e
lovember 15-17, 2002
?Iercure Hotel, Amsterdam, The Netherlands

{ /4
i\

2nd Eyropean BSD Conference |

Proceedings

http://2002.eurobsdcon.org ;




Sided Qmwp BSC-Cin
Fhff’le {Ij ‘Lﬂ(')yﬂu’.bf(( C“,‘

Proceedings

BSDCon Europe 2002

http://2002.eurobsdcon.org

November 15-17, 2002
Amsterdam, The Netherlands







Organisers i

Organisers

Program Committee

Walter Belgers (chair) <walter@belgers.com>

Paul Kranenburg <pk@cs. few.eur.nl>

Frank van der Linden <fvdl@wasabisystems.com>
Wim Vandeputte <wvdputte@kd85.com>

Board members

Chair:  Guido van Rooij (Madison Gurkha)
Secretary:  Walter Belgers (Madison Gurkha)
Treasurer: Robert Kochheim (SNOW)

Volunteer

Jos Jansen (SNOW)

Conference Organiser (PCO)

ICONIQ — The Professional Conference Organisers
Mariélle Klatten & Sabina Beeke <info@iconig.nl>

Special thanks to the sponsors:
GANDI, NLUUG, Stichting NLnet, TUNIX Internet Security & Training and USENIX




il Organisers




Contents

Organisers . . . . . . . . v v i e i

Lectures 3

Virtual Private Networks using FreeBSD - a case study

Eilko Bos, Le Reseau Netwerksystemen B.V. . . . . . ... .. ... ... .... 5
Running and tuning of OpenBSD network servers

Philipp Biihler & Henning Brauer, sysfive.com GmbH / BS Web Services . . . . . 25
Xperteyes - keeping your system under control

Pim Buurman, X|support . . . . . .. .. . 43
Package views

Alistair Crooks, Wasabi Systems . . . . . . . .. .. ... ..o 51
Clustering NetBSD

Hubert Feyrer, The NetBSD Project . . . . . . . . . . .. ... 67
Monitoring the world with NetBSD

Alan Horn, Inktomi Corp. . . . . . . . . . . . . . 85
Timecounters: Efficient and precise timekeeping in SMP kernels

Poul-Henning Kamp, The FreeBSD Project . . . . . . . .. ... ... ..... 101
Using SCTP with Partial Reliability for MPEG-4 Multimedia Streaming

Marco Molteni, Cisco Systems . . . . . . . . .. . ... 113
All For One Port, One Port For All

Bram Moolenaar, Stichting NLnet Labs . . . . . . . .. .. ... .. ...... 123

Advanced VPN support on FreeBSD systems
Riccardo Scandariato, Politecnicodi Torino . . . . . . . . ... .. ... .... 135

A shared write-protected NFS root file system for a cluster of diskless machines

Ignatios Souvatzis, Bonn University, CS Department, Chair V.. . . . . . . . . .. 145
Using BSD for current and next generation voice telephony services

David Sugar, Open Source Telecom . . . . . . . .. . ... ... ... ...... 153
Porting NetBSD to JavaStation-NC

Valeriy Ushakov, . . . . . . . . . . e 161
Mac OS X on a budget

Gerald Wilson, . . . . . . . . . e 167

Addresses 185

il







Introduction

Welcome to the European BSD Conference 2002

It is my pleasure to present to you the proceedings of the European BSD Conference, an in-
ternational conference aimed at those who work with, develop for, or just plain like any of the
BSD-derived operating systems.

These conference proceedings contain the printed version of the papers that have been accepted
by the program committee. We received more submissions than we have time slots, so we had to
disappoint a few people. Don’t give up and submit your abstract to other conferences as well! |
thank all speakers whose papers are included in these proceedings. I know how much work it is to
get it finished in time.

The program committee members were (deliberately) chosen to represent more than just one BSD
variant. The program committee members are all long-time BSD users with a background in
NetBSD, OpenBSD and FreeBSD. This fact shows in the program (which features all three and
also MacOS X). I thank all the program committee members for their work. We certainly have
been able to create a very interesting program, with top speakers.

On the first day there are two tracks with four in-depth tutorials about various topics: device
drivers, network forensics, firewalls and a modular disk I/O subsystem.

During the weekend, there will be plenty of activities. I am very pleased that Michael J. Karels
is willing to give the keynote lecture. He will be talking about the past, present and future of
BSD. After that, you will be able to make your selection from 18 different lectures. Participating
yourself is also possible by hosting a Birds of a Feather (BOF) session.

We also have a vendor exhibition. The book vendors at the exhibition will be giving interesting
discounts. There’s also an internet access room. But it’s not all computers: come to the social
event to talk with others, have a beer and enjoy the entertainment. And...the conference is in
Amsterdam so there will be something to see or do around the clock.

The European BSD Conference will be a great opportunity to learn, and also to meet other users
and developers, not only from your favourite BSD flavour but from all BSDs. This event gives
you a chance to learn from the developments, mistakes and new ideas of the other BSDs.

Thanks goes to the conference organisation, and especially Mariélle and Sabina from ICONIQ
who did a truly excellent job. Thanks also goes to Gandi, TUNIX, USENIX, Stichting NLnet, the
NLUUG and all sponsors who have made this event possible.

And thanks to you, for coming to Amsterdam. I’'ll see you around!

Walter Belgers, Program Chair
Madison Gurkha, Eindhoven



2 Introduction




BSDCon Europe 2002 3

Lectures




4 BSDCon Europe 2002




Virtual Private Networks using FreeBSD - a case study

Virtual Private Networks using FreeBSD - a case study

Eilko Bos
Le Reseau Netwerksystemen B.V.
<eilko@reseau.nl>

People want to, for more than one reason, work at home, sharing information from the corporate
network. Companies want to link their networks together over the internet. But nobody wants
their private traffic to be readable on the internet. Various solutions have been made, and one
of them is IPSec. IPSec stands for ‘IP Security’. It provides authentication and encryption of
networktraffic. But there’s more to secure your data. It makes no sense to encrypt your data and
have your endpoint compromised. Thus a firewall is needed as well. On both ends. And some
more issues to cover.

This little piece of paper shows us how FreeBSD can help us with this. Although there are some
differences between the various BSD's, it will reasonly apply to Open- and NetBSD as well.

Starting at the Gasunie [ went to Philips CP (Now Atos Origin). Spend several years
working for Origin and went back to Groningen (the north of the Netherlands). Since
2 years | am working for Le Reseau, an information security company. Le Rescau is
an independant company, which does pentesting, gives security-related workshops,
advises companies about to-be-implemented environments and so on. Most of my
time I do pentesting and workshops.




6 Virtual Private Networks using FreeBSD - a casestudy

Virtual Private Networks using *BSD
- a case study -

Index
Introduction
Scenario
Ipsec/ ISAKMPD
Introduction
Security policies and associations
Policies
Associations
Configuration
Kemel configuration
Setting up a CA
Creating client certificates
Distribution and use of certificates
ISAKMPD configuration files
Setting up the connection
Helpful tools
Firewalling
Client site
Server site
Extra attention




Virtual Private Networks using FreeBSD - a casestudy 7

Introduction

People want to, for more than one reason, work at home, using information from the corporate
network. Companies want to link their networks together over the Internet, but nobody wants
his or her network traffic to be readable on the Internet. Various solutions have been developed,
and one of them is [Psec.

This paper covers the use of IPsec on a FreeBSD client and an OpenBSD server, both using
isakmpd in an example environment. This environment is pretty generic, so what is used here
can be easily translated to other organizations.

Scenario
In the case described in this paper we have the following scenario:

Net 1 CON2
10.1.1.0/24
QN Client PC
. | 10.6.6.6/32
Fi I wwy e ple.com
Net 2 irewal gil
10.2.2.0/24 %
loud
]
Server
Net 3
10.3.3.0/24 .
INTERNET 10.10.10.0/24

Client GW
client.example.com

— |psec tunnel 1 D
——|DS6C tUnnel 2

Ipsec tunnel 3 Client directly connected
to the internet

The client must be able to connect from everywhere on the Internet independent from IP-
addresses of the client. It might be connected via cable, which changes IP-address once in a
while, or on a network behind such a connection. It can also be a gateway with a network
behind it, let's say 10.10.10.0/24.

Since it does not have a fixed IP-address (as seen from the Internet) we call this a roaming
client. In this paper it will be a FreeBSD machine running isakmpd and ipfilter.
The remote location can be configured as the roaming client.

The firewall has multiple interfaces. The client will enter the network on CON1. It is running
OpenBSD with isakmpd and packet filter.




8 Virtual Private Networks using FreeBSD - a casestudy

IPsec / ISAKMP

Introduction
IPsec is an open set of protocols, implemented in several operating systems by several
companies. It does encryption, decryption and verification. It is implemented in the IP layer.

There are to protocols in [Psec:

e Authentication Header (AH) guarantees integrity of IP packet and protects it from
intermediate alteration or impersonation. This is done by attaching a cryptographic
checksum. This is protocol 51.

e Encapsulated Security Payload (ESP) protects the payload of an [P-packet by
encrypting it with a secret key. This is protocol 51.

(Note that we are talking about protocols here, TCP is protocol 6, UDP is protocol 17)

The roaming client must be able to travel through a NATting firewall. Since NAT requires
header rewriting it makes the AH-protocol unusable in this situation. So only ESP is used.

There are 2 modes to use IPsec in:
e Transport mode is used for peer-to-peer communication between nodes.
o Tunnel mode is used to let security gateways communicate with each other. Behind one
or both gateways there can be a network using the tunnel-mode to communicate with
the other end.

We use tunnel mode since the client has to reach a network behind the firewall.

Setting up an IPsec connection between two peers takes to phases:
e In the first phase, a secure channel is created to communicate between the peers. In this
stage things like passphrase or certificates are exchanged.
¢ In the second phase, security associations (SA's) are negotiated by services such as
IPsec. In this phase the details of the IPsec-link will be negotiated, such as
encapsulation mode, lifetime and algorithms to use. Also the identities like host and
network are specified.

Once these two steps are successfully finished, an encrypted tunnel exists. Later in this
document, after showing how configuration and certificates are made, there is output of packets
written by isakmpd ( -1 <file> option) and decoded by tethereal.




Virtual Private Networks using FreeBSD - a casestudy 9

Security Policies and associations

Policies
During negotiating a security association (SA) and a security policy (SP) are made. The SP is
ment to check wether an inbound or outbout IP packet applies to a SA.
Packets are identified by:
e Security Parameter Index (SPI)
e Source / Destination address
e ESP or AH protocol

For example, we have the following SP on the client from IPsec tunnel 3:
(192.0.34.72 is the firewall, 212.203.6.138 is the client, and 10.1.1.0/24 is the network behind
the firewall.)

10.1.1.0/24[any] 212.203.6.138[any] any
in ipsec
esp/tunnel/192.0.34.72-212.203.6.138/use
spid=26 seqgq=1 pid=27305
refcnt=1

212.203.6.138[any] 10.1.1.0/24[any] any
out ipsec
esp/tunnel/212.203.6.138-192.0.34.72/require
spid=25 seq=0 pid=27305
refent=1

If a packet enters the client with destination 212.203.6.138, and it originates (encrypted) from
192.0.34.72 it will be decrypted according to what is associated in the SA (see below). If in the
decrypted packet 10.1.1.0/24 is the source, the packet will pass, otherwise it will be dropped.

If a packet wants to leave the client, it is checked against the SP. If it has 10.1.1.0/24 as
destination, from 212.203.6.138, it must be encrypted and sent to 192.0.34.72.

This information can be retrieved using the command 'setkey -DP' on FreeBSD.
On the OpenBSD server this information is shown with the command 'netstat'":

$§ netstat -rn -f encap
Routing tables

Encap:

Source Port Destination Port Proto

SA (Address/Proto/Type/Direction)

212.203.6.138/32 0 10.1.1.0/24 0 0 192.0.34.72/50/use/in
10.1.1.0/24 0 212.203.6.138/32 0 0

192.0.34.72/50/require/out

Packets that apply to one of those routing rules are treated accordingly.




10 Virtual Private Networks using FreeBSD - a casestudy

Associations

If a packet passes the SP it is brought to the SA.,

How the packets must be encrypted or decrypted is stored in the Security Associations Database
(SAD). The content of this database can, on FreeBSD, be retreived using the command ‘setkey
-p’. The content looks like this:

212.203.6.138 192.0.34.72
esp mode=any spi=903662016 (0x35dcc9c0) reqid=0(0x00000000)
E: 3des-cbc 946b0af0 c3c001f7 87e87f4e 25eb9c73 e9alddbe clb8cfel
A: hmac-md5 080ab7ad 6a82512c 0e40e506 £00a0578
s5eq=0x00000000 replay=0 £flags=0x00000000 state=mature

created: Oct 11 11:55:40 2002 current: Oct 11 11:57:50 2002
diff: 130(s) hard: 600(s) soft: 540(s)

last: hard: 0(s) soft: O0(s)

current: 0(bytes) hard: O(bytes) soft: O(bytes)
allocated: 0 hard: 0 soft: 0

sadb _seq=1 pid=27304 refcnt=l
192.0.34.72 212.203.6.138
esp mode=any spi=914016611(0x367ac963) reqid=0(0x00000000)
E: 3des-cbc 89e40fld 663e82e9 9130ebl2 c48482d1 3dfadc2b c05e1d40
A: hmac-md5 ba89%e8a3 fc523573 228dfld4 c46069b2
5egq=0x00000000 replay=0 flags=0x00000000 state=mature

created: Oct 11 11:55:40 2002 current: Oct 11 11:57:50 2002
diff: 130(s) hard: 600(s) soft: 540(s)

last: hard: 0(s) soft: 0(s)

current: 0(bytes) hard: 0(bytes) soft: O(bytes)
allocated: 0 hard: 0 soft: 0

sadb_seq=0 pid=27304 refcnt=1

Configuration

Kernel configuration

We will now discuss how the server and the clients are configured. As example we take the
IPsec connection #1, a gateway with a network 10.10.10.0/24 behind it, connecting to the
firewall/VPN gateway to reach network 1.

First we need to make the kernel of the machines [Psec enabled.
On OpenBSD this is done by adding:

Option IPSEC # IPsec
pseudo-device enc 1 # IPSEC needs the encapsulation interface

to the kernel configuration and make and install a kernel with this new configuration.

FreeBSD uses the lines:

Options IPSEC #IP security
Options IPSEC ESP #IP security (crypto; define w/ IPSEC)
Options IPSEC DEBUG #debug for IP security

Also for FreeBSD a new kernel must be built and installed.

Now the machines have an [Psec enabled kernel, the next step will be setting up IPsec. Before
doing so, decisions have to be made on the type of authentication to use. Either passphrases or
X509 certificates can be used. Since passphrases will be to weak for this environment, X509
certificates are used. This implies the need of a Certificate Authority (CA). You can go out on
the Internet and go to a CA that can deliver you the needed certificates. But if you trust yourself
and your network, you can setup your own.




Virtual Private Networks using FreeBSD - a casestudy 11

Setting up a Certificate Authority

In our environment we have setup a dedicated machine that can only be accesses by certain
people using ssh-keys. All other access to the machine is denied. This is the machine where
certificates are created and stored. They must be in a safe place (we allow physical access to the
CA-server, though...).

To be able to create a CA openssl is needed. Be sure to use one of the latest versions.

As root, you need to do the following:

# mkdir -p /etc/ssl/private

# openssl genrsa -out /etc/ssl/private/ca.key 1024

# openssl req -new -key /etc/ssl/private/ca.key \
-out /etc/ssl/private/ca.csr

During the third step some questions needs to be answered. The answers are printed bold.

Country Name (2 letter code) [AU]:NL

State or Province Name (full name) [Some-State]:Groningen

Locality Name (eg, city) []:Groningen

Organization Name (eg, company) [Internet Widgits Pty Ltd]:EuroBSDcon
Organizational Unit Name (eg, section) []:EuroBSDcon CA dept.

Common Name (eg, YOUR name) []:BOFH

Email Address []:bofh@eurobsdcon.org

Please enter the following 'extra' attributes
to be sent with your certificate request

A challenge password []:TruSt'nmyCA

An optional company name []:

Now we have a CA key (ca.key) and a certificate signing request (ca.csr) file. The latter one is
used to create a certificate that will be signed with the key:

# openssl x509 -req -days 365 -in /etc/ssl/private/ca.csr \
-signkey /etc/ssl/private/ca.key \
-extfile /etc/ssl/x509v3.cnf -extensions x509v3 CA \
-out /etc/ssl/ca.crt

Note that the file "/etc/ssl/x509v3.cnf" is not available in a default FreeBSD install. However it
can be fetched from OpenBSD and used without problems.

Now we have a CA certificate, ca.crt. Together with the CA key this certificate is used to create
client certificates. Setting up a CA is done.




12 Virtual Private Networks using FreeBSD - a casestudy

Creating client certificates

Creating certificates is done on the same machine as the CA because the keys of the CA are
needed. For each peer, certificates are needed. Since the solution needs to be IP-address
independent, we choose to use FQDN certificates.

To store the certificates for more than one peer, a directory structure is set up like it would be
used in isakmpd:

/usr/local/cert/FQDN1l/ca
| | --/certs
| |--/private
|
| -/FQDN2/ca
| |--/certs
| |--/private
|

where 'FQDN{1|2}' represents the FQDN of the peer, e.g. www.example.com. For each new
peer a new set of directories is created.

After creating this directory structure a certificate signing request for the server is created:

# openssl genrsa -out
/usr/local/cert/www.example.com/private/www.example.com.key 1024
# openssl req -new -key
/usr/local/cert/www.example.com/private/www.example.com.key \

-out /usr/local/cert/www.example.com/private/www.example.com.csr

Now the certificate itself must be created for the server:

# cd /usr/local/cert/www.example.com/private

# setenv CERTFQDN www.example.com

# openssl x509 -req -days 365 -in www.example.com.csr \
-CA /etc/ssl/ca.crt -CAkey /etc/ssl/private/ca.key \
-CAcreateserial \
-extfile /etc/ss1/x509v3.cnf -extensions x509v3 FODN \
-out www.example.com.crt

Now the certificate is copied to the 'cert' directory and the CA cert is included:

# cp www.example.com.crt ../certs/
# cp /etc/ssl/ca.crt /usr/local/cert/www.example.com/ca

Now there is a complete set of certificates that can be transferred to the server.

For the client the same steps must be performed, but now with the FQDN the client will use.
This can be a non-existing FQDN like 'client.example.com' since the mechanism of checking
certificates only checks an abstract of the certificate and it is not checked against the real
FQDN. This enables the use for roaming clients.




———

Virtual Private Networks using FreeBSD - a casestudy

13

Distribution and use of certificates

At this stage the isakmpd configuration files are entering the scene.

On the server side, a generic setup is needed which will allow all clients to connect and
authenticate, without having the configuration file updated each time a client is added. The
same CA signs certificates from the client and server. When peers authenticate each other they
will create an abstract of information from the received certificate and compare that with an
abstract of what is in the policy file. Since the abstract of the CA certificate will be the same, it
is possible to add the ca.crt to the policy file and distribute this to all the peers (including the
server). In this case the policy file needs to be edited (depending on some settings).

We can create a generic policy file that will look like this:

# cat isakmpd.policy

Comment: This policy accepts ESP SAs from a remote that uses the right
password
$0penBSD: policy,v 1.6 2001/06/20 16:36:19 angelos Exp §

SEOM: policy,v 1.6 2000/10/09 22:08:30 angelos Exp §
Authorizer: "POLICY"

licensees: "x509-base64:\

MIICITCCA]6gAwIBAgIBADANBGkGhK iGIw0BAQQFADCEN TELMAKGA ] UEBAMC Thwx \
EjAQBgNVBAGTCUdyb25pbmd1b] ESMBAGAIUEBXMJIR 30vbm 112 2 VUMRUWEWYDVQQK
EwxCemFzYXB1biBvemcxFzAVBGNVBAS TDkh1 YWRXAWFydGVyIENBMRIWEAYDVOQD \

EwlFaerbyBCbBMijAngkqhkiGQwOBCQEWEBRthtthBicszYXBlbi5vcmcw\
HhcNMDIU

EBhMCTkwx \
EjAQBgNV THIS IS THE ca.crt from the ./ca directory wEwYDVQQK\
EwxCcmFz WEAYDVQQD\

EwlFaerbyBCb3MxIjAngkqhkiG9w03CQEWE3RthtthBicszYXBlbi5vcmcw\
gZ8wDQYJKoZIhVCNAQEBBQADQYOAMIGJAOGBAJjcx3Hg66XEDz9kDX+6qE51gX6e\
70kbrmV1CQXyYV?wc3p9+ijqqkm5AVYj3bUfyXOrngSSnPNQBOOqu8iRWcony\
dequxvmyoysTt5FAregsth34whgbh375u65yh45egbdfvbtzNHq1nl7z+DRF9\
UN88$cqfme/AJrPAgMBAAGjIzAhMBIGAlUdEwEB/wQIMAYBAf8CAQEwaYDVROP\
BAQDAGKEMAOGCSQGS Ib3DQEBBAUAA4GBAFAYPJIE25keXA7/ 6,/ JE4 W5pFWSjnsPj 3\
wC/qR+ki/dQOtAgt15f9W6zIGBUSBXUP4Va4EppbdeIhyX+aiMJ3ETMlMu2h/rZ\
MaBAByPZszMwPlb5J8rEP4rk9VprbQFAORFJdCDOZekIrcVMZbT89cz§IS9lGT\

NWLaOvTsNm9b"
Conditions: app_domain == "Ipsec policy" &g
€5p_present == "yes" gg
esp_enc_alg == "aes" &
esp_auth_alg == "hmac-sha" -> "true";

As extra check the Conditions can be added with the FQDN of the client:

Conditions: app_domain == "IPsec policy” &
€sp_present == "yes" ¢g
€sp _enc_alg == "aes" g4
esp _auth alg == "hmac-sha" &&
(remote id == "client.example.com" Il
remote id == "another.example.com") -> "true";

This policy can be copied to the /usr/local/cert/FQDN directory for each client, so it can be
transferred together with the certificates,




14

Virtual Private Networks using FreeBSD - a casestudy

TSAKMPD configuration files

How a policy file is created is described in the previous part.

The only thing missing is a configuration file. This one differs from peer to peer, but a template
can be generated. Let's walk though the configuration file of the server first. this file is different
users no [P-addresses of the client must
all unneeded lines are

from the rest. Since it must be possible to use roaming

appear in the configuration file. Furthermore, to improve readability,

removed.

It looks like this, lines starting with a " and italic font are comments of the author.

# 6 Id: $

# Paths in this file are paths as they would be on
# the final destination, in this case the server.
# General section

[Generall

Policy-File=

/usr/local/etc/isakmpd/policy

Retransmits= 5

Exchange-max-time= 120

Listen-on= 192.0.34.72

# Incoming phase 1 negotiations are multiplexed on
4 the source IP address

[Phase 1]

Default= ISAKMP-peer-GNU

# These connections are walked over after config
# file parsing and told to the application layer
# so that it will inform us when traffic wants to
# pass over them. This means we can do on-demand
# keying.

{Phase 2]

Connections= IPsec-OBSD-GNU

# The peers

[ISAKMP-peer-GNU]

Phase= 1

Transport= udp

Local-address= 192.0.34.72

# We don't want the peer in the configfile.

# Instead we point to our identity and leave the
4 rest to certificates and the policy file

ID= work-ID
configuration= Default-main-mode
[work-1ID]

ID-type= FQDN

Name= wwWw.example.com

4 The different connections
[IPsec—OBSD-GNU]

Phase= 2

ISAKMP-peer= ISAKMP-peer-GNU

Configuration= pefault-quick-mode
Local-1ID= Net-OBSD
Remote-1ID= Net-GNU

4 Our Networks
[Net~GNU]

# This is the remote network. We leave it generid
# it will be negotiated, and the configuration of
# the peer will be used.

ID-type=
Network=
Netmask=

[Net-OBSD]
ID-type=
Network=
Netmask=

4 Certificates stored in PEM format

[XSO9—certificates]
CA-directory=
Cert-directory=

/usr/local/etc/isakmpd/certs/

Private-key= \

/usr/local/etc/isakmpd/private/www.example.com.k:

# Phase 1 descriptions
[Default‘main—mode]
DOI=

EXCHANGE_TYPE=
Transforms=

# Main mode transforms

FHEBERHE AR EERRRBRAR RS

# 3DES

# Note "AUTHENTICATION METHOD" it is not

#"PRE_SHARED"

# as it would by default

[3DES-SHA]
ENCRYPTION_ALGORITHM=
HASH_ALGORITHM=
AUTHENTICATION_METHOD=
GROUP_DESCRIPTION=
Life=

[3DES-MD5]
ENCRYPTION_ALGORITHM=
HASH_ALGORITHM=
AUTHENTICATION_METHOD=
GROUP_DESCRIPTION=
Life=

< snip rest of default

This file can be stored in the directory Just/local/certs/www.example.com/.

Now the files for the server are all in place. They can be tr
Just/local/etc/isakmpd(/{calcerts|private}/). Change the mo
read them. If this is not done, isakmpd refuses to read the configuration fi

permissions) and will not work.

ansferred to the server in
de of the files to 600 so others cannot
le (too open

IPV
0.0
0.0

4*ADDR_SUBNET
.0.
.0.0

IPV4_ADDR_SUBNET
10.1.1.0
255.255.255.0

/usr/local/etc/isakmpd/c4

IPSEC
ID_PROT
3DES-SHA, 3DES-MD5

3DES_CBC

SHA

RSA_SIG
MODP_1024
LIFE_3600_SECS

3DES_CBC

MD5

RSA_SIG
MODP_1024
LIFE_3600_SECS

config file >




Virtual Private Networks using FreeBSD - a casestudy

15

What is left is the configuration of the client. The configuration file looks pretty much the same
but in this file the peer (server) is explicitly named:

# cat /usr/local/certs/isakmpd.conf.template

# General section

# The IP-address of the client is
# @@MY IP ADDRESS@@ so it can be
substituted.

# The FODN is @@MY FQDNE@

[General]
Retransmits= 5
Exchange-max-time= 120

Listen-on=
@@MY_IP_ADDRESS@@
# Listen-on= 212.203.6.138
# Incoming phase 1 negotiations are
multiplexed on the source IP address

[Phase 1]
193.78.174.81= ISAKMP-peer-GNU
Default= ISAKMP-peer-GNU

# These connections are walked over
after config

# file parsing and told to the
application layer

# so that it will inform us when traffic
wants

# to pass over them. This means we can
do on-

# demand keying.
[Phase 2]
Connections= IPsec-OBSD-GNU
# The peers

[ISAKMP-peer—-GNU]

# over here we explicitely declare the
server's

# address.
Phase= 1
Transport= udp

Local-address=
@@MY_IP_ADDRESS@E@

Address= 192.0.34.72
ID= my-ID
Configuration= Default-main-
mode

{my-ID]

ID-type= FQDN

Name= @@MY FQDN@@

# Name=

client.example.com

# The different connections
[IPsec-OBSD-GNU)

Phase= 2

ISAKMP-peer= ISAKMP-peer-GNU
Configuration= Default-quick-
mode

Local-ID= Net-OBSD
Remote-ID= Net-GNU

# Our Networks
[Net-GNU]
# this is the remote network to be reached.

ID-type= IPV4_ADDR_SUBNET
Network= 10.1.1.0
Netmask= 255.255.255.0
[Net-OBSD]

# this is our network

ID-type= IPV4_ADDR_SUBNET
Network= 10.10.10.0
Netmask= 255.255.255.0

# Certificates stored in PEM format
[X509-certificates]

CA-directory= /etc/isakmpd/ca/
Cert-directory= /etc/isakmpd/certs/
Private-key= \
/etc/isakmpd/private/@@MY_FQDNQQ.key

# Phase 1 descriptions
[Default-main-mode]

DOI= IPSEC
EXCHANGE_TYPE= ID_PROT
Transforms= 3DES-SHA, 3DES-MDS

# Main mode transforms
FHESHHHHGH AR ARG

# 3DES

[3DES-SHA)

ENCRYPTION ALGORITHM=  3DES_CBC
HASH ALGORITHM= SHA
AUTHENTICATION_METHOD= RSA_SIG
GROUP_DESCRIPTION= MODP_1024

Life= LIFE_3600_SECS
[3DES-MD5]

ENCRYPTION ALGORITHM=  3DES_CBC
HASH_ALGORITHM= MD5
AUTHENTICATION METHOD= RSA_SIG
GROUP_DESCRIPTION= MODP_1024

Life= LIFE_3600_SECS

< snip rest of default configfile >

This file can be used for every new client, only the @@MY_IP_ADDRESS@@ and
@@MY_FQDN@@ must be substituted. Copy this template to /usr/local/certs/FQDN(client)/

and do the substitution.

Now the configuration of the client is done as well. The directory /usr/local/certs/FQDN(client)
can be transferred to the client machine in /ust/local/etc/isakmpd/.



16 Virtual Private Networks using FreeBSD - a casestudy

Setting up the connection

Now on both sides isakmpd can be started. For debugging purposes both can write everything to
STDOUT (-D A=99), which is very noisy. It is better to redirect it to a file. Also both can be
started with the ‘-1 <file>" option, causing isakmpd to write negotiation packets to a pcap-file.

On both sides isakmpd is (for debugging) started as:

# cd /usr/local/etc/isakmpd
# isakmpd -c isakmpd.conf -1 /tmp/ike.pcap -D A=99 -d > /tmp/ike.debug 2>&1 &

The file /tmp/ike.pcap can now be read into tethereal (which is installed with the net/ethereal
port):

# tethereal -V -r /tmp/ike.pcap > /tmp/ike_ readable.txt

The result is a file that is human readable. The negotiation took 9 packets in total:

22:20:02.015224 192.0.34.72.500 > 212.203.6.138.500: isakmp: phase 1 I ident: [|sa]

22:20:02.160553 212.203.6.138.500 > 192.0.34.72.500: isakmp: phase 1 R ident: [l[sa]

22:20:02.242995 192.0.34.72.500 > 212.203.6.138.500: isakmp: phase 1 I ident: [|ke]

22:20:02.516224 212.203.6.138.500 > 192.0.34.72.500: isakmp: phase 1 R ident: [|ke]

22:20:02.676648 192.0.34.72.500 > 212.203.6.138.500: isakmp: phase 1 I ident(E]:
[encrypted id]

22:20:03.478109 212.203.6.138.500 > 192.0.34.72.500: isakmp: phase 1 R ident[E]:

[encrypted id]
22:20:03.590456 192.0.34.72.500 > 212.203.6.138.500: isakmp: phase 2/others I

oakley-quick(E]: [encrypted hash]

22:20:03.963916 212.203.6.138.500 > 192.0.34.72.500: isakmp: phase 2/others R
oakley-quick[E]: [encrypted hash]

22:20:03.986819 192.0.34.72.500 > 212.203.6.138.500: isakmp: phase 2/others I
oakley-quick[E]: [encrypted hash]

Below is the (snipped) output of each packet from the servers side, the connection is iniated by
the server:

Frame 1 (144 on wire, 144 captured)
Null/Loopback
Family: IP (0x00000002)
Internet Protocol, Src Addr: www.example.com (192.0.34.72), Dst Addr:
client.example.com (212.203.6.138)
Version: 4
Protocol: UDP (0x11)
User Datagram Protocol, Src Port: isakmp (500), Dst Port: isakmp (500)
Internet Security Association and Key Management Protocol
Initiator cookie, Responder cookie
Next payload: Security Association (1)
Version: 1.0
Exchange type: Identity Protection (Main Mode) (2)
Flags
.0 = No encryption
.0. = No commit
.... .0.. = No authentication
Message ID: 0x00000000
Length: 112
Security Association payload
Next payload: NONE (0)
Length: 84
Domain of interpretation: IPSEC (1)
Situation: IDENTITY (1)
Proposal payload
Next payload: NONE (0)
Length: 72




Virtual Private Networks using FreeBSD - a casestudy 17

Proposal number: 1

Protocol ID: ISAKMP (1)

SPI size: 0

Number of transforms: 2

Transform payload
Next payload: Transform (3)
Length: 32
Transform number: 0
Transform ID: KEY IKE (1)
Encryption-Algorithm (1): 3DES-CBC (5)
Hash-Algorithm (2): SHA (2)
Authentication-Method (3): RSA-SIG (3)
Group-Description (4): Group-Value (2)
Life-Type (11): Seconds (1)
Life-Duration (12): Duration-Value (3600)

Transform payload
Next payload: NONE (0)
Length: 32
Transform number: 1
Transform ID: KEY IKE (1)
Encryption-Algorithm (1): 3DES-CBC (5)
Hash-Algorithm (2): MD5 (1)
Authentication-Method (3): RSA-SIG (3)
Group-Description (4): Group-Value (2)
Life-Type (11): Seconds (1)
Life-Duration (12): Duration-Value (3600)

Frame 2 (112 on wire, 112 captured)
Null/Loopback
Internet Protocol, Src Addr: client.example.com (212.203.6.138), Dst Addr:
www.example.com (192.0.34.72)
Version: 4
Protocol: UDP (0x11)
User Datagram Protocol, Src Port: isakmp (500), Dst Port: isakmp (500)
Internet Security Association and Key Management Protocol
Next payload: Security Association (1)
Exchange type: Identity Protection (Main Mode) (2)
Message ID: 0x00000000
Length: 80
Security Association payload
Next payload: NONE (0)
Length: 52
Domain of interpretation: IPSEC (1)
Situation: IDENTITY (1)
Proposal payload
Next payload: NONE (0)
Length: 40
Proposal number: 1
Protocol ID: ISAKMP (1)
SPI size: 0
Number of transforms: 1
Transform payload
Next payload: NONE (0)
Length: 32
Transform number: 0
Transform ID: KEY IKE (1)
Encryption-Algorithm (1): 3DES-CBC (5)
Hash-Algorithm (2): SHA (2)
Authentication-Method (3): RSA-SIG (3)
Group-Description (4): Group-Value (2)
Life-Type (11): Seconds (1)
Life-Duration (12): Duration-Value (3600)




18

Virtual Private Networks using FreeBSD - a casestudy

Frame 3 (212 on wire, 212 captured)
Null/Loopback
Internet Protocol, Src Addr: www.example.com (192.0.34.72), Dst Addr:
client.example.com (212.203.6.138)
User Datagram Protocol, Src Port: isakmp (500), Dst Port: isakmp (500)
Internet Security Association and Key Management Protocol
Next payload: Key Exchange (4)
Exchange type: Identity Protection (Main Mode) (2)
Message ID: 0x00000000
Length: 180
Key Exchange payload
Next payload: Nonce (10)
Length: 132
Key Exchange Data
Nonce payload
Next payload: NONE (0)
Length: 20
Nonce Data

Frame 4 (212 on wire, 212 captured)
Null/Loopback
Internet Protocol, Src Addr: client.example.com (212.203.6.138), Dst Addr:
www.example.com (192.0.34.72)
User Datagram Protocol, Src Port: isakmp (500), Dst Port: isakmp (500)
Internet Security Association and Key Management Protocol
Next payload: Key Exchange (4)
Exchange type: Identity Protection (Main Mode) (2)
Message ID: 0x00000000
Length: 180
Key Exchange payload
Next payload: Nonce (10)
Length: 132
Key Exchange Data
Nonce payload
Next payload: NONE (0)
Length: 20
Nonce Data

Frame 5 (999 on wire, 999 captured)
Null/Loopback
Internet Protocol, Src Addr: www.example.com (192.0.34.72), Dst Addr:
client.example.com (212.203.6.138)
User Datagram Protocol, Src Port: isakmp (500), Dst Port: isakmp (500)
Internet Security Association and Key Management Protocol
Next payload: Identification (5)
Exchange type: Identity Protection (Main Mode) (2)
Message ID: 0x00000000
Length: 967
Identification payload
Next payload: Certificate (6)
Length: 32
ID type: FQDN (2)
Protocol ID: Unused
Port: Unused
Identification data: www.example.com
Certificate payload
Next payload: Signature (9)
Length: 747
Certificate encoding: 4 - X.509 Certificate - Signature
Certificate Data
Signature payload
Next payload: Notification (11)
Length: 132
Signature Data
Notification payload
Next payload: NONE (0)
Length: 28




Virtual Private Networks using FreeBSD - a casestudy 19

Domain of Interpretation: IPSEC (1)
Protocol ID: ISAKMP (1)

SPI size: 16

Message type: INITIAL-CONTACT (24578)
Security Parameter Index

Frame 6 (980 on wire, 980 captured)
Null/Loopback
Internet Protocol, Src Addr: client.example.com (212.203.6.138), Dst Addr:
www.example.com (192.0.34.72)
User Datagram Protocol, Src Port: isakmp (500}, Dst Port: isakmp (500)
Internet Security Association and Key Management Protocol
Next payload: Identification (5)
Exchange type: Identity Protection (Main Mode) (2)
Message ID: 0x00000000
Length: 948
Identification payload
Next payload: Certificate (6)
Length: 24
ID type: FODN (2)
Protocol ID: Unused
Port: Unused
Identification data: client.example.com
Certificate payload
Next payload: Signature (9)
Length: 732
Certificate encoding: 4 - X.509 Certificate - Signature
Certificate Data
Signature payload
Next payload: Notification (11)
Length: 132
Signature Data
Notification payload
Next payload: NONE (0)
Length: 28
Domain of Interpretation: IPSEC (1)
Protocol ID: ISAKMP (1)
SPI size: 16
Message type: INITIAL-CONTACT (24578)
Security Parameter Index
Extra data: 00000000

Frame 7 (320 on wire, 320 captured)
Null/Loopback
Internet Protocol, Src Addr: www.example.com (192.0.34.72), Dst Addr:
client.example.com (212.203.6.138)
User Datagram Protocol, Src Port: isakmp (500), Dst Port: isakmp (500)
Internet Security Association and Key Management Protocol
Next payload: Hash (8)
Exchange type: Quick Mode (32)
Message ID: 0x29a5cé670
Length: 288
Hash payload
Next payload: Security Association (1)
Length: 24
Hash Data
Security Association payload
Next payload: Nonce (10)
Length: 52
Domain of interpretation: IPSEC (1)
Situation: IDENTITY (1)
Proposal payload
Next payload: NONE (0)
Length: 40
Proposal number: 1
Protocol ID: IPSEC ESP (3)
SPI size: 4




20 Virtual Private Networks using FreeBSD - a casestudy

Number of transforms: 1
SPI: 4FF93BE9
Transform payload
Next payload: NONE (0)
Length: 28
Transform number: 1
Transform ID: 3DES (3)
SA~-Life-Type (1): Seconds (1)
SA-Life-Duration (2): Duration-Value (600)
Encapsulation-Mode (4): Tunnel (1)
Authenticaticn-Algorithm (5): HMAC-MD5 (1)
Group-Description (3): Group-Value (2)
Nonce payload
Next payload: Key Exchange (4)
Length: 20
Nonce Data
Key Exchange payload
Next payload: Identification (5)
Length: 132
Key Exchange Data
Identification payload
Next payload: Identification (5)
Length: 16
ID type: IPV4 _ADDR SUBNET (4)
Protocol ID: Unused
Port: Unused
Identification data: 10.1.1.0/255.255.255.0
Identification payload
Next payload: NONE (0)
Length: 16
ID type: IPV4 _ADDR SUBNET (4)
Protocol ID: Unused
Port: Unused
Identification data: 212.203.6.138/255.255,255.255

Frame 8 (324 on wire, 324 captured)
Null/Loopback
Internet Protocol, Src Addr: client.example.com (212.203.6.138), Dst Addr:
www.example.com (192.0.34.72)
User Datagram Protocol, Src Port: isakmp (500), Dst Port: isakmp (500)
Internet Security Association and Key Management Protocol
Next payload: Hash (8)
Exchange type: Quick Mode (32)
Message ID: 0x29a5cé670
Length: 292
Hash payload
Next payload: Security Association (1)
Length: 24
Hash Data
Security Association payload
Next payload: Nonce (10)
Length: 52
Domain of interpretation: IPSEC (1)
Situation: IDENTITY (1)
Proposal payload
Next payload: NONE (0)
Length: 40
Proposal number: 1
Protocol ID: IPSEC_ESP (3)
SPI size: 4
Number of transforms: 1
SPI: 5838A401
Transform payload
Next payload: NONE (0)
Length: 28
Transform number: 1
Transform ID: 3DES (3)




Virtual Private Networks using FreeBSD - a casestudy 21

SA-Life-Type (1): Seconds (1)
SA-Life-Duration (2): Duration-Value (600)
Encapsulation-Mode (4): Tunnel (1)
Authentication-Algorithm (5): HMAC-MD5 (1)
Group-Description (3): Group-Value (2)
Nonce payload
Next payload: Key Exchange (4)
Length: 20
Nonce Data
Key Exchange payload
Next payload: Identification (5)
Length: 132
Key Exchange Data
Identification payload
Next payload: Identification (5)
Length: 16
ID type: IPV4 ADDR SUBNET (4)
Protocol ID: Unused
Port: Unused
Identification data: 10.1.1.0/255.255.255.0
Identification payload
Next payload: NONE (0)
Length: 16
ID type: IPV4 _ADDR SUBNET (4)
Protocol ID: Unused
Port: Unused
Identification data: 212.203.6.138/255.255.255.255
Extra data: 00000000

Frame 9 (84 on wire, 84 captured)
Null/Loopback
Internet Protocol, Src Addr: www.example.com (182.0.34.72), Dst Addr:
client.example.com (212.203.6.138)
User Datagram Protocol, Src Port: isakmp (500), Dst Port: isakmp (500)
Internet Security Association and Key Management Protocol
Next payload: Hash (8)
Exchange type: Quick Mode (32)
Message ID: 0x29a5c670
Length: 52
Hash payload
Next payload: NONE (0)
Length: 24
Hash Data

The message ID of the phase 1 part of the conversation is 0x00000000. As soon as phase 2 is
reached, the message ID is changed to 0x29a5¢670. In this conversation it is clear to see that in
phase 1 authentication is done, while negotiation about network properties is done in phase 2.

Helpful tools
This conversation resulted in a correct working Ipsec link. But in many cases of new developed

IPsec links, many things can go wrong. Captured packets as shown before are nice to have for
debugging but will often not suffice. Looking at the outputfile of isakmpd can help a lot. As said
before, this output is very noisy, but it contains a lot of useful information.

It can happen that routing tables are not correctly setup. E.g. a VPN-client with 2 IP-addresses
on the same interface might place packets destined for the tunnel on the wrong IP-address. Look
at the routing table to see if something missing.

In the following chapter a brief overview of firewall settings will be given. When testing IPSec
in secure environments, firewalls might cause problems with respect to negotiation or ESP-
traffic. If possible, stop the firewall for testing, or log all the blocked traffic. On FreeBSD this is
done with ‘ipmon(8)’. On OpenBSD this is done with a tcpdump on pflog (man pflog).




Virtual Private Networks using FreeBSD - a casestudy

Firewalling

Client site

There are some demands on the client site for firewalling. It is not allowed to access the Internet
directly. If an IPsec connection is active, all Internet activity should go via the proxy server on
network 1. DNS-requests are sent to the name server on network 1.

To keep control over the traffic, only a few protocols are allowed to work remotely. These
protocols are ICA for Citrix and ssh.

Assuming that the network interface to the Internet is called ‘fxp0’ and the internal interface
called ‘fxp1’, a firewall configuration on the client gateway running FreeBSD with ipfilter,
would look like this:

# 10.10.10.1 = internal address of client gateway

# 10.10.10.2 = nameserver

# 10.10.10.16 = admin’s PC

# No antispoofing 1is needed on this interface. We only allow from one IP

address.

# Allow incoming and outgoing IPsec traffic from the server

pass in quick on fxp0 proto udp from 97.0.34.72 to 212.203.6.138 port = 500 \
keep state

pass out quick on fxp0O proto udp from 212.203.6.138 to 97.0.34.72 port = 500 \
keep state

pass in quick on fxp0 proto esp from 97.0.34.72 to 212.203.6.138

pass out quick on fxp0 proto esp from 212.203.6.138 to 97.0.34.72

pass in quick on 1o0 all

pass out quick on 1o0 all

# Allow admin access from admin’s PC

pass in quick on fxpl proto tcp from 10.10.10.16 to 10.10.10.1 port = ssh \
keep state

# allow outgoing dns queries

pass out quick on fxpl proto udp from 10.10.10.1 port=53 to 10.10.10.2 \
port=52 keep state

block in log quick on fxpl from any to 10.10.10.1

# Perform some security on incoming traffic. It must come from network 1 or

# ourselves.

pass in quick on fxpl from 10.10.10.0/24 to 10.1.1.0/24

pass in quick on fxpl from 10.10.10.0/25 to 10.10.10.0/24

pass out quick on fxpl from 10.1.1.0/24 to 10.10.10.0/24

pass out quick on fxpl from 10.10.10.0/24 to 10.10.10.0/24

# block and log the rest

block in log level auth.alert quick all

block out log level auth.alert gquick all

Note that this very simple firewall configuration does not allow e.g. ICMP traffic. This might
cause problems with e.g. MTU discovery or other administrative network information.
Restriction on type of traffic will be done on the server, since firewalling on the client is not that
reliable. If it happens to get compromised it is easy to change the rules.




Virtual Private Networks using FreeBSD - a casestudy 23

Server site

This site is a bit more complicated. On this site traffic of the client is checked, but that can only
be done after it is decrypted. So it can’t be done on the incoming interface. We filter on other
interfaces.

The server is running OpenBSD with packet filter. It has 5 interfaces. For VPN traffic only 2
interfaces are used: the interface to the Internet where the VPN-traffic comes in and the
interface to network 1. It is easy to add rules so VPN-traffic can go to the other networks as
well.

# See pf.conf(5) for syntax and examples
# interfaces by network

lo if = "lo0"

ext if = "rlo"

netl if = "dcO"

net2 if = "dcl"

net3 if = "dc2"

dmz_if = "dc3"

# network addresses

ifext _net = "rl0/8"

if1_net = "dc0/24"

if2 net = "dcl/24"

if3 net = "dc2/24"

ifdmz_net = "dc3/24"

internal net = "10.0.0.0/8" # internal network, including VPN networks
ifext ip = "192.0.34.72" # www.example.com

# special machines for which there are distinct rules
Dproxy = "10.1.1.10

nameserver = "10.1.1.11"

citrix = "10.1.1.12"

caserver = "10.1.1.14"

admin = "10.1.1.100"

BUFBERBHRRFFEHBBHARHRRRARE AR EHAEHFHARFFRA AR R B R AR AR AR AR EA AR AR
# The Rules
BHAFBBEFARFFBRBRRARHBHBAAERAHARHRAVARIREF AR HR B AR A R AR AR AR R RE AR AR AR RS
# default deny

block in log all

block out log all

# loopback interace
pass in quick on $lo_if all
pass out guick on $lo if all

# VPN/Internet interface

# rules for Sext if (in)

pass in quick on $ext if proto udp from any port = isakmp to $ext if ip \
port = isakmp keep state -

pass in quick on Sext if proto esp from any to $ext_if ip keep state

# other rules for $ext if (out)

pass out quick on $ext if proto udp from Sext if ip port = isakmp to any \
port = isakmp keep state

pass out quick on $ext if proto esp from $ext_if ip to any keep state

pass out quick on Sext if proto icmp from $ext if ip to any icmp-type echoreq

keep state

pass out gquick on Sext if proto tcp from $proxy to any keep state

pass out gquick on Sext if proto tcp from $nameserver port = 53 to any \
port = 53 keep state

pass out quick on $ext_ if proto udp from $nameserver to any port = 53 keep

state

pass in quick on encO all
pass out quick on encO all




24 Virtual Private Networks using FreeBSD - a casestudy

FHARRAHARBRARERERE AR
# network 1 interface
(3323223222222 3 222
# ICA traffic
pass out quick on $netl if proto tcp from Sinternal net to $citrix \
port = 1496 keep state
pass out quick on $netl if proto udp from $Sinternal net to $citrix \
port = 1604 keep state
# DNS traffic
pass out quick on $netl if proto tcp from $internal net port= 53 \
to $nameserver port = 53 keep state
pass out quick on $netl if proto udp from $internal net to $nameserver \
port = 53 keep state
# Proxy traffic
pass out quick on $netl if proto tcp from $Sinternal net to Sproxy \
port = 3128 keep state
# ssh traffic
block out quick on $netl_if proto tcp from $internal net to $netl if port = 22
pass out quick on $netl if proto tcp from §internal net to $ifl net port = 22
keep state

# Incoming for management

pass in quick on $netl if proto tcp from {Scaserver, Sadmin, Sproxy} to \
$netl if port = ssh flags S/FSRA keep state

block in log quick on $netl_if from any to $netl if

block out log quick on $netl if from $netl if to any

This is a very simple firewall setup,but it allows certain traffic from the VPN-client to some
services on network 1. Note that only some services are allowed. Blocking the rest at this stage,
after the tunnel, is more reliable than blocking it at the client side.

Extra attention
The setup above applies to a client acting as a single machine behind a gateway or as a single
machine directly connected to the Internet.

To avoid changing the configurations too much when the IP-address given by the ISP changes,
it is possible to add an extra IP-address on the network interface:

# ifconfig ep0 add 10.7.7.7 netmask 255.255.255.0
# route add 10.0.0.0/8 10.7.7.7

An extra rule in the firewall configuration will be needed to allow traffic from 10.7.7.7 on the
interface. After this has been done, the isakmpd configuration can be configured to listen on
10.7.7.7 instead of the external IP-address. When that external IP-address changes, only the
firewall configuration needs to be changed and reloaded.




Running and tuning of OpenBSD network servers

25

Running and tuning of OpenBSD
network servers in a production environment

Philipp Biihler & Henning Brauer
sysfive.com GmbH / BS Web Services
<pb@sysfive.com>

Heavily loaded network servers can experience resource exhaustion. At best, resource exhaustion
will slow server response, but left uncorrected, it can result in a crash of the server. In order to un-
derstand and prevent such situations, a knowledge of the internal operation of the operating system
is required, especially how memory management works. This paper will provide an understanding
of the memory management of OpenBSD, how to monitor the current status of the system, why
crashes occur and how to prevent them.

Audience
Experienced network administrators and interested kernel hackers.

Required Skills
Good knowledge in the TCP/IP suite, basic understandig of memory management under UNIX
and basic understandig of an UNIX kernel.

Philipp Biihler has over eight years UNIX experience (Solaris, Linux, FreeBSD,
HP/UX, OpenBSD) and is co-founder of sysfive.com GmbH. Main working area is
network services and security. If company leaves him enough time, he is working on
the OpenBSD packetfilter. http://sysfive.com/

Henning Brauer is founder of BS Web Services, an Internet Service Provider,
and is responsible for the server operations, planning, customer interfaces and
backend development. He’s an OpenBSD developer, mainly working on the packet
filter and maintaining the in-tree apache. He recently developed privilege seperation
for Apache. He started working with and on UNIX back in 1995 and worked with
Linux, Solaris, FreeBSD, and of course OpenBSD. http://bsws.de




26 Running and tuning of OpenBSD network servers
Running and tuning OpenBSD network servers
in a production environment
Philipp Biihler Henning Brauer
sysfive.com GmbH BS Web Services
pb@sysfive.com hb@bsws.de
October &, 2002

Abstract 2 Resource Exhaustions

Heavily loaded network servers can experience
resource exhastion. At best, resource exhaus-
tion will slow server response, but left uncor-
rected, it can result in a crash of the server.

In order to understand and prevent such sit-
uations, a knowledge of the internal operation
of the operating system is required, especially
how memory management works.

This paper will provide an understanding of
the memory management of OpenBSD, how to
monitor the current status of the system, why
crashes occur and how to prevent them.

1 Motivation

Our main motivation for this paper was
the lack of comprehensive documentation
about tuning network servers running under
OpenBSD [Ope02], especially with regard to
the memory usage of the networking code in
the kernel.

Either one can get general information, or is
“left alone” with the source code. This paper
outlines how to deal with these issues, with-
out reading the source code. At least one does
not need to start in “nowhere-land” and dig
through virtually everything.

This paper aims to give a deeper understand-
ing on how the kernel handles connections and
interacts with userland applications like the
Apache webserver.

Running a publicly accessible server can always
lead to unexpected problems. Typically it hap-
pens that resources get exhausted. There are
numerous reasons for this, including:

Low Budget There’s not enough money to
buy “enough” hardware which would run
an untuned OS.

Peaks Overload situations which can be ex-
pected (e. g. special use) or not (e. g. get-
ting “slashdotted”).

DoS Denial-of-Service by attackers flooding
the server.

No matter what reason leads to an exhaustion,
there are also different types of resources which
can suffer from such a situation. We briefly
show common types and countermeasures. Af-
terwards we go into detail about memory ex-
haustion.

2.1 1/0 Exhaustion

It’s very typical for network servers to suffer in
this area. Often people just add more CPU
to “help” a slowly reacting server, but this
wouldn’t help in such a case.

Usually one can detect such an exhaustion by
using vmstat (8) or systat (8). Detailed usage
is shown in Section 5.1 There are also numer-
ous I/O “bottlenecks” possible, but one typical
indication is the CPU being mostly idle and
blocked processes waiting for resources. Fur-
ther distinctions can be made:




Running and tuning of OpenBSD network servers

27

Disk

The process is waiting for blocks from (or to)
the disk and cannot run on the CPU, even if
the CPU is idle. This case could be resolved by
moving from IDE to SCSI, and/or using RAID
technology. If repetitive writes/reads are being
done an increase of the filesystem-cache could
also help !. Filesystem-cache can be configured
with the kernel option BUFCACHEPERCENT?.

NIC

Choosing the right network card is important
for busy servers. There are lots of low-end mod-
els like the whole Realtek range. These cards
are relatively dumb themselves. On the other
hand, there are chipsets with more intelligence.
DEC’s 21143, supported by the dc(4) driver,
and Intel’s newer chipsets, supported by the
fxp(4) driver, have been proven to work well in
high-load circumstances.

Low-end cards usually generate an interrupt for
every packet received, which leads to the prob-
lems we describe in the next subsection. By us-
ing better cards, like the mentioned DEC and
Intel ones, packets are getting combined, thus
reducing the amount of interrupts.

Another important point is the physical media
interface, e. g. sqphy(4). Noise and distortion
is a normal part of network communications,
a good PHY will do a better job of extracting
the data from the noise on the wire than a poor
PHY will, reducing the number of network re-
transmissions required.

It might be a good idea to use Gigabit cards,
even when running 100 MBit/s only. They are
obviously built for much higher packet rates
(and this is the real problem, not bandwidth)
than FastEthernet ones, thus have more own
intelligence and deal better with high loads.

IThough this has implications on the KVM, see the
appropriate section

2for most kernel configurations, see options(4) and
config(8).

IRQ

Every interrupt requires a context switch, from
the process running when the IRQ took place,
to the interrupt handler. As a number of things
must be done upon entering the interrupt han-
dler, a large quantity of interrupts can result
in excess time required for context switching.
One non-obvious way to reduce this load is to
share interrupts between the network adapters,
something permitted on the PCI bus. As many
people are not even aware of the the possibility
of interrupt sharing, and the benefits are not
obvious, let’s look at this a little closer.

With separate adapters on separate interrupt
lines, when the first interrupt comes in, a con-
text switch to the interrupt handler takes place.
If another interrupt comes in from the other
adapter while the first interrupt is still being
handled, it will either interrupt the first han-
dler, or be delayed until the first handler has
completed, depending on priority, but regard-
less, two additional context switches will take
place - one into the second handler, one back
out.

In the case of the PCI and EISA busses, in-
terrupts are level triggered, not edge triggered,
which makes interrupt sharing possible. As
long as the interrupt line is held active, a device
needs servicing, even if the first device which
triggered the interrupt has already been ser-
viced. So, in this case, when the first adapter
triggers the interrupt, there will be a context
switch to the handler. Before the handler re-
turns, it will see if any other devices need ser-
vicing, before doing a context switch back to
the previous process.

In a busy environment, when many devices are
needing service, saving these context switches
can significantly improve performance by per-
mitting the processor to spend more time pro-
cessing data, rather than switching between
tasks. In fact, in a very high load situation,
it may be desireable to switch the adapters
and drivers from an interrupt driven mode to a
polling mode, though this is not supported on
OpenBSD at this time.




28 Running and tuning of OpenBSD network servers

2.2 CPU Exhaustion (or address space) it is recommended that espe-
cially the most active tasks (like the webserver
application) never be swapped out or even sub-

Of course the CPU can be overloaded also while  jected to paging.

other resources are still fine. Besides buying

more CPU power, which is not always possible, With regard to reliability it’s not critical if

there are other ways to resolve this problem.  the amount of physical RAM is exhausted and

Most common cases for this are: heavy paging occurs, but performance-wise this
should not happen. The paging could compete
for Disk I/O with the server task, thus slow-

CGI Excessive usage of CGI scripts, usually ing down the general performance of the server.
written in interpreter languages like PHP And, naturally, harddisks are slower than RAM
or Perl. Better (resource-wise) coding by magnitudes.
can help, as well as using modules like
mod_perl® to reduce load. It’s most likely that countermeasures are taken

) after the server starts heavy paging, but it
RDBM Usually those CGI scrips use a could happen that also the swap space, and

database. Optimization of the connec- g the whole VM, is exhausted. If this oc-
tions a.nd queries (Indexing, ..) 1S one way. curs, sooner or later the machine will crash.
There is also the complete offloading of the

. . 4
database to a different machine *. Even if one doesn’t plan for the server starting

to page out memory from RAM to swap, there
should be some swap space. This prevents a
direct crash, if the VM is exhausted. If swap
is being used, one has to determine if this was
a one-time-only peak, or if there is a general
increase of usage on the paging server. In the
latter case one should upgrade RAM as soon as
possible.

SSL Especially e-commerce systems or online
banking sites suffer here. OpenBSD sup-
ports hardware-accelerators 5. Typical
cryptographic routines used for SSL/TLS
can be offloaded to such cards in a trans-
parent manner, thus freeing CPU time for
processing requests.

In general it’s good practice to monitor the VM

. usage, especially to track down when the swap
3 Memory Exhaustion space is being touched. See section 5 for details.

Another case of overloading can be the exhaus- 3.2 Kernel Virtual Memory (KVM)
tion of memory resources. Also the speed of

the allocator for memory areas has significant
influence on the overall performance of the sys-

. Besides VM there is a reserved area solely for
em.

kernel tasks. On the common i386 architecture
(TA-32) the virtual address space is 4GB. The
. OpenBSD/i386 kernel reserves 768MB since
3.1 Virtual Memory (VM) the 3.2 release (formerly 512MB) of this space
for kernel structures, called KVM.

