraded. Even
so we have found that the system uptime i1s very good. It 1s gen-
erally available during working hours, although at about 2:00 pm
access can be hmited due to line congestion. Usually it will stay
up throughout an entire weekend without any attendant

10. CONCLUSIONS

We have shown a small sample of the experiences of one group
using the PwB 10 aid in developing a real-life application

Since we first joined, the Programmer’s Workbench commun-
ity has grown at an astonishing rate. It is being used by develop-
ment projects and maintenance projects, documentation centers
and typing pools, clerks, typists, programmers. engineers, and
supervisors. It 1s probably safe 1o assume that no two use 1t in
exactly the same way.

But there is hittle doubt that the availability and capabihities of
the UNIx Programmer’s Workbench are having major impact
wherever 1t 1s used It reliably provides useful computing power
10 a large and diverse community at @ very low cost Moreover,
this power 1s avatlable 1n the form most people want it 4 human
oriented system which is easier to use than not

This type of software design. where the svstem does not drinve
the user, but rather the user easily drives the syvstem, will. in our
opimon, have great and fuvorable impact on professional and
public acceptance of future computer technology

REFERENCES
All references cited in this paper appear at the end of “A4n /niro-

duction 1o the Progranmmer’s Workbench” by Dolotta, T A . and
Mashev, J R in these Proceedings

: '
.
- '
.
i N ~
B .
'
N
\

PWB/UNIX Documentation Roadmap
J. R. Mashey
Bell Laboratories
Piscataway, New Jersey 08854
1. INTRODUCTION

A great deal of documentation exists for PWB/UNIX. It has different formats, is contributed by many
different people, and is modified frequently. New users are often overcome by the volume and distri-
buted nature of the documentation. This ‘‘roadmap’’ attempts to be a terse, up-to-date outline of cru-
cial documents and information sources.

Numerous people have contributed comments and information for this ‘‘roadmap,” in order to make it
as helpful as possible for PWB/UNIX users. However, many of these comments are accurate only with regard
to PWB/UNIX and may well be totally inapplicable to other versions of UNIX.

1.1 Things to Do

See a local PWB/UNIX system administrator to obtain a ‘‘login name’’ and get other appropriate system
information.

1.2 Notation Used in this Roadmap

[N} — Section N in this “‘roadmap.”
++ — item required for everyone.
+ — item recommended for most users.

All other items are optional and depend on specific interest (a list of relevant documents appears in the
Table of Contents of Documents for the PwB/UNIX Time-Sharing System).

Items in Section N of the Pws/UNIx User's Manual are referred to by name(N).

1.3 Prerequisite Structure of Following Sections

2. BASIC INFORMATION

Don’t do anything else until you have learned most of this section. You must know how to log onto
the system, make your terminal work correctly, enter and edit files, and perform basic operations on
directories and files.

2.1 PWB/UNINX User's Manual + +

Read Introduction and How to Get Started.
Look through Section I to become familiar with command names.
Note the existence of the Table of Contents and of the Permuted Index.

Section 1 will be especially needed for reference use.
2.2 UNIX for Beginners ++
2.3 A Tutorial Introduction to the UNIX Text Editor -+ +

B.1

2.4 Advanced Editing on UNIX +

2.5 PWB Papers from the Second International Conference on Software Engineering +
Gives an overview of the Programmer’s Workbench.

2.6 Things to Do

e Do all the exercises found in {2.2} and {2.3}, and maybe {2.4}.
e Create a file named ‘‘.mail” in your login directory,* so that other people (such as system adminis-
trators) can send you mail. This can be done by:

cp /dev/null .mail

e If you want some sequence of commands to be executed each time you log in, create a file named
.profile”” in your login directory containing the commands you want executed. For more informa-
tion, see Initialization in sh(l).

e Files in directory ‘‘/usr/news’’ contain recent information on various topics. To see what has been
updated recently, type:

Is —It /usr/news
and then print any files that look interesting. Other useful actions include:

mail —f /usr/news/.mail gives recent history from primary system mailbox.

cat /usr/news/helpers gives contacts and telephone numbers for counseling, file
restorals, trouble reporting, and other services. '

nroff —mm /usr/news/roadmap prints current copy of this ‘‘roadmap.”

cat /usr/news/terminals gives recommendations on selection of computer terminals.

2.7 Manual Pages to Be Studied

The following commands are described in Section I of the Pws/unix User’s Manual, and are used for
creating, editing, moving (i.e., renaming), and removing files:

cat(I) concatenate and print files (no pagination).

chdir (D) change working (current) directory; a.k.a. cd(l).

cp(l) make a copy of an existing file.

ed(l) text editor.

[s(1) list a directory; file names beginning with ‘*.”’ are not listed unless the “‘—a”’
flag is used.

mkdir(1) make a (new) directory.

mv(l) move (rename) file.

pr(l) print files (paginated listings).

rm (1) remove (delete) file(s).

rmdir(l) remove directory (ies).

The following help you communicate with other users, make proper use of different kinds of terminals,
and print manual pages on-line:

login (1) sign on.

mail(]) send mail to other users; inspect mail from them, or contents of the system
mailbox.

man(l) print pages of Pws/UNIX User’s Manual. ,

stty () set terminal options; i.e., inform the system about the hardware characteristics
of your terminal.

tabs(l) set tab stops on your terminal.

terminals(VII) gives descriptions of commonly-used terminals.

who(I) print list of users currently logged in.

write (1) communicate with another (logged in) user.

*

The directory you are in right after logging into the system.

23

3. BASIC TEXT PROCESSING AND DOCUMENT PREPARATION

You should rcad this section il you want to wse existing text processing lools to write letlers,
memoranda, manuals, etc.

3.1 PWB/MM—Programmer’s Workbench Memorandum Macros + +

This is a reference manual, and can be moderately heavy going for a beginner. Try out some of the
examples, and stick close to the default options.

3.2 Typing Documents with PWB/MM + +
A handy fold-out.
3.3 NROFF/TROFF User's Manual +

Describes the text formatting language in great detail, look at the REQUEST SUMMARY, but don’t try to
digest the whole manual on first reading.

3.4 Documentation Tools and Techniques +

This overview of UNIX text processing methods is one of the papers from the Second International
Conference on Software Engineering. (See {2.5) above).

3.5 Manual Pages to Be Studied

mm(1) makes it easy to specify standard options to nroff(l).
nroff(I) read to see formatter option flags.

spell(I) identifies possible spelling errors.

tmac.name(VII) list of text-formatting macro packages.

typo(l) identifies possible typographical errors.

To obtain some special functions (e.g., reverse paper motion, subscripts, superscripts), you must either
indicate the terminal type to nroff or post-process nroff output through one of the following:

450(1) newer Diablo printer terminals, such as the DASI450, DIABLO 1620, XxErox 1700,
etc.

col(l) terminals lacking physical reverse motion, such as the Texas Instrument 700
series.

gsi(l) older Diablo printer terminals, such as the Gs1300, pASI300, DTC300, etc.

hp(D) Hewlett-Packard 2640 terminals (1HP2640A, HP2640B, 11P2644 A, HP2645A, etc.).

4. SPECIALIZED TEXT PROCESSING

The tools listed in this section are of a more specialized nature than those in {3).
4.1 TBL —A Program to Format Tables +

Great help in formatting tabular data (see b/(1)).

4.2 Typesetting Mathematics —User’s Guide (2nd Edition) +

Read this if you need to produce mathematical equations. It describes the use of the equation selting
commands egn(D) and negn(1).

4.3 A TROFF Tutorial
An introduction to formatting text with the phototypesetter.

4.4 Manual Pages to Be Studisd

diffmark (1) marks changes between versiors of a file, using output of diff{I) to produce
“revision bars™ in the right margin.

eqgn(l) preprocessor for mathematical cquations (phototypesetter).

negn(l) preprocessor cor mathemas caf ¢quations (terminals).,

thl(1) preprocesse e tabuly data.

trofl' () formatter for phototypesetter.

5. ADVANCED TEXT PROCESSING

You should read this section if you need to design your own package of formatting macros or perform
other actions beyond the capabilities of existing tools; {3} is a prerequisite, and familiarity with {4} is
very helpful, as is an cxperienced advisor. 1t takes a great deal of effort to write a good package of
macros for general use. Don’t reinvent what you can borrow from an existing package (such as
PWB/MM).

5.1 NROFF/TROFF User’'s Manual ++

Look at this in detail and try modifying the examples. If you are going to use the phototypesetter, do
the same for A TROFF Tutorial ({4.3} above).

5.2 Things to Do

It is fairly easy to use the text formatters for simple purposes. A typical application is that of writing
simple macros that print standard headings in order to eliminate repetitive keying of such headings. It
is extremely difficult to set up general-purpose macro packages for use by large numbers of people. If
possible, try to use an existing package or modify one as needed. Look at existing packages first—see
imac.name(VI1).

5.3 Manual Pages to Be Studied

All pages mentioned in {3} and {4).

6. COMMAND LANGUAGE (SHELL) PROGRAMMING

The Shell provides a powerful programming language for combining existing commands. This section
should be especially useful to those who want to automate manual procedures and build data bases.

6.1 The UNIX Time-Sharing System + +
6.2 PWB/UNIX Shell Tutorial ++
6.3 Things to Do

(X3

If you want to create your own library of commands, create a
described in sh(l).

.path” file in your login directory, as

6.4 Manual Pages to Be Studied

Read sh(l) first; the following pages give further details on commands that are most frequently used
within command language programs:

ccho(D) echo arguments (typically to terminal).
equals(1) Shell assignment command (for variables).
exit(l) terminate command file.

expr(l) evaluate an algebraic expression.

fd2(1) redirect diagnostic output.

if (1) conditional command.

next(l) read command input from named file.
nohup(I) run a command immune to communications line hang-up.
onintr(I) handle interrupts in Shell files.

pump(l) Shell data transfer command.

sh(l) Shell (command interpreter).

shift(l) adjust Shell arguments.

switch(I) Shell multi-way branch command.

while(l) Shell iteration command.

7. FILE MANIPULATION

In addition to the basic commands of {2}, many UNIX commands exist to perform various kinds of file
manipulation. Small data bases can often be managed quite simply, by combining text processing (from
{5}, command language programming {6}, and commands listed below in {7.2}.

7.1 Things to Do

A
T'his “roadmap™ notes only the most frequently used commands. 1t i1s wise to scan Section 1 of the
Pwsroniy User's Manual periodically —you will often discover new uses for commands.

7.2 Manual Pages to Be Studied

The following are used to search or edit files in a single pass:

grep(l) search a file for a pattern; more powerful and specialized versions include
egrep(1), ferep(1), and rerep(1).

sed(1) stream cditor.

tr(l) transliterate (substitute or delete specified characters).

The following compare files in different ways:

cmp(l) compare files (byte by byte).
comm(l) print lines common to two files, or lines that appear in only one of the two files.
diff (D differential file comparator (minimal editing for conversion).

The following combine files and/or split them apart:

ar(l) archiver and library maintainer.
cpio(l) general file copying and archiving.
esphit(h split file by context.

split(h split file into chunks of specified size.

These commands interrogate files and print information about them:

file(1) determine file type (best guess).
od(l) octal dump (and other kinds also).
wel(l) word (and line) count.

Miscellaneous commands:

find(I) search directory structure for specified kinds of files.
gath(I) gather real and virtual files; alias for send(1).

help(I) ask for help about a specific error message.

reform(I) reformat ‘‘tabbed’’ files (often used to truncate lines).
sort(l) sort or merge files.

tee(l) copy single input to several output files.

uniq(l) report repeated lines in a file, or obtain unique ones.

8. € PROGRAMMING

Try to use existing tools first, before writing C programs at all.
8.1 Programming in C —A Tutorial ++

Read: try the examples.

8.2 C Reference Manual ++

Terse but complete reference manual.

8.3 A New Input-Output Package +

Describes a new 1/0 package that is superseding many of the existing routines; write any new code
using this package.

O

8.4 UNIX Programming +

8.5 YACC—Yet Another Compiler Compiler

8.0 LEX—Lexical Analyzer Generator

8.7 Make—A Program for Maintaining Computer Programs

8.8 Things to Do

The best way to learn C is to look at the source code of existing programs, especially ones whose func-
tions are well known to you. Much code can be found in directory *‘/sys/source’. In particular, direc-
tories ‘sl and ‘‘s2” contain the source for most of the commands. Also, investigate directory
**/usr/include’’.

8.9 Manual Pages to Be Studied

adb(l) C debugger; more powerful (but more complex) than the older cdb(1).
cc(D) C compiler.

cdb(l) C debugger (for post-mortem core dumps and other debugging).
Id (1) loader (you must know about some of its flags).

lex () generate lexical analyzers.

make (1) automate program regeneration procedures.

nm(I) print name (i.e., symbol) list.

prof (D) display profile data (used for program optimization).

regemp(l) compile regular expression.

strip(1) remove symbols and relocation bits from executable file.

time(l) time a command.

yace() parser generator.

9. 1BM REMOTE JOB ENTRY (RJE)

This section is for those who use PWB/UNIX to submit jobs to remote computers.
9.1 Guide to IBM Remote Job Entry for PWB/UNIX Users +

9.2 Manual Pages to Be Studied

bis() big file scanner (scans RJE output).

csplit(l) split file by context (often used to split RJE output).

tspec(V) format specification in text files.

reform(l) reformat files (often used to convert source programs from non-UNIX systems).
rjestat(l) RJE status and enquiries.

send(l) submit RIE job.

10. SOURCE CODE CONTROL SYSTEM (SCCS)

SCCs can be used to maintain, control, and identify files of text as they are modified and updated. Its
most common use is for maintaining source programs, as well as for keeping track of successive ver-
sions of various documents; in combination with diffmark(l), this allows one to automatically generate
“revision bars’” in successive editions of such documents.

10.1 SCCS/PWB User’'s Manual ++

10.2 Manual Pages to Be Studied

Of the following, get(1), delta(l), and prt(1) are most frequently used.

admin(1) administer sccs files (including creation thereof).
chghist (1) change the history entry of an sCcs delta.
" comb(l) combine sccs deltas.
delta(l) make an sccs delta (a permanent record of editing changes).
get(l) get a version of an sccs file.

pri(h) print sccs file.

rmdel(I) remove a delta from an sccs file.

seesdiff (1) get the differences between two sCCs deltas.

what(1) find and print sccs identifications in files.
. 11. NUMERICAL COMPUTATION

11.1 DC—An Interactive Desk Calculator

11.2 BC—An Arbitrary Precision Desk Calculator Language
11.3 RATFOR—A Preprocessor for a Rational Fortran

11.4 Manual Pages to Be Studied

‘ bas(l) BASIC interpreler.
be(l) interactive language, acts as front end for dc(1)
de(l) desk calculator.
fe(D) Fortran compiler/interpreter.
re(l) RATFOR preprocessor.

-

The PwB/UNIX* document entitled:
Pwsiunix Beginner’s Course

is not yet available.

UNIX is a Trademark/Service Mark of the Bell System.

B.2

A Ok

A Tutorial Introduction to the UNIX Text Editor

B. W. Kernighan

Bell Laboratories, Murray Hill, N. J.

Introduction

Ed is a “‘text editor”, that is, an interactive
program for creating and modifying “text”, using
directions provided by a user at a terminal. The
text is often a document like this one, or a pro-
gram or perhaps data for a program.

This introduction is meant to simplify
learning ed. The recommended way to learn ed
is to read this document, simultaneously using ed
to follow the examples, then to read the descrip-
tion in section I of the UNIX manual, all the
while experimenting with ed. (Solicitation of ad-
vice from experienced users is also useful.)

Do the exercises! They cover material not
completely discussed in the actual text. An ap-
pendix summarizes the commands.

Disclaimer

This is an introduction and a tutorial. For
this reason, no attempt is made to cover more
than a part of the facilities that ed offers
(although this fraction includes the most useful
and frequently used parts). Also, there is not
enough space to explain basic UNIX procedures.
We will assume that you know how to log on to
UNIX, and that you have at least a vague under-
standing of what a file is.

You must also know what character to type
as the end-of-line on your particular terminal
This is a “newline’” on Model 37 Teletypes, and
“return” on most others. Throughout, we will
refer to this character, whatesver it is, as ‘‘new-
line™

Getting Started

We’'ll assume that you have logged in to
UNIX and it has just said “%”. The easiest way
to get ed is to type

ed (followed by a newline)

You are now ready to go — ed is waiting for you
to tell it what to do.

Creating Text — the Append command *‘a’’

As our first problem, suppose we want to
create some text starting from scratch. Perhaps
we are typing the very first draft of a paper;
clearly it will have to start somewhere, and un-
dergo modifications later. This section will show
how to get some text in, just to get started.
Later we’'ll talk about how to change it.

When ed is first started, it is rather like
working with a blank piece of paper — there is
no text or information present. This must be
supplied by the person using ed; it is usually
done by typing in the text, or by reading it into
ed from a file. We will start by typing in some
text, and return shortly to how to read files.

First a bit of terminology. In ed jargon, the

text being worked on is said to be “kept in a
buffer.” Think of the buffer as a work space, if
you like, or simply as the information that you
are going to be editing. In effect the buffer is
like the piece of paper, on which we will write
things, then change some of them, and finally
file the whole thing away for another day.

The user tells ed what to do to his text by
typing instructions called ‘“‘commands.” Most
commands consist of a single letter, which must
be typed in lower case. Each command is typed
on a separate line. (Sometimes the command is
preceded by information about what line or lines
of text are to be affected — we will discuss these
shortly.) Ed makes no response to most com-
mands — there is o prompting or typing of mes-
sages like “ready”. (This silence is preferred by
experienced users, but sometimes a hangup for
beginners.)

The first command is append, written as the
letter
a

all by itself. i ricans ‘“append (or add) text
lines to the buffer, as I type them in.”’ Append-
ing is rather like writing fresh material on a
piece of paper

B.3

So to enter lines of text into the buffer, we
just type an “a" followed by a newline, followed
by the lines of text we want, like this:

a

Now is the time

for all good men

to come to the aid of their party.

The only way to stop appending is to type a
line that contains only a period. The “.” is used
to tell ed that we have finished appending.
(Even experienced users forget that terminating
“" sometimes. If ed seems to be ignoring you,
type an extra line with just “.” on it. You may
then find you've added some garbage lines to
your text, which you'll have to take out later.)

After the append command has been done,
the buffer will contain the three lines

Now is the time
for all good men
1o come to the aid of their party.

The “a”
not text.

and “.” aren’t there, because they are

To add more text to what we already have,
just issue another “‘a” command, and continue
typing.

Py

Error Messages —

If at any time you make an error in the
commands you type to ed, it will tell you by typ-
ing

?

This is about as cryptic as it can be, but with
practice, you can usually figure out how you
goofed.

Writing text out as a file — the Write command

[yl

w

It's likely that we’ll want to save our text
for later use. To write out the contents of the
buffer onto a file, we use the write command

w

followed by the filename we want to write on.
This will copy the buffer’s contents onto the
specified file (destroying any previous informa-
tion on the file). To save the text on a file
named “junk”, for example, type

w junk

Leave a space between “w” and the file name.
Ed will respond by printing the number of char-
acters it wrote out. In our case, ed would
respond with

68

(Remember that blanks and the newline charac-
ter at the end of each line are included in the
character count.) Writing a file just makes a copy
of the text — the buffer’s contents are not dis-
turbed, so we can go on adding lines to it. This
is an important point. Ed at all times works on a
copy of a file, not the file itself. No change in
the contents of a file takes place until you give a
“w” command. (Writing out the text onto a file
from time to time as it is being created is a good
idea, since if the system crashes or if you make
some horrible mistake, you will lose all the text
in the buffer but any text that was written onto a
file is relatively safe.)

Leaving ed — the Quit command “q”

To terminate a session with ed, save the
text you’re working on by writing it onto a file
using the “w” command, and then type the
command

q

which stands for guit. The system will respond
with “%”. At this point your buffer vanishes,
with all its text, which is why you want to write
it out before quitting.

Exercise 1:
Enter ed and create some text using

a
... text ..

Write it out using “w”. Then leave ed with the
“q” command, and print the file, to see that
everything worked. (To print a file, say

pr filename
or
cat filename
in response to “%”. Try both)

Reading text from a file — the Edit command

ey

€

A common way to get text into the buffer
is to read it from a file in the file system. This is
what you do to edit text that you saved with the
“w” command in a previous session. The edit
command “e” fetches the entire contents of a
file into the buffer. So if we had saved the three
lines “Now is the time”, etc., with a “w” com-
mand in an earlier session, the ed command

e junk

would fetch the entire contents of the file
“junk” into the buffer, and respond

68

which 1s the number of characters in “junk”. If
anvthing was already in the buffer, it is deleted first.

