EUROPEAN UNIX® SYSTEMS
USER GROUP NEWSLETTER

Volume 5, No. 1
SPRING 1985

EUUG

European UNIX} Systems User Group

Newsletter Vol 5 No 1
Spring 1985

EUUG Paris Conference Report

The Influence of the UNIX Operating System on the Development of Two Video Games
A Bit About Eighth Edition UNIX

Information About EUUG Services

+ UNIX is a Trademark of Bell Laboratories.

Copyright (c) 1985. This document may contain information covered by one or more licences, copyrights and
non-disclosure agreements. Copying without fee is permitted provided that copies are not made or distributed for
commercial advantage and credit to the source is given; abstracting with credit is permitted. All other circulation
or reproduction is prohibited without the prior permission of the EUUG.

Required: Course Instructors for
UNIX, C, Pascal and Software Engineering

We are a leading company in the field of continuing education and run a wide range of
short intensive courses for engineers, programmers and managers. Our clients include
some of the largest international corporations as well as many small high technology
companies. To cope with demand, we need more course instructors, particularly for
UNIX, C, Pascal and Software Engineering and also for Ada, Multiprocessor systems
and networks.

You would only be required for a few weeks scattered throughout each year. Itis flexible
and can be arranged to fit in with your other commitments. If you are interested in this
challenging, well-paid work, please send details of your background to:

The Microcomputer Unit
235 High Holborn
London WC1V 7DN

or telephone: (01) 405 3020 for further information.

European UNIX System User Group Meeting
Palais des Congres, Paris 1st — 4th April 1985

Peter Collinson
Secretary

Introduction

A report of a conference headed ‘April 1st’ may lead you to be somewhat suspicious. But, yes, there
really was an EUUG conference starting on that date. It was held in the Palais de Congrés in the
centre of Paris.

There were three days of conference meetings and Network Events Ltd. organised a three day
exhibition which started on the second day of the sessions. Allowing a free day to look at the exhi-
bition was a successful idea, and was a reaction to the problem at Cambridge where attendees at the
conference had to choose to miss a session to go to the exhibition.

The programme chair for the meeting was David Tilbrook, in positively his last appearance in
the role because he returns to North America later this year. I would like to take this opportunity
to thank him for everything that he has done for EUUG in the last two years. I suspect that a high
proportion of the speakers who have allowed their bodies to be subjected to the punishment known
as ‘long distance air—travel’ have come to Europe because of arm twisting (or the threat of constant
abuse in the mail) from David. It also is true to say that most of the speakers have enjoyed the
conferences and hopefully returned to their homes telling their collegues of the good time which
they had. This makes it easier to get other people to contemplate a trip to Europe in the future.

Anyway, David expended a considerable amount of nervous energy and electronic mail handling
time in setting this meeting up. The result was, I think, a good set of talks.

There were also a number of changes in the overall format of the conference. First, speakers
were given longer slots than at previous conferences. This meant that there were only two speakers
per session rather than the three which were squeezed in before. It had been felt that the short 20
minute talks in previous conferences did not give speakers enough time to get to grips with their
subject. Actually, it also seems that 35 minutes is not enough time for some speakers. 1 suspect
that people are just used to talking for an hour and have difficulty in pacing themselves for a shorter
period. However, the longer talks were an improvement.

Second, this was the first officially multi-lingual conference; there was simultaneous translation
into French, German and English. The original intention was to provide translation between
French and English, but the German interpreter came as part of the package. I have never experi-
enced simultaneous translation before and I think it worked.

One French speaker was a bit confused when the audience burst into gales of laughter because
the English interpreter had a coughing fit at about 90 decibels. The laughter continued when the
interpreter asked “did I translate something funny?” One problem was that the conference was
mostly in English. Linguistic chauvinism meant that many people did not use the headphones dur-
ing completely English speaking sessions and were then totally unprepared for the inevitable ques-
tion in French from the floor (I did this too). Still, the translation enabled non-English language
speakers to talk at an EUUG conference, and this must be a good thing.

The third change to the normal course of events was to give about two minutes to the session
chairs so that they could say something about their local UNIX user group.

Many of the speakers supplied papers which were printed in a book entitled Papers presented
at the EUUG Spring Meeting, 1985 which was handed out in the Registration Packs. Another

EUUGN VolS Noi 1

innovation — proceedings were printed before the meeting! The book is available from the EUUG
office for the very reasonable price of £5.

Oh well, enough of this drivel; what follows are the abstracts for the talks plus some comment
from me. Thanks again to David for getting the abstracts and sending them to me. This was no
small job; getting abstracts from speakers is hard enough, getting the Papers even worse, but David

maintains that getting mail through my machine is the hardest thing which he was obliged to do for
the conference.

Day 1 - Monday April 1st, 1985

As usual this wasn’t Day 1 for me, I had already managed to clock up two nights in Paris because
the cheapest air fare requires a stay over a Saturday night and it seemed reasonable to pay a short
visit to my brother who lives there. What he didn’t tell me was that we were invited to a party.
This would have been fine but we didn’t get back to the flat until 3am. I will never be quite sure
which 3am it was, since France is an hour later than the UK anyway and the powers-that-be decided
to change to daylight saving time at lam on the Sunday morning.

Day 2 of my visit, the Sunday, was taken up with Committee meetings of different varieties, a
late meal and fairly early to bed to try and get over the lack of sleep and the two hour time change.
I was in bed by midnight local time but the body kept saying “this is much too early” and refused
to allow me to sleep. Still... conferences do seem to be about lack of sleep.

After a rather disorganized pre-organised breakfast of session chairs and speakers, I managed
to make it into the Salle Bleue in the Palais, grab my headset and find a chair at the front. After
the last conference in Paris spent sitting on hard benches, these chairs were sumptuous and comfort-
able — just the thing for sleeping in ... good job I had to take notes.

9.43am Session chair: Michel Gien, CNET PAA/TIM

Michel officially opened the conference and introduced the Chairman of AFUU, the French UNIX
user group.

9.44am AFUU
Jean-Louis Berand, Chairman, AFUU

The French group has 250 members. The group has grown from 8 members to its present number
in three years. From the outside, It does seem that the French scene is being driven along much
more by industry and software houses than the gleaming towers of academia. The group is involved
with a commercial publishing company (CXP) to produce a UNIX software catalogue.

9.49am Conference Organisation and Logistics
David Tilbrook, Imperial Software Technology Ltd.

David introduced the program chairs and some of the speakers who were not speaking until the last
day.

10.07am VLSI Assist in Building a Multi-Processor UNIX System
Ian Johnstone, Sequent Computer Systems

A bstrjlct

Multiprocessors have been of interest to computer scientists and designers since the first computers.
Three factors have limited the commercial success of multiprocessor systems; entry cost, range of
performance, and ease of application. Recent advances have removed these limitations, making pos-
sible a new class of multiprocessor systems based on VLSI components.

The Tequirements for constructing an efficient MP system are detailed, including: low level
mutual exclusion, interrupt distribution, inter-processor signalling, process dispatching, caching, and

2 EUUGN Vol5 Nol

system configuration. A solution to these problems is described and evaluated.
Comment

I think that this talk was interesting because it represents the start of the new era of applying speci-
alised VLSI chips to solve computing problems.

The main goal of the work was to provide a low cost, high performance multi-processing sys-
tem. The base model of the system which was adopted was a fairly normal one, with several CPU’s
attached to a system bus supporting memory and I/0 devices. In Sequent’s system, a special control
bus parallels the system bus and is used by a VLSI device called a System link and interrupt control
(SLIC). There are thus two busses in the system, a high performance bus for data and a specialised
bus for control functions. This keeps each bus simple with lower cost and higher reliability.

The SLIC chip is a 6000 gate custom CMOS array.

& Coffee

11.15am Session chair: Peter Collinson, University of Kent

Well, my ‘news from’ was information about the UK part of USENET which I have fallen into
administration more through misfortune than design. The UK network is now around 55 map
entries and is growing in leaps and bounds — new sites are turning up every day and our mapping
administration system deals with at least one map update every two days. The network is really a
star based on uke, this is not good and we are busy re-organising the topology.

This information did not raise a single laugh; which was to be expected because networks are

intrinsically boring, they serve to enable people to communicate and should work with no problems.
Pity they don’t.

11.23am Concurrent processing in Ada and UNIX
Henk Hesselink, Delft University of Technology

Abstract

Over the past years interest in programming languages supporting concurrent processing has grown.
Some of these languages are extensions of existing ones, €.g. concurrent Pascal, others were designed
to support concurrent processing from the start. An interesting (if only because of its backing ...)
example of the second group is Ada which is likely to become a major language in the future.

At Delft University of Technology a group is working on DAS, the Delft Ada Subset, which
implements most of Ada except for its concurrent processing features. It therefore seemed like an
interesting exercise to compare the support for concurrent processing in UNIX and Ada and to see to
what extent this part of Ada could be mapped onto UNIX.

It may seem a little odd to compare a programming language with an operating system, how-
ever UNIX in combination with a programming language (especially C obviously) offers a similar
kind of programming environment to Ada. Ada has simply integrated into itself what in UNIX are
separate system calls, in the process ensuring that such facilities are standardised. The comparison
is therefore between Ada on the one hand and UNIX plus a programming language on the other.
Because the programming language was C the combination is referred to as cunix. The version of
UNIX discussed in this paper is Version 7, so as not to cloud the issue with features present in some
of the more current versions of UNIX but not in others. Mention is made of the effect of some of
these features on the UNIX view of concurrent processing,.

EUUGN Vol5 Nol 3

11.45am MIRANDA: an advanced functional programming system
David Turner, University of Kent

Abstract

There has been an upsurge of interest in functional programming in the last few years, and a great
deal of progress has been made in the design of functional languages. The spread of these new
ideas has probably been delayed by a lack of widely available high quality implementations. The
MIRANDA system has been developed to make available to the UNIX community a modern func-
tional programming language, which it is hoped will become a de-facto standard. The language
draws its features from the earlier languages SASL, KRC and ML, and is embedded in an interactive
system providing the tools needed to build large applications. The talk will give an overview of the
main ideas in the MIRANDA programming language, and will discuss the way in which the nature
of UNIX has influenced the design of the MIRANDA system and facilitated its development.

Comment

Looking further forward than the next release of UNIX is something which we should perhaps do
more often. 1 have been keen to get David along to an EUUG conference for some time. He
enjoyed himself, “functional programming conferences are usually so dull affairs”, he told me after
the conference. David’s talk was an introduction to the subject.

Functional languages are not a new idea but a new style of language. Conventional program-
ming languages such as FORTRAN or C are (1) based on assignment statements and state changes
and (2) are sequential, there is explicit flow of control. There is evidence that (1) and (2) have
harmful consequences and have lead to the current software crisis.

Functional languages are descriptive rather than imperative. There is no assignment state-
ment. There is no explicit flow of control. Such languages are FP, pure LISP and SASL.

The maFn features are (1) conciseness, programs are shorter and easier to develop; (2) tran-
sparency, the' programs have good mathematical properties; and (3) parallel executability, it ought
to be possible to execute in concurrent processing environments. It is this last point which has the
hardware andL}V LSI designers jumping up and down because hardware behaves in this way.

MIRANDA is a modern functional language implemented under UNIX. The system provides a
good programming language and an interactive environment for programmers. The main properties
are (1) the language is purely functional; (2) it allows infinite data structures by delaying evaluation;
(3)ithasa sét abstraction and (4) it has polymorphic strong typing.

David gave a few short examples, like the quicksort algorithm in around 20 characters.

He went onto talk about the MIRANDA programming environment. The program works in
interactive ‘desk calculator’ mode with a set of equations being input in any order and a result
requested. The compiler works in conjunction with a screen editor which is currently vi but this is
user selectable. There is an on-line reference manual which is menu driven. The system allows full
access to the UNIX shell (which is also nearly a functional language) and there is a useful library of
built-in functions.

The current implementation is not fast, but faster implementations are coming. Because of
speed limitations some possible uses for the system are: teaching, research, providing a vehicle for
formal specifications and a system for fast prototyping.

N
’ 1= Lunch <&
Everyone who had looked at my previous reports had supposed that this one would be about wine;

well, the presence of good wine needs no special mention in France. Instead, I think that this
conference was about lunches; which were excellent.

4 EUUGN Vols Noi

2.35pm Session chair: Jean Wood, Digital Equipment Corporation

Jean’s ‘news from’ piece was about Decus Europe whose next meeting is 16th - 20th September at
Cannes. Slides of Cannes, beaches, boats and some parts of some bodies followed.

2.38pm The influence of the UNIX operating system on the development of two Video Games
Peter Langston, Bell Communications Research

Abstract

The Lucasfilm Games Group was established to explore ways of applying the technological and
methodological expertise developed at Lucasfilm (principally for film production) in a new entertain-
ment medium — video games. One of the major tools on which that expertise is based is the UNIX
operating system. It is an interesting coincidence that this operating system’s early development was
heavily influenced by games and the interests of game designers.

This paper describes the development of the two video games “Ballblazer” and “Rescue on
Fractalus!” and the ways in which UNIX software aided and influenced their design.

The work described here was done at Lucasfilm Ltd., San Rafael, Calif.
Comment

This was a video tape of what had been produced with a very large piece of software running on a
UNIX system. Very large pieces of software are often written in LISP, and this was no exception.
The programs run on an Atari games machine and were very small pieces of software in com-
parison. The Atari machine is a 6502 processor chip plus a four channel sound chip. The graphics
were really good for the games and I particularily liked the way the sound (some tunes and other
noises) had been constructed to enhance the games.

3.14pm 3-D Computer Graphics, the UNIX Way
Tom Duff, AT&T Bell Laboratories

Abstract

The UNIX text processing tools are successful because they are simple, yet powerful, single-purpose
operators which consume and produce documents in a simple, universal representation. Pipes and a
programmable shell allow the simple operations of the individual commands to be combined in
powerful ways. The data structures and compositing operators described in ‘Compositing Digital
Images’ (by Thomas Porter & Tom Duff, in Siggraph 84 Proceedings) can be the foundation a simi-
larly powerful image synthesis and processing environment.

