turo Con

29. - 31. October 2004
Karlsruhe/Germany

Conference proceedings
EuroBSDCon 2004

Karlsruhe, Germany
29.-31. Oct. 2004

Proceedings of the 3rd European BSD Conference

Programme Committee:
Jan-Hinrich 'Oskar’ Fessel
Brian Somers
Sam Smith
Wolfgang Zenker

Published by punkt.de GmbH
Editor: Jirgen Egeling

Copyright 2004 by punkt.de GmbH. All rights reserved. This volume is published as a col-
lective work. The rights to the individual papers remain with the respective authors or their
employers.
Some papers did not meet the deadline for inclusion in the printed proceedings. These and
the other papers will be published for the foreseeable future on the conference website at
http://2004.eurobsdcon.org after the conference.

punkt.de GmbH

Vorholzstr. 25

76137 Karlsruhe

Germany

Tel: +49 721 91090
Fax: +49 721 9109 100
Web: http://punkt.de

Contents

Track A Saturday 5
Using Application-Driven...— AnttiKantee 7
NetBSD and handheld platorms — Alistair Crooks, Valeriy Ushakov 17
A portable Packaging System — Alistair Crooks 27
Cross—building packages — Krister Walfridsson 39
Fighting the Lemmings — Martin Husemann 45
But 'm not adeveloper...—Drulavigne 55

Track B Saturday 63
Mac OS X binary compatibilty on NetBSD. ..— Emanuel Dreyfus 65
The flaf filesystem —SorenJorvang oL 81
Integrating ALTQ QoS into FreeBsd — Adrian Penisoara 83
Lightwight FreeBSD package cluster in ajail — Dirk Meyer 85
DHCP: Unexplored Capacities — Yannick Cadin 93
A secure BGP implementation — HenniingBrauer 95

Track A Sunday 108
An Introduction to Sysadmin Training...— HubertFeyrer 109
NetBSD/Desktop: Scalable Workstation Solutions — Jan Schaumann 141
The Challendes of Dynamic Network Interfaces — Brooks Davis 161
NetBSD Status Report — Ignatios Souvatzis 173
A Machine-Independent Port of the SR Language. . .- Ignatios Souvatzis 181
The A-tree — a Simpler, More Efficient B-tree — Alistair Crooks 185

Track B Sunday 202
Integrating Monitoring Data — Christoph Sold 203
FreeSBIE — Stucchi Massimiliano, MatteoRiondato 213
Using Aspect-Oriented Programming. . . — Michael Engel, Bernd Freisleben 219

Handling FreeBSD’s latest firewall semantics. .. — Adrian Penisoara. 221

-

Track A Saturday

Notes:

Using Application-Driven. . . 7

Using Application-Driven Checkpointing for
Hot Spare High Availability

Antti Kantee
<pooka@cubical fi>

Cubical Solutions Ltd.
http://www.cubical.fi/

ABSTRACT

For critical services downtime is not an option. The downtime of the service can be
addressed by replicating the units that provide the service. However, if the session state is
important, it is not enough to simply replicate units: sharing the continuously updated internal
state of the units must also be made possible. If execution can be continued on another unit
after the point-of-failure without any significant loss of state, the unit is said to have a Hot
Spare.

Saving the state of a unit so that it can be restored at a later point in time and space is
known as checkpointing. For the checkpointing approach to be a viable option in interactive
services, it must not disrupt the normal program operation in any way noticeable to the user.

The goal of this work is to present a checkpointing facility which can be used in appli-
cations where checkpointing should and can not disrupt normal program operation. To
accomplish this, the responsibility of taking a checkpoint is left up the application. The
implications are twofold: checkpointing will done at exactly the right time and for exactly the
right set of data, but each application must be individually modified to support checkpointing.
A framework is provided for the application programmer so that it is possible to concentrate
on the important issues when adding Hot Spare capabilities: what to checkpoint and when to
checkpoint. Checkpointing efficiency is then further increased by introducing kernel func-
tionality to support incremental checkpoints.

1. Introduction relevant pieces of the internal application

Hot Spare High Availability support state must be succesfully delivered to the
for an application means that if (when) the spare units over the network at key points
primary unit fails due to a fault in either during execution. In addition to delivering
software or hardware, a reserve unit will the state to a spare unit, the system must
automatically take over the responsibilities have some cluster control mechanism that
of the primary unit. Execution will con- will take the necessary steps to transfer
tinue in the reserve unit with no or insignif- control to a reserve unit when the current
icant loss of internal application state. In a primary unit fails. Once the problems
networking context this means that for Hot involving saving state and restoring state
Spare support to be accomplished, the are solved, the rest is mostly an issue which

£

software professionals tend to call a

Using Application-Driven. . .

SMOP'. Therefore, the bulk of this work
will concentrate on discussing the ideas
involving saving and restoring process
state.

There are already plenty of good
examples on fault tolerance in the world of
computing. A popular example from the
world of hardware is disk RAID. Certain
RAID levels provide protection against data
(state) loss in the case of unit failure. This
is what we are looking for. However, in the
world of software it is difficult to keep state
across unit crashes. Therefore, most entry-
level solutions for fault tolerance only
include support for replacing the broken
processing unit, and give the problem of
keeping state less attention or outright
ignore it. If the unit state at failure-time is
ignored, it is not possible to provide a
seamless user experience across points of
failure.

The act of capturing a process state
for later restoration is known as check-
pointing. Traditionally checkpointing has
played big role in scientific computation,
where the requirements for checkpointing
efficiency and application interruption have
not been high on the list. If checkpointing
is to be used in environments where paus-
ing the application for abitrary periods is
not acceptable, new techniques must be
developed.

One of the reasons for the low effi-
ciency of the methods mentioned above is
that they are implemented below the appli-
cation level and transparent to the applica-
tion. While this means that the application
does not need to worry about checkpoint-
ing, it also means that checkpointing cannot
reach maximum efficiency, since the check-
pointing facility does not know about the
semantic behaviour of the application. This
problem is magnified if the application is
not "self-contained", i.e. it communicates
with the outside world. The solution is to
provide a checkpointing framework for the

! Simple Matter Of Programming

application, and then modify each individ-
ual application to use that framework. This
way checkpointing effiency and accuracy
can be increased to an acceptable level.

In Chapter 2 of this work I will con-
centrate on defining Application-Driven
Checkpointing, and giving a general over-
view of the architecture. Chapter 3 dis-
cusses adapting a simple open-source appli-
cation to the framework. Efficiency of the
framework is discussed in Chapter 4, and
the story closes with conclusions in Chap-
ter 5. This paper will present the architec-
ture very briefly. For a more through dis-
cussion on the subject, the interested reader
is invited to look at my Master’s Thesis [1].

2. Application-Driven Checkpointing

First of all, it should be noted that
there are several components in a process
checkpoint, and they can be divided in dif-
ferent ways [2]. However, I wish to define
a simple division and only separate process
data and metadata. Data involves memory
used by application. This memory is
reserved from the heap, memory reserved
from the stack does not count as data in this
definition (neither does it count as meta-
data). Metadata is all the other state related
to the process, such as structures describing
open files and existing threads. Usually
most information involving metadata is hid-
den from the application e.g. in the kernel.

To record the processor physical
state’, the usual approach is to simply save
the register contents for example by taking
the core dump. However, we can observe
that most programs are structured so that
they have specific worker loops. An exam-
ple of such a worker loop is a function (per-
haps in its own thread) reading input from a
network socket and processing it. In the
usual case it suffices to record the informa-

2 By this [mean the register contents, and
am less interested in the actual electrons run-
ning around.

Using Application-Driven. . .

struct cpt_range {
void *addr;
size_t len;

pid_t cptfork (void) ;

Checkpointing Kernel Interface

ssize_t cptctl(struct cpt_range *ranges,
size t nranges, int op);

tion that the program had a worker loop,
and do a normal function call into the
worker loop (with the correct input data, of
course) during restoration.

The above strategy also takes care of
the difficulties in checkpointing threaded
programs [3], where great care must be
taken to avoid other threads entering a bad
state. Other threads could, for example,
make a syscall between the timeframe the
checkpointing thread decides to checkpoint
and actually makes the checkpoint. A
straightforward restoration from this check-
point would cause invalid return values
from the kernel®>. Solutions such as sus-
pending all threads for checkpointing have
a fair performance hit, especially if check-
pointing is to be attempted often for
increased checkpoint granularity.

2.1. Architectural details

The implementation was carried out
on two different levels. Most of the work is
done by a userspace library (Hot Spare
Library), but of course the work done by
the kernel components is implemented
inside the kernel. Ultimately the applica-
tion does not need the Hot Spare Library at
all, and could make the respective calls
itself, but the idea was to make the applica-
tion programmer be able to concentrate on
the critical issues and get as much support
from the system as possible.

3 No, there are no actual returned values in
this case. That’s why they are funny.

The user library deals with issues
related to capturing and restoring the appli-
cation metadata, reserving checkpoint-safe
memory, and also providing a grand unify-
ing interface, hs cpt(), for taking a
checkpoint.

The kernel side takes care of provid-
ing cheap, atomic and asynchronous (from
the point-of-view of the calling thread and
application) snapshots of the memory area.

2.2. Checkpointing data

On UNIX®systems, the fork() system
call creates a process, which is almost an
exact duplicate of the calling process the
only main difference being the process ID
number. Historically, the fork() call really
did copy the entire address space of a
process when executed. However, this was
mostly wasteful, since fork() is frequently
used in conjugation with the exec() system
call, which replaces the entire address
space with a binary image from the disk.
Therefore a technique called copy-on-write,
or COW for short, was employed in AT&T
System V UNIX. The copy-on-write prop-
erty of fork() is close to what we are look-
ing for: it will give us both asynchronous
checkpointing ability and an atomic snap-
shot of the checkpoint-range.

Incremental checkpointing means
saving only the portions changed from the
previous checkpoint, and provides a cheap
performance boost in nearly every imagin-
able case. Therefore it is desireable to

10

Using Application-Driven. ..

implement support for incremental check-
points. Most userspace solutions employ
mprotect() to deny writing to critical areas
and track modification information with the
help of a SIGSEGV handler [4]. However,
since we are allowed to play in kernel land,
it is possible to avoid jumping between the
kernel and userspace to track modification
information. Modification information can
be tracked for example in the copy-on-write
fault handler or my asking the MMU.
Tracking modifications in the fault handler
would have its advantages, but since the lat-
ter was easier to implement®, it was done
for this work.

Kernel interface for checkpointing data

We must modify the kernel and VM
[5] to support three different operations for
incremental checkpointing to be possible:

¢ Add and remove memory areas which
contains checkpoint data.

+ Take the checkpoint itself.

* Ask the kernel which pages of mem-
ory in checkpoint areas have been
modified since the previous check-
point.

The call sequency for the application
(or actually a programming library) which
wishes to use the interface is approximately
the following:

1. Decide which memory areas contain
data critical enough to be worth check-
pointing. Add those memory areas.

2. Decide it is time to checkpoint. Make
the checkpointing syscall.

2'4. The parent process from cptfork() con-
tinues execution as normal, and makes
all the changes it wants to the check-
point memory areas. They are "pro-
tected" by copy-on-write.

3. The child process queries the kernel
for modified areas.

4 At least for platforms which have an
MMU that keeps this information. The
SPARCvV9 MMU for example does not.

4. The child process writes the changed
memory areas (along with other
checkpoint data, we’ll get to that soon)
to back storage using its method of
choice, e.g. write to file or TCP
socket.

5. The child process exits.

2.3. Checkpointing metadata

For checkpointing metadata a slightly
different approach was taken. Most of the
information related to process metadata is
hidden in the kernel away from the applica-
tion. While we could simply add a kernel
interface to extract the in-kernel informa-
tion for the Hot Spare Library to trasmit
over the network, it would not be a good
idea. The kernel structures, such as vnodes
[6], are very integrally linked to each other.
Attempting to extract and restore them as
opaque data is not possible without creating
a huge mess. To grasp the concept of
checkpointing metadata, thinking of Java
Serializable [7] or Python Pickle [8] may
help.

I will go over one example of captur-
ing and restoring process metadata. The
rest of the descriptions are available in my
thesis [1].

Checkpointing file descriptors

There are several different type of file
descriptors: normal files, pipes, sockets,
crypto descriptors, and so forth. Not all of
them are supported. The seralization
information depends entirely on the type of
file descriptor we wish to serialize. For
example, for a file the important facts are
the filename used to open the descriptor,
the mode it was opened in, and the current
seek offset into the file. None of that infor-
mation applies to a networking socket and
we must provide other routines for it.

The information related to file
descriptors is not static: for example file
offset will constantly change if the file is
accessed. Therefore the library provides an

Using Application-Driven. . .

11

option to "refresh" the information related
to a file descriptor during each checkpoint
by asking the kernel. For a normal file this
would consitute of calling /seek(), while for
networking sockets it would most likely be
a matter of getpeername() and getsock-
name(). As there is a minor cost-penalty
for doing this, it is not done for all file
descriptors, but rather the choice of which
descriptors are critical in this respect is left
up to the application programmer.

Of course there is one huge downside
to querying the information at checkpoint-
time: since the entity doing the checkpoint
and the application itself are not (necessar-
ily) synchronized, the state that gets written
into the checkpoint does not necessarily
reflect the state present in the memory
dump. The application programmer is
encouraged to very carefully think how
important the exact file descriptor state is,
and possibly even take steps to record the
state in the lock-protected checkpoint-area,
where it will be guaranteed to be correct.
However, doing so will probably open a
whole other can-of-worms™, and currently
there is no easy solution to the problem.

3. Adapting the framework

Adapting the checkpointing frame-
work to the all-important game Tetris is
presented next> ®. While the loss of a Tetris
score may not be the most tragic episode
that has hit human history, migrating the
Tetris game to a nearby system when the
original gets (literally) axed makes for a
powerful visual effect.

3 Creating a clustered Tetris solution was
suggested by Marcin Dobrucki, obviously as
a joke, but he should be more careful around
humor impaired people.

6 NetHack was of course considered, but
since it, as most games, always comes with
its own application-driven checkpointing
mechanism (savegames), the redundancy did
not seem worth the effort.

Tetris from the BSDgames package
is a fairly small program. The version
against which this discussion is written can
be found from the NetBSD CVS Reposi-
tory in src/games/tetris with the tag
netbsd-1-6-PATCH002. It constitutes
of less than 2000 lines of code.

The state of the Tetris game can be
broken into the following elements:

* score
* current piece
* next piece

« state (of pieces already placed) on the
board

There are two good choices for checkpoint-
ing places: at the beginning of each cycle
when a new piece appears at the top, or
each time a piece moves. The latter option
introduces much overhead into the game,
and the former would be a natural choice.
But since it can be argued that the latter is
"better" (better granularity), and it does not
kill performance, it was chosen.

The worker loop

The main loop of Tetris does practi-
cally everything from user input monitoring
to moving the piece to checking if the piece
fits to bumping the score. Therefore it
makes a very good candidate to be regis-
tered as the worker function. The only
thing we need to do is take the loop out of
main(), and place it into its own function.
This is done because we need to call the
main loop directly if we wish to do a
restore from a checkpointed situation. If
the program would go through main() also
when restoring from a checkpoint, it would
initialize its runtime state to zero, and
defeat any purpose of Hot Spare check-
pointing.

In addition to moving the main loop
into the worker function, we also move
some screen-related initialization there.
This is done because we need to set up the
screen also on the spare if the program

12

Using Application-Driven. ..

execution is handed over. Normally the
Hot Spare Library provides routines for all
necessary state-saving functionality, but
since it was written with daemons, not
interactive applications, in mind, it does not
provide routines to save screen state.
Nonetheless, this serves as an example of
the fact that when the Hot Spare Library
does not provide the necessary routines, it
is possible for the application to define
them in its own domain.

Finally, the code that takes care of
returning screen setup to a sane state needs
to be moved into the worker function after
the main loop. The spare program has no
knowledge it should fall back to main(),
since the worker function was called
directly from the Hot Spare Library, and
will exit after returning from the worker
function.

Saving state

Since this version of Tetris was writ-
ten in the early 90’s, it was written like
most programs of old: state is kept in the
data segment as global variables. This is
unacceptable for us, since we need to store
critical data in areas which will be included
in the checkpoint.

The task of moving the information
from the data segment to checkpoint-safe
memory is a fairly simple one: we simply
"collect” the state from global scope in the
source module tetris.c, and create
struct tetstate, in which all the
variables essential to the state are placed.
This structure is added to the checkpoint
memory area when Tetris is initially
started. All the references to the state vari-
ables must be fixed to point inside the
checkpoint-safe structure. It can be accom-
plished either by using cheap tricks with
the preprocessor (#define) or by a sim-
ple search-and-replace operation with a text
editor or shell utility. Most of the time tak-
ing the effort to do an actual search-and-
replace pays off and avoids unwanted and

weird side-effects, although the bulk of the
differences may then amount to changes in
variable referencing.

Normally multithreaded programs
avoid using global state and pass the con-
text of the call as a parameter. In this case
the program state will most likely already
be readily contained, and no modifications
such as with Tetris and other older non-
threaded programs should be required.

In addition to the memory and
worker "thread" state, the game registers a
few signal handlers. Although they could
be registered via the hs sigreg() facility,
they are an integral part of the screen setup
code. Since we run that code anyway, the
signals get proper treatment even without
explicitly including them in the checkpoint.

Conclusions

Adapting Tetris from the BSDgames
package for application-driven checkpoint-
ing was a simple job. It was accomplished
in just a few hours time after first looking at
the source code. The factors that amounted
to the ease of checkpointing adaption were
the limited size and instantly clear intuition
on what to checkpoint. The non-threaded
programming approach and consequent
lack of state grouping were the only diffi-
culties encountered.

4. Performance

In this chapter 1 present some key
benchmarks. Since we are interested in the
performance of the checkpointing module
and less interested in the operating system
and network performance, the checkpoint-
ing process does not transmit the check-
points anywhere for restoration. Check-
point data is simply written into
/dev/null. All the tests were run on a
300MHz AMD K6-2. It is not "current"
technology, but this work is not targeted for
any specific machine, so it is a safe choice.

Using Application-Driven. . .

13

Checkpoint Duration - Total Memory Size

Checkpoint time (microseconds)

"ll | 1
I
1
12000 |- 1

X
10000 |- 1/
/

14000 |-

8000

6000

4000

T T T
cptfork() —o—

fork(), no wired memory - —+ -
fork(), wired memory - 1 -
synchronous, local pipe — x —

0 1000 2000 3000

4000
Checkpointable size (kilobytes)

5000 6000 7000 8000

The first test examines how the
checkpointing time from the application
point-of-view is influenced by the amount
of checkpoint-safe memory registered.
This amounts to the time in between calling
hs_cpt() and returning from the function.
Between checkpoints the parent modifies
10% in sets of four contiguous pages and
sleeps for one second.

For taking a synchronous checkpoint
in application context the system was modi-
fied somewhat. Writing the checkpoint to
/dev/null also in the case of a synchro-
nous checkpoint would be unfair, since
transfer speed to the spare is the limiting
factor. For application context synchronous
checkpoints the preferred way is getting the
checkpoint contents as quick as possible
somewhere else, so that the application can
continue with its normal tasks. For bench-
marking purposes I opted to write to a local
pipe, since it is faster than transmitting the
data over the network. In this case the
other end of the pipe just reads data to

empty the pipe buffer, but in real life it
would naturally also take care of making
sure the data reaches the spare units.

The results are what was expected.
When dealing with wired pages, plain
fork() is hideously expensive. This is
because it copies all wired memory to the
child process. As you can see, the results
go "off the scale" fairly early.

Without wiring pages fork() is the
cheaptest alternative from the application
point-of-view. It starts out slightly heavier
base cost than cptfork(), but quickly catches
up and follows an almost constant trend
after that. The difference in base cost can
be accounted to the fact that fork() marks
all regions copy-on-write, while cptfork()
shares most of them. However, the price to
pay for doing a full asynchronous check-
point with fork() is of course the amount of
data to be sent over to the spare.

The cost of doing cptfork() is very
close to linear with an added base cost for

14

Using Application-Driven. ..

Checkpoint time (microseconds)
8000

Checkpoint Duration - Dirty Pages

T

7000 |-
6000
5000
4000
3000
2000 |-

1000 |-

0 [l

' cptfork() —o—

fork(), no wired memory - ¢ -

Dirty Pages (percent)

doing common tasks required when
Jfork()ing. The linear cost can be explained
by having to go through all pages marked
checkpoint-safe and checking them for
modification information before allowing
the parent of the cptfork()ing process to
return.

Taking a synchronous checkpoint by
writing to a pipe starts out about as cheap
as the non-wired fork()ing alternatives, but
exhibits high costs when the checkpoint
size is even slightly increased.

Varying Amount of Dirty Pages

To see how the amount of dirty pages
affects checkpointing cost from the applica-
tion perspective, a test which modifies a
varying number of pages was run. The test
reserved 4MB of memory and did modifi-
cations in sets of four contiguous pages. In
the case where 95% of the pages were mod-
ified, 25 contiguous pages were used
instead to make the test runnable. The

main purpose of this test was to see if it
becomes clearly cheaper to take a full
checkpoint instead of using the cptfork()
approach at some point.

The asynchronous approach exhibits
a clearly linear trend in addition to the cpr-
fork() base-cost. The same can be said
about normal fork(), except that the linear
coefficient is much smaller in the latter
case. I am not totally sure where the linear
coefficient comes from, but my educated
guess is that accessing pages influeces vari-
ous caches in the system. The cptfork()
case takes more performance penalty from
this, because it does more lookups than a
normal fork(). If nearly all pages are modi-
fied, cptfork() is Sms slower than plain
fork(). This difference is significant, since
the longer the checkpoint memory area is
locked, the longer other threads can be
blocked’.

7 Checkpoints are taken with important
areas locked by the application to avoid them
being in a "bad state" in the checkpoint.

Using Application-Driven. . .

15

Analysis of Results

Ultimately we wish to know which
approach is the cheapest for each given sit-
uation. It is clear that application context
checkpointing is not worthwhile unless
there is extremely little data to checkpoint,
perhaps only a page of memory or so®.
Once the checkpoint size gets into the
range of tens of kilobytes and beyond,
asynchronous checkpoints stall the applica-
tion for much less.

While doing full asynchoronous
checkpoints employing fork() is a win from
the point-of-view of the application, that is
only half of the truth. The cost of transfer-
ring the checkpoint to spare units becomes
a huge factor for applications which wish to
register a myriad of memory, but only mod-
ify it seldom. This limits the granularity of
full checkpoints. Available bandwidth will
most likely be saturated by information
which remains the same from one check-
point to another.

Looking at all the graphs presented
in this chapter, it is clear that cptfork() is
the most performant alternative as long as
there is enough memory in the checkpoint
range, and if not too big a portion of that
memory space is modified in between
checkpoints. After reaching a high enough
modification percentage a full checkpoint
becomes cheaper. Unfortunately we do not
know the amount of dirty pages before
making the decision to checkpoint using
cptfork(). After taking a hit from the over-
head of doing cptfork(), it is too late to
change our mind.

We could address the problem pre-
sented in the previous paragraph by record-
ing page modification information already
when the page is modified. Since our
checkpointable memory ranges are marked
copy-on-write, the operating system takes
page faults to copy pages which are being

sAssuming of course small, kilobyte-
sized pages. Megabyte-sized "large pages"
are right out.

modified. In addition to gaining knowledge
on modification statistics before making
any expensive decisions such as cptfork(),
there would be other benefits.

* There would be no need to do a
lookup for all the pages in checkpoint
memory ranges during cptfork(), as
the modification information could be
already recorded in a simple form,
such as a bitmap. This would effec-
tively cut down the checkpoint-time
from O(total pages) to O(pages_mod-
ified).

* The scheme would also work on plat-
forms which do not have page modifi-
cation information in their MMU.

5. Conclusions

This work set out to investigate the
possibility of using a checkpointing
approach for Hot Spare High Availability in
environments where the application is time-
critical and freezing it for an arbitrary
period during execution for taking the
checkpoint is not acceptable.

The key idea in the approach was to
make checkpointing the responsibility of
the application, since it best knows what it
is doing with its state as opposed to an
external facility, which must treat all data
as opaque. The efficiency of the architec-
ture was enhanced by adding a kernel com-
ponent, which serves the application-level
library by providing information on which
pieces (memory pages) have changed since
the last checkpoint.

If the application itself contains vast
amounts of redundant state, using applica-
tion-guided checkpointing to carve out the
necessary bits will increase performance
dramatically. Incremental checkpointing
will enhance performance more and more
as the ratio of modifications between
checkpoints to the entire checkpointable
memory area decreases.

16

Using Application-Driven. ..

The Hot Spare Library was written to
be both portable and flexible. It provides
most of the functionality necessary for
standard applications, but since checkpoint-
ing is application-driven, the application
itself is free to handle anything else it needs
to checkpoint.

The biggest part of the work for
someone who wishes to use an application-
driven scheme is of course adapting the
application. It was shown that for a small
application the work was just a matter of
hours. For a large application, the time
depends greatly on how familiar one is with
the application before starting the modifica-
tion task, and how the application was writ-
ten. The task varies from “trivial” to
“impossible without rewriting the entire
application”, and it is impossible to give an
accurate estimate without knowing the par-
ticular application.

This work did not address the prob-
lem that unfortunately makes the approach
invalid for most network services: migrat-
ing applications which depend on a persis-
tent TCP connection is not possible’.
There are two ways to fix the problem:
either teach the application and protocol
that the connection may be broken if migra-
tion takes place, or modify TCP on both
endpoints to cope with migration. Unfortu-
nately, neither approach is non-intrusive
from several perspectives, and the modifi-
cations are far from trivial, either logisti-
cally or technically.

As a concluding remark it can be said
that the application-driven approach was
found to be a working one, and under the
right circumstances and right software it
can be an extremely attractive option for
providing Hot Spare High Availability.

% [do not know if it is any condolence that
the TCP problem makes just about any
checkpointing approach inapplicable.

References

1.

Antti Kantee, Using Application-
Driven Checkpointing Logic for Hot
Spare High Availability, Master’s
Thesis, Helsinki University of Tech-
nology (September 2004).

Yi-Min Wang, Yennum Huang,
Kiem-Phong Vo, Pi-Yu Chung, and
Chandra Kintala, Checkpointing and
Its Applications, pp. 22-31, 25th
International Symposium on Fault-
Tolerant Computing (June 1995).

William R. Dieter and James E.
Lumpp, Jr., A User-level Checkpoint-
ing Library for POSLX Threads Pro-
grams (1999).

James S. Plank, Micah Beck, Gerry
Kingsley, and Kai Li, Libckpt: Trans-
parent Checkpointing under Unix,
Winter Usenix Conference (January
1995).

C. Cranor, Design and Implementa-
tion of the UVM Virtual Memory Sys-
tem, PhD thesis, Washington Univer-
sity (August 1998).

S. R. Kleiman, Vnodes.: An Architec-
ture for Multiple File System Types in
Sun UNIX, pp. 238-247, Summer
Usenix Conference, Atlanta, GA
(1986).

Sun Microsystems, “java.io Interface
Serializable,” Java2 Platform, Stan-
dard Edition, v1.4.2 API Specifica-
tion.

Guido van Rossum and Fred L.
Drake, Jr., “pickle -- Python object
serialization,” Python Library Refer-
ence.

NetBSD and handheld platorms

17

NetBSD and handheld platforms

Valeriy Ushakov <uwe@NetBSD.org>
Alistair Crooks <agc@NetBSD.org>
The NetBSD Project

Abstract

NetBSD has long been known for its portability to other platforms. The
lower end of this range of platforms has included thin clients, and, most
recently, handheld PCs. These machines are typically powered by a low-power
CPU, and have smaller LCD screens than a laptop, and consequently dissipate
less power. These machines usually use a touch screen and a stylus for a
pointing device, can run for nearly a day on battery power only, and come with
some version of Windows in ROM for an operating system.

This paper discusses a number of issues related to porting NetBSD to
handheld PCs — the challenges, and the parts which are needed, including the
subsystems still to be written. It contrasts the various handheld PC devices on
the market, and looks at Linux support for these devices, as well as Windows
and NetBSD. It also looks at the challenges of handheld and pocket PCs, from
fiting a graphical browser onto a limited size LCD screen, to window
managers designed for mouse-equipped environments, to user interface issues
when no keyboard is present.

Finally, it looks into the future, and discusses what the ultimate geek
gadget PDA would be.

Introduction

The NetBSD operating system has been ported to a large number of processor families
and architectures: computers built around those CPUs range from high-end servers to small
computers like laptops, notebooks, and, now, PDAs, handheld PCs (H/PC) and pocket PCs
(PPC).

There are two aspects to porting NetBSD to a new platform:

e Porting to the new platform itself. This is occasionally referred to as the “Because it's
there” question. There are technical challenges to bringing up an operating system on a
new platform, and these are often the things that spur developers to take this lonely road.

e Once NetBSD has been ported to a new platform, the next challenge is to run NetBSD
on that platform, from porting third-party applications which may only have been
written with Linux and IA32/i386 architecture in mind, to the pure delight of debugging
some of those same applications. However, this is also the stage in which the
proselytizing of the platform, of NetBSD, and of the combination takes place.

At various conferences and trade shows, the handheld platforms have been the ultimate
“geek gadget”, which has gamered a large amount of interest, especially for its size. Of
course, the size, or lack of it, may be the reason for the interest — being able to use on-line
services such as IRC and electronic mail from a handheld computer with a wireless card is a
tremendous selling point, both for the platform and for NetBSD.

18 NetBSD and handheld platorms

Target Platforms

All of the supported platforms are originally designed to run some version of Microsoft
Windows CE. Most future platforms are likely be Windows CE based as well.!

Terminology

Microsoft terminology in this area and their different version numbering schemes are
very confusing. The primary distinction that matters for our paper is:

e H/PC - Handheld PC. Keyboard, half or full size VGA display.
e PPC - Pocket PC. No built-in keyboard, quarter VGA display.

In general, we shall use the term "Personal Digital Assistants" (PDAs) throughout this
paper to cover both HPC and PPC.

Lack of built-in keyboard might prove to be a big problem for standalone interactive use,
unless something like QTopia or GPE is ported. However even PPC can be useful, perhaps in
combination with a third-party package like xscribble (pkgsrc/x11/xscribble) which allows a
user of a touch screen to input characters into X11 applications, using a uni-stroke (graffiti-
like) alphabet — it uses the Xtest extension to allow synthesis of characters as though they had
been typed on a keyboard.

Uses

HPCs are very useful as a mobile Unix terminal — they provide all the nice features of
“big” NetBSD: IPv6, IPSEC, WiFi, SSH, etc... E.g., one of the authors used his Jornada for
aiming a polarized WiFi aerial on a building’s rooftop. Laptop is just too bulky for that.
PPCs, unfortunately, are not usable for this currently (need QTopia/GPE).

PDAs can be used as a development platform - if you develop software for an embedded
platform with limited capabilities you can use NetBSD host as a development, debugging,
and testing machine. This use is probably most important for SuperH-based PDAs, as
“bigger” ARM and MIPS boxes are more easily available. Even for ARM and MIPS it might
be cheaper to buy a handheld then a big machine. Even keyboardless PPC are suitable for
this purpose.

These handhelds can be used as a PDA, bereft of Microsoft Office software (although
Windows CE Office components tend to be simplified and feature-lacking versions of the
traditional Microsoft Office components). Calendar, diary/agenda, spreadsheet, presentation

graphics, etc can all be done by using open source equivalents. Insert a broad hint to pkgsrc
folks here :)

As a musical juke box, an altemative to an iPod or a Creative Nomad, for playing MP3
or ogg files, again using traditional open source software to achieve this (it should be noted
that some of the versions of Windows Media Player on PDAs are burned into ROM, and so
upgrades are not usually an option — and early WMP have problems with VBR on some MP3
tracks).

By using the onboard Infra-red port, or USB 1.1 client, or onboard modem, the PDA can
be used as a GPS receiver, as well as having all of the benefits above.

Booting NetBSD

There are various ways which different operating systems can boot on these devices.
Usually, they will involve installing the alternative operating system onto a secondary storage

! There’s also Symbian OS, but devices based on it are not as widespread. Even the recent sub-notebook from Psion
runs Windows CE.NET. We will not discuss Symbian based devices in this paper.

NetBSD and handheld platorms 19

medium, such as a Compact Flash (CF) card - these are easy to find, have a large capacity,
and are inexpensive; prices have fallen over the last two years.

Typically, HPC and PPC machines have ROM, where the “native” operating system will
reside — this is typically Windows CE. Windows CE executes directly from ROM, thereby
leaving all available RAM free for applications and data. It is only really “booted” after a
hard reset. When suspended, it simply powers down all the devices and only spends a tiny bit
of power on refreshing the RAM.

Some of these machines, such as the iPAQ, have flashable ROMs, whilst others have
non-rewritable ROMs (such as the Jornada 600 and 700 series). Linux takes advantage of
rewritable ROMs, and so it’s possible to flash Linux into the ROM on an iPAQ. At the
present time, NetBSD does not take advantage of this.

The NetBSD boot loader is, therefore, a separate program, and typically resides on
Compact Flash card or some other method of persistent storage, accessed by the native
operating system. This boot loader is then executed under the native operating system. The
following screenshots show hpcboot, a Windows CE program, being used to boot NetBSD on

| \Storage Card2)

s

Figure 1. Selecting the kernel to boot and boot options

The figure above shows the “Kernel” tab of the hpcboot GUI, where the machine model
is selected, the kernel to boot and the type of the root file system are specified, and boot
options that can be entered.

The next figure shows the “Option” dialog, that controls hpcboot operation. The options
selected on this screenshot are good defaults.

Figure 2. Options that control hpcboot operation

NetBSD and handheld platorms

A start |||-Pm007 Buld9’

Figure 3. Output from hpcboot and debuggmg options

Finally, the last tab, “Console”, features a large text area where hpcboot reports gory
details of its progress. There are also some anonymous buttons and checkboxes that are
intended to be used for hpcboot debugging.

When NetBSD boots the Windows CE in your ROM is safe, however all your data,
installed programs, etc will be lost. When NetBSD is shut down, Windows CE boots back as
if after hard reset.

An arrangement that one of the authors finds convenient is as follows:

Partition the CF card into an MSDOS partition, and a NetBSD partition (you need to do
this on a Unix host). Your NetBSD installation will reside in the NetBSD partition of
the CF. More on this later.

After a hard reset (you have already tried to boot NetBSD and lost all your data on the
device already, haven't you? ;), install all the Windows CE programs and drivers that
you need, configure the system to suit your needs (e.g. dialup settings), then do a full
backup. Put that full backup onto the DOS partition of your CF card. Saving another
backup copy somewhere else is a good idea as well. Add your PIM (personal
information manager) data, and then do a PIM-only backup. Put the PIM backup onto
the DOS partition of your CF card as well.

Make sure that you use the Windows CE backup program that is in your ROM! When
NetBSD is shut down, the Windows CE comes up from hard reset and no fancy add-on
backup programs that you have installed are available.

Put the hpcboot.exe onto the DOS partition of the CF — you will need it to boot the
NetBSD.

And the last piece you need on the DOS partition is the NetBSD kernel. Hpcboot can
boot kernels from the UFS partition, but having the kernel on the DOS partition is
convenient when you want to update it, or try out a new kernel — you can write new
kernel to the CF from any operating system, including the Windows CE itself.

So when planning the CF partitioning, you should take into account the space
requirements for the things listed above. It is prudent to make a backup in advance to see how
much space is used. It is advisable to have space for at least a couple of kemnels and a
miniroot image, and to reserve some space for files that you want to move between Windows
and NetBSD. A partition of 16MB should be sufficient.

Installing NetBSD

So how would you install the NetBSD to the CF card? The standard NetBSD system
installer, sysinst, is not yet supported on HPC platforms. Adding HPC support to sysinst is

NetBSD and handheld platorms 21

really a SMOP, but nobody has done the legwork yet. Thus, currently the easiest way is to
use another NetBSD host to do the installation. Hint: your HPC booted with root file system
on NFS qualifies!

If you have an i386 laptop running NetBSD you can connect your CF card to it using
either a USB flash card reader, or a CF to PCMCIA adaptor.

Before we proceed with a detailed walkthrough, here is the outline of the process:

Partition the CF card into DOS and NetBSD partitions (see previous section).
Disklabel the NetBSD partition.

Create DOS and UFS file systems.

Mount both partitions.

Transfer hpcboot and kernel to the DOS file system.

Extract installation sets to the NetBSD file system.

Edit several files in /etc to pre-configure your system.

Move the CF to the HPC and boot!

Installation Walkthrough

This installation walkthrough is based on the transcript taken during a from-scratch
installation of NetBSD/hpcsh.

Here is the CF card that we will do our sample installation onto:

wdc0 at pcmcia0 function 0

atabus2 at wdc0 channel 0

wdl at atabus2 drive 0: <Transcend 256M>

wdl: drive supports l-sector PIO transfers, LBA addressing

wdl: 244 MB, 978 cyl, 16 head, 32 sec, 512 bytes/sect x 500736 sectors
wdl: drive supports PIO mode 4

We start by splitting the CF card into a small DOS partition and a NetBSD partition. It’s
important that the DOS partition comes first. Windows get very confused otherwise.

fdisk -u wdl

Disk: /dev/rwdild

NetBSD disklabel disk geometry:

cylinders: 978, heads: 16, sectors/track: 32 (512 sectors/cylinder)
total sectors: 500736

BIOS disk geometry:
cylinders: 978, heads: 16, sectors/track: 32 (512 sectors/cylinder)
total sectors: 500736

Do you want to change our idea of what BIOS thinks? [n] <enter>

Partition table:
0: Primary 'big' DOS, 16-bit FAT (> 32MB) (sysid 6)
start 32, size 500192 (244 MB, Cyls 0-977), Active
1: <UNUSED>
2: <UNUSED>
3: <UNUSED>
Which partition do you want to change?: [none] 0
The data for partition 0 is:
Primary 'big' DOS, 16-bit FAT (> 32MB) (sysid 6)
start 32, size 500192 (244 MB, Cyls 0-977), Active
sysid: [0..255 default: 6] 1
start: [0..978cyl default: 32, Ocyl, OMB] <enter>
size: [0..978cyl default: 500192, 977cyl, 244MB] 14MB

22 NetBSD and handheld platorms

bootmenu: [] <enter>
The bootselect code is not installed, do you want to install it now? [n] <enter>

Partition table:
0: Primary DOS with 12 bit FAT (sysid 1)
start 32, size 28640 (14 MB, Cyls 0-56), Active
1: <UNUSED>
2: <UNUSED>
3: <UNUSED>
Which partition do you want to change?: [none] 1
The data for partition 1 is:
<UNUSED>
sysid: [0..255 default: 169] <enter>
start: ([0..978cyl default: 28672, 56cyl, 14MB] <enter>
size: [0..922cyl default: 472064, 922cyl, 231MB] <enter>
bootmenu: [] <enters>
The bootselect code is not installed, do you want to install it now? [n] <enter>

Partition table:
0: Primary DOS with 12 bit FAT (sysid 1)
start 32, size 28640 (14 MB, Cyls 0-56), Active
1: NetBSD (sysid 169)
start 28672, size 472064 (231 MB, Cyls 56-978)
2: <UNUSED>
3: <UNUSED>
Which partition do you want to change?: [none] <enter>

We haven't written the MBR back to disk yet. This is your last chance.
Partition table:
0: Primary DOS with 12 bit FAT (sysid 1)
start 32, size 28640 (14 MB, Cyls 0-56), Active
1: NetBSD (sysid 169)
start 28672, size 472064 (231 MB, Cyls 56-978)
2: <UNUSED>
3: <UNUSED>
Should we write new partition table? [n] y
Now that partitions are ready we need to edit the NetBSD disklabel. We start by using
mbrlabel(8) that can update a NetBSD disk label from the Master Boot Record (MBR) label.

mbrlabel wdl

Found MSDOS partition; size 28640 (13 MB), offset 32
skipping existing MSDOS partition at slot e.

Found 4.2BSD partition; size 472064 (230 MB), offset 28672
skipping existing unused partition at slot c.

6 partitions:

size offset fstype [fsize bsize cpg/sgs]
c: 472064 28672 unused 0 0 # (Cyl. 56 - 977)
d: 500736 0 unused 0 0 # (Cyl. 0 - 977)
e: 28640 32 MSDOS # (Cyl. 0*- 55)
f: 472064 28672 4 .2BSD 0] 0 0 # (Cyl. 56 - 977)

Not updating disk label.

As we can see the disklabel is mostly complete, except that the NetBSD partition is
assigned to partition ‘f’. It doesn't make sense to create several UFS partitions (in the
disklabel sense) within the NetBSD MBR partition. In particular, note that we do not create
any swap partitions, as swapping to a CF card will wear it very fast. Let’s change NetBSD
partition letter to ‘a’, as the kernel likes it better that way:

disklabel -e wdl
[rename partition f->a)

NetBSD and handheld platorms 23

disklabel wdl

[...]

6 partitions:

size offset fstype [fsize bsize cpg/sgs]

a: 472064 28672 4.2BSD 0 0 0 # (Cyl. 56 - 977)
C: 472064 28672 unused 0 0 # (Cyl. 56 - 977)
a: 500736 0 unused 0 0 # (Cyl. 0 - 977)
e: 28640 32 MSDOS # (Cyl. 0*- 55)

Now we format the two partitions we have just created:

newfs mados wdle
/dev/rwdle: 28584 sectors in 3573 FAT12 clusters (4096 bytes/cluster)
MBR type: 1
bps=512 spc=8 res=1 nft=2 rde=512 sec=28640 mid=0xf8 spf=11 spt=32 hds=16 hid=32
newfs wdla
/dev/rwdla: 230.5MB (472064 sectors) block size 8192, fragment size 1024
using 6 cylinder groups of 38.42MB, 4518 blks, 9472 incdes.
super-block backups (for fsck -b #) at:
[...]

Now the CF card is formatted, but is still completely empty. We will mount the freshly-
formatted file systems and will start filling them with contents. In the examples below “...”
stands for the directory with release sets (the directory you specified as an argument to the -R

flag of the build. sh script if you did the build yourself). The examples below uses “hpcsh”.

Important: make sure you mount the DOS file system with the -1 option (see BUGS in
mount_msdos(8)).

mount -o softdep /dev/wdla /mnt
mount -o -1 /dev/wdle /mnt2

We will start with the DOS file system. As we said above, we want to put hpcboot.exe
onto it:

cp .../hpcsh/installation/hpcboot-sh3.exe /mnt2/hpcboot.exe

and the NetBSD kemnel:

tar -x -p -z -f .../hpecsh/binary/sets/kern-GENERIC.tgz -C /mnt2

The hpcboot.exe boot program can boot kernels from UFS, so you can skip this step, and
extract the kernel to /mnt instead (where your NetBSD root partition of the CF card is
mounted).

For now we are done with the DOS partition.

Next we will unpack the NetBSD release sets. The simple loop below extracts all the
sets except the kernel (‘k’) and X11 (‘x’). We already extracted the kernel to the DOS
partition, so you always want to skip ‘k*’ sets. As for the X11, if you have a 512MB CF, you
can as well extract them.

for £ in .../hpcsh/binary/sets/[“kx]*.tgz; do
> tar -x -p -z -f $f -C /mnt
> done
With your CF now fully populated all that remains is some final touches to system
configuration.

We create a mount point for the DOS partition:

cd /mnt
mkdir cf

NetBSD and handheld platorms

And if you have put the kernel on the DOS partition (as we did in the example above),
you create a symlink to the kemnel. Strictly speaking, it's not necessary. NetBSD now uses
ksyms(4), so programs that traditionally needed access to the NetBSD kernel image to parse
its symbol table now use /dev/ksyms.

1n -8 cf/netbsd
Fix your localtime link:

cd /mnt/etc
rm localtime
1ln ../usr/share/zoneinfo/Europe/Moscow localtime
Edit fstab(5). We only have two partitions to add. Note that we mount the root file
system with ‘noatime’ and ‘nodevmtime’ to reduce CF wear.

cd /mnt/etc
vi fstab

[...]
cat fstab
/dev/wd0a / ffs rw,noatime,nodevmtime
/dev/wdOe /cf msdos -1, rw
Edit rc.conf(5):

c¢d /mnt/etc

vi rc.conf

[...]

sed -n '/“rc_configured/, $p' rc.conf
rc_configured=YES

Add local overrides below
#

hostname="nada"
critical_filesystems_local="/cf S$critical filesystems_local"

no_swap=YES
savecore=NO

Here /cf is added to critical file systems so that /netbsd symlink works in case
someone needs it, but as mentioned above, it’s not strictly necessary any more. Also, if you
put the kernel to UFS, you don’t need that line either.

With no_swap=YES we tell that we intentionally configured the system without swap.
Also, savecore is disabled as we don’t have wdob anyway, so avoid complains.

Now check /etc/ttys, thought the defaults should be sane.
cd /mnt/etc

vi ttys
.l

And finally populate /dev. If you are ok with 1000+ devices in /dev, you can just run:
cd /mnt/dev
sh MAKEDEV all

But if you want to avoid all those device nodes for raid and multiport serial cards you
can spent just a little bit more time and create only those device nodes that you need. The
example below is a baseline that is enough to give you a working system. Add more devices
according to your needs.

cd /mnt/dev

NetBSD and handheld platorms 25

sh MAKEDEV std

sh MAKEDEV random systrace lkm clockctl

sh MAKEDEV wscons

sh MAKEDEV apm

sh MAKEDEV scifo0 # <- sh3 specific serial
sh MAKEDEV ptm pty0 tty0 ttyl

sh MAKEDEV atabus0 atabusl wd0 wdl

sh MAKEDEV bpf0 bpfl

Congratulations! At this point your CF card is ready. You can plug it into you HPC and
boot from it into multiuser.

3 H H RN

Future Work

There are still a number of areas in which the handheld and pocket PC support within
NetBSD can be further improved.

® The sound drivers need work — whilst we have VoIP and softphone capabilities within
kphone and other packages, the sound drivers could do with an overhaul.

¢ Support for a windowing environment other than X would be beneficial. Qt/Embedded,
Qtopia or GPE or a similar solution would be attractive to some PDA manufacturers

* Microsoft’s Windows environments have set the standard for integrated applications,
such as Microsoft Office, on PDAs. Whilst Open Office or Star Office is probably too
large to reside even on CF, and to run within acceptable limits on a PDA, it is still
possible to use other open source applications for the same functions

e Wide-area communications would benefit from better 3G, GPRS, and soft modem
support

e Java support in PDAs is becoming an increasing factor — whilst Sun’s JDK (versions 1.3
and 1.4) have been ported to 1386 and SPARC platforms, there is little support for low-
power CPUs and architectures in the standard JDK, although it is almost definitely too
large and resource-hungry to fit on a PDA. Whilst there are many open-source Java
Virtual machines in existence, such as Wonka, kaffe and sablevm, few have the
Windowing Toolkit support to make them attractive propositions for devices with
limited input options, and limited screen area. Sun’s J2ME is a possibility, more work
needs to be done in this area.

The Ultimate Geek PDA

It is interesting to predict what the ultimate geek PDA will look like in a few years. We
are seeing PDAs emerge from Japan right now with 2.1 inch screens, yet with VGA
resolution. Much has emerged in this area over the last six months, and it is expected that this
trend will continue. So it looks like the screen real-estate problem may be being addressed.

Input to the PDA remains a problem. It might be possible that voice recognition will
gain ground in the next few years, rendering hunt-and-peck stylus input obsolete. Input is
probably the most tortuous aspect to using a PDA these days.

Compact Flash cards may increase in size, and may also decrease in price, allowing the
operating system to do more, and for applications to store more data.

Battery life may need to improve, and we may see more takeup, especially in Europe, of
services more tightly integrated with what has been viewed as the telephone company
domain. Indeed, this crossover into the realm of mobile telephone handsets has some
interesting possibilities, and there is a lot of movement in this area.

The consolidation of a number of personal devices — pager, mobile telephone, PDA —
into one PDA, Internet-enabled through 3G or GPRS, is an attractive possibility to a number
of manufacturers, service providers and software vendors.

26 NetBSD and handheld platorms

Conclusion

Handheld PCs and pocket PCs present a number of challenges for users — their size is
what makes them appealing, and yet it is also the cause of some of the major human factors
problems, most notably screen real-estate and keyboard and mouse input. Whilst NetBSD can
be installed and will run very nicely on such machines, there is a certain amount of future
work which needs to be done using NetBSD on these platforms to make the experience even
better. These PDAs are not expected to be compute engines — their appeal lies in their
portability and size. Cross-building of the operating system and the windowing system is
obviously a necessary pre-requisite for developing with PDAs, and NetBSD has these
features already. Cross-building of third-party applications for PDAs is also needed — this
aspect has been addressed in other papers.

A portable Packaging System 27

A Portable Packaging System

Alistair Crooks, The NetBSD Project
29th September 2004

Abstract

This paper explains the needs for a portable packaging system, and the approach that
was taken by the NetBSD pkgsrc team in order first to port their packaging system
to another platform. Having learned from this approach, a different and more scal-
able approach was tried, and has had tremendous benefits. This scalable approach is
explained, along with the problems and solutions in supporting multiple different op-
erating systems, and finally the results of this approach are examined and explained.

1 The Need for Portability

A packaging system is an essential part of an architect or administrator’s infrastruc-
ture, in order to manage the myriad pieces of third-party software that abound. The
proliferation of this software is good, but managing a network of even 100 machines
in a secure and professional manner can take a huge amount of time. To ameliorate
the problems, administrators tend to work with what they know - learning how to work
new systems has never been high on anyone’s list of things to achieve.

However, even in 1999, the benefits of using an existing packaging system were
recognised - to leverage others’ work to keep packages up to date with the latest stable
versions, and to use the packaging tools to provide a consistent interface for adminis-
trators, and to provide a security vulnerability advisory service.

1.1 An overview of pkgsrc

Before a piece of third-party software can be installed on any system, a number of steps
must take place:

1. the distribution files, usually in the form of a gzipped or bzip2ed tar file, must be
downloaded

2. its integrity is checked against an SHA1 digest stored in the pkgsrc hierarchy

3. any pre-requisite software is also checked to see that a sufficiently up-to-date
version is present

28 A portable Packaging System

4. the source is extracted from the distribution files
. any patches necessary are applied, using patch(1)

5
6. the software is configured
7. the software is built

8

. the software is installed

Obviously, most of this work is done by shell commands, driven by a large Makefile,
and using standard POSIX utilities. pkgsrc automates this process, ensuring that any
pre-requisite dependencies are installed and available.

The infrastructure required for pkgsrc itself is a set of packaging tools, collectively
referred to as the pkg install utilities:

o pkg create registers all the files, links, directories pertaining to a package - this
is done at package install time.

o Binary packages of a package installed on a system can be created, either by
using pkg_create, or by using a supplementary package called pkg_tarup.

e pkg add can be used to install a binary package - it can be given a URL, and
pkg_add will download a binary package. pkg_add also has been enhanced to
use digital signatures of binary packages, if available, to verify the contents of
the binary package.

o pkg delete will delete a package, and the corresponding files from the file sys-
tem. pkg_delete will calculate an MD5 digest of the file it is about to delete, and
will refuse to delete the file if it does not have the same digest as when it was
installed.

o pkg_info shows information on the packages that are installed on a system, or
gathered together in a separate place

e pkg admin performs various administrative tasks
There are also a number of standard NetBSD utilities which are needed:
e bmake(1) - the NetBSD make(1) utility
o tnftp(1) - the NetBSD ftp(1) client, used to download distribution files

e digest(1) - a small program to calculate message digests (this was added subse-
quent to the use of Zoularis)

o pax(1) - the portable archiving tool
o mtree(8) - a tool to create and manage directory hierarchies
e sed(1) - the stream editor

e pkg install(]) - the NetBSD package management tools

A portable Packaging System 29

1.2 Security

A benefit of using a standard third-party packaging system such as pkgsrc is that secu-
rity vulnerabilities in third-party software can be notified to users and administrators of
systems automatically. The administrator can then act to mitigate or remove the effects
of an intrusion or exploit via the vulnerable package.