VM is comprised of the physical RAM and pos- KVM is used for addressing the needs of man-

sible swap space(s). Processes are loaded into aging any hardware in the system and small
this area and use it for their data structures. allocations® being needed by syscalls. The
While the kernel doesn’t really care about the biggest chunks being used are the management
current location of the process’ memory space of the VM (RAM and swap), filesystem-cache

3This can have security implications, but this is an- and storage of network buffers (Inbuf)'

other story.
“This could be unfeasible due to an already over- Contrary to userland the kernel allocations can-
loaded network or due to budget constraints.
Scrypto(4) 6like pathname translations




Running and tuning of OpenBSD network servers

29

not be paged out (“wired pages”). Actually it’s
possible to have pageable kernel memory, but
this is rarely used (e. g. for pipe buffers) and
not a concern in the current context. Thus, if
the KVM is exhausted, the server will immedi-
atly crash. Of course 768 MB is the limit, but if
there is less RAM available, this is the absolute
limit for wired pages then. Non-interrupt-safe
pages could be paged out, but this is a rare
exception.

Since RAM has to be managed by kernel maps
also, it’s not wise to just upgrade RAM without
need. More RAM leaves less space for other
maps in KVM. Monitoring the “really” needed
amount of RAM is recommended, if KVM ex-
haustions occur. For example, 128MB for a
firewall is usually more than enough. Look at
Section 7.2 for a typical hardware setup of a
busy firewall.

This complete area is called kernel map in the
source and has several “submaps”’. One main
reason for this is the locking of the address
space. By this mapping other areas of the
kernel can stay unlocked while another map is
locked.

Main submaps are kmemmap, pager.map,
mb_map and execmap. The allocation is done
at boot-time and is never freed, the size is ei-
ther a compile-time or boot-time option to the
kernel.

4 Resource Allocation

Since the exhaustion of KVM is the most crit-
ical situation one can encounter, we will now
concentrate on how those memory areas are al-
located.

Userland applications cannot allocate KVM
needed for network routines directly. KVM is
protected from userland processes completely,
thus there have to be routines to pass data
over this border. The userland can use a
syscall(2) to accomplish that. For the case
of networking the process would use socket (2)
related calls, like bind(2), recv(2), etc.

Having this layer between userland and kernel,

"see /sys/uvm/uvm_km.c

we will concentrate on how the kernel is allocat-
ing memory; the userland process has no direct
influence on this. The indirect influence is the
sending and receiving of data to or from the
kernel by the userland process. For example
the server handles a lot of incoming network
data, which will fill up buffer space (mbufs)
within the KVM. If the userland process is not
handling this data fast enough, KVM could be
exhausted. Of course the same is true if the
process is sending data faster than the kernel
can release it to the media, thus freeing KVM
buffers.

4.1 mbuf

Historically, BSD uses mbuf(9)® routines to
handle network related data. An mbuf is a
data structure of fixed size of 256 bytes °.
Since there is overhead for the mbuf header
(m_hdr{}) itself, the payload is reduced by at
least 20 bytes and up to 40 bytes!®.

Those additional 20 bytes overhead appear,
if the requested data doesn’t fit within two
mbufs. In such a case an external buffer, called
cluster, with a size of 2048 bytes!!, is allocated
and referenced by the mbuf (m_ext{}).

Mbufs belonging to one payload packet are
“chained” together by a pointer mh next.
mh_nextpkt points to the next chain, forming
a queue of network data which can be pro-
cessed by the kernel. The first member of such

a chain has to be a “packet header” (mh_type
M_PKTHDR).

Allocation of mbufs and clusters arc obtained
by macros (MGET, MCLGET, ..). Before
the release of OpenBSD 3.0 those macros used
malloc(9) to obtain memory resources.

If there were a call to MGET but no more space
is left in the corresponding memory map, the
kernel would panic'?.

8memory buffer

9defined by MSIZE.

10see /usr/include/sys/mbuf.h for details.
1defined by MCLBYTES

12«malloc: out of space in kmem_map”




30

Running and tuning of OpenBSD network servers

4.2 pool

Nowadays OpenBSD uses pool(9) routines to
allocate kernel memory. This system is de-
signed for fast allocation (and freeing) of fixed-
size structures, like mbufs.

There are several advantages in using pool(9)
routines instead of the ones around malloc(9):

e faster than malloc by caching constructed
objects

e cache coloring (using offsets to more effi-
ciently use processor cache with real-world
hardware and programming techniques)

e avoids heavy fragmentation of available
memory, thus wasting less of it

e provides watermarks and callbacks, giving
feedback about pool usage over time

e only needs to be in kmem_map if used from
interrupts

e can use different backend memory alloca-
tors per pool

¢ VM can reclaim free chunks before paging
occurs, not more than to a limit (Maxpg)
though

If wuserland applications are running on
OpenBSD (> 3.0), pool(9) routines will be
used automatically. But it’s interesting for peo-
ple who plan (or do so right now) to write own
kernel routines where using pool (9) could gain
significant performance improvements.

Additionally large chunks formerly in the
kmem_map have been relocated to the ker-
nel_map by using pools. Allocations for inodes,
vnodes, .. have been removed from kmem_map,
thus there is more space for mbufs, which need
protection against interrupt reentrancy, if used

for e. g. incoming network data from the NIC
13

13¥mem_map has to be protected by splvm(), see
spl(9).

5 Memory Measurement

Obviously one wants to know about memory
exhaustion before it occurs. Additionally it can
be of interest, which process or task is using
memory. There are several tools provided in
the base OpenBSD system for a rough moni-
toring of what is going on. For detailed anal-
ysis one has to be able to read and interpret
the values provided by those tools, but some-
times one needs more details and can rely on
3rd party tools then.

Example outputs of the tools mentioned can be
found in the Appendix.

5.1 Common tools

These are tools provided with OpenBSD, where
some are rather well-known, but some are not.
In any case, we have found that often the tools
are used in a wrong fashion or the outputs are
misinterpreted. It’s quite important to under-
stand what is printed out, even if it’s a “known
tool”.

top

One of the most used tools is top(1). It shows
the current memory usage of the system. In
detail one could see the following entries:

Real: 68M/117M act/tot, where 68MB are
currently used and another 49MB are allo-
cated, but not currently used and may be
subject to be freed.

Free: 3724K, shows the amount of free physical
RAM

Swap: 24M/256M used/tot, 24MB of 256 MB
currently available swap space is used.

If one adds 3724kB to 117MB, the machine
would have nearly 122MB RAM. This is, of
course, not true. It has 128MB of RAM,; the
“missing” 6MB are used as filesystem-cache!4.

l4dmesg: using 1658 buffers containing 6791168
bytes (6632K) of memory




Running and tuning of OpenBSD network servers

31

Besides this rough look on the memory usage
of the system, there are indicators for other re-
source exhaustions. In the line CPU states:
there is an entry x.y% interrupt. See how to
resolve high values, they slow down the perfor-
marnce.

Blocking disks can be detected in the WAIT col-
umn. For example an entry getblk shows that
the process is waiting for data from a disk (or
any other block device).

ps

Another very common tool is ps(1) and it’s
related to top(1). Where top(1) is usually
used for an overview of the system, one can use
ps (1) for detailed picking on the exact state of
a process (or process group).

Additionally it can be closer to reality and the
output is more flexible, thus one can do better
post-processing in scripts or similar.

Probably most interesting are the options
showing how much percentage CPU and VM
a process is using. One can sort by CPU (’'u’)
or VM usage ('v’) to find a hogging process
quickly.

vmstat

vmstat (8) is the traditional “swiss army knife”
for detailed looks on the systems current usage.
It’s perfect for a first glance on potential bot-
tlenecks.

A vmstat-newbie will probably be baffled by
the output, but with some experience it’s
rather easy to find out, what’s happening and
where potential problems are located.

The default output consists of six areas (procs,
memory, page, disks, faults, cpu). Each areas
has columns for related values:

procs T b w, shows how many processes are
(r)unning, are being (b)locked or are
(w)aiting. Blocked processes cannot

change to running before the block is re-
solved, e. g. a process “hangs” in a getblk

state and waits for disk I/O.

Waiting means that the process is ready to
run, but has still not been scheduled, most
likely because the CPU is overloaded with
processes.

memory avm fre, number of pages (1024b)
being allocated and on the free list. The
avm value gives a better insight on the al-
location, than the values from top(1).

page flt re at pi po fr sr, page-in (pi)
and page-out (po) are most interesting
here. It indicates if, and how much, paging
(or even swapping) occurs.

disks sd0 cdO, the columns here depend on
the disk setup of course. Values are trans-
fer per seconds on this device. If high val-
ues here correspond with blocked processes
below procs this is a good indication that
the disk subsystem could be too slow.

faults in sys cs, can indicate too many in-
terrupts and context switches on the CPU.
sys counts syscalls brought to the kernel, a
rather hard value to interpret with regard
to bottlenecks, but one can get an idea of
how much traffic has to pass between user-
land and kernel for completing the task.

cpu us sy id, looked at separately not too in-
formative, but in combination with other
values it’s one keypoint in figuring out the
bottleneck. If processes are in ‘w’ state
and ‘id’ is very low, a CPU exhaustion oc-
curs. Processes being (b)locked and hav-
ing high (id)le values detect I/O exhaus-
tions. Having high (sy)stem values and
(w)aiting and/or (b)locked processes in-
dicate that the kernel is busy with itself
too much; this is usually because of “bad”
drivers. Compare to ‘faults in’ to find out
if interrupts are killing the performance.
If not it’s still possible that the CPU is
busy transfering blocks from disk devices,
indicated by low disk transfers and blocked
processes.

Already impressive diagnostic possibilities, but
vmstat(8) can show even more interesting
things.

Besides the options -i to show summaries
about interrupt behaviour and -s to get infor-
mation about the swap area, vmstat -m can




32

Running and tuning of OpenBSD network servers

provide a very detailed look on the current
memory usage.

Like we already have shown OpenBSD uses
pool(9) for network data, thus we concentrate
now on the last chunk vmstat -m is reporting.
Most interesting are the lines mbpl and mclpl,
which represent the memory usage for mbufs
(mbpl) and clusters (mclpl).

Interesting columns are Size, Pgreq, Pgrel,
Npage and Maxpg. One can obtain the follow-
ing information from that:

Size the size of a pool item

Pgreq reports how many pages have ever been
allocated by this pool.

Pgrel the pool freed those pages to the sys-
tem.

Npage currently allocated/used pages by the
pool.

Maxpg maximum number of pages the pool
can use, even if paging would occur. More
precise: the pool can grow over this limit,
but the pagedaemon can reclaim free pages
being over this limit, if VM is running low.

netstat

Usually netstat (1) is used for gathering net-
work configurations, but it also provides infor-
mation about different memory usages.

netstat -f inet!® shows information about
current network activity.  With regard to
memory consumption the columns Recv-q and
Send-Q are of major interest.

Typically one will encounter entries in Send-
Q for a busy webserver with a good network
connection. Clients usually have significant
smaller bandwith, thus the provided data of the
webserver application cannot “leave” the sys-
tem. It's getting queued on the network stack,
eating up mbuf clusters.

Pending requests will show up in Recv-Q, in-
dicating that the userland cannot process the
data as fast as it is coming in over the network.

561 -f inet6

The latter case should be resolved, even if mem-
ory is not running low, since the system would
appear sluggish to the client, which is usually
not appreciated (by the admin and/or client).

In addition to vmstat -m, netstat -m can re-
port further values about current mbuf and
cluster usage. Most notably it reports how
much memory is “really” used. vmstat -m
shows how many pool items are allocated, but
netstat -m then reports how many pool items
are actually filled with data to be processed.

In fact one could calculate this in vmstat
-m by substracting Releases from Requests,
but with numbers like 10599250 and 10599245,
this is not really practical. Another pitfall is
that vmstat -m reports memory pages, where
netstat -m reports pool items'® used, despite
its output of mapped pages in use.

Furthermore it splits up what type of, and how
many, mbufs are used (packet headers, sockets,
data, ..), and it gives a summary about how
much memory is needed by the network stack,
which would be rather tedious to calculate from
the vmstat -m output.

systat

This tool provides a top(1) like display of in-
formation the previous tools would provide.
Especially systat vmstat is a perfect overview
about load, disk usage, interrupts, CPU and
VM usage.

One can monitor the system in intervals, or col-
lect the information over time.

5.2 Special tools

Besides the tools we have shown so far, there
are additional possibilities to monitor the sys-
tem. symon and pftop are in the ports collec-
tion. KVMspy is not even published for now,
but it shows that it’s possible to write own tools
for specific monitorings without enormous ef-
fort!7.

16ysually a factor of two.

17the source code is below 300 lines.




Running and tuning of OpenBSD network servers

33

symon

For monitoring overall resource usage over time
frames, symon [Dij02] is a perfect tool. It
queries the kernel via sysctl about common
resources. It uses rrdtool [Oet02] as data stor-
age backend. There is a data collector daemon,
called symon, which runs on every monitored
machine, sending the collected data to symux,
usually running on a central machine, which
stores them on disk. Additionally there is a
web-interface, symon-web, providing graphical
representation of the collected data.

After machines have been set up with detailed
analysis, this output is enough to detect high-
load situations and trigger countermeasures be-
fore exhaustion occurs.

If one wants a long-term analysis of detailed
data, it’s relativly easy to extend this tool.
Symon is pretty new and under active devel-
opment by Willem Dijkstra, but already very
useful.

pftop

If one wants to monitor specific areas, like
pf(4), pftop [Acal2] is a curses-based, real-
time monitoring application providing that.

One can consider it as a netstat-variant, provid-
ing similar information, about the paket filter.

KVMspy

For the absolute curious one, there will be
KVMspy. Currently it shows a bit more (off-
sets) information than vmstat -m about pools
and a bit less (only current and highwater).

But, for the interested hacker, this is maybe
better example code how to poll the ker-
nel states via kvm(3) routines. Queries via
sysct1(3) can be found in symon or are added
to KVMspy in the future.

6 Countermeasures

And finally we come to the interesting pieces.
Several ways to determine where a lack of KVM
resources occurs have been shown. So, what to
do if it actually happens?

There are three important kernel options defin-
ing the KVM layout with regard to networking.
NMBCLUSTERS and NKMEMPAGES are compile-
time options, but can be set via config(8) as
well. MAX_KMAPENT can only be set at compile-
time.

6.1 NMBCLUSTERS

The maximum number of clusters for network
data can be defined here. Naturally, it’s diffi-
cult to calculate this value in advance. Most
tuning guides recommend a value of 8192 here.
We usually use this value, too.

People tend to raise this value further, not
knowing what implications this can have on
the system. A value of 8192 potentially uses
16MB for mbmap: 8192 x 2048 = 16777216
(MCLBYTES is usually 2048).

Since this is only a “pre-allocation” and not
real usage in the first place, this value can be
sane. On the other hand, if there are other
problems with KVM, this value may be low-
ered.

Looking at real-life usage of busy webservers
(see 7.1) the high watermark of mclpl is 524
(1048 clusters), thus even the default of 2048
clusters would be sufficient. This high wa-
termark (Hiwat in vmstat -m) is also perfect
to determine the mclpl size for load-balanced
servers.

Imagine a Hiwat of 1000 on both machines. If
one machine has to go out of service, due to a
crash or simply hardware maintenance, a pool
size of >4000 would ensure that the remaining
machine doesn’t run out of clusters. Remember
that vmstat -m reports pages, not items, thus
one has to calculate 1000%2%2 for NMBCLUSTERS.

Additionally it’s important to track why clus-
ters are used in larger numbers. We have shown




34

Running and tuning of OpenBSD network servers

in 5.1/netstat that it is important to have a
quick passing from the Recv-Q to the server
application. It’s a better idea to improve the
application performance in this area, than in-
creasing NMBCLUSTERS and let the data sit in
KVM. At least a rather empty Recv-Q leaves
more space for the Send-Q, which cannot be
influenced directly to free clusters.

After all, it’s dangerous to use high-values for
this (and the following) options without very
detailed knowledge about what is happening in
the kernel. A “just to be safe” tuning can eas-
ily lead to an unstable machine. We have seen
people using a value of 65535 for NMBCLUSTERS,
rendering a pre-allocation of 128MB - not a
good idea and usually it doesn’t gain anything,
except problems. Think twice about those val-
ues.

6.2 NKMEMPAGES

This option defines the total size of kmem_map.
Since this is not exclusively used for networking
data, it is a bit difficult to calculate the value
for this option.

Since kmemmap was freed from other usage
(4.2) and the introduction of pool(9) ensures
that there is more space here for mbufs anyway,
so an exhaustion of kmem map is less likely than
before.

Tracking of the usage is still possible, though.
Looking again at

tt vmstat -m, this time at mbpl, one can see a
correlation between mbpl and mclpl. It’s com-
mon that the page value is usually half (or less)
the value from mclpl. Yet again, one has to
take care of “items vs page-size”. Mbufs are
way smaller then a cluster, thus 16 mbufs fit in
one page of memory.

A network connection using clusters needs at
least two mbufs, one for the paket header and
one for the reference to the cluster. Since not
every connection uses clusters it’s sane to as-
sume that a value for NKMEMPAGES being twice
the value of NMBCLUSTERS is a good starting
point.

Again, one should raise this value very care-
fully. Blindly changing these values can intro-

duce more problems, than are solved.

Additionally, if the option is not touched, the
kernel gets a sane default value for NKMEMPAGES
at compile-time, based on RAM available in the
system. If the kernel is compiled on a differ-
ent machine with a different amount of RAM,
this option should be used. A typical calcula-
tion value is 8162 for a machine with 128MB
of RAM; this can be determined by sysctl -n
vIn.nkmempages.

6.3 MAX_KMAPENT

Definition of the number of static entries in
kmem map. Like NKMEMPAGES, the value is cal-
culated at compile-time if unset. The default
of 1000 (at least, it is based on “maxusers”) is
usually enough.

Raising this value is discouraged, but could
be needed, if panics (uvm mapent.alloc: out
of static map entries ..) occur. Usually
this happens if kmem map is highly fragmented,
for example by a lot of small allocations.

7 Real-life Examples

Putting everything together, we provide two
examples of machines running OpenBSD un-
der high load. It shows that a careful kernel
configuration and hardware selection has great
influence on the performance and reliability.

7.1 chat4free.de Webserver

This machine, hosted by BSWS, is running the
webserver for one of Germany’s biggest chat
systems, chat4free.de.

The site consists of static pages and public fo-
rums. The unusual problem here is the both
the overall load and the enormous peaks which
happen when numbers of users are discon-
nected from the chat server due to external net-
work problems or crashes of the server itself.
Unlike many web applications, this server has




Running and tuning of OpenBSD network servers

35

a huge volume of small packets, which demon-
strates that loading is more an issue of users
and packet counts than raw data transfer.

Originally, it was running one Apache in-
stance for the entire application, on an 700MHz
Athlon system with 1.5G RAM, running a
highly modified OpenBSD 3.0. Unfortunately,
this system sometimes crashed due to KVM ex-
haustion.

To address this problem, the system was
switched to a new system, again an 700MHz
Athlon with 512M RAM, running two Apache
instances in chroot jails, on a fairly stock
OpenBSD 3.1 system. The system has a net-
work adapter based on a DEC/Intel 21143,
with a Seeq 84220 PHY, and runs "headless”
with a serial console.

One of the two Apache instances is stripped
down as much as I could make it, and serves
the static pages. This httpd binary is only 303k
in size, compared to the almost 600k of the
stock Apache. The second instance of Apache
is much bigger, as it has PHP compiled in. I
always use static httpds, rather than Dynamic
Shared Objects (DSOs).

The kernel configuration is fairly stock. All
unused hardware support and emulations
are removed, option DUMMY_NOPS is en-
abled. NMBCLUSTERS is bumped to 8192,
NKMEMPAGES to 16384. I considered raising
MAX KMAPENT from its default of 1000 to
1500 or so to be able to have even more concur-
rent Apache processes running, though there
has been no real need yet in this application.
The machine has an ordinary IDE hard disk for
the system, content and logs are on a separate
machine’s RAID subsystem, mounted via NFS.
Most static content ends up being cached, re-
ducing network traffic.

The ”lean” httpd instance is configured for up
to 1000 concurrent httpd tasks, the ”fat” one
for up to 600. I've seen both reach their max-
imum limits at the same time, and the smaller
machine handles this load without incident.
This is due to the superior memory manage-
ment in OpenBSD 3.1 and the smaller Apache
configurations.

Detailed kernel configuration and dmesg(8) can

be found in the Appendix.

7.2 A firewall at BSWS

One important fact about firewalling and filter-
ing is that the bandwidth isn’t the important
issue, the issue is the packet rate (i.e., pack-
ets per second). Each packet needs to be han-
dled by the network adapter, the TCP/IP stack
and the filter, which each need to do roughly
the same amount of work whether the packet
is small or large.

The firewall that protects a number of the
servers at BSWS is under rather heavy load,
not really due to total bandwidth, but the large
number of small packets involved. It is running
on a 700MHz Duron with 128M RAM and three
DEC/Intel 21143-based NICs (one is currently
not in use). It boots from a small IDE hard
disk, which is quite unimportant to this appli-
cation.

The machine is running a highly customized
version of OpenBSD. The base system is
OpenBSD 3.0, but many pieces of what be-
came OpenBSD 3.1 were imported, including
3.1’s packet filter pf (4). At the time this was
put together, there was no other option for this
application. Many of pf’s newer features were
needed, but it was not possible to wait for 3.1-
Release, as the previous OpenBSD 2.9 firewall
running IPFilter had saturated the processor at
near 100% utilization at peak usage times, and
delays were being noticed. The kernel config-
uration has had all uneeded hardware support
and binary emulations removed, and the always
famous NKMEMCLUSTERS=16384 and NM-
BCLUSTERS=8192 modifications. The num-
ber of VLAN interfaces was raised to 20 (from
2 in GENERIC).

As of October 5, the expanded ruleset has 1132
rules. The “quick” keyword is used in most
places to reduce the number of rules that must
be evaluated for each packet, otherwise the en-
tire ruleset must be evaluated for each packet.
The rules are ordered so that the ones I ex-
pect the most matches from are towards the
top of the file. All pass rules keep state; not
only is this good practice for security, but with
pf, state table lookups are usually much faster
than rule evaluation. No NAT takes place on




36

Running and tuning of OpenBSD network servers

this machine, only packet filtering.

On the external interface, there is only spoofing
protection taking place. Incoming packets with
a source IP of the internal networks, outgoing
packets with an IP which is not from one of the
internal networks, and all 127.0.0.0/8 traffic is
dropped. Normally, one would also drop pack-
ets with RFC1918 (”private IP space”), how-
ever in this case, it is handled externally by
the BSWS core routers, because there is valid
traffic with RFC1918 IPs from other internal
networks crossing this firewall.

The actual filtering policies are enforced on the
inside (VLAN) interfaces, which has the ben-
efit that packets attempting to cross between
VLANs encounter the same rules as packets
from the outside. Every packet passing the
firewall is normalized using the scrub direc-
tive. OpenBSD 3.2 will support multiple scrub
methods besides the classic buffering fragment
cache. One of the more interesting is the
crop method, which almost completely avoids
buffering fragments.

The results have been impressive. In Septem-
ber, 2002, the state table reached a peak size
of 29,390, with an average size of 11,000. Up
to 15,330 state table lookups per second were
performed with average of 5600. State table in-
serts and removals peaked at slightly over 200
per second each. The CPU load seldom exceeds
10%. Compare this to the old IPFilter solution
running on the same hardware doing much the
same task, where the CPU was maxed out with
only 600 rules and a peak of 15,000 packets per
second. pf has permitted considerable growth
in the complexity of the rule sets and traffic,
and as you can see, still leaves BSWS consider-
able room to grow. Since this firewall went into
operation in March, 2002, there hasn’t been a
single problem with its hardware or software.

8 Conclusions

Running OpenBSD servers under high load is
pretty safe nowadays. We have shown that the
introduction of pool(9) made operation way
better with regard to memory usage and per-
formance.

We have shown how network traffic influences
the memory usage of the kernel and how the
pieces are related together.

The provided knowledge about monitoring a
running system and potential countermeasures
against resource exhaustions should help to
deal with high-load situations better.

9 Acknowledgements

A big “thank you” goes to Nick Holland, who
turned our crappy english into something useful
and provided a lot of input on how to explain
this difficult area better.

Thanks also to Artur Grabowski for imple-
menting pool(9) in the OpenBSD kernel and
for further explanations about KVM.

Several proof-readers helped on finding spelling
errors and inconsistencies within the paper, a
special thanks here for Daniel Lucq, who also
wrote KVMspy.

And, of course, thanks to the OpenBSD de-
veloper team for working on a system which
provides already sane defaults for operating a
high-load server, and, not to forget, a very high
level of security.

References
[Aca02] Can E. Acar. Openbsd pf state viewer.
http://www.eee.metu.edu.tr/

“canacar /pftop/, 2002.

[Dijo2] Willem Dijkstra. The small and
secure active system monitor.
http://www.xs4all.nl/ wpd/symon/,
2002.

[McK96] Marshall Kirk (et. al.) McKusick. The de-
sign and implementation of the {.{BSD
operating system. Addison-Wesley, 1996.
Tobi Oetiker. Round robin database.
http://people.ee.ethz.ch/
“oetiker/webtools/rrdtool/, 2002.
[Ope02] OpenBSD.
2002.

W. Richard Stevens. TCP/IP [llustrated,
Vol. 2. Addison-Wesley, 1994.

[Oet02]

http://www.openbsd.org/,

[Ste9d]




Running and tuning of OpenBSD network servers 37

A top

This machine is the main server of sysfive.com GmbH, slightly tuned it is really idle.

load averages: ©0.19, 0.12, 0.09 14:19:57
68 processes: 1 running, 64 idle, 3 zombie

CPU states: 0.3% user, 0.9% nice, 0.3)% system, 0.0} interrupt, 98.4% idle
Memory: Real: 49M/80M act/tot Free: 41M Swap: OK/256M used/tot

PID USERNAME PRI NICE SIZE RES STATE WAIT TIME CPU COMMAND
15902 root 2 0 2308K 1832K idle select 19:39 0.00% isakmpd
27679 pb 2 0 964K 1468K sleep select 7:00 0.00% screen-3.9.11
19945 gowry 2 0 4644K 5096K idle select 4:30 0.00% screen-3.9.11
3605 postfix 2 0 304K 736K sleep select 4:29 0.00% gmgr
22360 root 18 0 640K 9944K sleep pause 2:53 0.00% ntpd
11827 pb 2 0 516K 1312K sleep poll 2:18 0.00% stunnel
[..]
B ps

Same machine, same processes reported by ps -axv

USER PID %CPU YMEM VSZ RSS TT STAT STARTED TIME COMMAND

root 22360 0.0 7.6 640 9944 7?7 Ss 8Aug02 2:48.24 ntpd -c /etc/ntp.conf
gowry 19945 0.0 3.9 4644 5096 ?? Ss 9Aug02 4:30.56 SCREEN (screen-3.9.11)
root 15902 0.0 1.4 2308 1832 ?? Is 31Jul02  19:39.33 isakmpd

Pb 27679 0.0 1.1 964 1468 ??7 Ss 13Jul02 6:59.75 SCREEN (screen-3.9.11)
pPb 11827 0.0 1.0 516 1312 ?? Ss 13Julo02 2:15.55 stunnel

postfix 3605 0.0 0.6 304 736 7?7 S 6Aug02 4:30.29 qmgr -1 -t fifo -u

C vmstat

Current vmstat output of the same machine (vmstat 1 5)

procs  memory page disks faults cpu

rbw avm fre flt re pi po fr sr cd0 sd0 in sy c¢s us sy id

100 50324 41608 14 0 O O 0 0 0 1 234 7151 160 O O 99
0 0 0 50324 41608 10 0 0 O O O 0 0 233 1602 165 0O 0 100
0 0 0 50324 41608 6 0 O O O O O O 233 1589 165 O 1 99

If the machine would have disk I/O blocking problems, the output could look like this. Note the idle CPU,
but blocked processes are waiting for blocks from the busy drive.

procs  memory page disks faults cpu

rbuw avm fre flt re pi po fr sr c¢dO sd0 in sy c¢s us sy id
1 20 50324 41608 14 0 0 O O 0 0271 234 7151 160 1 3 96
010 50324 41608 10 0 0 O O O 0312 233 1602 165 0O 4 96
010 50324 41608 6 0 O O O 0 0150 233 1589 165 0O 2 98




38 Running and tuning of OpenBSD network servers

Worst-case scenario, the machine does heavy paging, thus overloading the disk subsystem. Additionally
the CPU is maxed out. Processes are waiting, interrupts cause massive context-switching. The values are

arbitrary.

procs  memory page disks faults cpu

rbw avm fre flt re pi po fr sr cd0 sd0 in sy ¢s us sy id
121 324 608 314 O 25 356 0 O 0 271 412 7151 1931 80 19 1
132 324 608 310 O 28 42 0 O 0 312 501 1602 1876 81 19 ©
121 324 608 306 0 21 38 0 O O 150 467 1589 1911 85 12 3

Now let’s have a look at the pool situation of a firewall. A nice example that the pool can grow over the
initial limit (Maxpg 512, Hiwat 516), but somehow KVM is low, since a lot of requests are failing (Fail
14725). The kernel should be reconfigured with NMBCLUSTERS > 1024 (vmstat -m | grep mclpl).

Name Size Requests Fail Releases Pgreq Pgrel Npage Hiwat Minpg Maxpg Idle
mclpl 2048 1758499 14725 1757480 518 2 6516 516 4 512 4
D netstat

All packet data is getting delivered to/from the sshd fast enough, so no queuing occurs.

Active Internet connections

Proto Recv-Q Send-Q Local Address Foreign Address (state)

tcp 0 0 172.23.1.1.22 10.172.2.32.1156 ESTABLISHED
tecp 0 0 172.23.1.1.22 172.23.1.3.39679 ESTABLISHED
tcp 0 0 172.23.1.1.22 192.168.1.5.42456 ESTABLISHED

Somehow either the uplink is saturated, or the remote clients are not retrieving data fast enough, thus the
Send-Q is growing.

Active Internet connections

Proto Recv-Q Send-Q Local Address Foreign Address (state)

tcp 0 6346 172.23.1.1.22 10.172.2.32.1156 ESTABLISHED
tcp 0 0 172.23.1.1.22 172.23.1.3.39679 ESTABLISHED
tcp 0 7159 172.23.1.1.22 192.168.1.5.42456 ESTABLISHED

For whatever reason, sshd is not processing data fast enough. Maybe the deciphering needs more CPU
then available?

Active Internet connections

Proto Recv-Q Send-Q Local Address Foreign Address (state)

tcp 8811 0 172.23.1.1.22 10.172.2.32.1156 ESTABLISHED
tcp 5820 0 172.23.1.1.22 172.23.1.3.39679 ESTABLISHED
tcp 11631 0 172.23.1.1.22 192.168.1.5.42456 ESTABLISHED

Let’s have a look at the memory usage with netstat -m. The stack has to keep 85 clusters in KVM,
somehow the application is processing data either too fast (Send-Q) or too slow (Recv-Q).




Running and tuning of OpenBSD network servers

384 mbufs in use:
100 mbufs allocated to data
178 mbufs allocated to packet headers
106 mbufs allocated to socket names and addresses
85/1048 mapped pages in use
3144 Kbytes allocated to network (8% in use)
0 requests for memory denied
0 requests for memory delayed
0 calls to protocol drain routines

E systat

Looks like the machine is doing nothing? Wrong, look at the interrupt counting for dcO and dc2. It’s the
BSWS’ firewall described earlier.

1 users Load 0.05 0.08 0.08 Sat Oct 5 17:22:05 2002
memory totals (in KB) PAGING  SWAPPING Interrupts
real virtual free in out in out 7903 total
Active 91472 93712 10848 ops 100 clock
All 116216 118456 270684 pages pccom0
128 rtc
Proc:r d s w Csw Trp Sys Int Sof FIlt forks 3669 dcO
1 9 6 5 21 7936 4 2 fkppw dcil
fksvm pciide0
0.0% Sys 0.0% User 0.0% Nice 90.0% Idle pwait 4006 dc2
[ | | | | I | I I | | relck
rlkok
noram
Namei Sys-cache Proc-cache No-cache ndcpy
Calls hits pA hits A miss % fltcp
2 2 100 zfod
cow
Discs wdO 128 fmin
seeks 170 ftarg
xfers 8446 itarg
Kbyte 39 wired
sec pdfre
pdscn
F iostat

Medium, but constant, traffic on sd0. In fact I was generating traffic with ¢d(1).

tty cd0 sd0 sd1 £do cpu
tin tout KB/t t/s MB/s KB/t t/s MB/s KB/t t/s MB/s KB/t t/s MB/s wus ni sy in id

0 540 0.00 0 0.00 0.50 2614 1.28 0.00 00.00 0.00 0 0.00 1 1 56 39
0 179 0.00 0 0.00 0.50 2560 1.25 0.00 00.00 0.00 00.00 O O 2 2695
0 344 0.00 ©00.00 0.50 2601 1.27 0.00 00.00 0.00 0000 0 O 3 592
0 181 0.00 0 0.00 0.50 2601 1.27 ©0.00 00.00 ©0.00 00.00 0 1 5 391




40 Running and tuning of OpenBSD network servers

G pftop

Easy and quick overview about current traffic filtering:

pfTop: Up State 1-3/64, View: default, Order: none

PR DIR SRC DEST STATE AGE  EXP PKTS BYTES
icmp Out 192.168.100.32:361 192.168.100.22:361 0:0 9 1 2 96
icmp Out 192.168.100.32:361 192.168.100.23:361 0:0 9 1 2 96

tcp In 192.168.100.7:1029 192.168.100.32:443 4:4 4165 86302 25871 9251K

H KVMspy

The full output would be too long, thus shortened to relevant pools/maps. Somehow this machine is not
really exhausted, even with the default settings.

-kmem_map @ Oxd0518cdc: total size = 33431552 bytes, [0xd0890000, 0xd2872000]
_kmem_map @ 0xd0518cdc: 103 entries, actual size = 2453504 bytes (7.34%)
_mb_map @ 0xd0890c00: total size = 4194304 bytes, [0xda63e000, Oxdaa3e000]
-mb_map @ 0xd0890c00: 5 entries, actual size = 118784 bytes (2.83%)
_socket_pool @ 0xd05424c8: currently has 6 pages (24576 bytes)

_socket_pool @ 0xd05424c8: high water mark of 12 pages (49152 bytes)
_nkmempages @ 0xd05029d4: 8162 (_nkmempages * PAGE_SIZE = 33431552 bytes)
_nmbclust @ 0xd04fb278: 2048 (_nmbclust * MCLBYTES = 4194304 bytes)

I chatd4free.de Webserver

I'm using a bit more aggressive timeouts on this machine to lower the number of concurrent connections.
This inlcudes a shortened KeepAliveTimeout to 10 seconds in apache’s config and the following addition
to /etc/sysctl.conf:

net.inet.tcp.keepinittime=10
net.inet.tcp.keepidle=30
net.inet.tcp.keepintvl=30
net.inet.tcp.rstppslimit=400
net.inet.ip.redirect=0
net.inet.ip.maxqueue=1000
kern.somaxconn=256

The timeouts depend heavily on your usage profile and need to be tried. The above ones work fine here,
and should fit for most well connected webservers.
dmesg:

OpenBSD 3.1 (windu) #0: Wed Apr 17 20:10:40 CEST 2002
rootQozzel:/usr/src/sys/arch/i386/compile/windu

cpuO: AMD Athlon Model 4 (Thunderbird) ("AuthenticAMD" 686-class) 700 MHz

cpu0: FPU,V86,DE,PSE,TSC,MSR,PAE,MCE, CX8, APIC,SYS,MTRR, PGE, MCA, CMOV, PAT, PSE36, MMX , FXSR

real mem = 536457216 (523884K)

avail mem = 494899200 (483300K)




Running and tuning of OpenBSD network servers 41

using 5689 buffers containing 26927104 bytes (26296K) of memory

mainbus0 (root)

bios0O at mainbusO: AT/286+(86) BIOS, date 04/02/02, BIOS32 rev. 0 @ 0xfb210
apm0 at biosO: Power Management spec V1.2

apmO: AC on, battery charge unknown

pcibios0 at biosO: rev. 2.1 @ 0xf0000/0xb690

pcibios0O: PCI IRQ Routing Table rev. 1.0 @ Oxfdbd0/176 (9 entries)

pcibiosO: PCI Exclusive IRQs: 11

pcibios0: PCI Interrupt Router at 000:07:0 ("VIA VT82C596A PCI-ISA" rev 0x00)
pcibios0: PCI bus #1 is the last bus

pciO at mainbusO bus O: configuration mode 1 (no bios)

pchb0 at pciO dev O function O "VIA VT8363 Host" rev 0x03

ppb0 at pciO dev 1 function O "VIA VT8363 PCI-AGP" rev 0x00

pcil at ppbO bus 1

pcib0 at pciO dev 7 function O "VIA VT82C686 PCI-ISA" rev 0x40

pciide0 at pciO dev 7 function 1 "VIA VT82C571 IDE" rev Ox06: ATA100, channel O
\configured to compatibility, channel 1 configured to compatibility

wd0 at pciideO channel O drive O: <IC35LOSOAVERO7-0>

wd0: 16-sector PIO, LBA, 58644MB, 16383 cyl, 16 head, 63 sec, 120103200 sectors
wd0(pciide0:0:0): using PIO mode 4, Ultra-DMA mode 5

pchbl at pciO dev 7 function 4 "VIA VT82C686 SMBus" rev 0x40

dcO at pciO dev 8 function O "DEC 21142/3" rev Ox41: irq 11 address 00:00:cb:53:62:c3
sqphyO at dcO phy 17: Seeq 84220 10/100 media interface, rev. 0

isa0 at pcibO

isadma0 at isa0

pckbcO at isa0 port 0x60/5

pckbdO at pckbcO (kbd slot)

pckbcO: using irq 1 for kbd slot

wskbdO at pckbd0: console keyboard

pcppi0 at isa0 port 0x61

sysbeep0 at pcppi0

npx0 at isa0 port 0xf0/16: using exception 16

pccomO at isaO port Ox3f8/8 irq 4: ns16550a, 16 byte fifo

pccomO: conscle

pccoml at isaO port 0x2f8/8 irq 3: ns16550a, 16 byte fifo

biomask 4000 netmask 4800 ttymask 4802

pctr: user-level cycle counter enabled

mtrr: Pentium Pro MTRR support

dkcsum: wdO matched BIOS disk 80

root on wdOa

rootdev=0x0 rrootdev=0x300 rawdev=0x302

Kernel config:

machine i386 # architecture, used by config; REQUIRED
option DIAGNOSTIC # internal consistency checks
option CRYPTQO # Cryptographic framework

option SYSVMSG # System V-like message queues

option SYSVSEM # System V-like semaphores

option SYSVSHM # System V-like memory sharing

option FFS # UFS

option FFS_SOFTUPDATES # Soft updates

option QUOTA # UFS quotas

option MFS # memory file system

option TCP_SACK # Selective Acknowledgements for TCP
option NFSCLIENT # Network File System client

option NFSSERVER # Network File System server

option FIFO # FIFOs; RECOMMENDED

option KERNFS # /kern

option NULLFS # loopback file system

option UMAPFS # NULLFS + uid and gid remapping
option INET # IP + ICMP + TCP + UDP

option INET6 # IPv6é (needs INET)

option PULLDOWN_TEST # use m_pulldown for IPv6 packet parsing
pseudo-device pf 1 # packet filter

pseudo-device pflog 1 # pf log if

pseudo-device loop 2 # network loopback




Running and tuning of OpenBSD network servers

pseudo-device
pseudo-device
pseudo-device
pseudo-device
pseudo-device
#pseudo-device
pseudo-device

option BOOT_CO

bpfilter B # packet filter
vlan 2 # IEEE 802.1Q VLAN
Pty 64 # pseudo-terminals
tb 1 # tablet line discipline
vnd 4 # paging to files
ccd 4 # concatenated disk devices
ksyms 1 # kernel symbols device

NFIG # add support for boot -c

option I686_CPU
option USER_PCICONF # user-space PCI configuration
option DUMMY_NOPS # speed hack; recommended

option COMPAT_
option COMPAT_

LINUX # binary compatibility with Linux
BSDOS # binary compatibility with BSD/0S

option NMBCLUSTERS=8192
option NKMEMPAGES=16384

maxusers 64 #

estimated number of users

config bsd swap generic

mainbus0 at ro

ot

biosO at mainbusO

apmQ at biosO
pcibiosO at bi

flags 0x0000 # flags 0x0101 to force protocol version 1.1
0os0 flags 0x0000 # use 0x30 for a total verbose

isa0 at mainbusO

isa0 at pcib?

pci* at mainbusO bus 7

option PCIVERB
pchb* at pci?

OSE
dev ? function 7 # PCI-Host bridges

ppb* at pci? dev 7 function ? # PCI-PCI bridges
pci* at ppb? bus ?

pci* at pchb?
pcib* at pci?

bus ?
dev 7 function ? # PCI-ISA bridge

npx0 at isa? port OxfO irq 13 # math coprocessor
isadma0 at isa?

isapnp0 at isa?

option WSDISPLAY_COMPAT_USL # VT handling

option WSDISPLAY_COMPAT_RAWKBD # can get raw scancodes
option WSDISPLAY_DEFAULTSCREENS=6

option WSDISPLAY_COMPAT_PCVT # emulate some ioctls

pckbcO at isa?

# PC keyboard controller

pckbd* at pckbc? # PC keyboard
vga* at pci? dev ? function 7

wsdisplay* at

vga? console 7

wskbd* at pckbd? console ?

pcppi0 at isa?
sysbeep0 at pc
pccomO at isa?
pccoml at isa?
pciide* at pci
wd* at pciide?
dc* at pci? de
sqphy* at mii?
pseudo-device
pseudo-device
pseudo-device
pseudo-device
pseudo-device

ppi?
port 0x3f8 irq 4 # standard PC serial ports
port 0x2f8 irq 3
7 dev ? function ? flags 0x0000
channel ? drive ? flags 0x0000
v ? function ? # 21143, "tulip" clone ethernet
phy 7 # Seeq 8x220 PHYs
pctr 1
mtrr 1 # Memory range attributes control
sequencer 1
wsmux 2
crypto 1




Xperteyes - keeping your system under control

43

Xperteyes - keeping your system under control

Pim Buurman
X|support
<pim.buurman@summix.nl>

How would life change if you had every morning some lists of points where your computers would
fail the criteria set by the system administrators, their boss, the EDP-auditor and the software
manufacturers. So if you had yesterday installed a powerful tool for managing your network,
today you would notice that the install log (owned by root) has mode 07777. Or if a user leaves
the company, a check is performed that his account is also removed from the database, and his
name is removed from the cron users.

With this new tool, xperteyes, this is easily possible. In some minutes all relevant properties
of many objects are read and stored. In a separate step (which may be performed on another
machine) all these properties can be checked through a configuration script, which will take also a
few minutes. Naturally, a graphical interface is available for viewing the properties, the checks and
the results. The results can also be viewed in HTML. For the more daring system administrators
it is possible to (automatically) repair some of the properties.

The tool is currently running on Mac OS X, Linux and Windows, implemented in Python with
some extensions in C. The main object’s properties that are collected are:

the properties of files, directories and other objects in the file system

letc/passwd, /etc/group, etc.

the windows registry and the windows user/group/machine database

the Mac OS netinfo tree

But, if you want to check later on e.g. file magic, such extensions can be implemented in less than
one hour, depending on the amount of code that can be reused.

The checks that may be performed are partly predefined. These are simple checks like checking
that a single property has a predefined value, or its value belongs to some range. More complex
checks, like is_hardlink or uid_valid are also available. And comparing objects collected at differ-
ent times or from different systems is possible. But it is likely that these checks are not enough.
If you add the file magic to your object’s properties, you want to check it. Well, you can easily
define new checks yourself, once you have formulated them (that’s the difficult part).

Some areas where this tool can be deployed are:

e Checking, initially and daily, the configuration of one system
¢ Checking the effect of (un)installing some packages

e Keeping two systems “identical” (clustering)




44

Xperteyes - keeping your system under control

Pim Buurman started out as a mathematician, but he was always more inter-
ested in writing software in complex environments. The simple UNIX en-
vironment gives enough challenges to keep him happy. Since May 2001 he
works for X|support. He partially developed the public domain tool TimeWalker
(http://www.NLnet.nl/projects/timewalker), a tool to visualize interactively huge
amounts of eventdata. Xperteyes is his new tool. New functions can be defined
instantly by the user.

-
So—
_




Xperteyes - keeping your system under control

Xperteyes - keeping your system under control

Pim Buurman
X|support
Pim.Buurman@summix.nl

Introduction

The increasing complexity of computer systems and infrastructures asks for good solu-
tions. The installation and configuration of all components should be valid (correct
syntax), consistent and adhere to the standards of the organization. Fortunately, many
configuration settings can be set with a graphical tool, making the task simpler and
sometimes more intuitive. Therefore, syntax errors in configuration files hardly occur
any more. Installing is made easy with the emerging of install packages, so each file
will have the correct owner and group and permission bits. In theory, installing new
packages will not interfere with already installed packages, nor will it introduce a secu-
rity risk.

But configuring a system is still prone to human error, and many inconsistencies may
occur. Some errors in configurations are noticed immediately, but many others may
slumber for a long time, until an irregularity happens to the system. Then an emergency
will occur due to a problem that was introduced three months ago.

Another source of problems are deliberate attempts by people to change the system to
their own ideas. These people can be both outsiders (hackers) and regular users. A
misguided administrative action may introduce serious security problems, but even a
simple typo may lead to a break in. It would be useful for system administrators to de-
tect configuration problems as well as the occurrence of a security breach.

The system administrators are not the only users who want a report on the current con-
figuration. Their manager will be interested to measure the general quality of the com-
puter systems. And the EDP-auditor will have an easier job.

Xperteyes is a solution for these problems. It can check many properties of a system
within a few minutes, as well as checking several systems against each other, for in-
stance to check that a fail-over system is configured correctly. Therefore, Xperteyes
can be used on a daily basis to find incorrect or insecure configuration settings. Major
changes can be tested before the system goes live, important minor changes can be
tested immediately. Furthermore, implicit management rules can be made explicit,
making it casier to maintain them and to train novice administrators. Experienced sys-
tem managers will have more time to do complicated jobs, knowing that they can check
everything before going on line.

For daring system administrators, Xperteyes offers the possibility to repair the system
based on the reported problems. Because this is a dangerous action, repairing needs to
be governed by a user.

Each system administrator thinks his computer system has a unique combination of ap-
plications and that only he knows to address all of them. This is usually true, so
Xperteyes initially handles only the most common configuration properties. But the
application is easily extendible. It will take only a few hours to extend Xperteyes to
read the contents of a configuration, and check these contents for specific values.




46 Xperteyes - keeping your system under control

Architecture

Xperteyes is an application containing several programs. The programs can be divided

into three classes: collectors, checkers and viewers. The collectors gather all (or at least

all interesting) properties from an object of your computer system. The object may be as
simple as the password file, or can be as complex as the file system or the domain name
configuration. The information is saved in a generic format, which we will call a collec-
tion.

The checkers use several collections, together with the criteria the user wants to check,
and produce a new collection, based on the original collections and enriched with the
failures of the criteria. Because the user can specify both the criteria and the collections,
it 1s possible to check if a system has not changed since yesterday, or that the users on
the Mac server are the same as on the Linux clients.

The viewers are used to browse or print the collections. Browsing through the system
data of remote machines is possible, but the main purpose is viewing the failures in re-
lation to their environment.

A good performance was one of the design goals. The performance of the collectors is
usually limited by the performance of the OS. E.g. the file system collector uses typi-
cally only 30% CPU time, because it is disk read bound. The performance of the check-
ers is CPU bound, checking typically 100,000 properties per minute. The viewers are
visually bound; they are only slow when many results need to be shown.

Collectors

The collectors are intended to gather all relevant information about a system. Each col-
lector can handle one object. This object can be a UNIX configuration file
(/etc/passwd, /etc/group, ...) or a more complex object as the file system. The result
is either a list of records, or a tree of records. Each record in the result has the same
fields, one field per property. It is possible that a special property (e.g. the rdev for de-
vice files) is only set for a limited number of objects.

The collectors are basically read-only, so the system should be nearly unaffected by it.
On purpose, the collectors use the permissions of the owner of the process to probe the
system. If the permissions do not allow a full scan of the system, the checkers may give
unexpected results. Any error during the collect process is added to the result, including
permission errors.

Each collector is principally system specific, so the file system collectors of Mac OS X,
generic UNIX and Windows differ. However, they all specify a tree where each node
has the name, owner, group and content modification time of a file system object. The
Mac file system has amongst others Mac-type, creator and alias as extra fields.

A supercollector is built from a group of collectors. Its result is a tree containing the
lists and trees of its subcollectors. In contrast to the simple collectors, this tree has re-
cords that depend on the place in the tree.




Xperteyes - keeping your system under control

47

The currently defined collectors are:

for generic UNIX:

= file system - all file object properties (not the data), including optional storage of
checksum or content of some files.
This collector is configurable, e.g. to skip NFS-mounted file systems and to
store the contents of /etc/profile.

* many configuration files, mostly in /etc (passwd, group, £stab, named, )

* configuration API (getpwent, getgrent, etc.)

for Mac OS X:

s extended UNIX file system

= generic UNIX configuration files and configuration API

= npetinfo, open directory

= installed packages

for Linux:

= generic UNIX

= rpm information

for Windows:

» file system

= registry

= user/group/machine database

Checking

The checkers test if the system satisfies some criteria. Unlike many other tools, the
checkers in Xperteyes have no internal criteria. The user defines the criteria, and dif-
ferent criteria can be tested on the same collection, either in one run or in several runs.

Currently, three different checkers are available: a general one for checking complex
criteria, one for a fast comparison (diff) between two collections, and one for checking
the current situation against the installed packages.

The criteria in the general checker consist of a list of requirements. Each requirement
states which tests should be applied on which records. Optionally a context and severity
may be given, so the failures can be more easily categorized in the viewers. Also the
different texts may be adapted to the particular case. In the viewers, the text "The home
directory of 'pim' is not owned by him" can be clearer than the default message "uid 0 1s
not equal to 501"

The general checker uses one or more collections and applies a set of criteria to them.
To simplify the criteria, they are most easily expressed as general requirements with ex-
ceptions. This means that we write:

require('/', perm_le( 'rwxr-xr-x' ), selection=ALL)

require('/tmp', [perm eq( ‘'rwxrwxrwt' ), uid _eqg(0)])

require('/tmp', perm le( 'rwxrwxrwx' ), selection=ALL CHILDREN)

The checker applies these requirements so that the more specific tests block the less
specific ones, where more specific means that the test is more specific (perm_eq 1S more
specific than perm_1e) or that the object of the requirement is deeper in the tree (/tmp is
deeper than /). Thus, the given requirement are interpreted as: all objects from / down
(i.e. all objects in the file system) should have permission <= rwxr-xr-x, but /tmp



48 Xperteyes - keeping your system under control

should have permission == rwxrwxrwt and uid == 0 (root!), and all objects from /tmp
down, but not /tmp, should have permission <= rwxwxrwx. Note: permission checks

work bitwise.
N Tests for "/tmp/freeze”
Defined on I Selection | Contextl Sev | Place |Test Result
/tmp CHILDREN None 0  [('tstbsdfs.py', 34)] perm <= rwxrwxrwx OK
ftmp None 0 [(tstbsdfs.py', 33)] perm = nxrawxnm not selected
/ STDOBJECTS None 0 [('tstbsdfs.py', 12)] perm <= rwxr-xr-x blocked
/ ALL None 0  [(tstbsdfs.py’, 11)] symlinkvalid oK
OK

Fig. 1: Test results for /tmp/freeze.

The currently available tests consist mainly of simple checks of one field against one
value, or against a range or interval. Also some more elaborate tests are defined, for ex-
ample whether a file is a hard link to another file. New tests can also be defined as logi-
cal combinations of simple tests, €.g. suid_root_exe () can be defined as
And(perm_eq('rwsr-xr-x'), uid_eq(0), format="nota setuid root executable").

Using these basic tests, one might expect that only a static check can be defined, e.g.
principally independent of the current situation on the system. But the general checker is
more powerful, because the criteria is a Python script that defines the requirements. It is
possible to generate requirements based on the contents of some objects. So it is very
easy to define that the home directories of the users are their private area on the system.
Based on the password file contents, tests are generated that the home directory trees
belong to the correct user, and that its root has permissions equal to rwx------ . Note that
you want to skip entries for nobody and bin, hence the REAL_USER_SELECTION.
for el in x.elements('Passwd:File', REAL_USERS SELECTION):
x.require('FileSystem:' + el.home, [perm eq('rwx------ 1)

Xx.require('FileSystem:' + el.home,
(uid_eq(el.uid), gid_eg(el.gid)], ALL)

The checker can be called with more than one collection. Therefore, it is easy to test
several systems against each other. The checker can be used e.g. to find both stale ac-
counts and missing accounts on local systems by comparing it to a server. It is allowed
that the local systems are running Windows (in various flavors), while the server is a
Mac OS X Server. Two fail-over systems should be compared regularly, because most
fail-over software depends (indirectly) on configuration parameters that are not forced
to be the same (e.g. passwords). And comparing the collections of one system that are
created at two time points shows exactly what is changed. This can be used to test if the
installation of a package does not interfere with existing packages, and if a de-
installation restores the old situation.

In our view, there is a difference between a test failure because the property has an in-
valid value, and a test failure because the object is not in the collection. Therefore run




Xperteyes - keeping your system under control 49

time errors are given if the object of a requirement is not in the collection, or if the test
cannot be applied.

The checker adds the errors and failures to the collection, so the viewer can show not
only the failures, but also the environment, making it easier to interpret the results.

Viewing

The viewers are used to see the results of the collectors and the checkers. The graphical
viewer shows an annotated tree of the results. The criteria failures and the run time er-
rors are shown in two separate windows. Errors and failures are also indicated on the
objects self. To guide the user to problem areas, the items in the tree are colored to indi-
cate that in that subtree some problems exist. To understand the requirements on one
object, it is possible to view the requirements that are applicable to that object, and the
result of those requirements.

@ Python Daw View Windows Help i € wrilasq
£ o Requirement failures , 8 © O Contents
ey test i ’Dau of berkelium xsuppai name Jiype [parm Tuid [git | stze |raype [cresear  [fiags [atime
1 FileSystem:/ permission rexrwxr-t is not les; At 1 d rear-xr-x 501 99 170 <NONE <NONE> $ 25-09-20(
2 FileSystem:/ DS _Store ‘permission rexreaxr-x I nat le » Cron 2 Apple Menu kems d rver-xr-x 501 99 544 <NONE <NONE> § 25-09-20(
3 permission ~wx-wx-wx is not | ¥ FdeSystem 3 Suppod PAXT~XP~% $01 99 102 <NONE <NONE> § 25-09-20¢
4 |FHeSystem:/Users v 4 |Cassc f  rexr-xr-x  S01 20 2433972gbly MACS | 13-09-20¢
S FieSystem. /Volum ¢s Trashes 5 Classic Support rexr-xr-x 501 20 194544 FNDR bbox N 13-09-20¢
] FieSystem:/cores > vol 3 Classic Support UM rwar-xr-x 501 20 259207 csul  bbox | 13-09-20C
7 ystem:fimp ® Apphcations 7 |ColorSyncProfilesd  rear-xr-x 501 99 1428 <NONE<NONE» §  25-09-20¢
) » Applications (ac 05 ¢ [§___|ComtextusiMenuld  rwar-xr-x 501 99 170 <NONE<NONE> §  25-09-20(
s Desiaop Folder 9 ControlPanels  d  rwar-xr-x 501 99 1150 <NONE <NONE> S 25-09-20¢
n Relpermission raoracxrws is not le: » Developer 18___[Comtrol StripModid  rwxr-xr-x 501 99 748 <NONE <NONE> § 25-09-20¢ {8
11 xm[sﬁq‘ptmlnu\n rexnaxnat IS not le: » Documents 11 |Extensions d rexr-xr-x 501 9% 5644 <NONE <NONE> § 25-09-20(
12 » Library 12 Favarftes 4 rear-xr-x - 301 9% 306 <NONE <NONE> § 25-09-20(
1 » Network 13 [Finder £ rear-xe-x 501 99 1914636 FNDR MACS  SNM 13-09-20¢
" 14 |Fonts d  redexr-x 501 99 1088 <NONE <NONE> § 25-09-200 |
15 > Sysiem 15 _|Help a4 rwxrxr-x 501 99 204 <NONE<NONE> 5§  25-09-20(
16 > Swgtem Folder 16 |imemetPug-ins o rexr-xr-x 501 99 136 <NONE<NONE> §  25-09-20(
p¥] TheVolumesettingsFol 137 Hineqrnet Search Sk d rexr-xr-x 501 99 374 <NONE <NONE> § 25-09-200
1 Trush 18 Jlanguage & Regio d  rexr-xr-x 501 99 510 <NONE <NONE> 25-09-200
19 o > Users 19 Jlauncherhems d  rwar-xr-x 503 99 170 <NONE <NONE> 5C  25-09-20(
20 [FHeSystem:/dev/ttypl uid 501 s not insysulds ¥ voiumes 20 |Login {  rexr-xr-x 501 99 GFNDR fred B 13-09-20¢
21 [FHeSystem:/dev/ttyp2 uid 501 Is not in sysuids automount 21 |Mac OSROM ! rexr-xr-x  $01 99 25525221bxi  Chrp B 13-09-200
FeSyniem:/dev /ttyp3 uid 501 Is not In sysuids bin 22 MacTCP DNR f WP~ X=X 501 99 0 cdev  mtcp N 13-09-20C
cores 23 [Panels {  rexr-xr-x 501 99 647391 FNDR mfdr BN 13-09-20(
> dev 24 |Preferences d PeXF-XE-X 501 99 1428 <NONE <NONE> § 25-03-20(
> privare 25 ProxyApp f WXr-Xr-X 501 99 1872 APR.  dbox 01-01-19%
o0 26 [scrapbookFlle f  rexr-xr-x 501 99 0sbk  sbia 01-01-19;
> ousr 27 |Scripting Additiond  rwer-xr-x 503 99 442 <NONE <NONE> § 25-09-20(
_ ’ » Fstab p1] Seripts d rexrexe-x 501 99 102 <NONE <NONE> § 25-09-20C
(666 _|arwalid data: (% Croup Database, tine has not afied & Croup 25 |servers 4 rwroeex 501 99 68 <NONE<NONE> §  13-03-20¢
[667_|omvaita dma C#°, “ine has not 4 fields', fetc/group] » Mnteab 30 [sarnup hems d  rerexr-x 501 99 102 <NONE <NONE> S 25-089-200
[668 | arvatia data: (# Nove thar this file 1s consuned wnen] 5 Nevinto 31 [system f rwr-oxex 501 99 9206550 zsys  MACS 85 24-09-20(
[669 | orwalid data: (# mode. At other times whis informati » Packagesoms 32 System Resources f rwXr-xr-x 501 99 D 25yr MACS s 13-09-20¢
(670 Jorvaiid duta: C# lookupd gets information from Netsd Packageinfo 33 [TextEncodings d  rexr-xr-x 501 99 570 <NONE <NONE> § 25-09-20
m (rvalid data: CF unless you have changed lookupd's Packages M Valum eNam eiconé f [ ST 501 99 S6910x) <hrp v 13-D9-20(
Grvaiid data: (24, 'line has not 4 ields’, '/ etc/grousl » Pusswd
Gnvalid data (42, line has nat 7 fNlelds’, */etc/pussw > Shelis
[674_Janvaiia aata: (# User Database, “ine has not 7 flelds
[675_|orvaiid data: (&, ine hus not 7 fields', '/ > Sysinfo
m. Gnvalld data: (‘2 Note that this file Is consued when
(677" Jonvand guta: (8 mode. At other times this informati
(678 |onvaild duta: (# lookupd gets information from Neti
[679_ Jonvalid dxta: ¢# uniess you hawve changed loolaupd's]
(600 Onvalic duta: C##, Yline has nat 7 Neids’, +/

Fig. 2: Annotated tree window and errors window for a Mac OS X collection

By selecting an error or failure, the object is also selected in the annotated tree.