If we use the “¢” command to read a file
into the bufter, then we need not use a file name
after a subsequent “w” command; ed remembers
the last file name used in an “‘e” command, and
“w™ will write on this file. Thus a common way
to operate 1s

ed

e file

lediting session]
w

q

You can find out at any time what file
name ed is remembering by typing the file com-
mand “f’. In our case, if we typed

f
ed would reply
junk

Reading text from a file — the Read command

(XA

r

Sometimes we want to read a file into the
buffer without destroying anything that is al-
ready there. This is done by the read command

ey

r’. The command
r junk

will read the file “junk’ into the buffer; it adds it
to the end of whatever is already in the buffer.
So if we do a read after an edit:

e junk
r junk

the buffer will contain rwo copies of the text (six
lines).

Now is the time
for all good men
to come to the aid of their party.
Now is the tme
for all good men
to come to the aid of their party.

Like the “w’ and “‘e” commands, 't prints the
number of characters read in, after the reading
operation is complete.

(X}

Generally speaking, “r” is much less used

than *‘e".

Exercise 2:

"

Experiment with the “e” command — try
reading and printing various files. You may get
an error 7?7 typically because you spelled the
file name wrong. Try alternately reading and ap-
pending to see that they work similarly. Verify
that

ed filename
is exactly equivalent to

ed
e filename

What does
f filename
do?

Printing the contents of the buffer — the Print
command *‘p”’

To print or list the contents of the buffer
(or parts of it) on the terminal, we use the print
command

p

The way this is done is as follows. We specify
the lines where we want printing to begin and
where we want it to end, separated by a comma,
and followed by the letter “p”. Thus to print the
first two lines of the buffer, for example, (that is,
lines 1 through 2) we say

1.2p (starting line=1, ending line=2 p)
Ed will respond with

Now is the time
for all good men

Suppose we want to print al// the lines in
the buffer. We could use “1,3p” as above if we
knew there were exactly 3 lines in the buffer.
But in general, we don’t know how many there
are, so what do we use for the ending line
number? Ed provides a shorthand symbol for
“line number of last line in buffer” — the dollar
sign “*$”. Use it this way:

1.8p
This will print a// the lines in the buffer (line 1
to last line.) If you want to stop the printing be-
fore it is finished, push the DEL or Delete key;
ed will type

K
and wait for the next command.

To prnint the /ast line of the buffer, we
could use

$.5p

but ed lets us abbhreviate this to

S
We can print any single line by typing the line
number followed by a *'p”. Thus
Ip
produces the response
Now is the time
which is the first line of the buffer.

In fact, ed lets us abbreviate even further:
we can print any single line by typing just the
line number — no need to type the letter “‘p”.
So if we say

$

ed will print the last line of the buffer for us.
We can also use “$” in combinations like
$-1%p

which prints the last two lines of the buffer.
This helps when we want to see how far we got
in typing.

Exercise 3:

As before, create some text using the ap-
pend command and experiment with the “‘p”
command. You will find, for example, that you
can’t print line 0 or a line beyond the end of the
buffer, and that attempts to print a buffer in re-
verse order by saying

31p

don’t work.

(YRl
.

The current line — “‘Dot"’ or

Suppose our buffer still contains the six
lines as above, that we have just typed

1.3p
and ed has printed the three lines for us. Try
typing just

p (no line numbers).
This will print

to come to the aid of their party.

which is the third line of the buffer. In fact it is
the last (most recent) line that we have done
anything with. (We just printed it!) We can re-
peat this *“‘p”’ command without line numbers,
and it will continue to print line 3.

The reason is that ed maintains a record of
the last line that we did anything to (in this case,
line 3, which we just printed) so that it can be
used instead of an explicit line number. This
most recent line is referred to by the shorthand
symbol

(pronounced *‘dot”).

Dot is a line number in the same way that ©°$”
is; 1t means exactly “the current hne™, or loose-
ly, “‘the line we most recently did something to.”
We can use it in several ways — one possibility
is to say

.$p

This will print all the lines from (inciuding) the
current line to the end of the buffer. In our case
these are lines 3 through 6.

Some commands change the value of dot,
while others do not. The print command sets
dot to the number of the last line printed; by
our last command, we would have “.” = “§" =

6.

Dot is most useful when used in combina-
tions like this one:

A+l
This means ‘“‘print the next line”’ and gives us a
handy way to step slowly through a buffer. We
can also say

—1
which means “print the line before the current

line.” This enables us to go backwards if we
wish. Another useful one is something like

(or equivalently, .+1p)

(or .—1p)

~3,.~1p
which prints the previous three lines.

Don’t forget that all of these change the
value of dot. You can find out what dot is at
any time by typing

Ed will respond by printing the value of dot.

Let’s summarize some things about the “p”
command and dot. Essentially ‘“‘p” can be pre-
ceded by 0, 1, or 2 line numbers. If there is no
line number given, it prints the “current line”,
the line that dot refers to. If there is one line
number given (with or without the letter “p”), it
prints that line (and dot is set there); and if
there are two line numbers, it prints all the lines
in that range (and sets dot to the last line print-
ed.) If two line numbers are specified the first
can’t be bigger than the second (see Exercise 2.)

Typing a single newline will cause printing
of the next line — it’s equivalent to “.+1p”. Try
it. Try typing ™" — it’s equivalent to *“.—1p”".

Deleting lines: the ‘‘d’’ command

Suppose we want to get rid of the three ex-
tra lines in the buffer. This is done by the delete
command

d

Except that “d” deletes lines instead of printing
them, its action is similar to that of “p”. The
lines to be deleted are specified for “d"” exactly
as they are for “'p™:

starting line, ending line d
Thus the command
4.5d

deletes lines 4 through the end. There are now
three lines left, as we can check by using

1.8p

And notice that “$” now is line 3! Dot is set to
the next line after the last line deleted, unless
the last line deleted is the last line in the buffer.
In that case, dot is set to *$"".

Exercise 4:

Experiment with “a”, “e”, “r" “w"” “p”,
and “d’* until you are sure that you know what
they do, and until you understand how dot, “$",
and line numbers are used.

If you are adventurous, try using line
numbers with “a”, “r”, and “w” as well. You
will find that “a” will append lines afrer the line
number that you specify (rather than after dot);
that **r” reads a file in affer the line number you
specify (not necessarily at the end of the buffer):
and that “w’ will write out exactly the lines you
specify, not necessarily the whole buffer. These
variations are sometimes handy. For instance
you can insert a file at the beginning of a buffer
by saying

Or filename
and you can enter lines at the beginning of the
buffer by saying

0a

L. text ...

»

Notice that **.w” is very different from

Modifying text: the Substitute command *‘s”’

We are now ready to try one of the most
important of all commands — the substitute
command

S

This is the command that is used to change indi-
vidual words or letters within a line or group of
lines. It is what we use, for example, for correct-
ing spelling mistakes and lyping errors.

Suppose that by a typing error, line | says
Now is th time

— the “e” has been left off “‘the".
“s™ to fix this up as follows:
Is/th/the/
This says: “in line I, substitute for the charac-
ters ‘th’ the characters ‘the’.” To verify that it
works (ed will not print the result automatically)
we say
P
and get

We can use

Now is the time

which is what we wanted. Notice that dot must
have been set to the line where the substitution
took place, since the “p”" command printed that
line. Dot is aiways set this way with the *‘s”
command.

The general way to use the substitute com-
mand is

starting~iine, ending—line s/change this/to this/

Whatever string of characters is between the
first pair of slashes is replaced by whatever is
between the second pair, in al/l the lines between
starting line and ending line. Only the first oc-
currence on each line is changed, however. If
you want to change every occurrence, see Exer-
cise 5. The rules for line numbers are the same
as those for *“‘p”, except that dot is set to the last
line changed. (But there is a trap for the
unwary: if no substitution took place, dot is nor
changed. This causes an error “?” as a warn-
ing.)

Thus we can say

1,8s/speling/spelling/

and correct the first spelling mistake on each line
in the text. (This is useful for people who are
consistent misspellers!)

If no line numbers are given, the “s” com-
mand assumes we mean ‘‘make the substitution
on line dot”, so it changes things only on the
current line. This leads to the very common se-
quence

s/something/something else/p

which makes some correction on the current
line, and then prints it, to make sure-it worked
out right. If it didn't, we can try again. (Notice
that we put a print command on the same line as
the substityte. With few exceptions, “p” can
follow any command; no other multi-command
lines are legal.)

[t's also legal to say

s/.. ./

which means ‘“‘change the first string of charac-
ters to nothing”’, i.e., remove them. This is useful
for deleting extra words in a line or removing
extra letters from words. For instance, if we had

Nowxx is the time
we can say

s/xx//p
to get

Now is the time

Notice that **//” here means ‘“‘no characters”,
not a blank. There is a difference! (See below
for another meaning of “//”")

Exercise 5:

Experiment with the substitute command.
See what happens if you substitute for some
word on a line with several occurrences of that
word. For example, do this:

a
the other side of the coin

s/the/on the/p
You will get
on the other side of the coin

A substitute command changes only the first oc-
currence of the first string. You can change all
occurrences by adding a “‘g” (for “‘global”) to
the *‘s” command, like this:

s/.../...Igp

Try other characters instead of slashes to delimit
the two sets of characters in the “s” command —
anything should work except blanks or tabs.

(If you get funny results using any of the
characters

R T G

read the section on “‘Special Characters”.)

/vv

With the substitute command mastered, we
can move on to another highly important idea of
ed — context searching.

Context searching — **/ . ..

Suppose we have our original three line
text in the buffer:

Now is the time
for all good men
to come to the aid of their party.

Suppose we want to find the line that contains
“their” so we can change it to “the”. Now with
only three lines in the buffer, it’s pretty easy to
keep track of what line the word “their” is on.
But if the buffer contained several hundred lines,
and we'd been making changes, deleting and
rearranging lines, and so on, we would no longer
really know what this line number would be.
Context searching is simply a method of specify-
ing the desired line, regardless of what its
number is, by specifying some context on it.

The way we say ‘“search for a line that
contains this particular string of characters™ is to
type

/string of characters we want to find/

For example, the ed line

/their/

is a context search which is sufficient to find the
desired line — it will locate the next occurrence
of the characters between slashes (‘“‘their™). It
also sets dot to that line and prints the line for
verification:

to come to the aid of their party.

“Next occurrence” means that ed starts looking
for the string at line *“.+1”, searches to the end
of the buffer, then continues at line 1| and
searches to line dot. (That is, the search “wraps
around” from *$” to 1.) It scans all the lines in
the buffer until it either finds the desired line or
gets back to dot again. If the given string of
characters can’t be found in any line, ed types
the error message
2

Otherwise it prints the line it found.

We can do both the search for the desired
line and a substitution all at once, like this:

/their/s/their/the/p
which will yield
to come to the aid of the party.

There were three parts to that last command:
context search for the desired line, make the
substitution, print the line.

The expression “/thew/” s a context
search expression. In their simplest form, all
context search expressions are like this — a
string of characters surrounded by slashes. Con-
text searches are interchangeable with line
numbers, so they can be used by themselves to
find and print a desired line, or as line numbers
for some other command, like *'s”. We used
them both ways in the examples above.

Suppose the buffer contains the three fami-
lar lines

Now is the time
for all good men
to come (0 the aid of their party.

Then the ed line numbers

/Now/+1
/good/
/party/—1

are all context search expressions, and they all
refer to the same line (line 2). To make a
change in line 2, we could say

/Now/+1s/good/bad/
or
/good/s/good/bad/
or
/party/—1s/good/bad/
The choice is dictated only by convenience. We
could print all three lines by, for instance
/Now/,/party/p
or
/Now/ /Now/+2p

or by any number of similar combinations. The
first one of these might be better if we don’t
know how many lines are involved. (Of course,
if there were only three lines in the buffer, we'd
use

1.8p
but not if there were several hundred.)

The basic rule is: a context search expres-
sion is the same as a line number, so it can be
used wherever a line number is needed.

Exercise 6:

Experiment with context searching. Try a
body of text with several occurrences of the
same string of characters, and scan through it
using the same context search.

Try using context searches as line numbers
for the substitute, print and delete comr-ands.

[T L I TS]

(They can also be used with “r”, “w”, and ' ;"))

Iry context scatching using “7text”” -
stead of “/text/”. This scans hines in the bufter
in reverse order rather than normal. This is
sometimes useful if you go too far while looking
for some string of characters — it’s an easy way
to back up. '

(If you get funny results with any of the
characters

$ [* A\
read the section on ‘““Special Characters”.)

Ed provides a shorthand for repeating a
context search for the same string. For example,
the ed line number

/string/

will find the next occurrence of “‘string™. It of-
ten happens that this is not the desired line, so
the search must be repeated. This can be done
by typing merely

!
This shorthand stands for “the most recently
used context search expression.” It can also be
used as the first string of the substitute com-
mand, as in

fstringl/s//string2/
which will find the next occurrence of “‘stringl”
and replace it by “string2”. This can save a lot
of typing. Similarly

27
means ‘‘'scan backwards for the same expres-
sion.”

ITF1L)
1

Change and Insert — ‘‘c’’ and
This section discusses the change command
c

which is used to change or replace a group of
one or more lines, and the insert command

i
which is used for inserting a group of one or
more lines.

“Change”, written as

c

is used to replace a number of lines with
different lines, which are typed in at the termi-
nal. For example, to change lines ““.+1”" through
“3” to something else, type

+1,%¢c
... type the lines of text you want here . ..

L

The lines you type between the ‘¢’ cqmmand
and the ‘. will take the place of the original

lines between start line and end line. This 1s
most useful in replacing a line or several lines
which have errors in them.

If only one line is specified in the “c” com-
mand, then just that line is replaced. (You can
type in as many replacement lines as you like.)
Notice the use of “.” to end the input — this
works just like the ““.” in the append command
and must appear by itself on a new line. If no
line number is given, line dot is replaced. The
value of dot is set to the last line you typed in.

“Insert” is similar to append — for instance

/string/i
... type the lines to be inserted here . . .

will insert the given text before the next line that
contains “‘string”. The text between *“i’’ and “.”
is inserted before the specified line. If no line
number is specified dot is used. Dot is set to the
last line inserted.

Exercise 7:

“Change” is rather like a combination of
delete followed by insert. Experiment to verify
that

start, end d
i
... text . ..

is almost the same as

start, end ¢
... text . ..

These are not precisely the same if line “$” gets
deleted. Check this out. What is dot?

Experiment with “a” and “i”, to see that
they are similar, but not the same. You will ob-
serve that

line-number a
. text . ..

appends qfter the given line, while

line-number i
Lo text . ..

inserts before it. Observe that if no line number

is given, “i” inserts before line dot, while “a”
appends after line dot.

Moving text around: the ‘‘m’’ command

The move command “m” is used for cut-
ting and pasting — it lets you move a group of
lines from one place to another in the buffer.
Suppose we want to put the first three lines of
the buffer at the end instead. We could do it by
saying:

1,3w temp

$r temp

1,3d
(Do you see why?) but we can do it a lot easier
with the “m” command:

1,3m$
The general case is

start line, end line m after this line

Notice that there is a third line to be specified —
the place where the moved stuff gets put. Of
course the lines to be moved can be specified by
context searches; if we had

First paragraph

end of first paragraph.
Second paragraph

end of second paragraph.
we could reverse the two paragraphs like this:
/Second/,/second/m/First/—1

Notice the “—1” — the moved text goes after the
line mentioned. Dot gets set to the last line
moved.

The global commands ‘‘g’’ and *‘v"”’

The global command *‘g” is used to execute
one or more ed commands on all those lines in
the buffer that match some specified string. For
example

g/peling/p

prints all lines that contain “peling”
fully,

g/peling/s//pelling/gp

makes the substitution everywhere on the line,
then prints each corrected line. Compare this to

More use-

1,8s/peling/pelling/gp

which only prints the last line substituted.
Another subtle difference is that the “g” com-
mand does not give a *“?” if ‘“peling” is not
found where the “s” command will.

There may be several commands (includ-
ing “a”, “c” “i” “r”, “w”, but not “g”); in that
case, every line except the last must end with a
backslash “\:

g/xxx/.~1s/abc/def/\

.+2s/ghi/ikIN

~=2..p
makes changes in the lines before and after each
line that contains “xxx”, then prints all three
lines.

[P}

The v command is the same as “'g”, ex-
cept that the commands are executed on every
line that does nor match the string following “‘v™:

v/

deletes every line that does not contain a blank.

Special Characters

You may have noticed that things just
don’t work right when you used some characters
like .7, “*”, “$§" and others in context searches
and the substitute command. The reason is
rather complex, although the cure is simple. Ba-
sically, ed treats these characters as special, with
special meanings. For instance, in a context
search or the first string of the substitute command
only,

/x.y/

means “a line with an x, any character, and a y,”
not just “a line with an x, a period, and a y.” A
complete list of the special characters that can
cause trouble is the following:
A A

Warning: The backslash character \ is special to
ed. For safety’s sake, avoid it where possible. If
you have to use one of the special characters in
a substitute command, you can turn off its magic
meaning temporarily by preceding it with the
backslash. Thus

sA\\.*/backslash dot star/
will change *“\.*” into ‘‘backslash dot star”.

Here is a hurried synopsis of the other spe-
cial characters. First, the circumflex * ~ "
signifies the beginning of a line. Thus

/"string/
finds “string™ only if it is at the beginning of a
line: it will find

string
but not

the string...

The dollar-sign **$" is just the opposite of the
circumflex; it means the end of a line:

/string$/

will only find an occurrence of “string” that is at
the end of some line. This implies, of course,

that
/“string$/
will find only a line that contains just “‘string”,
and
1.8/
finds a line containing exactly one character.

o

The character **.
matches anything;

, as we mentioned above,

/x.y/
matches any of

X+y

x-y

Xy

X.y
This is useful in conjunction with “*”, which is
a repetition character; “a*” is a shorthand for
“any number of a's,” so “.*” matches any
number of anythings. This is used like this:

s/.*/stuff/
which changes an entire line, or

s/.*
which deletes all characters in the line up to and
including the last comma. (Since “.*” finds the
longest possible match, this goes up to the last
comma.)

“[™ is used with “}” to form “character
classes™; for example,

/[1234567890)/

matches any single digit — any one of the char-
acters inside the braces will cause a match.

Finally, the “&” is another shorthand char-
acter - it is used only on the right-hand part of a
substitute command where it means ‘“whatever
was matched on the left-hand side”. It is used
to save typing. Suppose the current line con-
tained

Now is the time

and we wanted to put parentheses around it. We
could just retype the line, but this is tedious. Or
we could say

s/t

s/$/)/
using our knowledge of “™ and “$".
easiest way uses the “&":

s/ &)/

‘This says “‘match the whole line, and replace it
by itself surrounded by parens.” The “&" can
be used several times in a line; consider using

s/t&? &'

But the

to produce

Now is the time? Now is the time!!

We don’t have to match the whole line, of
course: if the buffer contains

the end of the world
we could type
/world/s//& is at hand/
to produce
the end of the world is at hand

Observe this expression carefully, for it illus-
trates how to take advantage of ed to save typing.
The string */world/”” found the desired line; the
shorthand *“//” found the same word in the line;
and the “&" saved us from typing it again.

The “&” is a special character only within
the replacement text of a substitute command,
and has no special meaning elsewhere. We can
turn off the special meaning of “&” by preceding
it with a “\™:

s/ampersand\&/

will convert the word ‘“ampersand” into the
literal symbol “&” in the current line.

Summary of Commands and Line Numbers

The general form of ed commands is the
command name, perhaps preceded by one or
two line numbers, and, in the case of ¢, rand w,
followed by a file name. Only one command is
allowed per line, but a p command may follow
any other command (except for e, r, wand g¢).

a (append) Add lines to the buffer (at line dot,
unless a different line is specified). Appending
continues until “.”" is typed on a new line. Dot
is set to the last line appended.

¢ (change) Change the specified lines to the new
text which follows. The new lines are terminat-
ed by a “.”. If no lines are specified, replace line

dot. Dot is set to last line changed.

d (delete) Delete the lines specified. If none are
specified, delete line dot. Dot is set to the first
undeleted line, unless “$” is deleted, in which
case dot is set to “$”.

e (edit) Edit new file. Any previous contents of
the buffer are thrown away, so issue a w before-
hand if you want to save them.

f (file) Print remembered filename. If a name
follows fthe remembered name will be set to it.

g (global) gi-—-fcommands will execute the com-

mands on those lines that contain “---, which
can be any context search expression.

i (insert) Insert lines before specified line (or dot)
until a “.” is typc;d on a new line. Dot is set to
last line inserted.

m (move) Move lines specified to after the line
named after m. Dot is set to the last line moved.

p (print) Print specified lines. If none specified,
print line dot. A single line number is
equivalent to “line-number p”. A single newline
prints “.+1”, the next line.

¢ (quit) Exit from ed. Wipes out all text in
buffer!!

r (read) Read a file into buffer (at end unless
specified elsewhere.) Dot set to last line read.

s (substitute) sistringlistring2/ will substitute the
characters of ‘string2’ for ‘stringl’ in specified
lines. If no line is specified, make substitution in
line dot. Dot is set to last line in which a substi-
tution took place, which means that if no substi-
tution took place, dot is not changed. s changes
only the first occurrence of stringl on a line; to
change all of them, type a “g” after the final
slash.

v (exclude) vi---fcommands executes ‘“‘commands’
on those lines that do not contain *‘---"".

w (write) Write out buffer onto a file. Dot is not
changed.