Having this available across a range operating systems is another substantial benefit
- for more information, see the pkgsrc/security/audit-packages package.

2 Porting the Infrastructure

2.1 The First Approach - Zoularis

NetBSD’s pkgsrc [pkgsrc2004] grew out of [Freebsd2004] in 1997, and was cus-
tomised for NetBSD’s immediate needs.
These included

o NetBSD platform independence
o and ELF/a.out agnosticism

e and went on to include deterministic package version number comparison, and
many others.

There was considerable pressure on the NetBSD pkgsrc team to port their software
to other operating systems - primarily Solaris, but also Linux and others - and this
was achieved in 1999 by using a heavy compatibility layer for functionality which was
missing in the native operating system. The version of Solaris which was used as the
target at that time was 2.6, which did not have such functionality as

o strlcpy(3)
¢ snprintf(3)
o getfsent(3) etc.

Christos Zoulas had done this work already, and so the compatibility layer was called
Zoularis.

Zoularis itself was a compatibility layer on top of the native operating system. It
provided the extra functionality that was missing from the native libc, and allowed var-
ious NetBSD utilities to be built, and these could then be used to manipulate packages.
Zoularis had to be made into a binary package, and that binary package had to be in-
stalled on every system that used binary packages (since they were built with Zoularis
as a pre-requisite dependency).

At the same time, the main Makefile which defines the way that packages are built,
and which provides all the definitions and targets, was modified to support Solaris.
Usually this was by means of such statements as

.if ${oPSYS} == “Suncs”

30 A portable Packaging System

One of the main problems was that of the PLIST, which is a file containing the list
of files which make up the binary package. pkgsrc already manipulated these PLISTs
to support manual pages being gzipped or not. On different operating systems, the
package would sometimes install different files, and so the PLIST had to be manipu-
lated accordingly. This was almost always the case with packages which used imake in
their build process - manual pages became installed with different suffixes on different
operating systems.

Another set of packages that quickly showed itself as being different was those
which used libtool. Standard Solaris semantics at that time was to create ELF shared
libraries, with 3 numeric suffixes. The PLISTs in pkgsrc had all been written for
NetBSD’s predominantly a.out shared libraries, which commonly used 2 numeric suf-
fixes. Clearly some manipulation of the PLISTs was necessary, as well as modifications
to libtool to create shared libraries with 2 numeric suffixes on Solaris. Later still, more
manipulation was necessary for Darwin’s .dylib libraries.

Zoularis itself was built using a shell script, operating on a checked out version of
the NetBSD source tree (for the NetBSD libc functionality, for libedit, and for tnftp,
mitree, tar, the pkg_install tools and the other necessary utilities).

It was clear that Zoularis was one solution, and worked very well in practice. What
was also clear was that there may well be less intrusive, more lightweight solutions to
portable packaging systems.

2.2 Older and Wiser - the GNU autoconf approach

When the request came to the pkgsrc team to port pkgsrc to Darwin, it had become
obvious that a new approach was needed. One of the reasons for this is that the only
Darwin machine available at the time was located in Atlanta, Georgia at the end of a
fairly thin pipe, the engineer doing the porting was in London, UK; and downloading
megabytes of NetBSD source over a thin pipe was not the best approach. Zoularis
itself was heavily dependent on the NetBSD sources - it used NetBSD header files, and
source files from NetBSD’s libc, and the list of files needed to compile Zoularis became
long and unwieldy. Binary distributions of Zoularis were made available, but they, too,
were dependent on NetBSD’s libc version. The size of the NetBSD source code at that
time was just over 500 MB, and so it was not a particularly practical proposition to port
Zoularis to an existing, known-good platform.

2.2.1 The pkgsrc tools

The first step in the new approach was to provide autoconf-ed versions of all the tools
needed by the packaging system. This could even mean that cross-compiling and
cross-bootstrapping of a pkgsrc environment could be done. The tools which are GNU
autoconf-ed are outlined in section 1.1.

Up until now, pkgsrc has managed to use awk scripts which do not contain any
GNU-awk specific extensions, and so there has not been a need to provide a portable
version of awk(1). However, more configuration and build scripts are using awk over
time, and so it is envisioned that we will eventually provide a version of awk, with

A portable Packaging System 31

GNU extensions, that is appropriately-licensed, but will be able to deal with gawk
extensions.

2.2.2 The pkgsrc Infrastructure

The next step was to examine the pkgsrc system itself. Over time, a lot of the support
in the main infrastructure had grown machine-dependent .ifdefs (NetBSD make(1)’s
equivalent of the C preprocessor’s #ifdef, and roughly analogous to gmake’s “ifeq™),
and these needed to be excised. To do that, OS-specific definitions files were used,
which were sourced by make(1) at run-time. So we now have

o defs. AIX.mk

o defs.BSDOS.mk
o defs.Darwin.mk

o defs.FreeBSD.mk
o defs.IRIX.mk

o defs.Interix.mk

o defs.Linux.mk

o defs.NetBSD.mk
¢ defs.OpenBSD.mk
o defs.SunOS.mk

e defs.Unixware.mk

whilst more - HP/UX, the Hurd, Digital Unix (Tru64) and UWIN - are planned.

2.3 Binary Packages

Most NetBSD users currently build their own packages from source, although we ex-
pect that to change over time to be more akin to the situation which is prevalent in the
GNU/Linux world, where binary packages are the norm, and people rarely veer from
the straight and narrow compiled-in defaults. Even when this does become the norm in
the BSD world, some challenges remain:

e package versioning
¢ library incompatibilities
¢ tools unpacking one package built for another architecture or operating system

To address these issues, a number of different approaches have been tried:

32

A portable Packaging System

o ‘“package versioning” is a problem that applies when an attempt is made to in-
stall two conflicting packages at any one time. This is a problem for every pack-
aging system, not just pkgsrc, and has been addressed in a number of ways:
[Stow2004], [Depot2004] and in package views [Crooks2002].

e library incompatibilities are related to the package versioning problem - if the
ABI of a shared library is changed, by convention software authors bump the
major version number of a shared library. Packaging systems which allow one
package which uses the old ABI to use the new ABI let down their users - the
tool will fail to function properly, and there may be knock-on effects, with other
shared library needing to have their version numbers bumped. This is addressed
in RedHat’s versioning system via a PROVIDES and REQUIRES form of ex-
port/import information. pkgsrc has adopted this in its build information, and
this may be used in future to determine ABI compatibility.

¢ modifications have had to be made to the NetBSD packaging tools to stop naive
extraction of a package built for a different architecture

3 Portability between Operating Systems

3.1 Differences between native tools

It was found very early on that some of the things in the Open Source world that we take
for granted are simply not available on other operating systems. There are two obvious
approaches to it - firstly, to work around it, and code to the lowest common denomina-
tor, or, secondly, to provide the open source tools in a proprietary world. Whilst we had
gone down the second route using a “broad stroke” approach with Zoularis, we thought
it was still a superior approach to programming to the lowest common denominator.

With Solaris, we found that there were many things that we had to use - the POSIX
XPG4 utilities that were available in /ust/xpg4/bin were necessary to have some hope
of using modern shell and other constructs - and this theme extended itself further as
we ported pkgsrc to more and more platforms.

In total, to obtain consistency across operating systems, it’s necessary to use tools
which have a common and well-specified interface. For us, this means POSIX and
XPG4. In practice, this is still not enough - there are differences between Solaris’s
version of In(1) and almost everyone else’s In(1), when given a command line of “In -fs
filel file2”. NetBSD and other operating systems will unlink(2) the “file2” file system
entry before attempting to create the symbolic link, whilst Solaris’s will attempt the
command but will fail, and just not report an error to the caller. The solution in this
case, unfortunately, is to do a sweep of pkgsrc and all the package Makefiles in the
hierarchy for any occurrences of “In -fs” or “In -sf”” and put an explicit “rm -f” before
the symbolic link is attempted.

The open source operating systems use either GNU or BSD utilities - to abstract
away the differences for each package, a “tools.mk” file was created, which will au-
tomatically add a build dependency on GNU awk if a package needs it to build, and
the platform does not provide it natively. (Adding a build dependency means that the

A portable Packaging System 33

GNU awk package would be built and installed, if not already present, as part of the
pre-requisite checking during a package’s build).

3.2 Platform-independent Infrastructure

The main “bsd.pkg.mk” file, which is the main file included by every package Make-
file, has no platform-specific “.if” statements in it. A similar scheme to the GNU
autoconfiguration mechanism has been used, where the desired feature is defined in the
platform-specific files, and then the platform-independent files test for that definition.

This has many advantages, not least amongst them the ability to support many
operating systems, often with no changes to any of the platform-independent files.

pkgsrc has a single file called “bsd.prefs.mk” which will set all the default values
for make(1) definitions, including setting any command line options, and any options
specified in /etc/mk.conf. Sourcing “bsd.prefs.mk” in a package Makefile also has the
effect of making various convenience definitions, such as ${OPSYS}, available.

3.3 Inventories and shared libraries

At present, pkgsrc uses static PLISTs - these are packing lists, or inventories, of the
files associated with the package. These PLIST files are distributed with pkgsrc it-
self. (The last release of pkgsrc, pkgsrc-2004Q3, includes modifications for pkgviews,
which is a means of having multiple “conflicting” packages installed at any one time
- see [Crooks2002]. Package views supports dynamic packing lists, so that PLIST
manipulation is no longer a problem).

A lot of packages provide shared libraries, and other packages can link these li-
braries in at compile-time or run-time.

Different operating systems have different formats for shared libraries:

e Darwin (Mac OS X) uses a dylib name for its shared libraries
e AIX uses a “lib.a” name for its shared libraries

e a.out libraries on older NetBSD systems and OpenBSD have different naming
conventions to ELF libraries used by the same operating system

o Interix has some interesting semantics for shared objects and dynamically-linked
libraries

The PLISTs in pkgsrc have all been written to use the ELF shared object name, and
libtool has been modified to produce shared libraries which correspond to the same
naming convention. For each operating system, at install time, a check is made for
the format of shared library. If the platform does not support shared libraries, all of
the dynamically linked library names are removed form the PLIST. If an a.out library
format is used on the platform, the PLIST is manipulated to include simply the “.a”
form of the library. A similar manipulation takes place for AIX, and Darwin.

In addition, the PLISTs have all been modified to check for “.la” archives, if
LIBTOOLIZE PLIST is set, and to generate the appropriate PLIST entries for shared

34 A portable Packaging System

objects and libtool archives. This means that a single unified PLIST can be used across
multiple operating systems with different shared object names and semantics.

3.4 Manual Pages

In a similar manner to shared libraries, manual pages have different characteristics
between operating systems. Some always install pre-formatted manual pages with a
*.0” suffix, others include a letter suffix to denote the subsystem being used. pkgsrc
recognises the operating system being used, and manipulates the PLIST accordingly.

3.5 Packages Specific to One Architecture or Operating System

There are times when packages, often third-party binary packages, are specific to one
version of the operating system. In cases like these, a build should not take place if the
relevant criteria are not fulfilled. pkgsrc uses a triple:

(Operating System, Architecture, Version)

to determine whether or not a package can be built and used. The triples are attached to
ONLY_FOR_PLATFORM and NOT FOR_PLATFORM definitions in the package’s
Makefile in the pkgsrc hierarchy, and can be specified multiple times for multiple ver-
sions or platforms.

This example is taken from the pkgsrc/net/gkrellm-wireless platform:

ONLY_FOR_PLATFORM= *BSD-*-* Linux-*-*
and this one is taken from the pkgsrc/net/hping Makefile

NOT_FOR_PLATFORM= NetBSD-0.* NetBSD-1.[0-4]*

3.6 Selecting the correct headers and libraries

One of the situations that arose fairly early on was the situation where a package was
installed on the system, and a different version of that package was needed to build, or
that a system library should always be used in preference to a library installed via the
packaging system. To illustrate this problem, consider a build machine where ncurses
is installed - by default a number of packages will detect ncurses’s presence in ${LO-
CALSRC} via the GNU configure scripts, and build and link with ncurses. This may
not be wanted - ncurses is quite a large package, and to proscribe its installation in a
binary package when all that is wanted is curses functionality is to ensure that ncurses
will be installed on every machine.

The buildlink framework was introduced by Johnny Lam as a means of making sure
that a package being built was compiled with the right header files, and linked with the
right libraries, no matter what libraries and headers were installed on a machine. This
is done by populating the desired headers and libraries into the build framework in their
own hierarchy, and then convincing the build framework to search that hierarchy before
any existing system ones.

A portable Packaging System 35

The initial buildlink implementation worked well, but had some flaws - each occur-
rence of /usr/local was caught by the infrastructure and converted to be the buildlink
hierarchy, which did not work very well for all cases, especially when installing some
files into the regular destination, still containing references to the intermediate buildlink
hierarchy.

Buildlink2 was written to address these problems, and involves the extension of
this idea to provide wrapper scripts around cc(1), as(1), etc. These scripts fixup the
necessary paths and then hand off the correct paths to the real tools. This still has
some problems, which are especially relevant here, and buildlink3 has been written to
address these. It also includes portability enhancements, which is the reason for its
mention here.

Originally, Zoularis mandated gcc as the compiler of choice. When the autoconf-ed
tools were introduced, there was no longer any reason to mandate gcc - different com-
pilers could be used, such as the Sun Pro compiler. The trouble with using alternative
compilers is that the options are not the same - -W1,-R${LIBDIR}/lib will do exactly
what you expect it to do with a gcc/GNU 1d combination - a different construction must
be used for the Sun Pro compiler.

Buildlink3 extends the abstraction a bit further - a cc script is provided, and the
script is called with the normal gcc arguments. If the compiler being used is actually
the Sun Pro compiler, then the arguments are fixed up (as well as the paths), in order to
provide portability. The same is true for the MIPS pro compilers, and other platform-
specific proprietary compilers.

An additional use of buildlink is to ensure that all necessary pre-requisites have
been specified in the package Makefile. The way that buildlink3 works is to create bin,
include and lib directories inside the ${WRKDIR} - where the package is being built
- and to populate those directories with symbolic links to the utilities, header files, and
libraries which it will need. The path in the environment is then modified to search the
buildlink directories first. Some of the build utilities are invoked via wrapper scripts,
which massage the arguments as necessary, making every compiler appear to take the
same arguments as gcc, for example. Additional steps are taken to remove all traces
to buildlinked files on package installation. If a utility or library is not found, then
the package will not build correctly, and so all necessary pre-requisites are found at
package compile time.

In practice, buildlink3 provides a tremendously valuable abstraction, since most
open source software assumes gcc to be the compiler.

3.7 GNU config.* files

Packages will often include their own config.guess and config.sub files, as part of their
own GNU autoconfiguration mechanism. With old packages, these files can be con-
siderably out of date. pkgsrc has a means of overriding these files within a package,
so that, even if a package has no means of configuring itself for NetBSD/sh5 (it is un-
likely that the package authors will have even heard of such an architecture or operating
system), the package will still be able to be configured appropriately on that platform.

36 A portable Packaging System

3.8 Native or Packaged Software

Occasionally, an operating system will come with certain utilities as standard, whilst
such a facility may only be available as a third-party package on other platforms.
As part of the buildlink work, this whole area has been the target of some abstrac-
tions, and this has meant that the whole question of “native versus package” is moot.
If the package being built is already part of the native operating system, by default,
pkgsrc will prefer it to the packaged version. This can be changed on a package-by-
package basis, or as a complete entity.

o the PREFER_PKGSRC and PREFER_NATIVE definitions can be set to the
names of a number of packages

e the PREFER_PKGSRC and PREFER_NATIVE definitions can also be set to
“yes” or “no” values.

Preferences are determined by the most specific instance of the package in either PRE-
FER_PKGSRC or PREFER NATIVE. If a package is specified in neither or in both
variables, then PREFER_PKGSRC takes precedence over PREFER_NATIVE.

3.9 Platform-dependent definitions

Having reviewed a number of package Makefiles, we found that it was often the case
that we were setting a number of compiler flags in an operating system-dependent
manner. Typical package Makefiles would look like:

.include *../../mk/bsd.prefs.mk”

.if ${OPSYS} == “Sun0s”
LIBS+= -1lnsl -lsocket
.endif

and that was changed to support
LIBS.SunOS+= -lnsl -lsocket

This example was taken from the pkgsrc/net/jwhois package Makefile.

4 Related Work

The Solarpack project grew out of some work done by Julien Letissier for Sun in 2001,
looked a number of different packaging systems, and ended up choosing pkgsrc. Over
summer 2001, various packaging systems were examined, and pkgsrc was eventually
selected as the packaging system of choice - one of the early attempts was released as
[solarpack2002].

[fink2004] wants to bring the full world of Unix Open Source software to Darwin
and Mac OS X, using Debian tools like dpkg.

10

A portable Packaging System 37

There was a fledgeling project called OpenPackages which also used the NetBSD
packaging tools as its base, but it appears that this project is no longer being actively
developed.

5 Future Work

The NetBSD project continues to expand and develop the NetBSD packages collection.
In December 2003, a release branch of the CVS repository was created, the branch
named “pkgsrc-2003Q4”. Since then, a branch has been “cut” every three months, and
it is intended that future releases will take place at regular three month intervals.

In order to enhance portability using buildlink3, the buildlink3 infrastructure was
merged to the pkgsrc branch prior to the branch being created - we learned from previ-
ous CVS branches that many commits were made by the team after a branch had been
created, and that the infrastrcuture needed to be in place prior to branching so that any
subsequent branch could better be maintained.

It is expected that Sun will use some form of pkgsrc as their packaging system of
choice for Solaris, starting with the next release.

Further platforms will be added to pkgsrc over the next few months - patches have
already been received, and are stored in the NetBSD GNATS database, for HP/UX and
GNU/Hurd. There are also modifications to support Tru64 both in GNATS and avail-
able through the NetBSD tech-pkg mailing list archives. The problem with providing
support for extra platforms is that pkgsrc developers do not, themselves, have access to
any hardware or simulators needed to run the operating system in question.

6 Benefits of a Portable Infrastructure
There are a number of benefits which accrue to a portable infrastructure:
» leverage the work of others in porting the software
» leverage the work of others in maintaining the software
¢ using standard means of security vulnerability notification and fixing

 using standard tools across a range of different machines, with the same interface
and behaviour
References

[Stow2004] http://www.gnu.org/software/stow/stow.html
[Depot2004] http://asg.web.cmu.edu/depot/

[Crooks2002] Package Views - a more flexible structure for third-party software,
Proceedings of the European BSD Conference, 2002, Amsterdam

11

38 A portable Packaging System

[pkgsrc2004] http://www.pkgsrc.org/
[solarpack2002] http://solarpack.sourceforge.net/
[fink2004] http://fink.sourceforge.net/
[Freebsd2004] http://www.freebsd.org/ports/

12

Cross-building packages 39

Cross-building packages

Krister Walfridsson
<kristerw@netbsd.org>

29th September 2004

Abstract
It is often desirable to cross-build software, but most software packages have
issues in their build process that needs to be corrected before it can be done.
This paper describes a mechanism that automatically works around the issues,
as implemented in the context of the NetBSD pkgsrc.

1 The basic idea

NetBSD runs on a wide range of architectures, and that cause several problems for the
pkgsrc developers, since it is hard to test the packages on all architectures, or make
the binary packages available for all of them.

People interested in binary packages often suggest introducing cross-compilation in
pkgsrc. Their reasoning is usually that the GNU autoconf-generated configure scripts
are designed to be used in cross-compiling environments, so at least the autoconf-
using packages could be made cross-buildable. They are correct about the autoconf
technology, but it is often not used in a cross-friendly way, so most packages would
need modifications anyway. And doing even small changes to the 5000+ packages in
pkgsrc is a daunting, and error prone, task.

One other approach is to build the packages in an emulator. This produces exactly
the same binary packages that would have been built on the real hardware, without
any need of modifying the packages. But this approach is slow (although building the
package in an emulator running on modern hardware may be faster than building the
package on the real machine for some of the older architectures...) There is, however,
no need to emulate the complete hardware and operating system — only what is needed
to build the packages. In particular, kernel mode does not need to be emulated, since
the programs will not see any difference if the emulator does the equivalent action
natively. This “as-is” rule can be applied on an even higher level: it is not necessary
to run a program emulated if exactly the same result can be obtained by other means.
For example, if the emulated environment tries to run

/bin/echo "Hello world!"

then it is not necessary to run /bin/echo emulated, since exactly the same result will
be obtained (but much faster!) by running the command natively. And there is no
need for the emulator to emulate running gcc when it can run a cross-compiler instead.

This makes it possible to cross-build packages relatively efficiently without doing any
changes to the package. In fact, many packages build without emulating any program
at all (more than possibly small test programs during configuration, but those are
usually small enough that it only takes a couple of seconds).

There are however some packages that builds too slowly using this method, and
those need to be modified (although it should be noted that they usually need less

Cross—building packages

modifications than would have been the case for traditional cross-building methods).
Experience with an actual implementation of these ideas shows that less than 1% of
the packages need this kind of change in order to build efficiently.

The rest of this paper describes the implementation of these ideas.

2 How to build packages in pkgsrc

The NetBSD pkgsrc is a framework for building and managing third party software
on a variety of operating systems (see http://www.pkgsrc.org/ for a description of
its features and inner working). For the rest of this paper it is enough to know that
building a binary package (e.g. GNU Emacs) suitable for installing on other systems
is as easy as

% cd pkgsrc/editors/emacs
% make package

This will fetch the source code (using ftp or http), apply pkgsrc specific patches, build
the package, run tests to see that it works (if the original source code distribution
includes such tests), and tar it up to a binary package.

Pkgsrc does also have a script to build all packages. This mechanism is most often
used to find packages that have build problems, or to build the full set of binary
packages for download from the NetBSD ftp. This “bulk build” is run by

% cd pkgsrc
% sh mk/bulk/build

The build script usually build only the packages that has been updated since the last
run, and the packages that depends on them.

3 How to cross-build packages

The main goal for the cross-building framework has been to make it as easy to use
as possible — both for the pkgsrc developers and the users that want to cross-build
packages. Building packages are therefore done exactly as for native packages, although
a wrapper is used (in exactly the same way that the standard NetBSD source code is
cross-built) instead of the normal make.

% cd pkgsrc/editors/emacs
% nbsimmake-shark package

There is also a wrapper for sh so that bulk builds can be done:

% cd pkgsrc
% nbsimsh-shark mk/bulk/build

The file system for the target needs to be set up before starting to cross-build packages.
This is done by packing up and configuring the standard NetBSD release in the same
way that is done when setting up an NFS-mounted root. The cross-building framework
does also need to be set up. These two steps can be done by installing the cross-building
package for the target architecture.!

The rest of this paper will assume cross-building for NetBSD-1.6/shark, with the
shark’s file system located at /emulroot/shark/.

IThese packages are not available from pkgsrc yet, but the software can be downloaded from
http://www.df .1th.se/ cato/crossbuild/

Cross-building packages 41

4 How the cross-building framework is implemented

4.1 The starting point

The first step in the implementation was to find suitable emulators to build on. The
GDB distribution has an extensive collection of emulators (which are called simulators
in the GDB terminology) that emulates many of the architectures that NetBSD runs
on, so this was seen as a good starting point.

The GDB powerpc simulator can even run NetBSD powerpc binaries by running the
system calls natively in the same way as must be done for the cross-building framework!
That NetBSD emulation is however rather limited, since it was developed for running
the GCC test suite only, and the code has bit-rotted over the years, so the GDB
NetBSD emulation code has not been used in this project.

There are some important architectures missing from the GDB distribution (such
as m68k). It is however rather easy to add the NetBSD system call emulation to “any”
emulator, since it is only the machine instruction responsible for entering system calls
that is affected. The only thing that needs to be done is to write a small glue layer
between the emulator and NetBSD code, to make it possible to read the parameters,
return the result of the system call, and to read/write memory from the emulated
machine.

4.2 Basic functionality

Simple system calls, such as close, are easy to run natively:

void do_close(void)

{
int d = get_parameter(0);
int status = close(d);
write_status(status);

}

The first line gets the parameter that the emulated program provided to the system
call. The next line calls the system call natively, and the last line modifies the emulated
state so that the emulated program gets the result.

More complex system calls are done in essentially the same way. The only difference
Is that data may need to be copied between the emulated memory space and the host’s
memory space:

void do_write(void)

{
int d = get_parameter(0);
EMUL_ADDR buf = get_parameter(1);
size_t nbytes = get_parameter(2);

void* tmp_buf = xmalloc(mbytes);
read_memory(tmp_buf, buf, nbytes);

int status = write(d, tmp_buf, nbytes);
write_status(status);

free(tmp_buf);

42 Cross—building packages

Care need to be taken so that differences in endianness, or in the width of data types,
are compensated for when moving structures between the different memory spaces, so
arrays and structures need to be copied one field at a time:

void do_socketpair(void)
{
int tmp_sv([2];
int d = get_parameter(0);
int type = get_parameter(1);
int protocol = get_parameter(2);
EMUL_ADDR sv = get_parameter(3);

int status = socketpair(d, type, protocol, tmp_sv);
write_status(status);

if (status != -1)
{
WRITE_INT32(sv , tmp_sv[0]);
WRITE_INT32(sv + 4, tmp_sv([1]);
}

}

Note that the above function takes advantage of fact that both the target and the host
are running NetBSD — the type and protocol would need to be translated if the host
were running some other operating system.

4.3 System calls working on files

Not all system calls can be done as straight forward as in the previous section. Consider
for example running a program that opens a file through an absolute path:

open("/usr/include/machine/types.h", O_RDONLY);

It should open the file from the emulated machine’s file system, and not the one from
the host’s file system. This means that the emulator must transform all absolute paths
by appending /emulroot/shark before calling the native system call. Modifications
are needed in the other direction too; system calls like getcwd does return a path of
the form /emulroot/shark/foo that must have the prefix stripped before the control
is returned to the emulated program.

4.4 execve

One other special case is the execve system call. A call like
execve("foo", argv, envp);

cannot be run natively as-is, but need to be transformed to
execve("emulator", new_argv, envp);

where new_argv is the argv where the arguments needed for the emulator to run the
original program have been prepended.

But all programs do not need to be run emulated. Consider for example /bin/echo.
This cannot do any “dangerous operations” like starting new programs or accessing
paths not present on the command line that need to be transformed, so execve of
/bin/echo may as well be run natively. This is true for many programs, although they
may need some modifications of arguments. For example /bin/cat is safe too, but it
may take file names as arguments, so

Cross—building packages 43

cat /path/foo
must be transformed to

cat /emulroot/shark/path/foo

before it is executed.

And some programs may safely be run, unless some special arguments are used.
For example

/usr/bin/awk -F "’" ’/~PACKAGE_VERSION=/ {print $2}’ file
is safe, but
/usr/bin/awk -f foo file

is not. This means that a small parser must be implemented for each system binary
so that the dangerous constructs can be transformed, or the command run emulated,
as appropriate.

One important program in this category is gcc. We may greatly decrease the time
needed to build a package by execve a cross-compiler instead of running gcc in the
emulator.

One other thing to look out for is environment variables that may affect how the
program works. For example, the /usr/bin/install may strip binaries when installing
them, and the program to use for stripping is provided in the STRIP environment
variable. The emulator must therefor check STRIP to see if it points to a program that
can be run natively. The /usr/bin/install need to be run emulated otherwise.

Yet another issue that needs care are symbolic links. Note that all symbolic links
made in the emulator must point to the full path within the real file system in order
for the following to work

% 1ln -s /tmp/foo.c .
% gecc foo.c

This has the effect that some programs that otherwise would be able to run natively
cannot do that. The most important example is tar. The good thing is that tar is
rather efficient, so we do not lose much by running it emulated.

4.5 Removing one bottleneck

One of the goals of the cross-building framework is that it should be easy to maintain,
so the original idea was to avoid building custom versions of components provided by
the NetBSD distribution. Profiling did however show that a big amount of the time
spent cross-building was spent in emulating sh and make, so it was decided to create
special versions of those two programs to make them safe to run natively. The only
difference from the original versions are that the cross-versions have modified all library
calls with file parameters so that they are correctly transformed, and modified all calls
to the exec-family of calls to use the same mechanism the emulator uses for execve.

This has the effect that there is a risk of the real and emulated make and sh binaries
being out of sync, but the goal is to eventually get these changes into the real NetBSD
distribution, so this is hopefully just a temporary problem.

44 Cross—building packages

4.6 Shortcuts

The goal of the cross-building framework is to cross-build packages — not to be able
to run arbitrary programs from another architecture. This means that the emulation
does not need to be perfect, as long as it does not affect the building of packages. It
may even in some cases be easier to modify a specific package to build with a limited
emulator instead of implementing all needed functionality in the emulator.

One trivial example of a limitation that is unlikely to affect the resulting packages
can be seen by:

% nbsimsh-shark
$ mkdir /bin/foo
mkdir: /emulroot/shark/bin/foo: Permission denied

Observe that the error message contains the full path from the host operating
system instead of the path that the emulated environment passed to mkdir. It is
possible to prevent this kind of path leakage by improving the parameter checking done
before running the native mkdir, to make sure that native execution always succeeds
(or alternatively, parse and transform the output). But this kind of situation is not
common when building packages, so it is much easier to change the affected packages,
if such packages are found.

Many packages looks at the file and line information that gcc -E outputs, to e.g.
build the dependency information for make. This cause problems when the cross-
compiler is used, since absolute paths gets an /emulroot/shark prefix. This could of
course be solved by always running gcc -E emulated, but that results in an unnec-
essary increase in build time for many packages. It is much better to solve this by
treating paths such as /emulroot/shark/foo as /foo within the emulated environ-
ment, although this has the effect that it is not possible to have a directory called
/emulroot/shark within the emulated file system...

5 Future work

The bulk build does currently need to be run with root privileges because many pack-
ages need to set user and group etc. on the files they create. It is however possible to
use the emulator infrastructure to build packages as an unprivileged user.

The idea is to do all file operations as an unprivileged user, and to record the side
effect of the “privileged” system calls (such as chown) in a log file. The log file is
consulted every time a file system call, such as stat is called, so that the the correct
information is returned to the caller. This will ensure that the resulting binary packages
get the correct owner etc. for its files.

Some packages may however need to run e.g. SUID programs during its build pro-
cess, and some of those may fail when not being run with the “real” user ID. Such
packages need to be modified to build as an unprivileged user, but it is believed that
only a few packages are affected.

Note that this could be used for unprivileged native builds too, by e.g. emulating
an 1386 target on an i386 host.

Fighting the Lemmings 45

Fighting the Lemmings

Martin Husemann
martin@NetBSD.org

From the NetBSD byteorder.3 manual page cvs log:

revision 1.8

date: 2001/11/29 22:55:57; author: ross; state: Exp; lines: +1 -6
Delete the old BUGS section entry:

> On the VAX bytes are handled backwards from most everyone else in
> the world. This is not expected to be fixed in the near future.

Multiple levels of irony there...

Abstract

“All the world is a VAX” has been a famous proverb in the UNIX community when
discovering code or design that has no easy, rational justification for existence or style.

Nowadays everyone codes for Linux and everything runs on 1386 machines. People porting to
other (vastly different) architectures are faced with lots of - let's say — “suboptimal” decisions,
and usually hack around it with lots of casts or similar band-aid solutions. This does not work
well in the long term. (Un-)fortunately, improvements in gcc turn a lot of these short-term
patches into real bugs later.

Non-portable code is simpler at first sight, sometimes. The same is true for ad-hoc design.
Both often fall in the long run.

This paper will look into some pitfalls on the way to portable code and try to improve
awareness of possible portability problems. Many of these problems are obvious, when
pointed at — but nevertheless regularly appear in real world code.

Why Do We Care About Portability?

Portability is no objective measurable property of source code. It is not a one-dimensional
scale at all. We can measure the effort it took to port some software after doing so and try to
asses the amount of obfuscation it added to the source. Still it will be hard to estimate how
long the next port will take.

Today many projects have a fixed target architecture. It is tempting to ignore portability while
creating the software — often by calling the lack of portability “optimization” for the given
target system. But target systems change, by installation of a newer version of the operating
system, an upgrade of another related software system, a new X version, or by being replaced
by another operating system and/or hardware.

Having portable code in the first place makes it robust against this kind of basically inevitable
changes.

Fighting the Lemmings

Portability is Relative

Example from a famous IOCCC (International Obfuscated C Code Contest) entry — this code
is portable between a VAX and a PDP-11:

short main[] = {
277, 04735, -4129, 25, 0, 477, 1019, Oxbef, 0, 12800,
-113, 21119, 0x52d7, -1006, -7151, 0, Oxdbc, 020004,
14880, 10541, 2056, 04010, 4548, 3044, -6716, 0x9,
4407, 6, 5568, 1, -30460, 0, 0x9, 5570, 512, -30419,
0x7e82, 0760, 6, 0, 4, 02400, 15, O, 4, 1280, 4, O,
4, 0, 0, 0, Ox8, 0, 4, O, ',', O, 12, O, 4, O, '#',
o, 020, O, 4, 0, 30, O, 026, 0, Ox6176, 120, 25712,
'p', 072163, 'r', 29303, 29801, 'e'

}i

(Winning entry 1984 by Sjoerd Mullender and Robbert van Renesse, see
http://www.de.ioccc.org/1984/mullender.c)

This data array happens to be a set of valid VAX and PDP-11 assembler code that prints a
message on the screen. The first word is a PDP-11 branch instruction jumping to the PDP-11
specific code, while on the VAX the C startup code uses the “calls” instruction, which
expects a bit mask of registers to save at the first address of the subroutine, so effectively the
VAX code starts on the second word.

Portability is Expensive

It is rarely a primary project goal, and is sometimes perceived as an obstacle to fast results. Of
course this is a fallacy. Porting is expensive, if portability has not been considered during
coding... but early replacement / migration is even more expensive!

Portability is the result of real porting

You can plan for it in advance, but without actual ports your code will always find some
pitfalls.

Is there a single regression test for portability?
Unfortunately — no. Though porting something to NetBSD/sparc64 is close ;-)

Aspects of Portability

GUI Differences

Complete books could be written about this. Differences in GUI design, implementation and
APIs are obvious. Sometimes even on one machine/operating system — consider Gnome vs.
KDE. There are various libraries available, like wxGTK, that try to provide a common API
for different GUI back ends.

Since there are basically no hidden traps in this area this paper completely ignores this topic.

Fighting the Lemmings 47

Operating System/API Differences

Depending on the range of operating systems you consider porting to, there are POSIX
standards to allow you portability to at least Unix-like systems. If you are careful to only use
POSIX-blessed APIs, your code should be portable. But you can not avoid to deal with “text
mode” for ascii file output if you include windows in your portability profile. CreateProcess()
[a win32 API to start a new process] differs from fork/exec and pthread_create. There is
nothing you can do about this - #ifdef is your friend, and code obfuscation is the price you
pay for it. To avoid it, sometimes creating (or using an existing) wrapper library makes sense.

Compiler Differences

Using language extensions beyond the C/C++ standard breaks portability. However, it is
often easy to hide this compiler differences behind macros.
Luckily these differences usually hit at compile time, which makes them really easy to spot.

Assembler Code

Using assembler code limits portability to the machine it is written for — often even to the
assembler/compiler in use. The easy solution is to use conditional compilation and makefile
magic to choose between different assembler sources or a portable C implementation of the
algorithm. This leads to vastly different runtime behavior — compare the (assembler
optimized) versions of zlib or OpenSSL for i386 vs. some other processor of comparable
speed using the C version. Both are examples of portability not interfering with performance -
- on 386 machines.

Byte Order

Multi byte values are stored in different orders in memory, depending on the CPU type, and
sometimes the selected byte order (where the selection is done by the firmware, the
mainboard or the operating system). Most programs do not care, as long as no external binary
representation (a file or a network connection) is needed. It is easy to explicitly code the
binary representation on a byte-by-byte basis, or use some existing conversion macro to “fix”
the byte order and then dump the result.

Example for the byte-by-byte approach:

#define PUT 32BIT(f, val) \
fputc((val >> 24) & Oxff , f);
fputc((val >> 16) & Oxff , f);
fputc((val >> 8) & Oxff , f);
fputc(val & Oxff , f)

s

PUT_32BIT(f, origVal);
Example for the “fix-in-place-then-dump” approach:

int32_t val;
val = htole32(origval) ;
fwrite(&aval, sizeof val, 1, f) ;

The latter approach is used a lot in the BSD networking code. It is not always more clear than
the byte-by-byte approach, but it allows to convert complete structs in place and have
structure definitions that resemble the on-wire/on-disk format.

The problem with byte order is, that sometimes values slip through the byte order fix when
the CPU and the binary representation “accidentally” have the same byte order.

48 Fighting the Lemmings

Machine Dependent Integer Type Sizes

Different processors have different requirements for “good” representations of data types.
The C language definition is intentionally weak to allow implementations (the compiler) to
choose the optimal representation for most of the predefined data types. This makes writing
certain kind of code pretty hard, and later versions of the C standard recognized this and
added fixed sized and fast integer types.

There are various alias names for types, defined by the C standard (or Posix). Examples are
time_t, size_t, off_t. Some machines use the same size for two types like int and long on i386
— explicitly allowed by the C standard. The compiler will not warn if you pass a pointer to a
int argument to a function expecting a pointer to a double on i386. It will warn (and the code
will break) on machines that use different sizes for these types, like all 64bit architectures
currently known.

Some CPUs prefer unsigned characters (ARM, PowerPC), so the default “char” type is
“unsigned char”, while others use “signed char” as “char” (i386). Again, the C standard
explicitly allows this. Usually this is no problem, unless code erroneously uses char instead of
int or tries to test properties of characters with homegrown, arithmetic expressions instead of
relying on the ctype character classification macros:

char c;
if (¢ < 0) { ..}

Of course on a char == unsigned char machine this condition will never evaluate to
true (and gcc warns about this). Another example of code that works with signed chars but
does fail with unsigned chars is:

char c;
FILE *f;
while ((c = fgetc(f)) != EOF) { ..}

Clearly the intend is to read charactets from f until the end of file. EOF is, unfortunately,
defined as —1. No problem, as long as ¢ can store a —1. On machines with char ==
unsigned char this just does not work. Note that fgetc() is defined as

int fgetc(FILE *);
and the return value is an integer that either is EOF or a value represent able as char.

A slightly more involving example is based on a long time bug in NetBSD: struct
timeval (used for example in the gettimeofday (2) system call) is defined as:

struct timeval ({

long tv_sec; /* seconds */

long tv_usec; /* and microseconds */
1

There are two bugs here. First, struct timespec, defined by POSIX.1b, featuring
nanosecond resolution, should be used instead nearly everywhere. This will eventually
happen. The second bug is the usage of 1ong for the tv_sec member. Of course, and Posix
even requires this, it should be a time t. Unfortunately NetBSD does care about binary
compatibility, which means a great effort and versioning lots of functions when this changes
— 50 it has not been fixed yet. Now consider code that does

Fighting the Lemmings 49

struct timeval tv;
time (&tv.tv_sec):

This code looks good at first glance, and on 386 it will actually compile and work. On
sparc64 it will not work (and gec will at least warn about it). What is wrong here? The sparc
and sparc64 port of NetBSD share a lot of code, and sparc64 provides binary compatibility,
i.e. it can execute sparc (32bit) binaries. To ease this compatibility, time t has been kept
the same size on sparc and sparc64 — a 32 bit value, making it an int on sparc64. The above
code passes a pointer to a long (64bit value) to a function expecting a pointer to a 32bit value.
While gcc only warns about it, the runtime result of the call will not be as expected - the
result is written into the 4 high bytes of the long value, effectively shifting the time left by
32bits, followed by 32bit of more or less random noise.

A whole class of problems related to pointer-to-different-sized-integer problems originates
from the family of functions taking printf()-like format strings. Fortunately gcc nowadays
checks these format strings pretty well against the actual parameters, so this class of problems
has become a compile time problem. Before, wrong argument sizes led to stack corruption,
crashes and exploits. Consider you scan some input that has time_t values as decimal strings.
On 1386 you could do:

time t t;
FILE *f;
fscanf (f, “%1d”, &t):;

and it will work. On sparc64 it will mangle your stack — expecting a long (8 byte) value at the
address passed to fscanf, when only a 4 byte value is pointed too. You might be lucky and run
into alignment trouble (see below), or the function call will overwrite four bytes on the stack.
Newer C standard version define additional modifiers for some of the alias types, you can use
“%zd” for size_tand “%td” for ptrdiff_t — but no direct way exists to scanf/printf a time_t.
The above code should do:

time t t;

long temp ;

FILE *f;

fscanf(f, “%1d”, &temp);

t = temp;

Printing is a bit easier, a simple cast is enough:

time t t;
printf("%1ld\n", (long)t) ;

If you use a fixed size integer type, the standard defines corresponding format specifier
macros since it is unclear which “native” integer type is related to the fixed size type.

So instead of

intée4 t t;
printf ("%11d\n", t); /* works on 1386 */

Better do :

50 Fighting the Lemmings

#include <inttypes.h>
inté4_t t;
printf ("%" PRId64 "\n", t); /* portable */

Machine Dependent Types

Strictly speaking there can not be any portable code using floating point values in externally
visible contexts. Luckily today there are basically only IEEE 754 floating point format
machines out there in the wild — famous counterexamples are the VAX, older Cray machines,
many mainframes and some ARM implementations. The alpha CPU uses IEEE floating point,
but has additional load and store instructions that convert to and from some VAX formats —
probably only used in OpenVMS,

Using floating point values in binary files or communication streams is hard to do portably.
Valid options often used are strings, fixed point formats — or just relying on a known-size
IEEE format (thus limiting portability, but with known, small impact).

There are multiple sizes of IEEE floating point values, the most used ones being 32bit (on
i386 known as “float”) and 64bit (on 1386 “double”). Some 64bit machines use 128 bit floats,
and the C standard avoids nailing down sizes. Some (RISC) machine architectures define
128bit float formats and instructions for them, but implementations do not actually support
them — relying on software emulation by the OS (or avoiding them altogether by the
compiler). The UltraSparc is an example of this.

For internal calculations, you simply can not depend on properties of a particular floating
point implementation. Luckily most algorithms are not critical in this regard, and if they are,
the corner cases have been studied extensively by mathematicians, leading to well known
workarounds in the few critical cases. Therefore real world portability problems, besides the
binary “on-disk” representation mentioned above, are rarely caused by floating point issues.

Alignment

Since type sizes vary, the size of structure and the offset of members in a structure may vary
when porting from one CPU to another. Some CPUs require or recommend layout of data in
memory at certain addresses. A common alignment rule is: everything should be aligned to an
address dividable by its own size. For example, a 32 bit integer value should live on an
address dividable by four. Some CPUs have even bigger alignment rules, or honor greater
alignment by better performance (like 16 byte alignment for SSE2 instructions on modern
1386 CPUs).

The way CPUs penalize disrespect of this alignment rules varies:
e need more time for the unaligned access (i386)
e ask the operating system to emulate the access (alpha)
e silently get the results wrong (some ARM variants)
e signal a bus error (sparc and most other RISC)

The most forgiving (i386) makes a bad test platform for alignment issues.

The compiler handles all alignment issues, in the typical cases. Again the exceptions are
structured designed for on-disk (or on-wire) layout, using compiler directives to pack
structure members. This structures need to be handled carefully, and typically need byte order
treatment too. Note that the “byte-by-byte” approach to byte order also handles any alignment
issues as a side effect.

Once you start playing tricks on the compiler, it can not handle alignment any more. The
most common trick is a pointer cast, but this deserves its own chapter.

Fighting the Lemmings 51

Pointer Casts
void encode_packet (unsigned char *packet, size t len, uint32 t tag)

{
* ((uint32_ t*)packet) = htole32(tag);
packet += sizeof tag;
len -= sizeof tag;

}

Code like this happened, in the real world, in 2004,
What is the problem? It will work on i386, so there can not be anything wrong with this!

Once the unsigned char pointer (which has no special alignment constraints) is casted to a
pointer to a type with different (larger) alignment constraint, the compiler gives up and leaves
us alone with the responsibility to do the right thing. But what is the right thing to do? A CPU
with strict alignment requirements (like sparc) can not access a 32 bit value at three out of
four addresses pointed to by an unsigned char pointer. It needs to read them byte by byte and
create the 32 bit value — similar to what the PUT_32BIT macro did above for byte order
treatment. So the code may as well do it explicitly that way, if the alignment of the packet
pointer is unknown — or just access the address, if we know for sure that it is aligned. The
compiler could not tell.

The other way to write this is:

void encode_packet (unsigned char *packet, size t len, uint32 t tag)
{

uint32_t le32tag = htole32(tag);

memcpy (packet, &le32tag, sizeof le32tag);

packet += sizeof le32tag;

len -= sizeof tag;

}
Another bad pointer cast example, this time on the right hand side:

void decode packet (unsigned char *packet, size_t len)
{
struct header *h = (struct header)packet:
switch (h->tag) ({

}

52 Fighting the Lemmings

The alignment constraints of h might not match the address in packet. The C standard
guarantees that a cast does not change the address stored in a pointer variable [in this case —
the exact rule is slightly more involved], so the cast will not fix the alignment.

Trying to avoid the unaligned access by using memcpy:

void decode packet (unsigned char *packet, size_t len)
{
struct header h, *p = (struct header*)packet;
memcpy (&h, p, sizeof h);
switch (h.tag) {

}
}

This example is still bad; the C standard allows the compiler to assume proper alignment for a
struct header pointer, which we do not guarantee here. The compiler might optimize the
memcpy by using multiple 64bit load/stores instead of a byte-by-byte copy, resulting in a bus
error.

Good version:

void decode packet (unsigned char *packet, size_t len)
{

struct header h;

memcpy (&h, packet, sizeof h):

switch (h.tag) {

}
}

(Obvious error checking and asserting that len is big enough is left as an exercise to the
reader)

Rule of thumb: left hand side casts are pure evil. There never is an excuse for them.

Other pointer casts are evil too. They might prevent the compiler from warning for real
problems or using optimizations. The C standard basically says that two pointers can only
alias if they have the same type (or signed/unsigned/qualified variants thereof), or one of
them is a char pointer. You are allowed to cast to the “right” type of an object when assigning
via a pointer, so the compiler assumes all variables of the casted-to type might have changed.
Playing bad games with casts may prevent the compiler from applying optimizations it might
have done for properly designed (cast-less) interfaces.

Toctl Calls

The ioctl(2) API is an example of functions that deliberately take void pointers as a
placeholder for something else, leaving no chance for the compiler to verify the call. The
actual data type passed as the third argument to ioctl(2) depends on the value of the second
argument. Mismatching them is hard to detect at compile time. Unfortunately sometimes
operating systems differ in small details there.

Some time ago a long standing bug in the X source code has been discovered: the
FIONREAD ioctl, used to determine if some input is immediately readable from a file
descriptor, takes a pointer to an int as its third argument (according to POSIX and the
NetBSD code). Some other operating systems, namely windows, and apparently IRIX in 64
bit mode, use an unsigned long pointer there. The X source used code like this:

Fighting the Lemmings 53

long arg;
ioctl(fd, FIONREAD, (char *)s&arg);
return (int)arg;

On NetBSD/sparc64 this led to the number of bytes to read being placed in the upper 4 bytes
of the long arg — and then only the lower 4 byte being used. Of course it worked fine on alpha
- by chance, due to the different byte order.

Conclusion

NetBSD claims to be the worlds most portable operating system. NetBSD runs on fifty four
different system architectures (ports), featuring seventeen machine architectures across fifteen
distinct CPU families, and is being ported to more. All this happens from a single code base,
which has gone a long way to achieve this portability. Sometimes there are still portability
bugs found, and there is still, despite a lot experience, new code added that shows bugs like
the portability problems described in this paper. Portability is one of the major project goals
for NetBSD.,

It would be nice if more and more application software (that is, the software our users like to
run on our operating system) would follow this lead.

You can not expect to get portability for free, but if you are aware of possible problems and
the easy solutions/workarounds, portability is painless. Porting early helps — so everyone geta
NetBSD/sparc64 system and once your software runs on your primary target, port it there
i—}

54 Fighting the Lemmings

But I'm not a developer. . . 55

But I’m not a developer...how can I contribute to
Open Source?

Dru Lavigne <dru@theopensourceadvocate.org>

October 11, 2004

56 But I'm not a developer. . .

1 Abstract

The BSDs and other Open Source projects have made great strides in the past
decade. But it doesn’t take a marketing analyst to see that we’ve still a long way to
go. We’ve all seen friends and family fight their way through viruses and spyware
because their operating system of choice is “easier to use”. We’ve all had customers
or bosses who chose solutions involving hefty license fees over free software be-
cause of the “support”. And we’ve all at one point or another had to maintain a
non-BSD install because there wasn’t an Open Source application available that
provided a required functionality.

The question is, “what can be done about this state of affairs?” As a devel-
oper, your role in Open Source is fairly straightforward: write good code, add new
features, fix bugs. However, the non-developer’s role is less clearly defined. This
often leaves the end-user feeling isolated and intimidated; not only are they unsure
how to contribute, they may not even see their contribution as worthwhile.

This talk will address the importance of non-developers to the success of Open
Source software as well as what you, as a developer, can do to assist in this process.
We’ll do this by taking a look at both the developer’s and non-developer’s points of
view which will bring to light various misconceptions. Once these are dealt with,
concrete roles can be defined.

2 Introduction

Those who stay in Open Source tend to be technically minded. For the developer,
sysadmin, and power user, the ability to look under the hood and play with the
guts of a system holds a powerful attraction. Yet, history has proven time and time
again that the success of a project isn’t based solely upon technical merit. There is
a danger in only approaching things from the technical perspective.

This presentation provides an opportunity to temporarily step away from the
technical aspects of Open Source in order to view the larger picture—which includes
the “softer” side of computing. As we explore different perspectives, take the time
to consider the questions which are raised and to examine your own attitudes and
actions.

3 The Novice User:

Being a new user can be overwhelming at times—and that initial learning curve
often seems insurmountable! While you may be brimming with enthusiasm over

But I'm not a developer. . . 57

your new discoveries, you probably also feel the twang of inexperience. How can
you possibly contribute when you feel surrounded by gurus?

Start by becoming aware of the resources available to you. Browse the avail-
able mailing lists and subscribe to those that look interesting. Find an IRC channel.
Go to your project’s documentation and FAQ pages; bookmark them and start read-
ing. Pick up a cheap system to try things out on so you don’t ruin your main system.
Become good friends with Google and look for tutorials and how-tos. Scour your
local library or friends” bookshelves for quality books. Above all, join a local user
group! Even if you’re a shy person, hanging out with like-minded people does
wonders for softening that learning curve. If you can’t find a group that concen-
trates on your particular operating system or project, join a similar group. Keep
your eye out for installathons, conferences and local events which you can attend.

Once you find the resources, don't be afraid to use them. However, do yourself
and others a big favour by doing your research first. For example, are you con-
sidering posting a question to a mailing list? Before shooting off that email, use
Google to see if the answer to your question is already documented somewhere. If
you can’t find an answer, have you researched the best mailing list to post the ques-
tion? And more importantly, have you read the posting rules for that list? Have
you included the details of your situation? Other users may be gurus, but they’re
not psychics. And if the rules say “don’t email the developer directly”, don’t email
the developer directly!

Never underestimate the value of your perspective. Remember, you’re not the
only new user out there. If you receive an answer and still don’t understand some-
thing, ask for clarification. You’ll not only help yourself, you’ll help the other users
who were afraid to ask. And, while documentation is steadily improving, there are
still pockets of non-userfriendly information out there that assume a lot of previous
knowledge. If you have to struggle to figure something out, write a clearer expla-
nation and post it for the benefit of others. Keep that documentation ball rolling:
whenever you find a useful tutorial or article, take a minute to send an appreciative
email to the author.

Before you know it, you may find that you’ve matured into...

4 The Experienced, Non-developer

As your technical skills improve, try not to forget what it was like to be a new user.
For now the coin has turned and newer users are looking to you for advice and
encouragement. Try not to let a bad or harried day result in a rude or negative
answer to a question. For example, while you may be tempted to respond with
"RTFM?”, something as simple as a ”You’re in luck. There’s a really good tutorial

58 But I'm not a developer. . .

on this very subject at URL” maintains the user’s dignity while pushing them off
into their own explorations. If you don’t have the time or patience to find suitable
documentation, you don’t have to answer the post!