Repairing

For simple failures it can be convenient to repair the failure from within the viewer. In-
stead of writing a small shell script which may repair too little or too much, or which
may even corrupt your system, Xperteyes has the possibility to use the viewer to repair
the system.

A repair action can be executed on the objects that are selected in the criteria failures.
This repair action should be defined previously in the criteria. The repair action will




50 Xperteyes - keeping your system under control

only change the system if certain conditions are met: usually the object should still have
the same properties as in the collection, but a less restrictive condition may be used, e.g.
the contents are not changed.

The person defining the criteria with repair actions should be aware of the dangers of
repairing. The person actually applying the repair actions should check that the failures
really should be repaired. An example of the dangers is easy. Suppose that a malicious
user has hard linked /etc/passwd in his home directory as '.mailrc '. One of the
rules states that all objects in a home directory belong to the user. A repair action may
be: set the uid to this user. It is clear that in this case the object should not be repaired,
but removed. Very accurate definition of the repair action is necessary, and correct
checking is also necessary.

Extending

One of the major design goals was to create an easily extendible tool. This is based on
the idea that it should be easy to include some information on the system that is specific
for the organization using the system. Suppose that our own company has the policy
that all objects in /xsupport/bin should be statically linked executables. This infor-
mation is not collected by default, so we need to get this additional information, and de-
fine and apply an additional test.

The additional information is most easily added to the file system collector. An extra
field, called 'magic', is defined. A function is defined, which will call the external pro-
gram /usr/bin/file and store the result in the 'magic' field. This function is added to
the file system collector in the same way as the checksum and content functions.

In the file system collector configuration the magic is required for all files in
/xsupport/bin. Now we can run the collector and the collection will contain the file
magic of the files in /xsupport/bin, as the viewer will show.

A new test needs to be defined, which will test the magic field. This is a straightforward
test, having as argument the content of the magic field. In the criteria this test is applied
to the children of /xsupport/bin. The general checker can now generate failures for
this test, and with the viewer we will see if the system satisfies our criteria.

The time estimate for implementing and testing this new feature will be about one day
for someone not familiar with the code.

Portability

Xperteyes is currently running on Mac OS X, Linux and Windows. It is implemented
in Python with one extension module in C, for compact storage and fast retrieval of
large data sets. The graphics are based on the wxPython extension module, which is a
portable (Windows, Mac and X11) graphical toolkit.

For the collectors, a few wrappers are written in C to read the system data and convert it
to Python structures. This code is the only OS dependent part of the application; all
other code is Python and will run on any platform with Python. Also, the data is port-
able, making it possible to check on a Mac OS server the Windows clients against a
Linux server. The data is self-contained, so it is not necessary to use the collection on
the same kind of platform.




Package views 51

Package views - a more flexible infrastructure for
third-party software

Alistair Crooks
Wasabi Systems
<agc@wasabisystems.com>

Firstly, conventional systems for installation of third party software, including FreeBSD’s ports
system, NetBSD’s pkgsrc, and OpenBSD’s ports system, are analysed and compared. In addition,
other approaches and infrastructure layouts within the industry are examined.

One of the main problems faced by users of the various systems is the means by which multiple
versions of a package, or packages which “conflict” with each other, can be installed at the same
time.

Following that, a new system is proposed, which has been implemented in NetBSD’s pkgsrc im-
plementation:

to allow any number of different versions of packages to co-exist at any one time

to provide support for dynamic packing lists

to allow the testing of different versions of packages on a single machine at any one time

to allow more dynamic conflict detection at install time

whilst continuing to use the existing pkg-install(1) tools

The new system is laid out in detail, including the practical aspects of managing a large number of
third party packages across a number of different Operating Systems, all within the same pkgsrc
framework.

The advantages and disadvantages of the new infrastructure are discussed, as are the lessons
learned from its deployment.

Mr. Crooks is Senior Development Manager for Wasabi Systems, who specialise in
providing NetBSD-based solutions for the embedded marketplace. He also heads up
the NetBSD packages team, and is an ex-member of the NetBSD core-team. Alistair
has over 20 years experience in the [T industry, and has worked in financial insti-
tutions, for major computer manufacturers, software houses, and for other users, as
well as running his own consulting business for 8 years. He lives in the UK with his
wife and children, and has worked in the UK, USA, Germany and the Netherlands.




Package views

Package Views - a more flexible infrastructure for third-party
software.

Alistair Crooks, Wasabi Systems, agc@wasabisystems.com

7th October 2002

Abstract

Firstly, conventional systems for installation of third
party software, including FreeBSD’s ports system,
NetBSD’s pkgsrc, and OpenBSD’s ports system, are
analysed and compared. In addition, other ap-
proaches and infrastructure layouts within the indus-
try are examined. One of the main problems faced
by users of the various systems is the means by which
multiple versions of a package, or packages which
“conflict” with each other, can co-exist at the same
time.

To address that, a new system is proposed to al-
low any number of different versions of packages to
co-exist at any one time, and the importance of dy-
namic packing lists is discussed. The new infrastruc-
ture is then described in detail, including the practi-
cal aspects of managing a large number of third party
packages across a number of different operating sys-
tems.

Finally, the lessons learned from its deployment
within the NetBSD pkgsrc infrastructure are drawn.

1 Third-party software

In the BSD world, it is not the norm to have software
automatically packaged for you. That is the preroga-
tive of operating environments such as Windows and
Linux (although different Linux distributors matter
to this equation). Because of this, an infrastructure
which takes freely-available software and makes it
available to others is desirable. This infrastructure
must, at a miniumum:

. Retrieve the software from its home site or a mir-
ror (assuming you are connected in some way to
the Internet), or from a CD or other medium.

. Verify its integrity.
. Apply any patches.

. Configure the software for the host operating
system, then build and install.

. Track all installed files to permit easy removal of
software using the packaging utilities.

. Optionally create a binary package that can be
installed on other hosts.

Any prerequisite software will also be automatically
downloaded, built, and installed.

There are numerous advantages to having an in-
frastructure which does this automatically:

1. The packages have already been setup to com-
pile and install correctly on your system, so you
don’t have to worry about porting the software
yourself.

. The latest versions of a program, and its patches
are obtained for you, and sorted out so that the
software works with NetBSD.

. Tt is casy to use, and quick, even over a dialup
connection.

4. You can submit additional software to the pack-
aging system, so that others can benefit from
your porting work.




Package views

53

5. You can create scripts easily to install sets of
packages and maintain the standard software for
hosts on your network.

6. The same ease of use and maintenance applies
to both binary and source based packages.

7. All packages are installed in a consistent di-
rectory tree, including binaries, libraries, man
pages, and other documentation.

8. Optional configuration parameters are controlled
by a single central config file, including in-
stall prefix, acceptable software licenses, and do-
mestic(US) or international encryption require-
ments.

9. The packages are sorted into categories, provid-
ing useful lists of tools to browse through, all
guaranteed to work.

10. Pkgsrc knows about primary distribution and
mirror sites for source packages, so you can in-
stall even when that URL you memorize doesn’t
work.

This infrastructure helps out people new to the BSD
platform by giving them pre-ported software, and
helps out the "old lags" too by lifting the burden
of having to duplicate the work that others may have
done before them.

This, however, is nothing new. The FreeBSD ports
collection has been doing this since 1993.

1.1 What is pkgsrc?

In 1997, NetBSD decided to introduce a third-
party software infrastructure, and base it on the
the FreeBSD ports collection http://www.freebsd.
org/ports/index.html. The pkg install tools were
imported into the NetBSD CVS repository in June
1997, followed by the basic bsd.port.mk file to the
share/ hierarchy, and then the basic pkgsrc infras-
tructure in early October 1997. For more informa-
tion on the NetBSD Packages collection, sce the rele-
vant documentation on the NetBSD web site a short-
cut to the relevant page on the NetBSD web site.
http://www.pkgsrc.org/

The figures for the growth of pkgsrc are given by
Hubert Feyrer in The Growth of the Packages Col-
lection http://www.netbsd.org/Documentation/
software/pkg-growth.html. There were 3214
packages in the packages collection at the end of
September 2002. This compares to over 7000 for
FreeBSD, and around 2000 for OpenBSD (although
OpenBSD have a “flavors” enhancement to their
ports system which reduces the overall number of
packages).

One of the problems of bringing over ports from the
FreeBSD ports collection has been that NetBSD is
primarily a multi-architecture operating system. To
the NetBSD people, a “port” means NetBSD running
on a different architecture. (17 different processor
families, 23 different architectures, 50+ platforms).
Hence the name had to change, and the SI unit for
NetBSD’s third party software collection came to be
known as a “package”. A place in the CVS reposi-
tory to house the infrastructure for the packages had
to be found, and so that place came to be known
as pkgsrc, modelled after the existing basesrc, xsrc,
othersrc directories. “pkgsrc” was born.

1.2 How does it differ from the ports
collection?

The NetBSD packages team made a number of
significant changes. A full list of these changes
can be gleaned from the web interface to the
NetBSD CVS repository. the web interface to the
NetBSD CVS repository http://cvsweb.netbsd.
org/bsdweb.cgi/.

1. bsd.port.mk and the mtree files were moved to
be in the pkgsrc hierarchy, and use relative paths
to refer to files within pkgsrc. This allows us to
have a number of pkgsrc trees checked out and
in use at the same time.

2. Real CONFLICT handling was added to pack-
ages.

3. Wildcard and relative matching of package ver-
sion numbers was added




4.

10.

54

Package views

"just-in-time su(1)" functionality was added, so
that people can do everything except package
installation as unprivileged users

. pkgsrc was ported to Solaris, and then to Linux

and Darwin, so that people can use pkgsrc on
those platforms. This used to be done by means
of a compatibility layer called Zoularis, but is
now done natively, using the othersrc/bootstrap-
pkgsrc generic bootstrap kit. Debugging out-
put was improved at the same time. We have
a truly generic bsd.pkg.mk, whereby different
Operating Systems use abstract values defined
in a defs.${OPSYS}.mk, and these abstractions
are then used within bsd.pkg.mk. This makes
it much easier to port pkgsrc to other operating
systems.

. The specification of default values was made the

same across all packages, with a single file which
is automatically included in the make(1) process
- bsd.pkg.defaults.mk - and differences from the
defaults can be placed in /etc/mk.conf. One
single file was made which can be included by
package Makefiles in order to pick up standard
defaults, and also any differences from the norm
as specified in /etc/mk.conf - package Makefiles
simply .include "../../mk/bsd.prefs.mk" before
any make(1) .if ... conditionals.

“buildlink” functionality was introduced, which
ensures that the correct files are used in the build
and linking processes.

. Manual pages are not specified in a package

Makefile - if a package has files, they are all in-
cluded in the package’s PLIST.

. Simple coarse-grained locking was added to

pkgsrc using shlock(l). If a package is being
built, subsequent attempts to build the same
package will lock, waiting for the first package
to finish building,.

The package tools were given the ability to use
digitally-signed packages - if a package has been
signed, the user can be prompted whether or not

11.

12.

13.

14.

15.

16.

to install a package, depending on whether or not
the creator of the binary package is trusted.

Message digests of all relevant patch files were
generated, so that people using sup or extract-
ing patch files over an existing set of patch files
will only get the necessary patches applied. (If
the digest doesn’t match, the patch file is not
applied). Support was added for message digests
other than md5 for distfiles and patches, by us-
ing the digest package, and support for SHA256
and SHA512 was added to the digest package

The ACCEPTABLE LICENCE feature was
added to /etc/mk.conf, to ensure that people
only installed packages with whose licence they
agreed.

Automatic calculation of the effective date of the
pkg_install tools is carried out. If the tools are
too old, the user will be told this, and how to fix
it (typically, by installing the pkg install pack-
age). Full-pathname symbolic links are adjusted
in pkg_create(1) to be relative to ${PREFIX},
if appropriate. This helps with binary packages.

An xpkgwedge package was added, which makes
packages which would normally be installed in
${X11BASE} be installed in ${LOCALBASE}.
pkg_info(1) will find out the installed prefix of
a package dynamically, rather than guessing at
${X11BASE} or ${LOCALBASE}

The MASTER_SITE SORT definition
was added whereby we can sort the MAS-
TER _SITES so that the nearest toplogically
get tried first, and FAILOVER_FETCH was
added so that, when retrieving distfiles, the
distfile digests can be checked, and, if they don’t
match, the distfile will be considered incorrect,
and the next site will be tried.

The object format for shared libraries is deter-
mined dynamically at package install time rather
than using a hard-coded table - this is much more
dynamic, and allows NetBSD ports to migrate
from a.out to ELF with no appreciable changes
to the pkgsrc infrastructure. All binaries and




17.

18.

19.

20.

21.

22.

23.

Package views

55

shared libs are checked after installation to make
sure that any shared libs are found correctly by
said binaries and other shared libraries.

The audit-package package was added, which
uses the relational matching of package
names to scan a published list of known
vulnerabilities, which is maintained by the
NetBSD Security Officer, and published
on ftp.netbsd.org as the vulnerabilities
file ftp://ftp.netbsd.org/pub/NetBSD/
packages/distfiles/vulnerabilities, along
with a small script to download it. This allows
users to be notified automatically if there is a
vulnerability in one of their installed packages,
and does away with the need for security
advisories for packages.

“system packages” have been added to the base
system, whereby all system utilities and kernels
can be treated as packages, and deleted, added,
matched, updated at will.

The BUILD_ DEPENDS semantics were
changed to match the existing DEPENDS syn-
tax - the first component is now a pkg_info(1)
recognisable package name (with possible
relational or alternate matching)

Special handling for the installation of rc.d
scripts, create users, and install example files has
been added

A new framework for handling info files genera-
tion and installation was added

A “replace” target was introduced, which up-
dates a package in place, modifying any packages
which use it. There’s also an “undo-replace” tar-
get

A finer-grained INTERACTIVE_STAGE defi-
nition was introduced, so that builds can con-
tinue better unattended

and many, many more enhancements, improvements
and speedups.

OpenBSD have also made a number of separate
improvements (they have made many more, these are
simply some of the main ones)

1. They were the first to speed up the building pro-
cess by eliminating the use of .USE macros.

2. They have implemented their “FAKE” function-
ality to provide staged installations (similar to
Debian packages).

3. They implemented ‘“flavors” functionality,
whereby a package can be built in a number
of ways, for example with or without X11
functionality.

FreeBSD have continued to grow their ports collec-
tion, and still have the most packages - near 7000 at
the last count.

2 The current situation

The conventional *BSD ways of installing software
(NetBSD’s pkgsrc, FreeBSD/OpenBSD ports sys-
tem) install directly into ${LOCALBASE}, possibly
overwriting existing files. This has certain disadvan-
tages:

1. There can only be one version of a piece of soft-
ware installed at any one time. There are numer-
ous occasions when it is desirable to have a newer
copy of software to be evaluated, whilst still us-
ing the production copy of this. One approach is
to install the package to be evaluated by using a
different prefix, but there are numerous package
management problems with this approach, and
it does not scale well.

2. It is often possible that a package overwrites
a working version of another unrelated package
simply because they contain commands or li-
braries header files with the same name. Whilst
this may seem trivial, and a simple choice has
to be made as to the more appropriate package
to have installed under these circumstances, it is
often more complicated than that. Other pack-
ages may demand certain choices be made, which
may not be convenient for individual users.




56

Package views

3. Problems can arise when some third party soft-
ware is upgraded, and a lot of other software
depends upon it (libpng, jpeg, zlib). All of the
packages which use the updated package have
to be re-linked, and the only feasible way to do
that is to de-install all of them, with the ensuing
problems that that can bring. Various attempts
have been made to work around this situation
(retiring packages, pkg hack, “make replace”),
but none of these has addressed the fundamen-
tal problem.

It is desirable to have a means whereby two packages
with the same file system entries can co-exist. As
explained above, one method of doing this is to in-
stall the newer package into a ${LOCALBASE} in a
different location, but this does not scale at all well,
and we run into problems with the metadata files
in ${PKG_DBDIR}. It is clear that a different ap-
proach is needed.

3 Other approaches

Some other approaches to the problems outlined
above have been tried:

1. Using separate machines (where they are avail-
able) to install newer versions of packages, test
their stability and functionality, and then finally
deploy them across a network of machines.

2. "Retiring" packages (where shared objects are
retained under a differently-named package) will
only work properly when the major number of
the shared objects are changed on ELF plat-
forms.

3. OpenBSD’s “FAKE”, a staged installation ap-
proach similar to Debian’s, will only allow one
version of a package to be installed at any one
time. In this case, a binary package is created
in the staging area, and that binary package is
added to the destination. This has the benefit
of creating a binary package which can then be
installed on other systems, and otherwise manip-
ulated.

4. CMU’s depot software http://andrew2.
andrew.cmu.edu/depot/ is a large piece of
software which creates a tiered environment for
third party software packages. Some consider
it too unwieldy for use in a packaging environ-
ment, and mandates an interesting bootstrap
procedure and difficult management and config-
uration problems. One of our pkgsrc developers
used this for his own packaging system before
switching to pkgsrc (on Solaris). Maintenance
was the main reason he cited for this.

5. GNU’s stow program http://www.gnu.ai.mit.
edu/software/stow/stow.html is a very useful
program, which uses a tiered approach to soft-
ware installation. Unfortunately, stow is written
in Perl, which again provides us with some boot-
strap problems. The program is also distributed
under the GPL, and we’d rather not go there.

6. Various other packaging efforts http://wuw.
encap.org/ also use a tiered approach to the
installation of software

After much consideration, it was decided that the
approaches outlined above could be improved. Some
experiments were made with a staged installation ap-
proach, similar to OpenBSD’s “FAKE” approach, but
other problems with this method encountered. Three
approaches to installing a package into a staging area
were identified:

1. The package’s build mechanism already pro-
vided a means of installing into a staging area
- packages which have been modified for De-
bian’s ${DESTDIR}, for example, and newer
X11-based packages which also installed into
${DESTDIR}. This approach was known as the
“DESTDIR” approach.

2. A number of wrapper scripts were written, to en-
able install(1), In(1), cp(1) and other programs
which are used to install packages into ${LO-
CALBASE} to take the same arguments as at
present, but modify these arguments internally
to point to the staging area. This approach was




Package views

57

found to be applicable in most circumstances, al-
though we also encountered problems with pack-
ages which used GNU libtool, perl and other util-
ities to install their files, and a surprising number
of wrapper scripts had to be written.

3. by setting ${LOCALBASE} to include a spe-
cific ${DESTDIR} component, and passing that
down to sub-make invocations within the pack-
age build and installation procedures.

However, these experiments showed that this ap-
proach was simply were papering over the cracks -
the base problem (that you can have only one version
of a package installed at any one time) still existed,
and had not been worked around in any way by this.

4 The aims of package views

Having studied the problem, it was obvious that a
better method of installing packages into a destina-
tion was necessary. The main aim was that multiple
versions of a package should be capable of being in-
stalled at any one time. There were also subsidiary
aims, too:

1. to allow any number of different versions of pack-
ages to co-exist at any one time

2. to allow the testing of different versions of pack-
ages on a single machine at any one time

3. to allow more dynamic conflict detection at in-
stall time

4. whilst continuing to use the existing pkg_ install
tools.

4.1 Dynamic Packing Lists

It was subsequently realised that if a package was
installed in its own hierarchy, then dynamic PLISTs
could also be supported. From its inception, pkgsrc
has used a static list of files which constitute the pack-
age. This list of files is called a “PLIST”, which is
short for “Packing LIST”. Over the years, the PLISTs
have taken up more and more time in package main-
tenance, requiring manipulation for:

e gzipped or standard manual pages

e shared object and library differences by platform
and by object format (ELF or a.out)

e changes to reflect other packages installed on a
machine (which may not be desired or necessary)

o the machine architecture
e the version of the operating system software

o the version number of the package itself

If PLISTs could be created at installation time, a lot
of this extra maintenance would disappear. Dynamic
PLISTs require no manual maintenance, and remove
a barrier from anyone wishing to create a pkgsrc entry
for a new package. Dynamic PLISTs also mean that
the manipulations described above do not have to
be performed. There are other packaging systems in
existence which use dynamic packing lists (Amdahl’s
PSF, included in UTS 4.3.3, for example) from which
many lessons can be drawn.

5 Package Views

From the basic tenet that multiple versions of a single
package need to be installed, it was obvious that a
single ${LOCALBASE} directory was insufficient -
multiple ${LOCALBASE}s were necessary. It then
became obvious that some form of layering would be
needed to accomplish this aim. We also observed the
way that multiple versions of packages were installed
on machines manually by seasoned administrators.

e The basic idea of package views is that a tiered
approach, which was later found to be similar to
the encap packaging system.

e The basic package is installed into ${LO-
CALBASE}/packages/${PKGNAME}. This is
called the depot directory.

e A custom built shell script is used to build the
upper tiers of symbolic links in separate "views",
pointing to the files and directories in the depot
directory.




Package views

Using these ideas, we build up small hierarchies per
package. Symbolic links are made to each of the files
and symbolic links which constitute a package, and
those symbolic links are referenced, rather than the
original file within the small hierarchy of the package.
For example, with a number of packages installed, the
contents of the ${ LOCALBASE} /packages directory
is shown in Figure 1.

Within each of these “depot” directories, the hier-
archy is shown in Figure 2.

As can be seen, the package’s metadata files
are kept in the depot directory - this is so
that the pkg_install utilities work when used
with a ${PKG_DBDIR} value of ${LOCAL-
BASE}/packages (so that relational matching of
package names and version numbers continue to
work). Once the files have been installed in the depot
directory, we then create a “view” of that package’s
entries under ${LOCALBASE}. This is called the
default view.

We make a
links to the

“linkfarm”  of
entries under ${LOCAL-
for each of
the files and symbolic links in the package. If there
is a package-specific directory in the depot directory;,
it will be created as a directory in ${LOCALBASE},
provided it does not yet exist. If there is already
an entry under ${LOCALBASE} with the same
name, that symbolic link is replaced by the new
symbolic link. This is not such a drastic move as
it is at the present time - since the entry under
${LOCALBASE} is merely a symbolic link, the
entry in the other depot directory is not touched in
any way.

symbolic

BASE}/packages/${PKGNAME}

The linkfarm is created by an extra Bourne shell
script, and was written to do the same work as the
GNU stow program, except for the folding of direc-
tories. The linkfarm script takes the same (long and
short) arguments as stow, and performs the same job.

When the linkfarm has been created, a +VIEWS
metadata file is added to the depot directory. This
file contains the views which have been built on top
of the depot directory.

There is one default view, and all packages have a
view in the default view.

Any number of other views can also be created.
For example, a “devel” view could be created specifi-
cally for packages which have to be tested and evalu-
ated before being put into production use. In a simi-
lar way, “kde2”, “kde3” and “gnome2” views could be
created in order to appraise those specific groups of
packages. We are occasionally asked about putting all
GNU utilities under a separate ${PREFIX} in pkgsrc
- with package views, these packages can quite simply
be pulled up into a “gnu” view.

It should be noted that all packages, even the
X11-based ones, need to install into the same ${LO-
CALBASE} directory. This means that xpkgwedge
is obligatory (xpkgwedge puts a package which
would normally be destined to be installed under
${X11BASE} into the normal ${LOCALBASE} hi-
erarchy). This has other benefits too, since xpkg-
wedge preserves the sanctity of what some consider
to be system libraries, and reduces the impact upon
the installed package hierarchy when a new version
of X11 is installed on the computer, although some
re-linking may be necessary.

A package may not be deleted from the depot di-
rectory if there are any views of that package in exis-
tence. This is to preserve the cleanliness of the views
model, to keep a principle of cleaning up after our-
selves, and to preserve the sanity of system admin-
istrators everywhere. The standard pkg delete(1)
command can be used to delete a view, as can the
linkfarm script. pkg delete(1), and linkfarm(1), can
also be used to delete a view itself. pkg info(1) can
be used to view packages in the depot directory or in
views.

When the next version of the package comes along,
because it has a different package name, it gets in-
stalled into a different depot directory. The two dif-
ferent versions exist side by side. If the old view in
${LOCALBASE]} still exists, the linkfarm script can
be used to delete the old view, before making the
new view for the new package version. This ensures
that packages linking to the package will pick up the
entries in the new version of the package.

At the current time, packages link with pre-
requisite packages in ${LOCALBASE}. Over time,
we may migrate this to link directly to files in the
depot directories, so that packages are built with one




Package views

59

[15:54:02]
total 150
drwxr-xr-x 147 root wheel 4096 May 13
drwxr-xr-x 19 root wheel 512 May 7 20:23
drwxr-xr-x 10 root wheel 512 May
drwxr-xr-x 10 root wheel 512 May
drwxr-xr-x 10 root wheel 512 May
drwxr-xr-x 13 root wheel 512 May
drwxr-xr-x 10 root wheel 512 Apr
drwxr-xr-x 13 root wheel 512 May
drwxr-xr-x 13 root wheel 512 May
drwxr-xr-x 13 root wheel 512 Apr
drwxr-xr-x 13 root wheel 512 Apr
drwxr-xr-x 13 root wheel 512 Apr
drwxr-xr-x 10 root wheel 512 May
drwxr-xr-x 10 root wheel 512 May
drwxr-xr-x 13 root wheel 512 May
etc ...

7
7
7 22:
7
7

Figure 1:

canonical version, but doing this has other ramifica-
tions, such as the ability to have wildcard dependen-
cies on other packages.

6 Practical Aspects of Package
Views

6.1 Views

A package’s files are always in one canonical location,
the depot directory. On top of that, views can be
constructed.

¢ There is a default view, which defaults to ${LO-
CALBASE}.

e Any number of views can be added.

e The traditional NetBSD pkg_install(1) tools are
used, with the addition of the script to manage
the symbolic link farms.

16:09 .

agc@sysl /usr/vpkg/packages 13 > 1s -al

15:52 9wm-1.1
12 GConf-1.0.9
17:34 Mesa-3.4.2nbil
22:12 ORBit-0.5.15
25 09:55 Xaw3d-1.5
13 11:37 a2ps-4.13.0.2
7 16:36 abiword-personal-0.99.5
26 19:23 autoconf-2.13
26 19:23 automake-1.4.5nbt
25 11:15 bison-1.35
7 22:12 bonobo-1.0.18nbl
7 17:34 control-center-1.4.0.4
8 21:40 curl-7.9.6

the contents of the ${LOCALBASE}/packages directory

6.2 ${LOCALBASE}
${X11BASE}

VS.

Traditionally, packages have installed into ${LOCAL-
BASE}, or ${X11BASE}, depending upon a number
of issues.

NetBSD’s pkgsrc has a utility called xpkgwedge
which forces all packages which would normally
install into ${X11BASE} into ${LOCALBASE},
thereby keeping the X11 tree "clean".

6.3 ${PREFIX}

With xpkgwedge installed on a computer, all pack-
ages now install into ${LOCALBASE}. The float-
ing ${PREFIX} definition is now unnecessary. How-
ever, ${PREFIX} is used in most of the packages’
own Makefiles to represent the installation prefix.

We thus “move” the ${PREFIX} definition
to refer to the depot directory, ${LOCAL-
BASE}/packages/${PKGNAME}. This gives us a
simple and easy way to refer to the depot directory
from package Makefiles.




60

Package views

[16:01:00] agc@sysl ...vpkg/packages/pth-1.4.1 >1s -al
total 22

-rw-r--r-- 1 root wheel 693 May 7 15:52 +BUILD_INFO
-rw-r--r-- 1 root wheel 374 May 7 15:52 +BUILD_VERSION
-rw-r--r-- 1 root wheel 32 May 7 15:52 +COMMENT
-rw-r--r-- 1 root wheel 224 May 7 15:52 +CONTENTS
-rw-r--r-- 1 root wheel 1063 May 7 15:52 +DESC
-rw-r--r-- 1 root wheel 6 May 7 15:52 +SIZE_ALL
-rw-r--r-- 1 root wheel 6 May 7 15:52 +SIZE_PKG
-rw-r--r-- 1 root wheel 17 May 7 15:52 +VIEWS

drwxr-xr-x
drwxr-xr-x

10 root wheel 512 May 7 15:52 .

147 root wheel 4096 May 13 16:09 ..

drwxr-xr-x 2 root wheel 512 May 7 15:52 bin
drwxr-xr-x 3 root wheel 512 May 7 15:52 etc
drwxr-xr-x 3 root wheel 512 May 7 15:52 include
drwxr-xr-x 2 root wheel 512 May 7 15:52 info
drwxr-xr-x 4 root wheel 512 May 7 15:52 1ib
drwxr-xr-x 2 root wheel 512 May 7 15:52 libexec

drwxr-xr-x
drwxr-xr-x

(16:01:02] agc@sysi

25 root wheel 512 May 7 15:52 man
7 root wheel 512 May 7 15:52 share
...vpkg/packages/pth-1.4.1 >

Figure 2: the contents of a “depot” directory

6.4 bsd.pkg.mk internals

At the present time, packages which use
GNU configure scripts are passed the item -
prefix=${GNU_CONFIGURE_PREFIX}  where
${GNU_CONFIGURE_PREFIX} defaults to
${PREFIX}. With package views, as mentioned
above, PREFIX is modified to point to ${LOCAL-
BASE} /packages/${PKGNAME}, and so no further
internal manipulation of prefices needs to take place.

6.5 Upgrading packages

Previously, an upgrade or update to a package, es-
pecially one containing shared libraries and objects,
could be an onerous task, especially (on ELF sys-
tems) if a shared library major number change was
involved. With packages views, the new package is
installed alongside the old one. There are now two
possible circumstances (it is assumed that ELF plat-
forms are being used, since almost all systems now
use the ELF format):

6.5.1 The majority of cases

In the overwhelming majority of cases, the newer ver-
sion of the package is installed in its own depot di-
rectory, the linkfarm in the default view to the older
version is deleted, and a new linkfarm to the newer
version is created in the default view. No further
changes are necessary, and it is possible to try out
other packages which use this package, even if shared
libraries are involved. Note that, should the newer
version of the package not function as intended, it
is a simple matter to revert to the older version, by
deleting the linkfarm in the default view to the newer
version, and adding a linkfarm to the default view for
the older version. As we optimise for the most com-
mon occurrence in all things, this approach brings
huge benefits.

6.5.2 A shared library major number change

Using the existing “overwrite” meachanism, for a few
specific and annoying cases, a major number change




Package views

61

for a shared library has meant that those packages,
and any other packages which re-use them, have to be
re-linked. There have been two memorable occasions
over the last year (libpng and libiconv) when this
has necessitated a large amount of “make update”
work. With package views, this situation does not
cause any problems, since the old shared library is
still around in its depot directory, and the symbolic
link to it still exists from the default view; similarily,
the new shared library exists in its depot directory,
and a symbolic link to its major version exists in the
default view, too:
libwibble.so ->
2.0/1ib/libwibble.s0.2.0
libwibble.so.1  ->
1.0/1ib/libwibble.so.1.0
libwibble.so.2  ->
2.0/lib/libwibble.s0.2.0
Whilst the symbolic link to the non-versioned
shared library in the default view (libwibble.so) is
overwritten, it makes no difference, since that sym-
bolic link is only used for compilation.

/usr/pkg/packages/wibble-
/usr/pkg/packages/wibble-

/usr/pkg/packages/wibble-

7 A Worked Example

7.1 An illustration - the depot direc-

tory

The files which constitute the package’s entries in the
file system are shown in Figure 3.

7.2 An illustration - the default view

The files which constitute the package in the default
view are shown in Figure 4.

7.3 The Linkfarms

The symbolic links in the default view, and their tar-
gets under the depot directory, are shown in Figure
5.

8 Advantages

With package views, the immediate benefits are the
same as the aims:

1. to allow any number of different versions of pack-
ages to co-exist at any one time

2. to allow the testing of different versions of pack-
ages on a single machine at any one time

3. to allow more dynamic conflict detection at in-
stall time

4. whilst continuing to use the existing pkg_ install
tools, and

5. to provide support for dynamic packing lists

and, quite unexpectedly, other advantages were
gained:

1. it is immediately obvious to which package a file
or directory belongs

2. many additional views can be built up - package
views are scalable

3. pkg_delete(1) deletes links in the views as well
as the package itself

4. multiple conflicting packages (not just multiple
versions of one package) can be installed at the
same time

5. development packages can be tested and evalu-
ated on the same machine on which they will
eventually run

This is portable to any system on which pkgsrc runs -
NetBSD, Solaris, Darwin, and Linux. FreeBSD, Irix,
Digital Unix and HP/UX are currently in the works,
although the generic bootstrap kit should work on
any POSIX-compliant system.

Users can migrate to package views simply by set-
ting an /etc/mk.conf variable definition. For cleanli-
ness, it would be better to move to a complete pack-
age views system at one time, and so a pkgsrc flag
day is on the cards. In reality, the current “overwrite”




Package views

(16:42:15] agc@sysl /usr/vpkg/packages 339 > env PKG_DBDIR=/usr/vpkg/packages pkg_info -L

pth

Information for pth-1.4.1:

Files:

/usr/vpkg/packages/pth-1.4
/usr/vpkg/packages/pth-1.4
/usr/vpkg/packages/pth-1.4
/usr/vpkg/packages/pth-1.4
/usr/vpkg/packages/pth-1.4
/usr/vpkg/packages/pth-1.4
/usr/vpkg/packages/pth-1.4
/usr/vpkg/packages/pth-1.4
/usr/vpkg/packages/pth-1.4
/usr/vpkg/packages/pth-1.4
/usr/vpkg/packages/pth-1.4
/usr/vpkg/packages/pth-1.4
/usr/vpkg/packages/pth-1.4
/usr/vpkg/packages/pth-1.4
/usr/vpkg/packages/pth-1.4
4.
4
4
4
4
4
4
4
4
4
4
4
4
4
4

/usr/vpkg/packages/pth-1

/usr/vpkg/packages/pth-1.
/usr/vpkg/packages/pth-1.
/usr/vpkg/packages/pth-1.
/usr/vpkg/packages/pth-1.
/usr/vpkg/packages/pth-1.
/usr/vpkg/packages/pth-1.
/usr/vpkg/packages/pth-1.
/usr/vpkg/packages/pth-1.
/usr/vpkg/packages/pth-1.
/usr/vpkg/packages/pth-1.
/usr/vpkg/packages/pth-1.
/usr/vpkg/packages/pth-1.
/usr/vpkg/packages/pth-1.
/usr/vpkg/packages/pth-1.
4.

/usr/vpkg/packages/pth-1

.1/bin/pth-config
.1/bin/pthread-config
.1/include/pth.h
.1/include/pthread.h
.1/1ib/libpth.a
.1/1ib/1ibpth.la
.1/1ib/1libpth.so
.1/1ib/1ibpth.so.14
.1/1ib/1ibpth.so.14.21
.1/1ib/libpthread.a
.1/1ib/libpthread.la
.1/1ib/libpthread.so
.1/1ib/libpthread.so.14
.1/1ib/libpthread.so.14.21
.1/man/man1/pth-config.1

1/man/manl/pthread-config.1

.1/man/man3/pth.3
.1/man/man3/pthread.3
.1/share/aclocal/pth.m4
.1/share/doc/pth/ANNOUNCE
.1/share/doc/pth/AUTHORS
.1/share/doc/pth/COPYING
.1/share/doc/pth/HACKING
.1/share/doc/pth/NEWS
.1/share/doc/pth/README
.1/share/doc/pth/SUPPORT
.1/share/doc/pth/TESTS
.1/share/doc/pth/THANKS
.1/share/doc/pth/USERS
.1/share/doc/pth/pthread.ps

1/share/doc/pth/rse-pmt.ps

[16:42:27] agc@sysl /usr/vpkg/packages 340 >

Figure 3: the contents of the package in the “depot” directory




Package views

63

[16:42:27] agc@sysl /usr/vpkg/packages 340 > pkg_info -L pth
Information for pth-1.4.1:

Files:

/usr/vpkg//bin/pth-config
/usr/vpkg//bin/pthread-config
/usr/vpkg//include/pth.h
/usr/vpkg//include/pthread.h
/usr/vpkg//lib/libpth.a
/usr/vpkg//1lib/libpth.la
/usr/vpkg//1ib/1libpth.so
/usr/vpkg//1ib/1libpth.so.14
/usr/vpkg//1ib/1libpth.so.14.21
/usr/vpkg//1ib/libpthread.a
/usr/vpkg//1lib/libpthread.la
/usr/vpkg//1ib/libpthread.so
/usr/vpkg//lib/libpthread.so.14
/usr/vpkg//1lib/libpthread.so.14.21
/usr/vpkg//man/manl/pth-config.1
/usr/vpkg//man/manl/pthread-config.1
/usr/vpkg//man/man3/pth.3
/usr/vpkg//man/man3/pthread.3
/usr/vpkg//share/aclocal/pth.mé
/usr/vpkg//share/doc/pth/ANNOUNCE
/usr/vpkg//share/doc/pth/AUTHORS
/usr/vpkg//share/doc/pth/COPYING
/usr/vpkg//share/doc/pth/HACKING
/usr/vpkg//share/doc/pth/NEWS
/usr/vpkg//share/doc/pth/README
/usr/vpkg//share/doc/pth/SUPPORT
/usr/vpkg//share/doc/pth/TESTS
/usr/vpkg//share/doc/pth/THANKS
/usr/vpkg//share/doc/pth/USERS
/usr/vpkg//share/doc/pth/pthread.ps
/usr/vpkg//share/doc/pth/rse-pmt.ps
[16:42:41] agc@sysl /usr/vpkg/packages 340 >

Figure 4: the contents of the package in the default view




64 Package views

[16:42:41] agcOsysl /usr/vpkg/packages 341 > 1ls -al ‘pkg_info -qL pth‘

lruxr-xr-x 1 root wheel 43 Apr 24 09:28 /usr/vpkg//bin/pth-config -> /usr/vpkg/packages/pth-1.4.1/bin/pth-config

lruxr-xr-x 1 root wheel 47 Apr 24 09:28 /usr/vpkg//bin/pthread-config -> /usr/vpkg/packages/pth-1.4.1/bin/pthread-config
lruxr-xr-x 1 root wheel 42 Apr 24 09:28 /usr/vpkg//include/pth.h -> /usr/vpkg/packages/pth-1.4.1/include/pth.h

lruxr-xr-x 1 root wheel 46 Apr 24 09:28 /usr/vpkg//include/pthread.h -> /usr/vpkg/packages/pth-1.4.1/include/pthread.h

lruxr-xr-x 1 root wheel 41 Apr 24 09:28 /usr/vpkg//lib/libpth.a -> /usr/vpkg/packages/pth-1.4.1/1ib/libpth.a

lruxr-xr-x 1 root wheel 42 Apr 24 09:28 /usr/vpkg//lib/libpth.la -> /usr/vpkg/packages/pth-1.4.1/1ib/libpth.la

lrwxr-xr-x 1 root wheel 42 Apr 24 09:28 /usr/vpkg//lib/libpth.so -> /usr/vpkg/packages/pth-1.4.1/1ib/libpth.so

lruxr-xr-x 1 root wheel 45 Apr 24 09:28 /usr/vpkg//lib/libpth.so.14 -> /usr/vpkg/packages/pth-1.4.1/1ib/libpth.so.14

lruxr-xr-x 1 root wheel 48 Apr 24 09:28 /usr/vpkg//lib/libpth.so.14.21 -> /usr/vpkg/packages/pth-1.4.1/1ib/libpth.so.14.21
lruxr-xr-x 1 root wheel 45 Apr 24 09:28 /usr/vpkg//lib/libpthread.a -> /usr/vpkg/packages/pth-1.4.1/1ib/libpthread.a

lruxr-xr-x 1 root wheel 46 Apr 24 09:28 /usr/vpkg//lib/libpthread.la -> /usr/vpkg/packages/pth-1.4.1/1ib/libpthread.la

lruxr-xr-x 1 root wheel 46 Apr 24 09:28 /usr/vpkg//lib/libpthread.so -> /usr/vpkg/packages/pth-1.4.1/1ib/libpthread.so

lruxr-xr-x 1 root wheel 49 Apr 24 09:28 /usr/vpkg//lib/libpthread.so.14 -> /usr/vpkg/packages/pth-1.4.1/1ib/libpthread.so.14
lruxr-xr-x 1 root wheel 52 Apr 24 09:28 /usr/vpkg//lib/libpthread.so.14.21 -> /usr/vpkg/packages/pth-1.4.1/1ib/libpthread.so.14.21
lrwxr-xr-x 1 root wheel 50 Apr 24 09:28 /usr/vpkg//man/manl/pth-config.l -> /usr/vpkg/packages/pth-1.4.1/man/manl/pth-config.1
lruxr-xr-x 1 root wheel 54 Apr 24 09:28 /usr/vpkg//man/manl/pthread-config.l -> /usr/vpkg/packages/pth-1.4.1/man/manl/pthread-config.1
lruxr-xr-x 1 root wheel 43 Apr 24 09:28 /usr/vpkg//man/man3/pth.3 -> /usr/vpkg/packages/pth-1.4.1/man/man3/pth.3

lruxr-xr-x 1 root wheel 47 Apr 24 09:28 /usr/vpkg//man/man3/pthread.3 -> /usr/vpkg/packages/pth-1.4.1/man/man3/pthread.3
lrwxr-xr-x 1 root wheel 49 Apr 24 09:28 /usr/vpkg//share/aclocal/pth.m4 -> /usr/vpkg/packages/pth-1.4.1/share/aclocal/pth.m4
lruxr-xr-x 1 root wheel 51 Apr 24 09:28 /usr/vpkg//share/doc/pth/ANNOUNCE -> /usr/vpkg/packages/pth-1.4.1/share/doc/pth/ANNOUNCE
lruxr-xr-x 1 root wheel 50 Apr 24 09:28 /usr/vpkg//share/doc/pth/AUTHORS -> /usr/vpkg/packages/pth-1.4.1/share/doc/pth/AUTHORS
lrwxr-xr-x 1 root wheel 50 Apr 24 09:28 /usr/vpkg//share/doc/pth/COPYING -> /usr/vpkg/packages/pth-1.4.1/share/doc/pth/COPYING
lruxr-xr-x 1 root wheel 50 Apr 24 09:28 /usr/vpkg//share/doc/pth/HACKING -> /usr/vpkg/packages/pth-1.4.1/share/doc/pth/HACKING
lruxr-xr-x 1 root wheel 47 Apr 24 09:28 /usr/vpkg//share/doc/pth/NEWS -> /usr/vpkg/packages/pth-1.4.1/share/doc/pth/NEWS
lruxr-xr-x 1 root wheel 49 Apr 24 09:28 /usr/vpkg//share/doc/pth/README -> /usr/vpkg/packages/pth-1.4.1/share/doc/pth/README
lruxr-xr-x 1 root wheel 50 Apr 24 09:28 /usr/vpkg//share/doc/pth/SUPPORT -> /usr/vpkg/packages/pth-1.4.1/share/doc/pth/SUPPORT
lrwxr-xr-x 1 root wheel 48 Apr 24 09:28 /usr/vpkg//share/doc/pth/TESTS -> /usr/vpkg/packages/pth-1.4.1/share/doc/pth/TESTS
lruxr-xr-x 1 root wheel 49 Apr 24 09:28 /usr/vpkg//share/doc/pth/THANKS -> /usr/vpkg/packages/pth-1.4.1/share/doc/pth/THANKS
lruxr-xr-x 1 root wheel 48 Apr 24 09:28 /usr/vpkg//share/doc/pth/USERS -> /usr/vpkg/packages/pth-1.4.1/share/doc/pth/USERS
lruxr-xr-x 1 root wheel 53 Apr 24 09:28 /usr/vpkg//share/doc/pth/pthread.ps -> /usr/vpkg/packages/pth-1.4.1/share/doc/pth/pthread.ps
lruxr-xr-x 1 root wheel 53 Apr 24 09:28 /usr/vpkg//share/doc/pth/rse-pmt.ps -> /usr/vpkg/packages/pth-1.4.1/share/doc/pth/rse-pmt.ps
(16:43:05] agc®sysl /usr/vpkg/packages 342 >

Figure 5: the target symbolic links of the package view




Package views

65

functionality and “pkgviews” functionality can coex-
ist until such time as migration to package views has
taken place.

In all, the package views approach is scalable in
practice (see similar papers on the infrastructure.org
web site http://www.infrastructure.org/, and
from experience of other highly-experienced system
administrators).

9 Disadvantages

Of course, there are disadvantages to this approach:

1. Some people think that the linkfarms are unruly,
unsightly and ugly.

2. A minimal amount of extra space is used to pro-
vide the linkfarm. The early versions of package
views had code to use “hard” links rather than
symbolic links to achieve the same effect. This
was possible, since it is highly likely that a file
and its link will reside on the same file system.
Where this approach failed was in configuration
files, which may be edited by people using pop-
ular editors which create a new file rather than
a “hard” link to a file when the editing session
is saved. In all, however, some extra space is
used to store the symbolic link information, but,
in the whole scheme of things, with falling disk
costs and increasing disk capacities, it is no more
than a fraction of a percentage of the total disk
space used, and so can be discounted for all prac-
tical purposes.

In all, with different versions of packages to be in-
stalled side by side, more disk space in general will
be needed (this is more of a consequence than a
disadvantage), which may not always be appropri-
ate (NetBSD still runs on a number of systems, like
the VAX and acorn26, where directly attached disk
space is at a premium). One suggestion for this is to
use NFS or cheaper, mass-produced IDE discs (where
possible).

10 Conclusions

The advantages of being able to have two different
versions of a package installed at any one time are
immense. It is now possible to try out new versions
of packages without compromising the existing ver-
sion. The move to dynamic packing lists will simplify
pkgsrc entry creation for everyone, and reduce the
amount of maintenance which has to be performed on
the current packages, including all the special cases
for different operating systems and object formats. In
addition, package views allow us to detect conflicts at
package install time, rather than by specifying this as
a static definition in a package Makefile, and resolve
the conflicts in a non-destructive way. The existing
package tools can continue to be used, and the sym-
bolic link farms, whilst ugly, give an immediate idea
of the package to which a file entry belongs. Whilst
using package views, a direct increase in the amount
of disk space which will be used is only to be ex-
pected. The utility value of the advantages far out-
weigh the disadvantages.

11 Future directions

At present, package views are implemented on a CVS
branch within the NetBSD CVS repository. We in-
tend to take the following steps within pkgsrc:

1. Make xpkgwedge the default for all packages,
having first made sure via a bulk build that all
packages are xpkgwedge-friendly

2. Introduce package views by merging the
pkgviews branch in the NetBSD pkgsrc CVS
repository with the trunk. At the cur-
rent time the default is not to use pack-
age views - they are only used if the def-
inition PKG INSTALLATION TYPE is
set to pkgviews. The default value for
PKG INSTALLATION TYPE is over-

write.

3. When that has been done, we will switch over
to dynamic PLISTs in pkgsrc. This will be done




66

Package views

by using the PLIST TYPE definition to dy-
namic. The default value for PLIST TYPE
is static.

4. Monitor reaction to package views and dynamic
PLISTs, and to improve upon it where possible

References

[FreeBSD)| http://www.freebsd.org/ports/index.html
- FreeBSD Ports

[Pkgsrc| http://www.pkgsrc.org/ - A short-

cut to the pkgsrc area on the
NetBSD website.

[Feyrer] http://www.netbsd.org/Documentation/software/pkg-
growth.html - The Growth of the
packages Collection

[NetBSD] http://cvsweb.netbsd.org/bsdweb.cgi/
- a web interface to the NetBSD
CVS Repository

[CMU] http://andrew2.andrew.cmu.edu/depot/
- The Depot Configuration Man-
agement Project

[GNUJ http://www.gnu.ai.mit.edu/software/stow/stow.html
- GNU Stow
|[Encap] http://www.encap.org/ - The En-

cap Archive

[Infrastructures] http://www.infrastructures.org/
Infrastructures.org - Best Prac-
tices in  Automated Systems
Administration and Infrastructure
Architecture

[Vulnerabilities] ftp://ftp.netbsd.org/pub/NetBSD /packages/distfiles/vulnerabilities
- A List of Known Vulnerabilities
in Packages




Clustering NetBSD

67

Clustering NetBSD

Hubert Feyrer
The NetBSD Project
<hubertfé@netbsd.org>

In last year’s Regensburg city marathon, each of the 5000+ runners was able to view a personal
video of him/herself reaching the goal. A cluster of 45 machines running the NetBSD operating
system turned 5 hours of video material into single mpeg snippets.

Topics discussed in the presentation are:

e deployment of the operating system and applicationi software on the cluster machines

e details on the tasks performed by the cluster - decomposing the input mpeg stream(s), re-
assembling images for each runner based on the time he went through the goal

e experiences gained during the cluster project - application based, plus lots of graphs and
images from monitoring the cluster

e facts numbers - lots of them :)

After studying computer science with an emphasis on operating systems, Hubert
Feyrer started working as system and network engineer at the CS department of the
University of Applied Science (FH) Regensburg. His daytime work includes admin-
istrating the CS department’s Unix machines and IPv6 infrastructure. In his spare
time, he contributes to the NetBSD project in 1993. Work areas there include the
NetBSD Packages System and 3rd Party Software and documentation as well as ad-
vocacy and PR. Other interresting proiects include evaluation of NetBSD on Toshiba
laptops, lectures on Unix system administration at the FH Regensburg as well as a
NetBSD-based cluster of 45 machines for rendering videos during the Regensburg

city marathon.




68 Clustering NetBSD

Reaching the Goal with the

Regensburg Marathon-Cluster
— A NetBSD Cluster Project -

Hubert Feyrer <hubert@feyrer.de>

October 7, 2002

Abstract

This paper discusses the technical setup and execution of a video rendering cluster
based on Open Source software. First, deployment of the cluster clients is discussed,
followed by computing steps performed by the cluster - splitting a big video stream into
single images and rendering individual videos from the images. Details are given on the
hardware and software used as well as optimizations made. Various experiences gained
by the cluster project are listed before showing some performance graphs displaying the
cluster under load. Lists of facts, numbers and links sum up the whole project.




Clustering NetBSD

69

Contents

1 Introduction

2 Setup of the cluster client machines

3 Computation performed by the cluster

3.1 Preparations

3.2 Step 1: Splitting thesequences . . . . . . .. ... ... ... ...,

3.3 Intermediate step: Enter image data into image database . . . . .. ... ..

34 Step2: Creatingthevideos . . . . . ... ... ... ... ...

4 Experiences gained from the Marathon-Cluster

S Various images & graphs

6 Facts

6.1 Subclusters

6.2 ClusterControl . . . . . . . . . e e e

6.3 Numbers . .
6.4 Software . .

6.5 Participants

7 Links

A AN L L W

10

15
15
15
15
16
17

17



70 Clustering NetBSD

1 Introduction

Last summer, R-KOM and the University of Applied Science (Fachhochschule, FH) Regens-
burg, Germany, took their share of the Regensburg city marathon by putting an individual
video and image of each runner reaching the goal on the Internet. A cluster of 45 machines
rendered the more than five thousand videos.

Being a sponsor of the Sports Experts Marathon, R-KOM contributed by putting the video and
images of each runner completing the course up on the Internet. Due to increased demands on
quality, the company’s machines were not fast enough to render all the images and videos in a
reasonable amount of time. With contacts to the Fachhochschule Regensburg, the department
of computer science offered a sufficient number of machines as well as support for setting
them up, and a collaboration was made .

The university of applied sciences (Fachhochschule) Regensburg provided 45 machines, in-
cluding installation and management of the nodes, data storage, and also helped optimizing
and tuning the Unix-based software created by employees of R-KOM based on freely avail-
able components.

The software consisted of components to split video streams into single pictures as well, as
rendering video sequences from single pictures based on the time of arrival of each runner. A
fully automated, scriptable processing was important here for the 5.500 runners reaching the
goal.

Preparations of the Regensburg Marathon Cluster started on early saturday evening by in-
stalling the cluster machines under supervision of Hubert Feyrer of the computer science de-
partment of the Fachhochschule Regensburg as well as several students, who helped deploy-
ing the machines. Adjusting and tuning the cluster software took the rest of the pre-marathon
evening.

After the last runner reached the goal on Sunday afternoon, processing of the video material
provided by the local TV company TVA started under the supervision of Jiirgen Mayerhofer,
R-KOM. The material was used to render video sequences and pictures of each runner’s com-
pletion of the course.

Using NetBSD, a Unix/Linux-like Open Source operating system, on the cluster clients and
other Open Source software to control and calculate the MPEG-animations of the marathon
videos and pictures gave a solid base for a software project of this size.

2 Setup of the cluster client machines

The computer science department of the FH Regensburg provided three public rooms full
of machines for the cluster, with a total of 57 computers. 15 of the machines were running
Solaris, which we were not allowed to change. The remaining machines were available for
re-installing, and we chose NetBSD as client operating system, as all the software we needed
was easily available through the NetBSD 3rd party software collection, the system was simple




Clustering NetBSD

71

to install on the client machines and we had a lot of know-how for NetBSD available. The
hardware consisted of Dell OptiPlex PCs with various configurations of RAM and CPU. In
two of the rooms (U512, U513) were 15 machines each with PII-400MHz, 64 MB RAM and
4GB HD each, the other one (U521) had 12 machines with PIII-1GHz, 256MB RAM and
10GB HD each.

For the cluster setup, we installed one of the PII-400 machines with NetBSD and added all the
necessary programs (dumpmpeg, mpeg_encode) from the NetBSD Packages Collection. We
had a single account for the whole cluster project, which had it’s home directory mounted from
a NFS server and we also used NFS for temporary diskspace used during the calculations. The
NFS server used was the Unix server of the computer science department, a Sun Ultra 10 with
a 300MHz CPU, 1024MB RAM and 120GB harddisk (Arena hardware IDE-to-SCSI RAID).

For monitoring purposes we also installed an SNMP agent, the rstat service as well as the
"tload’ program, which gives a console-based overview of the machine’s load. Various pro-
grams needed by dumpmpeg and mpeg_encode completed the client installation.

After the cluster client was configured and running properly, the harddisk-image of the client
machine was stored on the master deployment server of the FH Regensburg using the “g4u”
harddisk image cloning software. The 4GB harddisk image was compressed to about 650MB
in that process, deploying that 4GB image to both the 4GB as well as 10GB disks of the clients
wasn’t a problem with g4u.

For the deployment of the client, the image was first installed on one machine in each of the
available rooms (using g4u again). After rebooting these machines and starting up NetBSD,
the just-installed client machines were setup themselves as “room-server”. For that, the
client’s harddisk image was put into a prepared FTP area, and after that, the remaining clients
in that room were able to retrieve the image from their nearest room-server. As deployment
from the master-server was via a router, deployment within the various rooms was much faster
as the machines operated in a pure 100MBps switched network, with no slow router in be-
tween.

Eah Master Deployment Server

Reduced speed
via router

[¥j: Room
==3 Server

Room U512: Room U513: Room U521:
15 * 400MHz 15 * 400MHz 12 * 1GHz




72 Clustering NetBSD

3 Computation performed by the cluster

The computation performed by the Regensburg Marathon Cluster consisted of two steps:

1. splitting the video sequences into single images

2. merging single images into individual video sequences

The following image gives an overview of the whole process:

o & son

g
Preparations: Cluster Step 1: Cluster Step 2: The result:
Videos are converted Splitting the MPEG Computing videos 5500 images
from tape into MPEG, stream into pictures from single pictures and 5500 videos
and split into several rendered
sequences for easy

splitting

3.1 Preparations

At the goal of the marathon, two video cameras placed by the local TV station TVA recorded
the whole event of the runners reaching the goal. When the video tape of one camera reached
the end after about 90 min, the second camera was switched on, with an overlap of about five
minutes. That way, we got about five hours of video material, in Sony Betacam format.

Next, the four videotapes were converted into MPEG sequences using a Sony Betacam VCR
unit as well as a PC running Windows 98 that had a Hauppage PVR card with hardware MPEG
encoder. Each MPEG sequence consisted of 11 minutes of film material with 25 frames per
second, a resolution of 352x288 pixel and a color depth of 24 bit, which led to about 110 MB
per sequence. The sequences were then FTP’d to a PC that was connected via a crossed TP
cable and that ran RedHat Linux 7.1. There, the sequences were archived to CD using mkisofs
and cdrecord.

3.2 Step 1: Splitting the sequences

The fast 1GHz machines from the FH were used for splitting the MPEG sequences. After
inserting a CD that contained a sequence, the Script “create_dir.pl” split it into single images
and wrote them to the NFS server. Each of the 11 minutes long MPEG video sequences were
split into about 16.500 single images in JPEG format by the program “dumpmpeg” in about
45 minutes. Each JPEG image was about 24KB in size, which lead to about 400MB of JPEG
image data for each MPEG sequence.




Clustering NetBSD 73

The program “dumpmpeg” that was invoked by the “create_dir.pl”” script was modified for the
Marathon Cluster, as it was only able to write BMP images initially, which would have led
to too big images and thus wasted storage space, plus the software used in the second step
of the cluster required JPEG as input. Because of this, the source code of the open source
program dumpmpeg was modified so that after saving 250 images (10 seconds of video) they
were converted from BMP to JPEG using the netpbm tools. Conversion with netpbm tools
is rather slow, but there were no alternatives available in the SDL- and smpeg-libraries used
by dumpmpeg that allowed direct saving in JPEG format. Optimizing the many fork(2)- and
exec(2)-calls away by using routines from the netpbm-tools was not possible due to a tight
timeframe for the project.