.= (dot value) Print value of dot. (“=" by itself
prints the value of “$”.)

! (temporary escape)
Execute this line as a UNIX command.

/-----/ Context search. Search for next line which
contains this string of characters. Print it. Dot
is set to line where string found. Search starts at
“.+1”, wraps around from “$” to 1, and contin-
ues to dot, if necessary.

7-----? Context search in reverse direction. Start
search at “.—1", scan to 1, wrap around to “$”.

7

5

e s e g T om M | #1m nrelm rite W Rkl ot rlS 0 . 58

Brian W. Kernighan

Bell Laboratories

|
‘ Advanced Editing on UNIX
|
|
: Murray Hill, New Jersey 07974

' ABSTRACT

This paper is meant to help secretaries, typists and programmers to make
effective use of the UNIX facilities for preparing and editing text. It provides
explanations and examples of

] special characters, line addressing and global commands in the editor ed;

[commands for ‘‘cut and paste’’ operations on files and parts of files,
including the mv, cp, cat and rm commands, and the r, w, m and t com-
| mands of the editor;

L] editing scripts and editor-based programs like grep and sed.

Although the treatment is aimed at non-programmers, new UNIX users
with any background should find helpful hints on how to get their jobs done
more casily.

B.4

Advanced Editing on UNIX

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

1. INTRODUCTION

Although UNIX provides remarkably
effective ools for text editing, that by itself is no
guarantee that everyone will automatically make
the most effective use of them. In particular,
pcople who are not computer specialists — typ-
ists, secretaries, casual users — often use the
system less effectively than they might.

This document is intended as a sequel to 4
Tutorial Introduction to the UNIX Text Editor (1],
providing explanations and examples of how to
cdit with less effort. (You should also be fami-
liar with the material in UNIX For Beginners [2).)
Further information on all commands discussed
here can be found in The UNIX Programmer’s
Manual (3).

Examples are bused on observations of
users and the difficuities they encounter. Topics
covered include special characters in searches
and substitute commands, line addressing, the
global commands, and line moving and copying.
There are also brief discussions of effective use
of related tools, like those for file manipulation,
and those based on ed, like grep and sed.

A word of caution. There is only one way
to learn to use something, and that is to wse it.
Reading a description is no substitute for trying
something. A paper like this one should give
you ideas about what to try, but until you actu-
ally try something, you will not learn it.

2. SPECIAL CHARACTERS

The editor ed is the primary interface to
the system for many people, so it is worthwhile
to know how to get the most out of ed for the
least effort.

The next few sections will discuss
shortcuts and labor-saving devices. Not all of
these will be instantly useful to any one person,
of course, but a few will be, and the others
should give you ideas to store away for future
use. And as always, until you try these things,
they will remain theoretical knowledge, not
something you have confidence in.

The List command ‘I’

ed provides two commands for printing the
contents of the lines you're editing. Most people
arc familiar with p, in combinations like

1,$p
to print all the lines you're editing, or
s/abc/def/p

to change ‘abc’ to ‘def” on the current line. Less
familiar is the /iss command 1 (the letter */°),
which gives slightly more information than p. In
particular, 1 makes visible characters that are
normally invisible, such as tabs and backspaces.
If you list a line that contains some of these, |
will print each tab as > and each backspace as
<. This makes it much easier to correct the sort
of typing mistake that inserts extra spaces adja-
cent to tabs, or inserts a backspace followed by a
space.

The 1 command also ‘folds’ long lines for
printing — any line that exceeds 72 characters is
printed on multiple lines; each printed line
except the last is terminated by a backslash \, so
you can tell it was folded. This is useful for
printing long lines on short terminals.

Occasionally the 1 command will print in a
line a string of numbers preceded by a backslash,
such as \07 or \16. These combinations are used
to make visible characters that normally don’t
print, like form feed or vertical tab or bell. Each
such combination is a single character. When
you see such characters, be wary — they may
have surprising meanings when printed on some
terminals. Often their presence means that your
finger slipped while you were typing; you almost
never want them.

The Substitute Command ‘s’

Most of the next few sections will be taken
up with a discussion of the substitute command
s. Since this is the command for changing the
contents of individual lines, it probably has the
most complexity of any ed command, and the
most potential for effective use.

As the simplest place to begin, recall the
mecaning of a trailing g after a substitute com-
mand. With

s/this/that/
and
s/this/that/g

the first one replaces the first ‘this’ on the line
with ‘that’. If there is more than one ‘this’ on
the line, the second form with the trailing g
changes all of them.

Either form of the s command can be fol-
lowed by p or | to ‘print’ or ‘list’ (as described in
the previous section) the contents of the line:

s/this/that/p
s/this/that/l
s/this/that/gp
s/this/that/gl

are all legal, and mean slightly different things.
Make sure you know what the differences are.

Of course, any s command can be pre-
ceded by one or two ‘line numbers’ to specify
that the substitution is to take place on a group
of lines. Thus

1.$s/mispell/misspell/

changes the first occurrence of ‘mispell’ to
‘misspell’ on every line of the file. But

1.$s/mispell/misspell/g

changes every occurrence in every line (and this
is more likely to be what you wanted in this par-
ticular case).

You should also notice that if you add a p
or | to the end of any of these substitute com-
mands, only the last line that got changed will be
printed, not ali the lines. We will talk later about
how to print all the lines that were modified.

The Undo Command ‘v’

Occasionally you will make a substitution
in a line, only to realize too late that it was a
ghastly mistake. The ‘undo’ command u lets
you ‘undo’ the last substitution: the last line that
was substituted can be restored to its previous
state by typing the command

u

The Metacharacter ‘.’

As you have undoubtedly noticed when
you use ed, certain characters have unexpected
meanings when they occur in the left side of a
subslitute command, or in a search for a particu-

lar line. In the next several sections, we will talk
about these special characters, which are often
called ‘metacharacters’.

The first one is the period ‘.". On the left
side of a substitute command, or in a search with
</..0", *.> stands for any single character. Thus
the search

/x.y/

finds any line where “x’ and 'y’ occur separated
by a single character, as in

x+y
X—y
Xay
X.y

and so on. (We will use |, to stand for a space
whenever we need to make it clear.)

5

Since ‘.” matches a single character, that
gives you a way to deal with funny characters
printed by 1. Suppose you have a line that, when
printed with the | command, appears as

th\07is

and you want to get rid of the \07 (which
represents the bell character, by the way).

The most obvious solution is to try
s/\07//

but this will fail. (Try it.) The brute force solu-
tion, which most people would now take, is to
re-lype the entire line. This is guaranteed, and is
actually quite a reasonable tactic if the line in
question isn’t too big, but for a very long line,
re-typing is a bore. This is where the metachar-
acter ‘.’ comes in handy. Since ‘\07" really
represents a single character, if we say

s/th.is/this/
the job is done. The ‘.” matches the mysterious
character between the ‘h’ and the ‘i’, whatever it
is.

¢

Bear in mind that since ‘.’
single character, the command
sl/dl./

converts the first character on a line into a *.’,
which very oftzn is not what you intended.

matches any

As is tre > of many characters in ed, the *.
has several muanings, depending on its context.
This line shows all three:

RN,

The first *." is a line number. the number of the
line we are editing, which is called ‘line dot’.
(We will discuss line dot more in Section 3.) The

second ‘7 is a metacharacter thal maltches any
single character on that line. The third *." is the
only one that really is an honest literal period.

On the righs side of a substitution, *." is not spe-

cial. If you apply this command to the line
Now is the time.

the result will be
.ow is the time.

which is probably not what you intended.

The Backslash *\’

Since a period means ‘any character’, the
question naturally arises of what to do when you
really want a period. For example, how do you
convert the line

Now is the time.
into

Now is the time?
The backslash *\' does the job. A backslash
turns off any special meaning that the next char-
acter might have; in particular, ‘\.” converts the

‘" from a ‘match anything’ into a period, so you
can use it to replace the period in

Now is the time.
like this:

TAWAY
The pair of characters ‘\.” is considered by ed to
be a single real period.

The backslash can also be used when
searching for lines that contain a special charac-
ter. Suppose you are looking for a line that con-
tains

.PP
The search

/.PP/

isn’t adequate, for it will find a line like

THE APPLICATION OF ...

S

because the “." matches the letter “A°. But if you

say
/\.PP/

you will find only lines that contain *.PP".

The backslash can also be used to turn off
special meanings tor characters other than ‘..
For example, consider finding a line that con-

tains a backslash. The search

\/

won’t work, because the *\’ isn’t a literal *\’, but
instead means that the second ‘/° no longer del-
imits the search. But by preceding a backslash
with another one, you can search for a literal
backslash. Thus

AV

does work. Similarly, you can search for a for-
ward slash ‘/° with

N/

The backslash turns off the meaning of the
immediately following ‘/° so that it doesn’t ter-
minate the /.../ construction prematurely.

As an exercise, before reading further,
find two substitute commands each of which will
convert the line

\x\\y
into the line

\x\y

Here are several solutions; verify that each
works as advertised.

s/\\\.//
s/x../x/
s/o.yly/

A couple of miscellaneous notes about
backslashes and special characters. First, you
can use any character to delimit the pieces of an
s command: there is nothing sacred about
slashes. (But you must use slashes for context
searching.) For instance, in a line that contains a
lot of slashes already, like

//exec //sys.fort.go // clc...

you could use a colon as the delimiter —
delete all the slashes, type

to

s:/.g

Second, if # and @ are your character
erase and line kill characters, you have to type
\# and \@; this is true whether you’'re talking to
ed or any other program.

When you are adding text with a or i or c,
backslash is not special, and you should only put
in one backslash for each one you really want.

The Dollar Sign ‘§’

The next metacharacter, the ‘$°, stands for
‘the end of the line’. As its most obvious use,
suppose you have the line

Now is the

and you wish to add the word ‘time’ to the end.
Use the § like this:

s/$/atime/
to get
Now is the time

Notice that a space is needed before ‘time’ in the
substitute command, or you will get

Now is thetime
As another example, replace the second

comma in this line with a period without altering
the first.

Now is the time, for all good men,
The command needed is
s/.8/./

The $ sign here provides context to make specific
which comma we mean. Without it, of course,
the s command would operate on the first
comma to produce

Now is the time. for all good men,

As another example, to convert
Now is the time.

into
Now is the time?

as we did earlier, wé can use

s/.8/?/

Like *.", the '$ has multiple meanings
depending on context. In the line

$s/8/8/

the first *$’ refers to the last line of the file, the
second refers to the end of that line, and the
third is a literal dollar sign, to be added to that
line.

[3ahl

The Circumflex

The circumflex (or hat or caret) *™ stands
for the beginning of the line. For example, sup-
pose you are looking for a line that begins with
‘the'. If you simply say

/the/

you will in all likelihood tind several lines that
contain ‘the’ in the middle before arriving at the
one you want. But with

/"the/

you narrow the context, and thus arrive at the
desired one more easily.

The other use of ‘™’ is of course to enable
you to insert something at the beginning of a
line:

s/"/al

places a space at the beginning of the current
line.

Metacharacters can be combined. To
search for a line that contains only the characters

.PP
you can use the command

/"\.PP$/

The Star *»’

Suppose you have a line that looks like
this:

text x y flext

where ftext stands for lots of text, and there are
some indeterminate number of spaces between
the x and the y. Suppose the job is to replace all
the spaces between x and y by a single space.
The line is too long to retype, and there are too
many spaces to count. What now?

.

This is where the metacharacter ‘+* comes
in handy. A character followed by a star stands
for as many consecutive occurrences of that
character as possible. To refer to all the spaces
at once, say

s/xosy/x. v/

S

The construction ‘- +' means ‘as many spaces as
possible’. Thus ‘x:.+y’ means ‘an x, as many
spaces as possible, then a y’.

The star can be used with any character,
not just space. If the original example was
instead

then all ‘=" signs can be replaced by a single
space with the commuand

S/Xx—sy/x y/

Finally, suppose that the line was

FENT Xuvavesesssanssnossl [ONI

Can you see what trap lies in wait for the
unwary”’ If you blindly tvpe

s/x.xy/x0y/

what will happen? The answer, naturally, is that
it depends. If there are no other x's or y’s on
the line, then everything works, but it’s blind
luck, not good management. Remember that ‘.’
matches any single character? Then ‘.’ matches
as many single characters as possible, and unless
you're careful, it can eat up a lot more of the
line than you expected. If the line was, for
example, like this:

fext X text fext 'y text

then saying
s/X.*y/xay/

will take everything from the first ‘x’ to the last
‘y’, which, in this example, is undoubtedly more
than you wanted.

The solution, of course, is to turn off the

special meaning of *." with ‘\.”:
Cs/x\ery/x v/

Now everything works, for *\.»’ means ‘as many
periods as possible’.

There are times when the pattern ‘.*" is
exactly what you want. For example, to change

Now is the time for all good men ...
into

Now is the time.
use ‘.+’ to eat up everything after the ‘for’:

s/ for.*/./

There are a couple of additional pitfalls
associated with *»’ that you should be aware of.
Most notable is the fact that ‘as many as possi-
ble’ means zero or more. The fact that zero is a
legitimate possibility is sometimes rather surpris-
ing. For example, if our line contained

fext Xy f(ext x y text

and we said

S/Xiry/xov/
the first ‘xy’ matches this patiern, for it consists
of an *x°, zero spaces, and a ‘y'. The result is
that the substitute acts on the first ‘xy’, and does

not touch the later one that actually contains
some intervening sjpaces.

The way around this, if it matters, is to
specify a pattern like

/Xr\u‘)’/

which says ‘an x, a space, then as many more

spaces as possible, then a y’.

The other startling behavior of ‘+’ is again
related to the fact that zero is a legitimate
number of occurrences of something followed by
a star. The command

s/x*/ylg
when applied to the line
abedef '
produces
yaybycydyeyfy

which is almost certainly not what was intended.
The reason for this behavior is that zero is a
legal number of matches, and there are no x’s at
the beginning of the line (so that gets converted
into a ‘y’), nor between the ‘a’ and the ‘b’ (so
that gets converted into a ‘y’), nor ... and so on.
Make sure you really want zero matches; if not,
in this case write

s/xx=/ylg

‘xx+' is one or more x’s.

The Brackets ‘| |’

Suppose that you want to delete any
numbers that appear at the beginning of all lines
of a file. You might first think of trying a series
of commands like

1,8s/71+//
1,8s/72+//
1,8s/73#//

and so on, but this is clearly going to take for-
ever if the numbers are at all long. Unless you
want to repeat the commands over and over until
finally all numbers are gone, you must get all the
digits on one pass. This is the purpose of the
brackets [and].

The construction
[1234567890]

matches any single digit — the whole thing is
called a ‘character class’. With a character class,
the job is easy. The pattern ‘{0123456789]+
matches zero or more digits (an entire number),
SO

1,8s/7[1234567890]+//

deletes all digits from the beginning of all lines.
Any characters can appear within a charac-
ter class, and jusi to confuse the issue there are
essentially no special characters inside the brack-
ets: even the backslash doesn’t have a special
meaning. To search for special characters, for

example, you can say

/LA 11/
Within [...], the ‘" is not special. To get a ‘I’
into a character class, make it the first character.

As a final frill on character classes, you can
specify a class that means ‘none of the following
characters’. This is done by beginning the class
with a ‘™"

["1234567890]
stands for ‘any character except a digit’. Thus

you might find the first line that doesn’t begin
with a tab or space by a search like

/"1 (space) (1ab))/

Within a character class, the circumflex has
a special meaning only if it occurs at the begin-
ning. Just to convince yourself, verify that
/e
finds a line that doesn’t begin with a circumflex.

The Ampersand ‘&’

The ampersand ‘&’ is used primarily to
save typing. Suppose you have the line

Now is the time
and you want to make it
Now is the best time
Of course you can always say
s/the/the best/

but it seccms silly to have to repeat the ‘the’.
The *& is used to eliminate the repetition. On
the right side of a substitute, the ampersand
means ‘whatever was just matched’, so you can
say

s/the/& best/

and the ‘& will stand for ‘the’. Of course this
isn’t much of a saving if the thing matched is
just ‘the’, but if it is something truly long or
awful, or if it is something like ‘.»’ which
matches a lot of text, you can save some tedious
typing. There is also much less chance of mak-
ing a typing error in the replacement text. For
example, to parenthesize a linc, regardless of its
length,

s/.o/(&)/

The ampersand can occur more than once
on the right side:

s/the/& best and & worst/

makes

Now is the best and the worst time
and

s/.e/&? &/
converts the original line into

Now is the time? Now is the time!!

To get a literal ampersand, naturally the
backslash is used to turn off the special meaning:

s/ampersand/\&/

converts the word into the symbol. Notice that
‘&’ is not special on the left side of a substitute,
only on the right side.

Substituting Newlines

ed provides a facility for splitting a single
line into two or more shorter lines by ‘substitut-
ing in a newline’. As the simplest example, sup-
pose a line has gotten unmanageably long
because of editing (or merely because it was
unwisely typed). If it looks like

text Xy lext

you can-break it between the ‘x’ and the ‘y’ like
this:

s/xy/x\
y/

This is actually a single command, although it is
typed on two lines. Bearing in mind that ‘\’
turns off special meanings, it seems relatively
intuitive that a ‘\' at the end of a line would
make the newline there no longer special.

You can in fact make a single line into
several lines with this same mechanism. As a
large example, consider underlining the word
‘very’ in a long line by splitting ‘very’ onto a
separate line, and preceding it by the roff or nroff
formatting command “.ul’.

text a very big rext
The command

S/[)VCTYI]/\
ul\

very\
/

converts the line into four shorter lines, preced-
ing the word ‘very’ by the line “.ul’, and elim-
inating the spaces around the ‘very’, all at the
same time.

When a newline is substituted in, dot is
left pointing at the last line created.

Regretlably there is no way to go in the
opposite direction: ed will not convert two lines
into one.

Rearranging a Line with \(... \)

(This section should be skipped on first
reading.) Recall that ‘&’ is a shorthand that
stands for whatever was matched by the left side
of an s command. In much the same way you
can capture separate picces of what was matched:
the only difference is that you have to specify on
the left side just what pieces you're interested in.

Suppose, for instance, that you have a file
of lines that consist of names in the form

Smith, A. B.
Jones, C.

and so on, and you want the initials to precede
the name, as in

A. B. Smith
C. Jones

It is possible to do this with a series of editing
commands, but it is tedious and error-prone. (It
is instructive to figure oul how it is done,
though.)

The alternative is to ‘tag’ the pieces of the
pattern (in this case, the last name, and the ini-
tials), and then rearrange the pieces. On the left
side of a substitution, if part of the pattern is
enclosed between \(and \), whatever matched
that part is remembered, and available for use on
the right side. On the right side, the symbol ‘\l’
refers to whatever matched the first \(...\) pair,
‘\2" to the second \(...\), and so on.

The command
l,$S/A\([A,l‘\).\|"\(o"'\)/\2:1\|/

although hard to read, does the job. The first
\(.\) matches the last name, which is any string
up to the comma; this is referred to on the right
side with ‘\l". The second \(..\) is whatever
follows the comma and any spaces, and 1s
referred to as "\

Of course, with any editing sequence this
complicated, i’s toolhardy to simply run it and
hope. The global commands g and v discussed
in section 4 provide a way for you to print
exactly those lines which were aftfected by the
substitute command, and thus verify that it did
what you wanted 1n all cases.

3. LINE ADDRESSING IN THE EDITOR

The next general area we will discuss is
that of line addressing in ed, that is, how you
specify what lines are to be affected by editing
commands. We have already used constructions
like

1,8s/x/y/

to specify a change on all lines. And most users
are long since familiar with using a single new-
line (or return) to print the next line, and with

/thing/

to find a line that contains ‘thing’. Less familiar,
surprisingly enough, is the use of

?thing?

to scan backwards for the previous occurrence of
‘thing’. This is especially handy when you real-
ize that the thing you want to operate on is back
up the page from where you are currently edit-
ing.

The slash and question mark are the only
characters you can use to delimit a context
search, though you can use essentially any char-
acter in a substitute command.

Address Arithmetic

The next step is to combine the line
numbers like ‘.°, ‘$", */../" and ‘?7...7° with ‘+°
and ‘—’. Thus

$—1

is a command to print the next to last line of the
current file (that is, one line before line ‘$’).
For example, to recall how far you got in a previ-
ous editing session,

$—-5%p

prints the last six lines. (Be sure you understand
why it’s six, not five.) If there aren’t six, of
course, you’'ll get an error message.

As another example,
~3.+3p

prints from three lines before where you are now
(at line dot) to three lines after, thus giving you
a bit of context. By the way, the ‘+" can be
omitted:

.—3..3p
is absolutely identical in meaning.

Another arca in which you can save typing
effort in specifying lines is to use “—’ and *+" as
line numbers by themselves.

by itself is a command to move back up one line
in the file. In fact, you can string several minus
signs together to move back up that many lines:

moves up three lines, as does ‘—3’. Thus
—-3,+3p

is also identical to the examples above.