Remember, it’s not so much what you say as how you say it. What you say in
a public forum continues to have a ripple effect long after you’ve forgotten about
it. You can probably remember at least one incident when you were made to feel
stupid for asking a question. Don’t repeat that cycle for someone else.

Attitude has impact. Watch for negativity when answering posts and for fanati-
cism when promoting your project over others. Watch the tone of your posts. Do
you find yourself promoting Open Source successes or negatives? Take a step back
if you find yourself repeatedly saying “that won’t work™ or “things were always
that way”.

Now’s the time to start taking a closer look at the prevalent atmosphere of your
community. Does it promote exclusivity? Are “outsiders” welcome or does it feel
more like a “techie boy’s club™? Is there an obvious gender skew? A recent survey
published in Software Development magazine (1) probed the reasons why Open
Source suffers from a greater lack of female participation than the IT industry as a
whole. Does your community tolerate inappropriate remarks or turn a blind eye to
discriminatory behaviour? Does it encourage female users to actively participate
and promote the successes of those that do? As a female, are you lurking in the
woodwork or are you an active participant?

What about your project’s goals? Does it require users to maintain an all or
nothing attitude? Are users denigrated if they continue to use an alternate operating
system instead of converting over to your operating system of choice? After all,
isn’t open source about choice?

Have you found that your initial enthusiasm has devolved into a general apa-
thy? How many times in the past year have you:

o found a bug and neither reported it nor submitted a patch?

e scoured the Internet in order to to cobble together a solution yourself without
sharing it so the next person didn’t have to reinvent the wheel?

Will Open Source continue to get better if noone:
e contributes feedback,

o files bugs,

o submits feature requests,

e donates money or hardware,

But I'm not a developer. . .

59

e creates patches,
e writes missing documentation,

e provides examples, support, or advocacy?

NO!

Take a look at your own systems. On top of the operating system you’re prob-
ably running literally hundreds of Open Source applications. When’s the last time
you visited the websites of those applications, or for that matter, Sourceforge or
Freshmeat? You won’t have to look very far to find a project in dire need of expo-
sure, beta testers or documentation. Pick a project and contribute!

S Using your Pet Peeves

Sometimes you see so much need you don’t know where to start. Well, anything
that bugs you is a good indicator of potential action on your part. For example:

e Do grammatical errors, undocumented switches and out-dated manpages
drive you batty? Sounds like you should investigate the submission process
of your community’s documentation project.

o Frustrated by the lack of documented material available in your native lan-
guage? You may be a much needed translator.

o Bugged that your place of work or school doesn’t use Open Source? Install
what you can on the systems available to you. Show others what they’re
missing. Start an informal group which meets at lunch or after hours. Vol-
unteer to setup and maintain an Open Source computer lab at your child’s
school or at the local seniors residence.

e Tired of reading bad press regarding Open Source? Write opinion pieces
and product reviews which showcase the positives of Open Source. This is a
largely neglected area as most writing efforts concentrate on technical how-
tos. The irony is that we live in a world where artists and musicians who
spend obsessive amounts of time honing their craft are “creative”; likewise,
athletes are “driven”. Yet the technically adept are relegated to “geek” or
“nerd”, both of which have connotations of social ineptness and fall pretty
low on the “cool” scale. Negative terms like these do damage, but often
this damage is unseen as potential users are turned off and go elsewhere.
Media pieces are needed showing just how cool and fun it is to be involved

60

But I'm not a developer. ..

in Open Source. Or perhaps you’'d prefer to speak to students at your local
high school or community college.

o Don't like the look of your project’s website? Volunteer your HTML talent.
Perhaps you’re more in tune with your likes than your dislikes:

o Ifyour dream job would involve installing and playing with software, find a
project that is looking for beta testers or install current on a spare system and
join the current mailing list.

o Are you an avid reader? Most publishers offer free books if you’ll write
and post a review. When you’re finished, donate the book to your local user
group’s lending library.

e Love to talk and help others? Find a forum, list, or IRC channel and look for
opportunities to assist new users.

o Were you born to be around other people? Organize and/or volunteer at a
local instalifest. Even if the venue’s main event isn’t specifically about your
project, see if you can get a booth.

e Do you wish to see Open Source promoted in business? Research and create
a list of vendors in your area that support, use or promote open source. Find
or create an association that promotes Open Source in your community.

e Just don't have the time? Use your coffee money to buy a CD subscription
for yourself and a friend. Commit yourself to make a dent in a project’s
donation page. Sponsor someone’s admission fee to a conference.

e Do you want to see more articles and how-tos but feel your writing isn’t up
to par? Online ezines such as Daemonnews may still be interested in your
submission. Do you find that your favourite ezine isn’t always published on
time? It’s probably because the ezine is short on proofreaders and formatters.

Finally, don’t be intimidated when you'’re...

6 Dealing with Developers

As a developer, you may not realize just how intimidating you are to non-developers.
There is a definite mystique regarding the ability to decipher what appears to be so
much mumbo-jumbo (to the non-programmer) in order to solve a problem. You

But I'm not a developer. . . 61

really do speak another ”language” (pun intended). Developers also tend to attract
the spotlight, much more so than the average Open Source user. These factors
discourage many users from reporting bugs or making feature requests.

There are several things you can do as a developer to promote participation
within your project. First, ensure there is a supportive infrastructure including
mailing list(s), FAQs, to-do lists and a bug reporting system such as Bugzilla (2).
Make it clear on your website what a user can do to contribute and the steps they
should follow when doing so. If you really don’t have the time to respond to indi-
vidual requests, say so and give users an alternative. If you do respond to individual
requests, please don’t patronize the user or trivialize their request. What’s obvious
to you is probably something they’ve never even heard about.

When dealing with a developer, the usual rules regarding researching your re-
quest apply, if not more so. When you send an email to a mailing list it is seen by
thousands of users, some of which probably have the time, inclination and knowl-
edge to reply. When you send an email to a developer, you're subject to one per-
sonality and one person’s time constraints. Make sure the developer is willing to
receive personal email and that the email includes the information required to re-
spond in a helpful manner. Finally, don’t take it personally if the developer doesn’t
immediately respond.

7 Food for Thought

I’d like to leave you with some additional points to consider. Not every user of
Open Source is interested in becoming a technical guru. This is actually a good
thing and such users should be encouraged to contribute to Open Source in non-
technical ways. Imagine the boost to Open Source if it could benefit from the
talents of those who:

¢ are involved in media or have promotional skills.

e work in government, understand governmental process and have contacts
within government.

e are participants within the legal process.

e are educators who are familiar with the process of creating and submitting
curricula.

e are successful business persons.

62 But I'm not a developer. ..

Remember, successful "networking” has nothing to do with cabling or switches.
Our ability to make contacts and to encourage others to contribute their talents di-
rectly affects the success of Open Source.

8 Additional Resources:

http://www.theopensourceadvocate.org

9 Footnotes:

1. http://www.sdmagazine.com

2. http://www.bugzilla.org

Track B Saturday

Notes:

64 But I'm not a developer. . .

Mac OS X binary compatibilty on NetBSD. . . 65

Mac OS X binary compatibility on NetBSD:
challenges and implementation

Emmanuel Dreyfus

September 2004

Abstract

Binary compatibility is the ability to run binaries from foreign Operating Systems (OS)
with a minimal performance penalty. It is limited to binaries built for the same processor
family.

In this paper, we describe how binary compatibility works in NetBSD and then
we concentrate on the challenges we need to overcome in order to execute Mac OS X
binaries. Finally we present the current status of the project, together with the roadmap
for the future.

It is assumed that the reader is familiar with Unix system programming.

1 Binary compatibility

NetBSD has a long record in binary compatibility with other operating systems. Pro-
vided a program was built for the same processor, NetBSD is able to execute it despite
the fact that the program was not built for NetBSD but for Linux, FreeBSD, Solaris,
IRIX, or many others. In this part, we will have a quick look at how binary compatibility
works.

1.1 kernel and user mode

UNIX systems have two distinct mode of operation: user mode, and kernel (or system)
mode. In user mode, the operating system executes code provided by users. This code

66 Mac OS X binary compatibilty on NetBSD. ..

is run with restricted privileges. It has limited access to the computer’s memory, and
usually no access at all to the hardware.

When running in kernel mode, the OS is only executing trusted code, which was
loaded at boot time. This code is known as the OS kernel. The kernel has full access to
the memory and hardware. It is here to provide services to user programs: giving access
to the hardware, scheduling processes, and enforcing resource allocation and protection.

The transition from user mode to kernel mode occurs on events called traps. A trap
is a hardware or software exception that suspends user process execution, and gives
control to kernel code. The kernel will handle the exception, after which it may return
to user mode and resume the execution of the user process, or it may destroy it. Example
of traps are division by zero, memory faults (accessing any virtual addresses where no
physical memory is mapped), timer interrupts (that are used to switch between user
processes), or system calls. System calls are software traps called by user processes
to request access to resources controlled by the kernel. They can be seen as functions
called by the user process executing with kernel privilege.

System calls are used to perform a lot of different tasks, ranging from reading from a
file to creating a new process, or setting network communication options. The behavior
of each system call is documented in section 2 of the manual. The operation described
above are therefore documented in read(2), fork(2), and setsockopt(2).

Each system call has a number, typically ranging from 0 to a few hundred. On
many processors, system calls are invoked by loading CPU registers with the system
call numbers and parameters and by calling a CPU instruction that cause trap. Here
is an example of PowerPC assembly that call the fork() system call on NetBSD:

1i r0,2 # 2 is the system call number for fork()
r0 is the register holding the system call number
scC # sc is the CPU imstruction that causes the trap.

There is a clean separation between user mode and kernel mode. User processes run
on top of the kernel with very little knowledge of what is inside a system call. They
just expect a behavior documented by kernel developers in a set of man pages. Most
programs do not care about kernel internals and will just work if you change the kernel,
as long as the system call behavior is left unchanged. This is how binary compatibility
works: by emulating the kernel behavior. The user program runs at full speed and is
fooled into thinking it runs on the kernel it was built for, whereas it is really running
on the NetBSD kernel.

1.2 System call tables

As we explained earlier, when a trap is encountered, control is transfered to the kernel.
The kernel calls a function known as the trap handler to take care of the exception.

Mac OS X binary compatibilty on NetBSD. . . 67

When the trap is a system call, a particular trap handler — the system call handler —
is invoked. The system call handler looks in a table for the function implementing the
system call — this is the system call table. The system call number is used as an index
in the system call table.

Here is an excerpt of the file that defines the system call table in NetBSD. This file,
which is named syscalls.master, is not written in C language. A shell script uses
syscalls.master as input to produce several files in C language.

1 STD { void sys_exit(int rval); }

2 STD { int sys_fork(void); }

3 STD { ssize_t sys_read(int fd, void =*buf, size_t nbyte); }

4 STD { ssize_t sys_write(int fd, const void *buf, size_t nbyte); }
5 STD { int sys_open(const char #path, int flags, ... mode_t mode); }

The first idea behind binary compatibility is to have multiple system call tables:
the native system call table for native processes, the Linux system call table for Linux
processes, and so on.

As emulated OSes usually provide equivalent functionality as NetBSD does, the
system call tables used to emulate them tend to mostly contain wrappers that call
native kernel functions after doing some argument translation. When the native code
succeeds the reverse argument translation takes place, or if the system call fails, the
appropriate error code is returned. In some rare situations, an emulated system call
has no native counterpart and it must be completely re-implemented.

Of course, the kernel must have a clear idea of what system call table must be used
for a given process. It does that by keeping track of the emulated OS for each process.
At process launch time, in the execve() system call, the OS emulation is discovered
and the appropriate system call table is selected. This system call table will then be
used for any system call the process will issue.

There are a few other problems that must be taking into account, including the
transitions from kernel to the user process: when the process is first launched, or when
it catches a signal, the kernel must setup the stack and registers in the same way the
emulated kernel would have do. This is implemented in NetBSD by having emulations
hooks for that operations, so that a given binary compatibility layer can perform its
particular setup.

Another major problem is dynamic linking. If an emulated program is dynamically
linked, it will open shared libraries, which must be built for the same OS. The program
usually expects these foreign libraries to be in the same place and with the same names
as NetBSD native libraries.

The solution to that problem is to have a shadow root directory for foreign processes,
where files are first looked up before looking at the real root. For instance, when a
Linux binary attempts to open /usr/lib/libncurses.so, the NetBSD kernel will first

68

Mac OS X binary compatibilty on NetBSD. . .

attempt to open /emul/linux/usr/lib/libncurses.so and if that fails, it will try
/usr/lib/libncurses. so.

The shadow root directory is also extremely useful to store configuration files for
foreign binaries, as the file names often clash with their native counterparts.

2 Mac OS X binary compatibility challenges

Binary compatibility is an old feature in NetBSD, and the kernel now contains enough
compatibility code to easily emulate another Unix flavor. But when we came to Mac OS
X binary compatibility, we hit several new challenges that had never been encountered
while working on binary compatibility layers in NetBSD.

Here is a list of the most challenging problems:

e Mac OS X uses an executable format called Mach-O. NetBSD knew nothing about
Mach-O. It was only able to run ELF, ECOFF, and a.out binaries.

e Mac OS X is an hybrid system, based on a Mach kernel and a BSD kernel. It
features a dual system call table: positive system call numbers refer to the BSD
system call table, and negative system call numbers refer to the Mach system call
table. NetBSD never had to handle such an odd setup.

While Mac OS X’s kernel BSD interface is very close to NetBSD kernel interface,
and therefore can be very easily emulated, the Mach interface has just nothing to
do with a Unix system. This is a complete set of system calls with no NetBSD
equivalents that must be completely re-implemented.

¢ NetBSD provides user programs with hardware device access through traditional
Unix device files, in the /dev directory. Mac OS X provides such a feature for a
limited subset of devices: mostly storage units and terminals. Other devices, such
as video, keyboard and mouse, are made available to user programs through the
IOKit, an extended device driver interface specific to Mac OS X.

e And last but not least, NetBSD uses the X Window System for the graphic user
interface, whereas Mac OS X uses Quartz, a PDF based display system. The
two systems are similar but incompatible: they are both based on a client/server
scheme, which a display server handling the video output and graphic user inter-
face applications behaving as client. The protocol used between the clients and
the server is different.

Mac OS X binary compatibilty on NetBSD. . . 69

3 Running Mach-O binaries

Binary compatibility layers are usually developed in an incremental way. The developer
attempts to run a simple binary built for the target OS, and of course that fails. The
failure is caused by a feature of the target OS kernel that the NetBSD kernel does
not emulate properly. The developer fixes that by implementing the missing feature
emulation, retry running the binary, finds another failure, and things repeat until the
emulation is good enough to transparently run the foreign OS binary.

When trying to implement a feature emulation, a few sources of informations are
useful: the man pages and other system documentation, and the system include files.
For some OSes, such as Linux or FreeBSD, a possible source of information is the kernel
sources, but contrarily to a popular belief, having access to the target OS source code
does not help very much. What we are interested in is the target system behavior, not
its implementation. It tends to be much more productive to write unit test programs,
to run them on the target OS, and to see what they do, rather than reading the target
OS kernel sources to understand what it should do.

Usually, the work is done on system calls emulations. But when trying to run a Mac
OS X binary, the first show stopper was not occurring on a system call. The NetBSD
kernel was unable to actually load and launch the foreign binary. The reason for that
failure was that Mac OS X uses an executable format called Mach-O, which was not
known to NetBSD.

NetBSD knew about the legacy a.out and the newer ELF executable formats. Mi-
gration from a.out to ELF occurred a long time 2go, but NetBSD retained the ability
to run a.out binaries, for the sake of backward compatibility. The support for running
binaries in two different executable formats on the same kernel helped a lot when in-
troducing Mach-O executable format support. Let us have a closer look on how it was
done.

The execve() system call is responsible for running a new binary. It uses a struct
execsw table called the exec switch to perform its duties. Each entry in the exec switch
defines the operations used to load the binary for a given OS emulation and executable
format. For example that switch contains entries for NetBSD ELF binaries, NetBSD
a.out binaries and Linux ELF binaries, among many others. The first part of the job
was to add an entry for Mac OS X Mach-O binaries.

This entry defines a few operations for loading Mach-O binaries, which had to be
implemented:

First, the probe function. Each entry in the exec switch defines a probe function
whose task is to tell if the entry is able to run a given binary or not. The probe function
looks at the executable header to decide if it is a binary it can handle. In execve(),

70 Mac OS X binary compatibilty on NetBSD. ..

the kernel first walks the exec switch, using the probe functions to discover which entry
should be used to execute the binary.

Once the kernel knows which entry in the exec switch should be used, it uses another
function - the makecmds () function - to load the executable. This function is responsible
for setting up the process virtual memory space, loading the text and data sections from
the executable, and setting up stack space.

Things are more complicated when implementing the makecmds() command for
Mach-O binaries than for ELF binaries. Mach-O binaries can be fat, that is, they can
contain text segments for different architectures. Of course that needed to be taken into
account so that the right text section would be loaded.

Another difference is in object loading. When loading an ELF executable, the duty
of the kernel is just to load the executable, and possibly a dynamic linker. With Mach-O
binaries, the kernel also has to load any dynamic library needed by the executable. The
kernel duty stops there, as it is not required to load the libraries used by the libraries
used by the program: the dynamic linker will do that from userland.

Finally the kernel needs to setup the stack and populate it with arguments and other
information the userland startup code expects. There are some Mac OS X oddities
here: On many systems, the stack of a newly created program starts by the argument
count and a pointer to the argument vector (the famous argc and argv arguments to
the main() function of a program written in C). Mac OS X processes’ stack starts by a
pointer to a copy of the Mach-O executable header, the argument count and the pointer
to the argument vector.

In NetBSD kernel source, all the code for running Mach-O binaries was written by
Christos Zoulas. It can be found in src/sys/kern/exec_macho.c. The exec switch is
defined in src/sys/sys/exec.h and src/sys/kern/exec_conf.c. The code used to
setup the stack of Mac OS X processes is available in src/sys/compat/darwin/darwin_
exec.c.

4 Mach system calls

As we explained earlier, the Mac OS X kernel is an hybrid system, featuring two sets of
system calls. Apple used the following scheme: positive system call numbers are used
for the BSD interface, whereas negative system call numbers are used for the Mach
interface. Mac OS X user processes mix system calls to both parts of the kernel: BSD
and Mach. The BSD part features a well known Unix kernel interface, while the Mach
part’s interface has just nothing common with Unix.

Mach is a microkernel, implementing virtually anything as processes called servers.

Mac OS X binary compatibilty on NetBSD. . . 71

some servers run in user mode, other run in kernel mode. The kernel only provides two
services: process scheduling and Inter-Process Communication (IPC). IPC is extensively
used in a Mach-based system, because a process that need a system resource will send
a request to a server process instead of sending it to the kernel as it does on a Unix
system.

Most of the Mach kernel interface is therefore devoted to Mach IPCs. The Mach
microkernel implements a message passing system, which uses objects called messages,
ports, and rights.

A Mach message is a packet of data with a 24 bytes header and a payload that can
carry any information.

A Mach port has nothing to do with TCP or UDP ports. It is a message queue
maintained in the kernel. A single process reads from it whereas multiple processes
may write to it. Each message is sent with a destination port and a source port, so that
the server can answer the request to the right process.

A Mach right determines a process access right on a port, such as a send right or a
receive right. The right is a kernel resource that the process acquires, uses and releases,
just like files in Unix. For the process, a right is handled through a 32 bits integer, which
is usually called a port name. You can think of port names as Unix file descriptors.
Rights can be obtained through some Mach system calls, or they can be carried by
messages. For instance, when a process receives a message from another process, the
message normally carries a send right to the source port so that the receiver can reply
to the message.

The Mach system call table can be found in src/sys/compat/mach/syscalls.
master in NetBSD kernel sources. The most frequently used system call is msg_trap(),
which is used to send and receive Mach messages. This system call was quite compli-
cated to implement since it has to handle both sending and receiving, asynchronous
reception, timeouts, and other features. Moreover, it has to juggle with port and right
lists. msg_trap() is implemented in src/sys/compat/mach/mach_message. c.

In order to make debugging easier, the ktrace command on NetBSD was modified
to record Mach system calls, a feature which is not available in Mac OS X’s ktrace.
NetBSD ktrace is even able to dump Mach messages. Here is an excerpt of the kernel
trace for the Mac OS X’s 1s command running on NetBSD. It gives a good insight on
the way Mach IPC works.

541 1s CALL host_self_trap
541 1s RET host_self_trap 35454977/0x21d0001
...
541 1s CALL reply_port
541 1s RET reply_port 35454979/0x21d0003
541 1s CALL msg_trap(0Oxbffedd70,3,0x18,0x30,0x2140003,0,0)
541 1s MMSG host_page_size [202]

000 00001513 00000000 02140001 02140003

72 Mac OS X binary compatibilty on NetBSD. . .

010 00000000 000000ca e
541 1s MMSG host_page_size reply [302]
000 00001200 00000028 00000000 02140003 Covennenn
010 00000000 0000012e 00000000 00000000o
020 00000000 00001000 00000000 00000008
541 1s RET msg_trap O

host_self_trap() gives a send right to the host port, which is used to request
host-specific configuration. reply_port () allocates a receive right to a new port. Then
msg_trap() is used to send a message to the host port and get a reply.

The Mach message header is defined in src/sys/compat/mach/mach_message.h. It

contains 6 words of 32 bits:
typedef struct {

mach_msg_bits_t msgh_bits; /* flags =/
mach_msg_size_t msgh_size; /*» message size */
mach_port_t msgh_remote_port; /+* destination port =/
mach_port_t msgh_local_port; /% source port x/
mach_msg_size_t msgh_reserved; /* unused */
mach_msg_id_t msgh_id; /* Message Id */

} mach_msg_header_t;

The message Id is used to characterize the message meaning and the payload type.
Here, a message Id of 202 sent to the host port requests the machine memory page size.
The message payload is void. The server listening behind the host port responds by a
message with a 24 bytes payload. That message ends with a 32 bits word containing
the requested value (here 0x1000, or 4096), followed by a 64 bits message trailer.

It is interesting to note that using the Unix kernel interface, the same operation can
be done by doing a single call to sysctl(), requesting the hw.pagesize variable.

5 Mach kernel servers

The Mac OS X kernel implements many Mach servers inside the kernel. They can be
reached through three ports: the host port, the task port and the thread port. The
host port is used to request configuration about the machine the caller is running on,
whereas the task and thread ports, are used to request system resources on behalf of
the calling task (a task is a Unix process in Mach terminology) or thread.

Because binary compatibility takes place at the kernel boundary, NetBSD had to
implement all the Mach kernel servers. Instead of implementing different kernel threads
servicing the requests, the NetBSD kernel services each request in the process context
of the caller. The message Id is used to lookup the function that will get the request
message and produce the reply.

The NetBSD implementation of msg_trap() uses a table defined in src/sys/compat/
mach/mach_services.master to select the appropriate function. Like the syscalls.

Mac OS X binary compatibilty on NetBSD. . . 73

master file, this file is not written in C, and a shell script is used to produce various C
files from it. Here is an excerpt from that file:

200 STD host_info

201 UNIMPL host_kernel_version

202 STD host _page_size

203 UNIMPL memory_object_memory_entry
204 UNIMPL host_processor_info

205 STD host_get_io_master

206 STD host_get_clock_service

207 UNIMPL kmod_get_info

208 UNIMPL host_zone_info

209 UNIMPL host_virtual_physical_table_info
210 UNIMPL host_ipc_hash_info

Here we find the information that a Mach message with message Id 202 must be
handled by the host_page_size() function. This function is defined in src/sys/

compat/mach/mach_host.c. Here is its complete implementation:
int
mach_host_page_size(args)
struct mach_trap_args #*args;
{
mach_host_page_size_request_t *req = args->smsg;
mach_host_page_size_reply_t *rep = args->rmsg;
size_t *msglen = args->rsize;

*msglen = sizeof (*rep);
mach_set_header (rep, req, *msglen);

rep->rep_page_size = PAGE_SIZE;
mach_set_trailer(rep, »*msglen);

return 0;

mach_host_page_size_request_t and mach_host_page_size_reply_t are the re-

quest and reply Mach messages, defined in src/sys/compat/mach/mach_port.h:
typedef struct {

mach_msg_header_t req_msgh;
} mach_host_page_size_request_t;

typedef struct {
mach_msg_header_t rep_msgh;
mach_ndr_record_t rep_ndr;
mach_kern_return_t rep_retval;
mach_vm_size_t rep_page_size;
mach_msg_trailer_t rep_trailer;
} mach_host_page_size_reply_t;

host_page_size() call mach_set_header() and mach_set_trailer() to fill the
Mach header and trailer for the reply packet, and it sets the requested value: the page
size.

There are many other Mach kernel services, most of them being unused by Mac OS
X binaries and therefore left unimplemented in NetBSD. The most used services deal
with port, task, thread, and memory management. For example a task can spawn a

74 Mac OS X binary compatibilty on NetBSD. ..

new thread or request a memory mapping by sending a Mach message to its own task
port.

And of course there are services implemented as user-level daemons. We do not have
to do anything special for them: the Mac OS X binary can be executed on NetBSD on
the top of the Mac OS X binary compatibility layer, and they will provide the adequate
service to other Mac OS X processes running on NetBSD.

6 Mach IPC bootstrap

The Mach IPC is at the core of Mac OS X, it is used intensively everywhere. As a
result, Mac OS X processes have a recurrent problem: how to obtain a send right on
the port of a given server?

For kernel-level servers, Mac OS X processes use the host, task and thread ports,
obtained by the host_self_trap(), mach_task_self(), and mach_thread_self () sys-
tem calls.

For user-level servers, a bootstrap mechanism is needed. The mach_init daemon is
responsible for providing this service.

mach_init, always running with PID 2, is the first user-level process spawn on Mac
0OS X. The reader used to Unix will probably wince: Usually, init is the first process
spawn, and it has PID 1. Mac OS X even happens to have an init process with PID 1.

In fact, mach_init is really the first user process spawn, with PID 1. It then forks,
and the father, with PID 1, uses execve() to run init, while the child, with PID 2,
continue executing mach_init. This odd move is there to ensure that init still gets
the PID that a lot of Unix programs expect, while mach_init is launched first.

Once it has forked the traditional Unix’s init, mach_init behaves as a directory
service. It registers to the kernel as being the bootstrap process, thus making one of
its ports available to all processes through another special port any process can access:
the bootstrap port.

Each time a server process starts, it uses the bootstrap port to send a register
message to mach_init, giving the ports on which it is servicing and the service name.
And when a client process needs a send right to a server port, it uses the bootstrap
port to send a message containing the service name. mach_init will reply by a message
carrying a send right to the server port.

Implementing support for this was easy. We just had to implement the Mach service
used by mach_init to register its port: task_set_special_port. The NetBSD kernel
maintains a global variable called mach_bootstrap_port, and once mach_init registers,

Mac OS X binary compatibilty on NetBSD. . . 75

any process requesting a send right to the bootstrap port will get a right to the registered
port. That way things work as expected.

But there was one small problem: mach_init checks its PID, and will only behave
as the bootstrap process if it is started with PID 1. On NetBSD, PID 1 is always used
by init, so it is not possible to book it for mach_init. It is not possible either to spawn
mach_init at system startup instead of init.

The solution was finally to fool mach_init into thinking it has the PID 1 whereas
it is not the case. mach_init uses the BSD system call getpid() to obtain its PID.
We just had to recognize that mach_init was started and have getpid() answering 1
instead of the real PID.

But the kernel has no way of recognizing mach_init. We therefore use the help of
the system administrator, which tells the kernel that it runs mach_init using a sysctl
variable.

This is done with the following shell command:
sysctl -v emul.darwin.init.pid=$$ && exec /emul/darwin/sbin/mach_init

Using sysctl, the system administrator informs the kernel that a Mac OS X process
running with this PID (remember that $$ is the shell’s PID) should be fooled into
thinking that it’s PID is 1. Then we use exec to run mach_init without forking a new
process, thus retaining the same PID.

That way, mach_init thinks it is the first process spawned, with PID 1, and it
behaves as the Mach bootstrap process.

Of course, Mac OS X being an open source OS, it would have been possible to patch
mach_init sources so that it does not check its PID and always behave as the Mach
bootstrap process, but the goal of binary compatibility is to run unmodified binaries
from the foreign OS, therefore the sysctl hack choice.

7 Handling binaries built for Mac OS X.3

Unix processes tend to use a a few library functions such as memcpy() or bzero very
often. In a dynamically linked executable, calling a library function means walking
various tables, which is time consuming. Starting with Mac OS X.3, Apple introduced
a nifty optimization: the kernel maps a few pages of code containing various utility
functions at the end of each processes’ address space. Theses pages are called the comm
pages.

The functions can be reached at an absolute memory address that is carved into the
stone. Calling such a function is blazingly fast because it just involve branching to a

76 Mac OS X binary compatibilty on NetBSD. ..

well known address, there is no more performance loss caused by dynamic linking.

Another advantage of this approach is that the kernel can map optimized versions
of the functions that make use of some particular optional hardware feature, such as
Altivec on the PowerPC G4. The user process does not have to deal with checking
the hardware ability and/or the kernel version, nor does it have to include multiples
versions of some function to match various optional optimization.

For the binary compatibility layer developer, this optimization caused surprising
failures. As most of Mac OS X.2 command line programs worked on NetBSD, any binary
built for Mac OS X.3 quickly died with a segmentation fault. After some investigation,
it became obvious that something weird was taking place: the segmentation fault was
caused by the program jumping at a fixed absolute address where nothing was mapped.
Testing on Mac OS X with gdb did show that a page of memory containing code was
mapped at that fixed address. Because it was mapped before the process did any system
call, it was obvious that the kernel had to do it.

Fortunately, when running on Mac OS X, gdb displayed symbols when dumping the
memory in the comm pages, so it was not that difficult to understand the purpose of the
code they contained. The last part of the job was to actually implement the functions
in the comm pages. It had to be done in assembly, as some functions had to fit in a
small slot of memory, a constraint that a C compiler is not able to understand.

The assembly code for the comm pages can be found in src/sys/arch/powerpc/
powerpc/darwin_commpage_machdep.S. Peter Grehan, Srinivasa Kanduru, and Wolf-
gang Solfrank helped a lot writing it.

8 Running Aqua application and emulating the IOKit

By implementing the Mach IPC and a collection of kernel services, we have been able
to run most command-line binaries from a Mac OS X system. Programs using the X
Window graphic interface are also likely to work, though this has not been tested. But
what we are really aiming for is running programs using the native Mac OS X graphical
user interface, known as Aqua.

Aqua is based on a display system called Quartz, which is similar but incompatible
with the X Window system. Quartz uses a display server and Aqua applications are
clients that talk to the display server. In Mac OS X.2, the display server is called
WindowServer. In Mac OS X.3, it was replaced by QuartzDisplay.

The main problem with running Aqua applications is to have a Quartz display server
so that they can actually display something. We have several ways of obtaining a Quartz
Display server running on NetBSD.

Mac OS X binary compatibilty on NetBSD. . .

o Write a Quartz Display server from scratch. That solution is clearly not the way
to go, since it means re-implementing the code for managing various video boards.

e Write a Quartz to X11 bridge, in order to reuse X11 video hardware support.
The problem with that solution is that we need to discover how Quartz clients
talk with the Quartz server in order to implement the bridge. Moreover, it is not
certain that this bridge is posible to implement, because Quartz seems to have
many more features compared to X Window.

e Use Mac OS X’s Quartz display server and run it on the top of our binary com-
patibility layer. We chose that path, with the idea that it will be easier to reverse
engineer the Quartz client/server interface and work on a Quartz to X11 bridge
once we will have the Quartz display server running on the top of NetBSD.

We therefore tried to run WindowServer, and later QuartzDisplay, on NetBSD.
The big problem we encountered was to provide an emulation for the IOKit, which is
the device interface used by the Quartz display server to access the video board, the
keyboard and the mouse.

Traditional Unix device interface is rather simple, not to say poor. Devices are
available through special files in the /dev directory, which can be opened for reading
or writing. Any operation that cannot be implemented through a read or write is
implemented through the ioct1() system call, a general purpose I/O function used for
virtually anything.

Mac OS X uses the traditional Unix device interface for disks and terminals, but
most of the hardware is not available through that interface. Video boards, keyboards
and mice are only available through a big object oriented framework known as the
IOKit. The IOKit provides mechanisms based on Mach IPC for discovering and ac-
cessing hardware. It defines device classes, and device drivers are objects within the
classes.

The display server uses two device classes: I0Framebuffer, to access the video, and
IOHIDSystem, for the input systems (keyboard and mouse). In order to run the display
server, we needed to implement an IOFramebuffer driver and an IOHIDSystem driver,
plus enough Mach services from the IOKit interface so that things just work.

The IOKit interface is quite complex and not exciting enough to be covered here.
The two drivers were more tricky.

Drivers in the I0Framebuffer class implement access to a framebuffer. There are
a few Mach services used to read and write configuration information about the frame-
buffer, such as pixel depth, color palette, gamma table, screen size, and so on.

I0Framebuffer drivers must also make two memory mappings available to a user

78 Mac OS X binary compatibilty on NetBSD. ..

process that would request them:

e The framebuffer itself.

o A page of memory shared between kernel and userland where cursor related con-
figuration is stored. A user process can use that area to read the cursor position
or to modify the cursor visibility, for instance.

The biggest problem was to provide access to a framebuffer while the NetBSD kernel
does not know about all the various video boards that may be present in a machine.
Fortunately the Power Macintosh boot environment, known as Open Firmware, provides
a framebuffer to NetBSD. It is slow and not configurable, but it is available.

The I0Framebuffer driver in the Mac OS X compatibility layer maps the frame-
buffer from the wscons console driver. On a Power Macintosh, we know that this
framebuffer will be at least the Open Firmware framebuffer. If the NetBSD kernel sup-
ports accessing the framebuffer of the video board in a more efficient way (for instance,
NetBSD kernel’s machfb device is able to use the ATI Mach64 framebuffer), then the
I0Framebuffer driver will automatically use it.

As we do not support hardware accelerated cursors yet, the shared memory page
used for the cursor configuration is not emulated beyond a simple mapping of zero-filled
memory.

All the code for the I0Framebuffer driver is located in src/sys/compat/darwin/
darwin_ioframebuffer.c. The code that implements the IOKit interface is located in
src/sys/compat/mach/mach_iokit.c

The IOHIDSystem driver was the most difficult part. Like I0Framebuffer, it works
by mapping a shared page of memory between the kernel and the user program. The
kernel will write keyboard and mouse events to a queue located in that page. The
display server will read them from the queue. This mechanism saves a lot of system
calls for reading user input.

In our implementation, when the display server maps the page of shared memory,
the kernel spawns a new kernel thread that opens the wscons console driver. This kernel
thread, called iohidsystem, reads wscons input events, converts them to IOHIDSystem
events, and writes them to the queue. That way, the keyboard and mouse events are
made available to the display server, without the need to hack some hooks in the NetBSD
native input drivers for keyboard and mouse.

The code for the IOHIDSystem driver can be found in src/sys/compat/darwin/
darwin_iohidsystem.c

Working with the Quartz display server was not easy, as the IOKit interface is really
complex and the user program is not open source. Fortunately, XFree86 provides a X

Mac OS X binary compatibilty on NetBSD. . . 79

server called XDarwin, which can use the IOKit. Working with XDarwin did help a
lot, since it was possible to poke debug printf() in it to understand how things were
going on.

We are now able to run a fully functional XDarwin on NetBSD/macppc. This
means that the IOKit emulation, the I0Framebuffer and IOHIDSystem drivers are
good enough to be actually used. Unfortunately, as of today, the Quartz display server
won’t work yet. Debugging the problems that prevent it from working is the next item
on the project TODO list.

Conclusion

Mac OS X binary compatibility in NetBSD grew quite large. It now features more
than 20.000 lines of C and assembly code. For now support has only been written for
NetBSD PowerPC ports. NetBSD could also run Darwin/i386 binaries, provided the
machine dependant part is ported (it accounts for 5% of the code).

As of today, NetBSD-current is able to run most command line tools from Mac
OS X. Mac OS X Programs using the X11 graphical user interface such as Matlab or
Open Office should work too, though nobody explored that area yet. It is difficult to
give an idea of when NetBSD will be able to run Aqua applications, because we do
not really know the issues we are going to encounter and solve. Moreover, some event
could shorten the delay: if some Quartz display server become available for NetBSD
(for instance as an open source Mac OS X remote desktop project), it would remove
the major problem.

The biggest and hardest part of the work so far was to implement the Mach IPC
and various Mach services related to task, threads, ports, memory, and many others
resources. The IOKit was one of the most complex part of the picture.

On the performance front, a comparison of Mac OS X and emulated Mac OS X on
NetBSD would be interesting. Binary compatibility does not cause major performance
loss. If the native implementation of a feature is much more efficient than the target
OS implementation, then the emulation can even be faster than the original for that
feature. Such a comparison will probably be the subject of a future paper.

Acknowledgements

Thanks to Christos Zoulas for reviewing this paper.

80 Mac OS X binary compatibilty on NetBSD. ..

The flaf filesystem 81

The flaf filesystem

Seren Jorvang

October 12, 2004

Abstract

Flaf ("First Load All Files") is a new filesystem that tries to achieve mod-
em features like crash robustness and high metadata performance but small
code size by adapting to the ever-widening gap between sequential and seek
speeds of modern disks.

Contemporary filesystems like SGI xfs and Veritas VxFS that provide
crash robustness by way of journalling, and good metadata performance us-
ing indexed directories, are complicated and massive in terms of code size.
Much of this complexity deals with the synchronization of heavy state be-
tween memory and disk.

It turns out that because the relationship between (memory size, sequen-
tial disk bandwidth, number of files stored) very often tends to stay within
certain bounds, it is feasible to sidestep the complexity of the likes of xfs by
having virtually no interdependencies on-disk (no directory lists, no block
bitmaps), but instead building the structure at mount time.

The basis of flaf was the idea of spending "5-10 seconds at mount time
and 5-10 percent of physical memory" in return for small code size in com-
bination with modern features like crash robustness and good metadata per-
formance,

In flaf, all metadata resides in a single disk block per file and everything
else follows from that.

The final version of this paper did not meet the deadline for inclusion in the printed
proceedings and will be published on the conference website after the conference.

82 The flaf filesystem

Integrating ALTQ QoS into FreeBsd 83

Integrating ALTQ QoS into FreeBSD

by ADRIAN PENISOARA*

Abstract

Most of the modern operating systems of our times, either commercial or open
source, have developed support for network quality of service (QoS). The BSD
camp makes no exception thanks to the ALTQ framework developed by Mr. Ken-
jiro Cho from Sony Computer Science Labs, Japan. The OpenBSD and NetBSD
folks have already integrated this framework into their core distributions, while
for the FreeBSD project the integration is just about to start.

ALTQ, standing for ” ALTernate Queueing”, is a framework of (network) queue-
ing disciplines and related components required to offer resource sharing and Qual-
ity of Service capabilities. It is thought to be a development framework, although
it has been successfully used in production environments. ALTQ development is
now taking place in the KAME repository where it has been recently imported.

Some of the biggest challenges that ALTQ poses are the modifications to the
network drivers needed to enable the shaping of the packet flows and figuring
out the locking changes needed for the new fine-grained architecture of the -
CURRENT branch. The standard BSD network architecture, inherited from the
original BSD distribution, makes it hard to integrate alternative queueing disci-
plines. Instead, hooking points had to be devised in order to place the packets in
controlled network queues. The task becomes even more difficult if you have to
take into account the newly introduced locking semantics.

Recently work has been started and evolved quite rapidly towards the integra-
tion of the "pf’ packet filter from OpenBSD; the nice point is that the queueing
functionality has been achieved using the ALTQ package proposed for integra-
tion. This offers an alternative hooking point for the packet flows and queueing
disciplines management.

In the long term, I believe that a new approach is needed in the design of
the networking stack which would permit using alternative queueing mechanisms
and a unified method for packet tagging for various networking services (traffic
shaping, firewalling, etc). Although the *BSD family is renown for its networking
performance, the modern IT community demands more network versatility from
the nowadays’ operating systems.

Note: the full content of this article will be available on the conference’s website.

*You can contact the author at ady@freebsd.ady.ro or see his webpage on www.ady.ro

Integrating ALTQ QoS into FreeBsd

Lightwight FreeBSD package cluster in a jail 85

Lightweight FreeBSD package cluster in a jail
Version 2004-09-22

Dirk Meyer
dinoex @freebsd.org
http://people.freebsd.org/~dinoex/

How to setup a “jail' to ensure clean package builds on FreeBSD, making it easy to
distribute customized packages for more than one machine. Also, how to use this scripts
as a test environment to compile new or modified ports.

86 Lightwight FreeBSD package cluster in a jail

1. Generation of the packages
1.1. Motivation to start this project

When the ports I maintained became more complex, I needed a clean environment to test
existing and new ports.

1.2, Differences to the “bento' cluster system
A. It works in a “perl’ free environment

FreeBSD packages are built on the “bento' or “pointyhat' cluster. The infrastructure for
this is designed for parallel package building on more than two machines. It makes
heavy use of “perl' scripts, which was the main reason I have dropped the idea of using
this as a base for testing my own ports.

I had many problems with “perl' scripts. The transition from “perl4' to “perl5' was
difficult, with many portability problems and script incompatibility.

B. It runs inside or outside a "jail'

Running “chroot' as on the cluster will not protect your applications on the host. Some
ports try to be very smart by stopping services while programs install or uninstall, e.g.
the “cups’ port still kills all running “cupsd' processes. By running in a “jail', this and
other side effects can be prevented.

1 didn't want to endanger my base machine, and I wanted to get rid of the many packages

that are installed as “build only' dependencies. In a clean “jail', I don't have to worry
about a lot of side effects, such as auto detection of extra installed libs, which quickly
become an unexpected dependency. For example, the “samba’ port sucked in the “popt'
lib without registering it as dependency. So, when I removed ‘rpm'’ and the unused “popt’
from the system, “samba’ refused to start. This problem has been fixed already, but there
are several similar pitfalls.

You can start one ‘jail' IP-address for only fetching the ports you need, and use a
different “jail' IP-address for the build. This allows you to block any access from your
build jail in your firewall, giving you additional protection from Trojan programs.

C.KISS - Keep it small and simple
Only the tools in the base system, and “cvsup', are used. I use “make’ to extract all vital

information, and use ‘shell' to get everything working together. For processing the
“plist', I used a few lines of “awk'.

Lightwight FreeBSD package cluster in a jail 87

It is designed for a single jail building all packages you need. Then, you can install the
ready made packages quickly on every machine. One “nfs mount' of “/usr/ports' contains
all files you need to install or upgrade a system. This is the reason why I chose
*fusr/ports/local/update/ as the default location for my tools.

1.3. "INDEX' problems, Customizing

In the FreeBSD ports tree, the "INDEX' files are very large, caching a lot of information
from 11739 ports (FreeBSD 5.3 BETA). It weights about 5.5M for each branch. These
files are only up to date when a RELEASE is generated, and in the meantime, you have
to rebuild the INDEX each time a “Makefile' in the ports tree changes. A lot of package
tools use these files, but the information may not be consistent with the environment the
user has chosen. Dependencies may be changed at any time by options and settings in
*fetc/make.conf'. So you waste a lot of effort rebuilding the "INDEX' files and keeping
the information in there up to date. If using the target “fetchindex', you get a snapshot
that is more recent, but you can't trust that the information in there is still correct.

Instead, I save bandwidth by ignoring all 'INDEX' files and rely only on the current
information provided by the ports ‘Makefiles'. The trade off in computing time is
smaller than I estimated, because only the needed ports are processed, but the lack of
caching shows on the big dependency trees like in “gnome' or “kde' and will slow you
down again.

Parts of my ideas have been discussed on the “freebsd-ports’ mailing list, and I believe in
avoiding the "INDEX' files at all will be a step in the right direction.

1.4. Preserving good builds and reusing them

The FreeBSD package cluster builds all ports on each run. Having limited amount of
computer power, I decided to reuse packages untill they become obsolete. Therefore,
each dependency is built as a package, so it can be reused for new builds of a port and for
other ports depending on it.

The current ports system supports this too by setting “/etc/make.conf’.
I recommend the following settings for each host you want to install packages on.

DEPENDS_TARGET=package
USE_PACKAGE_DEPENDS=yes

1.5. How to decide if a port needs to be rebuilt

Instead of using the package name, I decided to use only one key to represent a port or
dependency: the path to the port's directory. This allows fast reference to the originating
“Makefile' and access to all the current information we need.

88

Lightwight FreeBSD package cluster in a jail

Step 1.

I determine the affected ports by path name. This is easy because my scripts can use the
standard target “all-depends-list’. There is no need to distinguish between build, lib and
run depends, as building the package needs them all.

root@jail:/usr/ports/archivers/arj# make all-depends-list
/usr/ports/converters/libiconv
/usr/ports/devel/autoconf253
/usr/ports/devel/gettext
/usr/ports/devel/gmake
/usr/ports/devel/libtooll3
/usr/ports/devel/libtooll5
/usr/ports/devel/m4
/usr/ports/devel/p5-Locale-gettext
/usr/ports/misc/help2man
/usr/ports/textproc/expat?2

Step 2.

I check each dependency for the exact version. I get this by using the target “package-
name'. If the exact version is not installed, we have to add or build the dependency. If a
required package is newer than an already existing package of the port we want, a rebuild
is triggered. This is very useful to catch any changes in the “build only' dependency.

root@jail: /usr/ports/devel/autoconf2534# make package-name
autoconf-2.53_3

1.6. Build only the packages you need

Several operation modes are supported. When you call the script with the directory of a
port, it will only check and build the port and its dependencies. This can be used for
emergency patches and for simply testing a new port.

Calling the script with a file will process the directories listed in that file for rebuild.
This is useful to build a couple of related ports.

Finally, if you omit the file, then a stored host specific list will be used.

1.7. Performance in FreeBSD4 vs. FreeBSD5

Running the “jail' on FreeBSD 4.x is about 4 times faster than with FreeBSD 5.x. There
are two reasons for this: the “bzip2' compressed packages takes much longer to access or
extract, and the “gcc3.4' compiler takes up much more time. You can regain a bit of time
by reverting the compression scheme for the packages to “gzip'.

Lightwight FreeBSD package cluster in a jail 89

1.8. Caveats: e.g. Linux emulations

There are some ports that won't build in the “jail'. The “linux' emulation is a prominent
example of this. In this case, you can build it outside with “chroot', and the resulting
package can be used to build dependent ports in the “jail' again, until it becomes obsolete.

2. Keeping up to date
2.1. Installation and Layout

You extend your ports tree by creating the directory:
root@host# mkdir -p /usr/ports/local/update

Download the files from “http://people.freebsd.org/~dinoex/batch/
and don't forget the ‘README'.

You may add extra ports under “/usr/ports/local’, I create a slave port there when I need
more than one package from the same port.

Inside the “jail’ I use the minimal “/etc/make.conf":

USA_RESIDENT=NO

WRKDIRPREFIX=/image

PACKAGES=/usr/ports/packages

BATCH=yes

SUP_UPDATE?=yes

SUP?=/usr/local/bin/cvsup

SUPFLAGS?=-g -L 2

SUPHOST?=cvsup.de.FreeBSD.org
PORTSSUPFILE?=/usr/share/examples/cvsup/ports-supfile

2.2. Create a list of installed packages

You can create a starting configuration easy like this:
root@host# pkg_info -gao > /usr/ports/local/update/\
data/make-packages.hostname

This is sufficient, but you may optimize the order of ports to match your needs. Feel free
to remove dependencies, so they won't be built once they are no longer in use, or put
them in any order you prefer.

90 Lightwight FreeBSD package cluster in a jail

2.3. Stetting up the jail

Extract a release in a directory of your choice, or use a current or stable build with “make
DESTDIR=/jail5 installworld'. Irecommend you keep the “jail' up to date with each
“buildworld'. In the host system, you should enable the “IPC' for the “jail'. This is
needed for some databases and for the “sendmail' ports. I set this in */etc/sysctl.conf’:

FreeBSD 4.x:
jail.sysvipc_allowed=1

FreeBSD 5.x:
security.jail.sysvipc_allowed=1

In FreeBSD 5.x you have to mount the “devfs' in the jail. Some ports may require the
*preofs' mounted as well, if you do this you should mount *procfs’ read only, I use read
only “procfs' on the hosting system as well.

2.4. Running each day

The update cycle is easy. It can be run unattended, so you have the new packages at
hand when you decide to update. I run “cvsup' to update the ports tree, then I have to get
rid of obsolete packages. After removing log files from aborted builds, I am ready to
rebuild all the missing packages.

2.5. Find outdated packages

I have to check each package for its origin and the registered dependencies. In case we
detect a difference, we move the package aside, so we have the latest package around in
case the new build might fail.

2.6. Running through the dependency tree

The scripts are very picky about each version, older or newer don't matter. You can even
do a clean ‘downdate' if necessary, because an exact matching version is enforced on
each run.

2.7. How to clean your "distfiles' directory

Once in a while you like to clean up your “distfiles' directory. This was much easier than
I thought. I look for each “distinfo’ file in the whole ports tree and compare the list with
the list of downloaded “distfiles'. Each file that is no longer listed in the “distinfo’ in any
port can be safely moved away.

Lightwight FreeBSD package cluster in a jail 91

2.8. Small and full upgrades

Each run will generate the newest packages you need. Mostly it will need less than half
an hour, but when a major dependency has changed it can run up to more than one day.

If you upgrade your base system, I recommend you move all packages away. Some ports
have paths that change with the FreeBSD version, or includes and libraries in the base
change, and if you keep the old packages, other problems might occur.

2.9. Naming problems when ports using auto detection

Some ports change their package name while build, and this will be recorded as a failure,
but the built package will kept around. Setting build options ahead for the port will give
you a clean build.

To set options for a specific port when settings in *“Makefile.local' are not working.
I was successful to place this as a conditional in */etc/make.conf":

.if ${.CURDIR} == "/usr/ports/multimedia/mplayer"
WITH_GUI=yes

WITH_GTKl=yes

WITHOUT_ESOUND=yes

CFLAGS+=-0

.endif

When this is more than 3 lines, I strongly recommend to build with a simple slave port. I
found an example for this “/usr/ports/local/mplayer-extra/Makefile":

PKGCATEGORY?= local
MASTERDIR= /usr/ports/multimedia/mplayer

WITH_GUI=yes
WITH_SDL=yes
WITH_VCRBIS=yes
WITH XANIM=yes
WITH_FREETYPE=yes

WITHOUT_RUNTIME_CPUDETECTICN=yes
WITHOUT_3DNOW=yes

.include "${MASTERDIR}/Makefile"

2.10. Errors

Well in active development of the ports, logfiles are preserved in the log subdir. Looking
at current sample you can see three different types of files.

92 Lightwight FreeBSD package cluster in a jail

~-rw-r--r-- 1 root wheel 24890 Sep 15 18:13
build,local,gnumail

-rw-r--r-- 1 root wheel 120 Sep 15 18:14 plist,
local, gnumail

-rw-r--r-- 1 root wheel 14925 Sep 15 18:23 build,
local,projectcenter.app

-rw-r--r-- 1 root wheel 11309 Sep 15 18:37 build,
local,preferences.app

-rw-r--r-- 1 root wheel 161 Sep 15 18:38 plist,
local,preferences.app

-rw-r--r-- 1 root wheel 57388 Sep 15 18:56 build,
local,gworkspace

-rw-r--r—-—- 1 root wheel 198 Sep 15 18:57 plist,
local, gworkspace

-rw-r--r-- 1 root wheel 5290 Sep 16 06:25 err,

local,gnumail_112

First there are successful build logs from ports with a name as:
“build,<category>,<port>'. They stay around until the next successful build. In case of
problems I found the “configure' output there is very helpful.

Second we may have files with a name such as: “plist,<category>,<port>'.