Recently, I have extended the Porter/Dufl model to handle anti-aliased full 3-D images, and
am developing a collection of 3-D rendering tools based on it. Each of the tools is a simple, single-
function operator that consumes and produces pictures in this common format. For example, the
programs that render fractal terrain and quadric surfaces use unrelated (even incompatible) algo-
rithms. Nevertheless, since the programs produce output in a common format which the 3-D com-
positing program also reads and writes, we can render scenes which contain both sorts of object. I
will describe the data representation and its 3-D compositing operation. A short 16mm film will
illustrate how this scheme allows simple special-purpose rendering programs acting in concert to
produce rich images.

Comment

A stunning film produced by some small pieces of code. Tom’s main message was to underline the
fundamental tools notion of UNIX. A quote which I liked: “The good thing about UNIX is not the
code but the thought those people had; to use small pieces of code to generate big things in big
ways.” Interesting how different people’s work in totally different areas have such large parallels,
David Turner’s message of ‘small is beautiful’ is fundamentally the same as Tom’s.

EUUGN Vol5 Nol S

= Coffee

4.17pm Session chair: Daniel Karrenberg, University of Dortmund

Daniel spoke a few words in un-announced German to test the interpreters. He then talked in
English about the German UNIXY user group. The German group has 151 members. They have
one meeting a year, the first one was in Frankfurt in February this year. They also produce a
newsletter, the intention is to generate more than four a year.

421pm Image Synthesis with UNIX
Etienne Beeker, INA (Institut National de I’Audiovisuel)

Abstract

Realistic representations of three-dimensional scenes is a very attractive goal, object of research for
several laboratories for the last few years. Our team, at INA (the Institut National de
I’Audiovisuel), has been writing such programs for two years, with the aim of creating special effects
for video productions.

Two kinds of programs are now operational:

Synthesis programs: These programs take a data base of geometrical objects as input. The
data base consists of polygons and/or bicubic patches, and parameters such as colours, light
sources, position of the virtual point of view, transparencies, etc. After the elimination of hid-
den areas and calculation of each pixel intensity with an appropriate illumination function,
these programs produce as output an image in full colour, with shading, reflections, etc. One
of them, using a scan-line algorithm is completely operational. Other programs based on ray
tracing and particle systems are still under development.

These programs run under UNIX on a Perkin Elmer 3210. They require a lot of CPU though,
and we expect a more powerful machine, like a VAX-785 or a Gould 3297.

Design programs: These are more conventional CAD-like graphic programs. They allow the
design of skeleton of objects in a wire frame, either with polygons or with mathematical sur-
faces like B-splines or bicubic patches. Geometrical smoothing of shapes is also implemented.
An animation program interpolates object movement and the point of view. Movement con-
trol can be done quickly because of the wire frame display.

These programs are running on a French 68000 based super-micro called SM90, with UNIX.
Graphic output is done on a bitmap display. Coordinates are digitized with a tablet. These
programs don’t need much computation time but are highly interactive. That’s why run them
on a machine used as a personal workstation. The data base is then transferred to a more
powerful machine for further calculations.

All our programs are written in C. The Perkin Elmer is running Edition VII (a V7 with some
Berkeley enhancements), the SM90 is running UNIX V7.

Video production slides and animations produced with these programs will be shown, as well
as a demonstration of the design programs running on a SM90.

Comment

The abstract sums up the talk well. It doesn’t say that the system is being used for real to produced
short ‘jingles’ for French TV.

+ UNIX ist Warenzeichen der AT&T International

6 EUUGN Vvol5 Noi

4.52pm UNIX at IRCAM
David Wessel, Robert Gross, IRCAM

Abstract

Since 1976 IRCAM, (Institut de Recherche et Coordination Acoustique/Musique) has supported
research on fast real-time digital signal processing, room and instrument acoustics, psycho-acoustics,
compositional algorithms, as well as different methods of sound synthesis including the singing voice
and physical modeling. The results of this research have been applied by invited composers in
many contemporary music pieces with real-time digital electronics and computer generated tapes.

IRCAM has developed a series of high speed digital signal processors culminating with the 4X
machine recently used by Pierre Boulez in his work Repons. General purpose computing and pro-
gram development is done on a group of VAX, SUN, Plessey, and Valid computers networked
together. Work with artificial intelligence and expert systems has affected a majority of the current
research projects.

Two years ago UNIX became the underlying foundation for all the research and musical pro-
duction at IRCAM. UNIX must not only drive the 4X and support standard program development
including numerical computation, and compiler design but also must do musical sample computa-
tion, storage, and real-time playback or record operations. This latter problem is not easy to deal
with in UNIX and has been solved by using the advantages of UNIX files to simulate a hierarchical
sound-file system based on the UNIX model. We are currently using the CARL (Computer Audio.
Research Laboratory) sound-file system developed at UCSD.

This talk will explore some of the current development projects at IRCAM including the 4X
software design, Acoustical research, Chant/Formes project, applications on the array processor,
and the development of music oriented software for the Apple Macintosh using the SUMACC’s
(Stanford University) environment. We will also discuss our experience with the CARL software and
our attempts to utilize the 4.2BSD file system to support the 1/0 throughput required by the DA/AD
conversion.

Comment

IRCAM is funded by the French Government through the Minister of Culture and the Minister of
Research. They also have sponsors in Switzerland and the US. They have about 50 members of
staff. Their work is entirely musical and their aim is to aid composers to learn about the new tech-
nology.

Their computing environment is based on a 4.2BSD system running on a VAX-780. The
machine has an array processor and D/A and A/D conversion systems. The machine is connected
via Ethernet to some workstations which are used for graphical input. They deal in large volumes
of data, for instance, two seconds of 16 channel 32 Kb/sec digital data for the converters occupies
two cylinders on an RMO5.

There followed some tape recordings of some of the stuff which is being done. One was a
totally synthesised singing human voice, it was somewhat eerie. Another was the output from a pro-
gram which modelled the physics of a violin. The original program sounded like a beginner because
they hadn’t programmed the bowing action properly. A later example of synthesised jazz violin was
terrific.

The session finished with a video tape of a system which connects a flute player with an
automatic accompanist. First, the piece was played straight and the accompanist followed it. Then,
the player tried to put the program off; he made changes of timing and played ‘badly’ by missing
notes or playing wrong ones. The accompanist followed. I suddenly had this vision of a smali box
which buskers on the Tube take with them to accompany their efforts.

All impressive stufl and this was followed on the last night of the sessions by a concert at
IRCAM itself.

EUUGN Vol5 Nol 7

1= End of Day 1 (?7) <&

No, it wasn’t. The formal meeting were immediately followed by a small session called ‘Birds of a
feather’ sessions. Actually, they were short presentations.

5.35pm The SM90
2

Sorry, I didn’t get this person’s name and I grovel most humbly. I think that he was from IRCAM.

This was a brief description of a UNIX system running on a multiprocessor machine — the
SM90. The usual pattern of a shared system bus is repeated here, but every CPU has its own local
bus supporting memory and 170 devices. The global memory is used for system tables and local
memory in each processor contains user processes and system code. The selection of which proces-
sor is to be used by a process is made by the user.

5.58pm The Network File system
Brian Novak, Pyramid

Pyramid have adopted Sun’s network file system for their machines. This talk was brief introduction
to its use.

The design goals of the NFS were: transparent remote file access, a simple implementation, the
use of a general purpose protocol and the implementation of a fast file system.

The system does not attempt to be a distributed UNIX system, nor was it designed to provide
access to devices on the network or file locking.

The NFS uses a stateless protocol which makes easy recovery from temporary interruptions.
Local file caching gives the system good performance. It is possible to connect file systems running
on architecturally different machines because the protocol has a canonical form of data representa-
tion.

To my miind, the hardest thing to get right on these systems is the area of file security and
access. The NFS insists that a user has a unique uid across the network and I think this is entirely
unrealistic. The system prevents super-user access across the network, but this is just one obvious
thing to do. In my experience, potential system busters look first at the people who are able to
become super-user. Still.. no doubt the system works.

6.15pm UUCP matters
Various

How this got onto the agenda, I am not sure. When the moment came, there was no-one to speak
to it, so I got lumbered. 1 did not think that much came of the meeting, but we did manage to air
the problem of funding mail on the European network. There are no real solutions, unfortunately
we are all running software which was intended to run without accounting or controls.

w End of Day 1 (it really was, this time) <&

And onto a wine reception paid for by UNIX Europe, for which many thanks. Unfortunately, I had
to leave and go to another UUCP meeting, this time with backbone administrators. That is best
glossed over — except that it seemed to be held in a sauna because we were unable to succeed in
opening the window in the room and the temperature soared.

8 EUUGN Vol5 Nol

Day 2 — Tuesday, 2nd April
9.36am Session chair: Peter Langston, Bell Communications Research

Bell Communications Research 1s an R&D department which is funded by the local telephone com-
panies in the US. It should not be confused with Bell Laboratories, which is the research arm of
AT&T. Peter talked about the trivia at the last USENIX meeting. It was interesting that the pro-
gram placed second in the Go tournament was one which contained no strategy but just did random
moves. The next USENIX meeting is in Portland, Oregon starting on June 12th.

9.43am VIDMAN:
Didier Galmiche, Laboratoire d’Informatique Theorique et Programmation

Abstract

VIDMAN is new software running on a 4.2BSD UNIX System and enables the creation of a visual
manual. First of all, we should say that this product was necessary to enable the ‘broadcasting’ of
our research works. The best encouragement we have received is the unanimous support from
LITP’s members.

Our main idea was to build up a manual that could improve at the same time as its contents.
As a matter of fact, continuous updating is quite impossible with a manual written on sheets of
paper; whereas it becomes almost natural with VIDMAN.

We think that this is a useful tool which is easy to use and to a new way of communication
for UNIX users. Moreover, VIDMAN can be used to describe any sort of information, either about
lectures, new languages and theories or description of systems.

Thanks to judiciously chosen controls it offers unusual freedom in document styling and con-
sultation. Nroff style commands are used for information formatting creating paginated text having
a user defined style. For inspection of the information, Emacs style key definitions allow access to
the desired information. Three types of pages can appear on the screen: menu pages (index pages
with lists of the stored items), text pages (information pages corresponding to each item) and mixed
pages containing the two last types in any proportion.

VIDMAN can prepare output for all terminal types and allows the utilization of the full resolu-
tion of each terminal, thanks to the termcap database.

Finally, we must say that VIDMAN is written in the C programming language with use of
some libraries of programs such as curses and termlib, the use of lex (Lexical analyser generator)
being essential. This means that VIDMAN is specific to UNIX.

Comment

Another system done for a French TV channel. The system is aimed at efficient manipulation of an
on-line manual. The data is tree structured where the leaves are display data and the nodes are
either shell commands or point to leaves.

The system is in use at LITP and IRCAM.

Q. Can you store an update history?
A

Yes, this should be possible but isn’t currently implemented .. that’s a good idea .. we had
better do that.

Is it available?

Yes, in a limited form.

EUUGN Vols Nol 9

10.10am System Aspects of Low-Cost Bitmapped Displays
Dave Rosenthal, Information Technology Center, Carnegie Mellon

Abstract

The design of low-cost bitmapped displays is reviewed from the perspective of the implementors of
a window manager for UNIX. The interactions between RasterOp hardware, the multi-process struc-
ture of UNIX, and the functions of the window manager are discussed in the form of a check-list of
features for hardware designers.

Comment

Dave started off by talking about what is happening at CMU. The Information Technology Centre
(ITC) at Carnegie Mellon has the aim of generating a workstation based environment. Every stu-
dent who comes into CMU will be required to buy a workstation which will have 1 megabyte of
memory, perform at 1 Mip, have a bit-mapped display, and a mouse. All the machines on the
campus will be linked by a high bandwidth local area network and the workstations will have access
to a network file system which will encompass all the machines on the campus. The workstations
are to run 4.2BSD and the machine currently in use is the Sun workstation. This may change
because the system is being funded by IBM. ITC currently has about 30 people and has a lot of
hardware.

The network is very large, currently every research and teaching room have Ethernet or Pronet
connections and there are about 500 taps into the net. All the campus machines (6 DEC-20’s, about
70 VAX’s, some HP machines and of course some IBM machines) use the DARPA IP protocols.
There are plans to have at least 8K taps onto the network by 1987. It is proving expensive to wire
the campus, the projected cost for wiring every room is in the region of $8 to $10 million.

The network file system provides each workstation with global file access to a large UNIX tree-
structured namespace. Currently, there are two file systems in production, one with 50 clients on
four servers and one with 80 clients on six servers. A total rebuild of the system is taking place, this
is based on the results of the current versions.

The user interface to the system on the workstations uses bit-mapped graphics. ITC have
developed a portable way of addressing the bitmap display giving window access from any machine
in the network, not just the workstations. The interface allows easy use of UNIX from menus, icons
etc. Users have uniform access to high quality multifont text. The interface is currently running on
a network of about 100 Suns, the software drives both the Sunl and the Sun2 hardware and avoids
the built-in Sun RasterOp hardware. The software requires no kernel modifications. ITC seeks to
encourage development of educational applications with a uniform, easy-to-learn interfaces.

The window manager is a user level server process, unlike Sun’s. Clients do remote procedure
calls over TCP/IP stream connections, so clients can access a window on your workstation from any-
where on the network. Output is via lines, multifont text and RasterOps. The window manager
process tracks the mouse, implements menus and de-multiplexes keyboard input.

After all that, Dave managed to get onto talk about his paper. I quote the concluding para-
graph: “We have set out a number of points worthy of consideration in the design of low-cost bit-
map displays intended to support multi-process interaction. Although RasterOp hardware may
appear attractive, it needs careful design if its potential is to be fully realised, particularly for pass-
ing characters. Assistance with cursor drawing and sharing of the colour map may be more cost
effective uses for limited hardware resources.”