Since ‘—’ is shorter than ‘.—1’, construc-
tions like
—,.s/bad/good/

are useful. This changes ‘bad’ to ‘good’ on the
previous line and on the current line.

‘+’ and ‘—’ can be used in combination
with searches using ‘/.../° and ‘?...7", and with
‘$’. The search

/thing/ — —

finds the line containing ‘thing’, and positions
you two lines before it.

Repeated Searches
Suppose you ask for the search

/horrible thing/

and when the line is printed you discover that it
isn’t the horrible thing that you wanted, so it is
necessary to repeat the search again. You don’t
have to re-type the search, for the construction

1/

is a shorthand for ‘the previous thing that was
searched for’, whatever it was. This can be
repeated as many times as necessary. You can
also go backwards:

77
searches for the same thing, but in the reverse
direction.

Not only can you repeat the search, but
you can use ‘//° as the left side of a substitute
command, to mean ‘the most recent pattern’.

/horribie thing/
.... ed prints line with ‘horrible thing' ...
s//good/p

To go backwards and change a line, say
77s//good/

Of course, you can still use the ‘&’ on the right
hand side of a substitute to stand for whatever
got matched:

/1s//&a&/p

finds the next occurrence of whatever you
searched for last, replaces it by two copies of
itself, then prints the line just to verify that it
worked.

Default Line Numbers and the Value of Dot

One of the most effective ways to speed up
your editing is always to know what lines will be
affected by a command if you don’t specify the
lines it is to act on, and on what line you will be
positioned (i.e., the value of dot) when a com-
mand finishes. If you can edit without specifying
unnecessary line numbers, you can save a lot of
typing.

As the most obvious example, if you issue
a search command like

/thing/

you are left pointing at the next line that con-
tains ‘thing’. Then no address is required with
commands like s to make a substitution on that
line, or p to print it, or 1 to list it, or d to delete
it, or a to append text after it, or ¢ to change it,
or i to insert text before it.

What happens if there was no ‘thing’?
Then you are left right where you were — dot is
unchanged. This is also true if you were sitting
on the only ‘thing’ when you issued the com-
mand. The same rules hold for searches that use
2.7, the only difference is the direction in
which you search.

The delete command d leaves dot pointing
at the line that followed the last deleted line.
When line ‘$’ gets deleted, however, dot points
at the new line ‘§’

The line-changing commands a, ¢ and i by
default all affect the current line — if you give
no line number with them, a appends text after
the current line, ¢ changes the current line, and i
inserts text before the current line.

.

a, ¢, and i behave identically in one
respect — when you stop appending, changing or
inserting, dot points at the last line entered.
This is exactly what you want for typing and edit-
ing on the fly. For example, you can say

a
... text ...

... botch ... (minor error)
s/botch/correct/ (fix botched line)
a

... more text ...

without specifying any line number for the sub-
stitute command or for the second append com-
mand. Or you can say

a
... text ...
... horrible botch ... (major error)

c (replace entire line)
... fixed up line ...

You should experiment to determine what
happens if you add no lines with a, c or i.

The r command will read a file into the
text being edited, either at the end if you give no
address, or after the specified line if you do. In
either case, dot points at the last line read in.
Remember that you can even say Or to read a
file in at the beginning of the text. (You can
also say 0a or 1i to start adding text at the begin-
ning.) ‘

The w command writes out the entire file.
If you precede the command by one line
number, that line is written, while if you precede
it by two line numbers, that range of lines is
written. The w command does nor change dot:
the current line remains the same, regardless of
what lines are written. This is true even if you
say something like

/"\.AB/./"\.AE/w abstract

which involves a context search.

Since the w command is so easy to use,
you should save what you are editing regularly as
you go along just in case the system crashes, or
in case you do something foolish, like clobbering
what you're editing.

The least intuitive behavior, in a sense, is
that of the s command. The rule is simple —
you are left sitting on the last line that matched
the pattern. If there were no matches, then dot
is unchanged.

To illustrate, suppose that there are three
lines in the buffer, and you are sitting on the
middle one:

x1

x2

x3
Then the command

—.+s/x/y/p
prints the third line, which is the last one
changed. But if the three lines had been

x1
y2
y3

and the same command had been issued while
dot pointed at the second line, then the result
would be to change and print only the first line,
and that is where dot would be set.

Semicolon *;’

Searches with ‘/.../” and *?...7" start at the
current line and move forward or backward
respectively until they either find the pattern or
get back to the current line. Sometimes this is
not what is wanted. Suppose, for example, that
the buffer contains lines like this:

.
.

Starting at line 1, one would expect that the
command

/al,/b/p

prints all the lines from the ‘ab’ to the ‘bc’
inclusive. Actually this is not what happens.
Both searches (for ‘a’ and for ‘b’) start from the
same point, and thus they both find the line that
contains ‘ab’. The result is to print a single line.
Worse, if there had been a line with a ‘b’ in it
before the ‘ab’ line, then the print command
would be in error, since the second line number
would be less than the first, and it is illegal to try
to print lines in reverse order.

This is because the comma separator for
line numbers doesn’t set dot as each address is
processed; each search starts from the same
place. In ed, the semicolon ;" can be used just
like comma, with the single difference that use
of a semicolon forces dot Lo be set at that point
as the line numbers are being evaluated. In
effect, the semicolon ‘moves’ dot. Thus in our
example above, the command

/a/,/blp

prints the range of lines from ‘ab’ to ‘bc’,
because after the ‘a’ is found, dot is set to that
line, and then ‘b’ is searched for, starting beyond
that line.

This property is most often useful in a
very simple situation. Suppose you want to find
the second occurrence of ‘thing’. You could say

/thing/
//

but this prints the first occurrence as well as the
second, and is a nuisance when you know very
well that it is only the second one you're
interested in. The solution is to say

/thing/.//

This says to find the first occurrence of ‘thing’,
set dot to that line, then find the second and
print only that.

Closely related is searching for the second
previous occurrence of something, as in

?something?;??

Printing the third or fourth or ... in either direc-

tion is left as an exercise.

Finally, bear in mind that if you want to
find the first occurrence of something in a file,
starting at an arbitrary place within the file, it is
not sufficient to say

1./thing/

because this fails if ‘thing’ occurs on line 1. But
it is possible to say

0;/thing/

(one of the few places where 0 is a legal line
number), for this starts the search at line 1.

Interrupting the Editor

As a final note on what dot gets set to, you
should be aware that if you hit the interrupt or
delete or rubout or break key while ed is doing a
command, things are put back together again and
your state is restored as much as possible to what
it was before the command began. Naturally,
some changes are irrevocable — if you are read-
ing or writing a file or making substitutions or
deleting lines, these will be stopped in some
clean but unpredictable state in the middle
(which is why it is not usually wise to stop
them). Dot may or may not be changed.

Printing is more clear cut. Dot is not
changed until the printing is done. Thus if you
print until you see an interesting line, then hit
delete, you are not sitting on that line or even
near it. Dot is left where it was when the p com-
mand was started.

4. GLOBAL COMMANDS

The global commands g and v are used to
perform one or more editing commands on all
lines that either contain (g) or don’t contain (v)
a specified pattern.

As the simplest example, the command
g/UNIX/p

prints all lines that contain the word UNIX. The
pattern that goes between the slashes can be any-
thing that could be used in a line search or in a
substitute command; exactly the same rules and
limitations apply.

As another example, then,
g/"\./p

prints all the formatting commands in a file
(lines that begin with ‘.”).

The v command is identical to g, except
that it operates on those line that do not contain
an occurrence of the pattern. (There is no
mnemonic significance to the letter ‘v’.) So

v/"\./p

prints all the lines that don’t begin with *.” — the
actual text lines.

The command that follows g or v can be
anything:

g/"\./d

deletes all lines that begin with *.’, and
g/"%$/d

deletes all empty lines.

Probably the most useful command that
can follow a global is the substitute command,
for this can be used to make a change and print
each affected line for verification. For example,
we could change the word UNIX to ‘Unix’
everywhere, and verify that it really worked, with

g/UNIX/s//Unix/gp

Notice that we used ‘//° in the substitute com-
mand to mean ‘the previous pattern’, in this
case, UNIX. The p command is done on every
line that matches the pattern, not just those on
which a substitution took place.

The global comimand operates by making
two passes over the file. On the first pass, all
lines that match the pattern are marked. On the
second pass, each marked line in turn is exam-
ined, dot is set to tha! line, and the command
executed. This means that it is possible for the
command that follows a g or v to use addresses,
set dot, and so on quite freely.

g/"\.PP/+

prints the line that follows each ‘PP’ command
(the signal for a new paragraph in some format-
ting packages). Remember that ‘+' means ‘one
line past dot’. And

g/topic/?"\.SH?1

searches for each line that contains ‘topic’, scans
backwards until it finds a line that begins ‘.SH’
(a section heading) and prints the line that fol-
lows that, thus showing the section headings
under which ‘topic’ is mentioned. Finally,

g/"\.EQ/+ ,/"\.EN/—p

prints all the lines that lie between ‘EQ’ and
*.EN’ formatting commands.

The g and v commands can also be pre-
ceded by line numbers, in which case the lines
searched are only those in the range specified.

Multi-line Global Commands

It is possible to do more than one com-
mand under the control of a global command,
although the syntax for expressing the operation
is not especially natural or pleasant. As an
example, suppose the task is to change ‘x’ to 'y’
and ‘a’ to ‘b’ on all lines that contain ‘thing’.
Then

g/thing/s/x/y/\
s/a/b/

is sufficient. The ‘\’ signals the g command that
the set of commands continues on the next line;
it terminates on the first line that does not end
with ‘'\". (As a minor blemish, you can’t use a
substitute command to insert a newline within a
g command.)

You should watch out for this problem:
the command

g/x/s//y/\
s/a/b/

does nor work as you expect. The remembered
pattern is the last pattern that was actually exe-
cuted, so sometimes it will be ‘x’ (as expected),
and sometimes it will be *a’ (not expected). You
must spell it out, like this:

g/ x/s/x/y/\
s/a/b/

It is also possible to cxecute a, ¢ and i
commands under a global command, as with
other multi-line constructions, all that is needed
is to add a ‘\" at the end of each line except the
last. Thus to add a ‘.nf’ and ‘.sp’ command

before each “.EQ’ line, type

g/"\.EQ/i\
.nf\
.Sp

.

There is no need for a final line containing a ‘.’
to terminate the i command, unless there are
further commands being done under the global.
On the other hand, it does no harm to put it in
either.

5. CUT AND PASTE WITH UNIX COM-
MANDS
One editing area in . which non-

programmers seem not very confident is in what
might be called ‘cut and paste’ operations —
changing the name of a filc, making a copy of a
file somewhere else, moving a few lines from
one place to another in a file, inserting one file in
the middle of another, splitting a file into pieces,
and splicing two or more files together.

Yet most of these operations are actually
quite easy, if you keep your wits about you and
go cautiously. The next several sections talk
about cut and paste. We will begin with the
UNIX commands for moving entire files around,
then discuss ed commands for operating on
pieces of files.

Changing the Name of a File

You have a file named ‘memo’ and you
want it to be called ‘paper’ instead. How is it
done?

The UNIX program that renames files is
called mv (for ‘move’); it ‘moves’ the file from
one name to another, like this:

mv memo paper

That’s all there is to it: mv from the old name to
the new name.

mv oldname newname

Warning: if there is already a file around with the
new name, its present contents will be silently
clobbered by the information from the other file.
The one exception is that you can’t move a file
to itself —

mv X X

is illegal.

Making a Copy of a File

Sometimes what you want is a copy of a
file — an entirely fresh version. This might be
because you want to work on a file, and yet save
a copy in case something gets fouled up, or just

because you're paranoid.

I any case, the way to do it is with the cp
command. (ep stands for ‘copy’; UNIX is big on
short command names, which are appreciated by
hecavy users, but sometimes a strain for novices.)
Suppose you have a file called ‘good’ and you
want to save a copy before you make some
dramatic editing changes. Choose a name —
‘savegood” might be acceptable — then type

cp good savegood

This copies ‘good’ onto ‘savegood’, and you now
have two identical copies of the file ‘good’. (If
‘savegood’ previously contained something, it
gets overwritten.)

Now if you decide at some time that you
want to get back to the original state of ‘good’,
you can say

mv savegood good

(if you're not interested in ‘savegood’ anymore),
or

cp savegood good
if you still want to retain a safe copy.

In summary, mv just renames a file; cp
makes a duplicate copy. Both of them clobber
the “target’ file if it already exists, so you had
better be sure that’s what you want to do before
you do it.

Removing a File

If you decide you are really done with a
file forever, you can remove it with the rm com-
mand:

rm savegood

throws away (irrevocably) the file called
‘savegood’.

Putting Two or More Files Together

The next step is the familiar one of collect-
ing two or more files into one big one. This will
be needed, for example, ‘when the author of a
paper decides that several sections need to be
combined into one. There are several ways to do
it, of which the cleanest, once you get used to it,
is a program called cat. (Not al// UNIX programs
have two-letter names.) cat is short for ‘con-
catenate’, which is exactly what we want to do.

Suppose the job is to combine the files
‘file]’ and ‘file2’ into a single file called ‘bigfile’.
If you say

cat file

the contents of ‘file’ will get printed on your ter-
minal. If you say

cat filel file2

the contents of ‘filel’ and then the contents of
‘file2” will both be printed on your terminal, in
that order. So cat combines the files, all right,
but it’s not much help to print them on the ter-
minal — we want them in ‘bigfile’.

Fortunately, there is a way. You can tell
UNIX that instead of printing on your terminal,
you want the same information put in a file. The
way to do it is to add to the command line the
character > and the name of the file where you
want the output to go. Then you can say

cat filel file2 > bigfile

and the job is done. (As with cp and myv, you’re
putting something into ‘bigfile’, and anything
that was already there is destroyed.)

This ability to ‘capture’ the output of a
program is one of the most useful aspects of
UNIX. Fortunately it’s not limited to the cat
program — you can use it with any program that
prints on your terminal. We’ll see some more
uses for it in a moment.

Naturally, you can combine several files,
not just two:

cat filel file2 file3

collects a whole bunch.

> bigfile

Question: is there any difference between
cp good savegood

and
cal good >savegood

Answer: for most purposes, no. You might rea-
sonably ask why there are two programs in that
case, since cat is obviously all you need. The
answer is that cp will do some other things as
well, which you can investigate for yourself by
reading the manual. For now we’ll stick to sim-
ple usages.

Adding Something to the End of a File

Sometimes you want to add one file to the
end of another. We have enough building blocks
now that you can do it; in fact before reading
further it would be valuable if you figured out
how. To be specific, how would you use ¢p, mv
and/or cat to add the file ‘goodl’ to the end of
the file ‘good’?

You could try

cal good goodl >temp
mv temp good

which is probably most direct. You should also
understand why

cat good goodl >good

doesn’t work. (Don’t practice with a good
‘good’!)

The easy way is to use a variant of >,
called >>. In fact, > > is identical to > except
that instead of clobbering the old file, it simply
tacks stuff on at the end. Thus you could say

cat goodl >>good

and ‘good 1’ is added to the end of ‘good’. (And
if ‘good’ didn’t exist, this makes a copy of
‘good1” called ‘good’.)

6. CUT AND PASTE WITH THE EDITOR

Now we move on to manipulating pieces
of files — individual lines or groups of lines.
This is another area where new users seem
unsure of themselves.

Filenames

The first step is to ensure that you know
the ed commands for reading and writing files.
Of course you can't go very far without knowing
r and w. Equally useful, but less well known, is
the ‘edit’ command e. Within ed, the command

¢ newfile

says ‘|l want 1o edit a new file called newfile,
without leaving the editor.” The e command dis-
cards whatever you’re currently working on and
starts over on newfile. It's exactly the same as if
you had quit with the q@ command, then re-
entered ed with a new file name, except that if
you have a pattern remembered, then a com-
mand like // will still work.

If you enter ed with the command
ed file

ed remembers the name of the file, and any sub-
sequent e, r or w commands that don’t contain a
filename will refer to this remembered file. Thus

ed filel

... lediting) ...

w (writes back in filel)

e file2 (edit new file, without leaving editor)
... lediting on file2) ...

w (writes back on file2)

(and so0 on) docs a series of edits on various files
without ever leaving ed and without typing the

name of any file more than once.

You can find out the remembered file
name at any time with the f command, just type
f without a file name. You can also change the
name of the remembered file name with f; a use-
ful sequence is

ed precious
f junk
... (editing) ...

which gets a copy of a precious file, then uses f
to guarantece that a careless w command won't
clobber the original.

Inserting One File into Another

Suppose you have a file called ‘memo’,
and you want the file called ‘table’ to be inserted
just after the reference to Table 1. That is, in
‘memo’ somewhere is a line that says

Table 1 shows that ...

and the data contained in ‘table’ has to go there,
probably so it will be formatted properly by nroff
or troff. Now what?

This one is easy. Edit ‘memo’, find ‘Table
1", and add the file ‘table’ right there:

ed memo

/Table 1/

Table | shows that ... [response from ed]
.T table

The critical line is the last one. As we said ear-
lier, the r command reads a file; here you asked
for it to be read in right after line dot. An r
command without any address adds lines at the
end, so it is the same as $r.

Writing out Part of a File

The other side of the coin is writing out
part of the document you’re editing. For exam-
ple, maybe you want to split out into a separate
file that table from the previous example, so it
can be formatted and tested separately. Suppose
that in the file being edited we have

IS
...llots of stuff]
.TE

which is the way a table is set up for the tbl pro-
gram. To isolate the table in a separate file
called “tahle’, first find the start of the table (the
*. TS’ line), then write out the interesting part:

/°\.TS/
TS [ed prints the line it found]
«./"\.TE/w table

and the job is done. If you are contlident, you
can do it all at once with

/NS 7\ T/ w table

The pointis that the w command can write
out a group of lines, instead of the whole file. In
fact, you can write out a single line if you like;
just give one line number instead of two. For
example, if you have just typed a horribly com-
plicated line and you know that it (or something
like it) is going to be needed later, then save it
— don’'t re-type it. In the editor, say

a

...lots of stuff...
...horrible line...
W temp

a

...more stuff...
.r temp

a

...more stuff...

This last example is worth studying, to be sure
you appreciate what’s going on.

Moving Lines Around

Suppose you want to move a paragraph
from its present position in a paper to the end.
How would you do it? As a concrete example,
suppose each paragraph in the paper begins with
the formatting command ‘.PP’. Think about it
and write down the details before reading on.

The brute force way (not necessarily bad)
is to write the paragraph onto a temporary file,
delete it from its current position, then read in
the temporary file at the end. Assuming that
you arc sitting on the ‘. PP’ command that begins
the paragraph, this is the sequence of commands]

«./"\.PP/—w temp
oI/ —d
$r temp

That is, from where you are now (‘.’) until one
line before the next ‘.PP’ (*/"\.PP/—’) write
onto ‘temp’. Then delete the same lines.
Finally, read ‘temp’ at the end.

As we said, that’s the brute force way.
The easier way (often) is to use the move com-
mand m that ed provides — it lets you do the
whole set of operations at one crack, without any
temporary file.

The m command is like many other ed

commands m that it takes up to (two line
numbers i front that tell what lines are to be
aflected. 1t is also followed by o line number that

tells where the lines are to go. Thus
linel, line2 m line3

says to move all the lines between ‘linel’ and
‘line2’ after ‘line3’. Naturally, any of ‘linel’
etc., can be patterns between slashes, $ signs, or
other ways to specify lines.

Suppose again that you’re sitting at the
first line of the paragraph. Then you can say

/" \.PP/—m$
That’s all.

As another example of a frequent opera-
tion, you can reverse the order of two adjacent
lines by moving the first one to after the second.
Suppose that you are positioned at the first.
Then

m+

does it. It says to move line dot to after one line
after line dot.

As you can see, the m command is more
succinct and direct than writing, deleting and re-
reading. When is brute force better anyway?
This is a matter of personal taste — do what you
have most confidence in. The main difficulty
with the m command is that if you use patterns
to specify both the lines you are moving and the
target, you have to take care that you specify
them properly, or you may well not move the
lines you thought you did. The result of a
botched m command can often be a mess.
Doing the job a step at a time rhakes it easier for
you to verify at each step that you accomplished
what you wanted to. It’s also a good idea to
issue a w command before doing anything com-
plicated; then if you goof, it’s easy to back up to
where you were.

Marks

ed provides a facility for marking a line
with a particular name so you can later reference
it by name regardless of its actual line number.
This can be handy for moving lines, and for
keeping track of them as they move. The mark
command is k; the command

kx

marks the current line with the name ‘x’. If a
line number precedes the k. that line is marked.
(The mark name must be a single lower case
letter.) Now you can refer to the marked line

with the address

'

X

Marks are most useful for moving things
around. Find the first line of the block to be
moved, and mark it with a. Then find the last
line and mark it with 5. Now position yourself
at the place where the stuff is to go and say

‘a,’bm.

Bear in mind that only one line can have a
particular mark name associated with it at any
given time.