This indicates that after building this package and deleting its dependency, additional
files or directories were found. Directories can be mostly ignored, but missing files can
indicate a problem with the port or its dependency. If you are a maintainer, you can fix
this by updating the “pkg-plist’ of your port.

Last we have a log named ‘err,<category>,<port>'. This can be a build log in progress

or an aborted build. In this case, a “diff' between the new log file and the last successful
build log can be helpful to find the cause.

2.9. Improvements

This project was started in 2002, and has been tested at different locations. It's
development is stable, the history can be reviewed via “cvsweb'.

DHCP: Unexplored Capacities

DHCP: Unexplored Capacities

Yannick Cadin

October 12, 2004

Abstract

No current SOHO router comes without DHCP. Within a few years, DHCP
became one of the most popular network protocols.

An insidious side effect of the sudden widespreading of an embedded
version of DHCP is that many administrators never realized that this service
offers many resources, most of which remain unused. DHCP is also prone to
evolve and be extended.

There would be a lot to say about client-side customization, communi-
cation between DHCP servers and dedicated directories like DNS, or even
specific uses by some operating systems.

The final version of this paper did not meet the deadline for inclusion in the printed
proceedings and will be published on the conference website after the conference.

94 DHCP: Unexplored Capacities

95

A secure BGP implementation

6u0°psquado’sAd “asDd Siy4 Ul ‘UoIDUILSIP
9Y4 04 ADM 3y} UO SSOUD IM SUaqWINU Sy Y4 Bulysy
"w21G22 209€ vLL LEZET, M| $00] Yibd SV uy =

sJoqybiau s4) wouy
pau.pa| 3 s244pd J1ayl YLim saxijadd pup ‘sydomiau
P2422uu02 Aj4234ip S22unouuD Ajjonsn Jaxoads 4og v =

Sagy 24DipawJajur ybnoayy
ydomiau jour ay4 o y4od ay4 buiqluosap ‘sayibd-sv
P?2]|D3-0S YLiM PAJUNOUUD S) A41IGDYIDAU HUOMLN &

Sy 2uo AjjooidAL s1 gST2uO ™

(Sv) swayshs
SNOWOUOLNY 04Ul PIZIDIUWLNSGNS 2D SHJOMIDN =

[09050.14 2YL - 498

SHJIOMI2U J13Y4 SO
AL11GDY2024 22UNOUUD 0} JIYLO YID2 04 99 ¥|D4 SJST =

1221 044 ‘10204044 ADM24DY JapuUog =

050504 2L - 459

[03010.4 241 - 498

<buo'psquado@buiuuay> Jano.g buruuaH

uolpjuawa|dw 4og 24n22s v

A secure BGP implementation

96

*26onbup| J24|14 puD bijuod paubisap |jaM =

"254N02 40 ‘AJU3101442 AJOWBW PUD 2OUDWLIO S B

"a2u1bu2 uoissas Juapuadapul
AjJIDJ D 2q PINOYS 2UaY| "SU0ISSIS 2500| 4 U0 =

‘uoi4oJodas abajianid a5 “A41undag =

sa41sinbadauy ubisaq - pdbq

"+42| 2|qosn
Ajjoaa BuiyioN "paip uayd "22Jjun 2wopd2aq :pajob =

sbnq
15J0M 3Y4 X14 04 Auj SU3SN DUGIZ PaiDJisnuy. :0bboND) =

"SJdDaA 2 hoqp

20UIS pU2p AJ4SOW SNy} ‘PazijovIdJauWW0) “buissiw
J0 2sauodol uy sabossaw J0JU2 puD UOILDIUBWNI0Q
‘Asnq 2{1ym suoissas buisooj wod} suz}ing

"SPDaJY4 A14DI2d00D JO 2SN AADDY SHDW |49 :DJIGRZ &

dayire
224} 4ou $nq ‘§o sxJom Ajyuadnddo :sQunp s Jednp =

“WJom Ypm padwipms 2up

asn Aay4 sndo Aury ay4 Jo ‘sbng ssajunod sy 4o auo

41y 0} uaddoy noA ssajun ‘3o syJom Ajjonsn ‘Sua4nod
P2214duaA0 Jray4 uo sxJom Ajuo ‘Aupsaiudoud :0351) =

suoiipluawajdwi buiisixy - 4og

suolyppuaw2|dwy buisixy - 4og

"§3s3d
SI UO|SS2S 244 UOILDII140U D DUIPUDS U244V "SJOUID [DIDS UO JLRG ®

NOILYDI4ILON =

"uoiouLIout Butinod [onyoD 2y} ALIDD sabpssaw 2523y @

3LvadN =

“BAID |[14S S1 UOISSAS BYJ JaYjam §$2} 04 Ajjpoipontad Juag @
JATIVdEIIN =
"J3QWNU G 2u4 SO YaNs suaaumund
SUID4UOY "UOISSAS dO§ 2Y4 JO JURWYSI|GDLSD 1D DOUO JUaG @

N340 =

sabossay - 499

97

sJoqybiau
244 WOU} S2UO S3AI222J PuD ‘Aj1upjnbau sabossaw
IATIVJII SPUas Ll 'pPaysi|qo4s? Si UOISSaS D 22U =

sabossal
N3O DA suoqybiau yiim saa4awound sa401406apN =

sJogybiau o4 suoi4oauuod doy suadp &

¥2jo0s doy bujualsy) D supJULW @

mou s2dAy abossatu (O ®
uoyyoundas a63)1nud ul juauodwiod auo2 o s1 buibossaw pPudau e
‘rom

SD Idv ,bsui, uo quaaus ‘buibossaw jpuaaju) 3y S04 =

IdV J2}4ng 25N 04 ASD2 UD JuaAU] =

"53A[25.N0 bunia}yng (o 2jpuDy o4 pasu 2\ ®
"S§a)20s Buidojquou asn pup ‘Buyoo)quou
2q 04 spa2u 2uibu3j uoissag ay4 ‘A|SnoIAqQ «

2uIbu3 uoissag - pdbq

A secure BGP implementation

wwsulpe ojqe)
Funnas [pusay

wamadeuru Loy

Spwdaydosdt /

pdiq:pdSq~
Kdwayneay
Pl pajref

201309 HOISEIP A0S | PI2N08

socketpair

pd3q~:pddq” 0 SN
o p uy BL13 DL &rdusoymeas o e DB
SUBAINUUL) el P pail | amdizyons il

wano diq

UiduR uotssas

ubisaq - pdbq

3QY PUD 3G S§IDLS ‘[aUaX 344 04Ul S2LNOJ SUBJUR :UUDY @
. suoisap
Buipnou saxpy 'sajqoy dbq ayy spjoy (3Qy) 2uibu3] uoisiIaq aLnoy &
suoissas dbq sabounwi :(35) 2uibug uoissag e
sassadoud ¢ =

ubisaq - pdbq

A secure BGP implementation

98

Aydwa suoa/
04 s400uy> ‘pdbg™ uasn pabajialidun so sund =

98¢1 uo Wl gW 1 Japun AjjpordAy :4ybramyybi Asan =

wouboud
[42dBq 2y} J0} 125205 UIDWOQ-XIUM D SUIDIUIDWY =

‘way} sApjad ysnf 35
2y4 pup 3Qy 2Y4 Ut pa4ouauab auo s31yQdn buiobino =

ENY
2y4 04 passod 2.0 Joqybrau D Wou4 paAraal s34 ¥QdN =

au1bug uoissag - pdbq

WL POH YL JO £/7 AJONSN 51 2004 LIDJS 53] ‘PALIDISIL
$1 20, JY) PUD JuBs 51 260SSHU IATIVAIIN D 'Sk aun | aaiodazy 3yt 2uul Aag
J2u 1 2A1|ydaa) @
‘04S AP 04
1353 51 PUD POIP PALINSSD $1 LOISSIS .S Lo | PIOH U4 LBUM 4190 JAT Y 33N
0 40 UOLdIIAI UD PPLIDISIU PUD "4D4S PAYSIGOIST A4 SI{ODA SUOISSAS D UIYM PRLIDLS «
JawLpioH »
ALY 0} 17207 WO SULIOJSUDL UGISSES D USYM PALIDIS uoyouidxa
U0 voisS2S 24 D UAd0 03 AL3J PUD 1D2ARI0D 04 WHIOJSUBY 24D4S FAILIY U) SUOISEIS «
Jaw | Auyayioauuo) e
“2{PY 04 420q Bu10B uoisSas YL JO ISN0D MY
UO EupUadap ‘24045 DIPT O} SULIDSSUD). LOISEIS D UM PR40}S Af[Duciiipuo) uorouidxa uo
179007 O} SULIOJSUDULL 24035 P I UOISSIS ¥ 'SR 4t UayM Paj0auab St LakD LJYLIS Y <
JaWL| pjoH2|pI &
:doqybrau Jad suawi| [DUIAIS =

2uibu3 uoissas - pdbq

pabupyaxa aup sa1n0d ‘Ajlupjnbau pabuoyoxa

2U0 SIATIVJITN 'U0ISS3S 99 Pays!|qois? A|[n} ;paysiqois] @
IATIVAIIN 4544

Joy Burom ‘uoad wouj 260552 NIJO PaA292d (ukijuopuwRdo

Juas 360s5aW NIJO 'P2US!| RS2 UoIUU0D doy Hjuaguadp @
auo uado

04 BuiAay you ‘yoqybrau wouy uoiauuod doy buydaddn Aoy &

(2)472uu00 DIA UO1}PUL0D dD) D Uado o4 BuiAdl :4auu0) @

p23duragjo auou ‘pajdadD Suo1IBUUD OU :2|pT ®

24045 [DUJIDLU! 'JOGQYDIaU PAZHDIJILILN ‘MaL ;UON @

1S31D4S =

Joqybrau yoD2 J0j UIYIDW 240G 24Ul

auibu3 uoissag - pdbq

au1buj uoissas - pdbq

99

303 244 JoJ uo1yopioA doyixau s20Q *

dnidoys
UO {S1| 22D4J34UI puD 2|qD4 buiinod [auuay ay4 sayd4ad =

2]qo4 Buiinod auuay ay4 Jo Adod UMO 541 SUIDJUIDWY =

JauUJ2) Y4 0jU) SaLN0J Y4 buiyyab Joy ajqisuodsay =

Ardwasuoa/
04 s3004y> 'pdbq™ uasn pabajialidun so suny =

JBNO JBYLOUD 04 MDA [jN) D dWNP 04 SG UDY4 S5 @
ZH9T I11d D U0 M3iA [N} D PDO| 04 5QT PUNOUY o
4S04 =

W G2 PunouD poau SMaiA ||} 2 e
AW 0Z PunouD Spaau M2 (|0} T e
U214} Adowaw &

20D}J2aLuUl [2uJay ‘Ssa20u.d juaupnd - pdbq

S2|14 $Jw 04 padwnp 24 UDD SUOISSaS pup 2|qD). §IY =

uoi4oziwisdo
%20g-Ab6id asn o4 panenb a4p 53} YQdn paivJausg =
uo142)dwo2 o} pessadoud aup sabossaw 31 vQdN =

5}{[om 2|qDL PIOAY @
paxui) Ajiaoa
s2|qpi Aupwi ou) 1iids @

noAv) g1y =

auibug uois122QqQ 24noy - pdbq

pap2au s 526DssaW 3 | YQdN S240Jau29 =
x1424d uad y4od 1529 Y4 S2IDINJOD =

2J2Y UnJ SUa}14 499 =

3|qo} yod gy @
2|qo4 x1jaud @

(91) 250g uoiowWJouT Buiinoy 2y4 SUIDLUIDWY =

A secure BGP implementation

auibu3 uoisio2q 24noy - pdbq

au1bu3 uoisioaQq 24n0y - pdbq

A secure BGP implementation

100

424225 P2JDYS 344 MOUY| Of SDY JOHIDLLY =

(saunyoubis ayy
BuiAjiuan Jayoq },uop A3yl ‘QSgeaud und o} uaddoy nok ssajun) e
apis Buiaradau
2Y4 U0 P21 J1iaA pup JapDay ddo4 Y4 04 PAPPD SI 424325
PaJDys D pub J2pbay 2y4 0 S4dod JO ySoy GpW Uy &

saJngoubis gpw doy sauljap GREZ D4y #

S0Q] <- UOI}I2ULO0D
Y4 buiL4as2u ‘SSUPPD 3I4N0S PAXDJ D Y4IM
2bDss2W U014DI1J140u dbq D puas pINoD JaXIDLLD Uy =
|OU4UO0D $S22D PasDq
dI 4snf - pa4bo1juay4no Ajjoad jou 2Jo suoissas dbgq =

saJnjoubis gpw doy - pdbq

SU014DUNBIJUOD YSAW-|INS Ul W G $NOQD SPI3 =

‘0GZ 1114 D uo Spuodas
£ Upy} S53] ‘(SaWiu2 OO00YT 4N0GD) 2(GD4 |[N4 D UM 45D} LD @
[2uJa¥ 3y} Wou} pajdnodap pup
p2|dno2 2q up2 3|q4 Burgnod Y4 JO MIIA [DUSRLUI DY | =

saJnjoubis gpw doy - pdbq

$yjom 2|qo4 doy4xau 21potsad paau 4 uop M

PP{GE2 244 [nd oA uauM 201 30U M 'S4 +

UOI4001J1.03A dOyLXaL 40§ 41 ISN PUD STHDS HUI| ,SIDDLISU 410G MOUY IM <
JuAs Ut jday S| STYDLS J1AY4 PUD SIODLI24UI JO 41| [DUIBLUT @
31 Yhim 2dod puD JDu3 32140 M ‘Ao 2/GD3 BuLNoL y) Yum IPP1; NoA 4T <«
JuAs ut paYy st 2|qpj BuisNod [2UUdX Y4 JO MIIA [DUSRLUT ®

12205 buignou 2y4 o4 suaysi

20DJJ24U) [2uJay ‘'SS2204d juaunq - pdbq

20DJJ24Ul [2UJd) ‘SS220ud Juaupyd - pdbq

101

A secure BGP implementation

WO~ pdub(DS1,, unJ e
420 (9 Qsguedp uo 100q §suif ID pajpuaub) sajif Aay Adoo e
iPapaau uolDUNBILUCD ON JSOW|D &

buikay 2y} a|pupy o4 spaau Ajuo pdwiyos =

Appaup siiod pup sjutodpua ayy smouy 41 e
smo|} ay4 dn syas pdbq =

wayy sasn
PUD ST4S J0 Jind pashun up Joj jauday ay4 S}sv pdbq =

51s0q JuD[N6aJ © U0 PaBUDYD 2uD SAay @
sn J0J buiAay 2y4 op o4 pdusjpsi asn uo2 ap =

(il w2440 pooj Ndo 2snp2 pineo) o
254N02 JO ' $O0UUDD 03S1) 3

*2|q140dwiod
34,9M ‘[|2M SD 23S4T P2Aa¥-214D4S Op up2 Jadiunp

smo|} ayy dn syas pdbq e
[ou2y 2yt 03Ul SYS 244 sppoj pdbq e
J254] {D3uJ Op 0} puDy
00} JOU SDM 41 ‘ApD2u|D 22D 4u24uUl A2)4d Y4 poyY am Sy =

uo1oubajul 2asdi - pdbg

MOI4dO 2un1ouBIS GQW dOL 2Y4 40} SUOI4DUBPISUC)
juawaboubyy A2), ‘'29GE 4y P2 04 NS HOW =

$24Aq 21 45D2] 4D 25N - Y4bua| A2y 2y} Jo4 2uDI 2¥D] =

%D2m J2yDd 24D sbis Gpw doy 4py4 puiw up dad)y =

uoiyoubajul d2sd) - pdbq

LI 35N :004 ‘suediunl pub soasid
Y4im sHdom “aunb1juod o4 Asva Ajwausxa si bisgpu doy =

HJOMIWDU} 22S4T
2Y4 Y4im LoDUaLUl 04 22D4u24u1 A23}d v 40b pdbq =

HJOMBWDU§ D254 Y4 UIY4IM UOILDIDOSSY
A41un22g sD saun4oubls gpw doy pajuawajdu ap -

juiod BuLLJIDLS SO 41 pasn M\ 'HJOM | upIp
inq 'paysixa saunioubis Gpw doy 404 2pod pjo Auap =

saJnjoubis gpw doy - pdbq

saJ4nyoubis gpw doy - pdbq

A secure BGP implementation

102

SIYy4 J0J SJaL|1} P22u NOA DUGRZ/0IS1D UQ =
25}2 BuIyL0U PUD 24N0J-4|NDJ2P D 2UNOUUD :24N0U-1NDJ2D @
mouy am BuiyLAu242 2oUNouuD o @
SHJOMIDU LMO INO AJUO 2JUNCULD :}j35 @
S$HJOM$2U AUD 2UNOLUD § UOP :uou @

PJUOMARY 2OUNOUUUD Y4 :|00D AUBA =
{

joagpeap Aay Brsgpw dda

J19s ounouwur
€ utE amI3IpIoy

08t awTIpToY
aatssed

8°0°0°0T SS3Ippe-Tel0]
z doyTagnw
weaaisdn J289p
£0059 Se-230WAT

} 0°1°0°0T Ioqydrau

€2/2°891° 261 YI0omiau
8/01 YIomiau
JOUNOUUR M SYIOMIdU #

ou yepdn-q1j}

€ umw awtIpToy

08T dwripioy

drAwg uo uaiIsTy

dtAwg pr-Jo3nol

100S9 SV
uotleandyjuod Teqold #

W1°0°0° 221, =dTAw
«£°0°0°0T,=z39ad
+2°0°0° 0T, ~1333d

SOIDewR

uoLiut§ap Jogybrau - pdbq

Jagpi] e

suoruIyap Joqubia @

20UNOULD 0} SHHIOMIIN

sbuigias pgoj9 e

4d up oy tsnf - suoruyap oDy e
SUO1402S G ojul Ji|ds =

SyJomyau ‘b1juod [pqolb ‘souoow - pdbq

buissacoud gop @
(s151povjq Wnds pasnqussIp ¢49g) puwnds o4 uoiIalipad 8
burragiy y2xo0d ®

:6uy4Auo yonw Apyaud 404 pasn aq ubd 52|qpy Jd =

S21U4UD JO S10] Y4M U2AD |SDS AJaA 23,4 XIPDU D 25N S2|GD} @
260n6uD} Ja41} pd6q 2u4 Buisn paoajes aup saxiyaud e

2|qu4 4d
D 04Ul Suoqybrau wo. paudoe| saxijaad ppo uod pdbq =

Ja4j14 423ovd }d uno
y4m pdbq pasoubajul am 0s ‘sax1ja.d 3Jomiau SO Sis!|
24NQqII4SIp 04 ADM Ju2121} 43 UD 1 j03040u4d d9g Y|

uo14pJnbijuod - pdbq

uorjoubayu 4d - pdbq

103

A secure BGP implementation

¥ =< uarx139ad { $/0°0°0°0bZ ¥/0°0°0°bZT } x130ad Aue woay Ausp
bz =< UaTX13axd ¥2/0°2°0°26T X132ad Aue woly Auap
9T =< uarxiyead
\ £ 9T/0°0°¥SZ 69T OT/0°0°89T Z6T } ¥Ty3xd Aue woxy Auap
2L =< uax13ead ZT/0°0°9T° LT X139ad Aue woay Auap
8 =< USTXTI3xd 8/0°0°0°0T XT1Ja3ad Aue woxy Auap
syIom1au sndoq IdI[TJ #

0/0°0°0°0 x1321d Aue woxj Auap
31nox 3yneyop B 1dadoe 10U Op #

$Z - 8 uarxtyaad Aue woxj mO[TE
Aue woxy Auap
$11q § URYl JP3I0YS JO pg ueyl JaBuoy saxTIaad Ino I3I[TY #

a1 ye dosdy
8°0°0°0T sgaIppe-[e30]
$Z0S9 sE-210WT

} z'1°Z°01 oqydrau

{
YT dsv dasdy
8°0°0°0T ssaappe-Tedo]
£2059 SB-210W3X

} 17172701 IoqyBrau

2bonbupy| U241}

q038°5384€PTITROPOOEITISATIZIOY S
\ 48J0°8AZPTISIEL0IOPOPSY0LEDPLIZD8EDFIROG20 TRYS
\ Tt 1ds 3no dsa dosdr
91D9983SPEILALI0IZPRBLPLIGREQLI(] Sae
\ GEQOATeSD82698023039FTAGEIPOTRTITPTIFE0 TRYS
\ 0T Tds ut dss dasdy
8°0°0°0T ssaappe-Teaoy
£Z0S9 Se-ajowal
} T°1°2°0T Ioqydrau

)T buisn ‘uoiypunbijuod 22sd; - pdég

11 IDunouue
«Z I92d T00S9 SV. 1959p

} zasads xoqydrou

{
j1ecBTpseiTuiow paomssed 3rsgpm dol
3198 adunouue
oT 193d T00SH SV, 1263p

} 1I99d$ aoqydiau

€ wiw aurproy

081 SWIIPTOY
2A19sed
20089 SB-210WIX

} .20059Sv Butxead, dnoad

buiA2y o1404s ‘uotyounbijuod sasdi - pdbq

sdnoub Joqybrau - pdbq

A secure BGP implementation

104

£86SE
900EPT
[4 43
00T/1
001/5
00T/S¥
001/2
001/1
00Z/08
00t/€
00T/€
00T/21
00%/T
pAdYXTFaId/231e1S

WopysTPY 0 Z8S6
wopySIP9 0 2856
wovyYSTPY 0 2856
wgZyeIps 0 5856
wopysIpe 0 2856
wTHPYSTIPT © 8856
WOPYSIPY O 19161
mOOYEZPT O 1856
wopysSTP9 O 2856
uwFYOOPY 0 6898
W8ZYBTIPT O 9¢49
W.SYGIPS O SESEE
woTYOOPE O ZEEP
umog/dn DANQ JUISESW

T¥b2L
90019¢€
SOv6
6856
$856
0TESE
85161
€116
9606
£698
8929
8T9EE
EEEY
pADHBSH

295%9 691 E€1°891° 261
S9.¥9 €T EET° 89T TE6T

T9sP9
92159
22199
95699
z06v9
98599
8T6¥9
P89
LP8YY
989v9
8E9¥0

sv

LTITEET 89T Z6T
22 EET" 991" 26T
S6°EET 9917261
8% EET 8917261
S9'EET 89T 26T
82 EET 89T 26T
6V EET° 891 " T6T
98 EEL 8OT T6T
S8 EET 89T 26T
P EET 89T 26T
9 EET 891 261

T0GYBTaN

14+2dbg

242 2L * Jaud|pao| Apipows ‘spuadaud ppo :426 e
yiod Sy 4o wspajaad ‘xijaud uo pasnq Yooy e
Yo4Du U0 Auap ‘MOj{D :U01 oY @

:5440d £ JO S{SISUOD 2|NY =

Yo4DW 4SO m

umop/dn suoissas j10ads o} @
2|qpy. burnou [auuay 2jdno(-ap)
uoiunbijuos poopad e
UO1DuULIOJUl 2wipund Aranb e
$2)20s ujowiop xiun o1 pdbq o4 buiyIauuod jua) &

2bonbup| Ja4)1}

14odbq

1 jres-puadaad 39s syurdn dnoa8 o1 molle
TIBT:BIIET AaTumumod 39S furTdnauwosg o1 MOTTe

007 jaadreoo] 312s sBupgead dnoad woay moyte
OIT Joadiedo] 18s { WOY2[33$ } se-1IsURI Yur[dnawoss wOIJ mOT[E

ZIT 3vadiedoy 198 { Betag } se-20INMO0S YUTTdNawWOS§ wWOIF MOTTE
$11 JFaadiedoy 1as { ugps } se-3Tsuexl Yul[dnowosg wolj mo[[e

2bonbup| uay |14

105

A secure BGP implementation

PITEA 2°8s1°02 212
PrIEA [D8:74 & :r4 S €4
P RA 91°¥91°88°08
ERVETY doyIxaN

X3u Y8 [IdABq § <QTINBuTUUI

[+2d6q

2992 : wkcnm Jjomay .©H<0.0.QH 13S0y 3ajomay
62T 1330d 18007 ‘92°0°0°0T 1350y TEJ0T
2928L 0s& 18101
qQ 0 4saxgoy 9Inoy
T 8bE saarTedady
0928L T sa3epdn
[¢] 0 SUOTIBITITION
T T suadQ
PIATIOY ussg

180731813138 o8esson

ysaxyay ainoy
1SeSTUN HAJI (SUOTSUIIXD [09010adTITIN
:S9T3ITTIqRdR) JOqUITON
SOf TBAJ2IUT aaTTedaa) ‘SO6 SWIIPTOY ‘ST:00:00 pEdT Ise]
2$:€5:20 103 dn ‘poysTIqeIS3 =~ 3e1s Jof
9T°0°0°0T PI-I31IN0J IIOWRT ‘| UOTSIIA 49§
JUT :uoTIATIOSA(
LEZET SV 210833 ‘9T°0°0°0T ST Ioqudrau 494
9T'0'0°0T Tou s [12d8q § <QTIdgduTUUDY>

[4+2dbg

199z :31x0d ajowsy ‘ST 0°0°0T 11s0Y Il0way
6.1 :330d €207 ‘92°0°0°0T $380y TeD07
S0€ 1TeAXIUL 0£:00:00 Ut anp BECMACTY ¢ LI EEY]
S06 11eaxajul ZUT0:00 uT anp 1 IOWTIPTOH
$021 :{eAIul Butuunx 00U :JIWTLAIIDYIOSUUO)
s0¢ Ieaawiuy Buiuunx jou :J3UWTLPIOHAIPI

ysaagjay ainoy
1SEITUN $AJ] (SUOTSUIIXE J02030adTITNN
:89117T1qeded JOoqyBTaN
SOE TeAXaIuT aATTedady ‘SOE SWTIPTOY ‘ST:00:00 pedx iseq
9T:£5:20 I03 dn 'paysTIqeisy = 21e1S d94
9T°0°0°0T PT-I91N0X 230WRJ ‘P UOTSIIA JOF
JUT :uoTIATIOS3(
ZEZET SV 230W21 ‘9T°0°0°0T ST Joqudrau g9g
SI3WT1 9I°0°0°0L Tau § T12d3q § <orIdp3uTUUAYD

142dbq

[3
EMUTT 62/002°851°02°212 J=
102°8ST°02°212 0€/0°8ST'0Z°ZIZ NS»
LT°E81 98708 $2/0° %12 891 261 S»
10707 L21 2€/1°0°0°L2L S=
O#uT] 8/1°0°0"L2T J»
¥ €81°98°08 22/0°961°602° I8 S
¥ ERT°98°08 22/0°081°602° 18 S=
1°0°0° 42T 2E/0E"E8T°98°08 S
LT 8Z/91°€BL°98°08 s
SAUTT 62/0°€81°98°08 p2
v EST 98708 €2/0°281°98°08 S«
¥ €81°98°08 $2/0°181°98°08 Ss
§2°291°98°08 ZE/IT VI 98 08 NS»
TANUTT OE/¥Z°Z91°98°08 dx
Aemoied uotleutrisap sleyy

310X STIYI eTA ayqeyreas doyixaN 494 = N
JT3elS = § ‘PIDBUU0) =) ‘d0d = g 'PTIBA = . :sBeyy
JT1e3S Paldauuod qIJ moys 132d3q § <QUIOBBuUTUUIY>

[4+2dbg

A secure BGP implementation

106

MOTSAT{E2] onaNb WOISSIMS [IGRT-0INOX dIeLs dodY do1 ojoad uy ssed

:]1A2 Aj|Dad s) sy =

“YSIU00S AUy} 3G
1M - 31 35 4 uD pd6q pup ‘124 [2GD] 2Y3 U0 PaSD] Ja4|l 3, uD0 jd @
2|qo} BuILNoU [2Uay 344 PUD (gJa4N0M U pajuRLIR|duil @
UOLDAULIOJU) AIDYIGUD LIDLID O3 2SN UD3 2M S23Aq 26 @

24N0J D 04 P2YODLLD S|2QD| }X3}224} U0} MOJ|D =

pd6Qq Wou 4 UOILDWIO JUl 2WOS 04 $5299D 4d 2A19) i

10y} uo bupyiom s o1phDjD @

(6€p2 24y) Buiuadwop dojy 24noy =

pajuaure|dui @

(8162 04Y) YsaujaJ a4noy =

41 0p 4,uoM T 'y 1d Jofow © 51 gaynony auop Ajyuod e
(8682 244) 9AdT buipnjou; ‘ faoddns jod040udiyinwy =

jdy Ui UayMaWOS PIPPD SOM @
jdodsupdy 9A4T =

supjd 2.4nn4 [1A2 - pdbq

saul] 28G2 :sabpduow e
2p09 Jo sau1) 9GET :|12dbq
2poo jo sauy| 6891 :pdbq

*"$214514D4S 2WOG i

(- Addoy 2w sapoud toy),
25N 40 2502 pup AY[IqoI[ad “2ouniiioad s, pdba uim Addoy
AtA 20D Aay4 4oy} Buissaudxa ‘2w [iIw suojouado awos aLnD @
‘sus2d Aupw Auow Aupw Auow Auow Auous Auow Auow
Auow y4im sdnyas buipnjous 'satis awos a4inb gpasn uy =

2|qU4s Adap =

supjd 24n4n4 pjo syiuow g - pdbq

-3uds isanbax
umop §£€T 81 €12 TOU [32dBq # UAT

-luss 1sanbax
dn §-g€Y"8ZT €1z AU [3xdBq # uAy

-1ua® 1sanbaa a1dnodap
ardnodap qry [33dBq # UAT

-juas 1sanbaax 31dnod
ardnod qIF (12d8q # uAy

-1uaw 1saubal peoyax
peo[ax 112dBq # uAl

onb snypys - pdbq

1+2dbq

107

j2W02|aM SADM|D 24D SU2XIDY Y4 JOJ SUCIJDUOP JI2g &

y400q uno
4D 3pIS$N0 Jo |wiiy suoripuop/buopsquado -mmmy//:dity
4D 2pDU 24 UDI SUOI}DUOP ‘N0 BuluunJ s Aauowy =

$QD Qsguedo so |jam
SD ‘apIS4N0 2JDS JO} Su2450d PUD S§JIYS |00 2ADY M =

A secure BGP implementation

UoILIP2 002 '2b0d 45D| 2|qDpPIOADUN 24|

(240s s126p1ay JNOA ‘2Wlg S1Y4 2SNOY UNOA WOUS D) 24 2M) ®
Ajddns
J22q pup juoddns panuijuod siy 104} ‘244ndapubp WIM =
pdbq buissnasip 21ym poy am s A)pNIwW Aubw Aupow
Auow pup ubisap 21spq y4im buidjay ‘suvaA g 4soe)
40 Joj 31 $noqD BupjuIyy J2140 pdbq pajupys Ajjoniuaaa
T 40y4 os 44inq Azoj Aw Bupjony Joj 4popy ap 02Yy| =
pdbq uo y.om sy
30 tsow buihod sy pup o1pnopd Yim 3Qy 2y4 paubisap
0YM ‘<bu0'psqea.@aJpup> uubwaaddp aJdpuy =
W14 Ul NOA 04 S2pI|S 25aYy4
bui1426 yiim Ajsnowoua padjay pup 3Qy 244 Jo 4sow
buiyium s oym ‘<buo'psquado@oipnpja> Jaxa [0IpnD|) =

SHUDY |

Track A Sunday

Notes:

An Introduction to Sysadmin Training. . . 109

EuroBSDCon 2004 Karlsruhe, Germany:

R

An Introduction to Sysadmin Training
in the Virtual Unix Lab

Hubert Feyrer <hubert@feyrer.de>
October 31st, 2004

Abstract

The Virtual Unix Lab (vulab) is an interactive course system which allows students to
do Unix system administration exercises. Machines are installed on which students can do
their assignments with full “root”-access. At the end, the system checks which parts were
done correctly, and gives a feedback on the exercise result. Access to the lab is via the
Internet via a web-browser as well as standard Unix clients (ssh, telnet, ftp). Some detail on
exercise-verification are outlined in this paper.

Contents
1 Introduction & Background 2
2 The Virtual Unix Lab 2
3 A Tour trough the Virtual Unix Lab 2
3.1 UserArea, 2
32 AdminArea 11
3.3 CreatingNewExercises 18
4 Setup 28
41 Hardware 28
4.2 LabMachine Installation 30
4.3 Restricting Accessto LabMachines 31
44 Software, 31
5 Current Status 32
6 Future Perspectives 32

References 32

110 An Introduction to Sysadmin Training. ..

1 Introduction & Background

A problem in teaching Unix system administration is the lack of machines available on
which students can practice with full system administrator privileges. Without system ad-
ministrator (root) privileges, many things cannot be practiced. On the other handside, when
handing out root privileges, the lab machines are in an unknown state, requiring reinstalla-
tion of the lab machines for future students to get a known safe & well-configured environ-
ment.

The Virtual Unix Lab was created to solve this problem.

2 The Virtual Unix Lab

The Virtual Unix Laboratory was started in the “Praktikum Unix Cluster Setup” project in
the “Hochschul- und Wissenschaftsprogramm (HWP)” initiative at the University of Ap-
plied Sciences of Regensburg (FH Regensburg). It was designed as an interactive course
system for system administration training in general, and with a focus on training installa-
tion and configuration of the Network File System (NFS) and Network Information System
(NIS) on Unix-based systems in particular.

The Virtual Unix Lab fulfills this purpose today. After sign-up, machines are installed on
demand, and students can do their assignments with full "root”-access. Users can book
exercises for a certain time, and all machines are setup identically. Exclusive access to the
lab machines during exercises is guaranteed, with access to the lab being realized via the
Internet via a web-browser as well as standard Unix clients (ssh, telnet, ftp). At the end
of the assignment, the system checks if/which parts were done correctly, and gives a report
containing feedback on the success of the exercise to the student.

After that, machines are re-installed from scratch for next user and exercises.

3 A Tour trough the Virtual Unix Lab

The tour through the Virtual Unix Lab covers both the parts that the users will see while
using the system as well as a few areas which cover administrative actions plus an overview
of the steps for updating and creating a new exercise.

3.1 User Area
This tour through the user area of the Virtual Unix Lab covers the following areas:

e Login and account creation
o List of exercises

e Booking an exercise

o Taking an exercise

o Retrieving feedback afterwards

The tour itself will consist of a number of screenshots displaying the various parts of the
web based user interface that the Virtual Unix Lab presents.

1. Access to the user interface of the Virtual Unix Lab is through a web browser, which
allows accessing all facilities provided, except performing exercises themselves (see

An Introduction to Sysadmin Training. . . 111

Sie sind noch nicht registriert?
Dann muB fir Sie zuerst ein angelegt werden.

Figure 1: Logging into the Virtual Unix Lab

below). Language of the user interface is German (only) right now — internationalisa-
tion is on the list of items to do in the future.

When accessing the webpage, the first thing students encounter is a mask to login as
displayed in figure 1.

2. If a student doesn’t have a login yet, he can create a new login (“Profile”) using the
form displayed in figure 2.
The student will have to give his student ID number (“Matrikel-Nummer”), first and
last name, an email address where he can be reached and a password (twice). Upon
registering, an email will be sent to the given email address, which contains an authen-
tication token that the user has to enter to permanently enable his account. Accounts
not enabled that way will be deleted after 7 days. This allows instant access to the
lab, but ensures that people provide at least a valid email address if they want to keep
using the lab.

3. After successful login into the Virtual Unix Lab, the welcome screen shown in figure
3 is displayed and users can choose from several actions they want to do: Update
their user settings (“Benutzerdaten”), get a list of available exercises (“Ubungen au-
flisten”), book an exercise for a certain time & date (“Buchung vornehmen”), get a
list of past and future exercises, delete future exercises and retrieve feedback on past
ones (“Buchungen einsehen’) as well as logout of the web site:

4. Figure 4 shows a list of exercises available in the Virtual Unix Lab, including the
exercise name (“Ubung”), a one-line description of the exercise (“Bezeichnung) and
duration of the exercise for the user (“Dauer”):

5. Each of the exercises in the list can be clicked on to retrieve the exercise text as shown
when actually taking the exercises, see figure 5 for an example.
This allows preparing the exercises, and learning all the items necessary to success-
fully perform the exercise in the Virtual Unix Lab.

6. After these preparations, an exercise can be booked by selecting the “iibung buchen”

An Introduction to Sysadmin Training. ..

[Ete et v 1h s o Bomwis Tl Wi
J< IEeae O%Jﬂ

o bty o 8 Vicetios Uoix X]

Virtuelles Unix Labor

[Homel [Loginl [Informationen|

Profil anlegen

Bitte geben Sie hier Thre Daten ein.
Es sind alle Felder suszufiillen.

Nlchdun Sie thr Proﬁl erfolgreich angelegt haben, kbnnen Sie bereits in den geschtzten
wird lhnen eine Batlupmg eMuil zugesand. Mit ihr

erhdthAcunedemmmma dleSwm\mdngmrr’nﬁhuon Thres Profils

verwenden. Chne diese ldentifizierung wird Thr Zugang nach 8 Tagen ungtltig.

Administrator: hubert feyrer@informatik fh-regensburg de

Figure 2: Entering data for a new login

menu item. The first step in booking an exercise consists of deciding at which date
and time to take the exercise, which is displayed in figure 6.

Exercises are available in three-hour intervals (1.5 hours for the exercise, plus about
one hour for preparation of the lab machines and some time for postprocessing), slots
already booked by other users are not displayed as available. In the above screenshot,
the exercises at Oam, 3am, 6am, 9am and 12am are not available because of that.

. After deciding on the date and time for the exercise to take place, the next step is to
choose which actual exercise to take, from the list of available exercises. As in the
previous list of available exercises, the exercise name, description and duration are
displayed, and the user has to decide for one as displayed in figure 7.

. After selecting date & time and which course to take, a final confirmation shown in
figure 8 has to be made before the exercise is booked.

. The exercise is booked now, and the system will know when to prepare the lab ma-
chines for the exercises, using an at(1) job.
The student can walk away, prepare for the exercise or whatever, and as for a real test,
he should come back to the lab a few minutes before the selected time of the exercises,
logging in again, see figure 9.

. After the user has logged in, the system will tell him that an exercise was prepared for
him (and which one), and that he can already start preparing the exercise by following
the provided link (“bitte hier klicken™ in the red text) as displayed in figure 10.

. Before starting the exercise, the student has to enter the IP address of the machine
from which he wants to access the lab machines. This process, shown in figure 11, is
needed to restrict access so other students cannot disturb the exercise.

What happens when the user has entered his IP number here is that appropriate rules
will be injected into the firewall covering the lab machines to allow access to the lab
machines only from the given hostname when the exercise starts.

An Introduction to Sysadmin Training. . . 113

Virtuelles Unix Labor

Siesind eingeloggt als user
fhome] ch
me] [Benutzerdaten} L&gi%‘%uﬁ_,ﬂkmjw{&;@mamt_m@l [Buchungen

Willkommen im Anwenderbereich des
Victuellen Unix Labor

Auf diesen Seiten haben Sie die Moglichkeit, an Ubungen zur Systemadministration
unter Unix teilzinchmen. Mit Hilfe des Virtuellen Unix Labors erhalten Sic auf den

rechnern Zugang als ‘root’ und kénnen Sie atles susprobicren, wozu Sie sonst
keine Berechtigung haben.

Fragebogen: Wenn Sie die (bungen "NIS” und "NFS" absolviert haben, dann sagen Sie
uns bitte [hre Meimung zum Virtuellen Unix Labor! (Bei Gruppenarbeit bitte von jedem
Mitglied der Gruppe susfolien lassen)

VULab News:

2004-07-16:
Countdown zur Prifung! Bitte nach den beiden vulab-Ubungen das Ausfillen des
Eragebogens nicht vergessen, und am Montag Ausdrucke der Auswertungen der

NIS- und NFS-Ubungen mllbnngm

Enx&m'mn[

Figure 3: Welcome to the Virtual Unix Lab

An Introduction to Sysadmin Training. . .

i{ Fale Edit View Tab Settings Lo Bookmarks Yoolx. Help

& Sreaors oot & Virtialles Ut 3}

Virtuelles Unix Labor

} Sie sind eingeloggr als feyrer
[home] [Benutzerdaten] [Ubungen suflisten] [Buchungvornehmen] [Buchungen
. cinschenl [logoutl

Bitte klicken Sie die (bung an deren Aufgabentext angezeigt werden soll!

netisd NetBSD konfigurieren
nfs Aufsetzen von NFS Qientynd Server
nis Aufsetzen von NIS Clientund Server

! Administrator: hubert feyrer @informatik fh-regensbyrg de

24/9‘:0’90—@

Figure 4: List of available exercises

Fide Edit View Tab Settinge Co'| Jockwwks Toals telp

|

& Sermwarors dos k. O Virtellos Untx x |

Virtuelles Unix Labor

Sie sind eingeloggt als feyrer
homel [Bemutzerdaten] [Ubungen suflisten] [Buchungvornchmenl [Buchungen
anschen] flogout]
In dieser Aufgabe soli etwas an NetBSD ramkonfiguriert werden, das auf dem Rechner
"vulab1” des Virtuellen Unix Labors installiert ist.

Aufgaben:
Paketverwaltung

1. Installieren Sie die bash und tcsh Bindrpaket (Quelle:
fitp//ftpnetbsd org/pub/NetBSD/packages/1.6/sparc/All)

Benutzerverwaltung

1. Richten S:eemm neven Benutzer "test” ein. Home-Verzeichnis soll /homeftest
sein, Shell “tes

2. Setzen Sie das Pumrv.ﬁkden Berutzer "test” auf "vutest”

3. Stellen Siesicher dass sich der Benuitzer via telnet, ssh und ftp einloggen kann!

4. Andern Sie die Login-Shell das Benutzers “vulab” so dus er kinftig die bash
verwendet.

Administrator: hubert feyrer @informatik,th-r burgde

Figure 5: Exercise text preview

An Introduction to Sysadmin Training. . .

115

Virtuelfes Unix Labor

Siesind cingeloggt als user
[home] [Benutzerdaten] [Buchungvornehmen] [Buchungen
cisehen| [logout]
Buchung vornehmen

In diesem Bereich kbnnen Sie [hre Ubungs-Buchungen vornehmen.

: Angefragtes Datim: 21.1.2004

B lasuw 20 B .)
Eﬁt l"i \lltillx-., |l. iu \[.'. Wikien Sie diégewtmchte Startzeit der (uing,
29303 1234 41500 Uhr

567 8%101 1800 Uhr

1213 14 1516 17 18 2000 Uhr

1wl nM2s weiter']
262728293031 1. o]

12.

13.

14.

15.

Figure 6: Booking an exercise: selecting date & time

Just as in a real test, the student can come into the lab and sit down, but the test won’t
start until a certain time. In a real lab test, this would be when the teacher passes
out sheets of paper with the exercises printed on them. In the Virtual Unix Lab, the
student has to wait for the start of the exercise too, as displayed in figure 12.

When exercise time is reached, the firewall protecting the lab systems will be opened
to allow access to the lab systems, and the exercise will be displayed as e.g. in figure
13.

The text displayed here is the same as was available for looking at before, so students
were able to prepare properly, with a few small additions. First, a link with help for
accessing the lab systems is placed under the exercise text, so students not familiar
with the lab (yet) can make themselves familiar how to access the lab machines, giving
proper syntax for telnet, ftp and ssh. Below this link, the time remaining for the
exercise is printed on the lower left (“Verbleibende Zeit™), and if the user decides she
has finished the exercise before the time runs out, this can be stated by pressing the
“Fertig!”-button.

For accessing the lab machines, separate terminal windows have to be opened to ac-
cess the lab machines and perform the tasks needed to successfully solve the tasks
given in the exercise text as shown in figure 14.

Figure 14 shows access to a Solaris/sparc (left xterm) and NetBSD/sparc (right xterm)
system. For each system, the user knows a “normal” user account and password
(without any system privileges) as well as the system administrator (root) password,
given in the instructions on how to access the lab machines.

The student can the use any measures he seems appropriate to solve the tasks, using
the full administrative privileges he has available. If one of the lab machines has to be
rebooted, this can be done as with any normal remotely administrated machine (i.e.:
there is no access to the console, right now).

After the exercise has ended — either because time ran out, or because the student

116 An Introduction to Sysadmin Training. ..

File £t View Isb feSegr Go Goowwams Tooh Hew]

FREER K al"— al
o Viraeiies Uab x [FHP-pg g |

3
Virtuelles Unix Labor

Sie sind cingeloggt als user

fhomel [Berutzerdutenl [Buchungvornchmen] [Buchungen
anschen] [logoutl

Buchung vomehmen

In diesem Bereich kdnnen Sie fhre Ubungs-Buchungen vornehmen.

‘Wihlen Sie die gwﬂmchtc Obung fr
1500 Uhr
sucmn«ﬂhmwsme: l""‘_‘]
B
VorhmdeneUhmw 7

11-71
¢ apache Aufseczen eines Apache Servers 0100 s
& nethwd NetBSD konfigurieren 01:30 Ja
¢ nfs Aufyetzen von NFS Client und Server 01:30 i
¢ nis Aufserzen von NIS Clientund Server 01:30 Ja
r pruefung XE\nanon Beputzern mit Hilfevon 44,09 nein
¢ prucfung2 Einrichten eines Apache Servers mit SSL 0100 nein
¢ solaris Solaris konfigarieren 01:30 i

11-71

aurick] weiter
Administrator: hubert feyrer @informatik th-regersburgde

Figure 7: Booking an exercise: selecting the exercise

An Introduction to Sysadmin Training. . . 117

Etie Etin View Teb: Settings Go - Bovkmarks. ' Tools Holp

azuoﬁﬁowﬂ_!

9 Borpermhoti ek &’ O Viraellen mix x|

Virtuelles Unix Labor

Sie sind eingeloggt als feyrer
fhomel [Benuzerdaten] [Chbungen auflisten] [Buchung vornehmen] [Buchungen
cinschen] [logout]
Buchung vornehmen
Folgende Buchung wird ausgewithit:
NetBSD konfigurieren
{Dauer: 01:30 Mimten)
am: 6,6.2004 beginnend um 21:00 Uhr
zurtiek | >> Buchen! |

Administrator: hubert.feyrer @informatik fh-regensburg de

Figure 8: Booking an exercise: confi rmation

Fllo, Eit Yiew T Soctires. T Jocknacks’ Teule fele
1945 ¢ @ 8 ON
2 Serm B8 & Virtoalion Inix %

Virtuelies Unix Labor

[Homei [Loginl [Informationen]

Login
Bitte geben Sie hier [hre Daten ein.

Sie sind noch nicht registriert?
Dann mu8l far Sie zuerst ein Profi angelegt werden.

: Administrator: hubert feyrer@informatik fh-regensburg.de
f E T £

Figure 9: Logging in for a booked exercise

118 An Introduction to Sysadmin Training. . .

Filg Edd View Tab Settings. Go Bookmarks Tuols Help

8/ v B9 o o A
o Vituelies Unbx IQPHP og_giwx)

Y

Virtuelfes Unix Labor

Siesind eingeloggt als user

[home] [Benutzerdaten] (Buchungvormehmen] [Buchungen
einsehen] [logout]

Willkommen im Anwenderbereich des
Virtuellen Unix Labor

Die Ubung 'netbsd’ wird fir Sie fir den 2004-01-21 un 14:30.00 vorbereitet.
Dauer ist 90 Minuten, Ubungsbeginn ist in 16 Mimuten.

Die Ubung ist freigegeben, bitte hier Kicken um den Ubungabeginn vorzuberciten!
Auf diesen Seiten haben Sie die Mdglichkeit, an Ubungen zur Systemadministration

' unter Unix teilzunehmen. Mit Hilfe des Virtuelien Unix Labots erhalten Sie muf den
Ubungsrechnern Zugang als ‘root’ und kdnnen Sie alies susprobieren, wozu Sie sonst

keine Berechtigung haben.
fhowel Link auf diese Seite
{Benuitzerdaten} Hier Kdnnen Sie thre persdnlichen Daten indern
Reservicren Siesich Uungsmfgaben, die Sie demniichst -
IBuchungen einsehen) - Oberpriifen Sie Thre getstigten Buchungen
Rogouil “Vexlaisen Sie 1hr Profil
Administrator: hubert.feyrer@informatik.fh-regensturg. de

Figure 10: An exercise is prepared & waiting

fgu. Eon Yiew Tab - Sefingy Go - Boowmars - Yoouw. - Help

S5 Y 5 o —— |
y Visaelias unn]nm pyqdsie |

Virtuelies Unix Labor

Sie sind eingeloggt als user
fhome] [Berutzerdaten] JBuchungvornchmen] [Buchungen
cinschen] flogou]

; Firewall Konfiguration

Bitte geben Sie die IP-Nummner des Rechners ein, von dem wus Sie sich auf die
Utungsrechner verbinden wollen, in der Form 123 45.78.127" ein!

‘ IP-Adresse: ‘132.199113.26

Nach Eingabe [hrer iP-Nummer kinnen Sie das Labor betreten und auf den Start der
Ubung warten.

Labor betreten |

Administrutor: hubert feyrer@informatik th-regensburg.de
Dore, | &

Figure 11: Confi guring access to the lab machines

An Introduction to Sysadmin Training. . . 119

Virtuelfes Unix Labor

Siesind eingeloggt als nser
fhome] [Bemumerdatenl [Buchungvornehmenl [Buchungen
anschen] [logout]

‘Willkommen zur Ubung!

Das Labor ist fiir Sie vorbereitet, Sie kinnen die Obung um 14:30Uhr beginnen, Dauer ist
90 Minuten. Der Zugriff suf die recher ist hier beschrieben.

Beginn der Ubung istin 11 Minuten.

Administrator: hubert feyrer@informatik fh-regensturg de

Figure 12: Waiting for start of exercise time

signalled he’s done by pushing the “Fertig!”-button - the system will revoke access
to the lab systems by re-enabling the firewall, and print a message that the exercise is
over and that feedback on the exercise can be retrieved from the database within a few
minutes as shown in figure 15.

At this point, the lab systems are analyzed in the background by a number of scripts,
which know what configuration steps are necessary for successful performance of the
exercise, and which will report their findings in the database for later retrieval (see
below for more on this).

16. After an exercise has finished, students can retrieve feedback on an individual exercise
via the main menu (“Buchungen einsehen”). They will see the exercise text again,
with the various tasks containing comments on what checks were done (green text) ,
and if the particular check was done successfully (“OK”) or not (“Nein”). See figure
16 for an example.

3.2 Admin Area

After a walkthrough of the functions provided by the Virtual Unix Lab to it’s users and
students, this section concentrates on some of the administrative actions that are available to
administrators of the Virtual Unix Lab.

Again, here are the various impressions to show these aspects, in screenshot format.

1. Users with administrative privileges in the Virtual Unix Lab have to log into the sys-
tem like “normal” users too, the system will know they have admin status, and display
available actions as appropriate. Available actions are updating & changing user set-
tings (“Benutzerdaten™), editing or creating new exercises (“Uebungs-Setup”), look-
ing at past and future exercises booked by all users (“Buchungen™) and seeing what
users said in the survey (“Feedback”, not covered here). Figure 17 shows the admin

An Introduction to Sysadmin Training. . .

File Eot Yiew Tab Selingy Go Bookmasa Vools Hep

PR RN]

o Virkielios Unbx [PHP: pg._queix |

Virtuelles Unix Labor

Sie sind eingeloggt als user
homel [Benutzerdaten] |Buchungvornehmen] [Buchungen
einsehen! flogout]

Willkommen zur Obung "NetBSD konfigurieren™!

In dieser Aufgabe soll etwas an NetBSD rumkonfiguriert werden, dus auf dem Rechner
"vulabl” des Virtuellen Unix Labors installiert ist.

Aufgaben:
Paketverwaltung

1. Installieren Sie die bash und tcsh Bin&rpaket (Quelle:
ftp:/Atp.netbed org/pub/NetBSD/packages/1.6/sparc/All)

Benutzerverwaltung

. Richten Sie einen neuen Benutzer "test” ein. Home-Verzeichnis soll home/test
sein, Shell “tcsh”.