Q. Can we get the software?

A. Yes, the window manager, base editor and other software is available on a tape to selected
(mostly academic) sites. The tape also contains some public domain screen fonts derived from
the TEX fonts. The address to contact is:

10 Evven vois Noi

Distribution Co-ordinator,
Information Technology Centre,
Carnegie Mellon University,
Schenley Park,

Pittsburgh, PA 15213.

= Coffee <&

11.20am Session chair: Jim McKie, Centrum voor Wiskunde en Informatica

Jim introduced Johann Helsingius who talked about the Finnish UNIX User group or FUUG.
Johann started in Finnish to confuse the interpreters and later refused to translate what he had said
— perhaps the conference competition should have asked for some guess about the content of his
initial sentence.

FUUG has 80 members but expect the membership to grow because they have not followed up
contacts made at an initial meeting. The proceedings of the meetings are in Finnish. There are
about 20 UUCP sites in Finland. The main problems are concerned with character sets, the charac-
ters °{”, °}’, T, 7 and “\’ are used for special characters; text written in Finnish looks like C to the
file program.

11.27am UNIX networking via X.25
Radek Linhart, Hewlett-Packard GmbH

Abstract

X.25 packet switched networks provide a far more reliable and cheaper data transfer method than
asynchronous links via telephone lines. This talk will give a brief overview of the typical features
provided by national X.25 networks. In addition, different alternatives of network access will be
discussed.

Finally, a Hewlett-Packard company internal implementation will be introduced. A flexible,
easily configurable approach with a high degree of security has been taken.

Comment

This talk was a good overview of the communication problems associated with running the UUCP
network. Radek wished to connect the European Hewlett-Packard sites into USENET which is used
for a considerable amount of internal company mail and information.

He came to the conclusion that, for European sites, X.25 connections were 8 times cheaper, 8
times faster and 100,000 times more reliable than telephone connections. It is also considerably
more expensive for US sites to get X.25 connections than it is for European sites.

The system they have designed uses standard UUCP protocols (and Piet Beertema’s f-proto)
and has a program which allows high level programming of X.25 PAD parameters.

11.55am ACSNET — The Australian Alternative to UUCP
Piers Dick-Lauder, University of Sydney, Dept. of Computer Science

Abstract

ACSNET is a network with goals to serve a function similar to that currently served by the UUCP
network. Routing is implicit, and addressing absolute, with domains. The network daemons
attempt to make use of full available bandwidth on whatever communication medium is used for the
connection. Messages consist merely of binary information to be transmitted to a handler at the
remote site. That handler then treats the message as mail, news, files, or anything else. Intermedi-

EUUGN Vois Not 11

ate nodes need not consider the type of the message, nor its contents.
Comment

Piers started by talking about the Australian UNIX User Group - AUUG. It has around 250
members and around 40 network sites. The next meetings are in Brisbane on the 26/27th August
and in Perth on February 1986. Piers then talked about his paper.

ACSNET is the Australian alternative to the UUCP network and has obviously benefited from
being designed with the notion of wide area networking rather than this function being grafted on in
an ad-hoc way at a later date. The basic requirement was to have the ability to send a message from
one point to another, a message is not simply mail but can be any sequence of bytes used for any
purpose. The network is constructed from a set of nodes connected by any medium capable of con-
necting machines — phone lines, Ethernet, X.25, twisted pairs, etc. The system runs better over 8-
bit data paths but this is not mandatory. Any link may fail during transmission and care is taken
to restart the transmission where it left off rather than restarting from scratch.

Addressing is domain based, which is a better model than the routing address used by UUCP.
Messages may be broadcast to all machines on the net or in a sub-domain. Users can also explicitly
route messages using ‘bang notation’, this is not strictly necessary but has proved useful for testing
and loopback messages.

OK folks, let’s all throw UUCP away....

1 Lunch ==&

2.30pm Session chair: Teus Hagen, Ace

Teus talked about the Netherlands UNIX User group, NLUUG. They held a meeting in March
which 150 attended, the content was a ‘technical sales talk’. Old hands thought that it was dreadful,
but the audience liked it and asked for another. The next meeting is in the last week in November
and will be a single day with parallel sessions consisting of technical talks, talks from distributors,
and an exhibition. The meeting will be in the Congres Center in Utrecht. The Dutch group are
also involved in producing the UNIX Products Catalogue, which will become an EUUG publication;
and of course| are also prime movers of EUNET.

2.39pm Addnessing in MMDFII
Steve Kille, University College, London

Abstract

The Multi-chgnnel Memorandum Distribution Facility (MMDF) is a powerful and flexible Message
Handling Sysfem for the UNIX operating system. It is a message transport system designed to han-
dle large numbers of messages in a robust and efficient manner. MMDF’s modular design allows
flexible choic¢ of user interfaces, and direct connection to a number of different message transfer
protocols.

This paper is intended as a sequel to the paper presented by Doug Kingston at the 1984
Usenix meetihg in Salt Lake City. A brief technical overview of MMDF is given, and then two
aspects are considered in more detail:

(i) Address handling. The table-driven approach taken by MMDF to handling a structured
address space is described. The extension of this approach to use with distributed
nameservers is considered.

(i) Message reformatting. A number of systems using similar, but distinct, message and address
formats have emerged. The approach taken by MMDF to allow interworking is described.

12 EvUGN Vois Nol

A comparison with other systems, in particular sendmail, is made.
Comment

MMDF was initially developed in 1979 by Dave Crocker to supply a mail system for CSNET. A
production system was running in 1980. The new version was started in 1982 to take advantage of
some of the new ideas from sendmail and also to take account of various alterations in protocols,
specifically ARPA 822 and the peculiar UK protocols.

The goals (or perhaps features) of MMDFII are: robust and efficient message relaying; the sup-
port of multiple message transfer protocols; the ability to deal with several user interfaces; authenti-
cation of messages; and authorisation control on basis of sender and/or recipient. A big feature is
the submission time address checking which allows clean user interface design and minimises
address transformation.

Steve then delved deep into the addressing mechanism, which is best left to his paper.

3.07pm What is an International UNIX System?
Duncan Missimer, Hewlett Packard Company

Abstract

UNIX system users overseas are getting tired of talking to UNIX systems in whatever language it is
that UNIX systems speak. Some people have responded by hand-crafting variants that speak the
local language and properly handle exotic character sets. Others have created sub-environments
that support different languages but do not offer the full functionality of the UNIX system. The
authors believe that it is possible to create a fully international, fully functional UNIX system which
can assume more than one linguistic identity at run time.

This paper presents a model for language and country custom independent software, which we
use to outline some of the ways in which a vanilla UNIX system is unsuitable for use outside the
English-speaking research environment.

We define two terms — native language support (NLS), and localization - and show how these
concepts can be used to design an international UNIX system by moving language or country custom
dependent information out of the source code and into the file system where it belongs.

Comment

The talk really pointed to the problem areas for linguistic change for utilities which run on the UNIX
system. The problem areas are:

1) The system assumes the use of 7-bit ASCII and often the eighth bit is used for specialised
functions in programs.

2) Coliation sequences in UNIX are based on the ASCII numeric sequence. This is not even ade-
quate for American dictionary order, and much less for a language like Welsh where two sym-
bols are used to represent a single character (‘II, ‘fT", ‘rh’ etc).

3) Directionality, the assumption that languages goes from left to right is plumbed into the Sys-
tem.

4) Classification of characters in programs assume a seven bit character set, this is insufficient for
other varieties of character set.

5) In a multi-lingual environment, standard escape sequences will most likely to be used to indi-
cate a change of character set. Software which processes these sequences may have to dynami-
cally alter its treatment of the characters in any of the ways discussed above when an escape
sequence is found.

6) Hyphenation and spelling — currently, spell and nroff/ troff hyphenation support English only.
7) The computation and display of the date and the time is very US specific.

EUUGN Vvoi5s Not 13

The names of the days of the week and the months are in English.
The names of currency units and ways of subdividing currency units requires alteration.

There is significant world-wide variation in the representation of numbers, variation in the
symbol used for the radix character, and variation in the symbol used for grouping digits, as
well as the number of digits grouped.

11) Error messages, prompts and responses to prompts and mnemonic command names should all
be based on the user’s language.

12) Messages built up in chunks from programs may have to alter in order when translated into
another language.

Well, that list was taken from the paper, I thought that it was useful to include it here so that the
magnitude of the problem can be envisaged. The main solution seems to be to comb through the
code removing language dependency, HP's idea is to use a termcap-like language specification file
and access the file from a variable in the environment.

3.29pm Internationalisation of UNIX
Gary Lindgren, UNIX Europe
AT&T are also addressing the problems mentioned above and wish to provide a framework and
tools for supporting local character sets, error messages in the local language, and a multi-lingual
help facility.
There are plans to remove the 8th bit usage in editors.

There are plans to enhance the operating system, utilities, languages and applications software
to support international requirements in the areas of date and time format, collating sequences and
numeric representation.

The System V Interface description contains a preliminary specification for the support of 8
bit and 16 bit character sets. This uses the top bit to indicate which character set is in force; cou-
pled with a special shift character to indicate changes from one character set to another. My suspi-

cion was that the scheme was a little complicated and would not really work. This whole subject
seems to be a can of worms and very difficult to tackle in any easy way — but at least some people
are trying.

& Coffee <

4.17pm Session chair: Sunil Das, City University, London

Sunil is the chairman of UKUUG, the UK chapter of the EUUG. The group has 337 members and is
the largest in Europe — for historical reasons. The main objectives of the group are to provide a
UNIX information service; to provide a forum for discussion in the UK; to hold one-day technical
sessions; to aid and support UKC’s efforts in administering UKNET.

4.24pm Greek Characters on UNIX
Steve Hull, Research Centre of Crete

Abstract

A case study is presented of a project to provide full Greek alphabet capabilities on a UNIX system.
The particular difficulties of the Greek language in its various forms are discussed, as well as the full
ramifications of providing “full capabilities” for a variety of hardware. The necessary tradeoffs are
discussed, their limitations and advantages evaluated, and alternate approaches compared. It is
hoped that, in addition to illuminating the particularly European problem of providing multilingual

14 EuuGN vois Noi

capabilities, we illustrate a worthwhile approach to solving UNIX problems in general.
Comment

The title of this talk was given as EAXAnuicoe Xapaxthpes oTo IOTNHZY. This was a really interest-
ing talk which illustrated the complexities of the written Greek language and proposed some solu-
tions to the problem. Again, I cannot do the paper justice here.

4.57pm The SINDEX Chinese language project
Paul Thompson, SINDEX

Abstract

The problem of Chinese text input derives from the large number of Chinese characters (10 to 20
thousand) and the way they are mapped on to a small number of monosyllables (approximately
1200). The solution is (1) to avoid direct input of characters (ie., the requirement to specify
uniquely the character intended as we are accustomed to doing in western languages); (2) to input
syllabic units phonetically; and (3) to use the linguistic constraints on syllabic combinations to con-
vert the phonetic input into Chinese characters.

This solution has been implemented on UNIX where the script conversion program has been
written in C and the UNIX tools have made it possible to manipulate the relatively large linguistic
data-base efficiently.

This talk will briefly discuss the problems and other solutions and will concentrate on the the
use of linguistic constraints in our solution.

Comment

The talk started with a short piece of video-tape from a UK TV programme showing the system in
operation. People involved in the mechanical reproduction of Chinese usually ask about the speed
of operation of the equipment being used and not the speed of the typist. Speed is not a problem
with Paul's system. He has utilised a phonetic representation of Chinese which is taught in schools
before writing in ideograms is taught. The system recognises the phonetics and makes a best guess
about what character is to be output. It turns out that a high success rate is achieved by looking at
the combinations of syllables and making judgements about them from their order.

5.20pm EUUG Annual Meeting
Teus Hagen, EUUG Director
Abstract
This is the official general meeting to present the new constitution.
Comment

Teus had several matters of report. The first was to note that Emrys Jones has resigned as Director
of EUUG after three years toil. The Executive Committee has decided to award him an honourary
membership. Teus was elected Director of the EUUG at a Governing Committee meeting.

EUUG now has member groups in the UK, Eire (is just thinking of breaking away from the
UK group), Norway, Sweden, Finland, Denmark, Netherlands, Germany, Belgium (is just breaking
away from the Dutch group), France, Switzerland (looking at EUUG to see whether it is a good
thing to join), Austria, Italy and Greece. Some countries in the Arabic world are thinking of join-

ng.

The national groups all elect two representatives to the Governing Committee who in turn
have control over the actions of the Executive Committee (who pretend to do the real work). The
current Executive Committee is: a Director, Teus Hagen; a vice-director, Michel Gien; a secretary,
Peter Collinson; a newsletter editor, Jim McKie; a financial manager, Mike Banahan; and a member
without any special responsibility, Keld Simonsen. The business manager is Helen Gibbons.

+ IOTNHZE is not a trademark of AT&T Bell Labs.

EUUGN Vois Noi 15

The constitution had been voted on by postal ballot. There were 150 replies, 147 of these
were ‘for’, 2 ‘against’ and 1 abstained. The constitution has thus been accepted by a fairly resound-
ing majority,

Teus spoke of the various issues which were causing discussions in the various committee
meetings and also amongst the several committee members in bars (or perhaps one should say
café’s) in Paris.

I suppose that the main topic of concern is the issue of what sort of conference should be
held. Is it important to have large externally organised exhibitions? When the exhibitions were
organised by ourselves, the exhibitions used to subside conferences to a great extent and now they
raise very little revenue. They seem to cause the conferences to be held in expensive locations which
in turn cause conference attendences to drop. Should the conferences be shorter? Longer? Should
the conferences contain more sales promotion talks? Should the conferences include tutorials?
Should we set up standard SIG’s to provide smaller groups for meetings at conferences? We should
raise some of these issues for discussion on the network. This, of course, does not get to everyone
— perhaps people should submit their views for publication in the newsletter.