Copying Lines

We mentioned earlier the idea of saving a
line that was hard to type or used often, so as to
cut down on typing time. Of course this could
be more than one line, then the saving is
presumably even greater.

ed provides another command, called t
(for ‘transfer’) for making a copy of a group of
one or more lines at any point. This is often
easier that writing and reading.

The t command is identical to the m com-
mand, except that instead of moving lines it sim-
ply duplicates them at the place you named.
Thus

1,88

duplicates the entire contents that you are edit-
ing. A more common use for t is for creating a
series of lines that differ only slightly. For
example, you can say

a
.......... X (long line)
t. (make a copy)
s/x/y/ (change it a bit)
t. (make third copy)
s/ylz/ (change it a bit)
and so on

The Temporary Escape '’

Sometimes it is convenient to be able to
temporarily escape from the editor to do some
other UNIX command, perhaps one of the file
copy or move commands discussed in section §,
without leaving the editor. The ‘escape’ com-
mand ! provides a way to do this.

If you say
'any UNIX command

your current editing state is suspended, and the

- 15 -

UNIX command you asked for is executed.
When the command finishes, ed will signal you
by printing another !; at that point you can
resume editing.

You can really do any UNIX command,
including another ed. (This is quite common, in
fact.) In this case, you can even do another !.

7. SUPPORTING TOOLS

There are several tools and techniques that
go along with the editor, all of which are rela-
tively easy once you know how ed works,
because they are all based on the editor. In this
section we will give some fairly cursory examples
of these tools, more to indicate their existence
than to provide a complete tutorial. More infor-
mation on each can be found in [3].

Grep

Sometimes you want to find all
occurrences of some word or pattern in a set of
files, to edit them or perhaps just to verify their
presence or absence. It may be possible to edit
each file separately and look for the pattern of
interest, but if there are many files this can get
very tedious, and if the files are big (more than
three or four thousand lines) it is impossible
because of limits in ed.

The program grep was invented to get
around these limitations. The patlerns that we
have described in the paper are often called ‘reg-
ular expressions’, and ‘grep’ stands for

g/re/p

That describes exactly what grep does — it prints
every line in a set of files that contains a particu-
lar pattern. Thus

grep ‘thing' filel file2 file3

finds “thing’ wherever it occurs in any of the files
‘filel’, ‘file2’, etc. grep also indicates the file in
which the line was found, so you can later edit it
if you like.

The pattern represented by ‘thing’ can be
any pattern you can use in the editor, since grep
and ed use exactly the same mechanism for pat-
tern searching. It is wisest always to enclose the
pattern in the single quotes "..." if it contains any
non-alphabetic characters, since many such char-
acters also mean something special to the UNIX
command interpreter (the “shell’). If you don't
quote them, the command interpreter will try to
interpret them before grep gets a chance.

There is also a way to find lines that don 7
contain a pattern:

grep —v ‘thing' filel file2 ..

finds all lines that don't contains ‘thing’. The
—v must occur in the position shown. Given
grep and grep —v, it is possible to do things like
selecting all lines that contain some combination
of patterns. For example, to get all lines that
contain ‘x’ but not ‘y":

grep x file... | grep —v y

(The notation | is a ‘pipe’, which causes the out-
put of the first command to be used as input to
the second command; see [2].)

Editing Scripts

If a fairly complicated set of editing opera-
tions is to be done on a whole set of files, the
eastest thing to do is to make up a ‘script’, i.e., a
file that contains the operations you want to per-
form, then apply this script to each file in turn.

For example, suppose you want to change
every UNIX to Unix and every GCOS to Gcos in
a large number of files. Then put into the file
‘script’ the lines

g/UNIX/s//Unix/g
g/GCOS/s//Gceos/g

w
q

Now you can say

ed filel <script
ed file2 <script

This causes ed to take its commands from the
prepared script. Notice that the whole job has to
be planned in advance.

And of course by using the UNIX com-
mand interpreter, you can cycle through a set of
files automatically, with varying degrees of ease.

Sed

sed (‘stream editor’) is a version of the
editor with restricted capabilities but which is
capable of processing unlimited amounts of
input. Basically sed copies its input to its output,
applying one or more editing commands to each
line of input.

As an example, suppose that we want to
do the UNIX to Unix part of the example given
above, but without rewriting the files. Then the
command

sed 's/UNIX/Unix/g’ filel file2 ...

applies the command ‘s/UNIX/Unix/g" to all
lines from ‘filel’, ‘file2", etc., and copies all lines

-16 -

to the output. The advantage of using sed in
such a casc is that it can be used with input (oo
large for ed to handle. and that all the output
can be collected in one place, either in a file or
perhaps piped into another program.

If the editing transformation is so compli-
cated that more than one editing command is
needed, commands can be supplied from a file,
or on the command line, with a slightly more
complex syntax. To take commands from a file,
for example,

sed —f cmdfile input—files...

sed has further capabilities, including con-
ditional testing and branching, which we cannot
go into here.

Acknowledgement

I am grateful to Ted Dolotta for his careful
reading and valuable suggestions.

References

[1] Brian W. Kernighan, 4 Tutorial Introduction
to the UNIX Text Editor, Bell Laboratories

internal memorandum.

Brian W. Kernighan, UNIX For Beginners,
Bell Laboratories internal memorandum.
Ken L. Thompson and Dennis M. Ritchie,
The UNIX Programmer’s Manual. Bell
Laboratories, 1975.

(2]

(3]

®

PwWB/UNIX

Shell Tutorial

J. R. Mashey

September 1977

Bell Telephone Laboratories, Incorporated

B.5

PwB/UNIX Shell Tutorial

CONTENTS

[INTRODUCTION v v v v e i e e e e e e e e e e

2. OVERVIEW OF THE UNIX ENVIRONMENT e e e e e e e e e e e e 1
2.1 File System 2
2.2 Processes 2

3 SHELL BASICS .« v v v e e e e e e e e e e e e e e 3
3.1 Commands 3
3.2 Redirection of Standard Input and Output 4
3.3 Command Lines 4
3.4 Generation of Argument Lists 6
3.5 Quoting Mechanisms 6
3.6 Examples 6
3.7 How the Shell Finds Commands 7
3.8 Changing the State of the Shell and the .profile File 7

4. USING THE SHELL AS A COMMAND: SHELL PROCEDURES 8
4.1 Invoking the Shell 8
4.2 Passing Arguments to the Shell 8
4.3 Shell Variables 9
4.4 Initialization of $p and $z by the .path File 10
4.5 Control Structures 11
4.6 Onintr: Interrupt Handling 14
4.7 Special I/0 Redirections 14
4.8 Quoting Revisited 15
4.9 Creation and Organization of Shell Procedures 15

5 MISCELLANEOUS SUPPORTING COMMANDS 16
5.1 Echo: Simple Output 16
5.2 Pump: Shell Data Transfer 16
5.3 Expr: Expression Evaluation 17
5.4 Logname, Logdir, Logtty: Login Data 17

6. EXAMPLES OF SHELL PROCEDURES 18

7 EFFECTIVE AND EFFICIENT SHELL PROGRAMMING 23
7.1 Overall Approach 23
7.2 Approximate Measures of Resource Consumption 23
7.3 Efficient Organization 24

ACKNOWLEDGMENTS . + v v v v e e e e e e e e e e e e e e e DS
REFERENCES . + « + v v v e e e e e e e e e i h e e e e e e e

PWB/UNIX Shell Tutorial

J. R. Mashey

Bell Laboratories
Murray Hill, New Jersey 07974

The command language for PWB/UNIX* is a high-level programming language that is an extended ver-
sion of the UNIX Shell. By utilizing the Shell as a programming language, one can eliminate much of
the programming drudgery that often accompanies a large project. Many manual procedures can be
quickly, cheaply, and conveniently automated. Because it is so easy to create and use Shell procedures,
individual users and entire projects can customize the general PWB/UNIX environment into one tailored
1o their own respective requirements, organizational structure, and terminology.

This paper is actually a combination of several tutorials, as explained in {1}.! Some sections provide a
basic tutorial for relatively new users. Other sections are intended for more experienced users and
introduce them to Shell programming. Finally, some hints on programming techniques and efficiency
are offered for those who make especially heavy use of Shell programming.

The accuracy of this tutorial is guaranteed only for the Shell of pwB/UNix—Edition 1.0. Other versions
of UNIX have other Shells. Although many of the basic concepts are similar, there exist many
differences in features, especially those used to support Shell programming.

1. INTRODUCTION

In any programming project, some effort is used to build the end product. The remainder is consumed
in building the supporting tools and procedures used to manage and maintain the end product. The
second effort can far exceed the first, especially in larger projects. A good command language can be
an invaluable tool for such projects. If it is a flexible programming language, it can be used to solve
many internal support problems, without requiring compilable programs to be written, debugged, and
maintained; its most important advantage is the ability to get the job done now. For a perspective on
the motivations for using a command language in this way, see [1,2,6].

When users log into a PWB/UNIX system, they communicate with an instance of the Shell that reads
commands typed at the terminal and arranges for their execution. Thus, the Shell’s most important
function is to provide a good interface for human beings. In addition, a sequence of commands may be
preserved for later use by saving them in a file, called a Shell procedure, a command file, or a runcom,
according to local preferences.

Some users need little knowledge of the Shell to do their work; others choose to make heavy use of its
programming features. This tutorial may be read in several different ways, depending on the reader’s
interests. A brief discussion of the PWB/UNIX environment is found in {2}. The discussion in {3} cov-
ers aspects of the Shell that are important for everyone, while all of {4} and most of (5) are mainly of
interest to those who write Shell procedures. A group of annotated Shell procedures is given in {6}.
Finally, a brief discussion of efficiency is offered in {7). This is found in its proper place (the end), and
is intended for those who write especially time-consuming Shell procedures.

Complete beginners should nor be reading this tutorial, but should work their way through other avail-
able tutorials first. See [7] for an appropriate plan of study. All the commands mentioned below are
described in Section 1 of the Pws/untx User's Manual (3], while system calls are described in Section 11
and subroutines in Section 111 thereof.

2. OVERVIEW OF THE UNIX ENVIRONMENT

Full understanding of some later discussions depends on familiarity with PWB/UNIX; [9] is most useful
for that, and it would be helpful to read at least one of [4,5,10]. For complcteness, a short overview of
the most relevant concepts is given below.

* UNIX is a Trademark/Service Mark of the Bell System.

1. The notation {n} refers to Section # of this tutorial.

2.1 File System

The pwsB/UNIX file system’s overall structure is that of a rooted tree composed of directories and other
files. A file name is a sequence of characters. A pathname is a sequence of directory names followed by
a file name, each separated from the previous one by a slash (/). If a pathname begins with a /™", the
search for the file begins at the root of the entire tree; otherwise, it begins at the user’s current directory
(also known as the working directory). (The first kind of name is often called a full pathname because it
is invariant with regard to the user’s current directory.) The user may change the current directory at
any time by using the cd or chdir command. In most cases, a file name and its corresponding pathname
may be used interchangeably. Some sample names are:

name of the current directory.
name of the parent directory of the current directory.
/ root directory of the entire file structure.
/bin directory containing most of the frequently-used public commands.

/al/u/jtb/bin a full pathname typical of multi-person programming projects. This one happens to
be a private directory of commands belonging to person ‘‘jtb’” in project “‘tf™"; “al”
is the name of a file system.

bin/umail a name depending on the current directory: it names file ‘‘umail’” in subdirectory
“bin’’ of the current directory. If the current directory is ‘‘/’’, it names
“/bin/umail”’. If the current directory is ‘‘/al/tf/jtb”’>, it names
“/al/tf/jtb/bin/umail’’.

memox name of a file in the current directory.

2.2 Processes
W Beginners should skip this section on first reading.

An image is a computer execution environment, including memory image, register values, current
directory, status of open files, information recorded at login time, and various other items. A process is
the exccution of an image; most PWB/UNIX commands execute as separate processes. One process may
spawn another using the fork system call, which duplicates the image of the original (parent) process.
The new (child) process continues to execute the same program as the parent. The two images are
identical, except that the program can determine whether it is executing as parent or child. The pro-
gram may continue execution of the image or may abandon it by issuing an exec system call, thus ini-
tiating execution of another program. In any case, each process is free to proceed in parallel with the
other, although the parent quite commonly issues a wait system call to suspend execution until a child
exits.

FORK WAIT

PROGRAM A

PROCESS 1 YT |,. ___________________ »>—
|
|

(ASLEEP)

PROGRAM A EXEC PROGRAM B
CHILD B

PROCESS 2

EXIT

Figure 1

Figure | illustrates these ideas. Program A is executing (as process 1) and wishes to run program B. It
““forks™ and spawns a child (process 2) that continues to execute program A. The child abandons A4 by
cxecuting B, while the parent goes to sleep until the child exits.

-3

A child inherits its parent’s open files. This mechanism permits processes to share a common input
stream in various ways. In particular, an open file possesses a pointer that indicates a position in the file
and is modified by various operations. Read and write system calls copy a requested number of bytes
from or to a file, beginning at the position given by the current value of the pointer. As a side effect,
the pointer is incremented by the number of bytes transferred, yielding the effect of sequential 1/0.
Seek can be used to obtain random-access 1/0; it sets the pointer to an absolute position within the file,
or to a position offset either from the end of the file or from the current pointer position.

When a process terminates, it can set an eight-bit remurn code (or exit code) that is available to its
parent. This code is usually used to indicate success or failure.

Signals indicate the occurrence of events that may have some impact on a process. A signal may be
sent to a process by another process, from the keyboard, or by PWB/UNIX itself. For most types of sig-
nals, a process can arrange to be terminated on receipt of a signal, to ignore it completely, or to
“catch” it and take appropriate action {4.6}. For example, an interrupt signal may be sent by depressing
an appropriate key (‘‘del”, ‘‘break’, or ‘‘rubout’’). The action taken depends on the requirements of
the specific program being executed:

e The Shell invokes most commands in such a way that they immediately die when an interrupt is
received. For example, pr normally dies, allowing the user to terminate unwanted output.

e The Shell itself ignores interrupts when reading from the terminal, because it should continue exe-
cution even when the user terminates a command like pr.

e The editor ed chooses to ‘‘catch’ interrupts so that it can halt its current action (especially printing)
without terminating completely.

Limiting interprocess communication to a small number of well-defined methods is a great aid to uni-
formity, understandability, and reliability of programs. It encourages the ‘‘packaging’ of each function
into a small program that is easily connected to other programs, but depends very little on the internal
workings of other programs.

3. SHELL BASICS

The Shell (i.e., the sh command) implements the command language visible to most PWB/UNIX users.
It rcads input from a terminal or a file and arranges for the execution of the requested commands. It is
a small program (about forty pages of C code); many of its functions are actually provided by indepen-
dent programs that work with it. It is nor part of the operating system, but is an ordinary user program.
The discussion below is adapted from [10,11].

3.1 Commands

A command is a sequence of non-blank arguments separated by blanks or tabs. The first argument
(numbered zero) specifies the name of the command to be executed; any remaining arguments are
passed as character-strings to the command executed. A command may be as simple as:

who

which prints the login names of logged-in users. The foliowing line requests the pr command to print
files a, b, and c:

prabc

If the first argument names a file that is executable? and is actually a load module, the Shell (as parent)
spawns a new (child) process that immediately executes that program. If the file is marked executable,
bul is neither a load module nor a directory, it is assumed to be a Shell procedure, i.e., a file of ordinary
text containing Shell command lines and possibly lines to be read by other programs. In this case, the
Shell spawns a new instance of itself to read the file and execute the commands included in it. The fol-
lowing command requests that the on-line Pws/UNIX User’s Manual {3] pages for the who and pr com-
mands be printed on the terminal (the man command is actually implemented as a Shell procedure):

man who pr

2 As evidenced by an appropriate set of permission bits associated with that file.

-4 -

I'rom the user’s viewpoint, exccutable programs and Shell procedures are invoked in exactly the same
way. The Shell determines which implementation has been used, rather than requiring the user to do
s0. This preserves the uniformity of invocation and the case of changing the implementation choee for
a given command. The actions of the Shell in exceuting any of these commands are illustrated i Fig-
ure 1 {2.2}.

3.2 Redirection of Standard Input and Output

When a command begins execution, it usually expects that three files are already open, a ‘‘standard
input’’, a ‘‘standard output’’, and a ‘‘diagnostic output’’. When the user’s original Shell is started, all
three have already been opened to the user’s terminal. A child process normally inherits these files
from its parent. The Shell permits them to be redirected elsewhere before control is passed to an
invoked command.

An argument to the Shell of the form ** <file”” or *‘>file’’ opens the specified file as standard input or
output, respectively. An argument of the form ‘> >file’” opens the standard output to the end of the
filc, thus providing a way to append data to it. In either output case, the Shell creates the file if it did
not already exist. The following appends to file “‘log”’ the list of users who are logged in:

who > >log

In general, most commands neither know nor care whether their input (output) is coming from (going
10) a terminal or file. Thus, commands can be used conveniently in many different contexts. A few
commands vary their actions depending on the nature of their input or output, either for efficiency’s
sake, or Lo avoid useless actions (such as attempting random-access [/O on a terminal).

Redirection of the diagnostic output is discussed in {4.7.3}.
3.3 Command Lines

A sequence of commands separated by ‘“|”’ (or ““~”’) make up a pipeline. Each command is run as a
separate process connected to its neighbor(s) by pipes, i.e., the output of each command (except the last
one) becomes the input of the next command in line. A filter is a command that reads its input,
transforms it in some way, then writes it as output. A pipeline normally consists of a series of filters.
Although the processes in a pipeline are permitted to execute in parallel, they are synchronized to the
extent that cach program ne=ds to read the output of its predecessor. Many commands operate on indi-
vidual lines of text, reading a line, processing it, writing it, and looping back for more input. Some
must read larger amounts of data before producing output; sorf is an example of the extreme case that
requires all input to be read before any output is produced.

The following is an example of a typical pipeline: nroff is a text formatter whose output may contain
reverse line motions; col converts these motions to a form that can be printed on a terminal lacking
reverse motion capability; reform is used here to speed printing by converting the (tab-less) output of
col 1o an equivalent one containing horizontal tab characters. The flag “—mm’’ indicates one of the
more-commonly used formatting options, and ‘“‘text’ is the name of the file to be formatted:

nroff —mm text | col | reform

Figure 2 shows the sequence of actions that set up this pipeline. Not shown are actions by the Shell
that create pipes and manipulate open files, causing the commands to be tied together correctly.

A command line consists of zero or more pipelines separated by semicolons or ampersands. If the last
command in a pipeline is terminated by a semicolon (;) or a new-line character, the Shell waits for the
command to finish before continuing to read command lines. It does nor wait if the pipeline is ter-
minated by an ampersand (&) both sequential and asynchronous execution are thus allowed. An asyn-
chronous pipeline continues execution until it terminates voluntarily, or until its processes are killed.
The first example below executes who, waits for it to terminate, and then executes darte; the second
invokes both commands in order, but does not wait for either one to finish. Figure 3 shows the actions
of the Sheli involved in executing these examples:

who >log; date
who >log& date&

SH FORK FORK FORK WAIT WAIT WAIT
, SR { | IS | S
T I- (ASLEEP) - (ASLEEP) H (ASLEEP) .
EXEC : : REFORM i
4 REFORM * y —
: . EXIT
EXEC : coL i
3 coL ; 1
: EXIT
EXEC NROFF l
2
NROFF 1
EXIT
Figure 2
SH FORK wAIT FORK WAIT
1 T L p— T
(ASLEEP) (ASLEEP) :
EXEC WHO | EXEC DATE l
23 WHO I DATE j
EXIT EXIT
SH FORK FORK (FREE TO DO OTHER COMMANDS)
' ﬁ
EXEC DATE |
3 DATE |
EXIT
WHO
) EXEC |
WHO l
EXIT
Figure 3

More typical uses of & include off-line printing, background compilation. and generation of jobs to
be sent to other computers. For example:

nohup cc prog.c&
You convnie workn: while the C compiler runs in backeround.

A command terminated by & is immune to interrupts, but it is wise to make it immune to hang-ups
as well. The nokup command is used for this purpose. Without nohup, if you hang up while ¢c (the C
compiler) is stil! xecuting, ¢¢ will be killed and your output will disappear.

W The "& operator should be used with restraint, especially on heavilv-loaded sysiems. Other users will
not consider vou a good citizen if you start up a lurge number of simulaneous, asyvnchronous processes
withowr a compelling reason for doing so.