. Geben Sie das Passwort flir den Bermtzer “test” auf "vutest”

. Stellen Sie sicher dasy sich der Berutzer via telnet, ssh und fip einloggen kann!

. Andem Sie die Login-Shell des Benutzers “vulab” 50 daB er knftig die bash
verwendet.

Der Zugriff auf die Obungsrecher ist hier beschrieben.

Verbleibende Alle Aufgaben
Zeit: besarbeitet:

50 | Miruien “Ferdg |

Administrator: hubert feyrer @informatik fh-r burg de

Figure 13: Display of the exercise text

An Introduction to Sysadmin Training. . . 121

e € Ve Yo Semngy - go
R R

o Vinustws Une & [af Seoemeioh o HEEPHE 08 win |

1. Master (Solaris): vulabl

o Stellen Sie richer dass die nBtigen Pakete (SUNWypr, SUNWypu,)
installiert sind.

« Setzen Sie den NIS-Domiinenname auf “vulab™ (fetc/defanitdomain &
domainname(1))

« Setzen Sie den mit "ypinit -m"” als NIS Master auf

« Sorgen Sie daflr dass die ndtigen Serverprozesse (ypbind, ypserv, ...) beim booten
gestartet werden.

» Starten Sie die Serverdienste!

« Welcher NIS-Server wird verwendet?

o Weiche Dated wird for die Gruppen-Daten verwendet?

« Weiche Dated wird fiir die Passwort-Daten verwmdet?

+ Uberprifen Sie ob Gruppen- und Passwort-Infor
werden kimnen.

Bookmarks:. Totls . Hep

[Panweord:

ast login: Hon Dec 15 11:03:08 003 from 194,55,168.65

k ight {c) 139, 1997, 1398, 1993, 2000, 2001, 2002, 2003
The NetdSD Fi

921, 1993, 1994
s of the Uuwrms of California, Al rights reserved,
B50 1,6,2 (GRERIC) 80: Tum Feb 3 05:15:47 UTC 2004

asvard:

Lut logint Fri Fed 13 14;05:59 iru 184,95,106,65

‘ Microsystems Inc. SunlS 5 Gerveric How 2002
u

e -a
05 wilabl 3,9 Generic wedn sparc UMV, SPARCstation~4
o

* pkginfo SN SN SUMeprot

austen Keprot. Solaris Bundled tools

‘ nssten Sihpr MIS Server far Solarts (root) I Bﬂwlmls?mis&(mlt)n'luft 3 06315347 UTC 2004
joaston NIS Server for Solaris (usr) b on, ot b, g /e obut] 1d/metbed-1
o] Wﬂlm&ﬁvmlml le/GEMERIC m

)

Figure 14: Logging into lab machines for the exercise

Eile. £div Yiew Jeb. Jottirgs. Gu. jookearks Tgels fele
dIBPOFRO
o Victaatles UniX [g

Virtuelles Unix Labor

Siesind eingeloggr als user
lhomel [Bemutzerduien] [Buchung vornchmen! [Buchungen
ginschen] [logout]
Ende der Ubung

Herzlichen Glackwunsch, Sie haben die Ubung im Virtuellen Unix Labor gemeistert!
Sie haben die Ubung beendet, der Zugriff auf die Ubungarechner wurde gesperrt und das
Ergebnis Threr (bung wird in der Daunbmkxpuchat. wo Sie es in ein paar Minuten
einsehen kAnnen. Bitte wihien Sie dazu den Punke “Buchungen einsehen” im Mentt

Vielen Dank fir lhre Teilnahme an der Ubung!

Administrator: hubert feyrer @informatik fh-regensbuzg e

Figure 15: End of exercise

122 An Introduction to Sysadmin Training. . .

fue B vew Te semngi go Boomats Tt hew

(37 = 3 3 » 4 | £

§ Virsolier Unt x S PHE: og. duetie|

Y
Virtuelles Unix Labor

Sie sind eingeloggt als user

fhome] [Benutzerdaten] [Buchungvornehmen] [Buchungen
cinsehen| Nlogoutl

Auswertung der Ubung “NetBSD konfigurieren™!
Die Ubung "NetBSD konfigurieren” (Buchungs-1D #77) fand am 2004-01-21 von
12:00:00 bis 13:23:37 statt und daucerte damit 83 von max. 90 Minuten. Die Ubung wurde
von der IP-Nummer 132.199.213.26 aus absolviert.

Es folgt die genaue Auswertung der einzelnen Teilaufgaben:

In dieser Aufgabe soll etwas an NetBSD rumbkonfiguriert werden, das auf dem Rechner
“vulabl” des Virtuellen Unix Labors installiert ist.

Aufgaben:
Paketverwaltung

1. Installieren Sie die bash und tesh Bindrpaket (Quelle:
ftp:/fitp netbsd org/pub/NetBSD/packages/1 65 parc/All)

Pakete installiert? (pkg_info -¢) Nein
Benutzerverwaltung

1. Richten Sie einen neuen Benutzer “test” ein. Home-Verzeichnis soll /home/test
sein, Shell “tcsh”.

"test” finger(1)bar? OK

Korrektes Home-Verzeichnis? (finger, test -d) OK

Shell richtig gesetzt? (finger) OK

Eintrag in /etc/master passwid? OK
2. Geben Sie das Passwort fir den Berutzer "test” suf “vutest”

Pusswort richtiy gesetzt? (getpwnam(3), crypy(3)) OK
3. Stellen Sie sicher dass sich der Bermitzer via teinet, ssh und ftp einl kann!
4. Andern Sie die Login-Sheil des Benutzers “vulab” z0 das er kinftig die bash

verwendet.

Login-Shell vulab? (chfn/chsh, finger) Nein

Anzahl Teildbungen: 7
Davon bestanden: 5 (72%)

Administrator: hubert feyrer @informatik fh-regensburg de

Figure 16: Feedback on an exercise taken

An Introduction to Sysadmin Training. . . 123

file Bt Yiew G0 Hovhasrke [oole fHindow Hele

R N I N err——————
C Ao YhBockuurss U Bimive LU How L3l Loslink FBluaphad
8 2 virtuelles Unix Labor] x

Siesind eingeloggt als admin
fhome] [Benutzerdaten] [Uetungz-Sewp] [Buchungen] [Feedback] [logout]

Will im Administrationsbereich
des virtuellen Unix Labor

Auf diesen Seiten haben Sie dic Mbdglichkeit, an einigen Ubungen zur
Systemadministration unter Unix teilzunchmen. Mit Hilfe dieses Projekis arbeiten Sie
auf einem Computer unter dem Betriebssystem Solaris. Durch den Zugang als ‘root’ auf
dieses System, kdnnen Sie alles ausprobieren, wozu Sie sonst keine Berechtigung haben ...

Administrator: hubert feyrer@informatik fh-regensburg de

A KCIN Ir o

Figure 17: Administrator’s login & menu

login screen.
All the menu items available in this menu will be presented in the following para-
graphs.

2. Selecting “Benutzerdaten” displays a list of all users of the Virtual Unix Lab as shown
in figure 18, including their student ID (“MatrikelNr”), last and first name, login
(which defaults to the email address entered when signing up, but can be changed
by users later) as well as the type of a user. Types are defined for users and admin-
istrators, with an additional type reserved for teachers of the system (*“dozent”) for
future additions.

Two buttons are available right to each user, the lower button to delete the user from
the system (and all his associated data, like exercises he took), and the upper one to
edit the data of a certain user.

3. When pressing the button to edit a user’s data, the form displayed in figure 19 will be
presented to change a users’ data.
Interesting items here are the user type (“Benutzer-Typ”), which is usually “User” for
students, and “Admin” for administrators of the Virtual Unix Lab. If a new user’s login
has not been confirmed yet by entering the authentication token mailed to the user
when registering, the “Anmeldung bestitigt?” field will be set to “Nein” to indicate
the login hasn’t been confirmed, with the authentication token being displayed for
confirmation & verification.
If a user can’t remember his password, a new one can be filled in (twice, for confir-
mation) to set a new one. During tests with a group of 40 computer science students
over the duration of one semester in summer 2004, it was amazing how many students
managed to forget their password — “I have forgotten my password” apparently isn’t
a user-support myth (only)!

124

An Introduction to Sysadmin Training. ..

| Eae EMt Vi Tab Settingt Go Backmwks Toole. Help

</ > & 4 @ O I /|

o Svehoct doe %, & Virwmalloe e %]

4

Virtuelles Unix Labor

Sie sind eingeloggt als admin

fhome] [Benutzerdaten| [Ucbungs-Setwp]l [Buchungen] [Feedbackl [logout]

Benutwzerdaten einsehen / dndern

Vorhandene User: 19
11-10111-201 k2]

i
Sgi

1234 Feyrer Hubert feyrer

mmmm‘%

11-101 14-201 ol
Administrator: hybert{eyrer@informatk (h-regensburg.de

Figure 18: Managing users

An Introduction to Sysadmin Training. . . 125

4 Btle gdiv Vies Tab Settings G0 Dodkewrks Tols help

Sie sind eingeloggt als admin

fhome] [Berutzerdaten] [Ushungs-Sepl {Buchungen] [Eeedbackl [logoutl

Benutzerdaten

In diesem Bereich kdnnen Sie die gespeicherten persdnlichen Daten indern.

. Zurdcksetzen o | 2> Werte thernehmen |+

Administrator: hubert feyrer @informatik fh-regensburg de

Figure 19: Editing user specifi ¢ data

126 An Introduction to Sysadmin Training. . .

4. Listing all exercises booked by all users in the past and future can be achieved by

selecting “Buchungen” from the menu. The list, displayed in figure 20, contains login
name of the user and what exercise he booked, including date & time and also an
indicator if the exercise is still to be taken (“freigegeben”) or already done.
To the right of each exercises, two buttons are placed, just as in the for for editing user
data. The lower button can be used to delete all traces of a past exercise (not available
to normal users to prevent them from destroying evidence), the upper button can be
used to retrieve feedback on a particular exercise for both admin and student users.

5. When an administrator selects feedback on a certain exercise, he will get similar feed-
back as normal users (see figure 21), containing data if single tasks of the exercise
were solved successfully, and some hints what the system did to test (in green font).

In addition to normal users, administrators will get an overview on how all students
taking the same exercise performed, giving numbers on how many did (“Bestanden™)
or did not (“Nicht bestanden™) manage to solve the task successfully, as well as an
overall number of students who did the exercise. In addition to absolute numbers and
percentage, bars of “0”s are printed to give sort of a graphical overview, making it
more visible how the overall group performed.

6. When selecting the “Uebung-Setup” menu item, various settings for new and existing
exercises displayed in figure 22 can be changed. First, a new menu row will appear
which allows managing the list of lab machines available (“Rechner verwalten”), the
list of harddisk images available for them (“Images verwalten”) as well as creating a
new exercise (“neue Ubung erstellen)”. Furthermore, a list of all existing exercises
is given, with two buttons on the right. The rightmost button can be used to delete
an exercise (including all data available on that exercise, esp. past exercises taken by
students - use with care!). The other button can be used to change various settings of
the exercise, using the same menus as when creating a new exercise, see below.

3.3 Creating New Exercises

1. When creating new exercises or editing existing ones, a list of lab machines needs to
be known. This list can be edited by selecting “Rechner verwalten” in the previous
menu, and using the user interface shown in figure 23.

Buttons besides the entries are used to delete entries for lab machines, or edit proper-
ties, with hostnames being the only property right now.

2. A similar list can be retrieved for all harddisk images available, that can be deployed
on the lab machines.
As can be seen in figure 24, harddisk images are available for NetBSD 1.6.2/sparc and
Solaris 9/sparc right now. Adding other harddisk images for other operating systems
like Linux, or special setups like troubleshooting would be easily possible.
At this point, only one kind of lab machine is available (two Sun SPARCstation 4),
and thus no additional checks are needed if an image can be deployed on a certain
machine. This may change in the future!

3. When choosing to create a new exercises, three screens have to be filled with data.

The first one asking for general information on the new exercise, like a short descrip-
tion (“Kurzbezeichnung”), one-line description (“Bezeichnung”) and a username that
should be allowed exclusive access to the exercises (“Nur fiir”, used for administrative
exercises, see below). Time for preparing the lab machines (“Vorlauf”), duration of
the exercise (“Dauer”) as well as time for analyzing the lab machines (“Nachlauf™) is
needed next, each given in hours and minutes.

If an exercise should not be repeatable like for a real test, not just a lab exercise, this
can be done by setting the exercise to be not repeatable (“Wiederholbar?”). Next item
needed is file placed in the filesystem of the Virtual Unix Lab which contains the
exercise text (“Pfad auf die Textdatei”) and which needs to contain some special PHP
calls to allow giving feedback (not covered here).

An Introduction to Sysadmin Training. . . 127

Fule £t View T Settuey G0 Jockawks Tools Help

Sie sind eingeloggt als admin
fhomel [Berutzerdaten] [Uebangs-Setnpl [Buchungen] (Feedbackl [ogoutl

Verwaltung gebuchter Ubungen

Achuing; Bei Buchungen in roter Farbe, war das Erstellen des at-Jobs fehlerhaft !
Vorhandene Buchungen: 38
11-10111-20121-30 1 3140 |
114 feyrer nfs Qlientund 03.05.2004
Server
Mms 2100 2
115 feyver nis Clientund 11.05.2004 Uhe ‘9130 nicht-mehr 236 :.:1 :
Sexver .
Aufretzen =
123 valter keen@etud - regoasburdo s WANES | 21052004 390 0130 nicktmehr 248 =
gRRCps Mﬁ? 2100 =
124 walter kern@stid M-regenswirg.dé nis ummm 20052004 Gy 0130 nichmehr X9 &
: : NFS 1200 =
i _ m‘“"’““ i .-
Wuwmds0 . e Clentund 2052004 "Gy 0130 nichtmely 246 5
: Sexver
e s =
120 vaiter keen@stud th-regensburg de nfs %lw 205006 1300 0130 nichmebr 244 5
= T

Aufsetzen
von NIS 1200 4. 2
- 121 walter keen@stid M-regonsburg de nis Qientuna ~ BOSW04 "5 0130 nicht-mehr 245 _i_-l

Aufsetzen
i ; von NS 1500 4. 2 i
126 walter kern@stud fh-regensturg.de nis Clientund. 1305:2004 Unr 0130 nicht-mehr 256 Y

11-10111-20121-30131-401]
Administrator: jubert. feyrer @informatik fh-regenstmirg de
Poe, : I

b S

Figure 20: Managing booked exercises, past & future

128

An Introduction to Sysadmin Training. . .

P em Virtuselies Yoz Labior Mozdia
% File Edit View Go Bookmarks Tools Window Heip

4. = .3 %

8ack Reload

[| 22| & -

& 4)Home y§Bookmarks

‘& £ Vituslies Unix Labor

2. Client (NetBSD): vulab2

werden:

» Exdstiert der Mountpoint Ausr/homes auf dem Client?
+ Sind Daten im Mountpoint enthalten?

(10.00.1)
showmount(1) zeigt sr/homes?
Bestanden: 1 (9%)b

Nicht bestanden: 10 (90%) looooooo000

Summe: 11 (100%)

und rpestatd(8)!

Jetc/re.conf: re_configured gesetzt?
Bestanden: 9 (81%) looooo0000
Nicht bestanden: 2 (18%) loo

Summe: 11 (100%)
/ete/re.conf: lockd gesetzt?
Bestanden: 3 (27%) looo
Nicht bestanden: 8 {72%) loooooooo

Summe: 11 (100%)

fetc/rc.conf: statd gesetzt?
Bestanden: 3 (27%) looo

Das Verzeichnis jusr/homes soll vom NFS-Server (vulabl) auf Ausr/homes gemountet

« Uberpriifen Sie mit ’showmount —¢’ die NFS—Freigaben des NFS—Servers “vulabl’

» Untersuchen Sie die System -Defauits in fetc/defaults/rc.conf und tr
NFS ndtige Abweichungen in die Datei /etc/rc.conf ein. Achten Sie wuf rpclockd(8)

Nein

agen Sie fir

OK

Nein

Nein

34 % 2 6N & W | Done

I

Figure 21: Retrieving feedback on a group’s performance

An Introduction to Sysadmin Training. . . 129

[Ee fie Yo T Sottimgs G Bookarts Tools thlp

Siesind eingeloggt als admin

(home] [Benutzerdaten] [Uebungs-Setsp] [Buchungeni [Feedback] flogout]

Ein eball zum Ubungsbetrieb

g

Rechnor verwulten Images verwalten neue Uung erstelien

Vorhandene Utmingen: 7

1171
netbed NetBSD konfigarieren 013 2|0
nfs Aufsetzen von NFS Client und Server a0 |0
is Aufsetzen von NIS Clientund Server o130 2| 8|
prucfung Verwalten von Betzeenmit Hilfe von NIS 0100 5| @] |
prucfung2 Vervaiten von Benutzern mit Hilfovon NFS 0100 ‘2| @]
solaris Solaris konfiguriesen o130 | el
updatesolaris - Solaris-Imageupdaten or00 2| 9]
11-71

Administrator: jubert.feyrer @informatik fh-regensburg.de

Figure 22: Editing various properties of an exercise

130 An Introduction to Sysadmin Training. . .

Frin Edir. View Tab Settings Go Bokearks Tonls Help |

R -ERCRS

I | 3
A Serverwiobe ow K O Virrorllen nix ¥

Virtuelles Unix Labor

T

! Sie sind eingeloggr als admin
| [homel| [Benutzerdaten] [Uebungs-Setup] [Buchungen] [Feedbackl flogoutl
Verwaltung der Rechner
, Vorhandene Rechner: 3
i 11-31
| .
Reshiner

localhost “ﬁ;} QJ

vulabl _gjﬂ

wiabz | O}

11-3¢

i Administrator: hubert feyrer @informnatik fh-regensburgde
fowr I (N

Figure 23: Managing lab machines

Tesls Help

i Sie sind eingelogg! als admin
| fhome] [Benuizerdaten] [Usbungs-Setupl [Buchungen] [Feedbuckl [ogoutl

§
H

Verwaltung der Images
| Vorhandene Images: 3
11-31

e

netbed 16img gz | O]
nettid162img gz | @]
solaris29.img gz EJ_Q_J

11-31

Administrator: hubert feyrer@informatik fh-regensburg de

Figure 24: Managing disk images for lab machines

An Introduction to Sysadmin Training. . . 131

& Vvidueliea Unbx

Siesind eingeloggt aly admin
Thome} [Benutzerdaten] [Ucbungs-Setip] [Buchungen] flogout]

Neue Ubung erstellen (1/3)
In diesem Bereich kdunen Sie eine neue Ubung in das System einstelien,

ng ﬁuaso-:paiﬁ.che's;a@ Tonfgaricren

Administrator: hubert feyrer @informatik fh-regensburg de

Figure 25: Entering basic data for a new exercise

Finally, design plans for the Virtual Unix Lab include a tutorial component which can
give help on demand, which is what the filename with additional information (“Pfad
auf zusitzliches Info-Material”) is intended for, but not used right now.

Figure 25 displays the first screen asking for all this data.

4. The second part of creating a new exercise consists of deciding which lab machines
are needed for the exercise (“verwendeter Rechner”), and which harddisk image they
should get installed (“bendtigtes Image”). Pressing the “Rechner-Konfiguration hinzufiigen”
button will add the machine/image-combination to the exercise. A list of machines
& images already part of the image are printed below that, with buttons available to
delete the machine/image combination or to edit it. To make sure several lab machines
get setup for an exercise, they must be added with an appropriate exercise here.
In the example screenshot displayed in figure 26, only one lab machine running
NetBSD 1.6.2 would be prepared for the exercise (unless others were added).

5. The third and last step of creating a new exercise consists of defining which tests
are made at the end of the exercise to determine if the (parts of) the exercise were
performed successfully or not.

Testing can be done via a number of so-called “Check-Scripts”, which exist to test a
number of aspects of a system. Parameters can be passed to the scripts to adjust what
they do (see below). As an exercise can involve several lab machines, and as each lab
machine can run a different configuration (client, server, ...), it’s important to define
on which machine a check script runs (“L&uft auf Rechner”).

The selected check script will be ran on the named machine with the given parameters
at the end of of an exercise, and store the result of the script — success or failure —

132 An Introduction to Sysadmin Training. . .

Fie Edr. Yiew Teh Setings Go Gookmarks Tools Help I

3 / 5 3 sz o R | (2

o vatastion undx [PHEIPHP-MER | Borendthhe x|

Virtuelfes Unix Labor

Siesind cingeloggt als sdmin

fhomel [Bemtzgrduten] [Uebungs-Setup] |Buchungen] flogout]

Neue Ubung erstellen {2/3)
Hier kdnnen Sie die Rechner der Ubung und deren Konfiguration bestimmen.

werwendetes Rechner {biue wihien Sie +|
benttigtes frusge [bittewdhlen Sie -]

Rechner-Konfiguration hinzuftgen | _>> Weiter: Checks hirmuftigen |

bl g freed 16 i 2|

Administrator: hubert feyrer@informatik fh-regensburg.de

Figure 26: Defi ning machines & confi guration for a new exercise

in the database for giving feedback later. As a simple display of “success” or “you
failed” may not be too helpful', an additional description of what exactly was tested
and was either passed or failed can be given (“Bezeichnung fiir Auswertung”).

As with the selection of lab machines used for an exercise, several checks can be
added to an exercise (“Check hinzufiigen”), completion of the new exercise can be
indicated by pressing the “Fertig” button of the form displayed in figure 27.

6. All scripts available to perform checks on the lab machines are stored on the filesystem
of the Virtual Unix Lab server. A list which allows easy selection of a check-script is
made available through the PHP framework displayed in figure 28.

Scripts are available to test various aspects of a system, either being independent of the
operating system (“check- *”), work on all Unix systems (“unix-check-*")or
only on a particular Unix flavour (“netbsd-check-*", “solaris-check-*").
If a certain subsystem allows various properties to be changed, that’s also encoded
in the check script’s filename (“unix-check-user-*”,“check-file-*"). Fu-
ture incarnations of the Virtual Unix Lab may also include check scripts to run on
Windows systems.

7. Figure 29 shows an exercise that has some check scripts defined to be ran upon com-
pletion of the exercise:.
For each check, buttons are available to remove it from the list of checks to run, and
to edit the data stored for the particular check.

8. When choosing to edit a particular check, all the parameters from the previous form
can be changed using the form displayed in figure 30: script, parameters, description
for feedback, and on which machine to run the script.

In addition, information on what the script does is printed in addition to a list of
parameters that the script takes, including name of the variable, the default value (if
applicable), and a description of the parameters.

'[Schulmeister, 1997] p. 111

An Introduction to Sysadmin Training. . . 133

Efe g0k v Tab Setings Go Gookmaks Tgoh Help ; I
/= 3 & o o gj

o Vutuatios undx |5 o6 on Wi [Soreanttioh x|

Virtuelles Unix Labor

: Siesind eingeloggt als admin
i fhome] [Benutzerdaten] [Uctungs-Setup] [Buchungen] flogout]

Neue Ubung erstellen (3/3)

In diesewn Bereich kdnnen Sie neue Check-Scripte zur Ubung hinzufOgen, die am Ende
der Obung laufen werden. Die Check-# ist im text der Punktion
auswertung_teilu () fir die Auswertung der entsprechenden TeilGbung zu
(lbergeben. Die Bezei wird bei der Auswertung angezeigt.

Check-Seript [bitte withien Sie £l
Parameter: |
Lbuft el Rechner [bitte wihlen Sie =~
Bezeich :
e
Sheck hinmftgen | _>> Ferdlg: Semp abchliefen |

Administrator: hubert {es i ik fh-r e
P i r?--l

Figure 27: Adding checks for a new exercise

Siesind eingeloggt als admin
netbsd-check-user-shell
[homel Iﬂgil‘ohm_chm"_imm_m [Bachungen] flogout]
T umix-check-file-owner
unix-check-mount
13)
; ix-check: sts
. Indiesem Bereich Koniunixccheckascr-full Ubung hinzufugen, die xm Ende .
i der Uhmglmf;lwud;umkau,home Mt der Fund:“m{-" b 2
: ‘““’uu”‘lt'{d ebuNgunix-check-user-ingroup sprechen eilGbung zu i
- Obergeben. Die Bezeichunix-check-user-password ~ Ingezeigt.
- unix-check-user-sheil ;g
- Qveck=Seript. [bitze Sie :
) Mmemz]
“Lafrmf Rechuor: [bitic wilhien Sie 7]
s Beseich g, | Y
Check hinzuftigon |- >5> Fettig: Setup abséhlisgen |
Check #4915, [t ‘al
i

Figure 28: A list of available check-scripts

An Introduction to Sysadmin Training. . .

{eve gon yew Isb gSemngr Go. Bootmams Tgeu Hew l

IEEER T &&Mﬂﬂl

o Vituekes Uokx |
[3

Virtuelles Unix Labor

Sie sind eingeloggt als admin
fhotne] [Bermtzerdaten] {Ucbungs-Setpl [Buchungen] [Feedback] [logout]

Obung editieren (3/3)

In diesem Bereich kinnen Sie nane Check-Scri xemomgmmmm dieam Ende
daﬂhunglmlmwudcn Die Check-# it im Ubungstext der Punktion

nnwtmmg,ble () far die Auswertung der entsprechenden Teiltbung z
Bewchmug wird bei der Auswertung angezeigt.

T

Figure 29: An exercise with two checks defi ned

An Introduction to Sysadmin Training. . . 135

o Virtisllee Witx X

Aufgabe des susgewithlten Check-Scripts ‘unix-check-user-shell’;
“Tested ob die Login-Shell von User SLOGIN glaich $SHELL SHOULD ist {ria
gepwnam{))*

Mdgliche Parameter:

ZELNGIET T Debenlt L RN
LOGIN test Benutzer, desson Logjn-S
SHELL_SHOULD pin/sh - Pfad suf den die Sheil gosetzt sein solite

Figure 30: Editing data of a certain check

An Introduction to Sysadmin Training. . .

The information on purpose of a check-script and list of parameters including their
description is retrieved from the check scripts — all check scripts are expected to allow
querying them for these informations.

. A typical exercise consists of about 30-40 single checks to run at the end. Entering all
the data for all these checks via the web frontend is possible, but tiresome. To solve
this problem, an alternative way to enter data on check scripts into the database had
to be constructed?.

As the text of an exercise already contains calls to PHP functions to retrieve success
of the particular check (using the check numbers shown in the previous screenshots),
putting data near these calls was an obvious solution. So, instead of putting

Do task #1

<?php auswertung_teiluebungen(916, 917);
?>

Do task #2

into the exercise text’s PHP file to describe task #1 and associate checks numbered 916
and 917 with them as e.g. defined in figure 29, the layout can first be a bit changed
(no functional change):

Do task #1

<?php auswertung_teiluebungen (
916,
917
)i

and after this layout change, comments can be made in the PHP code to add the data
for the checks as comments as shown in figure 31.

With an appropriate preprocessor, the data can be extracted and stored in the database.
In the above example, the check-numbers are not known when writing the exercise
text, and left as “XXX”. When running the preprocessor, it will extract data from the
PHP comments, and store them into the database.

Figure 32 shows running the preprocessor, which fills in the now-known check-numbers
into the PHP calls for giving feedback as shown in figure 33.

Using this framework, it is possible to keep all the data for an exercise — text, which
check script, on which lab machine to run it, any possible parameters as well as text
for feedback — in one file, which is a lot easier to maintain. The web interface can still
be used to edit existing exercises.

More words could be spent here on exercise verification, stereotypes and language
design, system front-ends, domain specific languages and design patterns, but it would
be beyond the introductional character of this paper and be published elsewhere.

4 Setup

4.1 Hardware

The following machine is used as server machine:

2[Spinellis, 2001] p. 96

An Introduction to Sysadmin Training. . . 137

5>

Aufgaben:
p>

<h2> Pakstverwaltung </h2>

 Installieren Sie die bash und tcsh Bin\xedrpaket (Quelle:
ftpe//7ftp, netbsd.org/pub/Net BSD/packages/1 6/ sparc/Al1)

{?php auswertung_tei lusbungen(
XXX, 7/ vulabls netbsd-check-installed-pkg PKG=tcsh
/7 tcsh installiert? (pkg_info —e tcsh)

ot | // vulabl: netbsd-check-installed-pkg PKG=bash
bash installiert? (pkg_info ~e bash)

Figure 31: Embedding check-data into exercise text comments

ulmpef‘l uebwg?tb-vmtbsdmtbsdpfpn
check_id 908 inserted (1)
check_id 909 inserted (1)
check_id 810 insertsd (1)
check_id 911 inserted (1)
check_id 812 inserted (1)
check_id 813 inserted (1)
check_id 914 inserted (1)
check_id 915 inserted (1)

old checks removed from database
widesy |

Figure 32: Extracting check data into the database

138 An Introduction to Sysadmin Training. . .

— netbsd,php Hon Feb 23 16:39:21 2004

+++ n Hon Feb 23 16:37:58 2004

0 -1,3+1,4 @

+{1— DB updated by feurer on Mon Feb 23 16:37:57 HET 2004 from netbsd,php —>
<1—— $1d: netbsd.php,v 1,13 2004/02/19 10:55:52 feurer Exp $ —>

E;Iphp auswertung_ueberschrift(): 8
0@ -15,10 +16,10 0@

ftp://Ftp.netbsd, org/pub/NetBSD/packagss/1,6/sparc/Al1)

<7php auswertung_teiluebungen(
XXX, 7/ wilabl: netbsd-check-installed-pkg PKG=tcsh
908, // wvulabl: netbsd-check-installed-pkg PKG=tcsh
V4 tesh installiert? {pkg_info -e tcsh)

X /7 yulabls netbsd-check-installed-pkg PKG=bash
903 // wlabl: netbsd-check-installed-pkg PKG=bash
Y74 bash installiert? {pkg_info ~& bash)

Y

@@ -30,23 +31,23 0@
sall /home/test sein, Shell “tcsh®,

Figure 33: The preprocessor has fi lled in the check-script numbers

Sun SPARCstation 5, 85MHz
e 192 MB RAM

3* external SCSI disk
additional SBus ethernet card
Runs NetBSD 1.6.2/sparc

The following machines are used as lab clients:

e Two

Sun SPARCstation 4, 110MHz

¢ 64 MB RAM

e 1 GB internal SCSI disk

e Run NetBSD 1.6.2/sparc or Solaris 9/sparc

The ultimate goal here is to use virtual machines instead of real hardware. When the Virtual
Unix Lab project was started, no hardware for running virtual machines was available.

4.2 Lab Machine Installation

Installation of the lab machine is done by using the server to act as DHCP, RARP and
NFS server to lab-internal network. When a new exercise is to be prepared, the lab clients
are netbooted, so they are independent of any operating system (and it’s possible damaged
state). From the netbooted environment, a new harddisk image is written to the lab client’s
harddisk. The image-deployment techniques used here were developed in the gdu’® project.

3[Feyrer, 2004]

An Introduction to Sysadmin Training. .. 139

telnet
ssh
fip

206023
20022
20021
10023
10022
10021

telnet
ssh
{tp

telnet
ssh

fip

Figure 34: Accessing the lab clients

4.3 Restricting Access to Lab Machines

Protecting the lab clients from unauthorized access during exercises was one of the design
goals of the Virtual Unix Lab, but it was also considered important to not hook up lab clients
directly to the production network of the University of Applied Sciences of Regensburg (FH
Regensburg) to prevent students having access to the lab machines abusing their admin
privileges.

As aresult, the lab clients were placed inside their own network, with only the lab machines
and the Virtual Unix Lab server. The Virtual Unix Lab server acts as firewall, and access
to the clients is realized by redirecting access to certain ports on the server to the client
machines, as can be seen in figure 34.

The firewall is configured dynamically to allow access from a single client when an exercise
starts (see figure 11), and access is disabled at the end of an exercise either when time runs
out or the user indicates he’s done, just before verification of the exercise results starts.

4.4 Software
The following software was used to create the Virtual Unix Lab:

Apache: Web server for the user interface and exercise text

Postgres: Database engine; MySQL didn’t compile on NetBSD/sparc, and Postgres has
worked very fine

IPfilter: Firewalling software by Darren Reed [Reed, 2004]

NetBSD: Operating system for the Virtual Unix Lab server and clients
Solaris: Fine operating system, for clients of the Virtual Unix Lab
PHP: Scripting engine for the web-based user interface

Perl: Scripting engine for result verification and some internals

Bourne shell: Scripting engine for result verification, client deployment and more inter-
nals

140 An Introduction to Sysadmin Training. . .

5 Current Status

Current status of the Virtual Unix Lab is that it works(!).

Two full-length exercises have been worked out and are available for students:

e Network Information System (NIS)
e Network File System (NFS)

The system was tested successfully in summer semester 2004 by 40 students during course
“System Administration” at the department of computer science at the University of Applied
Sciences (Fachhochschule) Regensburg.

An upgrade of the server hardware to a modern PC is pending.

6 Future Perspectives

Many ways are possible to improve the system on one end, but there are also a number of
perspectives that the system in it’s current incarnation can be used for. Here’s an itemized
list:

o Funding badly needed, for keeping the system running, and any of the following
items

e Define more exercises:
— Web- and Mail server, including spamfilters etc.
— DNS, DHCP, LDAP, Samba
— Database setup & tuning

System and network troubleshooting

— Security post-morten analysis and prevention

e Add more options for lab machines:
— Real hardware (PCs, Sun E15000)
— Emulated (virtual) hardware: VMware, Xen, ...
— More operating systems: Linux, Windows
e Internationalisation
e Implement a tutoring system
e Think about user modeling
e Do a lot of polishing and internal restructuring for the above items
e Funding! Very very badly needed!

References

[Feyrer, 2004] Feyrer, H. g4u - Harddisk Image Cloning for PCs [online]. (2004) [cited
2004-07-16]. Available from: http://www.feyrer.de/g4u/.

[Reed, 2004] Reed, D. IP Filter [online]. (2004) [cited 2004-09-14]. Available from:
http://coombs.anu.edu.au/"avalon/.

[Schulmeister, 1997] Schulmeister, R. (1997). Grundlagen hypermedialer Lernsysteme.
Oldenbourg Verlag, Miinchen, Germany.

[Spinellis, 2001} Spinellis, D. (2001). Notable design patterns for domain-specific lan-
guages. The Journal of Systems and Software, 56(1):91-99.

NetBSD/Desktop: Scalable Workstation Solutions

141

NetBSD/Desktop: Scalable Workstation Solutions

Jan Schaumann — Stevens Institute of Technology

Abstract

As a mature operating system with emphasis on code quality and standards compliance as well as an abundance of third-party
applications readily available, NetBSD offers an easily deployable and user-friendly desktop solution. Managing large numbers
of identical workstations can be facilitated through the use of a dedicated build server and an IPSec’d server-push strategy to
update the clients; a strategy which has proven to be reliable, secure and scalable.

1 Introduction

While BSD in general and NetBSD in particular has had a
reputation for being primarily a reliable and secure operat-
ing system for servers, it is (in the mainstream, at least) still
not considered “user-friendly enough” for the desktop. Yet
aside from the sheer number of available applications there
are distinct advantages to choosing NetBSD, a complete open
source operating system with emphasis on code quality and
standards compliance, especially when it comes to managing
a large number of identical desktop workstations.

This paper will elaborate on these advantages as well as
present techniques and strategies to install, maintain and up-
date large installations, accounting for the various needs of
many hundreds of users and the implied complexities of thou-
sands of third-party applications.

The infrastructure presented has been in production use in
the Department of Computer Science at Stevens Institute of
Technology for over 3 years, where it is used to manage sev-
eral public laboratories as well as most of the faculty work-
stations. It consists of a dedicated build server and an IPSec’d
server-push strategy to update the clients, providing scalable,
secure and easy updates of the operating system as well as of
all third-party application.

2 Why NetBSD?

In order to see why NetBSD would be a good solution for a
regular desktop system, we should investigate what exactly

is required of such a workstation and how it can be easily
duplicated and deployed in a large environment. In order to
address the first point, we need to look at the needs of the
target users:;

Not very surprisingly, given the obvious heritage of UNIX
and BSD, Unix-like Operating Systems (OS) have long been
the preferred choice in academic institutions in general and
the field of Computer Science in particular. All users in such
an environment (faculty, researchers, students) have high ex-
pectations of the robustness of the OS and its performance.
At the same time, the widely different research interests re-
quire a large number of at times specialized applications to
be made available to them.

2.1 What does “user-friendly” mean, anyway?

Many people expect a desktop OS to be “user-friendly”, with-
out clearly understanding the meaning of this phrase. As
should become immediately clear from the varying needs and
expectations of a multifaceted user-base, it can mean different
things to different people, based on their background knowl-
edge, experience and interest. It would be prudent to charac-
terize any OS that allows these users to get their work done
efficiently to be “user-friendly”.

QOddly enough, the pirase “user-friendly” is often quoted
in the context of OS installation, software installation and
upgrades, security patches, and general maintenance. The
procedures involved in these tasks are not considered user-
friendly. This reveals the common misconception that a

142

NetBSD/Desktop: Scalable Workstation Solutions

“desktop” or a “workstation” is a single, autonomous ma-
chine used (and maintained!) by a single user.

Actually, the tasks most often described as not being “user-
friendly” are not — and should not be — performed by the
user, but rather by the administrator. Maintaining the com-
plex dependency-tree of installed applications, tweaking the
OS to remain performant under duress and keeping dozens
or hundreds of workstations in sync as well as available to
all users are not tasks for a regular user and pose an entirely
different set of requirements to the OS.

In the end, it boils down to this: The user of the desktop
must get work done. The administrator must be able to main-
tain such desktop systems easily and efficiently. What we
need is an “admin-friendly” OS with “user-friendly” applica-
tions!

2.2 Requirement: User-friendly

From the user’s point of view, all interactions with the OS are
characterized by the applications available on this platform.
As long as the right tools for the job are available, the user
may remain oblivious as to what exactly goes on “behind the
curtain”.

While commercial vendors release their software for only
a limited number of unix-like OS, the vast majority of the
available Open Source Software (OSS) — ranging from small
command-line tools to entire desktop environments or office
suites — is written for one or another version of Unix and can
(often easily) be ported to another flavor.

In a multi-OS environment, it is beneficial to the user if she
can use the same general desktop software and tools on one
host as on another. Maintaining the same set of installed ap-
plications at the same version across even different OS helps
avoid confusion when it comes to the user-interface or a user’s
configuration files.

Another important and often neglected aspect of user-
friendliness is the combination of, on the one hand, hiding
unnecessary complexities from one set of users while, at the
same time, catering to the expertise of another set:

Since the target user-base includes people with very spe-
cific interests in the field of networking, operating system de-
sign, and system security, as well as students who learn to
understand these concepts and develop software, the OS pro-
vided to them should allow them to use applications that are
not traditionally part of a so-called desktop system. This in-
cludes access to the software development tools such as dif-
ferent compiler toolchains and various scripting languages, as
well as the more typical desktop applications. In addition, it
is often beneficial to provide the full sources for the OS in use
to allow these users to look “under the hood” and understand
how the OS, and the tools provided by it, work.

2.3 Requirement: Admin-friendly

As explained in section 2.1, the user-friendliness of an OS
and its applications is necessary, but not sufficient to make a
sensible choice for your environment. We also need to take a
look at the qualities of an OS from the other point of view. In
fact, given that the majority of the software in use is available
for most unix-like OS, it seems that the admin-friendliness of
an OS might be the more important aspect of all!

A suitable OS should be easy to install, maintain and up-
date. A dependency on a specific hardware or software ven-
dor is equally undesirable as too inconsistent a base system.
On the one hand, we would want a complete OS with all base
applications (ie the userland) from the same source tree; this
allows for easy system maintenance and OS upgrades. At the
same time it’s important to ensure that all required software
applications are available; finally, we need to anticipate future
requirements.

With respect to hardware requirements, we must be able to
support state-of-the-art equipment without having to resort to
“bleeding edge” development snapshots. This, together with
the need for the necessary security patches, requires an OS
with a regular and reliable release engineering cycle. A ma-
ture and well thought-out third-party application framework
or package management system is equally important since the
vastly different needs of the many users imply a complex set
of software dependencies. Finally, we must be able to run a
few commercial applications that may not be available for all
Os.

2.4 So... why NetBSD?

Looking at the requirements and the target user base as an-
alyzed and described above, we sce that NetBSD is a near
perfect match for this environment.! NetBSD has a strong
following among system administrators: it provides a com-
plete OS, easily maintained in a single source tree and has
an outstanding security track record. No need to try to track
down and follow different development branches for cach and
every single userland binary, nor is it necessary to adhere
to one commercial vendor’s idea of releasc engineering and
hope that other software vendors will adapt their packages
accordingly.

Through the use of binary emulation it is possible to run
a large number of commercial applications which may only
have been released for another OS.2

! This is not to say that other OS choices would not be justifi able; however,
the intimate familiarity with and knowledge of NetBSD by the administrators
clearly make it the easier choice. It is also worth noting that over the years,
experience has taught us that other, more popular choices would likely have
caused us more headaches.

2 At Stevens, the most important applications in this category are Sun’s
JDK’s, MathWorks’ MATLAB and Maplesoft’s Maple; all industry standard
applications which perform without performance penalty using NetBSD’s
Linux emulation layer.[3]

NetBSD/Desktop: Scalable Workstation Solutions

Finally, installation of third-party softwarc and mainte-
nance of all installed software is simplified by using the
NetBSD Packages Collection[2] (aka pkgsrc), a source based
software package management system. Through consistent
use of pkgsrc and its cross-platform features, not only are we
able to track over 1000 different applications and their inter-
dependencies, but we are also able to provide the same num-
ber of applications in the same versions across different OS
such as IRIX or Linux when this is necessary.

All currently used hardware — from regular single-
processor desktop workstations to multi-processor, SATA-
RAID enabled servers with support for fibre-channel or op-
tical gigabit network devices — is fully supported by NetBSD.
Its conservative release cycle allows us to rely on the hard-
ware being fully functional and well-tested rather than hav-
ing to make use of development features in unstable drivers.
At the same time, the progressive nature of NetBSD in areas
such as support for AMD’s 64bit processors or IPv6 network-
ing and its focus on standards compliance ensures that we will
be able to add new hardware as it becomes available while at
the same time continuing to provide our researchers with the
most suitable reference platform available.

3 Infrastructure

At Stevens Institute of Technology, NetBSD is now used
throughout the Department of Computer Science and the De-
partment of Mathematics to maintain the Unix desktops and
public laboratories in addition to a number of administrative
machines.’

In order to maintain these machines, we have developed
a set of administrative scripts that make up an infrastructure
consisting of a dedicated build server and an IPSec’d server-
push strategy to update the clients, providing scalable, se-
cure and easy updates of the OS as well as of all third-party
application. This setup, which has been in production use
for over three years, reduces the administrative overhead in-
volved in managing a large number of virtually identical hosts
immensely and makes a trivial task integrating new machines
into the framework.

All workstations have similar hardware, which allows us
to run a common yet tailored kemel. The kernel contains the
drivers for all available hardware throughout the system, thus
allowing us to replace, for example, a network or a graphics
card without having to recompile the kernel, while at the same
time not suffering the performance penalty of a GENERIC
kernel that includes support for a multitude of devices that
are not required.

3The Department of Computer Science also maintains a state-of-the-art
clustered High Performance Computing Facility suitable for research in areas
of computer science and engineering that may require substantial computa-
tional effort.[4] A second, similar cluster within the Department of Physics
is currently being converted to NetBSD as well.

Since all workstations contain an identical software image,
we can easily minimize downtime of a single system: if a ma-
chine goes down due to a hardware failure, we can quickly
and easily replace the failed component, bring the machine
back up and thus allow the user to continue to use the re-
sources while we troubleshoot the failed device.

Statistical details about the infrastructure presented here
can be found in Figure 1; the general setup is described in
Section 3.1.

of administrative scripts 7
total LOC of administrative scripts 388
of users approx. 2900
of workstations 70
of third-party packages not under pkgsrc 7
of third-party packages under pkgsrc 1054
size of workstation image 9.3GB

Figure 1: The system in numbers

3.1 Server Configuration

The build server, known by its hostname, amstel, used to
maintain the workstation image, is a dual-processor 1386 ma-
chine with 2 GB of RAM, powerful enough to build all re-
quired binary packages and the NetBSD kernel and userland
in an acceptable timeframe. It has enough diskspace in a
RAID 5 disk array to host the pkgsrc and regular src trees
used, the workstation image (itself described in more detail
in section 3.2) and provides enough temporary scratch space
for the build process.

The machine hosts a total of three pkgsrc trees: one for the
latest stable branch of pkgsrc (1), one for the HEAD of pkgsrc
(I) and a third tree which incorporates parts of the HEAD
with the latest stable branch as well as some local modifica-
tions (II). The first two are updated regularly from anony-
mous CVS sources and are used as a reference for the third
one, which is itself used to build packages for the worksta-
tion. Trees (I) and (II) are also exported via NFS through a lo-
cal gigabit network to the other non-NetBSD servers that use
pkgsrc. Tree (III) is mounted via a null-mount from within
two specific chroots.

The first chroot on the server is located in /new and rep-
resents the workstation image in use on all clients. The sec-
ond is located in / sandbox, which represents the “playpen”
for the workstation image. That is, the workstation im-
age is duplicated in this directory and all software updates
or additions are performed in this directory first. Packages
are built and installed here, then turned into binary pack-
ages which can then be added in /new using the pkg_*
tools. This setup makes it possible to update the userland
using the standard NetBSD build.sh build mechanism (see
“Using the build.sh Front End” in [5]) by simply defining
DESTDIR=/sandboxin /etc/mk.conf.

144

NetBSD/Desktop: Scalable Workstation Solutions

In gencral, /new is not modified directly and only binary
packages are handled in this chroot, but every now and then
it is necessary to perform one of the various package-related
administrative activities in the /new chroot (after carefully
testing it in / sandbox, of course), which is why the second
null-mount is necessary.

A nightly cronjob checking the set of installed packages
(in each of the server’s base, the sandbox and the production
workstation image) against a list of known vulnerabilities*
ensures that we are alerted of any security issues as soon as a
vulnerability is known.

3.2 Client Configuration

The disk image of the workstations is, as mentioned pre-
viously, stored in amstel:/new. It consists of a stan-
dard NetBSD/i386 installation together with a large num-
ber of third-party applications in order to cater to the dif-
ferent needs of the different users. Among those applica-
tions are most common window managers and desktop en-
vironments (including WindowMaker, KDE and GNOME),
various browsers (including Netscape, Firefox, Mozilla and
Opera), numerous software development tools (ranging from
autoconf and automake to full-featured IDEs like eclipse),
and programming languages (such as Sun’s JDKs, Python,
Perl, Ruby and Scheme), specialized commercial applications
(including MathWorks’ MATLAB and Maplesoft’s Maple)
and office suites and applications (including OpenOffice,
gnumeric, gnucash, abiword and KOffice). In other words, it
includes a complex and full desktop environment for a multi-
tude of different users.

In order to allow us to swap parts easily among all the dif-
ferent workstations or even replace an entire machine with
a minimum downtime for the user, all workstations arc kept
identical with respect to the software installed. Since some
of the hardware differs (most notably graphics and network
cards), there arc a few differences in a limited number of con-
figuration files, which therefore need to be kept exclusive to
each host in addition to the obviously security-related files:

etc/X11/XF86Config
etc/master.passwd
etc/racoon/psk.txt

etc/rc.conf

etc/spwd.db
etc/ssh/ssh_host_dsa_key.admin
etc/ssh/ssh_host_dsa_key.admin.pub
etc/ssh/ssh_host_key.admin
etc/ssh/ssh_host_key.admin.pub
etc/ssh/ssh_host_rsa_key.admin
etc/ssh/ssh_host rsa key.admin.pub
etc/printcap

“using pkgsrc’s audit-packages

The list of files is rather self-explanatory, though it might
be worth pointing out that all machines share the same de-
fault ssh-configuration and -keys. This is due to the fact that
the hostname “lab.cs.stevens-tech.edu” is a round-robin of a
number of these workstations, allowing users to connect to a
generic name, yet spread the load across multiple machines.’
Using a common key for all machines, however, necessi-
tates running a second ssh demon on an alternate port for
administrative purposes, which explains the distinct files in
etc/ssh.

In order to keep these files separate from the rest of the
workstation image, we created one directory for each client’s
etc directory in <hostname>-etc as well as one direc-
tory amstel : /new/etc which contains all other files usu-
ally found under /etc on a NetBSD host. Section 5.1 ex-
plains how the script used to update a workstation processes
these directories.

4 Software installation

All software installed on the workstations that is not part
of the NetBSD base system is installed, if possible, from
the NetBSD Packages Collection (see [1] and [2] for de-
tailed documentation). Any required piece of software that
is not part of pkgsrc must be carefully investigated: if it is
OSS or otherwise publicly available, we create the appro-
priate package and feed the changes back into the NetBSD
pkgsrc CVS tree. If it is not suitable for inclusion in
the Packages Collection, then the software is installed in
amstel:/new/usr/local. As can be seen from Figure
1, we are fortunate enough to only have a very small num-
ber of applications that cannot be controlled through pkgsrc;
these applications include mostly commercial, specially li-
censed software and a number of homegrown applications
and scripts.

The pkgsrc trees in use are updated via CVS from the local
anoncvs mirror on a regular basis. Due to the large num-
ber of applications installed and the resulting, rather complex
dependency-tree we are taking a more conservative approach
with the production use pkgsrc tree. This tree (III in Section
3.1) is carefully merged and updated on an as-needed basis
only. That is, if a newer version of a piece of software is re-
quired, it is first updated to the latest stable branch of pkgsrc.
If any security fixes have not yet been pulled up to the stable
tree or a newer version is required, the tree is updated to the
HEAD or patches backported. A small number of packages
have some local modifications applied as well.

The build process itself is done in the

30Of course this would also be possible with distinct ssh-keys, but we have
found that especially among novice users and windows clients, multi-homed
hosts with different ssh-keys often cause some confusion and generate wamn-
ings about the keys not matching the hostname. Rather than encouraging
users to ignore such warnings, we decided to distribute a single key to all
machines.

NetBSD/Desktop: Scalable Workstation Solutions

145

amstel:/sandbox chroot to ensure that the pack-
age (and all its dependencics and/or other packages that had
to be updated as a result) can successfully be built, installed,
cleanly deinstalled, reinstalled and tested. Binary packages
are then created from within that chroot and the production
use image is updated accordingly.

5 Update procedure

Updating all the workstations from the build server is done by
means of an [PSec’d server-push performing several rsync-
passes on the remote side (see Scction 5.1 for details). The
administrative scripts used to initiate the push allow for syn-
chronization of all workstations or certain subsets based on
department or laboratory in parallel or pushing just a single
machines.

If the changes require additional testing, individual ma-
chines can be synchronized with the sandbox to allow for the
installation or upgrading of large parts of the workstation im-
age without risking breaking all clients in production use. In
these cases a note explaining the currently tested update is
placed into a special file (called “dont”; see Appendix A.2),
the existence of which prevents a full push to all clients from
taking place — a security precaution that has often proved use-
ful.

Similarly, the setup also allows for synchronizing only
parts of the filesystem: each pass can be performed individ-
ually. If, for example, a general system upgrade is still be-
ing tested on some individual workstations but an important
update of one of the applications in /usr/local is pend-
ing, then only the update of that part of the filesystem can be
pushed out to all clients, retaining the full update of the base
system until it has been sufficiently tested.

If parts of the filesystem need to be (temporarily) excluded
from being synchronized, they can be specified in specific
configuration files as regular rsync (1) exclude patterns.

A push-strategy rather than a pull-strategy was chosen to
prevent accidental deployment of not fully tested updates.
Since a push is proactive, it forces the administrators to think
about what changes are ready for deployment and carefully
cvaluatc when a complete push of all workstations should
take place. A client-pull mechanism might easily be forgot-
ten and cause serious downtime if any software updates were
accidentally left incomplete (either as a result of human neg-
ligence or of a software failure during the upgrade process).
Also, as can be seen from the above, a server-push allows for
much finer control, as a client-pull would have to be auto-
mated and thus complete.