The newsletter is another issue for discussion. The fundamental problem is lack of copy and
general input from the membership. There seems to be some contradiction because in general,
members say that this is a useful thing for EUUG to do. However, there have been newsletters
which have consisted totally of contributions from me. This is not healthy and eventually I will run
out of asinine jokes.

The next conference will be in Copenhagen from September 10th to the 13th. There will be
technical sessions from the 11th to the 13th, industrial sessions on the 10th and 11th and an exhibi-
tion running from the 10th to the 12th. One of the guest speakers at the technical sessions will be
Brian Kernighan.

& End of Day2 <

I think that there was a short ‘Birds of Feather’ session which I managed to miss (sorry). I realised
that I had been inside for some time and had missed the fine Parisian weather. I started a move-
ment to walk down to the Seine for the conference dinner which was held in a boat called a ‘Bateau
Mouche’ travelling up and down the river. A number of passes were made past the Statue of
Liberty, which had shrunk a bit. After a large quantity of alcohol, I found myself walking back to
the hotel and managed to get involved in some late night discussions about this and that. And so to
bed.

Day 3 — Wednesday, 3rd April

Up betimes and after a leisurely breakfast into a Governing Committee meeting. The first session
of the morning had been cancelled because Mike Banahan had to go home for family reasons and
Mike O’Dell was forced to cancel at the last moment because of some mess up with air tickets.
There was some plan for Mike O’Dell to give his talk over the telephone but I am convinced that
this was formulated as an April Fool’s joke by a certain big Canadian. I do hope that we will
manage to get Mike to come to another conference. Anyway, the first session was cancelled. I
think that something to do with UNIX Europe Ltd went on in the Salle Bleue; but as usual I found it
difficult to be in more than one place at once. So there is no blow-by-blow commentary of the
events.

16 cvuGn vois Noi

11.15am Session chair: Bjorm Eriksen, ENEA DATA Sweden

The morning started (or continued depending on your point of view) with a few quick ‘news from’
sessions.

11.17am Indre By-Terminalen, Kobernaven Universitet
Keld Simonsen

Keld was supposed to be chairing the cancelled session, so he got his chance to talk about the Dan-
ish Group. The Group was started in November 1983 and now has 91 members. The members are
the usual mix of vendors, commercial users and academics. They put a small leaflet into most
places where UNIX is sold in Denmark; which is a good idea, I think. The group produces two
newsletters a year and has also published a UUCP installation guide. The network in Denmark has
12 to 15 mail-only sites and 3 to 5 sites taking news.

The group is naturally interested in international action on character sets and are involved in
starting a group discussing ‘internationalisation’} of UNIX.

Denmark is the host of the next EUUG conference.

11.23am The Norwegian Group
Tor Jorgen Lande

The Norwegian group was started in May 1984. UNIX has not spread very far in Norway. They
intend to hold one meeting per year and produce an annual newsletter.

11.24am News from Sweden
Bjorn Eriksen, ENEA Data

Bjorn finally got on to say his bit about the Swedish group - EUUG-S. He kindly gave me his over-
head projector slide, so at least this bit of the report is accurate.

March 21, 1983: The group was started when Dennis Ritchie visited Sweden. There were about 40
members to start with and there are now 97. There are 69 institutional members and 28 individual
members; of these 17 are educational sites and 80 are commercial.

Oct 19, 1983: The first annual meeting, the invited speaker being Teus Hagen.

Sept 26, 1984: Second annual meeting. David Tilbrook couldn’t make it so they had Mike O’Dell
and Mike Banahan.

March 1985: Presentation of Sun workstations.

May 1985: Meeting cancelled. David Tilbrook was going to explain the ‘Tilbrook Philosophy’ but
couldn’t make it.

June 1985: Presentation of ULTRIX.

Sepr 1985: Next Annual meeting. David Tilbrook is in Canada so they have Brian Kernighan
instead.

Well, after all that, which didn’t take long, onto the scheduled business of the morning.

T This was definitely the in-word of the conference.

EUUGN Vvoi5s No1 17

11.27am A Contractual Model of Software Development
Vic Stenning, Imperial Software Technology

Abstract

The technical process of software development and indeed, development of any complex man-made
system, can be viewed as repeated application of a single step. Each individual step takes some
existing representation (or mathematical model) of the desired system and transforms it into some
more ‘concrete’ representation. This results in a sequence of representations leading from some very
abstract model of the desired system to an actual implementation (i.e. a representation that is usable
for the real world application).

Any practical approach to system development must address not only the technical issues, but
also issues of project and data management. Thus the technical process outlined above must be
incorporated into some broader project organisation. One possible approach is to employ a so-
called ‘contractual’ model of development, whereby contracts are let internally within the project for
the performance of the individual transformation steps and any other work which needs to be done.

Individual contracts can be fulfilled by the use of appropriate technical development and pro-
ject management methods. Data management methods must be employed both within individual
contracts and at the level of the contract hierarchy for a complete project. An integrated project
support environment can support the chosen methods within the framework of the contractual
model.

Comment

Vic related a tale from a conference on Systems Design and Implementation where Freedman was
discussing the analysis of problems within projects. He said, “Problems which were actually
encountered during the design and implementation of systems ... only one problem was common to
every system” and then moved onto something else. Of course, everyone was dying to know what
the single problem was. At the end of the talk, someone managed to pluck up courage to find out.
The answer was “Oh, basically, people did not know what they were trying to do.”

12.03pm Automatic Generation of Make Dependencies
Kim Walden, SYSLAB & ENEA DATA

Abstract

It is standard practice on UNIX to use the Make program to keep a system of interrelated modules
up to date. When text files contain include statements referring to additional text files, the task of
manually keeping track of all Make dependencies implied by such references soon becomes
unmanageable. Therefore, the dependencies are often generated automatically from extracted
include statements.

However, the problem of producing the correct set of implied dependencies is a bit more com-
plicated than it may appear at first sight, and all automatic methods we have seen in use over the
past years have been erroneous. Errors in the generated Make dependencies often lead to accep-
tance of systems with obsolete parts, which may be very difficult to detect, particularly since the
number of dependencies rapidly increases to hundreds, or thousands, even for systems of moderate
size. Therefore, the problem was analyzed and an algorithm presented in the article Auromatic Gen-
eration of Make Dependencies by Kim Walden, Software Practice and Experience, vol. 14, no. 6, pp.
575-585 (June 1984). The algorithm was demonstrated on a simple example, which may be used for
testing dependency generating tools.

Since the time of publication, a number of Make dependency generating programs have been
released over USENET, but none of them handles the test example correctly. Obviously, there is a
need to draw further attention to the problem, and show that if certain fundamental points raised in
the article are not observed, dependency generating tools will indeed produce incorrect results in

18 EvUGN Vois Not

very common practical situations.
Comment

Basically, don’t use #include in complex ways if you want make to work correctly.

& Lunch <&

2.30pm Session chair: Helen Gibbons, EUUG

Helen showed a picture of Owles Hall and talked a little about the operation of the office which she
runs. Afterwards, she claimed to have told her one joke. I will not repeat it, in case she wants to
use it again.

2.35pm TgEX must eventually replace nroff/troff
Timothy Murphy, School of Mathematics, Trinity College Dublin
Abstract

TEX must eventually replace nroff/troff as the standard UNIX text-formatter. For the output of TEX
is an order of magnitude superior to that of troff. Thus

(1) TgX reads a whole paragraph before deciding where to break the lines.
(2) In TEX the space between 2 letters depends on both, in troff only on the first;

(3) The spacing around mathematical symbols in TEX depends on the “function” of that symbol:
binary operator, relation, left parenthesis, etc;

(4) The size of matching parentheses in a mathematical formula is automatically adjusted in TEX
to the height of the expression they enclose.

But if TEX is to be integrated into UNIX it must undergo major surgery.

This paper discusses the advantages of TEX and the problems or properly integrating it into a
UNIX environment.

3.1lpm Computer Aids to Rewriting and Copy Editing of English Text
L. L. Cherry, AT&T Bell Laboratories

Abstract

Writing is generally thought of as a three stage process: planning, producing a first draft, and revis-
ing and editing that draft. The UNIX Writer’s Workbenchf Software is a set of programs to help
writers of English with the last stage — revising and editing. It includes programs that analyze the
writing style of the text, provide the writer with other views of the text that may identify the parts
that need revision, and help in the copy editing process. In this paper I will describe the programs,
discuss how they have been used, and how they might be extended to help writers who are writing
in English as a second language.

Comment

The Writer’s Workbench consists of two main programs. The first proofr is a shell script which runs
five other programs: spellwwb, an augmented spell program with the ability to look in a user’s
private dictionary; punct is a punctuation checker; diction prints misused and wordy phrases from a
dictionary of 450 phrases and in turn runs suggest which gives alternatives to the phrases; finally,
gram is run, this program is a rudimentary grammar checker.

The second part of wwb is prose, which compares the values from a table of statistics com-
puted from the text with a set of standards and produces a two or three page description of the text

t Writer’s Workbench is a trademark of AT&T Bell Laboratories

EUUGN VoI5 Not 19

in terms of a set of stylistic features. This program consists of two other programs: parts and style.

= Coffee <

Michel Gien managed to arrange for the technicians in the hall to tape the final session on cassette
for me — for which many thanks. This means that you can have most of it in full gory detail.
Actually, I think that it reads very well.

Teus Hagen started the session by thanking the technicians in the hall, the interpreters, and
the local conference organisers especially Michel Gien and the AFUU. He also thanked Network
Events for organising the exhibition.

He introduced David Tilbrook who was to chair the session. David got a very large ovation
because he was wearing a suit, tie, and shoes. He was presented with a Swiss Army knife with 124
tools as a memento of his time in Europe and in recognition of the work which he has done for the
EUUG. This replaced his own knife with only seven tools. Teus fooled David into using this minis-
cule piece of hardware to extract the new upgraded model from the enormous box in which the new
knife had been packed. Teus failed to read out what all the 124 tools were.

4.19pm 12U
Luigi Cerefolini

The Italian UNIX User group has sensibly compressed the two U’s and made something which is
much easier to say. An extra G at the end is optional.

The group was started in July 1984 and has 49 members. They have had several meetings of
the Executive Committee and the result was two meetings in the last months of 1984 including an
exhibition. They are preparing a newsletter, number one is in the press. They would like to join
EUNET but they have a problem with the national telephone company which does not provide any
form of auto-dialling modem.

“We are not discouraged by this and we have two projects to solve the problem. The first is
to train people to dial numbers during the night while they are asleep. There are some good results
with this but the problem is that people tend to dial the wrong number.

The other project is to have a dedicated network in Italy. We will use completely autonomous
lines and are thinking of a new type of cable. The cable will be made of spaghetti. This is much
better than other cables like fibre-optics, TV cable or telephone paths because it is a de-facto stan-
dard. It is supported by industry, the spaghetti industry and is available on world-wide basis, which
is very important. Last, but not least, the other important thing is that it is edible.”

Luigi reminded us that the next Spring meeting of the EUUG will be in Florence.

David then announced “I have just received a bulletin from the Department of Industry in the
United States. All wheat shipments to the Soviet Union are being held back to ensure that there is
no technological advantage which the Russians can gain by having spaghetti manufacturing materi-
als.”

424pm CUUG & LUUGACAS
David Tilbrook

David went onto give a couple of ‘news from’ items, they don’t translate well onto the printed page
because they relied heavily on the use of overhead projector slides.

The CUUG, the Canadian UNIX User Group was formed instantly at this meeting by David,
who elected himself onto the Governing Committee so that we can pay for him to come to EUUG
conferences.

The LUUGACAS, which stands for the London UNIX User Group and Curry Appreciation
Society, meets every last Thursday in the month (excluding December) in the Lyric Tavernt, Great
Windmill Street, London W1. David claimed that this was world’s most active UNIX group. The

f Check on the venue with Jim Oldroyd or Mike Banahan of the Instruction Set, they are thinking of moving it.

20 EUUGN Vo5 Noi

group was formed about 18 months ago and members from the group figure very heavily in this ses-
sion because two of the debates were set up there.

4.30pm The final session - debates
Various artistes

I think that one of the good conference fixtures which David has instituted is the ‘Final session’.
He started by explaining the history of these.

“We had panel discussions at the two previous conferences. At Nijmegen, we were blessed
with the presence of Larry Crume, Kirk McKusick, Hendrik-Jan Thomassen, Adrian Freed and
Mike Banahan. We had Larry Crume representing the System V view; two places away from him
was Kirk McKusick, and in the middle was Robert Ragen-Kelly toggling his environment switch.
The panel was relatively successful. We also had Andrew Hume and Eric Allman in the audience,
which meant that the audience drowned out the panel.

We tried this again in Cambridge and it wasn’t quite so successful. This can best be explained
by the fact that there was a question from the audience asking: ‘which would the panel choose —
4.2 or System V? Five people on the panel said 4.2. Tom Killian said V8, at which point, four
people changed their minds and said V8 — if we can get it. But it did show that there wasn’t
enough difference. Mike O’Dell was in the audience, he participated at lot but it didn’t get the
spirit which we wanted. There was no blood letting. So, we set up debates for this conference. The
debates, I hope, will be amusing and informative. When we suggested this, David Turner said that
the debates would be likely to shed more heat than light. I hope so.”

There was a slightly formal format where the speaker for the motion was allowed three
minutes to state their case; the speaker against the motion spoke for 4 minutes; and this was fol-
lowed by a one minute rebuttal by the first speaker. Five minutes of discussion from the floor was
then allowed. Jim McKie acted as the ‘Sergeant at Arms’, reading out the title of each debate and
biographies of the speakers who had not been introduced before. As I did not manage to get hold
of the biographical notes for the rest of the speakers at the conference, 1 will minimise space by
omitting them here also (this document is too long already).