The second change that was made to dumpmpeg was the directory, in which the program
created the images. Instead of placing all images into a single directory, 250 images were
each placed in their own directory, improving access time.

3.3 Intermediate step: Enter image data into image database

For the further processing in step 2, exact start- and end-time of each MPEG sequence was
needed, as well as the corresponding filenames of the first and last JPEG image. These data
were stored in a MySQL database on the job control machine. Furthermore the actual frame
rate was calculated, as the VCR device didn’t always provide a constant 25 images per second,
e.g. due to heat and resulting mechanical inaccuracies. A tiny difference could increase
massively over five hours of video material, leading to useless results when the exact images
were needed for a certain time.

3.4 Step 2: Creating the videos

After the MPEG sequences were split into single images and stored on the NFS server in the
first step, they were merged back into little videos in the second step. The goal was that each
runner can watch a picture of themself reaching the goal giving their start number, and that
each runner gets his individual MPEG video, rendered by the Marathon Cluster. Of the 7.000
runners who started the marathon, about 5.500 reached the goal. There were three disciplines:
marathon (42km), half-marathon (21km) as well as speedskating (21km). For each discipline,
separate lists of results for men and women existed, recording the time when they passed the
goal. Based on this time and the corresponding image, we advance two seconds to the last
image of the video, and from there we went back 150 frames that were copied into a work
directory. These 150 frames are equal to six seconds of animation with 25 frames each.




Clustering NetBSD

First frame: -4s Time of goal reached Last frame: +28
| | | ~
/
< > Time
Video + Credits
150 frames 6 frames

Full video jenygth
156 trames

Finally, six more frames were copied into the working directory that all had the same contents:
Name of the runner, his start number, time, place as well as discipline were painted into a
prepared mask displaying logo of the sponsors of the videos, using the program “convert”
(part of ImageMagick). These six frames are then displayed at the end of the video:

~ spoRTS: . |___SPoRTS .
—— By oERTE EXPERTS

Reiner Herold
Startnummer 8256
00:48:24
302. Platz Speedskating-Herren

Prasentiert von: Prasentiert von:
"FACHHMOCHSTHULE REGENSBURG w ’ FACHHOQCHSCHULE REGENSBURG w

» HOCHSCHULE FUR w'b ) HOCHSCHULE FUR mwb
TECHNIK TECHNIK

\ R koM N R-KOM -

Besides the images for the video showing the runner reaching the goal, the image of the exact
time of him reaching the goal is also copied, and name of the runner, time, place and discipline
are added via “convert”:

004731 Raoul Schmidt
261.Platz Speedskating-Herren
(C) 2001 R-KOM GmbH &Co, G -

Rendering of the video from the single images in the temporary working directory was done
with the program “mpeg_encode”. A config file described location of the working directory,
which images to use for the video, and which client machines to use for rendering the video.




Clustering NetBSD 75

mpeg_encode first starts by calculating a few images on each of the client machines, to get
an estimation on how fast the machines are. After that, the remaining images are distributed
among the cluster nodes according to this speed estimate. The nodes read the images via NFS,
and write rendered parts of the videos back via NFS, where the main process will pick them
up and assemble them into the resulting MPEG file. All this is performed automatically by
the freely available program without any need for manual interaction or tuning, which saves a
lot of time and prevents possible errors.

The config file used by mpeg_encode was available for each of the four subclusters, so that we
were able to render videos for each distinct discipline on a dedicated subcluster - depending
on which one hat CPU time available. The job scheduling and distribution of discipline lists
among the subclusters was done manually. There were six disciplines altogether:

Marathon women: 148 Finishers
Marathon men: 1268 Finishers
Halfmarathon women: 893 Finishers
Halfmarathon men: 2469 Finishers
Speedskating women: 202 Finisher
Speedskating men: 521 Finisher

The results was available in a separate list for each discipline in the form of a CSV file, which
were split into ASCII files using a perl script. This was used as an input for another perl script
“mpeg250_pic.pl”. For each runner, the input file contained the name, place as well as the
time of them reaching the goal. The image database described above (see 3.3) was used to
calculate the sequence in which the runner was, and from that the corresponding exact image
of the runner reaching the goal was calculated. As described above, this served as a reference
point for the 150 frames used for the individual videos. After the images including the ones
for the credits images were copied to the temporary working directory, the client machines
were used to render the individual MPEG for one runner. This individual MPEG as well as
the exact image of the runner reaching the goal were then archived to a separate directory.

The program mpeg_encode which is started via “mpeg250_pic.pl” then started the job on the
various (sub)clusters via rsh. rsh is used to prevent expensive authentication as used by ssh.
As the rendering of a single MPEG was between 3 and 8 seconds, the overhead of SSH
authentication - which is about 2 seconds - would have been to big, without any gain at all.

Example videos can be found at

e http://www.feyrer.de/marathon-cluster/video-50.mpg

e http://www.feyrer.de/marathon-cluster/video-2.mpg

4 Experiences gained from the Marathon-Cluster

Deployment of the client machines took longer than expected. Installing a single client
machine via g4u from the master server took about 30 minutes, copying the ca. 650MB




76 Clustering NetBSD

big image again after that (to prepare it as room server) took the same time. The following
deployment to all machines from a single room took rather long, as 11 / 14 machines were
fighting for bandwidth to the room server, plus all three rooms were connected via a single
100MBit 3Com switch, not one per room! A network design based on separate switches for
each room would probably improved deployment times here.

dumpmpeg works on NetBSD and Linux, but not on Solaris/x86 using identical hard-
ware. The cluster software was tested by R-KOM on Linux only, and it worked without
problems there. On the Solaris based FH machines, dumpmpeg - which is based on SDL and
smpeg - dumped core sporadically. Debugging with gdb showed that blocks of memory were
overwritten, as the crashes happened in malloc(3). We guessed that the malloc(3) implemen-
tation by NetBSD and Linux are different than Solaris’, so that possible overwritten memory
blocks are treated less gracefully in the later case. In that case, the problem would have been
located and fixed in the SDL- or smpeg-sources, but this would have taken more time than we
had. The problem here was not Solaris itself, but the result was that we were not able to use
the Solaris machines for the cluster, and we lost 15 valuable machines. With a bit more time
for preparation and better tests, such bad effects can be avoided.

dumpmpeg ran longer then expected. The test sequence of 18 minutes length that was
used for tuning and configuring the cluster took about 60 minutes to split on one of the IGHz
machines. Running the dumpmpeg process on several machines in parallel achieved big speed
improvement, but there were also some shortages for network and disk resources. Especially
reading and splitting the MPEG sequences was with eight hours about three hours longer than
estimated.

mpeg_encode cannot render on an unlimited number of machines. A sequence of 156
images cannot be computed on more than about 15 machines. When trying to use more ma-
chines, errors are printed and the program hangs. To achieve maximum parallelism, the scripts
that created the temporary working directories, filled them with images and ran mpeg_encode
were changed to do so for different subclusters. The config files for mpeg_encode had to be
adjusted to give work to several subclusters:

Subcluster 2

Suticiustar 3

Subcluster 1

n- Cluster
" 4. Control

Job Control 866MHZ - 256MB RAM RedHat Linux
Disk System: 300MHz 1024MB RAM. 120GB 0. Solaris

o= Suliuster 4

mpeg_encode sometimes stops after printing ‘“Wrote 160 frames”. There’s no obvious




Clustering NetBSD 77

reason, and a quick view into the source code didn’t lead to any enlightenment. Aborting the
script was the fastest way of recovery here. The input list of runners to process just had to be
edited so noone’s processed multiple times.

5 Various images & graphs

e Disk utilization of the NFS server shows that splitting of the sequences (blue) began at
about 4:30pm, at 1:15am all sequences were split. Writes (green) show when the videos
for the disciplines who went through the goal first - speedskaters - were rendered starting
10pm:

960.0
720.0

480.0

240.0

kilobytes/s

12 14 16 18 20 22 O

e Looking at the network traffic of the NFS server, it’s very clear at which times the split
images were written to disk (blue), and when they were read again for processing them
for the speed skaters (green).

2000.0 k 1z
1500.0 k
1000.0 k

500.0 k

Bytes per Second

0.0 k

16 18 20 22 0

e Network traffic between the cluster machines and the control machine: while there
were mostly read operations (blue) for the disk image during deployment of the clients
on saturday between 18h and 22h, the cluster itself started producing data (green) on
sunday at about 15h:

1360.0 k T
1020.0 Kk 1~

680.0 k

340.0 k {;

Bytes per Second

0.0 k

10 12 14 16 18 20 22 06 2 4 6 8 10 12 14 16 18

e Sunday, early afternoon: while the subcluster 3 and 4 (left side, yellow numbers) are
still waiting for data, the GHz machines in subclusters 1 and 2 (upper right) are already
splitting MPEG sequences into single images.




78 Clustering NetBSD

o pemcto) | BE Mobcrgw| ¢ s | & smereds | o cminectn |
- ] 6 amews oS
2 ) ihcTTai Tead [ iheip et ied ][ ePheigiad iand | rPhcigier isad | °

e R R R AP A R e L —
pr——— .
rihcipi24 load | rfhcipi2) load |[rtheipi 12 lond |[ rhcipiai tos I

rthein) 26 aad | rfhcip?27 laad |[ rihcin?26 load || rfhcip1as lead

rfhelpi37 load ][ efhcipted tend |[ rihclpied load |[ rfnciptes load

rTheig) 36 taad ][ rfhcip1 9 load | rfhcipiaa iend || rihcip?ds lead

[V VTR YNTYve
rihelp135 losd ethelpl 34 toad rfheip1 1] Juad down

 aer s
ethcip 119 load | ribcint 18 iond |[ rfhcipt20 lnnd dswn 4

[T
rihciptiadown | rfbeint 13 load |[ fhelnits laad

rhe(p110 foad | rihcipt1t lend |[ riheint!2 land

rTwcip108 fond | rThcip187 foad |[ cThcip188 load || inclp? 3 tuad
Lrfhciniog

EM rewe Dby
HoaPadal—TIoRSNER

Tincipi 17 lnad

e Monday 2am: The last sequence is split, from now the second step can be run on all
machines in all subclusters in parallel:

AR RN R
g o €] %]

. [(Thcip138 tend | cincip1 &1 toad |[ rfhcipied iond |[ rfhcipie? lond

— % amete) <
rihcipi4 lead | rincipi2) lond |[ rnclyi22 load |[ rihcipi2i boi ?

rihclpi20 lond |[ rtheip?27 load || rfhein!26 load |[ rihcip126 load

rihcip132 lead | _rincip) 31 inad || rfheipid0 inad || rikcip129 load

rihcip137 load |[ rihcipies toad |[ rihcinl 43 lend

Ihcip1 3% tead_|[ riRcip1d0 load || rikcip?az iond |

rihcip135 lvad | rihcisi 34 1oed || riheiniad lond

- - T
rthcip110 lowd | rfiacipt i3 lesd |[ rihcipi2n load dewn 4

i
b
1
L

rinclpiis rihcip 116 lond w; rfhs8012: Kilobytes Rudfwéneper Second: home2 (e212)

The statistics were last updated Moaday, 28 May 2001 at 1:55,
rihcin1 10 load | “rihcip) )1 load |[ rfhcipi 1z tond |[ rikelp) 1 load ot which time 'rfhs8912’ had been up for 43 day(s).

II ‘Delly’ Graph (5 Minute Average)

rincip186 Isad | rincipi 07 iond || rincip1o8 tead |[ thcip199 ed
I

B |V rev |

WYAWA W]

h
4

3

e Monday 5am: The NFS server running Solaris 2.6 had to be rebooted at 3am due to
mysterious NFS/RPC/NIS problems. After that, the whole cluster is running with full
steam again. Three hours from now the machines have to be available for students
again!




Clustering NetBSD 79

e wrmier oty
rihclpi1a lond

l RO
TThcip! 38 lead |[ Thcipiat tond |[ rihcipredlsnd | nm,un ead || !

TThcip?37 inad |[ rthcipt o8 toad |[ricintd load |[ rfhcipies lond

rihcini 2] tond §120 lo
- rincipiid tend || ihcigtiaiond [ dewn | w "“
arenpe
rthelnite riheipli loas rihcip1 28 load i s i : ; ™~ ) :
EEW Stats for rfhs8012 load average
ehcinl 14 dowe T rthcipt (3 tead || rthcla! T8 lnad || AhcIp11y losd

\ Theuummlmupdnad Mudq, 28 Mxy 2001 a 4:50,
-:mwm had been up for 2:02.
S Twcis118 lnad | rfhcle) 11 tand || rfhcipi12 laad |[ eihrip11d lead e
.n .m » .u as. , Dy Greps & Mimse Avervge)

1000

g we

:i’m.,"ﬁ"‘ .iﬂm "’;‘ :

T PR T LTI ’

e Monday 5:30am: We just lost all the scripts by a lazily typed “rm tempfiles *”
(note the second space!). A backup made the previous evening saved the project.

.i. w I

rincip138 tead | rikcip! 34 lead |[ rfhcipidl iead

o R
ribcipi 18 lnad rihcipl )9 loed ihclpi2e boad

Fhs8012: knohym Read/Write per Second: homeZ (c2t2)

et
rincI9)1? lead

The statistics were last updated Monday, 28 May 2001 at 7546 ,
st which tinse rfhe812’ had boan up for 222.

“Duily’ Graph (S Misute Average)

%@-ﬁ

Ceaud s —rto

e Monday, 8am: In the past hours, several interrupts stopped the work up to an hour.
Reasons were again mysterious phenomenons in the NFS/automounter area. (Or maybe
booting network components - who knows?). Monday 8am there are still 900+500
halfmarathon- and about 500 marathon-videos to render, distributed over all subclusters.
There are no lectures in the computer rooms until 11:30am, so we have a bit more time.




80 Clustering NetBSD

e Monday, 9:35am: After various NFS outages the clients run again with full load, the
end is in sight!

. > '
: M. N e »
rihein129 Toad X rikclp1 18 inad |[ rihcinial lead || rihcipids tond || rihcipia? tond | P9
- f

E : o
Iz st Selplit fest iz lend t‘ [ I

o

\ rincip137 lead | TiNCIn140 ioad _|[ rfhcle) 43 teed |[ rihcipies isad ||

I o

etheigt32 toad || rthelp1d) lead || rihcipida lend || rthcin12s lead m[
Thclelis hest |

rihcip1 36 iond |["fhcin133 tead |[ rfhcini42 load || rfhcipias load
T

rthcip1 5 Ioad || rihciniia laad |[ fheipl?3 load

vl

[rthcipt 14 down |[ rfheint 15 tond |[ rIhclg116 lsad |[ riheipi1? load
:I':n;d:;;uvlmupd;:dm_“ ?nu.mn;? T
nm.mw fml-m l'hclplvxlnl [rihciorizioad | « 7777777“’9{ o, e e e
“Duly’ Graph (5 Minate Average)
w0.0n
rihcipte? losd rihcip1 99 lead Ahclp) 09 laad
. E n‘xou.auuuuhn-z«--
l A G 3 @ #
> ik
]%@QU@@W@S@%@@ Q W

e Monday, 10:40: Done! All result-lists are processed and spot checks on the resulting
images and videos show good results.

Here’s an overview of all the performance graphs of the Regensburg Marathon Cluster:

e Traffic between control machine and cluster machines:

2840.0 k

2130.0 k
1420.0 k
710.0 k

Bytes per Second

0.0 k

2 4 6 B 10 12 14 16 18 20 22 0 2 4 6 B8 10

The two steps can be easily distinguished here: writing the images from about 5pm to
lam, and both writing and reading from about 2am until the end at 10:40am.

o Disk utilization of the NFS server:

960.0
720.0

480.0

kilobytes/s

240.0

0.0

8101214161820220




Clustering NetBSD 81

The difference between the first and second step is very obvious here. While there were
only write operations while splitting the MPEGs into images (blue), they were read
again for rendering the videos in the second step (green). While the first step was still
running between 9pm and 1 1pm, the second step was running in parallel for rendering
the speedskaters’ videos.

e The system load (load average) of the NFS server:

144.0
108.0

72.0

Load ¥ 100

36.0

0.0

2 4 6 B 10 12 14 16 18 20 22 0 2 4 6 8 10

Step one (until about 2am) didn’t put too much load on the NFS server, the high load at
about midnight results from various cron job. Starting at about 2am the load increases
due to parallel read- and write-jobs in the second computing-step of the cluster. Obvious
are various interrupts at 3am, 5:30am and 8:30am.

o The CPU utilization of the NFS server:

92.0
69.0

46,0

0.0

2 4 6 8 10 12 14 Y16 18 20 22 ¢ 2 4 6 6 10

e Network utilization of the NFS server:

2800.0

2100.0
«
©1400.0
Q

700.0

0.0

2 4 6 8 10 12 14 16 18 20 22 0 2 4 6 8 10

e Network traffic of the NFS server measured at the switch:

2400.0 k
1800.0 K 1~
1200.0 k 1

600.0 k

Bytes per Second

0.0 k




82 Clustering NetBSD

6 Facts

6.1 Subclusters

U512: 15 *400MHz, 64MBRAM, NetBSD 1.5.1. BETA2
U513: 15 *400MHz, 64MB RAM, NetBSD 1.5.1 BETA2
Us21: 6 *1000MHz, 256MB RAM, NetBSD 1.5.1 BETA2
U521: 6 *1000MHz, 256MB RAM, NetBSD 1.5.1 BETA2

6.2 Cluster Control

noon: 1 *866MHz, 256MBRAM, RedHat7.1
rfhs8012: 1 *300MHz, 1024MB RAM, Solaris 2.6, 120GB HD

6.3 Numbers

e Date of the Regensburg city marathon: Sunday May 27th 2001
o Female participants marathon: 148

e Male participants marathon: 1.268

e Female participants half-marathon: 8§93

e Male participants half-marathon: 2.469

o Female participants speedskating: 202

e Male participants speedskating: 521

e Participants overall: 5.501

e Available computers: 57, of which 15 were not usable (due to SDL/Solaris), and one
had a broken floppy disk drive (=> no deployment possible)

o Computers participating in the cluster: 41

e Number of images after step #1: 669.936

e Number of reboots of the NFS server: 2

e Number of reboots per cluster client: 0

e Average size image of the runner reaching the goal JPEG): 27 kB

e Average size video of the runner reaching the goal (MPEG): 987 kB

e Number of images of runners reaching the goal (JPEG): 5.501




Clustering NetBSD 83

Number of videos of runners reaching the goal (MPEG): 5.501

Time for deployment of the cluster: about 4 h (Sa 6pm to 10pm)

Time for tuning and configuration of the cluster: about 4 h (Sat 10pm to Sun 2am)
Time for setting up the VCR and other preparations: about 3.5 h (Sun 2pm to 5:30pm)

Time for reading and splitting MPEG sequences (step 3): about 9 h (Sun 5:30pm to
Mon lam)

Time for rendering videos and images: about 9 h (Mon lam to 10:40am)
Number of video tapes: 4

Overall running time of video tapes: 5 h

Number of MPEG sequences: 33

Length per MPEG sequence: 11 min

Uptime Hubert Feyrer: 22 h

Uptime Jiirgen Mayerhofer: 27 h

Software

SDL 1.2.0, for dumpmpeg (http://www.libsdl.org/)
smpeg 0.4.3, for dumpmpeg (http://www.lokigames.com/development/smjpeg.php3)

dumpmpeg 0.6 (modified!): Converting MPEG->JPEGs
(http://sourceforge.net/projects/dumpmpeg)

netpbm 9.7, for dumpmpeg (http://netpbm.sourceforge.net/)

mpeg_encode 1.5b: Converting JPEGs -> MPEG
(http://bmrc.berkeley.edu/frame/research/mpeg/mpeg_encode.html)

perl 5.6.0: Scripting for job scheduling (http://www.perl.com/)
gimp 1.2.1: Postprocessing of credits image, documentation (http://www.gimp.org/)

Image Magick 5.2.7: Postprocessing of credits image and image of the runner reaching
the goal (http://www.imagemagick.org/)

tload 2.0.6 (modified): Monitoring cluster machines
(ftp://people.redhat.com/johnsonm/procps/)

xmeter 1.15: Monitoring cluster machines
gdu 1.6: Client image deployment (http://www.feyrer.de/g4u/)

NetBSD 1.5.1_BETA2/i386: Operating system of the cluster machines
(http://www.netbsd.org/)




84 Clustering NetBSD

6.5 Participants

e Hubert Feyrer, Department of Computer Science , FH Regensburg:
Design, implementation and execution of deployment of cluster clients, adaption of
cluster software, documentation

e Jiirgen Mayerhofer, R-KOM, Regensburg:
Design and implementation of the cluster, coordination of videos and MPEG encoding

e Oliver Melzer, working student R-KOM & student FH Regensburg:
Design and implementation of the cluster, coordination of videos and MPEG encoding

e Daniel Ettle, student of computer science (technical emphasis), FH Regensburg:
Execution deployment

o Christian Krauss, student of computer science (technical emphasis), FH Regensburg:
Execution deployment

¢ Tino Hirschmann, student of computer science (technical emphasis), FH Regensburg:
Execution deployment

e Fabian Abke, student of computer science (technical emphasis), FH Regensburg:
Execution deployment

e Udo Steinegger, Cable & Wireless, Munich:
Team assistant

7 Links

e http://www.stadtmarathon-regensburg.de/:
Web page of the Sports Experts Marathon

e http://www.stadtmarathon-regensburg.de/ergebnis_info.ph3:
Results of the Sports Experts Marathon, including form for retrieving images and videos
by starting number of the runner.

e http://www.r-kom.de/rkom-content-stadtmarathon2001.htm:
Description of the intended project by R-KOM in the Marathon news paper

o http://www.feyrer.de/marathon-cluster/:
Web site of this documentation about the actually performed project of the Regensburg
Marathon Cluster.

o http://www.netbsd.org/:
NetBSD, a free Unix/Linux-like operating system not only for PCs, which was used on
the client machines of the marathon cluster.




Monitoring the world with NetBSD

85

Monitoring the world with NetBSD

Alan Homn

Inktomi Corp.
<ahorn@inktomi.com>

There are many papers and publications on monitoring your network and systems. Most of the
time they fail to present a monitoring strategy that is both practical and general. Whilst I don’t
wish to restate what is already generally known, I do feel that most sites are lacking in a really
solid monitoring framework.

At my current site and at previous locations, I have used NetBSD along with a range of free tools
to build a customized system for proactive notifications and failure management. I would like to
talk about the evolution of this system over the years, the decisions I took and why I took them,
ending with a look at the current deployment and some thoughts for the future.

My aim is to try and present advice that folks can take back and drop into place at their sites with
a very minimum implementation time and be getting a meaningful return very quickly. I want to
distill a lot of different documentation into a set of notes that people can use almost as a set of
design philisophies along with the practicum.

Alan currently works at Inktomi in their US headquarters as a Systems Architect.
Prior to working in two different countries for Inktomi, he was a security consul-
tant with Internet Security Systems, and their commercial deployment manager for
EMEA. In a slightly earlier life he was a senior administrator at Dreamworks Feature
Animation, where he was responsible for designing and building the production nct-
work, and maintaining systems security as well as daily senior admin type operations.
Before that he mostly played with backup media :) Alan is an experienced technolo-
gist with a very broad range of knowledge and skills. His specialties include systems
architecture and network design, security management and response and developing

bespoke, robust code to support these endeavours.




86

Monitoring the world with NetBSD

Monitoring the World with NetBSD

Alan Horn
Inktomi Corp
Alan.Hom@inktomi.com

Abstract

Jennifer Davis
California Institute of Technology
Jennifer.Davis@caltech.edu

Through presenting a set of guidelines and freeware monitoring tools, we hope to prevent your enterprise
from experiencing embarrassing and costly mistakes. Part of building any system, whether from a fresh
start, or adding to a preexisting architecture, requires this kind of planning, although the depth depends on
the complexity of your environment. This will help prevent system degradation and public embarrassment

as well as improve perceived system performance.

1. Introduction

System environments are becoming more complex as
customer needs and requirements increase. Keeping up
with competitors in this negative market requires that
money is not wasted on trivial matters. As budgets are
tightened, and hiring additional IT techs is frozen,
managing the growing spider web of systems and
networks becomes more difficult. Time is consumed
by tracking down problems, security patches, and basic
system management. With an effective monitoring
solution, administrators can free up their time for more
important tasks.

1.1 Define the problem.

In the standard environment, monitoring comes last
after purchasing adequate equipment, setting up the
system and required services, and making the system
live.

Sometimes, monitoring is never considered, as the
overworked administrator is charged with all of the
previous tasks, little resources to accomplish them, and
the demand that it all be finished yesterday. Monitoring
becomes important when the company financial
controller (Mr. Smiley) realizes how much money the
company has lost because of unforeseen outages in the
last year. This is when the IT department is charged
with setting up a low cost monitoring solution.

1.2 What is monitoring?

What do we mean by our desire to set up a monitoring
solution? If we reference http:/www.webster.com

v. mon-i-tored, mon-i-tor-ing, mon-i-tors [Latin,
from monre, to warn]

v. r.

1. To check the quality or content of (an
electronic audio or visual signal) by means of a
receiver.

2. To check by means of an electronic receiver for
significant content, such as military, political, or
illegal activity: monitor a suspected criminal's
phone conversations.

3. To keep track of systematically with a view to
collecting information: monitor the bear population
of a national park; monitored the political views of
the people.

4. To test or sample, especially on a regular or
ongoing basis: monitored the city's drinking water
for impurities.

5. To keep close watch over; supervise: monitor
an examination.

6. To direct.

From this definition, we can define a
comprehensive solution to our problem.
Monitoring comprises regularly sampling some
sort of content, systematically tracking the state of
that content, and warning the appropriate parties
when necessary.

1.3 What should we be monitoring?

Determining what should be monitored is a
decision that should be made by analyzing
individual environments. For critical out facing
machines, monitoring the world may be the only
solution. For stand-alone work machines, the
system may not need to be monitored at all. The
difference depends on what people consider
important, why they consider it important, and who
those people are.




Monitoring the world with NetBSD

87

The main types of monitoring are uptime or
availability, performance, and security. The goals of
monitoring are to make the job easier, more
manageable, and efficient, and to fix problems before
they are seen. If you work for a profit making
company, ultimately you assist in ‘increasing
shareholder value’.

Monitoring is more than the world of bits and bytes. It
can also involve the physical environment in which
your systems live.

Monitoring should not replace redundancy of systems
and services. Redundancy prevents complete outages
allowing continued service, with possible degradation
during a failure situation. Monitoring complements
redundancy by alerting the IT department to fix the
degraded state of services. For example, a RAID 5 disk
array can suffer the loss of one disk, and still function.
If the monitoring system alerts the system administrator
immediately that a failure has occurred, then the disk
can be replaced quickly without any loss of service or
data on the array.

2.0 Selecting your tools.

The tools you select for monitoring should be
dependable, stable, and consistent to the purpose to
which you put them. As the rest of the company adopts
the monitoring solution, the tools need to have a
sufficiently rich set of features that provide flexibility to
this expansion. The tools should be of a clean design,
and readily understandable with a modicum of effort
from others once your strategy has been implemented.
For some, the tools must be quickly implemented as
previous outages have made setting up a monitoring
solution now a crisis.

2.1 One OS to rule them all

Although NetBSD is the authors’ preferred OS, the
techniques and applications discussed will work on
other operating systems. The important factors for
determination of OS are knowledge of OS, comfort
levels at the basic levels of administration, integration
into the existing environment, and standing political
issues within your company.

There are several reasons to choose NetBSD over other
operating systems. NetBSD provides a stable clean
design and implementation and is well documented. It
has a great network stack. It also has a comprehensive
base Unix system with good analysis tools for simple
monitoring, and readily available packages in the

pkgsre system. NetBSD runs on many platforms,
as well as cheap commodity hardware. The final
personal reason is personal comfort with the OS,

and brand loyalty.

2.2 Pkgsrc system — an overview

Similar to the FreeBSD ports collection, the
NetBSD pkgsrc system is a very good source of
tools that is growing daily. Pkgsrc is not installed
by default, but it is easily set up. Instructions for
obtaining it are found in the references.

To see what packages are available in pkgsrc
specifically for monitoring, check the net/,
security/, and sysutils/ subdirectories.

$ cd /usr/pkgsrc/net
$ less */DESCR

This will show you the descriptions of every
package within the net subsection.

To install a pkgsrc package (e.g. nocol) :

$su

# cd /usr/pkgsrc/net/nocol
# make

# make install

Package binaries are typically installed in
/ust/pkg/bin or /usr/pkg/sbin. Modify your $PATH
environment variable as appropriate to include
these new paths within your executable path.'

If you have problems when installing a package,
contact the maintainer of the package. The person
responsible for the maintenance of each individual
package, is listed in the top-level Makefile in each
pkgsrc package directory (e.g.
fusr/pkgsrc/net/nocol/Makefile).

! Paths can be set on an individual per-user level,
or you can modify /etc/csh.cshre and /etc/profile to
set the additional path for every user on the system.



88

Monitoring the world with NetBSD

3. Monitoring for availability

3.1 Definition

Availability is more than a system being up, and a
service running. Availability means that individuals
can get to what they need, when they need it, retrieve
what it offers, and avail themselves of the service. For
example, just because on start of Apache the “httpd
started”message pops up, and the process logs show
that http is up, and running, this does not indicate
whether a user can actually reach a the document root,
or any other page on the site. Another example, just
because the Oracle ora_* processes are up and running,
doesn’t indicate whether that database is accepting
connections and relaying the data needed.

3.2 Strategies

The best method of monitoring for availability, is to
emulate as closely as possible the normal ‘request
operation’. A ‘request operation’ (RO) is how a user of
the system, process on the system, or a process on
another system accesses a specific service.

Examples of Access Tests for different services
web server - access the root document.
(http://my.webserver.org)

name server — get the start of authority record
(SOA) for a given zone, with additional tests
confirming that the A records and PTR records for
critical hosts are served correctly.

Critical web application — suite of tests, each
element confirming a different stage or aspect of
the web application is performing correctly.

Make informed decisions about the frequency of RO
queries. By querying ROs too frequently, monitoring
can induce additional load that degrades service
performance. By not querying ROs enough, monitoring
can miss outages that occur between your ROs. A good
monitoring system will include tunable timing
parameters such as these.

Depending on the tool chosen for each RO, tests are
made on the exit status of the tool’s run or a parse of
the RO’s output.

3.3 Tools

Monitoring focuses on the testing of a condition,
and warning if that condition is not satisfied. One
method of obtaining monitoring tools, is to subvert
the function of a tool whose primary purpose is not
monitoring.

Availability monitoring tools
ping — Ping is a basic function to test network
connectivity

fping — Ping’s big brother, fping will send ICMP
connectivity checks to any number of hosts
(specified on the command line or via an input
file). It checks the hosts asynchronously with
timeouts, meaning that it can be used in scripts
very easily, and is generally a better choice than

ping.

Snips (formerly known as nocol) — Snips is one
of the ‘uber-monitors’. It comes with a variety of
testing tools to check against specific services. It
has the ability to notify on alerts. It also has a
simple control interface with four levels of alerting
based on how often a check fails, with the alerts
being configurable based on the levels. Snips
contains built in monitors for:

ICMP ping

RPC portmapper

OSI ping

Ethernet load

TCP ports

Name server

Radius server

Syslog messages

Mailg

NTP

UPS (APC) battery

Unix host performance

BGP peers

SNMP variables

Data throughput

Nagios — Formerly known as netsaint, nagios is
similar to snips in concept, but with additional
features. Nagios has a very flexible alerting and
notifications system, a nice GUI interface, and
tactical display. It has a complete set of small
binaries for standard service checks. Nagios has
standard plugin check binaries for:

Dig disk space dns fping game hpjd http https ide-
smart imap ldap load mrtg mrtgtraf mysql nagios
nntp nt nwstat overcr pgsql ping pop procs radius
real smtp snmp ssh swap tcp time udp ups users




Monitoring the world with NetBSD

89

VS§Z

There are also sample perl script checks for:
breeze disk_smb flexlm ifoperstatus ifstatus ircd
log netdns ntp oracle rpc sensors wave

Tkined - tkined is a TK application based on
Scotty. It can be useful interactively for
discovering networks, and live monitoring, but
requires extensive customization to work in the
background.

Lynx — Lynx is a simple text based web client.
lynx-dump can grab raw documents in text for you
to parse with additional code.

Wget — wget is a tool for grabbing both http and
ftp files from servers.

ftp — The native NetBSD fip client can be placed in
non-interactive scripts to retrieve a particular
dataset. The exit status of the command can be
checked (0 means everything was successful).

Bigbrother — Bigbrother is another ‘uber-monitor’
similar to nagios. It’s been around longer and has a
far wider range of user-contributed plug-ins for
monitoring lots of different services.

Bigsister — Bigsister is a clone of big brother
developed to add different features, and also to
improve performance by avoiding shell scripts.

Perl scripts using Net:: modules — With some
creativity a perl script can be written to check for
almost any network service. There are some
limitations when testing crypto-based services.

Built-in software testing tools for a given device
— For example on a Solaris system, A1000 raid
array supporting software has a tool called
‘healthck’ which can be used to test for problems
with the raid array. Other devices and packages
will have tools that may be used similarly.

4, Monitoring for performance
4.1 Definition

Performance is harder to fully monitor as you may not
have control over all machines involved in the
transaction, or the network. To the user, acceptable
performance generally means 'after I perform a
specified action, the response occurs in a reasonable

amount of time. For example, just because a web
server’s http process is showing up in process stats,
this doesn’t indicate anything about the fact that
the server is taking 2 minutes to respond to each
query. Another example, is email delivery. Just
because sendmail is up and running, this doesn’t
give the administrator any idea if mail is getting
processed, or whether time critical emails are
getting delivered in time. Although the coverage
from the system performing the actions to the
server sitting in your data center may not be
completely your responsibility, you can confirm
that your responsibilities are functioning to their
maximum performance.

4.2 Strategies

Along with ensuring the availability of a service,
system, or network, there may be extended
information you can or should gather about the
performance of that availability. The information
you should know or gather before setting up each
individual monitor is the knowledge of the baseline
performance i.e. normal operation of system or
service. Also spend time predicting the failure
modes and methods of degradation in performance
for the object you are monitoring.

With this information, figure out the performance
counters to monitor, and at what thresholds to
alarm. You can choose to never alarm, and you will
still have a body of historical information to
analyze later.

At a minimum, any system providing a service
should have the underlying system performance
monitored, CPU load, disk space, I/O of all kinds.
These basics will allow you to monitor system
changes, which will provide data towards
upgrading system resources, or the system itself as
needed. Forewarned, you can kill out of control
processes before they cause degraded performance.
If you don’t want to monitor these basic metrics,
regularly take a few performance baselines so that
in a crisis you have a record of what the system
should look like. Individual services may also
have metrics that you can monitor such as response
time, resources used, etc.

System performance (and to a large extent service
performance), cannot always easily be monitored
across the network. SNMP is one popular solution,
but it has drawbacks :

o Generally requires a complex daemon to run on a
port.




90

Monitoring the world with NetBSD

o Susceptibleness to security issues’.

o Overcomplication due to attempting to satisfy for all
eventualities.

o The simple in SNMP (Simple Network Management
Protocol) is not in reference to the configuration.

SNMP is probably the best choice for monitoring
systems such as network switches and routers that do
not have a feature rich operating system that you can
access. SNMP is not the best choice for servers.
Instead, use available local system tools, and either
write a tight piece of code to send specific information
back to the centralized monitoring host periodically or
on demand, or avail yourself of a tool that performs this
function.

Depending on the OS of the machine you are
monitoring, different tools with varying ease of

installation, and use will be available to you.

4.3 Tools

Sampling of tools for performance purposes
ps — With ps you can display process status on a
host, and other useful information depending on
the options available on your OS, such as cpu time,
memory used by a process, owner of the process,
etc.
df — df is helpful in determining filesystem usage.
uptime - system uptime and runq load
iostat — 10stat reports information about I/0 load.
vmstat - vmstat reports information about virtual
memory. One of the best sources for determining
what ails your server, cpu problems, excessive
swapping, etc.
netstat — netstat provides you with various
information about network stats. netstat —a
provides information about all sockets. netstat —n
provides information about routing tables.
mrtg — mrtg is a simple tool for monitoring and
graphing traffic load on network links
rrdtool — rrdtool is mrtg++, a round robin database
tool developed based upon MRTGs graphing and
logging features. Will display any time series. If
you need to view data samples over time, this is the
way to store it for analysis.

? In the widely implemented SNMPv1, administrative
relationships known as communities, are defined for
SNMP entities. As long as you know the name of this
community, you can access that particular SNMP
community. This community name is used as a pseudo
password to gain access to an SNMP device. To
compound the problem, with every SNMP packet, the
pseudo password is passed in clear text.

cricket — cricket is a rrdtool frontend focused on
SNMP stats gathering for monitoring network
hardware.

flowscan — flowscan is another rrdtool frontend
using cflowd to gather Cisco flow data.
smokeping — smokeping is another rrdtool
frontend that presents network latency in an MRTG
style graph.

perl - Naturally, you can write your own tools in
perl using the rich set of Net:: and other modules.
Scripts can be written in shell, but you may also
consider writing the glue scripts in perl too

5. Monitoring for security
5.1 Definition

Beyond monitoring for availability and
performance, you should monitor for security
reasons. The material necessary to describe
monitoring for security would provide the source
for an entire paper by itself. If security was not
included, our monitoring solution would not be
complete. By venturing into the shallows of
monitoring security, hopefully you will have some
direction as to what depths you wish to further
navigate.

When we monitor for security, we monitor for
three things; Confidentiality, Integrity and
Availability. The classic definitions are : [Ref:
CISSP Definitions]

Confidentiality
Prevent the intentional or unintentional
unauthorized disclosure of a message's contents.

Integrity

Prevent modifications to data by unauthorized
personnel or processes, unauthorized modifications
to data by authorized personnel or processes, and
that the data is internally and externally consistent.

Availability
Ensure reliable and timely access to data or
computing resources by the appropriate personnel.

For example, databases containing sensitive data
like personnel salaries should be kept confidential,
with maintained integrity, while still being
available to those persons and processes that are
required to create biweekly paychecks.




Monitoring the world with NetBSD

91

The depth of your security monitoring depends on the
resources you have available to do the analysis.
Quantitative security analysis involving estimates of
yearly loss per vulnerability takes a long time and is
costly. Qualitative analysis (per situation) is easier to
perform.’

5.2 Strategies

As in the strategies with monitoring performance,
determine the baseline of the system. Figure out what
the operation norms are. In some respects security is
easier since it is more rigid. If we need to ensure that
certain files do not change, then we use a tripwire/md>5
type solution and compare to our prepared table of
hashes.

Some systems come with a predefined set of daily
security tests (/etc/security.conf on *BSD systems), the
output from these tests can be parsed and a flag raised if
need be.

System logs can be analyzed, and patterns alerted on.

Places where changes are made to critical points in your
security infrastructure (external access points, LDAP
servers, NIS servers, Windows PDC) should be
monitored closely as they affect your entire
infrastructure if security fails.

Security requires a greater understanding to implement
fully. Generally vendors will not share your security
model, some unable to grasp that you would care about
security at all which results in writing glue code to
accomplish your security needs.

5.3 Tools

Sampling of tools for security purposes
nmap — nmap is a ubiquitous tool for scanning
networks to see what ports are listening. It is very
useful as an early stage in network mapping
exercises, and can be used in a script to check for
changes to the baseline. (e.g. if a new port
suddenly starts listening, you can be notified)

nessus — A security audit tool, nessus performs a
range of vulnerability tests against a host via the
network.

md5 - MDS5 is a hashing tool, producing a small

3 Security Risk Analysis
http://www.security-risk-analysis.com/introduction.htm

digital fingerprint for any given file. By storing a
list of hashes for critical files, you can see when a
file has changed unexpectedly.

swatch - 'Simple log watcher', swatch watches
syslog files, scans for patterns, and then runs an
alert shell script when a match occurs.

[ete/security - *BSD security check shellscript
with output that can be parsed and flagged.

portsentry — portsentry binds to a specified set of
ports on a host, waits for connection attempts to
those ports, and then performs a set of actions (e.g.
drop the IP via a null host route, log the connection
attemptto  syslog which can then be picked up
and acted upon by swatch).

logsentry — Similar to swatch, logsentry has more
features and understands common log patterns by
default. It is also quicker to deploy.

snort — Snort is a packet signature analyzer. It
watches packets arriving at a host (or network port
if used as a perimeter sniffer), compares those
packets to a list of signatures, profiles potential
attacks and reports on them.

tcpwrappers — tcpwrappers will monitor
connections to daemons (typically started from
inetd.conf) and log to syslog. Swatch may be used
to alert.

ipfilter/ipchains/ipfw - At a very low level,
packets that match specific rules can be logged
and/or counted using one of these tools. Counts
can usually be displayed with an 'ipfstat’ type tool,
logs

with an 'ipmon’ type tool.

perl - Perl can be the glue code to hold the various
other tools together, or to create a new specialised
tool.

6. Monitoring setup and configuration

6.1 Centralized monitoring host

Previously, we have mentioned the centralized
monitoring host when discussing the tools
available for monitoring without explaining what a
centralized monitoring host is. The centralized
monitoring host , which we will name central, is
the system that ties together all of the individual




92

Monitoring the world with NetBSD

monitoring tools. It should provide the following
features :

o Use stable, predictable code. This machine will be
left unattended for weeks or even months at a time. You
need to be sure that it will still be working as expected
when you return

o Implement redundancy features with failover.

o Have configurable alerting of individuals and groups
based on different criteria. (time-based, threshold-
based)

o Have a variety of standard testing tools for standard
services

o Accept input in a standard form from third party
software/tools

o Be intelligent about alerting, having the ability to
distinguish between a host/service outage, and a
network outage.

o Be well written and try to conform to the Unix
philosophy of 'small tools to do simple tasks very well'

o Store historical logging of check data for future
analysis

In addition, the following features although not required
would be optimal:

o Be easy to configure, or have tools to assist in
configuration

o Have a nice web display for the command-line
challenged (GUIs have their place, this may be one of
them)

o Have a nice configurable web display for the
company officials to see graphically how the money
spent on this monitoring solution is actually saving
money.

o A historical reporting function

6.2 The ‘uber-monitor’

Quite a few 'uber-monitor' tools have been written,
although they are not all currently maintained, or
updated. Each has strengths and weaknesses that may
determine whether you use one or the other of them in
your operating environment. The focus of this paper
will be on nagios, as we find it to be the most feature
full on average for our needs. Nagios has drawbacks in
that it is not very easy to configure, but that problem is
actively being worked upon. It is sufficiently
lightweight to flex into different designs, yet having a
feature set that makes it an asset at the same time.

The principles described should translate to other
software tools as well. Determination of tools is a
matter of personal choice as stated at the beginning of
the paper.

Some alternatives to look at include :

(as mentioned on the Nagios website at
http://nagios.sourceforge.net/docs/1_0/about.html#
othermonitors)

Angel Network Monitor
Autostatus

Big Brother
HiWAyS
MARS

Mon

Netup (French)
NocMonitor
NodeWatch
Penemo

PIKT

RITW
Scotty/TKined
Spong
Sysmon

6.3.0 An Overview of Nagios

Nagios is primarily a notification tool. By itself it
does not do any actual monitoring. Nagios comes
with a suite of plugin binaries and scripts to do the
monitoring. This means that nagios can focus on
the specific task of notification.

Nagios uses basic-auth mechanisms to determine
who is allowed to access a given feature. It has
several levels of access control within the
application, allowing you to define who can view
certain info, or modify certain info, as well as other
controls. By default owners can only view the
service/host checks that they would normally be
notified about.

Nagios requires a web server to be installed if you
want to run and administer it via the web interface.
We favor apache, although any web server that
allows CGI should work fine.

Because the basic auth involves sending passwords
via the web, it is recommended that you use SSL
(https) for the web server and not plain http.

6.3.1 Installation of nagios

Nagios is not yet in pkgsrc. Once this happens the
installation becomes considerably less involved.

Install nagios.
1. Create a nagios user and group (both named
'nagios’)




Monitoring the world with NetBSD

93

2. Install gmake from pkgsrc

cd /usr/pkgsrc/devel/gmake
make install

3. Download nagios.
http://www.nagios.org/download/

4. Unpack the download file

| gzcat nagios-1.0b6.tar.gz | tar vfx -

5. Configure and make nagios

cd nagios-1.0b6

Jconfigure

gmake all

gmake install * installs into /usr/local/nagios
gmake install-init * installs init script into
letc/rc.d

gmake install-commandmode * installs and sets
permissions on external commands file

gmake install-config *installs *SAMPLE*
config files into /ust/local/nagios/ctc

6. Download nagios plugins.
http://www.nagios.org/download/

7. Unpack the download file.

| gzcat nagiosplug-1.3-betal .tar.gz | tar vfx - ]

8. Configure and make the plugins.

cd nagiosplug-1.3-betal

/configure

gmake

gmake install *installs plugins into
/usr/local/nagios/libexec

9. Configure your web server as per the nagios
documentation. This will vary depending on your
existing web server installation. Make sure you
have an SSL enabled web server. Mod_ssl works
great with Apache, is easy to set up, and has a
utility for creating your own certificates.

6.3.2 Editing the Nagios configuration files

You can put all of your nagios configurations into one
big file. In practice it is easier to separate different
configuration groups into separate files. The main
nagios.conf file contains include statements to inherit

the other files. This file is the one you specify
from the command line when starting nagios.

Although nagios comes with a set of well
commented sample files, configuration files are
still somewhat bewildering to anyone who has not
used the software before. The most common basic
actions are shown in the examples below.
Following these examples through should give you
a minimal working nagios installation monitoring
one service on one host.

Set up nagios.cfg (using csh syntax).

1. Make copies of the sample files.

cd /usr/local/nagios/etc
foreach i (*-sample)
cp $i ${i:r}.cfg

end

2. You do not need to change most of the settings,
but you should probably set the values of
admin_email and admin_pager in nagios.cfg.

Add a host check.

1. Edit hosts.cfg, by removing everything
below the 'generic host template’'

2. Add a host check for the host 'foo’ by
inserting these lines at the end of the file:

define host{
use generic-host ; Name of host
template to use

host_name foo

alias foo server

address W.X.y.Z
check_command check-host-alive

max_check_attempts 10
notification_interval 120

notification_period  24x7
notification_options d,u,r

}

(NOTE - w.x.y.z is the machines actual IP address,
substitue accordingly)

Replace foo with a name of one of your
mailservers that runs SMTP.

3. Save the file.




94

Monitoring the world with NetBSD

Add a service check.

1. To monitor sendmail/smtp daemon on
“foo”, edit services.cfg, delete every entry
except the one that looks like :

# Service definition
define service{

use generic-service ; Name
of service template to use
host_name novelll
service_description SMTP
is_volatile 0
check_period 24x7
max_check_attempts 3
normal_check_interval 3
retry_check_interval 1
contact_groups novell-admins
notification_interval 120
notification_period 24x7
notification_options w,u,c,r
check_command check_smtp
}

Replace host_name novelll with host_name foo

Notice the two lines contact_groups and
check_command, we'll deal with more with those
in the next examples.

match).

7. In the members field, add all of your
contacts that you want to be notified for
outages of this service, comma separated
list.

Configure contacts

If you want nagios to contact you, you need to tell
it whom to contact. Let's configure a contact group
and the contacts in that group.

1. Edit contacts.cfg.

2. Change the nagios admin definition to
have the right email and pager addresses
for the person or group that maintains the
nagios host.

3. Replace the ‘John Doe' example with a
real person (probably yourself if you're
just starting out).

4. Add any additional contacts in as new
records similar to the John Doe example.

5. Save that, and edit contactgroups.cfg

6. Remove every record, except for the
‘novell-admins' record (since that is the
name listed in our previous service
definition, you could of course change it
to something else as long as they both

Configure hostgroups

Hostgroups are a way of grouping functionally
similar hosts into groups, for example DNS
servers,

mail servers, etc.

1. Edit hostsgroups.cfg
2. Replace the record that reads :

# 'novell-servers' host group definition
define hostgroup{
hostgroup_name novell-servers
alias Novell Servers
contact_groups novell-admins
members novelll,novell2

}
With :

# 'mailserver' host group definition
define hostgroup{
hostgroup_name mailservers
alias Mail Servers
contact_groups novell-admins
members foo

}

Edit dependencies

Dependencies are an advanced feature of nagios
that allow you to define services and/or hosts as
being dependent on other services and/or hosts.
This reduces the noise when a given service fails,
since monitoring and notifications on the
dependent services can be silenced automatically.

At this stage, we will not use this, but the example
file comes with some dependencies defined.

1. Edit dependencies.cfg, and comment out
every entry by making sure that every line
starts with a #.




Monitoring the world with NetBSD

95

Edit Escalations

This is another advanced feature that we do not
wish to define yet. Basically this is the feature that
makes managers very happy, allowing very precise
definitions of escalation coverage, at what point
different groups get notified about a failure etc...
embedding service level agreements in the
monitoring.

For now, we shall comment this out as we did with
dependencies.

At this point, we can check nagios operation by
running /etc/rc.d/nagios reload. You
should see something like :

gilgamesh# /etc/rc.d/nagios reload
Running configuration check...done
Starting network monitor: nagios

PID TT STAT TIME COMMAND
20095 7?7 Ss  0:00.02
/ust/local/nagios/bin/nagios -d
/ust/local/nagios/etc/nag
| | gilgamesh#

You can check that things are operating normally
without going to the web, simply by looking directly in
the status file in /usr/local/nagios/var/status.log (or
wherever you have installed in nagios).

Configuring Nagios Remote Plugin Executor

Earlier an alternative to SNMP for monitoring system
counters via the network was mentioned. Nrpe is the
tool for doing that. The nrpe has two components. One
is a small daemon that sits on the monitored host, one is
an active client check that runs from central. The
daemon has a config file which defines basic IP based
access control (which host can get to the daemon and
ask it for information, typically only central is defined,
perhaps one other IP for redundancy), and then you
define a list of strings that you associate with a system
command.

Download nrpe.
http://www.nagios.org/download

The build process is in two parts, first compile the
check_nrpe client on central.

Download, untar and compile the source on central

J/configure
make all
cd src

Configure nagios commands.cfg to know about
check_nrpe

Add the following into commands.cfg :

define command {
command_name check remote
command_line $USER1$/check_nrpe
$ARGIS -c SARG2S
}

$ARGI1S will be the hostname argument in
services.cfg, SARG2S$ will be the name of the
check passed to the nrpe daemon on the monitored
host.

Compile the nrpe daemon on the remote host (may
be a different OS), or copy the compile from
central if it's the same OS. I find it easiest to install
into /ust/local/nagios on the remote host as well.

/ust/local/nagios/bin/nrpe
/ust/local/nagios/etc/nrpe.cfg
/ust/local/nagios/libexec/check foo (the plugins
you need to use to run the check, either home
written in perl/sh, or compiled from nagios

plugins)

Define an nrpe.cfg on the remote host, containing
the checks you want to execute.

# IP address of the monitoring host (hideout)
allowed_hosts=w.x.y.z

#

# list of commands that may be executed locally
#

command[woprdisk]=cd /net/wopr; cd /;
/usr/local/nagios/libexec/check_disk -w 2%

-¢ 1% -p /net/wopr

(in this case we're using an NFS mount to check
how full a NetAPP filesystem has become, it will
report a warning at 98% full, and a critical at 99%
full. These values were chosen based on the total
size of filesystem (> 1TB), typically you would
warn earlier on smaller filesystems.)

So say we put an entry like :
command[rootdisk]=/usr/local/nagios/libexec/chec
k_disk -w 10% -c 5% -p/

Startup nrpe on the monitored host, either from
inetd, or via an rc script.




96

Monitoring the world with NetBSD

Going back to central, define a service check thus
in services.cfg :

define service {
host name foo
service_description  foo root disk usage
check_command
check_remote!foo!rootdisk

is_volatile 0

check_period 24x7
max_check_attempts 3
normal_check_interval 3
retry_check_interval 1
contact_groups novell-admins
notification_interval 120
notification_period 24x7
notification_options W,Uu,C,I

}

Restart nagios with /etc/rc.d/nagios reload. Now
NRPE will check root disk status on foo
periodically.

6.3.3 Additional Nagios tools

Nagios Administration Tool (NAGAT) - A web
based solution written in PHP for configuring
nagios host,service checks etc..

Nagios Service Check Acceptor (NSCA) 2.1 - A
two part client/server tool (similar to NRPE) used
in the other direction, allowing remote clients to
submit asynchronous events (such as security
alerts) to a daemon listening on central. The
daemon then pushes those events into nagios as a
PASSIVE check.

nagios_statd - Perl/Python plugin that lets you
check remote host information such as load, users,
filesystems etc.

NTray 0.91 - Handy NT app that sits in your
system tray and retrieves info from the nagios
status file and gives red green lights for you to
watch.

Remote Execution Layer (REL)- A layer for
providing alternate transport between client and
server for NRPE and NCSA. This gets around
modifying firewalls to work with nagios. Currently
it sends results via email into nagios.

remote_ctl - Perl CGI for easily enabling/disabling
service checks remotely using wget or a web
browser.

6.3.4 Nagios gotchas
Process space

Nagios can fire off enough checks at one time on
the central host that it runs into per-user process
limits. Always increase the process limit for the
nagios users as you increase your use of the
application.

Always do restart

When modifying nagios config files, always use
RCS as a matter of course, but never stop and start
the daemon, always use /etc/rc.d/nagios restart. The
reason for this is the restart option will cause a
configtest

against the files before any action is taken. This
means that even if you have caused an error in your
config files, the running daemon will not go away,
and you will get the chance to fix your config files
at your leisure without interrupting service.

Use dependencies and parents

Parents are how nagios attempts to model the
network and distinguish between network and
host/service outages. For every host you define,
you should define a parent as the first hop on a
traceroute from that host to central. This way, ifa
network fails and you can't get to a critical server
subnet from central, you won't get a number of
pages about the hosts, since nagios will know that
it's a network outage.

Similarly for dependencies, dependencies actually
allow you to monitor more complex systems and
reduce the number of 'noise’ notifications you get
when a failure occurs.

6.4 Monitoring the monitor.

Quis custodiet ipsos custodes - The watched shall
watch the watchers

If central fails for whatever reason, you have lost
the ability to monitor everything. Unless you are
also monitoring central itself, you will never know
this as a failure in your monitoring solution as the
failure mode is no alerts which is the same as if
everything is running smoothly.

A second box should be setup (monitored by
central, naturally) whose purpose is to monitor
central. It needs to have at least the ability to




Monitoring the world with NetBSD

97

inform someone if/when central fails. It should
probably complain very loudly when this occurs. Pager
notifications to everyone are appropriate in this
situation.

Generally the two boxes will not fail at exactly the
same time, so you will get some sort of notification
about a failure.

6.5 Notifications

You will need two methods of sending notifications.
The general day to day method is alerts via emails to
email accounts, or pager/sms gateways. The second
method should be 'out of band'. Out of band means a
method that is not in

any way subject to the same set of failure modes as the
original method. If your email server fails, you want to
be able to get notifications, but if you rely solely on
email to receive your alerts, you will never receive the
alert.

Now, you can of course take this requirement to
extremes, but generally speaking, it's acceptable to have
a separately powered machine, connected

via a phone line that doesn't go through your main
company exchange. This machine will be used to send
notifications (to a pager usually), via a dialup
connection to the pager provider, or to an ISP
somewhere.

Again the key here is not to be totally redundant, but to
have enough redundancy to be able to see the problems
as they occur and be able to react in a timely manner.

7. Monitoring Overlap

As you can see, there is a lot of overlap between the
different monitoring categories. Separation of
categories is provided to make it easier to understand
the different components required in monitoring your
environment.

By designing your monitoring tests to complement one
another it's possible to make early informed judgments
about where problems lie. Try to emulate the sort of
questions you would ask in debugging a problem. By
understanding what a series of failures occurring at the
same time really means, you can jump straight to the
underlying problem and fix it more quickly.

8. The physical world

The worst failures often arise outside of the
computer hardware or software. Failure of power,
UPS, or air conditioning can be catastrophic. A/C
failure can go unnoticed for several hours on a
weekend, driving up data center temperatures into
triple digits creating lumps of metals out of your
expensive critical machines.

It is a simple matter to build (or buy) temperature
probes which can then report back to the central
host. Place several of these around your data center
and you then have a handy temperature monitoring
system. Graph it with rrdtool over time and you
can see if there is a gradual increase and if you
have to respecify the A/C coverage. You may also
be able to take advantage of the built-in
temperature probes in (for example) some Cisco
hardware. See references for websites that either
sell or have plans for this.

Good quality UPS systems will often have a serial
connection which changes state when the UPS
operates. This can be monitored, or have an action
associated with it (for example, shutting down
critical servers gracefully in the time left with
power, to save data).

Electronic entry systems generally come with their
own software, but if you choose to roll this into
your monitoring system it can be done with a little
creativity. For example, if you really need to be
notified whenever someone enters a particular
location for example, or between certain hours.
Your imagination is the key.

9.0 Implementation
9.1Case Study I
Divisional monitering

This system was setup to augment existing
monitoring systems in the division, various scripts
using OS native tools like ping, and df. It was
originally intended as an interesting experiment
and cool hobby for the designer, something to play
and learn with. Although more of a personal
monitoring tool than a production monitoring
solution, it did get used by other members of the
team. It monitored Irix, and Solaris systems as well
as Fore systems network equipment.




Monitoring the world with NetBSD

Hardware

Single old Pentium 133Mhz box (lethe), running
NetBSD1.3, installed with nocol from pkgsre.

Machine was located on the same subnet and network
media as most of the services it was to monitor. Single
network interface (10bT).

Relatively new to NetBSD at the time, I found ita
much better operating system to work with, than the
other operating systems in use at the organization. Irix
was going through a period of flux in its OS
development, 32bit versus 64bit, n32 versus 032.
Compiling was a nightmare sometimes, especially with
Open Source software. Solaris was clunky. Nocol was
chosen, as it best met needs at the time from the
packages that were researched online, and from pkgsrec.

Implementation

It took a few weeks to configure, as this was a first
attempt at this sort of service. Approximately 40

Unix servers were monitored with ‘rpcpingmon’, and 15
managed switches and routers were monitered with
ippingmon. Critical servers’ performance statistics were
monitored more closely with 'hostmon'. Some
experimentation with syslogmon occured, but at the
time, a separate system using swatch by itself was in
use.