5.1 The push script

The shell script push.sh (the full script can be found in
Appendix A.1) is used to update a single workstation after

changes have been made to the workstation image. It uses
rsync (1) to update the remote host (see scction 5.2 for se-
curity considerations). To summarize, push.sh performs
the following steps:

1. Enter new information in /new/etc/updates.
All changes to the workstation image are briefly noted
in the file /usr/local/stevens/UPDATES. This
file helps us keep track of what changes were made
and, more importantly, why they were made. The
push. sh script timestamps this file and places a copy
into /new/etc/updates, so that users can always
review the latest changes and the administrator can eas-
ily determine if any given workstation is currently up-to-
date.

This file is also (manually) emailed in a PGP-signed
message to a local mailing list. This, too, allows users to
keep up to date with changes on the system while at the
same time providing some log of the changes.

2. Set up exclusions.
It may be desirable or necessary to exclude certain files
on a specific host from being synchronized with the rest.
Any such files can be entered in a separate file which is
parsed by push. sh in order to create a list of exclu-
sions.

A reason for such an exclusion might be a machine that
requires a different kernel from all the others, but that is
otherwise identical to the normal workstations.

Note that these exclusions are set up on a per-host ba-
sis. If general site-wide exclusions need to be set up,
they can be entered in a different file using standard
rsync (1) exclude patterns.

3. Run any remote commands if necessary.
Depending on the changes pushed out, it may be neces-
sary to first run a specific command on the remote host,
for example to stop a service or to unmount a partition.
If push.sh finds the file beforesync in the local
directory, it is copied to the remote host where it is exe-
cuted as a shell script.

4. Do passes as desired. The actual push process is di-
vided into several passes which may be specified indi-
vidually. If no pass is explicitly specified, all default
passes are performed consecutively. This allows for fine-
grained control over which parts of the filesystem are
updated and is necessary to set up the appropriate exclu-
sions.

Each pass inspects a special file containing these exclu-
sions as a list of pathnames (directories or files) which
should be ignored when running rsync (1).

5. Do absolute copies if necessary. Similar to the exclu-
sion set up in step two, this step allows special files to be

146

NetBSD/Desktop:

copied to a specific absolute destination on the remote
host.

6. Run any remote commands if necessary. Depending
on the changes pushed out, it may be necessary to run a
specific command on the remote host after all changes
have been pushed out; for example, to restart a service
after the configuration file was changed.

If push. sh finds the file aftersync in the local di-
rectory, it is copied to the remote host where it is exe-
cuted as a shell script.

As mentioned above, this script only updates a single host.
A number of other scripts are used to update all available
workstations or a subset thereof (see Appendix A.2). In com-
bination with these scripts, push. sh provides a sufficient
amount of flexibility for most situations. For example, if a
major package build is still in progress (for example, KDE
needs to be updated) but a new release of one of the com-
mercial applications installed is available, it would be trivial
to push out the /usr/local hierarchy to all clients, while
retaining /usr/pkg for another time to allow for more test-
ing.

On the other hand, it may be desirable to simply run a spe-
cific command on all hosts or to update a single file. The
script would be able to achieve this, but it would involve some
performance overhead. Therefore we have added a few sim-
ple scripts to perform just these tasks (Appendices A.3, A.4).

5.2 Security considerations

Since the entire filesystem for each client is transferred over
the network, there are a number of security aspects to be con-
sidered. First, we need to ensure that only machines that are
known are allowed to synchronize with the server. Second,
we need to make sure that sensitive files are not transferred in
the clear.

As explained in Section 5, we chose a server-push strategy,
which partly addresses the first problem: no client can initi-
ate the update, so that it’s not possible for a Trojan to connect
to the network, steal a known IP address and request an up-
date. However, it would still be possible for an adversary to
pose as a normal workstation and wait for the update to be
pushed out. Fortunately, that, too, is not possible, as the only
two ways we allow the rsync (1) processes to perform is
cither tunneled through ssh (1) or by use of rsh(1) over
mandatory IPsec.

Both of these approaches require authentication, either by
use of the private ssh-key for the deemon listening on an alter-
nate port or by use of IKE, IPSec’d dynamic encryption key
exchange protocol. In our setup, we use racoon (8) witha
pre-shared secret key stored in /etc/racoon/psk.txt.
The permissions on this file — just like on the private
ssh keys in /etc/ssh/ — do not allow regular users

type remote shell time
minor updateem + | rsh + ipsec 332.27s — 5.5m
minor update ssh 459.48s — 7.6m
major update* rsh + ipsec 474425 — 7.9m
major update ssh 49491s — 8.25m
full update# rsh + ipsec 1307.71s — 21.8m
full update ssh 1426.22s — 23.8m

+ update of a few fi les or a small package
* update of at least three large packages (such as mozilla, KDE etc.)
update of the entire userland and several large packages

Figure 2: Scalability of a single push

to read these, so it should be impossible for the adver-
sary to pose as the real client when a push is initiated by
the server. Similarly, we have a specific ssh-key set in
/root/.ssh/authorized_keys (the private key for
which is only on the non-publicly accessible build server) that
is used for synchronizing the machines if ssh is used as the
remote shell, allowing access by this key only from the build
server.

It might be possible to run nearly the entire push unen-
crypted using regular rsh (1) for rsync, but clearly there
are a few files that must not be transmitted in the clear
(/etc/master.passwd and the files from the previous
paragraph, for instance). However, if this approach were pur-
sued, then the push script would need to switch the mecha-
nism used to log in the remote machine based on the files to
be transferred. This does not prove to be scalable, especially
since packages are added that might also require encryption
during file transfer (for example the sudo (8) package). In
addition, we would loose the authentication mechanism pro-
vided by IPsec, which is why in the end we decided to make
use of [Psec for all rsh/r1ogin processes mandatory. Once
we enabled [Psec, we quickly realized that another beneficial
side-effect was that it allowed us to let syslogd (8) log all
events to amstel in a secure fashion as well.

5.3 Scalability

When expanding the network of clients under control of this
system, it is important to consider how well the system scales,
how long each process takes, and what the penalties are of
choosing one approach over another. The main factors with
respect to scalability are:

o the time it takes for a single complete update

e the time it takes for all clients to be updated

The time it takes for a complete update is influenced by
the number of changes since the last update, as well as which
push-strategy (ssh or rsync over IPsec) is chosen. In produc-
tion use there may often be miniscule changes (i.e. changes

Scalable Workstation Solutions

NetBSD/Desktop: Scalable Workstation Solutions

147

of only a few files) just as there may be rather large updates
(such as a rebuild of a significant portion of the binary pack-
ages) that need to be pushed out. Figure 2 shows the time
in seconds for a few example changes including the worst-
case scenario: an update of the entire base system as well as
a number of large third-party updates.

Another factor in the calculation of these numbers is the
amount of RAM available on the client. The majority of the
workstations have 512 MB RAM, but a number of them still
have only 256, while a few have as much as 1 GB RAM. The
numbers in Figure 2 and Figure 3 are based on the average
of repeated pushes of machines with 256 MB RAM, with the
highest and lowest results being dropped.

"The time it takes for all clients to be updated obviously de-
pends on the time for each individual client, but also on how
many hosts can be pushed out in parallel without saturating
the network connection or overloading the server. Figure 3
shows the results of updating several sets of machines.

6 New workstation installation

Adding a new workstation into this setup is trivial. After the
hostname of the new machine and its intended physical loca-
tion (which determines the subnet the new host will be on) has
been specified, we generate a new configuration for this client
by using the script gen-conf . sh (see Appendix A.5). To
complete the setup on the server side, all we need to do is add
the new hostname to the appropriate collection of machines
that allow us to push subsets based on location.

The actual installation process is initiated by booting off
a NetBSD install floppy or CD-ROM. Instead of perform-
ing the regular installation that NetBSD’s sysinst tool
would usually initiate, we abort the installation process and
disklabel (8) the hard drive by hand, configure the net-
work and mount the workstation image via NFS from the
build server. Finally, we run the script getit.sh (see Ap-
pendix A.6), which completes the installation.

6.1 Security considerations

While the installation procedure as described above is simple
enough, we must to again pay attention to the security aspects

type remote shell time
minor update | rsh + ipsec 36m
minor update | ssh 49m
major update | rsh + ipsec 47m
major update | ssh 5lm
full update rsh + ipsec 149m
full update ssh 155m

Figure 3: Scalability of a full push

of performing a network install. The same files that neces-
sitate encryption during the update process (as explained in
Section 5.2) must not be transmitted in the clear during the
installation process and are therefore omitted at this point.

Since we do not intend to transmit these sensitive files,
they are not stored under the amstel : /new directory. This
in turn allows us to make the /new directory accessible via
NFS - clearly, this would be impossible if these files resided
therein: the adversary could presumably connect a rogue ma-
chine to the network and mount the directory via NFS by
spoofing one of the IP addresses which are granted access.
Without any sensitive information under this hierarchy, the
adversary can only gain access to the same files she could
otherwise retrieve from any public workstation.

On the other hand, the fact that we must not transfer the
pre-shared secrets and other important files in the clear leaves
us with a bit of a conundrum: the installation cannot be com-
pletely unattended, as both the sshd keys and the pre-shared
secret for IKE must not go across the network unencrypted
and the installation process cannot be encrypted, as the pre-
shared secrets are not yet on the to-be-installed client. We will
look at possible solutions to this problem in Section 7.2. For
the time being, this forces us to add manually one of the pre-
shared secrets after the installation process and run a partial
push (to synchronize the other sensitive files) before deploy-
ment of the new host.

6.2 Scalability

As we have seen above, installing a single host does not in-
volve much effort, but how long does it actually take, and how
well does this system scale if a large number of hosts need to
be installed? The process of generating a new configuration
for a new host is obviously simple and will take negligible
time, as only a single short shell script needs to be executed.
For a large number of new hosts, this can be wrapped into a
for-loop and still not take much longer than it takes to actu-
ally enter the data the script requires. Should it be necessary
to integrate a significant number of new hosts into this setup,
it might be wise to collect the required information before-
hand and tweak the script to run non-interactive.

The most time is spent actually installing the software on
the new machine. Due to the large size of the workstation
image based on the huge number of packages required, it
quickly becomes clear that at this time the bottleneck lies
in the network installation procedure. Most installations are
currently done over the regular 10/100 campus network, as
gigabit networking is not currently available in all parts of
the campus. On average, the installation process from start
to finish (including the creation of a new configuration on
the build host, booting the new host from installation media,
disklabel (8) ing the hard drive, running the install script
over NFS) takes approximately 67 minutes. In Section 7.3 we
will consider ways to improve this process.

148

NetBSD/Desktop: Scalable Workstation Solutions

Installing multiple hosts at the same time faces the same
limitations as running multiple pushes at the same time: the
more clients install in parallel, the higher the load on the build
server and the higher the saturation of the network connec-
tion. Fortunately, at the moment there rarely is a need to per-
form more than just a handful of installations at once.

7 What’s next?

While the current configuration allows for convenient and
easy installation and maintenance of the workstations, like
any other piece of software or administrative setup, there is,
of course, always room for improvement. In this section, we
will try to look at solutions for the problems mentioned in
previous sections, as well as consider new features that might
be desirable.

7.1 Improving the general setup

Given the large number of applications under pkgsrc control,
it is crucial that the package management system works flaw-
lessly when updating packages. Until the beginning of the
year, the ever-changing nature of pkgsrc was somewhat of a
problem: trying to follow a fast-moving target, our pkgsrc
trees would have to be updated frequently to keep up with the
infrastructure changes under pkgsrc/mk, but on the other
hand it was risky to update the entire tree: it would then al-
ways contain the latest release of each version of software, so
that building one package may pull in an update of another,
already-installed package even though that is not strictly re-
quired. Rebuilding large parts of the installed software could
occasionally lead to a broken dependency, leaving the work-
station image in a non-stable state or — in the worst case —
without a particular required package.

Fortunately, the NetBSD Packages team introduced the
concept of stable pkgsrc branches, which made a lot of sys-
tem administrators very happy by allowing for much easier
tracking of the installed packages and keeping up with secu-
rity issues. While this has improved the situation immensely,
from time to time we still encounter instances of package
dependencies® that are not strictly necessary, which is why
we must maintain our own pkgsrc tree alongside the stable
branch, merging changes and updates by hand. In addition,
it is occasionally necessary to install conflicting packages on
the same system.” This currently requires more modifications
to the packages in question which must be remembered when
updating the pkgsrc trees.

The pkgviews framework, introduced to pkgsrc carly this
year, promises to solve a number of these problems (refer to
[6] for details), but unfortunately it will require starting with
a clean slate, so to speak: the need to uninstall every single

Sbuildlink bumps have proven to be particularly dangerous
7An example: we currently have both print/teTeX! and print/teTeX in-
stalled to allow our users to continue to use their older TeX fi les.

package and rebuild them using pkgviews is a project that we
originally intended to approach during the summer of 2004,
but for which, in the end did not have time. The conversion
to pkgviews therefore remains on our list of improvements of
the system.

As mentioned previously, all softwarc is compiled in a
sandbox and binary packages built, which are then used to
maintain the actual workstation image. This is done only on
an as-needed basis at the moment, allowing for the potential
risk of encountering a failure at a crucial time. To avoid
this scenario, it might be desirable to create a system that
periodically builds binary packages from scratch, so that
newer versions of binary packages compiled for our systems
are immediately available. It might be feasible to perform
complete bulk-builds to anticipate new software requests, or
we might consider only building what is currently installed.
Frameworks for both approaches do already exist within
pkgsrc and we should be able to implement such a solution
with relative ease.

While we usc a problem report system at Stevens Insti-
tute of Technology to track and analyze software requests
and complications, this system often relies on the user to pro-
vide an accurate analysis of the situation or detailed feedback.
When changes to the software are made, they are not always
annotated in great detail in the PR system, so that several
weeks or months later it is not always clear why exactly a
change was made, or what change was made to fix a partic-
ular problem. Maintaining a detailed changelog of the en-
tire workstation image, possibly through the use of a revision
control system, such as CVS, would prove useful.

Similarly, the scripts that maintain the system presented in
this paper are currently not under any revision control either.
Importing these files into a CVS repository would similarly
allow us to better track the files as they are changed as well as
quickly and easily determine why a certain change was made.

Finally, our system did not provide detailed documentation
on how workstation installations or updates are done. Fortu-
nately, this paper easily solves this problem, but it will require
us to update it regularly to keep the documentation in sync
with reality.

7.2 Improving Security

It might be worth considering identifying clients not only by
hostname or IP address, but to also require their MAC address
to match to introduce one more barrier for a MITM based at-
tack. However, this approach introduces a significant admin-
istrative overhead while not gaining much more security: on
the one hand, it is relatively easy for the adversary to spoof a

NetBSD/Desktop: Scalable Workstation Solutions

149

MAC address® just like she could spoof the IP address; on the
other hand, it would require the careful logging of each ma-
chine’s ethernet interface change. Since we routinely swap
hardware among diffcrent clients, such a MAC-address-to-
hostname mapping could easily become outdated.

Of more urgency would be the development of an en-
crypted installation mechanism, which would allow us to
move to an entirely unattended install process. Considering
the chicken-and-the-egg problem eluded to in Section 6.1, in
this context one possible solution might be to use asymmet-
ric cryptography rather than the current symmetric approach,
which necessitates the existence of a pre-shared secret on
both sides. An alternative solution might involve a custom in-
stall CD containing a special “install-key” and to perform en-
cryption and decryption for the few sensitive files using PGP
or OpenSSL. Finally, we might decide to pay the price of con-
venience® and perform installations through a private network
only.

7.3 Improving Scalability

As mentioned above, the Stevens campus network does not
currently provide gigabit networking. However, our build
server is equipped with a gigabit network card and connected
to a small private gigabit switch through which it performs
regular backups of various other servers. In order to allow for
a faster installation, we could perform this process over the
private gigabit network, taking advantage of a more secure
and much faster connection to the server.

Another way to cut down on the time taken for a full
installation would be to install only what is necessary to
deploy the system and then update the rest on the next
push. For example, the /usr/src hierarchy does not
need to be immediately available and could be excluded
during installation. On the other hand, this increases the
load during the first push, so we really do not gain very much.

The numbers in Figure 3 represent a push of all machines
while synchronizing approximately 20 hosts at the same time.
This number was chosen without much empirical evidence of
a performance increase, but was rather based on the increase
of processing speed and memory in the server compared af-
ter an upgrade. It might be desirable to perform more accu-
rate benchmark tests and determine the appropriate number
of parallel pushes to optimize CPU-, memory- and network
utilization.

81t is noting that since many of our workstations are in public laboratories,
it would even be possible for the adversary to simply steal the actual ethernet
device of one of the machines.

%L.e. we no longer would be able to install a new machine from any
department.

8 Conclusion

In this paper I hope to havc debunked the common mis-
conception that NetBSD is “not ready for the desktop” and
stressed the importance of an “admin-friendly” operating sys-
tem for production use in an environment that at the same
time demands a sophisticated environment for computer spe-
cialists as well as a more traditional, user-friendly setup for
novices. The desktop workstation control system presented
allows, as we have seen, for simple yet scalable maintenance
of a large number of identical workstations from a central
build server.

The update and installation processes provide enough flex-
ibility to allow for multiple configuration differences among
hosts and subnets while at the same time ensuring that secu-
rity relevant files are not compromised. As mentioned above,
the infrastructure has been in production use for several years
and has in addition been used as a basis of a very similar
system for the maintenance of one of our High Performance
Computing Facilities (also entirely based on NetBSD).

Like all software systems, there is room for improvement,
and I have elaborated on a few shortcomings and considered
ways to improve the system. The most important scripts of
this setup can be found in the Appendix and have been placed
in the public domain — any corrections, suggestions or ques-
tions are most welcome and can be directed at the author.

9 Author Information

Jan Schaumann is a System Administrator in the Depart-
ment of Computer Science at Stevens Institute of Tech-
nology in Hoboken, NJ, USA, where he manages a large,
nearly homogenous NetBSD environment, ports and main-
tains NetBSD pkgsrc tools and packages on non-NetBSD
platforms such as IRIX and Linux, and teaches classes in
UNIX programming and System Administration.

Jan holds Bachelor’s and Master’s degrees in Computer
Science from Stevens Institute of Technology; he joined the
NetBSD Project as a developer in January of 2002 and en-
joys living with his wife Paula in New York City. The non-
computer related activities he enjoys usually involve a board,
often in combination with some form of H,O. Jan can be
reached at jschauma@cs.stevens.edu.

NetBSD/Desktop: Scalable Workstation Solutions

A

A.

#!
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

#s

Code Listings

1 The push.sh script used to update a single host
/bin/sh
This file is placed into the public domain.
The original authors are Thor Lancelot Simon and Jan Schaumann.

THIS SOFTWARE IS PROVIDED BY THE AUTHORS ‘‘AS IS’’ AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

et -x

#DONTDOIT=echo

LOCALFILES=/usr/local/stevens

RS

YNC_RSH=rsh

PASSES=all
ROOT=/new
RSYNC_OPTS="-aSH"

us

{

}

age ()

echo "Usage: $0: [-p <pass>] [-r <root>}
exit 1;

args=‘getopt p:r:s §$*°

if

fi

[62 -ne 0]; then
usage

set -- $args

while [$# -gt 0]; do

case "$1" in
-p)
PASSES=$2; shift
-r)
ROOT=$2; shift

i

RSYNC_RSH=${LOCALFILES}/rsync-ssh

e

NetBSD/Desktop: Scalable Workstation Solutions 151

shift; break
esac
shift
done

export RSYNC_RSH

for i in $*; do
echo "NEW HOST: $i"
show when we last updated
date > ${ROOT}/etc/updates
echo >> ${ROOT}/etc/updates

cat ${LOCALFILES}/UPDATES >> /new/etc/updates

set up exclusions. Rather ghastly.

awk "/"EXCLUDE/ {if ((\$2 == \"$i\") && \

(\$3 == \"/\")) print \$4}" < special.files > /tmp/x0.%$i.$$
awk "/"EXCLUDE/ {if ((\$2 == \"$i\") && \

(\$3 == \"/etc\")) print \$4}" < special.files > /tmp/x1.5i.5$$
awk "/"EXCLUDE/ {if ((\$2 == \"$i\") && \

(\$3 == \"/usr/pkg\")) print \$4}" < special.files > /tmp/x2.5i.%$
awk "/"EXCLUDE/ {if ((\$2 == \"$i\") && \
(\$3 == \"/var/db/pkg\")) print \$4}" < special.files > /tmp/x3.%$i.$$

start the bombardment

if [-e ./beforesync]; then
$DONTDOIT rsync ./beforesync $i:/tmp
$DONTDOIT $RSYNC RSH $i chmod u+x /tmp/beforesync
SDONTDOIT $RSYNC RSH $i /tmp/beforesync

fi

note that these "passes" correspond to the exclusion statements above
if ["$PASSES" = "/" -o "$PASSES" = "all"]; then
echo "pass 0: /"
$DONTDOIT rsync ${RSYNC _OPTS} --delete --one-file-system \
--exclude-from=${LOCALFILES}/exclude-from \
--exclude-from=/tmp/x0.%$i.$$ ${ROOT}/ $i:/

if ["$PASSES" = "/etc" -o "$PASSES" = "all"]; then
echo "pass 1: /etc"
$DONTDOIT rsync ${RSYNC OPTS} --delete \
--exclude-from=${LOCALFILES}/exclude-from-etc \
--exclude-from=/tmp/x1.$i.$$ ${ROOT}/etc/ $i:/etc
$DONTDOIT rsync ${RSYNC_OPTS} ${LOCALFILES}/client-etcs/common-files/ $i:/etc
$DONTDOIT rsync ${RSYNC OPTS} ${LOCALFILES}/client-etcs/$i-etc/ $i:/etc
fi

if ["$PASSES" = "/usr/pkg" -o "S$PASSES" = "all"]; then
echo "pass 2: /usr/pkg"
SDONTDOIT rsync ${RSYNC OPTS} --delete --exclude-from=/tmp/x2.%$1i.$$ \

NetBSD/Desktop: Scalable Workstation Solutions

${ROOT}/usr/pkg/ $i:/usr/pkg

echo "pass 3: /var/db/pkg"
$DONTDOIT rsync ${RSYNC_OPTS} --delete --exclude-from=/tmp/x3.$i.$$ \
${ROOT}/var/db/pkg/ $i:/var/db/pkg

fi
if ["$PASSES" = "/usr/local"]; then
echo "pass: /usr/local"
$DONTDOIT rsync ${RSYNC_OPTS} --delete ${ROOT}/usr/local/ $i:/usr/local
f£i
if ["$PASSES" = "/usr/src" -o "S$PASSES" = "all"]; then

if [! ‘grep $i small*]; then
echo "pass 3.5: /usr/src"
$DONTDOIT rsync --exclude-from=${LOCALFILES}/exclude-from-src \
--delete-excluded ${RSYNC_OPTS} --delete ${ROOT}/usr/src/ $i:/usr/src
fi
£i

if ["$PASSES" = "absolute" -o "$PASSES" = "all"]; then
"pass 4": special "absolute" copies (shudder in fear!)
echo "pass 4: absolute copies (if any)"
S$DONTDOIT eval ‘awk "/"ABSCOPY/ {if (\\%2 == \\"$i\\") \
print \\"rsync ${RSYNC_OPTS} \\" \\$4 \\" \\" \\$2 \\":\\"
\\$3 \\";\\"}" < special.files"

fi

if [-f specials/aftersync.$i 1; then
$DONTDOIT rsync specials/aftersync.$i $i:/tmp
$DONTDOIT $RSYNC RSH $i chmod u+x /tmp/aftersync.$i
$DONTDOIT $RSYNC RSH $i /tmp/aftersync.$i

fi

if [-e ./aftersync }; then
$DONTDOIT rsync ./aftersync $i:/tmp
$DONTDOIT $RSYNC RSH $i chmod u+x /tmp/aftersync
SDONTDOIT $SRSYNC RSH $i /tmp/aftersync

fi

rm /tmp/x0.$1.$$%
rm /tmp/x1.$1i.$$
rm /tmp/x2.$1.$$
rm /tmp/x3.%1i.$$

NetBSD/Desktop: Scalable Workstation Solutions 153

A.

#!
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

2 The push.batch.sh script used to update all hosts in parallel

/bin/sh
This file is placed into the public domain.
The original author is Jan Schaumann.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘‘AS IS‘‘’ AND ANY EXPRESS OR

IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 1IN NO
EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

BASE=/usr/local/stevens

if [-f ${BASE}/dont]; then

fi

echo "You probably don’t want to do this right now..."
cat ${BASE}/dont
exit 1

MACHINES=‘egrep -v "# ${BASE}/machines.${1:-all}"

if

fi

[$4 -gt 0]; then

unset MACHINES

for SET in $@; do
ADDMACH='‘egrep -v "# ${BASE}/machines.${SET}"
MACHINES="$ADDMACH SMACHINES"

done

echo $MACHINES | xargs -n 3 ${BASE}/bgsync.sh

NetBSD/Desktop: Scalable Workstation Solutions

A.3 The pushfile.sh script used to update a single file

/bin/sh
This file is placed into the public domain.

The original author is Jan Schaumann.

#!

#

#

#

#

#

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘'‘AS IS‘’’ AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
#
#
#
#
#
#
#
#

MERCHANTABRILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#DONTDOIT=echo
file=${FILE:?"No file?"}

if [-z ${RSYNC RSH}]; then
RSYNC_RSH=rsh
fi
#export RSYNC RSH=/usr/local/stevens/rsync-ssh
export RSYNC_RSH

for i in $*; do
echo "NEW HOST: $i"

$DONTDOIT rsync /new/$file $i:/$file
done

NetBSD/Desktop: Scalable Workstation Solutions 155

A.4 The runcmd.sh script used to run a command on the remote host

/bin/sh
This file is placed into the public domain.
The original author is Jan Schaumann.

#!

#

#

#

#

#

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘'‘AS IS’’ AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR

OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF

ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

DONTDOIT=echo
cmd=${CMD: - "uname -a"}

if [-z ${RSYNC_RSH}]; then
RSYNC_RSH=rsh

fi

export RSYNC RSH

for i in $*; do

echo "NEW HOST: $i"
SDONTDOIT $RSYNC RSH $i $cmd

done

NetBSD/Desktop: Scalable Workstation Solutions

A.5 The gen-conf.sh script used to add a new host

/bin/sh
This file is placed into the public domain.
The original authors are Thor Lancelot Simon and Jan Schaumann.

#!
#
#
#
#
#
THIS SOFTWARE IS PROVIDED BY THE AUTHORS ‘‘AS IS‘’ AND ANY EXPRESS OR

IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO

EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;

OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR

OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF

ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

ENVBASE=/new

if [$1]1; then

NEWHOST=§1

echo using host $1

shift
else

read -p "Name of new host? " NEWHOST
fi

LOCALFILES=/usr/local/stevens/
NEWETC=${LOCALFILES}/client-etcs/${NEWHOST}-etc

if [-e ${NEWETC}]; then
echo "I'm sorry, ${NEWETC} already exists. You can’t name a host ${NEWHOST}." >/dev/stc
exit 1

fi

if [$1]; then

FQDN=$1

echo using FQDN $1

shift
else

read -p "Fully-qualified domain name of new host? " FQDN
fi

read -p "Enter name of primary ethernet interface (e.g. fxp0): " ETHERTYPE
read -p "Enter IP address of primary ethernet interface: " INETADDR

SUBNET="'echo ${INETADDR} | awk ’‘BEGIN {FS="."; OFS="."} {print $3}'"
DEFROUTER='echo ${INETADDR} | awk ‘BEGIN {FS="."; OFS="."} {print $1,%2,%3,"1"}'"

mkdir -p ${NEWETC}/ssh ${NEWETC}/racoon ${NEWETC}/ssh
cp ${LOCALFILES}/rc.conf.default ${NEWETC]}

NetBSD/Desktop: Scalable Workstation Solutions 157

echo hostname\=${FQDN} >> ${NEWETC}/rc.conf
echo ifconfig ${ETHERTYPE}\=\"inet ${INETADDR} netmask 255.255.255.0\" >> ${NEWETC)}/rc.cor
echo defaultroute\=${DEFROUTER} >> ${NEWETC}/rc.conf

ln -s printcap.${SUBNET} ${NEWETC}/printcap
echo "Now you must select an X-Windows configuration for the new machine."

while [! -f ${NEWETC}/X11/${WHICHX}]; do
echo "These are the configurations available. Please select one."
(cd ${NEWETC}/X11; ls XF86*)
read -p "Which configuration file? " WHICHX

done

ln -s ${WHICHX} ${NEWETC}/X11/XF86Config

echo Now you must set a root password for the new machine.

get default, just to make sure
cp ${LOCALFILES}/master.passwd.default ${ENVBASE}/etc/master.passwd

chroot ${ENVBASE} /usr/bin/passwd -1 root

put in place
mv ${ENVBASE}/etc/master.passwd ${ENVBASE}/etc/spwd.db ${NEWETC}/

overwrite, just to make sure
cp ${LOCALFILES}/master.passwd.default ${ENVBASE}/etc/master.passwd

RACKEY='hexdump -n 16 -e \"%08x%08x%08x%08x\\\n\" /dev/urandom";
echo -e "${INETADDR}\t${RACKEY}" >> /etc/racoon/psk.txt

echo -e "155.246.89.68\t${RACKEY}" > ${NEWETC}/racoon/psk.txt
chmod 0600 ${NEWETC}/racoon/psk.txt

echo Making SSH host keys for ${NEWHOST)...

umask 022

/usr/bin/ssh-keygen -t rsal -b 1024 -f ${NEWETC}/ssh/ssh _host key -N '’
/usr/bin/ssh-keygen -t dsa -f ${NEWETC}/ssh/ssh_host_dsa key -N '’
/usr/bin/ssh-keygen -t rsa -f ${NEWETC}/ssh/ssh host rsa key -N '’
/usr/bin/ssh-keygen -t rsal -b 1024 -f ${NEWETC}/ssh/ssh _host key.admin -N '’
/usr/bin/ssh-keygen -t dsa -f ${NEWETC}/ssh/ssh host dsa key.admin -N ‘'
/usr/bin/ssh-keygen -t rsa -f $(NEWETC}/ssh/ssh_host_rsa_key.admin -N '/

echo I have set up ${NEWETC} for you, but you will probably need to

echo check the following files: ${NEWETC}/rc.conf,

echo ${NEWETC}/inetd.conf, $NETWETC/ipsec.conf, ${NEWETC}/racoon/psk.txt
echo

echo Remember to restart racoon and ipsec as well.

NetBSD/Desktop: Scalable Workstation Solutions

A.6 The getit.sh script used to install a new host
#!/bin/sh

#

#
#
#
#
#
#
#
#
#
#
#
#
#
#

This file is placed into the public domain.
The original author is Jan Schaumann.

THIS SOFTWARE IS PROVIDED BY THE AUTHORS ‘‘AS IS’’ AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#DONT="echo"

for i in ‘cat /mnt2/getit.excludes‘'; do

export EXCLUDES="-s ,"./$i,,p ${EXCLUDES}"

done

PAX="pax ${EXCLUDES} -rwvp e "
DEVICE="wdOa"

echo Stage 1: Creating filesystem...
echo
$DONT /sbin/newfs /dev/r${DEVICE}

echo Stage 2: Mounting filesystem...
echo
$DONT /sbin/mount -o async /dev/${DEVICE} /mnt

$DONT mkdir -p /mnt/tmp
$DONT chmod 1777 /mnt/tmp
$DONT export TMPDIR=/mnt/tmp

echo Stage 3: Starting the bombardment. ..

cd /mnt2 && S$DONT $PAX

cd /mnt2/usr/mdec
$DONT ./installboot -v biosboot.sym /dev/$DEVICE

echo "Remember to:"
echo " - manually install etc/racoon/psk.txt"
echo " - reboot, ifconfig and push"

NetBSD/Desktop: Scalable Workstation Solutions 159

References

[1] Documentation on the NetBSD Package System Hubert Feyrer, Alistair Crooks et al, pkgsrc/Packages.txt, October 2004

[2] The NetBSD Packages Collection
http://www.NetBSD.org/Documentation/software/packages.html

[3] Binary emulation in NetBSD
http://www.NetBSD.org/Documentation/compat .html

[4] High Performance Computing at Stevens Institute of Technology
http://www.cs.stevens.edu/ ~jschauma/hpcf/

[5] The NetBSD Operating System Federico Lupi et al, October 2004
http://www.NetBSD.org/guide/en/

[6] Package Views - a more flexible infrastructure for third-party software, Alistair Crooks, November 2002
http://www.NetBSD.org/Documentation/software/pkgviews.pdf

160 NetBSD/Desktop: Scalable Workstation Solutions

The Challendes of Dynamic Network Interfaces 161

The Challenges of Dynamic Network Interfaces

Brooks Davis
The FreeBSD Project

Seattle, WA
brooks@{aero,FreeBSD}.org

Abstract

On early BSD systems, network interfaces were static objects created at kernel compile
time. Today the situation has changed dramatically. PC Card, USB, and other remov-
able buses allow hardware interfaces to arrive and depart at run time. Pseudo-device
cloning also allows pseudo-devices to be created dynamically. Additionally, in FreeBSD
and Dragonfly, interfaces can be renamed by the administrator. With these changes,
interfaces are now dynamic objects which may appear, change, or disappear at any
time. This dynamism invalidates a number of assumptions that have been made in the
kernel, in external programs, and even in standards such as SNMP. This paper explores
the history of the transition of network interfaces from static to dynamic. Issues raised
by these changes are discussed and possible solutions suggested.

1 Introduction

In the early days of UNIX, network interfaces were static. The drivers were compiled
into the kernel along with their hardware addresses. The set of devices on each machine
changed only when the administrator modified the kernel. Those days are long gone.
Today devices, hardware and virtual, may come and go at any time. This dynamism
creates a number of problems for both kernel and application developers.

This paper discusses how the current dynamism came about in FreeBSD, documents
the problems it causes, and proposes solutions to some of those problems. The following
section details the history of dynamic devices from the era of purely static devices to the
modern age of near complete dynamism. Following this history, the problems caused
by this dynamism are discussed in detail. Then solutions to some of these problems are
proposed and analyzed, and advice to implementers of userland applications is given.
Finally, the issues are summarized and future work is discussed.

2 History

In early versions of UNIX, the exact set of devices on the system had to be compiled
in to the kernel. If the administrator attempted to use a device which was compiled in,
but not installed, a panic or hang was nearly certain. This system was easy to program
and efficient to execute. Unfortunately, it was not convenient to administer as the set
of available interfaces grew.

Published in the Proceedings of EuroBSDCon 2004
(©2004 The Aerospace Corporation
(©2004 Brooks Davis

The Challendes of Dynamic Network Interfaces

4.1BSD, released June, 1981, included a solution to this problem called autoconfig-
uration [McKusick2]. Autoconfiguration is a process by which devices are detected at
boot time [McKusickl]. Under autoconfiguration, each system bus is probed for devices
and those devices that have drivers in the system are enabled. The process of iden-
tifying devices is called probing and devices which are found in probing are attached.
The procedure used to probe devices varies by bus. On some buses, such as non-PnP
ISA, compiled-in addresses are probed and if they respond as expected the device is
assumed to be there. With more advanced buses such as PCI or SCSI, devices are self-
identifying. PCI devices are identified by an ID number composed of a vendor portion
and a vendor allocated product portion. SCSI devices are identified by a device class
and a free form string. With autoconfiguration, all devices to be used still had to be
compiled in to the kernel, but a super set could be used enabling one kernel to work
with multiple system configurations.

In FreeBSD 2.0, the LKM (Loadable Kernel Modules) system modeled after the
facility in SunOS 4.1.3 was implemented by Terry Lambert [man4-2]. The LKM system
freed administrators from the requirement that all device drivers be compiled into a
single static kernel. Now devices could be loaded at run time. This enabled support
for a number of new features. Devices manufactured after the kernel was first built
could be supported without a full rebuild. Pseudo devices could be added on the fly.
And some development testing could be done without a reboot!. With LKM came
the possibility of devices coming and going during run time. Generalized support for
detaching interfaces was not implemented until Doug Rabson replaced LKM with the
dynamic kernel linker (KLD) and newbus in FreeBSD 3.0. As part of this process, he
implemented a primitive version of if_detach(). The KLD interface is an enhanced
module system based on dynamic linking of ELF binaries.

While modules introduced the possibility of dynamic interfaces, dynamic interfaces
were first used by ordinary people with the introduction of PC Card (PCMCIA) de-
vices. The PC Card standard supports hot insertion and removal of cards. Through
use of short pins, a few milliseconds of warning that a device is departing are provided,
but otherwise, they come and go at will. In the 2.x time frame, PAO? was developed to
provide PC Card support to FreeBSD [PAO]. Fairly functional support was available
based on the work in PAO in FreeBSD 3. With the release of FreeBSD 4, PAO develop-
ment ceased because all major changes had been incorporated into the FreeBSD tree.
CardBus support was added in FreeBSD 5.0 and is currently fairly mature (roughly
speaking, CardBus is to PCI what PC Card is to ISA.)

In FreeBSD 4.0, support for USB Ethernet devices was added. Like PC Card devices,
USB devices may be attached and detached at will.

Since the introduction of USB networking devices, a number of new types of remov-
able networking devices have appeared. The fwe(4) [man4], Ethernet over FireWire
driver appeared in 5.0 and was later merged in to 4.8. The fwip(4), IP over FireWire
interface, implements RFC 2734 [RFC2734], IPv4 over IEEE1394, and RFC 3146
[RFC3146], IPv6 over IEEE1394; it was introduced in 5.3. Bluetooth support was
introduced in FreeBSD 5.2. Being wireless, Bluetooth devices are inherently dynamic.
While not currently supported, hot plug PCI, Compact PCI, PCI Express, and Express
Card all support some form of hot insertion and removal. Compact PCI is of particular
interest because it provides the administrator with a button to press to indicate their
intention to remove a device and a light the OS can use to notify the administrator that
the device in inactive and removal is now safe.

I anticipate that as bus standards evolve, an increasing number will support hot

! Assuming that the developer was fortunate enough to make an error that did not result in a kernel
panic.
2 According to the PAO FAQ, “PAO stands for nomads.”

The Challendes of Dynamic Network Interfaces 163

plug devices. Further, I expect that in the not too distant future, hot plug interfaces
will be the norm with the exception of integrated interfaces on motherboards.

In early autoconfiguration implementations, a finite number of units was statically
allocated when the kernel or module was compiled. Devices implementing these sorts of
preallocations are referred to as count devices due to the kernel configuration directive
used to declare them. Today, this sort of hard coding is frowned upon unless there can
only be a small, fixed number of devices (usually one). In FreeBSD 6.x, support for
count devices will be removed from the config program. This will require that device
counts either be fully dynamic or specified at boot time. With physical devices, new
driver instances are allocated and destroyed as hardware is added and removed so the
removal of count devices is no hardship.

In FreeBSD 3.4 the netgraph system was introducednetgraph(4). Netgraph al-
lows dynamically configured nodes implementing networking functions to be config-
ured into arbitrary graphs. One of the standard nodes is ng_iface(4) which appears
as a virtual network interface. Since netgraph nodes are configured dynamically using
ngctl(8) [man8g], this is another source of dynamic interfaces.

For pseudo-devices such as the loopback interface, lo(4), most devices are created
by the network interface cloning code, referred to as if_clone. Network interface cloning
was introduced in FreeBSD 4.4. Typically, a cloned device is created with a command
like "ifconfig vlan create” which creates a new vlan interface and prints its name.
This creates a number of interesting opportunities such as an IPv6 tunnel server that
creates gif(4) devices on demand. The initial cloning code in FreeBSD was obtained
from NetBSD and has since been extended to allow cloned devices to match more
complex names in the ifconfig(8) create request. Initially, cloned devices could only
be created with a command of the form ”ifconfig <drivername>[<unit>] create”.
With enhanced cloning support, devices may support more complex names such as
<ethernet_interface>.<vlan_tag> for vlan(4).

A new feature of FreeBSD 5.2 and DragonFly BSD is the ability to rename network
interfaces. This can be useful to allow an administrator to hide the details of interface
types or to easily identify the purpose of a dynamically created interface. Returning
to the example of a gif(4) based tunnel server, tunnels could be named after registered
users; so instead of gif42, the interface could be named gif-<user>-<host>, a much
more meaningful name. Another way this feature can be useful is to give logical names
to physical devices, allowing them to be upgraded or replaced without changing most
system configuration. Eventually, devd(8) will support the ability to make decisions
based on attributes such as slot number which could allow interfaces to be named
based entirely on their location in the system.

As I have shown in this section, significant interface dynamism is present in today’s
network stack. With hot-pluggable and wireless hardware, kernel modules, netgraph
interfaces, pseudo interface cloning, and interface renaming, virtually no device can
safely be assumed to be static.

3 Problems

With network interface dynamism come a variety of problems of two major types. First
are those having to do with userland, typically network management or monitoring
applications. Most of the userland issues revolve around the fact that applications have
not adapted to modern dynamic systems. In some cases, the applications have been
partially adapted, but trip over problems such as the concept of a different interface.
Second are problems in the kernel which are typically hardware race conditions or stale
references to freed data.

164 The Challendes of Dynamic Network Interfaces

UL TR et

ML T RsT
Gofforannn

auety £ FURNING P LTICRST

ICUEELT

Figure I: The xterm shows the correct interface listing, but wmnd shows wi0 which has
been removed and replaced with aue0.

To facilitate this discussion of the problems caused by dynamic network interfaces,
I will present three example systems and the problems they face:

1. A laptop with removable wired and wireless interfaces.
2. A server with hot swappable network interfaces.
3. An IPv6 tunnel server.

These systems are sufficient to expose most of the issues of dynamic network interfaces.

The laptop I will consider has a USB Ethernet interface supported by the aue(4)
driver and a PC Card wireless device supported by the wi(4) driver. This situation
presents several challenges. These challenges derive from the fact that these interfaces
may come and go at arbitrary times. From the user’s perspective there will be three
significant problems. First, most of the simple network monitoring tools used in this
type of environment do not detect the arrival or departure of interfaces. This causes
them to only show interfaces that were attached when they were started. Second,
because devices may come and go in arbitrary order, the indexes of those devices may
not be consistent. Since many monitoring applications assume that the kernel index of
an interface is unique for an instance of the application, they may confuse the wired and
wireless interfaces with cach other. Figure 1 shows an example of conflicting ifconfig(8)
and wmnd [WMND] output. While the index is the valid handle to an interface, the
life of that index is only the life of the driver attachment; when the device is detached,
the index may be freely reused by another interface. Thus, it is not safe to assume
the index will remain associated with the same interface unless the interface is being
monitored for departure. The third and final userland problem is caused by interface
renaming. Since interfaces may be renamed at any time, the name must not be used

The Challendes of Dynamic Network Interfaces 165

as a handle for an interface unless the interface list is somehow monitored for changes
or some external assurance is provided that the name will not change. Automated
monitoring systems should therefore assume that interfaces may change their names,
but it is perfectly reasonable to use names for start up configuration or as part of an
ifconfig(8) command line.

In addition to these userland problems, there are two classes of kernel issues. The
first is stale pointers to the struct ifnet. When an interface is removed, its struct
ifnet is destroyed, but sometimes references to the interface in the form of pointers
to that structure remain. The struct ifnet is the device independent interface to a
network interface within the kernel. A number of structures including struct mbuf
may contain a pointer to the struct ifnet of an interface. Since the struct ifnet
is destroyed immediately when the interface is detached, using these references may
result in accessing random data or, worse, an unmapped page. Today little is done to
prevent this race from occurring. Fortunately, since the interface is marked as down
and the queues are drained early in the detach process, the system will generally not
retain stale references when the struct ifnet is destroyed. There are however some
situations that will prolong this race making it more likely it will be lost in a way that
causes a kernel panic. The main one is use of the dummynet(4) system. Dummynet is a
“traffic shaper, bandwidth manager, and delay emulator.” While dummynet is holding
packets, it currently stores a pointer to the destination interface which is used to send
the packet once the desired delay has occurred. This increases the race window to the
point that it will almost certainly be triggered if a significant delay is configured. This
generally will not affect a typical laptop user, but could easily affect a server user.

The second kernel issue is hardware races on eject. These occur when a function that
manipulates the hardware runs during or after the physical removal of a device. With
devices such as PC Cards, drivers manipulate the hardware in ways that may cause
system hangs or panics if the device is removed, due to issues such as corrupted reads
or writes to nowhere. Complete solutions to these problems often require hardware
modifications. These problems can be avoided by powering down the device in an
orderly manner before removing it. My understanding is that an eventual result of
modernization of the device code will be the addition of a devcontrol(8) program that
allows such operations on all devices that support them. In addition to this solution,
there are some workarounds to reduce the risk, but I will leave their discussion to others.

Having discussed the laptop case, I will move on to the case of a server with hot
swappable interfaces. The server case has most of the problems of the laptop with two
major differences. First, if hot-plug PCI or compact PCI devices are used, they close
the hardware removal race by providing a mechanism for the administrator to notify
the OS that the hardware is going to be detached. In theory this mechanism could also
close the reference races. Unfortunately, these technologies are not currently supported
by FreeBSD.

The second way the server scenario differs from the laptop scenario is that servers
are often monitored by SNMP [RFC1157]. Dynamic interfaces present problems when
dealing with SNMP. Today, most SNMP agents use the kernel interface index as the
ifIndex variable. In MIB-II (RFC 1213 [RFC1213]) the ifIndex variable for each
interface is defined to be:

A unique value for each interface. Its value ranges between 1 and the value
of ifNumber. The value for each interface must remain constant at least
from one re-initialization of the entity’s network management system to the
next re-initialization.

MIB-II defines, ifNumber to be:

166 The Challendes of Dynamic Network Interfaces

The number of network interfaces (regardless of their current state) present
on this system.

This means that interfaces may not have sparse indexes in SNMP. This in turn will
not work if interfaces are dynamic. In RFC 2233 [RFC2233), ”The Interfaces Group
MIB using SMIv2”, section 3.1.5 attempts to revise the interface numbering constraints
to allow for dynamic interfaces. They do so by removing the constraint that ifIndex
be less than or equal to ifNumber which allows the index space to be sparse, and by
adding the constraint that the same ifIndex may not be reused by a different dynamic
interface.

Unfortunately, the concept of a different interface is complicated and application
specific. RFC 2233 simply states that the following constraints must be observed:

1. a previously-unused value of ifIndex must be assigned to a dynam-
ically added interface if an agent has no knowledge of whether the
interface is the “same” or “different” to a previously incarnated inter-
face.

2. amanagement station, not noticing that an interface has gone away and
another has come into existence, must not be confused when calculating
the difference between the counter values retrieved on successive polls
for a particular ifIndex value.

In the simplest case of the server with hot-plug interfaces, the current system mostly
works because interfaces are typically added but not removed except to be replaced by
a different device serving the same function. However, the second constraint above may
not be handled correctly in this case because the counters are attached to the interface
and will be reset. A slight modification to the agent to allow detection of this case and
setting the ifCounterDiscontinuityTime object for the interface when its removal is
detected would correct this issue.

The more complex case of a server with frequent interface arrivals and departures is
typified by the IPv6 tunnel server scenario. This tunnel server has hardware similar to
that in the previous scenario, but has a vastly different mode of operation. Registered
users may request a tunnel for one or more hosts. When requested, a gif(4) interface
is created using cloning. When the user requests that the tunnel be torn down or
a specified timeout passed, the interface is destroyed. Because interfaces are created
on demand, the automatically assigned kernel interface indexes should not be used for
SNMP ifIndex values as is. The problem is that the only tunnel interfaces that may be
considered the same are those which share the same user, host® pair. Thus, since kernel
interface indexes will be allocated in a manner which attempts to limit the sparseness
of the index space, kernel indexes will frequently reference different interfaces once a
few interfaces have been destroyed. Ideally, the tunnel server should allocate ifIndex
values and inform the SNMP agent when interfaces are created, but this is easier said
than done, as most agents simply assume that the kernel index is the correct value
for ifIndex. Since the user and host are not known to the kernel, there is no current
mechanism for the kernel to choose a correct value for ifIndex. Additionally, there is
no easy way to control the index from userland.

The problems posed by these three example systems cover most of the issues caused
by dynamic network interfaces. Kernel and hardware races present challenges for kernel
developers, and the complexity of maintaining consistent references to interfaces causes
problems in userland.

3By host we mean the machine itself, not the IP address in most cases, e.g. a laptop might move
about, but would be the same host.

The Challendes of Dynamic Network Interfaces 167

struct ifindex_entry {
struct ifnet *ife_ifnet;
struct ifaddr *ife_ifnet_addr;
struct cdev *ife_dev;

};

#define ifnet_byindex(idx) \
ifindex_table[(idx)].ife_ifnet

#define ifaddr_byindex(idx) \
ifindex_table[(idx)].ife_ifnet_addr

#define ifdev_byindex(idx) \
ifindex_table[(idx)].ife_dev

Figure 2: ifnet_byindex() and related macros from sys/net/if var.h

4 Solutions

In this section I propose and evaluate solutions to some of the problems presented in
the previous section. In particular, I discuss two possible solutions to the problem of
stale struct ifnet references, as well as the kernel framework for a partial solution to
the problems of inconsistent indexes to the same interface.

At first glance, the problem of stale struct ifnet references would seem to be
solvable through the simple addition of reference counts. After all, the problem is that
references to the interface’s struct ifnet are still held when the structure is freed.
Unfortunately, there are significant problems with this approach. The first is simply
that reference counts are expensive to maintain. Incrementing or decrementing a ref-
erence count requires either obtaining a lock or using another atomic operation. This
is especially problematic when code is in the fast path since ever moment counts and
many atomic operations take over a hundred cycles to complete. Since the struct
ifnet references in dummynet and struct mbuf are used in the fast path, atomic or
mutex operations should be avoided there if possible. The second problem is that the
struct ifnet is part of the softc of physical interfaces which is destroyed when the
device is detached. This means that a reference count might not prevent the destruc-
tion of the struct ifnet. The struct ifnet could be moved to separate storage to
be managed by the networking system, but doing so would required modifications to
virtually every one of the approximately 100 network drivers in the system plus all the
externally maintained ones. Not only would this be difficult, but it would fail to resolve
the hardware races, so the effort is unlikely to be worthwhile. Due to these problems,
reference counting struct ifnet is unlikely to work.

There is a second possible solution, which is referencing the interface by index in-
stead of a direct pointer to struct ifnet. In this case, each long lived struct ifnet
pointer would be replaced with the interface’s index. The pointer dereferences would
be replaced with ifnet_byindex() called. To avoid null-pointer dereferences in this
case, ifnet_byindex() would be modified to return a pointer to a special dead_if in-
terface which has no-op functions in place of driver specific ones. Where possible, the
dead_if struct ifnet would be filled with values that will not provoke panics. In
general, kernel code should be modified to check the return value of ifnet_byindex()
for dead_if and abort processing unless the check is more expensive than completing
the operation and the expense matters. This solution avoids the need for an explicit
(and expensive) atomic operation because assignment to pointers is atomic on all archi-
tectures supported by FreeBSD. If the modifications to ifnet_byindex() are done by

168 The Challendes of Dynamic Network Interfaces

insuring that the array used to implement it has all empty entries filled with pointers to
dead_if, there will be no performance impact on ifnet_byindex(). There will be some
performance impact on code that previously referenced struct ifnet directly since an
additional look up will be needed. Since ifnet_byindex() is simply a macro as shown
in Figure 2, this should be relatively cheap, but performance testing will be needed to
precisely quantify the extent of the impact. If the performance impact is deemed too
high, it may be possible to use macros to choose between these solutions at compile
time so that environments such as dummynet systems with dynamic interfaces could
optionally enable this extra level of indirection. It is worth noting that while using
indirect references to struct ifnet will shrink the race, it will not completely close it.

The problem of SNMP agents assuming that the kernel interface index is a good value
for ifIndex is difficult to solve, short of rewriting the agent to remove this assumption
and forcing the agent to manage its own application specific if Index space. The kernel
will assign the same indexes to interfaces across reboots and some effort is made to
preserve indexes across module reloads, but since the allocator attempts to avoid sparse
allocations, the indexes are inherently unsuited to the requirements of SNMP agents in
applications such as an IPv6 tunnel server. One possible solution to this problem is to
enable userland programs to set the kernel index of interfaces.