1. Declarative languages must eventually replace imperative languages
For: David Turner, UKC
Against: Tom Duff, AT&T Bell Laboratories

For: David Turner

“Mr Chairman, Ladies and Gentlemen — and C hackers. David Tilbrook told me to cut the techn-
ical arguments and go straight for personal abuse. I want to move the motion that declarative
languages must eventually replace imperative languages, and preferably sooner rather than later.
Existing programming languages, the ones in common use anyway, are based on the same basic
model of computation. They have the assignment statement as their basic step, they are sequential
and are based on side effects and so on. This is a model of computation that emerged in the late
50’s. Fortran is really the paradigm, or perhaps Fortran and Cobol, and all modern languages can
be considered dialects of Fortran.

One has honest dialects of Fortran such as C; and dishonest dialects of Fortran such as Pascal
or Ada — which are pretending to be something else. I submit that there is something fundamen-
tally wrong with this whole model of computation, and something fundamentally wrong in the way
that we produce software at the moment.

There are two main symptoms of this. First of all, software is too expensive to produce and
secondly, once produced, it is usually wrong. It usually has errors, or bugs, as we call them.

Let me take the correctness problem first. Most non-trivial programs have errors, that’s a
situation which we have gotten used to. Many large programs upon which we depend from day to
day are riddled with errors; this is really a terrible situation that we ought not to be willing to put
up with. We try to eliminate errors after the event by a process called: ‘debugging’. Now, I want
you to compare that with the way which other engineering disciplines proceed. It is not the case

EUUGN Vols Noi 21

that they design aeroplanes by debugging them. They don’t put an aeroplane up in the sky, watch
it crash in a nose-dive, and say ‘Oh dear, I think that the wings must have been the wrong shape,
let’s try again’. They have mathematical models of what makes aeroplanes fly and they do a lot of
calculations first. They know to within a very fine degree of accuracy how that aeroplane will
behave before they build it. We need to do the same with software. We need to have proper
mathematical basis for programming.

I submit that no language containing an assignment command can have reasonable inference
properties. Declarative languages do have reasonable inference properties. They are also much
more compact. So, if we switched to declarative languages, not only would we have a proper formal
basis to make possible formal development of programs and formal verification of programs; but
also programs would be much shorter and much quicker to produce. Finally, because they are not
sequential and not based on side effects they have the capacity to take advantage of new kinds of
very highly parallel hardware that VLSI makes possible. I urge you to support the motion.”

Against: Tom Duff

“Arthur C. Clarke once said that if a scientist tells you that something is true then he’s probably
right, if he tells you something is impossible he is very likely to be wrong. I feel like that I am in a
bad position on that ground. But, there are a number of things to say.

Niklaus Wirth once said (or Nicholas Worth as we call him in America) if housebuilders built
houses like computer programmers build programs then the first woodpecker that had come along
would have destroyed civilisation. Which is roughly a paraphrase of one of David’s points. Wirth
obviously never saw a carpenter build a house.

Secondly, I have a friend who worked at Boeing for many years and he said that the average
Boeing 707 has something like three tons of shims in it. So, the argument from other engineering
methods doesn’t hold up at all.

As for formal verification, it is fine for mathematicians and fine for people who are working
on very small problems. There exist no significant systems that have ever been verified, done in any
sort of language, let alone the sort of nonsense that my worthy opponent advocates. It requires
Ph.D mathematicians to understand this sort of stuff, I got out of mathematics at an early age
because it’s just too tough for my feeble brain. The general class of people that you have writing
computer programs are not up to it. I include myself; but, of course, not the audience.

The fact that formal verification methods cannot handle languages with assignment is not the
fault of the languages, it’s the fault of the methods.

Languages without assignment don’t match current hardware very well at all and if you think
that you are going to change that situation then I think that you're dreaming. We have had Von
Neumann machines, machines with big memories and little CPU’s since before 1 was born and |
think that the chance of that situation changing at all is negligible at best.

There are plenty of problems which the assignment statement is precisely the right model to
think about the problems. For example, a case from interactive computer graphics: take a frame
buffer which is just a large memory and you want to draw pictures in it using a mouse or a digitis-
ing tablet. The model you have there is taking something that’s shaped like a paintbrush and plop-
ping it down in the frame buffer. It’s precisely an assignment model which describes that sort of
problem. There doesn’t seem to be a good way of describing it otherwise.

The applicative models don’t describe important features of a lot of algorithms. An example
which came up the other day was quicksort where there are two important properties to the algo-
rithm. One is the notion of recursive sub-division which the applicative model handles just fine; the
second is the notion that you can do the whole thing in place and there is no place for that sort of
idea in applicative languages.

A text editor is something that you are going to have a lot of trouble describing if you have
no notion of a variable. Where are you going to write the file out? The idea is that you read in the
file, you make some changes and you put it back where it came from. The idea just doesn’t exist in
the applicative model.

22 EUUGN Vol5 Nol

Portability is another issue.”

Tom was cut off by time but managed to slip in, “that’s about all I have to say. And besides,
Turner is a foreigner and can’t possibly know what he is talking about.”

Rebuttal: David Turner

“I can’t possibly pick up all of the points. But first, let me say, that of course we don’t know how
to program everything in the functional style. As it happens, we do have a working interactive text
editor, there’s obviously no time here to tell you how it works, but you can solve that problem.
There are other problems that we don’t yet know how to solve but that of course is why functional
programming is fun. It’s a frontier, there are still new things to find out.}

Formal verification doesn’t work, we are told, because it only works on toy examples. Two
points about that: of course it doesn’t work at the moment because we are using languages with the
wrong fundamental properties. If you switch to languages with the right properties, like functional
languages, formal verification becomes very much easier. Of course, like everything else, formal
verification hugely benefits from the intervention of computers. I don’t advocate that people do
fully formal verifications by hand, that’s crazy. I advocate that we build computer systems to do
verifications for us, computer systems steered by a human being. I believe that is possible on the
basis of functional languages.

If it’s the case that the hardware we have now doesn’t match functional languages, let’s build
new hardware.”

Comments from the floor:

Mark (Seiden?)
“I'd like both speakers to comment on the ease of debugging large programs written using their
respective styles.”

Tom Duff
“There are no programs written in Turner’s style. He cannot debug them.”

David Turner
“Not true, not true. There are no large programs, that’s because programs become brilliantly small

when written in my style.”

Tom Duff
“They’ll get small in APL too, it’s got nothing to do with functional style, it’s got to do with big
operators.”

David Tilbrook
“Fault, 1it’s fifteen love.”

Eric Allman

“I can’t help but notice that in your functional language, you’ve hidden that fact that you actually
do have state by putting things into huge vectors. You then run through them and essentially pre-
tend that what you really have is all the values of the variable stuffed into one, in a convenient little
way. It seems to me that there still is state in your language.”

David Turner

“Yes, I think that’s a legitimate comment. What happens is that instead of having a sequence of
states in time; we represent it as a sequence of values in a data structure; so it looks like space
instead of time. That is exactly the trick which the physicists use to describe the world. That’s
exactly what Newton did when he invented the equations that we use to describe dynamics, you
treat time as a dimension of space. That’s really what functional programming is advocating. That
you handle state change by having a data structure that represents the successive states and the
whole thing can be conceived of statically instead of dynamically and that makes it more amenable
to reasoning. But your comment is legitimate.”

T Tom Duff: “that wasn’t the argument.”

EUUGN Vol5 Nol 23

David Tilbrook did say at this point that debaters do not necessarily hold the views that they are
stating. Your roving investigative journalist can now reveal that Tom and David did have some
difficulty in finding something to disagree about.

Ah well, onto the next debate.

Version 6 was the last real UNIX
For: Dave Lukes, The Instruction Set
Against: Mark Seiden, Lucasfilm & IBM

Dave was dragooned into standing in Mike Banahan’s socks when Mike was unexpectedly called
back to London.

For: Dave Lukes “What's good about V6? Those of you who remember V6 will remember an amaz-
ing thing which is the shell. The shell did not have nice structured programming constructs; it had
goto. The good thing about goto was that it was a separate program. People are talking about
unbundling UNIX nowadays. V6 was great, if you didn’t like having a high-powered shell, you
removed the goto program.

People argue about what are the bad points with the things which came after V6. Here’s my
favourite bad point. The program line

wc -b9600

What's this number 9600? It’s something to do with baud rates. That’s the kind of thing that hap-
pens when you start extending a nice clean simple system. That was 4.1BSD, there are worse things
that have happened since. I won’t say that 4.1BSD is the worst offender.

V6 pr: look at the pr program and count the number of flags. Most people give more flags
than filenames to pr, all the time. There’s something wrong there. It’s got worse, pr has had more
flags with every single release.

The shell, remember that? A nice simple little thing. Your give it a file maybe and some
arguments. Now, the V7 shell has the -ceiknrstuvx flags. What do these arguments do? Well,
they’re all really interesting you know. Like one of them does things like, I think v prints out its
input. Ever heard of tee? There’s a lot of useless flags in the world. I don’t know what the rest of
them do, but I am sure that they’re quite interesting as well.

V6? It’s simple, it’s cheap, it’s extremely nasty but it works. The shell is 20 pages of C in Ver-
sion 6. Beat that anybody else. What else can you say?

That’s V6, the greatest UNIX that ever lived, simply because you could carry it around in your
briefcase.”

Against: Mark Seiden

Mark’s talk was punctuated by pictures from the history of transport. He started with early station-
ary engines, passing through vintage cars, steam trains and ending with British Rail's Advance
Passenger Train. Naturally, the pictures cannot translate to this document so a certain amount of
imagination is required, but we sat and laughed a lot at the pictures.

“The proposition is ‘Was Version 6 the last real UNIX’. I think that if you look at it carefully, you'll
realise that it wasn’t a very real UNIX to begin with and even if it was real, other later systems are
much more real. But, first some history to help put us in focus.

In 1969, Ken Thompson first wrote the game of Space Travel for a little used PDP-7 at Bell
Labs in Murray Hill. Within the year, due to Ken and Dennis Ritchie, the first UNIX system was
written in PDP-7 assembler. Even by then it was an obsolete machine. The first version for PDP-11
was in assembler as well.

Some four years later, the system had evolved considerably to Version 6. It was now capable
of real work, although it did have many limitations. Sizable pieces of code were still in assembler
and the code still ran only on PDP-11’s. It couldn’t support heavy peripherals, mass storage devices,
because of 16-bit block addresses. The maximum size of a file system was 32 mega-bytes. It made

24 EUUGN Vol5 Nol

no claim to satisfy real time requirements or single user requirements. It certainly didn’t satisfy the
needs of the European UNIX community, so people started hacking it in a heavy way.

So, let me ask you. Could you do now without the Bourne shell, the back-quote operator, pee,
lint, make? They weren’t in Version 6. So, Version 7 was the first real UNIX. It had those things
and more importantly, it was portable. What does portability mean? It means independence from
a single manufacturer and can be translated directly into personal freedom for UNIX programmers.
It means you can work almost anywhere.

One problem with Version 7 was the file system. A power failure, or a test kernel scribbling
all over the system buffers could cause great unhappiness. If you remember icheck, dcheck and
ncheck; and trying to apply them in the right order at two in the morning, you’ll know what Ver-
sion 7 was like. Fsck came along just after Version 7.

The system still didn’t support virtual memory and you needed a workhorse like Berkeley
UNIX to do that. Berkeley UNIX versions added support for virtual memory, a full screen editor vi,
auto-configuration and then later, flexible usable networking. A faster file system on 4.2. Can you
do without fsck, history, job control, symbolic links, Ethernet? Perhaps.

Perhaps we should be asking: is UNIX real, even today. It still needs fsck every time you boot,
you still have to get out of the mail reading program when new mail has arrived, that is ridiculous.
The world has changed in 10 years and reality has to reflect those changes. Now, ordinary people
use computers every day, we have semi-conductor memories, 5 (and a quarter) inch discs with 500
megabytes on them, optical discs soon to come and wide choice of networking technologies. There
may not be a real UNIX even today, I think. Perhaps in fact, the last real UNIX might be Multics.”

Reburttal: Dave Lukes
“Well, I’ll knock these things down one by one.

First, he says that V6 is not portable. I used to carry it around everywhere, I had a listing in
my briefcase, and what’s more I could get a sandwich and an apple in there with it — and the
manuals. I admit that I didn’t eat much lunch, Tilbrook had a bigger briefcase.

Next assertion, everything is too small the guy says. 2% bytes? When was the last time you

made a 2** byte file? Next, 22, Is that big enough? No way, discs are bigger than that now. Also,
if you have a 2** byte file, there is no standard UNIX utility which can manipulate that object. You
can buy in data-bases which can do it but there is no standard UNIX utility which can do anything
with a file that big. So, what do you need it for?

They say it doesn’t have awk. Well, people don’t really miss awk because all they ever get out
of it 1s p&P6. That’s what lives at location zero on the PDP-11, it’s the bit of code that you get from
printing out a null pointer.

Comments from the floor and other diversions:

Mark Seiden
“Dave you are wrong, there is a utility which will operate on a file that large and you mentioned it
at the beginning of your talk — we — at least on a VAX.”

Eric Allman

‘6rm?”

David Tilbrook

“Eric Allman, the master of small programs...”

Eric Allman
“I’ll get you for that.

Now, you see, you're wrong. The problem with Version 7 is not the code itself but the docu-
mentation. With 6250 tape drives you could still put the system into your briefcase. The problem
1s that they documented everything in Version 7 which they hadn’t in Version 6. If you wanted a
different option out of the program, then you went into the program and changed it, if the option
that you wanted wasn’t already there.”

EUUGN Vol5 Noi 25

Unknown speaker

“The biggest mistake with the later UNIX versions which was not mentioned was that it opened up
room for shitty PC-DOS. Right now, there is no UNIX system around which is really small enough
and uncomplicated enough that it can stand up in the very low end of the personal computer
market.”