Notifications were via email and pager, and also via a
console ('netconsole') running on the network
administrator's workstation.

After setup, I examined the system every time new
systems were installed into the environment. I also
reevaluated the configuration every few months to fine
tune the system.

The system scaled reasonably well, although some
slowdown was noted on lethe as more checks were
added. There was no provision in the system to
understand network outages, and no redundant
notification paths. Given the environment this was
acceptable however, since most of the admins were
frequently online and watching stuff anyway.

9.2 Case Study II

Enterprise wide monitoring setup

This system was setup from scratch in a place with no
monitoring. It was intended to completely monitor all

critical services within the enterprise. At this time it is
still evolving

Hardware

Three desktop PCs (Pentium I1-400, 128MB RAM,
4 or 9GB hard drives), each with a vanilla NetBSD
installation (1.5.x).

PC1 (hideout) - The main nagios host, some
sample configuration files shown in Appendix B.

PC2 (pageboy) - The phone dialer. Disconnected
completely from the network for security reasons
(the dialing process will bring up an IP stack), and
connected via serial cables to PC1 and PC3.
Communications via UUCP. This is the host that
will send out pages via an external service. The
connected analogue phone line doesn't go through
the main building phone switch.

PC3 (hwatch) - Hideout's watcher. This is the
second monitor host whose only purpose is to
monitor PC1 and scream if it goes down. Always
sends pages via pageboy. Arguably this function
could be rolled into pageboy.

With many years of NetBSD experience now,
NetBSD was the obvious choice because it’s great
and has never failed at any of the tasks I’ve
attempted with it. I’m very comfortable with the
OS. Nagios was chosen, as it seems to be the best
of the monitoring packages available currently.
that.

Implementation

Setting up the initial install of nagios took an
afternoon. The longest part of configuring nagios,
was gathering information from other groups to
make it useful to them. The basic system
monitoring was up within hours, and configured
more completely in about 3 weeks. The first couple
of days, I configured nagios to monitor the
infrastructure (DNS, mail, NIS, LDAP, etc..), the
rest of the time was adding in hosts that others
needed, using nrpe to gather system specific
statistics.

The system currently monitors 72 hosts and 126
services. No noticeable performance impact has
been seen on hideout, notifications (based on time
tuning) are generally immediate, and problems are
noted and worked upon before anyone in the user
community sees them

Since setup, I regularly check the system weekly to
make changes. It is gradually getting into people’s
awareness as something to consider as part of a
deployment of new services.




Monitoring the world with NetBSD

99

I've written specialized nagios plugin client code, to
check our high uptime web content.

It has assisted our organization by allowing us to
respond to failures before they become catastrophic, or
impacting business profits. Our group has a better
reputation, with more personnel having faith in the IT
department’s ability to prevent and handle emergencies.

Setting up a similar system

Generally there are very few limitations unless you're
really deploying the system worldwide, at which point
your better option is to scale hierarchically and have
slave nodes reporting back to a master reporting station.
Current desktops have more than enough resources in
every area to perform as a central monitoring host. The
current enterprise setup is not suffering under its current
load. Figuring out the ideal system really depends on
how far you want to scale.

If you need to buy a system, a mid range rack mount or
desktop will be fine. A laptop will work in a pinch.
High disk 1/0 isn't absolutely necessary (although it
might make response time better when you need to
maintain the system).

My ideal setup would probably be an older model
athlon on a stable chipset board with 512MB ram and
18GB mirrored disk. That would be ample for a
standalone station.

If you are at the point of needing slave nodes, then use
a similar setup, using a current model athlon, bigger
disks with hardware raid, and gigE connections for the
master node.

Future work

When the world of the dot-coms has money once again
it will be nice to build a monitoring solution with more
powerful machines, along with the usual hardware
redundancy features. In choosing the hardware (they are

currently compaq PCs...) we will be more easily
able to raidframe disk mirroring etc...

Conclusions

We defined monitoring as a sampling of some sort
of content, systematically tracking the state of that
content, and warning the appropriate parties when
needed. By investing time and resources on
preparing a monitoring solution at the outset of
enterprise architecture, catastrophe will be adverted
when AC in your data center fails, the company’s
website becomes unreachable or a distraught
recently fired HR employee attempts to trash the
systems. A monitoring solution does not replace
the need for redundancy in your systems, or having
reliable backups. As system environments become
more complex, monitoring becomes more
important. With the lag in resources for increasing
manpower versus the need for more systems to
handle load, a good monitoring solution is the only
way to keep on top of system performance.
Running NetBSD, one of the most stable and
secure operating systems available, with the very
configurable nagios, you will have built a
monitoring solution that will withstand most
system and network administrator’s nightmares.
Instead of Mr. Smiley calling you up questioning
the cost benefits of your setup, and monetary losses
of downtime, you will be prepared with
information to backup decisions on buying
system/network resources, and be prepared when
emergency strikes to minimize downtime.

The intent of this paper was to impart design skills
to help you enhance your own monitoring
solutions, and get you started with a basic
monitoring framework if monitoring is a new topic
for you. The authors are happy to field questions
via email, and contract work is always welcome.




100 Monitoring the world with NetBSD

References

Online copies of this paper, sample perl tools source code and sample Nagios configuration files may be obtained
from http://www.deorth.org/papers/monitoring

Mr Smiley http://www.userfriendly.org
Obtaining pkgsrc http://www .netbsd.org/Documentation/software/packages.html
Fping

cd /usr/pkgsre/net/fping && make install.
Or, sources can be obtained from
ftp://ftp.uu.net/usenet/comp.sources.unix/volume26/fping/

SNIPS http://www.netplex-tech.com/software/snips/

Nagios and associated plugins and contributions http://www.nagios.org

TKined (and in kpgsrc) http://wwwhome.cs.utwente.nl/~schoenw/scotty/
Lynx (and in kpgsrc) http://lynx.browser.org/

Wget (and in pkgsrc) http://'www.gnu.org/software/wget/wget.html

Big brother http://www.bb4.com

Big sister http://bigsister.graeff.com/

MRTG (and in kpgsrc) http://ee-staff.ethz.ch/~oetiker/webtools/rrdtool
Cricket http://cricket.sourceforge.net/

Flowscan http://net.doit.wisc.edu/~plonka/FlowScan/
Smokeping http://people.ee.ethz.ch/~oetiker/webtools/smokeping/
Other front ends to rrdtool http://people.ee.ethz.ch/~oetiker/webtools/rrdtool/rrdworld/
Nmap http://www.nmap.org/nmap/index.html

Nessus http://www .nessus.org

MDS5 Part of the NetBSD base OS, src for compiling on other operating systems is available from
ftp://ftp.cert.dfn.de/pub/tools/crypt/md5/01-README

Swatch http://oit.ucsb.edu/~eta/swatch/

Portsentry http://www psionic.com/abacus/portsentry/
Logsentry http://www.psionic.com/products/logsentry.html
Snort http://www.snort.org/

TCPwrappers ftp://ftp.porcupine.org/pub/security/index.html
Acknowledgements

We’d like to thank the BSDCon committee for giving us the opportunity to share our thoughts with the BSD
community.

Alan would specifically like to thank his places of employment Inktomi and Dreamworks for providing the work
environment to experiment and explore innovative ways of providing better system performance through
monitoring. Also, he would like to thank David Brownlee for introducing him to the one OS, NetBSD, and the
many people in the NetBSD community who have always been helpful and instructive through the years.




Timecounters: Efficient and precise timekeeping in SMP kernels 101

Timecounters: Efficient and precise
timekeeping in SMP kernels

Poul-Henning Kamp
The FreeBSD Project
<phk@FreeBSD.org>

The FreeBSD timecounters are an architecture-independent implementation of a binary timescale
using whatever hardware support is at hand. The timecounter timescale converts to other time
representations using cheap multiply and shift operations and provides for sufficient precision and
resolution to cater for all future needs. The math and implementation will be described, including
the features which support NTP PLL/FLL time synchronization, lockless multi-cpu operation and
on-the-fly change in hardware support.

Poul-Henning Kamp believes that UNIX is the best OS ever made so far, he is con-
vinced we can still make it better and he has been trying to since the carly cightics.
Ever since Minix 1.0 came out, Poul-Henning has been running UNIX on his laptop,
and via 386BSD he came to FreeBSD where he sat on the Core Team from 1994-
2000. Poul-Henning has been release engineer for a number of FreeBSD releases,
written, rewritten and cleaned up many pieces of FreeBSD kernel, written a memory
allocator, a password scrambler, the beerware license and generally been having a
good time. Poul-Henning lives in Denmark with his wife, his son, his daughter about
ten FreeBSD computers and one of the worlds most precise NTP clocks. He makes
a living as an independent contractor doing all sorts of magic with computers and
network.




Timecounters: Efficient and precise timekeeping in SMP kernels

Timecounters: Efficient and precise timekeeping in SMP kernels.

Poul-Henning Kamp
The FreeBSD Project

ABSTRACT

The FreeBSD timecounters are an architecture-independent implementation of a binary
timescale using whatever hardware support is at hand for tracking time. The binary timescale
converts using simple multiplication to canonical timescales based on micro- or nano-seconds
and can interface seamlessly to the NTP PLL/FLL facilities for clock synchronisation.
Timecounters are implemented using lock-less stable-storage based primitives which scale
efficiently in SMP systems. The math and implementation behind timecounters will be detailed
as well as the mechanisms used for synchronisation.

Introduction

Despite digging around for it, I have not been
able to positively identify the first computer which
knew the time of day. The feature probably
arrived either from the commercial side so service
centres could bill computer cycles to customers or
from the technical side so computers could times-
tamp external events, but I have not been able to
conclusively nail the first implementation down.

But there is no doubt that it happened very early in
the development of computers and if systems like
the “SAGE” [SAGE] did not know what time it
was I would be amazed.

On the other hand, it took a long time for a real
time clock to become a standard feature:

The “Apple ][”” computer had neither in hardware
or software any notion what time it was.

The original “IBM PC” did know what time it
was, provided you typed it in when you booted it,
but it forgot when you turned it off.

One of the “advanced technologies” in the “IBM
PC/AT” was a battery backed CMOS chip which
kept track of time even when the computer was
powered off.

Today we expect our computers to know the time,
and with network protocols like NTP we will usu-
ally find that they do, give and take some millisec-
onds.

This article is about the code in the FreeBSD ker-
nel which keeps track of time.

Time and timescale basics

Despite the fact that time is the physical
quantity (or maybe entity ?) about which we know
the least, it is at the same time [sic!] what we can
measure with the highest precision of all physical
quantities.

The current crop of atomic clocks will neither gain
nor loose a second in the next couple hundred

million years, provided we stick to the preventative
maintenance schedules. This is a feat roughly in
line with to knowing the circumference of the
Earth with one micrometer precision, in real time.

While it is possible to measure time by means
other than oscillations, for instance transport or
consumption of a substance at a well-known rate,
such designs play no practical role in time mea-
surement because their performance is signifi-
cantly inferior to oscillation based designs.

In other words, it is pretty fair to say that all rele-
vant timekeeping is based on oscillating phenom-
ena:

sun-dial Earths rotation about its axis.
calendar Ditto + Earths orbit around the sun.
clockwork  Mechanical oscillation of pendulum.
crystals Mechanical resonance in quartz.
atomic Quantum-state transitions in atoms.

We can therefore with good fidelity define “a
clock” to be the combination of an osciliator and a
counting mechanism:

U

Oscillator + Counter = Clock
The standard second is currently defined as
The duration of 9,192,631,770 periods of the
radiation corresponding to the transition

between the two hyperfine levels of the ground
state of the caesium 133 atom.

1037542500

and we have frequency standards which are able to
mark a sequence of such seconds with an error less
than 2-107" [DMK2001] with commercially
available products doing better than 1.1071*
[AG2002].

Unlike other physical units with a conventionally
defined origo,

longitude for instance, the



Timecounters: Efficient and precise timekeeping in SMP kernels

103

ephemeral nature of time prevents us from putting
a stake in the ground, so to speak, and measure
from there. For measuring time we have to rely on
“dead reckoning”, just like the navigators before
Harrison built his clocks [RGO2002]: We have to
tally how far we went from our reference point,
keeping a running total at all times, and use that as
our estimated position.

The upshot of this is, that we cannot define a
timescale by any other means than some other
timescale(s).

“Relative time’’ is a time interval between two
events, and for this we only need to agree on the
rate of the oscillator.

“Absolute time” consists of a well defined point in
time and the time interval since then, this is a bit
more tricky.

The Internationally agreed upon TAI and the UTC
timescales starts at (from a physics point of view)
arbitrary points in time and progresses in integral
intervals of the standard second, with the differ-
ence being that UTC does tricks to the counting to
stay roughly in sync with Earths rotation /.

TAI is defined as a sequence of standard seconds
(the first timescale), counted from January Ist
1958 (the second timescale).

UTC is defined basically the same way, but every
so often a leap-second is inserted (or theoretically
deleted) to keep UTC synchronised with Earths
rotation.

Both the implementation of these two, and a few
others speciality timescales are the result of the
combined efforts of several hundred atomic fre-
quency standards in various laboratories and insti-
tutions throughout the world, all reporting to the
BIPM in Paris who calculate the “paper clock”
which TAI and UTC really are using a carefully
designed weighting algorithm 2.

The first atomic based definition actually operated in a
different way: each year would have its own value deter-
mined for the frequency of the caesium resonance, se-
lected so as to match the revolution rate of the Earth.
This resulted in time-intervals being very unwieldy busi-
ness, and more and more scientists realized that that the
caesium resonance was many times more stable than the
angular momentum of the Earth. Eventually the new
leap-second method were introduced in 1972. It is inter-
esting to note that the autumn leaves falling on the
northern hemisphere affects the angular momentum
enough to change the Earths rotational rate measurably.

The majority of these clocks are model 5071A from
Agilent (the test and measurement company formerly
known as ‘‘Hewlett-Packard”) which count for as much
as 85% of the combined weight. A fact the company de-
servedly is proud of. The majority of the remaining
weight is assigned to a handful of big custom-design
units like the PTB2 and NIST7.

Leap seconds are typically announced six to nine
months in advance, based on precise observations
of median transit times of stars and VLBI radio
astronomy of very distant quasars.

The perceived wisdom of leap-seconds have been
gradually decreasing in recent years, as devices
and products with built-in calendar functionality
becomes more and more common and people real-
ize that user input or software upgrades are neces-
sary to instruct the calendar functionality about
upcoming leap seconds.

UNIX timescales

UNIX systems use a timescale which pre-
tends to be UTC, but defined as the count of stan-
dard seconds since 00:00:00 01-01-1970 UTC,
ignoring the leap-seconds. This definition has
never been perceived as wise.

Ignoring leap seconds means that unless some
trickery is performed when a leap second happens
on the UTC scale, UNIX clocks would be one sec-
ond off. Another implication is that the length of a
time interval calculated on UNIX time_t variables,
can be up to 22 (and counting) seconds wrong rel-
ative to the same time interval measured on the
UTC timescale.

Recent efforts have tried to make the NTP protocol
make up for this deficiency by transmitting the
UTC-TAI offset as part of the protocol.
[MILLS2000A]

Fractional seconds are represented two ways in
UNIX, “timeval” and “timespec”. Both of these
formats are two-component structures which
record the number of seconds, and the number of
microseconds or nanoseconds respectively.

This unfortunate definition makes arithmetic on
these two formats quite expensive to perform in
terms of computer instructions:

/* Subtract timeval from timespec */
t3.tv_sec = tl.tv_sec - t2.tv_sec;
t3.tv_nsec = tl.tv_nsec -
t2.tv_usec * 1000;
if (t3.tv_nsec >= 1000000000) {
t3.tv_sec++;
t3.tv_nsec -= 1000000000;
} else if (t3.tv_nsec < 0) {
t3.tv_sec--;
t3.tv_nsec += 1000000000;
}

While nanoseconds will probably be enough for
most timestamping tasks faced by UNIX comput-
ers for a number of years, it is an increasingly
uncomfortable situation that CPU clock periods
and instruction timings are already not repre-
sentable in the standard time formats available on
UNIX for consumer grade hardware, and the first
POSIX mandated API, clock_getres (3) has




104

Timecounters: Efficient and precise timekeeping in SMP kernels

already effectively reached end of life as a result of
this.

Hopefully the various standards
address this issue better in the future.

bodies will

Precision, Stability and Resolution

Three very important terms in timekeeping
are ‘“‘precision”, ‘“‘stability” and ‘resolution”,
While the three words may seem to describe some-
what the same property in most uses, their use in
timekeeping covers three very distinct and well
defined properties of a clock.

Resolution in clocks is simply a matter of the step-
size of the counter or in other words: the rate at
which it steps. A counter running on a 1 MHz fre-
quency will have a resolution of 1 microsecond.

Precision talks about how close to the intended
rate the clock runs, stability about how much the
rate varies and resolution about the size of the
smallest timeinterval we can measure.

From a quality point of view, Stability is a much
more valuable property than precision, this is prob-
ably best explained using a graphic illustration of
the difference between the two concepts:

Unstable

Stable

Imprecise Precise

In the top row we have instability, the bullet holes
are spread over a large fraction of the target area.
In the bottom row, the bullets all hit in a very small
area.

On the left side, we have lack of precision, the
holes obviously are not centred on the target, a sys-
tematic offset exists. In the right side we have pre-
cision, the bullets are centred on the target 7.

FWe cannot easily get resolution into this analogy, the
obvious representation as the diameter of the bullet-hole
is not correct, it would have to be the grid or other pat-
tern of locations where the bullet could possibly pene-
trate the target material, but this gets too quantum-me-
chanical-oid to serve the instructional purpose.

Transposing these four targets to actual clocks, the
situation could look like the following plots:

Unstable

Stable

Imprecise Precise

On the x-axis we have time and on the y-axis how
wrong the clock was at a given point in time.

The reason atomic standards are such a big deal in
timekeeping is that they are incredibly stable: they
are able to generate an oscillation where the period
varies by roughly a millionth of a billonth of a sec-
ond in long term measurements.

They are in fact not nearly as precise as they are
stable, but as one can see from the graphic above, a
stable clock which is not precise can be easily cor-
rected for the offset and thus calibrated is as good
as any clock.

This lack of precision is not necessarily a flaw in
these kinds of devices, once you get into the
10- 107" territory things like the blackbody spec-
trum at the particular absolute temperature of the
clocks hardware and general relativistic effects
mostly dependent on the altitude above earths cen-
ter has to be corrected for 4.

Design goals of timecounters

After this brief description of the major fea-
tures of the local landscape, we can look at the
design goals of timecounters in detail:

Provide timestamps in timeval and timespec for-
mats,
This is obviously the basic task we have to
solve, but as was noted earlier, this is in no way
the performance requirement.

on both the “uptime” and the POSIX timescales,
The “uptime” timescale is convenient for time

4This particularly becomes an issue with space-based
atomic standards as those found on the “Navstar” GPS
satellites.




Timecounters: Efficient and precise timekeeping in SMP kernels

105

intervals which are not anchored in UTC time:
the run time of processes, the access time of
disks and similar.

The uptime timescale counts seconds starting
from when the system is booted. The
POSIX/UTC timescale is implemented by
adding an estimate of the POSIX time when
the system booted to the uptime timescale.

using whatever hardware we have available at the
time,

Which in a subtle way also implies “‘be able to
switch from one piece of hardware to another
on the fly” since we may not know right up
front what hardware we have access to and
which is preferable to use.

while supporting time the NTP PLL/FLL discipline
code,

The NTP kernel PLL/FLL code allows the
local clock and timescale to be synchronised or
syntonised to an external timescale either via
network packets or hardware connection. This
also implies that the rate and phase of the
timescale must be manoeuvrable with sufficient
resolution.

and providing support for the RFC 2783 PPS API,

This is mainly for the benefit of the NTPD dae-
mons communication with external clock or
frequency hardware, but it has many other
interesting uses as well [PHK2001].

in a SMP efficient way.
Timestamps are used many places in the kernel
and often at pretty high rate so it is important

that the timekeeping facility does not become a
point of CPU or lock contention.

Timecounter timestamp format.

Choosing the fundamental timestamp format
for the timecounters is mostly a question of the
resolution and steer-ability requirements.

There are two basic options on contemporary hard-
ware: use a 32 bit integer for the fractional part of
seconds, or use a 64 bit which is computationally
more expensive.

The question therefore reduced to the somewhat
simpler: can we get away with using only 32 bit ?

Since 32 bits fractional seconds have a resolution
of slightly better than quarter of a nanosecond
(.2328 nsec) it can obviously be converted to
nanosecond resolution struct timespec timestamps
with no loss of precision, but unfortunately not
with pure 32 bit arithmetic as that would result in
unacceptable rounding errors.

But timecounters also need to represent the clock
period of the chosen hardware and this hardware
might be the GHz range CPU-clock. The list of

clock frequencies we could support with 32 bits
are:

2321 = 4294 GHz
2322 = 2147 GHz
2%213 1432 GHz
2P -y = 999 Hz

We can immediately see that 32 bit is insufficient
to faithfully represent clock frequencies even in
the low GHz area, much less in the range of fre-
quencies which have already been vapourwared by
both IBM, Intel and AMD. QED: 32 bit fractions
are not enough.

With 64 bit fractions the same table looks like:

2%41 = 18.45-10° GHz
2842 9.223.10° GHz
2647232 = 4294 GHz
%28 - 1) = 999 Hz

And the resolution in the 4 GHz frequency range is
approximately one Hz.

The following format have therefore been chosen
as the basic format for timecounters operations:

struct bintime {
time_t sec;
uint6d4_t frac;
}i

Notice that the format will adapt to any size of
time_t variable, keeping timecounters safely out of
the “We SHALL prepare for the Y2.038K prob-
lem” war zone.

One beauty of the bintime format, compared to the
timeval and timespec formats is that it is a binary
number, not a pseudo-decimal number. If compil-
ers and standards allowed, the representation
would have been “int128_t’ or at least “int96_t”,
but since this is currently not possible, we have to
express the simple concept of multiword addition
in the C language which has no concept of a
“carry bit”.

To add two bintime values, the code therefore
looks like this °:

uint64_t u;

u = btl->frac;
bt3->frac = btl->frac + bt2->frac;
bt3->sec = btl->sec + bt2->sec;
if (u > bt3->frac)

bt3->sec += 1;

31 the reader suspects the ">’ is a typo, further study is
suggested.




Timecounters: Efficient and precise timekeeping in SMP kernels

An important property of the bintime format is that
it can be converted to and from timeval and time-
spec formats with simple multiplication and shift
operations as shown in these two actual code frag-
ments:

void
bintime2timespec(struct bintime *bt,
struct timespec *ts)

ts->tv_sec = bt->sec;
ts->tv_nsec =
((uint64_t)1000000000 *
(uint32_t) (
}

void
timespec2bintime (struct timespec *ts,
struct bintime *bt)

bt->sec = ts->tv_sec;
/* 18446744073 =
int (2764 / 1000000000) */
bt->frac = ts->tv_nsec *
(uint64_t)18446744073LL;

How timecounters work

To produce a current timestamp the time-
counter code reads the hardware counter, subtracts
a reference count to find the number of steps the
counter has progressed since the reference times-
tamp. This number of steps is multiplied with a
factor derived from the counters frequency, taking
into account any corrections from the NTP
PLL/FLL and this product is added to the refer-
ence timestamp to get a timestamp.

This timestamp is on the “uptime” time scale, so
if UNIX/UTC time is requested, the estimated time
of boot is added to the timestamp and finally it is
scaled to the timeval or timespec if that is the
desired format.

A fairly large number of functions are provided to
produce timestamps, depending on the desired
timescale and output format:

Desired uptime  UTC/POSIX
Format timescale timescale
bintime binuptime() bintime()
timespec nanouptime() nanotime()
timeval microuptime() microtime()

Some applications need to timestamp events, but
are not particular picky about the precision. In
many cases a precision of tenths or hundreds of
seconds is sufficient.

bt->frac >> 32)) >> 32;

A very typical case is UNIX file timestamps:
There is little point in spending computational
resources getting an exact nanosecond timestamp,
when the data is written to a mechanical device
which has several milliseconds of unpredictable
delay before the operation is completed.

Therefore a complementary shadow family of
timestamping functions with the prefix “get” have
been added.

These functions return the reference timestamp
from the current timehands structure without going
to the hardware to determine how much time has
elapsed since then. These timestamps are known
to be correct to within rate at which the periodic
update runs, which in practice means 1 to 10 mil-
liseconds.

Timecounter math

The delta-count operation is straightforward sub-
traction, but we need to logically AND the result
with a bit-mask with the same number (or less)
bits as the counter implements, to prevent higher
order bits from getting set when the counter rolls
over:

ACount = (Count,,,, — Count, ;) BITAND mask

The scaling step is straightforward.
T,ow = ACount - R ey + Tref

The scaling factor R, Will be described below.
At regular intervals, scheduled by hard-
clock (), a housekeeping routine is run which
does the following:
A timestamp with associated hardware counter

reading is elevated to be the new reference time-
count:

ACount = (Count,,,,, — Count ;) BITAND mask
Thow = ACount - R qoynter
Count o,y = Count,,,,

Tref = Tnuw

If a new second has started, the NTP processing
routines are called and the correction they return
and the counters frequency is used to calculate the
new scaling factor R, ..,

64

R('(mm‘er = ' RNTP

Freqmumer
Since we only have access to 64 bit arithmetic,
dividing something into 2% is a problem, so in the
name of code clarity and efficiency, we sacrifice
the low order bit and instead calculate:

263

R ounter = “Ryrp

Freq(uumer



Timecounters: Efficient and precise timekeeping in SMP kernels

107

The Ryrp correct factor arrives as the signed num-
ber of nanoseconds (with 32 bit binary fractions)
to adjust per second. This quasi-decimal number
is a bit of a square peg in our round binary hole,
and a conversion factor is needed. Ideally we want
to multiply this factor by:

264

109 . 232
This is not a nice number to work with. Fortu-
nately, the precision of this correction is not criti-
cal, we are within an factor of a million of the
107" performance level of state of the art atomic
clocks, so we can use an approximation on this
term without anybody noticing.

=4.294967296

Deciding which fraction to use as approximation
needs to carefully consider any possible overflows
that could happen. In this case the correction may
be as large as * 5000 PPM which leaves us room
to multiply with about 850 in a multiply-before-
divide setting. Unfortunately, there are no good
fractions which multiply with less than 850 and at
the same time divide by a power of two, which is
desirable since it can be implemented as a binary
shift instead of an expensive full division.

A divide-before-multiply approximation necessar-
ily results in a loss of lower order bits, but in this
case dividing by 512 and multiplying by 2199
gives a good approximation where the lower order
bit loss is not a concern:

2199
——— =4.294921875
512

The resulting error is an systematic under compen-
sation of 10.6PPM of the requested change, or
1.06 - 107'* per nanosecond of correction. This is
perfectly acceptable.

Putting it all together, including the one bit we put
on the alter for the Goddess of code clarity, the for-
mula looks like this:

R
293 + 2199 . NP
1024

Fre‘houmer
Presented here in slightly unorthodox format to
show the component arithmetic operations as they
are carried out in the code.

R ounter =

Frequency of the periodic update

The hardware counter should have a long
enough period, ie, number of distinct counter val-
ues divided by frequency, to not roll over before
our periodic update function has had a chance to
update the reference timestamp data.

The periodic update function is called from
hardclock () which runs at a rate which is con-
trolled by the kernel parameter HZ.

By default HZ is 100 which means that only hard-
ware with a period longer than 10 msec is usable.
If HZ is configured higher than 1000, an internal
divider is activated to keep the timecounter peri-
odic update running no more often than 2000 times
per second.

Let us take an example: At HZ=100 a 16 bit
counter can run no faster than:

2'%. 100Hz = 6.5536MHz
Similarly, if the counter runs at 10MHz, the mini-
mum HZ is
10MHz
216

Some amount of margin is of course always advis-
able, and a factor two is considered prudent.

=152.6Hz

Locking, lack of ...

Provided our hardware can be read atomi-
cally, that our arithmetic has enough bits to not roll
over and that our clock frequency is perfectly, or at
least sufficiently, stable, we could avoid the peri-
odic update function, and consequently disregard
the entire issue of locking. We are seldom that
lucky in practice.

The straightforward way of dealing with meta data
updates is to put a lock of some kind on the data
and grab hold of that before doing anything. This
would however be a very heavy-handed approach.
First of all, the updates are infrequent compared to
simple references, second it is not important which
particular state of meta data a consumer gets hold
of, as long as it is consistent: as long as the
Count s and T, are a matching pair, and not old
enough to cause an ambiguity with hardware
counter rollover, a valid timestamp can be derived
from them.

A pseudo-stable-storage with generation count
method has been chosen instead. A ring of ten
“timehands” data structures are used to hold the
state of the timecounter system, the periodic
update function updates the next structure with the
new reference data and scaling factor and makes it
the current timehands.

The beauty of this arrangement lies in the fact that
even though a particular *““timehands” data struc-
ture has been bumped from being the ‘‘currents
state” by its successor, it still contains valid data
for some amount of time into the future.

Therefore, a process which has started the times-
tamping process but suffered an interrupt which
resulted in the above periodic processing can con-
tinue unaware of this afterwards and not suffer cor-
ruption or miscalculation even though it holds no
locks on the shared meta-data.




108

Timecounters: Efficient and precise timekeeping in SMP kernels

struct timehands
*volatile timehands;

:

J L
J L
D

This scheme has an inherent risk that a process
may be de-scheduled for so long time that it will
not manage to complete the timestamping process
before the entire ring of timehands have been recy-
cled. This case is covered by each timehand hav-
ing a private generation number which is temporar-
ily set to zero during the periodic processing, to
mark inconsistent data, and incremented to one
more than the previous value when the update has
finished and the timehands is again consistent.

The timestamping code will grab a copy of this
generation number and compare this copy to the
generation in the timehands after completion and if
they differ it will restart the timestamping calcula-
tion.

do {
th = timehands;
gen = th->th_generation;
/* calculate timestamp */
} while (gen == |
gen != th->th_generation);

1 )

)

Each hardware device supporting timecounting is
represented by a small data structure called a time-
counter, which documents the frequency, the num-
ber of bits implemented by the counter and a
method function to read the counter.

Part of the state in the timehands structure is a
pointer to the relevant timecounter structure, this
makes it possible to change to a one piece of hard-
ware to another ‘“‘on the fly” by updating the cur-
rent timehands pointer in a manner similar to the
periodic update function.

In practice this can be done with sysctl(8):

sysctl kern.timecounter.hardware=TSC

at any time while the system is running.

Suitable hardware

A closer look on “‘suitable hardware” is war-
ranted at this point. It is obvious from the above
description that the ideal hardware for timecount-
ing is a wide binary counter running at a constant
high frequency and atomically readable by all
CPUs in the system with a fast instruc-
tion(-sequence).

When looking at the hardware support on the PC
platform, one is somewhat tempted to sigh deeply
and mutter ‘‘so much for theory”, because none of
the above parameters seems to have been on the
drawing board together yet.

All IBM PC derivatives contain a device more or
less compatible with the venerable Intel 18254
chip. This device contains 3 counters of 16 bits
each, one of which is wired so it can interrupt the
CPU when the programmable terminal count is
reached.

The problem with this device is that it only has
8bit bus-width, so reading a 16 bit timestamp takes
3 I/O operations: one to latch the count in an inter-
nal register, and two to read the high and low parts
of that register respectively.

Obviously, on multi-CPU systems this cannot be
done without some kind of locking mechanism
preventing the other CPUs from trying to do the
same thing at the same time.

Less obviously we find it is even worse than that:
Since a low priority kernel thread might be reading
a timestamp when an interrupt comes in, and since
the interrupt thread might attempt to generate a
timestamp also, we need to totally block interrupts
out while doing those three /O instructions.

And just to make life even more complicated,
FreeBSD uses the same counter to provide the
periodic interrupts which schedule the hard-
clock () routine, so in addition the code has to
deal with the fact that the counter does not count
down from a power of two and that an interrupt is
generated right after the reloading of the counter
when it reaches zero.

Ohh, and did I mention that the interrupt rate for
hardclock() will be set to a higher frequency if pro-
filing is active ?

It hopefully doesn’t ever get more complicated
than that, but it shows, in its own bizarre and
twisted way, just how little help the timecounter
code needs from the actual hardware.

The next kind of hardware support to materialise
was the “CPU clock counter” called “TSC” in

61 will not even mention the fact that it can be set also
to ridiculous high frequencies in order to be able to use
the binary driven “beep” speaker in the PC in a PCM
fashion to output “real sounds”.




Timecounters: Efficient and precise timekeeping in SMP kernels

109

official data-sheets. This is basically a on-CPU
counter, which counts at the rate of the CPU clock.

Unfortunately, the electrical power needed to run a
CPU is pretty precisely proportional with the clock
frequency for the prevailing CMOS chip technol-
ogy, so the advent of computers powered by batter-
ies prompted technologies like APM, ACPI,
SpeedStep and others which varies or throttles the
CPU clock to match computing demand in order to
minimise the power consumption 7.

Another wiggle for the TSC is that it is not usable
on multi-CPU systems because the counter is
implemented inside the CPU and not readable
from other CPUs in the system.

The counters on different CPUs are not guaranteed
to run syntonously (ie: show the same count at the
same time). For some architectures like the
DEC/alpha architecture they do not even run syn-
chronously (ie: at the same rate) because the CPU
clock frequency is generated by a small SAW
device on the chip which is very sensitive to tem-
perature changes.

The ACPI specification finally brings some light: it
postulates the existence of a 24 or 32 bit counter
running at a standardised constant frequency and
specifically notes that this is intended to be used
for timekeeping.

The frequency chosen, 3.5795454... MHz8

is not quite as high as one could have wished for,
but it is certainly a big improvement over the 18254
hardware in terms of access path.

But trust it to Murphys Law: The majority of
implementations so far have failed to provide
latching suitable to avoid meta-stability problems,
and several readings from the counter is necessary
to get a reliable timestamp. In difference from the
18254 mentioned above, we do not need to any
locking while doing so, since each individual read
is atomic.

An initialization routine tries to test if the ACPI
counter is properly latched by examining the width
of a histogram over read delta-values.

“This technology also found ways into stationary com-
puters from two different vectors. The first vector was
technical: Cheaper cooling solutions can be used for the
CPU if they are employed resulting in cheaper commod-
ity hardware. The second vector was political: For rea-
sons beyond reason, energy conservation became an is-
sue with personal computers, despite the fact that practi-
cally north American households contains 4 to 5 house-
hold items which through inefficient designs waste more
power than a personal computer use.

8The reason for this odd-ball frequency has to be
sought in the ghastly colours offered by the original
IBM PC Color Graphics Adapter: It delivered NTSC
format output and therefore introduced the NTSC colour
sync frequency into personal computers.

Other architectures are similarly equipped with
means for timekeeping, but generally more care-
fully thought out compared to the haphazard devel-
opments of the IBM PC architecture.

One final important wiggle of all this, is that it
may not be possible to determine which piece of
hardware is best suited for clock use until well into
or even after the bootstrap process.

One example of this is the Loran-C receiver
designed by Prof. Dave Mills [MILLS1992] which
is unsuitable as timecounter until the daemon pro-
gram which implements the software-half of the
receiver has properly initialised and locked onto a
Loran-C signal.

Ideal timecounter hardware

As proof of concept, a sort of an existentialist
protest against the sorry state describe above, the
author undertook a project to prove that it is possi-
ble to do better than that, since none of the stan-
dard hardware offered a way to fully validate the
timecounter design.

Using a COTS product, “HOT1”, from Virtual
Computers Corporation [VCC2002] containing a
FPGA chip on a PCI form factor card, a 26 bit
timecounter running at 100MHz was successfully
implemented.

In order to show that timestamping does not neces-
sarily have to be done using unpredictable and
uncalibratable interrupts, an array of latches were
implemented as well, which allow up to 10 exter-
nal signals to latch the reading of the counter when
an external PPS signal transitions from logic high
to logic low or vice versa.

Clock

26 bit binary counter.

26 bit latch
26 bit latch

PCI system bus l

Using this setup, an standard 133 MHz Pentium
based PC is able to timestamp the PPS output of




110

Timecounters: Efficient and precise timekeeping in SMP kernels

the Motorola UT+ GPS receiver with a precision
of £+ 10 nanoseconds * one count which in practice
averages out to roughly * 15 nanoseconds®:

nanoseconds

20 ) i i L i i i 1 1
0 100 200 300 400 500 600 700 800 S00 1000
seconds

It shold be noted that the author is no hardware
wizard and a number of issues in the implementa-
tion results in less than ideal noise performance.

Now compare this to “‘ideal” timecounter to the
normal setup where the PPS signal is used to trig-
ger an interrupt via the DCD pin on a serial port,
and the interrupt handler calls nanotime () to
timestamp the external event 7;

140000 — 7T T
120000 -
100000 |-
80000

60000

nanoseconds

40000

LI,

20000

0 i 1 i i ) ) 1 i i
0 100 200 300 400 500 600 700 800 900 1000
seconds

It is painfully obvious that the interrupt latency is
the dominant noise factor in PPS timestamping in
the second case. The asymetric distribution of the
noise in the second plot also more or less entirely
invalidates the design assumption in the NTP
PLL/FLL kemel code that timestamps are domi-
nated by gaussian noise with few spikes.

9The reason the plot does not show a very distinct 10
nanosecond quantization is that the GPS receiver pro-
duces the PPS signal from a clock with a roughly 55
nanosecond period and then predicts in the serial data
stream how many nanoseconds this will be offset from
the ideal time. This plot shows the timestamps corrected
for this “‘negative sawtooth correction”.

In both cases, the computers clock frequency con-
trolled with a Rubidium Frequency standard. The aver-
age quality of crystals used for computers would totally
obscure the curves due to their temperature coefficient.

Status and availability

The timecounter code has been developed
and used in FreeBSD for a number of years and
has now reached maturity. The source-code is
located almost entirely in the kernel source file
kern_tc.c, with a few necessary adaptations in code
which interfaces to it, primarily the NTP PLL/FLL
code.

The code runs on all FreeBSD platforms including
1386, alpha, PC98, sparc64, ia64 and s/390 and
contains no wordsize or endianess issues not
specifically handled in the sourcecode.

The timecounter implementation is distributed
under the “BSD” open source license or the even
more free “‘Beer-ware” license.

While the ability to accurately model and compen-
sate for inaccuracies typical of atomic frequency
standards are not catering to the larger userbase,
but this ability and precision of the code guarntees
solid support for the widespread deployment of
NTP as a time synchronization protocol, without
rounding or accumulative errors.

Adding support for new hardware and platforms
have been done several times by other developers
without any input from the author, so this particu-
lar aspect of timecounters design seems to work
very well.

Future work

At this point in time, no specific plans exist
for further development of the timecounters code.

Various micro-optimizations, mostly to compen-
sate for inadequate compiler optimization could be
contemplated, but the author resists these on the
basis that they significantly decrease the readabil-
ity of the source code.

Acknowledgements

The author would like to thank:

Bruce Evans for his invaluable assistance in tam-
ing the evil i8254 timecounter, as well as the
enthusiastic resistance he has provided throughout.

Professor Dave Mills of University of
Delaware for his work on NTP, for lending out the
neglected twin Loran-C receiver and for picking
up the glove when timecounters made it clear that
the old ‘“microkernel” NTP timekeeping code
were not up to snuff [MILLS2000B].

Tom Van Baak for helping out, despite the
best efforts of the National Danish Posts center for
Customs and Dues to prevent it.

Corby Dawson for helping with the care and
feeding for caesium standards.

The staff at the NELS Loran-C control sta-
tion in Bg, Norway for providing information




Timecounters: Efficient and precise timekeeping in SMP kernels 111

about step-changes.

The staff at NELS Loran-C station Eide,
Faeroe Islands for permission to tour their installa-
tion.

The FreeBSD users for putting up with
“micro uptime went backwards”.

References

[AG2002] Published specifications for Agilent
model 5071A Primary Frequency Standard on
http://www.agilent.com

[DMK2001] "Accuracy Evaluation of a Cesium
Fountain Primary Frequency Standard at NIST."
D. M. Meekhof, S. R. Jefferts, M. Stephanovic,
and T. E. Parker IEEE Transactions on instrumen-
tation and measurement, VOL. 50, NO. 2, APRIL
2001.

[PHK2001] "Monitoring Natural Gas Usage" Poul-
Henning Kamp http://phk.freebsd.dk/Gasdims/

[MILLS1992] "A computer-controlled LORAN-C
receiver for precision timekeeping." Mills, D.L.
Electrical Engineering Department Report 92-3-1,
University of Delaware, March 1992, 63 pp.

[MILLS2000A] Levine, J., and D. Mills. "Using
the Network Time Protocol to transmit Interna-
tional Atomic Time (TAI)". Proc. Precision Time
and Time Interval (PTTI) Applications and Plan-
ning Meeting (Reston VA, November 2000),
431-439.

[MILLS2000B] "The nanokernel.” Mills, D.L.,
and P.-H. Kamp. Proc. Precision Time and Time
Interval (PTTI) Applications and Planning Meet-
ing (Reston VA, November 2000), 423-430.

[RGO2002] For an introduction to Harrison and
his clocks, see for instance
http://www.rog.nmm.ac.uk/museum/harrison/

or for a more detailed and possibly better
researched account: Dava Sobels excellent book,
"Longitude: The True Story of a Lone Genius Who
Solved the Greatest Scientific Problem of His
Time" Penguin USA (Paper); ISBN: 0140258795.
[SAGE] This ‘“‘gee-wiz” kind of article in Dr.
Jobbs Journal is a goot place to start:
http://www.ddj.com/docu-
ments/s=1493/ddj0001hc/0085a.htm

[VCC2002] Please consult Virtual Computer Cor-
porations homepage:

http://www.vcc.com




112 Timecounters: Efficient and precise timekeeping in SMP kernels




Using SCTP with Partial Reliability for MPEG-4 Multimedia Streaming

113

Using SCTP with Partial Reliability for
MPEG-4 Multimedia Streaming

Marco Molteni
Cisco Systems
<mmolteni@cisco.com>

SCTP (Stream Control Transmission Protocol) [1,2], is a new IP transport protocol. It is reliable
and connection-oriented as TCP, but has a set of new features that make it well suited for a wide
class of applications, among them multimedia streaming. SCTP is record-oriented, providing
built-in framing capabilities, and can multiplex multiple data streams into one connection, thus
avoiding head-of-line blocking and providing a natural framework for multi-streamed systems
like MPEG-4. It can provide ordered or unordered delivery. Further, a sender that implements
Partial Reliability SCTP (PR-SCTP) can optionally choose the retransmission behavior on a per
packet basis, in a continuos spectrum from TCP-like reliability with multiple retransmissions to
UDP-like unreliability with no retransmission at all. In any case PR-SCTP retains all the benefits
of SCTP: TCP-friendly congestion control and congestion avoidance, plus multi-homing fail-over
capabilities.

The MPEG-4 standard is becoming a popular format for streaming multimedia on the Internet.
MPEG-4 encodes the bitstream in groups of different frame types (I, P and B-frames), where the
[-frame is independent, while the P and B-frames depend on the I-frame in the group. This means
that loosing an I-frame (for example due to network congestion) forces the player to skip to the
next frame group, with a noticeable worsening of the video quality. The transport protocol utilized
by MPEG is RTP, which in turn is layered on top of UDP. RTP, being concerned with real-time
traffic like multimedia streaming, does not provide reliable delivery.

Lately an implementation of SCTP has been imported in the [Pv06/IPsec stack developed by
KAME, providing kernel-level SCTP for all *BSD flavours [4].

This paper describes our work on FreeBSD to modify the open source MPEG-4 streamer and
player found in MPEG4IP [5] to utilize PR-SCTP as transport instead of RTP/UDP, enforcing
differentiated Partial Reliability per frame type. Various congestion scenarios show the improved
playout quality of the client player, due to the increment of the number of I-frames that PR-SCTP
allows to salvage from congestion.

[1] RFC 2960.

[2] draft-stewart-tsvwg-prsctp-00.txt
[3] http://www.sctp.org/

[4] http://www.mpegdip.net/

I discovered Unix at University, and [ have fallen in love with BSD since then. Af-
ter graduating in Computer Science, | left Italy for California, where 1 worked for
SRI International. T am now based in France and work for Cisco Systems. In my
various experiences [ have enjoyed hacking on FreeBSD and more exotic platforms.
Among my interests are network and system programming, network protocol design,
computer security and system administration. [ like spending my sparce time creating
welded sculptures designed by my wife Francesca.




114

Using SCTP with Partial Reliability for MPEG-4 Multimedia Streaming

Using SCTP with Partial Reliability
for MPEG-4 Multimedia Streaming

M. Molteni and M. Villari*
Cisco System Technology Center
06410 Sophia Antipolis, France.
e-mail: {mmolteni,mvillari}@cisco.com

Abstract

The MPEG-4 standard encodes a video
stream in 3 different frames, I, P and B,
where the P and B frames depend on the I
frame. Loosing an I frame is especially bad.
In this paper we exploit the Partial Reliabil-
ity features of the SCTP transport protocol
to selectively retransmit I frames in presence
of congestion, obtaining a better quality of
the decoded stream.

1 Introduction

The Stream Control Transmission Protocol
(SCTP) is a relatively new IP transport pro-
tocol. It is reliable, connection and message-
oriented, and has a set of new features that
make it well suited for a wide class of appli-
cations. SCTP can provide ordered or un-
ordered delivery, and when both sides imple-
ment Partial Reliability SCTP (PR-SCTP),
the sender can choose the retransmission be-
havior on a per packet basis, in a contin-
uos spectrum from TCP-like reliability with
multiple retransmissions to UDP-like unreli-
ability with no retransmission at all, always
retaining TCP-friendly congestion control
and congestion avoidance.

The MPEG-4 standard is becoming a popu-
lar format for streaming multimedia on the
Internet. MPEG-4 encodes the bitstream
in groups of different frame types (I, P and

*on leave from University of Messina.

B frames), where the I frame is indepen-
dent, while the P and B frames depend on
the I frame in the group. This means that
loosing an I frame (for example due to net-
work congestion) causes a noticeable wors-
ening of the video quality of all the frame
group. The transport protocol utilized by
MPEG is RTP/UDP. RTP, being concerned
with real-time traffic, does not provide reli-
able delivery.

Lately a Cisco implementation of SCTP has
been imported in the IPv6/IPsec stack de-
veloped by KAME, providing kernel-level
SCTP for the operating systems derived
from BSD Unix.

This paper describes our preliminary work
on FreeBSD to modify two open source pro-
grams, a MPEG-4 streamer and a MPEG-4
player, to utilize PR-SCTP as transport in-
stead of RTP/UDP, enforcing differentiated
Partial Reliability per frame type.

Our preliminary results show that under
congestion scenarios there is improved play-
out quality of the video stream, due to the
increment of the number of I-frames that
PR-SCTP allows to salvage from conges-
tion.

2 Background

In this section we briefly describe the vari-
ous fields involved in our work, highlighting
key concepts. The reader is referred to the
bibliography for deeper treatment.




Using SCTP with Partial Reliability for MPEG-4 Multimedia Streaming

115

2.1 SCTP

The Stream Control Transmission Protocol
(SCTP) [13] is a relatively new IP trans-
port protocol. It is reliable and connection-

oriented as TCP, and has a TCP-friendly
congestion control.

While TCP is byte stream oriented, SCTP
is message oriented (i.e. it preserves mes-
sage boundaries as, for example, UDP). This
means that an application that needs mes-
sage boundaries doesn’t have to provide its
own framing as is the case with TCP.

SCTP can multiplex multiple data
“streams” into one SCTP association.
Each message is associated with a stream
number, and messages belonging to the
same stream are delivered in order. How-
ever, while one stream may be blocked
waiting for the next in-sequence message,
delivery from other streams may proceed,
avoiding head-of-line blocking. Also, the
packet delivery can be ordered or unordered,
with stream granularity.

Further, when both endpoints implement
Partial Reliability SCTP (PR-SCTP) [14],
the sender can choose the retransmission be-
havior on a per message basis. As of today
the only partially reliable service specified is
the timed reliability service, but different no-
tions of partial reliability can be introduced
and the niceness of the extension is that the
receiver doesn’t have to know which kind of
partial reliability is performed by the server.

Timed reliability means that the user can
specify the lifetime of a message: when the
lifetime is expired and the message hasn’t
been acked yet, the sender stops the retrans-
mission efforts and drops the packet. In the
protocol control plane, the sender will send a
forward TSN (Transmission Sequence Num-
ber), telling the receiver to move its cumu-
lative ack point forward. The effect of mov-
ing the ack point forward is to consider the
skipped messages as received and acked.

2.2 MPEG

The Motion Pictures Experts Group
(MPEG) released in 1998 the MPEG-4
standard [1]. Looking at the previous
standards, MPEG-1 can encode up to 1.5
Mbps (low bit rate), whereas MPEG-2 can
go up to 15 Mbps (high bit rate). MPEG-2
is used in applications such as DVD video
and cable or satellite broadcast. MPEG-4
embodies several video codecs, such as
Dvix and Xvid, which are capable of a
ten times reduction of the bit rate in both
areas (low and high bit rate) keeping the
same quality. The MPEG-4 visual standard
has been explicitly optimized for three bit
rate ranges: below 64 Kbps, 64-384 Kbps
and 384-4 Mbps. MPEG-4 provides also
features for the animation of faces and
synthetic bodies.

The MPEG-4 scene consists of a number
of audio and video media objects. Several
of them are typically background, like au-
dio clips or static images. The information
for each streaming media object are brought
within one or more elementary streams.

The entire MPEG-4 standard includes spec-
ifications on hundreds of features, but no
particular application needs to, or is ex-
pected to, support all of those features. Pro-
files and Levels define what an application
supports. A Profile defines the features and
qualitative functionality, and the Level spec-
ifies the quantitative complexity of the func-
tions within a Profile.

The basic object in MPEG-4 is a VOP,
Video Object Plane, which can have any
shape. A conventional video frame is repre-
sented by a VOP with a rectangular shape,
and in this paper we use the term frame and
VOP equivalently.

The MPEG encoding considers three kinds
Intra-VOP (I), Predicted (P)
and Bidirectional interpolated (B) frames. I
frames are coded independently from other
frames; the compression is typically spatial.
P frames are coded having as reference the
time preceding P or I frame. B frames are

of frames:




116

Using SCTP with Partial Reliability for MPEG-4 Multimedia Streaming

D

E

L
\PEGA | 1| SYSTEM
Over IP \V4 DEMUX

E

R

Y

Figure 1: MPEG-4: The data streams corresponding to audio/video signals are stored
separately. They are composed in an audiovisual and integrated presentation only to the

receiver.
N E\J\\\l\j \J; \I .
. NN NN .
~ AN \\ AN ™. \\ .
o
.
. .
AN “ ~ \,\

Figure 2: Group of frames (GOV), showing
the dependency between frames

coded having as reference the time adjacent
I or P frames.
ence for other frames. P and B frames are
temporal compressed, and used to perform
motion estimation and compensation.

B frames are never a refer-

A GOV (Group of VOPs) is a set of I, P
and B frames; its sequence and length can
vary during encoding. A GOV, as depicted
in Figure 2, always begins with a I frame,
which is also the only I frame in the GOV.
The next I frame in the stream is the begin-
ning of the next GOV. An important part
of the information in a GOV resides in the
I frame.

3 Related Work

There is a lot of research going on to improve
the quality of video streaming over best ef-
fort networks, trying to introduce intelligent
retransmission.

The Internet Draft [8] describes new RTP
payload formats to enable multiple and
optional selective retransmissions in RTP.
These are especially applicable to environ-
ments where enhanced RTCP feedback is
available. These payload formats can be
used to separate the media stream accord-
ing to prioritization of packets or according
to the status of the transmission (i.e. trans-
mission or retransmission).

Feamster [6] realizes a complete environ-
ment to test Selective Reliability RTP (SR-
RTP). He uses RTP over UDP with an ex-
tension to enable a feedback communication
between server and client. He has devel-
opped a streaming application to delivery
high quality video. He introduces also a
post-processing phase to recover some of the
packet loss, and analyzes the results with
peak signal-to-noise ratio (PSNR).

The work by Raman [10] is an implemen-
tation and evaluation of the Image Trans-
port Protocol (ITP) for image transmission
over lossy or wireless networks. They ver-




Using SCTP with Partial Reliability for MPEG-4 Multimedia Streaming

117

ify the quality at Application Level Framing
(ALF); as measure they consider the evolu-
tion of the PSNR. ITP runs over UDP and
Incorporates receiver-driven selective relia-
bility. ITP enables a variety of new re-
ceiver post-processing algorithms such as er-
ror concealment that further improve the
interactivity and responsiveness of recon-
structed images.

4 MPEG-4 over PR-SCTP

(7] describes how MPEG-4 in an IP network
is trasported over the real-time transport
protocol (RTP) [11]. RTP itself is normally
transported over UDP!.

UDP is best effort as IP, and since RTP
concerns itself with real-time data, a RTP
packet lost in the network will not be re-
transmitted by the sender. This is normally
what is wanted, because there is no point in
receiving a time sensitive message after its
useful lifetime has expired, and so retrans-
mission would be useless for the receiver and
potentially bad for the overall network con-
gestion.

Applications like streaming video use time-
sensitive messages, but to avoid temporary
network delays utilize a few seconds buffer-
ing. MPEG-4 encodes the video stream in
three different frames types, I, P and B, as
explained in section 2.2. Loosing an I frame
is strongly worse than loosing a P or a B
frame. The idea at the basis of our and
other works is to somehow give reliability
(by means of retransmission) to what is re-
ally important, I frames.

In our case we obtain I frames reliability
by exploiting a native feature of the SCTP
transport protocol: partial reliability, in-
stead of having the application adding this
on top of RTP/UDP as is done in other ap-
proaches.

't is also possible to transport RTP over TCP, in
the so-called interleaved mode of RTSP (Real Time
Streaming Protocol) [12].

As in implementation 2 and 3 we analize
the signal quality information from the ap-
plication level with PSNR, as detailed in sec-
tion 6.

Nonetheless, reliability by itself is useless if
the message is received after its validity is
expired, and bandwidth-heavy if used for
all messages without regards to the impor-
tance. SCTP naturally solves both prob-
lems, because

e the granularity of the retransmission is
per message, and so only messages con-
taining I frames can be tagged for re-
transmission

o the efforts in retransmissions are tun-
able, and in our case the timed re-
liability maps directly to the time-
sensitiveness of video streaming

Also, since MPEG-4 takes care of message
reordering, we asked SCTP for unordered
delivery.

From an implementation point of view, as
detailed in section 5, we took an existing
streaming server and player and replaced
the UDP sockets with SCTP ones, trying to
perturb as little as possible the surrounding
code.

When the server was to send an I frame,
we set the time to live of the message to a
tunable value, to be determined by exper-
imentation. As default we used 2000 ms.
Conversely, when the server was to send a
P or B frame, we set the time to live to the
special value SEND_EXACTLY_ONCE.

We open the SCTP socket in the so-called
UDP-style (a UDP-style SCTP socket has
nothing to do with UDP unreliability, it just
refers to one of the two models offered by the
SCTP socket API?) because it maps well to
the UDP interface that the server expects
and because it is the only model that allows
us fine-grained control over the per message
SCTP behaviour.

2See section 2.1 for further details.




118

Using SCTP with Partial Reliability for MPEG-4 Multimedia Streaming

Server
DSS +
RTP
Kernel PR-SCTP
P
dummynet

Client mpcg4ip+
RTP
Kernel
PR-SCTP*
P
o™ T "\\\y
1P S

Figure 3: Client Server scenario

Since we used SCTP instead of UDP to
encapsulate RTP, the payload available for
RTP was smaller, and we had to take this
into consideration when creating the hint
track of the MPEG-4 file to be read by the

server.

Figure 3 depics the components of our sce-
nario. On the server side, DSS+ is the
Darwin Streaming Server as modified to
use SCTP. Dummynet is used to introduce
random packet losses. On the client side,
mp4player+ is the mp4player as modified
to use SCTP. PR-SCTP* on the client is to
remember that the SCTP receiver doesn’t
have to know which reliability algorithm is
used by the sender.

5 FreeBSD Implementation

We used a FreeBSD 4.6-RELEASE machine
plus various KAME snapshots. The original
intent was to use one machine as the server
and various machines as the clients, but due
to time constraints and a few bugs we fi-
nally settled to use only one machine and
the loopback interface.

We used dummynet [9], a network emulator
and traffic shaper included in FreeBSD, to

introduce random packet drops in the test
network.

5.1 KAME/SCTP

Randall Stewart and Peter Lei, both from
Cisco, wrote a SCTP kernel implementa-
tion [5] for the various BSDs, which is now
part of the KAME source code [3]. In-
stalling a KAME snapshot and adding the
line options SCTP to the kernel configura-
tion file is enough to enable SCTP support,
providing the SCTP socket API as defined
in [15].

Since the SCTP kernel implementation is
actively developed, we kept following both
the KAME snapshots and the SCTP patches
against the snapshot, until October 2002.

5.2 Darwin Streaming Server

The Darwin Streaming Server (DSS) [2] is
mostly written in C++. It starts from

a generic socket class, from which a UDP
socket class is inherited. On top of that,
since RTP/UDP requires two sequential
ports (even and even + 1), it has “socket




Using SCTP with Partial Reliability for MPEG-4 Multimedia Streaming

119

pairs” and various other gadgets. We re-
placed the RTP socket with a SCTP socket,
leaving the companion RTCP socket as
UDP.

We then teached to the SCTP socket that it
had to send its packets with Partial Relia-
bility, depending on the frame type: P and
B frames had to be send just once (as plain
RTP), while I frames® had to be eventually
resent. Since the socket class didn’t had the
notion of frame type, we had to find out
where in the code we could grab this infor-
mation and how to pass it all the way down
to the socket.

5.3 MPEGA4IP mp4player

The MPEGA4IP [4] mpd4player is written in
C++ and relies on the UCL (University Col-
lege London) RTP library, written in C.
As in the Darwin Streaming Server case,
we replaced the RTP UDP socket with a
SCTP socket. Since RTP/UDP requires two
sequential ports (even and even + 1) the
mpdplayer code first gets two UDP sock-
ets and binds them to two sequential ports,
then closes them and calls immediately the
RTP library passing the starting port as pa-
rameter. This approach didn’t work well
with our trick of replacing the UDP socket
with a SCTP one, so we had to modify both
the mpdplayer and the RTP library. In the
player we don’t close the socket any more,
and the library is extended to accept already
initialized sockets instead of doing the ini-
tialization by itself.

We also modified some of the decoder plug-
ins, as detailed in section 5.4.