I propose an implementation of this functionality as follows: setting the index will
only be allowed when the interface is not in the IFF_UP state. The actual change will take
place by detaching the interface, changing the index, clearing the interface statistics, and
reattaching the interface. From the perspective of userland applications, the interface
will be destroyed and a new interface will be created with the desired index. A tunnel
server controller process could use this functionality to create interfaces with userland
managed indexes, thus allowing SNMP agents to work with fewer modifications. The
agent will need to set ifCounterDiscontinuityTime appropriately. To aid in setting
it, it may be useful to add a new per-interface variable indicating the epoch of the
interface. The epoch would be reset any time the interface statistics were reset.

There are a few potential issues with this approach. First, the if_index variable
in struct ifnet is a signed short so the useful range of index values is 1 to 32767
(2'®—1) which is not very large for some applications. This could be solved by increasing
if_index to an int or long, but that would raise other issues. Specifically, there are
some arrays that are currently required to be at least as long as the highest index. If
the index is allowed to grow to INT_MAX, these arrays would be larger than the system
address space of a 32-bit system. As such, these interfaces would have to be modified to
use more complex structures such as trees or hashes. This would cause some operations
such as ifnet_byindex() to change from constant time to O(logn). This could severely
impact system performance if indirect references were used in the fast path as suggested
earlier in this section.

The second issue with expanding if_index is related to the problem of sparse in-
dexes. With the current limit on the maximum index, storage concerns are not insoluble,
but there are efficiency concerns. In the kernel this should not be a major issue as there
is no reason to search for interfaces one index at a time when the interface list can
be walked directly. In userland things are more difficult. The correct way to access
interface information is via sysctl(3), but sysctl(3) does not provide the equivalent of
SNMP’s GetNext functionality. This means that walking the list of interfaces by index
could take 32767 syscalls with the existing implementation. This is probably not ac-
ceptable overhead for each update of a monitoring interface. Even without expanding
if_index, it will probably be necessary to provide better sparse access support to user-
land. Some options for this include adding a GetNext equivalent to sysctl(3), adding a
next interface pointer to the sysctl(3) output, or publishing a list or bitmap of allocated
indexes. A GetNext equivalent for sysctl(3) or the addition of a next interface pointer

The Challendes of Dynamic Network Interfaces 169

would allow applications to only make syscalls for information that actually exists. A
list would be easy to produce and cheap to process in userland, but a bitmap would be
smaller and could be maintained at virtually no cost. A bitmap is probably the easiest
option.

I have presented possible solutions to two of the problems of dynamic interfaces.
The solution of adding a layer of indirection to long-lived, stored references to struct
ifnet shows some promise if performance is acceptable. Allowing userland applications
to control kernel interface index allocation may or may not be useful in practice. It
would allow tunnel servers to work with more or less unmodified SNMP agents, but
it would not provide a full solution. A full solution will probably require application
specific agents or better generalization of generic agents to allow application specific
ifIndex management.

5 Advice to Application Implementers

Other than the problems with SNMP agents and indexes, most userland issues with
dynamic network interfaces are problems of application design. Most simple interface
monitoring tools such as wmnd are written with the assumption that once the application
is started, the set of interfaces will remain constant. Since this is not the case with
modern versions of FreeBSD, these applications behave in unexpected (though generally
harmless) ways.

To prevent this problem, applications should use appropriate APIs to access interface
data, and should use those APIs in ways that allow detection of changes to the list
of interfaces. In particular, applications need to detect the arrival, departure, and
renaming of interfaces. In this section, three possible ways to do so are presented. The
first way is to periodically rescan the entire list of interfaces. In environments with few
interfaces this may be done for every application refresh or it may be done less frequently
if scanning the whole list is too expensive and delayed detection of changes in the list is
acceptable. Another method is to monitor the /dev/net directory for the comings and
goings of device nodes. This can be accomplished with the kqueue(2) [man2] mechanism
or by scanning the directory with readdir(3) [man3]. A third approach (applicable only
to programs that run as root outside a jail) is to monitor the routing socket for arrival
and departure notifications.

There are two related complications with the third approach. If an interface is
destroyed and then replaced between update cycles, the application needs to detect this
some way. This isn't an issue with routing sockets or kqueues on /dev/net because
notices will be sent for for both arrival and departure, but since the list is monitored
via sysctl or by using opendir on /dev/net, therc may be continuity problems where
an interface appears to still exist, but in fact has been replaced with another. In the
case of the routing socket there is an issue that a rename is modeled as a detach and
attach which means a application may need a heuristic to detect this situation. To
aid in solving this problem, I have added an interface epoch variable to FreeBSD. The
epoch helps with both the problem of detecting interfaces that replace removed ones in
the same cycle and interfaces that were renamed rather then removed. In this context,
an interface is the same if and only if both its index and epoch are the same. In the
routing socket case, replacing the current detach and attach notifications with a rename
notification would be the ideal solution.

Once applications have been modified or written to notice new interfaces, the author
may wish to consider ways to bring these new interfaces to the user’s or administrator’s
attention. Exactly how this should be done is application specific. For example, in a
WindowMaker dock application on a laptop, bringing new interfaces to the front may

The Challendes of Dynamic Network Interfaces

be the best approach, but that certainly wouldn’t be appropriate to a tunnel server.
In addition to monitoring for added or removed interfaces, application designers
should avoid the following two practices. First, many current applications refer to in-
terfaces by name internally. Since interfaces can now be renamed at any time, this is
no longer considered good practice. Instead, applications should refer to interfaces by
index and convert that to a name when needed. Second, many monitoring or status
applications currently obtain interface information via the kvin(3) interface which pro-
vides direct access to kernel memory. This is bad practice for a number of reasons.
First, requiring that applications be suid kmem is dangerous from a security perspec-
tive as it is nearly always possible to leverage kmem access to obtain root access in the
case of a programming error. Second, since the ifnet_list is now dynamic, walking
it without a lock is not reliable. Third, perfectly good sysctl interfaces exist to access
this information, so there is no actual need to put up with the first two drawbacks.

6 Conclusions and Future Work

As I have shown above, dynamic network interfaces present a number of challenges
to developers of network device drivers and network monitoring and management ap-
plications. In the kernel these challenges are divided between hardware races which
may be reduced by careful programming, but may only be eliminated with external
signaling mechanisms, and races involving freeing of struct ifnet instances before
all references to them have been removed. The problem of stale struct ifnet refer-
ences may be reduced by replacing long lived references to struct ifnet with interface
indexes, allowing a special no-op interface to be substituted when the interface is re-
moved. Further exploration of this idea is needed before it can be put into common use.
Performance impacts will need to be quantified and it will be necessary to determine
whether or not the solution reduces the race sufficiently to warrant the overhead.

In userland the challenges are generally issues with outdated assumptions in userland
applications. The most common problem today is network monitoring applications that
assume the set of network interfaces is static. Solving this problem requires modifying
the applications to monitor for changes in the interface list such that attaches, detaches,
and renames are all correctly detected. The addition of an epoch variable on each
interface should help detection of some of these cases.

A secondary userland problem is specific to SNMP agents. SNMP agents need
to maintain an ifIndex which is unique for each different interface. Prior to the
introduction of dynamic interfaces, agents were able to use the kernel interface index
for ifIndex. This no longer works because allocation of kernel indexes is done in a
manner which minimizes sparse allocation and RFC 2233 requires that allocations be
sparse in a dynamic system. Allowing userland applications to control kernel indexes
may provide a workaround in some circumstances, but enhancement of SNMP agents to
allow external management of if Index variables for applications such as tunnel servers
will probably ultimately be necessary.

Going forward, I intend to implement a sample network interface monitoring appli-
cation demonstrating best practices in this area. Blind copy-and-paste from outdated
applications is probably the single most significant cause of monitoring tools that do
not correctly handle network interface dynamism. An up-to-date example should help
this situation significantly.

Today nearly all network interfaces are potentially dynamic and in the future I
believe dynamic interfaces will be the rule rather then the exception. Give this state of
affairs, future kernel and application programmers should keep the dynamic nature of
network interfaces in mind when they write interface related code. In fact, programmers

The Challendes of Dynamic Network Interfaces

171

dealing with kernel or application level management of any hardware or virtual devices
should keep dynamism in mind to avoid the sort of problems we see with network
interfaces today.

References

[McKusickl]

[McKusick2]

[man2)

[man3]

[man4-2]

[mand]
[mang]
[PAO]
[RFC1157]

[RFC1213]

[RFC2233)
[RFC2734]
[RFC3146]

[WMND]

K. McKusick, K. Bostic, M. J. Karels, and J. S. Quarterman, The Design
and Implementation of the 4.4BSD Operating System, Addison-Wesley,
Boston, MA, 1996.

K. McKusick. Twenty Years of Berkeley Uniz: From ATET-Owned to
Freely Redistributable, Open Sources, O'Reilly and Associates, January
1999. http://www.oreilly.com/catalog/opensources/book/kirkmck.
html

The FreeBSD Project, FreeBSD System Calls Manual, FreeBSD 5.3, 2004.

The FreeBSD Project, FreeBSD Library Functions Manual, FreeBSD 5.3,
2004.

The FreeBSD Project, FreeBSD Kernel Interfaces Manual, FreeBSD 2.0,
1995. http://www.freebsd.org/cgi/man.cgi?query=1kmémanpath=
FreeBSD+2.0-RELEASE

The FreeBSD Project, FreeBSD Kernel Interfaces Manual, FreeBSD 5.3,
2004.

The FreeBSD Project, FreeBSD System Manager’s Manual, FreeBSD 5.3,
2004.

http://www.jp.freebsd.org/PAO/

J. Case, M. Fedor, M. Schoffstall, and J. Davin, A Simple Network Man-
agement Protocol (SNMP), RFC1157, IETF Network Working Group,
May 1990.

K. McCloghrie and M. Rose, editors, Management Information Base
for Network Management of TCP/IP-based internets: MIB-1I, RFC1213,
IETF Network Working Group, March 1991.

K. McCloghrie and F. Kastenholz, The Interfaces Group MIB using
SMIv2, RFC2233, IETF Network Working Group, November 1997.

P. Johansson, IPv{ over IEFE 1394, RFC2734, IETF Network Working
Group, December 1999.

K. Fujisawa and A. Onoe, Transmission of IPv6 Packets over IEEE 1594
Networks, RFC3146, IETF Network Working Group, October 2001.

WindowMaker Network Devices. http://www.yuv. info/wmnd/

172 The Challendes of Dynamic Network Interfaces

NetBSD Status Report 173

NetBSD Status Report

Ignatios Souvatzis
University of Bonn, CS Dept., Chair V
<ignatios@cs.uni-bonn.de>

29th September 2004

1 Introduction

NetBSD is an Unix-like open source operating system based on the 4.4BSDlite code and

other contributions. Onc goal is compatibility with the POSIX and SUS specified in-

terface definitions. The complete kernel sources and big parts of libraries and programs

are BSD-style licensed, thus casily adoptable for commercial third-party applications.
This paper outlines the major changes in NetBSD-2.0 and beyond.

2 Project Structure

When NetBSD was founded in 1993, it was just a few developers cooperating informally.

In the meantime, The NetBSD Foundation was founded to formally represent the
project. The NetBSD Foundation is formal owner of (part of the) software, and ad-
ministers material contributions and the project servers (ftp, cvs, www, ...). Members
of the foundation are the project developers, some 300 world-wide, communicationg
mostly via the Internet.

Board
Executive admin-exec comm-exec membership-exec finance-exec technical-exec
Committees (ECs)
Project Management admins security-officer www core releng pkgsrc

Committees (PMCs)

Figure 1: Structure of the NetBSD foundation offices
The NetBSD Foundation is a non-profit organization and has (in the USA) IRC

501(c)(3) status. It has registered the “NetBSD” and the “pkgsrc¢” trademarks in the
USA.

3 The Operating System

3.1 Releases and Development

The NetBSD release numbering scheme was changed this year.

174 NetBSD Status Report

netbsd-1-6 branch

<
o
£
o
=
S -
=% NetBSD-1.6
gE Tag: netbsd-1-6-RELEASE
£ S release: 2002-09-14
ofA
<2 NetBSD 1.6.1
$3 Tag: netbsd-1-6-PATCHO001
e netbsd-2-0 branch release: 2003-04-21
EM I.---...-..
2 < "
NetBSD 1.6.2

Tag: netbsd-1-6-PATCHO002
v release: 2004-03-01

4-.--

v

Figure 2: NetBSD development and release branches.

Formerly, major releases were numbered 1.x, with patch releases 1.x.y containing
mostly bug fixes. The latest patch release of the old release branch, NetBSD 1.6.2, was
released on March 1, 2004.

The next major release will be called 2.0. Patch releases will be called 2.1, 2.2 ...,
and the major release after that will be called 3.0. The 2.0 release branch has reached
its first release candidate at the time of writing this paper.

Unfortunately, a pkgsrc-like database for the base system (“syspkgs”) is not yet
activated, so tracking binary patches to the base system isn’t yet possible. Thus,
security advisories normally contain, per source tree branch affected, a source patch or
a date the source repository was fixed, and instructions telling what part of the system
to rebuild from sources.

3.2 Building The System

Building the system is done using a central script, build.sh, that controls building
the toolchain — cross-compiler, cross-assembler, linker, auxiliary programs — into
a seperate space, then building the system into a seperate directory structure, than
creating the release archives. As of 2.0, this includes building of the X11 window
system.

No elevated privileges are needed to do this, which allows for unattended operation.
In fact, currently two project machines are bulding both release branches about twice a
week (normally, the development branch and the latest releaase branch), for all target
architectures, and a WWW page shows the last couple of lines of output for the last
build and the last successful build for each architecture. New problems building the
system are thus early noticed, even if specific to some architecture with slow (by today’s
standards) machines.

In 2.0, most CPU architectures will use the newest set of the GNU toolchain: gcc
3.3.x, gdb 5.3, binutils 2.13.2.

NetBSD Status Report

175

3.3

Device Support

Here is a list of newly supported devices:

3.4

3.5

The AMD64 CPU. That’s the fourth 64bit architecture supported by NetBSD
(after Digital Alpha, 64 bit MIPS and 64 bit Sparc).

IDE drivers were split into the different chipsets.
Serial ATA

A generic 802.11 software infrastructure is available, allowing to implement 802.11
access points.

Wireless LAN cards building on the above.
some RAID controllers
Gigabit Ethernet cards

A TCPA hardware driver is in development, but won’t make it into the release
2.0.

An HPPA (hp700) port is being developed.

Storage

There is new filesystem code for Apple-UFS (as of MacOS-X) and Kirk McKusicks
UFS2. The former is especially interesting for users of PowerPC- Macs who want
to use both operating systems. The latter is necessary for people using very large
file systes (> 1T B when using 512 bytes block size).

There is a SMB file system — it’s possible to mount SMB shares.
The volume manager “VINUM” was integrated.

There is a new pseudo device “fss(4)” to take snapshots of a file system — useful
for taking backups of an active system.

Kernel Internal Changes

Multi CPU Support

Support for multiple CPU machines was added for AMD64, 1386, MacPPC, 32bit
and 64bit Sparc. (Multi CPU support was already there for VAX and Alpha in
1.6).

Multithreading

Up until the 1.6 branch NetBSD didn’t have kernel assisted multi threading.
After that, an implementation of “Scheduler Activations” was brought into the
kernel[15] and an N:M Posix thread library based on this was added.[14]

Kqueue

Kqueue(2) is a generic interface for the kernel to send notifications to user pro-
cesses originally written by Jonathan Lemon for FreeBSD [8]. In its NetBSD
integration, device and filesystem events are reported. Support for reporting
USB and network events is planned.

176 NetBSD Status Report

HTTP request latency

Esaae T T T T T 1 T]
NetBSD-CURRENT +
NetBSD 1.6..i-STABLE +
20paa | §
15ea@ [»
1eeee | J
seee |-]
+
Wmamishtthimabaiicn kA sttisredsiuateatiadiid At
B 1 1 i 1 1 1 1 1 1

L] jee 1p@0 1500 2000 2580 3Je6Q 3500 4098 4588 Saee

Figure 3: Scalability of a simple HTTP server (latency in us vs. number of simul-
taneous requests, not counting the connect(2) time, using poll(2) for NetBSD-1.6.1
and kqueue(2) for NetBSD-current. This benchmark was done end of 2003 by Felix v.
Leitner(7].

e Log-structured File System(LFS) with Unified Buffer Cache (UBC) support

LFS uses the UBC[11] now, to allow for more file caching and synchronize
mmap(2) with read(2)/write(2).
3.6 Performance Tuning

These are some of the performance-related NetBSD changes:
e pmc: a new API to access performance counters
e Hardware checksumming of some network interface cards is used by their drivers.

e The not so new Virtual Memory Subsystem UVM of NetBSD makes it possible
to effectively loan out memory pages to other address spaces[1]. This was used
to implement a transmitter side “Zero Copy TCP” (and UDP).

To use this, an application has to mmap(2) (or directly create data in a local
buffer), then write(2). The buffer may not be changed anymore by the application
until the data are sent, else a copy on write fault will be created. [12]

3.7 Security

In this section some new features are enumerated, that help the system administrator
to build secure systems:

NetBSD Status Report 177

touch-after-mmap

Seeaaa T T T T T T T T T
NetBSD-CURRENT 20831181

NetBSD 1.6.1

+

+
450800 -1

40900@ |- -

3seeve - + “

Jepadad -) .

250000

208000 [

P3-988 CPU cycles

1508000

i1@eeae B

Seeoe -1

4+

. N LA TERIRITE I I I IR AN

2] 16888 2000 3800 4860 Sena (-1:1-1.] 7ape 8000 9088 18008
mmapped pages

Figure 4: Touch after mmap benchmark, done end of 2003 by Felix v. Leitner[7].

e In the default installation no network services are activated (like on the 1.6
branch); they have to be activated by the system administrator in /etc/inetd. conf
or /etc/rc.conf.

e On some architectures, that provide hardware support for this, stack and heap
are not executable per default.

o If so configured, NetBSD only allows to execute programs that match their reg-
istered (in the kernel) checksum.

o Systrace[10] allows to control privileges of running programs at the system call
+ parameter level. E.g., binary programs can be restricted to only write in a
specific directory, or not to do network calls, etc.

e There is a new pseudo device driver “cgd(4)” which is a encryption layer for disk
partitions. This works with preconfigured keys (for data partitions) and with
random keys (to secure swap).

Of course, known security fixes for the integrated OpenSSL, OpenSSH, BIND, Send-
mail etc. are incorporated.

3.8 Miscellaneous

e Linux binary emulation was enhanced to better support Java and OpenOffice on
i386 and PowerPC.

e On PowerPC machines a MacOS-X cmulation is available. [4]

NetBSD Status Report

"pkg.dat" ——

number of packages in pkgsrc

200 1 1 1 1 1 1
2002.75 2003 2003.25 2003.5 2003.75 2004 2004.25 2004.5 2004.75 2005
date (decimal year)

Figure 5: The growth of the pkgsrc collection between EuroBSDCon 2002 and EuroB-
SDCon 2004

The sysctl interface is dynamically created: New kernel modules can enhance the
sysctl tree without requiring a recompilation of /bin/sysctl.

Long host names are supported in utmpx, wtmpx, lastlogx.

All system binaries (including /bin and /sbin) are dynamically linked now. For
emergency situations, a small /rescue directory with a few statically linked bi-
naries is available.

Lots of externally maintained but integrated software has been upgraded to their
latest versions: pppd, tcpdump, file, named, gcc, binutils (as, 1d, etc.), postfix,
sendmail, cvs, routed, texinfo , diff, grep, amd, openssh, openssl, less ...

pkgsrc: The NetBSD 3rd Party Software Installa-
tion Infrastructure

Part of NetBSD is “pkgsrc”, a system for building and installing third party software
on NetBSD (and elsewhere[3]), and for tracking the version of installed packages, the
affected files, and dependencies on other packages.

Pkgsrc originated with FreeBSD, but was heavily modified for NetBSD and beyond.
Currently it contains nearly 5000 files.

Most of pkgsrc is not traditionally cross-compilable. However, some effort has been
done to do batch builds, and to do cross-compilation by using a mixture of using a
cross-toolchain automatically and running parts of the pkgsrc tools in an emulator.[13]

Security advisories for pkgsrc-installed packages are not issued in a human readable
form. Instead a (text form) database is maintained, that connects package version

NetBSD Status Report 179

numbers to security problem types and an URL describing the problem. The (pkgsrc)
tool “audit-packages” can be used to automatically check the installed packages against
the list, and to decide what packages to upgrade.

Pkgviews([2][6]) — a system that allows to install multiple versions of a package
in parallel, thus allowing to upgrade packages and their dependencies on a live system
without making it unusable for an extended time -— are integrated in the source code,
but not yet supported by all packages, and thus not activated.

There has been a pkgsrc development conference in Vienna in the summer of 2004,
and the next one is planned for next year.

5 (Not only) New Documentation

o NetBSD contains the usual Unix-style Manual Pages. The usual eight chapters
known from other Unix-like systems are enhanced with a ninth chapter about
kernel functions and interfaces.

e Frederico Lupi’s “NetBSD Guide” is maintained by the NetBSD project now [9].
o A NetBSD Device Driver Guide is being written|[5].

¢ Both documents, and many more design documents and HOWTOs, can be found
on the NetBSD WWW servers in the Documentation subdirectory.

o The NetBSD WWW pages are available in multiple languages, selectable from
the home page.

Important URLSs

[netbsd] NetBSD - homepage: http://www.NetBSD.org/
[changes] NetBSD - changes: http://www.NetBSD.org/Changes/
[autobuild] binary snapshots of NetBSD-current and the release branch from the

autobuild machines: http://releng.netbsd.org/ab/

References

(1] Charles D. Cranor und Gurudatta M. Parulkar, The UVM Virtual Mem-
ory System, in: Proceedings of the USENIX Annual Technical Conference,
Monterey, CA, USA 1999, http://www.usenix.org/events/usenix99/full_papers/-
cranor /cranor.pdf

[2] Alistair G. Crooks, PkgViews — , 2nd European BSD Conference, Amsterdam
2002, http://www.NetBSD.org/Documentation/software/pkgviews.pdf

[3] Alistair G. Crooks, A Portable Packaging System, Proceedings of the European
BSD Conference 2004, Karlsruhe, Germany.

[4] Emmanuel Dreyfus, MacOS X binary compatibility on NetBSD, Proceedings of
the European BSD Conference 2004, Karlsruhe, Germany.

[5] Jochen Kunz, NetBSD Device Driver Writing Guide, http://www.unixag-kl.fth-
kl.de/~jkunz/NetBSD/

180

NetBSD Status Report

[6]

[7]

8]

[12]

[13]

[14]
[15]

Johnny C. Lam, User’s Guide to PkgViews, http://mail-index.netbsd.org/tech-
pkg/2004/01/06,/0004.html

Felix v. Leitner, Uniz Scalability Benchmarks, work in progress,
http://bulk.fefe.de/scalability/

Jonathan Lemon, Kgqueue: A generic and scalable event notification fa-
cility, in: Proceedings of the FREENIX track, 2001 USENIX Techni-
cal Conference, Boston, MA, USA, http://www.usenix.org/events/usenix01/-
freenix01/full_papers/lemon/lemon.pdf

Federico Lupi et al., The NetBSD Operating System: A Guide (6 Languages),
http://www.netbsd.org/Documentation/#netbsd-guide

Niels Provos, Improving Host Security with System Call Policies, 12th USENIX
Security Symposium, Washington, DC, USA, August 2003.

Chuck Silvers, UBC: An Efficient Unified 1/0 and Memory Caching Subsystem for
NetBSD, in: Proceedings of FREENIX Track: 2000 USENIX Annual Technical
Conference, San Diego, CA, USA, http://www.usenix.org/publications/library/-
proceedings/usenix2000/f reenix/full_papers/silvers/silvers.pdf

Jason Thorpe, Ezperimental zero-copy for TCP and UDP transmit-side,
http://mail-index.netbsd.org/current-users/2002,/05,/02/0016.html

Krister Walfridsson, Cross-Compiling Packages, Proceedings of the European BSD
Conference 2004, Karlsruhe, Germany.

Alexandre Wennmacher, Symmetrie in NetBSD, freeX 1/2003-3/2003

Nathan J. Williams, An Implementation of Scheduler Activations on the NetBSD
Operating System, in: Proceedings of the FREENIX Track, 2002 Usenix An-
nual Technical Conference, Monterey, CA, USA, http://www.usenix.org/events/-
usenix02/tech/freenix/williams.html

A Machine-Independent Port of the SR Language. . .

A Machine-Independent Port of the SR Language
Run Time System to NetBSD Operating System

Ignatios Souvatzis
University of Bonn, CS Dept., Chair V
<ignatios@cs.uni-bonn.de>

29th September 2004

1 Introduction

SR (synchronizing resources)[1] is a PASCAL - style language enhanced with constructs
for concurrent programming developed at the University of Arizona in the late 1980s(2].
MPD (presented in Gregory Andrews’ book about Foundations of Multithreaded, Par-
allel, and Distributed Programming(3]) is its successor, providing the same language
primitives with a different syntax.

The run-time system (in theory, identical) of both languages provides the illusion
of a multiprocessor machine on a single single- or multi- CPU Unix-like system or a
(local area) network of Unix-like machines.

Chair V of the Computer Science Department of the University of Bonn is operating
a laboratory for a practical course in parallel programming consisting of computing
nodes running NetBSD/arm, normally used via PVM, MPI etc.

We are considering to offer SR and MPD for this, too. As the original language
distributions are only targeted at a few commercial Unix systems, some porting effort
is needed, outlined in the SR porting guide[4].

The integrated POSIX threads support of NetBSD-2.0 should allow us to use li-
brary primitives provided for NetBSD’s phtread system to implement the primitives
needed by the SR run-time system, thus implementing 13 target CPUs at once and
automatically making use of SMP on VAX, Alpha, PowerPC, Sparc, 32-bit Intel and
64 bit AMD CPUs.

This paper describes work in progress.

2 Generic Porting Problems

Given the age of the software and the gradual development of the C language and the
operating system environments available, some adaptation is to be expected. Fortu-
nately, the latest distribution of SR (version 2.3.2) has already been portend to two
relatively modern Unix-like environments (Solaris 2.2 and Linux), so the necessary
changes turned out to be confined to a one area:

gce 3, the system compiler of NetBSD-2.0, doesn’t provide old <varags.h> variable
argument functions anymore, so those had to be converted to <stdarg.h> syntax.
Also, none of those functions had fixed arguments. Most of the functions had a first
logical parameter char *locn which could be changed into a fixed parameter. A few
functions had a first integer parameter (a count of the remaining parameters). In one

182 A Machine-Independent Port of the SR Language. . .

Implementation Context switch times
1386 assembler 0.059 us
SVR4 system calls | 6.025 us

Table 1: Raw context switch times

case (sr_cat), the loops extracting the parameters from the variable argument list had
to be changed to be initialized with the newly introduced fixed parameter.

3 Verification methods

SR itself provides a basic and an extended verification suite for the whole system; also
a small basic test for the context switching primitives.

The basic suite should be run to test an installation; the context switch tests and
the extended suite are used to verify a new porting effort. (4]

3.1 Context Switch Primitives

The context switch primitives can be independently tested by running make in the
subdirectory csw/ of the distribution; this builds and runs the cstest program, which
implements a small multithreaded program and checks for detection of stack overflows,
stack underflows, correct context switching etc.

3.2 Overall System

When the context switch primitives seem to work individually, they — and the building
system used to build SR, and the sr compiler, linker, etc. need also to be tested.

A basic verification suite is in the vsuite/ subdirectory of the distribution; it can be
extended with more tests from a seperate source archive vs.tar.Z. It is run by calling
the driver script srv/srv, which provides normal and verbose modes, as well as using
the installed vs. the freshly compiled SR system. The only test that is expected to fail
is the srgrind source code formatter — it needs the vgrind program as a backend.

4 Performance evaluation

SR comes with two performance ealuation packages. The first, for the context switching
primitives, is in the csw/ subdirectory of the source distribution; after make csloop you
can start ./csloop N where N is the number of seconds the test will run approximately.
Tests of the language primitives used for multithreading are in the vsuite/timings/
subdirectory of the source tree enhanced with the verification suite. They are run by
three shell scripts to compile them, run them, and summarize the results in a table.

5 Establishing a baseline

There are two extremes possible when implementing the context switch primitives
needed for SR: implementing each CPU manually in assembler code (what the SR
project does normally) and using the SVR4-style getcontext() and setcontext()
functions which operate on struct ucontext; these are provided as experimental code
in the file csw/svr4.c of the SR distribution.

A Machine-Independent Port of the SR Language. . . 183

Test description i386 ASM | SVR4 s.c.

loop control overhead 0.01 us 0.01 us

local call, optimised 0.07 us 0.07 us
interresource call, no new process 1.45 us 1.39 us
interresource call, new process 2.95 us 22.20 us
process create/destroy 2.46 us 26.14 us
semaphore P only 0.07 us 0.07 us
semaphore V only 0.05 pus 0.05 pus
semaphore pair 0.11 ps 0.11 us
semaphore requiring context switch 0.39 us 9.09 us
asynchronous send/receive 1.71 us 1.63 us
message passing requiring context switch 1.90 us 14.50 us
rendezvous 2.65 us 27.05 pus

Table 2: Run time system performance. The median times reported by the SR script
vsuite/timings/report.sh are reported.

The first tests were done by using the provided 1386 assembler context switch rou-
tines. After verifying correctness and noting the times (see tables 5 and 5), the same
was done using the SVR4 module instead of the assembler module.

All tests were done on a 500 MHz Pentium III machine with 16+16 kB of primary
cache and 512 kB of secondary cache, and 128 MB of main memory, running NetBSD-
2.0_.BETA as of end of June 2004.

The table shows a factor-of-about-ten performance hit for the operations that re-
quire context switches; note, however, that the absolute values for all such operations
are still smaller than 30 s on 500 MHz machine and will likely not be noticable if a
parallelized program is run on a LAN-coupled cluster: on the switched LAN connected
to the test machine, the time for an ICMP echo request to return is about 250 us.

6 Possible improvements using NetBSD library calls

While using the system calls getcontext and setcontext, as the svr4 module does,
should not unduly penalize an application distributed across a LAN, it might be noti-
cable with local applications.

However, we should be able to do better than the svr4 module without writing
our own assembler modules, as NetBSD 2.0 (and up) contains its own set of them for
the benefit of its native Posix threads library (libpthread), which does lots of context
switches within a kernel provided light weight process ([5]). The primitives provided to
libpthread by its machine dependent part are the two functions getcontext_u and
_setcontext_u with similar signatures to getcontext and setcontext.

There are a few difficulties that arise while pursuing this.

First, on one architecture (i386) .setcontext_u and _getcontext.u are imple-
mented by calling through a function pointer which is initialized depending on the
FPU / CPU extension mode available on the particular CPU used (on i386, 8087-
mode vs. XMM). from this. On this architecture, _setcontext_u and _getcontext u
are defined as macros in a private header file not installed. The developer in charge
of the code has indicated that he might implement public wrappers; until then, we’d
have to check all available NetBSD architectures and copy the relevant files.

Second, there is no context initializing function at the same level as _setcontext.u
and _getcontext_u. makecontext looks like it would be good enough but this has to

184 A Machine-Independent Port of the SR Language. . .

be analyzed further.

7 Work items left to do

7.1 Building a package for pkgsrc

To case installation, a prototype package for the NetBSD package system has been
built. It needs a bit of refinement, though, but will be available soon. (As the NetBSD
package system is available for more operating systems than NetBSD, a bit more work
is needed.)

7.2 Implementing and testing multithreaded SR

SR can be compiled in a mode where it will make use of multiple threads provided by
the underlying OS, so that it can use more than one CPU of a single machine. This
has not been implemented yet for NetBSD, but should be.

References

(1] Gregory R. Andrews and Ronald A. Olsson, The SR Programming Language:
Concurrency in Practice (Benjamin/Cummings, 1993

[2] Gregory R. Andrews, Ronald A. Olsson, Michael H. Coffin, Irving Elshoff, Kelvin
D. Nilsen, Titus Purdin and Gregg M. Townsend, An Overview of the SR Language
and Implementation, 1988, ACM TOPLAS Vol. 10.1, p. 51-86

[3] Gregory R. Andrews, Foundations of Multithreaded, Parallel, and Distributed Pro-
gramming, Addison-Wesley, 2000 (ISBN 0-201-35752-6)

[4] Gregg Townsend, Dave Bakken, Porting the SR Programming Language, 1994,
Department of Computer Science, The University of Arizona

(5] Nathan J. Williams, An Implementation of Scheduler Activations on the NetBSD
Operating System, in: Proceedings of the FREENIX Track, 2002 Usenix An-
nual Technical Conference, Monterey, CA, USA, http://www.usenix.org/events/-
usenix02/tech/freenix/williams.html

The A-tree — a Simpler, More Efficient B—tree 185

The A-tree - a Simpler, More Efficient B-tree

Alistair Crooks, atree@alistaircrooks.com

29th September 2004

Abstract

Traditionally, searching for text is accomplished by using a data structure fitted to the
task, and database access methods have tended to standardise on B-tree multi-way
trees, especially where proximity searching may be desired.

B-trees were discovered in 1970. Recent advances in processor speeds and memory
speeds have resulted in a very high speed for memory to memory copying, and for a
much larger set of information to be held in memory at any one time. Some of the
restrictions and constraints which were in place when B-trees were discovered are no
longer in place.

This paper describes a new method of data organisation for searching, the A-tree,
and explains the background and reasons for its design and implementation. Perfor-
mance characteristics of different multi-way trees are examined and discussed.

Introduction

Advances in Memory and Processor Speed

1970

In 1970, the multi-way B-tree was discovered by [Bayer1972], and independently at
about the same time by M. Kaufman [unpublished]. In 1971, the Intel 4004 was re-
leased by [Intel1971], with a clock speed of 108 KHz, able to address 1 KB of program
memory and up to 4 KB of data memory. [IBM1971]shipped its first 370 in 1970, and
it typically shipped with 1 MB of core memory, and a roomful of disk drives, proba-
bly totalling 200 MB. In 1973, the big mainframe [IBM1970a]disk drive was model
3330-11: 400 MB for $111,600 or $279/MB.

2004

In 2004, only 35 years later, commodity microprocessors are omni-present in data-
centres, on desktops and in embedded work. Disk sizes of 160 GB and greater are

The A-tree — a Simpler, More Efficient B—tree

common and cheap, and we are seeing disk sizes of 400 GB appear as commodity
items. Processor speeds, admittedly taking advantage of clock multiplication, are at
3.4 GHz, with faster CPUs expected, and memory sizes of more than 1 GB are normal.

[Economist2004]summed up the differences between the PDP-7 which Ken Thomp-
son used to develop the early versions of Unix as:

...it is necessary, though difficult, to recall just how comparatively
primitive the state of computing was 30 years ago. The first version of
Unix was written by Dr Thompson for the PDP-7, a computer made by
the Digital Equipment Corporation, which cost a mere $72,000, and came
with eight kilobytes of memory, and a hard disk a bit smaller than a megabyte.
By contrast, a desktop computer today typically costs a hundred times less,
has roughly 64,000 times as much memory and a hard disk 40,000 times
as big.

Implications of Progress

Between 1970 and 2004, processor speed, on-chip caches and main memory have all
been speeded up in a manner which would have been inconceivable when Knuth wrote
his seminal work on sorting and searching in 1973 [Knuth1973]. A memory to memory
copy on a relatively slow processor such as the ARM is now regularly achieving speeds
of well over 1 Gigabyte per second for both aligned and unaligned copies under the
NetBSD operating system [NetBSD2004].

It’s also necessary to put the era in perspective: in 1970, man had just landed on
the moon, Unix was undergoing an internal rewrite within Bell Labs to add pipes, and
to use a high-level language like C, neither Microsoft nor Apple Corporations had yet
been founded, and the teletype was the usual interface to a multi-user computer. Unix
was five years away from making its way into the educational community. Kurt Cobain
was 3 years old, it would be 17 years until Joss Stone would be born, and Bill Gates
was 15 - Windows 3 was still 20 years away. The troubles in Northern Ireland were
only just starting, and the USA was still fighting a war in Vietnam. Usually, mainframe
computer systems were large, multi-user systems, maybe with magnetic drum memory,
and certainly in their own area in a data center.

To jump forward just 34 years, CPUs and memory are strikingly inexpensive, and
disk space has grown to the state where we are no longer being asked by friendly system
administrators to clear up unwanted files, and desktop and laptop computers (undreamt
of in 1970) are now much faster than the largest supercomputer in 1970. LCD screens
are usually the user’s means of interaction with a computer, and mice and windowing
environments are the standard. Virtual memory is an integral part of every chip but the
smallest embedded device, and even most new handheld telephones have an embedded
chip inside which has an integral MMU. Peripheral speed has advanced, DMA is the
standard means of transferring data from a peripheral to memory, and we have moved
to 64-bit technology on a number of operating systems and platforms.

The A-tree — a Simpler, More Efficient B—tree 187

1 Access Methods

When an access method is deployed in computer systems today, there are generally
two possibilities

o the B-tree
e Hashing

This paper will now add a third method
o the A-tree

and then compare and contrast their uses, benefits and drawbacks.

2 The B-tree

2.1 Description

Since Bayer & McCreight’s discovery of the B-tree, a number of people have improved
and extended the original description. Most of these are documented in [Comer1979]’s
work. To recap, a B-tree is an example of a multi-way tree, where:

1. Every page contains at most 2n items (where n is the order of the B-tree)
2. Every page, except the root page, contains at least n items

3. Every page is either a leaf page i.e. has no descendants; or it has m + 1 descen-
dants, where m is the number of entries in the page

4. All leaf pages appear at the same level

{see [Wirth1976})

If we take the Berkeley DB implementation of B-trees as the reference implementa-
tion for just now (version 1 of the Sleepycat db implementation is standard on the *BSD
distributions, mainly due to licensing issues with later versions), a B-tree is made up
of leaf and internal pages. Each page holds a number of (key, data) pairs. A traversal
of the leaf elements from first to last will produce an ordered linear list of the elements
of a tree. A B-tree has an order property, where the order is the number of elements
which may exist in a leaf page (a B-tree of order 2 will have at least 2 entries in each
leaf page, and at most 4 entries). The sparse property of B-trees leads to a number of
benefits - insertion into a tree is usually simple, since, by law of averages, there will be
space to insert a (key, data) pair into a B-tree page. On the rare occasions that B-tree in-
sertion overflows a leaf page, then the insertion will overflow into neighbouring pages,
and internal pages will receive new indices themselves, denoting the leading entry in
the page underneath the internal page. In a similar fashion, deletion from a B-tree may
mean underflow in rare cases, and so the tree will shrink in an ordered manner, again
perhaps involving re-calculation of indices in internal pages higher up the B-tree.

When updating a B-tree by adding or deleting entries, in an environment where
multiple access by different processes is allowed, may require the whole internal page
to be locked, as well as parent pages, in case of overflow and underflow.

188 The A-tree — a Simpler, More Efficient B—tree

2.2 Overview

In all, a B-tree provides a convenient structure for ordered searches (where predecessor
and successor entries can be easily found, and the whole tree itself can be traversed in
order). In normal use, a B-tree will organise itself into a flat structure, given a large
enough order, and searching within pages of a B-tree is done by binary searching,
which proves to be extremely efficient in practice.

2.3 Extensions

In order to avoid duplication of data, B-trees are usually implemented with entries in
internal pages pointing directly to their associated values - there is no need to duplicate
this entry in the correct position in the leaf page, since the searching process will hit
the entry in the internal page first. This is the usual method of implementation, and
is also referred to in literature as a B+-tree. One side-effect of this is that the data at
the leaf pages, when read off from first to last, is still ordered, but incomplete, as the
internal pages now contain some of the data.
A B*-tree is a standard B-tree with the following characteristics:

1. Every page except the root page has at most m children (where m is the order of
the B*-tree)

2. Every page, except for the root and the leaves, has at least (2m - 1)/ 3 children
(this means that we use at least two thirds of the space available in each page)

3. The root has at least 2 and at most (2 * floor((2m - 2)/3)) + 1 children
4. All leaves appear on the same level

5. A non-leaf page with k children contains (k - 1) keys

from [Knuth1973] pages 477-478.

The B-tree can be extended to provide multi-dimensional key-searching (see Guttmann’s
R-trees for an example of this), by keeping a relatively small order, and storing max-
ima and minima values for the extra index fields in each internal page. Internal pages
of R-trees hold the maxima and minima values of key fields from subsequent pages.
The query optimiser can then be used to make searching more efficient for multi-
dimensional searches.

B-trees were originally conceived to hold their data internally to the page - this
improves locality of reference. Most modern implementations usually hold pointers to
(string) keys in separate pages which are themselves cached.

2.4 Usage

B-trees are typically the access method of choice for database administrators. Search-
ing by B-tree is almost as quick as by using hashing methods. Typically costly overflow
and underflow operations happen rarely, and proximity searches are possible. Scanning
whole trees in order is possible.

The A-tree — a Simpler, More Efficient B—tree

189

2.5

Drawbacks

In light of these speeds quoted above, the whole design of a B-tree seems outmoded.

2.6

a B-tree duplicates the virtual memory hardware in user-level software, with a
resulting slowdown in performance

typical operations on B-trees, even B-trees with large orders, result in a number
of calls to move small areas of memory around

hand-crafting iterative statements in a high-level language such as C seems to
be missing the point - given the right addresses to copy from and to, the CPU
is much more efficient when using hand-tuned assembler routines to copy mem-
ory from one location to another, rather than trying to optimise the amount of
memory to be copied, and perhaps performing that copy in a loop.

the original B-tree, as described by Knuth, expects keys to either be integers
with keys which are solely integers - strings are much more common. Knuth
also briefly mentions the B*-tree, which keeps variable length strings in the leaf
pages, presumably for locality of reference. This has been overtaken by time, and
now most implementations of B-trees (such as the Sleepycat db implementation)
use a separate cache for variable-length keys. Implementing caches on top of
the underlying hardwares own caches may provide suboptimal performance in
real-world applications.

if these strings are held in the B-tree page, to provide locality of reference, then
when an entry moves from one page to another upon insertion or deletion, over-
flow or underflow, the data must be transferred to the new page, which is time-
consuming and inefficient.

Consider, for example, the example of a file system which uses a B-tree to order
a directory. If the directory entry information is retained within the B-tree page,
then locality of reference is assured, and directory traversal can be achieved by
Just using the information in the page itself. Conversely, when adding or delet-
ing directory entries, directory entry information may need to be copied between
B-tree pages, which may be time-consuming and inefficient. If the directory in-
formation is held in a separate string table, it is unclear how that table would
be organised to allow efficient searching, insertion and deletion, even allowing
for efficiencies provided by reference counting - obviously a segmented, ordered
approach would be best, but a recursive B-tree is, unfortunately, out of the ques-
tion.

data can be added to a B-tree in such a way as to minimise performance and
maximise tree constructions times, by causing pages to overflow in a pathologi-
cal way.

Illustration

Figure ??, taken from {Wirth1976], illustrates the way a B-tree of order 2 will grow
when data is added to the tree in the following order:

190 The A-tree — a Simpler, More Efficient B—tree

20

(a)
40103015
(b)
357261822
(c)

5

(d)
42134627832
(e

3824 4525
®

The data are specially chosen to exercise all aspects of the B-tree code, including
overflow of leaf pages and internal pages.

3 Hashing

3.1 Description

By using a transformation function or “hashing function” on the key, a value is obtained
- the “hash value” - and is used as a subscript to index into an array which holds pointers
to the data. Hashing is a very simple access method, and only needs a hashing function
and an array to be implemented. When the hash, or transformation function, of two
distinct values results in the same value, we say that a collision has occurred. There are
a number of methods of resolving collisions

e one way is to have the array value point to a linear list of values, external to the
array. If there are a lot of insertions and deletions, this method can be costly, as
linear lists have to be traversed in order

e another way is to step on by a number of slots in the array, but this approach can
prove problematic if the original value is deleted (since the fact that the subscript
is “busy” is used as a trigger to step on). If the array itself is full or near full, this
approach can be costly

3.2 Overview

In real-world usage, the performance of hashing is proportional to the values produced
by the hashing function - if these are a uniform spread across the array, then the chances
are that the access method will perform well. If the array is itself too small, then
performance problems will ensue. For good performance, an intelligent choice of hash
function must be made.

In general use, there are a number of hashing algorithms in general use:

The A-tree — a Simpler, More Efficient B—tree 191

e the hashing algorithm used in Perl has been found to produce a good spread of
values

o the simple hashing function from [Kernighan1976] is not the best, but is simple
to understand

e the[FNV]hashing algorithm as found in various places - the FreeBSD 4.3 NFS
code, Linux’s NFSv4 code, etc, although the NetBSD project, after extensive
benchmarking, concluded that there were better hashing algorithms than FNV

o the sdbm hashing code by Ozan Yigit performs well on various sample sets

e [Yigit2001]gives an excellent comparison of various hashing methods as applied
to real-world uses, by using all the C identifiers in X11R4 sources, hashed onto
an 8192-entry hash table and an 8209-entry hash table. More information is
available at [Yigit2004] and in [Jenkins2004]

The holy grail of hashing algorithms is called the perfect hashing algorithm - one
where, for every distinct input key, there is a distinct and unique hash value. Usu-
ally, these take a long time to compute, and can only be deterministic in the case of
a known and pre-computed set of inputs, but there is software available which will
compute the best hash function, given a known set of inputs - see {gperf2004].

3.3 Usage

For some reason, hashing is usually the access method of choice for programmers,
and often is used in systems programming. FreeBSD have added hashed entries in
directories (over a certain threshold) to speed up directory traversal.

4 The A-tree

4.1 Description

The A-tree can be thought of as an array of pointers to storage elements, grouped
together logically into virtual pages. This array is sparse. The size (maximum number
of storage elements) of a virtual page is called the order of the A-tree. An A-tree has
the following characteristics:

o The array is sparse, so that there are at most order elements in a virtual page,
and every virtual page except the first one must have at least one element. The
empty A-tree has 0 elements in its first virtual page.

e If there is a positive number of elements in the A-tree, there will always be an
element in the first element of a virtual page.

e Searching within an A-tree uses (conceptually) two binary searches; the first
binary search is done using the first element in each virtual page, so that the
correct virtual page is found, and the second binary search takes place within the
virtual page, to test for the presence or absence of an element.

192 The A-tree — a Simpler, More Efficient B—tree

Our A-tree implementation uses two arrays:

e one array for the elements, which contains total tree size elements; each element
is a pointer to the (key, value) tuple. The key and the value are both sized strings.

e one array of integers, which contains (fotal tree size / order) elements; each
element of this array contains the size of the virtual page

Conceptually, if a B-tree had all its elements in leaf pages (i.e. a standard B-tree as
described by Knuth), and its nodes were laid end-to-end in order, the resulting array
would be similar to an A-tree. Pictorially, an A-tree can be envisioned like this:

5 7 10 1% 18 20 22 26 30 35 40

Page O Page 1 Page 2 Page 3

Number of elements in each virtual page: 3, 4, 2, 2

With 11 elements and four virtual pages in the A-tree, a search for an element
would start by finding the correct virtual page in which to search.

This is done by a binary search, using the first element of the virtual page as the
key, and using two temporary bounds to find the virtual page.

For example, assuming C/C++ array subscript notation, let us search the A-tree
illustrated above for the search key “10”.

The binary search would start with the higher bound at (virtual page) 3, and the
lower bound at (virtual page) 0, and so the mid-point is at (3 + 0) / 2 = 1. The first
element of virtual page 1 is “15”. If the search element is less than 15, then the higher
bound will be set to (1 - 1) = 0, and the lower bound will stay at 0. When the two
bounds are equal, or the lower bound is higher than the upper bound, the virtual page
has been found.

The binary search then continues within the virtual page - the upper bound is set to
(3 - 1) == 2, the lower bound to 0. Quickly the search finishes by finding the element
“10” in subscript 2 of the virtual page.

4.2 Characteristics

Using the insights from the increased memory and CPU speeds as a base, and observing
some of the characteristics of both B-trees and hashing, it was possible to come up with
the basic characteristics for A-trees:

¢ a large array of pointers to key and value tuples is kept

this array is sparse

the array is conceptually split up into virtual pages - in reality, a separate array
of “number of itemns in a virtual page” is kept

¢ cach virtual page must have at least one element in the virtual page

binary searching in two stages:

The A-tree — a Simpler, More Efficient B-tree

193

1. finding the correct virtual page by using the first element in virtual pages,
and then

2. another binary search within the virtual page, used to locate elements

» fast memory to memory copying is used when inserting elements into the A-tree.

If an element can be inserted into a virtual page, any elements which need to be
moved up the virtual page will be moved. If there is no room in the page, an
oscillating search is used to find the nearest virtual page which has room, and
elements are moved up or down the A-tree accordingly, to make space for the
element to be inserted.

when deleting elements, the same fast memory-to-memory copying is used to
move any elements in the virtual page down. If underflow occurs, the virtual
pages are all moved down 1, again using the fast memory-to-memory copy. It
does not matter if unused elements are copied, since this overhead is vastly out-
weighed by the speed in using memmove(3).

The A-tree itself is implemented by using a resizable sparse array of elements, and a
smaller array of virtual page sizes is kept - the size of this array is the total size of the
array of elements divided by the order of the A-tree.

4.3

Searching

When searching an A-tree, the following pseudo-code is used:

1.

3.
4.

calculate low and high virtual page subscripts, and from these, the mid-point
virtual page subscript

compare the first element of the mid-point virtual page to the search element,
and modify low and high virtual page subscripts accordingly. Repeat steps 1 and
2 until the search converges on a single virtual page (in which the search element
either resides, or would reside, if it was present in the tree).

within the virtual page, calculate the low and high indices for elements

perform a binary search within the page to find the desired element

Sample C code for searching for the virtual page and the position within it is shown
below:

/* do a binary search in the virtual page */
static int
binsearch(atree t *ap, const DBT *key,
int *pg,int *lo, int *hi)
{

*lo

0;

*pg = -1;
if ((*hi = ap->virtpgsizec - 1) < *lo) {

194 The A-tree — a Simpler, More Efficient B—tree

return 0O;

}

for (;;) |
do {
int mid = (*lo + *hi) / 2;
int cmp;
cmp = (*ap->info.compare)

(key, &KEY (ap,
(PAGE_FOUND(*pg)) ?
mid
SUBO (ap, mid)));
if (cmp <= 0) {
*hi = mid - 1;
}

if (cmp >= 0) {
*lo = mid + 1;
}

} while (*lo <= *hi);

if (PAGE_FOUND (*pg)) {
return (*lo - *hi == 2);

}

/* normalise the page number */
if ((*pg = (*lo - *hi == 2} ?
*hi + 1 : *hi) < 0) {
*pg = 0;
}
*1o = SUBO(ap, *pg):
if ((*hi = *lo + ap->virtpgsizev[*pgl
- 1) < *lo) {
return 0;

4.4 Insertion

When adding an element to the A-tree, the following steps take place:

1. if the tree is full, then resize (by doubling) the main array, and the array of virtual
pages. After resizing, make the array more sparse, by moving half the elements
out of each virtual page into the next virtual page

2. perform a binary search to find the correct page and position within the page to
insert the new element. If the element is already in the tree, do not attempt to
insert it.