A simple command in a pipeline may be replaced by a comivand line enclosed in parentheses () in
this case. another instance of the Shell is spawned to execute the commands so enclosed. This action is

helpful in combining the output ot several sequentially executed commands into a stream to be pro-
cessed by a pipeline. The following line prints two separate documen(s in a way similar to that shown
in a previous example:

(nroff —mm text!: arefl —mm aex 2V D ooot b orefarm

3.4 Generation of Argumen: Lioh

in characters are found in an argument, they
zero or fnore file names obtained by pattern-
riers match themselves. The 77" matches any one
cters {other than /"), including the null string.
.17 causes the construct to match any one
“—""includes in the set

cause replacement of ihul
matching on the contents of & directs:
character; the **+°° maicher
Enclosing a set of charutors w :“1.:. suuare Lrac
character in that set® Inside sguare ‘w‘:su%cetfs, a pair of characters scparated by

all characters lexically wiiin thoe inclasive range of that pair.

o ditectory, «tmps’’ matches all names containing

o oeir wiily e thvough 077, *“».¢” matches all files
Hogingle-charoci names found in *‘/al/tf/bin”’. This

For example, “»77 mot oo
“tmp’’, “‘[a—f]*"" matcihe
ending in *“.¢’7, and
capability saves much U
collections of siai filos v

Dty P
CUEHEINOG WAV

Pattern-matching has s e cve B ohmrscior of o file narae is .7, it can be matched
only by an argument Bomiee o 0 Jalieia-maicinng 18 currently rcstrlcted to the last com-
ponent in a paihname--iic 5o owl i 5 epar bet the string /al/s«/bin’” is not. Pattern-

matching does not appiy (o Do aarme ab iy sked convmand (e, argument number 0).

3.5 Quoting Mecharium:

it rneaning may be removed by preceding the char-
acter with a back-siasn . 1 pe and disapnears. A\’ followed by a new-line
character is treated as = ingic sooanre oocoritualion of commaeads on additional input lines. A
sequence of charactors e o cictes (0007 i taken x.:zrally— ‘'what you see is what you
get””. The beginner shot inomestasiapces. Dowole quotes ("L .") are required in
a few cases, primarily ; 5. couble quotes hide the significance of most special
characters, but allow subsiituio h‘ il arguments and variables: sce {4.8} for further details.

If a character has & specia

3.6 Examples

¢ of effects that can be oblained by combining a few com-

The following examiplos finitirse e w7 ;
w2 pelpful 1oty these examples at a terminal;

mands in the ways descrions soovo.

o who
Print (on the termired? tne i ol Ingged-nn dsers

s who >>log

Append the list of fog: S AT G ok
e who | wc —I
Print the number ¢ . Loalenen o owe iy aoinds el
e who | pr
Print a puginaw
e who | sort
Print an aiphabeiscs
o who ! grep o
Print the fist ot = L R T U S
e who | grep ne o
Print an alphab-. o : : vt o e . contain Cpw
30 Be warned that squore Brach ts oo e ey an entirely different) o deseriptions of commands, they indicate

that the enciosed

e (date; who | we —1) >>log
Append (to *‘log’") the current date followed by the count of logged-in users.

e who | sed s/ .«//" | sort | unig —d
Print only the login names of all users who are logged in more than once.

The who command does not by itself provide options to yield all these results—they are obtained by
combining it with other commands. The kinds of operations illustrated above may be used in other cir-
cumstances; who just serves as the dala source in these examples. As an exercise, replace “‘who | by
< /etc/passwd’’ in the above examples to see how a file can be used as a data source in the same way.

3.7 How the Shell Finds Commands

The Shell normally searches for commands in a way that permits them to be found in three distinct
locations in the file structure. The Shell first attempts to use the command name as given; if this fails,
it prepends the string **/bin/” to the name, and, finally, *‘/usr/bin/”’. The effect is to search, in order,
the current directory, **/bin’", and ‘‘/usr/bin’’. For example, the pr and man commands are actually
located in files **/bin/pr’> and ‘‘/usr/bin/man’’, respectively. A more complex pathname may be
given, either to locate a file relative to the user’s current directory, or to access a command via an abso-
lute pathname. If a command name as given contains a **/"" (e.g., “‘/bin/sort’” or *“../cmd”), the
prepending is nor performed. Instead, a single attempt is made to execute the unmodified command
name.

This mechanism gives the user a convenient way to execute public commands and commands in or
“near”’ the current directory, as well as the ability to execute any accessible command regardless of its
location in the file structure. Because the current directory is usually searched first, anyone can possess
a private version of a public command without interfering with other users. Similarly, the creation of a
new public command will not affect a user who already has a private command with the same name.
This mechanism may be overridden (4.4}.

3.8 Changing the State of the Shell and the .profile File

The state of a given instance of the Shell may be altered in various ways. The following commands are
used more often at the terminal than in Shell procedures.

The ¢d command (or its synonym chdir) changes the current directory of the Shell to the one specified.
This can (and should) be used to change to a convenient place in the directory structure; c¢d is often
combined with ‘() to cause a sub-Shell to change to a different directory and execute some com-
mands, without affecting the original Shell. The first sequence below extracts the component files of
the archive file *‘/al/tf/q.a”” and places them in whatever directory is the current one; the second
places them in directory “‘/al/tf’":

ar x /al/tf/q.a
(cd /al/tf; ar x q.a)

The opr command sets various flags in the Shell. For example, ‘‘opt —p prompt-str’’ changes the
Shell's interactive prompt sequence from ‘% ' to prompi-str.* Typing “‘opt —v’’ causes the Shell to
enter verbose mode, in which it prints each command line before executing it {4.1}. Try this at the ter-
minal to see how the Shell scans arguments. The output can be turned off by typing “‘opt +v' .

The login command causes the Shell to execute the login program directly, permitting a new login
without re-dialing. A related command is su, which permits you to act with someone elsc’s access per-
missions without making you login again.

Wait causes the Shell to suspend execution until all of its child processes have terminated. It is used to
assure termination of asynchronous processes.

When you login or use su, the Shell is invoked to read your commands, but if your current directory
contains a file named ‘‘.profile”, the Shell reads it before reading commands from your terminal;
*.profile” often contains commands that set tab stops and terminal delays, read mail, etc. See
*.profile’” in {6).

4. The default prompt string % " is inconvenient for certain display (CRT) terminals.

_8 -

4. USING THE SHELL AS A COMMAND: SHELL PROCEDURES
4.1 Invoking the Shell
The Shell is an ordinary command and may be invoked in the same way as other commands:

sh file | args | A new instance of the Shell is explicitly invoked to read file. Arguments, if any,
can be manipulated as described in {4.2}.

sh —v file [args | This is equivalent to putting “‘opt —v’’ at the beginning of file. Each command
line in file is printed before it is executed, thus tracing the progress of execution.
This is an important debugging aid.

file [args | If file is marked executable, and is neither a directory nor a load module, the
effect is that of “‘sh file [args 17, except that file may be found by the search
procedure described in {3.7}.

4.2 Passing Arguments to the Shell

When a command line is scanned, any character sequence of the form $n is replaced by the nth argu-
ment to the Shell, counting the name of the file being read as $0. This notation permits direct refer-
ence 1o the file name and up to 9 arguments. Additional arguments can be processed using the shift
command. It shifts arguments to the left; i.e., the value of $1 is thrown away, $2 replaces $1, $3
replaces $2. ctc.; the rightmost argument becomes null. For example, consider the (executable) file
“ripple’ below. Echo writes its arguments to the standard output; if. exit, and goro are discussed later,
but perform fairly obvious functions.® The form "$1" is used rather than ‘$1° because it is the value of
the first argument that is desired, rather than the literal two-character string ““$1°":

. loop

it "$1t = """ exit

echo $1 $2 $3 $4 $5 $6 $7 $8 $9
shift

goto loop
It the file were invoked by “‘ripple a b ¢, it would print:

abc
b ¢
C
The “shift »”* form of shift has no effect on the arguments to the left of the nth argument; the nth

argument is discarded, and the higher-numbered ones shifted. Thus, “shift> is equivalent to ‘‘shift 17’
(as is “shift 0°7).

The notation $* causes substitution of a// current arguments except $0. Thus, the echo line in the “rip-
ple™” example above could be written in a better way as:

echo $+

These (wo echo commands are not equivalent: the first prints at most nine arguments; the second prints
all its arguments. The $+ notation is more concise and is less error-prone. One obvious application is
in passing an arbitrary number of arguments to the nroff text formatter:

nroff =h —rT1 —T450 —mm $+*

It is important to understand the sequence of actions used by the Shell in substituting arguments.
First, the Shell reads one line of input, making all substitutions in a single pass; no rescanning is per-
formed. Second, the Shell parses the resulting line. Third, the Shell executes all of the commands in
that line. Thus, it is impossible for a command in a line to affect the argument values substituted into
that same line. For example, the following sequence prints the same value twice, because the shiff has
no cflect on the line in which it appears:

ccho $1; shift; echo $1

S Much better ways of coding this procedure are shown later. Lines that begin with *:*" are labels and/or comments (4.5.1}.

-9

On the other hand, the next sequence prints the first argument, followed by the second:

ccho $1
shift
ccho $1

4.3 Shell Variables

The Shell provides 26 string variables, $a through $z. Those in the range $a through $m are initialized
to null strings at the beginning of execution and are never modified except by explicit user request.
Some variables in the range $n through $z have specific initial values and may possibly be changed
implicitly by the Shell during execution. A variable is assigned a value as follows:

= letter [argl [arg2]]

If argl is given, its value is assigned to the variable corresponding to letter. If two arguments are given,
and if arg! is a null string, the value of arg? is assigned to the variable, permitting a convenient default
mechanism. If neither arg/ nor arg2 are given, a single line is read from the standard input, and the
resulting string (with the new-line character, if any, removed) is assigned to the variable.

The following are examples of simple assignments. You may omit quotes around the arguments if you
are sure that they contain no special characters:

_ a u$l||
= b “xrxxx’
= ¢ /usi/news/.mail

The procedure below illustrates the use of a default argument. If an argument is given, mail is read
from it. Otherwise, mail is read from *‘/usr/news/.mail’";

= a "$1" /usr/news/.mail
mail —f $a

The ““="" command is often used to capture the output of a program. For example, date writes the
current time and date to its standard output. The following line saves this value in $d:

date | = d
This works just as well in longer pipelines. The following saves in $a the number of logged-in users:
who | we 1| = a

Another use is in the writing of interactive Shell procedures. The following example is part of a pro-
cedure to ask the user what kind of terminal is being used, so that tabs and delays can be set and other
useful actions taken. The ‘“*</dev/tty’ indicates a redirection of the standard input to the user termi-
nal; it is nor seen as an argument to ‘=", but rather causes the variable to be set to the next line typed
by the user:

echo “terminal?’
= a </dev/tty

Several variables are currently assigned special meanings:

$n records the number of arguments passed to the Shell, not counting the name of the Shell pro-
cedure itself. Thus, “‘sh file argl arg2 arg3” sets $n to 3. Its primary use is in checking for the
required number of arguments:

if $n —It 2 then
echo "two or more args required’; exit
endif
Shift never changes the value of $n.

$p permits alteration of the ordered list of directory pathnames used when searching for commands.
It contains a scquence of directory names (separated by colons) that are to be used as search
prefixes, ordered from left to right. The current directory is indicated by a null string.

-10 -

By default, $p is initialized to a value producing the effect described in {3.7}: ““:/bin:/usr/bin”. A
user could possess a personal directory of commands (say, /al/tf/jtb/bin) and cause it to be
searched before the other three directories by using:

= p /al/tf/jtb/bin::/bin:/usr/bin

$r gives the value of the retutn code of the command most recently executed by the Shell. It is a
string of digits; most commands return ‘0’ to indicate successful completion. For example, the
“=" command returns ‘0>’ if two arguments are given and the first is not null, or if a line is
actually read from the input. When the Shell terminates, it returns the current value of $r as its
own return code.

$s is initialized to the name of the user’s login directory, i.e., the directory that becomes the current
directory upon completion of a login (e.g., ‘/al/tf/jtb”’). Using this variable helps one to keep
full pathnames out of Shell procedures. This is of great benefit when pathnames are changed,
either to balance disk loads or to reflect administrative changes.

$t s initialized to the user’s terminal identification, a single letter or digit. The terminal can be
manipulated using the file name ‘‘/dev/tty$t”’ or just *‘/dev/tty’” alone. The latter is a generic
name for the user’s terminal.

$w s initialized to the first component of $s, i.e., it is the name of the file system (such as *‘/al’’) in
which the login directory is located. Like $s, it is used to avoid pathname dependencies, but is
more useful than $s for projects involving many users.

$z is initialized to **/bin/sh™. The command named by $z is the one that actually reads the Shell
procedures invoked implicitly. The user can alter the choice of the Shell by overriding this value
{4.4}. This facility is very useful when there are several different Shells in a system. This may
occur because different groups of users want different Shells, or when a new Shell is being tested.

In addition to the above variables, the following read-only variable is provided:

$$ contains a 5-digit number that is the unique process number of the current Shell. Its most com-
mon use is in generating unique names for temporary files. Unlike many other systems,
PWB/UNIX provides no separate mechanism for the automatic creation and deletion of temporary
files: a file exists until it is explicitly removed. Temporary files are generally undesirable objects:
the PwB/UNIX pipe mechanism is far superior for many applications. However, the need for
uniquely-named temporary files does occur, especially for multi-user database applications. The
following example of $$ usage also illustrates the helpful practice of creating temporary files in a
directory used only for that purpose:

Is >$s/tmp/3$%

. commands (some of which use $s/tmp/3$)
: ‘clean up at end’
rm $s/tmp/$$

4.4 Initialization of $p and $z by the .path File

The user may request automatic initialization of each Shell’s $p (and $z) by creating a file named
“.path™ in the login directory. The first (or only) line should be of the form shown for $p {4.3}. If
present, the second line should be the full pathname of a Shell. Every instance of the Shell looks for
that ‘“.path” file and initializes its own $p (and 3$z) from it if *.path’ exists. Otherwise,
“:/bin:/usr/bin’" and *‘/bin/sh’" are the values used, respectively. Thus, the “*.path’" information is
available to all of the user’s Shells, but changing $p or $z in one Shell does nor affect these variables in
other Shells. In addition, *‘.path™ is used in a consistent way by commands that must search for other
commands. such as nohup, nice, and rime.® This facility is heavily used in large projects. because it
simplifies the sharing of procedures. and can be quickly altered to adapt to changes in organizational
requirements.

6. If you plan 1o write such ¢ command, investigate the pevee subroutine, which combines the search and exceution code

=11 -

4.5 Control Structures

The Shell provides several commands that implement a varicly ol control structures. These commands
are presented here in order of increasing complexity. See {6} for examples of these commands in the
context of complete Shell procedures.

w» Several of the control commands must not be “‘hidden’’ on command lines (c.g.. behind semi-colons **;"'):

else end endif endsw if switch while

’

Other control commands may be “hidden”:
break breaksw continue exit goto next

4.5.1 Labels and Goto. The command ‘" is recognized by the Shell, but is then treated as a null
operation. One use of **:"" is to define a label to act as a target for goro. Another use is to begin a
comment line. However, it is a good idea to place comments in quotes {3.5} if they contain any charac-
ters that have a special meaning to the Shell, because the line /s actually parsed, not just ignored. Using
“‘goto label’’ causes the following actions:

e A seek is performed to move the read pointer to the beginning of the command file.

e The file is scanned from the beginning, searching for ‘‘: label’’, either alone on a line, or followed
by a blank or tab.

e The read pointer is made to point at the line after the labeled line.

Thus, the only effect of goro is the adjustment of the Shell’s file read pointer to cause the Shell to
resume interpreting commands starting at the line following the labeled line. Invoking goro with an
undefined label causes termination of the procedure {4.5.5}.

w Avoid the “‘goto’ — future versions of the Shell are not expected 1o allow it.
4.5.2 1lf: Simple Conditional.
if conditional-expression command [args]

Whenever the conditional-expression is found to be rrue, jf executes the command (via the exec system
calb), passing the arguments to it. Whenever the conditional-expression is false, if merely exits.

The following primaries can be used to construct the conditional-expression:

—r file rrue if the named file exists and is readable by the user.

—w file rrue if the named file exists and is writable by the user.

—s file true if the named file exists and has a size greater than zero.

—d file true if the named file is a directory.

—f{ file true if the named file is an ordinary file.

sl = 82 true if strings s/ and s2 are identical.

sl 1= s2 true if strings s/ and s2 are nor identical.

nl —cq n2 true if the integers nf and n2 are algebraically equal. Other algebraic comparisons are
indicated by ‘‘—ne’’, “*—gt”’, “‘—ge’’, “—It”’ and “—le"".

{ command) the command is executed; a return code of 0 (yes, zero!) is considered true, any other
value is considered false. Most commands return 0 to indicate successful completion.

These primaries may be combined with the following operators:
! unary negation operator.
—a binary logical and operator.

-0 binary logical or operator; it has lower precedence than *‘—a

(expr) parentheses for grouping. They must be escaped to remove their significance to the
Shell. In the absence of parentheses, evaluation proceeds from left to right.

172 -

Al ol the operators, flags, and values are separate arguments to of, and must be separated by blnks
You must be caretul to make sure that an argument actually appears and can be paised correctly:

it “$1" = "" ¢ccho missing argument
it 081 = 0 ccho missing argument
il 0"$1" = 0 ccho missing argument

The first example guards against the possibility that $1 is omitted, null, or has embedded blanks; the
second guards against the possibility that $1 has a value that causes parsing problems (such as **—r’),
or that it is omitted or null; the third guards against all these problems. The following is dangerous:

it $1 = "" ¢cho missing argument

because it would cause a syntax error in any of the above cases. Substitution of variables and argu-
ments oceurs effectively before parsing; thus, for example, if $1 were null, then after substitution the
line would read:

il = "" echo missing argument

In this case. $1 without quotes yields no argument at all (on the other hand, "$1" would have yielded
an argument whose value is the null string). It is generally desirable to quote arguments (with double
quotes—see 3.5)), especially when they might possibly contain blanks or other characters that have a
special meaning to the Shell. Examples of the use of if can be found in {6].

4.5.3 lf—then—clse—endif: Structured Conditional. A more general (and much more readable) form of
if can be used:

it conditional-cxpression then
. commands

clse
. commands

endil’

The else and the commands following it may be omitted. It is legal to nest i/ commands, but there
must be an endif to match cvery then.

When if is called with a command, using the form of {4.5.2}, it acts as described there, deciding
whether or not to execute the supplicd command. When called with then instead of another command,
i/ simply exits on a true, allowing the Shell to read and interpret the immediately following lines. On a
false. if reads the file until it finds the next unmatched else or endif, thus skipping it and any other inter-
vening lines. Else reads to the next unmatched endif. Endif'is a null command.

These commands work together in a way that produces the appearance of a familiar control structure,
although they do littlc but adjust the Shell’s read pointer. Be warned that this implementation tech-
nique does nor do a good job of diagnosing extra, missing, or hidden if, else. or endif commands (4.5} if
you suspect that there are such extra or missing-commands, “‘opt —v’’ often helps {3.8.4.1}.

4.5.4 Switch—breaksw—endsw: Multi-way Branch. The switch command manipulates the input file in a
way quite similar to /£ It is modeled on the ‘‘switch’” statement of the C language [8], and like it, pro-
vides an efficient multi-way branch:

switch value

: labell

. commands
: label2

. commands
: default

. commands

endsw

213 -

Switch reads the input until it finds:

o & statement label that matches value. The label may contain special characters as described in {3.4);
the method of matching is identical. A few of the many possible labels that could be used to match
the value ‘‘thing.c’” are:

thing.c *.c t« » 2797077

e default used as a statement label (optional).
e the next unmatched endsw command.

Again, from the Shell’s viewpoint, the only effect of switch is to adjust the read pointer so that the Shell
effectively skips over part of the procedure, and then continues executing commands following the
chosen label or endsw. For examples, see “‘.profile’’ and “‘fsplit’* in {6].

Value is obtained from an argument or from a variable; if the label defaulr is present, it must be the last
label in the list; it indicates a default action to be taken if value matches none of the preceding labels.
The switch construct may be nested; labels enclosed by interior swirch-endsw pairs are ignored during the
execution of switch. Breaksw reads the input until the next unmatched endsw and is used to end the
sequence of commands associated with a label. Endsw is a null command like endif.

4.5.5 End-of-file and Exit. When the Shell reaches the end-of-file, it terminates execution, returning
to its parent the return code found in $r. The exit command simply seeks to the end-of-file and
returns, setting the return code to the value of its argument, if any. Thus, a procedure can be ter-
minated ‘‘normally”’ by using exit 0.

4.5.6 While—break —continue—end: Looping. A while-end pair delimits a loop. Break can be used to
terminate execution of such a loop. Continue requests the execution of the next iteration of the loop:

while conditional-expression
... commands
end

While evaluates the conditional-expression, which is similar to that of i {4.5.2). If the conditional-
expression is rrue, while does nothing, permitting the following lines to be read and interpreted. If the
conditional-expression is false, the input file is searched for a matching end, and command interpreta-
tion resumes with the next line. While-end groupings may be nested to a depth of three.

While treats a single, non-null argument as rrue and a single null argument or lack of arguments as false.
This is convenient for the simple case that handles one argument per iteration:

while "$1"
Do something with $1.
shift

end

Break terminates execution of the smallest enclosing while-end group, causing execution to resume after
the nearest following unmatched end. Exit from n levels is obtained by writing »n break commands on
the same line:

break; break; ..