5.4 Tools

The mp4player uses p!:gins for the decod-
ing, among them MPEG-4 ISO and Xvid.
We modified both plugins to gather and log
various informations related to timings, se-
quence number, frame size, etc, and to write

3called Key Frames in DSS.

to file a full dump of the raw video stream
(in YUV format) just decoded.

We also wrote a tool, psnr, to analyze two
raw video dumps, generated by the plug-
ins, and to calculate the peak signal-to-noise
ratio (PSNR) between each corresponding
frame, as described in section 6. The same
tool is also able to extract a frame form the
YUV dump and export it in PPM format.

6 Experimental Results

In this section we provide an analysis of
the experimental results we obtained. We
would like to point out that these results
are preliminary and require further testings
and analysis. We made tests from both high
quality (MPEG-2 DVD tracks converted to
medium quality 700 kbps) and low quality
(200 kbps) video streams, and we present
here the results for the low quality case.

We used peak signal-to-noise-ratio (PSNR)
in Equation 1 as method to evaluate in
an objective manner the quality of video
streams. PSNR is widely utilized in liter-
ature to evaluate the quality of a generic
image before and after a lossy compression.
Although it is not the best technique to syn-
thetize the human visive perception, it pro-
vides a reasonable level of objectivity.

We compared the same video sequence with
and without packet drops in the UDP and
SCTP case. The dummynet traffic shaper
[9] allowed us to vary the drop rate from
28 (ca 0.004) to 273 (ca 0.125).

Figure 4 shows the differences in PSNR for
UDP (upper picture) and SCTP (lower pic-
ture) in the case of a 276 drop rate. On the
X axis there is the frame number, on the y
axis there is the PSNR in dB. The 100 dB
peak actually means infinity, when the two
frames are the same. The more the peaks,
the higher the quality of the video stream.
The graphs show that the SCTP case has a
bigger number of peaks.

Also in our experiments we noted that for
high packet drop rates (273) the SCTP case




120 Using SCTP with Partial Reliability for MPEG-4 Multimedia Streaming

255
(7w 205 020 f () — [z, y)2) V2

PSNR =20log,,

"Udp"
100 E

80 4

PSNR (db)

40 | .

q\/’m%

20 |+ 1

0 I 1 1 1 1 1
0 50 100 150 200 250 300 350
Frame Number

T L4 T T T T "
"SCAp" m——

100 |+ — - - .

80 b

PSNR (db)

20 b M

0 1 I 1. L 1 1
0 50 100 150 200 250 300 350
Frame Number

Figure 4: PSNR for UDP and SCTP.




Using SCTP with Partial Reliability for MPEG-4 Multimedia Streaming

121

is actually worse than UDP. Our gut feeling
is that the SCTP congestion control mech-
anism gets triggered, while UDP happily
keeps sending packets at full throttle wors-
cning the congestion. Further experimenta-
tion is needed to replicate the behaviour and
to give a proper explanation.

7 Conclusions and Future
Work

In this paper we showed that using Partial
Reliability SCTP to optionally retransmit
MPEG-4 I frames may result in improved
quality of the decoded video stream. Fur-
ther work is required to better identify and
qualify the congestion scenarios that might
be improved by the usage of PR-SCTP.

For the future, we plan to address some
of the shortcomings and limitations of the
present work, among them we will utilize
different hosts for the server and the clients,
and we will do more tests with deeper anal-
ysis.

We also plan to make the various compo-
nents we used more robusts. We had many
crashes, and while some of them may be ex-
plained by the perturbations introduced by
our modifications, some others seems to be
more general, and related to insufficient in-
put validation.

References

[1] Iso/iec 14496-1 final draft international
standard mpeg-4 systems (oct. 1998).

[2] http://www.developer.apple.com/
darwin/projects/streaming/.

[3] http://www.kame.net/.
[4] http://www.mpegdip.net/.
[5] http://www.sctp.org/.

[6] Nicholas Feamster. Adaptive delevery
of real-time streaming vidco. Master’s

thesis, Massachusetts Institute of Tech-
nology, 2000.

(7] Y. Kikuchi et al. RFC 3016: Rtp pay-
load format for mpeg-4 audio/visual
streams, 2000.

(8] A. Miyazaki et al. RTP Payload For-
mats to Enable Multiple Selective Re-
transmissions. draft-ietf-avt-rtp-selret-
05.txt, 2002.

9] L. Rizzo. Dummynet and forward error
correction, 1998.

M. Srinivasan S. Raman, H. Balakris-
man. An image transport protocol
for the internet. In 2000 Interna-
tional Conference on Network Proto-
cols., 2000.

H. Schulzrinne, S. Casner, R. Frederick,
and V. Jacobson. RFC 1889: RTP: A
transport protocol for real-time appli-
cations, 1996.

[12] H. Schulzrinne, A. Rao, and R. Lan-
phier. RFC 2326: Real time streaming

protocol (rtsp), 1998.

[13] R. Stewart et al. RFC 2960: Stream
control transmission protocol, 2000.

[14] R. Stewart et al. SCTP Partial Reli-
ability Extension. draft-stewart-tsvwg-

prsctp-00.txt, 2002.

R. Stewart et al. Sockets API Ez-
tensions for Stream Control Transmis-
sion Protocol (SCTP). draft-ietf-tsvwg-
sctpsocket-05.txt, 2002.

[15]




122 Using SCTP with Partial Reliability for MPEG-4 Multimedia Streaming




All For One Port, One Port For All

123

All For One Port, One Port For All

Bram Moolenaar
Stichting NLnet Labs
<bram@moolenaar.net>

The BSD systems each offer a different ports system. FreeBSD has the largest number of ports,
OpenBSD ports provide a few extra features and NetBSD uses pkgsrc. Even though these ports
systems originate from the same root, enough changes have been included to make them incom-
patible. The result is that a port has to be written and maintained for each BSD variant. The
number of ports available greatly depends on the willingness of someone to create and maintain a
port while a lot of work is repeated over and over again by the different maintainers. Obviously
this is an unwanted situation.

One serious attempt has been made to reunite the ports systems: OpenPackages. Unfortunately,
this project has stalled. There are several reasons why this route is very unlikely to succeed. The
main one is that none of the BSD distributions wants to switch to a different system that suddenly
makes all their existing ports unusable. Political and personal preferences add enough controversy
to make any attempt at merging fail.

An alternative is to introduce a new system that exists next to the traditional ports systems. This
provides the possibility for a gradual shift towards a better solution. One by one the ports can be
transferred to this new system. There is no risc of making existing ports obsolete. Each maintainer
is free to stick with the traditional system or choose to start using the new one, with the advantage
of providing the port for all BSD systems at once.

The A-A-P project is providing this solution. A-A-P uses a recipe that is similar to the structure of
a makefile, but much more powerful and flexible. A recipe is easier to understand than the tricks
a port includes to use “make” for something it wasn’t designed for. One of the strong advantages
of A-A-P is that it handles the details of the packaging system. This is important, because many
developers have expressed they are struggling with packaging their application. A-A-P takes care
of downloading required files and tools, thereby avoiding the need to edit a script and run “cvsup”.
This is quicker and more reliable. Many ports done with A-A-P will also work on Linux and
other Unix-like systems. Further advantages of using A-A-P for ports will be explained, while the
disadvantages and potholes will not be concealed.

WWW.a-a-p.org

Bram Moolenaar has worked on open-source software for more than ten years. He
is mostly known as the creator of the text editor Vim. Currently he is working on
a project called A-A-P, which is about creating, distributing and installing (open
source) software. His background is in computer hardware, but these days mostly
works on software. He still knows on which end to bold a soldering iron though. In
the past he did inventions for digital copying machines, until open-source software
became his full-time job. He likes travelling, and often visits a project in the south of
Uganda. Bram founded the ICCF Holland foundation to help needy children there.
His home site is www.moolenaar.net.




124 All For One Port, One Port For All

All For One Port, One Port For All

Bram Moolenaar
Stichting NLnet Labs
<Bram@A-A-P.org>

The ports system provides a convenient way to install an
application from source code. With just a few commands the
files for the latest version are downloaded, build and installed.
A port specifies patches that need to be applied, allows
tweaking features and handles dependencies on other
components. These useful features of the ports system have
increased the popularity of BSD distributions.

Each BSD distribution has their own ports system. Although
they all originate from the same root, incompatible features
have been added. This requires a port to be done and
maintained for each system separately. Since there are
thousands of ports, the amount of duplicated work is significant.

Attempts to reunite the ports systems have failed so far.
Examining the reasons for this makes clear that the chances for
each BSD system to drop their own solution and use a common
ports system are very small. The development of solutions that
replace the existing ports systems have stalled.

A possible solution is introducing a new system that exists side
by side with the traditional ports system. This allows a gradual
shift, moving ports to the new system one by one. Since the
ports files of new system do not need to be backward
compatible, there is a lot of freedom to make choices for a
better and more powerful implementation. The goal that it must
co-exist with the traditional ports systems makes sure it avoids
the pitfalls that stopped previous reuniting attempts from being
successful.

A first version of this new system has been implemented. To
avoid the complicated mix of Makefile and shell script the
recipe format of the A-A-P project has been used. This first
implementation shows the advantages and possibilities of the
proposed solution, but also the problems that still need to be
solved.




All For One Port, One Port For All

125

1. HISTORY

The first available code for the ports system was
written by Jordan K. Hubbard. The date
mentioned in the file, still present in derived works,
is August 20 1994 [FreeBSD]. This version did
not handle dependencies or downloading of files.
Development went fast though, by January 1995
there were already 150 ports [Asami].

In the following years the OpenBSD and NetBSD
projects have split off a version from FreeBSD and
started adding their own features.

FreeBSD (1994 Aug 20) [FreeBSD]

RN
OpenBSD (1996 Jun 3) [OpenBSD]

NetBSD (1997 Aug 20) [NetBSD]

! '

figure 1. History of BSD ports systems

This figure does not show various exchanges of
modifications.  All three systems have been
enhanced over time, which can be seen in the
CVS logs [FreeBSD] [OpenBSD] [NetBSD].

NetBSD uses the name "pkgsrc" for their ports
system and uses "package" for what others call a
“port". To keep it simple we will use the term
“port" here for dealing with sources, "package" for
an installable set of files with binaries and "source
package" for a port that includes the required
source files and patches.

Zoularis is the name used for an adaptation of
NetBSD pkgsrc to other systems, such as Solaris
[Zoularis). It is not different from pkgsrc in
functionality, therefore we will not mention it
below.

NetBSD started pkgsrc because the FreeBSD
system had a few small problems that needed to
be solved (i386 centric, fixed install directory).
They apparently didn't try very hard convincing the
FreeBSD people to fix this. According to Hubert
Feyrer: 'it was easier for us to just make the
changes we wanted". And FreeBSD apparently
wasn't interested in including all the NetBSD
improvements either.

OpenBSD first forked off their version with the
intention to feed back changes to FreeBSD. A few
years back OpenBSD intentionally improved their
ports system separately from FreeBSD. Partly to

clean up the Makefiles and also to add useful
features. Currently there does not appear to be
an intention to resync with FreeBSD.

It is clear that incompatibilities between the three
ports systems were not added intentionally or
because of technical reasons, but are the result of
lack of motivation to work together on one system.
Being able to quickly change their own version
instead of having to convince someone else to
include changes also appears to play an important
role.

2. BENEFITS OF ONE PORT SYSTEM

The separation into three different ports systems

causes several problems:

* Maintenance of each port has to be done three
times. This can vary from simple changes, such
as updating the version numbers and file
names, to handling more complicated issues.

¢ Bugs and security problems that are not solved
by the maintainer of the original sources have to
be fixed three times.

e Tricks required to port an application to a BSD
system have to be figured out three times.

* Dependencies have to be figured out three
times.

¢ If one BSD system adds a nice feature to their
ports system, it is not directly available to the
others.

Would there be one ports system, there are

several benefits:

e For each port there are more eyes to detect a
bug and more hands to fix it. This makes the
average reliability of the software considerably
higher.

* Ports will be updated quicker and more ports
will be available.

e Fewer people are required for maintenance.

e Each BSD system will become more powerful
and attractive.

e When a user is making a choice for one of the
three BSD systems he no longer needs to
exclude systems that do not provide a port he
requires. He can make the choice on more
relevant issues.

One thing that will not change is the effort required
for testing. Each port still needs to be tried out on
many different systems.

3. FAILED SOLUTIONS

Despite the obvious benefits from using one ports
system, the attempts to bring the BSD systems
back together failed so far.




126

All For One Port, One Port For All

The most promising attempt to make a ports and
packages system that should replace ali others is
Open Packages [OpenPackages]. It was created
with the goal to reunite. But the project has
stalled, the last news item is dated July 2001.
Why? Talking with the developers reveals several
reasons.

At first the project consisted of a good idea for
reuniting the three solutions. Then the
contributors got carried away and wanted to do
much more. It became too much work and
developers started dropping out. An attempt to
redefine the project and split it up in manageable
pieces has been made, but there do not appear to
be developers who will do the work. Out of the six
modules five have no project leader. Possible
reasons are:

¢ Developers do not find the extra features that
Open Packages offers important enough to
spend a lot of time on.

« Implementing the features is quite complicated.
There is much "hidden knowledge" in the
existing ports systems and few comments or
documentation to explain why certain choices
were made. Not many people have the skills to
do the work.

e The people who do have the required skills
prefer working on their own project (esp. the
maintainers of the ports systems of the BSD
distributions).

Another alternative is OpenPKG [OpenPKG]. This
project appears to promise more than what it can
actually do. It says it is portable, but it uses GNU
bash shell scripts and an incompatible version of
rpom. It also uses many specific system utilities.
You can say it could be made portable. Its Linux
background and lack of co-operating with the
existing packages system make it unattractive to
replace the BSD ports systems. When used side-
by-side it does not handle dependencies between
the two systems.

There are a few other ports and/or package
systems, but they do not come close to being a
useful replacement for the BSD ports systems.
[Install Tools])

4. HOPELESS SOLUTIONS

Instead of switching to a new system, a solution
would be to have the existing systems come back
together. This would require that features from all
three existing systems are included into a
common version, with the result that the port files
are identical. There are several reasons why this
is very unlikely to happen.

The current situation is that FreeBSD is the most
popular system and has the largest number of
ports, while OpenBSD and NetBSD offer more
features. This creates a deadlock: FreeBSD is
doing well and does not appear to be interested to
change their ports system. NetBSD and
OpenBSD have more features, thus do not want to
use the FreeBSD implementation.

Growth of the BSD PackagesPons Collectons

FreeBSD |

NetBSD |

OpenBSD 1

o~

0 n s L f n "
198401 1966/01 199601  17DY 1996/ 199901 2000/DY  200Y/01 200201

figure 2. Growth of number of BSD ports
[Feyrer]

This graph shows the growth of the ports systems
over a long period. Recent figures: FreeBSD
7523, NetBSD 3163, OpenBSD 1965. The
OpenBSD ports system uses flavours, which
reduces their count by an unknown number.

Another important reason is that the developers of
each BSD system do not like the idea of giving up
the control of their code. They like to be able to
decide what goes in and what does not. The
releases happen asynchronously, freezes
sometimes make it difficult to include updates.
Thus a release of one BSD distribution gets in the
way of development of the others.

The ports systems are not compatible. Reuniting
them means that thousands of ports need to be
adjusted. Even when some of the work can be
automated, the testing will still be a huge amount
of work. None of the BSD systems will want to
take this effort in between two minor releases.
And doing it for a major release means two
versions of each port have to be maintained for a
longer time, since a new major release exists
besides the previous, stable release branch for
more than a year.

How about creating a ports system that is
backward compatible with each of the existing
ports systems? This could start in such a way that
a port contains a big "if* statement, separating the
code for each system. Then gradually common




All For One Port, One Port For All

127

parts can be collected until the system-specific
part is made very small. The problem with this is
that it would be very complicated to implement. A
Makefile is not a programming language. The
combination of BSD specific Makefile syntax with
shell scripts and the make program re-invoking
itself leads to very ugly code. This solution
probably leads to the worst code quality possible.
And it seems to be impossible to find people who
are motivated and have the skills to do this work.
Even more so than for the stalled Open Packages
project.

5. A NEW SOLUTION

If reuniting is impossible, and existing efforts do
not lead to a useful ports system, then what will?
What we need is a new application that offers a
path for a gradual shift towards a unified ports
system. That is the only way to avoid having to
rewrite all the ports at once. The existing ports
systems will continue to exist, the new solution
has to co-operate with it.

In the following we call the existing ports systems
"traditional" and the proposed solution the "new"
system. Similarly we will talk about a "traditional
port" for the existing ports systems and use "new
port" for the proposed solution.

Once a port has been made for the new system, it
should work on all BSD systems and possibly
others. This makes it attractive to create ports for
the new system. It is not necessary to transfer all
traditional ports to the new system, thus there is
no big threshold to start using it.

The required co-operation with the traditional ports
systems implies that dependencies can be
handled in both directions. A new port can
depend on a traditional port and the other way
around. And the registration of installed packages
must use the existing package system to avoid the
need for two sets of commands to find out what
packages are currently installed.

This all sounds very nice. The question is how
this will be implemented. Using make (BSD or
GNU) has the disadvantage of resulting in ugly
solutions when it gets complicated.  Quoting
Jordan Hubbard: "FreeBSD ports is essentially
implemented as some very impressive but hairy
BSD make(1) macros and can be a little opaque
and non-extensible from the perspective of
someone looking to extend or re-factor parts of the
system" [Hubbard].

Inventing something new specifically for use in the
new ports system has the disadvantage of yet-
another-file-format. A script language like Python
or Perl would work, but still requires adding a lot of
application specific functions and variables, thus
creating a new file format anyway. And it wouid
be very different from the current ports files, which
would discourage quite a few people. Examples
are Cons (uses Perl) [Cons] and SCons (uses
Python) [SCons].

The solution proposed here uses the A-A-P
recipe. This is not the only possible solution, but
one that has a good chance of being successful.
An alternative might be DarwinPorts
[DarwinPorts]. More about that in section 12.

6. INTRODUCING A-A-P

Understanding the proposed solution requires
knowing the basic idea of A-A-P recipes.

The A-A-P project provides a portable framework
for developing, distributing and installing software
[A-A-P]. What is relevant for this paper is the
A-A-P recipe. It was specifically designed to
replace Makefiles and shell scripts. It provides
much more functionality and avoids the
dependency on shell commands with specific
options and features. A recipe is often portable to
many different systems, including MS-Windows.

A recipe is like a Makefile in many ways. The
base is formed by specifying the dependencies
between files. The build commands of a
dependency are used to produce a target file from
sources. Everyone using Makefiles will quickly
understand the structure of a recipe. Here is an
example for compiling a C program:

myprog : main.c version.c extra.c
:do build $source

The ":do" command invokes a build action. It
detects that the sources are C code and decides
to use a C compiler. How the compiler will be
invoked depends on the system. This is
automatically detected or comes from a
configuration file. This separates the system-
independent specification of what needs to be
done from the system-dependent details. It is also
still possible to invoke a shell command when
portability is not required.

Some of the advantages of using the A-A-P recipe

instead of a Makefile for building a program:

« Signatures are used instead of timestamps, this
avoids problems with networked file systems




128

All For One Port, One Port For All

and files wunpacked from an archive.
Timestamps can still be used when desired.

¢ Dependencies on included files are handled
automatically. There is no need for running
"make depend”.

e Building for different systems from one set of
sources is handled automatically, a separate
directory is used for intermediate results (object
files) of each system.

e Rules for line continuation are flexible,
backslashes are not often needed. This avoids
the most common mistakes. The amount of
indent is used to indicate where a command
ends. Example:

SOURCE = main.c
version.c
extra.c

TARGET = myprog

This actually does almost the same as the
previous example. The SOURCE and TARGET
variables are turned into a dependency
automatically.

For often-used tasks the built-in commands can
be used. These are similar to common shell
commands, but with extra features. For example,
the ":copy" command can copy files specified with
a URL (http:, ftp:, scp:, etc.). This greatly reduces
the use of specific system commands and
improves portability. Some of the built-in
commands are:

:copy copy files and directories

:move rename/move files and directories
:mkdir create a directory or directory tree
:delete delete a file or directory tree

rcat concatenate files

:include include a recipe file

:child read a sub-project recipe file
:execute execute a recipe

:system execute a shell command
:update execute build commands when a

target is outdated

These commands can not only be used in build
commands, but also at the top level. This makes
it possible to use a recipe like a shell script. This
is one of the advantages of an A-A-P recipe over
using a Makefile that is important when
implementing a ports system.

For control flow and expressions Python script can
be used. This provides a powerful and well-
defined syntax that combines pretty well with the
Makefile-like syntax of the recipe (e.g., comments
start with “#” and amount of indent is significant).
Python libraries provide functionality to handle

almost any task and make it possible to avoid
system-specific code. Example:

SUBDIR = sub
USE_SUBDIR ?= 0
@if USE_SUBDIR:
SOURCE += “glob(SUBDIR + "/*.c")’

The line starting with "@" in this example is a
Python command. The USE_SUBDIR variable
can be set by a non-Python assignment and is
used by the Python command. Thus the variables
available in the Python code and the non-Python
code are the same. In the last line a Python
expression in backticks is used. The Python
glob() function expands wildcards and the
resulting list of files is appended to the SOURCE
variable.

The A-A-P recipe has uploading and downloading
functionality built-in. For example, a file can be
downloaded automatically by specifying where it is
to be obtained:

EXTRA_SOURCE = extra.c {refresh =
ftp://ftp.foo.org/pub/files/extra.c})

xfoo : $SOURCE $EXTRA_SOURCE

In this example, if the "xfoo" target is updated and
the file "extra.c" does not exist locally, it will
automatically be downloaded. The text between {
and } specifies an attribute. Attributes provide a
generic mechanism to attach meta information to
a file name.

Uploading is done in a similar way. A recipe like
this is used to update the A-A-P web site:

FILES = ‘glob("*.html")"

‘glob("images/*.png") "’

rattr (publish =
scp://vimboss@vim.sf.net/vim/%file%)
SFILES

The file names are assigned to FILES using the
Python glob() function. The destination of the files
is added by attaching the "publish" attribute to the
file names. Executing this recipe with “aap
publish" will cause each file with a "publish”
attribute to be uploaded. The uploading is skipped
for files that did not change since the last upload.

A-A-P is a generic tool, a sort of a super-make.
You can use it to develop software, distribute files,
download, install, etc. More information can be
found on the web site [A-A-P).




All For One Port, One Port For All

129

7. PORTS WITH A-A-P

Since A-A-P recipes are powerful and still
resemble Makefiles, they form an excellent base
for implementing a new ports system. When using
a recipe for a port file, in many cases it will not be
necessary to use the extra A-A-P features and the
new port mostly looks like a traditional port. When
more complicated tasks are to be performed, the
recipe file offers the functionality in a nice way. A
first implementation of this new ports system has
been made.

A user of the traditional ports system usually

performs these steps:

1. become root

2. update the whole ports tree with cvsup

3. build and test: “cd group/appname" "make"
"make test"

4. install: "make install"

Using a new port the usual steps are:

1. download or update a port recipe (one file)
2. build and test: "aap”, "aap test"

3. try it out: "aap install DESTDIR=$HOME"

4. install: “aap install"

The new port works in a similar way as the

traditional port. Dependencies will be handled

where needed, files are downloaded and patches
applied. The most important differences of using

a new port are:

e It can be run anywhere, it does not need to
happen in /usr/ports.

e There is no need to obtain the whole ports tree
before installing one port. Only parts that are
actually used will be updated.

* Not doing the downloading and building as root
is much more secure. For installing a package
(also for dependencies) the root password must
be entered once.

* To try out a port it can be installed for one user.

¢ Updating to a new version is simply done with
"aap refresh".

Not all of this is easily implemented and quite a
few choices need to be made. The most
important issues will be discussed in the following
sections.

8. USING PACKAGES

There are two basic methods for installing a port:

1. The port directly installs the files to their final
location. A binary package can be created
after this. Recording the port as being installed
is done separately from the actual install.

2. The port installs the files into a temporary
directory. This is often called a "fake install".
A binary package is created from these files.
The binary package is then instalied and
registered as being installed.

The second method has many advantages. It
avoids accidentally overwriting existing files. The
first method is actually impossible when a binary
package is to be created without installing it, an
already installed package using the same files
would be corrupted. The second method also
makes sure that installing the port gives the same
results as installing the binary package.

A disadvantage of the second system is that for
some ports it involves extra work to make the
installation put the files in the temporary directory
instead of /usr/local. This is a small price to pay,
therefore the choice was made to use the second
method.

Since the package administration is not the same
on all systems, A-A-P leaves the work of installing
the binary package to existing system tools.

Port recipe —p <4— Sources + patches

Binary package

figure 3. Connection between A-A-P and the
package system

A disadvantage of this system is that not all

package tools support sufficient features. Desired

features are:

+ Dependency handling on a range of package
versions and with wildcards.

e Possibility to install two versions of the same
package at the same time.

» Support for the sequence: Install version 1.1,
install version 1.2, verify that version 1.2 works
well, delete version 1.1.

These are generic problems and separate from
the porting issue. They should be solved in the
package tools. Adding another set of package
commands next to the existing ones is not a good
idea, since the existing commands will not be
aware of packages installed with the new
commands. This must really be solved by




130

All For One Port, One Port For All

improving the existing package tools. Until this
has been implemented the new ports system will
accept the limits of the existing commands. Some
issues could be handled by adding a pre-install
script to the package, e.g., for handling
dependencies with wildcards.  However, this
causes new problems, the time would be better
invested in improving the package system.

A source package is nothing more than an archive
containing the port recipe with all required source
files and patches. No downloading will be needed
then. Otherwise the building and installing works
just like using the port recipe.

9. DEPENDENCIES

The dependency checking is split up in two parts:

1. Verifying the dependencies can be met. This
happens before archives and patches are
downloaded, so that wastefully downloading
something that will not work is avoided.

2. Installing ports and/or packages that are
required happens just before they are needed.
This reduces cyclic dependency problems.

There is no need to update all ports before
installing one. To figure out the dependencies
only the port recipe has to be obtained. Normally,
when a recipe can be found on the system that
meets the dependency it is used. It is also
possible to specify that the latest version of the
recipe must be obtained.

There is no need to specify the directory (e.g.,
“"editors/emacs20-mule-devel") for a dependency.
This has always been confusing, especially for
ports that exist in more than one place or are
moved. A unique name is required anyway. This
also allows including a version number in the
directory name or adding a subdirectory with
versions, so that several versions of a port can co-
exist. A simple, automatically generated index file
is used to locate an application locally. The same
can be done on a server that provides ports for
downloading.

Alternatively, unofficial ports can be obtained from
various locations. This is especially useful for
ports under development that depend on ports

that have not been committed yet. For stable

ports this should not be used.

As mentioned above, the dependencies that can
be specified in a package are not always
sufficient. It might be necessary that the
dependencies in the binary package specify fixed
version numbers, thus are less flexible. Therefore
the dependencies of the ports recipe will be used
when the recipe is available.

Besides the dependencies on ports and packages
that need to be installed, the A-A-P recipe also
offers features to check for installed tools and
decide how to build the application.  This
automatic configuration is useful to reduce the
number of dependencies for applications that do
not use autoconf and do allow specifying optional
features when building.

10. BACKWARDS COMPATIBLE

To be able to work properly side-by-side with the
existing ports system, the dependency of a new
style port on a traditional port must be handled.
This is not different from dependencies between
traditional ports. A-A-P will invoke the traditional
ports tools. The knowledge of how this is done on
different systems is build into A-A-P. The user will
only need to do a bit of configuration if he is not
using the standard setup.

The dependency of a traditional port on a new port

requires a bit more work, since the traditional port

does not know about the existence of the new

ports system. A wrapper port is required to make

the connection. Most of this wrapper is the same

for all wrapper ports, since the actual building is

done with the port recipe. There is no need to

specify items like MASTER_SITES, for example.

What the wrapper port still needs to do:

e Specify the required items, such as port name
and version number.

¢ Specify the dependencies. Not all of them need
to be included, the recipe can also handle them.
Including them in the wrapper port has the
advantage that several tools will be able to find
them.

¢ Specify a dependency on A-A-P itself, so that it
will be installed when necessary.




All For One Port, One Port For All 131

# A-A-P port recipe for Vim

AAPVERSION = 1.0

PORTNAME = vim

PORTVERSION = 6.1

MAINTAINER = Bram@vim.org

CATEGORIES = editors

PORTCOMMENT = vim - Vi IMproved, the text editor

PORTDESCR << EOF

This is the description for the Vim package.

A very nice editor indeed.

You can find all info on http://www.vim.org.
EQOF

# Where to obtain an update of this recipe from.
AAPROOT = http://www.a-a-p.org/vim
:recipe {refresh = $AAPROOT/main.aap}

WRKSRC = vimé6l # Vim does not use vim-6.1
DEPENDS = gtk>=1.2<2.0 | motif>=1.2 # GTK 2.0 does not work yet
BUILDPROG = make

# This is used when CVS is available

CVSROOT 2= :pserver :anonymous@cvs.vim.sf .net:/cvsroot/vim
CVSMODULES = vim
CVSTAG = vim-6-1-003

# This is used when CVS is not available or when disabled with "CVS=no".

MASTER_SITES = ftp://ftp.vim.org/pub/vim
PATCH_SITES = SMASTER_SITES/patches
DISTFILES = unix/vim-6.1.tar.bz2
extra/vim-6.1-lang.tar.gz
PATCHFILES = 6.1.001 6.1.002

#>>> automatically inserted by "aap makesum" <<<

do-checksum:
.checksum $DISTDIR/vim-6.1.tar.bz2 {mdS5 = 7£d0f915adc7c0dab89772884268b030}
:checksum $DISTDIR/vim-6.1-lang.tar.gz {md5 = ed6742805866d11d6a28267330980abl)
:checksum $PATCHDISTDIR/6.1.001 {md5 97bdbe371953b9d25£006£8b58b53532}
:checksum $PATCHDISTDIR/6.1.002 {md5 £56455248658£019dcf3e2a56a470080}

#>>> end <<<

11. EXAMPLE first package mentioned is installed, in this case
GTK, with the highest acceptable version that
can be found.

¢ Vim is configured and build with "make", this is
specified by setting BUILDPROG. If configure
would have to be run first a "pre-build” target is
to be defined. This allows the port maintainer to

« AAPVERSION indicates the version of A-A-P perform the configuration exactly as he wants
this recipe was written for. When the version of to, without the need to know about special

The example shows some of the A-A-P port recipe
features. Most of the variables are the same or
similar to the traditional ports. A few items
deserve an explanation:

A-A-P actually used is older it will produce an variables. _ ,

error. When it is newer it will behave like the » CVSROOT indicates the files are available

indicated version would. through CVS. This is the preferred method to
« PORTCOMMENT and PORTDESCR are obtain the source files, because it includes all

the latest patches. "CVS=no" can be used to
disable using CVS.

e When CVS is not used the DISTFILES are
update of the port recipe is available. The QOwnloaded. Tpe check.su.ms are also included
command “aap refresh" will get it. n t'he 'port recipe. This is 9one by the R,on

« DEPENDS specifies that either GTK or Motif is maintainer with the command *aap makesurm'.
required, both for building and running Vim. For * There is no list of installed files. It is generated
GTK the version must be 1.2 or higher, but automatlcally by dqlng a fake install and fmdlqg
below version 2.0. Motif version 1.2 and higher the files ending up in the fake root. For Vim this

is accepted. If neither is currently installed the works as expected. For other applications it
might be required to specify the files explicitly.

included in the recipe. Only one file needs to be
downloaded to obtain a port.
e The "“rrecipe” command specifies where an




132

All For One Port, One Port For All

12. WILL IT WORK?

The big question is whether the proposed solution
will actually catch on and a substantial number of
ports will become available. Will A-A-P succeed
where others have failed? The above text has
explained that there is no fundamental
showstopper. But the solution is not without
disadvantages:

e Python is required. Not everybody likes it, the
performance is less than with a C program and
it is not a standard part on all systems.

» Yet another tool to learn to use.

¢ It does not solve the problems with packages.

There are many advantages:

e Using Python is much better than a mix of BSD
make and shell script.

¢ No tricky solutions are needed, such as how a
different master site list is selected by adding
":2" to the file name; the sites to be used for a
file can be specified directly with an attribute.

¢ It is easy to use several versions of a port
(stable, current, alpha).

e Only the actual install on the system needs to
be done by root.

* Ports can work on many Unix systems.

e A-A-P is still under development, this provides
the possibility of adding up all knowledge of
existing ports systems. There is much freedom
to specify the ports recipe format in a good way.

The proposed new ports system with A-A-P looks
more attractive than other solutions. Especially
the possibility to use it side by side to a traditional
ports system, this allows users to try it out and get
used to it. Still, whether it will attract a substantial
audience remains unpredictable. When the A-A-P
recipe is used for other purposes (developing and
distributing software) it also becomes more likely
that a ports system based on it will be successful.
This should become clear the coming year.

An alternative for using A-A-P  might be
DarwinPorts [DarwinPorts].  This project also
decided that a script language is needed to avoid
the problems with Makefiles, they chose TCL.
The file format looks more different from a
traditional port than the A-A-P recipe, but not as
much as Cons or SCons. What makes it
interesting is that the "father of BSD ports" Jordan

Hubbard is involved in DarwinPorts. However, it is
still new and currently only working for Mac OS X
10.2. Support for FreeBSD is planned and the
people behind OpenPackages recently expressed
they will join with DarwinPorts.  The main
drawback of DarwinPorts is that it does not co-
operate with the existing ports and packages
systems. It registers installed packages in its own
way, storing TCL procedures instead of shell
scripts. Making the switch from the traditional
package system to DarwinPorts will be difficult.

13. CONCLUSION AND CURRENT
STATUS

The proposed solution is to create a new ports
system with A-A-P. This system has enough
similarities with the traditional ports systems to
avoid a steep learning curve and at the same time
offers many improvements. This solution does
have a good chance of providing a united ports
system for the BSD systems. The possibility to
use it next to the existing ports systems avoids
many of the problems that made other solutions
fail.

A-A-P is still under development. Version 1.0 is
expected spring 2003. The author of this paper
will be working full-time on A-A-P. This means the
project will not stall. The speed of developments
will depend on contributions from others.

The A-A-P ports system currently works for a few
examples. Before a large number of ports are to
be made, the syntax of the port recipe must be
ascertained. This requires that useful features
from the various ports systems are included and
the consistency of the result is checked. Before it
can be used for stable systems a lot of testing is
required. Thus there is still quite a lot of work to
be done.

In between the writing of this paper and the
presentation on the European BSD conterence
2002 more progress will have been made, an
update will be given in the presentation. Further
progress will depend on reactions on this paper.




All For One Port, One Port For All 133

REFERENCES
[A-A-P] The A-A-P project: http://www.A-A-P.org
[Asami] Usenix 1999 presentation by Satoshi Asami:

hitp://www.usenix.org/events/usenix99/full_papers/asami/asami.pdf
http://people.freebsd.org/~asami/presen/usenix39/html/index.htmi

[Cons] http://www.dsmit.com/cons/

[DarwinPorts] http://www.opendarwin.org/projects/darwinports/

[Feyrer] NetBSD packages growth compared to FreeBSD and OpenBSD, made by Hubert
Feyrer: http://netbsd.org/Documentation/software/pkg-growth.html

[FreeBSD] FreeBSD CVS log for bsd.port.mk:
http://www.freebsd.org/cgi/cvsweb.cgi/ports/Mk/bsd.port.mk

[Hubbard] DarwinPorts FAQ: http://www.opendarwin.org/projects/darwinports/faq.php

[Instali Tools] Overview of tools: http://www.A-A-P.org/tools_install.html

[NetBSD] NetBSD CVS log for bsd.pkg.mk (long!):
http://cvsweb.netbsd.org/bsdweb.cgi/pkgsrc/mk/bsd.pkg.mk

[OpenBSD] OpenBSD CVS log for bsd.port.mk:

http://www.openbsd.org/cgi-bin/cvsweb/ports/infrastructure/mk/bsd.port.mk
[OpenPackages] http://www.openpackages.org/

[OpenPKG] http://www.openpkg.org/
[SCons] http://www.scons.org/
[Zoularis] http://www.netbsd.org/zoularis/

RELEVANT LINKS

FreeBSD CVS log for ports/INDEX with Asami' s song texts:
http://www.freebsd.org/cgi/cvsweb.cgi/ports/INDEX

FreeBSD porters Handbook: http://www.freebsd.org/doc/en_US.ISO8859-1/books/porters-handbook

OpenBSD: "Building an OpenBSD port" http://www.openbsd.org/porting.html

OpenBSD: "Important differences from other BSD projects” http://www.openbsd.org/porting/diffs.html

NetBSD packages collection (pkgsrc): http://www.netbsd.org/Documentation/software/packages.htmi

NetBSD pkgsc documentation (well written, mentions differences from FreeBSD):
ftp://ftp.netbsd.org/pub/NetBSD/packages/pkgsrc/Packages.txt

NetBSD bsd.pkg.mk: ftp://ftp.netbsd.org/pub/NetBSD/packages/pkgsrc/mk/bsd.pkg.mk

BIOGRAPHY

Bram Moolenaar has worked on open-source software for more than ten years. He is mostly known as the
creator of the text editor Vim. Currently he is working on a project called A-A-P, which is about creating,
distributing and installing (open source) software. His background is in computer hardware, but these days
mostly works on software. He still knows on which end to hold a soldering iron though. [n the past he did
inventions for digital copying machines, until open-source software became his full-time job. He likes
travelling, and often visits a project in the south of Uganda. Bram founded the ICCF Holland foundation to
help needy children there. His home site is www.moolenaar.net.




134 All For One Port, One Port For All




Advanced VPN support on FreeBSD systems 135

Advanced VPN support on FreeBSD systems

Riccardo Scandariato
Politecnico di Torino
<scandariato@polito.it>

Currently, the VPN support offered by FreeBSD is quite limited: it provides a way to establish
tunnels but it does not consider the problems of multiple VPNs concurrently deployed on the
same machine. Our implementation enables the provisioning of VPN services on FreeBSD by
extending its routing capabilities. Primarily, our implementation provides support for multiple IP
routing tables (one for each VPN) in order to avoid conflicts between overlapping address spaces
of different VPNs. User-space programs (route, zebra, etc) can select the proper instance when ac-
cessing/updating a routing table through a modified routing sockets interface. At the kernel level,
the different VPN flows are identified on per-interface basis. Once a packet is recognized as be-
longing to a given VPN, the forwarding routine selects the proper routing table to look up. We also
modified several user-level applications to allow the exploitation of the new routing infrastructure,

such as “route”, “netstat”, “zebra”, and “ifconfig”.

Riccardo Scandariato received his master degree in telecommunication engineering
at Politecnico di Torino on December 2000. Currently he is a PhD student at the
Control and Information Engineering Department of Politecnico di Torino.




136

Advanced VPN support on FreeBSD systems

Advanced VPN support on FreeBSD systems

Riccardo Scandariato, Fulvio Risso
Politecnico di Torino, Italy
{scandariato, risso} @polito.it

Abstract— Currently, the Virtual Private Network (VPN) support of-
fered by FreeBSD is quite limited: it provides a way to establish tunnels
but it does not consider the problems of multiple VPNs concurrently de-
ployed on the same machine. Our implementation enables the provision-
ing of VPN services on FreeBSD by extending its routing and forwarding
infrastructure. We adopted the virtual router approach, by adding sup-
port for multiple routing tables. Forwarding kernel modules have also been
modified accordingly. We also improved several user-level applications (e.g.
route, ifconfig, zebra) to allow the exploitation of the new routing infras-
tructure.

Keywords— Provisioned IP VPN, virtual router, GRE tunnel, FreeBSD

I. INTRODUCTION

HE Internet, originally born as an academic-based infras-

tructure, is rapidly evolving toward a generic network in
which academics, business, and several other worlds are coexist-
ing. From the pure networking perspective (i.e. we do not intend
to take into account any application issue), one of the problems
of the nowadays public IP networks is the lack of support for
IP private addresses. At a glance, supporting a private address-
ing schema on a public IP network seems to be a non-sense.
However, from the perspective of companies with a wide area
network infrastructure, this is a strong requirement since the
IP public network is becoming a way to connect together their
branch networks around the world (and saving money). This
is the well-know topic under the name of Virtual Private Net-
works (VPN), i.e. networks that use a public IP infrastructure
to connect together several pieces with private addressing (and
with the need of secured communications). The biggest issue
in VPN support is that the IP protocol did not foresee the need
of multiple overlapping addresses spaces, so that applications
like VPNs introduce a high degree of complexity in the man-
agement of the IP network. The idea of a VPN is not a novelty
in the networking world. The novelty is that, so far, companies
created their private network by using a data-link infrastructure
(for example point to point links, or X.25 / Frame Relay / ATM
accesses) provided by a telecom provider. That infrastructure
was simply a private network (i.e. a network that allowed only
the employees to access to the resources of the company) build
on top of a public network (the public telephone network instead
of the public X.25 network or whatever). In other words, the ba-
sic technology changes while the underlying concept of VPNs
does not.

In order to support efficiently VPN services, there are two

main options:
« the presence of the VPN is relegated to the access side of the
network. This means that any VPN is hidden in the core (i.e.
in the public part of the IP network) and the complexity is in-
serted into the edge routers. These routers must map the private
address space into a public space, deliver packets to the proper
destination, and then map the packets back.

« the presence of the VPN is well known inside all the network
(backbone included), so that the routers must be aware that over-
lapped address spaces exist and they must be able to cope to this
problem.

The first option is far simpler, but (in general) it does not al-
low creating an optimized virtual network from the topological
viewpoint. The second option is more complex, but the routing
into the network can be highly optimized. The present solutions
(MPLS, tunneling, ...) chose the first method to deal with these
problems. In our mind, however, these solutions cannot be used
to configure plug and play networks, nor can be used to create
large virtual infrastructures.

This work wants to present the lessons learned by modifying
the forwarding path of a software router (FreeBSD 4.4) in or-
der to support VPNs in the network backbone. Our eftort was
devoted to change the forwarding mechanism in order to sup-
port overlapped address spaces. Each router is then able to find
the proper route to each packet by checking at the destination
address (contained into the packet) and an additional parame-
ter identifying the VPN the packet belongs to. However, this
choice implies several other components to be modified in order
to support the VPN into the backbone. Routing protocols, for
example, need to be modified in order to be aware of what VPN
they are currently computing the best path. Therefore, several
other components (detailed in the following) have been modi-
fied in order to provide seamless VPN support.

The rest of the paper is organized as follows. Section II in-
troduces the functionalities that are needed for concurrent VPN
service provisioning. Section 11 describes the modification in-
troduced into the FreeBSD kernel and into some user-space ap-
plications in order to implement such functionalities. Section IV
discusses the related work, and, finally, the conclusive remarks
and further work are presented in Section V.

II. OBJECTIVE

As mentioned in Section I, VPN services can be implemented
either on top of access routers only, or cooperatively afforded
by all backbone routers. In the first case ([1], [2]), VPN traf-
fic is identified when entering the backbone network, and then
delivered to the opposite network edge by means of tunnels.
Core routers are unaware of VPN since they forward VPN tun-
neled traffic by looking up the destination address of the outer
IP header (see later). All the VPN-specific work is done by ac-
cess routers sitting at the backbone edge. For instance, routing
information about VPN destination is exchanged only between
access nodes. On the other case, VPN traffic is tagged at ac-
cess node and sent through the core without encapsulation. All
the core nodes forward packets using the couple (destination ad-
dress, VPN_ID tag). This means that routing information about
VPN destinations must be available to all the backbone nodes,




Advanced VPN support on FreeBSD systems

137

which have to maintain separate routing table (one for each tag,
i.e one for each VPN).

In the first case, VPN packets are forwarded edge-to-edge
across tunnels, which traverses multiple physical link (see tun-
nels between freebsd and dante traversing a third node in Fig-
ure 1). Obviously, since core nodes (e.g. core001 in Figure
1) look up packets by using only the outer destination address,
VPN packets (and tunnels) follows the physical paths governed
by the "real” IP network (hereafter called the base network, in
opposition to virtual networks). In other words, a single hop on
the virtual network implies multiple hops on the base networks.
This causes many problems if traffic engineering or QoS guar-
antees must be applied to tunnels, since the routing instances of
the two types of networks (base and virtual ones) are unrelated.
However, this solution simplifies the management of the core
side.

The second case is logically equivalent to a network where all
the backbone nodes (both access and core) play the role of VPN
routers, and where tunnels are established on each physical link.
Hence, a single hop on the virtual network coincides with an hop
on the base network !. Hence, all the conventional techniques
for traffic engineering and QoS can be applied to VPNs. The
drawback is a huge complexity in the core side.

T
VPNA ([ i E:J VPN B
Site al L Site b1

>

[}
]

/ iy

< ccreCOl g -2 ‘g
B
]
]

ocmer {

‘5
. .
magob\ \ddnLe

; "

—
/

55)

VPN B

& J’:J/ Site b2

VPN A
Site a2

Fig. 1. Backbone network provisioning multiple VPNs

Our solution tries to merge the benefits of both the above ap-
proaches. Figure | shows a sample scenario that can be de-
ployed by adopting our implementation. The figure depicts four
customer sites connected to a provider network (the bigger cloud
in the middle). The backbone is made of VPN routers (see
darker nodes) and VPN-unaware routers (e.g. node core001).
All the nodes providing access to client sites (freebsd, mago,
dante) must be VPN nodes. Further, also some nodes in the
core (goomer) can be promoted to be VPN router. VPN routers
run the modified version of FreeBSD providing multiple table
support and virtualized forwarding, as described in Section III.
Having VPN routers in the core gives an increased flexibility
tor VPN deployment. For instance, a central node can be used

T Actually, while in the first case networks are layered (being virtual networks
on top of the base networks) in the second case networks are sided (being the
base network just one of the existing parallel networks).

as tunnel concentrator, in order to apply traffic filters to a given
VPN, or to merge traffic originated in difterent VPNs. We recall
that packet are available in clear, i.e. not tunneled, only at tunnel
termination points, hence, such operation can be performed only
by a VPN router. In Figure 1, a pure edge-based adopted was
adopted for VPN B (see the dashed edge-to-edge tunnel between
access nodes labeled as freebsd and dante), while VPN A uses
an intermediate VPN node for traffic delivery (see the couple of
tick tunnels between freebsd, goomer, and mago). Note that
all VPN routers are maintaining a dedicated routing table for
each VPN they are serving, additionally to the base network IP
table. Hence, freebsd has to maintain 2+1 tables, while other
VPN nodes are maintaining 1+1 tables. Non-VPN nodes just
maintain the IP base table.

As highlighted by Figure 3 an Figure 2, access and core nodes
fulfill different tasks. This are detailed in next two sections.

A. Access router functionalities

Figure 2 shows the detail of the freebsd VPN router. It is
placed at the network edge and it has three physical interfaces:
« ethO0 is an Ethernet interface connecting client site VPN_A.al
(site al of VPN A). This site is using the 10.0.1.0/24 address
space.

« ethl is a second Ethernet interface connecting client site
VPN_B.bl. This site is using the 10.0.1.0/24 address space too.
« eth2 attached to the backbone core and has a public IP ad-
dress.

Bounded to eth2, there are two pseudo-interfaces (also called
virtual interfaces), that can be created dynamically:

« gif0isa GRE (Generic Routing Encapsulation, [3]) interface.
This interface represents the tunnel end-point used to forward
traffic of VPN A. The GRE interface is assigned (by means of
the 1 fconfig UNIX command) with a private address out from
the VPN A address space.

» gifl is another GRE interface. This interface represents the
tunnel end-point used to forward traffic of VPN B. The GRE
interface is assigned with a private address out from the VPN B
address space.

The binding between virtual interface and the physical interface
is done by means of the gifconfig BSD command, which con-
figures the source and destination addresses to be used in the
outer header.

eth1 (VPN B)

10.0.1.254/24 (PRI) g0 on eth2 (VPN A)

Lreensc

gif1 on eth2 (VPN B}

eth0 (VPN A)
10.0.1.1/24 (PRI)
eth2 (Inet)
130.192.0.1/16 (PUB)
VPN SRC VPN DST
02 ! VPN packet
100 1.1 10.02.7 load p
\O—Iﬂ—Lpiy 039§ from ethO (VPN A)
Inet SRC Inet DST 4

Tunneled packet

l freebsd(eth?)] goomer({eth0) ‘ t h etho
roug

Fig. 2. VPN access router managing multiple VPNs




138

Advanced VPN support on FreeBSD systems

In order to properly serve the two VPN client sites, the node
must implement the following functionalities:

e Routing virtualization. The node must have multiple IP rout-
ing tables (one for each VPN) in order to support the overlapping
address spaces within the two ditferent VPNs. Each routing ta-
ble contains path informations about all the other VPN destina-
tions. Each route contains the address of a peer tunnel end-point
(i.e. a gif on a remote tunnel-connected VPN router) as next
hop. In our solution, each routing table is updated by a dedi-
cated routing protocol instance (zebra-OSPF) running on top
of the virtual network. This means that routing advertisement
are tunneled too.

o Incoming traffic identification. The node must associate each
packet incoming from the eth0 and ethl interfaces to the cor-
responding VPN. To this aim, our solution ~colors” the ingress
physical interface by tagging them with a VPN identifier. This
solution is straightforward to implement. However it imposes
some limitations, as described in Section V.

o Forwarding virtualization. Upon reception of a packet from
the client site, the forwarding module must be able to select the
proper routing table according to the identified VPN. After hav-
ing looked up the correct table, the forwarder must sent out the
packet on one of the tunnels that have been configured for the
given VPN. Selection of the right tunnel is determined by the
VPN-level routing information.

o Tunneling. As shown in the lower part of Figure 2, once
an outgoing tunnel has been selected, the corresponding gif
module is responsible of encapsulating (i.e. of adding the
outer header) the packet before transmission. This functional-
ity (differently from all the above items) is already available in
FreeBSD, and was not implemented.

Note that above we explained the case of a packet arriving
from the client site. Obviously, the same operations must be
pursued in case of delivery to the site of a packet arriving from
the core.

B. Core node functionalities

Figure 3 shows the detail of the goomer VPN router. It is
placed in the network core and it has two physical interfaces
connecting him to other routers of the backbone. These inter-
faces are assigned with addresses out from the provider public
address space.

goomer

ethQ @ eth1

gifo (VPN A) gitt (VPN A)

Ined SRC Ined DST
{treebsa(etn2) [ goomar(etho) |

. Tunneled packet
from eth0

4

VPN SRC VPN DST
“lan1d Decapsulated
{10011 | 10027 | paylosd | Dk (/PN A)
Inet SRC Inet DST 1
[goomar(elm)l mago ' Tunneled packet

through eth2

Fig. 3. VPN core router acting as a tunnel switch

The router also has two tunnel end-points, both terminating
tunnels that belong to the VPN A:

« gif0 represents the tunnel end-point used to forward traffic of
VPN A to/from freebsd. The GRE interface is assigned with a
private address out from the VPN A address space.

o gifl represents the tunnel end-point used to forward traffic of
VPN A to/from mago. This interface is assigned with a private
address out from the VPN A address space too.

Note that gif0 is bounded to eth0, while gifl is bounded to
ethl.

The node acts as a tunnel switch, that is it receives VPN traf-
fic from a (incoming) tunnel and forwards it to another (out-
going tunnel). This means that the node has to decapsulate
the incoming VPN packet, looking up the destination of the in-
ner header towards the proper table, and then encapsulating the
packet again (but with a new outer header). This operation is
described in the lower part of the Figure 3.

With respect to the access case, the difference is in the traf-
fic identification operation that is much more simpler, since the
VPN traffic already arrives in a tunneled manner. Hence, a tag
applied to the tunnel (actually the tunnel end-point) will serve
the aim perfectly. Differently from Section II-A, this solutions
does not involve any limitation, since end-point can be created
dynamically in any desired number (up to the kernel configured
limit). The only problem (as shown in Section V) is that the cur-
rent tunneling implementation does not support more than one
configured tunnel between a couple of IP addresses.

III. IMPLEMENTATION

This section outlines the strategy adopted to integrate the
VPN functionalities described in Sections II-B and II-A into the
FreeBSD 4.4 operating system. Since we refer frequently to the
internals of FreeBSD, the reader unfamiliar with the network-
ing architecture of a BSD-like system can refer to [4] and [5].
The detailed description of all the kernel/application modifica-
tion can be found in [6], or directly in the source code [7].

—_—

— —

T -~
~"routing daemons " ™, - ~
) (netstat )

. Toute N @l})

! } !
User space socket {RAW)

socket (DGRAM)
1octl) sysctl (} 1oct ()
Kernel space | set.sockopt. () struct ifreg
NS !
b ?E I
Tables Interfaces &
peeudo-interfaces

{

( Routing \)
~, N

\Fomrdlng )
\_//

Fig. 4. Roadmap of VPN functionalities

Figure 4 gives the roadmap of modifications introduced by
our implementation. Actually, the total amount of modified lines
of code is very small, since our aim was to implement our solu-
tion in the most simple and clean way. Further, we tried to re-
alize the most harmonic solution, with respect with the existing
(i.e. original) FreeBSD code. Improvements were introduced
both in the kernel space, and to application programs in the user
space. Consequently to the introduction of new features in the
kernel, we also modified the interface provided by some sys-
tem calls, in order to provide applications with the new kernel




Advanced VPN support on FreeBSD systems

139

capabilities.

At the kernel level, the most important modification intro-
duced the support for the on-demand creation of multiple rout-
ing tables, and for the tagging of interfaces. This features are
exported by modified versions of the socket () and ioctl()
system calls (an the modified versions of the related structures
and ancillary functions). These features are exploited by util-
ity programs (such as route and ifconfig respectively), and
routing applications (such as zebra-ospfd, [8]), that were both
modified. We also upgraded the sysctl () system cali, provid-
ing bulk access to the routing table. This call is mainly used by
the netstat program to get all the routing table at once. Hence
we modified netstat, which is now capable of accessing the
different tables. Obviously, the main part of the work was dedi-
cated to the modification ot routing mechanisms (table manage-
ment) and forwarding functions (ip_input (), ip_forward())
in the kernel space.

The following sections detail the introduced variants to the
FreeBSD system. In particular, Sections III-A and III-B present
the improvements to the routing and forwarding modules re-
spectively, while Section III-C presents the improvements we
made to the user-space routing applications.

A. Multiple tables

FreeBSD supports many network protocols, such as IPv4,
IPv6, IPX, etc. Since each one uses a single (and pecu-
liar) addressing scheme, the protocol is internally identified by
means of its address family number. For instance, the con-
stant AF_INET identifies the IPv4 protocol, while the constant
AF_0S1 identifies the OSI protocol. The kernel assigns a ded-
icated routing table to each protocol (family), and tables are
implemented as Patricia’s trees, which are data structures op-
timized for longest-prefix-match searches. Tables are stored in
athe rt _tables[AF_MAX+1] array, where AF _MAX is a constant
representing the number of defined address families (i.e. the
number of supported transport protocol). Each element of the
array contains a pointer to the radix node of the correspond-
ing tree-based table: for instance rt_tables[AF_INET] points
to the IPv4 routing table. Tables are created and initialized at
system startup by the route_init () function, which iteratively
calls the rn_inithead() function, once for each family.

In order to support multiple routing tables for the AF_INET
family, we defined an additional array as follows

(sys/socket.h)
(net/route.h)

#define VPN_MAX 100
struct radix_node_head *
vpn_rt_tables [VPN_MAX+1];

The maximum number of tables (and hence VPNs) is is limited
by the VPN_MAX constant, since the array is statically allocated.
To support a higher number of VPNs, the kernel must be re-
compiled with a different constant value. This choice is due to
efficiency reasons. Further, the first element is not used, since
the zero value is reserved to identify the base IP table. This
design trick considerably reduces the number of modifications
to the original kernel code (as explained later). Note that table
structures are not created at startup time as above: initially, the
vpn table array is empty, and Patricia’s trees are created and ini-
tialized on-demand when a new VPN must be supported by the

local node.

Once the multiple table support was introduced, we modi-
fied the interface providing the read/write access to the tables.
User space programs communicate with kernel functions that
manage the routing tables by means of routing messages ex-
changed through routing sockets. Routing messages are data
structures defined in kernel headers that the programs fill in
accordingly to the operation they want to execute on the table
(e.g. route add, route delete, read, etc.). Routing sockets are
created through the standard socket () system call, by specify-
ing proper arguments. To allow the selection of the target table
to which the operations must be executed, we introduced a new
field (so_vpnid) in the socket{} data structure, as shown in
Figure 5.

(sys/socketvar.h)

struct socket {
short so_state;
caddr_t so_pcb;

/* internal state */
/* control block */

u_int  so_vpnid; /* VPN_ID - ADDED */

Fig. 5. Socket data structure with VPN identifier

The so_vpnid field is initialized to zero by the socreate ()
function, when a new socket is requested through the socket ()
call. If the field is unmodified, all the routing messages will af-
fect the base IP table (recall that VPN O is reserved). Thus, to
select a table, the application program must set the so_vpnid
field to a non-zero value, corresponding to the desired tar-
get table. To this aim, a modified version of the ioctl{()
system call is provided, which accepts the new SIOCSVPNID
(set) and SIOCGVPNID (get) arguments. Alternatively, the
VPN_ID can be set/read by means of a modified version of the
setsockopt () /getsockopt () calls, respectively (which ac-
cept the new SO_VPNID socket level option). A sample code
showing the use of the modified socket interface is provided in
Figure 6.

At the kernel level, we modified the functions that pro-
cess routing messages. Messages are first received by the
route_output () routine. In case of read requests (RTM_GET is
specified in message headers, similar to line 7 of Figure 6), it
calls the rnh_lookup () function; otherwise, if the message re-
quests a table modification (RTM_ADD, RTM_DELETE), it calls the
rtrequest () routine. This latter, selects the target table on the
basis of the address family of the route to be added or deleted.

We modified the default behavior of the route_output ()
function. Since, the rtrequest () cannot infer the VPN_ID
from its input arguments, we were obliged to redefine the func-
tion as vpn_rtrequest (), which receives the VPN_ID as its last
arguments. If the message is directed to the base table, this argu-
ment is zero. On the contrary, the route_output () function re-
ceives (as input argument) the pointer to the socket that transmit-
ted the routing messages. Hence, it can extract the VPN_ID from
the socket structure and can pass it to the vpn_rtrequest ().
This latter selects the proper table corresponding to the received




140

Advanced VPN support on FreeBSD systems

1. unsigned int vpnid = 5;

2.

3. struct {

4, struct rt_msghdr header;

5. char body [512]);

6. } msg;

7. msg.header.rtm_type = RTM_ADD;

8.

9. int s = socket (PF_ROUTE, SOCK_RAW, 0);
10. ioctl(s, SIOCSVPNID, &vpnid);

11. // Alternatively ...