Mark Seiden

“But the reason for that, it seems to me, is a marketing one. That is the enormous market penetra-
tion of IBM. Application developers choose to write their application to run in the PC-DOS environ-
ment. But, to many of their credit, they write them in C so they will also run in the UNIX environ-
ment if they see a business plan for it, for example, multi-plan. I don’t think that there is a techni-
cal argument.”

Radek Linhart
“I have heard from somebody that there is a UNIX which fits into ROM’s and you can carry it in
your briefcase.”

Mark Seiden
“I have here an optical disc on which is 4.2, all its documentation and all historical versions of UNIX
before that. It fits very nicely into my briefcase.”

3. Vi is a piece of wombat do
For: Nigel Martin, The Instruction Set
Against: Tim Snape, Chameleon Software

I’d like to insert a little from Nigel’s biography because it contained a great line: — ‘he was pro-
moted from a lecturer in Computer systems at University College, London to a junior operator as a
result of using UNIX.’

For: Nigel Martin

“Let us begin at the beginning of time when we all got used to using ed, we all enjoyed ed and it
had a number of facilities. One of the biggest downfalls of ed was that you had a lot of confusion
associated with using it and you wanted to be able to view larger amounts of your file. Therefore,
along came an editor called vi. Its name: ‘visual. Everyone was extremely pleased about the arrival
of vi. Hopefully, as the name implied, ‘visual’ would allow you to see what was going on with your
edits and allow you to see a substantial portion of your file. Unfortunately, this appears not to be
the case. Vi shows you a picture and allows you to see a number of characters. Regrettably
though, there is an extensive amount of user confusion still present.

Invariably, you will sit at your keyboard and you will type a number of characters. Those
characters will sometimes, if you are very fortunate, have an effect. They may, if you're even luck-
ier, be inserted into the file at exactly the right place which you wanted. This experience is
extremely rare.

It is far more likely that when typing in your characters, you will type a number. For
instance, ‘1I’. Nothing happens, you look distressed. Is it because the machine is slow? Is it
because vi is slow? No. It’s because you have just typed a ‘I’ at the wrong moment. So, you type
a ‘2. What happens? Nothing. You are equally distressed, you look around in absolute bewilder-
ment. So you type another number: ‘3. Still nothing happens. You realise that vi clearly does not
like numbers, so you try and go for some letters. You hit a ‘d’. What happens? Nothing. You
then hit a second ‘d’ and hey presto! The picture changes — 123 lines disappear from your file!

It is argued that the facilities of vi allowing you to prefix a command with a number are
extremely important. It is unfortunate though that this is not extended to every command; con-
sider, for example, the tilde command.

One of the rules of UNIX is that UNIX is built out of a number of tools. Therefore, we would
have hoped that an important and useful UNIX tool was the screen editor. We all know that one of
the most fundamental rules of a tool is that: silence is golden. If you walk into a room of people
using vi, you will realise that vi clearly is not a tool. There is an extensive amount of sound. The
sound comes from people screaming, from vi ringing the bell and from many, many, other sources.

26 EUUGN VoI5 Nol

It is evident therefore that vi cannot possibly be considered to be a tool.

Finally, in order to make a very very trivial edit to your file, perhaps as a result of a small
typing mistake, you will have to type numerous keys to shift you in and out of command and edit
mode. This is most unfortunate. Clearly, if you want to move the cursor up, the same key should
allow you to move the cursor up at all times. You should not have to go through the process of
negotiating your way round this supposedly useable tool. I therefore urge you to consider that vi is
not only unsuitable, that it certainly is not a tool, and it certainly is not a screen editor.”

Against: Tim Snape
“I don’t know if you know this, but in fact, ‘Wombat do’ is very high in nitrates. Certain small
South American countries have based their economies on such products, so IBM take note.

I would like to say that I use vi and I like it. I will itemise the points which I find attractive.

The most important benefit of vi is that it is standard. You can go from one UNIX machine to
another and you will still have the same screen editor on it. You will be able to edit your files using
a screen editor.

Another benefit is that it uses termcap. This means that you can customise vi to work on even
more bizarre and weird terminals as they become available.

The heritage of vi: Nigel briefly mentioned that ed, well, in fact, vi, is based to a small or
lesser extent on ed, sed and ex. It's a family of text editors. While I was researching this talk I
tried to discover the parentage of vi, it was rather difficult.

What it means, is that once you have trained your first-year undergraduates to use ed, some-
thing which can be done fairly rapidly. They can move up and use vi in a fairly easy way. (Fingers
crossed).

The lack of wysiwygness, the problems that Nigel has been having with vi are in fact not bugs
at all; but features. What vi is attempting to do is to minimise the amount of character 170 which is
taking place over your terminal line. So, you can use vi over PAD’s and 1200 baud lines. You can-
not do this with some of the other visual editors.

Vi has a lot of functionality, a lot of power. It's been said that real programmers are not
really worried about the cosmetics, they are more concerned with power. Multi-modal editors do
offer a lot of power. Of the things which vi has, which I like, is the syntax directed extensions; the
ability to tab around functions and the ability to tab round curly brackets. 1 find that very useful.
Also, the undo facility and the ability to pass text through UNIX filters are both very nice features.

That’s not the point, the real point that we are discussing today is: should we be using single
mode editors or should we be using multi-mode editors? Single mode editors are attractive to secre-
taries, typists, English students, and people like that. Multi-mode editors are very attractive to peo-
ple who like to have a powerful command structure. It has been said that multi-mode editors
increase the thinking time for users. I think that this is probably a good thing for some C program-
mers.

Vi, like UNIX, like C, has been criticised for its lack of user friendliness, its been criticised for
its complexity, but these aren’t real arguments. Like C and UNIX, vi is a tool which grows on you,
the more you see other people using it, the more you like it and the more you learn.

Finally, Nigel, if you do have problems using vi, perhaps you would like me to run a course
for you.”
Rebuttal: Nigel Martin
“In the introduction to Mr. Snape here, my learnéd collegue on the other side, he informed us that

he was interested in producing tools and utilities to aid programmer productivity. It is unfortunate
that the very tool or thing he describes does not quite come up to this.

Vi is standard. Yes, unfortunately it is. We know there are many things wrong with many
standards, how many people here are happy with any standards they know of?

With regard to the use of termcap, perhaps, Tim, you would like me to supply you with a free
copy of a termcap driven ed.

EUUGN Vois Noi 277

As regards the family information, it is most amusing that you are unable to trace the paren-
tage of vi, perhaps that is something to do with its quality.

With respect to character 1/0, I would suggest to you, ladies and gentlemen, that vi’s primary
objective in life is to try to melt any form of communications facility. Every character you type
results in you having to use the undo command to put back all the mistakes you have just made.

Finally, I am sure that many programmers invariably think that they are undergoing a secre-
tarial task. Therefore they would like to relax, concentrate on their program and not have to pay
too much attention to trying to negotiate their way round these things which are obstructing us in
our way. The one thing that UNIX was trying to do when it was originally designed in ’69, was to
allow people to get on with their job, that of programming, rather than having to fight with the sys-
tem. So, I would urge you that vi is not an appropriate tool to do this.”

Comments from the floor

Erik Fair

“Mr. Martin, I am curious, since you are a detractor of vi; which editor do you prefer to use?”
Nigel Martin

“It is most unfortunate, that is not the subject of this debate.”

Eric Fair

“Oh dear, that doesn’t help at all. How can I detract from your personal heritage if 1 don’t know
what editor you use?”

Nigel Martin
“I am sure, Sir, that this is of no importance to the discussion in hand.”

John Haxby ‘
“I'd quite like to know why vi was written in the first place. We had a perfectly good multi-mode
editors with none of the features of vi long before vi even appeared in the UK.”

Nigel Martin
“Mr. Chairman, I object to the word ‘feature’ being used in the same sentence as vi without a nor.”

Dave Rosenthal

“It’s a while since I used vi but I've just heard a load of people saying things about the undo com-
mand. As somebody who uses an editor with a real undo command, like Emacs. There isn’t an
undo command in vi because if you undo it, it undoes itself.”

There were some more comments in this vein, nobody was really brave enough to stand up
and say anything much in favour. Eric Allman did make a slight stand, but I don’t think that he
scored many points! 1 guess, vi lost here.

Well, there were only three debates in the official order of events and the next one was a
surprise to us all. Jim McKie (wearing what might be described as ‘hot pants’ — or am I showing
my age) read out the resolution.

4. Jim McKie has nice legs
For: Jean Wood, DEC
Against: Louise Sommers, IST

Both speakers in this debate used some wonderful slides to complement their talks. The slides
showed giraffes, rhinos, hippos, chimpanzees and other fauna. Oh, the first slide was a picture of
Jim showing the main topic for the debate — his legs — ‘where did you get that?" asked Jim.

For: Jean Wood

“We have to consider this from a serious point of view. Both functionally and aesthetically, those
are great legs. Of course, their main function is to connect the top half of the body with the
ground, and you can see they do that exceptionally well. They're straight. They're strong. They
have knees in the right places. I guess in the language of computerese we could call those ‘very
robust legs’. On the other hand, they’re also very user friendly. They have the correct quantity and
quality of hair. The knees have kneecap worthiness.

28 EUUGN Vois Noi

It’s very difficult for me to look at this and speak unemotionally. To put things into perspec-
tive, I thought that we could look at some similarities from nature and compare them with Jim’s
legs. Here were the various beasts.

To be honest, I have had very little opportunity to look at Jim’s legs, except at conferences,
like the rest of you. I talked with an expert, his wife, she’s a nurse and she spends lots of time
doing things like bed-bathing men and she has seen lots of legs. Her comments were: ‘Jim’s legs are

CIEE]

nice and straight. With a nice pair of legs, the less attractive appendages, like chins, don’t matter’.

Against: Louise Sommers
“l am speaking against the motion. My honourable opponent has described Jim’s legs in glowing
terms. But I feel that she has picked the wrong comparisons. More pictures of fauna.

My opponent also quoted Gilly McKie in saying that ‘Jim’s legs were nice and straight’, but
she didn’t give you the whole quote. When do they ever? What Gilly actually said, and 1 wrote it
down at the time, was that ‘Jim has nice straight legs’ (she said this in the most beautiful Scottish
accent, which I can’t do) ‘but they’re not very muscley, you know. If he’s going to wear a kilt, he’'d
have to wear very thick socks as well.’

Being a expert on men’s legs (and bottoms I might add), I did a little survey while I was here
at the conference and I looked at all the men’s legs. I want to tell you what nice legs really are, and
they are David Tilbrook’s. Would you please show your legs, David.”

At which point, Mr. Universe stood up, ripped off his very smart trousers and demonstrated
(or perhaps one should say ‘flaunted’) his legs. Of course, Louise is somewhat biased since the large
Canadian and Louise are married. She went onto say “Now, these are nice legs, well shaped, firm,
strong and believe me when I say sexy.”

There was one further comment from the floor, an unknown speaker.
“I've heard that Jim’s legs are bug-ridden, is that true?”

Jim McKie
“No, my legs are written in a functional programming language.”

= End of day 3 <=

The evening event was a concert of electronic music at IRCAM. 1 must confess to have decided to
miss this event, largely on the grounds that I KNOW that I don’t like that sort of stuff. I asked Jean
Wood to write me a short piece on the concert and hopefully she will.

The exhibition was open the next day and I spent most of the time there, apart from about three
hours sitting outside a café in the sun, isn’t Paris wonderful? Anyway, 1 digress. I suppose that the
most noticeable thing at the exhibition was the emergence of the colour display, there seemed to be
a colour display on almost every stand.

The other thing which caught my eye was really nothing to do with UNIX, it was the French
PTT terminal which they are putting into every home and office in certain parts of Paris. This gives
access to an electronic phone directory, electronic mail and telex facilities. My brother has one of
these in his office and was enthusing about what he could do on it.

I spent a lot of time playing with a colour Sun workstation on the Gould stand, this is fun,
but of course pricy.

EUUGN Vols Nol 29

Endpiece

Well, another conference gone. We will be learning some lessons from this one, just like we have
learned from previous conferences. 1 have always thought that every conference is an experiment in
doing conferences. 1 traditionally give private awards in these reports. We didn’t have a silly com-
petition at this conference, there was no publically available blackboard to write things on and we
couldn’t really come up with something silly enough. So, the private awards.

The ‘best freebee from an exhibition stand’ award goes to the Instruction Set for their wine
labelled ‘Chateau NUXT" which is the name of their UNIX system (not the Chateau, the NUXI). I
took the bottle back to my brother’s flat with the thought that he could always use it for cooking if
it was vile — but it wasn’t, we drank it. I suppose that you could say that I have no wine discrimi-
nation facility.

The ‘bore of the conference’ award must go to the French customs official who confiscated all
the EUUG T-shirts (which had not already been given out) because they were made in Turkey. We
could get no convincing explanation of why Turkey’s T-shirts should cause such offence.

The ‘event of the conference award’ goes to a deserving failure. At attempt was made on the
world record for mismatching shoes. The record, previously held by the British Army in the Crimea
(who took delivery of several hundred left boots) has stood for more than a hundred years and
involves getting as many people as possible in one place wearing mis-matched footwear. It’s unfor-
tunate that there were just not enough people involved in this event.

The ‘coming out of the closet award’ goes to Nigel Martin, who managed with great difficulty
to disclose in a suitable small circle of close friends that ‘he is a vi user’. I always thought that
Nigel was a bit that way inclined, perhaps it is the way he walks.

The (more serious) award for the fixer for the conference should go to Helen Gibbons. She
dealt with a great many problems in an uncomplaining way. Not many people were aware of the
problems at the time, because by the time conference attendees had got there, the problems had
simply gone away.

Oh well, I must stop. This document breaks size records. Thanks to all who made the confer-
ence work.

30 Evuen vois Not

The Influence of the UNIX ! Operating System on the Development of
Two Video Games.