Continue causes execution to resume at the preceding while, i.e., the one that begins the smallest loop
containing the continue.

4.5.7 Conditional Operators || and &&. These operators enforce left-to-right execution of commands.
In the line ‘‘cmdl || cmd2”, c¢md! is executed and its return code examined. Only if it failed (exit
code non-zero) is cmd2 executed. It is thus a more terse notation for:

cmdl

if $r —ne 0 then
cmd?

endif

The *&&" operator yields the inverse test: in “‘cmdl && cmd2’’, the second command is executed
only if the first succeeds (exit code zero). In the sequence below, each command is executed in order,
until one fails:

cemd! && cmd2 && cmd3 && ... && cmdn
Sce “fsplit” and “*writemail™ in {6} for examples.

4.5.8 Next: Transfer to Another File. The command ‘‘next name’ causes the Shell to abandon the
current input and begin reading file name. Next with no arguments causes the Shell to read from the
terminal. By creating a file that initializes Shell variables, then typing ‘‘next file’’ at the terminal, any-
one can have a simple shorthand for setting a number of Shell variables with little typing. See ‘‘nx’’ in

{6}.
4.6 Onintr: Interrupt Handling

As noted in {2.2}, a program may choose to ‘‘catch’ an interrupt from the terminal, ignore it com-
pletely, or be terminated by it. Shell procedures can use onintr to obtain the same effects:

onintr [label]

Onintr takes several forms: ‘“‘onintr label> yields the effect of ‘‘goto label’’ on receipt of an interrupt;
“‘onintr>* alone causes normal action to be restored, so that the process terminates on the next inter-
rupt; ‘‘onintr ="' causes interrupts to be ignored completely, not only by the Shell, but also by any
commands invoked by it.

The most frequent use of onintr is to make sure that temporary files are removed at the end of a pro-
cedure. The example at the end of {4.3} typically would be written as:

onintr clean
Is >$s/tmp/$$
... commands
: clean
rm $s/tmp/$$

When ‘‘onintr label’’ is used, interrupts are effective at the time when the label is reached, it is often
desirable to insert another onintr following the label. Even so, there may be a short ““‘window’’ when
the user can accidentally kill the procedure by causing repeated interrupts in quick succession.

4.7 Special 1/0 Redirections

As noted in {3.2}, when the Shell is invoked it expects to inherit from its parent an open standard input
(file descriptor 0), standard output (file descriptor 1), and diagnostic output (file descriptor 2). Each of
these is initially connected to the terminal.

4.7.1 Standard Inpur. When the Shell is invoked to read a command file, it saves the old standard
input (in an invisible place), then opens the command file as the new standard input. The fact that
commands inherit the new standard input is convenient for commands that read in-line data (editor
scripts, etc.) not read by the Shell. However, this mechanism prevents a Shell procedure from acting as
a filter or from reading the ofd standard input in the way that most C programs do. The Shell solves
this problem by permitting the notation ‘‘<——""to allow a command to take its input from the old
standard input, which the Shell has previously saved.’

Note that ‘“‘</dev/tty” and *<—-—""usually have equivalent effects in a procedure invoked directly
from the terminal. The effects differ in a procedure invoked from within another procedure, unless the
first procedure takes care to invoke the second with *“<——"". In any case, ““<—=""1is to be preferred
because it can be used to read from a file or a pipe and is thus more general. See “‘fsplit’” and “‘lower™
in {6}).

7. The notation “*——"" arises from the concept of “‘standard input once removed’”, because many PwWi/UNIX commands aceept
=" in place of a file name o indicate that the current standard input should be read. This choice makes it impossible 1o
redirect input from a file named *‘——"". Fortunately, file names almost never begin with " because many commands

expect =" to signal a flag of some sort.

-15 -

4.7.2 Standard Owput. The usce of **>/dev/tty” redirects output to the terminal, even if used in the
middlc of a pipeline. Shell procedures that act as filters sometimes need to do this. The redirection
< fdev/null” causes the standard output of a command to be thrown into a bottomless pit (presum-
ably to feed the wumpus—see wump(VD). This is used when you want to execute a command for its
side-effects, but do not want (o be bothered by its output.

4.7.3 Diagnostic Outpur. Most commands direct diagnostics to file descriptor 2 to make sure that they
do not get lost down pipelines. Some situations require that this output go to some place other than
the terminal. For example, a long-running procedure may be started, and then the terminal is hung up.
In this case, it is helpful to save diagnostics in a file. A deficiency of the current Shell is the lack of
syntax for redirecting the diagnostic output. The separate command fd2 performs the required services:

fd2 [+] [—fite] [——file] command arguments ...

The ‘4 flag causes diagnostic output to be merged into the standard output. The second option
writes that output to file; the third appends it to file. If the file name is omitted in the second or third
cases, “‘msg.out” is used. If no flag is given, ‘‘“—msg.out’’ is assumed.

4.8 Quoting Revisited

The main problem with quoting conventions is the need to treat “‘$’* and **\’’ in ways flexible enough
for convenient use with arguments and variables, but simple enough to be understandable, easy to
implement, and unobtrusive in simple cases. In this respect, the current version of the Shell is far
from elegant, but is reasonable in practice. The rules are:

e Inside single quotes, every character stands for itself without exception. A single quote is not, itself,
allowed within single quotes.

o Inside double quotes, “\$ and *‘\""" stand for the characters *‘$’> and **""", respectively, but with all
special meaning removed. All other characters, other than a pair of characters the first of which is
an unescaped *‘$”’, behave exactly as they do within single quotes, including a “\”* nor followed by a
“$”ora‘"”

e Inside double quotes and outside either kind of quotes, any two-character sequence whose first charac-
ter is an unescaped ‘‘$’" is replaced by the value of the corresponding Shell argument or variable;
any variable that has no value (such as **$:"") is replaced by a null string.

e Ourside either kind of quotes, any two-character sequence whose first character is a “‘\"’ is replaced
by the second character of that sequence, but with any special meaning removed.

4.9 Creation and Organization of Shell Procedures

A Shell procedure can be created in two simple steps. The first is that of building an ordinary text file.
The second is that of changing the mode of the file to make it executable, thus permitting it to be
invoked by ‘‘name args”, rather than ‘‘sh name args’’. The second step may be omitted for a pro-
cedure to be used once or twice and then discarded, but is recommended for longer-lived ones.

Here is the entire input needed to set up a simple procedure (the executable part of ‘‘draft’ in {6}):

ed
a

nroff —rC3 —T450—12 —mm $+
w draft

q
chmod 755 draft

It may then be invoked as ‘‘draft filel file2’’. If the Shell procedure ‘‘draft’” were thus created in a
directory whose name appears in the user’s ‘‘.path’ file, the user could change working directories and
stilt invoke the *‘draft’” command.

Shell procedures may be created dynamically. A procedure may generate a file of commands, invoke
another instance of the Shell to execute that file, then remove it. An alternate approach is that of using
nevi to make the current Shell execute the new file, allowing use of existing Shell variables and avoid-
ing the spawning of an additional process for another Shell. In some cases, the need for a temporary
file may be climinated by using the Shell in a pipeline.

-16 -

Many uscrs prefer to write Shell procedures instead of € programs. First, it is casy to create and main-
tain a Shell procedure because it is only an ordinary file of text. Second, it has no corresponding object
program that must be generated and maintained. Third, it is casy to create a procedure “*on the fly™,
usc it a few times, then remove it. Finally, because Shell procedures are usually short in length, writ-
ten in a high-level programming language, and kept only in their source-language form, they are gen-
crally casy to find, understand, and modify.

By convention, directories of commands and/or Shell procedures are usually named ‘‘bin’’. Most
groups of uscrs sharing common interests have one or more ‘‘bin’’ directories set up to hold common
procedures. Some users have ‘“.path’ files that list several such directories. Although you can have a
number of such directories, it is unwise to go overboard—it may become difficult to keep track of your
environment, and efficiency may suffer {7.3}.

5. MISCELLANEOUS SUPPORTING COMMANDS

Shell procedures can make use of almost any command. The commands described in this section are
cither used especially frequently in Shell procedures, or are explicitly designed for such use.

5.1 Fcho: Simple Qutput

The echo command, invoked as “‘echo [args 1™, copies its arguments to the standard output, each fol-
lowed by a single space, except the last argument, which is followed by a new-line; often, it is used to
prompt the user for input, to issue diagnostics in Shell procedures, or to add a few lines to an output
strecam in the middle of a pipeline. Another use is to verify the argument list generation process (as in
{3.4)) before issuing a command that does something drastic. The command *‘Is’ is often replaced by
“‘echo =" because the latter is faster and prints fewer lines of output.

I:cho tecognizes several escape sequences. A ‘‘\n’’ yields a new-line character. Echo normally appends
a new-line character to its last argument; a ““\c’’ is used to suppress that new-line character. The follow-
ing prompts the user for input and allows input to be typed on the same line as the prompt:

echo “enter name: \¢’
= a </dev/tty

Lcho also recognizes an octal escape sequence for any character, whether printable or not.
5.2 Pump: Shell Data Transfer

Pump is a filter that copies its standard input to its standard output with possible substitution of Shell
arguments and variables:

pump | —[subchar 1 1 [+] [eofstr]

Pump reads input until an end-of-file, or until it finds eofstr alone on a line. The default eofstris **!™.
Normally, Shell arguments and variables are substituted in the data stream. The flag “‘—"" suppresses
all substitution, while the form ‘‘—subchar’’ causes subchar to be used as the indicator character for
substitution of Shell variables and arguments, instead of ‘‘$’’. Escaping is handled as in strings
enclosed by double quotes—the indicator character may be hidden by preceding it with **\’’. The *‘+”
flag causcs all leading tab characters in the input to pump to be eliminated; this permits that input to be
indented for readability. A common usc of pump is to get Shell variables into editor scripts—see
“edfind™ in {6}, for example. Because editor scripts may use ‘$° for other purposes, readability may
be improved by using a subchar such as %’

17 -

in file $1, change cvery instance of $2 to $3°
: ‘then delete all lines consisting only of $4°
i —r "$1" then

pump —"% + | ed 81

g/%2/s//%3/g

g/~ %4%/d

w

!
else

echo "$1: cannot open”
endif

Pump is often used to copy a few lines to another file:

pump > >logfile
here is $1

and here is $2 on a separate line
|

5.3 Expr: Expression Evaluation

Expr supports arithmetic and logical operations on integers, and pL/1-like “‘substr’”, “‘length’, and
“index’’ operators for string manipulation. It evaluates a single expression and writes the result to the
standard output, typically piped into ‘‘=""to be assigned to a variable. Typical examples are:

: ‘increment $a’
expr $a + 1| = a

‘put 3rd through last characters of $1 into $b
: “expr substr abede 3 1000 returns cde (1000 is just a big number)’
cxpr substr "$1" 3 1000 | = b

‘obtain length of $17
expr length "$1" | = ¢

The most common uses of expr are in counting for loops and in using ‘“‘substr’ to pick apart strings.
5.4 l.ogname, Logdir, Logtty: Login Data

When a user logs in, he or she supplies a login name and a password. The login program searches the
password file for that login name and obtains the name of the program to be executed by the user (nor-
mally the Shell), the directory to be made the current directory, and also a userid, a value ranging from
0 to 255. Most UNIX protection and identification mechanisms utilize the last item. Limiting the
number of distinct users to 256 is no problem for most UNIX systems, but the original PWB/UNIX instal-
lation currently supports more than 1,000 users. However, it is not necessary to provide a distinct
userid for every user. Project-oriented groups of users often choose to share one or two userids, in
order to ease the problems caused by personnel absences, and also to ease the manipulation of shared
files.! Although the members of such groups do not generally worry about being protected from each
other, they need to be identified as distinct individuals by some programs, i.e., those that tag inter-user
messages with user names or log the name of the user making a change to a source program.
Pwa/UNIX records the login name instead of discarding it after login. The logname command writes this
name to the standard output, allowing it to be captured in a Shell variable. It can then be used to per-
mit only sclected users to execute a procedure, or can be included in logging information:

logname | = u
(echo "$u updated files on \c"; date) > >projectlog

The logdir and logriy commands are used in the same way as logname; they produce the same values as
the initial values of $s and $t, respectively {4.3}.

% Although some groups started by using one userid per person, it was discovered that these uscrs often shared a single
password. Thus, the possession of separate userids was considered more of a hindrance than a help.

6. EXAMPLES OF SHELL PROCEDURES

- Some examples in this section may be quite d(]i‘ic"ull Jor beginners. For ease of reference, the examples
are arranged alphabetically by name.

.profile:

".profile (automatically invoked on login) asks for terminal type,’

‘reads a line from terminal, loops until a known type’

"(or empty line) is entered, sets terminal options appropriately,’

"asks for new directory name and changes to it, if one is given,’

: ‘and then, if file nx exists, transfers to it’

while 1|
echo ‘terminal:\c’
= a </dev/tty

switch "$a"
‘DASI450
: 450
stty cr2; tabs +t450; break
"GSI/DASI300
T gst
: 300
stty cr2; tabs; break
: "HP264X’
: hp

stty ¢rQ0 nl0; tabs +thp; break
: “TI 700°
: ot
stty —tabs nll crl; break
: default
if 0"$a" = 0 break
echo "$a? try 450,gsi,hp,ti"
endsw
end
echo "cd \c¢"
= b </dev/tty
if "$b" !="" then
cd $b
endif
if —r nx then
next nx

endif

Note: Break is used instead of breaksw in the above example to terminate the while loop, not just the
swirch construct.

copypairs:

‘copypairs filel file2 ...
“copy filel to file2, file3 to file4, ...

while "$2"
cp $1 §2
shift; shift
end
if 0"$1" '= 0 echo "odd number of arguments’

Note: Remember that “‘shift; shift” is nor the same as ‘‘shift 2’’. See next example for use of *‘shift
2.

copylo:

distinctl:

Note:

‘copylo dir Tile ...
‘copy argument files to dir, making surc that at teast’
“two arguments exist, that dir is a directory, and that’
‘each additional argument is a readable file

lf $n —It 2 then
echo ‘usage: copyto directory file ..."; exit

endif
if ! —d $1 then
echo "$1 is not a directory"; exit
endif
while "$2"
if ' —r $2 then
echo "$2 not readable"
else
cp $2 $1
endif
shift 2
end
"distinct]’

‘reads standard input, reports list of identifiers that’
‘differ only in case, giving lower case form of each’
tr —cs "[A-Z)[a—z][0-9]" "'N\012+])" <—— | sort —u | tr '{[A-Z]" "[a—z]" | sort | uniq —d

This procedure is an example of the kind of process that is created by the ‘‘left-to-right’” con-
struction of a long pipeline. It may not be immediately obvious how this works. The
translates all characters except letters and digits into new-line characters, and then ‘‘squeezes
out” repeated new-line characters. This leaves each identifier (in this case, any contiguous
sequence of letters and digits) on a separate line. Sort sorts the lines and emits only one line
from any sequence of one or more repeated lines. The next fr converts everything to lower
case, so that identifiers differing only in case become identical. The output is sorted again to
bring such duplicates together. The unig —d prints once only those lines that occur more than
once, yielding the desired list. ’

The process of building such a pipeline uses the fact that pipes and files can usually be inter-
changed; the two lines below are equivalent, assuming that sufficient disk space is available:

emdl | ecmd2? | cmd3
cmdl >tmpl; <tmpl cmd2 >tmp2; <tmp2 cmd3; rm tmp[l1-3]

Starting with a file of test data and working from left to right, each command is run taking its
input from the previous file and putting its output in the next file. The final output file is then
examined to make sure that it contains the expected result. The goal is to create a series of
transformations that will convert the input to the desired output. As an exercise, try to mimic
**distinct1”’ with such a step-by-step process, using a file of test data containing;

ABC:DEF/DEF
ABC1 ABC
Abc abc

Although pipelines can give a concise notation for complex processes, exercise some restraint
fest you succumb to the ‘‘one-line syndrome” sometimes found among users of especially con-
cise languages. This syndrome often yields incomprehensible code.

distinct2:

Note:

draft:

Note:

edfind:

Note:

edlast:

Note:

- 20 -

“distinct2’
‘reads standard input, reports sorted list of identifiers that differ’
‘in case only, listing all such distinct identifiers’
onintr cleanup
tr —cs ‘[A—=Z)[a—z][0-9] "[\012+]" <—~— | sort —u | tee t1$$ | tr '[A—Z]" "[a—z]" >12$$
pr —s —t —I1 —m t18$ t28$ | sort +1 >138$
: “third argument to pr in above line is "minus ell one"
sort 13$$ >1488
uniq —u —1 t3%$ | sort | comm —23 148§ — | sort +1
: cleanup
rm 733

This procedure is similar to the previous one, but provides more explicit information. As an
exercise, work through this procedure in the way described above. The commands used here
(plus grep and sed) form the basis for many ‘‘data stream’’ operations.

“draft file ...

‘prints the draft (—rC3) of a document on a DASI450 terminal in 12—pitch’
: ‘using PWB/MM’
nroff —rC3 —T450—12 —mm $=

Users often write this kind of procedure for convenience in dealing with commands that require
the use of many distinct flags that cannot be given default values that are reasonable for all (or
even most) users.

‘edfind file arg’
‘find the last occurrence in file of a line that matches arg,’
: ‘then print 3 lines (the one before, the line itself, and the one after)’
pump | ed — $I
7$27;—,+p
1

This illustrates the typical practice of using pump to substitute Shell variables into ed scripts.

“edlast file’
: ‘prints the last line of file, then deletes that line’
ed — $1
$p
$d
w

q
ccho done

This procedure illustrates the effects of a command that reads input from a file shared with the
Shell.

221 -

fsplit:
“Tsplit filel file2’
read standard input and split it into three parts:’
“append any line containing at least one letter to filel, any line’
: ‘containing digits but no letters to file2, and throw the rest away’
=i0; =350

while |
= a <—— || break
expr $i + 1| =i
switch "$a"
: x[A—Za—z]~
echo "$a" >>8]; breaksw
: «[0—9]+
echo "$a" > >$2; breaksw
: default
expr $j + 1| =
endsw

end
ccho "$i lines read, $j thrown away"

Note: Each iteration of the loop reads a line from the input and analyzes it. The break terminates the
loop only when **="" encounters an end-of-file.

w Don't use the Shell 1o read a line at a time unless you must—ii can be grotesquely slow {7.2.1}.
loop:

‘loop arg ...
‘one or more command lines’
‘endloop’
"execute the group of command lines once for each argument,’
: ‘substituting each argument as $1 in the command lines’
onintr cleanup
echo ‘while "$1"" >(mp$$
pump — + endloop <—— >>tmp$$
echo “shift \n end” >>tmp$$
next tmp$$; rm tmp3$$
. cleanup
rm tmp$$

Note: Such a procedure is typically used from a terminal to repeat some commands for a list of argu-
ments. 1 creates a temporary file that sandwiches user input between a while and shift-end. 1t
then transfers to that file. For example, all files in the current directory could be copied to
“place™ by:

loop *

cp $1 place
echo $1 copied
endloop

lower:

lower’

‘reads standard input, converts it to lower case, writes o standard output’
: ‘can thus be used in a pipeline if desired’
tir ‘[A=Z]) "la—z] <——

Nore: This is the most common type of use for ““<—="".

mkfiles:

null:

nx:

phone:

-2
‘mkfiles prefix [number]’
: ‘makes number (default = 5) files, named prefixl, prefix2, ...’
=a "$2" 5
=il
while $i —le $a
cp /dev/null $18i
expr $i + 1| =i
end
‘null file .
: ‘create each of the named files as an empty file’
while "$1"
cp /dev/null $1
shift
end
‘next nx’
‘asks for module name, initializes variables to useful values,’
‘prints variables. Note that variables are set within the invoking Shell,’
: ‘so nx can be invoked only from terminal or from .profile’
= a /sys/source/sl
= b /usr/man/man]|
echo "m: \¢"
= m </dev/tly
= g "gel —e s.$m; ed $m"
= d "delta s.$m"
pump
a: $a b: $b

d: $8d g: $g m: $m
'

next

‘phone initials’
: ‘prints the phone number(s) of person with given initials’
ccho “inits ext home’
grep "~ $1"
abe 1234 999-2345
def 2234 5832245
ghi 3342 988—1010
Xyz 4567 555-1234

writemail:

Note:

‘writemail message user’
‘if that user is logged in, write message on terminal:’
‘otherwise, mail it to that user’

echo "$1" | (write "$2" || mail "$2")

Replacing ‘‘echo™ above by “‘pump . <——
way as the mail command.

"

writes or mails the standard input, in the same

223 -

7. EFFECTIVE AND EFFICIENT SHELL PROGRAMMING
7.1 Overall Approach

This section outlines strategies for writing ‘efficient’” Shell procedures, i.e., ones that do not waste
resources unreasonably in accomplishing their purposes. In the author’s opinion, the primary reason
for choosing the Shell procedure as the implementation method is to achieve a desired result at a
minimum Auman cost. Emphasis should aiways be placed on simplicity, clarity, and readability, but
cfficiency can also be gained through awareness of a few design strategies. In many cases, an effective
redesign of an existing procedure improves its efficiency by reducing its size, and often increases its
comprehensibility. In any case, one should not worry about optimizing procedures unless they are
intolerably slow or are known to consume a lot of resources.