12. // setsockopt (s, SOL_SOCKET, SO_VPNID,
13. // &vpnid, sizeof (vpnid));

14.

15. write(s, (char *)&msg, sizeof(msg));

Fig. 6. Sample code adding a route to VPN table no. 5

VPN_ID and executes the requested operation. Note that, if the
table does not exists yet, the function dynamically creates and
initializes a new Patricia’s tree. To limits the number of mod-
ified line of code in function redefinition, we used a macro as
shown in Figure 7. The adoption of macro redefinition, together
with the association of the VPN zero to the base network, made
modifications simpler and clearer. This strategy was used exten-
sively throughout the code.

(bar.h)
1. // void foo(int, int);
2. void vpn_foo (int, int, u_int);

3. #define foo(a, b) (vpn_foo(a, b, 0))
bar.c)

. void

. //foo(a, b)

. vpn_foo(a, b, vpnid)

(

1

2

3

4 int a;

5. int b;

6 u_int vpnid;
7

8

9

Fig. 7. Example of code modification

Routing messages can also be generated by the kernel itself
upward the applications, e.g. when a network interface goes
down. Another example is the static configuration of a route
through the route command. In this case, the kernel is respon-
sible for the notification of the table update event to the rout-
ing daemons. These messages are sent to all the applications
that have an open routing socket for the same transport proto-
col of the modified table. Applications specity the protocol they
are interested in via the third argument of the socket () sys-

tem call (zero means all protocols). The upward messages are
processed by the route_output () routine, which in turn calls
the raw_input () function. As above, we redefined this latter as
vpn_raw_input (), which dispatches the messages according to
both the protocol and the VPN_ID of open routing sockets.

B. Forwarding virtualization

Figure 8 sketches the kernel functions processing IP pack-
ets during forwarding. When a network interface receives an
IP packet, it places the packet in the input queue. When the
ip_input () function is scheduled, it fetches a packet from the
queue head and processes it. For instance, the function analyzes
the presence of eventual IP options, and if the packet is directed
to a non local destination, it is passed to the ip_forward () rou-
tine for delivery. Packets are stored in a data structure called
struct mbuf that contains both the packet data and related in-
formation, such as the ingress interface that received the packet.
If the packet is tunneled, ip_input () passes the mbuf to the
gif_input ()} routine, which decapsulates the packet (i.e. it
strips the outer header off) and replaces the ingress interface
in mbuf by putting the proper gif interface that terminates
the tunnel, in place of the physical interface (e.g. eth0). Fi-
nally, gif_input () queues the packet again. Next time, the
ip-input () will pass the decapsulated packet directly to the
ip_forward(), and the mbuf will point to the gif ingress in-
terface. The mbuf is available to both the ip_input and the
ip_forward() routines as input argument, hence both can ob-
tain a pointer to the ingress interface (being it a physical inter-
face for access VPN router, a virtual one for VPN core nodes).

/h\
/ \

&f_l nput. () >

-

7/

input
queue

N, \j K\\ //

— /
Network ]
Interface

Fig. 8. Forwarding module in FreeBSD

The ip_forward () invokes the rtalloc_ign () to lookup the
(base) routing table, and then sends the packet to the proper out-
put interface. Transmission is mediated by the ip_output ()
that, for example, decrements the packet TTL and finally in-
vokes the interface driver transmission routine.

To virtualize the forwarding process, we modified the de-
fault behavior of the ip_forward() routine. First, we added
the VPN_ID to the interfaces by inserting an additional field
to the ifnet () data structure, as illustrated in Figure 9. We
instructed the if_attach () routine (which is called to initial-
ize all the interfaces, even for the dynamically created ones) to
set the if_vpn field to zero. We modified the ioctl() system




Advanced VPN support on FreeBSD systems

141

(net/if_var.h)

struct ifnet {
char *ifname;
u_short if_index

/* name, e.g. eth, gif */
/* numeric abbreviation */

u_int if_vpnid; /* VPN_ID - ADDED */

Fig. 9. Interface data structure with VPN identifier

call (and the ifioctl () ancillary function), which now accepts
the STOCSIFVPNID and SIOCGIFVPNID parameters to set/get the
interface VPN_ID field. The modified version of ifconfig
(which now accepts the vpnid switch), uses this system call,
as shown in Figure 10.

1. struct ifreq ifr;

2. int s, vpnid;

3. char ifname[16] = "eth0";

4,

5. s = socket (AF_INET, SOCK_DGRAM, 0);
6. wvpnid = 5;

7.

8. /* specify interface */

9. strcpy(ifr.ifr_name, argv(2]);

10.

11. /* set interface VPN-ID */

12. ifr.ifr_vpnid = vpnid;

13.

14, ioctl(s, SIOCSIFVPNID, (caddr_t)&ifr);

Fig. 10. Code sample in ifconfig to set the VPN_ID on eth0

The ip_forward() was modified in order to call the
vpn_rtalloc.ign() if the VPNID of the ingress interface
is set to a non-zero value. The vpn_rtalloc.ign() (and
the ancillary functions) is a redefined version of the standard
rtalloc.ign(), which selects the correct table by using the
if_vpnid field before looking up for the next hop. As a final
result, packet forwarding is done by jointly considering both the
destination address and the VPN_ID.

C. Routing daemons

This point can be seen as less important compared to the pre-
vious ones because it does not involve the modification of the
operating system. Indeed, it involves the modification of an ex-
ternal software that cooperates with the OS to compute the best
path to the destination which, in our case, varies according to
the VPN_ID.

From this perspective, there are two models available in the
literature. In the piggyback model a single routing daemon is
able to compute the best path for all the VPNs. The routing
daemon must be heavily modified since it must exchange, in its
routing message with the peer routers, the VPN_ID of each des-

tination. Vice versa, in the virtual router model, each router
keeps several routing daemons active on the same machine.
These daemons are completely independent (ships in the night
approach) and each routing daemon exchanges only routing in-
formations related to its VPN with the other peers.

The first model is probably more efficient, but it requires non-
trivial modifications in the routing protocols. Vice versa, the
second model allows the deployment of off-the-shelf daemons,
with minimal modifications (you must assure that each routing
daemon receives only the messages related to it). Our prototype
uses a modified version of the Zebra [8] daemon that has a new
starting parameter (the VPN_ID), which is used only to interact
with the operating system (update routes or query for informa-
tion). The remaining part of the daemon (routing messages, etc.)
are kept unchanged. This modification allows the routing dae-
mon to update on the part of the routing table that is related to
its VPN, while to interact to unmodified daemons.

Since the network will have several routing messages flow-
ing on it, each routing daemon bounds only to the virtual inter-
faces that are marked as belonging to the selected VPN: in other
words, each tunnel carries only the routing messages that are
related to the VPN it belongs to. Each router could have up to
Nypy + | routing daemons on it: the standard one (bound to all
its physical interfaces) for the base network, and one addictional
daemon for each locally served VPN.

IV. RELATED WORK

Several Internet Service Providers already have VPN provi-
sioning in place; the most important router vendors have their
solutions, and also the IETF community is working on that, try-
ing to standardize a general solution. However, all the solu-
tions available nowadays are based on the paradigm “"VPNs at
the edge, traditional IP routing in the backbone”. Also solutions
based on MPLS [9] can be seen as belonging to this paradigm,
since VPNs are supported by creating a new set of label switched
paths between ingress and egress routers so that multiple VPNs
never share the same path.

Although non-existing in the marketplace, the idea of chang-
ing the router forwarding path in order to support VPNs natively
has been examined by several projects in the literature. Among
the others, the most important one is the Virtual Network Ser-
vice project (VNS, [10]).

Although the technical solutions adopted in VNS seems to
be quite similar to ours, the purpose of VNS is different. VNS
was born to provide a private, secure, quality of service guaran-
teed channel between two end points. To do that, it uses IPSec
(tunnel mode) in order to encapsulate the original IP packet. It
follows that the intermediate routers on the path do not know
the real (and private) address of the packet. Since the original
IP address is hidden, the backbone routers should not need to
know the VPN_ID of the packet. However, VNS provides Qual-
ity of Service guarantees on a per-VPN basis; therefore inter-
mediate routers must know the VPN_ID of the packet. VNS, for
instance, inserts the VPN_ID into an optional field of the outer
IP header of the encrypted packet. Moreover, VNS modifies the
routing protocols in order to support different paths (from the
same couple ingress-egress routers) according to the VPN_ID.
Therefore, the forwarding path of each router has to be modi-




Advanced VPN support on FreeBSD systems

fied in order to take into account both the destination address
of the IPSec tunnel and the VPN_ID of the packet. It follows
that VNS implements both a modified forwarding path (through
multiple routing tables addressed by the VPN_ID) in order to
support per-VPN routing and a mechanism to specify the VPN
of each IP packet. Therefore VNS could support overlapped ad-
dress spaces as well as we do, although this was not an objective
of the project.

From the association between packets and VPNs, our present
implementation uses a statically defined mapping between in-
terfaces (also virtual, like tunnels) and VPNs, but this can be
changed to a more sophisticated method (the one in VNS, or the
MPLS tag, or even other ways) without changing the mecha-
nisms that are used to forward IP traffic’. In other words, VNS
wants to provide a way to create end-to-end VPN services; our
project focuses particularly on the forwarding path and it wants
to demonstrate an alternative way to create a VPN-aware IP net-
work.

V. CONCLUSIONS

This paper presented the design and the implementation of
an advanced support for provisioned virtual private networks,
based on the FreeBSD operating system. The introduced
new features allow FreeBSD to be adopted as an open-source
mean for developing concurrent VPNs. In our implementa-
tion we modified the kernel functionalities (e.g. socreate(),
rtrequest (), ip_forward()), the system calls providing an
interface toward the kernel (e.g. ioctl(), setsockopt(),
sysctl()), and many user-space applications (e.g. ifconfig,
route, netstat, zebra).

The status of the current implementation is complete, and
test-bed was ran at Politecnico di Torino, demonstrating that
the implementation was working fine. Performances are not re-
ported in this paper because there are absolutely no differences
prior and after our modifications. In fact, FreeBSD already has
support for multiple routing tables because it can handle several
network-leve!l protocols (IP, IPX, etc.) at the same time. The
overhead of our VPN support can be seen like another network
protocol, which results in a longer switch instruction into the
forwarding path. The results confirms that the same operating
system forwards the same number of packets with or without
our modifications.

However some issues need to be further investigated. The
main problem concerns the ARP module of standard FreeBSD.
Since ARP entries are cached within the IP base routing table,
this creates a conflict when a VPN access router is connected to
multiple sites that are using the same address space. The virtu-
alization of ARP caches and ARP lookups is needed (similarly
to the virtualization of tables and table lookups, as described
in Section III) in order to make the implementation more flexi-
ble. The second issues relates to the standard GRE module. By
now, it is not possible to define more than one tunnel bounded to
the same couple of physical interfaces between two peer VPN
routers. Obviously, this hampers the applicability of our imple-
mentation, since it is not possible to deploy two parallel tun-

2In this case the current implementation of the virtual routing daemon must
be changed as well because it relies on different interfaces (i.e. tunnels) to dis-
tinguish the routing messages belonging to different VPNs.

nels for two distinct VPNs without using different physical (i.e.
outer) addresses. Such problem could be overcome by patching
the GRE support, to integrate the adoption of the GRE key field.
By mapping the key field to the gif VPN identifier, the parallel
tunnels would be still distinguishable.

Besides this issues, further work can be undertaken in many
area. For instance, the Zebra support for multiple routing ta-
ble could be improved. Our current implementation requires
the instantiation of a zebra router manager daemon (and a cor-
responding ospfd routing daemon) for each defined table. It
would be more manageable to have a single router manager and
let the routing daemons to specifies the table of interest for the
routing updates. This requires a deeper modification (with re-
spect of the current status), since the communication protocol
between the daemons and the manager should be extended.

A second major improvement concerns the identification of
VPN traffic at the access side. Currently, all packets incoming
from a tagged physical interface are associated to a single VPN.
In case of a client site belonging to multiple VPN, the site access
router must be connected to multiple interfaces of the provider
access router. Further, the site access router must be able to
distribute client packets of different VPNs towards the different
interfaces it 1s attached to. This requires additional capabilities
from the site access router, hence hampering the transparency
for the client. To this aim, a more sophisticated approach could
be used for traffic identification. Multiple traffic filters could be
applied to the access interface (instead of a single tag, which is
logically equivalent to a single wild-card filter). Filters could be
used to identify the membership of a packet to a given VPN on
the basis of protocol fields of the TCP/IP headers. This would
also allow a greater granularity to the traffic identification op-
eration. This solution would allow the site access router to be
attached to a single interface toward the backbone network, and
would simplify its task: it should have a single default route for
all non local traffic (rather than distributing packets on several
outgoing interfaces).

Finally, other possible evolutions are the support of IPSec tun-
nels to allow secure VPNs when needed and the integration of
a QoS module (e.g. ALTQ [11]) with the virtual forwarder, to
allow QoS-based forwarding on per-VPN basis.

ACKNOWLEDGMENTS

The authors would like to thank Angelo Calafato for his great
job in the implementation of the prototype.

REFERENCES

[1] B. Gleeson, et al., A Framework for IP Based Virtual Private Networks,
IETF RFC 2764, Feb. 2000

[2] R. Callon (ed.), et al., A Framework for Layer 3 Provider Provisioned
Virtual Private Networks, IETF Internet Draft, Apr. 2002

[3] D. Farinacci, et al., Generic Routing Encapsulation (GRE), 1ETF RFC
2748, Mar. 2000

[4] G.R. Wright, W. R. Stevens, TCP/IP lliustrated, vol 2: The Implementa-
tion, Addison-Wesley, 1995

[5] S.1J. Leller, etal., The Design and the Implementation of the 4.3BSD UNIX
Operating System Addison-Wesley, 1989

[6] A. Calafato, Architectural Choices for Developing Virtual Networks (in
Italian), Master thesis, Politecnico di Torino, Jan. 2002

[7) FreeBSD 4.4 patches, On-line at htip://softeng.polito.it/freebsd/

[8] Zebra Project Page, On-line at http://www.zebra.org

[91 E. Rosen, et al., BGP/MPLS VPNs, IETF RFC 2547, Mar. 1999




Advanced VPN support on FreeBSD systems 143

[10] L.K.Lim, etal., Customizable Virtual Private Network Service with QoS,
Computer Networks, vol. 36, no. 2-3., pp. 137-151, Jul. 2001

{11] K. Cho, A Framework for Alternate Queueing: Towards Truffic Manage-
ment by PC-UNIX based Routers, Usenix 1998, New Orleans, Louisiana,
USA




Advanced VPN support on FreeBSD systems




A shared write-protected NFS root file system for a cluster of diskless machines

145

A shared write-protected NFS root file
system for a cluster of diskless machines

Ignatios Souvatzis
Bonn University, CS Department, Chair V
<ignatios@cs.uni-bonn.de>

Managing three diskless network clients can be done manually. Manually managing ten is still
possible, but tedious. Manually managing hundreds is close to impossible.

When we got ten disk- (and head-)less network computers of a new type that we wanted to use
as computing nodes for a parallel virtual machine for a practical course, I decided to set them up
with a shared root file system.

However, a BSD root file system has to be unique and writable for every client machine for a
couple of reasons (for example to write log files, create communication sockets for some daemons,
set device node ownership at login and logout and change timestamps), so that a single writable
shared root file system does not work.

As an alternate solution, I placed most writable directories onto (virtual) memory file systems.
The program area and configuration files need only to be exported by the server for read only ac-
cess. This way, the system programs, system libraries, and the configuration are protected against
malicious users, even if they should gain root privileges on the client machine.

This presentation elaborates on the problems I encountered and the solutions I implemented, using
stock NetBSD 1.5 as the client operating system, with just a small script and a few configuration
lines added.

Finally, I compare my solution to different possibility, namely using a kernel embedded root file
system.

Ignatios Souvatzis is “System Programmer” (in reality, a nonlinear combination of
system administrator, tape operator, kernel hacker, and user advisor) at Chair V of
the Computer Science Department at the University of Bonn. He is also a NetBSD
key developer. His main tasks have been some device drivers, a new ARP system,
and maintaining the Amiga port. Sometimes, thosc assignments overlap. He studied
Physics and Astronomy in Bonn. He has used nearly everything running VMS from
the 11/780 to MicroVAX, and everything running Ultrix from the DECstation 2100
to the 5000/260 and even a CDC Cyber 172 and a Convex to do astronomical data
reduction. Earlier at University, he (ab)used lots of different systems, from IBM 360
to 4331 to PC to solve the cight queens problem, has written test programs for 8085
and UNIBUS control boxes for the new accelerator at the physics department. In
his second University year, he was introduced to Unix (on a Z8000 box) at a small
software company. He seldom admits that he was teaching an introduction to BASIC
at an adult education center in late 1981/carly 1982 (but it paid driving home for the

weekends).




146

A shared write-protected NFS root file system for a cluster of diskless machines

A shared write protected root filesystem for a cluster of
network clients

Ignatios Souvatzis*

Abstract

A method to boot a cluster of diskless network
clients from a single write-protected NFS root file
system is shown. The problems encountered when
first implementing the setup and their solution are
discussed. Finally, the setup is briefly compared to
using a kernel-embedded root file system.

1 Introduction

e Managing three diskless network clients can
be done manually.

e Manually managing ten is still possible, but te-
dious.

e Manually managing hundreds is close to im-
possible.

When we got ten disk- (and head-) less network
computers of a new type that we wanted to use as
computing nodes for a parallel virtual machine for a
practical course[1], we decided to set them up with
a shared root file system.

However, a BSD root file system has to be unique
and writable for every client machine for a couple
of reasons, so that a single writable shared root file
system does not work.

As an alternate solution, we placed most writable
directories onto (virtual) memory file systems. The
program area and configuration files need only to
be exported by the server for read only access. This
way, the system programs, system libraries, and the
configuration are protected against malicious users,
even if they should gain root privileges on the client
machine.

This presentation elaborates on the problems we
encountered and the solutions we implemented, us-
ing stock NetBSD 1.5 as the client operating sys-
tem, with just a small script and a few configuration
lines added.

*Universitit Bonn, Institut fiir Informatik, Romerstr. 164,
D-53117 Bonn, Germany, e-mail ignatios@cs.uni-
bonn.de

2 System Environment

2.1 File- and Bootserver

SUN UltraSparc-10, originally running Solaris 2.6
(now Solaris 8), located in a secure room. How-
ever, the problem and its solution do not depend on
the machine size and operating system, as long as
the clients’ root file systems are mounted via some-
thing similar to NFS.

2.2 Clients

Originally 10 Digital Network Appliance Refer-
ence Design (DNARD) machines, with 64 MB of
RAM, no disk, no keyboard/monitor attached, run-
ning NetBSD 1.4, later 1.5.3 (soon 1.6), located in
a secure room.

We believe that the solution could be applied,
with some modification, to other Unix-like operat-
ing systems, although certain features of NetBSD
did help a lot.

2.3 Social environment

The machines are to be used by 10 to 20 students
for the duration of a half-year course. They should
be able to login from home. Even if we successfully
limit logins to them, we can’t really trust them not
to break into the system when they can.

3 Why a
root?

shared, read-only

3.1 Easier administration

We want to install and configure on the server (or
just one machine, under special circumstances) and
at most have to reboot the (other) clients.

3.2 Saving disk space

NetBSD-1.5.3/arm32 needs about 20 megabytes of
disk space in the traditional root file system (see
figure 1).




A shared write-protected NFS root file system for a cluster of diskless machines

147

server 196 # du -ks bin sbin etc

5795 bin
12760 sbin
606 etc

Figure 1: NetBSD-1.5.3/arm32 root filesystem us-
age

While the total size (200 megabytes for 10 ma-
chines) does not look like much today, even assum-
ing 100 machines, disk space was more expensive
when we started, and reliable disk space, especially
backed up disk space, has not become cheaper as
fast as unreliable (“‘desktop”) IDE disks.

3.3 Server security

The root filesystem has to be exported with (client-
side) root access rights. Leaving it writable allows
a malicious client to permanently change (at least)
its own configuration.

(Securing user data against read-out or modifica-
tion from a manipulated client is beyond the scope
of this work.)

4 Problems found

4.1 Booting

e The client has to learn its name and network
address.

e The client has to learn the name of its NFS
swap file.

e The client has to learn the name of the per-
client filesystems on the server.

4.2 During operation

Files on the root file system that are written on tra-
ditional installations, or that are tied to a single ma-
chine, include:

e System log files, which are written to all the
time.

e * . pid - files, written (at least) during startup
of server processes.

e Sockets (/dev/log, /dev/printer,
...), which are created by the server processes
that use them to communicate with their
clients.

e Device nodes (of terminal-like devices, in-
cluding pty, mice, keyboards) change their
owner at each login and logout.

o The ssh host key is stored in the root file sys-
tem.

e The package system database, normally
/var/db/pkg. If we made /var
per-machine, we’d need a per-machine
/usr/pkg, too. Otherwise we would need
to move the database to a shared location.

4.3 During shutdown

/etc/nologin is created by the first machine
shutting down. It will prevent login on the other
clients.

This is fine for a coordinated shutdown of the
whole cluster, but not when booting a single client
machine to test, say, a new kernel.

5 Methods

5.1 Some problems aren’t

e As all our clients are equal in configuration
and don’t carry any permanent state, there is
no point to make them distinguishable in a
cryptographically secure way. So we just use
the same set of host keys for sshd on all the
machines.

e Network configuration for IPv4 is done by
DHCP anyway (when booting the machines),
so we can also use it to learn the client name
(and a few other parameters). For IPv6, we're
using stateless IPv6 autoconfiguration.

e We configured syslog to send all logged events
to the server.

5.2 DHCP server setup

Here, nothing special is needed. The clients are set
up with fixed addresses and names assigned to them
and learn the name of the kemel to boot from and
the location of the root file system (figure 5).

5.3 Socketsand * .pid - files

During boot time, a small memory file system
is created and mounted on /var/run. (BSD

mfs stores its data in the address space of the
newfs_.mfs process, so it's pageable[2]). We
added this to /etc/ fstab (figure 2) and marked
/var/run as a filesystem to be mounted very



148 A shared write-protected NFS root file system for a cluster of diskless machines

server:/BSD/root2/1.5 / nfs ro 00
server: /BSD/root/vargames /var/games nfs rw 00
swap /tmp mfs rw,-s=32768 00
swap /var/run mfs rw,-1=512,-s=256 0 O

Figure 2: /etc/fstab

rc_configured=YES
shroot_pfx_var=server:/BSD/root/var-
shroot_pfx_swap=server:/BSD/swap/
critical_filesystems_beforenet="/var /var/run"
update_motd=NO

rpcbind=YES # nfs
domainname=nis.doma.in # NIS
ypbind=YES

amd=YES amd_dir=/var/amdroot
nfs_client=YES

ipbmode=autohost
defaultroute=10.10.10.10

sshd=YES postfix=YES ntpd=YES
1pd=YES 1lpd_flags=-s

inetd=YES # ntalk, (c)fingerd

Figure 3: /etc/rc.conf

> mount

server:/BSD/root2/1.5 on / type nfs (read-only)

server:/BSD/root/var-client on /var type nfs

server: /BSD/swap/client on /swap type nfs

mfs:34 on /dev type mfs (asynchronous, local)

mfs:37 on /etc type mfs (asynchronous, local, union)

mfs:1000 on /var/run type mfs (asynchronous, local)

server: /BSD/root/vargames on /var/games type nfs

mfs:1085 on /tmp type mfs (asynchronous, local)

pidll21@client:/home on /home type nfs

studsrv:/opt/export/home/stud/user on \
/var/amdroot/studsrv/opt/export/home/stud/user \
type nfs (nodev, nosuid)

server: /export/home/2 on /var/amdroot/server/export/home/2 \
type nfs (nodev, nosuid)

Figure 4: The filesystems at run-time




A shared write-protected NFS root file system for a cluster of diskless machines

149

option domain-name "my.doma.in";

option domain-name-servers 10.10.10.2,

deny unknown-clients;
use-host-decl-names on;

10.10.10.1;

subnet 10.10.10.0 netmask 255.255.255.0 {

option routers 10.10.10.3;
group {

option lpr-servers server.my.doma.in;

server-name

filename

"server";
next-server server;
"netbsd-SHARK-1.5.3_20020114";

option root-path "/BSD/root2/1.5";

host client {

hardware ethernet 10:20:30:40:50:

60;

fixed-address client.my.doma.in;

Figure 5: DHCP server configuration file excerpt

early in /etc/rc.conf (figure 3). This is used
for the following files:

e * . pid files - often in /etc - are created
in /var/run by all daemons integrated into
NetBSD or installed from the package system.

e /dev/log was moved to /var/run/log
by changing the syslogd code; this is the stan-
dard location in NetBSD nowadays.

moved to
is the stan-

e /dev/printer was
/var/run/printer; this
dard location in NetBSD.

5.4 Device nodes

We create a memory file system for /dev. /dev
on the server only needs /dev/console (for the
benefitof /sbin/init).

At boot time, we populate /dev by running the
MAKEDEYV script, which is installed in /sbin in
our setup. This takes about 20 seconds. Should we
use slower machines, we could tune the amount of
devices created - currently, we run sh MAKEDEV
all.

The code to do this-as all special code needed-
lives inside a small script called shroot (figure
6).

NetBSD-1.6 /sbin/init does all of this automati-
cally, when no /dev/console is found. (This was im-
plemented to make CD-ROM and MS-DOS filesys-
tem demonstration installations possible.) Af-
ter upgrading, we should be able to remove the

/dev/console on the exported root file system
and remove the lines in shroot that handle /dev.

5.5 Swap, /var

During boot time we run /bin/hostname to
find out how we’re called - the kernel has learned
it using DHCP. Using this name, we synthesize
the server-side names of the swap file and /var
filesystem to mount.

/var is per-machine to allow per-machine spool
files for outgoing e-mail, printing and similar ser-
vices.

5.6 Remaining files written to /etc

Some of the files on /etc can be configured not
to be changed (e.g., /etc/motd). However, there
are a few that can’t be easily handled without code
and functionality change, like /etc/nologin.
As a simple catch-all to this problem, we cre-
ate a small memory file system and union-mount
it over the NFS /etc. This is handled in
/etc/rc.d/shroot, too (fig. 6).

5.7 Where to place the code?

As mentioned already, we concentrated all special
startup script code needed in the shroot script.
Obviously, this script has to run early
in the boot process (before device nodes,
/var/run etc. are accessed). Traditional




A shared write-protected NFES root file system for a cluster of diskless machines

#!/bin/sh

# PROVIDE: shroot
REQUIRE: root
# BEFORE: mountcritlocal

E™S

# shared root setup.
/etc/rc.subr

name="shroot"

start_cmd="shroot_start"

stop_cmd=":"

required_files="/sbin/MAKEDEV /sbin/MAKEDEV.local"

shroot_start () {
hostname="'/bin/hostname*

case "$shroot_pfx_var" in
nn ) ; ’,
*) /sbin/mount -t nfs ${shroot_pfx_var}${hostname} /var ;;
esac
case "$shroot_pfx_swap" in
n ll) /. I,
*) /sbin/mount -t nfs ${shroot_pfx_swap}${hostname} /swap\
&& /sbin/swapon /swap ;;
esac

/sbin/mount -t mfs -0 -1=256 -0 -s=512 swap /dev
/sbin/mount -t mfs -o -1i=256 -0 -s=512 -o union swap /etc
/bin/chmod 755 /dev /etc

echo -n "creating device nodes...";

/bin/cp /sbin/MAKEDEV /sbin/MAKEDEV.local /dev

(cd /dev; sh MAKEDEV all)

echo done.

load_rc_config $name
run_rc_command "$1"

Figure 6: /etc/rc.d/shroot




A shared write-protected NFS root file system for a cluster of diskless machines

151

/etc/rc.local is much too late. For NetBSD-
1.4, we had hooked the equivalent script up
in /etc/netstart.local; without that,
we would have had to find a suitable place in
/etc/rc, or among the zillions of SVR4 or
Linux startup scripts.

The explicit startup script dependencies first im-
plemented in NetBSD-1.5 [3] made the task easy:
the shroot script is placed into the directory
fetc/rc.d/ and states explicitly that it wants to be run
after the root file system is there, but before critical
local file systems are mounted (see figure 6).

This is important, because /var/run has to be
mounted after shroot mounts /var!

Depending on applications, some subdirectories
of /var have to be mounted from a shared NFS
volume -e.g. /var/mail or /var/games. This
is handled normally in /etc/fstab or using the
automounter.

Figure 4 shows the run-time file system table.
Note that /usr is embedded in the root file sys-
tem! As it is never written by the clients, there is
no point to seperate it from root.

5.8 Software Installation with the
pkg-system

We are using a shared directory tree for the third-
party packages installed through the NetBSD pack-
age system. The package database is moved inside
/usr/pkg, so that it is shared, too.

During software installation, we give a single
chosen client (which temporarily gets a keyboard
and monitor) write access to the server, and revoke
it afterwards.

The environment variable PKG_DBDIR has to be
set to /usr/pkg/libdata/pkgdb for installa-
tion as well as any other use of the pkg_xxx tools.
Fortunately, this is all that is needed to make the
package system tools happy. pkg_info should be
usable by the students to find out what software is
installed.

However, from a security and performance view-
point, it would be better to have cross-install tools
and to run them on the server.

6 Why no embedded root file
system?

An alternate method we’ve considered is to embed
a root file system in the client kernel. This leads to
the same security benefits outlined in section 3.3.
However, there are two drawbacks:

e An embedded filesystem is completely RAM
based, non-pageable, during execution. MFS,
on the other side, is virtual memory based.

To make this work at all, the part of the root
file system actually inside the kernel has to be
carefully tuned. The chosen method allows to
use a stock NetBSD installation, with only the
shroot script added and some configuration
files changed.

e Both changing the kernel and changing some
configuration file require to embed the kernel
file system anew into the kernel file and reboot
all clients.

This is inconvenient, especially when only the
configuration of some short-running compo-
nent was to be changed.

The chosen setup allows to change all of /etc
on the server and have it immediately avail-
able, if so desired.

7 Summary

A method to make the root file system for net-
work clients read-only and shared has been pre-
sented. Administration can mostly happen on the
server. Client break-ins would not affect the sys-
tem files on the server. The installation uses a
mostly normal NetBSD-1.5.3 installation, with a
single script added and some configuration files in
/etc changed.

References

[1] Bonn University CS Dept., parallel sys-
tems student lab home page:

http://theory.cs.uni-
bonn.de/info5/system/parlab/

[2] NetBSD mount_mf£s(8) and
newfs.mfs manual pages

[3] NetBSD rc(8), rcorder(8) and

rc.conf(8) manual pages



152 A shared write-protected NFS root file system for a cluster of diskless machines




Using BSD for current and next generation voice telephony services

153

Using BSD for current and next generation
voice telephony services

David Sugar
Open Source Telecom
<dyfet@ostel.com>

This presentation will cover how to use GNU Bayonne with BSD related operating systems, in-
cluding particularly FreeBSD and NetBSD, which are what I am most familiar with. A presenta-
tion of issues related to telephony drivers and voice telephony hardware support for BSD and what
is needed to make voice telephony services work under BSD will be provided.

During this presentation I will introduce the telephony application server of the GNU Project,
“GNU Bayonne”. This presentation will cover what GNU Bayonne is and how it fits into the
overall strategy of enterprise and carrier class telephony solutions for current and next generation
IP based telephone networks using free software running on free operating systems, such as xBSD
systems, GNU/Linux, etc.

GNU Bayonne is composed of three servers and each of these (Bayonne, Olorin, and Babylon)
will be discussed in detail, including their architecture and how to configure, operate, and cre-
ate applications for GNU Bayonne servers to produce real-world telephony solutions for xBSD
operating systems. The scripting language of GNU Bayonne will be covered, as well as how to
integrate GNU Bayonne servers with traditional scripting languages such as tcl, Perl, Python, and
Guile.

GNU Bayonne will also be demonstrated live running under FreeBSD (4.5) as part of this pre-
sentation. Examples and scripted applications used for real world applications people can deploy
using GNU Bayonne under xBSD, such as voice mail and debit calling, will also be demonstrated.

I am one of the founders of and Chief Technology Officer for Open Source Tele-
com Corporation (http://www.ostel.com). I am also the primary author of and active
maintainer for a number of packages that are part of the GNU project, including
GNU Common C++, GNU ccScript, GNU ¢cRTP, and GNU ccAudio, as well as
the GNU telephony application server, GNU Bayonne. Furthermore, | maintain the
FreeBSD ports for these packages. 1 also serve as the voluntary chairman of the

FSF's DotGNU steering committee (http://www.dotgnu.org), and have served as the

communitics clected representative to the International Softswitch Consortium.




154

Using BSD for current and next generation voice telephonyservices

GNU Bayonne: telephony services for freely licensed operating systems

David Sugar <sugar@gnu.org>
http://www.gnu.org/software/bayonne

Abstract

GNU Bayonne is a middle-ware telephony server that can be used to create and de-
ploy script driven telephony application services. These services interact with users
over the public telephone network. What we are hoping to do is enable, using com-
modity PC hardware and CTI cards running under GNU/Linux and FreeBSD, which
often are available from numerous vendors, to create carrier applications like Voice
Mail and calling card systems, as well as enterprise applications such as unified
messaging. GNU Bayonne can be used to provide voice response for e-commerce
systems and has been used in this role in various e-gov projects. GNU Bayonne
can also be used to telephony enable existing scripting languages such as perl and

python.

1 Introduction

Even without considering all the various reasons of why we
must have Free Software as part of the telecommunications
infrastructure, it is important to consider what the goals and
platform needs are for a telephony platform. Historically,
telephony services platforms had been the domain of real-time
operating systems. Recent advances in CTI hardware has
made it possible to offload much of this requirement to hard-
ware making it practical for even low performance systems
running efficient kernels to provide such services for many
concurrent users.

Telephony services are usually housed in phone closets or
other closed and isolated areas. As such, remote main-
tainability, and high reliability are both important platform
requirements as well. The ability to integrate with and
use standard networking protocols is also becoming very
important in traditional telephony, and certainly is a key
requirement for next generation platforms.

So we can summarize; low latency/high performance kernels,
remote manageability without the need for a desktop environ-
ment, high reliability, and open networking protocols. This
sounds like an ideal match for BSD or Linux kernel based
systems.

However, when we looked further into this question and
architected GNU Bayonne, we also decided threading was im-
portant. Threading offers some interesting design advantages,
but, equally important, it provides a means of better utilizing
SMP hardware. We found it important to scale up to solutions
that can support voice processing on a full DS-3 circuit using
a single server. Threading represents some challenges in
current BSD systems as [ will elaborate further in this paper,
so we initially chose to focus primarly on GNU/Linux systems
rather than BSD.

Our goal for GNU Bayonne 1.0 was primarily to make
telephony services as easy to program and deploy as a
web server is today. We choose to make this server easily
programmable through server scripting. We also desired to
have it highly portable, and allow it to integrate with existing
application scripting tools so that one could leverage not just
the core server but the entire platform to deliver telephony
functionality and integrate with other resources like databases.

GNU Bayonne, as a telephony server, also imposes some very
real and unique design constraints. For example, we must
provide interactive voice response in real-time. “real-time”
in this case may mean what a person might tolerate, or delay
of 1/10th of a second, rather than what one might measure
in milliseconds in other kinds of real-time applications.
However, this still means that the service cannot block, for,
after all, you cannot flow control people speaking.




Using BSD for current and next generation voice telephonyservices

155

Since each vendor of telephony hardware has chosen to create
their own unique and substantial application library interface,
we needed GNU Bayonne to sit above these and be able
to abstract them. Ultimately we choose to create a driver
plug-in architecture to do this. What this means is that you
can get a card and API from Aculab, for example, write your
application in GNU Bayonne using it, and later choose, say, to
use Intel telephony hardware, and still have your application
run, unmodified. This has never been done in the industry
widely because many of these same telephony hardware man-
ufacturers like to produce their own middle-ware solutions
that lock users into their products.

2 Supporting Libraries

To create GNU Bayonne we needed a portable foundation
written in C++. [ wanted to use C++ for several reasons. First,
the highly abstract nature of the driver interfaces seemed
very natural to use class encapsulation for. Second, I found
I personally could write C++ code faster and more bug free
than I could write C code.

Why we choose not to use an existing framework is also
simple to explain. We knew we needed threading, and
socket support, and a few other things. There were no single
framework that did all these things except a few that were
very large and complex which did far more than we needed.
We wanted a small footprint for GNU Bayonne, and the most
adaptable framework that we found at the time typically added
several megabyte of core image just for the runtime library.

GNU Common C++ (originally APE) was created to provide
a very easy to comprehend and portable class abstraction for
threads, sockets, semaphores, exceptions, etc. This has since
grown into it’s own and is now used as a foundation of a
number of projects as well as being a part of GNU.

In addition to having portable C++ threading, we needed
a scripting engine. This scripting system had to operate in
conjunction with a non-blocking state-transition call pro-
cessing system. It also had to offer immediate call response,
and support several hundred to a thousand instances running
concurrently in one server image.

Many extension languages assume a separate execution
instance (thread or process) for each interpreter instance.

These were unsuitable. Many extension languages assume
expression parsing with non-deterministic run time. An
expression could invoke recursive functions or entire sub-
programs for example. Again, since we wanted not to have
a separate execution instance for each interpreter instance,
and have each instance respond to the leading edge of an
event callback from the telephony driver as it steps through
a state machine, none of the existing common solutions like
tcl, perl, guile, etc, would immediately work for us. Instead,
we created a non-blocking and deterministic scripting engine,
GNU ccSecript.

GNU ccScript is unique in several ways. It is step executed,
and is non-blocking. Statements either execute and return
immediately, or they schedule their completion for a later time
with the executive. A given "step” is executed, rather than
linearly. This allows a single thread to invoke and manage
multiple interpreter instances. While GNU Bayonne can
support interacting with hundreds of simultaneous telephone
callers on high density carrier scale hardware, we do not
require hundreds of native "thread” instances running in the
server, and we have a very modest CPU load.

Another way GNU ccScript is unique is in support for
memory loaded scripts. To avoid delay or blocking while
loading scripts, all scripts are loaded and parsed into a
virtual machine structure in memory. When we wish to
change scripts, a brand new virtual machine instance is
created to contain these scripts. Calls currently in progress
continue under the old virtual machine and new callers are
offered the new virtual machine. When the last old call
terminates, the entire old virtual machine is then disposed of.
This allows for 100% uptime even while services are modified.

Finally, GNU ccScript allows direct class extension of the
script interpreter. This allows one to easily create a derived
dialect specific to a given application, or even specific to a
given GNU Bayonne driver, simply by deriving it from the
core language through standard C++ class extension.

3 TGI support and plug-ins

To be able to create useful applications, it is necessary to have
more than just a scripting language. It requires a means to be
extended so that it can incorporate database access libraries or
other functions that fall outside of the scope of the scripting
language itself. These extensions should be loaded on demand




156

Using BSD for current and next generation voice telephonyservices

only when used, and should be specified at runtime so that
new ones can easily be added without the need to recompile
the entire server.

To support scripting extensions we have the ability to create
direct command extensions to the native GNU Bayonne
scripting languages. These command extensions can be
processed through plug-in modules which can be loaded at
runtime, and offer both scripting language visible interface
extensions, and, within the plug-in, the logic necessary to
support the operation being represented to the scripting
system. These are much more tightly coupled to the internal
virtual machine environment and a well written plug-in could
make use of thread pools or other resources in a very efficient
manner for high port capacity applications.

When writing command extensions, it is necessary to consider
the need for non-blocking operations. GNU Bayonne uses
ccScript principally to assure non-blocking scripting, and
so any plug-in must be written so that if it must block, it
does so by scheduling a state operation such as sleep” and
performs potentially blocking operations in separate threads.
This makes it both hard and complex to correctly create script
extensions in this manner.

While GNU Bayonne’s server scripting can support the cre-
ation of complete telephony applications, it was not designed
to be a general purpose programming language or to integrate
with external libraries the way traditional languages do. The
requirement for non-blocking requires any module extensions
created for GNU Bayonne are written highly custom. We
wanted a more general purpose way to create script extensions
that could interact with databases or other system resources,
and we choose a model essentially similar to how a web server
does this.

The TGI model for GNU Bayonne is very similar to how
CGI works for a web server. In TGI, a separate process
is started, and it is passed information on the phone caller
through environment variables. Environment variables are
used rather than command line arguments to prevent snooping
of transactions that might include things like credit card
information and which might be visible to a simple “ps”
command.

The TGI process is tethered to GNU Bayonne through stdout
and any output the TGI application generates is used to invoke
server commands. These commands can do things like set
return values, such as the result of a database lookup, or they

Bayonne Architecture

Per| AReb server ™ 'Sgnili’;d
7~ "Web server ~ Audi
Gpond i posrge ) 042

D

XML Loader 1 |

call state

Bayonne
Scripting

TGI Processes

Bayonne server, exports core C++ base classes, executes
virtual state machine scriot eneine and offers media services

ccScript Server Plugins | Driver Plugins
* script e i » tel cards
Commion C++ * net protocols *rtp/oSip
«auditing & cdr +openh3?3
ccAudio * e & corba P
*lang. nles
libxml2, pthreads * debug & gui

Figure 1: Architecture of GNU Bayonne

can do things like invoke new sessions to perform outbound
dialing. A “pool” of available processes are maintained
for TGI gateways so that it can be treated as a restricted
resource, rather than creating a gateway for each concurrent
call session. It is assumed gateway execution time represents a
small percentage of total call time, so it is efficient to maintain
a small process pool always available for quick TGI startup
and desirable to prevent stampeding if say all the callers hit a
TGI at the exact same moment.

4 Bayonne Architecture

As can be seen, we bring all these elements together into a
GNU Bayonne server, which then executes as a single core
image. The server itself exports a series of base classes which
are then derived in plug-ins. In this way, the core server itself
acts as a “library” as well as a system image. One advantage
of this scheme is that, unlike a true library, the loaded modules
and core server do not need to be relocatable, since only one
instance 1s instantiated in a specific form that is not shared
over arbitrary processes.

When the server comes up, it creates gateways and loads
plug-ins. The plug-ins themselves use base classes found
in the server and derived objects that are defined for static
storage. This means when the plug-in object is mapped
through dload, it’s constructor is immediately executed, and
the object’s base class found in the server image registers the
object with the rest of GNU Bayonne. Using this method,
plug-ins in effect automatically register themselves through
the server as they are loaded, rather than through a separate




Using BSD for current and next generation voice telephonyservices

157

runtime operation.

The server itself also instantiates some objects at startup even
before main() runs. These are typically objects related to
plug-in registration or parsing of the configuration file.

Since GNU Bayonne has to interact with telephone users over
the public telephone network or private branch exchange,
there must be hardware used to interconnect GNU Bayonne
to the telephone network. There are many vendors that supply
this kind of hardware and often as PC add-on cards. Some
of these cards are single line telephony devices such as the
Quicknet LineJack card, and others might support multiple
T1 spans. Some of these cards have extensive on-board DSP
resources and TDM busses to allow interconnection and
switching.

GNU Bayonne tries to abstract the hardware as much as
possible and supports a very broad range of hardware already.
GNU Bayonne offers support for /dev/phone Linux kernel
telephony cards such as the Quicknet LineJack, for multiport
analog DSP cards from VoiceTronix and Dialogic, and digital
telephony cards including CAPI 2.0 (CAPI4Linux) compliant
cards, and digital span cards from Intel/Dialogic and Aculab.
We are always looking to broaden this range of card support.

At present both voice modem and OpenH323 support is
being worked on. Voice modem support will allow one to
use generic low cost voice modems as a GNU Bayonne
telephony resource. The openh323 driver will actually require
no hardware but will enable GNU Bayonne to be used as
an application server for telephone networks and softswitch
equipment built around the h323 protocol family. At the time
of this writing openh323 support is slated for release as part
of GNU Bayonne 1.1.

5 GNU Bayonne and XML Scripting

Some people have chosen to create telephony services through
web scripting, which is an admirable ambition. To do this,
several XML dialects have been created, but the idea is
essentially the same. A query is made, typically to a web
server, which then does some local processing and spits back
a well formed XML document, which can then be used as a
script to interact with the telephone user. These make use of
XML to generate application logic and control much like a

scripting language, and, perhaps, is an inappropriate use of
XML, which really is designed for document presentation
and inter- exchange rather than as a scripting tool. However,
given the popularity of creating services in this manner, we do
support them in GNU Bayonne.

GNU Bayonne did not choose to be designed with a single or
specific XML dialect in mind, and as such it uses a plug-in.
The design is implemented by dynamically transcoding
an XML document that has been fetched into the internal
ccSceript virtual machine instructions, and then execute the
transcoded script as if it were a native ccScript application.
This allows us to transcode different XML dialects and run
them on GNU Bayonne, or even support multiple dialects at
once.

Since we now learn that several companies are trying to force
through XML voice browsing standards which they have
patent claims in, it seems fortunate that we neither depend on
XML scripting nor are restricted to a specific dialect at this
time. My main concern is if the W3C will standardize voice
browsing itself only to later find out that the very process
of presenting a document in XML encoded scripting to a
telephone user may turn out to have a submarine patent, rather
than just the specific attempts to patent parts of the existing
W3C voice browsing standard efforts.

Currently GNU Bayonne impliments a “BayonneXML”
dialect as a model XML plugin. This dialect demonstrates a
range of functionality similar to "CallXML”. We have had
offers from various sources to fund specific development of
W3C spec compliant XML dialects, but so far none of these
offers have ever reached the point where a check was cut.
It would take considerable time and talent to finish GNU
Bayonne XML work, and none of the people activily using
it have pushed for XML support. As such, it has received a
lower profile in the list of features we wish to currently work
on.

6 Current Status

The 1.0 release of GNU Bayonne was released on September
Ist. This release represents several years of active develop-
ment and has been standardized in how it operates and how it
is deployed. This release is part of the GNU project and has
been packaged for use with many GNU/Linux distributions.
With this release we have had a stable platform for developing




158

Using BSD for current and next generation voice telephonyservices

GNU Bayonne applications and for considering future devel-
opment.

GNU Bayonne does not exist alone but is part of a larger
meta-project, “GNUCOMM”. The goals of GNUCOMM
is to provide telephony services for both current and next
generation telephone networks using freely licensed software.
These services could be defined as services that interact with
desktop users such as address books that can dial phones
and softphone applications, services for telephone switching
such as the IPSwitch GNU softswitch project and GNU
oSIP proxy registrar, services for gateways between current
and next generation telephone networks such as troll and
proxies between firewalled telephone networks such as Ogre,
realtime database transaction systems like preViking Infotel
and BayonneDB, and voice application services such as those
delivered through GNU Bayonne.

7 GNU Bayonne and FreeBSD

GNU Bayonne is successfully used with GNU/Linux systems
today. It is widely used in many areas ranging from com-
mercial carriers in Europe to state governments in the United
States. We do not believe telephony should be restricted to
any one platform, however, and, even from the beginning,
choose to make GNU Bayonne highly portable.

The core libraries that compose GNU Bayonne are all highly
portable, and in particular, are built on a single abstract
interface library, GNU Common C++. GNU Common C++
offers portable threading and socket support, and has been
ported to many platforms, including FreeBSD, as well as some
non-Unix platforms. These libraries also have active support
and are distributed with build files for directly building BSD
style “ports” collection entities. As such it is very simple to
build a ”port” of Common C++, ccAudio, or ccScript. One
just does "make ports” from the master Makefile after using
Jconfigure.

I do not activily package GNU Common C++, ccAudio,
or ccScript for FreeBSD just as I do not activily provide
Debian package for the GNU/Debian distribution, or for any
other target OS. At one time I did many of these things, but
I found it became too overwhelming to both manage and
build releases, and to personally provide binary and build
packages for every target platform. We also do not have a
large enough group of active developers where one can simply

work on packaging. In fact, we now depend on the broader
GNU/Linux community and vendors for packaging of GNU
Bayonne for specific GNU/Linux distributions and for patches
when needed for specific distributions.

I actually do on occassion develop under FreeBSD. I actually
authored the original FreeBSD port builds for GNU Bay-
onne’s supporting libraries and tested them on my FreeBSD
development system at home. [ also did an experimental
build of GNU Bayonne under FreeBSD and we are hoping to
demonstrate it at EuroBSD. However, we have ran into several
issues in building GNU Bayonne under FreeBSD related to
threading.

The primary issue with FreeBSD threading boils down to
two issues; one, that not all blocking system calls behave as
cancellation points, and two, that "immediate” cancellation
is not at all supported in FreeBSD’s native libc_r threading
environment. This causes a number of abhorent behaviors on
the test server [ have built under FreeBSD (4.6), which at this
time almost works correctly.

There is also the port of the "LinuxThreads™ package available
for FreeBSD. I recently modified GNU Common C++ to
support this as an optional build choice under FreeBSD. The
"LinuxThreads” package, I gather, uses the FreeBSD version
of ”clone()”, and impliments posix threads the way that Linux
glibc does. The question I have, and I hope to resolve by
talking with active FreeBSD developers, is if it makes sense to
use and require "LinuxThreads” for supporting GNU Bayonne
in the future, or if it makes more sense to work out the issues
that prevent the native threading library from working.

The final challenge we have is that there is very limited
computer telephony hardware choices available for xBSD
systems today.

8 EuroBSD conference goals

One goal we have is to generate more interest in the BSD
community in general about telephony and in particular about
GNU Bayonne. We are looking for help from the BSD com-
munity in several areas. One area is to find a person to help
coordinate distribution and updates of the FreeBSD “ports”
collections for GNU Bayonne and dependent packages.




Using BSD for current and next generation voice telephonyservices

159

We also wish to discuss the various issues related to threading
and various BSD platforms. In that the current GNU Bayonne
developers have fairly limited exposure to xBSD events, there
is a lack of full understanding of these issues in xBSD and
how they relate to the upcoming 5.0 release of FreeBSD.

Ideally we would like to have contributions from the BSD
community as part of GNU Bayonne. In part, such contribu-
tions would be particularly helpful in making GNU Bayonne
better able to build and be used on the various BSD systems.
However, contributions can take many forms, not all of which
are coding.

Finally, we wish to further interest computer telephony oem’s
to support BSD platforms, There are many performance
advantages to the BSD kemel, and many reasons it would
be useful for such vendors to target development under BSD
as well as under the Linux kernel. Some vendors, such as
Voicetronix, already activily do this with freely licensed
drivers that work on FreeBSD as well as Linux kernels. Most
cti vendors neither have freely licensed drivers nor choose to
support BSD at all.

9 Future Development

While XML is not an immediate area of active development,
we are working in several important areas for the next major
release. These include designing support for building a com-
plete script driven PBX/telephone switch with GNU Bayonne.
Such a system would offer direct application integration with
a complete GNU Bayonne hosted phone system that can be
used by a small office. This work is initially possible with the
new line of Voicetronix PBX cards and their freely licensed
drivers for both GNU/Linux and FreeBSD systems.

We are also looking to expand support for additional tele-
phony hardware. In particular, we are interested in completing
support for the Zapata telephony interfaces for the 1.1 release.
These drivers are available for both GNU/Linux and FreeBSD
systems and are freely licensed. The Zapata line includes
support for digital (T1) voice resource cards as well as
analog telephony hardware. 1 see this as the first oppertunity
for FreeBSD systems to participate in high density digital
telephony solutions such as those we usec GNU/Linux for with
GNU Bayonne today with commercial carriers.

Certainly, one of our most important goals is making GNU
Bayonne fully available for BSD systems, and I hope that will
finally be accomplished as part of the upcoming 1.1 release.

10 Acknowledgments

There are a number of contributors to GNU Bayonne. These
include Matthias Ivers who has provided a lot of good bug
fixes and new scheduler code. Matt Benjamin has provided
a new and improved TGI tokenizer and worked on Pika out-
bound dialing code. Wilane Ousmane helped with the French
phrasebook rule sets and French language audio prompts.
Henry Molina helped with the Spanish phrasebook rule sets
and Spanish language audio prompts. Kai Germanschewski
wrote the CAPI 2.0 driver for GNU Bayonne, and David Kerry
contributed the entire Aculab driver tree. Mark Lipscombe
worked extensively on the Dialogic driver tree. There have
been many additional people who have contributed to and
participated in related projects like GNU Common C++ or
who have helped in other ways.




160 Using BSD for current and next generation voice telephonyservices




Porting NetBSD to JavaStation-NC

161

Porting NetBSD to JavaStation-NC

Valeriy Ushakov

<uwe@netbsd.org>

This paper summarizes experience in porting NetBSD to JavaStation-NC, a network computer
class machine built on the microSPARC-Ilep processor. microSPARC-Ilep is a sun4m with an
integrated PCI controller. This makes it unique amongst sparc32 systems as other sundc and
sund4m models are SBus based. It is sufficiently similar to sun4m to reuse a lot of the existing code
and sufficiently different to require a non-trivial porting effort. Generic and flexible machine-
independent infrastructure and drivers provided by NetBSD were crucial to completing the port in
short time despite the author’s lack of any previous experience with NetBSD kernel internals.

Low-level support for CPU timers, interrupt related code and the like was implemented. Existing
memory management code for sund4m was directly applicable. OpenFirmware support in the ker-
nel and the boot loader, already borrowed from the sparc64 port but never tested, was completed.
After machine-dependent parts of PCI framework were implemented, the driver for Happy Meal
Ethernet was available for free. EBus support was borrowed from the sparc64 port, though differ-
ences in OpenFirmware prevented sharing of the EBus driver proper, but sparc and sparc64 can
share drivers’ EBus attachment code. The driver for CS4231 audio was reworked to support EBus
attachment and is shared with sparc64.

Existing sparc framebuffer, keyboard and mouse drivers don’t support the NetBSD machine-
independent Workstation Console subsystem yet, but for the JavaStation-NC with its PS/2 key-
board and mouse using Workstation Console code was a natural choice, only the framebuffer
driver had to be written. A simple driver for the InteGraphics Systems IGA1682 video card was
developed and the plan is to support the CyberPro2010 card in this driver as well, thus providing
a framebuffer driver for NetBSD/netwinder.

More work on the IGS driver is required to support acceleration and other models of InteGraphics
cards. The Xigs server from XFree86 that currently supports only CyberPro 5050 seems like an
ideal starting point for X support, though no work has been done yet.

Support for other microSPARC-1lep based systems would be nice, but requires access to the hard-
ware. Besides several esoteric JavaStation prototypes the other widely available machine based
on this processor is the CP1200 Compact PCI board. The same processor is also used in the Sun-
Ray appliance, though feasibility of SunRay support is questionable due to firmware issues and
extremely small memory.

=]

Valeriy started with 2.9BSD ona PDP-11. His involvement with NetBSD started with
the sparc port and has been expanding along with his small but growing collection of

hardware. He became a NetBSD devetoper in 2001. His day job involves working |

with Java AWT, so hacking device drivers is a refreshing change. o




162

Porting NetBSD to JavaStation-NC

Porting NetBSD to JavaStation-NC

Valeriy E. Ushakov
<uwe@ptc.spbu.ru>

Abstract

Porting NetBSD to a new platform that has its
CPU already supported is simplified by clean in-
terfaces of the NetBSD kernel and a wide range of
machine-independent drivers for different buses
and devices. This paper summarizes experience in
porting NetBSD to the JavaStation-NC and gives
an overview of machine—dependent code that was
necessary.

1. Introduction

The JavaStation-NC is a network comput-
er class machine built on the microSPARC-Ilep
processor. The microSPARC-Ilep is a sund4m
with an integrated PCI controller [3]. This makes
it unique amongst 32-bit sparc systems as other
sundc and sun4m models are SBus-based. It is
sufficiently similar to sun4m to reuse much of the
existing code and sufficiently different to require
a non-trivial porting effort. Generic and flexible
machine—independent infrastructure and drivers
provided by NetBSD were crucial to completing
the port in short time despite the author’s lack of
any previous experience with NetBSD kernel in-
ternals.

It is hoped that this experience will be in-
teresting to people who need a modern OS for
the device they develop or to enthusiasts who
want to port BSD to their favorite gadget. Since
NetBSD already supports almost all modern (and
not so modern) processors, chances are that most
of the hard work, like MMU and cache support,
is already done. Most likely there are already
machine-independent device drivers for some of
the devices found in the target platform, thus fur-
ther reducing your porting time and costs.

Porting NetBSD to a completely new plat-
form is described in {2] that also outlines key fea-
tures of NetBSD that contribute to its great porta-
bility.

2. The target machine

In late 1990s Sun was aggressively pushing
the concept of “Network Computer”. It developed
several network computer class machines of which
only two were more or less widely available in the
wild — JavaStation-1, codename “Mr. Coffee”,

and JavaStation-NC, codename *“Krups™. All
JavaStations were shipped with JavaOS.

Mr. Coffee is a “chimeric” machine. It is a
straight sun4m, except equipped with commodity
PS/2 keyboard and mouse. It uses the Sun TCX
framebuffer, but the video connector is standard
15-pin VGA D-SUB so that it can be used with any
PC monitor.

For Krups, Sun used the microSPARC-Ilep
processor, where ‘e’ stands for “embedded”
and ‘p’ stands for “PCI”. Being “embedded”,
the microSPARC-Ilep is very low-heat, so
Krups has no fan, making it a dead-silent ma-
chine. Its integrated PCI controller makes the
microSPARC-Ilep unique amongst other 32-bit
sparc machines, but in all other respects it is a
SPARC v8. Krups uses a PCIO chip that provides
“Happy Meal” Ethernet and EBus (8-bit peripheral
bus). The latter is used to connect PS/2 keyboard
and mouse, the serial port, and CS4231 audio.

NetBSD/sparc already had complete sup-
port for SPARC v8 MMU and caches, so when the
Krups port was started, most of the hard stuff was
already there. As far as peripherals are concerned,
Krups is sufficiently similar to PCI-based Sun Ul-
tra machines, so the plan was to reuse as much de-
vice support code from NetBSD’s sparc64 port as
possible.

3. Firmware and boot loader

The first thing that was needed was a boot
loader. Like Ultra machines Krups uses Open
Firmware (OFW). Fortunately, NetBSD/sparc port
already borrowed OFW support from the sparc64
port, though there were few minor bugs and miss-
ing bits here and there because JavaStations are
probably the only 32-bit sparcs with OFW and so
the OFW support had just never been tested in the
32-bit sparc port (other 32-bit sparcs use Open
Boot PROM (OBP), a predecessor of OFW).

The nasty surprise was that OFW in Krups
has many quirks. The worst one was that
OFW, in violation of the standard, was locat-
ed at £000.0000 — the address at which the
NetBSD/sparc kernel expects to be loaded. Nor-

"This paper will refer to JavaStations by their codenames for
brevity and clarity.