Peter S. Langston

Bell Communications Research?

ABSTRACT

The Lucasfilm Games Group was established to explore ways of applying the
technological and methodological expertise developed at Lucasfilm (principally for
film production) in a new entertainment medium video games. One of the major
tools on which that expertise is based is the UNIX operating system. It is an
interesting coincidence that this operating system’s early development was heavily
influenced by games and the interests of game designers.’

This paper describes the development of the two video games
“BALLBLAZER”™ and “Rescue on Fractalus!”™ and the ways in which UNIX
software aided and influenced their design.

HISTORY

“Months ago in a deserted warehouse in Marin County, George Lucas met with a lone pro-
grammer...” so begins one of the many descriptions of the formation of the Lucasfilm Games
Group. Needless to say, some journalistic license is evident in this and other accounts of this
group’s formation but when the purple prose is stripped away what remains is the important part of
the group’s charter to look at the booming industry of video games and see in what ways the
“magic” of Lucasfilm could be brought to bear. That “magic” consisted of two parts: an
uncompromising attention to detail (leading to a sense of involvement and realism even in the most
unrealistic of situations) and the use of high-tech tools to make possible the creation of formerly
impossible sequences and images. An important part of those tools was the UNIX operating system
introduced within Lucasfilm by the Lucasfilm Computer Division, of which the Games Group was a
part.

The first project we (the games group) undertook was a survey of the games industry to learn
how games development was being carried out. We were amazed. Home video games were being
produced in one of two ways. Either a single programmer would spend a year or two of his spare
time creating the game concept, graphics, sound, play mechanics, and writing the game program in
assembler (typically in his basement on a system with too little memory, too few floppy disks, no
reasonable way to make a backup, and few if any debugging tools). Or a team consisting of a pro-
grammer and one or two helpers would be allotted 2 to 3 months to carry a game from concept to
debugged implementation. Programmers in either case often had no prior experience in computer
programming and were plagued by flakey equipment and a lack of many aids that we considered
basic: high-level languages, support tools, libraries of software, input/output redirection, hierarchical
file systems, large storage devices, etc.

When we looked at arcade (“coin-op”) video games the situation was different, but no better.
The typical development cycle appeared to be: 1) come up with a game concept and get approval

! See the last page for a list of trademarks.
2 The work described here was done at Lucasfilm Ltd., San Rafael, Calif.
3 ¢.f. “The influence of games on the development of the UNIX operating system” (unpublished).

EUUGN Vvol5 Noi 31

for it 2) design the hardware 3) build the hardware 4) test the hardware 5) write the software 6) try
the game out 7) decide whether to continue 8) debug and polish. Although steps 3, 4, and 5 could
be overlapped it still took 6 to 18 months to get to step 6. At that point it was too late to make
major changes and dropping the project would entail a big loss. As a result many uninteresting
coin-op games were produced. We learned that the reason general purpose hardware was not used
was that special purpose hardware is less expensive to manufacture than general purpose equipment
and they wanted to sell 10,000 to 100,000 of these games. Thus a manufacturing savings of $1,000
on each unit could mean a saving of $10,000,000 to $100,000,000 overall. This combination of opti-
mism and greed apparently blinded the industry to any thoughts of rational planning.

Media interest in Lucasfilm has always been high and so it was not long before we found our-
selves being quoted in the press, pompously telling the games industry How It Should Be Done. In
the midst of all this media attention our group realized that since none of us had ever taken a video
game through all the steps of production we might be setting ourselves up for some embarrassing
surprises. “Lucasfilm Computer Scientists Eat Words” and “Ivory Tower Talk is Cheap” screamed
the banner headlines in our nightmares.

To avoid such possibilities we decided to design and implement one or two “throw-away”
games as a combination of rite-of-passage and reality check. These games would also serve as a way
of identifying the areas that would profit most from the creation of some software tools. It’s a
credit both to the members of the Games Group and to the ideas that we championed that the two
“throw-away” games produced have gotten such enthusiastic reviews* - ranging from “George Lucas
does it again!” to “setting a new standard in the industry”.

Of course the games never did get “thrown-away” and may even appear in stores in the near
future.

THE HARDWARE

The Atari 800 computer contains a 6502 microprocessor chip, 32K to 64K of RAM, and
several special purpose chips designed by Atari. The “ANTIC” chip handles DMA, some inter-
rupts, vertical and horizontal scrolling, and the vertical line counter. The “GTIA” chip handles the

graphics generation, graphics objects, collision detection, and miscellaneous switches and triggers.
The “POKEY” chip handles the keyboard, the serial communications port, timers, hardware ran-
dom number generation, reading potentiometers, and the generation of sound. The “PIA” chip
handles the joystick controllers and interrupt lines.

An Atari 800 computer, complete with keyboard, power supply, and cabling to use a conven-
tional television set as the screen, costs about $100 in discount stores today and an Atari 5200 Super
Game System (which lacks a keyboard and comes with joysticks but is otherwise nearly identical)
costs about $70. The 6502 microprocessor chip used in the Atari machines (also used in the Apple
Il and other home computers) costs about $1.50 (retail) in single unit quantities. All in all, the
Atari 800 and the 5200 are small computers. We found that writing programs for a small computer
often requires using tools that are very large. Such a discovery rules out using the Atari machines
to run the tools; however a hybrid that allows use of a large machine for editing and assembly and
a slave Atari machine for testing is an ideal arrangement.

THE TOOLS

Several pieces of software were created by our group specifically for the game development
projects. Among these were:

1. a cross assembler

4 OMNI magazine named one of the games in its “Top Ten Video Games of the Year” (tied for second) even
though the game has never been released.

32 EUUGN Vois Noi

a library of macros for the cross assembler

a pair of programs that download an Atari 800 home computer over a serial line from a DEC
VAX 11/750

a similar pair of programs that download an Atari 800 floppy disk over a serial line

a simulation of flight dynamics and graphics on an Evans & Sutherland Picture System I
a program that turns an Atari 800 into a drum rhythm machine

a music scoring system using pic and troff

a storyboard editor that runs on a Sun Workstation

a 6502 disassembler

It was not surprising to us (although it was to people in the industry) that the majority of our
software was written in high-level languages. The cross assembler and its macro library were written
in Lisp. The Atari end of the download programs and the drum machine program were written in
our Lisp-like cross assembler. The rest of the tool software was written in C.

Lisp was chosen for the cross assembler because it only took two weeks to implement a cross
assembler that allowed both assembler macro definitions and inclusion of arbitrary Lisp expressions
in the assembly task. This allowed us to extend or reconfigure the assembler as we discovered
unforeseen needs and deficiencies.

The macro library had two important effects. First, it allowed us to write in a pseudo-
structured assembler that included “if then else”, “for”, “while”, and other familiar constructs.
Second, it acted as a first step toward a subroutine library of commonly used routines. We found
that many of the routines that we included in the initial set never were used at all, while others that
we added as we went along were used frequently.

The download programs made it easy to maintain the source on larger machines running
UNIX where we could assemble the code and debug syntactic problems using many different tools
before sending the executables to the small Atari machines for debugging. Unfortunately debugging
on the Atari was not always convenient so we designed a dual-ported memory card that would
allow us to debug the running Atari program using software running on the larger machines. We
discarded the possibility of simulating the Atari on the larger machines because there are an incredi-
ble number of important undocumented eccentricities in the Atari hardware.

The simulation on the E & S Picture System allowed us to start fine tuning the flight dynamics
and make some general decisions about ways to achieve the graphic results we wanted while the
Atari graphics rendering code was still being designed.

The drum machine program provided a workbench on which we could experiment with
rhythmic patterns to be used in the games. We were able to include the features that make com-
mercial microprocessor-based rhythm units so popular and add new features to suit our particular
composition styles. Further, the program had the advantage that we were hearing the exact sounds
that we would be able to include in the games.

Although a music scoring system using pic is unavoidably unwieldy it still allowed use of fami-
liar text editors, the Sun Workstation graphics screen, and the Imagen printer for maripulation and
distribution of musical ideas and final compositions.

A computerized storyboard editor seemed like a particularly good idea because the pixel sizes
and graphics modes of the Atari graphics system are quite eccentric. Unfortunately the Atari graph-
ics are so eccentric that even the Sun Workstation’s fairly high resolution screen was unable to cap-
ture all the “nuances”. A further problem was the need to display the colors that appear on the
Atari screen; because of artifacting effects® this would have been difficult to simulate even if we had
had color graphics on the Sun Workstations. As a result we found the existing, primitive graphics
editors available for the Atari more useful than the more sophisticated but inappropriate editor we
had written for the Sun Workstation.

3 The term “artifacting” refers to the interaction of colors in adjacent pixels on the screen.

EUUGN Vol5 Nol 33

In our survey of game software we found one or two programs with unusually sophisticated
graphics and arranged to speak with their authors. We were disappointed to discover that few game
programmers are willing to discuss the technical details of their work or share insights they may
have gained.® With a little work we were able to write a disassembler that made the difficult task of
deciphering a 6502 executable feasible.

Our intention had been to learn the steps necessary to produce a video game. As such we did
not want to try any radical, new approaches; instead we wanted to develop a list of ways to
improve on the state-of-the-art. On the other hand, some aspects of the “state-of-the-art” were just
too primitive for us to bear. As a result we compromised by making only those improvements that
were quick to implement and required minimal long-range planning. The need for an improved
macro assembler was obvious and it was relatively quick to implement whereas the dual-ported
memory cartridge turned out to be a larger project than we had expected and its construction was
postponed.

UNIX AIDS

The ways in which the UNIX system aided the games design process can be grouped into two
broad categories, software available on UNIX systems, and capabilities of the UNIX operating system
itself. Available software included program languages, editors, communications programs, and other
miscellaneous tools. The capabilities of the system included a hierarchical file system that made file
sharing convenient, input/output redirection, and a general “permissiveness” that kept the system
from getting in our way when we needed to do something strange.

Languages

Having languages like C, awk, the shell, and Portable Standard Lisp (PSL) readily available
allowed us to choose a language to fit the requirements of any particular task. Some programs had
to execute a specific, well-defined task as quickly as possible and were written in C (e.g. the down-
load programs). Other programs were more experimental and needed flexibility in the way they
manipulated symbolic entities and were written in Lisp (e.g. the cross assembler). Still other pro-
grams had to be written quickly and would only be used once or twice; these were written as shell
command files or as awk scripts. Had we been using the typical games industry systems we would
have written all these programs in assembler (or perhaps Fortran if we were lucky) and we would
still be debugging some of them today.

Editors

Although every class of Computer Science graduates seems to produce another editor-to-end-
all-editors, none of these editors seems to have made it into the video games industry. We made
much use of emacs, vi, and ed, again fitting the choice of editor to the requirements of the task at
hand with few, if any, religious debates over the virtues of modelessness or the sins of meta-
cokebottle-shift.

Communications

Our group put in many 22 hour days, sometimes spending 16 hours at work and then going
home to say “remember me?” to the family and then log in for another few hours of work. After a
few months of this it became hard to predict when any particular person would be in the office or
even awake. The UNIX mail system allowed us to keep in touch with each other and share ideas and
status reports even when schedules didn’t overlap. The ability to access files and programs through
dial-in lines allowed occasional family visits and the speedy incorporation of middle-of-the-night
inspirations.

¢ Not wishing to follow this clandestine approach we went so far as to write an article called Ten Tips from the
Programming Pros, for the Spring 1984 issue of Atari Connection Magazine in which we described many of the
techniques we used to write our games.

34 EuuGN Vois Nol

Miscellaneous Tools

We used everything from adb to yacc at one time or another in this project. We got recalci-
trant programs to work with adb, we kept track of important deadlines using calendar, we found the
changes you make by falling asleep on your keyboard with diff, we kept track of immense numbers
of interdependent modules with make, we printed cartridge dumps for the copyright office with od,
we scored music with pic, we made global name changes with sed, we prepared press releases using
spell, tbl, and troff, we borrowed tools from other sites with uucp, we disassembled other designer’s
programs with yacc, etc., etc. Because we had access to these tools we were able to participate in
parts of the production that normally are either left to specialists who have no other connection
with the project or are left undone entirely. As a result the games display an unusual coherence,
with a common thread of design style unifying all the parts.

We also found that other parts of the Computer Division had created tools useful to us. The
Pixar (graphics processor) project had written a program to load PROMs that we found useful. The
Digital Audio project had written a program (LUDS, pronounced ”Lewds”) to aid in circuit design
and create schematics, wire lists, etc. for their design of the ASP digital sound processor. We used
LUDS for our dual-ported memory design.

Finally, we used programs written for, or as a result of, other game projects. These ranged
from programs that helped maintain large numbers of related source files to programs written to
manipulate the masses of data produced by games like “Empire”.

Although none of these programs were written with our specific needs in mind they, like much
of the software associated with UNIX systems, were written to make as few limiting assumptions as
possible and were perfectly adequate for our needs.

File Sharing

Crucial to a team approach to software development is the ability to break programs up into
separate modules and share access to them among the entire team. The UNIX operating system
made this easy although a little more concurrency control in the various editors would have avoided
one or two minidisasters. Often three people would be working on related parts of a game, passing
files back and forth for advice or criticism while a fourth was compiling and testing the results of
the others’ changes.

Input/Output Redirection

Many of the tools that we used could not have existed on a system where the author of the
software has to know what kind of device the data is coming from and what kind of device it will
go to. Because we had to know less about the intended uses of a tool at the time we wrote it we
were often able to use an existing tool to solve a problem instead of having to create a new one.

UNIX INFLUENCES

The ways in which the UNIX system influenced our games development are subtle, as
influences often are. While some of the members of the games group had not been exposed to the
UNIX operating system before joining, the majority of people in the group were long-time UNIX
aficionados and their enthusiasm for the system was adopted by all.