3. mark the A-tree as “updated”

10

The A-tree — a Simpler, More Efficient B—tree 195
4. if there is no room in the virtual page, then perform an oscillating search to find
the nearest page which has room. Assuming the current page is i, the order of
the page search will be (i + 1), (i - 1), (i + 2), (i - 2), etc until room is found.
When room has been found (and there must be room to insert an element, be-
cause of Insertion(1)), the elements are moved inter-page using memmove(3).
No attempt is made to optimise the number of elements to move - every element
in the desired range is copied.
S. the necessary elements in the page are moved up one to make room for the ele-
ment to be inserted
6. the element is inserted in the A-tree
Pictorially, a simple insertion of an element looks like:
Before: RO
Number of elements in virtual pages: 1
Adding element "10"
After: [10 20
Number of elements in virtual pages: 2
and an insertion which results in the growth of the atree looks like:
Before: | 7 10 15 20 26 30 35 40
Number of elements in virtual pages: 4, 4
Insert element "18"
After: 7 10 15 18 20 26 30 35 40

Number of elements in virtual pages: 2., 3, 2, 2

4.5 Deletion
When deleting an element from the A-tree, the following steps take place:

1. the element to be deleted is located using a binary search

11

196 The A-tree — a Simpler, More Efficient B~tree

2. the storage allocated to the element is freed

3. if there is only one element in the virtual page, each virtual page is moved down
one, and each element in the main array is moved down by “order” elements

4. if there is more than one elements in the virtual page, then move the elements in
the virtual page down one
4.6 Illustration

Using the same data as provided in the B-tree illustration, and with an A-tree of order
4 to simulate the same growth characteristics as the A-tree, we obtain the following
picture:

[t is interesting to note some of the aspects of the growth of the A-tree when it is
used in conjunction with the same data as used in the B-tree illustration.

o The number of virtual pages in the A-tree grows in powers of 2
o The data in the array, although sparse, is always in increasing order

o The array containing the number of elements in the virtual pages has not been
shown, but is insignificant compared to the data stored - for an A-tree with 8§
virtual pages, an array of 8 integers is needed

o The virtual page size can be tuned to the underlying page size of the virtual
memory subsystem, to improve performance

¢ The oscillating search will find the nearest page with any room. This is a much
cleaner way of finding space than the “merging leafs” method of B-tree space
management,

5 Comparisons

5.1 A-tree and B-tree Comparison

If we contrast an A-tree with a B-tree, the following observations can be made:

o the B-tree provides a segmented, ordered list of pages in the same way that an
A-tree does

e a B-tree (not a B+-tree or a B*-tree) will have a list of leaf elements along the
“bottom” of the B-tree, and is similar to an A-tree

o binary searching is performed in much the same way that a B-tree accomplishes
its searches

12

The A-tree — a Simpler, More Efficient B~tree

197

o A-tree code is much simpler than B-tree code - especially during B-tree deletion,
when underflow of pages occurs, there are many corner cases to consider, and
this usually results in large object codes. In comparison, the heart of A-tree inser-
tion and deletion is a memmove(3) call, which will be hand-optimised assembly
code on most modern machines and operating systems.

o with an A-tree, an ordered walk of the tree is possible, from head to tail, or from
tail to head. Proximity searches can be performed with ease.

o all kinds of B-trees segment their dataspace into pages - this is done at the user-
level, rather than at the hardware level, and the abstraction wastes time and space
with modern computers

* A B-tree will typically store strings as data and keys. These strings need to be
stored somewhere - for locality of reference, the strings are often stored in the
page of the B-tree, which reduces the amount of space which can be allocated to
elements, and which can make the number of elements in a B-tree page unpre-
dictable. This is not a problem in B-trees, since the higher-order pages provide
the indices through which the correct sub-page can be located, but it can be a
problem if there are many insertions into a tree, and the strings need to be moved
between pages.

e an A-tree has none of the possible “pathological insertion” problems which may
occur with B-trees. An A-tree’s size is governed by the number of elements in
that tree.

5.2 A-tree and Hashing Comparison

When compared with a hashing, the following observations can be made:

e an A-tree will take longer to search for an element, since two binary searches
are taking place using an A-tree, whilst hashing will involve calculating the hash
value and then testing for its presence in the hash table, and any overflow chains,
or subsequent location searches it may have to perform

o an A-tree will be as quick as hashing to insert elements into a table. In addition,
hashing the key will lose information, and so no proximity searching can be
performed using hashing

¢ both A-trees and hashing use sparse arrays to contain the elements

Future Work

There are a number of aspects of A-trees which would be good to investigate:

1. Some research must take place into the best method of growth for an A-tree -
when an A-tree contains a small number of elements, doubling the size of the

13

198 The A—tree — a Simpler, More Efficient B—tree

A-tree is easy and efficient. When the number of elements in the A-tree grows
large, the addition of a number of slots for elements in the A-tree is the best
approach.

2. Extension to multi-dimensional searching, by way of an analogy of Guttman’s
R-trees would be a beneficial area of research. Guttman found that typical pages
in an R-tree would only contain a small number of entries, and it would be inter-
esting to contrast that with A-trees, where the information would also be held in
the A-tree entry, but where fast memory copies and comparison functions could
be used to good effect.

To adapt R-tree methods of searching subsidiary keys to A-trees would involve
solving the problem of “summary” information being held in higher-order pages
further up the R-tree towards the root page.

Performance

The speed of searching in an A-tree is slower than when using a hashing scheme, but
preserves order, which is useful in certain situations. The speed of searching an A-
tree is roughly equivalent to that of searching a B-tree. Insertion and deletion from an
A-tree are much simpler than the corresponding insertion and deletion from a B-tree.

Conclusions

The size of memory on today’s machines, and the speed of the CPUs, busses and pe-
ripherals mean that we have come to rely on older data organisations which were con-
ceived at the time that memory was scarce and CPUs were slow, and no virtual memory
was available.

In 2004 and beyond, both disk and memory space are plentiful and inexpensive,
and the constraints which existed when B-trees were first discovered are no longer in
place.

In practice, the same characteristics of a B-tree apply to an A-tree - the segmented
nature of its elements, which allow relatively easy insertion and deletion - are more effi-
ciently encoded in an array, rather than as separate pages in a B-tree. Ordered searching
and proximity searching are possible when using B-trees and A-trees, although not the
B+-tree, which is the standard mechanism for B-tree implementation.

An A-tree will grow in size by doubling when inserting an element and the A-tree
is full. The A-tree does not shrink - rather, its elements migrate towards the smaller
end of the array.

A-trees and B-trees use the same two-step binary search mechanism.

If the 0-th element in a virtual page is unaccessed, it will be quite possible for the
virtual memory subsystem within the operating system to reuse the memory allocated
to the page, and very little overhead is associated with this.

14

The A-tree — a Simpler, More Efficient B—tree

199

In all, the A-tree is a much simpler alternative to a B-tree, has the same benefits,
and is more performant.

References

[Bayer1972]
(Intel1971]
[IBM1971]
(IBM1970a]
[Economist2004]
[Knuth1973)
[NetBSD2004]
[Comer1979]

[Wirth1976]
[Kernighan1976]
(FNV]
[Yigit2001]
[Yigit2004]
[Jenkins2004]
[gperf2004]
[Guttman1984]

[Acta Informatica (1972), 345 - 349]

http://www.intel4004.com/
http://www-1.ibm.com/ibm/history/history/year_1970.html
http://www.beagle-ears.com/lars/engineer/comphist/ibm360.htm
http://economist.com/science/tq/displayStory.cfm?story_id=2724348
Sorting and Searching, Addison-Wesley, 1973
http://www.netbsd.org/

“The Ubiquitous Btree”, ACM Computing Surveys, Vol 11, pp 121-
137, June 1979.

Algorithms + Data Structures = Programs, Prentice-Hall, 1976
The C Programming Language, Prentice-Hall
http://www.isthe.com/chongo/tech/comp/fnv/
http://mail-index.netbsd.org/tech-kern/2001/11/28/0034.html
http://www.cs.yorku.ca/~oz/hash.html
http://burtleburtle.net/bob/hash/
http://www.gnu.org/software/gperf/gperf.html

“R-trees: a Dynamic Index Structure for Spacial Searching” in Pro-
ceedings of ACM SIGMOD, 1984

15

200

The A-tree — a Simpler, More Efficient B-tree

(a)

8o}

{c)

(d)

(e)’

[£)

20
20
10 15 30 40
20 30
7 10 15 18 R2 26 35 40
10 20 30

— T N

5 7 15

18 22 26 35

40

—

10 20 30 40

N

7 8 13 15 18 [R2 26 27 (32 35 42 46
25
10 20 30 40

o

8 13 15 18

22 24 26 27

32 35 38

42 45 46

Figure 1: Addition to B-tree

16

The A-tree — a Simpler, More Efficient B~tree 201

(a) Eo

() ho 15 20 30 40

(e) 10 15 18 20 22(26 30 35 40

(d) p 710 1s 18 20 22{26 30 15 40

(e} B 7 8 10 13 15 hs 20 22 26 k7 30 32 35 40 42 46
(E) p = 8 10 3 15 g 20 42 29 25 26|27 30 32 |35 38 40 {42 45 46

Figure 2: addition to A-tree

17

Track B Sunday

Notes:

Integrating Monitoring Data 203

Integrating Monitoring Data

...or how to get Management to approve your next gadget
By Christoph Sold
Since computers were invented, they were monitored: as a scarce
resource computing power has always been a valuable thing. Even today,
there is not nearly enough computing power available to solve all the
numerical problems computers are easily applied to — let alone all those
non- numerical problems you can imagine.
This paper deals with the requirements to further the development of
monitoring and the effects this will have on software development and
deployment. The effects of a concerted plan for monitoring will be shown,
as well as how monitoring will help you to better predict your businesses
needs.
Monitoring History
In the earliest days, arrays of blinkenlights were the tool of the day. Since
then, many additional tools were invented . Some of them have survived
the tides, others were swept into oblivion.
Although computer science has made a good deal of progress since then,
the basic monitoring tools have not yet made as much progress. Many
UNIX administrators still rely on basic tools like ps, top, or netstat as their
primary tools of the trade. Some commercial UNIX systems have built
upon those basic tools, e.g. Solaris sar, which allows for historical analy -
sis, or AIX Smitty, which integrates configuration and monitoring. Com-
mercial entities have developed various cross- platform monitoring tools
such as Borderware Patrol, Big Brother (now from Quest Company), Lund
MetaView or Tivoli (today a part of IBM). There are Open Source monitor -
ing tools available, too, such as Big Sister, Nagios, or NetSaint.
Standards have been developed to help integrate monitoring data formats.
The Simple Network Monitoring Protocol (SNMP) has been around for
some time. The Application Response time Measurement (4RM) standard
describes how monitoring data has to be logged and transmitted. Unfortu -
nately, besides SNMP, there is no widespread standard to integrate vari-

ous monitoring tools with each other. To make our life more miserable,

even within SNMP there is no standard besides the numerical tree.

204 Integrating Monitoring Data

Why Monitor?

Like cars, defects can be fatal for your system. Thus, event (fault) moni-
toring needs to signal problems as timely as possible to minimize their
effect. A well- known example of fault monitoring is the brake warning
light in your car. If this thing lights up, you want to come slowly to a con-
trolled halt to prevent dire consequences.

Performance monitoring continuously records system performance for
deferred analyzation. This helps to predict system capacity needs. The
fuel gauge in your car is a performace monitoring tool of sorts: it moni-
tors your fuel efficiency.

Finally, service level monitoring watches for service level violations, giving
a picture of your customers system percep tion to you. In modern cars, a
built- in fault memory stores all faults. The car shop should analyze all the
stored faults the next time you turn the car in.

Monitoring Tools Users

As in cars, the monitoring tools in the computing business have different
customers.

Help desk workers as well as on- duty system administrators need event
monitoring as the most important tool. Detecting problems before your
customer calls is the killer application for event monitoring. A properly
designed event monitoring system will help you to minimize the impact
of your problem to the customer.

Performance monitoring helps your technical architects to predict your
customers needs. Depending on system usage, it can be helpful for the
system administration team to predict system utilization to some degree.
Your sales people will also benefit, because knowing what your customer
needs before he knows is always a good selling tool.

Service level monitoring is the tool of the trade for both your customer as
well as for your sales and managerial people. Knowing the service level of
your system enables your sales people to set the expectations of your
customers into the right frame. In case of differences between you and
your customers it is easy to check recorded service level data against

your service level agreements.

Integrating Monitoring Data

205

Basic Monitoring Tools

Like any exact science, monitoring is based on repeatable, simple tools.
Mathematics applied to this simple tools yields additional informa tion. To
make your private crystal ball work, you have to pay extreme caution

when implementing the basic building blocks.
Counting

Regardless of what you plan to measure, it basically comes down to
counting. Be it the size of the average file in your hard disk, the packets
down a pipe during a given period, or the seconds between two events,
the basic process which has to be implemented is to count the basic unit
of interest. This can be as simple as a variable incremented every time an
event to measure occurs, or a simple routine counting the number of enti-
ties in a queue. There is one point you have to watch out for: Counts have
to be atomar. If the number of entities changes while you count them, the
count will be rendered invalid.

In addition, counts should be implemented with minimal impact. It is wise
to invent a method to selectively disable counts not needed, such as a
kernel variable, or to selectively enable only counts when needed such as
in ipfw count rules.

Counts can be differentiated into sum counts, which integrate the number
of units by adding them continuously until reset. Implementation is usu-
ally as simple as incrementing the counter each time the entity is detect -
ed.

Resetting the sum periodically at fixed intervals yields an integrated
count, which helps to measure something over time. If you intend to
record these, pay attention to record the count before the next reset
occurs. Many scripts do exactly that to report on the traffic flow through
ipfw packet filter. Mac OS X as well as Solaris provides sar, which records
system usage statistics in five- minute- increments.

A third type of a count is the event record, which records the time an
event occurred, eventually along with details what exactly happened then.
Syslogd does this type of event recording. ipfw can be instructed to gener -
ate log events for syslogd, as well as Apache generates this type of log,
which allows to calculate floating averages. On the down side more sys-
tem resources are needed to store event records. ipfw implements limits

to prevent against DOS attacks for this reason.

206 Integrating Monitoring Data

Queue length counts the number of items in a line of items to be pro-
cessed. Since queues usually grow as your systems lag behind, queue
length usually is a very good indicator for system overload. Well known
queue length counts include network protocol I/O queues.

If only the sum of any entity is relevant, total counts are the tool of the
choice. To help analyze entities which would overwhelm a total count,
sampling into the data pool helps to provide insight. Sampled counts have
to be implemented carefully: either have all of your samples synchroni-
zed, or the values will not sum up properly.

Throughput

Adding the time dimension to basic building blocks yields in throughput
values. As mentioned above, integrated counts simply reset after a fixed
amount of time. Count the number of events during a sliding period
within an event record to get a sliding integrated count. Queue length over
time yields average queue length counts. For queues, it is interesting to
watch queue length difference over a fixed period of time.

Statistical Tools

Basic counting in place and properly unified, it is simple to apply standard
statistical indicators such as variance, arithmetic or geometric mean val-
ues. Classical statistics are best adapted to jobs on historical data. In
addition, they tend to be optimized for print media: Display a lot of static
information in a small place with high resolution. They tend to print num -
ber forests, which makes interpretation on the fly difficult. Graphics such
as box plots, scatter graphs or quantile- quantile- plots help to visualize
these approaches.

NIST has developed a new approach to analyze statistical data, along with
a tool to plot the lot.! The fresh approach they used to apply to enginee -
ring statistics is rather helpful when slicing and dicing through monito -

ring data woods.

' NIST/SEMATECH e- Handbook of Statistical Methods,
http://www.itl.nist.gov/div898/handbook/, 2004.
The too! is named dataplot, available at

http://www.itl.nist.gov/div898/software/dataplot/homepage.htm.

Integrating Monitoring Data 207

Basic Analysis Tools

Most monitoring tools are suited to provide real-time data to system
administrators. They allow to glimpse into various aspects of your sys-
tems in real time. Others allow to analyze historically recorded data of
one specific aspect of your systems.

The simplest tool is recorded basic monitoring data. To be of any help, all
monitoring data should be recorded and archived. Mac OS X Server as well
as Solaris monitor some essential performance data sets unconditionally
during normal operation. For a short period of time (usually a few days),
performance is sampled every five minutes and stored into the sar
database. The database files are rotated daily, after a few days, they get
overwritten. The sar utility allows to single out specific information as
long as the database files are still intact.

Almost all descendants of UNIX still provide some file system quota
mechanism along with the tools needed to monitor disk usage. While not
recording anything when you‘re not over quota, they'll get verbose when
you cross soft or hard quota limits. It‘s up to you to check disk quota logs
against your policy.?

Network interfaces usually get recorded, too. netstat -i reports recorded
network interface statistics. It‘'s up to the kernel to record the packet
counts. The interface netstat offers into your TCP/IP stack statistics
resets the statistics every time you view them. Once viewed, the statistics
are gone.

The tools mentioned above have some things in common: a back end
records the data, while a front end lets you get at that data in human- rea-
dable form. Using back ends to record the data helps to minimize moni-
toring impact on your system. Calculate front end values only when they
are needed.

A front end application like netstat, iostat or vmstat lets you access the
recorded data when you wish to get at it. Back when network access was
trusted in the days of the r-tools, secondary front ends to machine load

were commonplace: xdm lets you display the load of remote servers will-

2 Quotas can be a real PITA because often applications try to allocate

files unknown to average Joe User. Ever tried to open a nicely com-

pressed JPEG photo fresh from your digital camera with GIMP?

208 Integrating Monitoring Data

ing to let your X server connect. ruptime shows load data like the data
displayed by w, ps, or top. All of those tools tap into the in- kernel load
variables.

Unfortunately, even simple monitors like top differ in how they record
monitoring information: on a machine with four CPUs, does a load of 1.14
mean there is one CPU working 100 %, another one is nearly idle, while
two others are doing nothing at all, or are there all CPUs happily crunch -
ing numbers, while a little excess load waits for any CPU to become free?
Both points of view are valid, and, unfortunately, both have been imple-
mented in different operating systems. Remember to make sure things
named the same are measured using the same algorithm before comparing
the measured values.

Historically, minimal data was recorded to keep the impact on system
performance as well as disk cost as low as possible. Today, there is no
such thing than a history of machine loads. Recording Veritas Volume
Manager managed file system performance for all your SAN volumes
would be nice to analyze performance historically. Guess if it is available
out of the box.

Monitor Displays

There is no such thing as a single monitor display fits all. Depending on
the situation, you‘ll need different displays for different users in differ ent
situations. Having a ssh- to- SMS- Gateway may be a nice feature, but have
you ever tried to recognize systat -vm output on a 40x4 mobile display?
In addition, different users of monitoring data want to view the data in
completely different detail. Upper management is usually only interested
if everything works within predefined parameters, while your system
administrators need a lot more information to get the job done. Customers
tend to ignore all monitoring data but end to end cycle times. Project
managers are interested often only in the most damaging limit, which may

change from minute to minute.

Defining Display Consumers

Beforc any monitor is designed, the users of the display have to be stated
clearly. Each display has one primary consume as well as any number of
secondary consumer groups. Primary consumers will need to examine the

data in greater detail and at a higher frequency than secondary consumers.

Integrating Monitoring Data 209

Interactive consumers should be able to change the way data is displayed,
while passive consumers need only to access a default data display. Some -
times this will include raw data exports to satisfy the need for interactive
customers.

Defining the consumer groups helps to make clear who can ask for fea-
tures in a new display, and -often more important who will have to live
with what primary consumers defined. Make sure there is only one

primary consumer to avoid conflicting interests.

Analyze Monitoring Baseline

After defining all your monitor user groups, define the baseline for all
monitors. To do so, all monitoring data needs to be classified. For each
monitor, the primary user requests resolution and retain period of moni-
tored data. Thus, it will define how much storage this monitor needs while
running. In most situations, an experienced systems administrator has to
assist the customer during the definition phase.

The configuration of both the monitor as well as monitored object has to
be recorded, too. Analyzing CPU loads while assuming the wrong hard-

ware can produce results way out of the ballpark.

Data Compression Algorithms

Depending on your monitors needs, it may be possible to imple ment
techniques to reduce space requirements of historical data.

Archiving trades access time for space. Database files, while fast, use
notorious amounts of space to gain best access speed. Exporting and
archiving older data saves space. A frog view reduces time resolution for
older data. One simple algorithm to do this is to calculate mean values
over a few measurement cycles and store them instead of the original
data. Resolution Reduction transforms high resolution measurement val-
ues into low resolution, e.g. from float to single byte integer values.

Even if space is no concern, it may be wise to export historical data to
keep access speeds of your live monitoring tools up to the job.

There is no way to reconstruct monitoring data once it has been deleted.

Working with interpolated data will give wrong results, so be careful what

you throw away.

210 Integrating Monitoring Data

Monitoring Data Interfaces

There is no such thing than universal software. Software, as well as hard -
ware, will be replaced sooner or later, not teccessarily with something
know to you today. Defining and documenting a data format as well as the
interface between acquisition, back end, and front end will help you to
retain valuable historical information when any piece in your monitoring

systems chain changes.

Agree on Warning and Alert Levels

Monitors needing neither warnings nor alerts are rare things. Before start-
ing to implement, collect all alert and warning level definitions from the
customers. There may be monitors doing nothing else than warnings or
alerts. Both system level and application level alerts need to be defined

consistently .

Define an Priorization and Alarm Plan

Clearly define which level of alert needs what level of attention. Your
alert plan should clearly state who has to be informed by whom. In case
of disaster, there is no time to discuss who can help, too. Ideally, each
monitor will be linked to its alarm plan.

For less dire situations, it is helpful for newcomers to have events already
prioritized. Track all events, regardless how minor they seem. Having a
record of lots of small problems with any device helps to convince man-
agement to replace it with something with lower maintainance cost.
Choose Presentation Formats

Depending on your data as well as your customers needs, choose pre-
sentation formats. Depending on your customers needs, this means there
will be multiple monitors displaying the same data in different views in
differing detail. Make sure each primary customer gets exactly the view
she asked for, no matter how silly this may seem to you.

Implement the Data Acquisition Layer

After collecting all neccessary information shown above, coding can be
started. Depending which tool you have choosen, this may be as simple as
hacking your definitions into Tivoli through its console, or as complicated

as patching away against packet filter code to collect raw data.

Integrating Monitoring Data 211

At this time, choose the monitoring method which gives you just the
information you have been asked for at the cheapest cost.? Store the mon -
itored data into the data store of your choice, and forget about it.

Remember to monitor the monitoring functions, too. Many a monitor has
been grounded for too much false alarms, or for not reporting dire pro-
blems in time. Monitoring irregular cycles is especially difficult. Watch out
for unusually long capture periods. If at all popssible, use an artificial

heartbeat to make sure your monitor still works.

Integrate Information

There is no such thing than a luser- free SAN or an applicationless
database. All of those things have their real- world use. Unfortunately,
employees within departments tend to cling together, and easily view
other departments as enemies. This often leads to internalization of infor -
mation. Having a DBA Team in a full strength search for a performance
leak caused by the Unix team moving the index table space from fast local
hard disks to bigger, but slower NAS filers will lead to both: performance
problems for your customer, as well as hostilities between teams.

Team people within various departments using the same hardware or
software to prevent this kind of problems. Make sure both administrators
as well as users of each subsystem know each other, as well as they
should now about each others needs. To solve rising problems as soon as
possible, shorten the line of communication between complimentary
teams. To make sure both team know what the other speaks about both
have to be able to look at each others monitoring displays.

Doing the Whiz: Predicting Future

Aside from the tools mentioned above there are a lot of tools available to
predict the future of your systems: magic eight- balls, crystal balls, gut
feeling, and throwing dices, to name a few. Comparing the cost of the
former to the cost of well- implemented monitoring as described above
makes those cheap gizmos even more attractive.

Applying modern statistical analyzation techniques to properly recorded
monitoring data will lead to a prediction hit rate much higher than the

average 50 percent by throwing coins. Choosing appropriate data collec-

3 Depending on your needs, cost can be either minimal implementation

cost or minimal impact on the monitored resource. Your call.

212 Integrating Monitoring Data

tion mechanisms will allow to apply the monitoring techniques in real-
time.

This will put you into a much better picture to decide how your systems
should be changed. Identified resources in excess of someones need may
be better allocated to another use. Bottlenecks discovered may be solved
before their impact punches through to the customer. Even better, analy -
zation of recorded incidents will show parts of your system with lots of
small problems before they become big problems - and you‘ll have the

paper to back your requests for new tools to widen the bottleneck.

Literature
NIST/SEMATECH e- Handbook of Statistical Methods,
http://www.itl.nist .gov/div898/handbook/, 2004.

Toutenburg, Helge: Deskripvtive Statistik, Springer Berlin Heidelberg
2004

Copyright ©2004 Christoph Sold, Ludwigshafen, Germany

FreeSBIE 213

FreeSBIE - A code walkthrough and a case study

Matteo Riondato <rionda@gufi.org>, Massimiliano Stucchi <max@gufi.org>

October 11, 2004

214

FreeSBIE

1 Introduction

FreeSBIE is a LiveCD based on the FreeBSD operating system developed by an
Italian group of people, and supported mainly by the Italian FreeBSD Users Group,
known as GUFI. The first release (1.0) was released on April 15th, 2004, and has
already been downloaded almost 20.000 times. But FreeSBIE is not only an ISO
file you can download from one of our mirrors, it is also a way to create your
very own, fully customized, LiveCD. In this paper, we’re going to depict how
the FreeSBIE provided by the team can accomplish the task of letting everybody
become a Release Engineer on his own.

2 The GUFI

The Italian FreeBSD Users Group is a small group of people whose aim is to spread
the word about FreeBSD in Italy. It is composed of 15 people making up the staff,
working together to keep the mailing lists and the IRC channel in good state. The
main event for the group is GUFICon, having place every year around the end of
September. This time it was in Milan on October 2 and 3.

3 The beginning

The project was started by Davide "dave" D’amico, in order to fulfill the need for
a LiveCD based on FreeBSD. There already was a solution around, created by a
Brazilian group, but it wasn’t as flexible as dave needed. He brought the project on
and found help form Dario "SaturNero" Freni initially, and from the whole GUFI,
in a couple of months.

4 The team

The development team is now composed by five people, with many obviously co-
operating on the official mailing list or on the IRC channel. We’re looking towards
finding more people to work on some areas that need reoworking, or simply things
that need to be created from scratch. By the way, the development is constantly
evolving, following the changes in the original FreeBSD source tree, and adapting
FreeSBIE to work with it. We’re still missing some key features that will be later
depicted, and maybe will do it in the next release.

FreeSBIE

215

5 The architecture

The power of FreeSBIE is given by its simple nature. The concept behind the
downloadable ISO is that everyone can create his own LiveCD, including all the
packages he or she wants, obviously according to the space available on the media
being used. That’s why FreeSBIE is normally considered as a set of scripts rather
than an operating system by itself.

6 Behind the magic

There is no great magic behind how FreeSBIE works. In fact, it makes use of
simple facilities provided by all the BSD systems, such as buildworld and install-
world. What makes the core of the system is a simple line in the kernel configu-
ration file, which sets the system root to a device other than the normal hard disk.
Support to handle usage on non-master devices such as a slave CD-ROM has been
recently added and will be present in FreeSBIE-1.1, along with other important
fixes to known problems. The creation of a new distribution is done starting from
a buildworld and installworld procedure, using a destination directory other than
the default one. After building a complete environment, including a custom kemnel,
the only thing remaining left is to decide the packages to be included on the media
being built.

7 Aseasyas 1,23

There have been lots of concerns about the difficulty of creating a LiveCD from
scratch, but with FreeSBIE it is enough that anybody can try. It is only a matter of
downloading the sources from CVS maybe this is sometimes the harder part and
running ./freesbie inside the downloaded directory. A set of dialogues will guide
the user through the creation procedure. At the moment the interface is in english
only, but there are plans to bring it to be i18n compatible.

8 Performance

The first test releases suffered from a media problem, which consisted in great
slowlyness accross all the system. This was due to the fact that data was roughly
stored on the CD, without any compression, and it had to be read according to this.
With FreeSBIE-1.0 a Cloop filesystem was introduced to reduce the size of the /usr,
/var and /root partitions, so that more data could be stored this meant more appli-
cation could be bundled and read times could be improved. This cloop filesystem

216

FreeSBIE

relies on the GEOM framework, so this introduction meant that FreeSBIE could
not work anymore, as it was, on 4.X systems, where GEOM is not available, and
so is the module written by Max Kohn.

9 Bundled applications

FreeSBIE is being distributed mainly as an ISO for people wanting to try it out,
or just to give FreeBSD a try. There is a great deal of applications included in the
official distribution, ranging from games, to browsers, to media players. Davide
D’Amico, who released the first official version, tried to create a general purpose
environment by using XFCE as desktop manager a good mean between GNOME
and twm and putting in browsers such as Firefox and Dillo along with more expert
level software such as ethereal or ntop. OpenOffice is not included, since it requires
special work to be adapted to a FreeSBIE environment, and it needed so much
space that it may have created serious problems. Anyway, the FreeSBIE scripts
can already handle its addiction, but the part of code related to the issue is normally
commented, and can simply be activated.

10 Childs

One of the projects that derive from FreeSBIE is called MiniBSD. It was developed
by Gianmarco Giovannelli to adapt FreeSBIE to be run on embedded machines by
installing it on flash cards. MiniBSD can fit on 16mb flash cards, and can bring
all the options that FreeSBIE has into smaller systems. It is also included in a
subdirectory in the FreeSBIE CVS repository.

There have also been rumors in the past about the need to have a frontend for
IPFW or may even be IPF or, now PF included in FreeSBIE, for easier firewall
configuration, but nobody ever started to effectively work on it.

11 Errors

Like any other project, FreeSBIE is no error-prone. The first release was shipped
with an Italian heart. This meant that the localization of great part of the software
is hardcoded to be in Italian, and can hardly be changed. This will be fixed in the
next release.

We are also aware that the code that identifies video cards and sets up an
XFree86Config file has problems identifying many cards, often falling to the use
of the VESA driver. This can hardly be fixed, but the arrival of the XOrg system,

FreeSBIE

217

and its autoconfiguration capabilities may improve version 1.1 for what concerns
this aspect.

12 Future

As said before, FreeSBIE now only has the /usr, /var and /root partitions on a
Cloop-compressed filesystem, thus we’re planning on compressing more of them
to increase speed and available space for applications.

There are also other aspects we are going to delve into, such as creating official
ISO’s for architectures other than 1386 - mainly AMD64 and SPARC64 -.

The part we all would like to focus on now is the most requested feature of all,
an installer. Many linux LiveCD’s already have the hability to be installed from
the CD to a hard disk drive, but FreeSBIE is still missing it. This is a long standing
issue that will be the primary focus in order to release FreeSBIE-2.0, but work has
just started on this. Edson Brandi recently took over it, announcing that he already
as some parts of it done. We are all looking forward to be able to install a FreeBSD
system starting from a FreeSBIE CD.

218 FreeSBIE

Using Aspect-Oriented Programming. . . 219

Using Aspect-Oriented Programming to
Run the NetBSD Kernel as a Server Personality on
Top of the L4 Microkernel

Michael Engel

Dept. of Mathematics and Computer Science,
University of Marburg,
Hans-Meerwein-Str., D-35032 Marburg, Germany
engel@informatik.uni-marburg.de

October 31st, 2004

ABSTRACT

Compared to monolithic operating system kernels like the ones used in standard BSD-
derived systems, second-generation microkernels like the Pistachio and Fiasco variants
of L4 [1] provide a minimal operating environment running in privileged mode and del-
egating all other functionality to servers running as tasks in user mode on top of the
microkernel. Running an adapted version of a standard Unix kernel on top of them can
provide many advantages, such as checkpointing entire systems, running multiple per-
sonalities in parallel on one machine, controlling resource allocations or taking control
of network connections using virtual devices.

First-generation microkernels were already used to provide Unix functionality on
top of the microkernel. Projects using the Mach microkernel [2] as a basis include
Mach+Lites (3], providing a 4.4BSD personality on top of Mach 3 and MkLinux (4],
a Linux 2.2 kernel personality running on OSF/Mach. Since the microkernel takes
control of the hardware, the kernel source code has to be adapted to run on top of
the microkernel. Access to interrupts, page tables, task and thread creation have to be
relegated to the microkernel and replaced by interprocess communication calls between
the kernel personality and the microkernel.

In this paper, we present our approach to adapting NetBSD to run on top of L4.
L4 already hosts a variety of operating systems, e.g. L4Linux[5] is a modification of a
Linux 2.4 kernel to run on top of L4. This adaptation required many manual changes
in the Linux kernel source tree. The basic idea of our approach for adapting NetBSD
is to simplify parts of the adaptation process by using aspect-oriented programming
technologies to replace components of the kernel as well as create the necessary IPC
protocols between the microkernel and the NetBSD personality. The achieved perfor-
mance is compared to L4Linux running on top of L4 as well as Lites running on top of
the Mach microkernel.

220 Using Aspect-Oriented Programming. . .

References

(1] J. Liedtke. Toward Real ?micro-kernels, Communications of the ACM, 39(9), pp.
70-77, September 1996

[2] R. Rashid, D. Julin, D. Orr, R. Sanzi, R. Baron, A. Forin, D. Golub, M. Jones.
Mach: A System Software Kernel, roceedings of the 34th Computer Society Inter-
national Conference COMPCON 89, February 1989.

[3] J. Helander. Unix under Mach — The LITES Server. Master Thesis, Helsinki Uni-
versity of Technology, 1994.

(4] F. Barbou des Places. Linux on the OSF Mach3 Microkernel, First Conference on
Freely Redistributable Software, Cambridge, MA, 1996.

[5] H. Haertig, M. Hohmuth, J. Wolter. Taming Linux, Proceedings of PART 98.

Handling FreeBSD’s latest firewall semantics. . .

Handling FreeBSD’s latest firewall semantics and
frameworks

by ADRIAN PENISOARA*

Abstract

Despite having a powerful firewall service in its base system since early versions,
known as the IPFW facility, FreeBSD has imported over time another popular
packet filtering framework, the IPF system, and now has just imported the new
kid on the packet filtering block, namely the open PF framework raised on the
OpenBSD grounds.

Having three packet filtering frameworks at your feet might sound delightful,
but actually choosing one of them or making them cooperate might give you the
shivers. Each framework has its strengths and weaknesses and often has it’s own
different idea on how to handle certain aspects.

Note: an extended version of this article will appear on the conference’s website.

1 Introduction

1.1 The players

For quite some time the FreeBSD users have been stuck with the traditional IPFW fire-
wall service which had its strengths and weaknesses. The last years though have brought
the project two new packet filtering services: Darren Reed’s IPFilter and OpenBSD’s
Packet Filter.

The IPFW framework appeared in FreeBSD in the early 2.0 releases and has been
extended and reworked over time. The dummynet(4) traffic shaping module has been
introduced in FreeBSD 2.2.8 and statefull extensions have been committed around
FreeBSD 4.0. In summer 2002 the IPFW engine has seen a major overhaul under
the “ipfw2” codename.

The IPFilter framework is the work of Darren Reed, a packet filtering service that
was designed to be portable across several Unix distributions. It offers advanced packet
filtering and NAT services out of the box; some of its strengths are the packet authen-
tication, statefull packet tracking and hierarchical rulesets.

*You can contact the author at ady@freebsd.ady.ro or see his webpage on www.ady.ro

221

222 Handling FreeBSD’s latest firewall semantics. . .

The Packet Filter framework is an offspring of the IPFilter package; it was written
by the OpenBSD folks as an alternative to Darren Reed’s IPFilter when they learnt
that the licensing terms were not open enough to permit uncontrolled derivative works.
It has all that IPFilter offered and even a lot more; its only drawback may currently be
that it’s hierarchical rulesets feature doesn’t allow nesting. Lately it has been adapted
to work with the ALTQ traffic shaping framework with which combined they offer
network QoS! services. Until recently the PF framework was available only as a port
for FreeBSD 5.x, but this summer the framework has been imported in the FreeBSD-
CURRENT branch.

1.2 Common issues

One important aspect that you always need to take into account is that the forwarded
packets enter the kernel twice, first when they are received inbound and second when
they leave the system outbound. This means that these packets will travel through
the firewall’s rules twice and you will most probably want to process them once. One
workaround for this issue is using the statefull extensions; make sure though that you
have enough resources to scale up to your traffic flow needs.

Firewalls have a default policy regarding packet handling when no user configured
rule has been matched. This policy may be either “open”, which means the packets will
be permitted to travel the firewall by default, or “closed”, in which case the packets will
be dropped by default. This policy can be adjusted either from the kernel configuration
file at compile time or at run time through a sysctl or a firewall rule. Most users will
probably leave their firewall “open” for usability reasons but paranoid users will always
choose to “close” it.

Be very careful when reconfiguring your firewall remotely! Do not forget that your
remote session is basically a network transmission and any mistake may result in imme-
diate and definitive isolation from the system you were reconfiguring. Remember that
any command output is also sent through the network and if you loose the network
connection then the command chain you launched may not be entirely processed; try
redirecting the output or make the utilities run “quietly”. For these reasons you should
always try to do your firewall reconfiguration from the systems’ console and not through
a networked session.

And last, but not least, make sure you have enough network buffers — otherwise you
may experience packet drop problems, usually detectable locally on the machine from
the “no buffer space” errors. Tune up your NMBCLUSTERS paying attention to the
tuning(7) manual page.

1.3 “Hello world !”

Before going deeper into the details let’s have a taste of what we are offered with an
example firewall configuration for each of the three frameworks.

1Quality of Service — a framework which permits guaranteed service provisioning

Handling FreeBSD's latest firewall semantics. . . 223

Let’s suppose we have a machine with the IP 80.0.0.1 and we want to make sure
that only two systems with IPs 190.0.0.1 and 190.0.0.2 may connect through SSH to
our machine. We will assume that the SSH service runs at the default port 22 and no
specific default firewall policy.

add 1000 allow tcp from 190.0.0.1,190.0.0.2 to 80.0.0.1 22 in
add 1100 allow tcp from 80.0.0.1 22 to 190.0.0.1,190.0.0.2 out
add 2000 deny tcp from any to 80.0.0.1 22

Figure 1: IPFW ruleset example

In figure 1 we see a sample IPFW ruleset that either needs to be loaded with
“ipfw -f <file>” or you can load it one rule at a time by running ipfw with each
rule as the argument. Observe that we specified the “in” and “out” keywords to exactly
match the incoming and outgoing packets and that we need to catch both the incoming
and outgoing packets.

pass 1in quick proto tcp from 190.0.0.1 to 80.0.0.1 port = 22
pass in quick proto tcp from 190.0.0.2 to 80.0.0.1 port = 22
pass out quick proto tcp from 80.0.0.1 port = 22 to 190.0.0.1
pass out quick proto tcp from 80.0.0.1 port = 22 to 190.0.0.2
block in quick proto tcp from any to 80.0.0.1 port = 22

Figure 2: IPFilter ruleset example

The same configuration for the IPFilter framework is presented in figure 2 and it
can be loaded with “ipf -f <file>”. Observe that the rules are unnumbered and that
the packet does not exit the firewall when matching a rule except when told so through
the “quick” keyword. While the “in” and “out” keywords were optional for IPEW, they
are required in the IPFilter rules. Unfortunately one cannot specify multiple distinct
addresses on the same rule except when they can be aggregated into one network subnet.

me = "80.0.0.1"
my_hosts = "{ 190.0.0.1, 190.0.0.2 }"

pass in quick proto tcp from $my hosts to $me port 22
pass out quick proto tcp from $me port 22 to $my hosts
block in quick proto tcp from any to $me port 22

Figure 3: PF ruleset example

Looking at figure 3 you probably started wandering if are a Perl class by now,
but don’t worry, we are still on track with the PF framework; while the other firewall

224 Handling FreeBSD’s latest firewall semantics. . .

frameworks may use macros in combination with an external pre-processor, the PF
framework has internal support for them. If you replace the macro definitions you will
easily recognise the same rule format from the IPFilter; however, PF holds many more
surprises for us. These rules should be loaded with “pfctl -f <file>”.

2 Statefull firewalling

2.1 Why do we need it

You saw in the previous section that building even a simple ruleset can be troublesome.
One of the main problems is that we need to keep track of both the incoming and the
outgoing packets. There is also a problem of scalability: when the rulesets grow very
large and complex and the traffic flowing through the machine is big the time it takes
for one packet to traverse the entire ruleset becomes a sensitive issue.

The statefull extension has started from a simple idea: one needs to check only the
first packet of a data connection to determine whether the entire transmission will be
allowed or not. If this packet is to be passed on then this connection will be marked in
a dynamic firewall table where it will stay until this connection will be terminated or
it will timeout.

We can already discern that this statefull extension is applicable for those protocols
that can have a state recorded in time; it is the case of TCP mainly, but also UDP
and ICMP with some approximations. The firewall will recognise the TCP connection
states from the flags header, usually the SYN, FIN, RST and ACK flags. Some firewalls
will even allow you to specify which flags may insert a new connection state.

2.2 How can it be done

Each of the three firewall frameworks has statefull firewalling extensions. We will rewrite
the previous examples using these statefull extensions.

add 1000 check-state

add 1100 allow tcp from 190.0.0.1,190.0.0.2 to 80.0.0.1 22 setup \
keep-state in

add 2000 deny tcp from any to 80.0.0.1 22

Figure 4: IPFW statefull example

As you can see, IPFW needs a special rule to make him check the dynamic states
table; the “setup” keyword will catch only packets that initiate a TCP connection.
A similar mechanism exists in both IPFilter and PF but is more refined: the “flags”
keyword permits specifying which flag bits need to be checked from a predefined set in
order to match the rule. Commonly used flags are S(YN), A(CK) and R(ST).

Handling FreeBSD’s latest firewall semantics. . . 225

pass in quick proto tcp from 190.0.0.1 to 80.0.0.1 port = 22 \
flags S/SA keep state
pass in quick proto tcp from 190.0.0.2 to 80.0.0.1 port = 22 \

flags S/SA keep state
block in quick proto tcp from any to 80.0.0.1 port = 22

Figure 5: IPFilter statefull example

me = "80.0.0.1"
my_hosts = "{ 190.0.0.1, 190.0.0.2 }"

pass in quick proto tcp from $my.hosts to $me port 22 \
flags S/SA keep state
block in quick proto tcp from any to $me port 22

Figure 6: PF statefull example

Querying the dynamic tables is possible for all frameworks with commands such as
“ipfw pipe show”, “ipfstat -sl” and “pfctl -s state”.

One big advantage of the statefull extensions is that the search time for packets is
dramatically reduced. For example, in the PF case, the search time is reduced from an
O(n) search in the entire ruleset to an O(log, n) binary tree search in the states table.

2.3 The drawbacks

Not everything is perfect; this is true for the statefull technique too. Although it helps
a lot optimizing and simplifying the firewall rulesets, it comes with a warning: watch
out for resource consumption. The tables used for dynamic state tracking have a finite
limit and DoS attack may be possible by flooding the firewall with connection attempts
(usually SYN packets).

This is why one needs to periodically check the dynamic tables status and adjust
various sysctls according to the kind of traffic that is passing through the firewall.

3 Traffic Shaping

3.1 Foreword

Please note that traffic shaping is not equivalent with QoS: the traffic shapers in general
only limit or enforce network parameters, while the QoS frameworks must also guarantee
these network parameters in a shared environment. For example, a traffic shaper will
usually only limit bandwidth, but the QoS framework must also guarantee a minimal
contracted bandwidth.

226 Handling FreeBSD'’s latest firewall semantics. . .

3.2 IPFW with Dummynet

The Dummynet module offers two objects which can help the administrator to shape
the network parameters: the pipe and the queue. The module is not compiled in the
kernel by default so you will need to recompile it with the following options:

options IPFIREWALL
options DUMMYNET
options HZ=1000 # not required but strongly recommended

Basically a pipe emulates a network link with a given bandwidth, propagation delay,
queue size and packet loss rate. The queue is used in conjunction with the WF2Q+2
policy which permits associating weights to network flows sharing the same bandwidth.

pipe 1 config bw 256Kbit/s
add 60000 pipe 1 ip from any to 192.168.0.0/24 out

Figure 7: Simple LAN clients limitation with IPFW pipes

Let’s review in figure 7 a simple case in which we limit to 256Kbps the download
of the LAN clients on the 192.168.0.0/24 network segment behind our firewall. As you
can see we need to separately configure the pipe’s emulated link characteristics and
a firewall rule which will catch packets and place them in the pipe’s network queue.
Notice the “out” keyword which specifies that only outgoing packets will be caught;
if we would have forgotten this keyword then the packets would have been processed
twice and the clients would would get only half of the specified bandwidth limit.

Contrary to the default IPEW rules behaviour, once a packet matches a pipe rule
it will exit the firewall; that’s why these rules should be numbered close to the end of
the firewall (65535 is the last “default policy” rule). This behaviour can be controlled
through the net.inet.ip.fw.one_pass sysctl.

The Dummynet module offers another useful feature: dynamic pipes. Let’s rewrite
the above example considering that that each client from the 192.168.0.0/24 class should
have its download limited to 64Kbps.

pipe 1 config bw 64Kbit/s buckets 256 mask dst-ip 0x000000ff
add 60000 pipe 1 ip from any to 192.168.0.0/24 out

Figure 8: Limiting per client with IPFW dynamic pipes

As you see in figure 8, each packet caught by the pipe rule is checked against the
destination IP mask so that for each separate IP from the 192.168.0.X segment will have
a separate dynamic rule cloned from the generic specified pipe. The “buckets” keyword

2Worst-case Fair Weighted Fair Queueing, an efficient variant of the WFQ policy

Handling FreeBSD's latest firewall semantics. . .

pipe 1 config bw 256Kbit/s
queue 10 config pipe 1 weight 10 mask dst-ip 0x000000ff
add 60000 queue 10 ip from any to 192.168.0.0/24 out

Figure 9: Weighted bandwidth sharing with IPFW queues

increases the number of hash table entries to meet the maximum possible number of
separate dynamic rules.

Even further refinements can be done: the queue object helps us “connect” a set of
flows to the same pipe in order to share its bandwidth proportionally to their weights.
Please notice that these weights are not priorities so even a lower weight flow is guar-
anteed to get its bandwidth share even if other higher weighted flows have backlogged
packets.

Figure 9 presents a configuration that uses dynamic queues cloned from a generic
queue which are all connected to the same pipe so they share the same 256Kbps band-
width. Because the weights are all the same each client will be given an equal share
from the total bandwidth.

The configuration can be refined even further using the RED? queue management
algorithm which will change the default “drop from the tail” policy and improves the
TCP decongestion response time.

3.3 PF with ALTQ

Although harder to install and configure than Dummynet, the PF/ALTQ combo of-
fers a superior class of service. The ALTQ* module offers a QoS traffic management
framework with various packet scheduling algorithms (currently only CBQ®, HFSC®
and PRIQ7 are supported).

FreeBSD support for the the PF and ALTQ frameworks is available only on the
5.x/6.x platforms. These frameworks have already been imported in the -CURRENT
branch; if your machine is not running -CURRENT then you may use the security/pf
port.

You will need in the kernel configuration file the options exemplified in figure 10 (the
“device pf*” lines are not not needed if PF is loaded as a module, e.g. as installed
from the security/pf port):

When it comes to configuring the firewall rules, the above mentioned packet sched-
ulers need to be attached to an interface from which an hierarchical tree of classes will

3Random Early Detection — packets are randomly dropped when the queue is about to become full
4 Alternate Queueing - an extensible BSD QoS framework, see http://www.csl.sony.co. jp/person/
kjc/kjc/software.html
5Class Based Queueing
SHierarchical Fair Service Curve
"Priority Queueing

228 Handling FreeBSD's latest firewall semantics. . .

PF support
options PFIL_HOOKS
device pf

device pflog
device pfsync

ALTQ support

options ALTQ

options ALTQ_CBQ

options ALTQ._HFSC

options ALTQ_PRIQ

options ALTQ_RED

#options ALTQ_NOPCC # only for SMP kernels

options HZ=1000 # not required but strongly recommended

Figure 10: Kernel configuration file for PF and ALTQ support

be organised. Packets will be sorted out in these classes based on normal PF rules
bearing the “queue” keyword.

This mean you need to specify on which interface(s) these schedulers will be acti-
vated; traffic shaping can only be done for packets leaving the system through these
interfaces. This is not always convenient but this is a basic requirement of the scheduling
algorithms.

Figure 11 presents a configuration file excerpt for a typical situation: an office with
an 1Mbps network connection (through the fxp0 interface) who uses web, mail and
SSH services. The “default” class is used to “capture” all traffic that does not fall in
other classes. The bandwidth will be shared among these four classes but each class
will have a guaranteed share (70% for the web traffic, 10% for the mail traffic, 15% for
SSH connections and 5% for what remains). Observe that the sum of the child class
percentages need to make 100%. As a bonus, the CBQ scheduler permits that a class
who has the “borrow” keyword in its definition to borrow bandwidth from the parent
class if there is any available unused bandwidth left.

Each of the main classes may have other subsequent classes; it is the case of the
“web” and “ssh” classes. Notice that the “acct” class may only use up to 40% the web
bandwidth, while the “sales” class may use more than its 70% guaranteed bandwidth
share, but only if the “acct” class is not entirely using his 40% share.

The “ssh” class is made up of two “interactive” and bulk” subclasses; they do not
have a percentage share specified but priorities only which will make the scheduler to
always choose to serve the interactive class first.

In the second section of the file we match the packets going out through the fxp0
interface (remember, the QoS schedulers can only shape outgoing traffic) to their re-
spective class. Packet matching is done on a “last matched rule” base, putting by

Handling FreeBSD's latest firewall semantics. . . 229

sales_dept = "10.0.1.0/24"
acct_dept = "10.0.2.0/24"

altq on fxp0O cbq bandwidth 1Mb queue { default, web, mail, ssh }
queue default bandwidth 5% cbq(default)

queue web bandwidth 70% priority 5 cbq(borrow red) { sales, acct }
queue sales bandwidth 60% cbq(borrow)

queue acct bandwidth 40%

queue mail bandwidth 10% priority O cbq(borrow ecn)

queue ssh bandwidth 15% priority 3 { ssh_interactive, sshbulk }
queue ssh_interactive priority 7

queue ssh_bulk priority O

pass out on fxp0 all queue default
pass out on fxp0 proto tcp from $sales.dept to any port 80 \
keep state queue sales
pass out on fxp0O proto tcp from $acct dept to any port 80 \
keep state queue acct
pass out on fxp0O proto tcp from any to any port 22 \
keep state queue(sshbulk, ssh_interactive)
pass out on fxp0O proto tcp from any to any port 25 \
keep state queue sales

Figure 11: PF/ALTQ QoS example

default all packets in the “default” class.

For the SSH classes we used a tuple for the “queue” keyword where normally we
should have specified a single class. The second class will be used for the matched
packets which have a “low-delay” TOS® or they are TCP ACK packets with no data
payload.

8Type Of Service

The conference team gives a big "Thank You" to

- or sponsoring the conference directly

- all companies and organisations that supported the production of conference materials by buying ads

- all speakers that helped with their talks to create an interesting conference program
- all employees at punkt.de GmbH involved in preparations for the conference
- all the numerous people that helped with preparations and realisation of the conference and worked for making

‘ the conference a success.

& b i =
S22 BADISCHE KUCHE

N

...nur 3 Minuten von hier!

Beiertheimer Allee 18a
76137 Karlsruhe

9 ...neben dem Polizeipradsidium

. ® Rustikale Pfannengerichte

| (0721) 34 0 44 ’S\';(:-;I; 12-14.30+};:‘222

Die Renaissance des
unfiltrierten Bieres:
der Vogelbrau!

1. Karlsruher Lokalitdtenbrauerei
Vor [hren Augen brauen wir
im Lokal unsere Bierspezialititen

Das unfiltrierte Original!
Cremiger Schaum, goldtriib,
vollmundig, mit feinbitterer Note

Badische Kiiche
Von der backofenwarmen Brezel, iiber
feine Snacks zu deftigen Leibgerichten

Lust auf Biergarten!
Hab’ Sonne im Herzen und ein Unfiltriertes im Glas.
Karlsruhes vielleicht schonstes Naherholungsgebiet.

3 xin Baden:

Karlsruhe, Kapellenstr. 50, Tel. 07 21/37 75 71
Ettlingen, Rheinstr. 4, Tel. 0 724 31 37 39
Durlach, Amalienbadstr. 16, Tel. 07 21/81 96 80

Internet: w“w.voelbraeu.de
Dasunfilrierte Original ~ der Vogelbra

Am Werdetplatz 51
76137 Karleruhe Siidstadt
07213545770

el