Porting NetBSD to JavaStation-NC

163

mally, OFW is located in high virtual addresses,
so the NetBSD/sparc kernel has a fundamental as-
sumption that it has the space between its own end
and the beginning of OFW at its disposal. As a
workaround the kernel was relocated to a lower ad-
dress and memory bootstrap code was tweaked to
start its heap past OFW. This is a kludge, but it re-
quired changing only few lines in a couple of files
and all was ready to proceed with porting, leaving
the question of how to properly deal with this situ-
ation to a better time. This work was actually done
on a Mr. Coffee that also had OFW with this prob-
lem, but had the benefit of having a minimal work-
ing support already, so it was easy to test the kernel
relocation on it with otherwise working kernel.

There were also a few other problems, mostly
related to device nodes and their properties. To
avoid polluting the kernel with numerous special
cases and workarounds for OFW quirks, the boot
loader was modified to “patch” the OFW before
loading the kernel. Since OFW is a full-fledged
Forth environment, this was easily achievable with
small pieces of forth code that boot loader passes
to OFW to execute.

Linux took a different path. Pete Zaitcev im-
plemented PROLL, a small OBP simulator that
provided to the kernel the device tree and a min-
imal subset of OBP entry points that Linux sparc
kernel used. PROLL completely replaces ma-
chine’s OFW. However having OFW around is
quite handy to be able to inspect hardware state in-
teractively, so for the NetBSD port, the case was
decided in favor of OFW despite the necessary
kludges described above.

4. Overall port plan

When the boot loader is written the next mile-
stone is to mount the root filesystem. There are
two popular choices. One possibility is to embed
a minimal root filesystem into the kernel, the oth-
er is to mount root from NFS server. For both ap-
proaches, some sort of console support is required,
and for the diskless boot, a network driver is also
necessary. The latter approach is often attractive
because once the network driver is complete the
system will be able to boot multiuser directly with
both root and swap on NFS, thus passing two mile-
stones in one leap.

NetBSD/sparc can use firmware for its con-
sole input and output. Asnoted in the previous sec-
tion OFW support was completed during the work
on the boot loader and as that code is shared by the
boot loader and the kernel the console was func-
tional even before the kernel can do anything use-

ful. That was very helpful during development of
early kernel bootstrap code.

Happy Meal Ethernet at PCI is support-
ed by the hme(4) driver, so diskless boot was
chosen for the next milestone. Thus the only
things missing were the most low level code to
deal with interrupts, timers and the like, and the
machine—dependent parts of the PCI framework.

5. Low level code

The microSPARC-Ilep has totally different
system registers to raise software interrupts, report
pending interrupts, control system and processor
timers, etc. While learning the intricacies of sys-
tem operation and writing support for those low
level things was, perhaps, the most interesting part
of the project, it is also the most boring part of the
project to describe, so this section will only give a
short summary of things done.

While some assembly hacking was required,
only three short assembler routines were written.
sparc_interrupt4m — the interrupt trap han-
dler. raise () — the function to raise a software
interrupt. microtime () — the function that re-
ports current time in {s.

There is, actually, another assembler routine
that needs to be written but hasn’t been yet — the
routine to handle non-maskable interrupts that in-
dicate system malfunction. But it is not necessary
for the normal system operation after all, so it was
postponed to some later time.

Bootstrap code and the initial autoconfigu-
ration process were tweaked to reflect new CPU
variant support. Details of mapping between PCI
and physical address spaces and interrupt routing
were encapsulated in a driver that provided usual
bus_space(9) interface {1]. Finally, kernel clocks
that use system and processor counters were imple-
mented.

6. PCI framework

NetBSD has a machine-independent PCI
framework that needs only few typedefs and func-
tions provided by the machine-dependent code®.
These are usually declared in the port’s <ma-
chine/pci_machdep.h> header file. Please re-
fer to pci(9) and pci_intr(9) for function sig-
natures.

2 Section 9 of the NetBSD manual does not (yet) fully doc-
ument what types and functions must be provided by
machine—dependent PCl code. This section is intended to sum-
marize the current situation.




164

Porting NetBSD to JavaStation-NC

An important type that the port must define is
pci_chipset_tag_t. Itisa chipset tag for the
PCI bus. Effectively, it describes a root for a hi-
erarchy of PCI buses. The chipset tag is passed to
almost all machine—dependent functions described
below.

Since the microSPARC-Ilep has an integrat-
ed PCI controller there is no need to provide for
different possible PCI chipsets, and the chipset
tag just carries some private data. But e.g. on Al-
pha the chipset tag also contains pointers to func-
tions that implement machine—dependent methods
for each PCI chipset that can be found in Alpha
machines.

6.1. Autoconfiguration

pci_attach_hook ()
The hook called right before each pci bus is
attached during autoconfiguration.

pci_bus_maxdevs ()
Returns a maximum number of devices for
the given PCI bus.

pci_enumerate_bus ()
Necessary if the port needs some special bus
enumeration. For the microSPARC-Ilep, it is
a macro that just calls machine-independent
pci_enumerate_bus_generic().

6.2. Device tags

pcitag_t

Configuration tag describing the location and
function of the PCI device. Opaque to the
PCI framework. On sparc,the pcitag_tisa
64-bit integer that encodes OFW device node
for this PCI device and the tuple <bus, device,
Sfunction> in a form used for PCI configura-
tion accesses.

pci_make_tag()
Construct pcitag_t value for bus, device,
function.

pci_decompose_tag ()
Return bus, device, function for the PCI tag.

6.3. Conf space access

pci_conf_read() and ©pci_conf_-
write() are used to access PCI configuration
space. The microSPARC-Ilep uses standard
mode 1 configuration accesses so implementation
of these function is straightforward.

6.4. Interrupt manipulation

pci_intr_handle_t
A handle describing an interrupt source.
Opaque to the PCI framework that uses the
following functions to manipulate interrupts.

pci_intr_map ()
The function takes a pointer to struct
pci_attach_args and maps it to a
pci_intr_handle_t.

pci_intr_string()
Returns a string describing interrupt source
that the driver can use if it wishes to refer to
it in an attach or error message.

pci_intr_establish()
Actually establish the interrupt handler
for pci_intr_handle_t mapped with
pci_intr_map. Returns a cookie that can be
passed topci_intr_disestablish().

pci_intr_disestablish{()
Disestablish the interrupt handler previously
established with pci_intr_establish().

pci_intr_event ()
Returns the event counter that is the parent
for all interrupt-related counters associated
with the given PCI bus hierarchy. Refer to
event (9) for the description of the NetBSD
generic event counter framework.

7. First boot

After the steps outlined in preceding sections
were completed, the Krups was able to boot mul-
tiuser off the NFS. Of course it lacked a lot of de-
vice drivers, most annoying was the lack of driver
for the time—of—day clock that in Krups is connect-
ed via EBus, but nonetheless the machine was self-
hosting at this point.

It took about a month from the beginning of
the project to the first boot. However it should be
noted that this was author’s very first experience
with both NetBSD kernel programming and with
programming something that low-level. A sea-
soned NetBSD hacker could have probably done it
in under a week.

While clean interfaces of the NetBSD kernel
that support code portability were crucial in com-
pleting the Krups port very quickly, they also al-
lowed this small project to contribute back to the
NetBSD more then just yet another platform sup-
port. The remainder of this article gives some ex-




Porting NetBSD to JavaStation-NC

165

amples of code that was developed for Krups, but
was immediately useful for other platforms.

8. Audio

Device drivers in NetBSD are split into
bus-independent code that drives the device and
bus—specific attachment code. Bus—independent
code uses bus_space(9) abstraction layer [l].
While EBus is commonly found in PCI-based Ul-
tra machines and NetBSD/sparc64 has a driver
for it, unfortunately the driver can not be used for
Krups because OFW properties of EBus bus node
and its children are very different and often incom-
plete in Krups. However it is desirable to share the
EBus-specific drivers’ attachment code between
two sparc ports.

A notable example is audiocs(4), a driver
for CS4231 audio that is found under both SBus
and EBus in sparc and sparc64 machines. At
the time the driver supported only SBus and only
playback. Some rudimentary EBus support was
written for sparc64 but was far from complete.
Also some SBus specific code was polluting the
machine—independent part of the driver.

The driver was refactored so that bus—specific
details are removed from machine—independent
code and EBus playback support was completed.
At that point it turned out that the driver internal
interfaces allow to add capture support almost triv-
ially. This is a good smaller—scale example of how
clean interfaces of the NetBSD kernel contribute to
its unparalleled portability by greatly simplifying
development.

The refactored driver was developed on Java-
Stations, Mr. Coffee (SBus) and Krups (EBus), and
when it was complete the sparc64 port automatical-
ly got full CS4231 support as well.

9. Graphic card

The graphic chip in Krups is IGA 1682
from Integraphics Systems (now Tvia). Fortu-
nately, the good folks at Tvia kindly provid-
ed technical docs for it. It was decided to use
the machine-independent ‘“workstation console”
subsystem (wscons(9)) for it. The rest of the
NetBSD/sparc port doesn’t use wscons yet, but ws-
cons is intended as the standard console subsystem,
and there was no existing code for the IGA 1682
at the time, so it made sense to write the new driv-
er to support the intended standard. As a side note
— compare this to Mr. Coffee, that uses Sun TCX
framebuffer for which the driver already exist. For
Mr. Coffee it was faster to develop PS/2 keyboard
and mouse drivers that conformed to old Sun inter-

faces. That made Mr. Coffee supported with stock
Xsun(4) binary.

For writers of framebuffer drivers NetBSD
provides generic raster operations (rasops(9))
that implement text rendering and unaccel-
erated blitting. The driver shall implement
wsdisplay(9) interface so that that upper layers
of wscons can attach to it. With completion of the
drivers, Krups got a real console.

More recent Integraphics chips, Cyber-
Pro2000 series, are also used in several other ma-
chines that NetBSD runs on. Matt Thomas provid-
ed a Corel Netwinder machine for developing Cy-
berPro support in the driver. It turned out that only
minimal extensions were required. The biggest
problem was that a complete chip init is required
for Netwinder, a task that on Krups is performed
by the firmware and so can be skipped in the driv-
er. Details of the chip initialization (on which In-
tegraphics docs are extremely scarce) were mostly
learned from the Forth code of Krups firmware.

10. Acknowledgements

Pete Zaitcev, who did the Linux port to the
microSPARC-IIep, kindly provided a lot of hints
on hardware operation. Matthew Green, Eduardo
Horvath and Paul Kranenburg provided valuable
insights into obscure corners of the low level sparc
code. Eduardo Horvath and Jason Thorpe helpful-
ly clarified details of generic NetBSD kernel inter-
faces, the PCI subsystem in particular, and patient-
ly replied to numerous questions. Martin Huse-
mann has done a lot of testing and debugging for
Krups in general and for audiocs(4) on sparc64
as well.

References

[11 Chris Demetriou. bus_space(9) manual
page. Originally in NetBSD 1.3, 1997.

[2] Frank vander Linden. Porting NetBSD to the
AMD x86-64: a case study in OS portability.
In Proceedings of the BSDCon 2002 Confer-
ence. Usenix, 2002.

[3] Sun Microelectronics. microSPARC™-[lep
User’s Manual. Part number #802-7100-01.
Sun Microsystems, April 1997.




166 Porting NetBSD to JavaStation-NC




Mac OS X on a budget

167

Mac OS X on a budget

Gerald Wilson

<gww@stonehill.org.uk>

Many BSD users may have an interest in Mac OS X, but cannot justify buying a new Macintosh
computer. They need a solution for a tight budget.

The presenter has previously demonstrated Mac OS X running on a home-built system, constructed
mostly from old parts, with a total parts cost of EUR 600. The presenter has built several such
systems, including a server which cost EUR 300 in parts. While it is not difficult to create a Mac
OS X installation on a system not supported by Apple, there are numerous traps and gotchas to
avoid.

This session describes the process of creating a Mac OS X system on a budget:

What processors and motherboards are supported?

What disk configurations are needed?

Which peripherals work and which don’t?

What software is needed for unsupported systems?

How much will it cost?

Which second-hand systems give best results?

... and so on.

Gerald Wilson has worked for more than twenty years in technical computing, as
programmer, designer, and technical manager. In that time, Gerald has worked on
control systems for laboratories and factories, avionics systems, military communica-
tions systems, and most recently naval command systems. Over the years he has also
spent many happy hours as network and systems manager for technical development
teams. Gerald has an unhealthy depth of knowledge about Macintosh computers, a
working knowledge of UNIX, and can install Windows at a pinch. Gerald thinks that
Dr Edgar David Villanueva Nunez should be the next Secretary General of the United
Nations.




168 MacOS X on a budget

Mac OS X on a Budget
Gerald W Wilson

1 Introduction
1.1 Preamble

This is a practical paper, about a practical subject, for practical people. If you get nervous
around things like screwdrivers and Lego, you’d best stick to writing software.

This paper is aimed at those who wish to run Mac OS X, but whose budget to do so is
limited. It should help those who are familiar with traditional Macintosh hardware and
software, but have little experience of Mac OS X; and more particularly it should help
those who are more familiar with PCs than Macs. It is not intended as a source of
information about older Mac OS issues, although it draws on sources of data about those.

My favourite quotation of this year comes from Bill Gates. In the continuing courtroom

drama of the antitrust trial between the US authorities and Microsoft Corporation, Gates

himself gave testimony under oath as an expert witness in April 2002. Here [reference 1]
is Gates, speaking as Microsoft’s “Chief Software Architect”, stating his opinion of the
doubtful value of modular coding practices:

“In a purely theoretical world, one could imagine developing modest software
programs in such a way that any module could be swapped out in favour of a
similar module developed by a third party ... In the commercial world, it is hard
to see what value such replace-ability would provide even if it is achieved.”

To anyone with the slightest education in software engineering, this view is bizarre.
Fortunately, the UNIX philosophy has been to construct operating systems out of
“replaceable modules” from the very start, and Mac OS X is no exception. Consider the
layered structure of Mac OS X, as Apple originally portrayed it in January 2000.

Mac OS X is — of course — derived from the NeXTStep operating system which Apple
acquired when it bought NeXT for Christmas in 1996. As the foundation layer for Mac
OS X, Apple has therefore adopted BSD, running over the Mach microkernel. While
Apple has borrowed from various flavours of BSD, it has chosen to create its own
particular variant, named “Darwin”, to provide the BSD reference base for Mac OS X.
Darwin, together with some other Apple software packages, is released as Open Source.

The benefits of founding Mac OS X on Open Source Software are the same benefits seen
by all Open Source projects. The disadvantage, from Apple’s commercial point of view, is
that OS X can be hacked - hacked, not cracked - which allows it to be used in ways
Apple has not intended. Oh well — that just goes with the Open Source territory...

So, in this paper, I shall cover two things:

* For those who prefer to play safe, how to choose a budget Mac for their OS X needs.

* For those who like to live dangerously, how to run OS X on unsupported hardware,
and what kinds of issue that brings.

All recent Macs run the traditional Mac OS well, but Mac OS X makes different

demands. Some recent Macs are not well suited to Mac OS X and are better avoided;
while some older machines can be tricked out for Mac OS X with good results.

At the present time there are two reasons why OS X requires Mac hardware:

1 Technology Constraints: While Apple’s internal labs undoubtedly test versions of
Mac OS X for other hardware architectures, nothing is yet released, nor is likely to be
before 2004. If you wish to explore Mac OS X right now, you need a Mac.




MacOS X on a budget 169

2 Licencing Constraints: Apple’s software licence for Mac OS X states clearly that it
is for use on an “Apple-badged computer”. You have been warned...

1.2  Wealth Warning

Please be clear. Apple makes excellent computer products, which are good value when
taking into account the quality of design, quality of construction, and added worth of the
operating system and bundled applications. If you wish to run Mac OS X, and your
budget is plentiful, your best value is — without doubt — to buy a new Macintosh system
from your nearest Apple supplier, and enjoy the support and warranty that brings.
However, “value” is not the same as “I can afford it”. There are many reasons why you
might not want a brand new system, but still want to run Mac OS X. Here are some:

* Poverty: You may be short of money, but still wish to use OS X. Maybe buying or
upgrading a used system will get you what you want at a price you can afford.

¢ Cash-flow: Your organization may not permit the level of spending needed to buy a
whole new Macintosh. Maybe you can build it up a piece at a time — “salami tactics”
— in order to get the system you want.

* Prototyping: You may need to experiment with OS X before you can justify a full
purchase. Maybe you can build a prototype system on lesser hardware to confirm
whether or not the system will be right for you.

* Networking: You may wish to evaluate the network facilities in OS X. Even if your
budget runs to one new Mac, it may not cover two or more needed for valid network
tests. Maybe you can acquire the extra OS X nodes for your tests at budget prices.

» Configuration: At any given time, Apple makes only certain machines in certain
form factors. If the current range can’t supply your needs, maybe you can meet them
by configuring an older model, to get a system with the mix of interfaces you want.

¢ Availability: You may already have an older machine capable of running OS X.
Maybe you can convert it to run OS X for much less than a new machine.

»  Compatibility: You may have a group of machines in a workgroup or a school,
which you wish to keep at a compatible standard. Maybe you need to know what you
can do to convert them all, economically, to run compatible versions of OS X.

* Learning: A good way to learn about technology is to pull it apart and put 1t together
again — and make sure it still works afterwards. To build greater knowledge of OS X,
maybe you wish to take this approach in order to learn from the experience.

¢ Challenge: Admit it to yourself. You just like exciting challenges, and you’ve already
climbed K2 and Denali this week. An unsupported OS X install is calling for you.

Be clear again: by following these guidelines, you should be able to run Mac OS X for
less cash, but you will still have to pay — mainly in time and effort. No free lunch!

Spend with care. It is too easy to waste money by spending it a little at a time, when better
value would have been to find funding for all you need. Think before you start.

1.3  Acknowledgements
Much of this would have been impossible without the work of Ryan Rempel.

Ryan determined, early on, to use the available knowledge about NeXT Step and
Rhapsody (the precursors to Mac OS X) to maintain the availability of OS X on older
unsupported Macintosh hardware. Backed by Other World Computing [reference 2],
Ryan has worked tirelessly for two years releasing the patches needed to get OS X
running on older machines, and is constantly extending the reach of his knowledge and
the range of supported equipment. Give the man a Nobel Prize.

Ryan’s early efforts were complex to follow, but led to a simple, Open Source utility now
called XPostFacto. If you use XPF, please help Ryan by paying to join his support list.




MacOS X on a budget

Dan Knight runs the “Low End Mac” web-site [reference 3], which is an excellent portal
into information about Mac-related topics, and in particular data for older Mac hardware.
For understandable reasons, Low End Mac has only recently started to promote OS X.

Mike Breeden runs the “Accelerate Your Mac” web-site [reference 4], which acts as a
portal for information about Mac hardware upgrades and tune-ups.

There are numerous web-sites now covering Mac OS X, Darwin and their BSD heritage. |
will not reference them here, since they are still somewhat volatile. Just search the web.

1.4  What does “Budget” mean?

1.4.1 The Price of New Macs

For pricing in this paper, I have used UK prices, less local sales tax, converted to Euro at
the rate of about £1 = €1.6. For rough comparisons, €1 = $1.

In early October 2002, typical UK prices for new budget Macs are shown in Table 1:
Table 1: Typical UK prices for new budget Macs

Model | processor | Screen RAMMB)/ | Optical | Graphics | Price
Disk(GB) Drive in €uro

iMac | G3/600 157 CRT | 128/40 CD-ROM | Rage 128 880

eMac | G4/700 177 CRT | 128/40 CD-RW | GeForce 1,120
2MX

iBook | G3/600 12”TFT | 128/20 CD-ROM [ Radeon 1,360
Mobility

iMac | G4/700 I5”TFT | 128/40 CD-RW | GeForce 1,360
2MX

These are Apple’s base models at time of writing. Each is pre-loaded with OS X. In each
category, spending more can get you more RAM, a larger disk, a faster processor and a
more capable optical drive. Extra RAM is the best way of improving OS X performance.
Other improvements will give you more capability, but little improved performance.

The bargains here are the eMac and the iBook. Each is outstanding in its way. If these
will suit your needs, stop reading now, buy the one you want (more RAM!) and that’s it.

1.4.2 The Price of Used Macs

I assume that “budget” means that you wish to run OS X for significantly less than
€1,000. How much less depends on your needs and wants. How much a used budget
Mac costs will depend on where you live. In the USA, with easy access to eBay, the prices
are likely to be less than in Europe and other territories.

In early October 2002, typical UK prices for used budget Macs are as follows:

PowerBook G3/266 128MB/2 GB/CD €800
iMac G3/266 160MB/6 GB/CD €450
PowerMac 7600/132 64MB/2GB/CD €150

Each of these can be coaxed into running Mac OS X. None of these will give stellar
performance, but each will get you going for less money. Remember though that OS X
itself will cost you at least €100 to obtain.




MacOS X on a budget 171

2 Understanding Apple’s Technology
2.1  The Basics: Supported and Unsupported Installs

Whatever your motive, if you’re doing Mac OS X on a budget you need to know your
technology better than the average Macintosh user.

For Mac OS X, a “supported” system means one which Apple itself lists as approved for
use with OS X. In practice, this means every Mac of any kind originally shipped with a
PowerPC G3 or G4 processor, with one exception: the original PowerBook G3. However,
there are some constraints, such as the graphics support. This varies with the version of
OS X you use. To understand the issues, you need to know what graphics chipset you
plan to use, and what OS X can do with that chipset.

An “unsupported system” is therefore anything else which can be persuaded to run Mac
OS X by trickery. Apart from RAM and disk, there are four essential requirements:

a processor Mac OS X will recognise;
PCI architecture;

Open Firmware;

An optical drive from which to load OS X.

2.2  Recognised Processors

In the early 1990s, Apple, IBM and Motorola (AIM) agreed to co-operate to miniaturise
IBM’s RISC workstation processor architecture (“POWER?”) as a single scaleable
microprocessor family to be called PowerPC. In contrast with the intel x86 architecture,
PowerPC is naturally big-endian, although it can be run little-endian as well. The first
PowerPC chip was the 601, and was a hybrid designed to link older and newer
technologies. The true PowerPC (desktop) families began with the 603 and 604 series.

The 603 started life as a low-dissipation chip intended for budget and portable use. Apple
used it successfully for PowerBooks and home computers. The 603 has a limited number
of execution units, and lacks support for Symmetric Multi-Processing.

The 604 started life as a high-dissipation chip intended for workstations and servers.
Apple used it as their principal cpu for professional computers. The 604 has many
execution units, good floating-point performance, and in-built support for SMP.

From the 603, AIM derived the 750 family, known by Apple as “G3”. This is a good
performer, but like its parent lacks support for SMP.

From the 604, AIM derived the 7400 family, known by Apple as “G4”. Motorola, who
pioneered these designs, added an efficient vector-processor to the G4, like the SIMD
components added to the Intel Pentium and AMD K6 architectures. Motorola’s formal
name for the vector processor is “Altivec”. Because the Altivec SIMD unit can handle
groups of four floating-point operands, using dedicated registers, it can provide close to a
four times speed-up for code compiled to exploit it. See NASA’s opinion [reference 5].

At time of writing, it is expected that Motorola will introduce a more advanced processor
(“G57?) in 2003, and expected that IBM will launch a 64-bit PowerPC micro-processor,
complete with Altivec-compatible vector unit, in late 2002. However, neither of these is
likely to appear in Macintosh computers this year (2002).

The officially recognized processors are therefore the G3 and G4. Unofficially, Mac OS
X can be persuaded to run on the 603 and 604 as well. Remember, processors develop
variants as they evolve throughout their product life. For example, the 604e (larger caches,
higher clock-speeds) works better with OS X than the original 604.




MacOS X on a budget

2.3  The available versions of Mac OS X
2.3.1 What Apple has released

Ignoring its predecessors (NeXTStep and Rhapsody) Apple has so far made four public
releases of OS X. All of these use a graphics library which Apple calls Quartz (derived
from Adobe’s Portable Document Format), with a look-and-feel which Apple calls Aqua.

Public Beta: released September 2000. This has little value. It is time-limited, and too
flaky to be of interest except for museums. Recycle the CD as a drinks coaster.

10.0.x, aka Cheetah: released March 2001: Last update (to 10.0.4) released June 2001.
This is of little practical use. While it will run stably, it lacks many important features, and
differs significantly in interface from the later versions. However, it still has a value.
Cheetah can be updated free-of-charge to OS X 10.1. You will need to obtain a copy of
the update media, but the licence allows this. (I have several registered copies of OS X
10.0, but Apple itself only supplied me one copy of 10.1 with which to update them all.)

10.1.x, aka Puma: released October 2001: last update (10.1.5) released May 2002, with
security patches released up to August 2002. This is a stable and useable version of OS
X. It is the baseline version for many OS X applications (such as Microsoft Office for X).
If fully patched, it is reasonably brisk and secure, and its underlying UNIX can be used
for X-Windows applications and UNIX command-line applications. It provides decent
support for Java 2 (at v1.3.1). It runs well on G3 and G4 cpus (supported) and runs fairly
well on 603 and 604 cpus (unsupported).

10.2.x, aka Jaguar: released August 2002: currently updated to 10.2.1. This is, in
general, significantly improved over OS X 10.1.x. Many things work faster. Jaguar
includes a new graphics scheme called “Quartz Extreme”. This improves 2D graphics
performance by drawing the screen image as an OpenGL scene, which can then be
rendered more swiftly for display by a suitable OpenGL-capable graphics card. However,
Jaguar at time of writing will only run on G3 and G4 cpus. Further, Jaguar is based on a
later version of Darwin, including the compiler suite gce 3.x and its libraries. Hence some
code built for Puma will not work correctly on Jaguar until it has been recompiled.

2.3.2 What you should aim for

OS X 10.1.5: stable, reliable and secure; based on gcc 2.95; 2D Quartz acceleration down
as far as the Rage Pro family; can use 603 and 604 cpus (unsupported).

OS X 10.2.x: newer and smarter, but not yet fully stable; based on gcc 3.x; Quartz
Extreme when used with suitable graphics card; only for G3 and G4 cpus.

Apple’s policy for selling Jaguar is to sell only the full version, not an upgrade from
Puma (or Cheetah). This means that anyone who has bought a copy of Jaguar has a full
licence for Puma which they can re-sell. Under EU law, a person who has bought a
software licence is entitled to sell that licence separately from its original hardware. So a
person who bought a Mac originally loaded with Puma is entitled to sell on that licence if
they buy a copy of Jaguar to replace it. Hence, in the EU at least, there should be a ready
market in pre-owned licences for Puma for use on Apple-badged computers.

2.3.3 PreBinding and OS X

In Mac OS X, prebinding is the process by which the system optimizes the dynamic links
between applications on the system’s boot volume and system libraries, to make those
applications launch and load faster. Cheetah did not exploit prebinding. It is also
compromised in many other ways. Puma introduced prebinding to speed up application
launch times, and it is an effective improvement. There is no good reason to stick with
10.0, since if you own a legitimate licence for 10.0 you can update to 10.1 without charge.




MacOS X on a budget 173

An irritating consequence of Puma’s prebinding is that every major installation of an OS
X patch or an application causes the installer to run an extensive “Optimisation” phase,
which is boring but necessary. In Mac OS X 10.2, Apple modified the approach to
prebinding to eliminate this effect. On Jaguar, if the system discerns that prebinding
information has become out-of-date, it automatically updates it to bring it back into line.

2.4  Graphics and Displays

For several years, Apple used only graphics chipsets made by ATI. More recently, Apple
selected nVidia as a second source of graphics hardware. While OS X’s Quartz is
supported on anything from ATI Rage II onwards, some features demand better
hardware. The cut-off points for each chipset family are these:

ATI Rage II: Basic OS X display; no acceleration features;

ATI Rage Pro: Basic 2D acceleration and QuickTime acceleration (10.1.5 or later);
ATI Rage 128: Full 3D acceleration;

ATI Radeon AGP: Quartz Extreme acceleration;

Nvidia GeForce 2MX (or better) AGP: Quartz Extreme acceleration.

In the professional desktop Mac systems, the graphics hardware can be replaced or
upgraded via AGP or PCI slots, but all other types of Mac have fixed graphics hardware.
Hence, if you need a particular graphics capability, you must ensure that the Mac you buy
can handle it. This can be confusing. Each graphics chipset family has variants for
different purposes, and it is sometimes unclear just what a particular Mac contains.

Mac OS X is very demanding of screen area. The large, “photographic” icons occupy
many pixels, and the desktop can seem cramped on a small screen area. While OS X will
support screen areas as small as SVGA (800x600) you would be unwise to contemplate a
screen area smaller than XGA (1024x768) for everyday work.

2.5  External Interfaces
Macs have never had parallel interfaces. Apple’s standard external interfaces are these:

Serial: Introduced in the original 1984 Macintosh, and improved over the years. Still
found in some supported models, so has limited support in OS X.

ADB: The Apple Desktop Bus - an early daisy-chain bus mainly for mice and
keyboards - still found in some supported models, so has limited support in OS X.

SCSI: The mainstay Apple expansion port for many years, and still found in some
supported models, so has limited support in OS X.

Ethernet: Built into all supported Macs, so fully supported in OS X. Most supported
models have Fast Ethernet or Gigabit-over-UTP.

USB: Introduced with the first iMacs in summer 1998. Now standard in all Macs, so
fully supported in OS X.

1394: Apple invented this technology, under the brand “FireWire”. Introduced in
desktop models in early 1999, and now standard in all Macs, so supported in OS X.

WiFi: Apple pioneered this in conjunction with Lucent under the brand-name “Airport”
Introduced with the first iBooks in late 1999, and now a standard option for all Macs.

2.6 Form Factors

In May 1998, at Apple’s World-Wide Developer’s Conference, Steve Jobs announced a
new and simplified product policy for Apple. From that time on, Apple would focus on
creating only two kinds of computer — the desktop and the portable — for two kinds of
user — the professional and the consumer. Eventually the range consolidated like this:




174 MacOS X on a budget

Table 2: Apple’s Product Policy

Consumer Professional
Desktop 1Mac, eMac Power Mac G3, G4
Portable 1Book PowerBook G3, G4

The only significant variations to the range since have been the Power Macintosh G4
Cube and the Xserve. The Cube, available for only a year, was marketed as a “Designer
Workstation” but has limited expansion. Its graphics is on an AGP card, so can be
upgraded. The Xserve is designed as a 1U rack-mount system, mainly for use as a server.
These designs are too specialized to be covered here.

2.7 RAM, MotherBoards and Chipsets

Mac OS X demands RAM. While it will run in 64 MB, it is then too slow for everyday
use. In practice less than 128 MB is unusable for work, while 256 MB or more is highly
desirable. This is partly because of the extravagant way in which OS X’s Aqua graphics
scheme uses RAM to buffer screen images.

The need for RAM seriously reduces the usefulness of some older Macs with OS X.
Some machines have upper limits on RAM which are too low for comfort; others can
accommodate plenty of RAM, but of a type which 1s rare and expensive.

Hence your choice of a used Mac for use with OS X must take account of the availability
and cost of the RAM you will need. All recent Macs usable for Mac OS X take some
kind of standard PC-compatible RAM (PC66, PC100, PC133 or DDR), as either normal
SDRAM DIMMs, or as low-profile SO-DIMMS intended for use in notebooks.

For the desktop Macs with PCI slots, the capabilities of the machine are defined more by
its motherboard than by the name on the case. Here is a short summary of the PCI slot
motherboards able to run Mac OS X. For more detailed discussions, consult the Power
Macintosh hardware pages maintained by NetBSD [reference 6] and OpenBSD
[reference 7].

2.7.1 TNT, Nitro, and Tsunami - Old World ROM

These boards were launched as the “PowerSurge” range, and share many common
features. The maximum specified bus speed is 50 MHz, although, because of the way the
RAM is timed, this gives memory speed equivalent to a Pentium PC at 66 MHz. RAM
comes as 168pin Fast Page Mode (or EDO) DIMMs, which are rare and expensive. The
cpu daughter-board fits in a slot, similar to a Pentium II, and can be exchanged. There are
two SCSI buses - one fast for internal use and one slow for external peripherals - and the
boards have built-in Ethernet. The three-slot version (TNT, Nitro) has built-in graphics
and was used in the Power Mac 7500, 7600, 7300, 8500 and 8600 series. The six-slot
version (Tsunami) was used in the 9500 and 9600, and has some important differences. It
lacks built-in graphics, so needs a suitable PCI graphics card. It has twelve rather than
eight DIMM slots, and its Level-2 cache is soldered on, rather than being slot-fitted.

These boards can be temperamental about the combination of cpu, cache and RAM fitted
to them. In theory, the memory manager can interleave the RAM to improve bus
throughput, but in practice the DIMMs must be carefully matched for this to work
without problem. However, once set up and working the boards are reliable.

2.7.2 Gossamer — Old World ROM

These boards were the first Apple G3 boards created for professional desktop machines.
They were fitted in Power Macintosh G3 systems as desktops, minitowers, and all-in-one
systems for education users. The nominal bus speed is 66 Mhz, but there are hacks to
take the board to 75 Mhz or 83 MHz if you fit PC100 RAM and the rest of the board can
keep up. These are the last desktop motherboards made by Apple with built-in graphics.




MacOS X on a budget

There are several revisions of the board, which give variations in the Boot ROM, IDE
behaviour, and graphics performance. Select with care.

2.7.3 Yosemite — New World ROM

These boards were fitted in the Blue-and-White Power Macintosh G3 series. Though
superficially similar to Gossamer, the boards have a faster bus at 100 MHz, support for
FireWire and USB, and improved support for IDE drives.

Again, there are several revisions of the boards, which can affect hardware capability.

2.7.4 Yikes
A variant of Yosemite adapted to take the G4 cpu instead of the G3.

2.7.5 Sawtooth, and beyond

With the introduction of the full Power Macintosh G4 series, Apple created their first
board with a true AGP slot for graphics. Over the years, the board has been progressively
enhanced while keeping the same essential characteristics, gaining faster bus speeds,
faster disk interfaces, and improved network interfaces.

3 Selecting a Used Budget Machine

3.1 General Criteria

Armed with all this information, what now should you do? I will assume that you do not
want an Xserve, since it is too new and too specialized to be considered a budget item.

Likewise, I shall assume you aren’t after the Power Macintosh Cube, because if you are,
you already know what you want. Instead, I assume you have one of four aims in mind:

» An affordable portable Mac OS X machine

e A low risk, low specification, supported desktop machine
» A low risk, high specification supported desktop machine
* A high risk unsupported machine

Here, though, you meet a significant problem. Apple revises the specifications for its
models every few months. The specifications published on the Internet are very ragged —
even Apple’s own data. Once you have selected your style of Mac, and identified your
candidate machines, you need to check the specifications carefully, and compare several
source of data, to ensure that what you get will do precisely what you want.

3.2 Case 1 - Affordable Portable

The PowerBook G4 series, with its wide screen, and stylish Titanium case, cannot be
considered a budget item. There are reports of poor Airport performance.

Hence a budget Mac OS X notebook is a G3. While the first iBooks (the curvy coloured
models) have some good features, their screens support only SVGA which limits their use
for OS X work. The new style white iBooks — “iceBooks” — introduced in May 2001,
are much preferred. Late versions of the PowerBook G3 are all suitable machines, each
with their better and weaker points. All these Mac G3 portables have built-in modems and
built-in Ethernet (or Fast Ethernet). Table 3 lists affordable Mac OS X portables.

For a good mobile balance between size, weight, strength, battery life, and wireless
networking, any of the Lombard, Pismo, and iceBook ranges can be tailored to suit your
needs. The (black) Lombard and Pismo have expansion bays, which can be used for
alternative media; while the (white) iceBooks are less flexible. Note that to add Wifi to
Lombard and WallStreet you need a compatible PC card, such as a Lucent Orinoco.




176

MacOS X on a budget

Table 3: Typical Specifications of affordable G3 portables

Model Speed | Max | Disk | Optical | Graphics | Comments
cpu RAM | Fit Fit
/bus (MB) | (GB)
WallStreet | 2334/ | 128 |2 CD-ROM | Rage Compromised:
66+ LT Pro Best avoided
WallStreet | 233+/ [ 192 |4 CD-ROM | Rage Good basic model;
II 66/ LT Pro Strongly built;

2 PC card slots.

Lombard | 333+/ | 384 4 DVD Rage Slim and modern;
66 LT Pro USB built-in;

Limited expansion

1 PC card slot
Pismo 400+/ | 512 6 DVD Rage 128 | Full featured;

100 Mobility | FireWire and USB;

Airport Option;

1 PC card slot.
iBook 300+/ 320 |3+ CD-ROM | Rage Screen SVGA max.
Rev A 66 Mobility
1Book 366+/ | 320 10 CD-ROM | Rage 128 | Screen SVGA max.
Rev B 66 DVD Mobility
i(ce)Book | 500+/ [ 640 10+ | CD-ROM [ Rage 128 | Light and compact
2001 66+ DVD Mobility | 12” XGA screen;

CD-RW FireWire and USB;

No PC card slot;

Airport Option.
i(ce)Book | 600+/ | 640 20+ | CD-ROM | Radeon 12” and 14” versions.
2002 100 DVD Mobility

CD-RW
3.3  Case 2: Low Specification Supported Machine

3.3.1 The iMac option

Here the obvious candidates are the CRT iMacs. Technically speaking, the original iMacs
were PowerBooks adapted to fit a desktop CRT case. As such, the early iMacs share
similar strengths and weaknesses to the PowerBook G3s to which they are related. All
1Mac models support XGA display. All have USB ports and built-in Fast Ethernet. Early
models have tray-loading CD-ROM drives and use SO-DIMM memory designed for
portables. Later models have slot-loading drives, and use standard PC100 (or faster)
SDRAM, with options for FireWire, Airport, and more capable optical drives.

The Rev A to D (Tray-loading) iMacs can be upgraded to faster speeds using parts from
third-party manufacturers, such as Sonnet. Thus a Rev A model can be converted to run at
600 Mhz, with an added FireWire port. Likewise there are upgrades to change the original
tray-loading CD-ROM for a CD-RW. Only you can decide whether such a radical
improvement is worthwhile for an older machine.

You may need to update Firmware to run Mac OS X on an early iMac. Firmware updates
can cause third-party RAM to become unrecognized. Check specifications before you try.




MacOS X on a budget

177

Table 4: Typical Specifications of CRT iMacs

Version | Speed | Max | Disk | Optical Graphics | Comments
cpu RAM | Fit Fit
/bus | (MB)| (GB)

Rev A 233 128 4 CD-ROM | Rage Ilc Limited: Best avoided
166

Rev B 233 256 |4 CD-ROM | Rage Pro | Good basic model
/66

Rev C 266 256 6 CD-ROM | Rage Pro | Now comes in colours.
166 Turbo

Rev D 333 256 |6 CD-ROM | Rage Pro
/66 Turbo

Kihei 350+ | 512 6+ CD-ROM | Rage 128 | Faster models have extra
/100 DVD options for FireWire,

Airport and more capable
optical drives.

2000 350+ | 1024 | 10+ [ CD-ROM | Rage 128
/100 DVD Pro

2001 400+ | 1024 | 10+ | CD-ROM [ Rage 128 | Adds CD-RW versions
/100 DVD Ultra

CD-RW

So your CRT iMac options boil down to three:

»  For least hassle, carefully study specs, and buy the model which has what you want;
» For least money, buy an early model with enough RAM and use it exactly as is;

»  For maximum flexibility, buy a Rev B, C, or D iMac and enhance it with upgrades to
the standard you want.

3.3.2 The Desktop Option

The alternative to the iMac is to use a G3 desktop machine, either as a Beige case G3
(Gossamer) or a Blue-and-White (Yosemite). Since these take standard PC parts, like
PC66 or PC100 SDRAM and IDE drives, they are easy to enhance for use with OS X.

Table 5: Desktop G3 Configurations

Version | Speed | Max | Disk | Optical | Graphics | Comments
cpu RAM | Speed | Fit
/bus | (MB)
Gossamer | 233+ | 384 ? CD- Rage II+ | Limited: Best avoided
Rev A 166 ROM
Gossamer | 266+ | 384 ? CD- Rage Pro | Good Basic model
Rev B /66 ROM
Yosemite | 300+ | 1024 |33 CD- Rage 128 | Revised coloured case;
/100 ROM PCI Adds: UDMA-33,
FireWire and USB,
Fast Ethernet.




178 MacOS X on a budget

34  Case 3: High Specification Supported Machine

The high-specification supported machines are, by definition, all G4 Minitowers. Since
these can hold multiple hard drives, there is no standard disk fit. Any individual machine
might have been built-to-order to a bespoke configuration. Likewise, the graphics cards
may vary from standard. Hence select with care.

These systems are still highly regarded by professionals working in graphics and audio.
They can be expensive to buy as used items. Dual processor systems are rare.

Dual processor models have been the 450DP, S00DP, 533DP, 800DP & 1 GhzDP.
Table 6: desktop G4 Configurations

Version | Speed | Max [ Disk | Optical | Graphics | Comments
cpu RAM | Speed | Fit

/bus | (MB)
Yikes 350+ | 1024 |33 CD- Rage 128 | Limited options;
/100 ROM PCI Best avoided
Sawtooth | 400+ [ 1536 | 66 DVD Rage 128 | Excellent basic model
/100 AGP Adds Airport support;
Adds UDMA-66
Mystic 450+ [ 1536 |66 DVD-R | Rage 128 Adds dual-processors;
/100 Pro AGP | Adds Gigabit Ethernet;
Adds Radeon option
Digital 466+ | 1536 | 66 CD-RW, | Rage 128 | Adds 4" PCI slot;
Audio /133 DVD-R | Pro AGP | Adds GeForce 2MX
Quick 733+ [ 1536 |66 CD-RW, | GeForce Revised cpu variants
silver /133 DVD-R | 2MX or 3
Quick 800+ | 1536 |66 CD-RW, | Radeon or | Revised cpu variants
silver /133 DVD-R | GeForce 4

2002

3.5 Case 4: Unsupported Options

3.5.1 Processor upgrades.
With very few exceptions, Apple’s policy has never been to support cpu upgrades in its
computers. Apple expects you to run it exactly as you bought it until one of you dies.

With very few exceptions, the policy of the Mac hacking community has been to hack
Mac hardware to within an inch of its life in order to stretch the bounds of what is
possible, and to extend the life of machinery beyond natural reason.

The result is that numerous dedicated Mac hackers have devised ways over the years to
run Mac operating systems on unsupported machines. Special credit is due to those who
have run Mac OS 8 on an SE/30, and converted the Color Classic to be a Power Mac.

There are three obvious ways to create an unsupported OS X machine:

1 Simple cpu upgrade: Take a supported system, but change the cpu for a newer or
faster processor.

2 Unsupported system: Take an unsupported system, and install OS X on it as is.

3 Unsupported system with cpu upgrade: Take an unsupported system, and change
its cpu to a G3 or G4, before installing OS X in the new configuration.




MacOS X on a budget 179

3.5.2 CPU upgrade in Supported System

Several companies provide cpu upgrades to permit this. Some have an unreliable
commercial history. Upgrades are available for systems based on the Gossamer,
Yosemite, Sawtooth, and many later motherboards, Upgrades are also available for various
models of iMac and PowerBook. There can be issues caused by incompatibilities between
G3 and G4 cpus, and issues of incompatibility with system ROMs or other hardware.
When they work, the results can be spectacular, but only you can decide whether or not
you are prepared to spend the money and risk creating an unsupported machine this way.

The fullest collection of data on these options is at [reference 4]. Study before you buy.

3.5.3 Original Processor in Unsupported System

To do this you need to use Ryan Rempel’s freeware utility called “XPostFacto”. At time
of writing, Ryan is maintaining active development of XPF. Rather than reproduce all his
data, it is best to refer you to his web-site [reference 2], which has up-to-date information.
Unsupported installs are available for systems based on the TNT, Nitro and Tsunami
motherboards. Ryan has had limited success with other consumer Macs and with some
older PowerBooks, but at time of writing I would not recommend these for serious work.

Except for the original Power Mac 7500, these systems all shipped with versions of the
604 cpu. Hence, at time of writing, you can only use Puma, not Jaguar, on these systems.

3.5.4 New Processor in Unsupported System

To do this you must again use XPostFacto, but you must also deal with added
complications:

a Enabling the Level-2 cache: The original level-2 cache fitted to these boards was a
special DIMM, fitted in a special slot, connected direct to the system’s main bus. Any
newer cpu (G3, G4 or newer) will have a backside or processor-direct cache. Mac OS
X needs to be told about the presence and configuration of this cache. There are
freeware utilities to do this.

b G3/G4 speculative execution: The G3 and G4 have more aggressive policies for
speculative execution of code than did the 603 and 604. To ensure successful
operation in a PowerSurge motherboard, the NVRAM of the board needs to be
patched to match. There are utilities to do this.

¢ Fallback if your cpu fails: Since you configure both the board and the OS X kernel
to match the fitted processor, it is important to decide what you will do if the cpu card
fails. You do not want to be left with a failed system whose data you can no longer
retrieve because your original cpu will not work in the current configuration. A simple
policy is to ensure that your system is dual-boot, so that you can revert to Mac OS 9
for emergency repairs.

Despite these complications, with careful choice of parts you can create an unsupported
system able to run Mac OS X at speeds close to a recent G4 system. Likewise, you can
create a system able to do things an iMac can’t do, such as route between multiple
physical Ethernets. Only you can decide whether this is worth time, effort and money.

4 Worked Examples

4.1  Dual-booting, Partitioning, and the Reasons Why

For budget users of Mac OS X, I recommend that you install OS X and Mac OS 9 on
separate partitions (or separate drives if you have them). This simplifies the set-up of
dual-booting arrangements. Unless you are supremely confident that you will never want
to boot your system in the traditional Mac OS, set it up as dual boot, so that you have
access to an alternative environment for reconfiguration, repair and recovery if need be. I
shall assume these partitions are called “System Disk 9” and “System Disk X”.

Here are two examples of budget Mac OS X in everyday use.




MacOS X on a budget

4.2  Supported Example — budget Portable running Jaguar

For business presentations, I use a Pismo PowerBook, known as “ratmobile”.

The later G3 PowerBooks and iceBooks make excellent Mac OS X portables. Many
users favour the Pismo, because of its combination of features:

* USB and FireWire (though not the fastest FireWire in the world);
¢ Built-in Fast Ethernet and Airport;

* Hot-swap Expansion bays for storage devices;

* Relatively easy access to internal hard drive and RAM.

In the UK, a used Pismo costs about €1,350. Ratmobile arrived with 192 MB RAM and
an internal Hard Disk Drive of 6 GB. For first experiments, I partitioned this drive into 4
GB for System Disk X and 2 GB for System Disk 9. Once I had checked ratmobile’s
behaviour under Puma, I bought and installed a larger HDD of 20 GB, now partitioned as
8 GB for System Disk X, 8 GB for Work Space and the rest for System Disk 9.
Ratmobile is now running OS X 10.2 (Jaguar). My first attempt was to update the already
installed OS X 10.1.5. While the result worked, it seemed temperamental. Instead, I tried
the alternative Jaguar option of “archive and install”, which captures the user directories
but re-installs the OS from scratch. From experience, I would recommend this approach.

Any similar G3 PowerBook, with not less than 128 MB RAM, and not less than 4 GB
Hard Disk, should run either Puma or Jaguar satisfactorily.

4.3 Unsupported Example - Dumpster Desktop running Puma

At the other budget extreme, meet Escargot, a rock-bottom system running at warp factor
zero. In the UK, the parts for a system like this can be bought used for around €200.

4.3.1 Escargot’s Hardware

Escargot is an experiment in how slow a Mac OS X system can get and still not be
technically dead: Escargot is a Power Macintosh 7500 (TNT) motherboard, in its standard
desktop case, but fitted with a 150 MHz 604 processor card taken from another system.
Escargot has an unexciting configuration for its type: 64 MB RAM, 256K Level-2 cache,
2 MB VideoRAM, and two internal 50-pin SCSI drives. The smaller disk of 1.2 GB is
split into 1 GB for System Disk 9 running 9.1, and the rest as spare. The other disk of 2
GB 1s devoted to OS X, running 10.1.5. As can be seen from demonstration, Escargot
works perfectly well — albeit slowly. I could make Escargot slightly slower by substituting
a 120 MHz 604 (if I had one), reducing the RAM, or removing the L2 cache — but the
machine is suffering enough already.

Escargot has three optional additions in its three PCI slots. One is a Belkin USB card
(sold for PCs). One is a similar Belkin FireWire card (also sold for PCs). The last is a
DEC DESOO fast Ethernet card, originally fitted to a Digital PC. In each case, when
running under OS X, the card just works.

4.3.2 Escargot’s System Software

At time of writing, there is no way to run Jaguar on the 603 or 604 processors. The best
you can do is 10.1.5, and it is important to reach that patch-level. The reason is security.
Apple has released a variety of security patches to Puma during the last year, many
dealing with issues detected in Open Source components like Apache and OpenSSH, so it
is desirable to patch to the maximum. (This is starting to remind me of Solaris...)




MacOS X on a budget

181

Table 7: Full Install and Patch Sequence for Puma

Step | Aim Needs Details

1 Format Apple’s Drive Setup Utility Boot from System Disk 9;
HDD Reformat System Disk X as

“Mac OS Extended” format.

1 Install OS X 10.0 Install CD; Insert CD. Start XPF. Using

10.0 XPostFacto XPF, reboot from CD to install
on to System Disk X.

2 Configure | Personal Details When machine restarts
10.0 automatically, key in personal

details and internet settings.

3 Install 0OS X 10.1 Upgrade CD; Reboot from System Disk 9.
10.1 XPostFacto Insert CD. Start XPF. Using

XPF, reboot from CD to
UPGRADE the installation on
System Disk X.

4 Update SecUpd7-18-02forv10.1 After restart, install this package.
“Software | .dmg This patch corrects security
Update” issues in the Software Update

utility. It supersedes earlier
patches from October and
November 2001.

5 Update to | MacOSXUpdateCombo10.1.5 | Install this package.

OS X .dmg This patch supersedes all earlier

10.1.5 point releases of 10.1.x, and
incorporates Security patch from
April 2002.

6 Patch Open | SecurityUpd2002-08-02 Install this package.

Source (1) | .dmg This patch also incorporates
general security patch from July
2002.
7 Patch Open | SecurityUpd2002-08-20 Install this package.
Source (2) | .dmg

8 Patch NetworkingUpdate Install this package.
Networking | .dmg This patch improves network

reliability

9 Patch IE Internet Explorer v5.1.4 There may be a more recent

version covering additional
security issues !

In addition, Apple detected some security issues with the Apple Software Update process
itself, so it has also released certain critical updates which you must apply before you can
pull in the rest of your patches. This means that the required patch order for Puma has
changed substantially during its life. The current version of Software Update is generally
well-behaved, and will usually get it right if you follow its instructions to the letter.




182 MacOS X on a budget

The exact install instructions depend on where you’re starting from. If you have a late-
release version of the Puma Installation disks, then you are already part-patched, and so
need to follow the correct patch sequence from that point. I can’t describe here all
possible variations. Instead I have shown in Table 7 the full patch sequence for building
Escargot from scratch. [ assume use of the lowest possible sources, being the two “early-
adopter” install CDs: the original release of 10.0, and the original update CD for 10.1.

If you simply follow Apple’s Software Update mechanism, it should get the sequence
correct for you automatically. It will also combine some of these steps, to reduce the time
taken. If you are unable to use Software Update for some reason (perhaps because you
work from behind a strict FireWall) you can apply the patches in the correct sequence by
downloading them as Disk Image (.dmg) files from Apple’s support web-site, and
installing them individually.

4.3.3 Escargot’s Applications Software

Once you have completed the full patch sequence, you have a Mac OS X 10.1 system
which is as patched as it can get for operating system, networking, and security issues.
The system will currently occupy 1.4 GB of hard drive. What else you choose to install is
up to you, and to how much disk space you wish to use. Apple’s own additions are
available from Apple’s web-site, and should be installable using Software Update. Other
additions are available from third-parties. Here are some suggestions:

Apple’s language sets for Chinese, Korean, Portuguese, or Scandinavian languages;
Apple’s Development Tools for OS X 10.1 (minus documentation to save space?);
The Darwin tools, available as a package from web-sites which support Darwin;
Xfreee86, distributed as “XonX”, together with X applications;

The OS X Package Manager, giving control of the configuration of OS X packages;
The Fink Package Manager, giving access to UNIX software appropriately packaged;
Apple’s Java update, to give improved Java 2 compatibility;

Your favourite Java tools or applications;

9 Additional development languages, such as Python and PHP;

10 Additional Carbon applications, or OS X native applications to suit.

As a demonstration machine, Escargot shows that all these things are possible, even on a
system as humble as this one. If you try a budget system like this it may inspire you to
find the funds for a real Mac OS X system, or at least to buy more RAM, more disk
space, and perhaps a faster cpu card to give the budget system better performance

00 1NN AW =

I emphasise that a system like Escargot can be built exactly as it is. No cheating is
necessary. You do not need to configure the system with faster components or more
RAM just in order to build it. It is perfectly feasible to build a machine running OS X
using only a basic TNT system with a 604 cpu, 64 MB RAM, and a 2 GB HDD.
Obviously you will need a CDROM you can boot from, and the means to load all the
patches from Internet, CD or LAN, but otherwise it’s straightforward. It is a testament to
the robustness of OS X that it can be installed on this limited hardware without kernel
panics or any other problems. (Just take three days off, have plenty of coffee and pizza
handy and put something soothing on the hifi.)

4.3.4 Alternative OS approaches

A system like Escargot is equally suited — perhaps more so — to running another form of
Open Source UNIX such as OpenBSD or YellowDog Linux. If you are not happy with
OS X on such a system, try one of these alternatives.




MacOS X on a budget 183

With few exceptions, the Power Macs which can run Mac OS X are the same Macs which
can run other flavours of BSD or run Linux. All need the same essentials: recognized
processor, PCI architecture, Open Firmware, and the means to install the distribution. The
one difference is in cpu support. The Linux kernel includes support for the PowerPC 601
processor, whereas at time of writing no version of BSD can support this processor.

However: there is good exchange of information between the BSDs and the Linux
community concerning support for older Mac hardware. This helps to boost peripheral
support for Mac OS X. For example, Linux has provided the basic floppy driver for Mac
OS X (although — so far — it doesn’t work for me !).

5 Summary and Conclusions
This paper is intended to help those who wish to run Mac OS X but have limited funds.

By building Mac OS X on an Open Source base, Apple has made it possible to install OS
X in unsupported ways.

If your livelihood depends on using a supported computer, you should run Mac OS X on
a budget by buying a new budget Mac from your nearest reseller, and enjoy all the
benefits of warranty and manufacturer’s support.

If you wish to use OS X in a more experimental capacity, there are many ways to run Mac
OS X on older Mac hardware, and there is much to be learned from doing so.

In all cases, learn the hardware specs. Watch out for limitations with RAM, graphics
support, disk speeds, and external interfaces.

To speed up Mac OS X, first install more RAM. Then add still more...

For portables, recent G3 PowerBooks and iceBooks give good results.

For basic desktops, most early iMacs and G3 desktop machines give adequate results.
For advanced desktops, G4 minitowers are best. Check specifications with care.

For unsupported installs, PowerSurge machines (TNT, Nitro, Tsunami) work reliably.

In general, machines which can run Mac OS X are the same as those which can run BSD
or Linux. Use those projects for information to resolve driver and hardware issues.

6 References

1 In the US District Court for the District of Columbia,
Civil Action No. 98-1233 (CKK),
Direct Testimony of Bill Gates, given under oath 18 April 2002.

http://eshop.macsales.com/OS X Center/XPostFacto/
http://www.lowendmac.com/
http://www xlr8yourmac.com/

An Evaluation of PowerMac G4 Systems for FORTRAN-based Scientific Computing
with Application to Computational Fluid Dynamics Simulation;
Craig A Hunter, NASA Langley Research Center, June 2000.

http://www.netbsd.org/
7 http://www.openbsd.org/

N AW

[This document was written in Microsoft Word, running native on Mac OS X]
[Original Text Copyright Gerald W Wilson, 2002]




184




BSDCon Europe 2002

Addresses



186 BSDCon Europe 2002




BSDCon Europe 2002

Le Reseau Netwerksystemen B.V,
Eilko Bos
Bieslookstraat 31a, 9731 HH Groningen, The Netherlands
Phone: +31 (0)505492701
Email: <eilko@reseau.nl>

sysfive.com GmbH / BS Web Services
Philipp Biihler & Henning Brauer
Koelhoffstr. 7, 50676 Koln, Germany
Phone: +49 2214742105
Email: <pb@sysfive.com>

X |support
Pim Buurman
Grote Beer 189, 1188 AZ Amstelveen, The Netherlands
Phone: +31 (0)237505895
Email: <pim.buurman@summix.nl>

Wasabi Systems
Alistair Crooks
17 The Conifers, Crowthorne, Berkshire, RG45 6TG London, United Kingdom
Phone: +44 1344 752021
Email: <agc@wasabisystems.com>

The NetBSD Project
Hubert Feyrer
Rotteneckstr. 31, 93053 Regensburg, Germany
Phone: +49 941 943 1333
Email: <hubertf@netbsd.org>

Inktomi Corp.
Alan Horn
1025 Shell Blvd 1, Foster City, CA, USA
Phone: +1 650 245 9351
Email: <ahorn@inktomi .com>

The FreeBSD Project
Poul-Henning Kamp
Herluf Trollesvej 3, DK-4200 Slagelse, Denmark
Phone: +45 5856 1059
Email: <phk@FreeBSD.org>

Cisco Systems
Marco Molteni
400, avenue Roumanille, 06410 Sophia Antipolis, France
Phone: +33 619 982466
Email: <mmolteni@cisco.com>

Stichting NLnet Labs
Bram Moolenaar
c/o Clematisstraat 30, 5925 BE Venlo, The Netherlands
Email: <bram@moolenaar.net>




BSDCon Europe 2002

Politecnico di Torino
Riccardo Scandariato
Corso Duca degli Abruzzi 24, 10129 Torino, Italy
Phone: +39 011 564 7048
Email: <scandariato@polito.it>

Bonn University, CS Department, Chair V
Ignatios Souvatzis
Roemerstrasse 164, 53177 Bonn, Germany
Phone: +49 228 73 4316
Email: <ignatios@cs.uni-bonn.de>

Open Source Telecom
David Sugar
218 Louis Ave, 08872 Somerset, USA
Phone: +1 732 302 1554
Email: <dyfet@ostel.com>

Valeriy Ushakov
Email: <uwe@netbsd.org>

Gerald Wilson
Email: <gww@stonehill.org.uk>