Many of the influences we felt were philosophical and although no one of them is exclusively
associated with UNIX software, the group, taken as a whole, implies UNIX influence strongly. It
would be impossible to consider the influence of the UNIX system without including the influence of
people like Brian Kernighan and John Mashey who have been the eloquent spokesmen for many of
the ideas and philosophies that permeate the system.

The concept often called “fail fast” seemed particularly relevant to games development. Much
of the decision making in game design comes down to making a yes-or-no decision about a potential
approach. Such choices vary from “is this idea interesting enough?” to “can it be done at all?”
We found it immensely effective to try solving the hardest parts first in deciding any of these ques-
tions, allowing us to discard doomed approaches quickly and devote our energies to potentially

EUUGN VoI5 Nol 35

successful ones.

We always tried to make individual rools that performed a single general task well and then
use combinations of such tools to perform complex tasks rather than making a new program to
solve each specific complex task. As a result we had to write relatively few tools and ended up
using each in many contexts, often in concert with tools written by others.

The programs we wrote generated little or no gratuitous output. Thus, when someone wanted
to make that program a part of some larger construct, there was little or no effort spent trying to get
rid of useless verbosity. Further, when diagnostics were called for they really stood out rather than
being lost in a sequence of “program starting...”, “Pass 1 completed”, “pass 2 loading...”, and so
forth.

We found simplicity to be an even better policy than honesty. Every time we were tempted to
claborate on some program the result was an unending job of fine tuning the elaborations probably
difficult because they never really belonged in the first place. When we stayed simple it was easy to
see what needed to be done and easy to tell when we were finished and could go on to the next
task.

UNIX ENVIRONMENT

The UNIX environment was perfectly suited to our task. When we needed a program it was
either already there or it was easy to write. Perhaps that’s because the UNIX system was designed by
(game) programmers to make the job of program development as easy as possible. In any case it
made our job easy. We didn’t have to fight with programs that almost did what we needed but had
made some limiting assumption. Nor did we have to trick the operating system into letting us do
something that it thought we shouldn’t do.

We were heavily influenced by the software, philosophies, and concepts associated with the
UNIX operating system. It could be argued that the time was right for these developments and that
the UNIX system was just the vehicle for ideas that would have appeared anyway; but it’s clear that
without these our games projects would have ended very differently. We would have spent more
time chasing down blind alleys and would have examined fewer potentially profitable approaches.
We would not have been able to participate in as many areas of the production as we did, thereby
leaving many crucial design decisions to the same people who crank out the standard, bland pro-
ducts that flood the market. Worst of all, we probably would have had to throw away the “throw-
away” games not only because we would not have had time to complete them but they would not
have been as interesting as they are.

THE GAMES

In a paraphrase of the reviewer from Video Game Update “These games simply must be
experienced to be appreciated.”

CREDITS

The work described in this paper was done by the members of the Lucasfilm Games Group, a
part of the Lucasfilm Computer Division which, in turn, was a part of Lucasfilm Ltd. Although 1
headed and often spoke for the group it would be a mistake to think that I contributed more than
any of the others in the group. Every member performed an irreplaceable function in the develop-
ment of these games, and without any one of these people the games would not have been as they
are, indeed, they might not have been at all.

The cast of characters, in alphabetical order, is:
Loren Carpenter
David Fox
Charlie Kellner
Peter Langston
David Levine
Gary Winnick

36 £uuGH vois Not

Others made contributions to our effort that should not be overlooked: Steve Arnold, Eric
Benson, Steve Cantor, Ed Catmull, Terry Chostner, Mike Cross, Marty Cutler, Bob Doris, Gary
Hare, Charlie Keagle, George Lucas, Lyle Mays, Pat Metheny, Lorne Peterson, Rob Poor, David
Riordan, Richie Shulberg, Steven Spielberg

REVIEWS

“And the games, some enthusiasts say, are among the most innovative on the market.”
-- Businessweek

“Its (BALLBLAZER] high-speed action and split screen ... may leave players a bit dizzy.”
-- the San Francisco Chronicle

“All of which promises to do for the game industry what Lucasfilm has done for the film industry:
rewrite the standards.”
-- Paul Cohen in Atari Connection Magazine

«... both games include sharp, sophisticated graphics and challenging game strategy.”
-- the San Francisco Examiner

«... cartridges that materially advance the state-of-the-art.”
-- Arnie Katz in Electronic Games Magazine

«__the 3-D look makes a game that is chock full of sensory excitement.”
-- San Jose Mercury News

“It sounds like John Coltrane!”
-- Pat Metheny

“BALLBLAZER ... meets the standards that Lucasfilm set in motion pictures”
-- Alan Michaels in Atari Connection Magazine

“BALLBLAZER ... is by far one of the most interesting two-player competition games to date.”
-- Newsweek Access Magazine

«_ the latest breakthroughs in the art of video game design.”
-- Howard Pearlmutter, the Knoware Institute

“A breathtaking technical innovation in games design”
-- Paula Polley & Marina Hirsch in Atari Connection Magazine

«... sophisticated animation and graphics technology heretofore only seen in more advanced com-
puter simulations.”
-- the Hollywood Reporter

“We were very impressed with this game”
-- The Video Game Update

“{BALLBLAZER & Rescue on Fractalus!] ... use more sophisticated computer graphics and anima-
tion techniques and have more of a three-dimensional appearance than most existing games.”
-- Wall Street Journal

TRADEMARKS

UNIX is a trademark of AT&T Bell Laboratories; Apple II is a trademark of Apple Computer
Inc.; Atari is probably a trademark of Atari Inc; DEC and VAX are trademarks of Digital Equip-
ment Corporation; Picture System I is a trademark of Evans & Sutherland, Sun Workstation is a
trademark of Sun Microsystems Inc.; Rescue on Fractalus, Ballblazer, Pixar, LUDS, and ASP are
trademarks of Lucasfilm Ltd.

EUUGN Vols Nol 37

38 EUUGN Vol3 Nol

A Bit About Eighth Edition

Harold Cross

Version Eight, Eighth Edition, V8; these names refer to the flavor of UNIX which is currently
in use by the Computing Science Research Laboratory of AT&T Bell Laboratories. This article is
meant to familiarize the reader with V8. It does not describe it in any great detail. For additional
information see the references or send me mail (bellcore'hac).

V8 is based on 4.1 BSD. Naturally 4.1 didn’t spin around on 1127’s disks for long before
changes were being made. But it wasn’t dubbed Eighth Edition until about two years ago.

From research!dmr Mon May 30 01:45 EDT 1983
:tcejbuS v8

The Eighth Edition System is the line discipline stuff, plus PJW’s
4K file system, plus his remote file system. I.e. we decided

to give our state a name. Partly this was to disarm complaints

that we were running 4BSD. Also, Doug is trying to arrange a new
manual, so besides the considerable system changes there may be an
actual printed 8th edition manual.

Streams

The line discipline stuff was first described publicly by dmr at the Winter 1981 USENIX meet-
ing. Further coverage is found in [1]. Briefly, it is a mechanism providing a full duplex channel
through which processes (user level and kernel) communicate. It is also known as a stacked line dis-
cipline. Processing modules can be pushed into (and popped) from the channel. Thus, for instance,
the init program opens a terminal device and pushes a “tty” line discipline into a channel between it
and the terminal. Likewise, when switching handlers from the “old” to “new” disciplines using the
sty program, it first pops the old one from the channel and then pushes in the new one.

The various disciplines are kernel objects (functions). This provides an elegant (clean in
design, implementation and use) mechanism that isolates many common character processing func-
tions from device drivers in the kernel. The generality afforded is also exploited to do such things
as hardware simulation or, as rob has done with the 5620 terminal, to place the terminal handler in
another processor.

Fast File System

pjw’s 4k file system is a fast file system which coexists with standard 4.1 BSD type file sys-
tems} There are two aspects which make this implementation faster than the 4.1 file system (and
probably as fast as the 4.2 file system).

The block size is 4K bytes. More interesting is the fact that the “free list” is described by a
bitmap. The bitmap resides in core, allowing for quickly locating free blocks and even more quickly
adding blocks to the free list. A side effect of this implementation (or perhaps its impetus) is that
the search for a free block (given the previous used block) can efficiently locate one on an appropri-
ate cylinder (if there’s one available). The latter aspect is probably the most significant factor in

tIn fact the superblock structure is rearranged making it necessary to “fix™ a 4.1 file system using fsck. But it’s a
simple matter to rearrange it so that this isn’t necessary.

EUUGN Vols Nol 39

overall increased throughput.

I mentioned that the 4k file system coexists with the older type. The file system structure con-
tains a union of the two free list implementations and the appropriate 1/0 routines check the file
system type. Although not as gross as the 4.2 file system, this implementation also trades off con-
ceptual simplicity for efficiency.

Network File System

piw’s conceptual pendulum swings the other way with regard to the remote file system. Here
entirely new capabilities are added in a straightforward manner. The remote file system uses a
hierarchical syntax where remote machines’ file systems are mounted on the local file system (the
convention is /n/machine/...). It’s implemented in the kernel on the local machine and at the user
level on the remote. The implementation is transparent to the users’ programs. Locally, there is a
file system switch (ala cdevsw) that causes the appropriate routines to be invoked on the different
types of files (local, network, processes (see later), and facesf). Routines that access networked file
systems do so by invoking a server on the remote machine.

One of the nicest aspects of this system is its generality. A remote file system is mounted by
telling the system the local mount point and giving it a stream connected to the remote file server.
Thus the network file system can theoretically run over any communications path (a modem, a tty
line, Ethernet, PCL, etc.). Since the server is a program utilizing nothing more system dependent
than select (and an understanding of files), it can run under any version of UNIX. This means I can
share anyone else’s file systems but not vice versa.

Another new type of file is implemented in the concept of processes as files [2]. Here the
directory ““/proc” contains files that represent running processes. The standard file access routines
in this case interact with the address space of the said processes. This is a nifty way to manipulate
them. (By the way, there are 128 file descriptors in the Eighth Edition.)

V8 is more than the key kernel changes described above. Next installment I'll describe some
of the wonderful utilities and applications available under V8. But the system is merely a reflection
of its designers, contributors and maintainers, most of whom just seem to possess extraordinarily
good taste. Remember the Seventh Edition?

References
[11 ”A Stream Input-Output System”, Dennis Ritchie. B.L.T.J. 63:8, October 1984, pp. 1897-1910.

[2] “Processes as Files”, T. J. Killian. Proceedings of the Summer 1984 USENIX Conference,
Salt Lake City, Utah.

$When a process opens a file of this type, the appropriate representation of someone’s face is retrieved. More on
this next time.

40 EVUGN VoI5 Nol

HELP WANTED
Dear Sirs,

Recently the Department of Energy Coordination purchased a radio shack
microcomputer TRS 80, Model 16B, supported by the XENIX operational system.

We urgently require, therefore, up-to-date information on new developments
and software for XENIX/UNIX and the help of your members would be much
appreciated.

Central de Anchicayé, Ltda., is an electricity utility dedicated to the
generation and transmission of electrical energy in Colombia, South America.

Please contact me as follows:

Ingeniero JORGE ARIZMENDI MENDOZA,
Central de Anchicayé, Ltda., ,
Apartado adreo 1545, Cali, Colombia, Sur America.

MORE HELP WANTED.....
Dear Sirs,

We are a software house which has been established in Buenos Aires,
Argentina, since 1974.

We are now developing software applied to the UNIX operating system and
urgently require information about:

"UNIX" and "C" language; Application and base software, mainly applied to
NCR TOWER 1632; and systems applied to Newspaper Industry.

Help from you or your members would be greatly appreciated.

Aldo F. Albarellos,
Manager,

Seinco S.R.L.,

Av. Belgrano 271,
2do Piso,
1092-Buenos Aires,
Argentina.

EUUGN Vols Noi 41

A T and T BELL LABORATORIES - SYSTEM V INTERFACE DEFINITION

This document is intended for use by anyone who must understand the
source-level interfaces that are consistent across all System V
environments. As such, its primary audience is the application writer who
is building C language applications whose source code must be portable from
one System V environment to another. In addition, a system builder should
view this document as a necessary condition for supporting a System V
environment which will host such applications.

The System V Interface Definition specifies the operating system components
that are available to users and application programs. The components and
their functionality are defined, but no specification is made of their
implementation. The Definition specifies the application source code
interfaces as well as the runtime behavior seen by an application program.
The emphasis is on defining a common computing environment for applications
and users and not on the internals of the operating system, such as the
scheduler and memory manager.

Chapter Headings

(1) DEFINITION OF THE BASE SYSTEM V INTERFACE; (2) KERNEL EXTENSION; (3)
OTHER PLANNED EXTENSIONS; (4) FUTURE DIRECTIONS; (5) COMPARISON TO THE
198/ /USR/GROUP STANDARD; (6é) OPERATING SYSTEM (0S) SERVICES; (7)
SIGNALS; (8) OTHER LIBRARY ROUTINES; (9) HEADER FILES; (10) SPECIAL
DEVICE FILES; (11) SYSTEM V ERROR MESSAGE STANDARD; -(12) SYSTEM V
COMMAND SYNTAX STANDARD

This, together with similar publications such as the "Bell Systems
Technical (1978 and 1984)" are available from:

Greville Edwards,
UNIX Europe Limited,
27a Carlton Drive,
Putney,

London SW15 2BS,
ENGLAND,

Tel: 01-785 6972

CALLING ALL SCHOOLS
Dear Colleagues,

I am a teacher trying to convince schools that a UNIX-supermicro is better
than a bundle of PCs. I am aware that there are some schools in Germany,
Great Britain and America that already use UNIX.

If there are any more out there in the wilderness, let's get in touch with
each other. Here's my address:

Hans-Josef Heck,

Breslauerstr. 25,
42 EUUGN Vol Nol 5630 Remscheid,

West Germany.

Tel: 02191 - 34 00 64

The Secretary

European Unix® Systems User Group
Owles Hall

Buntingford, Herts.

SG9 9PL.

Tel: Royston (0763) 73039