The same kind of iteration cycle should be applied to Shell procedures as to other programs: write code,
measure it, and optimize only the few important parts. The user should become familiar with the rime
command, which can be used to measure both entire procedures and parts thereof. Its use is strongly
recommended; human intuition is notoriously unreliable when used to estimate timings of programs,
even when the style of programming is a familiar one. Each timing test should be run several times,
because the results are easily disturbed by, for instance, variations in system load.

7.2 Approximate Measures of Resource Consumption

7.2.1 Number of Processes Generated. When large numbers of short commands aie executed, the
actual execution time of the commands may well be dominated by the overhead of spawning processes.
The ¢PuU overhead per process lies in the range of 0.07 to 0.1 seconds, depending on the specific
hardware configuration. The procedures that incur significant amounts of such overhead are those that
perform much looping, and those that generate command sequences to be interpreted by another Shell.

Il you are worried about efficiency, it is important to know which commands are currently built into the
Shell, and which are not. Here is the alphabetical list of those that are built-in:

chdir endsw newgrp shift
= continue exit next switch
break else goto onintr test
breaksw end if opt wait
cd endif login pump while

Pump actually executes as a child process, i.e., the Shell does a fork, but no exec; “()” executes in the
same way. Any command nor in the above list requires both fork and exec.

The user should always have at least a vague idea of the number of processes generated. In the bulk of
observed procedures, the number of processes spawned (not necessarily simultaneously) can be
described by:

processes = k*n + ¢

where k and ¢ are constants, and n is the number of procedure arguments, the number of lines in some
input file, the number of entries in some directory, or some other obvious quantity. Efficiency
improvements are most commonly gained by reducing the value of k, sometimes to zero. Any pro-
cedures whose complexity measures include »? terms or higher powers of n are likely to be intolerably
cxpensive.

As an example, here is an analysis of procedure “‘fsplit’” of {6}. For each iteration of the loop, there is
one expr plus either an echo or another expr. One additional echo is executed at the end. If nis the
number of lines of input, the number of processes is 2*n+1. On the other hand, the number of
processes in the following (equivalent) procedure is 12, regardless of the number of lines of input:

224 -

fsplit2:

onintr cleanup

= b '[ABCDEFGHIJKLMNOPQRSTUVWXY Zabcdefghijkimnopgrstuvwxyz]’

cat <—— >tmp$$

grep "$b" tmp$$ >tmpS$i

grep —v "$b" tmp$$ | grep "[0123456789]" >tmp$$2

cat tmp$$l >>81 ; cat tmp$$2 >>§2

we —l <tmp$$ | =i

we =1 <tmp$$1 | = j

we — <tmp$$2 | = k

expr $i — $ — Sk | = a

echo "$i read, $a thrown away"
cleanup

rm tmp$$+

This version is often ten times faster than ‘fsplit’’, and it is even better for larger input files.

Some types of procedures should nor be written using the Shell. For example, if one or more processes
are generated for each character in some file, it is a good indication that the procedure should be rewrit-
ten in C.

W Shell procedures should not be used to scan or build files a character at a time.

7.2.2 Number of Bytes of Data Accessed. 1t is worthwhile considering any action that reduces the
number of bytes read or written. This may be important for those procedures whose time is spent pass-
ing data around among a few processes, rather than creating large numbers of short processes. Some
filters shrink their output, others usually increase it. It always pays to put the ‘‘shrinkers’ first when
the order is irrelevant. Which of the following is likely to be faster?

sort file | grep pattern
grep pattern file | sort

7.2.3 Directory Searches. Directory searching can consume a great deal of time, especially in those
applications that utilize deep directory structures and long pathnames. Judicious use of cd can help
shorten long pathnames and thus reduce the number of directory searches needed. As an exercise, try
the following commands (on a fairly quiet system).’

time sh —c¢ ‘Is =1 /usr/bin/* >/dev/null’
time sh —c¢ ‘cd /usr/bin; Is —1 = >/dev/null’

7.3 Ethicient Organization

7.3.1 Directory Search Order and the .path File. The ‘‘.path” file is a popular and convenient mechan-
ism for organizing and sharing procedures. However, it must be used in a sensible fashion, or the
result may be a great increase in system overhead that occurs in a subtle, but avoidable way.

The process of finding a command involves reading every directory included in every pathname that
precedes the needed pathname in the current $p variable. As an example, consider the effect of invok-
ing nroff (/usr/bin/nroff) when $p is ‘“:/bin:/usr/bin”’. The sequence of directories read is: **.”", **/”,
“/bin’, /77, “/usr’’, and ‘“/usr/bin’, i.e., a total of six directories. A long ‘‘.path’ can increase this
number significantly.

The vast majority of command executions are of commands found in **/bin’" and, to a lesser extent, in
“/usr/bin’’. Careless ‘‘.path’’ setup may lead to a great deal of unnecessary searching. The following
four examples are ordered from worst to best (at least with regard to efficiency):

9 You may have to do some reading in the Pumeniy User's Manual (3] 1o understand exactly what is going on in these
cxamples.

-25-

Jal/t/ith/bin:/al/u/bin:/bin:/usr/bin
/hin/alZt/ith/bin:/al /U4/hin/usr/bin
Jhin:/use/bin:/Zal/u/jth/bin:/al /t/bin
/binz:/usr/bin:/al//jtb/bin:/al/tf/bin

The first one above should be avoided. The others are acceptable—choice among them is dictated by
the rate of change in the set of commands kept in **/bin’” and **/usr/bin”’.

A procedure that is expensive because it invokes many short-lived commands may often be speeded up
by changing $p to resemble the last of the above four examples.

7.3.2 Good Ways to Set up Directories. It is wise to avoid directories that are larger than necessary.
You should be aware of several ‘‘magic sizes”. A directory that contains entries for up to 30 files (plus
the required **.”> and *“..”") fits in a single disk block and can be searched very efficiently. One that has
up to 254 entries is still a *‘small” file; anything larger is usually a disaster when used as a working
directory. It is especially important to keep login directories small, preferably one block at most.

ACKNOWLEDGMENTS

The Shell was originally written by K. Thompson; its basic structure has remained unchanged since
then, although many features (and some warts!) have been added. The PWB/UNIX extensions were
added by R. C. Haight, A. L. Glasser, and the author. Some constructs have been derived from similar
ones in the recent Shell written by S. R. Bourne. A number of colleagues provided helpful comments
during the writing of this tutorial; T. A. Dolotta, in addition, provided a great deal of editorial assis-
tance. Finally, many thanks must go to the PWB/UNIX user community, and especially M. H. Bianchi
and J. T. Burgess, who provided many suggestions and examples.

REFERENCES

(1] Bianchi, M. H., and Wood, J. L. A User’s Viewpoint on the Programmer’s Workbench. Proc.
Second Int. Conf. on Software Engineering, pp. 193-99, Oct. 13-15, 1976.

[2] Dolotta, T. A., and Mashey, J. R. An Introduction to the Programmer’s Workbench. Proc.
Second Int. Conf. on Software Engineering, pp. 164-68, Oct. 13-15, 1976.

[3] Dolotta, T. A., Haight, R. C., and Piskorik, E. M., eds. PWB/UNIX User’s Manual—Edition 1.0,
Bell Laboratories, May 1977.

[4] Kernighan, B. W., and Plauger, P. J. Software Tools. Proc. First National Conference on Software
Engineering, pp. 8-13, Sept. 11-12, 1975.

5] Kernighan, B. W., and Plauger, P. J. Software Tools. Reading, MA: Addison-Wesley, 1976.

[6) Mashey, J. R. Using a Command Language as a High-Level Programming Language. Proc.
Second Int. Conf. on Software Engineering, pp. 169-76, Oct. 13-15, 1976.

[71 Mashey, J. R. Pws/UNix Documentation Roadmap. Bell Laboratories, 1977.
[8] Ritchie, D. M. C Reference Manual. Bell Laboratories, 1977.

[9] Ritchie, D. M., and Thompson, K. The UNix Time-Sharing System. Comm. ACM 17(7):365-
75, July 1974,

(10] Thompson, K. The UNix Command Language. In Structured Programming—Infotech State of the
Art Report, pp. 375-84. Infotech International Limited, Nicholson House, Maidenhead,
Berkshire, England, 1976.

[11] Thompson, K., and Ritchie, D. M. UNix Programmer 's Manual—Sixth Edition. Bell Laboratories,
May 1975.

A I N T ‘1"" -

A

UNIX For Beginners

Brian W. Kernighan

Bell Laboratories,
Murray Hill, New Jersey 07974

ABSTRACT

This paper is meant to help new users get started on UNIX. It covers:

® basics needed for day-to-day use of the system — typing commands, correct-
ing typing mistakes, logging in and out, mail, inter-console communication, the
file system, printing files, redirecting [/O, pipes, and the shell.

o document preparation — a brief tutorial on the ROFF formatter for beginners,
hints on preparing documents, and capsule descriptions of some supporting
software.

@ UNIX programming — using the editor, programming the shell, programming
in C, other languages.

There is also an annotated UNIX bibliography.

B.6

UNIX for Beginners

Brian W. Kernighan
Bell Laboratories, Murray Hill, N. J.

In many ways, UNIX is the state of the art
in computer operating systems. From the
user's point of view, it is easy o learn and use,
and presents few of the usual impediments to
getting the job done.

[t is hard, however, for the beginner to
know where to start, and how to make the best
use of the facilities available. The purpose of
this introduction is to point out high spots for
new users, so they can get used to the main
ideas of UNIX and start making good use of it
quickly.

This paper is not an attempt to re-write
the UNIx Programmer’s Manual; often the discus-
sion of something is simply “read section x in
the manual.” (This implies that you will need a
copy- of the unix Programmer’s Manual.) Rather
it suggests in what order to read the manual,
and it collects together things that are stated
only indirectly in the manual.

There are five sections:

l. Getting Started: How to log in to a UNIX,
how to type, what to do about mistakes in
typing, how to log out. Some of this is
dependent on which UNIX you log into
{phone numbers, for example) and what
terminal you use, so this section must
necessarily be supplemented by local in-
formation.

2. Day-to-day Use: Things you need every
day to use uNix effectively: generally use-
ful commands; the file system.

3 Document Preparation: Preparing
manuscripts is one of the most common
uses for uNIx. This section contains ad-
vice, but not extensive instructions on
any of the formatting programs.

4. Writing Programs: UNIX is an excellent
vehicle for developing programs. This
section talks about some of the tools, but
again is not a tutorial in any of the pro-
gramming languages that UNIX provides.

S. A uNIx Reading List. An annotated bi-

bliography of documents worth reading by
new users.

I. GETTING STARTED

Logging In

Most of the details about logging in are in
the manual section called “How to Get Started”
(pages /v-v in the S5th Edition). Here are a cou-
ple of extra warnings.

You must have a UNIX login name, which
you can get from whoever administers your
system. You also need to know the phone
number. UNIX is capable of dealing with a
variety of terminals: Terminet 300’s; Execu-
port, TI and similar portables; video terminals;
GSI's; and even the venerable Teletype in its
various forms. But note: UNiX will not handle
IBM 2741 terminals and their derivatives (e.g.,
some Anderson-Jacobsons, Novar). Further-
more, UNIX is strongly oriented towards devices
with fower case. If your terminal produces only
upper case (e.g., model 33 Teletype), life will be
so difficult that you should look for another ter-
minal.

Be sure to set the switches appropriately
on your device: speed (if it’s variable) to 30
characters per second, lower case, full duplex,
even parity, and any others that local wisdom
advises. Establish a connection using whatever
magic is needed for your terminal. UNIX should
type “login:™ at you. If it types garbage, you
may be at the wrong speed; push the ‘break’ or
‘interrupt’ key once. If that fails to produce a
login message, consult a guru.

When you get a ‘“login:” message, type
your login name in lower case. Follow it by a
RETURN if the terminal has one. [f a password
is required, y _u will be asked for it, and (if pos-
sible) printing will be turned off while you type
it, again followed by a RETURN (On M37 Teie-
types always use NEWLINE or LINEFEED in place
of RETURN).

The culmination of your login efforts is a
percent sign “%”. The percent sign means that
UNIX is feady to accept commands from the
terminal. (You may also get a message of the
day just before the percent sign or a
notification that you have mail.)

Typing Commands

Omce you've seen the percent sign, you
can type commands, which are requesis that
UNIX do something. Try typing

date
followed by RETURN.. You should get back some-
thing like

Sun Sep 22 10:52:29 EDT 1974
Don’t forget the RETURN after the command, or
nothing will happen. If you think you're being
ignored, type a RETURN; something should hap-

pen. We won’t show the carriage returns, but
they have to be there.

Another command you might try is who,
which tells you everyone who is currently logged
in:

who

gives something like

pip uyf Sep 22 09:40
bwk tyg Sep 22 09:48
mel tiyh Sep 22 09:58

The time is when the user logged in.

If you make a mistake typing the command
name, UNIX will tell you. For example, if you
type

whom
you will be told

whom: not found

Strange Terminal Behavior

Sometimes you can get into a state where
your terminal acts strangely. For example, each
letter may be typed twice, or the RETURN may
not cause a line feed. You can often fix this by
logging out and logging back in. Or you can read
the description of the command stty in section |
of the manual. This will also tell you how to get
intelligent treatment of tab characters (which are
much used in UNIX) if your terminal doesn't
have tabs. If it does have computer-settable
tabs, the command tabs will set the stops
correctly for you.

Mistakes In Typing

If you make a typing mistake, and see it
before the carriage return has been typed, there
are two ways to recover. The sharp-character
“#" erases the last character typed; in fact suc-
cessive uses of “#” erase characters back to the
beginning of the line (but not beyond). So if

you lype badly, you can correcl as you go:
dd#atte# #e

is the same as “‘daie™".

The at-sign '« erases all of the charac-
ters typed so far on the current input line, so if
the line is irretrievably fouled up, type an ‘@™
and start over (on the same line!),

What if you must enter a sharp or at-sign
as part of the text? If you precede either *“#" or
“@" by a backslash **\", it {oses ils erase mean-
ing. This implies that to erase a backslash, you
have to type two sharps or two at-signs. The
backslash is used extensively in UNIX 1o indicate
that the following character is in some way spe-
cial.

"

Readahead

UNIX has full readahead, which means that
you can type as fast as you want, whenever you
want, even when some command is lyping at
you. If you type during output, your input char-
acters will appear intermixed with the output
characters, but they will be stored away by UNIX
and interpreted in the correct order. So you can
lype two commands one after another without
waiting for the first to finish or even begin.

Stopping a Program

You can stop most programs by typing the
character “DEL" (perhaps called ‘delete” or
“rubout™ on your terminal). There are excep-
tions, like the text editor, where DEL stops what-
ever the program is doing but leaves you in that
program. You can also just hang up the phone.
The “interrupt™ or “break™ key found on most
terminals has no effect.

Logging Out
The easiest way to log out is to hang up the
phone. You can also type
login name-of-new-user

and let someone else use the terminal you were
on. It is not sufficient just to turn off the termi-
nal. UNIX has no time-out mechanism, so you’ll
be there forever tnless you hang up.

Mall
When you log in, you may sometimes get
the message
You have mail.

UNIX provides a postal system so you can send
and receive letters from other users of the sys-
tem. To read your mail, issue the command

mail

Your mail will be printed, and then you wiil be
asked

Save?

If you do want to save the mail, type y, for
‘‘yes’’; any other response means “no”.

How do you send mail to someone else?
Suppose it is to go to “joe” (assuming ‘“‘joe” is
someone’s login name). The easiest way is this:

mail joe

now type in the text of the letter

on as many lines as you like ...

afier the last line of the fetter

type the character “control-d",

that is, hold down “‘control”" and type
a letter *'d".

And that’s it. The “‘control-d” sequence, usually
called “EOT”, is used throughout UNIX (0 mark
the end of input from a terminal, so you might
as well get used to it.

There are other ways to send mail — you
can send a previously prepared letter, and you
can mail to a number of people all at once. For
more details see mail (I).

The notation mail (I) means the command
mail in section (1) of the unix Programmer’s
Manual.

Writing to other users

Al some point in your UNIX career, oul of
the blue will come a message like

Message from joe...

accompanied by a startling beep. It means that
Joe wants to talk to you, but unless you take ex-
plicit action you won't be able to talk back. To
respond, type the command

wrile joe

This establishes a two-way communication path.
Now whatever Joe types on his terminal will ap-
pear on yours and vice versa. The path is slow,
rather like talking to the moon. (If you are in
the middle of something, you have to get to 4
state where you can type a command. Normally,
whatever program you are running has to ter-
minate or be terminated. If you're editing, you
can escape temporarily from the editor — read
the manual.)

A protocol is needed to keep what you type
from getting garbled up with what Joe types
Typically 1t's like this:

Joe types “write smith™ and waits.

Smith types ‘“‘write joe’’ and waits.

Joe now types his message (as many lines
as he likes). When he’s ready for a reply,
he signals it by typing (o), which stands
for “over”.

Now Smith types a reply, also terminated
by (o).

This cycle repeats until someone gets
tired; he then signals his intent to quit
with (o+0), for “over and oul™.

To terminate the conversation, each side
must type a ‘“‘control-d” character alone
on a line. (**Delete” also works.) When
the other person types his ‘“‘control-d™,
you will get the message “EOT” on your
terminal.

If you write 1o someone who isn’'t logged
in, or who doesn’t want to be disturbed, you'll

be told. If the target is logged in but doesn’t
answer after a decent interval, simply type
“control-d™

On-line Manual

The UNIX Programmer’s Manual is typically
kept on-hine. If you get stuck on something, and
can't find an expert to assist you, you can print
on your terminal some manual section that
might help. 1t's also useful for getting the most
up-to-date information on a command. To print
a manual section, lype ‘‘man section-name’’
Thus to read up on the who command. type

man who

If the section 1n quesuon 1sn't in part | of the
manual, you have to give the section number as
well, a5 1n

man 6 chess

Of course you're out of luck if you can’t

remember the section name
II. DAY-TO-DAY USE
Creating Files — The Editor

If we have 10 type a paper or 4 letier or a
program. how do we get the information stored
in the machme” Most of these tasks are done
with the NIy text editor”™ ed. Since ed 1>
thoroughly documented 1n ed (1) and explained
w4 Twtorial Introduction 1o the UNIX Texr Ednor,
we won't spend any iime here descnibing how (o
use 1t Al we want it for nght now 15 to make
some files. (A file 15 just a collection of informa-
ton stored 1 the machine, a simplhistic but ade-
quate definiton)

To create a file with some text in it, do the
following:

ed (invokes the text editor)
a (command to “‘ed”, to add text)
now rype in
whatever text you want ...
(signals the end of adding text)

At this point we could do various editing opera-
tions on the text we typed in, such as correcting
spelling mistakes, rearranging paragraphs and the
like. Finally, we write the information we have
typed into a file with the editor command “w":

w junk

ed will respond with the number of characters it
wrote into the file called “junk”.

Suppose we now add a few more lines with

a”, terminate them with ., and write the
whole thing out as “temp”, using

w temp

We should now have two files, a smaller one
called “junk” and a bigger one (bigger by the
extra lines) called “temp™. Type a “q” to quit
the editor.

What files are out there?

The Is (for “list”) command lists the
names (not contents) of any of the files that
UNIX knows about. If we type

Is
the response will be

junk
temp

which are indeed our two files. They are sorted
into alphabetical order automatically, but other
variations are possible. For example, if we add
the optional argument **-t”,

Is -t

lists them in the order in which they were last
changed, most recent first. The “-I" option gives
a “long™ listing:

Is -1
will produce something like

-rw-rw-rw- | bwk 41 Sep 22 12:56 junk
-tw-rw-rw- | bwk 78 Sep 22 12:57 temp

The date and time are of the last change to the
file. The 41 and 78 are the number of characters
(you got the same thing from ed). “bwk” is the
owner of the file — the person who created it

The *-rw-rw-rw-" tells who has permission to
read and write the file, in this case everyone.

Options can be combined: *Is -t would
give the same thing, but sorted into tirhe order.
You can also name the files you're interested in,
and Is will list the information about them only.
More details can be found in Is (I).

It is generally true of UNIX programs that
“flag” arguments like *-1” precede filename ar-
guments.

Printing Files

Now that you've got a file of text, how do
you print it so people can look at it? There are a
host of programs that do that, probably more
than are needed.

One simple thing is to use the editor, since
printing is often done just before making
changes anyway. You can say

ed junk
1.8p

ed will reply with the count of the characters in
“junk™ and then print all the lines in the file.
After you learn how to use the editor, you can
be selective about the parts you print.

There are times when it's not feasible to
use the editor for printing. For example, there is
a limit on how big a file ed can handle (about
65,000 characters or 4000 lines). Secondly, it
will only print one file at a time, and sometimes
you want to print several, one after another. So
here are a cou